
"No problem can be solved from the same level of consciousness that created it. 
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'I regard consciousness as fundamental. I regard matter as a derivative of 
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Abstract 

Both direct and indirect experimental evidence have shown signaling, communication 

and conductivity in microtubules. Theoretical models have predicted that microtubules 

can be potentially used for both classical and quantum information processing in neurons, 

with the latter being implicated in the phenomena of consciousness, although 

controversies have arisen in regards to physiological temperature effects on these 

capabilities. The following discusses microtubule structure, known biophysical functions 

and theoretical predictions related to signaling, conduction and transport, all of which 

may contribute to pre-conscious processing at a molecular level. Major criticisms of 

microtubule information processing based concepts of cognitive brain function are 

examined, and the progress in work addressing these issues is also discussed. To 

examine the notion of quantum phenomena in microtubules two quantum-based models 

are suggested and used to investigate the effect of temperature on microtubule dynamics: 

a cellular automata microtubule model, and an exciton model of the microtubule 
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1 

Introduction 

The nature of brain activity has been dealt with by many disciplines such as science, 
religion, and philosophy, yet all the available evidence accumulated over the numerous 
years of investigation has yet to provide a final answer [1-4]. This may be due to the vast 
amount of information stemming from the different vantage points expressing their 
knowledge in unique manners, of which, each is based in the context of its individual 
discipline. While this pursuit seems to suffer as an intellectual "Tower of Babel" the 
problem itself is not trivial by any means. Aside from the importance of this problem in 
regards to the theoretical and applied aspects of the sciences and humanities, as well as its 
role in defining fundamental human values, the basic and practical significance for the 
etiology and treatment of mental disease cannot be overlooked. 

In the past twenty years there has been an ever-growing increase in attempts by science to 
understand and describe the phenomena of the brain. This movement has mainly focused 
on the biological and social sciences, however there have been key additions to this 
discussion by the physical sciences as well. There are several approaches to 
understanding the cognitive functions of the brain, which is taken to include 
consciousness. While all scientific studies of cognition may be grouped under the 
umbrella of cognitive science, the underlying disciplines of this multidisciplinary field 
are quite diverse. 

Psychology has a rich history of investigating the mind [5-8]. The specialized branch of 
cognitive psychology specifically studies cognition and the mental processes underlying 
behavior from the standpoint that mental function can be understood by quantitative, 
positivist scientific methods. This cognitivist viewpoint argues for the use of information 
processing models as a framework for understanding the mind [9-11]. From the 
biological viewpoint, the cognitive neurosciences, address the mind via the study of the 
biological mechanisms underlying cognition, with a specific focus on the neural 
substrates of mental processes and their behavioral manifestations. It addresses the 
questions of how psychological/cognitive functions are produced by the neural circuitry 
[12-14]. Experimentally the field uses imaging techniques to investigate the 
electrophysiological response of the neural system to stimuli. Theoretically the responses 
of neural systems to various input stimuli are understood through the computer models of 
neurons, and neuron systems characteristic of computational neuroscience. From a 
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strictly computational perspective the field of artificial consciousness seeks to apply the 
findings of the above mentioned disciplines to the development of theoretical foundations 
of information and computation and implement them in computer systems to engineer 
conscious machines [15, 16]. This field is closely related to the idea of artificial 
intelligence, but requires that beyond the Turing test, which states that a machine that acts 
in such a way that its actions cannot be discerned from the actions of an intelligent human 
being is itself intelligent, the machine is also capable of experiencing a subjective self-
awareness. However this form of strong artificial intelligence has been strongly argued 
against [3, 4, 17]. 

Interestingly these same arguments against strong artificial machine intelligence are used 
to point out the shortcomings of a classical scientific understanding of consciousness, and 
the confusion associated with objectively trying to investigate what appears to be a 
subjective phenomenon. Minsky suggested that whenever a question leads to confusion 
and inconsistent answers it is due to one of two reasons [15]. The first is that the 
question itself is ultimately meaningless or at least unanswerable. The second is that an 
adequate answer requires a powerful analytical apparatus. The question of consciousness 
cannot be meaningless as the above stated practical importance of a scientific 
understanding of consciousness to the understanding and treatment of mental disease 
shows. The long history of cognitive studies with its lack of solutions suggests that these 
questions may be unanswerable, however new technical and conceptual tools may 
provide the powerful analytic apparatus required. 

The currently accepted view is that cognition emerges as a property of an ever-increasing 
computational complexity among neurons. This approach relies on emergence as a 
framework. Emergent phenomena are characterized by high levels of complexity 
resulting from an aggregation of basic units whose individual properties differ from those 
of the aggregate itself. Emergent brain phenomena are thus taken to be the result of the 
complexity of neuronal connections, where the neuron is the basic unit of information 
processing in the brain. While this appears to be the currently accepted approach to 
explaining cognitive functions of the brain, it may not be adequate to properly explain the 
richness of the neuron's biophysical state space. The classical deterministic activities of 
neurons, while explaining a host of neurophysiological phenomena [22-24], cannot 
account for several key properties of conscious experience, such as free will and the 
unitary sense of self. The fact that neuronal assemblies are mostly described in terms of 
classical behavior does not rule out the possibility that quantum effects play a role in sub-
neuronal components such as proteins, DNA or neurotransmitters. The brain contains 
both electrical and chemical synapses. Electrical synapses allow current generated by an 
action potential in a presynaptic neuron to flow directly into a postsynaptic cell via the 
physical connection of a gap junction. Chemical synapses propagate signals via releasing 
a chemical transmitter (e.g., glutamate, acetylcholine) from a presynaptic terminal via 
exocytosis, which diffuses across the synaptic cleft and binds to receptors embedded in a 
postsynaptic neuron's membrane. This results in the opening of an ion channel or in the 
initiation of a signal transduction cascade. These steps seem to operate according to 
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classical physics. However, it has been suggested that alternative descriptions, based on 
quantum processes, may be required for a quantitative understanding of exocytosis, the 
action by which a cell directs, and secretes soluble proteins to the extracellular 
environment [18, 19]. Explanations of exocytosis may aid in understanding cognition, as 
chemical synapses using NMDA receptors are critical to perception and consciousness 
because of the plasticity expressed by NMDA receptors. As well, anesthetic agents block 
NMDA receptors and consequently lead to a loss of consciousness [25]. 

Another reason to look beyond classical models is that currently accepted models of 
cognitive brain function are unable to properly explain the behaviour of single-celled 
organisms. Single-celled organisms, such as the Paramecium, have no neurons or 
synapses, but still exhibit an apparent awareness of and responsiveness to their 
environment. Although the complex interactions between neurons and synapses are 
certain to contribute to the richness of sensory experience it can be concluded from the 
actions of single celled organisms that the rudiments of cognition lie someplace else. The 
neuronal cytoskeleton is the most ubiquitous and most basic subcellular level site thus far 
proposed for quantum processes in relation to brain activity [3, 20]. Microtubules are 
major constituents of the cytoskeleton that literally fill the interior of neurons. They are 
essential for axoplasmic transport among other cellular processes within neurons and 
regulate cell shape thus being involved in neuronal plasticity [26, 27], as well as having 
shown possible signaling capabilities in axons [28, 29]. Microtubules due their 
mesoscale size, provide an ideal bridge between the classical and quantum boundary. 

Information processing at the level of microtubules within each neuron would provide an 
enormous increase in the brain's computing power even at a classical level. The currently 
accepted scientific model suggests that cognition arises as a result of computational 
complexity among the approximately 10n neurons in the brain. There are on the order of 
104 synapses per large neuron, which switch their states at a rate of some 103 switches per 
second, thus arriving at a number of «1018 operations per second in the brain on average. 
This is a truly huge number, however it may pale by comparison with the yield given by 
the brain if neuronal microtubules are actively involved in computational processes. 
Consider that at the microtubule level there are roughly 107 microtubule globular protein 
subunits, called tubulin, in each neuron that can switch their conformational states on the 
order of nanoseconds resulting in 1016 operations per second per neuron or 1027 

operations per second in an entire brain. If each tubulin dimer functions as a quantum bit 
and not a classical bit processor, the computational power becomes almost unimaginably 
vast. It has been claimed that as few as 300 quantum bits, otherwise known as qubits, 
have the same computational power as a hypothetical classical computer comprised of as 
many processing units as there are particles in the universe [30]. While this statement is 
illustrative in purpose, as the total number of particles in the universe is not known, it 
does convey the astronomical number of classical bits required to match the computing 
power of a small number of qubits. 

There is evidence that microtubules are computationally relevant to cognitive processes. 
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Evidence suggests that microtubules can propagate signals in cells [29], and interactions 
between microtubules and membrane activities are clearly recognized [31, 32, 33]. Other 
processes involved in the functioning of the brain, such as ion channels opening and 
closing, enzymes catalyzing, motor proteins moving cargo inside cells, and the 
propagation of ionic waves along filaments, may be inextricably linked to the function of 
microtubules [34, 35]. Neurons in the visual cortex produce massive amounts of tubulin 
during a critical period of visual development [36]. As well, Alzheimer's disease, a 
cognitive mental disease, which is accompanied by deficits in intellect, memory and 
consciousness, has been linked to microtubule degradation [30]. Microtubules also 
provide a non-selective mechanism for general anesthesia. Anesthetics, which serve to 
induce a lack of conscious awareness, inhibit a number of neurotransmitter receptors, but 
differ from receptor inhibitors by having effects on the cytoskeleton [37]. One of the 
suggested mechanisms of anesthesia is the inhibition of electron movement within the 
hydrophobic pockets of tubulin dimers caused by the presence of anesthesia [38]. 
Electron mobility is essential to the quantum superposition of electronic states in a 
material, but as suggested the presence of anesthetic gas would inhibit the electron 
motion that is required for protein conformational stability and quantum superposition, 
thus inducing a loss of consciousness. Conversely, it has been speculated that instead of 
inhibiting electron movement, hallucinogenic drugs, which serve to increase conscious 
awareness, would increase electron motion. Lysergic acid diethylamide (LSD), known to 
be a potent hallucinogen, appears to be a potent electron donor, thus possibly facilitating 
the movement of electrons and supporting the above hypothesis [39]. 

While the evidence suggests a possible relation between quantum behavior in 
microtubules and cognition, it is still far from trivial to reconcile these qualitative 
statements with the persistent decoherence effects dominating quantum phenomena at 
physiological temperatures [21]. As such, the endeavor of this thesis is as follows. 
Firstly, this thesis attempts to present pertinent information regarding the capabilities of 
microtubules to process information, and the relation of this information processing to 
brain functions. Secondly this thesis aims at investigating whether or not microtubules 
are capable of information processing at physiological temperature, and finally it attempts 
to answer the question of whether microtubules can maintain and support coherent 
quantum phenomena at physiological temperature, or not. In order to investigate and 
answer these questions the thesis has been laid out in the following format. 

Chapter 1 of the thesis outlines the motivation for investigating information processing 
and quantum behavior in microtubules. In this section a working definition of 
consciousness is given as well as the standard classical methods of approach to this 
problem. The gaps in the standard methods of explanation are outlined and reasons for 
using a quantum-based approach are summarized. A brief introduction to quantum 
theory is supplied for the reader unfamiliar with the subject. As well, arguments for and 
against this physical method of inquiry into cognitive brain function are stated. The 
following Chapter 2, reviews the connections between physics and biology. 
Justifications for the use of condensed matter physics to explain biological phenomena 
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are outlined, and key concepts including biological energy, dielectrics, conduction and 
signaling are introduced. As well, a section describing theoretical quantum phenomena 
giving rise to energy transfer in biological systems is discussed. The third chapter of the 
thesis provides a review of the literature concerning microtubules and their place within 
the cell and cell cytoskeleton with a heavy emphasis on their place within the neuron. 
The structure and dynamics of the microtubule are reviewed in detail and many key terms 
used in the rest of the thesis are defined. The electrical properties of the microtubule are 
discussed in relation to their conduction properties, as well as the difficulty in 
determining these properties via experiment. Chapter 4 reviews previous models of 
information processing within microtubules with an emphasis on cellular automata 
approaches. An overview of cellular automata modeling is given followed by common 
examples of such models. Pure cellular automata models, Ising spin models and 
Hopfield net models of microtubules are outlined and discussed and their conclusions 
regarding the information processing capabilities of microtubules are presented. As well 
a model describing how information processing in microtubules may affect the processes 
of neurons and contribute to cognitive brain function is reviewed. An adaptation of the 
cellular automata models described in Chapter 4 is presented in Chapter 5. The model is 
described in detail starting from the physical basis for the cellular automata cell, moving 
to reasoning behind the lattice structure, followed by the equations determining the 
overall dynamics of the system. Reasons for the use of varying conditions are given, and 
the effect of different updating methods is discussed. The results of simulations for 
synchronous and asynchronous updating with varying conditions are presented and are 
discussed with their relevance to information processing being stressed. The final 
chapter, Chapter 6, investigates quantum mechanisms of coherent energy transfer in 
microtubules. Following previous models of energy transfer via collective excitations in 
molecular aggregates the strength of phonon and exciton interactions, and their effects on 
the formation of coherent excitation domains in clusters of tubulin dimers is examined. 
As well, estimates of energy and time scales for excitons, phonons and their interaction in 
a thermal environment are presented. The chapters are followed up by a conclusion 
summarizing the material and main findings presented in the thesis. 
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Chapter 1 

An Introduction to the Quantum Brain 

1.1 A Working Definition of Consciousness 

Consciousness is an elusive and enigmatic problem for science. It remains a hotly 
debated topic in psychology and neuroscience, yet for most of the last century the issue 
has been approached hesitantly by the physical and life sciences [1]. This lack of 
exploration has, in part, been due to the Cartesian view that consciousness, as well as 
other mental phenomena, are inherently non-material, and therefore outside the scope of 
science. However, in the past two decades numerous studies on both conscious and 
unconscious processes have appeared in the literature of the psychological and brain 
sciences, including several theories based on physical frameworks [2, 3, 4]. 

The word consciousness is derived from the Latin conscienta, meaning to know with, or 
to know together, and originally was used in the sense of moral conscience. The modern 
definitions of consciousness however have quite different meanings. There are a 
considerable number of definitions for consciousness stemming from the various 
philosophical, scientific, and even spiritual approaches to understanding the phenomena. 
Some of the definitions agree across disciplines despite the differences in the method of 
investigation, while others are at complete odds with one another. In general, however, it 
is accepted that consciousness is the "condition of being aware of one's surroundings and 
one's own existence or self-awareness" [5]. 

From a scientific viewpoint it is agreed that consciousness is a function of the brain [6, 
7]. Since the brain is a material entity, consciousness is subject to the study of science. 
Currently there are a number of physical theories of consciousness in existence, some of 
which are based on classical physics [2, 4] while others require the use of quantum theory 
[3, 8, 9]. These theories of consciousness and their basis in classical and quantum 
physics are discussed in the following sections of this chapter. 
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1.2 Classical approach to consciousness 

The brain is the control center for the central nervous system in higher animals. It is 
composed of brain cells, known as neurons and glia. Glia cells are believed to perform 
supporting functions in the brain, while neurons are electrically active cells that process 
information. Neurons are composed of a cell body, or soma, short branching cellular 
extensions, called dendrites, and a long cable-like extension, known as an axon. Neurons 
communicate with one another via connections among axons, dendrites and somas called 
synapses. 

The majority of biophysical researchs on cognitive processes, including studies on 
consciousness, models the brain as a neural network. A neural network is a system of 
interconnecting neurons that work together via electrical signals and other mechanisms 
that follow the laws of classical physics to produce an output function [10]. This method 
of investigation assumes neurons, and synapses, to be the fundamental units of 
information processing within the brain. Neurons in the system are assumed to be in one 
of two different states, comprising what is known as a binary point artificial neural 
network. When the neuron is sending a signal it is considered in the "on" state, and when 
it is at rest it is considered to be in the "off state. The progress made in modeling 
memory, learning and other cognitive processes [11, 12] via artificial neural networks 
has led to the conjecture that consciousness arises from increasing computational 
complexity among neurons in the brain [5, 6]. It is believed that when a critical level of 
complexity among neurons is reached, interacting neurons form a conscious experience. 
This approach marks consciousness as a highly non-linear, emergent property arising 
from neuronal features of the brain that is fully compatible with the laws of classical 
physics. 

The world of classical physics is envisioned as a simple aggregate of logically 
independent, local, functional objects, which only interact with their close neighbors to 
form larger objects or systems [13]. In the case of a neural network the brain is the 
simple aggregate composed of independent neurons. This view of the brain leaves 
several properties of consciousness unexplainable. The unsolved problems arising from 
these enigmatic features are as follows [3, 5, 14, and 15]: 

1) What is the nature of subjective experience and how do 
the sensations of a conscious experience arise from the 
combined actions of neurons and their associated 
cellular, synaptic, and molecular processes? 

2) How do spatially distributed brain activities bind 
together to produce a unity of conscious perception, 
such as seeing unitary objects in vision? (This is known 
as the Binding Problem) 



CHAPTER 1: AN INTRODUCTION TO THE QUANTUM BRAIN 12 

3) What is the critical level of complexity required by a 
system to move from a pre-conscious processing 
system to a conscious processing system? 

4) How can a system based on the deterministic laws of 
classical physics account for non-computable processes 
such as consciousness? 

5) How can a system based on the deterministic laws of 
classical physics account for concepts such as free will? 

6) How can a description of consciousness based on the 
interactions of neurons explain the rudimentary 
consciousness observed in single-celled organisms? 

The classical description of consciousness as an emergent property addresses these 
problems with the explanation that non-linear and deterministic chaotic behavior can be 
described fully via classical physics and can lead to non-computable results. Thus, while 
consciousness is fully compatible with classical physics it is not easy to predict its 
properties from highly non-linear phenomena [16, 17]. This classically based approach to 
consciousness leaves many of these questions largely unanswered. As a result it has been 
suggested that the physics of quantum theory may provide an answer. 

1.3 Introduction to quantum theory [18] 

It has been suggested that the new insights into the behavior of matter given by the rules 
of quantum mechanics can aid in solving the mystery of consciousness. Quantum theory 
is the most fundamental theory of matter known at this point in time, and is responsible 
for much of the technological advancements of the 20 century. Since the brain is a 
material entity, and it is an accepted assumption that the brain gives rise to higher 
cognition and consciousness, studying the brain at the quantum level to find a physical 
description of brain functions is a valid pursuit. 

Quantum theory is a theory of physics in which many of the variables taken as 
continuous by classical physics take on discrete values. Initially the term quantum, (or 
plural quanta), was used to denote a discrete packet of electromagnetic radiation, hence 
the origin of the name quantum theory. The three main categories of quantum theory are 
determined by the extent to which the continuous variables of classical physics are 
converted to discrete variables, otherwise known as quantization. Quantum mechanics is 
a first-quantized or semi-classical theory of physics in which particle properties are 
discrete but field properties and interactions are not. Quantum field theory is a second-
quantized theory in which all particle properties, field properties, and interactions are 
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discrete except for those due to gravity. Quantum gravity is an incomplete third-
quantized theory in which gravity is also made discrete. 

There are several key differences between quantum physics and traditional classical 
physics that are of importance. In quantum theories physical entities possess both a wave 
aspect and a particle aspect. This view of the physical world is known as the principle of 
wave-particle duality, or complementarity. It is possible to observe either wave-like 
properties or particle-like properties of an entity depending on the circumstances, but 
never both at the same time. According to the Copenhagen interpretation of quantum 
mechanics, all the information about a particle or system can thus be described in a wave
like manner that is denoted mathematically by a wave function. The wave function of a 
particle describes the probability of finding a particle in space, thus information about the 
particle is described probabilistically rather than deterministically. However, wave 
functions behave like waves and can diffract, and interfere together forming 
superpositions. This implies that the wave function describes quantum particles as 
existing in multiple spatial locations or states simultaneously. When a measurement is 
made one of the multiple states is chosen and the quantum superposition of states ends 
leaving a classical state. The process of moving from a quantum state to a classical state 
is known as the collapse of the wavemnction, however, the mechanism by which the 
wave function collapses is still under debate giving rise to what is known as the 
measurement problem in quantum theory. 

Another aspect of quantum theory is that when two consecutive measurements are made 
on certain pairs of variables, called complementary variables, there is a fundamental 
limitation on the precision of the two measurements. Thus, there is no state in which 
both complementary variables can be defined simultaneously with arbitrary accuracy. 
This phenomenon is known as the Heisenberg uncertainty principle. This is at odds with 
the classical notion that measurement of a system does not affect the results. 

In certain instances a system of many particles cannot be separated into individual wave 
functions for each particle, rather the system is described by a single wave function. This 
physical property is called quantum coherence and is the result of individual particles 
losing their separate identities such that the entire system acts as a whole. Particles that 
were once unified in a common quantum state remain physically connected even at a 
distance. Measurements made on one particle cause the collapse of the entire wave 
function for the system, resulting in an instantaneous effect for all particles no matter 
where they are spatially located. This interaction over distance is referred to as non-local 
quantum entanglement. Decoherence occurs when such a system interacts with its 
environment in an irreversible thermodynamic way resulting in different particles in the 
quantum superposition no longer being able to interfere with one another. 

The unique properties of quantum theory are made all the more evident when applied to 
information processing. Classical computation consists of manipulating a register or 
series of fundamental units of information processing, called bits, via logic gates. Bits 
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are discrete units and can take on one of two values (i.e. 0 or 1). In quantum computation 
the fundamental units are known as quantum bits, or qubits. Qubits are quantum 
superposition states representing two values simultaneously with an arbitrary amplitude 
(i.e. 0 and 1 together). Quantum computation involves allowing qubits to interact with 
each other then collapsing them to a particular set of measurable states. As a 
consequence of this, the number of classical states contained within a quantum register 
grows exponentially, resulting in a faster computation time and thus greater computing 
power. 

These unique properties of quantum theory have led some theorists to suggest that the 
enigmatic features of consciousness can be explained via macroscopic quantum 
phenomena in the brain. The notion of non-local quantum entanglement, and the 
probabilistic nature of quantum theory alone have been used as explanations for the 
binding problem and the deterministic problems [14, 15]. As well, it can be understood 
that since quantum theory deals with the fundamental level of matter, the notion of 
rudimentary consciousness can be explained via quantum descriptions of brain function. 
However, other theorists still contend that the special properties associated with quantum 
physics are not relevant in structures such as neurons and the brain, and that classical 
physics is better suited to the study of such large objects. Yet the boundary between 
quantum and classical regimes is still under debate. The next section discusses some of 
the quantum-based theories of brain function followed by the major objections to such 
theories. 

1.4 Theories of quantum brain function 

Almost since the inception of the quantum theory of matter in the early part of the last 
century the notion of quantum properties playing an important role in life processes has 
been debated [19]. Perhaps the first attempt to describe the brain using the terminology 
of quantum physics was made by Ricciardi and Umezawa [20]. Based on experimental 
observations of brain activity they proposed that the brain could be conceived of as a 
spatially distributed system placed into particular quantum states by stimuli from the 
external environment. Thus, information can be thought of as being coded into the brain 
in the form of metastable excited states representative of short-term memory. This code 
would then be later on transferred to the ground state of the system by means of a 
condensation to the ground state in the manner of Bose-Einstein condensation accounting 
for learning and long-term memory. This model proposes that brain functions are 
manifestations of spontaneous symmetry breaking in the dynamics of the brain regulated 
by long-range correlations. The model put forth by Ricciardi and Umezawa relating 
macroscopic quantum states to brain function, memory specifically, was later extended 
proposing that the brain is a mixed physical system [21]. In this model the brain is 
considered to consist of two distinct interacting parts, the first part consisting of the 
classical electrochemical interactions of the neurons of the brain, and the second being 
the macroscopic quantum state responsible for the creation and maintenance of memory. 
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This idea of large quantum states in biological systems is more generally illustrated in 
Frohlich's notion of biological coherence. Biological coherence is a high state of order 
that occurs in a biological system when the thermal energy supplied to the system reaches 
a certain threshold causing the coupled molecules to vibrate in unison [22]. The quantum 
properties exhibited by such systems have been used to explain the synchronization of 
biological rhythms such as sleep cycles, and heart rhythms. This idea is further expanded 
upon in Section 2.3.3. 

Inspired by the application of quantum theoretical methods to the study of the brain and 
other biological structures scientists began to study brain functioning from the 
microscopic level of quantum physics. Several groups focused specifically on protein 
polymers located within individual cells known as the cytoskeleton [23, 24]. 
Anesthesiologist Stuart Hameroff investigated many of these relationships between 
molecular biology, computers and future ideas of nanotechnology in a book dealing with 
the co-evolution of consciousness and technology [25]. Specifically it highlights the 
cytoskeletal structure of living cells to act as a cellular nervous system via computations 
in the cytoskeleton, and gives numerous arguments based on theory and experimental 
observation. Using physical models including models based on previous theoretical 
notions of holography, biological coherence and solitary waves, known as solitons, acting 
in microtubules [26] the computations of the cytoskeleton are shown to provide 
explanations of the mechanisms observed in brain cells, and in turn their relation to the 
functioning of the brain including consciousness. In general Hameroff indicates two 
main concepts to the understanding of cytoskeletal brain activity from the viewpoint of 
modern physics. The first is that microtubules act as dielectric waveguides for 
electromagnetic energy, or photons, creating coherent excitations within microtubules via 
Frohlich's theory. The second is that via interference of coherent electromagnetic waves, 
or photons, through the interaction of microtubules, a network of microtubules acts as a 
holographic information-processing device. 

Physicist Roger Penrose examined the relationship between consciousness and modern 
physics in a summary exposition of Turing machines, Godel's theorem, chaos, classical 
and quantum mechanics, thermodynamics, relativity, cosmology, quantum gravity, quasi-
crystals, and brain neurophysiology [14]. In this investigation Penrose introduced 
mathematics as a bridge from the artificial world of computers to the natural world of 
physics and argued via Godel's incompleteness theorem that human consciousness is 
non-algorithmic, and thus that physical theories of brain function are incomplete due to 
their dependence on computable algorithmic laws. He further hypothesized that quantum 
effects play a fundamental role in the understanding of human consciousness by enabling 
the brain to perform non-computable computations. In his explanation of the new 
physics required to explain the mind and consciousness he examined the division 
between classical and quantum physics, specifically the measurement problem, and 
related the collapse of the wavefunction to conscious events using the notion of Objective 
Reduction [15]. This led to the suggestion that microtubules within neurons provide the 
brain with structures capable of orchestrating the collapse of the wavefuntion via 
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quantum computations. This union of Penrose and Hameroff s theories has become 
known as the Penrose-Hameroff Orchestrated Objective Reduction (Orch OR) theory. 

The Penrose-Hameroff Orchestrated Objective Reduction theory of consciousness is 
perhaps the most well known theory describing brain function based on quantum 
principles. Objective Reduction is a solution to the measurement problem in quantum 
theory, which considers the superposition of quantum states as a separation in underlying 
reality at its most basic level, the Planck scale. The solution involves a description of 
loop quantum gravity, which identifies superpositions as curvatures of opposite direction 
in space-time, and thus a separation in fundamental space-time geometry. These 
separations are considered unstable and reduce to a single space-time curvature once an 
objective threshold is reached [3]. The theory considers a conscious event as a quantum 
computation concluding via objective state reduction. Quantum computation within the 
brain was considered to occur within neuronal microtubules. The individual molecules of 
tubulin that compose a microtubule were taken as biological qubits. Tubulin molecules 
are proposed to interact and compute with other tubulin molecules in microtubules via 
entanglement. The biological conditions in the brain, including synaptic activity, are 
considered to influence the quantum computations thus orchestrating the collapse of the 
qubits and giving rise to a conscious event. 

However, the Penrose-Hameroff theory of consciousness is not the only theory to relate 
brain function to microtubules. Based on the pioneering work of Umezawa, Jibu and 
Yasue give a systematic account of advanced brain functions including consciousness 
and memory, based on the fundamental principles of quantum theory known as Quantum 
Brain Dynamics (QBD) [27]. In their theory the QBD system, consisting of the rotational 
field of water in the brain interacting with the electromagnetic field, exchanges energy 
directly with what is termed as the external system. The external system surrounding the 
QBD system includes the microscopic protein filament system of the cytoskeleton, 
including microtubules, as well as the macroscopic systems of dendritic and neural 
networks. Hameroff in conjunction with Jibu, Yasue and others predict that microtubules 
play the role of nonlinear coherent optical devices that take advantage of the ordering of 
water molecules and the quantized electromagnetic field confined inside the hollow 
microtubule core to produce signaling free of thermal noise and loss, through the 
transformation of incoherent, disordered energy into coherent photons within its hollow 
core, a process termed 'superradiance' [28]. The optical computing proposed to occur in 
networks of microtubules and other cytoskeletal structures as a basis for cognitive brain 
functions again implicates information processing within microtubules as playing a key 
role. 

1.5 Arguments for and against quantum brain function 

Quantum theories of brain function assert that brain processes are governed by the rules 
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of quantum theory. These theories have met with many objections and criticisms based 
on both philosophical and scientific grounds [29, 30, 31, 32, and 33]. The main concerns 
of these remarks however can be broadly separated into the following three categories. 

1) The empirical evidence linking how the activity of a 
single synapse enters into the dynamics of neural 
assemblies is lacking thus the relevance of quantum 
processes in mental phenomena is merely a claim [31]. 

2) There appears to be no special quantum mechanical 
properties needed to explain psychological and 
neurological phenomena. The relevance of quantum 
effects to the structure and function of the brain does 
not necessitate their involvement in explaining 
consciousness. Such systems that are expected to 
behave classically will behave classically. [32, 33] 

3) Structures such as microtubules and neurons are large, 
high temperature systems from the quantum mechanical 
point of view. As such it is not possible for them to 
remain in states of linear superposition capable of 
coherently interfering with one another, thus 
decoherence eliminates any possibility of quantum 
effects playing a role in brain processes [29, 30]. 

There have been many debates concerning whether the quantum description of the brain 
is valid, realistic or needed. However, only recently have advances in nanotechnology 
allowing for serious empirical investigation into the biophysical workings of subcellular 
structures been made. As such, the lack of evidence in support of quantum brain theories 
should not be taken as proof against such theories, but rather as an area in need of 
scientific investigation. The several enigmatic features of consciousness mentioned 
previously are still, for the most part, left unexplained by classical theories. The apparent 
ability of quantum theories to answer these questions may provide new avenues of 
investigation into the study of consciousness. It is known that phenomena such as 
superconductivity, superfluidity and laser action exist and that these phenomena cannot 
be explained via classical means, but rather require the idea of macroscopic quantum 
coherence. As such, it can be stated that not all phenomena observed in large-scale 
systems can be expected to behave classically. Thus, while the first two arguments 
against quantum brain function represent a general resistance to the idea the third is an 
argument of worthwhile concern. 

Macroscopic quantum phenomena such as superconductivity, and superfluidity require 
high isolation from their environment in order to avoid the effects of decoherence. In 
order for such phenomena to exist in the brain nature would need to provide mechanisms 
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to isolate against decoherence. The subject of decoherence in relation to quantum 
computation in microtubules particularly has been widely discussed and strong arguments 
have been made on both sides of the discussion. 

Tegmark makes a major objection specifically to the Orch-OR theory, and the notion of a 
quantum brain in general, based on calculations of neural decoherence rates for both 
regular neuron firings and for kink-like polarization excitations in microtubules, that the 
degrees of freedom in the human brain should be considered classical rather than 
quantum [29]. Tegmark found decoherence time-scales for superpositions of solitons 
moving along a microtubule of approximately 10-"13-10"n s, which are much shorter when 
compared with the relevant time-scale of 10"3-10_1 s. Thus, it was concluded that 
quantum coherence within the brain is not feasible. However, Hagan et. al. [34], point 
out that Tegmark's calculations are based on an incorrect model of the Orch-OR process. 
Accounting for this discrepancy, as well as effects that screen thermal fluctuations, such 
as layers of ordered water and actin gel states surrounding microtubules, Hagan et. al. 
found new decoherence rates of 10"5—10"4 s that are in line with relevant dynamical times 
of biological phenomena. These arguments are both refuted by Rosa et. al. [35] who 
find, based on decoherence calculations, that the Orch-OR model based on gravitational 
collapse is incompatible with decoherence, but that the notion of quantum phenomena in 
the brain is still feasible if decoherence is taken as the collapse mechanism rather than 
gravity. Thus, investigations into the quantum nature of microtubules and the effects of 
decoherence on the system may elicit some new information on quantum based cognitive 
processes in the brain. 
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Chapter 2 

The Physics of Biology 

2.1 A Brief Introduction to Biophysics 

Biophysics attempts to understand physiological processes of living systems from a 
fundamental level. The difference between living and inanimate matter stems from the 
ability of organisms to reproduce, adapt and control biological actions such as 
biochemical reactions, protein assembly/ folding, and biological signaling, all of which 
are governed by molecular events. Biomolecules are comparatively large and complex. 
Proteins, for example, have a diverse array of functions and molecular masses ranging 
from thousands to millions of Daltons (D). However, the chemical constituents of 
biomolecules are not nearly as complex. There are 20 proteinogenic (protein-building) 
amino acids that act as the building blocks of all proteins. The diversity of such 
molecules is thus the result of the many combinations of such constituents. The specific 
organization of these complex molecular systems provides the specific molecular 
functions all of which are governed by physical laws. Biophysics seeks to understand 
these biophysical systems through intramolecular and intermolecular interactions and the 
resulting electronic and structural conformational changes including the transfer of 
electrons, protons, ions and energy within the system. Condensed matter physics 
investigates such problems via methods of quantum mechanics, statistical physics and 
thermodynamics. Since biological systems are not isolated from their environments these 
descriptions can become quite complicated due to the openness and far-from-equilibrium 
nature of living systems. In terms of physics, biological systems exhibit the following 
properties [1]: 

1) They are relatively stable while far from equilibrium 
requiring that various excitations are stable thus 
indicating the existence of metastable states. 

2) They exhibit a non-trivial order requiring a motional 
organization whose generalization leads to biological 
coherence (see Section 2.3.3). 
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3) They exhibit extraordinary dielectric properties arising 
from high electric fields maintained in membranes, on 
the order of 107 Volts/meter (V/m), that are sensitive to 
very low fields. 

Investigations into the physical properties of rigid matter and solids are generally 
classified as condensed matter physics and involve not only the study of a material's 
mechanical properties, but its electronic structure and ability for electronic transport as 
well. Semiconductors are solids with an electrical conductivity that can be controlled 
permanently or dynamically over a wide range, while superconductors are solids with no 
electrical resistance. Certain biological systems, including parts of the living cell, also 
fall into the category of condensed matter materials, and thus the electronic structure and 
ability of these materials to conduct electrical signals is of great importance to their 
function. 

2.2 Mechanisms of Biological Activity 

2.2.1 The Importance of Signaling in Biology [18] 

The regulation of the complex behavior of living systems is performed through various 
mechanisms of biological signaling. Signaling within a single cell is part of a complex 
system of communication that governs basic cellular activities and coordinates cell 
actions. Single cell signaling is limited to intracellular signals between the cell's various 
organelles and other constituents. Within larger more complex organisms this includes 
not only the intracellular signals within individual cells but also the transmission and 
reception of extracellular signals between cells. 

Extracellular signaling is understood mainly in terms of chemical signals between cells. 
Most signaling molecules are secreted from the transmitting cell via exocytosis, the 
remainder of the signaling molecules being released by diffusion through the cell 
membrane. These transmitter molecules can be carried far distances to act on distant 
target cells, or act as local mediators that affect cells in the immediate vicinity of the 
signaling cell. Target cells respond to the transmitter molecules through specified 
proteins in the cell membrane, called receptors, which bind specific signaling molecules 
that in turn initiate a specified response within the target cell. 

There are various methods for extracellular signaling. Paracrine signaling is used to 
locally mediate groups of cells by secreting transmitter molecules that are quickly taken 
up by surrounding target cells, thus initiating responses in target cells located close to the 
signaling cell. Autocrine signaling works in a similar manner. Whereas in paracrine 
signaling the signaling cell, and target cell are of different varieties, the cells in autocrine 
signaling are of the same type. Thus, not only can the transmitter molecules from the 
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signaling cell bind to other target cells, they can also bind to the receptors of the signaling 
cell itself. Synaptic signaling is a highly specified fast form of paracrine signaling in 
which specialized cells, namely nerve cells, signal amongst one another across widely 
separate parts of an organism. When activated, a nerve cell initiates an electrical 
response sending an electrical impulse, known as an action potential, along long cellular 
extensions known as axons. This signal stimulates the release of chemical transmitter 
molecules, known as neurotransmitters, from the terminal end of the axon. These nerve 
terminals are in contact with specialized junctions on the target cell called chemical 
synapses. These junctions provide close contact between the signaling and target cell 
allowing for quick and direct signaling. Current opinion suggests that neurotransmitters 
diffuse across the synaptic cleft, which is the gap between the signaling and target cell at 
the synapse [19]. However, it has been suggested that the process may involve quantum 
tunneling of the transmitter molecules across the synaptic cleft [20], although 
experimental evidence to support this hypothesis remains to be found. 

Another method of signaling used by nerve cells is signaling through gap junctions. A 
gap junction is a specialized cell-to-cell connection that forms between two adjacent cell 
membranes. At the junction the cells connect directly through small openings in the cell 
membrane joined by narrow water-filled channels, thus directly linking the interiors of 
the two cells. These junctions allow the transport of small intracellular signaling 
molecules, such as charged ions, but not large macromolecules such as proteins. This 
allows the two cells to communicate directly via the electrical flow of ions without 
dealing with the cell membrane barrier. 

Intracellular signaling includes all signaling mechanisms that coordinate and orchestrate 
the inner working of a single cell. This includes the signaling required to organize the 
interior structures of the cell. However, unlike extracellular signaling these mechanisms 
are not yet fully understood. As such, research to investigate these mechanisms remains 
active. Traditional work in biology has focused on studying individual parts of cell 
signaling pathways. This systems biology approach works to understand the underlying 
structure of cell signaling networks and how changes in these networks can affect the 
transmission of information. 

2.2.2 Energy Transfer in Biology 

In the life sciences, the biochemical paradigm is prevalent implying that essential 
biological processes occur at the molecular level and above. This view focuses on 
molecular structures and the molecular mechanisms involved in energy transfer. 
However, the activity of biological systems does not simply follow from the structure of 
its constituent molecules. Biological activity is frequently turned on and off. From the 
view of physics these activities can be expressed in terms of non-linear excitations. To 
establish and maintain these excitations and to compensate for the effects of entropy, 
biological systems require a supply of energy, as the majority of biophysical processes 
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are endothermic. Biological processes receive a supply of energy by coupling to 
exothermic processes, namely the hydrolysis of adenosine triphosphate (ATP) or 
guanosine triphosphate (GTP), as GTP is readily converted to ATP. Energy is packed 
into these important biological molecules and transferred to the sites where needed. The 
hydrolysis of ATP is given as, 

ATP+H20-^>ADP + Pi (2.1) 

where H2O is water, ADP is adenosine diphosphate and Pj is an inorganic phosphate. 
The free energy released from the removal of a single phosphate from ATP when all 
reactants and products are in standard concentrations is approximately 30 kilojoules/mol 
(kJ/mol), whereas at typical cellular concentrations this value is closer to 57 kJ/mol. 

In eukaryotic cells the mitochondria organelles produce ATP via a process called the 
mitochondrial electron transport chain. Energy sources, such as glucose, are initially 
metabolized in the cytoplasm with the products being taken up by the mitochondria. In 
brief, the mitochondrial electron transport chain then removes electrons from an electron 
donor and passes them to a terminal electron acceptor via a series of redox reactions. 
These reactions create a proton gradient across the mitochondrial inner membrane of the 
mitochondria resulting in a trans-membrane proton gradient that is used to make ATP via 
the enzyme ATP synthase. Sub-molecular transportation of particles through biological 
structures, such as the mitochondrial electron transport chain, has been discovered in 
modern organisms and is a rapidly growing area of research. 

The term bioenergetics, originally coined by Szent-Gyorgyi in 1957 to refer to energy not 
confined within biomolecules but emitted or absorbed directly by tissue, is used in 
modern biology to refer to the transfer and conversion of biological energy [10]. From 
this viewpoint energy production and transport is a conversion of energy from one form 
to another. Many biological processes may be understood as energy conversion, for 
example vision (light energy -> electrical energy), nerve impulses (chemical energy -> 
electrical energy), or muscle contraction (chemical energy -> mechanical energy). 

In regards to biophysical explanations of biological signaling and energy transfer, it has 
been hypothesized that these processes are electromagnetic in nature, where interactions 
of biomolecules produce chemical reactions and thus elicit electrical signals via charged 
ions in order to transfer energy throughout the system. The electromagnetic regulation of 
these processes would have the advantage of signaling occurring at a relatively rapid rate 
when compared to extracellular signals. 
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2.3 Review of the Physics of Solids [26,27, 28] 

2.3.1 Lattice Properties of Solids 

A solid is any material in a state characterized by resistance to deformation and changes 
of volume. At the microscopic scale a solid has atoms or molecules that are packed 
closely together. These elements have fixed positions in space relative to each other thus 
accounting for the rigidity of the solid. Unless a sufficient force is applied to 
permanently deform the material, the solid maintains is shape and volume. When there is 
a unique arrangement of atoms in the solid, such that the structure is composed of a set of 
atoms or molecules arranged in a periodically repeating three-dimensional lattice, the 
material is known as a crystal. The spacing in various directions between primitive unit 
cells, the particular arrangement of atoms/ molecules that is periodically repeated in a 
crystal, is called a crystal's lattice vector. A Bravais lattice is the simplest type of crystal, 
and is characterized by the vector distance R as given by, 

R = A\ + Bl2 + C/3 (2.1) 

where A, B and C are integers and /, are the basis vectors of the lattice. There are 14 
possible Bravais lattice configurations that fill three-dimensional space based on the 7 
crystal symmetries (see Figure 2.1). Primitive unit cells may take any shape as long as 
they fulfill the requirement stated above, thus resulting in primitive cells of equal volume, 
but without unique orientation around a given lattice point. Primitive cells that are 
invariant under all symmetry operations around a given lattice point are known as 
Wigner-Seitz cells. The Wigner-Seitz cell of a crystal lattice is defined as the volume 
around a single lattice point that is closer to that lattice point than to any of the other 
lattice points. It is found by taking the surfaces at the midway point between one lattice 
point and its nearest neighbors, otherwise known as Bragg planes (see Figure 2.2). 
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Figure 2.1: The 7 crystal symmetries and corresponding 14 Bravais lattices: Triclinic (a, P, y ^ 
90°) a) simple, Monoclinic (a # 90°, (5, y = 90°) b) simple, and c) base-centered, Trigonal (a, p\ y 
4 90°) d) simple, Tetragonal (a 4 c) e) simple and f) centered, Hexagonal (a 4 c) g) simple, 
Orthorhombic (a 4- b f- c) h) simple, i) base, j) body-centered, and k) face-centered, and Cubic 1) 
simple, m) body-centered, and n) face-centered. 
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Another way to define the crystal is via the reciprocal lattice of any given Bravais lattice. 
The reciprocal lattice is the set of all wave vectors K that give plane waves with the 

o 

0 

0 

0 

0 

o 

0 

0 

0 

0 

o 

j» 

0 

0 

o 

o 

0 

o 

0 

o 

0 

o 

o 

o 

o 

0 

0 

0 

0 

o 

o 

o 

0 

o 

o 

9. 
. 
Q 

o 

o 

0 

o 

o 

o 

o 

o 

0 

o 

o 

(A) (B) 

o 

0 

0 

0 

o 

o 

0 

o 

0 

o 

o 

o 

• 

0 

o 

o 

o 

o 

0 

0 ' 0 

o 

o 

0 

0 

(C) 

o 

o 

0 

o 

0 

o 

0 

0 

0 

0 

o 

0 

0 

0 

o 

o 

' 
0 

0 

o 

o 

0 

o 

0 

(D) 

Figure 2.2: Construction of a Wigner-Seitz cell. From a single lattice site (A) draw a line to a 
nearest neighbor lattice site, (B) create a Bragg plane by bisecting this line, (C) repeat for 
remaining nearest neighbors, and (D) the enclosed area represents the Wigner-Seitz cell. 

periodicity of a given Bravais lattice. That is, the reciprocal lattice is the set of wave 
vectors K that satisfy, 

eiKR=\ (2.2) 

where. 

K = Dqx + Eq2 + Fq3 (2-3) 

and D, E, and F are integers. The basis vectors in &-space q. are defined in terms of the 
Bravais lattice basis vectors as given by, 

£ = 2 t f ^ X ^ 

\ x \ 
q2 =2n— 

In I L'J X- l-> 1 

(2.4) 

The uniquely defined primitive cell of the reciprocal lattice in &-space is called the first 
Brillouin zone, and is found by the same method as for the Wigner-Seitz cell in the 
Bravais lattice. If the volume of the Wigner-Seitz cell for a given Bravais lattice is V, 
then the volume of the primitive cell for the reciprocal lattice is given by (2rcf/V. Note 
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that although the Wigner-Seitz cell and the first Brillouin zone refer to the same 
geometrical shape, the term Brillouin zone applies only to cells in &-space. 

A crystal's structure and symmetry play a role in determining many of its properties, such 
as electronic and optical properties. Thus, by knowing a materials crystal structure many 
of its physical properties can be determined. Proteins, the fundamental chemical 
constituent of most biomolecules, like many other molecules, can be prompted to form 
crystals when subjected to the appropriate conditions. Proteins crystallize when the 
purified protein form undergoes a slow precipitation from an aqueous solution. As a 
result, individual protein molecules align themselves in repeating series of unit cells by 
adopting a consistent orientation. Protein crystallization serves as the basis for X-ray and 
electron crystallography, wherein X-ray or electron diffraction from a crystallized protein 
is used to determine the protein's three-dimensional structure. This method determines 
the three-dimensional density distribution of electrons in the crystallized protein from 
which the coordinates of the proteins constituent atoms may be inferred down to a certain 
resolution. By determining the three-dimensional structure of proteins it becomes 
possible to understand the functions of proteins at a molecular level. This is the basis for 
the field of structural biology. 

However, a static crystal lattice does not capture the reality of a material such as a protein 
polymer, as the constituent atoms/molecules are not expected to remain stationary. The 
simplest way to consider the movement of the lattice is to regard the atoms/molecules as 
simple harmonic oscillators of equal masses M, connected by springs of force constant K. 
Considering a one-dimensional lattice of identical atoms/molecules as a group of coupled 
harmonic oscillators the Hamiltonian in position space for the system is then given by, 

H = l^+l\M^-x^2 (2.5) 
where n denotes an individual atom/molecule of the N atoms/molecules in the system, xn 

is the operator of n'h atom/molecule defining its displacement from its equilibrium 
position A, a/ = K/M, and the second sum is taken only over nearest neighbors in the 
system. To obtain the Hamiltonian in A:-space the Fourier transforms of the momentum 
and position are taken such that, 

^ * (2.6) 

such that, 
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H^y^- + -M(02
kx\xk) 

±J OAA 1 k k k> 2M 2 (2.7) 

kA 
where cojt=2cosin(—) gives the frequencies of the oscillations, otherwise known as 

phonons. 

By defining creation and annihilation operators for phonons as, 

* A' 2h ( k Mcok
Pk) 

(2-8) 

where [bk,b\} = \. The phonon Hamiltonian may be given in the second quantized form 
as, 

"* - l^hbUb\bk) 
k 

2 \"k»k^"k»k> (2.9) 

1 2ficok(Nk + - ) 

with the number operator Nk = b\bk. 

l.'i.l Electrical Properties of Solids 

The previous section described the shape and certain properties of a periodic crystal 
lattice structure. In order to understand the electrical properties of a solid the interaction 
of electrons with the lattice potential must be taken into account. An electron in such a 
periodic potential is known as a Bloch electron. Bloch's theorem states that the 
wavefunction for an electron in a periodic potential, V(r + R) = V(r) may be written as, 

^-(r) = «*"-?Mi(r) (2-!0) 

with u possessing the same periodicity as the potential, i.e. u(r + R) = u(r) or likewise 
xp(r + R) = xp(r)e'k R. For any given value of the Bloch wavevector k and periodic 
potential V(r) there are a number of energy eigenvalue solutions to the Schrodinger 
equation, indexed by n, such that, 
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where the effective Hamiltonian Heff is given by, 

h2 - - , ~ _ (2.12) 
Heff=-—(V + ikf + V(r) 

2m 

The Bloch wavevector is free to adopt a wide range of values, but must obey restrictions 
arising from the finite size of the crystal in which the Bloch wave lies. Any two k values 
that differ by the reciprocal lattice vector K share the same wavefunction, and thus the 
same eigenvalue according to (2.2), and therefore the two k values can be considered 
physically identical. Thus, only those wavevector values inside the first Brillouin zone 
need be considered. The density of energy eigenfunction states in the n! index is given 
by, 

fl.w-72*-*) (2'13) 

k 

For each k the energy eigenstates are separated in energy by a finite spacing. In some 
cases there are ranges over which there are no states leading to bands of allowed energies, 
thus giving rise to a band structure for the solid where the solutions En- are called the 

band energies, and n denotes the band index. Allowed bands may overlap giving rise to a 
single large band. In theory, any solid has an infinite number of bands, however all but a 
select few reside at extremely high energies so that electrons with the required energy to 
reach these high energy levels would possess enough energy to escape the solid. These 
high-energy bands are usually not considered. Energy bands contain a wealth of 
information regarding a solid's electrical properties. Their slopes give electron velocities, 
thus predicting electron transport properties, and from their shape it is possible to 
calculate minimum energy crystal structures and even magnetic properties. Overall band 
widths and shapes are determined by the properties of the atomic or molecular orbitals 
constituting the crystal, however the material required to calculate band structure goes 
beyond the scope of the material presented here. 

If a given crystal contains N atoms then each Brillouin zone contains N allowed k values. 
Since the Pauli exclusion principle forbids multiple occupations of the same state, and an 
electron has two allowed spin eigenstates each Brillouin zone may contain 2N electrons. 
For the lowest energy state, or ground state, of the system the electrons provided by the 
atoms/ molecules will then fill all the states up to a given energy known as the Fermi 
energy e/ or Fermi level, which denotes the energy of the most energetic electron in the 
crystal at absolute zero, or for non-zero temperature the energy at which the probability 
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of occupation falls below 0.5. For any given lattice, there will be a set of filled bands, 
with a full complement of electrons and unfilled bands which have no electrons. The 
highest occupied band is known as the valence band, derived from the chemists' term 
"valence electrons" for electrons on the outermost shell of an atom. The lowest 
unoccupied band is known as the conduction band, as electrons that enter the conduction 
band are free to move about the lattice and conduct current. The energy of separation 
between the valence band and the conduction band is known as the band gap. 

Cases in which the Fermi level lies within an energy band may be understood as the 
conduction band and the valence band overlapping or the valence band being only 
partially filled, both with the Fermi energy somewhere inside. This means that the 
material always has electrons that can move freely. In the presence of an electric field 
these electrons move giving the electron population a net momentum thus carrying 
current. This behavior is characteristic of metals and materials of this sort are classified as 
conductors. 

For cases in which the Fermi level lies between energy bands, in a band gap, the states in 
the valence band, below the Fermi energy, are fully occupied, while those in the 
conduction band are empty. In order for such a material to allow electron conduction the 
electrons in the material must gain enough energy to jump the band gap. For materials in 
which the band gap is large (greater than 3 eV) the probability for electrons to bridge the 
band gap is very low even with extra energy provided by heat, incident light or high 
electric field. Materials of this sort are thus poor conductors and are classified as 
insulators. In the case where the band gap is less than 2 eV however, thermal energy, 
incident light and high electric fields can provide enough energy to increase the probability 
of jumping the band gap creating a substantial population of conduction electrons giving 
the material a limited conductivity. These materials are designated as semiconductors. 

The conductivity, a, of a material is a measure of a material's ability to conduct an 
electric current and is defined as: 

] = oE (2-15) 

where j is the current density in the material, and E is the electric field strength within 
the material. The current density is defined as, 
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The drift velocity, otherwise known as the group velocity, of electrons in the nth band 
with wave number k is given as, 

- 1 ^ (2-17) 

where n is taken as the conduction band of the material. 

Conductors, which readily conduct electric currents, typically possess conductivity values 
greater than 104 Q^cm"1. The extreme of this regime, when conductivity approaches an 
infinite value, gives rise to the special case of superconductors in which there is no 
resistance to the flow of current. However, this involves more complex interactions of 
the electrons with the crystal lattice, which will not be discussed here. Insulators, with 
their lack of conduction electrons and their ability to resist the flow of current, are 
characterized by conductivities below 10"10 Q^cm"1, while semiconductor conductivities 
fall in the intermediate range of 10"9 Q"'cm cm . 

Knowing these conduction properties of solids gives a clearer understanding of other 
solid electric properties. Dielectrics are substances that act as electrical insulators, thus 
highly resisting electrical current. Electrons in a dielectric material are strongly bound to 
the atoms composing the material and therefore are not free to move throughout the 
material when under the influence of an applied electric field as discussed. However, the 
electrons can move small distances relative to their nuclei. When an electric field is 
applied to a dielectric, the material concentrates the field within itself through 
redistribution of charges within its atoms or molecules altering the shape of the field both 
inside and near the substance. In biology, cells and many of the relevant large molecules 
exhibit dielectric properties, for example cell membranes maintain a very strong dipolar 
layer. 

Zaky and Hawley present a thorough introduction to dielectric solids, including the 
phenomena of ferroelectricity, piezoelectricity and pyroelectricity, in [11] which is the 
basis of the following discussion of the subject. Dielectrics can be largely subdivided 
into non-polar and polar dielectrics. Dielectric materials composed of non-polar 
molecules can be considered to have a positively charged nuclei symmetrically 
surrounded by a negatively charged cloud of electrons. When there is no external electric 
field applied the charges cancel. However, in the presence of an external electric field 
the positive and negative charges experience an electric force and are displaced by a very 
small distance (approximately 10"l0-10"nm). This results in polarization of the non-polar 
molecules such that each molecule possesses a dipole moment, and induce an overall 
electric polarization in the material. When the field is removed the molecular dipoles 
and polarization disappear. 

Polar dielectrics are composed of molecules that possess intrinsic dipole moments in the 
absence of external electric fields due to their intrinsic asymmetric distribution of charge. 
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When no external field is applied these molecular dipoles may orient themselves 
randomly due to the thermal agitation of the environment. This is known as the 
paraelectric phase and results in a zero or very small overall spontaneous polarization. 
When a field is applied the molecules tend to align themselves in the direction of the 
electric field resulting in polarization of the material. Some polar dielectrics exhibit a 
spontaneous dielectric polarization in the absence of an applied field. These materials are 
known as ferroelectrics. A material exhibiting a ferroelectric phase can make a phase 
transition to the paraelectric phase if the temperature of the material is raised beyond a 
transition temperature known as the ferroelectric Curie temperature. 

In certain cases when a dielectric is placed in an electric field the small displacement of 
charge proportionally changes the mechanical dimensions of the material through 
elongation in the direction of the field. Such materials are called piezoelectric. The 
piezoelectric effect results from a lack of a centre of symmetry in the crystal structure of 
the material. Conversely, when a mechanical stress is applied to a piezoelectric material 
it results in an overall polarization. Piezoelectric materials are usually also pyroelectric. 
The pyroelectric effect generates an electric potential when a temperature gradient is 
applied to a pyroelectric material. Experimental evidence predicting the piezoelectric and 
pyroelectric properties of biological structures has been found [12, 13]. Biological 
piezoelectricity has been observed directly in bone, DNA, ribonucleic acid (RNA), 
myosin and collagen, and pyroelectricity has been directly observed in bone, tendon and 
nerve cells [2]. As well, several of the amino acids, the basic building blocks of proteins, 
have been shown to exhibit piezoelectric and pyroelectric properties [14]. 

The transfer of electrons, however, is not the only form of biological conductance 
discussed. Proton transfer reactions are also important in maintaining cellular life, they 
are part of the metabolic processes taking place in the cell including in the synthesis of 
cellular energy stored in ATP, as discussed in section 2.2.2. ATP synthesis in particular 
is discussed as proton transport in a membrane-spanning proton semiconductor. The 
movement of ions or charged particles is another form of biological conductance 
considered. Ion condensation on biopolymers is discussed as a method of intracellular 
signaling, in particular the condensation/ decondensation of calcium ions and its relation 
to coherent patterns of protein phosphorylation. 

In dielectrics electrical conduction can be mediated via three different types of charge 
carrier: molecular ions, electrolytes and electrons. The first mechanism uses molecular 
ions, or clusters of ionized molecules, and is related to the phenomena of electrophoresis. 
Molecular ionic conduction is most commonly encountered in amorphous or liquid 
dielectric systems. The second mechanism uses electrolytes, otherwise referred to as 
ions, or charged atoms. Conduction occurs through the movement of ions, originating in 
the material or from impurities, or through the motion of ion vacancies. Proton 
conduction is a specific example of ionic conduction, protons being hydrogen ions. The 
final mechanism is understood in terms of the flow of electrons or electron holes and is 
most commonly referred to as electronic conduction. 
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In order for insulators and semiconductors to conduct any form of current, electrons in 
the valence band must be excited into the conduction band. For systems in which the 
electrons are non-interacting an electron excitation such as this could be understood in 
terms of the occupation number N -. For a single excitation, by interaction with an 

incident quantum of energy or photon, N - would differ from the ground state in that one 

k value below the Fermi level would become empty, and one above it would become 
occupied. In order to return to the ground state, the excited electron would need to 
reoccupy the empty state, thus as a system tends to its lowest energy state the electron 
can be considered attracted to the empty "hole" state. The hole can be thought of as 
possessing an opposite electric charge to that of the electron, and thus the two attract one 
another via the Coulomb interaction. This results in a bound electron-hole pair 
quasiparticle known as an exciton. The excited system can then be considered as the 
ground state system plus an excitation composed of an exciton having a well-defined 
energy above the ground energy. Since the exciton results from the binding of the 
electron and hole, it has slightly less energy than the unbound electron and hole. In the 
case where the binding is considered sufficiently weak, the electron and hole orbit one 
another at large distances. This limiting case is known as a Mott-Wanier exciton. In the 
opposite extreme, when the binding is considered very tight, the electron and hole 
separation can be regarded as negligible. This second case is known as a Frenkel exciton. 

If the energy difference between the ground state configuration and the configuration 
containing one exciton is defined as hQ then the Hamiltonian for a single exciton system 
may be described in second quantized form as Ha = hQafa, where </ and a are the 

exciton creation and annihilation operators, respectively. If the interaction energy 
between two excitons is defined as J, then the one-dimensional exciton Hamiltonian for a 
chain of n identical atoms/molecules with can be defined as, 

Hex = ^ma\an + Jiala^ + a f o j ] ( 2 1 8 ) 
n 

where only interaction between nearest neighbors are taken into account. A dispersion 
relation in one-dimension can be determined, 

ek = HQ + 2Jcos(kA) (2.19) 

when £-space creation and annihilation operators, 

«i 
(2.20) 

= ye an 
^ /2JT 
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are entered into Equation 2.18 to yield, 

as the &-space exciton Hamiltonian. 

2.3.3 Collective Excitations and Energy Transfer 

Szent-Gyorgyi provided a new approach to the mechanism of biological reactions 
involving energy transfer over large distances by suggesting that biological 
macromolecules, with their size and symmetry, possess conduction bands similar to those 
which emerge from the collective electron models of metals. In 1941 Szent-Gyorgyi 
hypothesized that the phenomena of electronic conduction may be crucial to 
understanding the fundamental workings of biological systems [15, 16], and further 
supported this hypothesis in 1946 with the finding of photoconductive effects in protein 
films [17]. This gave rise to the description of conduction within organic solids in terms 
of semiconductors. The term organic semiconductor is used to describe organic 
compounds that display properties that are inconsistent with electrical insulators. 

In his 1975 review paper on the application of solid-state physics concepts to biological 
systems Cope identifies several solid-state physical phenomena in components of living 
cells [2]. The review connected rate-limiting processes in the enzyme cytochrome 
oxidase to the semiconduction of electrons across enzyme particles, semiconductor 
junction conduction electrons to the function of the eye as well as the process of 
photosynthesis, superconduction to the growth of nerves, phonons and polarons to 
mitochondrial phosphorylation, piezoelectricity and pyroelectricity to the growth of 
nerves and bone structure, infrared electromagnetic waves to the transmission of energy 
in lipid bilayers of nerve cells and mitochondria, sodium and potassium ions in structured 
cell water to valence band electrons in semiconductors, and free cations to conduction 
electrons. 

Experiments and computer simulations involving enzymes, proteins that catalyze 
biochemical reactions in the cell, have yielded an atomic-level explanation of an enzyme 
catalyzed chemical reaction in terms of proton tunneling [4]. These results explicitly 
indicate the existence of quantum tunneling effects in these biomolecules. Another 
experiment has shown optical control of photoactive processes in bacteriorhodopsin, a 
bacterial counterpart of the protein visual sensor in the human eye, thus indicating that 
biological processes can be manipulated at the quantum-mechanical level [5]. Fourier 
transform spectroscopy performed on the bacteriochlorophyll Fenna-Matthews-Olsen 
antenna complex has revealed "quantum beat" variations in signal intensity that persist 
for hundreds of femtoseconds indicating that electronic quantum coherence plays an 
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important role in the energy transfer process of photosynthetic systems [6]. From the 
theoretical standpoint an investigation into the physical mechanism of scent detection has 
used quantum properties to describe selective atomic-scale processes that are initiated 
when scent molecules interact with receptors in the nose. This method attributes phonon 
assisted electron tunneling to be a physically viable detection method that is consistent 
with observed features of the sense of smell [7]. 

Quantum mechanical explanations of the effect of anesthetics on the brain are of 
particular interest, as not only do they affect biological processes, but consciousness 
itself. While the exact molecular mechanisms of general anesthetics remains largely 
unknown it is suggested that anesthetic gas molecules occupy the hydrophobic pockets of 
neuronal proteins by forming London force interactions with non-polar amino acid 
groups [8]. London forces are not chemical bonds but rather weak quantum interactions. 
This implies that the quantum nature of London forces may be a key component in brain 
functioning and consciousness. Endogenous London forces acting in hydrophobic 
pockets regulate protein conformational states. It has been suggested that consciousness 
may involve collective fields governed by long-range dipole correlations among these 
forces, and that anesthetic gases prevent consciousness by weakening these forces when 
forming exogenous London forces in protein hydrophobic pockets [9]. 

However, conductance measurements made on biopolymers are difficult due to the 
structural variety of polymers, the liquid state of samples and the dependence of 
biological systems on environmental factors such as pH, temperature and ion 
concentration. Despite these difficulties attempts have been made to measure biopolymer 
resistance values, including attempts made specifically on microtubules. In a review of 
electronic and ionic conductivities of microtubules and actin filaments Tuszynski et. al. 
briefly survey the current standing of conduction in biology [3]. Due to the relative 
importance of deoxyribonucleic acid (DNA) in living systems it is noted that much of the 
work in biological conductivity has been done to investigate DNA's conduction 
capability. In the paper it is reported that experimental findings point to insulating, 
semiconducting and even superconducting properties in DNA depending on the method 
of investigation, and type of molecules used, and that DNA may be semiconducting, 
insulating and metallic simultaneously depending on the arrangement of the molecules in 
the structure. Yet, despite these discrepancies it is believed that the pathway for electrical 
transport runs through the bases in the centre of the DNA double helix, and that the 
dominant transport mechanism is the coherent hopping of electrons. 

In Frenkel's two-part paper on the transformation of heat and light in solids [30, 31], he 
identified three important insights into the behavior of electronic excitations in solids as 
pointed out in reference [32]. The first is that the excitation can be delocalized, thus 
extending over several adjacent atoms, and as a result, be described by a series of Bloch 
wave functions depending on the crystal structure. Secondly, due to the delocalized 
nature of the excitation, the superposition of several of the wave configurations will result 
in a localized wave packet that moves through the lattice with a group velocity 
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determined by the exciton dispersion and the extent of the exciton-lattice interaction. 
Third, since the exciton is coupled to the crystal lattice, the attraction of the exciton to the 
lattice of charged ions, thus creates a lattice distortion that travels with the electronic 
excitation. Thus, the phonons regulate the intermolecular interactions that are 
responsible for determining the mixing, or superposition of the delocalized wave states 
for the crystal. The result of this is a partial localization of the electron excitation 
allowing the excitation to propagate coherently as a wavepacket. This is allowed 
provided that the superposition of the ^-states remains unchanged over times exceeding 
the time associated with the nearest neighbor electronic intermolecular exchange. The 
average frequency at which the superposition of ^-states changes relative to the 
intermolecular interaction time determines the primary mechanism for electronic energy 
transfer in solids regardless of the temperature. 

The root cause of the exciton-phonon coupling is the distance dependence of the exciton 
parameters Q and J. The simplest way to write the Hamiltonian for an interaction of this 
type in position space is, 

HeX-ph = Xi2J(*„+1 - xn_x)a\an + X2^(xn+l - ^„)(«L,«„ + af
nan+l) (2.22) 

n n 

with Xi and %2 defining the coupling strength between excitons and phonons. Thus the 
total Hamiltonian in position space may be written as, 

H = Hex + Hph + Hex_ph (2.23) 

where the terms are given by Equations 2.18, 2.5 and 2.22 respectively. 

When the positive and negative regions of a molecule vibrate against one another they 
form an oscillating electric dipole. In dielectric substances these oscillations are capable 
of extending over the entire material in the form of longitudinal electric oscillations. 
These longitudinal oscillations are a direct result of electro-dynamic interactions between 
the molecular dipoles of the system. When energy is fed locally to a particular dipolar 
oscillation, such as in certain processes of living systems, the long-range electric 
interaction causes this energy to be shared with the other dipoles. 

In 1968 British-German physicist Herbert Frohlich showed that when the energy supply 
is sufficiently large in comparison with the energy loss of the system the dipoles tend to 
oscillate in a coherent manner [21]. With increased energy supply from an external 
source, such as thermal fluctuations, deformations of the system caused by non-linear 
effects reduce the energy loss moving the system into a metastable stationary state such 
that the energy of the electric oscillations is larger than that in thermal equilibrium. 
Provided that the energy supply exceeds a critical value the excess energy of the system 
is channeled into a single longitudinal oscillation. The random energy supply is therefore 
not converted wholly into thermal energy, but is used to maintain a coherent electric 
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wave in the material. This occurrence in biomolecules is referred to as biological 
coherence. Thus, Frohlich indicated that the channeling of randomly supplied energy 
into a single oscillation in biological systems is a special case of long-range quantum 
mechanical phase correlation, or coherence, such as in a Bose-Einstein condensate. The 
notion of biological coherence implies that energy in biological systems is transmitted in 
coherent waves that propagate without thermal loss [22]. 

This analysis by Frohlich was based on rate equations. It wasn't until 1977 that Wu and 
Austin provided a microscopic approach to Frohlich's theory of Bose condensation in 
biological systems. Supposing that a biological system consisted of oscillating segments 
of giant dipoles occurring along macromolecules with the remainder forming a heat bath, 
and an external energy source coupled to the oscillating units, Wu and Austin formed the 
Hamiltonian for Frohlich's theory in second quantized form as [29] 

H-^h<Dfl)at + 2nQM + 2nQ'pKPP + 2Wlat + Xbka]) + 
i k P it (2.4) 

\h^{xa]apl + xa/A) + h%&>pa) + fpfa) 
Uj,k p,i 

where the interaction between oscillating units produces a narrow band of frequencies, 
o)i, representing the normal electromagnetic modes with </,• and at the related creation and 
annihilation operators, QK are the vibrational modes with Z/, and bj the related creation 
and annihilation operators, Q'p are the external energy source frequencies with P^t and P, 
the related creation and annihilation and A, %, and £ are the coupling constants for the one 
quantum process, two quantum process and the energy supply to the oscillating 
constituents respectively. 

In 1973 Davydov suggested a dynamic method to explain how energy is transduced and 
transported in biological systems [23]. Using simplified models he showed that proteins 
could self-focus, or trap, energy in stable pulse-like waves known as solitons. Originally 
Davydov suggested the soliton model to explain the role of myosin in the conversion of 
chemical energy to mechanical energy in muscle contraction [23], only later generalizing 
the model to explain energy transfer along protein molecules [24], and DNA. 

The energy released by the hydrolysis of molecules such as ATP or GTP is insufficient to 
excite the electronic states of molecules indicating the importance of vibration excitations 
of groups of atoms within protein molecules. Polymerization of amino acids in proteins 
results in a compound containing a peptide group characterized by a carbon-oxygen 
double bond linked to a nitrogen hydrogen bond. 

Stretching and contraction of the carbon oxygen double bond is one type of vibration that 
may occur in proteins and are denoted as amide I vibrations (see Figure 2.3). 
Furthermore, hydrogen bonds formed between oxygen and hydrogen atoms of peptide 
groups form polypeptide chains of amino acids that may fold into secondary protein 
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structures such as a-helices. 
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Figure 2.3: Peptide group showing amide-I vibration. The major contribution to the amide-I 
vibration comes from the stretching vibration of the C=0 bond, although relatively small 
contributions come from both the C-N in-plane stretching and N-H in-plane bending vibrations. 

In Davydov's [23, 24] model the amide I vibrations are allowed to interact with the 
hydrogen bonds that stabilize the a-helical structure. Due to the regular spacing of the 
peptide groups, amide I vibrations correspond to electric dipole oscillations. The electric 
dipole oscillations of one peptide group interact with the dipoles of neighboring peptide 
groups in a resonant manner. Considering only amide I vibrations the energy would 
dissipate through the system as disordered heat motion. However, due to the amide I 
vibrations the peptide groups will move from their equilibrium positions causing local 
deformations in the hydrogen bonds around the area of excitation. These two effects are 
coupled by a non-linear interaction. The amide I vibrations create local deformations 
which in turn change the energy of the amide I vibrations due to the change in distance 
between peptide groups. The result is that the local deformations create a potential well 
that traps the amide I vibrations preventing its dispersion. Coupled together the amide I 
vibration and local deformation can travel along an a-helical chain in the form of a stable 
solitary excitation, or soliton, with no energy loss. 

The Hamiltonian for the Davydov model of a one dimensional protein chain coupling the 
high-frequency amide I vibrations to longitudinal-acoustic phonons was formulated by 
Davydov in 1982 as [25], 

H^E0BlBn-J^{BlBn+1 + BlBn__l) + ^j\.^- + ^un-un_lf} + 

" X^iu^-un_x)BlBn
n 

(2.5) 

where n denotes the lattice site along the protein chain, Bf„ and B„ are the creation and 
annihilation operators for quanta of the intramolecular vibrations with energy Eo, the u„ 
and p„ are the molecular displacement and momentum operators, m is the molecular 
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mass, w is the intermolecular force constant, and J is the intersite transfer energy 
produced by the interaction of dipoles. 
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Chapter 3 

The Cell Biology of the Neuronal Cytoskeleton m 

3.1 The Archetypal Neuron and its Components [2] 

3.1.1 Structure of the Archetypal Neuron 

The cell is the basic unit of structure and function in a living entity. Each cell is 
composed of a cytoplasm enclosed by a cell membrane. The cytoplasm consists of 
specialized discrete functioning structures called cell organelles, a solution of water, 
molecules and ions designated as the cytosol, and a network of filamentous proteins 
known as the cytoskeleton. The way in which genetic material is housed within the 
cytoplasm designates the two classes of cells. Eukaryotic cells possess a membrane 
bound organelle containing genetic material known as the cell nucleus, while prokaryotic 
cells lack such nuclei. Prokaryotic cells most always form single-celled organisms such 
as bacteria, while eukaryotic cells form multicellular organisms such as plants and higher 
animals. 

Figure 3.1: A sketch of a characteristic neuron cell body showing the most prominent cell 
organelles. Figure obtained from reference [44] in chapter 3 
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Neurons, or nerve cells, are specialized eukaryotic cells found in the nervous system of 
higher animals. In vertebrates, neurons are found in the brain, the spinal cord and in the 
nerves and ganglia of the peripheral nervous system. Their main function is to process 
and transmit information. 

The neuron is composed of a cell body, called a soma, and protrusions, otherwise called 
neurites, of varying sizes, known as axons and dendrites, which emanate from the cell 
body. The typical neuronal soma ranges in diameter from 4 to 100 micrometers. 
Neurons are encased in a double layer of phospholipid molecules known as the plasma 
membrane. The membrane acts as a barrier segregating the cytoplasm from the 
extracellular fluid and contains the organelles housed within the soma. Organelles of the 
neuron, including the cell nucleus, are discussed in greater detail in Section 3.1.2. 

Figure 3.2: Shapes and sizes of various specialized neurons showing the soma, axons and 
dendrites. (A) Cerebellar Purkinje cell from a guinea pig, (B) Alpha-motorneuron from a cat, (C) 
Neostriatal spiny neuron from a rat, and (D) Axonless interneuron from a locust. Taken from 
reference [41] in chapter 3. 

Axons are long thin tube-like processes that extend from the soma with distances ranging 
from micrometers to meters. They originate from the soma at a cone-shaped thickening 
denoted as the axon hillock, and end in a budding formation called the synaptic terminal. 
In certain instances the axon branches before it terminates, but this is not always the case. 
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The synaptic terminal is responsible for forming connections with other nerve cells in 
order to transmit information. The diameter of the axon remains relatively constant 
throughout its length. The formation and maintenance of the axon is attributed to the 
properties of the cytoskeleton found in these structures. 

Dendrites are neuronal extensions with a relatively high degree of branching, often giving 
rise to a dense network known as the dendritic tree. Dendrites are shorter than their axon 
counterparts: They most often originate from the soma, but in some cases they emerge 
from the proximal regions of the axon. Small finger-like projections and thickenings 
from the main shaft of the dendrite have been observed and termed dendritic spines. 
These spines serve at the synaptic site where information is received from other cells. 
Like axons dendrites are formed and maintained via the cell's cytoskeleton. 

3.1.2 Organelles of the Neuron 

Cell organelles are highly specialized structures within a cell analogous to an organ in 
higher animals, and are responsible for a variety of functions, all of which are required by 
the cell for normal operation. Approximately half of the volume of a cell is comprised of 
organelles. Organelles vary across cell type and even within the same organism. They 
are responsible for capture and synthesis of energy, cell protection, nutrient transport and 
storage, toxin elimination as well as a host of other functions. 

Neurons possess most all of the organelles present in the typical eukaryotic cell. 
However, due to some of the unique properties of neurons, there exist some minor 
differences. Neurons possess a cell nucleus, mitochondria, ribosomes, rough and smooth 
endoplasmic reticulum, Golgi complex, secretory vesicles, and lysosomes (see Figure 
3.1). 

In neurons, as in all eukaryotic cells, the most prominent organelle is the cell nucleus. 
The nucleus serves as the repository of the majority of the cell's genetic information, 
DNA, and acts as the control center for the information's expression. Due to the large 
amount of energy required for neuronal signaling neurons tend to possess a relatively 
large density of mitochondria. Mitochondria house the chemical reactions involved in 
converting cellular fuel or food into the high-energy compound ATP. Ribosomes are 
present as free-floating particles throughout the cytoplasm, inside mitochondria, and the 
nucleus, and line the rough endoplasmic reticulum. They are the focal point of protein 
synthesis within the cell. The rough and smooth endoplasmic reticulum, and the Golgi 
complex are part of the network of internal membranes of the cell known as the 
endomembrane system. The rough endoplasmic reticulum is responsible for folding and 
transporting membrane and secretory proteins, such as ion channels and peptide 
neurotransmitters, respectively, manufactured by its associated ribosomes, whereas the 
smooth endoplasmic reticulum synthesizes lipids and steroids for the cell. In neurons the 
rough endoplasmic reticulum forms in a noticeably dense pattern near the cell nucleus 
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giving rise to a structural feature called the Nissl substance. The Golgi complex performs 
the role of post-translational processing membrane and secretory proteins, and sorting 
them within secretory vesicles, the vesicles being small lipid bilayer compartments. 
Lysosomes store enzymes for the digestion of specific biological macromolecules such as 
proteins, carbohydrates and fats. 

3.1.3 Cytosol of the Neuron 

The cytosol is the internal fluid of a cell, and is the region where most of the cells 
metabolic processes occur. On the molecular level the cytosol is highly organized. The 
concentrations of soluble molecules in the cell are regulated via osmotic gradients and 
molecular pumps within the cell membrane. The cytosol is composed mainly of water 
with the remainder consisting of dissolved ions, such as those involved in regulating the 
electrical excitability of neurons (e.g. Ca2+, Na+, K+, CI" etc.), small molecules and large 
water-soluble proteins required for cell functioning. The proteins within the cytosol are 
involved in regulating cell metabolism via signal transduction pathways, glycolysis, 
intracellular receptors and transcription factors. 

3.1.4 The Neuronal Cytoskeleton 

The cytoskeleton provides the support framework for the cell, and is responsible for 
maintaining cell shape, providing cell motion, and plays an integral role in intra-cellular 
transport and cell division. The neuronal cytoskeleton is composed of three main protein 
filaments: microfilaments, intermediate filaments and microtubules. 

In addition to providing structural support microfilaments in neurons are particularly 
important in the growth of axons. Microfilaments in the growing tip of an axon, known 
as the growth cone, regulate membrane movement. It is also believed that 
microfilaments play a vital role in changing the form and shape of dendritic spines. 

The intermediate filaments typically found in neurons are neurofilaments and peripherins. 
Neurofilaments are found in the axons of vertebrate neurons and play a role in regulating 
axon strength and determining axon size. Peripherins are found in sensory neurons of 
the peripheral nervous system. The functions of these intermediate filaments in neuron 
activity are poorly understood at this time. 

Microtubules in neurons provide structural support to the neuron and can be found in the 
soma, axons and dendrites. They maintain axon shape, and transport cellular material 
along the axon via axonal transport and throughout the rest of the cell. In dendrites and 
axons microtubule associated proteins (MAPs) specific to neurons alter the dynamics of 
microtubules. In recent years it has also been proposed that microtubules play a role in 
information processing and signaling at a sub-neuronal level. 
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3.2 The Cytoskeleton and its Components [3] 

The neuronal cytoskeleton plays a significant role in the activities of the cell. It is 
responsible for maintaining the shape and form of the cell including the unique 
formations of the axons and dendrites. It is also responsible for transporting vital cell 
materials required for cell function and intercellular communication. The sections of this 
chapter describe in brief the structure and function of each of the three main cytoskeletal 
components (microfilaments, intermediate filaments and microtubules), and the role 
played by the associative proteins in the overall workings of the cytoskeleton. 

3.2.1 Microfilaments 

Microfilaments are double stranded helical polymers of the globular protein actin, and are 
the smallest of the cytoskeletal components averaging 7-8 nanometers (nm) in diameter 
and 0.2-17 micrometers (u.m) in length. In vitro studies [4] have revealed microfilaments 
to be dynamic structures. It has been seen that actin monomers are added to one end of a 
filament while they are released from the opposite end. The rates of addition and release 
are normally the same resulting in the net length of the filament remaining constant. This 
unique behavior, called treadmilling, plays an important role in the dynamic movement of 
the microfilament network 

Rarely occurring as isolated strands microfilaments instead prefer to form networks or 
bundles of interlinked fibers. The gel-like network of microfilaments that forms beneath 
the plasma membrane is called the cell cortex. The cell cortex, in conjunction with 
various forms of the motor protein myosin, one of the actin associated proteins, is 
responsible for moving the cell surface. Such movements result in the formation of 
lamellipodia and microspikes, flat and narrow projections of the cell, respectively. It is 
via this same process that neurites grow and extend from the cell body. The 
microfilament network also forms the contractile ring that separates the cell during cell 
division, which occurs in most cells, but is uncommon in neurons. 

There are a large variety of microfilament-associated proteins that greatly modify the 
properties of purified actin. Actin-binding associated proteins, such as spectrin and a-
actinin, transform microfilaments from a relatively invariant structure into a variety of 
forms ranging from highly ordered bundles to random gels. Assembly-controlling 
associated proteins, such as vinculin and gelsolin, modify filament formation by aiding or 
discouraging actin polymerization, or by severing existing filaments. Membrane-
attachment proteins directly or indirectly link actin with cellular membranes, while force-
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Figure 3.3: Sketch of a microfilament filament showing relative structure, size and orientation 
within a cell. 

producing proteins, such as myosin, are able to generate sliding motility among 
filaments. At any given time in a cell there are dozens of proteins interacting with actin 
and determining the state of the cell's microfilaments and thus the cell's structure. 

3.2.2 Intermediate Filaments 

Intermediate filaments are tubular polymers of highly elongated protein molecules. The 
constituent protein of an intermediate filament depends on the type of cell in which the 
filament is formed. There are five types of intermediate filaments due to the diversity of 
the globular proteins involved in their formation. Type I and II filaments are formed of 
acidic and basic keratins and are typically found in epithelial cells. Type III filaments are 
expressed in leukocytes, blood vessel endothelial cells, some epithelial cells, and 
mesenchymal cells and are formed from four proteins - vimentin, desmin, glial fibrillary 
acidic protein (GFAP), and peripherin. Neurofilament proteins form Type IV 
intermediate filaments and are found in the axons of neurons. Type V intermediate 
filaments are formed of proteins called nuclear lamins and are found strictly in the 
nuclear membrane of cell nuclei. 
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Figure 3.4: Sketch of an arbitrary intermediate filament showing relative structure, size and 
orientation within a cell. 

Intermediate filaments are usually interconnected in a network that covers the entire 
cytoplasm, surrounding the nucleus and reaching to the cell membrane. Since 
intermediate filaments are firm inflexible fibers they are able to sustain mechanical 
stresses and are thus responsible for maintaining cell shape and form. On the inside of 
the nuclear membrane the filaments form a structure called the nuclear lamina. During 
cell division the nuclear lamina disassembles only to reassemble after the division takes 
place. Neurofilaments found in the axons of neurons are responsible for providing the 
axon with tensile strength and controlling the axonal caliber. 

Intermediate Filament Associated Proteins are responsible for cross-linking intermediate 
filaments into networks and bundles. There is a diverse array of intermediate filament 
associated proteins that depend on the type of filaments being cross-linked. For example 
Filaggrin is responsible for linking keratin filaments, plectin joins vimentin fibers, and 
paranemin and synemin are large polypeptides associated with filaments composed of 
desmin. There are a host of other proteins that have been isolated and identified as 
intermediate filament associated proteins, but little is known about their properties and 
functions at this time. 

3.2.3 Microtubules 

Microtubules are tubular polymers of the protein tubulin and are the largest of the 
cytoskeletal components. Tubulin dimers form long fibers called protofilaments that 
wrap to form a microtubule. In vitro studies have shown microtubules to be dynamic 
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assemblies [5]. Tubulin dimers have been observed to add to one end of a microtubule 
while they are removed from the opposite end. The rates of addition and removal are not 
equal or constant therefore resulting in the perpetual growth and shrinkage of a 
microtubule. This behavior is known as dynamic instability and is discussed further in 
Section 3.4.1. 
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Figure 3.5: Sketch of a microtubule showing relative structure, size and orientation within a cell. 

Microtubules cross link among themselves via the connecting microtubule associated 
proteins. Such connections form tracks along which organelles and other structures are 
transported around the cell via motor proteins, such as in the transport of neuronal 
vesicles from the cell body to the synapse in nerve cells. Microtubules are key 
components of the cell motility structures known as cilia and flagella that extend from the 
cell surface, and thus play a key role in cell motility. During cell division microtubules 
are responsible for chromosome separation. Microtubules are discussed in further detail 
in Sections 3.3 and 3.4. 

There is an assortment of proteins that interact with and modulate microtubule structure. 
These microtubule-associated proteins are separated into two main groups. The first 
group, known as non-motor microtubule associated proteins, which includes such 
proteins as tau, regulate the polymer state and control microtubule organization in the 
cell. Motor microtubule associated proteins, such as kinesin and dynein, make up the 
second group and are responsible for generating sliding between microtubules and drive 
the transport of vesicles and organelles throughout the cell. Microtubule associated 
proteins are discussed in greater detail in Sections 3.3.3 and 3.3.4. 
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3.3 The Structure of Microtubules and their related proteins [6,7] 

Microtubules are cylindrical macromolecular structures composed of assemblies of the 
protein tubulin. They are found in the cytoplasm of nearly all eukaryotic cells and are the 
main component of the cell cytoskeleton. The proteins denoted as microtubule-
associated proteins are involved in cross-linking microtubules to one another and to the 
cellular membrane, and transporting cellular material throughout the cell. The following 
sections discuss from a molecular view the structure of microtubules and the microtubule 
subunits tubulin, as well as the structure of the assembly and motor microtubule-
associated proteins. 

3.3.1 The microtubule subunit Tubulin 

The protein tubulin is a globular structural protein that polymerizes to form microtubules. 
Tubulin is actually a family of similar polypeptides that can be divided into several sub
groups (a, p, y, 8, e, t, and r\) based upon structure [8, 9]. The a, p and Y subgroups have 
all been widely studied and implicated in the formation of microtubules. The 
microtubule structure is composed of a-tubulin and P-tubulin alone while Y-tubulin is 
involved in structures known as microtubule organizing centers, which are discussed 
further in Section 3.4.2. The remaining groups have only recently been discovered and 
their roles in the functioning of the cytoskeleton have yet to be determined. 

The basic subunit of a microtubule is a heterodimer composed of a-tubulin and P-tubulin 
monomers. The a-tubulin and P-tubulin monomers are highly homologous proteins with 
an average weight of 50-55 kilodaltons (kD) each. Each monomer is composed of 
approximately 450 amino acids, or about 7000 atoms [10]. Each monomer is composed 
of a double P-sheet core encircled by a-helices. The monomer structure can be separated 
into three functional domains. The amino-terminal domain contains the nucleotide-
binding region, the intermediate domain contains the binding site for the drugs taxol and 
colchicine, and the carboxy-terminal domain which has been suggested as the binding 
region for motor proteins [10]. The average aP-heterodimer has dimensions of 4 x 8 x 5 
nm, or in atomic units 46 x 80 x 65 Angstroms (A), and is a polar molecule with its 
positive end near the p subunit [9]. Both of the a-tubulin and P-tubulin monomers can 
bind a molecule of GTP. The molecule of GTP that binds to a-tubulin does not 
hydrolyze, while that bound to the P-tubulin will hydrolyze to GDP under certain 
conditions. Tubulin is known to exist in at least two different conformational states that 
depend on the hydrolysis of GTP [12]. When the P-tubulin bound GTP hydrolyzes the 
heterodimer undergoes a conformational change resulting in a 27° angle between the 
original centre-to-centre line joining the a and P monomers and the new configuration's 
centre line, and a release of 0.42 electron-volts (eV) per molecule [13]. Henceforth, 
unless it is otherwise stated, 'tubulin' will be used to refer to the aP-heterodimer. 
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Figure 3.6: The tubulin heterodimer. Left: An electrostatic potential map of the surface of the 
tubulin dimer showing C-termini tails. Right: A cartoon representation of the tubulin dimer 
showing positions of a and P tubulin. 

The electrical properties of the tubulin dimer are still actively under investigation. 
Currently most information has been gained from data based on the crystal structure of 
tubulin. Computer simulations and experimental tests based on data from the crystal 
structure have yielded an electric dipole moment of 1740 D, a refractive index of 2.90, a 
high frequency dielectric constant of 8.41 and a high frequency polarizability of 2.1xl0"33 

Coulomb-meters2/Volts (Cm2/V) [11]. The values obtained for these properties of tubulin 
are consistent with predictions made by theory and support the notion of information 
processing in microtubules. It has also been shown via a map of the electrostatic 
potential of the crystal structure of tubulin that the interior of a tubulin molecule contains 
a symmetric double well structure in the hydrophobic region of the protein providing a 
double well structure for a mobile electron in tubulin [10]. This aspect of the tubulin 
dimer is discussed in greater detail in Section 5.3.1. 

3.3.2 Microtubule structure 

Microtubules are hollow cylindrical protein structures comprised of tubulin. The inner 
and outer dimensions of an average microtubule cylinder are 15 nm and 25 nm, 
respectively, while there length typically varies from less than 200 nm to several 
micrometers, or more. 

Tubulin monomers bind together end-to-end (i.e. a to P) in string like structures known 
as protofilaments. Microtubules in human cells typically have 13 protofilaments 
although structures with 7, 9, 12, or 15 protofilaments have been noted as exceptions. 
Protofilaments arrange themselves side by side and wrap to form a cylinder. Along 
protofilaments there is a slight shift such that following a row of monomers across 
protofilaments would result in spiraling up the microtubule in a left-handed helix. 
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Figure 3.7: Diagram of the microtubule structure giving dimensions and showing the arrangement 
of a and P tubulin dimers. Figure obtained from reference [10] in chapter 3. 

From the monomer point of view microtubules consist of three left handed helices, each 
individual helix being a 3-start helix. The microtubule can also be viewed in terms of 5-
start, 8-start and 13-start helices, but these are not discussed here. The shift in position of 
the helices as they wrap around to form a microtubule can give rise to two types of lattice 
structures shown in Figure 3.8. A-lattice structures (MT-13A) consist of helices with 
alternating monomer types (i.e. a, p\ a, (3, a etc.). This pattern continues for the entire 
length of the helix resulting in a microtubule with rotational symmetry and continuous 
wrapping, and a shift of 3.1 nm between identical monomers on neighboring 
protofilaments. B-lattice structures (MT-13B) consist of helices with identical monomer 
types that change after one complete turn (i.e. 13 a monomers, 13 p monomers, 13 a 
monomers etc.). This pattern results in a shift of 0.9 nm between like monomers on 
adjacent protofilaments and a physical discontinuity running the length of the 
microtubule between protofilaments 1 and 13 known as a seam. Experimental evidence 
strongly suggests that cytoplasmic microtubules possess the B-lattice structure [14]. 

From the arrangement of the dimers in the A and B lattices four possible nearest-neighbor 
configurations for left-handed, three-start helical microtubules can be conceived. 
Assuming protofilaments are arranged in parallel or in anti-parallel orientations it can be 
seen that individual tubulin dimers can have either six (MT-13A-6, MT-13B-6) or eight 
(MT-13A-8, MT-13B-8) nearest neighbors. However as it has been shown that in 
general microtubules possess parallel protofilaments the nearest-neighbor configurations 
are limited to MT-13A-6 and MT-13B-8 [14]. 
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Figure 3.8: Tubulin monomer arrangements in microtubule lattice structures. Left: A-type 
microtubule lattice. Right: B-type microtubule lattice showing seam. Figure obtained from 
reference [15] in chapter 3. 

3.3.3 Assembly Microtubule Associated Proteins [16] 

Assembly microtubule associated proteins are those proteins that have been found to 
copurify with tubulin through several cycles of microtubule assembly and disassembly, 
promote microtubule assembly, and bind to microtubules in a relatively constant ratio. 
The role of these proteins is to control microtubule organization within the cytoplasm of 
the cell by creating crossbridges and regulating microtubule spacing. The proteins can 
bind either to individual tubulin dimers, or to tubulin polymerized into microtubules. The 
assembly proteins are high molecular weight proteins with a molecular mass ranging 
from 200-420 kD with the exception of the protein tau that possess a mass of 50-70 kD. 
The main assembly proteins that have been identified and studied at this point in time are 
termed MAPI A, MAP IB, MAP2, MAP4 and tau 

MAPI A is a 350 kD polypeptide found in the dendrites and axons of nerve cells. It has 
been proposed that MAPI A has a bipolar helical structure and that the protein utilizes 
charge interactions to bind to microtubules. The protein has been observed to arrange 
itself along the microtubule wall forming projections of 20 nm length. MAPI A is 
responsible for inducing tubulin polymerization and controlling spacing between 
microtubules. 

MAP IB, also known as MAP5, is found in nerve dendrites and axons. It is a high 
molecular weight protein with a molecular mass of 320 kD, and shares a partial sequence 
homology with MAPI A. It has been observed to induce the elongation of neuronal 
projections called neurites, and is the major microtubule associated protein in developing 
embryonic neurons. 

MAP2 is one of the two most studied microtubule associated proteins, the other being 
tau. MAP2 represents a family of protein molecules that differ from one another by a 
small fraction of amino acids. All the isoforms of the MAP2 family are found in the 
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dendrites of nerve cells. The carboxy-terminal domain of these proteins interacts with 
tubulin and strongly binds the associated proteins to microtubules. Once bound the result 
is a projection from the microtubule up to 90 nm long. While the carboxy-terminals of 
MAP2 proteins bind to microtubules, the amine-terminals bind to other parts of the 
cytoskeleton or the cell membrane. The mass of MAP2 has been estimated from its 
mobility on sodium dodecyl sulphate (SDS) gels as 280-300 kD, yet the sequence data 
gives a value of 199 kD. On SDS gels MAP2 can be resolved into two bands denoted as 
MAP2A and MAP2B. While the function of MAP2B is unknown at this time, MAP2A 
has been observed to promote the in vitro polymerization of tubulin [17]. MAP2C is a 
lower molecular weight version of MAP2, with a mass of 70 kD, and is produced by 
splicing the MAP2A gene to express a more juvenile form. It is more widely distributed 
than MAP2A and occurs in the embryonic brain. It is responsible for bundling, and 
increasing the stability and stiffness of microtubules. 

MAP4 is a 200 kD polypeptide that has been observed to interact with microtubules at all 
stages of the cell cycle. It is not localized to neuronal dendrites and axons but rather is 
located in various types of eukaryotic cells. It contains a domain homologous to the 
microtubule-binding domains of MAP2, and interacts with microtubules in the same 
manner. The wide distribution of MAP4 makes it likely that the protein is involved in 
several cell functions including inducing polymerization of tubulin, cell motility and 
cellular transport. Experimental evidence indicates that MAP4 plays an important role 
as a regulator of microtubule behavior during the start of cell division. Phosphorylation 
of MAP4 occurs at the beginning of cell division and it is proposed that this may be an 
important factor in the activity and arrangement of microtubules during cell division. 

Tau is a group of proteins localized in the axons of nerve cells. The typical masses range 
between 37 and 46 kD. Tau is responsible for inducing tubulin polymerization and for 
linking microtubules into tightly packed arrangements called bundles. Like MAP2 and 
MAP4, tau possesses a conserved carboxy-terminal microtubule-binding domain and 
variable amine-terminal domains that project outwards from a microtubule up to 35 nm. 
Tau has been observed to increase the rate of microtubule polymerization and decrease 
the rate of depolymerization thus making tau the most effective promoter of microtubule 
assembly among all the microtubule associated proteins. Experiments in which tau has 
been introduced into non-neuronal cell lines have resulted in the normally rounded cells 
expressing single long processes resembling nerve axons [18]. This suggests that 
neurites grow as a consequence of microtubule polymerization promoted by tau. 

3.3.4 Motor Microtubule Associated Proteins [16] 

While microtubules provide a system of rigid tracks that facilitate the transport of 
vesicles and organelles throughout the cell, they do not directly generate the forces 
required for movement. Motor microtubule associated proteins are proteins which attach 
to vesicles and organelles and use adenosine triphosphate (ATP) to provide the needed 
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energy for mechanical work to move along microtubule tracks. These motor proteins 
have been shown to recognize a polarity in microtubules, thus each specific protein 
exhibits a preferred direction of travel. At present there are two known families of motor 
microtubule associated proteins: kinesins and dyneins. 

Kinesins are a family of proteins with varying structure and function. They are extended 
molecules with a molecular weight of approximately 200 kD. Most kinesin molecules 
move toward the plus end of the microtubule, and are therefore responsible for transport 
from the cell body to the cell periphery. The first kinesins were originally discovered in 
the axons of giant squids and were characterized by a motor domain region comprised of 
two globular heads responsible for attaching the protein to microtubules and binding to 
and hydrolyzing ATP, a coiled helical region acting as a stalk and a light-chain region 
responsible for attaching to vesicles and organelles. Movement of the protein involves 
one of the globular heads detaching from the microtubule and moving a distance of 
approximately 4nm where it reattaches to a new ^-tubulin subunit, followed by the other 
globular head detaching moving and reattaching. This movement is a result of the 
exchange of ATP and adenosine diphosphate (ADP) at specific sites within the heads. 
Other members of the kinesin family share a similar motor domain but it is located in 
different areas in different molecules. 

The kinesin molecules have been shown to be responsible for moving and localizing 
substances within the cell, and they localize to mitotic/meiotic spindles or kinetochores. 
The dynein family of motor proteins can be segregated into two subgroups: cytoplasmic 
dynein, and axonemal dynein. Cytoplasmic dynein travels towards the minus end of 
microtubules making it responsible for transport of cell cargo from the cell membrane to 
the cell interior. It has a molecular weight of 1.2 MD and consists of two heavy chains 
that attach the protein to the microtubule, and bind and hydrolyze ATP, three 
intermediate chains and four light chains. Unlike kinesin, cytoplasmic dynein cannot 
attach to cell cargo on its own. It is believed that the protein complex dynactin, made up 
of the actin related protein Arpl and the protein pi50 lued which are thought to be linked 
by dynamitin, helps link cytoplasmic dynein and cell cargo. 

Axonemal dynein is associated with microtubules forming cilia and fiagella, and thus is 
involved in cell motility. It is more complex and larger than cytoplasmic dynein with a 
molecular weight of 2 MD. It is consists of two to three heavy chains, and approximately 
ten light chains. The heavy chain heads, as well as the light chain stem each bind to 
separate microtubules that compose cilia and fiagella. The head region hydrolyzes ATP 
to produce sliding between these axonemal microtubules, which results in the bending of 
cilia and fiagella and thus cell motility. 

Julicher, Adjari, and Prost, based at the Laboratoire de Physico-Chimie Theorique in 
France, provide a fine review of isothermal ratchet models of motor protein behaviour 
[30]. Three classes of such models are discussed. The first is a fluctuating force model 
in which a point-like particle is placed within an asymmetric periodic potential W(x) and 
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subjected to a fluctuating force not satisfying the fluctuation-dissipation theorem. The 
equation of motion for such a particle is given by the Langevin equation, 

at 

where £ is a constant friction coefficient, x is the position of the particle, / is time, W is 
the potential energy the particle experiences, and F is a fluctuating force that has a zero 
averaged value but richer correlations than white noise reflecting the energy source, 
namely the kinetics of ATP binding. 

The second class is given by fluctuating potentials. In this case a point-like particle is 
placed within a time-dependent asymmetric periodic potential W(x,t) yielding, 

^=dxW(x,t)+f(t) ( 3 - 2 ) 

at 

as the equation of motion, where x, t, £, and W have the same meaning as above. In this 
case the energy source is implicit in the time dependence of the potential W. The final 
t e r m / i s a Gaussian white noise term that satisfies the fluctuation-dissipation theorem 
implying a zero averaged value and correlations defined as, 

<f(t)f(t')>=2%Td(t-t>) (3.3) 

where T is the temperature of the system. 

The final class is a generalized model given as a particle fluctuating between states. 
States are taken to denote local thermodynamic equilibrium of the motor system that is 
reached on small time scales compared to the exchange rate between states. The equation 
of motion then depends on the state i such that, 

'$%•*> d,W,(xj)+ft(t)
 ( 3 ' 4 ) 

at 

where all variables hold the same meaning as previously stated, yet depend on the 
considered state. In this case the Gaussian noise t e r m / still satisfies the fluctuation-
dissipation theorem via the time average equaling zero and, 

<fi(t)fj(t')>=2$rd(t-t%j (3.5) 

When compared to experimental data these models reasonably represent the gross 
features of the observed motor protein behavior [39]. 
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3.4 The Dynamics of Microtubules [6, 7] 

3.4.1 Microtubule assembly/disassembly, polarization and dynamic instability 

An in vitro solution containing a sufficient concentration of tubulin dimers, guanosine 
triphosphate (GTP) and magnesium ions (Mg2+) when warmed to 37°C will begin 
polymerization of tubulin into microtubules. Initially there exists a lag phase where no 
microtubules are formed. Tubulin dimers aggregate into clusters of oligomers during this 
lag phase. These oligomers act as nuclei or nucleation sites from which new 
microtubules can form. Once a microtubule has been nucleated it begins growth through 
the addition of subunits at either end. This process is known as elongation, and is 
relatively fast compared with the lag phase. 

Within microtubules all of the tubulin dimers are arranged in the same direction resulting 
in all of the a-tubulin subunits facing one end of the microtubule, the P-tubulin subunits 
facing the other. Since the tubulin heterodimer is a polar molecule the microtubule 
possesses an overall polarity, and thus two chemically different ends. The microtubule 
end baring more a-monomers is referred to as the minus end, while the end with a 
majority of exposed P-monomers is the named the plus end. 

Microtubules in vitro elongate when tubulin concentration is high and begin 
depolymerization when tubulin concentration is low. When the concentration of free 
tubulin dimers in solution reaches a limiting value microtubule elongation stops. This is 
known as the plateau phase where microtubule assembly is balanced by disassembly. 
The concentration of free tubulin during the plateau phase is known as the critical 
concentration. When the concentration of free tubulin is higher than the critical value 
tubulin assembles into microtubules, and when the free tubulin concentration is lower 
than the critical value microtubules disassemble into free tubulin. 

In vitro both of the microtubule ends can assemble new tubulin units but one end grows 
more rapidly than the other. The rapid growing end of the microtubule is labeled as the 
plus end. Since the two ends have different elongation rates the critical concentration of 
free tubulin is different for each end, the plus end having a lower value. When the 
concentration of free tubulin is higher than the critical concentration for the plus end, but 
lower than the critical concentration for the minus end tubulin dimers are assembled at 
the plus end and disassembled from the minus end. This results in the phenomenon 
known as treadmilling. Treadmilling has been demonstrated in vitro but it is uncertain 
whether this property plays any role within the cell. It has been shown that treadmilling 
of brain microtubules in vitro is suppressed by the microtubule associated protein tau 
[19]. 

Dynamic instability is a model of microtubule growth that explains how events of 
microtubule assembly and disassembly occur simultaneously [23]. The model explains 
the events in terms of GTP hydrolysis. Tubulin can bind two molecules of GTP, which 
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readily converts to ATP. One of the molecules binds irreversibly to the a-tubulin 
subunit. The other GTP molecule is bound by the P-tubulin subunit and can be 
hydrolyzed into guanosine diphosphate (GDP) in much the same way as ATP is 
converted to ADP. Microtubules that have GTP bound to the plus end tubulins elongate, 
while disassembling microtubules have GDP molecules bound instead. It is believed that 
this is due to the fact that GTP bound tubulin molecules have a greater attraction among 
themselves rather than that between GDP bound tubulins. 

A group of GTP-bound tubulin molecules at the plus end of a microtubule forms what is 
known as a GTP cap. This cap provides a stable microtubule tip upon which new dimers 
can be added. When concentrations of GTP-bound tubulin are high GTP-bound tubulin 
is rapidly added to the microtubule creating a large GTP cap and thus a very stable 
microtubule tip. However, when there is a sufficiently low concentration of GTP-bound 
tubulin the rate of hydrolysis of GTP on the P-subunit exceeds the rate of addition of new 
GTP-bound tubulin to the microtubule tip. The loss of the GTP cap results in an unstable 
microtubule tip that quickly depolymerizes, as the loss of GDP-bound tubulin from the 
microtubule is favored. The event in which a microtubule switches from growth to 
depolymerization is known as microtubule catastrophe, a name that implies the rapid rate 
at which the structure shrinks. Microtubule catastrophe can result in disassembly of the 
entire microtubule or the microtubule can revert back to a phase of growth depending on 
the concentration levels of GTP-bound tubulin. This event where the microtubule reverts 
back to a phase of growth is referred to as microtubule rescue. 

David Sept, while at the University of Alberta, provided a simple model of microtubule 
growth and collapse in his doctoral dissertation [40]. Supposing that the microtubule 
length is given by x at any given time t, then the addition of a tubulin subunit of length a 
may be given as, 

xt+l = xt + a (3.6) 

Instants of catastrophe are modeled as a collapse of the microtubule structure to a 
percentage y of the original length as represented by, 

x,+1 = yx, (3.7) 

Tubulin subunits are added to the microtubule with probability/? such that, 

*,+i =
 rO„ + a) + ( l - r)yxn (3.8) 

where, 

r = 0 if s>p (3.9) 

= 1 if sz p 
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and s is a random number between 0 and 1. While this model cannot predict individual 
collapse events, due to its random nature, it does give the basic dynamics of microtubule 
assembly and dynamic instability. 

3.4.2 Microtubule Organizing Centers 

Within the majority of cells microtubules originate from organelles called microtubule-
organizing centers (MTOC). These specialized structures consist of an array of 
microtubules that anchor newly forming microtubules thus allowing microtubule 
assembly to initiate. The two most common MTOCs in animal cells are known as 
centrosomes and basal bodies. A centrosome is usually positioned near the cell nucleus 
and is composed of two perpendicular cylindrical structures formed by nine pairs of 
triplet microtubules called centrioles which are surrounded by a scattered granular 
material called the pericentriolar material, thus the microtubules of most common cells 
radiate out from the centrosome forming an aster around the cell's nucleus as in Figure 
3.5. Basal bodies are structurally similar to centrioles and are responsible for anchoring 
cilia and flagella. Microtubules originate from the pericentriolar material through the use 
of large ring shaped protein complexes composed of y-tubulin that have been observed in 
the centrosome [20]. These y-tubulin ring complexes serve as nucleation sites for the 
assembly of new microtubules [21]. The y-tubulin ring complex acts as a cap for the 
minus end of the microtubule stabilizing the minus end of the microtubule and anchoring 
it to the MTOC. The plus end of the microtubule extends out into the cell forming a 
microtubule tip that continuously grows away from the organizing center. 

Neurons, unlike the common cell, possess a highly organized arrangement of 
microtubules (see Figure 3.9). This is due to a high number of specialized non-motor 
MAPs within nerve cells. Four of the five main assembly MAPs identified and studied at 
this point in time (MAPI A, MAP IB, MAP2, MAP4 and tau) are localized within the 
axons and dendrites of neurons, MAP4 being the only protein found in other eukaryotic 
cell types. The specialized assembly MAPs in neurons link neuronal microtubules into 
organized networks. Unlike the radial aster that forms in other eukaryotic cells, 
microtubules within axons and dendrites form parallel bundles. Within the axons of 
neurons microtubules align with uniform polarity resulting in the plus end of all axonal 
microtubules being directed distally, while it has been found that microtubules in 
dendrites align themselves equally with both plus and minus ends directed distally. It has 
been suggested that the different microtubule organizations within axons and dendrites 
may play a role in neuronal signaling. 
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Figure 3.9: Schematic representation of a neuron showing the arrangement of microtubules and 
microtubule associated proteins. Figure obtained from reference [42] in chapter 3. 

While current biophysical explanations for the organization of microtubules within cells 
focuses on their electromagnetic properties no coherent explanation is yet available. 
Other factors acting on the cell, such as gravity, have been suggested to play a role in 
microtubule organization. As such it should be noted that experiment has shown that 
microtubules assembled in microgravity conditions possessed no self-organization and 
were disordered locally, thus suggesting a dependence between microtubule organization 
and gravity [22]. 

3.4.3 Cell Division 

The cell division cycle is the process by which cells reproduce. In general cell division 
does not occur in neurons but is a significant process in the lifetime of most other 
eukaryotic cells. The cell division cycle is separated into two main phases: interphase, a 
long period phase in which the cell prepares for division by producing organelles, 
proteins and duplicating proteins, including DNA, and the mitotic phase, a relatively 
short period phase in which the cell divides. Microtubules play an integral role in the 
mitotic phase, the process by which the parent cell is divided into two equivalent 
daughter cells. 
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Figure 3.10: Mitosis, phases of the cell division cycle. Figure obtained from reference [43] in 
chapter 3. 

The mitotic phase involves the process of mitosis, which is separated into five sub-phases 
(prophase, prometaphase, metaphase, anaphase, and telophase) followed by cytokinesis. 
In prophase two centrosomes outside the cell nucleus sprout microtubules, through the 
polymerization of free tubulin, which cause the centrosomes to move to opposite ends of 
the cell via repulsive interactions between the microtubules. The network of 
microtubules is the beginning of the formation of the mitotic spindle. In prometaphase, a 
phase commonly included as part of prophase, the nuclear envelope surrounding the cells 
DNA, in the form of chromosomes made up of two sister chromatids, dissolves and 
microtubules from the mitotic spindle invade the nuclear space. Microtubules that attach 
themselves to kinetochore structures on chromosomes are known as kinetochore 
microtubules, whereas those microtubules that interact with microtubules from the 
opposite mitotic spindle are referred to as nonkinetochore microtubules. When a 
microtubule connects with a kinetochore an unknown molecular motor activates and uses 
energy in the form of ATP to move up the microtubule toward the originating 
centrosome. During metaphase the center of the chromosomes convenes along an 
imaginary line that is equidistant from the two centrosome-poles via counterbalancing 
forces generated by the opposing movement of the kinetochores. The process of 
anaphase consists of the separation of the chromosome into two sister chromatids that are 
pulled apart by the shortening of kinetochore microtubules that move towards their 
respective centrosomes. The nonkinetochore microtubules then elongate to push the 
centrosomes, and chromatids to opposite ends of the cell. 

At telophase the nonkinetochore microtubules continue to lengthen and elongate the cell 
and a new nuclear envelope forms around each set of genetic material thus ending the 
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process of mitosis. Cytokinesis in animal cells involves microfilaments and myosin 
forming a contractile ring that is responsible for constricting the cell membrane creating a 
cleavage furrow and eventually pinching the cell into two daughter cells. As this occurs 
nonkinetochore microtubules reorganize and disappear into a new cytoskeleton as the cell 
cycle returns to interphase. 

The process of meiosis where parent cells divide into four daughter cells with different 
genetic material is related to the process of mitosis. In meiosis, microtubules function in 
the same manner as in mitosis. Therefore, the specifics of microtubule dynamics in 
meiosis will not be discussed in detail here. 

3.5 Examining the Conduction Properties of Microtubules 

The electric properties of biomolecules and biomolecular structures, such as tubulin and 
microtubules, are of importance to a biophysical understanding of cellular processes. 
Microtubule electric properties may involve both intrinsic effects of the protein and ionic 
contributions from counter-ions attracted and concentrated near the microtubule by its 
electric field. Vassilev et al. observed aligned microtubules assembled in vitro with 
pulsed electric fields on the order of 10 V/cm in strength [36]. Kirson et al. [37] have 
demonstrated that 100-300 kHz AC electric fields at ~2 V/cm used over 24 hours can 
have pronounced mitotic effects in several cancerous cells lines. 

In addition, nanotechnological uses of biomolecules are of interest and the microtubule is 
a candidate for use in nanoscale devices. Unfortunately, making conductance 
measurements on biopolymers is difficult due to the structural variety of polymers, the 
liquid state of samples and the dependence of biological systems on environmental 
factors such as pH, temperature and ion concentration. However recent advances in 
nanoscale technologies are improving experimental conditions allowing for serious 
investigations to take place. Thus, despite the inherent difficulties, a number of 
experiments have investigated either the intrinsic [24, 26, 27, 31] or ionic [26, 34] 
conductivities of microtubules. Comparisons of the different conductivity and resistivity 
measurements are provided later in this section. 

In the work by Minoura and Muto an attempt was made to measure the conductivity and 
dielectric constant of microtubules using an electroorientation method [28]. While 
microtubules exhibit Brownian motion in the absence of an electric field, in fields with 
frequencies below 10 kHz they flow due to ionic convection. To avoid convection, a 
frequency of 1 MHz with a field strength sufficient to orient microtubules was used. The 
Minoura and Muto orientation occurs for field strengths above 50 kV/m and frequencies 
in the range 10 kHz—5 MHz, overlapping with the Kirson et al. range. For example, a 
90 kV/m field at 1 MHz aligns microtubules in a few seconds. This orientation by AC 
fields depends on an induced dipole moment and not the permanent dipole moment of 
tubulin. 
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This work by Minoura and Muto is of special significance especially in regards to the 
manipulation of microtubules for use in nanoscale technologies. However, while this 
work is of great interest, there are some questions concerning the model, experimental 
procedures, and results that should be addressed. In the described experiment, the 
electric field was applied via 1500 A thick electrodes separated by 100 urn on the surface 
of a glass slide. To account for viscous effects, and to avoid edge/wall effects, a region 
15 um above the slide and more than 30 um from both electrodes was observed. Minoura 
and Muto do not discuss how the electric field is obtained, or if the field can be 
considered uniform in this region. The 15 um-distance from the surface is about 100 
times the electrode thickness. It is expected that if this analysis site were between 
electrodes thick in comparison to the site, then a uniform field would exist in the 
experiment volume. However, the electrodes described by Minoura and Muto are 
relatively thin, and significantly out of the relevant plane, thus it is questionable how the 
field strength is known, whether it is uniform, and whether field gradient effects on 
microtubule electroorientation merit further investigation? 

Minoura and Muto analyzed microtubule electroorientation with a dielectric ellipsoid 
model. In the model a torque from rotation in the viscous medium counters the torque of 
the electric field on the microtubule. The viscous counter-torque, Tv, experienced by the 
ellipsoid calculated by Minoura and Muto is 4.97 xl0~19 ddldt, where ddldt is the 
rotational velocity. Yet it is unclear why the microtubule is modeled as an ellipsoid 
rather than as a cylinder, the usual geometry for a microtubule model. Even considering 
the counter-ion layer, microtubule geometry is cylindrical rather than ellipsoidal. By 
taking several parameters from Minoura and Muto [28], including the 10~3 Pa s viscosity 
value t], the ellipsoid radius r, being the sum of the microtubule radius (12.5 nm) and the 
Debye length in the buffer (9.1 nm), and an average microtubule length / of 14 ± 0.4 um 
as described in the microtubule polymerization technique used by Minoura and Muto 
[35], the viscous torque Tv was recalculated via, 

Aji-ql dd 

'~H±-)-0J*'* ( 3 1 0 ) 

2r 

as obtained from [38]. A value of Ty = 5.07 x 10~19 ddldt was yielded, giving a trivial 
change of about 2 %. 

Minoura and Muto present a quantitative analysis of microtubule electroorientation as 
shown in Figure 3.11. Selections of the experimental data are presented as representative 
of the analysis. Figure 3.11 shows the electroorientation time constant, T, as a function of 
microtubule length, /. It is stated by Minoura and Muto that when r was calculated, it 
appears to be proportional to I2, as illustrated by the best-fit line in Figure 3.11, r = 
4.1 x 109 /20. This is taken to show consistency with the model given a homogenous 
dielectric along the microtubule length. Taking the data points from this figure and using 
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ordinary least-square fitting with equal weight for all points, and residuals in T, the curve 
fitting was repeated for the relation between r and / to estimate uncertainties for the 
coefficients. When a first direct fit failed, with numeric convergence problems in the 
routine, the log transformed relation, In T = c\ + ci In /, was used instead to obtain a time 
constant value of r = 10(9±1) x /• 9±02\ Then, with an alternative routine a direct fit of the 
data yielded a value of r= (4±10) x 107 /L6±0-2). 

1 
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0.1 

0.05 
3 5 10 20 

Figure 3.11: Electroorientation time constant versus average microtubule length for the Minoura 
and Muto microtubule electrooreintation experiment. Figure obtained from reference [28] in 
chapter 3. 

In general, it seems that the multiplicative prefactor can vary over several orders of 
magnitude, with changes in the exponential coefficient compensating to produce nearly 
equally good fits to the data. Alternatively, to account for the inconsistency in the power 
of /, T was constrained to be proportional to I2. A first regression then yielded a time 
constant z = (3.1 ± 0.4) x 109 / + (0.06±0.03). Again, the multiplicative coefficient was 
inconsistent, differing by 76 % with the Minoura and Muto result [28], and yielding an 
intercept comparable with the lower range T values. When the intercept was constrained 
to zero, the regression gave r = (3.6 ± 0.2) x 109 I2, still inconsistent, at only 88 % of the 
Minoura and Muto value. The coefficient is very important since the relation between it 
and the electric field is used to determine the microtubule effective polarization and thus 
the microtubule conductivity and dielectric constant. It can be seen that this last fit is the 
most consistent with Minoura and Muto. However, when r is constrained to be 
proportional to / , a non-negligible intercept is found suggesting that the time constants 
are affected by factors not in the experimental model. Minoura and Muto conclude that 
the effective polarization coefficient is reliably obtained, however the above analysis 
questions these findings. 

Minoura and Muto also present a least-squares fit of the effective polarization coefficient 
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normalized by microtubule length as a function of the field frequency (see Figure 3.12). 
Comparing the data in Figure 2.12 part A to those in parts B and C reveals a data point, at 
10 kHz and high polarization, omitted after the first graph. Minoura and Muto note a 
large deviation in the data for this point, but there is no mention of omitting it from the 
fits. Again, taking, data points from the published figure, a least-square fits with equal 
weight for all points was performed. A microtubule conductivity estimate of 
(150 ± 6) mS/m was obtained when the point was omitted, and (157 ± 7) mS/m when it 
was included. While this difference is small, even negligible, as it falls within the error 
range given by Minoura and Muto [28], the evidence favors the point being omitted. The 
question of whether this is the case and what the impact is on the accuracy of the results, 
still remains. 
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Figure 3.12: Normalized microtubule polarization coefficient versus frequency results for 
Minoura and Muto microtubule electrorientation experiment. Figure obtained from reference [28] 
in chapter 3. 

The overall picture of an induced dipole moment arising due to the polarizability of the 
microtubule-counterion system is consistent with another study of ionic conductivity 
along electrically stimulated microtubules [34]. Isolated taxol-stabilized microtubules 
were shown to conduct an electric pulse applied through a micropipette. Input signals 
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were of 5-10 ms duration with amplitudes in the range ±200 mV. The current fraction 
collected with a second micropipette at the other end of the microtubule was 70 % greater 
than the control current fraction between the same pipettes with no microtubule between 
them. Hence, the reported data indicates a higher conduction along microtubules than in 
the buffer. 

Finally, Minoura and Muto demonstrate that using the polarization coefficient as a 
function of the electric field frequency, it is virtually impossible to determine tubulin's 
dielectric constant as values between 1 and 100 fit the data almost equally well. 
However, a paper by Sanabria et al. [29] used impedance spectroscopy to measure the 
dielectric constant of tubulin as e = 8.41, falling in the Minoura and Muto range. 
Assuming a microtubule cross-sectional area of 2.5 x 10 m the Minoura and Muto 
conductivity of 150mS/m corresponds to a resistance of 27 GQ/um along the 
microtubule length. Other measurements of this property for microtubules can be found 
in the literature. Fritzsche et al. [24] made electrical contacts to single dry microtubules 
on a substrate containing gold microelectrodes. Their published description suggests the 
intrinsic resistance of dry microtubules is much greater than the 40 MQ/um resistance of 
their wires. This same group measured microtubules with a 30-nm thick nickel coating 
[31]. The resistance was found to be orders of magnitude lower and conduction was 
entirely due to the metallic coating. 

Further, Goddard and Whittier [27] reported measurements of samples containing only 
buffer, tubulin dimers in buffer, microtubules in buffer, and microtubules with MAPs in 
buffer. Tubulin concentrations were 5 mg/mL with 0.3 mg/mL of MAP2 and tau protein 
in the last case. The average resistances reported were 999 O (buffer), 424 Q. (tubulin), 
883 O (microtubules) and 836 D (microtubules + MAPs). It is not straightforward to 
translate these results into properties of individual microtubules without assumptions 
about their geometric arrangements and connectivities. However, by assuming that all 
tubulin is polymerized in the microtubule cases and that there are uniform microtubule 
distributions with combinations of parallel and series networks of 10 um long 
microtubules, a longitudinal microtubule resistance of 0.8 M£2/um was estimated [25]. 
This compares favorably to an early theoretical estimate, based on a Hubbard model with 
electrons hopping between tubulin monomers [32, 33]. This model predicts microtubule 
resistances to be 0.2 MQ/um, within the same order of magnitude as the Goddard and 
Whittier based result, but two orders of magnitude smaller than dry microtubules, which 
is to be expected. On the other hand, their conductivity value for microtubules is two 
orders of magnitude smaller than that of the ionic solution surrounding the microtubule as 
used by Minoura and Muto [28]. Again, this comparison is not unexpected. Recently, 
Umnov et al. [26] attempted direct measurement of microtubule conductivity. They 
determined a 90 S/m upper bound on the conductivity of a microtubule, corresponding to 
a minimum 240 MQ for a 10 um MT (24 M£2/um), close to the Fritsche et al. result [31]. 
Minoura and Muto demonstrated that a microtubule's electrical conduction is dependent 
on its surroundings, providing an experimental conductivity and not just a bound. 
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These results are seemingly vague leaving direct experimental values of microtubule 
conductivity in question. While much of this experimental evidence concerning the 
conductivities of microtubules is still quite scattered and inconclusive, it does provide a 
broad basis for theoretical models. The conduction properties of microtubules seem to 
indicate the capability for electrical signal transduction and information processing, but 
the question remains of how do the delicate, weak, very small scale quantum processes of 
electron movements within microtubules influence brain cell firing and communication? 
The following chapter looks at theoretical ideas advanced to explain how microtubules 
can process information and be implicated in brain functioning. 
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Chapter 4 

Information Processing in Microtubules 

4.1 An overview of Cellular Automata [1] 

4.1.1 History and Background 

To understand the natural world, computer simulations have been used to model complex 
physical phenomena. Realistic detailed models, however, often result in large non-linear 
systems that are difficult and time consuming to investigate numerically. Complex 
biological systems commonly follow this trend [2]. One solution to this problem is to 
model biological systems via cellular automata. 

Cellular automata (singular: cellular automaton) are computer models that try to 
algorithmically simulate natural laws. Specifically, a cellular automaton is a lattice of 
identically programmed cells that are assigned particular states, which then change 
stepwise over time according to the states of the surrounding cells and specific rules that 
determine the system's evolution in time. This updating can occur either synchronously, 
with all cells updated simultaneously, or asynchronously, with each cell updated 
individually. The lattice structure of a cellular automaton is commonly referred to as the 
landscape, and the individual cells are referred to as sites. The surrounding cells make up 
the neighborhood for a single site, with those neighbors directly adjacent to the site being 
referred to as nearest neighbors. 

It should be noted that the updating method, the method by which the states change over 
time, has significant impact on the behavior of CAs. It has been shown that the manner 
of updating can have a profound effect on the overall behavior of a CA system [34]. As 
such, in order to model a biological system realistically the method of updating should 
match the real-world system as much as possible. In the case where a "global clock" is 
present in a system, synchronous updating, in which all cells of the CA are updated 
simultaneously, is considered the best method of updating. However, when there is no 
evidence of such a clock an asynchronous method would be better suited to match the 
system. 
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In the 1940's Von Neumann and Ulam created the original cellular automaton system to 
study self-replicating systems. Motivated by the ability of biological organisms to self-
replicate the model was based on the simple lattice network model used to study crystal 
growth and the kinematic model used to describe a physical non-biological self-
replicating system. The model mathematically describes a hypothetical machine that 
could self-replicate using very complicated rales based on a Cartesian lattice where each 
cell in the lattice could take on 1 of 29 states. 

In the 1970's the concept of cellular automata became popularized by Conway's Game of 
Life automaton. In an effort to simplify the original cellular automata model Conway 
created a cellular automaton using a lattice of cells that could take on 1 of 2 states, dead 
or alive, which were governed by four simple rules. Even with this simple design the 
cellular automaton produced diverse behaviour in which the system varied between states 
of order and randomness, including the frequent occurrence of patterns of cells that 
moved across the grid known as gliders. These results implied that simple and purely 
local rules might give rise to complex behaviors that are a result of the phenomena of 
self-structuring. 

In the 1980's Wolfram began a very detailed investigation of cellular automata [3, 4, 5]. 
Initially basic one-dimensional cellular automata consisting of cells with two possible 
states interacting with their nearest neighbors were studied. From the 256 possible 
cellular automata rules (3 cell neighborhood with 2 states each, 23 = 8 patterns; 8 patterns 
with 2 initial states, 28 = 256) 32 were considered legal based on inessential restrictions. 
These elementary cellular automata were classified into four broad categories based on 
the statistical properties and evolving patterns of the automata. Cellular automaton rules 
were categorized into four classes based on the resulting patterns of an evolving system 
starting from a "disordered" initial state. The four classes are [4]: 

I) Evolution leads to a homogenous state. 

II) Evolution leads to a set of separated simple stable or 
periodic structures. 

III) Evolution leads to a chaotic pattern. 

IV) Evolution leads to complex localized structures, 
sometimes long-lived. 

Empirical studies of the qualitative properties of the one-dimensional automata were 
found to be largely independent of properties such as the size of the neighborhood and 
number of states available to each cell [3]. The investigation was later extended to 
include two-dimensional automata as well. It was found that two-dimensional automata 
could be categorized into the same four classes as those used for one-dimensional 
automata, however there exist a variety of phenomena that depend on the geometry of the 
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two-dimensional lattice [5]. 

4.1.2 Universal Computation and Cellular Automata 

In mathematics, computing science and linguistics the term algorithm is used to denote a 
systematic procedure representing a finite set of well defined instructions which 
terminate in a defined end-state after being given initial conditions, or in other words it is 
a systematic procedure used to accomplish a specific task. At the turn of the twentieth 
century David Hilbert investigated the considerable importance of algorithms to the 
nature of mathematics, specifically questioning if any mathematical statements can be 
proven valid via an algorithm. In his incompleteness theorem Godel showed that there 
exist certain statements regarding natural numbers that are primarily true but cannot be 
solved via mathematical algorithms making the statements inherently non-computable. 

To investigate the nature of algorithms Alan Turing, often hailed as the father of modern 
computer science, proved in the 1930's that formal, simple devices, now called Turing 
machines (TMs), are capable of performing any conceivable mathematical problem that 
is represented by an algorithm. A TM capable of simulating any other TM is known as a 
Universal Turing Machine (UTM). Thus Turing proved that a universal computing 
machine exists. UTMs are thus capable of universal computation and said to exhibit the 
property of computational universality. 

When Von Neumann showed that his cellular automaton system was capable of 
constructing a copy of itself, he demonstrated that there exists a universal computing 
machine which, given a description of an automaton, will construct a copy of it, even if 
the automaton is another universal computation machine, or a description of itself. Thus, 
a cellular automaton system is capable of universal computation given the proper 
automaton description. However, the question remains of which automaton descriptions 
yield the property of universality. 

The Conway's Game of Life automaton is known to exhibit the property of computational 
universality, and according to Wolfram's classification system the Game of Life is a class 
IV automaton. Wolfram hypothesizes that class IV cellular automata may be viewed as 
computers where data represented by the initial configurations is evolved in time, where 
computational universality implies that suitable initial configurations can specify 
arbitrary algorithmic procedures [4], and thus that all class IV automata have the 
capability of universal computation. 

Information in cellular automata is represented by dynamic, self-organizing patterns that 
are generated through neighboring cell interactions. In order for an automaton to exhibit 
class IV behaviour the cells of the system must be able to communicate and to transmit 
information between one another. Class I and II automata, which evolve to homogenous 
states or static/oscillating patterns, possess cells that are strongly interdependent resulting 
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in little communication between the cells and thus lack the capability to process 
information usefully. On the other hand, class III automata, which evolve to chaotic 
patterns, possess cells that are weakly interdependent resulting in over communication 
between cells and a lack of processing capability. Thus, class IV cellular automata, 
which exist at the limit between class I and II, and class III, automata are the only ones 
that possess a moderate interdependence between cells, and are therefore capable of 
dealing with information in a useful way [6]. 

4.2 Examples of Cellular Automata 

4.2.1 The Ising Spin Model 

The Ising spin model was originally defined to describe the behaviour of molecules 
within lattice structures. This model is a specialized cellular automata model based on 
the spin states of atoms or molecules, where spin is defined from quantum mechanics as 
the intrinsic angular momentum of a particle. In the original Ising spin model the 
landscape consists of a system of nodes, or spins, placed at fixed positions within a 
lattice. The lattice itself possesses any required dimension to describe the phenomena in 
question. Spin values for each individual node, analogous to cells in cellular automata, 
can take one of two values defined according to the specific application (i.e. +1 and -1 , 
up and down, 0 and 1 etc.). The interaction energy between a given node's spin and its 
nearest neighbors governs the dynamics of the system. At individual time-steps the 
energy for each node in the lattice is calculated, and then updated in a manner to reduce 
the systems overall energy. Over time the system will settle down into an energy 
minimum, with its excess energy being dissipated via several mechanisms depending on 
the system in question, such as lattice vibrations, bond breaking, radiation in the form of 
heat, or conformational changes in molecular strucutre. 

While the original model focuses on the spin of an individual atom or molecule, any 
vector value can be used to describe the state of a given node. The nodes themselves can 
be taken to represent any object located within a lattice structure. Thus the nodes not 
only represent individual atoms or small molecules, but can represent large 
macromolecules such as biomolecules, or other similar objects. As such this model has 
been extended to encompass a wide variety of areas. Phase separation in liquids, gas-
liquid critical phenomena, order-disorder transition points in alloys, and magnetic Curie 
points are a few of the phenomena described using this particular model. 

In one dimension the Hamiltonian for the Ising system may be given as, 

i U.j) 

where a, and Oj denotes the z-axis projection of the spin of the i'h particle orj'h neighbor 
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particle, B is the strength of a magnetic field in the z-direction, and J is the strength of the 
spin interaction given by half the energy difference between the states. Extensions of the 
Ising spin model to study the dynamics of microtubules in specific are discussed in 
section 4.3.2. 

4.2.2 Artificial Neural Net/ Hopfield Net Systems 

Artificial neural networks are mathematical or computational models of information 
processing based on the connections of real biological neurons located in the nervous 
system of higher organisms. The original purpose for this technique was to examine the 
central nervous system to gain a greater understanding of biological neural networks and 
their ability to process information. Since then artificial neural networks have advanced 
to solve intelligence tasks outside the scope of real biological systems. 

In its most basic form the cells of an artificial neural network model are a collection of 
simple nodes, or neurons. However, unlike most cellular automatons the neural network 
does not base its landscape on a lattice of nearest neighbors. Instead the nodes of a neural 
network possess a high degree of interconnectedness to represent the large number of 
connections in biological neural networks. This results in various patterns, sometimes 
three dimensional, dependent on the type of network being modeled. At no time is a 
node connected to itself. Individual nodes receive inputs either from other nodes, or from 
an external source. The inputs received by a given node have an associated weight 
assigned to them based on the specific model. These inputs are then used to calculate the 
output of the given node. The outputs can either be discrete or continuous. This output is 
then passed on as input to other nodes. 

During a simulation a single node is selected at random and updated at each timestep in 
an asynchronous updating manner. When updated the node calculates all its weighted 
inputs to determine whether it fires or not. Hopfield networks use the specific rule that 
weights from node 1 to 2 are the same as weights from node 2 to 1. Over time the 
outputs will produce a specific firing pattern within the net that depends on the 
information stored in the net weighting. 

The similarities between the Hopfield and Ising model can be seen when the energy of 
the two systems is compared. The energy of a Hopfield net is defined as, 

" - 4 S W 2 9 A (4,2> 

i<j i 

where wy is the connection strength between units / andy, Sj is the state of unit i, and Q, is 
the threshold of unit i. 
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4.3 Previous Computer Models of Microtubules 

Much of the investigation into the capability of microtubules to process information has 
been conducted via computer simulation. A fair number of groups have published 
models of cytoskeletal information processing, including information processing in 
microtubules, which relate cytoskeletal function to computer related technologies [7]. 
The method of cellular automata has been used to a great extent to show the potential for 
information processing in microtubules. Cellular automata with rules based on various 
biological interactions are good models of biological pattern formation offering examples 
of universal computation and self-organization in self-organizing systems. The 
interactions of the individual unit cells with one another can lead to complex behaviour 
capable of computation. Cellular automata models of microtubules based on tubulin 
dipole oscillations represented as a discrete charge within the tubulin dimer have 
demonstrated self-organizing patterns suggesting the potential for microtubules to 
process information [8, 9, 10]. It has been shown that microtubule cellular automata 
networks may signal, adapt, recognize, and subserve neural-level learning [11]. Such 
models have also been used to simulate associative learning in microtubule networks as 
well as the dynamics of microtubule assembly and disassembly [9]. These results suggest 
that such activities in microtubules may have importance in biological regulatory 
functions as well as cognition. The next sections describe previous cellular automata 
models of microtubules in detail. 

4.3.1 Original Cellular Automata Models of Microtubules 

In 1984 Smith, Watt and Hameroff investigated biological regulation and information 
processing in microtubule lattices via cellular automata based on the electrostatic forces 
between tubulin subunits in a hexagonal A6-type lattice geometric arrangement [8, 12] 
with reflections at the microtubule ends. Tubulin subunits were allowed to exist in one of 
two states determined by the position of a discrete mobile electron. The location of this 
discrete charge was taken to represent the overall protein dipole orientation. The states, 
labeled as a, and /3 states, corresponded to the tubulin monomer that held the electron 
thus determining which monomer the overall dipole was oriented towards. The state of 
each dimer was determined via the components of the electrostatic force along the 
protofilament length y from each of six surrounding neighbor dimers. When the forces 
from the neighboring dipoles were predominately oriented towards the a-monomer the 
dimer was assigned an a-state and vice versa for the p-state. That is, 

N 

state = a if ^f(y)>0 

(4.3) 
N 

state-fi if ^f(y)<0 
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where the force is given by, 

with K a constant determining the strength of the force, r, is the distance between the 
central dimer and neighbor /, and _y, is the component of the distance r, along the 
protofilament length. 

Computer simulations of the cellular automata were run with the initial condition that all 
dimers were set to the P state except for a few that were in an arbitrary pattern of a states. 
The states of the dimers were updated stepwise with all electrostatic forces on each dimer 
being calculated first, then changing the dipole orientations to their new configuration. 
The resulting dipole configurations that formed on the microtubule lattice over time 
showed stable patterns, oscillating patterns and traveling patterns termed as gliders. 

From these results it was concluded that stable and oscillating dipole patterns within 
microtubules could play a role in the orchestration of biomolecular activities, protein 
binding and transport, as well as potentially serving as information storage and memory. 
The interaction and interference of gliders within the microtubule was deemed as an 
indication that microtubules could potentially process information. While the cellular 
automata rules and patterns discovered by this investigation were somewhat arbitrary, 
they demonstrated that cellular automata-like information processing within microtubule 
lattices is feasible. 

In 1989 Hameroff, Rasmussen and Mansson [13] expanded on the cellular automata 
microtubule model of Smith et. al. A threshold parameter was added to the cellular 
automata rules to take into account biological factors affecting the tubulin dipole such as 
temperature, pH, voltage gradients, ionic concentration, genetically determined variables 
in individual dimers, and binding of molecules. Electrostatic forces from neighboring 
dimers had to exceed this threshold value before the dipole of a dimer could switch states. 
Situations in which the switching thresholds between the two states were taken as 
symmetric and antisymmetric were both considered. In addition to this modification the 
boundary conditions were varied from the original reflective ends. In one case the 
conditions were chosen such that the ends of the microtubule were considered joined thus 
forming a torus and providing continuous toroidal boundary conditions. The second type 
of boundary condition selected allowed both microtubule ends to be open and 
independent from one another. In this second type the dimers at the plus end of the 
microtubule were given random states at each time step, while the minus end dimers were 
set to be in a constant P-state. 

The results from simulations run under toroidal boundary conditions demonstrated 
general cellular automata behaviour such as virtual automata, gliders and blinkers as well 
as microtubule specific behaviour such as perturbation stable gliders, wedge patterns and 
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unique orientation patterns. A number of these resulting patterns including single and 
bidirectional gliders, traveling and standing wave patterns, oscillating patterns, linearly 
growing patterns, and stable frozen patterns were attributed to be threshold dependent. 

The results from these simulations indicated a potential capacity for microtubule 
automata to process information in a single microtubule. As well, individual microtubule 
specific automata behaviour was concluded to be indicative of certain activities in the 
brain such as back-propagating information transport (bi-directional automata), 
imprinting, pattern recognition and memory (static patters or oscillators), and traveling 
waves coupled to nerve membrane depolarizations (gliders). The self-organizing 
patterns, traveling waves, gliders and blinkers that were observed to form from random 
input at the plus end of the microtubule in the open-ended microtubule case was 
suggested to be a form of signal processing that may occur in real microtubules. 

In 1990 Rasmussen, Karampurwala, Vaidyanath, Jensen and Hameroff extended the 
model of Hameroff, Rasmussen and Mansson to study and investigate simple adaptive 
microtubule networks as well as microtubule assembly/disassembly. In the case of 
microtubule networks two parallel microtubules were considered. The microtubule 
automata were connected via MAP-like connections to allow the two automata to 
communicate. The connections were considered unidirectional transferring a signal from 
one microtubule to the other. The state of the tubulin dimer on the input microtubule was 
used to determine the state of the dimer on the output microtubule. The resulting 
dynamics of the network thus depended not only on the threshold parameters, but also on 
the number, location and direction of the MAP-like attachments. 

Each microtubule automata was assigned an input area at the right end of the microtubule 
and an output at the left end. The threshold values were chosen based on the dynamics of 
the system. A single connection between the two microtubules was placed at random 
locations. Input patterns were then entered into both microtubule automata and the 
resulting output pattern was compared against a desired output by measuring the 
Hamming distance, which is the number of substitutions required to make the two 
patterns match. The connection location with the lowest Hamming distance was then 
kept and a second MAP-like attachment was added at random. The second connection 
with the lowest Hamming distance was then kept and a third connection was chosen at 
random. This process was repeated until an acceptable Hamming distance was reached. 
At this point new input patterns were entered into the automata and new connections 
added in the same random manner until the Hamming distance for the new output 
patterns was deemed acceptable. The original input pattern was then reentered. If the 
output was still acceptable the adaptive sequence was considered to have finished 
satisfactorily. 

The results of the simulation run on microtubule networks indicated that simple networks 
of paired microtubules were capable of learning two different patterns via the use of an 
evolutionary-like selection mechanism and associate nearby patterns. Nevertheless, it 
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was noted that many improvements could be made to allow the system to more closely 
resemble biological activities, as well as improve the overall network performance. 
Despite these concerns however, the results indicated the possibility of associative 
learning in microtubule networks. 

In the case of microtubule assembly/disassembly the microtubule was modeled as a 
lattice with each site existing in one of five states: GTP-bound polymerized tubulin, 
GDP-bound polymerized tubulin, GTP-bound free tubulin, GDP-bound free tubulin, and 
water. Hydrolysis of tubulin bound GTP to GDP was represented as lattice sites in a 
GTP-bound polymerized tubulin state switching to a GDP-bound polymerized state with 
a predetermined probability. Disassembly of GDP-tubulin was based on the 
concentration of GTP-bound free tubulin, so that lower concentrations of GTP-bound free 
tubulin increased the rate of disassembly. This was represented by GDP-bound 
polymerized tubulin located at the edges of the polymerized microtubule switching to 
states of GDP-bound free tubulin if three of more of its neighbors were in a state of either 
GDP-bound free tubulin, GTP-bound polymerized tubulin or water. To model the 
movement and changes in concentration of free tubulin and water transitions between 
GTP-bound free tubulin, GDP-bound free tubulin and water states were allowed based on 
stochastic processes. Polymerization of GTP-bound free tubulin to GTP-bound 
polymerized tubulin was allowed if any GTP-bound free tubulin sites were aligned with 
at least two GTP-bound polymerized tubulin states. 

Simulations of microtubule assembly and disassembly displayed the behaviour of 
dynamic instability such as microtubule catastrophe and rescue. However, when 
compared with the elongation rate of dendrite microtubules in vivo (1 mm/day) it was 
found that the simulation elongation rate was much faster (1 nm/s). This suggests that the 
time scale for updating in the assembly/ disassembly model is not the same as in the 
signal propagation model. 

The model of Hameroff, Rasmussen and Mansson was further extended in 2000 by 
Campbell to take into account the B8-Lattice configuration of the microtubule [10]. It 
was assumed that in vivo microtubules possessed tubulin monomers arranged in the A6-
Lattice structure. However, in the 1990's evidence suggesting that microtubules in living 
cells are rather constructed with the B8-Lattice arrangement of tubulin [14, 15]. The 
model used the same electrostatic governing rules and threshold parameters as the 
Hameroff, Rasmussen, and Mansson model but was based on a neighborhood of eight 
surrounding tubulin dimers according to the B8-Lattice structure. Also, since the B8-
Lattice structure exhibits the physical discontinuity of a seam between the 1st and 13th 

protofilaments the neighbor rules along the seam were modified. The dimers of the I s 

and 13th protofilaments along the seam were modeled as having only seven neighboring 
dimers. 

Simulations were run with both toroidal and open-ended boundary conditions as 
described by the Hameroff, Rasmussen, Mansson A6-Lattice model. While the actual 
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shapes of the patterns formed on the B8-Lattice were generally different from those 
generated by the A6-Lattice model, the same types of behaviour were observed. Despite 
the overall difference in the lattice structures the simulations did not show any significant 
behavioral differences between the two lattices. These results lead to the conclusion that 
the type of lattice structure employed by a microtubule does not affect its ability to 
process information or fulfill its role in the cell. 

4.3.2 Ising Spin Based Ferroelectric Models 

Due to the dipolar nature of the microtubule subunit tubulin and the regular arrangement 
of tubulin molecules within the microtubule structure, microtubules may be viewed as an 
electret, which is an assembly of ordered dipoles, indicating that they may possess 
dielectric properties. Based on this indication it has been predicted that microtubules are 
ferroelectric in nature. 

In 1993 Sataric et. al. investigated a ferroelectric model of microtubules [16]. The model 
attempted to give a physical description of energy transfer mechanisms in cell 
microtubules. The model was based on the creation of kink-like excitations in 
microtubules linked to the energy release associated with GTP hydrolysis, and their 
propagation due to an intrinsic electric force generated by the microtubule. Due to the 
structural symmetry of microtubules the dynamics of the system were described in terms 
of the non-linear dynamics of dimer dipoles in one protofilament in terms of a double-
well potential model based on tubulin conformational changes due to GTP hydrolysis. 
The one dimensional Hamiltonian for the microtubule system is given as, 

TT ^(Mdu^2 K; x2 A 2 B 4 „ \ (4-6) 
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where ut is the longitudinal displacement of the i'h dimer, M is the tubulin dimer mass, K 
is the spring constant determining the stiffness between dimers, A and B are parameters 
describing the shape of the quartic double well potential, and C is the additional potential 
energy due to each dipole interacting with the intrinsic electric field of the microtubule. 

It was found that kink-like excitations could propagate along the microtubule length with 
a velocity proportional to the intrinsic electric field. This result is consistent with the 
observed growth rates of microtubules including dynamic instability and treadmilling, as 
well as the stability of microtubules induced by the presence of microtubule-associated-
proteins. Suggestions were also proposed that the kink-like excitations could be observed 
experimentally via neutron scattering and polarization experiments. 

Theoretical ferroelectric behaviour was further examined by Tuszynski et. al. a few years 
later [17]. In this case the microtubule was modeled as a lattice array of coupled local 
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dipole states interacting with their immediate neighbors. The situation was represented 
as an anisotropic two-dimensional Ising model on a triangular lattice. It was shown that 
the dipoles of the microtubule were likely to exist in two ordered phases, a ferroelectric 
phase and a length dependent intermediate weakly ferroelectric phase, which varied 
between one another through variation of temperature and an external electric field. The 
ferroelectric phase, in which the dipoles were aligned parallel, showed long-range order 
and alignment among the dipoles with the capability to transmit kink-like excitations, 
akin to the findings of Sataric et. al., as well as optimal conditions for microtubule 
signaling and assembly/disassembly. The intermediate phase, in which the dipoles 
exhibited a conflict in resolving the dipole couplings, showed properties suitable for 
information processing and computation. 

Extensions of the dipole lattice model revealed several interesting results concerning the 
ability of the dielectric microtubule to signal and process information. Investigations into 
the information storage capacity of microtubules indicated that in the ferroelectric phase 
there is no capacity for storage, but the capacity begins to increase as the phase makes a 
transition into the paraelectric phase, and that the capacity not only depends on the dipole 
configuration but on their orientation to the microtubule as well [18]. The same 
investigation indicated that microtubules possess a capacity to store information at 
temperatures above 0 K. It has been shown that in the presence of large transient electric 
fields, such as a propagating nerve impulse, microtubules are more likely to be in a 
ferroelectric phase due to the alignment of the lattice dipoles with the field [19, 20] thus 
indicating conditions for signaling rather than information processing. It has also been 
shown that microtubule-associated-proteins bound to a microtubule affect the overall 
configuration of the dipole lattice [20]. Associated-proteins that fix dimer dipoles into a 
single state were observed to enhance the number of dipoles in the lattice pointing in the 
same direction moving the microtubule towards a signaling phase, while associated-
proteins that neutralized the dipole lower the transitions temperature between the ordered 
signaling phase and disordered information processing phase. Overall microtubules with 
microtubule-associated-proteins possessed configurations with higher complexity than 
microtubules without. 

4.3.3 Hopfield Network Microtubule Model 

Microtubules have also been modeled as quantum Hopfield networks [21]. A Hopfield 
network consists of individual processing units, usually neurons, existing in one of two 
states. The units of this Hopfield system are fully connected to all other units in the 
system via multiplicative weights that add up to determine whether the individual unit 
changes state or not. The quantum Hopfield network model of a microtubule investigates 
the suggestion of quantum computation in microtubule protein assemblies numerically 
with qubits representing tubulin molecules interacting via Coulomb forces at finite 
temperature. The Hamiltonian for a microtubule as a quantum Hopfield network is given 
as, 
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H-KKo^AoJ (4-7) 
j 

where ox and Oj are the Pauli matrices, K is the flipping amplitude for a given qubit, and 
A is half the energy difference between two states. 

It was found that quantum information processing in microtubules is feasible although at 
temperatures of approximately 6 K. However in this model environmental factors such 
as energy losses and dissipation are neglected, and several of the parameters used in 
simulation are not based on experiment suggesting that modifications of the model could 
affect the scale at which the phenomena occur. 

4.4 Current Ideas on Dendritic Cytoskeletal Computation 

4.4.1 C-termini based Signaling and Information Processing 

Alterations of the structural microtubule associated protein MAP2 have been shown to 
alter contextual memory [22] and the expression of the motor MAP kinesin has been 
shown to affect learning [23]. As well, the transport of mRNA's along dendritic 
microtubules to the specialized cytoskeleton located at neuronal synapses, known as the 
postsynaptic density, has been suggested to play a role in learning and long-term 
potentiation [24]. Priel et. al. examined the role of the tubulin C-termini tails in the 
microtubule's ability to transduce and process signals [25]. The biophysical properties of 
the C-termini have been shown to affect the attachment of MAPs including kinesin and 
MAP2 [26]. 

To investigate the role of C-termini in the functioning of dendrites, Priel et. al. developed 
a computational model based on the biochemical data of tubulin, their C-termini tails, and 
MAP2. Using molecular dynamics simulations the conformational states of the C-termini 
protruding from the microtubules outer surface were calculated. The 3D structure of the 
tubulin dimer was determined by Nogales et. al. [27] but several amino acids including 
some at the C-terminus of the protein were unresolved resulting in their omission from 
the Protein Data Bank. Structure files were created that include the C-termini of tubulin. 
Each tubulin dimer possesses two C-termini tails that can exist in several conformational 
states. According to the model the negatively charged C-termini interact electrostatically 
with the dimer surface, neighboring C-termini, and adjacent MAPs. The minimization of 
the overall interaction energy of the C-termini is believed to govern the system as it 
evolves in time. The surface of the tubulin dimer is highly negatively charged, with 
regions of positive charge attracting the C-termini tails causing them to bend into a 
"downward" state. The "up" state, in which the C-terminus extends perpendicularly out 
from the dimer, was found to have the lowest energy. For situations in which the energy 
of the C-termini was less than 50 meV plus the lowest energy state, the C-termini tail was 
allowed to move freely due to thermal fluctuations. This corresponds to a cone with an 
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angle of 40° from the dimer surface. A local minimum corresponding to the 
"downward" state was found at 100 meV above the lowest energy state, and a saddle-
point was found 160 meV above the lowest energy. It was deduced from these findings 
that two major metastable states exist with an energy difference between the two on the 
order of a few kt,T [25]. 

To facilitate the calculation a bead-spring model was developed in which the C-termini 
tails are taken as strings of beads with flexible connections. The electric field exerted by 
the dimer, the external field from the environment and interactions within individual C-
termini were taken into account. Simulations of the bead-spring model indicated the 
ability of ionic waves to create waves of C-termini state changes from upright to 
downward orientations. Calculations performed on the model to find the minimum 
energy positions of the individual beads, corresponding to the C-termini amino acids, in 
two equal forms revealed a 15% probability for the tail to exist in a full or partial 
"downward" position. This indicates that the system favors the "up" state unless driven 
towards the "downward" state by outside influences. 

The interaction between MAP2 and its ionic environment was modeled using counter-
ions in order to investigate the ability of MAP2 to function as a wave-guide. The binding 
region is located at the C-terminus and the bond between MAP2 and a microtubule appears 
to be electrostatic in nature. It has been shown that MAP2 binds to microtubules in a 
concentration-dependent manner [28]. However since the 3D structure of MAP2 is 
unknown at this point in time, as it has not been crystallized, it is not known whether or 
not MAP2 actually makes physical contact with microtubules, but at the very least MAP2 
enters into the immediate vicinity of the microtubule. As a simplification of the model 
Priel et. al. assumed MAP2 to be a straight chain along which the attraction sites for the 
counterions were equally spaced and arranged, and that the counterions move only in a 
plane perpendicular to the MAP2 cylinder. It was found that perturbations applied to the 
counterions at one end of the MAP2 chain initiated a wave traveling along the MAP2 
moving the counterions out of equilibrium. The profile of the ion displacements 
revealed a "kink"-like perturbation along the MAP2 chain with a phase velocity on the 
order of 2 nm/ps. 

The results of molecular dynamic modeling of microtubules raise the possibility that 
microtubules are capable of transmitting electrostatic disturbances. The propagation of 
ionic waves along MAP2 can be seen to influence the conformational states of 
surrounding C-termini that in turn affect other C-termini along the microtubule. Thus 
electrostatic disturbances can be understood to propagate along microtubules in the form 
of collective disturbances among neighboring C-termini, or between neighboring 
microtubules via MAP2 connections. The relation of these ideas to the cognitive 
functions of the brain is discussed in the next section. 
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4.4.2 Computation within the Dendritic Cytoskeleton 

The transport of proteins and receptors along neuronal microtubules is likely to have an 
electromagnetic basis indicating that this function is possibly dependent on microtubule 
information processing. As discussed above kinesin mediated transport of mRNA has 
been implicated in memory and learning. Kinesin mediated transport along microtubules 
is affected by both the protein conformation of tubulin and the nature of the C-termini 
[25, 26]. The conformational state of tubulin, which is key to the notion of information 
processing within microtubules and therefore the notion of quantum brain function, is not 
only critical to effective transport, but appears to be altered in turn by motor proteins and 
MAPs. The binding of kinesin and the MAP tau have been observed to significantly alter 
the direction of the protruding protofilament ridges along microtubules, which in turn 
influences their further binding abilities [29]. In fact it has been suggested that tubulin 
dimers along microtubules alter their conformational state ahead of kinesin motor 
movement [30]. The conformational state of tubulin within a microtubule determines the 
dipole moment of the dimer and thus the electromagnetic field of the microtubule [31]. 

Priel et. al. building on the ideas discussed in the previous section suggested a direct 
regulation of ion channels, and thus the electrical response of neurons, by cytoskeletal 
structures [25]. It is envisioned that arrays of dendritic microtubules, equally arranged in 
parallel and anti-parallel fashion, receive signals from neuronal synapses either via actin 
filaments connected to the array via MAP2, or via direct connection of the array to the 
post synaptic density located at the synapse. Once the input signal is received the 
microtubule network evolves the signal by dynamically altering its C-termini 
conformations. The output of the signal moving through the microtubule network may 
then propagate along via actin filaments to distant ion channels eliciting the channel to 
open or close. This process thus affects the electrical response of the neuron by 
regulating the temporal gating state of the voltage-sensitive channels. For this reason the 
process controls the membrane conductive properties as well as the axon hillock behavior 
by changing the rate, distribution and topology of open/closed channels. The overall 
functions of the dendrite and neuron can thus be directed in this manner. 

Recall that the binding of kinesin and MAP2 are affected by the conformational state of 
tubulin's C-termini as discussed in the previous section. Thus, the incoming signal from 
a neuronal synapse not only alters the C-termini conformational states along the 
microtubule, but also alters the binding of kinesin and MAP2. Through alterations of 
kinesin and MAP2 binding the tubulin conformational state is affected, thus the 
electromagnetic fields created by microtubules could be altered by synaptic inputs. 

MAP2 bridges keep the microtubule networks within the dendritic core aligned in parallel 
and antiparallel arrangement by aligning portions of polarized microtubules. The 
antiparallel alignment of microtubules, which specifically occurs in dendrites, can be 
understood to severely attenuate any electromagnetic field generated by microtubules. It 
is expected that kinesin mediated transport is enhanced during heightened synaptic 
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activity. Due to kinesin's effect on tubulin's conformational state it is expected that 
during this period microtubule bound MAP2 would be perturbed and may even detach 
from the microtubule temporarily. If it is assumed that some MAP2 remain connected to 
the microtubule, thus keeping the microtubule network intact, any net unidirectional 
transport along the array should enhance the strength of its associated electromagnetic 
field resulting in the spread of that field to adjacent microtubules. If a sufficient number 
of microtubules engage in this activity it can be imagined that entire dendrites might be 
expected to interact. Due to lengthwise electric dipoles of tubulin dimers, information in 
the form of traveling waves propagated along microtubules can, in principle, be 
transmitted between synapses with high fidelity [32]. Due to the parallel/antiparallel 
arrangement of microtubules in cortical dendrites and the ability of electromagnetic fields 
to pass from one dendrite to adjacent dendrites, information could, in principle, pass 
between neurons when such electromagnetic fields were sufficiently amplified as a result 
of changes in the binding of MAPs or kinesin. 

The idea that there is one common type of energy responsible for perceptual and 
cognitive processes appears likely [33]. This may be a particular electromagnetic state of 
a network of microtubules that corresponds to a unique cognitive event. This has been 
referred to as an electromagnetic fingerprint [25]. Due to the high degree of interaction 
described above, activation of one electromagnetic fingerprint could, in turn, activate 
another electromagnetic fingerprint, independent of sensory input giving rise to the so-
called stream of consciousness. Moreover, the subjective feels of this widespread pattern 
of electromagnetic energy can be specified according to those key physical properties of 
microtubules that influence the transport of proteins to synapses. 
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Chapter 5 

A Cellular Automata Model of a Microtubule at 
Physiological Temperature 

5.1 Quantum Cellular Automata 

As stated in section 4.1.1, a cellular automata model is composed of a lattice of 
identically programmed cells that are assigned particular states, which then change 
stepwise over time according to the states of the surrounding cells and specific rules that 
determine the system's evolution in time. Quantum cellular automata (QCA) use 
geometrically arranged lattices of quantum wells, with the configuration of electron within 
the wells encoding and processing information [24]. Cellular automata cells may consist 
of one or more quantum wells coupled togther, such that electrons in the well confining 
potentials can tunnel between wells in the same cell, but not between different cells. 
Quantum mechanics and the Coulomb interaction in each cell can determine the possible 
cell states, and the Coulomb interaction between electrons in different cells can provide a 
local intercellular coupling mechanism [25]. Typical QCA cells consist of four or five 
coupled quantum wells containing two electrons [24-27], however single electron devices 
have been conceived [24, 28, 29]. In the following sections a possible double well 
potential site in tubulin is discussed as a cell for a quantum cellular automata in a 
microtubule. The computer code used to simulate the microtubule cellular automata may 
be found in the Appendix. 

5.2 The Cellular Automata Lattice Structure 

5.2.1 The Microtubule Lattice 

To simulate microtubule automata the standard 13-protofilament microtubule structure is 
represented as a two-dimensional lattice in which the cylindrical microtubule has been 
split open between the 1st and 13th protofilaments, and flattened. The lattice, composed of 
microtubule subunit tubulin dimers, is positioned such that the minus end of the 
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microtubule is to the left, and the first protofilament is at the top of the array. Thus, the 
lattice is taken to have 13 rows, corresponding to individual protofilaments. The lattice is 
chosen to have 100 columns, denoting individual dimers along the length of the 
microtubule, thus representing a microtubule of approximately 0.8 \im in length. To be 
consistent with the MT-13A-6 structure the top and bottom rows of the array were 
considered joined as in Figure 5.1. 

5.2.2 The Seven Dimer Hexagonal Neighborhood 

Dimer neighborhoods were constructed according to the tilted hexagonal shape of the 
MT-13A-6 structure (see Figure 5.4). The neighbors of a single dimer (i, j) were defined 
as follows: N0 (i-1, j-1), N, (i-1, j), N2 (i, j+1), N3 (i+1, j+1), N4 (i+1, j), N5 (i, j-1). 
Neighbors N0 and Ni of dimers in the first row were located in the thirteenth row in 
accord with the three-start helical winding pattern. Neighbors N3 and N4 of dimers in the 
bottom row were located in the first row and likewise shifted down according to the 
wrapping scheme described in Figure 5.2 so that the joining dimers between the top and 
bottom row are separated by eight columns. The microtubule ends were considered 
joined creating continuous toroidal boundary conditions. 

Figure 5.1: Section of the two dimensional array of tubulin dimers used in the CA model to 
represent a Type A lattice microtubule. Label i denotes individual protofilaments while label j 
denotes dimers along each protofilament. Also shown are the helices of monomers. Black arrows 
pointing along monomer helices indicate where monomer helices join between 0* and 12* 
protofilaments. 
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Figure 5.2: Seven dimer tilted hexagonal neighborhood of an individual tubulin dimer in a MT-
13A-6 lattice structure. 

5.3 The Cellular Automata Cell 

5.3.1 The Electrostatic Properties of the Tubulin Dimer 

Individual cells of the cellular automata microtubule model were taken to represent 
tubulin dimers, and in order for comparison to previous models the cells were allowed to 
exist in one of two possible. The work of Frohlich discussed previously in section 2.3.3 
suggests that quantum oscillations within hydrophobic pockets located within a protein's 
interior engage in macroscopic quantum coherence [1]. Thus, the cells were taken to 
exist in two possible states corresponding to the position of a mobile electron within the 
tubulin dimer. 

To investigate the electrostatic properties of tubulin the Poisson-Boltzmann Equation 
(PBE), which describes electrostatic interactions between molecular solutes and aqueous 
media, was solved with the solute molecule tubulin in a solvent composed of an ionic 
aqueous solution with a dielectric constant of 78.54 and 0,1 M of both +e and -e ionic 
species, where e is the charge of the electron. The PBE is given by, 

V[e(r)V^(r)]=-4jtpf(?)-4jt^c;Zi?ii:)qe kT (5 i) 

where e(r) represents the position-dependent dielectric constant describing the dielectric 
properties of the solute and solvent, ^ ( r ) represents the electrostatic potential, pf(f) 
represents the charge density of the solute, c°° represents the concentration of the ion / at 
a distance of infinity from the solute, z, is the charge of the ion, q is the charge of a 
proton, k is the Boltzmann constant, T is the temperature, and A(r) is a factor describing 
the position-dependent ionic strength of the solution and accessibility of ions to the solute 
interior. 

Since, the PBE describes electrostatic interactions between molecular solutes and 
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aqueous media, and thus can be used to the find the electrostatic potential of 
macromolecules. Recent studies using electron crystallography on zinc-induced tubulin 
sheets have yielded a refined high-resolution structure of the tubulin molecule with a 3.5 
A resolution [3]. Solving the Poisson-Boltzmann equation for this structure via the 
Adaptive Poisson-Boltzmann Solver (APBS) software [4] produced an electrostatic 
potential map of the protein. 

Two regions of positive potential surrounded by negative potential were observed by 
taking cross sections of the resulting electrostatic map along the x, y and z coordinates 
(see Figure 5.3). This region is located near the separation between a-tubulin and |3-
tubulin, approximately 4.5 nm from the tip of the cc-monomer, with the positive potential 
regions separated by 2 nm. This structure may provide a local double well potential for a 
mobile electron that may undergo an electron transfer process within the protein. 

Figure 5.3: Cross section of an electrostatic map of the tubulin dimer showing the proteins interior. 
Black arrows indicate the regions of positive potential taken to constitute the double well 
structure. Scale bar = 2 nm. 

The electron donor and acceptor properties of biologically important molecules have 
been evaluated by quantum-mechanical calculations based on the molecular-orbital 
method by Pullman and Pullman [12]. From their evaluations it was determined that 
histidine, an aromatic amino acid present in the tubulin protein, is a moderate electron 
donor. The imidazole side chain in the histidine structure is a heterocyclic aromatic 
organic compound that contains nitrogen capable of donating electrons [13]. The 
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isoelectric point of histidine is 7.47, which is above the 6.8-7.3 pH of the intracellular 
environment, indicating a potential for electron donation. Overlays of the histidine 
locations on the electrostatic map revealed that Histidine (P-28) given by [3] is the closest 
to the right well of the double-well structure being approximately 11 A away. 

The typical distance between electron donors and acceptors has been given around 10-15 
A [14, 15], indicating that Histidine (P-28) would be capable of supplying a mobile 
electron to the double-well structure for use in ET processes. This is consistent with the 
findings of Tuszynski et. al. [2] who found that the hydrophobic interior of the tubulin 
protein gives rise to a symmetric electrostatic potential, characteristic of a double-well 
structure, where the structure was taken to indicate that charged groups present in the 
region of the potential could execute tunneling motion between its two equivalent energy 
minima. Nonetheless, ultimately experimental confirmation is needed to establish the 
origin and properties of electron transfer processes in tubulin. Recently, several studies 
have initiated investigation of conduction properties of microtubules, which is an 
important first step in this direction [9, 10, 16-19]. 

5.3.2 Tubulin Dimer as a Double Potential Well 

From the electrostatic potential of tubulin, as discussed in the previous section, it was 
seen that the interior of the tubulin dimer possesses a region that is representative of a 
double well structure for an electron. As stated previously the crystallographic structure 
of tubulin that provided the electrostatic map was determined to a resolution of 3.5 A [3]. 
To noticeably alter the electrostatic map the movement of an electron in the double well 
structure would need to distort the map by more than 3.5 A. Since the majority of the 
charges defining the electrostatic map are bound charges, the minimum work W required 
to noticeably distort the structure of the tubulin dimer is given as, 

W = FAx (5.2) 

= -kAx2 

2 

where k is the spring constant for a single tubulin dimer which has been estimated as 
approximately 4 N/m [20], and Ax is the distance by which the structure is distorted 
which is taken as 3.5 A. Thus, the minimum work required to distort the map is 
approximately 1.53 eV. As seen below in Table 5.1 the energies of a single electron to 
move from one side of the well to the other is well below the energy required to 
appreciably distort the electrostatic map. With the addition of surrounding dimers 
containing electrons, the interaction of electrons would raise an individual electron's 
energy. However, the interaction between dimers would also be expected to increase the 
spring constant due to the binding of the proteins and therefore is not expected to affect 
this result. As well, as shall be shown in Section 5.5.2 the timescale of transitions for an 
electron to switch between wells is on the order of 100 fs, where fs is femtoseconds (1 fs 
= 10"15 s). The average time for protein structural conformation changes, based on 
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protein hinge motion, is approximately 10" -10"8 s, a value several orders of magnitude 
larger [31]. Thus, the map shown above may be considered static for our purposes. 

From the information in the following sections describing the model it can be found that 
the maximum energy of an individual electron when interacting with surrounding 
electrons is approximately 0.6 eV, as given in Table 5.1. While the energy gap to the 
conduction band in tubulin is unknown, a typical gap value between 2 .57-3 .12 eV has 
been reported for a number of proteins with 1.2 eV being the lowest value recorded for 
cytochrome C [21]. As such it is reasonable to assume that the energies of the mobile 
valence electrons in the double well structures are insufficient to move the electrons to 
the conduction band in tubulin. Thus, for the purpose of the model investigated here, the 
double-well structure of tubulin was approximated by an infinite square double- well 
potential. The potential is described as, 

V(x) = + 0 0 

0 

v0 
0 

+ 0 0 

x<-L/2 
-L/2<x<-a 

-a< x< a 

a<x< LI2 

x^L/2 

(5.3) 

where x is the position about an axis centered between the two wells within tubulin, L is 
the width of the double well structure, 2a is the width of the potential barrier and Vo is the 
height of the potential barrier. A schematic diagram of the potential is given in Figure 
5.4. 

+oe A V(x) A+oe 

-L/2 -a 0 a L/2 

Figure 5.4: A typical infinite square double well potential, with total length of L, barrier width of 
2a, and finite barrier height V0. 
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The Schrodinger equation describes the quantum mechanical behaviour of an electron in 
a potential, such as the one described above. The time-dependent Schrodinger equation is 
given as, 

~ ^ j r + v W ^ - O - ^ O (5.4) 

where h is Planck's constant divided by 2TZ, me is the mass of the electron, E is the 
energy of the electron, and W(x,t) is the solution to the equation otherwise known as the 
energy eigenfunction or wavefunction. The square modulus of the wavefunction 
provides the probability of finding the particle at a given position, at a given time. 
However, it is only the probability of a particle to tunnel through the potential barrier that 
is of consequence to the dynamics of the microtubule system. 

The quantum solutions for the behaviour of a wave packet in a one-dimensional infinite 
double square well potential separated by a finite barrier have been evaluated to find the 
eigenvalues of the Schrodinger equation and the energy level splitting [5, 6], as well as 
the motion of a wave packet inside such a potential as time progresses [5]. Thus, the 
probability of finding a particle in one well or the other can be determined and used to 
evaluate the tunneling probability, however these solutions to the time-dependent 
equations for a particle in a double well are solved for particles of constant energy. In the 
microtubule model the energy of an electron in a given dimer is determined by the 
relative positions of the electrons in the surrounding dimers. The positions of these 
electrons are updated at discrete timesteps, and thus the energy of a given electron varies 
discretely with time. Thus, the difficulty in finding the tunneling probability lies in the 
constant updating of the electron energy at each timestep. 

The most widely used approximation for solving tunneling problems is the semi-classical 
Wentzel, Kramers, Brillouin (WKB) method. The WKB method yields a tunneling 
probability P, dependent on the energy E of a particle, of, 

P(E)=- 1 ,„ , (5-5) 

with, 

o = SUR^(V(x)-E)dx ^ w - f i ^ (5.6) 

where p and q denote the points where a classical particle would be reflected by the 
potential, also known as the classical turning points, and V(x) is a potential that is a 
slowly varying function of x. When the condition is met that o > 1 the tunneling 
probability is given by, 
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- 2 / ' l^MyuyEyix 
P(E)=e ' » (5.7) 

which agrees with the semi-classical approximation of Miller and Good [7]. Using the 
values defined in Section 5.5.1 it can be found that the condition of o > 1 is met thus 
allowing the use of Equation 5.7 for the tunneling probability. 

5.4 The Cellular Automata Dynamic Governing Rules 

5.4.1 The Energy Dynamics of the System 

The dynamics of the system are based on the organization in time of mobile electrons 
located in the double well potential structure in each of the tubulin dimers. Electrons 
were considered confined to individual tubulin dimers, but were allowed to move 
between the two potential wells localized within each dimer. The position of this mobile 
electron in the double well was used to designate the state of the tubulin cell. An electron 
in the left well designates the tubulin as being in an a-state since the left well is 
positioned closer to the a-tubulin monomer. An electron in the right well designates a In
state. 

The energy, E, of a single electron in a central dimer C was determined by its Coulomb 
interaction with its neighbors: 

E(Q=y e2 

£?04xee0r(C,Nm) (5-8> 

where e is the charge of the electron, s is the dielectric constant of tubulin, £o is the 
permittivity of free space, r(C,Nm) is the separation between the central dimer electron 
and its mth neighbor electron, and m is the index labeling the neighbors from 0-5. The 
distance values, r,-, between the central dimer electron and its neighbor electrons are given 
in Figure 5.5. 

f^rP\/^vt\f^v*\. , 
^ ^ ^ 

:~S-v,;>-̂ -̂' ^^"%^i. ) ^ V ' 

Figure 5.5: Dimensions of a MT-13A Lattice with a double well structure located in tubulin. 
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Since the dynamics of the system aim to minimize the system's total energy, the energy 
difference between a central dimer electron in an a-state and a (3-state with the same 
configuration of neighbor dimer electrons determines whether or not an electron will 
switch from one well to the other. The energy difference, AE, is determined by the 
energy of the original state minus the energy of the new state as given by: 

A £ ( C ) = A 2 ( 
1 1 

-) 
%r{Cf,Nm) r(CnNJ 

(5.9) 

where, 

A = 
4jteen 

(5.10) 

The values for E(C) and AE(C), given by Equations (5.8) and (5.9) respectively, are the 
two main parameters used to define the transition rules that govern the dynamics of the 
electrons in the microtubule system. The transition rules for both classical and quantum 
based scenarios are discussed in the following sections. 

While it is commonly accepted that most proteins possess a dielectric constant in the 
range of 2-4, the dielectric constant of tubulin has yet to be precisely determined by 
experiment. There have recently been experimental tests performed that point to a value 
that differs from expectations. Surface plasmon resonance and refractometry 
measurements of the high-frequency dielectric constant have yielded a value of-8.41 [9]. 
Other measurements of the dielectric constant of individual microtubules via a method of 
electroorientation give a very broad range of values between 0 and 100 [10], 
consequently offering no useful information. While this is not a precise measurement by 
any means, and it is doubtful that tubulin would have a dielectric constant greater than 
that of water, it does indicate the difficulty in obtaining a precise value for tubulin's 
dielectric constant. As such, the tubulin dielectric constant was allowed to range between 
2 and 10. Table 5.1 give energy scales for varying tubulin dielectric constants. 

Table 5.1 : Electron's total energy range, and the maximum energy difference 
between wells for tubulin dielectric constant values between 2 and 10. 

2 
4 
6 
8 
10 

578.17-697.45 meV 
289.07- 348.71 meV 
192.72-232.48 meV 
144.54-174.36 meV 
115.63-139.49 meV 

25.44 meV 
12.72 meV 
8.48 meV 
6.36 meV 
5.09 meV 
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5.4.2 The Transition Rules 

The system is in contact with the environment, a temperature heat bath, it is necessary to 
include local rules that incorporate thermal noise. As stated by Wolfram [8] the simplest 
procedure is to impose that at each timestep the position of the electron be switched with 
a probability P, where P is given by the Boltzmann factor corresponding to a finite 
temperature heat bath. The probability of the thermal energy to cause an unfavorable 
transition is determined by the Boltzmann factor, which gives the probability for an 
electron to be in the new state, as e~AE,kT, where k is Boltzmann's constant and T is the 
temperature of the system. Thus, 

Rule (i) if E > V0 and AE > 0 then a transition occurs with probability 
- A E 

P(E) = e kT . 

This yields a probability between 0 and 1 for positive differences in energy, however, it 
yields a value greater than 1 for negative differences. Thus, if the electron possesses 
enough energy to cross the potential barrier, and the transition between states lowers its 
energy, then it will switch states automatically. That is, 

Rule (ii) if E > V0 and AE <, 0 then a transition automatically occurs. 

The electron is allowed to pass through the potential barrier via quantum tunneling with a 
finite probability. If the electron does not have enough energy to overcome the potential 
barrier, of height Vo, then it can still make the transition with a tunneling probability 
defined by the parameters of the potential barrier between the two wells. This transition 
still depends on whether or not the energy of the electron will be minimized. Thus 
according to Equation 5.7, 

Rule (iii) if E =s V0 and AE <, 0 then a transition occurs with probability 

P{E) = e J^h 

where 2a is the width of the potential barrier, and h is Planck's constant divided by 2n,. 
However, if the transition requires an increase in energy, 

Rule (iv) if E <. VQ and AE > 0 then a transition occurs with probability 

P(E) = ekTe *»* 
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At each lattice site for a given timestep the electron has two choices: stay in the current 
position, or make a transition to a new position. The probability of making a transition 
Pi(E) is given by the transition rules expressed above. Probability Pi(E) ranges between 
0 and 1 depending on the choices of parameters (i.e. DE and T for Rule (i), E and V(x) 
for Rule (ii) and all the previous parameters for Rule (iv)). The probability of staying in 
the same position P2(E) is then taken as P2(E) = 1 - Pi(E), ensuring that all probabilities 
add up to 1. 

Bolteraruer, Limbach and Tuszynski discuss the equivalence between transition 
probabilities and kinetic rates in differential equations in [33]. They find a simple 
proportionality between probabilities P and the reaction rates k, given as, 

P=kM (5.11) 

where At is the time step of the simulation. As the cellular automata uses discrete 
timesteps it is possible to use either probabilities or rates to describe the evolution of the 
system. By choosing the timestep of the simulation to coincide with the occurrence of a 
single transition, as discussed in section 5.5.2, the four transition rules, (i) - (iv), based on 
probabilities, can be taken to govern the dynamics of the electrons in the microtubule 
system. 

5.5 The Cellular Automata Simulation 

5.5.1 Simulation Conditions 

The model described above aims to describe realistically a microtubule in an environment 
at physiological temperature. However, there are several factors about the microtubule 
and its environment that are currently unknown. As such, simulations were run over 
various conditions in an effort to account for these factors that are unknown through 
experiment. The two main parameters varied during simulations were the tubulin's 
potential well depth Vo described above, and tubulin's dielectric constant e defining the 
permittivity of the microtubule environment. The ranges of these parameters are 
discussed in the following paragraphs. The normal temperature of the microtubule 
environment is taken as 310 K, but to account for variations in the environmental 
temperature, such as in the case of fever or hypothermia, T was varied between 290 K 
and 330 K in increments of 10 K. 

While it is commonly accepted that most proteins possess a dielectric constant in the 
range of 2-4, the dielectric constant of tubulin has yet to be precisely determined by 
experiment. There have recently been experimental tests performed that point to a value 
that differs from expectations. Surface plasmon resonance and refractometry 
measurements of the high-frequency dielectric constant have yielded a value of-8.41 [9]. 
Other measurements of the dielectric constant of individual microtubules via a method of 
electroorientation give a very broad range of values between 0 and 100 [10], 
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consequently offering no useful information. While this is not a precise measurement by 
any means, and it is doubtful that tubulin would have a dielectric constant greater than 
that of water, it does indicate the difficulty in obtaining a precise value for tubulin's 
dielectric constant. As discussed in Section 5.4.1 the tubulin dielectric constant was 
allowed to range between 2 and 10. This range was covered in increments of 0.1 in order 
to cover a plausible range of dielectric constant values. From the electrostatic map of the 
tubulin interior seen in Figure 5.3, the width of the potential barrier between the two 
positive potential regions was determined to be 2 A, thus the value a from Equation 5.3 
was taken as 1 A. As the separation of the two positive wells was determined to be 2 nm, 
the overall length of the double-well system L, as defined in Equation 5.3, was taken to 
be 3.6 nm. The potential well depth Vo in the tubulin dimer was taken to range between 
100-150 meV, a value indicated previously by Hameroff and Tuszynski [11], and 
simulations were performed at 1 meV intervals. With the values defined above it can be 
found from Equation 5.5 that o > 1 thus allowing the semi-classical approximation for 
the tunneling probability given in Equation 5.6 to be used. 

The final factor that needs to be addressed is the method of updating. Currently there is 
no known experimental evidence suggesting the presence of a "global clock" to affect the 
microtubule system. As such, it is appropriate that an asynchronous method of updating 
be used during CA simulations to realistically model the system. However, it has been 
proposed that dendrite and neuron function are regulated by the propagation of ionic 
waves along the cytoskeleton [22, 23]. The propagation of signals via ionic waves as 
they pass along microtubules in the cytoskeletal network may serve as a mechanism to 
synchronize electron behavior. In this case it would be appropriate to use a synchronous, 
or sequential method of updating. Since these issues are not conclusively resolved it was 
deemed appropriate to investigate both synchronous and asynchronous methods of 
updating in the model described above. 

In all simulations the lattice of dimers was set to an initial configuration of a-states 
randomly seeded with p-state dimers with a probability of 1% for a given dimer to exist 
in a P-state. In the case of synchronous updating a timestep consisted of systematically 
evaluating the preferred position of all the electrons in the lattice according to (i)-(iv) 
while holding all electrons in their original position, and then moving all the electrons 
simultaneously to their new positions. Thus, all dimers are updated in parallel at each 
timestep. These simulations were run for 300 time steps to allow adequate time for 
patterns to develop. In the case of asynchronous updating, a random order asynchronous 
method was used, as defined by Conforth et. al. [30]. A random order asynchronous 
timestep consisted of continually choosing individual tubulin dimers on the microtubule 
lattice at random, without replacement, and changing the position of the electron 
according to the rules (i)-(iv) described above until all dimers had been updated 
completing a single timestep. Thus, at each time step, all dimers are updated, but in 
random order, with each dimer being updated exactly once. Random order asynchronous 
simulations were run for 300 timesteps to allow adequate time for patterns to develop. 
Simulations were run under these conditions for lattices considered joined in the manner 
shown in Figure 5.1 with the ends of the microtubule joined to form continuous toroidal 
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boundary conditions. 

5.5.2 Simulation Procedure and Timing 

Simulations of cellular automata follow a set of steps based on the transition rules defined 
in section 5.4.2, and the method of updating. These steps constitute a single timestep in 
the evolution of the system. For synchronous updating the procedure for one timestep is 
as follows: 

1. A single tubulin cell in the microtubule lattice is chosen. 
2. The energy for the electron in its current state is calculated according to 

Equation 5.8. 
3. The energy for the electron in its alternate state is calculated according to 

Equation 5.8. 
4. The energy difference between these energies is calculated according to 

Equation 5.9. 
5. Using the transition rules in section 5.4.2, and random number generation 

to determine probability, the preferred state of the electron is determined. 
6. The preferred state is held in memory, and the electron is allowed to 

remain in its current state. 
7. Steps 2-7 are repeated until all cells in the lattice have been selected. 
8. The electrons in all tubulin cells are placed in their preferred states. 
9. The lattice is updated and the procedure begins again at step 1 for the next 

timestep. 

For asynchronous updating the procedure for one timestep is as follows: 

1. A single tubulin cell in the microtubule lattice is chosen, at random via 
random number generation, without replacement. 

2. The energy for the electron in its current state is calculated according to 
Equation 5.8. 

3. The energy for the electron in its alternate state is calculated according to 
Equation 5.8. 

4. The energy difference between these energies is calculated according to 
Equation 5.9. 

5. Using the transition rules in section 5.4.2, and random number generation 
to determine probability, the preferred state of the electron is determined. 

6. The electron is placed in its preferred state. 
7. The next cell in the lattice is chosen and steps 2-7 are repeated until all 

cells in the lattice have been selected. 
8. The lattice is updated and the procedure begins again at step 1 for the next 

timestep 

The rules described in section 5.4.2 are based on probabilities for a single transition. The 
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length of time for a single transition therefore defines the time in a single timestep. 
When energy is below the barrier, the time for transition is defined by electron tunneling. 
As physicist Paul Davies points out, the definition of tunneling time is still under debate 
and the attempts to define it are extensive [32]. As a naive approach he suggest the use 
of the energy time uncertainty pricinple, which yields At = /z/AE. Thus, for the energy 
differences give in Table 5.1, in which the electron energy is less than the barrier height, 

100fs< At z 130fs (5-12) 

where fs is femtoseconds (1 fs = 10"15 s). This, however, gives the transition time at 0 K 
temperature. The Arrhenius equation is a formula from transition state theory that 
describes the temperature dependence T of the escape rate k for a particle making a 
transiton between states, and is given as, 

E - i L 

e k"T (5.15) 27th 

where E is the energy of the particle, Vo is a potential barrier binding the particle, kg is 
Boltzmann's constant and h is Planck's constant [34]. The transition time /, can be 
found as t = 1/k. Thus, for the ranges of E given in Table 5.1, and the range of Vo 
discussed in section 5.5.1 

308/5 < tzl3.5ps (5.14) 

whereps is picoseconds (1 ps = 10"12 s). This, however, is a strictly classical description. 
As discussed in [35], the incorporation of quantum effects into a description of transition 
rates via transition state theory has been problematic, and therefore a detailed discussion 
of this topic is not included. The ranges given in Equation 5.12 and 5.14 provide an order 
of magnitude estimate of the timestep. Therefore, a single timestep, in the cellular 
automata simulations, is taken on the order of 100 fs. 

5.6 Results of Simulations 

5.6.1 Typical automata pattern evolution for synchronous updating 

Evolution of the system from the initial random configuration was visually observed for 
300 timesteps to determine the type of pattern developed. The patterns observed were 
classified according to the classification scheme of Wolfram given above. For 
synchronous updating type II, III, and IV behaviors were observed over the range of 
parameters described above. The patterns of evolution are shown in Figures 5.6-5.8 and 
are described in the following sections to give clarity to the discussion that follows. 

Evolution of the microtubule system to Type II behavior is the most common form of 
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evolution observed. Type II behavior, as shown in Figure 5.6, is characterized by the 
dimers forming alternating bands of a and P states stretching in the horizontal 
protofilament N2-C-N5 direction. These horizontal bands alternate from one protofilament 
to the next and are broken along the protofilament length by patterns of a and P states 
determined by the initial random seeding of p-states, as well as the randomness of 
thermal effects during the evolution to the pattern described. As time progresses the 
pattern of bands oscillates such that a-state dimers make a transition to the P-state, and In
state dimers change to a-states. Thus, Type II behavior is defined by the entire system of 
dimers oscillating in unison between two opposite patterns. 

Type III behavior, as pictured in Figure 5.7, displays constant change and no pattern 
formation. The initial pattern of P-seeds on an a-background evolves into a constant 
switching of dimers between a-states and P-states. The duration for a single dimer to 
remain in one state, or the other, was unable to be determined and thus no visible patterns 
were discerned. 

Figure 5.6: Type II evolution for synchronous updating. 

Figure 5.7: Type III evolution for synchronous updating. 
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Figure 5.8: Type IV evolution for synchronous updating. 

Type IV evolution is marked by the presence of rippling patterns moving around the 
microtubule (see Figure 5.8). Type IV, like Type II, behavior is characterized by dimers 
forming alternating bands of a and p states stretching in the N2-C-N5 direction. These 
horizontal bands alternate from one protofilament to the next and are broken along the 
protofilament length by patterns of a and p states determined by the initial random 
seeding of p-states as well as the randomness of thermal effects during the evolution to 
the pattern described. 

Figure 5.9: Type III evolution for asynchronous updating. 

5.6.2 Typical pattern evolution for asynchronous updates 

Evolution of the system from the initial random configuration was visually observed for 
104 timesteps to determine the type of pattern developed. For asynchronous updating 
only Type III behavior was observed over the range of parameters described above. Type 
III behavior, as shown in Figure 5.9, displays constant change and no pattern formation. 
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The initial pattern of P-seeds on an a-background slowly evolves as dimers are selected 
randomly for update. The duration for a single dimer to remain in one state, or the other, 
was unable to be determined and no visible patterns were discerned. 

I I ' ' ' I I ' ' ' I I ' ' ' I I ' ' ' I I ' ' ' I I ' ' ' I 
o v> © >n © V) < 

Potential Well Depth (meV) 

Figure 5.10: Tubulin dielectric constant versus tubulin potential well depth showing CA evolution 
for synchronous updating based on a system temperature of 310 K. 

5.6.3 Discussion of results 

In this section it was shown that even with a simplifying assumption about the double 
well potential within each dimer, the resultant dynamical behavior of the electronic states 
can depend heavily on the type of updating used. In both the synchronous and 
asynchronous simulations the overall behavior of the system did not vary greatly as 
temperature was varied between 290 K and 330 K. Although overall behavior did not 
depend on temperature, as the temperature was increased, the time taken to reach the 
corresponding asymptotic behavior did vary. For behaviors of Type II and IV the 
increasing temperature delayed the onset of the patterns observed, whereas the onset of 
behavior of Type III evolutions was accelerated with increasing temperature. In all cases 
the typical behavior patterns were reached within the 300-time step period. Taking the 
energy of the electrons on the order of ~100 meV, and the distance between wells as 2 
nm, the time interval for a single transition would be on the order of femtoseconds, as 
shown above. Thus, all behaviors are reached on the timescale of picoseconds. 
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However, this is assuming the movement of the electron is through a vacuum. Taking 
into account the medium may increase this timescale by several factors. Assuming 
transitions on the order of 100 femtoseconds indicates that the movement of such objects 
or patterns around the microtubule occurs at speeds of ~104-105 m/s. 

Figure 5.10 gives the behavior of the synchronous system in terms of the tubulin 
parameters at a temperature of 310 K, which is relevant to the temperature of the typical 
microtubule environment. It should be noted that the regions marked in Fig. 6 should not 
be taken as firm boundaries but rather as transition regions between the three types of 
behavior. The behavior observed in type II evolution is characteristic of automata cells 
that are too strongly interdependent, while the type III behavior is characteristic of cells 
with too weak interdependence. The onset of type IV behavior approaching from the 
type II region is marked by the oscillating bands of type II slowly varying to give rise to 
the discontinuities described for type IV evolution. These discontinuities allow the 
formation of moving objects and increase in size and movement in the further regions of 
type IV behavior. As the region of type III behavior is neared the moving objects 
become larger and interact giving rise to more complex behavior. Eventually this results 
in the loss of observable patterns and properties giving rise to type III behavior. 
Interestingly, below a tubulin dielectric constant of 7.8 only type II behavior is observed 
independent of the potential well depth which gives an empirically testable hypothesis. 
This was also observed for barrier heights below 116 meV with no dependence on the 
dielectric constant. The behavior of the system with a tubulin dielectric constant of 7.8 or 
higher and barrier height above 116 meV can be seen to depend on both the dielectric 
constant and the potential well depth. However, there are no concrete experimental 
findings to indicate either of these values leaving this problem open to future 
experimental investigation. 

The results of these simulations depend heavily on the electrostatic properties of the 
tubulin dimer and on the nature of the microtubule with its environment. The stable and 
oscillating patterns of microtubule automata observed via the synchronous simulations 
could possibly function as specific sites of ion or protein binding and transport thus 
performing some role in the orchestration of biomolecular activities. It is expected that 
the addition of microtubule associated proteins (MAPs) and other proteins known to 
normally interact with microtubules will affect the overall patterns of behavior by altering 
the dynamics of electrons at specific MAP attachment sites and other locations. As well, 
these simulations have shown that information processing at temperatures relevant to the 
microtubule environment is feasible so long as a global clocking mechanism is present. 
The notion of sub-neuronal information processing and signaling suggested to occur in 
microtubules, at relevant temperatures, thus remains a possibility and is open to further 
investigation. Again it is stated that many of the simulation parameters are not known 
through experiment, thus the importance of the electrical properties of microtubules and 
tubulin to the functioning of information processing and signaling mechanisms, as well as 
other biological activities is stressed. 
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Chapter 6 

An Examination of Possible Mechanisms of 
Coherent Energy Transfer in Microtubules 

6.1 The Electron Wavefunction in a Symmetric Double Well Potential 

The electrostatic interior of the tubulin dimer may be considered as an infinite double 
well potential as discussed in Section 5.3.1 and 5.3.2 with a potential defined as, 

(6.1) 

V(x) = 

= 

= 

= 

= 

+ 0 0 

0 

^ 0 

0 
+ 0 0 

X<: 0 

0 < x < L, 

L,<x<L2 

L2<x<L3 

x~s. L3 

as pictured in Figure 6.1. To quantum mechanically investigate the properties of an 
electron confined within this potential the wavefunction, describing the behaviour of the 
confined electron wave and ultimately giving the electrons probability function, and the 
energy levels of the electron must be determined. The wavefunction of the electron in the 
above potential is defined as the eigenfunction ip(x) of the one-dimensional time-
independent Schrodinger equation, 

-h2 d2 (6.2) 

2me ax 

where the corresponding eigenvalues E determine the specific energy levels of the 
particle, and me is the mass of the electron. 

Following the work on infinite double square wells performed by Johnson in the 1980's 
the electron wavefunction bound in the potential described in Equation 6.1 is constructed 
from a linear combination of solutions given by the discontinuities of the potential [1]. 
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Figure 6.1: An infinite square double well potential, with total length of L3, barrier width of L2-
Li, and finite barrier height V0. 

Electrons bound within the double well structure must possess energies below the barrier 
height VQ. The wavefunctions ip(x) for electrons with energies below VQ are given as, 

ip(x) 0 
Asin(kx) 

BeK* + Ce~Kx 

xzO 

0 £ X £ L, 

j[_/i S Ji, £ -*-'7 

= D sin(k(x- L3)) L2 <, x £ L3 

0 x& L, 

(6.3) 

where, 

& = 
V2ffleig 

(6.4) 

K = 
pme(V-E) 

n 

and A,B, C, and Z) are coefficients to be determined. 

Since the double well potential is symmetric under the interchange of x and —x, solutions 
of definite parity can be expected. For single solutions this results in wavefunctions 
extended over the entire well. However, as Gasiorowicz points out [19], if a 
superposition of an even state ij>e of energy Ee, is taken with its nearest odd state ip0 of 
energy E0, such that, 
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W(*) = 

(L,+Z.2> 

xpe(x)- axp0(x) 

•\ll + a2 (6.5) 

and a is chosen to make the J 2 |W(x)| Jx as small a possible, the electron can be 

considered localized as far as possible on the right hand side of the double well structure. 
If the superposition is allowed to evolve in time by multiplying the wavefunction by 
e~,E"h, after a time t, the wavefunction can be written as, 

W(x,t) = e'iE'"\xpe{x) + ae-i^-E')"nip0(x)V^\ + a2 (6-6) 

indicating that the phase relationship between the two initial wavefunctions will vary. 
For the case where, 

e--^-^)"»-_l (6.7) 

the electron is considered localized on the left hand side of the double well structure after 
a time /, indicating an oscillating behaviour for the electron. Thus, the frequency for 
oscillation can be determined as, 

n 

which defines a period that is approximately equal to the tunneling time across the barrier 
between the two wells [19]. 

To solve for the energy eigenvalues, the continuity of the wavefunctions and their spatial 
derivatives at the discontinuities in the potential is required. As such the wavefunctions 
for 0 < x < L], and L2 < x < L3, take on their given form so as to satisfy this condition at x 
= 0, and x = L3. Enforcing this condition at x = Li, and x = L2 and solving yields three of 
the four coefficients, 

*L = - e'^ [sin(ytL,) +—cos(JkL )] 
A 2 ^ K l 

— = - e1^ [sm(kL ) -—cos(kL.)] ( 6 ' 9 ) 

A 2 ' K K ' 

— = - cosh[i«:(Z,2 - L,)] -—cot(£L,) sinh[^(L2 - Z,)] 
A K 
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where A can be found by the condition, 

§\xp(xfdx=l (6.10) 

as well as a transcendental equation, 

G(E) = tanh[K(L2 - ^ [ ^ s i n 2 ^ , ^ c o s 2 ( £ ! , ) ] + 2—sin(«n)cos(*£1) (6.11) 
k k 

where G(E) = 0 yields the energy eigenvalue solutions to Equation 6.2. 

G(E)< 

E 
(eV) 

Figure 6.2: Plot of transcendental equation over energies below the potential barrier height to 
solve for the energy levels of an electron bound in a symmetric double well potential. 

The solutions of Equation 6.11 are very difficult to solve algebraically. Thus, the energy 
eigenvalues were solved for numerically. As discussed in Section 5.3 the double well 
potential of the tubulin interior of Figure 5.3 possesses a barrier width of approximately 
0.2 nm, a separation between the two wells of approximately 2 nm, and an overall length 
of 3.6 nm. Taking these values and applying it to the double well potential described in 
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Equation 6.1 yields Lj = 1.7 nm, L2 = 1.9 nm, and Z3 = 3.6 nm. As indicated previously 
by Hameroff and Tuszynski [2] the potential well depth VQ in the tubulin dimer may 
range between 100-150 meV. Applying these values and plotting the transcendental 
equation G against energy E up to a value of the barrier height Vo the possible energy 
levels of an electron bound within the double well structure were found. Figure 6.2 
shows an example of such a plot. 

Performing this analysis over the range of 100-150 meV, in 1 meV increments, showed 
that two bound states, a ground state and first excited state, existed for all given barrier 
heights 105 meV and above. Only states below the barrier height are considered, as those 
above the barrier height do not result in localization of the electron in the manner 
discussed above. For the minimum barrier height of 100 meV ground state and first 
excited state energy level values were found to be approximately 36 meV and 104 meV, 
respectively, with an energy difference between levels of 68 meV. At the other extreme, 
with a barrier height of 150 meV, approximate values of 40 meV and 104 meV were 
found for the ground and excited states, yielding an energy gap of 64 meV. Thus, the 
range of the gap between energy levels is given as, 

64meV<(El-EQ)< 6SmeV (6.12) 

where EQ is the ground state energy, and Ej is the energy of the first excited state. Values 
of Eo and Ej entered into Equation 6.3 result in an even wavefunction for the ground state 
tpo, and an odd wavefunction for the first excited state ipi. Thus, according to Equation 
6.12 the period of oscillation T = 2jr/a>, ranges as, 

60.%fs<Tz 64.6fs (6.13) 

values comparable to those found in Section 5.5.2. 

Taking the characteristic temperature of activation of the exciton to be, 

T_{EX-E0) (6.14) 

Kg 

where kB is Boltzmann's constant, it is found that, 

143KzTz7S9K (6.15) 

This range is more than twice the physiological temperature of 310 K indicating that the 
exciton will not be easily excited by thermal fluctuations, and is more likely to be 
activated via other sources, such as exciton coupling, or phonon interactions. 
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6.2 Collective Excitations in Microtubules 

6.2.1 The Phonon System 

As discussed previously microtubules are aggregates of tubulin molecules that are 
polymerized into a cylindrical form. By considering the microtubule split between the 1st 

and 13th protofilament the lattice of tubulin dimers may be considered as a single layer of 
molecules (see Figure 6.3). Mechanisms of energy transfer in single layers of molecules, 
known as Scheibe aggregates, have been previously examined [3]. Scheibe aggregates 
are a class of molecular films that belong to the larger group of Langmuir-Blodgett films 
which are defined as one or more monolayers of an organic material, composed of polar 
molecules deposited from the surface of a liquid onto a solid by continually submerging 
and removing the solid substrate in the liquid. In the case of Scheibe aggregates the polar 
molecules are dye molecules composed of chromophores and fatty acids that form into a 
brick layer type arrangement. 

By considering the microtubule as an aggregate layer in two dimensions the lattice 
vibrations in a sheet of tubulin dimers can be investigated. The Hamiltonian for a phonon 
system is given from Equation 2.9 as, 

Hph = ^MbA) (6-14) 

where ficok defines the phonon energy. Elastic vibrations in seamless microtubules 
considered as a two-dimensional planar lattice have been investigated previously [6]. It 
was found that for the canonical microtubule, a 3-start 13 protofilament microtubule 
corresponding to the MT-13A-6 lattice type discussed in section 5.2.1, the protofilament 
and dimer helical pathways possessed phonon frequencies of a>k,p = 3.15 x 10n Hz, and 
a>k,h - 4.8 x 1010 Hz respectively. It can be estimated that the phonon energy in the 
microtubule system is, 

hcokp - 0.207meV (6.15) 

hcokll - 0.032meV 

with a characteristic phonon time of, 

1 
' i . i 7 v i n - | 2 < . 

(6.16) 
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By rearranging Equations 2.6 and 2.8 it can be shown that the root mean square of the 
lattice fluctuations xrms in the high temperature limit is given as [7], 

rms,h 

Arih 7 
1 mtubcokp 

j \z 

\7di 

! "»n*»M 

\Tph,P) 

I 

~ 0 . 0 4 8 i x 
\Tph,p) 

I 

\Tph,h/ 

«0.123Ax 
\» 

\Tph,hj 

(6.17) 

where mtub is the mass of a tubulin dimer taken as 110 kD. The Debye temperature Tph is 
the characteristic temperature at which all phonons become thermally active and is 
defined as [8], 

ha), „ 
T„„„=—^~2A0K 

(6.18) 
ph,p 

fra>, 
lph,h 

k,h • 0.31K 

where JCB is Boltzmann's constant. Thus, at the physiologically relevant temperature of 
310 K this corresponds to lattice fluctuations of approximately 0.55 A and 3.6 A along 
the protofilament and dimer helix, respectively. The Debye temperature can be seen to 
be much less than the physiologically relevant temperature, implying that the thermal 
environment may easily excite phonons in the microtubule system. Thus, thermal 
vibrations will most likely drown out energy supplied to the phonon system via other 
sources, such as excitons or other phonons, unless the system is somehow shielded from 
the environment. 

6.2.2 The Exciton System 

If there is only one electron bound within the double well potential then when it is excited 
from the ground state to the first excited state it will leave behind an empty state. As 
discussed in Section 2.3.2 this arrangement of an electron and hole is capable of forming 
an exciton. Thus, the second quantized Hamiltonian for a single exciton system, 

H „ = h&rfa (6.19) 

where d and a define the exciton creation and annihilation operators and hQ defines the 
energy difference between the ground and first excited states. As stated at the end of the 
previous section, for the double well system described by the tubulin dimer, values of hQ 
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fall in the range 6 4 - 6 8 meV. 

As discussed in [3] exciton energy transfer in Scheibe aggregates can be understood in 
terms of an energy hopping mechanism, which is governed by the interaction of 
molecular dipoles between dye molecules. That is, assuming that the exciton energy can 
be transferred between two molecules via a hopping mechanism the simplest second 
quantized Hamiltonian, as shown in Equation 2.18 takes the form, 

Hex = %Q,{a\a^ + a\a2) + J(a\a2 + ajjO,) (6.20) 

where J is the hopping constant and should correspond to the dipole-dipole interaction 
energy, and the subscripts 1 and 2, on ct and a, denote a central molecule and a 
neighboring molecule, respectively. 

A transition dipole moment M is created when an electron makes a transition between its 
ground and first excited state [4], and may be given in one-dimension by, 

M=<tyA\ey\xpB> (6.21) 

where e is the charge of an electron, y is the position operator, and ipA and ipB are the 
electron wavefunctions in the ground and first excited states respectively. Taking the 
wavefunction for the electrons described by Equation 6.3, and the energies for the ground 
and excited states defined by Equation 6.12 the transition dipole moment M was found to 
have an approximate magnitude of 1.2 x 10"28 Cm, or 36 Debye, over all ranges with the 
direction restricted to the y-direction. 

The interaction J of two point dipoles in a dielectric medium of tubulin can be obtained 
from [5] as, 

M 1 -M 2 -3( f -M 1 ) ( r -M 2 ) (6.22) 

4jtee0r
3 

where Mi and M2 are the dipole moments of molecule 1 and 2, respectively, s is the 

dielectric constant of the medium, r = -^x1 + y2 is the magnitude of the distance between 
molecule 1 and 2 with components along the x and y directions, and r is a unit vector 
pointing in the direction of r. Considering each dimer posses the same dipole moment 
M that points only in the y-direction, for this one-dimensional case, Equation 6.22 may be 
simplified to, 
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(A) 
a 

b 
(B) 

Figure 6.3: Diagram of tubulin neighborhood groups. (A) Symmetry around a central dimer, x 
protofilament direction, y microtubule circumference, and h dimer helix direction. (B) Distances 
between dimers where a = 8nm, b = 4.9nm and d = 5nm. 

It can be seen from Figure 6.3(A) that a given neighborhood group contains 6N dimers, 
where N determines the degree of separation from the central dimer. For nearest 
neighbors N=l, thus containing 6 dimers in the normal tilted hexagonal lattice 
neighborhood. For the neighborhood of next nearest neighbors N=2, yielding 12 dimers, 
and so on for increasing neighbor groups. It can also be seen from Figure 6.3(A) that the 
neighbors have symmetry about the central dimer. Due to this symmetry in the dimer 
neighborhoods a purely excitonic model yields a dispersion relation as follows from 
Equation 2.18, 

N 3/ 

ei - % Q + 2 ^ 5 / V o s ( * ' ^ (6.24) 

where / and / determine the neighborhood as mentioned above, Jy is the dipole-dipole 
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interaction energy between the central dimer dipole and a given neighbor dipole, and r^ 

is the distance between dipoles. Expanding the dispersion energy around a minimum 

lvalue, kmin, yields, 

••-, ; - , 2 
(6.25) 

where the minimum energy e- is given by 
N a 

%rm+2TZJiJ (6.26) 

Unlike the Scheibe aggregate situation presented in [3], where the molecules of the 
monolayer are completely symmetrical around the x and y axis, the microtubule lattice 
structure does not provide a coordinate system in which the dipole contributions can be 
separated into two effective coupling constants in distinct directions. Due to the tilted 
hexagonal structure, and the direction of the dipole moment, there is skewed symmetry in 
the dipole couplings, thus the second term in Equation 6.25 may not be written in terms 
of an orthogonal axis. 

Considering coupling only in the protofilament and dimer helix direction, the dispersion 
relations may be given as, 

eh = nQ+ ~2J~ C0S(^)aJ 
4jtee0a f-fi 

(6.27) 

£K = hQ K— TTTT/-T cos(L(bl + dz)lli) 
4nee0(b

2 + d2)5l2iie " 

where the second term gives the dipole-dipole coupling to the N"1 nearest neighbors, a - 8 
nm, b = 4.8 nm and d - 5 nm. As the coefficient is necessarily positive in both cases the 
dispersion energy takes on a minimum when kp = kpmi„ = Jt/a, and for kh = khmi„ = 0 
yielding values of, 

ek = hQ — r > - r 
q7l££°a '-*1 (6.28) 

2M\2d2-b2) v l 

*tai" 4jtee0(b
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, J2N5/2 2J ,-3 
+ d ) T?i 



CHAPTER 6: MECHANISMS OF COHERENT ENERGY TRANSFER 124 

Expanding Equation 6.27 around this minimum energy up to orders of k2 yields, 

it £k =£k +Jpa\k -—)* + ... 

(6.29) 

£k =£k +Jh(b
2 + d2)(kh , n . 1 . , ) 2 + ... 

hmm "v * (b2 + d2)112 

where, 

j M2 y 1 

' 4jt£ey £f i3 

(6.30) 

M2(2d2-b2) f 1 

47l££0(b' + d2f2%i3 

Taking the extreme case of an infinitely long microtubule, N -+ oo, for the protofilament 
case gives, 

2M2 

et = hQ -(1 .2020569...) 
0 (6.31) 

7 _ - M ,(1.2020569...) 
4;t££0a 

with the infinite sum value obtained from [9, 10]. As discussed in section 3.3.2 a typical 
lower end length of a microtubule is approximately 200 nm, corresponding to 12 dimers 
on either end of the central dimer. The sum of inverse cubes drops off rapidly with a sum 
to N= 12 yielding approximately 1.19, a value in good agreement with the infinite sum. 
Thus, since microtubules range in length from the lower end value of approximately 200 
nm to values on the order of micrometers, the infinite sum is taken as an acceptable 
approximation. 

One turn around the microtubule for the helical case corresponds to N = 6 dimers on both 
sides of the central dimer. A sum of inverse cubes up to N = 6 yields, 

,, .M- ^f-fla.n^...) 
47iee0(b

2 + d2)512 
(6.32) 

M2(2d2-b2) 
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Taking the dielectric constant to range between 2 and 10, as discussed in section 5.4.1 
yields a minimum energy range and coupling value in the protofilament direction of, 

hQ-l.90meV^£k ehQ-0.3&meV 

0.l9meV<Jp<0.95meV 

hQ-l.41meV<ek zhQ-0.29meV 

0.l5meV<Jh<0.74meV 

(6.33) 

The characteristic time for exciton coupling is defined as, 

h (6.34) 

thus yielding a range of, 

T 
" 27 

3.46xlQ-us^Texp ^1.73xlQ-i2s 

4A5xlO-i3s^rexh <2.19xl0"1 2^ 

The correlation between two exciton sites is given by the expression [3], 

T(JC) = fykake-iladk 

(6.35) 

-x 

J*T„r 

(6.36) 

where the creation and annihilation operators for the exciton are given by Equation 2.20, 
and the correlation length xcorr is defined as, 

-/J* V'2 (6-37> 
Xcorr ~ | r | , „ 

The characteristic temperature for exciton coupling Tex is defined as [3], 

T = 2 / (6.38) 
ex 

This gives a range of, 

Kg 

4.41**7' s 22.09* (6.39) 
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over the described parameters, and results in correlation lengths of, 

0.95nm < xcorrp < 2AAnm (6.40) 

Q.lAnm < xcarrh < 1.65nm 

As in the phonon case the temperature of the microtubule environment is well above this 
characteristic temperature indicating that the thermal environment is likely to overwhelm 
the coupling between excitons removing any transmission of energy. 

6.3 Discussion of Results 

The exciton characteristic temperature given at the end of section 6.1 is above the 
temperature of the environment indicating that excitons will not be easily disrupted by 
thermal fluctuations. However, as stated at the end of section 6.2.1 and 6.2.2 the phonon 
and exciton coupling characteristic temperatures are well below the temperature of the 
microtubule thermal environment. This means that the vibrations caused by the thermal 
energy of the surrounding medium are more than sufficient to overwhelm both phonon 
and exciton coupling energy transfer in the microtubule lattice, and any chance of 
forming a coherent excitation is likely to be destroyed. It has been stated that the inside 
of a cell is too "warm and wet" to support quantum coherence [11-13]. However, there 
have been replies to this line of reasoning stating that mechanisms exist to shield a 
microtubule from the environment, thus allowing coherent quantum states to exist. 

One such suggested mode of isolation is from actin gel states that are purported to 
solidify around microtubules thus shielding them from thermal effects [14, 16]. 
Condensed ion clouds that are attracted to the microtubule due to its large negative 
surface charge, known as Debye screening has been suggested as another form of 
shielding [14]. Similar to this idea is shielding to due the existence of ordered water 
surrounding the microtubule [14, 15]. Spectroscopic studies of resonant intermolecular 
transfer of vibrational energy in liquid water have shown that energy is transferred 
rapidly along water molecules before it dissipates [18], thus providing a mechanism for 
shielding the microtubule from thermal energy. Other suggested mechanisms to avoid 
thermal decoherence include coherent pumping of the system via the environment. This 
was previously discussed under the notion of biological coherence in section 2.3.3. 
When a system is strongly coupled to its environment via given degrees of freedom, it 
may lock out other degrees of freedom enabling coherent superpositions and 
entanglement to persist [17]. This locking out is described via a quantum Zeno effect, in 
which an unstable state, if observed continuously, will never decay since every 
measurement causes the wavefunction to reduce to a pure eigenstate thus allowing 
unfavorable states to persist. This effect was not taken into account in the above analysis, 
yet since it has been shown that thermal vibrations of the environment easily excite 
phonons and the exciton coupling in the model, a coherent pumping mechanism in the 
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environment can be understood to result in coherent collective excitations. However, to 
date there is no known experimental evidence to show such a mechanism in relation to 
the microtubule. 

While the stated mechanisms seem plausible, the degree of isolation required for the 
model discussed above is very high. The characteristic temperature scale of both 
phonons and exciton coupling in the proposed model range from a maximum of 30 K 
down to a few tenths of a degree. Thus, for any coherent state to exist in the given model 
the isolation would need to be almost absolute. Currently the mechanisms of isolation are 
only theoretical propositions, and to date there is no known experimental evidence 
quantifying the effect of the above mechanisms on microtubules. 

Assuming such a mechanism exists, in whatever form it may take, then the existence of 
coherent excitations, in the form of excitons and phonons as described in the model 
above, is feasible. The energy and characteristic timescales of action for exciton 
coupling and phonons, along both the protofilament and helical directions, are in close 
relation indicating a strong possibility of coupling between the two types of excitation. 
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Conclusion 

This report aims at investigating the information processing capabilities of microtubules 
at relevant temperatures within the body, and the relation of such capabilities to possible 
explanations for the phenomena of consciousness. The phenomena of consciousness are 
a new area of study for the physical sciences. Chapter 1 of this report examined 
consciousness from the viewpoint of the physical sciences. In terms of physical science 
consciousness is defined as "the condition of being aware of one's surroundings and one's 
own existence" and is taken to be a function of the material brain. Defining 
consciousness as a function of the material brain provides the physical sciences with an 
arena of investigation. The classical view of consciousness is explained as resulting from 
increasing complexity in the neuronal network of the brain, thus being an emergent 
phenomenon. It is pointed out that several of the features of consciousness cannot be 
understood from this classical standpoint, such as: the nature of subjective experience, 
the binding problem, its non-computable aspects, the notion of free will, and the 
rudimentary consciousness of less complex organisms. 

In light of these objections to the classical view the aspects of quantum theory are 
examined and several quantum theories of consciousness are discussed. In contrast to the 
deterministic theories of emergence, quantum theories of consciousness were outlined 
illustrating several of the advantages of such approaches to understanding consciousness, 
such as non-locality explaining the lack of a specific center of consciousness, lack of 
determinism allowing for free will and non-computability, and the sense of unity as a 
result of coherence. Arguments in support of quantum theories of consciousness are 
weighed against those raised in opposition to such an explanation. Specifically those 
arguments concerning the implication of microtubule information processing as a key 
component to cognitive brain functions are examined in light of three main criticisms. 

The first criticism objects that there appears to be no special quantum mechanical 
properties needed to explain psychological and neurological phenomena, and that the 
relevance of quantum effects to the structure and function of the brain does not 
necessitate their involvement in explaining consciousness. The use of quantum theories 
to investigate living systems is not a new concept. Chapter 2 outlined the connection 
between standard quantum based theories of solids and the working of biomolecular 
polymers. The chapter provided the basic formalisms used to describe biopolymers from 
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a quantum perspective, namely phonons and the lattice properties of non-rigid crystals, 
excitons and conductivity, and the interaction between them. Several quantum based 
descriptions of biological phenomena are outlined during this discussion including an 
explanation of en:zyme processes via semiconduction and proton tunneling, quantum-
mechanical manipulation of proteins in the eye and explanation of functions of the eye 
via semiconduction, as well as semiconduction and electronic quantum coherence in 
photosynthesis, with a specific quantum mechanical explanation of anesthetic gas via 
London forces given in relation to consciousness. The material focuses on biosystems in 
general and therefore does not focus specifically on explanations of neurological and 
psychological phenomena, however the breadth of material, both experimental and 
theoretical, explaining biological processes via quantum processes supports the quantum 
approach to understanding brain function, at least from a molecular viewpoint. 

The second criticism notes that the empirical evidence linking how the activity of a single 
synapse, including its constituent organelles, enters into the dynamics of neural 
assemblies is lacking thus the relevance of quantum processes in mental phenomena is 
merely a claim. In reply, the structure and biophysical functions of microtubules, 
specifically those functions related to signaling, conduction and cellular transport, and 
possible mechanisms for microtubules to influence brain cell firing are discussed in 
Chapter 3. As well the lack of definitive parameters of the conductive properties of 
microtubules, and its effect on the predictions of theoretical models is discussed. In 
response to the second criticism the significant headway in the investigation of 
microtubule conductivity is reported. Novel experimental designs that have been 
employed including electrical contact to single molecules and electroorientation were 
discussed showing that the electrical nature of microtubules is an active field of research. 
The evidence obtained from these investigations indicates that microtubules are likely 
conductive in nature, yet precise values for inclusion within theoretical models are still 
needed. The difficulty in obtaining accurate measurements of conductivity has been 
illustrated by an analysis of the electroorientation method of Minoura and Muto, which 
showed that even with very refined measurements small changes in experimental 
variables results in appreciable differences in the values obtained. As well the difficulty 
in segregating the conductivity into an intrinsic microtubule conductivity and a 
conductivity due to the effect of ion cloud condensation has been discussed. 

In regards to microtubules affecting the functioning of neural dynamics, Chapter 4 
provides an overview of the cytoskeleton as an information processing device. Previous 
models of microtubules as information processing devices are outlined along with an 
assessment of their reliability. From the models of microtubules as cellular automata, 
ferroelectric lattices, and quantum Hopfield networks, it was shown that microtubules do 
possess capabilities for information processing, information storage, and signal transfer. 
The functioning of microtubules within neurons and their effects on neuronal firing 
patterns, and thus the overall functioning of the brain, are also discussed. Based on the 
discussion of the experimental evidence linking MAP2, and kinesin to learning and 
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memory, as well as the theoretical predictions of the computational ability of the 
dendritic cytoskeleton a specific functional role for microtubules in neurons is proposed 
that differs from their well-characterized structural significance. The role of 
microtubules within the neurons is outlined as follows: 

1) Synaptic transmission signals arrive at the postsynaptic 
density causing ionic waves to move along associated 
actin filaments. 

2) These waves propagate along MAP2 via the movement 
of counter ions from the actin filaments to 
microtubules. 

3) These waves in turn affect the conformation states of 
the C-termini on the microtubule. 

4) The change in C-termini states affects the kinesin based 
movement along microtubules as well as the MAP2 
connections along the microtubule affecting memory 
and learning. 

5) The change in MAP2 connections then alters the 
electronic information processing within microtubules 
that may give rise to a conscious event. 

6) These changes in MAP2 connection also affect 
connections with other microtubules. 

7) The wave may then propagate along the new 
connections to other actin filaments that in turn affect 
ion channels and neuron signaling. 

The above scheme elucidates the way in which external stimuli affect our learning and 
memory as well as our conscious perception, for example by eliciting changes in MAP2 
patterns affecting information processing. However, with a mechanism to explain how 
the environment affects microtubule function, the key question now becomes how does 
the electronic information processing in microtubules associated with consciousness 
affect the external system thus accounting for concepts such as conscious free will, the 
so-called mind-body problem? 

The final major criticism indicates that decoherence arising from the thermal 
environment within the brain can destroy any quantum information processing effects 
within microtubules. While theoretical predictions of Hagan et. al., and Rosa et. al. 
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indicate that this may" not be so, it has been shown that direct experimental evidence of 
quantum effects within microtubules is required. The investigative aims of this thesis 
report were to theoretically evaluate information processing and quantum coherence in 
microtubules at physiologically relevant temperature. From the cellular automata 
modeling of a microtubule based on the electrostatic potential of tubulin presented in 
Chapter 5, it was determined that under assumed conditions microtubules are capable of 
information processing on an electrical level at physiological temperature. The model 
used a typical microtubule configuration of 13 protofilaments with its constituent tubulin 
proteins packed into a seven-member neighborhood in a tilted hexagon configuration 
known as an A-Lattice. The interior of the tubulin protein was taken to contain a region 
of two areas of positive charge separated by a barrier of negative charge and was based 
on electrostatic maps of the protein interior. The interior arrangement constituted a 
double well potential structure within which a mobile electron was used to determine the 
states of an individual tubulin dimer. Dynamics of the system were determined by the 
minimization of the overall energy associated with electrostatic interactions between 
neighboring electrons as well as thermal effects. The model allowed transitions for 
electrons with sufficient energy to overcome the potential barrier in which the new 
configuration lowers the system's energy, or if the configuration raises the system's 
energy with a finite probability. Quantum mechanically the model allowed the electron 
to tunnel through the potential barrier allowing transitions for which the system's energy 
is lowered even if the electron does not possess the necessary energy to overcome the 
potential barrier. The emergence of self-organizing static, oscillating or propagating 
patterns determined the system's capability to process information. The information 
processing capability was shown to be dependent on the method of updating, thus 
requiring a synchronous global clocking mechanism within the cell. Ionic wave 
propagation, from either condensed counter ions surrounding the microtubule, or via 
nerve impulses, was suggested as a possible clocking mechanism. However, while the 
information processing capability of microtubules was shown to be robust in the presence 
of physiologically relevant temperature it relied heavily on the electric properties of the 
tubulin dimer, which remains an area under active investigation. The model predicted 
information processing capabilities for a tubulin dielectric constant of 7.8 or greater. 
While this value is larger than the typical protein range of 2-4, experimental evidence has 
yielded tubulin dielectric constants of 10 or less. The information processing capability 
is also highly reliant on the depth of the potential well, but as stated this property is not 
yet experimentally determined. 

The collective excitation model in Chapter 6 was used to investigate coherent quantum 
excitations in microtubules. The model was based on the dipole-dipole interaction of 
excitons formed from the transition of electrons between ground and excited states in a 
double well structure based on the tubulin electrostatic map coupled to the microtubule 
lattice. Using previous studies on the elastic properties of microtubules phonon energies, 
and characteristic times and temperatures in the protofilament and dimer helix direction 
were determined. The electron transition dipole, and energy levels were determined via 
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solving for the ground and first excited state wavefunctions for an electron in an infinite 
double well structure. The energy difference between the ground and first excited state 
was taken as the exciton energy. With the dipole magnitude and direction the dipole 
coupling values were estimated. The microtubule lattice was taken as an aggregate of 
tubulin dimers. Due to the tilted hexagonal structure, and the transition dipole pointing in 
the direction of the microtubule circumference, one-dimensional coupling between 
dimers in the protofilament and dimer helix directions were considered. Expanding the 
energy dispersion relation around the minimum dispersion energy yielded the dipole-
dipole coupling constants. From these values characteristic times and temperatures were 
determined. It was found that the temperature of activation for excitons was well above 
physiological temperature. This indicated that excitons are not easily excited by the 
thermal environment, but rather rely on other mechanisms of excitiation such as coupling 
to other excitons, or phonons. However, it was found that the exciton couling and 
phonon temperatures of activation were well below the temperature of the microtubule 
environment. These values were below 30 K indicating that thermal vibrations of the 
environment are more than sufficient to excite phonons and excitons removing any form 
of coherent collective excitation. Phonon and exciton coupling energies and 
characteristic times were shown to be on comparable scales with energies in the range of 
meV and times on the order of 10"12-10"13 s indicating a strong possibility for coupling 
between the two excitations in the absence of thermal effects. Mechanisms to isolate 
microtubules from their environment, such as layers of ordered water or counter ions, and 
coherent pumping mechanisms, have been suggested, however they remain theoretical in 
nature with no experimental evidence verifying their effect on microtubules. 
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Appendix - QCAMM Code 

The following is the code used to create the cellular automata simulation described in 
Chapter 5. The program was created on a Mac OS X version 10.4.10 with 1.83 GHz Intel 
Core Duo processor, and 512 MB 667 MHz RAM using Xcode version 2.2.1. The 
program was written in the C language and compiled with the GNU Compiler Collection 
that is standard on the machine described. 

QCAMM.C 

/*QCAMM Code written in 2005-2007 at the University of Alberta for the purpose of investigating 
information processing in microtubules. Qcamm.c and all related functions were written by Travis 
Craddock during this time period except for ranmar.c and ranmar.h which were obtained from public 
sources*/ 

#include <math.h> 
#include <stdio.h> 
#include <time.h> 

#define bolt 0.08617385 /*Boltzmann constant in meV/K*/ 
#defineIJ 31328 
#defineKL 30081 

main() 

{ 
FILE* in_file; /""Input file*/ 

FILE* image; /*PPM Image Output file*/ 

/*Declare variables*/ 

double ediff; /*energy difference value*/ 
double enerdiff(int, int, int[6], double); /*function to calculate energy difference on A6 lattice*/ 
double energy; /*energy value of centre electron*/ 
double enercalc(int, int[6], double); /*function prototype to calculate energy value on A6 lattice*/ 

double force; /*force value on the central dipole moment*/ 
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double fbr_calc(int, int[6]); /*function prototype to calculate force value on A6 lattice*/ 

double num, numl, num2; /"random numbers*/ 
double ranmar(); /*function prototype to pseudo-randomly a value of zero or one*/ 

double probabil; /*probability of electron to tunnel*/ 

double probcalc(double, double); /*function prototype to calculate tunneling probability*/ 

double potdepth; /*depth of the electron's potential well*/ 

double thresh; /*threshold to determine extent which mobile electron is affected by neighbours*/ 

double T; /*temperature of the system*/ 

double dc; /*tubulin dielectric constant*/ 

double update; /*updating rule; 0 - synchronous, 1 - random asynchronous*/ 

double tempprob; /*probability of electron changing positions due to temperature*/ 

int centinit, centfin; /*initial and final positions of centre dimer electron*/ 

intposition[13][100]; /* electron positions in microtubule lattice, 0 - left well, 1 - right well */ 

int newposit[13][100]; /*new positions of electrons as positions are updated during a timestep*/ 

int holdposit[13][100][500]; 

int ROAposit[13][100]; /*track of updated dimers in Random Order Asynchronous Updating*/ 

int neighpos[6]; /*array of electron positions for a given neighbourhood on A6 lattice*/ 

int i,j,k,l,m,n,a,b,c,u,v,w,x,y,z; /*index variables*/ 

double weight; /* the weighting between alpha and beta states, and percentage value*/ 

int signal; /*signal sent on microtubule; 0 - no signal, 1 - constant minus end, random fed plus end*/ 

int scenario; /*scenario type to be used in calculations; 0 - classical, 1 - quantum*/ 

int rule; /*rule type to be used in determining system dynamics; 0 - energy, 1 - force*/ 

int initial; /*initial seeding of the microtubule lattice; 0 - random, 1 - strip, 2 checkered*/ 

int timestep; /*number of timesteps in simulation*/ 

int now, now_usec; /*times in seconds and milliseconds to seed RNG*/ 

intseedl,seed2; /*seeds for RNG*/ 

charbuffer[80]; 
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float red, green, blue; 

/*Open input file*/ 
infi le = fopen("input.dat","r"); 

/*Seed Random Number Generator*/ 
now = time(NULL); 
nowusec = now* 1000; 
seedl = (nowusec - KL * (nowusec / KL)); 
seed2 = (now - IJ * (now / IJ)); 
rmarin2(seedl, seed2); 

/*Read in input values*/ 

fscanf(in_file, "%d", &rule); 
if(rule == 0) 

fscanf(in_file, "%d", &scenario); 
else 

scenario = 0; 
fscanf(in_file, "%d", &initial); 
fscanf(in_file, "%lf', &update); 
fscanf(in_file, "%lf', &weight); 
fscanf(in_file, "%d", &signal); 
if(rule==0){ 

fscanf(in_file, "%lf\ &T); 
fscanf(in_file, "%lf', &potdepth); 

}else 
fscanf(in_file, "%lf', &thresh); 

fscanf(in_file, "%lf", &dc); 
fscanf(injile, "%d", &timestep); 

/•Initialize place holding array*/ 
for(i = 0 ; i<13; i++) 
{ 

for(j = 0; j<100; j++) 
{ 

newposit[i][j] = 0; 

} 
} 

/•Initialize states*/ 
if(initial == 0) /*weighted random seeded states*/ 

{ 
for(i = 0 ; i<13 ; i++) 
{ 

for(j = 0; j<100; j++) 
{ 

num = ranmar(); 
if(num < (weight/100)) 

position[i][j] = 1; 
else 

position[i][j] = 0; 
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} 
} 

} 
else if(initial = 1) 

{ 
k = 0; 
forO = 0 ; j<100; j++) 

{ 
for(i = 0 ; i<13; i++) 
{ 

if(k == 0) 
position[i][j] = 0; 

else 
position[i][j] = 1; 

} 
if(k==0) 

k = l ; 
else 

k = 0; 
} 

} 

/Timesteps of progression For Synchrouns updating*/ 
if(update == 0) 
{ 

for(k = 0; k < timestep; k++) 
{ 

if(signal = 1) 
{ 

for(l = 0 ; K 1 3 ; l + + ) 
{ 

num = ranmar(); 
if(num < 0.5) 

position[l][99] = l; 
else 

position[l][99] = 0; 
position[l][0] = 1; 

} 
} 

/*Create PPM image file of electron positions at timestep k*/ 
sprintf (buffer, "slab-%09d.ppm", k); 
image = fopen (buffer, "w"); 
fprintf (image, "P6\n%d %d\n255\n", 228, 33); 

for(i = 0; i < 2280; i++) /*header bar*/ 
{ 

fprintf (image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 
} 

for(i = 0 ; i<13 ; i++) 

{ 
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for(m = 20; m > i; m = m-1) /*spacing for MT slant*/ 
{ 

fprintf(image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 

for(j = 0;j<100;j++) 
{ 

if(position[i][j] = 1) 
{ 

red = 0.0; 
green = 0.0; 
blue = 0.0; 

} 
else 
{ 

red =1.0; 
green = 1.0; 
blue =1.0; 

} 
fprintf (image, "%c%c%c", (int)(red*255.0), (int)(green*255.0), 
(int)(blue*255.0)); 
fprintf (image, "%c%c%c", (int)(red*255.0), (int)(green*255.0), 
(int)(blue*255.0)); 

} 

for(m = 0; m < i+8; m = m+1) /*spacing for MT slant*/ 
{ 

fprintf(image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 
} 

} 

for(i = 0; i < 2280; i++) /*footer bar*/ 
{ 

fprintf (image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 

} 

fclose(image); 

/*Select dimer and neighbourhood, check energy difference, move centre electron to least 
energy configuration*/ 
for(i = 0;i<13;i++) 
{ 

for0 = 0;j<100;j++) 
{ 

/*Set boundary conditions*/ 
a = i-l; 
b = i; 
c = i+l; 
u=j- i ; 
v= j ; 
w=j+l; 
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x = j + ) ; 

y = j ; 
z = j - l ; 

/*wrapping of protofilaments to form microtubule type A*/ 
iflla < 0) 
{ 

a = 1 2 ; 
u = u + 8; 
v = v + 8; 

} 

if(c>12) 

{ 
c = 0; 
x = x - 8; 
y = y - 8 ; 

} 

/*torroidal boundary conditions*/ 
if(u < 0) 

u = u + 100; 
if(u > 99) 

u = u - 100; 
if(v > 99) 

v = v - 100; 
if(w > 99) 

w = w - 100; 
if(x > 99) 

x = x - 100; 
if(x < 0) 

x = x + 100; 
if(y<0) 

y = y + 1 0 0 ; 
if(z < 0) 

z = z + 1 0 0 ; 

/*Set neighbour positions for center dimer position i j * / 
neighpos[0] = position[a][u]; /*N0 position*/ 
neighpos[l] = position[a][v]; /*N1 position*/ 
neighpos[2] = position[b][w]; /*N2 position*/ 
neighpos[3] = position[c][x]; /*N3 position*/ 
neighpos[4] = position[c][y]; /*N4 position*/ 
neighpos[5] = position[b][z]; /*N5 position*/ 

/*Set initial and final center dimer electron position to calculate energy 
change*/ 
centinit = position[i]fj]; 

if(centinit == 0) 
centfin = 1; 

else 
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centfin = 0; 

/*Check energy difference for changing position of centre dimer electron, and 
change position if new position lowers the energy*/ 
e_diff = enerdiff(centinit, centfin, neighpos, dc); 
tempprob = exp(-e_diff/(bolt*T)); 

/*Perform update according to classical scenario*/ 
if(scenario == 0) 
{ 

energy = enercalc(centinit, neighpos, dc); 
force = for_calc(centinit, neighpos); 

if(rule == 0) 

{ 
if((e_diff <= 0) && (energy > potdepth)) 

newposit[i][j] = centfin; 
else if((e_diff > 0) && (energy > potdepth)) 
{ 

if(T != 0) 
{ 

num = ranmar(); 
if(num < tempprob) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 
} 

} 
else 

newposit[i][j] = centinit; 

} 

if(rule==l) 

{ 
if(force> (thresh/1000)) 

newposit[i][j] = 1; 
else if(force < -(thresh/1000)) 

newposit[i][j] = 0; 
else 

newposit[i][j] =position[i][j]; 
} 

} 

/•Perform update according to quantum scenario*/ 
if(scenario== 1) 

{ 
energy = enercalc(centinit, neighpos, dc); 
if((e_diff <= 0) && (energy > potdepth)) 

newposit[i][j] = centfin; 
else if((e_diff > 0) && (energy > potdepth)) 
{ 

if(T != 0) 
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{ 
num = ranmar(); 
if(num < tempprob) 

newposit[i][j] = centfin; 
} 
else 

newposit[i][j] = centinit; 

} 
else if((e_diff <= 0) && (energy <= potdepth)) 
{ 

num = ranmar(); 
probabil = probcalc(potdepth,energy); 
if(num < probabil) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 
} 
else if((e_diff > 0) && (energy <= potdepth)) 
{ 

num = ranmar(); 
probabil = probcalc(potdepth,energy)*tempprob; 
if(num < probabil) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 
} 
else 

newposit[i][j] = centinit; 
} 

} 
} 

/*Update array of electron positions*/ 
for(i = 0 ; i<13 ; i++) 

{ 
for(j = 0 ; j<100; j++) 
{ 

holdposit[i][j][k] = position[i][j]; 
position[i][j] = newposit[i][j]; 

} 
} 

for(i = 0; i < 6; i++) 

{ 
neighpos[i] = 0; 

} 
} 

} 

/*Timesteps of Progression for Asynchronous Updates*/ 
else 
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{ 
for(k = 0; k < timestep; k++) 
{ 

/* Signal*/ 
if(signal ==1) 
{ 

for(l = 0;l<13;l++) 
{ 

num = ranmar(); 
if(num < 0.5) 

position[l][99] = 1; 
else 

position[l][99] = 0; 
position[l][0] = l; 

} 
} 

/*Create PPM image file of electron positions at timestep k*/ 
sprintf (buffer, "slab-%09d.ppm", k); 
image = fopen (buffer, "w"); 
fprintf (image, "P6\n%d %d\n255\n", 228, 33); 

for(i = 0; i < 2280; i++) /*header bar*/ 
{ 

fprintf (image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 
} 

for(i = 0;i<13;i++) 
{ 

for(m = 20; m > i ; m = m-1) /* spacing for MT slant*/ 
{ 

fprintf(image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 
} 

forG = 0;j<100;j++) 
{ 

if(position[i][j] = 1) 
{ 

red = 0.0; 
green = 0.0; 
blue = 0.0; 

} 
else 
{ 

red =1.0; 
green = 1.0; 
blue =1.0; 

} 
fprintf (image, "%c%c%c", (int)(red*255.0), (int)(green*255.0), 
(int)(blue*255.0)); 
fprintf (image, "%c%c%c", (int)(red*255.0), (int)(green*255.0), 
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(int)(blue*255.0)); 

} 

144 

} 

for(m = 0; m < i+8; m = m+1) /*spacing for MT slant*/ 

{ 
fprintf(image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 

} 

for(i = 0; i < 2280; i++) /*footer bar*/ 

{ 
fprintf (image, "%c%c%c", (int)(99), (int)(99), (int)(99)); 

} 

fclose(image); 

/*Initialize array to keep track of which dimers have updated in a given timestep*/ 
for(i = 0 ; i<13 ; i++) 

{ 
for(j = 0 ; j<100; j++) 
{ 

ROAposit[i][j] = 0; 

} 

/*Select dimer and neighbourhood at random, check energy difference, move centre 
electron to least energy configuration*/ 
for(m = 0; m < 1300; m++) 

{ 
/*Choose a dimer at random from dimers that have not been chosen before*/ 
do 

{ 
numl =ranmar()*1300; 
l = (int)(numl+0.5); 

i f ( ( l>=0)&&(l<100)) 

i = 0; 
j = i; 

else if((l >= 100) && (1 < 200)) 

i = l ; 

j = 1-100; 

else if((l >= 200) && (1 < 300)) 

i = 2; 
j = 1 - 200; 

else if((l >= 300) && (1 < 400)) 
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j = 1-300; 

else if((l >= 400) && (1 < 500)) 

i = 4; 
j = 1 - 400; 

else if((l >= 500) && (1 < 600)) 

i = 5; 

j = 1 - 500; 

else if((l >= 600) && (1 < 700)) 

i = 6; 
j = 1 - 600; 

else if((l >= 700) && (1 < 800)) 

i = 7; 
j = I - 700; 

else if((l >= 800) && (1 < 900)) 

j = 1 - 800; 

else if((l >= 900) && (1 < 1000)) 

i = 9; 

j = 1 - 900; 

else if((l >= 1000) && (1< 1100)) 

i = 10; 

j =1-1000; 

else if((l >= 1100) && (1 < 1200)) 

i = 11; 
j =1-1100; 

else if((l >= 1200) && (1 < 1300)) 
i=12; 
j = 1-1200; 

if(ROAposit[i][j] = 1) 
n = I ; 
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else 
n = 0; 

}while(n = 1); 

/*Set boundary conditions*/ 
a = i-l; 
b = i; 
c = i+l; 
u = j - l ; 
v = j ; 
w = j+ l ; 
x = j + l ; 

y = j ; 
z = j - i ; 

/*wrapping of protofilaments to form microtubule type A*/ 
if(a < 0) 

{ 
a = 1 2 ; 
u = u + 8; 
v = v + 8; 

} 

if(c>12) 

{ 
c = 0; 
x = x - 8 ; 
y = y - 8 ; 

} 

/*torroidal boundary conditions*/ 
if(u < 0) 

u = u + 100; 

if(u > 99) 
u = u - 100; 

if(v > 99) 
v = v - 100; 

if(w > 99) 
w = w - 100; 

if(x > 99) 
x = x - 100; 

if(x < 0) 
x = x + 100; 

if(y<0) 
y = y + 100; 
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if(z < 0) 
z = z + 1 0 0 ; 

/*Set neighbour positions for center dimer position i,j*/ 
neighpos[0] =position[a][u]; /*N0 position*/ 
neighpos[l] =position[a][v]; /*N1 position*/ 
neighpos[2] = position[b][w]; /*N2 position*/ 
neighpos[3] =position[c][x]; /*N3 position*/ 
neighpos[4] =position[c][y]; /*N4 position*/ 
neighpos[5] =position[b][z]; /*N5 position*/ 

/*Set initial and final center dimer electron position to calculate energy change*/ 
centinit = position[i][j]; 

if(centinit — 0) 
centfin = 1; 

else 
centfin = 0; 

/*Check energy difference for changing position of centre dimer electron, and 
change position if new position lowers the energy*/ 
edi f f = enerdiff(centinit, centfin, neighpos, dc); 
tempprob = exp(-e_diff/(bolt*T)); 

/*Perform update according to classical scenario*/ 
if(scenario == 0) 
{ 

energy = enercalc(centinit, neighpos, dc); 
force = for_calc(centinit, neighpos); 

if(rule == 0) 

{ 
if((e_diff <= 0) && (energy > potdepth)) 

newposit[i][j] = centfin; 
else if((e_diff > 0) && (energy > potdepth)) 
{ 

if(T != 0) 
{ 

num = ranmar(); 
if(num < tempprob) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 
} 

} 
else 

newposit[i][j] = centinit; 

} 

if(rule==l) 

{ 
if(force> (thresh/1000)) 
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newposit[i][j] = 1; 
else if(force < -(thresh/1000)) 

newposit[i][j] = 0; 
else 

newposit[i][j] = position[i][j]; 
} 

} 

/•Perform update according to quantum scenario*/ 
if(scenario == 1) 

{ 
energy = enercalc(centinit, neighpos, dc); 
if((e_diff <= 0) && (energy > potdepth)) 

newposit[i][j] = centfin; 
else if((e_diff > 0) && (energy > potdepth)) 
{ 

if(T != 0) 
{ 

num = ranmar(); 
if(num < tempprob) 

newposit[i][j] = centfin; 
} 
else 

newposit[i][j] = centinit; 

} 
else if((e_diff <= 0) && (energy <= potdepth)) 
{ 

num = ranmarQ; 
probabil = probcalc(potdepth,energy); 
if(num < probabil) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 

} 
else if((e_diff > 0) && (energy <= potdepth)) 
{ 

num = ranmar(); 
probabil = probcalc(potdepth,energy)*tempprob; 
if)[num < probabil) 

newposit[i][j] = centfin; 
else 

newposit[i][j] = centinit; 
} 
else 

newposit[i][j] = centinit; 

} 

/*Update array of electron positions*/ 

position[i][j] = newposit[i][j]; 
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for(i = 0; i < 6; i++) 

{ 
neighpos[i] = 0; 

} 

ENERCALC.C 

/*enercalc.c — Function to calculate the energy of the electron in the centre dimer. Use gcc enercalc.c -lm 
to compile*/ 

#include <math.h> 
#include <stdio.h> 

double enercalc(int centinit, int neighpos[6], double dc) 

{ 
/*Declare variables*/ 
double distance[2][6][2]; 
double distenr6(int, int, int); 
double energy; 
double C; 
int posit; 
i n t i j , k; 

/*Calculate Constant*/ 
C = 1439.9602/dc; 

/*array of distance values for all electron configurations*/ 
/*calculates distance of centre electron to neighbor electron*/ 
/*Coulomb energy*/ 
/*Constant in Coulomb energy calculation*/ 
/*variable to hold specific neighbour positions*/ 
/*index variables*/ 

/* C = eA2/(4*pi*epsilon*epsilon-0) 
e-1.602176462*10A(-19)C 
pi-3.14159265 
epsilon - 8.854187817*10A(-12) C/N.m 
epsilon-0 - dc */ 

/*Read in Distances (units nanometers) for electron separations from Distance Calculation Function*/ 
for(i = 0; i < 6; i++) 

{ 
for(j = 0 ; j<2 ; j++) 
{ 

for(k = 0 ;k<2 ;k++) 
{ 

distancejj][i][k] = distenr6(j, i, k); 
} 

} 
} 

/•Calculate energy of centre dimer electron*/ 
energy = 0; 
for(i = 0; i < 6; i++) 

{ 
posit = neighposfi]; 
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energy = energy + C*(l/distance[centinit][i][posit]); 

} 

return(energy); 

ENERDIFF.C 

/*enerdiff.c — Function to calculate the energy difference when a switch of the centre dimer 
electron is made. Use gcc enerdiff.c -Im to compile*/ 

#include <math.h> 
#include <stdio.h> 

double enerdiff(int centinit, int centfin, int neighpos[6], double dc) 

{ 
/*Declare variables*/ 
double distance[2][6][2]; /*array of distance values for all electron configurations*/ 
double distenr6(int, int, int); /* calculates distance of centre electron to neighbour electron*/ 
double enerdiff; /*Coulomb energy difference between final and initial state*/ 
double C; /*Constant in Coulomb energy calculation*/ 
int posit; /*variable to hold specific neighbour positions*/ 
int i, j , k; /*index variables*/ 

/*Calculate constant*/ 
C = 1439.9602/dc; /* C = eA2/(4*pi*epsilon*epsilon-0) 

e-1.602176462* 10A(-19) C 
pi-3.14159265 
epsilon - 8.854187817*10A(-12) C/N.m 
epsilon-0 - dc*/ 

/*Read in Distances (units nanometers) for electron separations from Distance Calculation Function*/ 
for(i = 0; i < 6; i++) 

{ 
for(j = 0 ; j < 2 ; j + + ) 
{ 

for(k = 0 ; k < 2 ; k + + ) 
{ 

distance[j][i][k] = distenr6(j, i, k); 
} 

} 
} 

/*Calculate energy difference when centre dimer electron is moved from intial to final position*/ 
enerdiff = 0; 
for(i = 0; i < 6; i++) 

{ 
posit = neighposfi]; 
enerdiff = enerdiff + C*(l/distance[centfin][i][posit] - l/distance[centinit][i][posit]); 

} 
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return(enerdiff); 

FOR_CALC.C 

/•forcalc.c — Function to calculate the force on the tubulin dipole in the centre dimer. Use gcc enercalc.c 
-lm to compile*/ 

#include <math.h> 
#include <stdio.h> 

double for_calc(int centinit, int neighpos[6], double dc) 

{ 
/*Declare variables*/ 
double distance[2][6][2]; 
double distfor6(int, int, int); 
double force; 
double r; 
int posit; 
in t i , j ,k ; 

/*array of distance values for all electron configurations*/ 
/•calculates distance from centre electron to neighbor electron*/ 
/*Coulomb force*/ 
/•distance value between dipoles*/ 
/•variable to hold specific neighbour positions*/ 
/•index variables*/ 

/•Calculate constant*/ 
C = 1439.9602/dc; /* C = eA2/(4*pi*epsilon*epsilon-0) 

e-1.602176462*10A(-19)C 
pi-3.14159265 
epsilon - 8.854187817*10A(-12) C/N.m 
epsilon-0 - dc*/ 

/*Read in Distances (units nanometers) for electron separations from Distance Calculation Function*/ 
for(i = 0; i < 6; i++) 

{ 
for(j = 0 ; j < 2 ; j + + ) 
{ 

for(k = 0; k < 2; k++) 
{ 

distance[j][i]tk] = distfor6(j, i, k); 
} 

} 
} 

/*Calculate force of centre dimer electron*/ 
force = 0; 
for(i = 0; i < 6; i++) 

{ 
posit = neighposfi]; 
if(i = 5) 

force = force + l/(distance[centinit][i][posit]*distance[centinit][i][posit]); 
else if(i == 2) 

force = force - l/(distance[centinit][i][posit]*distance[centinit][i][posit]); 
else 
{ 



APPENDIX- QCAMM CODE 152 

r = sqrt(25+(distance[centinit][i][posit]*distance[centinit][i][posif])); 
force = force + distance[centinit][i][posit]/r/r/r; 

} 
} 

return(force); 

} 

DISTENR6.C 

/* distenr6.c — Function to calculate the separation distance between the centre dimer electron 
and neighbour dimer electrons for all configurations for energy calculations of A6 lattice. 
Use gcc distenr6.c -lm to compile*/ 

#include <math.h> 
#include <stdio.h> 

double distenr6(int centval , int neighb, int neighval) 

{ 
/•Declare variables*/ 

double welloff; /*potential well offset from centre*/ 
double fil_sep; /*protofilament separation measured from centre to centre*/ 
double tubsep; /*tublin dimer separation measured from centre to centre*/ 
double mon_sep; /*tubulin monomer separation from centre alpha to centre beta*/ 
double protoff; /*protofilament offset from dimer center to adjacent dimer centre*/ 
double distance[2][6][2]; /*distance between centre dimer electrons and neighbour electrons 

first value centre electron location 0 - left, 1 - right 
second value neighbour dimer location 0-5 - N0-N5 
third value neighbour electron location 0 - left, 1 - right*/ 

/*Set variable values*/ 
well_off = 1.0; /*all values in nanometers (10A(-9)metres)*/ 
f i lsep = 5.0; 
tubsep = 8.0; 
monsep = 4.0; 
prot_off = 3 . 1 ; 

/*Determine distance from centre dimer wells to neighbour wells. Neighbour configuration 
N0N1 

N 5 C N 2 
N4N3 

Two wells (L-left, R-Right) in centre dimer with two wells in each neighbour dimer with six 
neighbours = 24 configurations*/ 

distance[0][0][0] = sqrt(prot_off*prot_off + fil_sep*fil_sep); /*CL-N0L*/ 
distance[0][0][l] = sqrt(prot_off*prot_off+ (fi lsep + 2*well_off)*(fiI_sep + 2*well_off)); /*CL-N0R*/ 
distance[l][0][0] = sqrt(prot_ofPprot_off + (fil_sep - 2*well_off)*(fil_sep - 2*well_off)); /*CR-N0L*/ 
distance[l][0][l] = sqrt(prot_off*prot_off + fil_sep*fil_sep); /*CR-N0R*/ 
distance[0][l][0] = sqrt((tub_j;ep - prot_off)*(tub_sep - prot_off) + fil_sep*fil_sep); /*CL-N1L*/ 
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distance[0][l][l] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + (fi lsep + 2*well_off)*(fil_sep + 
2*well_off));/*CL-NlR*/ 
distance[l][l][0] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + (fi lsep - 2*well_off)*(fil_sep -
2*well_off)); /*CR-N1L*/ 
distance[l][l][l] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + fil_sep*fil_sep); /*CR-N1R*/ 
distance[0][2][0] = tubsep; /*CL-N2L*/ 
distance[0][2][l] = sqrt(tub_sep*tub_sep + (2*well_off)*(2*well_off)); /*CL-N2R*/ 
distance[l][2][0] = sqrt(tubj>ep*tubj>ep + (2*well_off)*(2*well_off)); /*CR-N2L*/; 
distance[l][2][l] = tubsep; /*CR-N2R*/ 
distance[0][3][0] = sqrt(prot_off*prot_off+ fil_sep*fil_sep); /*CL-N3L*/ 
distance[0][3][l] = sqrt(prot_off*prot_off+ (filsep - 2*well_off)*(fil_sep - 2*well_off)); /*CL-N3R*/ 
distance[l][3][0] = sqrt(prot_off*prot_off + (filsep + 2*well_off)*(fil_sep + 2*well_off)); /*CR-N3L*/ 
distance[l][3][l] = sqrt(prot_off*prot_off + fil_sep*fil_sep); /*CR-N3R*/ 
distance[0][4][0] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + fil_sep*fil_sep); /*CL-N4L*/ 
distance[0][4][l] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + (fi lsep - 2*well_off)*(fil_sep -
2*well_off)); /*CL-N4R*/ 
distance[l][4][0] = sqrt((tub_sep - prot_off)*(tub_sep - protoff) + (filsep + 2*well_off)*(fil_sep + 
2*well_off)); /*CR-N4L*/ 
distance[l][4][l] = sqrt((tub_sep - prot_off)*(tub_sep - prot_off) + fil_sep*fil_sep); /*CR-N4R*/ 
distance[0][5][0] = tub_sep; /*CL-N5L*/ 
distance[0][5][l] = sqrt(tub_sep*tub_sep + (2*well_off)*(2*well_off)); /*CL-N5R*/ 
distance[l][5][0] = sqrt(tub_sep*tub_sep + (2*well_off)*(2*well_off>); /*CR-N5L*/ 
distance[l][5][l] = tubsep; /*CR-N5R*/ 
return(distance[cent_val][neighb][neighval]); 

} 

DISTFOR6.C 

/* distfor6.c — Function to calculate the separation distance between the centre dimer electron 
and neighbour dimer electrons for all configurations for force calculations on A6 lattice. 
Use gcc distfor6.c -lm to compile*/ 

#include <math.h> 
#include <stdio.h> 

double distfor6(int cent_val, int neighb, int neighval) 

{ 
/•Declare variables*/ 

double distance[2][6][2]; /*distance between centre dimer electrons and neighbour electrons 
first value centre electron location 0 - left, 1 - right 
second value neighbour dimer location 0-5 - N0-N5 
third value neighbour electron location 0 - left, 1 - right*/ 

/*Set distance from centre dimer wells to neighbour wells. See Hameroff, Rasmussen and Mansson, or 
Smith, Hameroff and Watt for values. Neighbour configuration 

N0N1 
N 5 C N 2 
N4N3 

Two wells (L-left, R-Right) in centre dimer with two wells in each neighbour dimer with six 
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neighbours = 24 configurations*/ 

distance] 
distance] 
distance] 
distance] 
distance! 
distance1 

distancel 
distance 
distancel 
distancei 
distance] 
distance] 
distance] 
distance 
distancel 
distance 
distancel 
distance 
distancel 
distance| 
distancel 
distancel 
distancel 
distancel 

[0] 
[0] 
[1] 
[1] 
[0] 
[0] 
[1] 
[1] 
[0] 
[0] 
[1] 
[1] 
[0] 
[0] 
[1] 
[1] 
[0] 
[0] 
[1] 
[1] 
[0] 
[0] 
[1] 
[1] 

[0][0] 
[0][1] 
[0][0] 
[0][1] 
[1][0] 
[1][1] 
[1][0] 
[1][1] 
[2][0] 
[2][l] 
2][0] 
:2][1] 
r3][0] 
[3][1] 
[3][0] 
[3][1] 
[4][0] 
[4][1] 
[4][0] 
[4][1] 
[5][0] 
[5][1] 
[5][0] 
[5][1] 

= 3.1; /*CL-N0L*/ 
= -0.9; /*CL-N0R*/ 
= 7.1; /*CR-N0L*/ 
= 3.1; /*CR-N0R*/ 
= -4.9; /*CL-N1L*/ 
= -8.9;/*CL-NlR*/ 
= -0.9;/*CR-NlL*/ 
= -4.9; /*CR-N1R*/ 
= -8; /*CL-N2L*/ 
= -12; /*CL-N2R*/ 
= -4; /*CR-N2L*/; 
= -8; /*CR-N2R*/ 
= -3.1; /*CL-N3L*/ 
= -7.1;/*CL-N3R*/ 
= 0.9; /*CR-N3L*/ 
= -3.1; /*CR-N3R*/ 
= 4.9; /*CL-N4L*/ 
= 0.9; /*CL-N4R*/ 
= 8.9; /*CR-N4L*/ 
= 4.9; /*CR-N4R*/ 
= 8; /*CL-N5L*/ 
= 4; /*CL-N5R*/ 
= 12; /*CR-N5L*/ 
= 8; /*CR-N5R*/ 

} 
return(distance[cent_val][neighb][neighval]); 

PROBCALC.C 

/*probcalc.c — Function to calculate the probability of the electron tunnelling through the potential barrier. 
Use gcc probcalc.c -lm to compile*/ 

#include <math.h> 
#include <stdio.h> 

/*Define constants*/ 
#define me 0.000000000005678 
#define c 299792458 
#define hbar 0.0000000000000006582122 

/•electron rest mass divided by cA2 in eV*/ 
/*speed of light in vacuum in m/s*/ 
/*planck's constant/2*PI in eV/s*/ 

double probcalc(double potdepth, double energy) 

/•Declare variables*/ 
double barrier; 
double probabil; 
double Vo; 
double E; 

/*half width of the potential barrier*/ 
/•calculated probability of electron to tunnel*/ 
/*barrier height*/ 
/•electron energy*/ 
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/*Define values*/ 
barrier = 0.0000000001; /*value given in metres*/ 
Vo = potdepth/1000; /*potential barrier in eV*/ 
E = energy/1000; /*particle energy in eV*/ 

/*Calculate Probability - probability for tunneling given by exp(-2*A*well_sep) approximated 
calculation of electron tunneling through square potential barrier of length wel lsep where */ 
probabil = exp(-4*barrier/hbar*sqrt(2*me*(Vo-E))); 

return (probabil); 

RANMAR.C 

/*ranmar.c — Function to generate a Gaussian random number between 0 and 1. Orginally described in G. 
Marsaglia, A. Zaman and W.-W Tsang, Stat. Prob. Lett 9 (1990) p 35. Use gcc ranmar.c -lm with 
compile*/ 

#include <math.h> 

double u[98], ccc, cd, cm; 
int i97J97; 

void rmarin(void) 

{ 
int i, j , k, 1, ii, j j , m; 
double s, t; 
intij=1802,kl=9373; 
i = (ij/177)%177 + 2; 
j = ij%177 + 2; 
k = (kl/169)%178+l; 
l = kl%169; 

for(ii=l;ii<=97;ii++) 

{ 
s = 0.0; 
t = 0.5; 
for(jj=l;jj<=24;jj++) 

{ 
m = (((i*j)%179)*k) % 179; 

j = k; 
k = m; 
1 = (53*1 + 1 ) % 169; 
i f ( ( l*m)%64>=32)s+=t; 
t *= 0.5; 

} 
u[ii] = s; 
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} 
ccc = 362436.0 /16777216.0; 
cd = 7654321.0 /16777216.0; 
cm = 16777213.0 /16777216.0; 
i97 = 97; 
J97 = 33; 

void rmarin2(int ij, int kl) 

{ 
int i , j ,k , I,ii , j j ,m; 
double s, t; 
i = (ij/177)%177 + 2; 
j = ij%177 + 2; 
k = (kl/169)%178+l; 
l = kl%169; 

for(ii=l;ii<=97;ii++) 

{ 
s = 0.0; 
t = 0 . 5 ; 
for(jj=l;jj<=24;jj++) 
{ 

m = (((i*j)%179)*k) % 179; 

j = k ; 
k = m; 
1 = (53*1+1)% 169; 
if ((l*m)%64 >= 32) s += t; 
t *= 0.5; 

} 
u[ii] = s; 

} 
ccc = 362436.0 /16777216.0; 
cd = 7654321.0 /16777216.0; 
cm = 16777213.0 / 16777216.0; 
i97 = 97; 
j97 = 33; 

} 

double ranmar(void) 

{ 
double uni; 
uni = u[i97] - u[j97]; 
i f (uni<0.0)uni+=1.0; 
u[i97] = uni; 
i97~; 
if ( i97=0) i97 = 97; 
J97- ; 
i fG97=0) j97 = 97; 
ccc — cd; 
if (ccc<0.0) ccc += cm; 
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uni -= ccc; 
if(uni<0.0)uni+=1.0; 
return(uni); 

} 

/* */ 

/* Pseudo Random function -> U[a,b] */ 

/* *j 

double Unif(double a, double b) 

{ 
return( a + (b-a) * ranmar()); 

} 

/* *j 

I* Integrer Pseudo Random function -> U[a,b] */ 
/* includes extremum points a and b. */ 
/* */ 

int IUnif(int a, int b) 

{ 
return( (int) floor(a + (b-a+1) * ranmar())); 

} 

#define zero 0.00000 
#define one 1.00000 
#define two 2.00000 

/* — — — */ 

/* Returna a normally distributed deviate with mean "med" */ 
/* and unit variance = sigmaA2 */ 
/* N[m, sigmaA2] */ 

/* */ 

double normal(double med, double sigma) 

{ 
static int iset = 0; 
static double gset; 
double fac,rsq,vl,v2; 

if(iset = 0) 

{ 
do 
{ 

vl = two * ranmar() - one; 
v2 = two * ranmar() - one; 
rsq = vl * vl + v2 * v2 ; 

} 
while (rsq >= one || rsq = zero); 
fac = sqrt(-two * log(rsq) / rsq); 
gset = vl * fac; 
iset = 1; 
return( med + sigma * v2 * fac ); 

} 
else 



APPENDIX- QCAMM CODE 

I 
iset = 0; 
return( med + sigma * gset); 

} 
} 

#undef zero 
#undef one 
#undef two 

RANMAR.H 

/* NOTE: The seed variables can have values between: 0<=IJ<= 31328 
C 0<=KL<= 30081 
C The random number sequences created by these two seeds are of sufficient 
C length to complete an entire calculation with. For example, if sveral 
C different groups are working on different parts of the same calculation, 
C each group could be assigned its own IJ seed. This would leave each group 
C with 30000 choices for the second seed. That is to say, this random 
C number generator can create 900 million different subsequences ~ with 
C each subsequence having a length of approximately 10A30. 
C 
C Use IJ = 1802 & KL = 9373 to test the random number generator. The 
C subroutine RANMAR should be used to generate 20000 random numbers. 
C Then display the next six random numbers generated multiplied by 4096*4096 
C If the random number generator is working properly, the random numbers 
C should be: 
C 6533892.0 14220222.0 7275067.0 
C 6172232.0 8354498.0 10633180.0 
*/ 

#define RANMAR_IJ_MAX 31328 
#define RANMARJCLJVIAX 30081 

void rmarin(void); 
void rmarin2(int, int); 

double ranmar(void); 
double Unif(double, double); 
int IUnif(int, int); 
double normal(double, double); 

INPUT.DAT 

A Sample input file for the QCAMM program using energy dynamics as used in 

0 rule 
1 scenario 
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0 initial 
1 update 
1 weight 
0 signal 
300 temperature 
130 potential depth 
8.41 dielectric constant 
3000 timesteps 

A Sample input file for the QCAMM program using force dynamics to test against the Hameroff 
simulations described in Chapter 4. 

0 rule 
0 initial 
0 update 
10 weight 
0 signal 
0.9 threshold 
8.41 dielectric constant 
3000 timesteps 


