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Abstract

The behaviour of Al,Q, particulate reinforced 6061 aluminum alloy under
multiaxial and nonproportional loads was studied using material tests and finite element
analysis. Multiaxial loads were applied to thin walled tubular specimens by applying an
axial load as well as a differential internal/external pressure. The numerical analysis of
cyclic multiaxial behaviour was completed using the Ellyin and Xia constitutive relation
to model the aluminum alloy. A comparison of the experimental and numerical results
shows that the unit cell model with a spherical inclusion produces accurate results for
uniaxial, equibiaxial and 90° out of phase biaxial cy<lic loads. It was also shown that
cube shaped inclusions produce greater initial hardening than spheres due to the high
stress concentrations and localized plasticity. An analysis of thermal residual stresses, due
to the difference in the coefficients of thermal expansion of the two materials, showed
that the residual stresses can lead to nonlinear monotonic stress-strain behaviour of the

composite but this effect dissipates rapidly atier the first load reversal.
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1 Introduction

1.1  An Introduction to Metal Matrix Composites.

Metal matrix composites are a new class of engineered materials being considered
for a wide variety of applications in the automotive and aerospace industries. These
composites can be designed by controlling the material, geometry and amount of
reinforcemeni added to the selected matrix. In this manner, the overall properties of the
composite can be optimized for eéch application. The idea of metal matrix composites
is not new but only recently have improved production methods allowed the production
of a useful composite in large quantities. There is an increasing number of papers
available describing the behnviour of metal matrix composites. Most recently there has
been an abundance of research on discontinuous metal matrix composites. Most results,
however, are limited to simple uniaxial loads. The results contained herein are part of
an effort to determine the response of particulate reinforced metal matrix composites

subjected to multiaxial monotonic and cyclic loa:i:.

1.1.1 Materials Used to Produce Metal Matrix Composites.

There are numerous combinations of materials that can be used to produce a metal
matrix composite. Table 1.1 illustrates the large number of materials and combinations
which have been considered to produce new composites by a variety of methods
including gravity casting, ingot casting, powder metallurgy, infiltration and diffusion
bonding (Arsenault and Everett, 1991). The properties of each material, the matrix and

reinforcement, must be considered when a metal matrix composite is produced.



Tabie 1.1: Successful Matches of reinforcement and matrix materials in metal matrix
composites and fabrication methods used (Boardman, 1990).

Reinforcement
Discontinuous Continuous
Matrix | ALO; SiC w Al O, B C SiC wWC
Al C,PS | C,IC, C C,MI | C,DB| C,MI |C,PS C
PS DB
Cu C,PS | C, ES C DB C Ml
Fe C, PS
Mg C,PS}| C, IC, C C C, DB C
PS
Ti DB DB C DB DB
Fabrication Methods
Gravity Casting C
Ingot Cast and Formed IC
Powder Sintering PS
Metal Infiltration MI
Diffusion Bonding DB



As suggested by the name, the matrix is always a metal such as aluminum, steel,
copper or titanium. Generally the composites strongly reflect the behaviour of the matrix
thus making its selection very important. Often the most suitable material, without
reinforcement, is selected and then improved by the addition of a second phase.
Important properties in the matrix may be yield and ultimate strength, stiffness, ductility,
fracture toughness and corrosion resistance.

The reinforcement may be a metal, ceramic or any material added to improve the
properties of the matrix. For example carbon fibres may be added because of their
lubricating properties. Very important considerations for the selection of a reinforcement
material is the chemical compatibility with the matrix and bond strength. If the two
materials react to produce a weak interface debonding may result in cracks and voids

around the reinforcement.

1.1.2 Inclusion Geometry and Volume Fraction.

The possible inclusion shapes are divided into three categories; fibres, whiskers
and particles. These are shown in Figure 1.1. Fibres are continuous reinforcement which
run from one end of the component to the other without interruption. This produces a
material with very anisotropic properties which is designed such that the reinforcement
carries a large portion of the load. Fibre reinforced composites are produced by manually
aligning the fibres between layers of the matrix material and these are then diffusion
bonded. This process makes them very expensive. When short fibres are used, they are

called whiskers. Gererally whisker reinforced composites are isotropic unless the



whiskers are aligned by rolling or extrusion. Another form of reinforcement is particles
which may be spheres, pl: telets or angular particles. Particles with sharp corners produce
higher stresses and localized plasticity within the matrix which results in higher yield
stresses than composites reinforced with spheres. Particulate reinforcement results in a
composite which is isotropic, and therefore can be treated as most conventional materials
and is relatively inexpensive to make. Particle reinforcement results in smaller plastic
strains within the matrix than do whisker inclusions, and therefore demonstrate less
hardening and lower flow stress but greater elongation to failure (Llorca, Needleman and
Suresh, 1991). From this point on, all discussion will be concerning metal matrix
composites containing particulate reinforcement like the material tested.

The size of the added reinforcement is an important consideration on
strengthening as well as fracture toughness and fatigue life. It has been found that the
yield strength, ultimate strength and strain to failure all decrease as the size of the
reinforcement is increased. In fact, the increase in size causes a change in the
deformation mechanism from planar slip due to shearing of the particles to wavy slip
from dislocation bypassing (Shang and Ritchie, 1989). Larger particles are also believed
to result in reduced residual stresses due to fewer subgrain boundaries and less particle
interaction. Fracture studies have found that effective threshold stress intensity range,
AK, gy is much larger for small particles tl:erefore composites containing smaller
particles have greater toughness. In the case of low stress fatigue crack growth, larger
particles produce roughness induced closure which slows crack growth and therefore,

AK, ¢4, is increased. For large fatigue loads when no closure occurs, AK 4, decreases



(Shang and Ritchie, 1989). Results suggest that an even distribution of fine particles will
provide the best properties.

Another important parameter which can be controlled is the volume traction of
reinforcement added. Tests clearly show that the yield stress, ultimate stress and stiftness
increase and strain to failure decreases as the ratio is increased. The greater strength may
be attributed to more particle interaction resulting in greater hardening (McDanels, 1985).
The volume fraction is the dominant factor in increasing the elastic modulus since a

larger amount of the load will be carried by the reinforcement.

1.1.3 Duralcan 20% ALO,p 6061

The alumina-aluminum composite is being introduced to the automobile industry
and is being used in components such as brake rotors, drive shafts and suspension
components. It has also found applications in the aerospace industry and is currently
being used for bicycle frames. The composites high specific stiffness and wear resistance
make it suitable for these applications.

The material tested in this investigation was provided by Alcan ! td. which is now
producing alumina particulate reinforced aluminum in large quantities. The composite is
made by adding the alumina particles 5 to 80 microns in size to the molten aluminum and
is cast in billets. The material was supplied in the form of extruded tubes in the T6
solution treatment. An example of the 20% Al,O, 6061-T6 composite is shown in Figure

1.2. The matrix material is 6061 aluminum which has the constituents as shown in Table

1.2.



Table 1.2: Constituents of 6061 aluminum alloy.

Constituent % Mass
Si 04-0.8
Cu 0.15-04
Fe 0.7 max
Mn 0.15 max
Mg 0.8-1.2
Cr 0.04 - 0.35
Zn 0.25 max
Ti 0.15 max
Others 0.05 -.ax each
0.15 uiax total
Al Balance




Figure 1.3 shows an etched sample of 6061-T6 and clearly displays the grain structure.
This series of aluminum has good formability, weldability, machinability and corrosion
resistance. The large percentages of silicon and magnesium form Mg,Si making this
alloy heat treatable. During annealing the material is recrystallized and undergoes no
natural age hardening later. The yield strength of ihe annealed aluminum depends more
strongly on the temperature than annealing time thus oven temperature must be carefully
monitored. The T6 heat treatment of this alloy is commonly used in industrial
applications because it has the greatest strength but lowest corrosion resistance. This
material displays large amounts of precipitation hardening with the first stages of
precipitation at room temperature, however, overaging results in decrease in strength and

hardness when artificially aged at too high a temperature for too long.

1.2 Methods of Strengthening in Particulate Reinforced Metal Matrix

Composites.

There are two general philosophies of what mechanisms produce the added
strength within the particle reinforced composite: 1) the transfer of the load to the stiff
elastic reinforcement and 2) changes in the microstructure of the matrix due to the
presence of the reinforcement. It is likely that these two general mechanisms act
simultaneously to provide the composite with a much higher strength than the matrix
material alone. The experimental values, however, may not be as large as those predicted
by load transfer and microstructural changes because of relaxation occurring at stress

concentrations in the matrix near the particles or in regions of high particle density.



Failure mechanisms which may occur include the nucleation of voids within the matrix,
debonding of the matrix from the reinforcement and shear failure of the matrix (Llorca,
Needleman and Suresh, 1991). The following is a brief discussion of the two

strengthening philosophies.

1.2.1 Load Transfer

This philosophy is based on the belief that a significant part of an external load
is passed from the matrix to the reinforcement. Loads may be transferred via normal
loading, shear loading of both. These are the basis of the slab model and shear lag

models.

1.2.1.1 The Slab Model

Load transfer is very important in fibre reinforced composites where the fibres
are sufficiently long to be considered continuous throughout the component. In the slab
model, the composite is considered to consist of the matrix material and a proportional
amount of reinforcement. There is no consideration for size or shape of the
reinforcement. Basic assumptions for the stress and strain fields are applied to determine
axial and transverse properties. For example, when the reinforcement is fibres and it is
assumed that the matrix and fibre axial strain is equal (Voigt Model), the strain balance

produces
E., = (1-NE\,fE, (1.1)

where f is the volume fraction of reinforcement, Ey, E, and E, are the elastic moduli



of the matrix, reinforcement and composite in the direction parallel to the fibres
respectively. Equation 1.1 is commonly called the *Rule of Mixtures’ and is quite
accurate for fibre reinforced composites. When one assumes the transverse stress is
equivalent in the two phases (Reuss Model) the resulting equation is
E. - [£+Q’$]l (1.2)

where E; is the elastic modulus of the composite perpendicular to the fibres. These
equations, however, can not be applied to particulate reinforced composites. For
example, for the case of alumirum (E = 69 500 MPa) reinforced with 20%v alumina
(E = 450 000 MPa) these equations result in values of 145 600 MPa and 83 700 MPa
respectively. The elastic modulus of the 20% Al,O;p 6061 composite from experimental
values is near 100 000 MPa. Clearly the more complex stress distribution within the

matrix due to the discontinuous reinforcement must be considered.

1.2.1.2 The Shear Lag Method

The shear lag method is based on an analytical model of load transfer from the
matrix to the reinforcement by shear only. The model assumes a radial shear stress
distribution surrounds a cylindrical particle. The stress field is found by equating the
shear on concentric rings while the far field strain within the matrix is assumed to be
uniform. The derivation is based on a hexagonal distribution but is not very sensitive to
geometry so this case is used in general (Clyne and Withers, 1993). The stresses and

strains predicted within the particle or short fibre are greatest at the middle and decrease

9



to towards the ends (Nardone and Prewo, 1985).

The shear lag model completely neglects the tensile loads transferred at the ends
of the particle. This may be the case for large composite strains, when voids have
nucleated near the tips, but the initial yielding is also dependent on the geometry (Kamat,
Hirth and Mehrabian,1989). Corrections have been added to the shear lag model to
compensate for the load transferred at the particle ends. For example, one simple method
is to, in effect, increase the length of the particle to add extra shear force transfer to
account for the tensile loads (Nardone and Prewo,1986). While this simple model does
not consider the actual stress field around the particle, it has produced reasonable results
for the yield strength of the composite.

Two other models which are based on the transfer of load, are the Eshelby
method (Eshelby, 1957) for solving the stress field for ellipsoidal inclusions in an elastic
matrix and the finite element method. Both of these methods will be described in greater

detail in the following chapter.

1.2.2 Changes Within the Matrix Microstructure

The second area of focus in the study of strengthening in discontinuously
reinforced metal matrix composites, is changes in the matrix microstructure due to the
presence of the particles. Strengthening has been attributed primarily *o two features:
increased dislocation density and smaller subgrain size. Consideration has also been given
to dispersion hardening but this is believed to be more important in the aging of the

composite. Other mechanisms, such as the change in crystal structure of the matrix, are

10



not considered significant in the increase of strength in the composite.

Dislocations can be created in particulate reinforced metal matrix composites by
cold working ( Shi, Arsenault, Krawitz and Smith, 1993; Lee and Subramanian, 1993)
but a method of generation more specific to these composites, is by thermal treatmment.
For the composite considered in this study, aluminum has a thermal coefticient of
expansion of approximately 24x10°/°C and this value is 8x10%/°C for the alumina
reinforcement. This large difference in the thermal coefficients of expansion, commonly
called ACTE, results in large residual stresses near the particles after a temperature drop.
Such a temperature drop may occur during processing, when the reinforcement is mixed
in the molten metal and then cooled, or as part of a subsequent heat treatment. These
residual stresses are relaxed by the generation of dislocations within the matrix around
the particle. The nature of this mechanism has been studied by microscopy and analytical
techniques (Christman and S.:iresh, 1987).

Extensive analysis of the microstructure of metal matrix composites show that the
difference in coefficients of expansion lead to a much higher dislocation density within
the matrix. The density is highest near the particles (Arsenault, Wang and Feng, 1991)
but the generation of dislocations may be sufficient to cover the entire matrix (Taya,
Lulay and Lioyd, 1% ., It has clearly been shown that the number of dislocations is
greater in composites of higher volume fractions and decreases as the size of the
reinforcement is increased (Arsenault, Wang and Feng, 1991). Transmission electron
microscope studies also show that most of the plastic deformation within the composite

occurs in regions with higher than average volume fraction of reinforcement and a high

11



dislocation density. Thus one finds the same trends for dislocation density and strength
with variations in the amount and size of reinforcement. Arsenaul:, Wang and Feng
(1991) made a comparison of composite and a specimen of cold rolled matrix material.
While the cold worked aluminum alloy had a much lower dislocation density than the
composite, it experienced a much larger increase in strength over the unworked matrix
than the composite. Clearly the increase in dislocation density cannot be used to explain
the increased strength in metal matrix composites and other mechanisms must be
considered.

An analytical model based on dislocation punching (Arsenault, 1991) is commonly
used to determine the increase in strength. This very simple model is based on the
volume fraction of reinforcement, particle size and crystal structure of the matrix. Results
indicate that the residual stresses within the matrix are tensile. For spherical particles,
the residual stress is purely hydrostatic tension which should have no effect on dislocation
generation and therefore the yield point should be the same for compressive and tensile
loads. Experimental results from others (Jain, MacEwen and Wu, 1994) and the results
of a finite element analysis, provided in Chapter five, show that the tensile yield stress
is actually greater than that in compression.

The decrease in subgrain size resulting from the addition of the reinforcement is
believed to contribute to the extra strength of the composite. Microscope specimens show
that the grain and subgrain size near the particles is significantly decreased. Strengthening
may occur since the grain and subgrain boundaries act to limit dislocation movement

(Llorca, 1994). This mechanism is not fully understood and estimates of increase in

——
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strength due to this effect are based on empirical formulas.

Dispersion hardening is another mechanism which may contribute to the strength
of particulate reinforced composites. The added reinforcement may resist the plastic flow
of the matrix producing an internal back stress (Mori and Tanaka, 1973). The particles
enhance dislocation development by acting as barriers resulting in dislocation build up
and tangles. Clyne and Withers (1993) however, suggest that this mechanism applies to
closely packed particles and may not be a factor at all since most of the reinforcement
lies on grain boundaries. While it is not widely believed that the particles lend directly
to the increased strength of the composite, they may have a secondary effect on the
matrix. The high dislocation density around the reinforcement may provide additional
nucleation sites for precipitates which are significant in dispersion hardening. This is
explained by the fa.: that the composite material ages much more quickly than the
aluminum matrix whe. sione (Christman and Suresh, 1988).

While the effects of load transfer and changes in the matrix microstructure have
often been studied independently, it is most likely that they act together to produce the
added strength in the composite. However failure mechanisms should also be explored.
Mechanisms of failure may be very common throughout the composite due to high stress
concentrations and imperfect reinforcement. While a combination of the mechanisms
described, load transfer and changes in the microstructure, may over estimate strength,
if the failure processes which are also occurring in the material are accounted for, the

results may approach experimental values.
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Figure 1.1: The three categories of inclusion shape.




Figure 1.2: Micrograph of 20% Al,O,p 6061-T6 composite
showing the reinforcement distribution.

Figure 1.3 icrograph f 6061-T6 linn ally etched to
show the grain structure.
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2 Methods of Modelling the Composite Materials

Numerous methods are used to estimate the behaviour of particulate reinforced
metal matrix composites based on the material properties of the matrix and reinforcement
on their own. These methods range from the simple rule of mixtures commonly used for
fibre reinforced composites to complicated numerical methods such as finite element
analysis. For particulate reinforced metal matrix composites, two methods of analysis are
quite popular; the analytical Eshelby inclusion method and the numerical finite element

method.

2.1  Eshelby’s Solution

In the 1950’s, J. D. Eshelby (1957) derived the equations for the stress field of
a single elastic ellipsoidal inclusion in an elastic medium. This method is based on a
cutting and welding procedure in which the particle is represented by one made of the
matrix material which has the appropriate strain to have the same stress field as the
original inclusion. The Eshelby solution is not limited to ellipsoidal inclusions, however
in this case, the stress and strain distributions within the particle are uniform, thus an
analytical solution is available. The original solution developed for a single inclusion in
an infinite elastic matrix. The effects of the surrounding particles in a highly reinforced

composite are added in Section 2.1.2.

2.1.1 The Eshelby Procedure

In this procedure, the inclusion is replaced by a suitably strained portion of matrix
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material. This new inclusion will be termed a gnost inclusion. When this ghost inclusion
is welded into the matrix no sliding occurs at the interface. The procedure is shown in
Figure 2.1.

The inclusion region, with no deformations, is first cut from the elastically
homogeneous matrix, A. It then undergoes a change in shape by e=¢"' as the constraint
of the surrounding matrix is removed, B. Surface tractions are applied to the inclusion
to return it to its original shape, C, and it is welded into the matrix, D, and the surface
tractions are removed. This system then reaches equilibrium, E, at some constrained
strain e=¢".

The stress within the uniformly strained inclusion at point E is given by
o, = C,(e€ - €N (2.1
where C,, is the matrix stiffness tensor and ¢© and €' are related by
€ = SeT 2.2)

and the Eshelby tensor, S, is based on the aspect ratio of the ellipsoid and the value of
Poisson’s ratio. The Eshelby tensor for spherical particles is provided in Appendix A.
Using Eq. 2.2, the stress in the inclusion (internal stress) is then found as a function of

er.

o, = CM(S—I)eT (2.3)
where I is the identity matrix. Thus, for this dilute system, the stress and strain within

the inclusion can be calculated without considering the complicated stress distribution in

the matrix.
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Now an external load is applied. In an elastically homogeneous medium, the strain
is the same throughout and the stress at each point is the sum of the applied stress and

the internal stress. Thus for the ghost inclusion, which is made of the matrix material,
the internal stress is
cz,+o‘4 = CM(eC—GT)+CMe‘ (2.4)

This may also be expressed in terms of the properties of the true inclusion.

o, = ’(ec+e“) (2.5)

At this point, the real and ghost inclusions can be interchanged without disturbing the
matrix. It is then possible to find a stress free transformation strain €', which is the same
as in the real inclusion when the composite is under an applied load. The real inclusion
and ghost inclusion can now be interchanged without disturbing the matrix. Using the
Eshelby tensor and Equations 2.4 and 2.5, one can find the equivalent transformation
strain associated with the misfit between the shapes of the inclusion and the hole which

would occur if the two phases were subjected to the applied load independently.
€7 = -[(C;-CS+Cy 1 (C,-C et (2.6)

This then yields

0,404 = ~Cp(S-DIC,~Cp)S+C, 1 (C,-C et +Cype? 2.7)

The entire stress field around the particle is now defined.
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2.1.2 Extension to a Non-Dilute system

While the solution given above describes the stress d:ribution around the
particle, it is based upon one inclusion and the results are only appiicatle when the
volume fraction is below 5% and the stresses are not influenced by the surrounding
particles (Clyne and Withers, 1993). This solution will now be extended to include the
influence of surrounding particles such as occurs in composites with greater amounts of

reinforcement.

To maintain the balance of stresses, the composite distorts upon cutting, so as t
provide an average matrix stress to oppose the inclusion stress. This is incorporated into
the model by superposing a background stress which acts as if it were externally applied.

The volume fraction is implemented as
(1-p<e>,+f<c> = 0 (2.8)

and does not account for individual interactions, but is an average effect of the random

distribution. For the case of an external load, the ghost inclusion is stressed by

A _ % 2.9
0,+<0>,+6" = <0>+0 (2.9)

with the corresponding strain

Crehi<e>, (2.10)

The stress can then be expressed as

<g>+o* = C,(€C+e‘+<e>M) 2.11)

or
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<0>,+0A = CM(eC+eA +<e>M—eT) (2.12)

These le-.d to the term for the required transformation strain.

€™ = ~(C,~CPIS-AIS-DI-C,} (€}~ CPe’ 2.13)

From this, the mean stresses in the inclusion and matrix can be calculated using

<g>, = —ﬁM(S—DeT (2.14)

and

<0>, = (1-NC,(S-De” (2.15)
The overall composite stiffness is related to the volume averaged composite strain under

an applied load,

o4 = Cce'é = C et +<e>) (2.16)

In the matrix the local internal strains due to the inclusion average to zero therefore the
overall strain consists of the mean matrix strain and the constrained strain within the

inclusions.

<e>'z. = <e>M+feC 2.17)
The mean matrix strain found by considering the internal stress balance for the ghost

composite, is:

(1-NC, <> T [(<e> +eC~€") = 0 (2.18)

which leads to
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<e>, = fe€-e") =0 2.19)

so that

<e>‘2. = feT (2.20)

The overall composite strain is then given by

G_lé - EA+f€T (221)

Now substituting for €' we get

e = AAC,y-CISAS-DI-C,) (Cy-C et 2.22)

The expression for the average stress then becomes

o4 = CC[CM"o"—f[(CM—C,)[S-f(S—I)]—CM}'I(CM—C,)CM"O‘] 2.23)
The composite stiffness tensor is then

C, = [CM"—ﬂ(C,—CM)[S—f(S—I)]—CM}"(C,—CM)CM“]" (2.24)

One can then find the axial modulus using E;. = 1/(Cs)™.
Figure 2.2 shows the increase in stiffness of a composite made of ALO, (E = 450000
MPa, » = 0.25) spheres and Aluminum (E = 69500 MPa, » = 0.33) as the volume
fraction of reinforcement is increased from O to 40%.

This is the basic elastic solution to Esheby’s ellipsoidal inclusion problem.
Numerous modifications to this solution have been made to add plasticity and other
effects (Withers, Stobbs and Pedersen, 1989; Mochida, Taya and Lloyd, 1991; Arsenault

and Taya, 1987; Corbin and Wilkinson, 1994).
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2.2 The Finite Element Method

The use of finite element analysis to study composites has increased recently as
computers have become more powerful and more complex software has become
available. Finite element analysis is now used to study the effects of residual stresses as
well as the response of particulate reinforced metai matrix composites under various
complex loads. The only limit on the complexity of the model are the computer resources
available. The effects of particle shape and aspect ratio and particle clustering have been
studied (Christman, Needleman and Suresh, 1989). This is a significant advantage over

analytical models which have only been solved for specific reinforcement geometries.

2.2.1 Application of the Periodic Array

Ideally one would like to analyze the composite component as one entity with one
solution. For a discontinuous metal matrix composite it is not reasonable to do a detailed
microstructural investigation since it contains a very large number of particies which vary
in sizw from 5 to 80 microns arranged in a random manner. In order to do a detailed
analysis, the problem must be greatly reduced.

The most significant simplifying assumption commonly adopted is that the
composite is composed of a perfect array of identical unit cells. Each unit cell contains
a particle of identical size and shape and a proportional amount of matrix material and
will therefore, experience the same stresses and strains. In this investigation, each unit
cell has size 2x2x2 and is 20% reinforcement by volume. These dimensions were chosen

so theat the finite element model had sides of length 1. Therefore a spherical inclusion
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will have a diameter of 1.451 and a cube inclusion will have sides of 1.170. Note that
thrse dimensions are without units and the analysis is independent of the particle size.

This model assumes that the inclusions are perfectly aligned. From the simple
arry structure shown in Figure 2.3 one can then take a unit cell with the orientation
which : >presents the appropriate load direction. The two s.mple unit cells shown; simple
"¢ ¢nd body centre cubic appear to be the limiting cases for estimateing the composit2
streng:: (see Kujawski, Xia and Ellyin, 1994). The simple cubic arrangement is used in
this inve :igrtion and is the upper bound, the body centre cubic model is the lower
bouac. The true composite material will contain all the cases between and including these
cases.

The selection of type of unit cell to be used in a finite element analysis is an
important consideration. One can use a plane stress or plane strain two-dimensional
model (Wang, Chen and Lloyd, 1993), an axisymmetric model (Tvergaard, 1990;
Christman., Needleman and Suresh, 1989) or a full three-dimensional model (Levy and
Papazian, 1990; Hom, 1992). The plane strain model actually repiesents fibres and
produces conservative values. The plane stress case represents a thin plate with
reinforcement "plugs". The axisymmetric model has been used in a number of
investigations to analyze reinforcement-matrix reactions. However, since it is a volume
of revolution, there is some difficulty accounting for the entire matrix and boundary
conditions. One is also iimited to specific inclusion geometries and only uniaxial and
thermal expansion cases can be investigated.

The three dimension analysis is more complicated and more numerically intensive
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than the options given above, however, the available reinforcement shapes and load
conditions which can be studied are unlimited. Such a model is no longer beyond the
capabilities of a reasonable computer work station and has become popular for the
analysis of discontinuous metal matrix composites.

The unit cell approach is not strictly limited to the cases defined above. The
aspect ratios of the unit cell and inclusion do not have to be one and can be applied to
the study of whisker reinforced composites. It can also be adapted to study such variables
as particle clusters and orientation. The simple model used in this investigation, however,
is suitable for studying the effects of volume fraction of reinforcement, particle shape,
residual thermal stresses, various external loads and changes in the composite material

properties.

2.2.2 Boundary Conditions

An important consideration is the boundary conditions to be applied to the unit
cell. First, however, the problem is further reduced by considering the symmetry of the
unit cell. The unit cells considered in this analysis are cube shaped and contain either
cubical or spherical particles, therefore only one sixteenth of the three dimension unit cell
must be considered. However, to keep the geometry and application of boundary
conditions simple, one eighth of the unit cell, as shown in Figure 2.4, will be used for
all loading conditions.

Boundary conditions must % applied to this reduced model to enforce the

periodicity of the original composite structure. The reduced unit cell is defined by the
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following six planc- /x,=0), S(x,=0), S(x;=0), S(x;=1,), S(x,=1,) and S(x;=1;). The
first three are the planes of symmetry, and therefore, there must not be any normal
displacement, only translation along the surface is allowed. A condition of the periodic
structure is that the free surfaces must remain flat with the same orientation after a
displacement occurs. This is illustrated in Figure 2.5. The six sides of the unit cell are

constrained according to

US(x,=0) =0

US(x2=0) =

Useor = © (2.25)
Usp,-tp = ™

Uity = %2

Use, =1y = U3

The values of u,, u, and u, are defined in the following section.

2.2.3 Application of External Loads

External loads may be imposed on the finite element model by prescribing
displacements or forces to the nodes. These may be applied to produce a constant
displacement or constant pressure over a surface.

The loading procedures in the thermal residual stress analyses were set to model
the processing of the composite and then loading. As such, the composite was cooled
from a processing temperature of 500°C to room temperature, 20°C. External loads were
then applied as surface pressurés, while the boundary conditions requiring the surfaces

to remain plane were still in effect. During the temperature drop, the temperature was
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the same throughout the unit cell.

In ADINA, the loads were applied by prescribed displacements. Each node on the
surface was moved the same distance normal to the surface. This automatically imposes
the boundary condition that the surface remain a flat plane with the same orientation.
Under a uniaxial load, the displacement u,, in Eq. 2.25, was prescribed. If a biaxial ioad

was applied, then u, and u, were prescribed.

2.24 Mesh Generation and Verification

All element meshc:s were generated in the ANSYS preprocessor and were then
converted to the ADINA format if required. This basically consisted of rearranging the
order of the nodes in the element connectivity. For convenience, all models were built
using eight node isotropic three-dimensional solid elements containing eight Gaussian
integration points each. For this small displacement analysis rotations were omitted and
each node had three degrees of freedom.

For each unit cell, one with a spherical inclusion and one with a cube shaped
reinforcement, three different meshes of varying densities were tested. Each mesh had
approximately twice as many degrees of freedom as the previous model. The resulting
uniaxial stress-strain curves for each reinforcement geometry were compared. It was
found that the medium and fine meshes produced similar results, however, the coarse
mesh produc :d igher stresses under plastic defofmation. In the interest of computation
time, the medium mesh was used in each case, the resulting meshes are shown for a

spherical inclusion in Figure 2.6 and a cube inclusion in Figure 2.7. The model for the
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spherical reinforcement has 1613 nodes and 1296 elements and tnere are 2744 nodes and

2197 elements in the cube inclusion model.

2.2.5 The Elastic Reinforcement

It has become a popuiar procedure to model the reinforcement phase as a purely
elastic isotropic material. Since the strength of Alumina fibres is in the range of 1300 to
2100 MPa, it is unlikely that it will experience these stresses in a normal use of the
composite and failure is not considered in the model.

An isotropic elastic material will respond according to Hooke’s law:

1
€, = -E[on—v(oyyma)] + kT

1
€. = -E[o”—v(cnwu)] + kT

1 (2.26)
€, = —E-[ou—v(oxx+a”)] + kT
- (1+v) _ (+v) _ (1+v)
ny = E Oxy Eyz = Toyz eu = ———E—Uu

where KT is the terin related to thermal expansion.
In this investigation, the reinforcement has been assigned the following properties.
E = 450 000 MPa
v = 0.25
k = 8x10%/°C
These values are similar to those used by other researchers in similar studies.
Previous investigations have shown that large Al,0; particles often contain flaws

and may fail when the composite experiences large strains (Lloyd, 1991; Bao, 1992;
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Mochida, Taya and Lloyd, 1991), but this is not considered in the present analysis. The
unit cell approach represents the average of a random distribution of particles, therefore
the reinforcement is considered an isotropic material although the properties of alumina

are dependent on the crystal structure.

2.2.6 The Kinematic Hardening Elastic-Plastic Matrix

The matrix material model, used in the residual thermal stress analysis in the
ANSYS code, was a rate independent multilinear kinematic hardening elastoplastic
model. In this model, the size of the yield surface does not change but the centre of the
surface moves. This is shown in Figure 2.8.

The kinematic hardening model is based on an incremental procedure in which

each strain increment can be divided into its elastic and plastic parts.

de,; = de;; + dej, (2.27)
The elastic part is described by the Hooke’s law and the plastic strain increment is found
v using the flow law:
1
defj = E[(l+v)6,.k5ﬂ—v6ij6u]dou
(2.28)
dée’ = Aiaflﬂl
v do
if
Where §; is the Kronecker delta, \ is a scalar function and the yield surface is defined
by

in which q is the radius of the yieid surface and f(o,a,x) is the yield function. When the
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@ =ﬂ0’a:X)—q2 =

(2.29)

yield function is equal to the plastic potential, it is termed the associative flow rule and

the plastic strains act in the direction normal to the yield surface. The variables are

defined as «, the location of the centre of the yield surface and x is the plastic work,

- f Cde,

x = [(c)7de]

(2.30)

where C is a constant and T indicates the transpose of the tensor. The plastic potential

function can be differentiated to give

\T
df - (a_if“J do, + (g{-)dx + (Ea&)daﬁ -0

ij ij

substituting

do, = Cde;
and

dy = (ou)Tdep
gives

T
(aif] “ +(i)(°”)rd (aifu) o 0

The stress increment is calculated using the elastic stress-strain relation,
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(2.32)

(2.33)

(2.34)



- e 2.35
where [D] is the elastic stiffness matrix and the elastic strain increment is determined

from

de’. = de..-de” (2.36)

Y i y

Combining Egs. 2.34, 2.35 and 2.36 leads to

3
[a({;])D de;;
af oy7-F ¢ (af)TaJ‘+(af)’D of

.
ao aa,.j ao,.j aoij 6oij

(2.37)

and the plastic strain increment is then calculated using Eq. 2.28. A description of the
full application of this constitutive relation is provided in the ANSYS Theory Manual
(1992).

For use as a temperature dependent material model, a thermal strain increment
is added which is dependent on the change of temperature. The model is rate independent
therefore no creep or relaxation is included in the analysis.

This model is adequate for simple monotonic loads but does not describe the
material behaviour under cyclic or nonproportional loads. It does not account for the
hardening which occurs under a constant strain amplitude cyclic load or the exira
hardening associated with a nonproportional loading. The addition of the reinforcing
material produces these nonproportional stresses within the matrix of a metal matrix
composite. The following section briefly describes the Ellyin and Xia constitutive relation

which accounts for these effects.
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2.2.7 The Ellyin and Xia Model for an Elastic-Plastic Matrix

In ADINA, the behaviour of the aluminum matrix was determined by a material
model based on the rate independent two surface constitutive relation developed by Ellyin
and Xia. This method is applicable to muliiaxial nonproportional cyclic loads but require
only a few extra input parameters. A complete description and derivation of the
constitutive relation can be found in (Ellyin, 1989; Ellyin and Xia, 1989; Xia and Ellyin,
1991). Examples of this model applied to two dimensional plane strain finite element
analysis can be found in (Ellyin and Wu, 1992; Wu, 1989).

The yield surface, which defines the boundary between elastic and plastic loading

is given by
¢, = f(o,~a)-q*> =0 (2.38)

where o; is the location of the centre of the yield surface and the variable q is the radius

and is a function of accumulated plastic strain,

4

1
1 = (%de;de:;)z (2.39)

The second surface is the stress memory surface given by

b, = f,(0,7B)"R*0 4 0) = 0 (2.41)
In this case B; is the centre of the memory surface, R is the radius and o, = (3s;5;/2)""

where s; = 0;-0,,8;/3. The stress memory surface records the load history of the material

by memorizing the maximum equivalent stress experienced. For a von Mises material,
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these surfaces become:

3
1, = E(s,,-s,-}')

2 2.41)
fn = 5(S§S§)

Where the s;* is the deviatoric part of o;-o; and s;” is the deviatoric part of 0-B;.

The total strain increment is expressed as the sum of the elastic and plastic parts,

= 4
de,; = defﬁde{-} (2.42)

The stress increments are then determined using the Hooke’s law for the elastic part and

the increment of plastic strain is given by

. X1

do,, (2.43)
oij O

The total stress increment is then

cg=~ (2.44)
- E % {af”+v af"b,d»de,d
tvliw, (9 & |80y 1-2v o,
L E de,,, do,..

In the above, §; is the Kronecker delta and c is defined according to whether it is an

elastic or plastic state of stress, i.e:
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o,
c=1 :—a—’—ou 20 A f(o,-e)-¢* = 0

a;u (2.45)
c=0 :g-’ldoJu <0V (o, a)-q*<0

The variable g, is the hardening modulus, and is given by

g = L(_l_ _1] (2.46)
4q2\E, E
where E is the elastic modulus and E, is the tangeit modulus.

To determine the movement of the yield and stress memory surfaces and the
tangent modulus, two different modes of plastic loading are defined. The first is
monotonic plastic loading (ML). In this case, the stress memory surface expands with
the movement of the yield surface and the two surfaces remain tangent. This is shown
by path AB in Figure 2.9. The second mode is plastic reloading (RL) in which the yield
surface moves inside the stress memory surface as shown by path CD. If the yield
surface contacts the memory surface, the maximum equivalent stress increases once again
and returns to monotonic plastic loading.

A Ziegler type rule is used to determine the motion of the yield surface under
monotonic plastic loading. The movement is then a function of stress and the current

position and a scalar function du.
do; = dp(o,-e,) (2.47)

When plastic reloading occurs, the yield surface moves in the direction of the line

connecting the points (points D and E, see Figure 2.9) on the yield and memory surfaces
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haviag the same normal vector. This is described by:

_ m 4
de; = dp(o}; -0y (2.48)
Using the consistency condition
dd, = —2(do,-da )-2qdg = O (2.59)
y = 3g. 90yTa%y) 7440 = ‘

y

o; can be determined for either of the above two cases.

The evolution of the stress memory condition is also dependent on the two types
of plastic loading. For the monotonic plastic loading, the movement of the memory
surface is determined by the condition that the yield and memory surfaces must remain

tangent. This is enforced by the following condition (Ellyin, 1989):

af;.(o,'j-aij) - Aafm(ou_pu)

do,; do;; (2.50)

fm(o,'j_p,'j) = R?
When plastic reloading occurs, the movement of the stress memory surface is found
using the accumulated plastic strain, I, in

»,

K (™A 2.51
T Ko -B,) (2.51)

i
where o™*" is the geometric centre of the cyclic stress path.
The method of determining the tangent modulus, E,, is also dependent on the type

of plastic loading. For the monotonic plastic loading, E, is treated as a function of

equivalent stress and is found using an equation of the form:
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E, = flo,) (2.5)

In the case of plastic reloading, the tangent modulus is dependent on the ratio of the

lengths of lines CD (§,) and DE (§,) in Figure 2.9. The functional form is

E = E‘(o‘ﬂ,r) (2.53)
where
r= El = ﬂ . (2.54)
5, d,

Thus, when the stress is located at C (the onset of plastic reloading), 8, = 0, r = oo and

. = E. When the stress reaches the memory surface and returns to the monotonic plastic
loading 8, = 0, r = 0 and E, = E, ., The ratio r determines a unique point on the
effective stress-strain curve at which the tangent modulus is taken, as shown in Figure
2.10.

Transient hardening or softening of the material is accounted for by a change in
size of the yield surface and a change in the tangent modulus. Both of these modifications
are a function of the accumulated plastic strain. Hardening in the tangent modulus is
bounded by the monotonic and master curves. The equivalent stress-strain is taken as one

of the family of curves defined by

= F —(F - v 2.55
E, = E -(E,-Ege"" (2.55)
where E,, is the tangent modulus on the monotonic stress-strain relation, and E is the
modulus from the saturated stress-strain curve. The scalar v, is a material property v-hich

describes how fast the material reaches a saturation state. Transient hardening is also
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reflected in the growth of the yield surface by

q - q,@,a)e"” (2.56)
In the above equation g, is the radius of the stable yield surface and may be a function
of the maximum effective strain.

This constitutive relation has been tested for numerous materials under various

load conditions and has been found to be far more accurate than the conventional

isotropic or kinematic hardening models, e.g. see Xia, Ellyin and Wu (1995).
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Figure 2.4: One eighth of the unit cell is used for the
finite element model.
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Figure 2.5: Boundary conditions on the finite element
model.
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Figure 2.6: The finite element mesh for the unit cell
containing a spherical inclusion.

Figure 2.7: The mesh used for the unit cell
containing cube shaped inclusion.
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3 Comparison of Results from Experimental and Numerical
Analyses

3.1 Description of Biaxial Tests

Tubular specimens of 6061 and 20% Al,O,p 6061 were tested using the multiaxial
testing apparatus described below. A wide range of tests was cenducted 10 determine the
properties of the matrix materials to be used in the finite element analysis and examine
the behaviour of the composite under complex loads. The complete testing program is

described in Section 3.1.3.

3.1.1 The Biaxial Testing Machine

All tests were completed using the biaxial testing machine located in the materials
laboratory of the Department of Mechanical Engineering at the University of Alberta.
This machine is a MTS system modified to apply an additional internal/external pressurc
differential to tubular specimens. The apparatus, shown in figure 3.1, consists of a MTS
system capable of applying a 10 000 Ibs axial load with a pressure vessel mounted around
the hydraulic ram, specimen,load cell and load frame. A constant pressure, up fo 3 G600
psi, is applied in the pressure vessel around the exterior of the specimen while a variable
pressure, 0 to 6 000 psi, is applied to the interior of the specimen. This allows for a
positive and negative pressure difference, and therefore a fully reversed cyclic loading
can be applied. In this design, the load cell is contained within the pressure vessel; the
load cell sensitivity to pressure must be taken into account, but the need for low friction

scals is eliminated.
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The specimen strain is measured by two specially constructed extensometers, one
measures the change in diameter, while the other measures the change in axial gauge
length. These extensometers are held on the specimen using springs and are placed over
patches on the specimen so the knife edges do not contact and damage the specimen.

The test is controlled by a personal computer and may be programmed for any
number of specific load conditions. The computer gererates the command signals for
each channel which the axial and diametral strains are forced to follow under strain
control mode. The command signals may be of any shape, i.e. ramp, sinusoidal or
triangle and the two channels may be in or out of phase. The computer also records four
channels of data: axial load, axial strain, internal pressure and diametral strain. Given
that the external pressure is constant, the stresses withir_l the specimen can be calculated

from the following equations:

_F
Oa = ;—1-
D +D,
o, = @;-p )—'—"e+ . 3.1
Poe 2(D,-D) 3.1
-®;*p.)
¢, = 2__._

Where F is the effective applied axial load, A is the cross sectional area of the specimen,
p, and p, are the internal and external pressures and D; and D, are the internal and
external diameters of the specimen.

Most tests results reported in the literature available are for uniaxial monotonic

or cyclic loads. No multiaxial results, other than those from this facility (Ellyin, Xia and
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Meijer, 1993) have been found for discontinuous metal matrix composites. Usually when
biaxial tests are conducted, they are a combination of uniaxial and torsional loads. The
range of biaxial strain paths for these loads are shown in Figure 3.2. The biaxial testing
machine described above has the unique ability to produce any strain path on the plane

shown in Figure 3.2.

3.1.2 Specimen Geometry

Thin walled tubular specimens are used in v - pparatus described above. The
specimen shown in Figure 3.3 was designed to provide a large gauge length but allow
for high strains and plastic deformation. This geometry has been used previously and
does not result in significant bending stresses in the specimen. This geometry has been
found to be useful for small cyclic strains, however the thin gauge section will buckle
under large compressive loads. For this reason, strain amplitudes are limited and for
materials with high yield stresses the amount of plastic deformation which can be

produced is small.

3.1.3 The Material Testing Program

The experimental analysis can be divided into two separate sections; tests on the
aluminum alloys and tests on the composites.

The investigation into the behaviour of 6061-TO and 6061-T6 materials was
conducted to determine the material properties to be used in the finite element analysis.

The tests conducted were:
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- monotonic uniaxial load

- uniaxial cyclic step test.
The uniaxial cyclic step test contained numerous short tests of 100 cycles at each step
with strain amplitudes from the elastic limit to the point where the specimen buckled. All
tests were dene under strain control mode. Cyclic tests were completed using a frequency
of 0.125 Hz. This speed was selected after tests done on 6061-T6 at 0.0025, 0.025 and
0.125 Hz produced similar results indicating the matrix materials are rate independent.

The test program for the 20% ALO,p 6061 was designed to illustrate the
behaviour of the composites under simple and complex loads. These results were also
required to compare to those from the numerical analysis to show the accuracy of the
model.
The tests conducted on the composites in the TO and T6 conditions were:

- monotonic uniaxial load

- uniaxial cyclic load

- uniaxial cyclic step test

- equibiaxial cyclic load

- 90° out of phase biaxial cyclic load.

The experimental and numerical results are compared in Section 3.3.

3.2  Numerical Simulations of Composite Behaviour
Numerical analysis of the composite was completed using the simple three

dimensional body centre cubic unit cell mode!. The discetized unit cell and the boundary
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conditions applied are as described in Eq. (2.25) in the second chapter. The resulting
average stress and strain within the model was found by summing the reactions on the
constrained surfaces and from the displacement of the nodes on the loaded surfaces. Most
lcad conditions were applied to the unit cell with a spherical inclusion. For the sake of
comparison, simulations of monotonic loading were also completed on unit cells
containing cube shaped particles. The strain step size selected varied for each material,
load type and load amplitude, however, all were selected to give sufficient data points
and quick convergence. Actual numerical solution times also varied, but were
significantly longer for the case of .= cube inclusion which requires a greater mesh

density due to the high stress concentration.

3.2.1 Verification of the Ellyin and Xia Elastoplastic Matrix Material Model

The use of the Sllyin and Xia constitutive relation to model the elastoplastic
matrix requires the plastic portions of the initial monotonic and stable stress-strain curves
and a strain hardening parameter. Both of the interpolation curves were found by
performing tests on the matrix materials 6061 aluminum in the TO and T6 heat
treatments. The hardening parameter, v, can be approximated from a uniaxial cyclic test
by estimating the accumulated plastic strain. The finite element analysis of the matrix
material requires only one eight node element since it involves uniform stress znd strain

distributions.
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3.2.1.1 Unizaxial Moratonic Load Verification

The results of the uniaxiai monotonic load on the finite element model and the test
specimens are shown in Figure = .4. The numerical stress-strain curve matches the input
data exactly as it should. The monotonic interpolation curves were taken directly from
the test data starting at the yield point and ending at the maximum test strain. Sixteen
data points were taen at increasing interval sizes; the last strain increment being 20
times the first. This was done to place more interpolation points where the rate of change
in slope is the greatest. For both the TO and T6 heat treatments, the elastic modulus was
E = 69 500 MPa and the Poisson’s ratio was » = 0.33. The initial monotonic
proportional limits applied were o, = 34 MPa for 6061-T0 and ¢, = 264 MPa for 6061-

T6.

3.2.1.2 Uniaxial Cyclic Load Verification

Uniaxial cyclic tests were also done for each of the aluminum matrices and the
results are shown in Figures 3.5 and 3.6. Cyclic numerical tests require extra
interpolation data for the stable curve. Data for these curves was required over the same
range, starting from the proportional limit, at the same spacing. Since the range of the
cyclic step tests completed was not as large as the monotonic tests (due to the specimen
being unable to handle large compressive strains without buckling) the stable curve was
assumed to run parallel to the monotonic curve for the data that was not available. The
results of the cyclic step tests on the aluminum specimens are provided in Appendix C.

Another consideration of the cyclic behaviour is the change in proportional limit
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with increasing strain amplitudes. In 2 Masing type material, the yield strength remains
constant at various strain amplitudes. The annealed 6061 is clearly not a Masing material,

and the subroutine was modified to account for the change in yield point according to:

iIf € pmx < 0.005 then g,

34-192.67¢,_, .., +378535¢; (3.2)
2 0.005 then q,

eqv,max £4V,JOAX

42.50MPa

¥ €oqums
This was found from the cyclic step test data provided in Appendix C. The T6 heat
treated aluminum was also a non-Masirg material. The proportional limit found from
monotonic loading is 264 MPa and appears to rapidly change to an asymptotic value of
154 MPa as the strain amplitude was increased. In other words. a small amount of cyclic
softening was observed during the first few cyc:es on the T6 heat treated aluminum alloy.

In the subroutine the proportional limit of the T6 treated aluminum was decided by

if €,qrmax < 0.0038 then q. = 264 MPa

(3.3)
> 0.0038 then q.= 154MPa

¥ €ormmn
The interpolation values for the stable stress-strain curves of the two matrix materials are
shown in Figure 3.4.

Another parameter which had to be defined in this cyclic loading test was the rate
of hardening (y in Egs. (2.56) and (2.57)). Although v can be calculated using an
estimate of the accumulated plastic strain, this was essentially a trial and error process.
Both the TO and T6 treated material stabilize rapidly, so large values of y were expected.
A value of v = 256 was found to he siziuable for 6061-TO while for the 6061-T6 a value
of v = 1000 was used since it stabilises almost immediately after the first load reversal.

The nui=c:ical results for both materials show close agreement with the
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experimental results. In both cases, the hardening of the materials differ slightly between
the experimental and numerical results, but this deviation is within experimental

variation.

3.3 Comparison of Predicted Composite Properties with Experimental Results
In this section, the experimental results from tests done on the 20% Al,O; 6061

composite will be compared with the numerical results. For multiaxial loads, the stress-

strain curves are provided for the axial and hoop directions. Where avaiizle, the results

on the 6061 alloy are also given.

3.3.1 Uniaxial Monotonic Load Results

The monotonic load tests were done by applying an axial load to the tubular
specimens. No internal or external pressures were applied. Figure 3.7 shows the uniaxial
stress-strain relation for 6061 aluminum and 20% Al,O;p 6061 in the TO and T6
conditions. The values for proportional limit, 0.2% offset yield strength and elastic
modalus are provided in table 3.1. It is very difficult to determine the proportional limit
of the composite in the TO condition since it exhibits nonlinear behaviour starting almost
immediately after the external load is applied (see figure 3.7). For this reason, the elastic
modulus of this composite was taken from the first load reversal of the uniaxial cyclic

test.
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Table 3.1: Material properties recorded from experimentai and numerical analysis on
composites and matrix materials alone.

Material Elastic Proportional 0.2% Yield "
(Analysis and Inclusion Modulus Limit Stress
Shape) E (MPa) o, (MPa) Oy.29y (MPa)
6061-TO 69500 34 68
20% AlLO; 6061-TO 74000 20 76
(Experimental)
20% Al,0, 6061- | Sphere 102000 40 87
TO
(Numerical) Cnbe 102000 40 103
6061-T6 69500 264 320
20% Al O, 6061-T6 106700 185 365
(Experimental)
20% Al,O, 6061- | Sphere 102000 190 359
Té6
(Numerical) Cube 102000 220 403
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As expected, the experimental strength and elastic modulus of the composite are
greater than the values for aluminum alloy for each heat treatment. However, the
proportional limits are lower for the composite. For example, the annealed aluminum
specimen has a proportional limit of 35 MPa when the value is only 20 MPa for the
composite. The specimens in the T6 condition produced proportional limits of 264 MPa
and 185 MPa for the aluminum alloy and compuosite respectively. The lower proportional
limit is caused by resiiual thermal stresses in the composite due to the difference in the
coefficients of expansion for the matrix and the reinforcement. In this case, the residual
stresses are large enough for the composite to show nonlinear behaviour at very small
external loads. A detailed analysis of the thermal residual stresses is provided in Chapter
four. Another reason for this behaviour is the stress concentrations which occur in the
matrix near the particle. This results in confined zones of plasticity in the composite at
global stresses that are lower than the yield stress of the matrix.

In each heat treatment, the composite has a much higher 0.2% offset yield stress
than the aluminum alloy. This is due to the increased initial hardening rate within the
composite. This hardening results in the composite having a much greater 0.2% offset
yield than the aluminum even though the proportional limit of the composite is much
lower. While the initial increase in strength is large, when the composite experiences
large plastic deformations the stape of the $tress-strain curve becomes very close to that
of the aluminum alloys.

Significant differences due to reinforcement shape can also be noted. For each

condition of heat treatment the cube inclusion produces —nuch higher initial hardening.
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This can be explained by the stress distribution around the reinforcement. In the case of
the cube inclusion there are small regions of very high stress concentration at the edges
and corner of the particle. Although the stresses are very high in these areas, the rest of
the matrix remains elastic. On the other hand, the stresses around a sphere inclusion are
much lower but are spread out .. er a much larger zone. This reduces the effect of load
transfer to the reinforcement. This lmads one to ihe conclusion that as the composite
strain becomes larger and more of the matrix is deforming plastically, the two curves for
spherical and cube inclusions should become parallel which, in fact, they do. For the TO
condition composite this occurs at a strain  “* = %. This is quite evident in Figure 3.8
which shows the axial and hoop stress-strain responses under equibiaxial load. Saturation

occurs more quickly under equibiaxial loads because of equivalent strains produced are

much higher.

3.3.2 Uniaxial Cyclic Tests

The uniaxial cyclic tests were conducted in a manner similar to the uniaxial
monotonic experiments. The axial strain was forced to follow a sawtooth signal resulting
in the strain controlled cyclic load. This test involves compressive loads, therefore the
strain range was limited by the buckling of the specimen.

These tests showed the same trends; i.e. greater strength and stiffness in the
composite compared to the matrix alloy. The results for the TO and T6 treaied specimens
are shown in Figures 3.9 and 3.10, respectively. The dashed lines show the experimental

results from similar tests conducted on the aluminum alloy on its own.
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The hysteresis loops for the annealed specimens, shown in Figure 3.9, show a
large amount of plasticity which is defined by the width of the loops. An important
feature to note is how quickly the composite and aluminum stabilize after significant
hardening in the first cycle. The annealed materials stabilize within ten cycles. Once
again the composites appear to reflect the properties of the matrix material. The
composite hysteresis loops also appear to be symmetric; i.e. the positive and negative
stress amplitudes are about equal.

Upon comparison of the numerical and experimental results, one observes very
good agreement, despite using a very simple model containing a spherical inclusion.
Discrepancies, however, can be seen in the monotonic portion of the load and the
hardening rate. In the plot of the numerical results, the monotonic stress values are
clearly larger than the experimental values. This is likely due to thermal residual stresses
within the composite which are not accounted for in this analysis (See Chapter four). It
is interesting to note, however, that after the first load reversal the stress magnitudes
agree. This suggests that the residual stresses in the composite dissipate rapidly. The
second notable difference is the rate of hardening during plastic loading. The numerical
model produced much greater hardening but this may be because it provides more rigid
constraints on the unit cell than actually occur and does not incorporate any stress
relaxation mechanisms.

The hysteresis loops for the T6 heat treated specimers, provided in Figure 3.10,
show much less plasticity due to the limited compressive axial force which can be applied

without buckling the specimen. A comparison of the hysteresis loops for the 6061-T6

54



aluminum alloy and composite clearly show that the composite has a lower proportional
limit due to the residual stresses and stress concentrations as explained in Section 3.3.1.
The T6 condition composite is stable almost immediately and does not have an
appreciable hardening in the first ten cycles. The numerical results agree well with the

experimental values at these low strains with a small difference in the elastic modulus.

3.33 Equibiaxial Cyclic Loading

In most realistic applications, it is rare to find a component which is loaded along
only one axis. Multiaxial loads may be much more damaging than uniaxial loads. For
example, equibiaxial loads produce shear planes which act into the body producing
through thickness cracks. In a pressure vessel application similar to the test specimen,
where the component experiences cyclic axial and internal pressure loads, a through
thickness crack will result in loss of the pressurizing fluid. The signals the strains are
forced to follow and the resulting strain path in equibiaxial loading are shown in Figure
3.11.

Figure 3.12 shows a comparison of the hysteresis loops in the axial and
circumferential direction for the annealed specimen at a strain amplitude of 0.15%. Again
there is good agreement between the experimental and numerical results. The only
difference is greater hardening in the numerical model. Looking at the experimental
results, one can see that the hoop direction shows slightly more hardening than the axial
direction. This is due the specimens being made from extruded tubes. The extrusion

results in grains stretched in the axial direction. Therefore, there are fewer boundaries
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to dislocation movement in the axial direction. Extrusion also results in the alignment of
the reinforcement.

A striking feature shown in the annealed composite is the drop in elastic modulus
which occurs starting with the first load reversal when the strain amplitude is increased
to 0.25% (see Figure 3.13). Within the first ten cycles, the modulus dropped by 20% and
the extra loop provided shows the large drop in the modulus by loop 600. This drop in
modulus under equibiaxial cyclic founding was also found to occur in this composite with
only 10% reinforcement and is believed to be due to the reinforcement debonding from
the matrix because of the higher effective stresses under equibiaxial loading(Ellyin, Xia,
Meijer, 1993). Examples of finite element analysis with debonding are provided in
(Needleman, 1987; Llorca, Needleman and Suresh, 1991). The T6 heat treated composite
did not show this effect at a strain range of 0.2%, however this may be a result of the
very limited amount of plasticity which occurred.

The comparison of experimental and numerical results for the T6 heat treated
specimens is shown in Figure 3.14. Test strain amplitudes were limited due to buckling
of the specimen therefore only a small amount of plastic deformation was achieved. One
can note, however, that the areas and shape of the hysteresis loops of the test and

numerical results are similar.

3.34 90° Out of Phase Biaxial Tests
The 90° out of phase biaxial loading shows the unique ability of the apparatus to

apply complex loads. In this case the prescribed strains follow a circular path as shown
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in Figure 3.15. This load configuration causes damage by a different mechanism than
equibiaxial loading. As the strain path foliows the circle, slip planes in every direction
are activated driving the dislocations in different directions. This results in extra
hardening. In the numerical analysis, the axial displacement was driven by the same
function but was delayed by one quarter of the period of each cycle.

The experimental and numerical results for an 90 out of phase test on the
annealed composite are shown in Figure 3.16. In a uniaxial or equibiaxial test, the area
within the loops is proportional to the dissipated plastic strain energy cr work done per
cycle. However, under a 90° out of phase load the hysteresis loops may loop much
different. Under elastic loading, both the axial and hoop stress-str:«:n loops have a finite
area but are generated in opposite directions. The algebraic sum of the areas is zero and
the cyclic plastic strain energy is zero. When the strain amplitude is increased to the
point where irreversible plastic <eformation occurs one hysteresis loop will become
narrower as the other grows wider. While the loops are still generated in opposite
directions, there is now a net area equal to the plastic strain energy (see Xia and Ellyin,
1991). If one continues to increase the strain amplitude, the narrow loop wili collapse
to a line and then grow but becomes generated in the same direction as the wide loop.
This behaviour is displayed in Figure 3.16. It is clear that the nonproportiona! path and
plastic strains produce anisotropic results. Figure 3.17 shows the stresses and strains with
respect to normalized time. While the strains are prescribed to be 90° out of phase the
resulting stress signals are not.

Figure 3.18 shows the axial and hoop stress-strain behavicur of the composite in
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thz T6 condition under 90° out of phase cyclic loading. For the axial stress-strain
hysteresis loop, under elastic loading, there is very good agreement between the
experimental and numerical results. The loop shape and orientation are identical. The
variation of stress and strain with time is shown in Figure 3.19. While the prescribed
strains were 90° apart, the difference in phase angle of the stresses is only 54°. This
angle is inversely progo: .onal to the Poisson’s ratio of the material and compares well
with the vatue of 55° feund from the finite element analysis. Figure 3.20 shows the
strain path followed during the test and clearly shows that the maximum hoop strain
during the experiment was not as high as prescribed.

The results provided in Section 3.3 show that the simple unit cell with a spherical
inclusion and the Ellyin and Xia constitutive relation to model the matrix behaviour
produce remarkably accurate results. Not only was this numerical method verified for
cyclic uniaxial load but also equibiaxial and 90° out of phase biaxial cyclic loads. There
is some difference between the numerical and experimental results for monotonic loading
due to the presence of residual thermai stresses, however it was shown in Section 3.3.2

that the residual stresses dissipate quickly.
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Figure 3.1: The multiaxial maerial testingapparatus.
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Figure : 11: Strain path and command signals used for the equibiaxial cyclic
loading.
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4 Analysis of Residual Thermal Stresses

The finite element analysis results, shown in the previous chapter, were found
assuming that matrix properties are the same as the aluminum alloy on its own and that
the material has rot experienced any previous loads or processes. One must consider,
however, that these composites are generally made at high temperatures and are often
subjected to further heat treatment. This will often result in residual stresses in
homogeneous materials, but in particle reinforced metal matrix composites which contain
large amounts of two materials, with significantly different coefficients of thermal
expansion, the effects are much greater. Cooling the composite from fabrication to room
temperaturs will then result in large residual stresses and plastic deformations in the
matrix which will affect the stress-strain behaviour of the composite. Finite element
aualysis is useful for finding the residual stress distribution and predicting its effect on

the stress-strain curve.

4.1 The Finite Element Method

The analysis of thermnal residual stresses was completed using the ANSYS
commercial finite element package. This software allows one to easily apply a change
in body temperature and then apply an external load. Loads considered for each case, TO
and T6 heat treatment for sphere and cube inclusions were: tensile lcading without a
temperature drop, 480 °C temperature drop followed by iensile loading and 480 “C
temperature drop followe: by a compressive load. Corrections were made to compensate

for the reduction in the size of the unit cell due te the temperature drop. Since the
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materials have different coefficients of expansion, the volume fraction of reinforcement
after the temperature drop was slightly greater, but the change was well below one
percent. The kinematic hardening material model, as described in Chapter two, was used
to simulate the matrix and the reinforcement was assumed to be elastic. The stress-strain
data used for the kinematic hardening models consisted of five points taken from the
initial curves shown previously in Figure 3.4. All of the material properties, except for
the coefficient of expansion of the matrix, were treated as temperature independent anc
values found at 20 °C were used. The use of a room temperature yield point 2t all
temperatures will result in higher residual stresses and smaller plastic deformations than
actually occur since the yield strength of aluminum is very low at high temperaiures.
Boundary conditions used were as described previously and tensile and compressive

uniaxial and biaxial loads were applied via external surface pressures.

4.2 Residual Thermal Stress Analysis Results

The influence of the residual thermal stresses on the composite behaviour is also
dependent on factors such as the geometry of the unit cell. Therefore, the effect of
particle shape on the residual stress and strain will be discussed first. This will be
followed by an analysis of the stress and strain distributions after an applied load and the

resulting stress-strain behaviour.
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4.2.1 Influence of Reinforcement Shape on the Residual Stress Distributica

The difference in the shape of the monotonic stress-strain curve due to differences
in reinforcement shape was shown in Chapter three. Without residual stresses. the unit
cell containing a cube shaped inclusion had greater initial hardening and thus a much
greater yield strength than that containing a spherical reinforcement. Figure 4.1 shows
the equivalent stress distributions, o, = 3/2(s;s;)", in unit cells containing sphere and
cube shaped inclusions after a 480°C temperature drop. Figure 4.2 shows the
corresponding ¢€°,, which is equal to 1, defined in Eq. (2.40), for each unit cell. In both
cases, spherical and cube inclusion, the entire reinforcement is in compression due to the
fact that the coefficient of thermal expansion of the reinforcement is 8x10°/°C as
compared to 24x10°/°C for the 6061 aluminum matrix. Upon cooling the matrix shrinks
tight around the narticle re:i:iu; in compressive radial stresses and tensile
circumfe:ential stresses in the it ix around the particle. It is clear that the maximum
values for stress and strain within the unit cell containing the cube are much higher, the
point of highest stress and strain being at the corner tip of the inclusion. Although the
values are much larger, the zone of large stresses and strains is much smaller than that
in the unit cell containing the spherical inclusion. There are very small zones of large
deformation undergoing strain hardening while constrained by the elastic matrix
surrounding it. In the case of the spherical reinfercement, the vicues of stress and strain
are much lower but there is still plastic deformation over a large region of ¢ matrix
around the particle. Less strain hardening is occurring and there is less constraint so load

transfer from the matrix to the particle is less efficiert. This results in the lower initial
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hardening in the unit cell containing spherical reinforcement. Figure 4.1 also shows that
the stress distribution within the spherical particle i uniform as determined by the

Eshelby method.

4.2.2 Effect of Thermal Residual Stress on Subsequent Loading

Three load cases were analyzed: tensile loading with no temperature drop and
tensile and compressive loading after the temperature drop. Compressive loading on its
own was not done since the finite element analysis is isotropic and will result in the same
stress-strain curve as tensile loading but in the third quadrant. All load conditions were
modelled on unit cells containing sphere and cube shaped particles with matrices in the
TO and T6 heat treatment conditions. Simulations were done for uniaxial and equibiaxial
monotonic loading. In addition, a load reversal was completed for the unit cell containing
spherical reinforcement in a TO treated matrix. These results are shown in Figures 4.3,
4.4, 4.5 and 4.6. Figures 4.7 and 4.8 show ¢, and ¢",, respectively, for the three load
cases at a strain of 0.3% and figure 4.9 shows o, after the temperature drop only and
after tensile and compressive loads following the temperature drop. Each figure for siress
and strain are shown with the same contour intervals for easier comparison. These will
be used to explain the influence of residual thermal stresses on the composite at small
strains, large strains and after a load reversal.

Figures 4.3 and 4.4 show that, at low strains (below 0.7%), the three load
conditions produce nonlinear stress-strain curves with mach different initial slopes and

hardening. For each composite, the tensile load with no temperature drop produces the
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greatest initial hardening followed by the temperature drop and tensile load and then the
temperature drop and compressive load. In fact, the results including the residual thermal
stresses display nonlinear behaviour as soon as the load is applied.

This is not a drop in eiastic modulus as some may suggest (Ho and Saigal.1994)
but is due to large regions of plasticity in the matrix (see figure 4.2), from the high
residual stresses, before any external load is applied. Upon application of an external
load, large portions of the matrix which are already plastic, expand and other regions
begin to experience plastic deformation.

The difference in initial slopes agrees with the results of Zahl and McMeeking
(1991) who did a similar analysis with axisymmetric models of SiC sphere and cylinder
shaped particulate in an aluminum alloy matrix. They show that the initial hardening may
be a function of the volume fraction of reinforcement. Jain MacEwen and Wu (1994) did
similar studies on unit cells with aspect ratios greater than one. Their studies show that,
in the case of short fibres, the composite is stronger in compression after a 200°C
temperature drop than tensile loading and this is verified by Levy and Papazian (1991).
This is due to large zones of tensile residual stress around the sides of the long
reinforcement.

Figure 4.7 shows that when there is no temperature drop, the stresses within the
unit cell are up to 220 MPa with the highest stress in the inclusior. Tension after the
quench produces an even higher stress in the inclusion. The stresses due to compression
after the temperature drop are approximately one third in magnitude. In all cases, the

highest stress is in the particle. It can be seen from Figure 4.8 that the particle does not
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plastically deform. It is interesting to note that while the differences in stress between
applying tension and compression after the quench are large, the difference between the
equivalent plastic strains is 28%. The distributions of strain in these two cases look
similar whereas the €°, distribution after the tensile load only is low and quite uniform.
One can suggest that in this case the greater strength is due io a greater range of elastic
deformations. The reasons for difference between the tensile and compressive loading
after the temperatwre drop are less obvious. Botﬁ unit cells contain plastic zones of
similar size after the same external deformation. Under tensile loading, the magnitude
of the plastic strain is much grezter but the global stress-strain response shows a higher
offset yield strength. Figure 4.7 shows ¢, after the temperature drop only and
temperature drop followed by strai:t ‘oads of 0.3% and -0.3%. From the figure, one can
see that there are large compressive stresses (o,) between the particle and the surface on
which the load will be applied after the temperature drop. Along the other side of the
particle the matrix is in tension. When the temperature drop is followed by a tensile load,
the stresses within the region of compression reverse and become tensile while the tensile
zones experience large plastic strains. Under an applied compressive load the zones
which were in tension are reversed and the zones of compression undergo plastic
deformations. It is the difference in the magnitudes of the tensile and compressive
residual stresses around the particle which lead to the anisotropic behaviour of the
composite. The applied tensile load required to reverse the stress, from compressive to
tensile, in the zo..c between the particle and loaded surface is greater than the

compressive load needed to reverse the stress, from tensile to compressive, in the region
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beside the particle.

Zahl and McMeeking also show that the curves for the three load conditions
converge at higher strains. In Figures 4.3 and 4.4, the lines converge at approximately
one percent. This convergence occurs when the entire matrix is plastically deforming and
the residual stresses no longer have any influence. At this point, the load transfer eftects
due to inclusion shape have vanished and the increase in stress is dve to the strain
hardening of the matrix. This is why the stress-strain curves, for the three load cases,
becoime parallel. Figures 4.5.and 4.6 show the stress-strain response of the composite to
equibiaxial loads. The effects are similar, however there is greater plasticity at small
strains due to the higher effective strain, and the curves converge at a lower strain.
Under the equibiaxial loading, the axial and hoop stress strains will look identical so only
one direction is shown.

It was seen in Section 3.3.2 that the results of the uniaxial cyclic numerical
analysis match the experimental data after the first load reversal. This effect was studied
for the three loading cases on the unit cell with the spherical inclusion and annealed
matrix by the loading the unit cell to 90 MPa and then dropping it to 0 MPa. Upon load
reversal, all three cases have the same modulus which is identical to the initial elastic
modulus for the composite without a prior temperature drop. This supports the previous

conclusion that residual stresses dissipate rapidly under cyclic loading.
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Cleurly the residual stresses are an important factor in determining the monotonic
stress-strain behaviour of these particulate reinforced composites. Results of small strain

amplitude cyclic studies from Chapter three, however, show that the effects of residual

stresses disappear after load reversal.
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5 Conclusions and Future Work

5.1  Conclusions

The primary goal of this study was to model the behaviour of 20% Al,0O.p 6061
aluminum composiie under complex multiaxial loads using a three-dimensional finite
element analysis with a more advanced two surface constitutive relation. Considerations
included the effectiveness of the material model and adequacy of the simple unit cell
medel and reinforcement geometry. These were tested under very complex load
situations. The effects of residual stresses within the unit cell due to processing were also
studied. The results presented provide some clear conclusions.

1: The Ellyin and Xia constitutive refation, used to model the aluminum
matrix, was shown to be superior to the common isotropic and kinematic hardening
models. It has the capability to produce cyclic hardening as well as extra hardening due
to nonproportional loading paths. Its ability to model the homogeneous matrix materials
was shown for both the TO and T6 heat treatedd 661 aluminum alloy under uniaxial
cyclic loads. Its superiority was also shown in ke imodelling of the composite materials.
It clearly produces the hardening characteristics found from experiments. The Ellyin and
Xia material model is much more suitable for simulating cyclic strain hardening materials
than traditional constitutive relations.

2: The fairly simple unit cell mode:. <:»ybined with the use of the Eilyin and
Xia constitutive relation to model the matrix, has been used extensively to model
particulate reinforced composites. The assumption of 2 perfectly aligned array of identical

inclusions would seem to under estimate the mechanisms acting within the composite
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however, the finite element results using a spherical inclusion show very good agreemsnt
with experimental results in both qualitative and quantitative manners under multiaxial
nonproportional cyclic loading, i.e: lower proportional limit, transient hardening and
softening. These suggest that load transfer is the primary mechanism of strengthening in
the composite.

3: The difference between cube and sphere shaped particles was clearly
shown. Cube inclusions produce much higher stress concentrations in smal’er zones of
the matrix leading to greater initial hardening and, therefore, higher yield stresses due
to localization of plasticity. The inclusions in the composite have sharp edges and corners
however, the experimental resuits agree closely with the pumerical analysis using a
spherical inclusion.

4: Monotonic loading was found to be strongly influenced by residual
stresses. The metal matrix composites are generally produced at a high temperature and
then cooled. This process introduces significant thermal residual stresses and results in
anisotropic behaviour. That is, the initial hardening of the composite is greater under a
tensile load than a compressive load. The analysis with no thermal stresses resulted in
a higher proportional limit and greater initial hardening but at large strains all three load
cases resulted in similar stresses. When the matrix becomes fully plastic, the difference
in the stress-strain curves is due to strain hardening of the matrix. It was shown that after

the first load reversal the effects of residual stresses are negligible.
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These conclusions will be useful for research to be done in the future. Both the
unit cell approach and the material model have been validated under complex multiaxial
loads. It is also clear that residual thermal stresses, due to processing, significantly

influence the stress-strain behaviour of particulate reinforced metal matrix composites

under monotonic loads.

5.2  Future Research

Recently there has been a large amount of research on the behaviour of
discoutinuously reinforced metal matrix composites covering many of the variables in
these materials. These may include reinforcement geometry, size and distribution as well
as mechanisms operating in the matrix. The use of the material model described in this
thesis to simulate the matrix, will allow these studies to be done accurately for complex
cyclic loads. This will produce results which are more useful for design with these
materials. Although the load transfer mechanism has been shown to be dominant at low
strain amplitudes, it is quite clear that damage is occurring at large accumulated strains.
The reduction of the stiffness in the composite under equibiaxial loads seems to suggest

debonding at the particle matrix interface and this should be studied using a progressive

debonding model.
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Appendix A: The Eshelby Tensor for a Spherical Inclusion

The Eshelby tensor used to determine the results shown in Chapter two is

] 7-5v -1+45v -1+5v 0 0 0 ]
15(1-») 15(1-v) 15(1-»)
-1+5» 7-5v ~-1+5»
0 0 0
15(1-») 15(1-v) 15{(1-»)
~1+45v -1+5» T-5v 0 0 0
15(1-y) 15(1-v) 15(1-v)
0 0 o 245m 0
15(1-»)
0 0 0 2(4-5v)
15(1-»)
2(4-5v)
0 0 0 0 0
i 15(1-») |

Where v is the Poisson’s ratio.

For ellipsoid shape particles the Eshelby tensor is also dependent on the particle aspect

ratio.
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Appendix B: Flowchart
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Results From Cyclic Step Tests on 6061 Aluminum
Alloy

Appendix C:

Cyclic step tests where completed on specimens of 6061 aluminum alloy in TO
and T6 heat treatmer.is. The strain amplitude was increased every 100 cycles until the
specimens failed.

The results for 6061-TO are shown in figure C.1. When the loops are aligned, as
in figure C.2, it is clear that this is not a Masing material, i.e. the proportional limit
changes. A curve of the form g, = G, A€ maxt Béeqv.mux” Was applied to the data for

Ae/2 and q,-q,, where g, is the proportional limit under monotonic loading.

Ae/2 q,-q, (MPa)
0.003 0.5
0.004 4.0
0.005 8.5

This results in A = -192.67 (MPa) and B = 378535 (MPa). The proportional limit is
assumed to remain constant, at a value of 42.5 MPa, after the maximum strain exceeds

0.005. This interpolation data used is:

Initial Curve Stable Curve

Stress Strain Stress Strain

(MPa) (MPa)

+3.500000E+01 +5.175973E-02 +4.000000E+01 +6.250000E-02
+4.102992E+01 +7.427133E-02 +4.855441E+01 +8.501160E-02
+5.097799E+01 +1.273344E-01 +6.459194E+01 +1.380747E-01
+6.051500E+C1 +2.109489E-01 +7.473513E+01 +2.216892E-01
+6.757629E+01 +3.251148E-01 +8.033839E+01 +3.358551E-01
+7.296734E+01 +4.698323E-01 +8.439207E+01 +4.805726E-01
+7.762537E+01 +6.451011E-01 +8.905010E+01 +6.558414E-01
+8.190855E+01 +8.509215E-01 +9.333328E+-01 +8.616617E-01
+8.566125E+01 +1.087293E+00 +9.708598E +01 +1.09804E-+00
+8.894073E+01 +1.354216E+00 +1.003655E+02 +1.34957E+00
+9.197459E+01 +1.651691E+00 +1.033993E4-02 +1.662431E+00
+9.453088E+01 +1.979717E+00 +1.059556E+02 +1.990458E+00
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+9.671076E+01 +2.338295E+00  +1.081355E+02 +2.349035E+00
+9.9943C0E+01 +2.727424E+00  +1.113677E+02 +2.38164E+00
+1.021697E+02 +3.14710SE+00  +1.135944E+02 +3.157845E+00
+1.045316E+02 +3.597337E+00  +1.159563E+02 +3.608077E+00

The resuits froni the cyclic step test on the 6061-T6 aluminum alloy are shown
in figures C.3 and C.4. In this case the proportional limit appcars much greater at strain
amplitudes at which very little plastic deformation occurs. When the strain amplitude is
increased above the elastic strain limit the proportional limit quickly drops from 264 MPa
to 154 MPa. This is reflected in the input data for 6061-T6.

Initial Curve Stable Curve

Stress Strain Stress Strain

(MPa) (MPa)

+4+1.540000E+02 +2.221451E-01 +1.555000E+02 +2.408242E-01
+1.648964E+-02 +2.372534E-01 +1.647258E+02 +2.560315E-01
+1.901152E+02 +2.731994E-01 +1.864723E+02 +2.918775E-01
+2.291080E+02 +3.296839E-01 +2.181819E+02 +3.483620E-01
+2.788573E+02 +4.068070E-01 +2.555328E+02 +4.254851E-01
+3.069905E+02 +5.045686E-01 +2.847318E4-02 +5.232467E-01
+3.176910E+02 +6.229689E-01 +3.039312E+02 +6.416469E-01
+3.237789E+02 +7.620077E-01 +3.143137E+02 +7.806857E-01
+3.274746E+02 +9.216850E-01 +3.180094E+02 +9.403631E-01
+3.299538E+02 +1.102001E+00 +3.203%36E+02 +1.120679E4-00
+3.317059E+02 +1.302956E+00 +3.222407E+02 +1.32164E+00
+3.327152E+02 +1.524549E4-00 +3.232501E+02 +1.543227E4+-00
+3.342063E+02 +1.766780E+00 +3.247411E+02 +1.785458E+00
+3.359858E402 +2.029650E+00 +3.265206E+02 +2.(48328E+00
+3.372957E+02 +2.313159E+00 +3.278305E+02 +2.331837E+00
+3.379417E+02 +2.617306E+00 +3.284765E+02 +2.635984E+-00

This data is provided graphically in figure 3.4. At strain higher than those
achieved in the cyclic step tests the stable curve was assumed to run parallel to the

initial curve.
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Figure C.1: Results of the cyclic step test on 6061-
TO aluminum alloy.
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Figure C.2: The stable stress-strain curve is
determined by aligning the stable loops.
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Figure C.3: Results from the cyclic step test on
6061-T6 aluminum alloy.
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Figure C.4: The aligned loops show that the
proportional limit, for 6061-T6, quickly approaches
154 MPa.
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