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Abstract 

Climate change is likely one of the key challenges of the 21
st
 Century for it could impact the 

livelihood, water and food security, economic growth and social well beings of countries 

worldwide. In recent decades the water resource of the Nile River Basin (NRB) has suffered 

from increasing demands from competing users, and more frequent and severe hydrologic 

extremes. This research addresses the climate change impact on the climate and water 

resources of the NRB, and to management of its water resources to mitigate such impacts.  

First, the sensitivity of the Regional climate model, Weather Research and Forecasting (WRF), 

in regional climate modeling of NRB was investigated using 31 combinations of physical 

parameterization schemes of WRF. Using the ERA-Interim reanalysis data as initial and 

lateral boundary conditions, WRF was configured to model the climate of NRB at 36 km 

resolution and 30 vertical levels for 1999-2001. WRF simulated more accurate surface air 

temperature (T2) and downward longwave radiation than shortwave radiation and rainfall for 

the NRB.  The simulation of rainfall is more sensitive to planetary boundary layer (PBL), 

cumulus and microphysics schemes, while the simulation of T2 is more sensitive to land-

surface model (LSM) and radiation, than other schemes of WRF. In summary, the following 

schemes simulated the most representative regional climate of NRB: WSM3 microphysics, 

KF cumulus, MYJ PBL, RRTM longwave and Dudhia shortwave radiation schemes, and 

Noah LSM. 

Next, WRF was used to dynamically downscale the future precipitation and temperature of 

NRB for the base period (1976-2005), RCP4.5 and RCP8.5 climate scenarios of four GCMs 
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over NRB for 2050s (2041-2070) and 2080s (2071-2100). Under these downscaled climate 

scenarios, the annual precipitation of Blue Nile, Atbara, and Sobat river basin, Bahar El 

Ghazal and Lake Victoria regions are projected to change by about [-7, 14.2], [-19, 25.3], [-7, 

39], [-5.9, 23], and [3.6, 27] % in the 2050s, and [-14, 25], [-22.5, 39], [-4.7, 60.4], [-11, 31], 

and [11.8, 41] % in the 2080s, respectively. The mean annual air temperature for sub-basins 

of NRB is projected to increase by 1.67–2
o
C in the 2050s, 2–2.5

o
C in the 2080s under 

RCP4.5, and by 2.5–3
o
C in the 2050s and 3.9–4.6

o
C in the 2080s under RCP8.5, respectively. 

Since most precipitation extreme indices are projected to increase, NRB could experience 

more severe and frequent extreme precipitation in future. Furthermore, extreme temperature 

indices of NRB are projected to increase (decrease) in warm (cold) night/days. 

Next, climate change impact on the mean and extreme streamflow of the Upper Blue Nile 

river basin (UBN) in 2050s and 2080s was projected by three hydrological models (NAM, 

VIC and Watflood models) driven with RCP4.5 and RCP8.5 climate scenarios of four GCMs 

downscaled by WRF. All hydrological models were able to accurately capture the flow 

dynamics in both calibration and validation periods. Mainly due to a projected increase in 

evapotranspiration, the median of mean annual streamflow of UBN is projected to decrease to 

by 7.6% with a range of -19.7 to 17.7% in the 2050s, and by 12.7% with a range of -26.8 to 

31.6% in the 2080s.  The ensemble mean of annual maxima (minima) of high return periods 

are projected to increase (decrease) in 2050s and 2080s by all hydrologic models, respectively. 

To assess climate change impact on the water resource of Blue Nile River basin (BNRB), 

from changes in the streamflow of BNRB simulated by VIC driven by RCP4.5 and RCP8.5 
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climate change scenarios of four GCMs downscaled by WRF for 2050s and 2080s, the 

maximum, median and minimum projected changes in streamflow for BNRB were estimated.  

These projected changes in streamflow for BNRB were used to assess climate change impact 

to its future water allocations using a stochastic dual dynamic model. The results show that 

the outflow from the GERD reservoir, or the annual flow of BNR at Khartoum is projected to 

increase under maximum, but will decrease under median and minimum projected changes in 

streamflow for 2050s and 2080s. Since the annual net benefit is projected to increase 

(decrease) under the maximum (median and minimum) projected change in streamflow, the 

potential impact of climate change should be incorporated in the future design and 

development of the water resources of BNRB. 

 

 

 

 

 

 

 

 

 



v 

 

Preface 

This thesis shows the possible impact of climate change on the climate and hydrologic 
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Regional Climate of Nile River Basin”, Climate Dynamics, pp.1-17, doi: 10.1007/s00382-

017-3870-z. Chapter 3 has been published as Tariku, T. B., and Gan, T. Y., 2018, “Regional 

Climate Change Impact on Extreme Precipitation and Temperature of the Nile River Basin”, 
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edits. To date my PhD study will lead to the publication of four papers on peer-reviewed 

scientific journals.  
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Chapter 1  

1.1. Introduction 

Water is essential for the existence and development of a society. Typical major water users 

are agriculture, municipalities, and industries for economic and social developments. Water is 

also essential to sustain ecosystems and to maintain the biodiversity of our environment. To 

ensure the availability of reliable water resource for secure utilization, it will be prudent to 

implement an effective assessment and management of the water resources of major river 

basins, both the quantity and quality of water, spatially and temporarily. Water crises caused 

by droughts and water pollution have occurred in many regions across the world, especially in 

developing countries. The lack of good management and knowledge about the potential 

impact of climate change to the existing water resources could lead to unforeseen water crises 

in future. Since 1970s, observations show that hydrologic extremes (droughts and floods) 

have been occurring more frequently and in greater severity worldwide (Lemke et al., 2007). 

In the last decade, 90% of natural hazards have been related to water and they could get worse 

in future, such as tsunamis, floods, droughts, and storm surges that could inflict costly 

damages to societies, such as the 2010 flood of Pakistan and the 2012 drought of USA, which 

had been the worst in more than half a century, and which may be just a foretaste of more 

climatic extremes under a hotter and drier future in many places of the world. Many scientists 

and climatologists attribute the increase in occurrences of recent hydrologic extremes to the 

impact of climate change (e.g., Lemke et al., 2007; IPCC, 2013). According to the Clausius–

Clapeyron relationship, the saturation vapor pressure increases by about 7% for every 1°K 
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rise in temperature. Therefore as climate warms, a warmer atmosphere has a larger capacity to 

hold more water vapour, which fuel more evaporation, and generate more precipitation. As a 

result, hydrologic cycle will accelerate which can increase the occurrences of severe climate, 

potentially leading to more extreme floods and droughts, which can reduce the reliability of 

water resources in many regions worldwide. 

Africa is a relatively dry and water scare continent, with more than half Africans living in 

extreme poverty. In the past centuries, large-scale, severe droughts had occurred many times 

over Africa (Shanahan et al., 2009; Touchan et al., 2008). The droughts of Somalia in 2011, 

Ethiopia/Sudan in 1980s and in Sahel in 1974 had each killed and displaced several hundred 

thousand people. In the 5
th

 Coupled Model Intercomparison Project (CMIP5), Sahel, West 

Africa, and Southern Africa are identified as climate change hotspots (Diffenbaugh & Giorgi, 

2012). In the 1960s, Africa was a food exporter, but in recent years, partly because of 

recurrent droughts, Africa has to import about 1/3 of its grain supply. Climate change and 

climate variability are likely to severely compromise future agricultural production and food 

security in many African countries (Boko et al., 2007). Water shortages advance poverty, and 

in sub-Saharan Africa about 300 million people suffer from water shortages (WWAP, 2012) 

and water stress has been a major societal challenge, e.g., over 75% of Africans live in 

regions with arid and semi-arid climate, 2/3 of its population rely on limited and highly 

variable water resources, a significant fraction of its cropland resides in its driest regions with 

40% of the irrigation non-sustainable (Vörösmarty et al., 2005). Many African countries lack 

the human, economic and institutional capacities to effectively develop and manage their 
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water resources sustainably. Prolonged over-exploitation of resources leads to land 

degradation, loss of biodiversity, and resource scarcity in Africa where the population had 

also increased several folds in the last 50 years. Therefore, threats to food security, conflicts 

from competing users for dwindling water supply between African nations result in growing 

political tension and instability in this continent.  

Nile River is the longest river in the world; its water is shared by eleven countries and covers 

a 10% of Africa area. Countries located in the Nile River Basin (NRB) have the fastest 

growing population, with 54% of their total population living within the NRB. The upstream 

countries depend on rainfed agriculture, which is facing more and more serious water crisis. 

These regions also suffered from repeated droughts partly attributed to the effect of the El 

Niño Southern Oscillation (ENSO), which has become more severe in recent years due to the 

impact of climate change. Climate change and climate variability will affect the food, water 

and energy security of African countries. However, what are the challenges to determine the 

onset, extent, impact of climate change in the NRB? Because climate is a multifractal process, 

and hydrologic extremes are more than climate-driven, their patterns are difficult to pin down. 

The Sub-Saharan Africa is the world’s largest consumer of biomass energy because only one 

person in four in Africa has electricity (WWAP, 2012). This large consumption of biomass 

energy has contributed to deforestation and land degradation which further “aggravates” the 

hydrologic impact of climate change. The NRB has enough hydropower potential to meet the 

entire basin’s electricity needs but such a potential has not been developed because of 

economic and political reasons. The water withdrawal of the river is unevenly distributed 
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among riparian countries. Egypt and Sudan are the largest consumers, which according to 

their agreement in 1959, get 55.5 billion m
3
 and 18.5 billion m

3
 of water per year, respectively. 

However, this agreement neglects upstream countries such as Ethiopia even though 85% of 

the Nile water comes from Ethiopian highlands. The Nile Basin Initiative launched in 

February 1999 by the Council of Ministers of Water Affairs of Nile Basin States, which helps 

to develop the river in a cooperative manner, share substantial socio-economic benefits, and 

promotes regional peace and security (NBI, 2015).  Currently the Nile riparian countries are 

developing their water resources to fulfill food and energy demand due to population growth. 

Ethiopia has proposed four large reservoirs, hydropower stations and irrigation areas in the 

Blue Nile River Basin (BNRB), studied by the United States Bureau of Reclamation (USBR) 

in 1964 for boosting the production of hydropower and food security (Goor et.al, 2010; Block, 

2007; Block and Strzepek, 2010). Given upstream developments will have both positive and 

negative impact on the downstream users, a proper overall planning and management of the 

whole NRB is recommended.  

To study the regional impact of climate change to the NRB, this study will use a regional 

climate model, Weather Research and Forecasting (WRF) to simulate future precipitation and 

other climate variables. Climate data dynamically downscaled by WRF will be used to drive a 

physically-based (or conceptual) hydrologic model, in conjunction with a Stochastic dynamic 

programing model to investigate the potential impact of climate change on the hydrology, 

water resources management and reservoir operations of the BNRB, with the objective of 

optimizing water utilization across the BNRB under current and future development.  This 
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will be useful to policy makers to execute informed prudent decisions on the planning, design 

and management of water resources of the BNRB. 

1.2. Problem of statement 

Under impending decline in water resources, increasing demand from growing population, 

widespread pollution, and more frequent occurrences of hydrologic extremes, upstream users 

of the NRB that rely on rain fed agriculture is facing worsening water crisis which will affect 

its food security, human health and ecosystems. There is an urgent need to better understand 

ongoing changes to the climatic and hydrologic regimes of the Nile, to objectively assess its 

vulnerability and susceptibility to hydrologic extremes especially droughts to be better 

prepared for potential problems associated with such natural hazards. If member countries of 

the NRB can better understand their vulnerability to climate change, they will be better 

prepared to implement effective adaptation strategies to mitigate such impacts, and to 

establish effective warning systems that can issue reliable warnings in a timely order. Until 

now, from what we know, only limited numbers of studies based on dynamic downscaling 

techniques have been conducted to assess climate change impact on Africa (Mohammed et al. 

2005; Soliman et al. 2009; and Alemseged and Tom 2015).  

Beside the potential impact of climate change, there will be new reservoirs built in the 

upstream parts of the NRB which could lead to water supply problem at downstream 

countries. It will benefit users of NRB to optimally manage water resources of the NRB under 

potential climate change impact and future developments. Numerous management models 

have been developed to assess the hydropower and agricultural irrigation potential within 
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Ethiopia and the whole of the NRB (Guariso and Whittington 1987; Levy and Baecher 1999; 

Whittington et al. 2005). These models can provide insight to develop and manage viable 

hydropower and irrigation projects for NRB, with potentially significant hydrologic and 

economic implications for the entire river basin. Reservoir operation models could provide 

general operation strategies to help decision makers to optimally release water based on 

current reservoir levels on the basis of projected inflow and water demands for different 

seasons. If I am not mistaken, previous studies have not included detailed climate change 

impact in running their reservoir operation models. 

1.3. Research Objectives 

The main objective of this research is to explore the potential impact of climate change to the 

climate and water resources of the BNRB, and to optimize the management of water resources 

of BNRB subjected to the impact of climate change and future water system developments. 

Specific objectives 

 To fine-tune the configuration and parameterization schemes of regional climate 

model, WRF so that it can simulate reliable regional climate of NRB using the ERA-

Interim reanalysis data at 36 km resolution. 

 To assess the possible impact of climate change on the extreme precipitation, 

temperature of the NRB based on RCP4.5 and RCP8.5 climate scenarios of four 

GCMs dynamically downscaled by WRF for the 2041-2070 (2050s) and 2071-2100 

(2080s) relative to the 1975-2005 base period. 
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 To investigate the potential impact of climate change on the hydrology and hydrologic  

extremes of the upper Blue Nile river basin in the 2050s and 2080s based on three 

hydrological models (NAM, VIC and Watflood models) driven with RCP4.5 and 

RCP8.5 climate scenarios of four GCMs dynamically downscaled by WRF. 

 To analyze the future water resource development of BNRB based on stochastic 

dynamic programming for jointly maximizing hydropower production and optimal 

allocation of water for irrigation projects in the BNRB under its present and future 

climatic conditions. 

1.4. Organization of Thesis 

The Thesis is organized into six chapters. The introduction, problem statement and research 

objectives are presented in Chapter 1. Chapter 2 deals with sensitivity of the WRF model to 

parameterization schemes for regional climate of NRB. Chapter 3 focuses on the potential 

impact of climate change on extreme precipitation and temperature of the NRB, while 

Chapter 4 presents possible impact of climate change on the hydrology and hydrologic 

extremes of the upper Blue Nile River basin. Chapter 5 shows potential impact of climate 

change on the optimal operation of a multipurpose multireservoir system in the BNRB. 

Finally, overall research summary, conclusions and recommendations are given in Chapter 6. 
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Chapter 2 Sensitivity of the Weather Research and Forecasting model 

to Parameterization Schemes for Regional Climate of Nile River Basin 

2.1. Introduction 

Global climate models (GCMs) are numerical climate models designed to simulate physical 

processes in the atmosphere, ocean, cryosphere and land surface at a global scale (IPCC-

TGICA, 2007). GCMs are the main tools for projecting future global climate in response to 

rising concentrations of greenhouse gases in the atmosphere. However, usually at a spatial 

grid resolution of 100-300 km, and daily temporal resolutions, the output of GCMs are 

generally too coarse for solving basin-scale, hydrologic and water resources management 

problems.  As a result, climate data of GCMs needs to be downscaled to produce local or 

regional climate at resolutions useful for hydrologic applications. Coarse resolution climate 

data can be downscaled by statistical procedures or dynamically using RCM to data of higher 

resolutions. In theory, a RCM designed to capture climate processes at basin scale can provide 

high resolution, representative climate data of river basins. For river basins with diversified 

climate and complex topography, such as the NRB with elongated ridges and escarpments 

parallel to faults of the East African Rift system, and the presence of large lakes such as Lake 

Victoria and Lake Tana (Pohl et al., 2011), high resolution climate data downscaled by a 

RCM from GCMs will be useful for the future management of such river basins, e.g., 

Mohamed et al. (2005) applied the Regional Atmospheric Climate Model (RACMO) to 

simulate the regional climate of the NRB. The socioeconomic activities and well-being of 

people living in most countries of the Nile basin are dependent on the rainfall and streamflow 
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of the Nile River for water supply and for sustaining the agriculture via irrigation projects 

and/or rain-fed mechanism. However, climate change can potentially impact the rainfall 

variability and streamflow of NRB which could affect the reliability of NRB’s water supply to 

its users.  Therefore, high resolution climate data for NRB downscaled by a RCM from GCMs’ 

climate projections will be useful to assess the potential impact of climate change to the future 

water resources of NRB. 

Various RCMs have been developed to downscale coarse resolution climate data of GCMs or 

reanalysis data to fine resolution data for different river basins across the world. There have 

been regional climate modeling studies conducted for East Africa. For example, by fine 

tuning the cumulus convection schemes, radiative transfer formation, surface process, 

boundary layer physics, and lateral boundary conditions of the study domain using the 

Regional Climate model, version 2 (RegCM2), Sun et al. (1999a, 1999b) simulated 

representative regional climate, e.g., major circulation, precipitation, temperature and water 

vapor patterns, of East Africa for October-December, 1988. Other studies conducted over East 

Africa using version 3 of the Regional Climate model (RegCM3) are such as Anyah et al. 

(2006); Anyah and Semazzi (2006, 2007); Segele et al. (2009a); and Diro et al. (2012).  

Furthermore, the RCM called WRF which has a wide range of physical parameterizations, has 

been applied to some parts of Africa, or the entire Africa (e.g., Pohl et al., 2011; Giorgi et al. 

2009; Jones et al. 2011; Endris et al., 2013; Mooney et al., 2013; Flaounas et al., 2011).  Since 

its development in 2000, WRF has been a popular RCM to simulate regional climate of 

various study sites across the world. 
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Pohl et al. (2011) examined WRF’s simulations of the atmospheric water cycle of Equatorial 

East Africa using 58 combinations of physical parameterization, land-use categories, lateral 

forcing and the domain geometry. From the results, they found that the shortwave radiation 

scheme, the land surface model (LSM), the domain size, convective schemes and land-use 

categories play a more significant role than cloud microphysics, lateral forcing reanalysis, the 

number of vertical levels and planetary boundary layer (PBL) schemes in simulating reliable 

seasonal climate of Equatorial East Africa. The coordinated regional climate Downscaling 

Experiment (CORDEX) (Giorgi et al. 2009; Jones et al. 2011), initiated by the World Climate 

Research Program, used WRF and other RCMs to simulate high-resolution (50km) regional 

climate projections of different continents.  Under CORDEX, Endris et al. (2013) evaluated 

the rainfall of East Africa simulated by 10 different RCMs (including WRF), each set up with 

one set of model configuration and parameterizations. They found that most of RCMs 

simulated a reasonable pattern of rainfall climatology over the three sub-regions but with 

significant biases. Mooney et al. (2013) found that WRF could simulate the 2-m surface 

temperature of 1990-95 over the European domain, CORDEX region-4, accurately. They 

found WRF to be most sensitive to LSMs, moderately sensitive to longwave radiation 

schemes, but not sensitive to microphysics and PBL schemes. In simulating precipitation, 

WRF is found to be more sensitive to LSMs in the summer than in the winter.  However, 

precipitation simulated by WRF compared poorly with remotely sensed precipitation data. 

Under CORDEX, Katragkou et al. (2015) evaluated the 1990-2008 regional climate simulated 

by WRF for the European domain using the ERA-Interim reanalysis data, in a multi-physics 
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ensemble framework with different configurations of microphysics, convection and radiation 

schemes. They found a systematic bias in temperature and precipitation simulated by WRF 

for summer and winter, an over (under) simulation of the total cloud cover (downward 

shortwave radiation) over northern Europe, and a strong positive bias in the downward 

shortwave radiation in summer over central and southern Europe. For simulating the 2006 

summer West Africa monsoon, Flaounas et al. (2011) examined the sensitivity of WRF to 

convection and PBL schemes. They found that temperature, vertical distribution of humidity, 

and rainfall amount simulated by WRF is very sensitive to PBL schemes, while the dynamics 

and variability of precipitation simulated are sensitive to convective parameterization schemes.  

WRF is computationally expensive and its optimal performance requires a tedious 

investigation over different combinations of parameterization schemes which vary from 

region to region.  To the best of our knowledge, only a few RCM studies have been tested 

over the NRB, and as far as we know, only CORDEX has done a limited test on the 

performance of WRF over the whole Africa which was set up as a single domain at 50 km 

resolution.  The objective of this study is to fine tune the configuration and parameterization 

schemes of WRF so that it can simulate reliable regional climate of NRB for 1999-2001 using 

the ERA-Interim reanalysis data at 36 km resolution. 

The chapter is organized as follows: the brief description of regional climate model, 

configuration and study area are stated in section 2.2. In section 2.3, model verification 

methods for the simulated results are discussed. The results and discussions of different 



 

12 

 

evaluation are presented in section 2.4. Finally, in section 2.5, the conclusions of the study are 

presented.  

2.2. Experimental setup 

2.2.1. Model description and configuration 

This study was conducted using the advanced Weather Research and Forecasting regional 

climate model, version WRF 3.6.1. WRF is a nonhydrostatic, primitive-equation, mesoscale 

meteorological model with advanced climate dynamics, physics and numerical schemes. 

Detailed descriptions of the WRF can be found in the model manual of Skamarock et al. 

(2008) and also on the WRF user Web site (http://www.mmm.ucar.edu/wrf/users). Like other 

RCMs, WRF tends to over or under-simulate the amount of rainfall, but it can capture 

essential features of storm events, such as the time of occurrence, evolution, duration and 

location of storms (Hong and Lee, 2009; Chen et al., 2010).  Possible factors contributed to 

this common shortcoming of climate models are such as uncertainties of initial conditions, 

limited knowledge on the rainfall generation process, cloud microphysics, numerical round-

off errors, etc. (Fowle and Roebber, 2003; Fritsch and Carbone, 2004). However, the selection 

of schemes and fine tuning of parameters for various modules of WRF, domain configurations 

and grid resolutions play a major role in the performance of WRF. 

In the pre-processing stage of WRF, we evaluated two land use databases, sea surface 

temperature, setting of vertical layers and relaxation zones for lateral boundaries of the study 

domain. WRF was finally set up with 30 vertical pressure levels and the top level is at 50hPa.  

For the study period 1999-2001, the initial and lateral boundary conditions of WRF are based 

http://www.mmm.ucar.edu/wrf/users
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on the most recent, ERA-Interim reanalysis data of the European centre for Medium Range 

Weather Forecasts (ECMWF) at 0.25
o
 x 0.25

o
 resolution and 6-hourly time steps.  Compared 

with other reanalysis data, past studies show that the ERA-Interim data best represented 

certain aspects of the climate system, such as the air temperature (Mooney et al., 2011; Troy 

and wood, 2009; Screen and Simmonds, 2011).  

The parameterization schemes in WRF are grouped into these modules: 1) Microphysics (MP), 

2) Longwave radiation (LW), 3) Shortwave radiation (SW), 4) Land surface model, 5) 

Cumulus (Cu), and 6) Planetary boundary layer. Each of these modules has two or more 

parameterization schemes, with some schemes more applicable for climate modeling while 

others for weather forecasting, or both, thus making WRF a popular RCM. In fine tuning 

WRF, because of computational constraint, we could only test a limited combination of all 

available parameterization schemes, instead of testing all possible combinations. The 

performance of WRF for modeling the regional climate of NRB is assessed by its ability to 

reproduce the spatial and temporal patterns of the observed climate of NRB. 31 combinations 

of schemes selected to fine tune WRF over NRB are shown in Table 2.1. These schemes were 

selected either because they performed well in previous studies or they have not been tested 

before (Pohl et al., 2011; CORDEX Africa groups). Out of 31 experiments, 20 were 

conducted from combinations between 2 Cu, 2 PBL and 5 MP schemes, while 8 experiments 

were conducted from combining 2 Ra with 4 MP schemes; and 3 more experiments  were 

conducted from combining 3 Ra schemes with 1 other LSM.  
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Table 2.1: The combination of Physical parameterization schemes for 31 WRF 

simulations  

Experiment 
No. 

Cu 
schemes 

PBL Microphysics 
LW 

schemes 
SW 

schemes 
LSM 

Test 1 KF 
YSU 

Lin 

RRTM Dudhia NOAH 

Test 2 BMJ 

Test 3 KF 
MYJ 

Test 4 BMJ 

Test 5 KF 
YSU 

WSM3 
Test 6 BMJ 

Test 7 KF 
MYJ 

Test 8 BMJ 

Test 9 KF 
YSU 

WSM5 
Test 10 BMJ 

Test 11 KF 
MYJ 

Test 12 BMJ 

Test 13 KF 
YSU 

Morrison 
Test 14 BMJ 

Test 15 KF 
MYJ 

Test 16 BMJ 

Test 17 KF 
YSU 

WDM5 
Test 18 BMJ 

Test 19 KF 
MYJ 

Test 20 BMJ 

Test 21 

KF MYJ 

WSM3 

CAM CAM 

NOAH 

Test 22 WSM5 

Test 23 Morrison 

Test 24 WDM5 

Test 25 WSM3 

RRTMG RRTMG 
Test 26 WSM5 

Test 27 Morrison 

Test 28 WDM5 

Test 29 

KF MYJ WSM3 

RRTM Dudhia 

RUC Test 30 CAM CAM 

Test 31 RRTMG RRTMG 
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Since the dynamics and variability of precipitation are sensitive to convection 

parameterization schemes, two cumulus parameterization schemes, the Kain-Fritsch (KF) 

(Kain, 2004) and Betts-Miller-Janjic (BMJ) (Janjic, 1994) schemes were tested in this study.  

Even though it tends to overestimate the precipitation, the KF is the widely used cumulus 

parameterization scheme. Furthermore, the vertical distribution of temperature, humidity, and 

rainfall amount can be significantly affected by the PBL schemes. In this study, the popular 

Yonsei University (YSU) scheme (Hong et al., 2006) and the Mellor-Yamada-Janjic scheme 

(MYJ) (Janjic, 1994) were tested. 

For the microphysics, the WRF single moment three-class (WSM3) scheme (Hong et al., 

2004), Lin et al. (1983) scheme, WRF Single-Moment 5-class scheme (WSM5) (Hong et al., 

2004), Morrison double-moment scheme (Morrison et al., 2009) and WRF Double-Moment 

5-class scheme (WDM6) (Lim and Hong, 2010) were tested. The WSM3 is a simple, efficient 

scheme that considers ice and snow processes at mesoscale grid sizes. On the other side, 

WSM5 is marginally more sophisticated that also considers mixed-phase processes and super-

cooled water. The radiation schemes tested were the Rapid Radiative Transfer Model (RRTM) 

LW scheme (Mlawer et al., 1997), Dudhia (Dudhia, 1989) SW schemes, Community 

Atmosphere Model (CAM) (Collins et al., 2004) and a new version of RRTM (RRTMG) 

(Iacono et al., 2008) for both the LW and SW radiation schemes. Lastly, the two Land surface 

models tested were the Noah (Ek and Mahrt 1991) and the Rapid Update Cycle (RUC) 

(Smirnova et al. 1997, 2000).  RUC is set up to simulate soil temperature and moisture for six 
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layers, snow and frozen soil physics for multiple layers while the Noah LSM simulates soil 

temperature and moisture for four layers.   

2.2.2. Domain configuration for the Nile River Basin 

The Nile River is the longest river in the world with a length of 6800 km. It covers an area of 

about 3,400,000 km
2
 and it flows over eleven countries (Burundi, DR Congo, Egypt, Eritrea, 

Ethiopia, Kenya, Rwanda, Tanzania, South Sudan, Sudan and Uganda). This study will focus 

on the Blue Nile River Basin (BNRB), which is a sub-basin of the Nile river basin. The 

drainage area of the BNRB approximately covers an area of 210,000 km
2
,
 
but it contributes 

about 60% of the average annual flows of the Nile River. NRB has different rainy seasons 

with diverse climatic conditions ranging from arid, semi-arid to humid regions. From north to 

south, there are arid, tropical, and equatorial rainfall regimes. There is virtually no 

precipitation in the Sahara Desert of Sudan and Egypt, but precipitation increases southward 

to the Ethiopian highland and Equatorial Plateaus, with the June-September rainy season over 

Ethiopian plateau, and two rainy seasons over the Equatorial Lakes Plateau, October-

December and March-May resulted from ITCZ moving southward and northward over the 

region, respectively. The southern part of the Nile basin has also one rainy season from 

October-December (Indeje et al., 2000; Nyakwada, 2009; Endris et al., 2013). Because of 

different rainy seasons over the NRB, WRF was set up to perform continuous simulation over 

each year of the study period. WRF was set up to simulate the climate of Nile over a two-

domain’s configuration with one-way nesting. Domain-1 (2
o
E to 57

o
E, 20

o
S to 37

o
N) was set 

up for the NRB and Domain-2 (29
o
E to 45

o
E, 5

o
N to 17.5

o
N) was set up for the BNRB, as 
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shown in Figure 2.1. First, evaluation of different parameterization schemes was based on 

results obtained for Domain-1 (D1) only for 1999-2001. Then, WRF was run with Domian-2 

(D2) nested within D1 after we have obtained better parameterization schemes for D1, to 

obtain results for both domains from 1980 to 2001.  However, in this paper, only results 

obtained from testing D1 are presented. The ERA-Interim reanalysis data were used as the 

lateral boundary and initial conditions for D1 with a 36-km resolution. Then, the D1 output 

was used as lateral and initial conditions to run the inner domain D2 with a 12 km resolution.  

To account for sources of moisture coming from the Atlantic and the Indian oceans, and to 

serve as a “spatial” spin-up, D1 was set up to be much wider than the NRB.  

 

 

Figure 2.1: A map showing the Domain-1 and Domain-2 setup of WRF and the topography (m) of the 

Nile and the Blue Nile River Basin of Africa. 
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2.3. Model verification methods 

The main problem in evaluating the performance of a RCM over Africa is a general lack of 

high-quality observation datasets of suitable temporal and spatial resolutions. The Tropical 

Rainfall Measuring Mission (TRMM 3B42 Version 6, 1998-2010) satellite based precipitation 

product with a 0.25
o
 spatial and daily temporal resolutions were used to assess gridded 

precipitation simulated by WRF. Precipitation products of TRMM have been evaluated 

against rain gauge data in Africa, e.g., Nicholson et al. (2003a, b); Romilly and Gebremichael 

(2011); Mashingia et al. (2014). Even though TRMM data agree well with gauge data for 

most major climatic zones of Africa in all seasons (e.g., Adeyewa and Nakamura, 2003), such 

satellite data have limitations, such as a lack of ability in capturing deep convective 

precipitation systems on daily timescales, particularly on the windward side of mountainous 

terrains (Dinku et al., 2008; Nair et al., 2009).  In addition, two rain gauge-based datasets 

available at 0.5
o
 spatial and monthly temporal resolutions, the Global Precipitation 

Climatology Centre (GPCC version 6, 1901-2010; Schneider et.al, 2011) and the Climate 

Research Unit at the University of East Anglia (CRU version 3.22, 1901-2013; Harris et.al, 

2014) were also used to validate the simulation of WRF. Africa has a sparse network of rain 

gauges, and precipitation data interpolated from a sparse network of rain gauges could lead to 

large errors and unrealistically smooth spatial gradients (Koutsouris et al., 2016). Therefore, 

we should be cautious using these widely used, gauge-based datasets. Nicholson et al. (2003a, 

b) used a dense network of rain gauge dataset to validate both the GPCP and the GPCC 

datasets for 1988-94 and for 1998 over West Africa. They found that the mean precipitation 
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fields derived from the dense gauge network, the GPCC and the GPCP are remarkably similar.  

However, they found that both GPCP and GPCC datasets compare well with the rain gauge 

data at seasonal but not at monthly time scales.  The air temperature at 2m (T2) simulated by 

WRF was evaluated against the CRU data; downward short- and Longwave radiation at the 

surface simulated by WRF was evaluated against the National Centers for Environmental 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data (Saha et al, 2010). The 

reanalyses data are climatological data generated from applying data assimilation schemes on 

available observed data into a climate model. Zhang et al. (2013) found that the latest 

reanalysis dataset called CFSR yields the best results in the precipitation mean and variability 

over South Africa when compared with the CRU data. In this study, the above observed and 

reanalysis data were re-gridded to the resolution of D1 to facilitate comparison with WRF’s 

simulations. Some errors are expected in the re-gridding process, but the error introduced 

should not be significant, which will partly depend on the spatial variability of data and partly 

on the re-gridding algorithms used. The performance of WRF is assessed using statistics such 

as the root mean square error (RMSE), the mean error (ME) and the standard deviation (SD) 

calculated from all the simulations of WRF for each grid point of D1 over the study period; 

and the correlation coefficients between simulated and observed monthly climate variables. 

The spatial plots are used to evaluate the ability of WRF to capture the spatial distribution and 

the bias of WRF’s simulations over the basins. These plots show different bias of WRF in 

different areas, but it is difficult to conclude if the overall bias for the entire basin is positive 

or negative. The time series of WRF’s grid-based simulations for the BNR are spatially 



 

20 

 

averaged and analysed to assess the ability of WRF to capture the rainfall seasonality of the 

BNR basin. 

2.4. Results and discussions 

2.4.1. Rainfall climatology 

Figure 2.2 and Figure 2.3 show the mean annual rainfall bias in mm/day for all model 

configurations of WRF tested with respect to the TRMM datasets over the 1999-2001 period. 

We chose TRMM instead of GPCC data for comparison partly because TRMM datasets are of 

daily rainfall while GPCC are monthly rainfall data. Figure 2.2 presents the results using 

different combinations of WRF’s parameterization schemes, which are cumulus 

parameterization (KF and BMJ), planetary boundary layer (YSU and MYJ) and microphysics 

(Lin, WSM3, WSM5, Morrison and WDM6); to determine which set of schemes can simulate 

the most representative rainfall of NRB, e.g., the depth and variability of rainfall. From these 

two figures, it seems that WRF simulated representative rainfall over the NRB in all 

parameterization schemes tested, but more schemes over-simulated while a few under-

simulated the rainfall of Ethiopian highlands and the Congo basin, but most schemes under-

simulated the rainfall over the Lake Victoria area. Other studies such as Endris et al., (2013) 

also encountered this over-simulation problem over the Congo basin and Ethiopian highlands. 

The parameterization schemes considered consists of two cumulus parameterizations which 

controls the dynamics and variability of rainfall regimes are shown in columns 1 and 2 under 

the YSU PBL scheme; and columns 3 and 4 under the MYJ PBL scheme. Overall, KF tends 

to over-simulate rainfall while the BMJ scheme tends to under-simulate. Our results are 
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consistent with that of Pohl et al. (2011), who also found KF to simulate a wetter climate than 

the BMJ scheme for East Africa. Figure 2.2 also shows that under KF combined with the 

YSU PBL scheme, WRF consistently over-simulated the rainfall of the Indian Ocean and the 

eastern Congo Basin. Further, under a given set of PBL and Cu, the double-moment MP 

scheme would lead to more simulated rainfall than the single-moment MP, especially if KF is 

the cumulus scheme selected. In contrast, under the BMJ cumulus scheme, the effect of 

changing MP on the amount of rainfall simulated tends to be negligible. On a whole, the 

Morrison double-moment scheme is associated with more simulated rainfall, which also 

agrees with results of Pohl et al. (2011).  The BMJ scheme is a moist convective adjustment 

scheme, where the thermodynamic profile is adjusted toward an observed reference profile in 

a quasi-equilibrium state. The BMJ scheme is triggered when the parcel is warmer than the 

environment determined by the Convective Available Potential Energy (CAPE). The scheme 

favors activation in cases with significant amounts of moisture at low and mid-levels and 

positive CAPE (Pohl et al., 2011). In contrast, KF, as a low-level control convective scheme, 

rearranges air mass in a column using the updraft, downdraft, and environmental mass fluxes 

until at least 90% of CAPE is removed (Kain, 2004).  The predominance of a strong 

convective regime over the Indian Ocean leads to over-simulation of rainfall.  
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Figure 2.2: Differences between observed (TRMM) and WRF’s simulated annual mean rainfall 

(mm/day) over the Nile river basin under different MP, CU and PBL schemes, fixed RRTM, Dudhia 

Ra schemes and NOAH LSM.  

 

 

Figure 2.3: Differences between observed (TRMM) and WRF’s simulated annual mean rainfall 

(mm/day) over the Nile river basin under different combinations of (a) Ra and MP, with fixed MYJ 

and KF schemes, and NOAH LSM, and (b) Ra with fixed WSM3, MYJ, KF schemes, and RUC LSM. 
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Beside the cumulus scheme, by mixing and the transfer of surface water vapour to higher 

layers, PBL also plays a significant role in the amount of rainfall simulated.  For example, the 

positive bias of KF over the Congo basin, Indian and Atlantic Ocean has been mostly 

corrected by changing the YSU PBL to the MYJ PBL scheme as shown in column 1 (YSU) 

and 3 (MYJ) of Figure 2.2 under the KF Cu scheme. However, under MYJ, the rainfall of the 

West Coast of Africa/Cameroon tends to be under-simulated.  In addition, combining MYJ 

PBL with the BMJ Cu scheme favours the simulation of a much drier climate compared with 

combining YSU PBL with BMJ Cu, which agrees with other studies, e.g., Evans et al. (2012) 

also found that YSU PBL tends to induce more convection in the KF scheme which leads to 

an over-simulation of precipitation.  The MYJ (Mellor and Yamada, 1982) tends to simulate a 

drier climate because it is a local closure PBL scheme reported to produce insufficient mixing 

in the convective boundary layer (Brown, 1996), for a weaker vertical mixing would transfer 

less surface water vapour to higher layers (HU et al, 2010). In contrast, YSU (Hong et al. 

2006) is a non-local closure PBL scheme that produces a well-mixed boundary layer profiles. 

This is likely a key reason why YSU favours a wetter simulation as compared with MYJ. 

Besides PBL and Cu, the effect of different radiation schemes, which provides the 

atmospheric heating and the ground heat budget, over the amount of rainfall simulated, is 

shown in Figure 2.3a. Figure 2.3a is presented with respect to different combinations of 

WRF’s parameterization schemes, namely, radiation schemes (CAM and RRTMG) and 

microphysics (WSM3, WSM5, Morrison and WDM6) under KF and MYJ as the Cu and PBL 

schemes, respectively. Apparently, changing the radiation scheme than the MP scheme has a 
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relatively larger effect on the amount of rainfall simulated, given that the RRTMG scheme 

generally leads to a wetter climate than other radiation schemes, especially the CAM scheme 

which tends to produce lesser rainfall. 

Lastly, the LSM which interacts with the lower atmosphere also plays a role in the amount of 

moisture fluxes, the outgoing short- and longwave radiation and sensible heat fluxes 

simulated, which are partly absorbed by the cloud. This is because heat and moisture fluxes 

simulated by the LSM over the land surface will be used as the lower boundary conditions for 

computing the vertical transport in the PBL scheme (Skamarock et al., 2008). However, 

changing the LSM between Noah and RUC shows little effects over the amount of rainfall 

simulated as shown in Figure 2.3b, even though RUC LSM marginally simulates more 

rainfall than the NOAH LSM (as shown in column-1 of Figure 2.3a, and row-2 vs column-3 

of Figure 2.2). 

The annual cycles of mean monthly rainfall for all test cases over the BNRB are shown in 

Figure 2.4. Compared with TRMM, CRU or GPCC dataset, more test cases show positive 

than negative bias during the May-September rainy season, but the simulations of WRF have 

generally captured the monthly rainfall variation of BNRB/Ethiopian highland for the rainy 

season. As explained earlier, compared with the other parameterization schemes of WRF, 

under the KF cumulus with YSU PBL scheme, WRF tends to over-simulate the rainfall of 

BNRB. A Taylor diagram is used to evaluate the agreement between the simulated and 

observed monthly rainfall using statistics such as the Pearson correlation, RMSE, and 

standard deviation for each simulation over the BNRB as shown in Figure 2.14a. The plot 
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shows a relatively high correlation between simulated and TRMM data in monthly time step, 

but the standard deviations normalized by the standard deviation of TRMM tend to be larger 

than one, which means rainfall simulated by WRF show larger variabilities than satellite data. 

The RMSE of WRF’s simulations range between 0.45 and 8.04 mm/day where higher RMSE 

represents simulations coming from WRF based on WSM3 MP, RRTMG radiation scheme, 

and RUC LSM. 

 

Figure 2.4: Comparison of mean monthly rainfall (mm/day) simulated by WRF for Blue Nile River 

with observed data of CRU, TRMM, and GPCC. 

 

2.4.2. Surface temperature at 2m 

Biases of the mean annual 2m air temperature simulated by WRF under different 

parameterization schemes with respect to observed data of CRU are shown in Figure 2.5. The 

results show that spatial patterns of temperature simulated by WRF generally agree well with 

observed data with reasonable discrepancies.  Even though the maximum cold bias can be -
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7
o
C and the maximum warm bias can be 8

o
C at some places, the mean bias ranges from -3

o
C 

to 0.5
o
C.  WRF clearly under-simulated the temperature of the Sahara Desert when the Noah 

LSM was used, and even the NCEP reanalysis data is also too cold for the Sahara Desert 

when compared with the CRU data (not shown here).  As a result, we cannot objectively 

assess the bias of temperature simulated by WRF under certain selected parameterization 

schemes with default parameters built into WRF, for as expected, observed data such as CRU 

also has uncertainties.  

 

 

Figure 2.5: Differences between observed (CRU) and WRF’s simulated annual mean Temperature 

(
o
C) over the Nile river basin under different combinations of MP, CU and PBL schemes, fixed 

RRTM, Dudhia Ra schemes and NOAH LSM. 

 

On the basis of differences between WRF’s simulations and the CRU annual mean 

Temperature (
o
C) over the NRB for different combinations of MP, Cu and PBL schemes, it 

M
P

 =
 L

in
 

M
P

 =
 W

S
M

3
 

MP = WDM5 

M
P

 =
 W

S
M

5
 

M
P

 =
 M

o
rr

is
o

n
 

M
P

 =
 W

D
M

5
 

PBL = YSU PBL = MYJ 

CU = KF CU = BMJ CU = BMJ CU = KF 

PBL = YSU PBL = MYJ 

CU = KF CU = BMJ CU = BMJ CU = KF 



 

27 

 

seems these schemes have marginal influence on the temperature simulated by WRF as shown 

in Figure 2.5.  On the other hand, LSM and Ra schemes which simulate the radiation forcing 

and heat exchanges between the land surface and the atmosphere exert stronger impact on air 

temperature simulated by WRF as shown in Figure 2.6. Temperature biases over the Sahara 

Desert were partly corrected by changing either the LSM or the Ra scheme. The RRTMG 

combined with Noah LSM simulated more accurate air temperature compared to other 

radiation schemes as shown in Figure 2.6a, while the CAM scheme resulted in a large 

negative temperature bias over the whole domain set up for the NRB.  Also, using the RUC 

LSM resulted in a higher simulated temperature than the Noah LSM as shown in Figure 2.6b.  

Similarly, Mooney et al. (2013) also found the summer surface temperature of Europe 

simulated by WRF was mostly controlled by the selection of land surface models (LSMs) and 

radiation schemes but less sensitive to MP and PBL.  In their study, they found the NOAH 

LSM simulated surface temperature that better agree with the observed data than the RUC 

LSM, even though under NOAH the surface temperature tends to be under-simulated, 

especially when combining NOAH with the CAM radiation scheme.   

Figure 2.7 shows the mean monthly, areally averaged 2m air temperature of BNRB simulated 

by WRF for all the test cases to generally capture the characteristic of observed temperature 

of BNRB, with lower air temperature during rainy seasons than dry seasons.  Among all test 

cases considered, the CAM radiation scheme combined with WDM6 MP (designated as Test 

27) resulted in simulated air temperature that on a whole is colder than all other test cases 

conducted in this study.  The RMSE of WRF’s simulated temperature ranges from 0.27 to 4 



 

28 

 

o
C, has a correlation with the observed temperature higher than 0.8, and the normalized 

standard deviation is closed to one as shown in Figure 2.14b of the Taylor diagram.  

 

 

Figure 2.6: Differences between observed (CRU) and WRF’s simulated annual mean temperature (
o
C) 

over the Nile river basin under different combinations of (a) Ra and MP, with fixed MYJ and KF 

schemes, and NOAH LSM, and (b) Ra with fixed WSM3, MYJ, KF schemes, and RUC LSM. 

 

 

Figure 2.7: Comparison of mean monthly 2m temperature (
o
C) simulated by WRF for Blue Nile River 

with observed data of CRU and NCEP. 
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2.4.3. Downward longwave radiation at the surface (LWRAD) 

Figure 2.8 and Figure 2.9 show the mean annual surface downward longwave radiation bias 

(W.m
-2

) for all model configurations of WRF tested with respect to NCEP reanalysis data. 

The LWRAD is less sensitive to Cu and MP schemes, but slightly more sensitive to Ra, LSM 

and PBL schemes as shown in Figure 2.8 and Figure 2.9.  Under the YSU PBL scheme, 

RRTM simulated more LWRAD than under the MYJ PBL scheme.  Further, under the 

double-moment MP scheme RRTM simulated more LWRAD than under the single-moment 

MP, especially if YSU is the PBL scheme selected, e.g. the Morrison double-moment MP 

with YSU schemes lead to more LWRAD simulated than under other combination of MP and 

PBL schemes, resulting in higher rainfall simulated, as discussed in Section 2.4.1. 

Furthermore, in addition to Ra schemes, the selection of LSM also plays an important role in 

the amount of LWRAD as shown in Figure 2.9. The figure shows that RUC LSM and 

RRTMG simulated larger LWRAD than other parameterization schemes of WRF considered 

in this study, while the CAM radiation scheme under-simulated LWRAD across the entire 

study domain. The discrepancy between WRF’s simulated LWRAD and that of NCEP 

reanalysis data under different combinations of parameterization schemes can range from -60 

to 30 W.m
-2

, and with a mean bias ranging from -25 to 3 W.m
-2

, a RMSE ranging from 6.4 to 

29.9 W.m
-2

, and a standard deviation from 26.7 to 33.53 W.m
-2

.  
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Figure 2.8: Difference between NCEP reanalysis data and WRF`s simulated annual mean LWRAD 

(W.m
-2

) over the Nile river basin for different combinations of MP, CU and PBL schemes, fixed 

RRTM, Dudhia Ra schemes and NOAH LSM.  

 

 

Figure 2.9: Differences between annual mean LWRAD (W.m
-2

) of NCEP reanalysis data and that 

simulated by WRF over the Nile river basin for different combinations of (a) Ra and MP, with fixed 

MYJ and KF schemes, and NOAH LSM, and (b) Ra with fixed WSM3, MYJ, KF schemes, and RUC 

LSM. 
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Figure 2.10 shows that in comparison to the NCEP data, the mean monthly, areally averaged 

LWRAD for the BNRB simulated by WRF for all test cases suffers a systematic under-

simulation, especially under the CAM radiation scheme.  As shown in the Taylor diagram in 

Figure 2.14c, the RMSE between the LWRAD of WRF and that of NCEP ranges from 25 to 

134 W.m
-2

, but their correlation is above 0.95, which demonstrates that the LWRAD 

simulated by WRF for the BNRB with an acceptable uncertainty.  

 

Figure 2.10: Comparison of mean monthly LWRAD (W.m
-2

) simulated by WRF for Blue Nile River 

with NCEP reanalysis data. 

 

2.4.4. Downward shortwave radiation at the surface (SWRAD) 

The downward shortwave radiation flux is dependent on the solar zenith angle which affects 

the path length. Further, while penetrating through the atmosphere, the SWRAD is attenuated 

by cloud covers, scattered by aerosols and dust particles, and also absorbed by atmospheric 
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water-vapour. Besides SWRAD, the atmospheric cloud cover plays a critical role in the 

simulation of rainfall and LWRAD which are interconnected to each other. For example, 

more cloud cover means more rainfall but less SWRAD passing through the cloud which 

emits more LWRAD to the surface. Therefore, as shown in the figures, when LWRAD is 

under-simulated, rainfall is also expected to be under-simulated while SWRAD over-

simulated, and vice versa, but this will also depend on the cloud type and size, and the 

composition of water droplets and/or ice particles that form the cloud.  

Biases in the mean annual SWRAD simulated by WRF with respect to the NCEP data are 

shown in Figure 2.11 and Figure 2.12. The annual rainfall of the Equatorial area, where 

SWRAD is mostly over-simulated by WRF, is higher than surrounding regions. Under the 

Dudhia shortwave radiation scheme, the simulation of SWRAD is less sensitive to Cu, PBL 

scheme and LSM, but very sensitive to the MP scheme. The higher the rainfall, the lesser will 

be the SWRAD simulated because of a higher absorption by cloud or water particles in the 

atmosphere.  Compared with other MP schemes, the Morrison scheme is associated with over-

simulated rainfall (Section 2.4.1) but the SWRAD simulated agrees better with the NCEP 

reanalysis data, while Lin and WSM3 MP schemes are associated with more bias in the 

SWRAD simulated.  In terms of the radiation schemes, RRTMG and CAM generally simulate 

higher amount of SWRAD than the Dudhia scheme as shown in Figure 2.12.  On the other 

hand, in contrary with the Dudhia shortwave radiation scheme (shown in Figure 2.11), under 

CAM and RRTMG radiation schemes, the effect of MP schemes on the simulation of 

SWRAD is relatively marginal. Compared with the NCEP reanalysis data, WRF generally 
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shows more over than under-simulation of SWRAD, with a discrepancy ranging from -120 to 

160 W.m
-2

; and a mean bias ranging from 3.9 to 45.53 W.m
-2

.  Between WRF’s simulation 

and the NCEP data, the RMSE ranges from 19.3 to 51.8 W.m
-2

 and the standard deviation 

from 25.2 to 44.6 W.m
-2

.  From the mean monthly surface downward shortwave radiation 

average over BNRB shown in Figure 2.13, there is a systematic over-simulation of SWRAD 

over the BNRB except when WRF was under the Morrison or the WSM5 microphysics 

schemes combined with the KF, RRTM, and YSU schemes. The Taylor diagram of Figure 

2.14d shows that the correlation between WRF’s simulation and the NCEP reanalysis data 

ranges from 0.45 to 0.9, and the RMSE from 22 to 60 W.m
-2

.  

 

 

 

Figure 2.11: Differences between NCEP reanalysis data and WRF`s simulated annual mean SWRAD 

(W.m
-2

) over the Nile river basin under different combinations of Cu, MP and PBL, fixed RRTM, 

Dudhia Ra schemes and NOAH LSM. 
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Figure 2.12: Differences between NCEP reanalysis data and WRF’s simulated annual mean SWRAD 

(W.m
-2

) over the Nile river basin under different combination of (a) Ra and MP, with fixed MYJ and 

KF schemes, and NOAH LSM, and (b) Ra with fixed WSM3, MYJ, KF schemes, and RUC LSM. 

 

 

Figure 2.13: Comparison of mean monthly SWRAD (W.m
-2

) simulated by WRF for Blue Nile River 

with NCEP reanalysis data. 
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Figure 2.14: Taylor diagram showing correlation coefficient and standard deviation of (a) mean 

monthly rainfall, (b) surface air temperature, (c) longwave radiation, and (d) shortwave radiation 

relative to observed and reanalysis data for the 31 WRF simulations over Blue Nile river basin. 

 

2.4.5. Multi-year regional climate simulation of WRF 

From the above analysis of results, it seems that WRF can achieve modeling more 

representative regional climate of NRB by using the WSM3 microphysics, KF cumulus, MYJ 

PBL, RRTM longwave radiation, and Dudhia shortwave radiation schemes and coupled to the 
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Noah LSM than other schemes coupled to Noah or other land surface schemes. The above 

configuration of WRF calibrated from using the 1999-2001 data was further tested to see if 

WRF-Noah can simulate representative, long-term regional climate of NRB over 1980-2001 

which include a combination of wet and dry years. The mean annual difference between 

observed and WRF simulated rainfall, temperature, long- and shortwave radiation are shown 

in Figure 2.15. The results confirm that the configured WRF-Noah can simulate the climate of 

NRB accurately, with a RMSE between simulated and observed data of 1.1mm/day, 2.4
o
C, 

13.2 W.m
-2

, and 40.7 W.m
-2

; and a mean error of 0.27mm/day, -2
o
C, -10.5 W.m

-2
, and 31.3 

W.m
-2

; and the spatial correlation of 0.89, 0.92, 0.97 and 0.61 for rainfall, temperature, 

longwave and shortwave radiation, respectively. Similar to results obtained for the 1999-2001 

calibration experience, WRF over-simulated the rainfall in the Congo basin, under-simulated 

the temperature in the Sahara Desert, under-simulated the longwave radiation and over-

simulated the shortwave radiation in NRB marginally. The long-term simulation of WRF was 

compared against NCEP reanalysis data for long- and shortwave radiation, and GPCC and 

CRU data for rainfall and temperature, respectively. 

 

Figure 2.15 Differences between observed GPCC, CRU, reanalysis NCEP data and WRF’s simulated 

mean annual (1980-2001) rainfall (mm/day), temperature (
o
C), longwave and shortwave radiation 

(W.m
-2

) over the Nile river basin.  
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Figure 2.16: Comparison of mean monthly rainfall, temperature, longwave, and shortwave radiation 

simulated by WRF for Blue Nile River with observed GPCC, CRU and NCEP radiation data. 

 

Figure 2.16 shows that the mean monthly, areally averaged rainfall, 2m air temperature, long-, 

and shortwave radiation of BNRB simulated by WRF for 1980-2001 generally captured the 

observed climate variables of BNRB reasonably well, even though the rainfall of BNRB was 

over-simulated during rainy season, and WRF consistently over- and under simulated the 

short- and longwave radiation of BNRB, respectively. Comparing the rainfall, temperature, 

longwave and shortwave radiation simulated by WRF for BNRB with the observed data, the 

correlations are 0.94, 0.91, 0.97, and 0.73; the RMSE are 1.14mm/day, 1.13
o
C, 21.4 W.m

-2
 

and 61.5 W.m
-2

; and the Mean error are 0.29 mm/day, -0.82
o
C, -20.4 W.m

-2
 and 58.3 W.m

-2
, 
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respectively. The above statistics between WRF’s simulation with the observed climate data 

over the 1980-2001 period show that the configuration chosen for WRF coupled to the Noah 

LSM can reasonably simulate the long-term regional climate of BNRB over both dry and wet 

years. 

 

2.5. Summary and Conclusions 

In this study, WRF model was carefully configured to select the best optimal combination of 

parameterization schemes to simulate representative, 1999-2001 climate of the NRB using 

ERA interim data as the boundary condition. As expected, no one parameterization scheme is 

consistently superior over other schemes under different evaluation criteria. In most RCM 

studies, the configuration and parameterization of a RCM is evaluated in terms of the 

accuracy of precipitation and temperature simulated only, which has its drawback because the 

results could be good even though the model configuration chosen may not be optimal for 

modeling a climatic regime. In this study using WRF as the RCM to model the regional 

climate of the NRB, the performance of WRF was also evaluated in terms of energy fluxes 

simulated, which should be more comprehensive than just evaluating WRF in terms of only 

precipitation and temperature simulated.  

Overall, with reference to NCEP reanalysis and CRU climate data, the T2 and LWRAD 

simulated are generally more accurate than precipitation and SWRAD data for all WRF 

parameterization schemes tested in this study.  The simulation of rainfall is more sensitive to 

the choice of PBL, Cu and MP schemes than other schemes of WRF.  For example, 
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combining the KF convective scheme with the YSU PBL scheme tends to simulate rainfall 

with significant bias over the NRB, while by combining KF with the MYJ PBL scheme, WRF 

simulated better rainfall than all other combinations of Cu and PBL schemes. T2 is more 

sensitive to LSM and Ra than to Cu, PBL and MP schemes selected for NRB. The surface air 

temperature simulated using Noah as the LSM agrees better with observed data (e.g., small 

negative bias) than that simulated using RUC as the LSM which has a high positive bias.  

From testing several radiation schemes with Noah as the LSM, the simulated T2 tends to have 

a negative bias with CAM as the radiation scheme, a positive bias with RRTMG as the 

radiation scheme, and has a negative bias over the Sahara Desert while using other radiation 

schemes. The SWRAD simulated by WRF is generally more dependent on MP and Ra 

schemes than Cu, LSM and PBL schemes.  While most SWRAD simulated by WRF tends to 

have a positive bias, SWRAD simulated from combining the Morrison MP scheme with the 

Dudhia radiation scheme tends to be more accurate than other combination of schemes, e.g., 

SWRAD simulated from CAM and RRTMG schemes have more positive bias than that 

simulated using the Dudhia scheme. Finally, LWRAD simulated by WRF is highly sensitive 

to LSM, Ra and PBL schemes, but less sensitivity to Cu and MP schemes.  On a whole, RUC, 

RRTMG and YSU schemes tend to result in simulating LWRAD with a positive bias than 

other schemes.  Furthermore, with a strong positive bias in SWRAD, WRF tends to simulate 

low rainfall and low longwave radiation, and vice versa. Therefore, a careful selection of the 

configuration and physical parameterization schemes for WRF is essential to simulate 

representative key climate variables such as T2, precipitation, SWRAD and LWRAD.  From a 
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tedious effort calibrating WRF with the objective of simulating representative regional 

climate of NRB, we found the following combination of schemes to be more comprising than 

other schemes: the Single-moment WSM3 microphysics, KF cumulus, MYJ PBL, RRTM 

longwave radiation scheme, Dudhia shortwave radiation scheme, and Noah LSM.  In 

addition, these selected schemes are also efficient in terms of computation time as compared 

with other WRF parameterization schemes tested in this study. Lastly, the above 

configuration of WRF coupled to the Noah LSM has been shown to simulate representative 

regional climate of NRB over 1980-2001 which include a combination of wet and dry years of 

the NRB. 
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Chapter 3 Regional Climate Change Impact on Extreme Precipitation 

and Temperature of the Nile River Basin  

3.1. Introduction 

Possible impact due to climate change and climate variability will likely affect future 

agricultural production and food security in many African countries significantly (Boko et al., 

2007; Gan et al., 2015). In Sub-Saharan Africa about 300 million people suffer from water 

shortages (WWAP, 2012), and water shortages promote poverty (Gizaw and Gan, 2016). 

Water stress has been a major societal challenge in Africa, e.g., over 75% of Africans live in 

regions with arid and semi-arid climate, 2/3 of its population rely on limited and highly 

variable water resources, a significant fraction of its cropland resides in its driest regions with 

40% of the irrigation non-sustainable (Vörösmarty et al., 2005). The threats to food security, 

conflicts from competing users for dwindling water supply between African nations result in 

growing political tension and instability in this continent (Dodo, 2014). Our climate will 

likely continue to change in the coming decades, both as a result of natural factors that affect 

the climate system and anthropogenic greenhouse gases emissions to the atmosphere. These 

will change the regional and local temperature and precipitation patterns in Africa and 

globally. 

NRB is the longest river in the world and it is under pressure from both anthropogenic (i.e., 

growing population that leads to increase in water demands for domestic, agricultural and 

hydroelectric power water usage) and natural factors (i.e., climate variability and change that 
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promote hydrologic extremes such as droughts). Climate change affects many climate 

sensitive sectors, such as agriculture, livestock, water resources and health (IPCC, 2014). 

NRB is vulnerable to climate change impact because of the dominance of rain-fed rather than 

irrigated agriculture for food production, and limited water availability and the increasing 

water demand (Swain, 2011). There is an urgent need to better understand the possible 

climate change impact over the future water resources of NRB which may decrease or 

increase because of rising temperature which enhances evaporation loss, reduced precipitation 

and changes to precipitation patterns. Given the possible impact of climate change varies 

widely across the world (IPCC, 2007), it is essential to conduct a vigorous regional analysis of 

climate change impact to NRB. 

Large scale climate patterns that affect the rainfall variability of NRB or Eastern Africa are 

the Inter-Tropical Convergence Zone (ITCZ) and El Nino Southern Oscillation (ENSO) 

(Ntale and Gan, 2004). ITCZ is formed when dry northeast Trade winds meet the wet 

southwest Trade winds, forcing the moist air to rise and causing water vapour to condense 

(Mohamed et al., 2005). Moist air from the Atlantic and the Indian Oceans that flows towards 

a low pressure zone north of the Equator is the main sources of atmospheric moisture over 

NRB. The seasonal migration of the ITCZ is latitudinal and towards the area of most solar 

heating or warmest surface temperature (Schneider et al., 2014). Therefore, it moves toward 

the Southern Hemisphere from September through February and reverses direction towards 

the Northern Hemisphere during summer. As a result, there is one rainy season in southern 

and northern Africa, or a dual rainy season in equatorial Africa. Other than ITCZ, past studies 
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show that flooding and droughts in NRB are strongly linked to Sea surface temperature (SST) 

of Atlantic and Indian Oceans (Sun et al. 1999a; Diem et al. 2014), and also to ENSO events 

(e.g. Eltahir, 1996; Indeje et al. 2000; Segele and Lamb, 2005; Ntale and Gan, 2004; Siam and 

Eltahir, 2017). Eltahir (1996) found that 25% of the natural variability of the Nile River is 

associated with ENSO. El Nino (La Nina) events generally result in drier (wetter) than normal 

conditions in the BNRB (Zaroug et al., 2014; Block and Rajagopalan, 2007), e.g., many major 

droughts occurred in Africa were partly caused by ENSO events (Shanahan et al., 2009), such 

as the 2011, Somalia drought, and droughts of Ethiopia/Sudan in the 1980s that killed many 

people. Mwale and Gan (2005) found that East Africa suffered a total of 12 droughts between 

1965 and 1997.  

Given the spatial and temporal resolutions of GCMs are generally very coarse, it is necessary 

to apply statistical or dynamical downscaling methods to downscale climate projections of 

GCMs to regional or local scales in order to adequately assess the hydrologic impact of 

climate change to small or mid-size river basins. Statistical downscaling methods empirically 

relate large scale climate variables (predictors) such as GCM models outputs (temperature, 

humidity, sea-level pressure, geopotential height, etc.) to local climate (predictands). Past 

climate change research conducted in NRB using the statistical downscaling techniques are 

such as Elshamy et al. (2009) and Beyene et al. (2010). 

Regional Climate Models are commonly used to dynamically downscale climate projections 

of GCMs because RCMs can produce more plausible, regional scale climate change scenarios 

for regional studies than statistical downscaling methods (Fowler et al., 2007). The key 
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disadvantage of RCMs is that in general they are computationally expensive and in the past 

teleconnection models have been developed to predict seasonal rainfall, e.g., Ntale et al. 

(2003) used the canonical correlation analysis to predict the seasonal rainfall of East Africa. 

There have been studies conducted using RCMs for the entire Africa or some parts of Africa, 

using either reanalyses data or GCMs’ output (e.g. Anyah et al. 2006; Anyah and Semazzi, 

2007; Segele et al. 2009; Diro et al. 2012). The coordinated regional climate Downscaling 

Experiment (CORDEX) (Giorgi et al. 2009), initiated by the World Climate Research 

Program, has developed high-resolution (50km) regional climate projections for different 

regions using a RCM. Endris et al. (2013) compared the performance of 10 RCMs in 

simulating the rainfall of East Africa. They found some RCMs could simulate reasonable 

rainfall climatology for East Africa but most RCMs’ simulations suffer significant biases. 

Mohamed et al. (2005), who was among the first to apply a RCM to simulate the regional 

climate of the Nile Basin, used a modified version of the Regional Atmospheric Climate 

Model (RACMO). Their results obtained for NRB are satisfactory given they agree with the 

observed extremely low runoff coefficients of NRB.  From the CORDEX dataset, Alemseged 

and Tom (2015) evaluated historical rainfall simulations of eight GCMs downscaled by a 

RCM called RCA4 for the Upper BNRB of Africa. They found that nearly all GCMs 

underestimated the mean annual and dry season rainfall (1.4 to 50%) of the upper BNRB. The 

GCMs’ bias exceeded the interannual rainfall variability and is highly dependent on the 

terrain elevation with the largest bias over high elevation areas. Among the 8 GCMs, MPI-

ESM-LR performed the best in terms of rainfall bias, coefficient of variation and root mean 
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square error. CanESM2 performed best in terms of the correlation coefficient between gauged 

and simulated annual rainfall amounts. MIROC5 is superior to the other models in terms of 

capturing rainfall anomaly; i.e., occurrence of wet and dry years. Mariottie et al. (2011) 

investigated climate change impact to the entire Africa using both the A1B climate change 

scenario of raw ECHAM5 GCM output and the output that was downscaled by RegCM3 for 

the late 21
st
 century relative to the base period, 1980-2000. They projected the temperature of 

Africa will increase by 5
o
C, precipitation over the equatorial Africa will increase moderately 

in DJF season, while most of West Africa and the Sahel will experience a reduction in 

precipitation, in the late 21
st
 century. Soliman et al. (2009) also used RegCM3 to downscale 

the ECHAM5 GCM A1B scenario over the BNRB. RegCM3 projected the precipitation to 

decrease by 5% over the Mendaya sub-catchment of Blue Nile, and to increase by 7% over 

the Border sub-catchment.  

Many RCMs have been developed but to the best of our knowledge, only few RCMs have 

been used to study the regional climate change impact over sub-basins of the NRB.  Climate 

projections over Africa are characterized by high level of uncertainties partly because the 

climate of Africa is not well understood, and partly because of the limitations of RCMs and 

GCMs (e.g. Mariotti et al., 2014; Lucas-Picher et al., 2008). As an effort to address 

uncertainties associated with long-term climate projections, an ensemble of climate change 

scenarios of IPCC (2013) were used in this study to estimate the possible range of climate 

change impact on NRB so that appropriate adaptation, preparedness and mitigation strategies 

may be developed to minimize the impact. In particular, the objective is to evaluate climate 
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change impact on extreme precipitation and temperature of NRB using WRF to downscale 

RCP4.5 and RCP8.5 climate scenarios of four GCMs (CanESM2, GFDL-ESM2M, MPI-

ESM-LR and ACCESS1-3) of CMIP5 for the 2050s and 2080s.  

The chapter is organized as follows: brief description of WRF, its configurations, study site, 

description of extreme climate indices and bias correction method are presented in section 3.2, 

discussions of results in section 3.3, and summary and conclusions are in section 3.4.  

3.2. Methodology  

3.2.1. Model Configuration 

Climate scenarios of selected GCMs were dynamically downscaled using the advanced 

Weather Research and Forecasting (WRF) numerical climate model, version of WRF 3.6.1 of 

NCAR (National Center for Atmospheric Research). Detailed descriptions of WRF can be 

found in Skamarock et al. (2008) and also in the WRF user Web site 

(http://www.mmm.ucar.edu/wrf/users). In this study, the study site domain is set at 36 km 

resolution and WRF is configured with 30 vertical pressure levels such that the top level is at 

50hPa.  Out of many configurations tested for WRF, the final selected configurations for 

WRF consists of WRF Single-Moment 3-class microphysics scheme (Hong et al., 2004), 

NOAH land surface scheme (Ek and Mahrt 1991), MYJ planetary boundary layer (Janjic, 

1994), Eta similarity surface layer (Janjic, 1994), and Dudhia (Dudhia, 1989), and RRTM 

atmospheric radiation schemes (Mlawer et al., 1997). Further, among many cumulus 

parameterization schemes available in climate models (e.g., Kerkhoven et al., 2006), the 

Kain‐Fritsch cumulus parameterization (Kain, 2004) together with the above configurations 

http://www.mmm.ucar.edu/wrf/users
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were chosen after extensive testing of WRF using ERA-Interim reanalysis data as the initial 

and lateral boundary conditions (Tariku and Gan, 2017). 

First, WRF simulated 30 years of the baseline (1976-2005) climate condition, using one-way 

nesting with 2-domain configuration, and the outputs of 4 GCMs as initial and lateral 

boundary conditions for the outermost domain (D1) at 36km resolution. The D1 output was 

used as lateral boundary conditions for the second domain (D2) of 12 km resolution but, only 

two GCMs were downscaled into D2 to reduce the amount of computation, and in this paper, 

only results obtained from D1 are presented. The climate projections of newest generation in 

the Coupled Model Intercomparison Project (CMIP5) of four selected GCMs (CanESM2 of 

Canada, ACCESS1-3 in Australia, GFDL-ESM2M of USA and MPI-ESM-LR of Germany) 

for two RCP (Representative Concentration Pathways) climate scenarios (i.e. RCP4.5 and 

RCP8.5) over 2041-2100 have been applied to simulate the possible range of future climate of 

NRB. These GCMs are chosen because of their good performance in the baseline case, their 

projections cover a wide range of future climate scenarios, and these GCMs have been used in 

other climate change studies (Bhattacharjee and Zaitchik, 2015; McSweeney et al., 2015). The 

base period precipitation and 2m surface air temperature of NRB simulated by WRF were 

evaluated against the Global Precipitation Climatology Centre (GPCC version 6, 1901-2010; 

Schneider et.al, 2011) and the Climate Research Unit at the University of East Anglia (CRU 

version 3.22, 1901-2013; Harris et.al, 2014) gauge-based datasets with 0.5
o
 spatial and 

monthly temporal resolutions, respectively. 
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3.2.2. Study Area 

The study area is the Nile River basin covers an area of about 3.35 x 10
6
 km

2
 (Swain, 2011) 

and shared by eleven countries (Burundi, DR Congo, Egypt, Eritrea, Ethiopia, Kenya, 

Rwanda, Tanzania, South Sudan, Sudan and Uganda). Its drainage area covers a 10% of 

Africa’s landmass; and the NRB countries have the fastest growing population, with 54% of 

their total population living within the NRB (Swain, 2011). This study will focus on the 

BNRB (2) which is the main sub-basin of NRB, but the Atbara (1) and Sobat (4) river basin, 

Bahar El Ghazal (from now on El Ghazal) (3) and Lake Victoria (5) regions are also 

considered for climate change impact assessment as shown in Figure 3.1a. The irregular 

shapes of the five sub-basins were used for analyzing climate change impact at sub-basin 

scales. BNRB approximately covers an area of 210,000 km
2
,
 
which contributes 60% of the 

average annual flow of the Nile River (Senay et al., 2014). Under a two-domain framework, 

D1 (2
o
E to 57

o
E, 20

o
S to 37

o
N) was set up for NRB at 36 km resolution, and D2 (29

o
E to 

45
o
E, 5

o
N to 17.5

o
N) was set up for BNRB at 12km resolution, as shown in Figure 3.1b. D1 is 

much wider than NRB to adequately account for the source of moisture to the basin (i.e. 

Atlantic and Indian Ocean) and as spatial spin-up.  

There are different rainy seasons over NRB, with diverse climate conditions ranging from arid, 

semi-arid to humid conditions. For example, virtually no precipitation falls in the Sahara 

Desert of Sudan and Egypt, and little precipitation in the Sahel region of Sudan, but 

precipitation increases southward to the Ethiopian highland and Equatorial Plateaus, where 

June-September is the rainy season over the Ethiopian highland. The Equatorial plateaus have 
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two rainy seasons, October-December and March-May, resulted from the southward and 

northward movement of ITCZ over the region, respectively. The southern part of NRB also 

has one rainy season, October-December (Indeje et al., 2000; Endris et al., 2013). Because of 

the diverse climatic condition, WRF was set up for full-year simulation to account for 

variations in rainfall pattern over the entire NRB. The mean total annual rainfall for NRB 

based on the GPCC dataset from 1980-2000 is shown in Figure 3.1b. The mean annual 

temperature of NRB ranges widely, from 45
o
C to 16

o
C (Figure 3.1c), according to the dataset 

of CRU. The Sahel region has relatively higher temperature, while the Ethiopian highland and 

Equatorial Plateaus have colder temperature. 

 

Figure 3.1: (a) The sub-basins considered for this study and the topography in m above sea-

level, (b) the two domains configured for WRF (a box in black) and mean annual rainfall 

distribution over the basin in mm (GPCC data using 1976-2005), and (c) mean annual 

temperature in 
o
C (CRU 1976-2005)  

 

 

 

a) b) c) 
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Table 3.1: List of indicators considered for this study devised by the ETCCDI (see section 

3.2.3). Tmax and Tmin refer to daily maximum and minimum temperature, respectively.  

ID Index Definition Unit 

TX90p Warm days number of days in a year with daily Tmax >90
th

 

percentile 

days 

TN90p Warm nights number of days in a year with daily Tmin >90
th

 

percentile 

days 

TX10p Cold days number of days in a year with daily Tmax <10
th

 

percentile 

days 

TN10p Cold nights number of days in a year with daily Tmin <10
th

 

percentile 

days 

WSDI Warm spell duration 

index 

number of days in a year with daily Tmax >90
th

 

percentile for six consecutive days 

days 

CSDI Cold spell duration 

index 

number of days in a year with daily Tmin <10
th

 

percentile for six consecutive days 

days 

R20mm Very heavy 

precipitation days 

Number of days where daily precipitation >20 

mm 

days 

R95p Very wet days Annual total precipitation derived from days 

>95
th

 percentile 

mm 

R99p Extremely wet days Annual total precipitation derived from days 

>99
th

 percentile 

mm 

RX1day Max 1 day 

precipitation 

Annual maximum 1-day precipitation  mm 

RX5day Max 5 day 

precipitation 

Annual maximum consecutive 5-day 

precipitation  

mm 

 

3.2.3. Extreme climate indices 

Climate extremes have impacts on the economic, political and well-being of any society.  For 

example, temperature extremes can affect human health, agriculture, and increase forest fire 

hazards, while precipitation extremes could overwhelm urban drainage systems, cause 

flooding and costly damage to cities (Patz et al., 2005; Rosenberg et al. 2010; and Anyamba et 

al., 2014). Using GCMs’ RCP climate scenarios that have been dynamically downscaled by 

WRF, we project future temperature and precipitation extremes of NRB.  A list of extreme 



 

58 

 

indices in Table 3.1 taken from the Expert Team on Climate Change Detection and Indices 

(ETCCDI) was selected to assess projected changes on future extreme precipitation and 

temperature events (Klein Tank et al., 2009; Frich et al., 2002; and Alexander et al., 2006). 

These ETCCDI indices and have been used in other climate change studies (e.g., Gizaw and 

Gan, 2015; Sillmann et al., 2013a).  

3.2.4. Bias correction 

RCMs’ simulation of temperature and precipitation often show significant biases which need 

to be corrected. To reduce biases of precipitation and temperature extremes simulated by 

WRF, quantile-based and linear scaling bias correction methods are applied to reduce the bias, 

respectively (Teutschbein and Seibert, 2012). Daily precipitation of NRB simulated by WRF 

was bias corrected using the Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS version 2.0, 1981-2005; Funk et al., 2014) datasets of 0.05
o
 spatial and daily 

resolutions. The quantile-based bias correction method involves matching the cumulative 

distribution function (CDF) of the RCM’s simulation to the CDF of the observed rainfall.  

First, the CDF of observed (CHIRPS) and simulated (WRF) precipitation data exceeding 10 

mm day
-1

 is developed using a generalized extreme value (GEV) distribution (Equation (3.1)).  

𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝑘(
𝑥−𝜇

𝛼
)]

−1/𝑘

}                                                                  (3.1) 

𝑃𝑐
∗(𝑑) = 𝐹−1(𝐹(𝑃𝑐(𝑑)|𝛼𝑐,𝑚, 𝑘𝑐,𝑚, 𝜇𝑐,𝑚)|𝛼𝑜,𝑚, 𝑘𝑜,𝑚, 𝜇𝑜,𝑚)                             (3.2) 

𝑃𝑠
∗(𝑑) = 𝐹−1(𝐹(𝑃𝑠(𝑑)|𝛼𝑐,𝑚, 𝑘𝑐,𝑚, 𝜇𝑐,𝑚)|𝛼𝑜,𝑚, 𝑘𝑜,𝑚, 𝜇𝑜,𝑚)                             (3.3) 
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Using WRF and CHIRPS daily precipitation time series (1981-2005) exceeding 10 mm day
-1

, 

the k (shape), α (scale), and μ (location) parameters of a GEV distribution were derived.  c 

represents the control period, o the observed and s the scenarios periods, d the day of P and m 

the monthly parameters of P.  Then, the quantile of the simulated precipitation P obtained 

from the CDF of WRF’s simulated precipitation is used to identify the corresponding 

precipitation (P*) of the CDF of observed precipitation with the same quantile. Therefore, P* 

is the bias corrected precipitation using this quantile approach represented by Equation (3.2) 

for control period and Equation (3.3) for projected period.  

On the other hand, WRF’s daily simulated temperature, Tc(d) or Ts(d), was corrected by a 

simple, linear scaling approach by adding the difference between the monthly long-term mean 

observed CRU temperature of 1976-2005 and the corresponding monthly mean of WRF’s 

simulation as represented by Equations (3.4) and (3.5) for the control period and future 

scenarios, respectively.  In this approach, we assume the applied addends are the same 

between the control and the scenario periods (Teutschbein and Seibert, 2012).   

𝑇𝑐
∗(𝑑) = 𝑇𝑐(𝑑) + 𝜇𝑚(𝑇𝑜(𝑑)) − 𝜇𝑚(𝑇𝑐(𝑑))                                                    (3.4) 

𝑇𝑠
∗(𝑑) = 𝑇𝑠(𝑑) + 𝜇𝑚(𝑇𝑜(𝑑)) − 𝜇𝑚(𝑇𝑐(𝑑))                                                     (3.5) 

Where, μm is the long-term monthly mean temperature of observed and control period data.  
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3.3. Results and discussions 

3.3.1. Validation of WRF model 

Figure 3.2 compares the spatial distributions of average annual precipitation difference 

between observed GPCC data, and that of four GCMs downscaled by WRF (Figure 3.2a), and 

GCM’s raw output data (Figure 3.2b) for 1976-2005. On a whole, GCMs’ output downscaled 

by WRF agrees better with GPCC data (smaller difference) than GCMs’ raw output, even 

though the GCM output of the four GCMs downscaled by WRF still suffers over-simulation 

for the Congo Basin and the southern boundary, and under-simulation for NRB using the 

output of ACCESS1-3, in contrast to the raw output of ACCESS1-3 which over-simulated 

NRB’s rainfall.  

 

Figure 3.2: Difference in mean annual precipitation (mm/day) between observed GPCC data, 

and (a) that of four GCMs downscaled by WRF, and (b) GCM’s raw output data for 1976-

2005.  

b) 

a) 
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Figure 3.3 compares the difference between mean annual surface air temperature of the 

observed CRU data, and that of four GCMs downscaled by WRF (Figure 3.3a), and GCM’s 

raw output data (Figure 3.3b) for 1976-2005. The figure shows that all the GCM’s raw output 

temperature data, except that of ACCESS1-3, agree better with CRU observed surface air 

temperature than that downscaled by WRF, but the warm biases are very large in some places. 

In contrast, by downscaling GCMs’ raw output, WRF coupled with Noah LSM under-

simulated the historical surface air temperature over the Sahara Desert, similar to WRF’s 

simulation when it downscaled the ERA-Interim data over the Sahara Desert (Tariku and Gan, 

2017).  On the other hand, the NCEP reanalysis data is also similar to WRF’s simulation 

under-simulated the historical surface air temperature over the Sahara Desert when compared 

with CRU data. Therefore we cannot objectively conclude whether the under-simulation of 

temperature by WRF over the Sahara Desert is caused by the limitation of WRF or the 

accuracy of the CRU or NCEP datasets. Even though WRF also under-simulated the 

temperature over the entire NRB when it downscaled the raw output of GFDL-ESM2M and 

MPI-ESM-LR, the degree of under-simulation is relatively modest except in the northern part 

of NRB.  In addition, WRF did not under-simulate the raw output of the other two GCMs 

over NRB.  Therefore, unlike the Sahara Desert and the northern part of NRB, WRF can 

generally simulate the air temperature of NRB reasonably well. However, this systematic 

temperature bias over the Sahara Desert can still somewhat affect the regional climate 

simulated by WRF over the northern part of NRB. 
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Figure 3.3: Mean annual surface air temperature difference (
o
C) between CRU data, and (a) 

that of four GCMs downscaled by WRF, and (b) GCM’s raw output data for 1976-2005. 

 

3.3.2. Future mean climate change projections  

i. Precipitation change 

Figure 3.4 shows the spatial distributions of projected precipitation changes in % for 2050s 

(climatological mean of 2041-2070 minus the mean of 1976-2005 and divided by the mean of 

1976-2005) based on the RCP4.5 (Figure 3.4a) and RCP8.5 (Figure 3.4b) climate scenarios of 

four GCMs downscaled by WRF. As shown in the figure, results for different GCMs 

downscaled by WRF are different from each other, sometimes with opposite projected 

changes over different places of NRB. For instance, the precipitation of NRB is projected to 

increase when WRF downscaled the RCP 4.5 and 8.5 climate scenarios of ACCESS1-3 and 

CanESM2. Similarly, a small increase in precipitation in southern NRB is projected when 

b) 

a) 
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WRF downscaled climate scenarios of GFDL-ESM2M and MPI-ESM-LR, but the 

precipitation over northern NRB is projected to decrease. The projected changes in 

precipitation pattern over the simulation domain under both RCP4.5 and RCP8.5 climate 

scenarios are relatively consistent, but as expected, projected precipitation changes under 

RCP8.5 are larger than that under RCP4.5. By 2050s, the annual precipitation of BNRB, 

Atbara, and Sobat river basin, El Ghazal and Lake Victoria regions are projected to change by 

a range of about [-7, 14], [-19, 25.3], [-4, 37], [-5.9, 19.5], and [3.6, 22.4 ] for RCP4.5 

scenarios, and [-6.3, 14.2], [-16.7, 25], [-7, 39], [-4.9, 23], and [4.6, 27] for RCP8.5 scenarios, 

respectively. Overall, the ranges of projected change in precipitation over each sub-basin are 

almost the same under RCP4.5 and RCP8.5. 

 
Figure 3.4: Projected precipitation change in % (mean of 2041-2070 minus the mean of 1976-

2005 and divided by the mean of 1976-2005) based on (a) RCP 4.5 and (b) RCP 8.5 climate 

scenarios of four GCMs downscaled by WRF. 

b) 

a) 
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The projected precipitation changes in % over NRB for 2080s (mean of 2071-2100 minus the 

mean of 1976-2005 and divided by the mean of 1976-2005) downscaled by WRF from four 

GCMs under RCP4.5 and RCP8.5 climate scenarios are shown in Figure 3.5a and Figure 3.5b, 

respectively. As shown in Figure 3.5, the projected precipitation change is generally higher in 

2080s as compared to the 2050s. However, projected changes in precipitation patterns over 

the simulation domain as well as discrepancies between GCM’s projections remain similar 

between 2050s and 2080s. Overall, the mean precipitation of NRB is projected to increase 

over the southern basin, such as the Equatorial Plateau regions, and either a decrease or no 

change over the Sahel region of NRB, but the projected change will be larger in the 2080s as 

compared to the 2050s. By 2080s, the annual precipitation of BNRB, Atbara, and Sobat river 

basin, El Ghazal and Lake Victoria regions are projected to change by a range of about [-9, 

18.6], [-20.7, 34.6], [0, 41.3], [-7.3, 24.7], and [5.6, 26.8] for RCP4.5 climate scenarios, and [-

14, 25], [-22.5, 39], [ -4.7, 60.4], [-11, 31], and [11.8, 41] for RCP8.5 scenarios, respectively. 

On a whole, the Lake Victoria regions will most likely experience an increase in precipitation 

under both climate scenarios but other regions could experience a wide range of change from 

a decrease to a major increase in precipitation. The projected changes in precipitation over 

each sub-basin of NRB between the four GCMs downscaled by WRF for 2050s and 2080s 

periods under RCP4.5 and RCP8.5 climate scenarios are presented in Figure 3.8, where the 

median shows a projected increase in precipitation all sub-basins of NRB. 
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Figure 3.5: Projected precipitation change in % (mean of 2071-2100 minus the mean of 1976-

2005 and divided by the mean of 1976-2005) based on (a) RCP 4.5 and (b) RCP 8.5 climate 

scenarios of four GCMs downscaled by WRF. 

 

Previous climate change studies on the seasonal precipitation of NRB or its sub-basins based 

on SRES (Special Report on Emission Scenarios) climate scenarios also find the projections 

of GCMs to differ from each other in terms of directions and magnitudes of precipitation 

change, such as Kim et al. (2009), and Beyene et al. (2010). The projected changes in 

precipitation of NRB in this study based on RCP scenarios of four GCMs are similar with that 

of Beyene et al. (2010) even though they used SRES climate scenarios (A2 and B1) of 11 

GCMs of the 4
th

 IPCC (2007) assessment report for NRB. These 11 GCMs projected a wide 

range precipitation change in terms of magnitude, direction, and seasons, e.g., the DJF 

precipitation change ranges from -40 to 18%, and JJA precipitation change ranges from -42 to 

b) 

a) 
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15% in 2080s relative to 1950-1999 baseline for the entire NRB under A2 emissions scenario. 

Using six GCMs’ output under A2 emission scenarios for 2050s relative to the 1961-1990 

baseline, Kim et al. (2009) found projected changes in the mean annual precipitation over the 

upper BNR range between -11% and 44% with an average change of 11%. Elshamy et al. 

(2009) also found no consensus on the direction of projected precipitation change between 17 

GCMs under the A1B scenario for 2081-2098 compared to the1961-1990 baseline over the 

upper BNR, e.g., the projected change in annual precipitation range between -15% and 14%, 

with 10 GCMs projected a decrease while 7 GCMs projected an increase in precipitation, of 

which 6 GCMs projected small changes within 5%.   

ii. Change in temperature 

The projected change in the mean surface air temperature based on RCP4.5 and RCP8.5 

climate scenarios of four GCMs downscaled by WRF are shown in Figure 3.6 and Figure 3.7 

for 2050s (2080s) which are mean of 2041-2070 (2071-2100) minus the mean of 1976-2005, 

respectively. Both figures show that the surface air temperature is projected to increase across 

the simulation domain in both RCP4.5 and RCP8.5 climate scenarios for 2050s and 2080s, 

and as expected, the projected temperature changes are higher under RCP8.5 than under 

RCP4.5 scenarios, and also higher in the 2080s than 2050s. Furthermore, the projected 

temperature changes over the NRB are more significant when WRF downscaled climate 

scenarios of ACCESS1-3 and CanESM2 than other two GCMs. However, spatial patterns of 

projected changes in surface air temperature are similar over the NRB under both climate 

scenarios.  
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Figure 3.6: Projected mean surface air temperature change in 
o
C (mean of 2041-2070 minus 

the mean of 1976-2005) based on (a) RCP 4.5 and (b) RCP 8.5 climate scenarios of four 

GCMs downscaled by WRF.  

 

Figure 3.7: Projected mean surface air temperature change in 
o
C (mean of 2071-2100 minus 

the mean of 1976-2005) based on (a) RCP 4.5 and (b) RCP 8.5 climate scenarios of four 

GCMs downscaled by WRF. 

b) 

a) 

a) 

b) 
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According to RCP4.5 climate scenarios, the air temperature of the five sub-basins of NRB are 

projected to increase by about 1.67 – 2
o
C for 2050s and 2 – 2.5

o
C for 2080s, while under the 

RCP8.5 climate scenarios, it is projected to increase by about 2.5 – 3
o
C and 3.9 – 4.6

o
C in the 

2050s and 2080s, respectively. The results are consistent with that of previous studies, such as 

Beyene et.al. (2010) who from using 11 GCMs’ output found a projected temperature increase 

by 3.4 – 5.9
o
C and 3 – 4.1

o
C across the NRB in the late 21

st
 century (2070-2099) relative to 

the 1950-1999 for A2 and B1 scenarios, respectively. Kim et al. (2009) projected the mean 

annual temperature to increase from 1.4
o
C to 2.6

o
C with an average change of 2.3

o
C over the 

upper BNR for 2050s relative to the 1961-1990 for A2 emission scenario. Elshamy et al. 

(2009) also projected the annual surface temperature to increase over the upper Blue Nile of 

2
o
C to 5

o
C at the end of the 21

st
 century under the A1B scenario compared to the1961-1990 

baseline. IPCC (2014) also concluded that the projected surface temperature is very likely to 

rise by 3
o
C - 6

o
C across the different regions of Africa by the end of the 21

st
 century under 

RCP8.5 relative to the 1986-2005 baseline. Furthermore, Figure 3.8 show the projected 

changes in the surface air temperature over sub-basins of NRB based on RCP4.5 and RCP8.5 

climate scenarios of four GCMs downscaled by WRF for 2050s and 2080s periods are 

consistent across the basins, that the surface air temperature is expected to increase in all sub-

basins. 
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Figure 3.8: The projected changes to annual total rainfall and surface air temperature of 

Atbara, Sobat, and Blue Nile river basin, and EL Ghazal and Lake Victoria regions with 

respect to the base period (1976-2005) derived from the projections of RCP4.5 and RCP8.5 

climate scenarios of four GCMs downscaled by WRF.  

 

The above comparison shows differences between the future precipitation and temperature of 

NRB downscaled by WRF from the same climate scenarios of different GCMs, and from the 

same GCMs for different climate scenarios. These results also show that projections of 

precipitation are more uncertain than temperature projections. 
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3.3.3. Change in precipitation extremes 

a. R20mm index 

The R20mm index is the number of days in a given period that the daily precipitation 

exceeded 20mm. As shown in Table 3.2, the ensemble mean and standard deviation of the 

change in R20mm index computed from four GCMs under RCP4.5 and RCP8.5 for 2050s and 

2080s relative to the control period downscaled by WRF vary widely. For most of NRB’s 

sub-basins, the R20mm index is projected to increase in two GCMs (ACCESS1-3 and 

CanESM2) but decrease in the other two GCMs (GFDL-ESM2M and MPI-ESM-LR). 

However, on a whole the ensemble mean under RCP4.5 and RCP8.5 scenarios of all GCMs 

analysed compared with the control period, the annual R20mm is projected to increase by a 

range of 2.5–77.5% for all sub-basin in the 2050s and 2080s, except for the Atbara river basin 

where it is projected to decrease by 0.8–1.9% in 2050s and then to increase by 0.9–1.4% in 

2080s. The Lake Victoria region is projected to undergo a larger change in the R20mm, 

ranging from 36 up to 77.5% as compared with other basins. The R20mm index is projected 

to be higher under RCP8.5 than under RCP4.5 scenarios in both 2050s and 2080s, and higher 

in the 2080s than in the 2050s. Overall, NRB is projected to experience more very heavy 

precipitation in the mid-and late 21
st
 century. The standard deviations of regional projections 

of R20mm index for the sub-basins are much higher than their mean projected changes, which 

show a large variation in very heavy precipitation projections among the GCMs. 
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Table 3.2: The projected mean and standard deviation changes (%) to the R20mm, RX5day 

and P30yr index of Atbara, Sobat, and Blue Nile river basin, and El Ghazal and Lake Victoria 

regions with respect to the base period (1976-2005) derived from four GCMs under the 

RCP4.5 and RCP 8.5 scenarios downscaled by WRF 

 

R20mm RX5day P30yr 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

2050 2080 2050 2080 2050 2080 2050 2080 2050 2080 2050 2080 

Atbara 

Mean -1.9 1.4 -0.8 0.9 -0.3 8.8 5.6 10.8 15.3 27.8 19.7 40.7 

STD 20.7 21.5 16.5 26.3 12.0 8.0 3.4 14.7 4.9 2.5 6.9 13.1 

Median -3.4 0.7 -1.1 -1.1 0.3 7.7 7.0 7.1 14.8 28.7 17.8 36.6 

Sobat 

Mean 18.4 22.6 18.8 40.4 10.5 9.7 12.8 27.3 27.8 44.9 27.0 53.2 

STD 32.5 37.0 39.9 57.2 5.7 22.4 27.6 37.1 9.6 12.6 10.9 18.8 

Median 4.5 5.4 1.7 13.6 11.5 5.2 0.8 12.7 24.1 42.4 25.8 47.4 

Blue Nile 

Mean 3.3 3.8 2.4 6.0 3.4 6.3 6.2 14.0 17.2 28.2 18.3 35.7 

STD 14.0 16.6 17.0 26.6 8.4 10.6 7.1 9.6 4.5 10.0 7.7 13.4 

Median -0.04 -2.89 -4.59 -5.04 1.0 4.4 6.2 15.0 16.5 27.1 18.9 34.6 

El Ghazal 

Mean 13.0 19.0 15.8 27.8 3.0 9.4 13.5 15.3 22.6 41.0 26.7 47.2 

STD 29.7 30.6 27.5 39.9 15.9 17.5 24.3 21.0 9.5 18.5 16.2 27.0 

Median 3.4 8.7 3.3 12.7 6.5 6.4 8.7 6.7 22.7 38.8 22.4 37.9 

Lake Victoria 

Mean 36.1 44.1 45.8 77.7 14.4 16.0 19.5 28.2 28.8 48.0 34.7 59.7 

STD 20.1 23.7 20.9 36.1 10.4 12.7 9.0 10.2 12.2 23.7 12.8 18.5 

Median 37.6 44.1 47.3 76.8 12.5 11.6 17.6 29.5 23.8 38.5 29.8 53.7 

* Values in bold show significant changes compare to the base period 
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b. R95p and R99p indices 

R95p and R99p are the annual total amount of precipitation for days when the daily 

precipitation is greater than the 95
th

 and the 99
th

 percentile precipitation, respectively. Figure 

3.9 shows that median values of R95p and R99p of four GCMs under RCP4.5 and RCP8.5 

downscaled by WRF are projected to increase in the 2050s and 2080s, relative to the base 

period for all sub-basins, but the mean projected change varies between the sub-basins. There 

is a large discrepancy between GCMs’ downscaled projections for R95p and R99p.  For most 

sub-basins, a decrease in R95p and R99p is projected by downscaled climate scenarios of 

MPI-ESM-LR (except Lake Victoria region) and GFDL-ESM2M (except Sobat and Lake 

Victoria regions), but an increase based on downscaled projections of CanESM2 and 

ACCESS1-3 (except BNRB). The range of mean projected change in R95p and R99p for all 

sub-basins considered is 0.75 – 55% and -13 – 90%, respectively. R95p and R99p of the 

Sobat river basin are projected to increase more than other sub-basins, by 21-55% and 29-

90% for both 2050s and 2080s, respectively. This means that extreme precipitation events 

occurring in very wet and extremely wet days could be substantially more intensive over NRB 

in 2050s and 2080s.  
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Figure 3.9: The projected changes to the R95p and R99p index of Atbara, Sobat, and Blue 

Nile river basin, and EL Ghazal and Lake Victoria regions with respect to the base period 

(1976-2005) derived from the projections of RCP4.5 and RCP8.5 climate scenarios of four 

GCMs downscaled by WRF.  

 

c. RX1day and RX5day 

RX1day and RX5day are indices that represent the maximum 1-day precipitation and 

maximum 5-day precipitation within a given period. Figure 3.10 and Table 3.2 show a 

predominantly projected increase in RX1day and RX5day in 2050s and 2080s relative to 

control period, as simulated by WRF driven with RCP4.5 and RCP8.5 climate scenarios of 

four GCMs, with an average range of 1 – 40% and -0.3 – 28% for all sub-basins, respectively.  
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The standard deviations of both indices for the sub-basins derived from downscaled climate 

scenarios of the GCMs show a large variation. Among the five sub-basins of NRB, the Lake 

Victoria region is projected to experience the largest increase in RX1day (20 – 40%) and 

RX5day (15 – 29%). This implies that with reference to the control period, more intensive 

extreme daily precipitation (maximum daily precipitation events) is projected over NRB in 

the mid- and late 21
st
 century, especially in the Lake Victoria region.  

 

Figure 3.10: The projected changes to the RX1day index of Atbara, Sobat, and Blue Nile river 

basin, and El Ghazal and Lake Victoria regions with respect to the base period (1976-2005) 

derived from the projections of RCP4.5 and RCP 8.5 climate scenarios of four GCMs 

downscaled by WRF. 

 

d. P30yr 

The P30yr index is the daily rainfall intensity of 30-year return period for the base period, 

2050s and 2080s (Chen and Knutson, 2008; Gizaw and Gan, 2015) estimated using a GEV 

distribution.  The change in P30yr between the base period and that of 2050s and 2080s under 
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RCP4.5 and RCP8.5 scenarios represent how daily storm intensities are projected to change in 

NRB. Unlike other indices, all GCMs project a consistent increase in P30yr by 15 – 60% 

across all NRB sub-basins under RCP4.5 and RCP8.5 for 2050s and 2080s as shown in Table 

3.2. This suggests that the daily rainfall intensity for future storm events of 30-year return 

period over the NRB is projected to increase.  Again, the Lake Victoria region is projected 

with the largest increase in P30yr than other sub-basins.  

Previous studies on climate change impact to extreme precipitation globally, NRB or its sub-

basins also found an increase in observed and/or projected extreme precipitation indices, such 

as Alexander et al. (2006); Omondi et al. (2014); Sillmann et al. (2013a, &b) and Kharin et al. 

(2013). Alexander et al. (2006) investigated observed changes in daily temperature and 

precipitation extremes from a global station dataset for 1951-2003, detected a general increase 

in extreme precipitation indices such as RX1day, RX5day over the Northern Hemisphere and 

parts of Australia. However, their analysis did not include the NRB because of a lack of data. 

Contrary to the global results of Alexander et al. (2006), Omondi et al. (2014) found that 

extreme precipitation indices over most stations of Greater Horn of Africa (GHA) have 

decreased, but these trends are not statistically significant over 1961-2010. In a few cases, 

they detected increasing trends in precipitation indices that are statistically significant. 

Sillmann et al. (2013b) analyzed projected changes of CMIP5 GCMs in climate extremes 

indices on global and regional scales for the late 21
st
 century relative to the reference period, 

1981-2000. They found that the global land average RX5day is projected to increase by 20%, 

10% and 6% according to RCP8.5, RCP2.6 and RCP4.5 climate scenarios, respectively. For 
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East Africa, based on RCP8.5, RX5day is projected to increase by 20-30%, and R10mm and 

R95p are also projected to increase which means East Africa is projected to become wetter in 

the future. In the CMIP5 multi-model analysis, Kharin et al. (2013) also found that the global 

average annual precipitation of 20-year return period is projected to increase by about 6% 

under RCP2.6, 10% under RCP4.5 and more than 20% under RCP8.5 by the end of the 21
st
 

century, respectively. 

3.3.4. Change in temperature extremes 

a) TN10p and TX10p indices  

TN10p and TX10p indices represent the % of days with Tmin and Tmax that are less than the 

historical 10
th

 percentile value, respectively. All NRB sub-basins are projected to experience 

substantial decrease in TN10p and TX10p for both RCP4.5 and RCP8.5 climate scenarios in 

2050s and 2080s as shown in Table 3.3. Again, for both TN10p and TX10p, the largest 

changes are projected to occur over the Lake Victoria region, such that the 10
th

 percentile TN 

and TX observed over 1976-2005 is projected to decrease to less than 1% (e.g., almost no 

cold night or days), while relatively small changes are projected for Atbara river basin and El 

Ghazal regions. The projected decrease in the % of days is more pronounced for TN10p than 

for TX10p, for RCP8.5 than RCP4.5, and for 2080s than 2050s. This implies that NRB is 

expected to experience warmer cool nights and days in the future than observed during the 

control period. The standard deviations of both indices are much smaller than the projected 

change for the sub-basins, which demonstrate that NRB is consistently projected to become 

warmer, with relatively minor variations between projections of GCMs.  
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Table 3.3: The mean and standard deviation (STD) based on four GCMs ensemble, temperature 

extreme indicators over the sub-basins of Nile River, the percent of days above 90
th
 or below 10

th
 

percentile of 1976-2005, historical and the projected change for 2041-2070 and 2071-2100 under 

RCP4.5 and RCP8.5 scenarios. All units are in %days/year, WSDI and CSDI are in days/year 

  Atabra Baro Blue Nile El Ghazal Lake Victoria 

 TN10p  Mean STD Mean STD Mean STD Mean STD Mean STD 

Historical 9.9 0.0 9.8 0.0 9.9 0.0 9.9 0.0 9.9 0.014 
RCP4.5_2050 1.3 0.4 0.6 0.1 0.8 0.2 1.3 0.3 0.4 0.1 
RCP4.5_2080 1.0 0.3 0.4 0.1 0.5 0.2 1.0 0.3 0.2 0.1 
RCP8.5_2050 0.9 0.3 0.5 0.4 0.6 0.3 0.8 0.3 0.1 0.1 
RCP8.5_2080 0.2 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.0 0.0 

 TX10p  
   

  

Historical 9.8 0.0 9.8 0.0 9.8 0.0 9.8 0.0 9.9 0.0 
RCP4.5_2050 2.3 0.4 2.2 0.6 2.0 0.6 2.4 0.5 1.2 0.5 
RCP4.5_2080 1.6 0.3 1.6 0.4 1.3 0.4 1.8 0.4 0.8 0.3 
RCP8.5_2050 1.5 0.5 1.2 0.3 1.1 0.4 1.4 0.3 0.6 0.3 
RCP8.5_2080 0.4 0.1 0.4 0.1 0.3 0.1 0.4 0.1 0.1 0.1 

TN90P                     

Historical 9.7 0.0 9.9 0.0 9.8 0.0 9.8 0.0 9.9 0.01 
RCP4.5_2050 55.9 4.5 68.1 6.3 63.1 5.2 58.3 2.2 71.4 7.03 
RCP4.5_2080 63.4 5.3 76.6 6.1 71.0 5.2 63.2 1.9 79.6 7.24 
RCP8.5_2050 69.9 3.4 82.7 3.6 76.7 3.1 69.4 1.4 85.6 4.07 
RCP8.5_2080 86.6 1.8 95.3 1.0 91.7 0.9 83.0 0.7 97.8 1.29 

TX90P                     

Historical 9.8 0.0 9.8 0.0 9.8 0.0 9.8 0.0 9.8 0.0 
RCP4.5_2050 45.2 2.0 52.8 9.2 48.0 5.4 43.6 4.2 54.5 4.9 
RCP4.5_2080 52.0 2.2 59.9 11.3 56.4 5.2 50.1 5.0 61.9 7.0 
RCP8.5_2050 58.8 2.7 68.1 9.8 64.1 5.4 58.1 5.3 68.6 5.8 
RCP8.5_2080 78.7 2.3 86.7 5.4 84.5 3.0 79.0 3.9 87.8 4.6 

WSDI 
         

  

Historical 1.0 0.1 1.2 0.1 1.0 0.1 1.1 0.1 1.0 0.1 
RCP4.5_2050 8.8 0.2 9.4 1.2 9.1 0.8 8.6 0.7 8.9 1.1 
RCP4.5_2080 9.5 0.2 9.7 0.9 9.8 0.5 9.7 0.8 9.4 1.3 
RCP8.5_2050 9.9 0.3 9.7 0.4 10.0 0.3 10.4 0.6 9.2 1.2 
RCP8.5_2080 8.8 0.6 7.8 1.5 8.3 1.1 9.4 1.1 6.7 0.7 

CSDI 
         

  

Historical 0.89 0.06 0.72 0.06 0.83 0.07 0.84 0.05 0.65 0.08 
RCP4.5_2050 0.06 0.04 0.02 0.01 0.04 0.01 0.08 0.04 0.01 0.01 
RCP4.5_2080 0.03 0.03 0.01 0.01 0.02 0.01 0.06 0.03 0.00 0.00 
RCP8.5_2050 0.06 0.08 0.05 0.08 0.05 0.07 0.05 0.04 0.00 0.00 
RCP8.5_2080 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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b) TN90p and TX90p indices 

TN90p and TX90p indices, also referred to as warm nights and warm days, represent the % of 

days with Tmin and Tmax that are greater than the historical 90
th

 percentile value, respectively. 

Warm nights and days are projected to generally increase in the mid and late 21
st
 century for 

all sub-basins of NRB, as shown in Table 3.3. In all the sub-basins considered, at least 48% 

and 55% (or more) of the number of days in 2041-2070, and at least 50% and 80% (or more) 

of number of days in 2071-2100 are projected to have Tmax and Tmin that exceed the historical 

90
th

 percentile values, respectively. The projected increase is more pronounced for TN90p 

than TX90p.  

The standard deviations of both indices are much smaller than the projected change for the 

sub-basins, which again shows that NRB is consistently projected to become warmer, with 

relatively minor variations between projections of GCMs. The projected increase in TN90p 

and TX90p show that NRB is expected to experience more warm nights and days in the mid- 

and late 21
st
 century.  

c) WSDI and CSDI 

WSDI and CSDI, the warm spell duration and the cold spell duration indices, are annual 

counts of at least six consecutive days with Tmax greater than the historical 90
th

 percentile 

value and with Tmin less than the historical 10
th

 percentile value, respectively. Table 3.3 shows 

that there will be virtually no cold spell expected at the end of the 21
st
 century, but the warm 

spell is projected to increase compared with the historical 1976–2005 periods.   
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Previous studies on climate change impact to extreme temperature also found that observed 

and/or projected have increased or decreased in warm/cold temperature extremes indices, 

such as Alexander et al. (2006); Omondi et al. (2014); Sollimann (2013a, &b) and Kharin et al. 

(2013). Alexander et al. (2006) detected a global decrease in TN10p and TX10p, and an 

increase in TN90p and TX90p over 1951-2003. Omondi et al. (2014) found an increase in 

warm extreme and a decrease in cold extreme, temperature for GHA over 1961- 2010. 

Sillmann et al. (2013b) also found that the global land average cold spell duration is projected 

to decrease while the warm spell duration is projected to increase in all RCP climate scenarios. 

The TN10p are projected to decrease from about 10% in 1961-1990 to 3%, 1.5% and 0.3% by 

the end of 21
st
 century under RCP2.6, RCP4.5 and RCP8.5, respectively.  The TX10p are 

projected to decrease to 4%, 2% and 0.7% under RCP2.6, RCP4.5 and RCP8.5, respectively. 

The median in TN90p (median in TX90p) is projected to increase over the global land from 

about 10% in the baseline period to 69% (62%) under RCP8.5, and to 44% (39%) under 

RCP4.5 by the end of the 21
st
 century, respectively. Kharin et al. (2013) also found that the 

projected global annual cold extremes (warm extremes) of 20-year return period will become 

warmer by 1.5 (0.8) 
o
C, 2.4 (1.7) 

o
C, and 4.9 (3.8) 

o
C by the end of the 21

st 
century under 

RCP2.6, RCP4.5 and RCP8.5, respectively. 

Spatial distributions of some of the above extreme precipitation and temperature indices are 

presented in the Appendix 3.A. These plots show a projected higher increase in extreme 

precipitation indices, a projected higher decrease in cold or a higher increase in warm 
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temperature indices over southern NRB (headwater of NRB) than over northern NRB, but the 

projected changes vary between four GCMs of CMIP5. 

3.3.5. Changes in air temperature and precipitable water  

According to the Clausius–Clapeyron relationship, the saturation vapor pressure will increase 

by about 7% for every 1°K rise in temperature (Boer, 1993). Therefore as climate warms, a 

warmer atmosphere will have a larger capacity to hold more water vapour, which fuel more 

evaporation, and generate more precipitation (Houghton, 2009). In other words, global 

warming can potentially cause future extreme storm events to occur more frequently and in 

greater severity. Therefore in this section, we will discuss how precipitable water will change 

in response to temperature change.  

Figure 3.11 shows spatially averaged, 2m annual air temperature anomaly time series for 

BNRB based on the RCP4.5 and RCP8.5 climate scenarios dynamically downscaled by WRF. 

Shaded blue and red plots represent the range of temperature/precipitable water projected for 

2041-2100 by WRF driven by four GCMs based on RCP4.5 and RCP8.5 scenarios, 

respectively. The temperature anomaly time series simulated shows consistent increasing 

trends, which imply that BNRB is projected to become increasingly warmer over the mid and 

late 21
st
 Century. In 2041-2100, under RCP4.5 climate scenarios of the four GCMs, the 

projected rates of increase in air temperature for BNRB estimated from the Theil-Sen 

estimator (Sen, 1968) ranges between 0.006 and 0.017
o
C/year, with an average of 0.012 

o
C/year, and between 0.041 and 0.06 

o
C/year, with an average of 0.052 

o
C/year under RCP8.5 

climate scenarios. Initially RCP4.5 and RCP8.5 scenarios project similar range of temperature 
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increase in the BNRB, but in the 2080s, the RCP8.5 projects a higher increase in air 

temperature than RCP4.5. Based on the Mann-Kendall trend test at a 0.05 significance level, 

the increasing trends of 2m air temperature anomaly time series over 2041-2100 are 

statistically significant. 

 

Figure 3.11: The projected changes to the precipitable water and 2m surface air temperature 

for Blue Nile river basin with respect to the base period (1976-2005) derived from the 

projections of RCP4.5 and RCP 8.5 scenarios of four GCMs downscaled by WRF. 

 

The precipitable water is the depth of water vapour integrated over the entire column of the 

atmosphere. The spatially averaged annual precipitable water anomaly time series projected 

for BNRB also consistently show increasing trends similar to the projected 2m air temperature 

trends, as shown in Figure 3.11. In 2041-2100, under RCP4.5, the projected rate of increase in 

precipitable water ranges from 0.04 to 0.155 %/year, with an average increase of 0.11 %/year, 
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and under RCP8.5, a projected increase of 0.428 – 0.658
 
%/year, with an average increase of 

0.561 %/year. The increasing trends of precipitable water over 2041-2100 are also statistically 

significant based on the Mann-Kendall’s test at a 0.05 significance level. A similar increasing 

trend, but of different rate of increase for temperature and precipitable water are projected for 

other sub-basins of NRB considered in this study. 

3.4. Summary and conclusions 

The potential impact of climate change on the future mean annual and extreme precipitation, 

and temperature of the Nile river basin in the 2050 and 2080s was investigated using RCP4.5 

and RCP8.5 climate scenarios of four GCMs of CMIP5 dynamically downscaled by a 

regional climate model called WRF.  As expected, precipitation projections using downscaled 

RCP scenarios of four GCMs for NRB exhibit wide range of possible changes as compared 

with temperature projections. Under downscaled RCP4.5 and RCP8.5 climate scenarios, the 

annual precipitation of BNRB, Atbara, and Sobat river basin, El Ghazal and Lake Victoria 

sub-basins of NRB are projected to change by about [-7, 14.2], [-19, 25.3], [-7, 39], [-5.9, 23], 

and [3.6, 27] % in the 2050s, and [-14, 25], [-22.5, 39], [-4.7, 60.4], [-11, 31], and [11.8, 41] 

% in the 2080s, respectively. Between downscaled projections of GCMs for air temperature, 

the five sub-basin of NRB are projected to become warmer by about 1.67 – 2
o
C in the 2050s 

and 2 – 2.5
o
C in the 2080s under RCP4.5 climate scenarios, and by about 2.5 – 3

o
C in the 

2050s and 3.9 – 4.6
o
C in the 2080s under RCP8.5 climate scenarios. The precipitable water of 

these sub-basins of NRB is also projected to increase because according to the Clausius-

Clapeyron equation, the atmospheric water vapor is expected to increase with air temperature. 
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Besides, extreme precipitation indices derived from precipitation projections of the four 

GCMs for NRB also exhibit wide range of possible changes. For example, R20mm, R95p, 

R99p and P30yr indices estimated for 2050s and 2080s are projected to mostly increase for all 

sub-basins of NRB. The R20mm index is projected to increase by 2.5–77.5% for all sub-

basins except for the Atbara river basin which is projected to decrease by 0.8–1.9% in 2050s, 

but then to increase by 0.9–1.4% in 2080s. The range of mean projected changes in R95p and 

R99p indices for all sub-basins is 0.75–55% and -13–90%, respectively. The P30yr index is 

also projected to increase by 15–60% for all sub-basins of NRB under RCP4.5 and RCP8.5 

scenarios for 2050s and 2080s. The predominantly projected increase in extreme precipitation 

indices implies that NRB is expected to experience more severe extreme wet precipitation and 

more frequently in 2050s and 2080s. Similarly, RX1day and RX5day indices are projected to 

increase in 2050s and 2080s by about 1–40% and -0.3–28% for all sub-basins, which implies 

that flood causing precipitation events over the NRB could occur more frequently in the 

future. Among the sub-basins of NRB considered, the Lake Victoria region is projected to 

experience the largest increase in all extreme precipitation indices possibly because under a 

warmer climate, Lake Victoria’s contribution to the atmospheric moisture will be enhanced, 

leading to occurrences of more severe extreme precipitation.  

On the basis of extreme temperature indices derived from temperature projections of the four 

GCMs, NRB is projected to experience a large decrease in cold extremes (i.e., cool nights 

(TN10p) and cool days (TX10p)) but increase in warm extremes (i.e., warm nights (TN90p) 

and warm days (TX90p)), such that the number of days that exceed the historical 90
th
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percentile values of Tmin (TN90p) and Tmax (TX90p) over the NRB could be at least equal to 

or greater than 48% and 55% in the 2050s periods, and at least equal to or greater than 50% 

and 80% in the 2080s, respectively. Correspondingly, the number of days that Tmin (TN10p) 

and Tmax (TX10p) will fall below the historical 10
th

 percentile values are projected to decrease 

to less than 1%, e.g., almost no cold night or days is expected to occur, in the 2050s and 

2080s. The indices for warm and cold spells also project an increase in warm spells but a 

decrease in cold spells in NRB. 

On a whole, results from the downscaled RCP climate scenarios of four GCMs project that 

NRB is expected to experience warmer climate, and extreme precipitation events, and 

extreme temperature are expected to occur more frequently and in greater severity in the mid 

and late 21
st
 century, which could have significant impact to the future water resources of 

NRB.  It will be crucial for countries relying on the water resources of NRB to seriously 

consider implementing adaptation strategies and mitigation measures to combat the potential 

impact of climate change to NRB. 
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Appendix 3.A 

This appendix contains figures that show the spatial coverage of selected extreme climate 

indices analysed in this study for control period, 2050s and 2080s.  
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Figure 3.A1. (a) RX1day and (b) RX5day index over the NRB for control period, 2050s and 

2080s of ACCESS1-3, CanESM2, GFDL-ESM2M and MPI-ESM-LR for RCP4.5 and 

RCP8.5 scenarios.  

 

Figure 3.A2. (a) TX10p and (b) TX90 index over the NRB for control period, 2050s and 

2080s of ACCESS1-3, CanESM2, GFDL-ESM2M and MPI-ESM-LR for RCP4.5 and 

RCP8.5 scenarios.  
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Chapter 4 Impact of Climate Change on Hydrology and Hydrologic 

Extremes of Upper Blue Nile River basin 

4.1. Introduction 

Water crises due to droughts and water pollution have affected many regions across the world, 

especially in developing countries (Vörösmarty et al., 2005). The potential hydrologic impact 

of climate change could lead to unforeseen water crises in future, especially to regions with 

semi-arid or arid climate. Since 1970s, observations show that hydrologic extremes (droughts 

and floods) have been occurring more frequently and in greater severity worldwide (Lemke et 

al., 2007). In the last decade, 90% of natural hazards have been related to water 

(Gopalakrishnan, 2013) and they could get worse in future, such as tsunamis, floods, droughts, 

and storm surges that could inflict costly damages to societies, such as the 2010 flood of 

Pakistan and the 2012 drought of USA (Grigg, 2014), which had been the worst in more than 

half a century, and which may be just a foretaste of more climatic extremes under a hotter and 

drier future in many places of the world. Many scientists and climatologists attribute the 

increase in occurrences of recent hydrologic extremes to the impact of climate change (e.g., 

Lemke et al., 2007; IPCC, 2013). The climate of Africa such as temperature and precipitation 

will likely continue to change in coming decades (e.g., Gizaw and Gan, 2016; Gizaw et al., 

2017), but the pattern and magnitude of change will vary from region to region, and the 

change could severely compromise the future agricultural production and food security in 

many African countries (Boko et al., 2007). 
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Many recent studies on the potential impact of climate change indicate that global warming is 

expected to increase the frequency and magnitude of hydrologic extremes (e.g., Meehl, 2004; 

IPCC, 2013). According to IPCC (2013), the average air temperature has already increased by 

0.5
o
C or more in the past century over most parts of Africa, and some regions have also 

experienced an increase in heavy precipitation (> 95
th

 percentile) events at daily and sub-daily 

time scales since 1951. Furthermore, according to IPCC (2013), air temperature under 

RCP8.5 is projected to increase by 3 – 6
o
C across different parts of Africa by the late 21

st
 

century relative to the 1986-2005 baseline, which could have significant impact on extreme 

weathers. According to the Clausius–Clapeyron relationship, the saturation vapor pressure 

will increase by about 7% per °C rise in temperature.  As a result, a warmer atmosphere will 

have a larger capacity to hold more water vapour, giving rise to more extreme precipitation 

events. Therefore, global warming can potentially accelerate the hydrologic cycle, leading to 

more hydrologic extreme such as extreme floods and droughts.  

The impact of climate change on the water resources of NRB or different sub-basins of NRB 

has been investigated using outputs of RCMs or GCMs (e.g. Beyene et al., 2010; Elshamy et 

al., 2009; Taye et al., 2011; and Liersch et al., 2016). Beyene et al. (2010) used the Variable 

Infiltration Capacity hydrological model driven by climate change scenarios (A2 and B1) of 

11 GCMs of the 4
th

 IPCC (2007) assessment report to assess the climate change impact on the 

NRB. The mean annual Nile River flow to the high Aswan dam is projected to increase by 11 

(14) % in 2020s, but decrease by 8 (7) % in 2050s and 16 (13) % in 2080s for the A2 (B1) 

emission scenarios. Elshamy et al. (2009) used statistically downscaled precipitation and 
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potential evapotranspiration data of A1B emission scenarios of 17 GCMs of the 4
th

 IPCC 

assessment report to drive the Nile Forecast System hydrological model to assess global 

warming impact on the Upper Blue Nile (UBN) river basin at El Diem over 2081-2098. They 

projected the ensemble mean annual flow of UBN at El Diem to decrease by about 15% in 

late 21
st
 century. In contrary, Liersch et al. (2016) found an overall projected increase in the 

mean annual discharge of the UBN, but projected a decrease in discharge during June and 

July and an increase during August to November over the 21
st
 century in both RCP4.5 and 

RCP8.5 climate scenarios.  

However, only several studies have been conducted on the impact of climate change on 

hydrological extremes of the UBN river basin (e.g., Aich et al., 2014; Taye et al., 2011; Kim 

and Kaluarachchi, 2009). Using the hydrologic, SWIM model forced with RCP2.6 and 

RCP8.5 climate scenarios of five GCMs for the mid and late 21
st
 century, Aich et al. (2014) 

projected an increase in the extreme flow of UBN, ranging from 10 to 50% for high 

streamflow (Q10) and 40 to 60% for low streamflow (Q90). Using SRES A2 climate scenarios 

of six GCMs, Kim and Kaluarachchi (2009) projected an increase or decrease in the extreme 

flow of UBN, Q90 by a range of -25 – 60% and Q10 by a range of -15 – 20% in 2050s. Using 

two conceptual hydrological models forced with A1B and B1 scenarios of 17 GCMs 

downscaled by a frequency perturbation approach, Taye et al., (2011) projected the 

streamflow of two catchments in NRB, the Nyando and Lake Tana catchments. They 

projected an increase in the mean runoff and extreme peak flows for Nyando in 2050s, but for 
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Lake Tana, they projected a wide range of changes in the mean volumes, high flows (-31 to 

79%) and low flow (-61 to +56%). 

Given a rather wide range of projected changes for the NRB was reported in a limited number 

of past studies based on RCP climate scenarios of GCMs without downscaling, or SRES 

climate scenarios that were statistically downscaled, the objective of this paper is to 

investigate the potential impact of climate change on the hydrology and hydrological 

extremes of the UBN river basin simulated by three hydrological models using RCP4.5 and 

RCP8.5 climate scenarios of four GCMs of CMIP5 dynamically downscaled by WRF for 

2050s and 2080s. To partly address uncertainties associated with long-term, hydrologic 

projections of climate change impact, we compared the streamflow simulated by three 

hydrological models, of which two are distributed, partial physically based models while the 

3
rd

 is a lumped, conceptual model.  

The chapter is organized as follows: the study area and data are given in Section 4.2, research 

methodology in Section 4.3, the results and discussions in Section 4.4 and conclusions in 

Section 4.5.   

4.2. Study area and data 

4.2.1. Description of the study area 

The study area is the upper Blue Nile river basin, the primary sub-basin of NRB located in the 

highland region of Ethiopia. The drainage area of UBN upstream of the El Diem station is 

about 176,000 km
2
,
 
which contributes about 60% of the average annual streamflow of the Nile 
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River. The first tributary of the UBN river originates from Gish Abbay is called the Gilgel 

Abbay River which flows northwards into Lake Tana (3,200 km
2
) of Ethiopia, then it flows 

pass the Sudanese Border downstream to meet the White Nile River at Khartoum, Sudan. 

Based on the GPCC and CRU data for 1976 – 2005, the mean annual rainfall of UBN varies 

from about 875 to 1900 mm per year, its mean annual temperature varies from 14 to 28
o
C, 

respectively, which means the climate of UBN varies from semi-arid to humid. UNB has a 

wet (June-September) and a dry (October-March) seasons caused by the northward and 

southward movement of ITCZ towards the area with the warmest surface temperature resulted 

from most solar heating. UBN also has a complex terrain with a surface elevation varying 

from 487 m to 4176 m as shown in Figure 4.1.  The soil of UBN is mostly dominated by clay, 

and its land use is dominated by savannah, dryland and cropland. 

 

 

Figure 4.1: Topography (m) and stream network for Nile river basin (left) and the upper Blue Nile 

river basin (right). 



 

99 

 

4.2.2. Data  

The daily precipitation, and climate data used to estimate potential evapotranspiration (ETo) 

using maximum, minimum and mean temperature, wind speed, surface pressure for 1980-

2001 were taken from the ERA-Interim reanalysis data downscaled by WRF (Tariku and Gan, 

2017). The observed discharge at the El Diem station near the Sudanese-Ethiopian border for 

1981-1991 was used to calibrate the three hydrological models selected for this study, and the 

calibrated models were validated using the 1992-1997 data independent of the calibration 

experience.  

The hydrologic impact of climate change on UBN was assessed using climate variables of 

RCP4.5 and RCP8.5 climate scenarios of four GCMs (CanESM2, GFDL-ESM2M, MPI-

ESM-LR and ACCESS1-3) of IPCC (2013) dynamically downscaled by WRF at 36 km 

resolution over a domain of 2
o
E to 57

o
E, 20

o
S to 37

o
N that covers the entire NRB. Using 

ERA-Interim data, WRF was first configured and fine-tuned with various parameterization 

schemes until it could simulate representative regional climate of NRB (Tariku and Gan, 

2017).  Then WRF was used to downscale the historical data of four GCMs for the baseline 

period (1976-2005), and RCP4.5 and RCP8.5 climate scenarios for 2050s (2041-2070) and 

2080s (2071-2100) (Tariku and Gan, 2018). WRF’s simulated precipitation and temperature 

data for the base period were validated against the data of Global Precipitation Climatology 

Centre (GPCC version 6, 1901-2010; Schneider et.al, 2011) and the Climate Research Unit 

data of the University of East Anglia (CRU version 3.22, 1901-2013; Harris et.al, 2014), 

respectively.  
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The flow direction and other catchment characteristics of UBN were generated using the 

Shuttle Radar Topographic Mission (STRM) digital elevation model at a grid resolution of 

90m (Jarvis et al., 2008). The Global Land Cover Characterization (GLCC) data was used as 

the land use/cover classification of UBN.  

4.3. Research Methodology 

4.3.1. Hydrological modelling 

The hydrologic models used for simulating the streamflow of UBN are the Variable 

Infiltration Capacity (VIC), Watflood and NAM models. The three hydrologic models are 

chosen because they are different structurally as an effort to investigate uncertainties related 

to hydrological modeling in climate change impact studies.  

VIC is a semi-distributed, macroscale hydrological model that solves the water balance and 

surface energy budgets of a river basin at a grid cell level (Liang et al., 1996). The surface 

runoff and the baseflow output simulated for each land surface grid was routed to the 

outlet/gauge station of the basin using a routing model of Lohmann et al (1998). VIC has been 

successfully tested in many hydrologic studies at different places (e.g. Gao et al., 2010; 

Ashfaq et al., 2010; Beyene et al., 2010; Nijssen et al., 2001). The meteorological forcing data 

needed to drive the VIC model was daily precipitation, maximum and minimum temperature, 

and wind speed output of WRF at 36 km grid resolution; whereas other forcing variables such 

as short and longwave radiative fluxes were estimated from minimum and maximum 

temperature using methods described by Maurer et al. (2002). The soil and vegetation 

parameters of UBN were obtained from the global VIC input data at 0.5
o
 resolution (Nijssen 
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et al., 2001). Details of the soil and vegetation data required by VIC are given in Liang et al 

(1996). By a manual calibration approach, parameters for the variable infiltration curve 

parameter (b_infilt), fraction of the Dsmax parameter (Ds), fraction of soil moisture (Ws), 

maximum velocity of baseflow (Dsmax) and soil depth parameters were iteratively adjusted 

until a multi-objective function was optimized. In addition, routing parameters such as 

velocity, diffusivity, and the unit hydrograph were also manually calibrated.   

Watflood is a distributed hydrologic model developed by Nicholas Kouwen at the University 

of Waterloo for flood forecasting and long-term hydrologic simulations (Kouwen et al., 1993). 

Watflood uses the Grouped Response Units (GRU) approach to calculate the overland flow, 

interflow and baseflow; and the Hargreaves, Preistley-Taylor (Priestley and Taylor, 1972) or 

pan evaporation methods to calculate the potential evapotranspiration. In this study, the 

Hargreaves method based on air temperature data was used to estimate ETo. The Watflood 

model accounts for canopy interception, infiltration, evaporation, snow accumulation and 

ablation, interflow, recharge, baseflow, overland and channel routing of river basins (Kouwen 

et al., 1993). Watflood has also been widely used at different places (e.g. Benoit et al. 2003; 

Pietroniro et al. 2006). The 6-hourly outputs of precipitation and surface air temperature of 

WRF were used to drive Watflood. The land use/cover data of UBN as input to Watflood was 

prepared from the GLCC and the STRM DEM data using the Green Kenue software. 

Watflood model parameters were calibrated by a combination of manual and auto-calibration 

methods such that the simulated streamflow agree with the observed streamflow data of UBN.  
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NAM is the Danish “Nedbør-Afstrømnings-Model”, lumped, conceptual rainfall-runoff model 

developed at the Technical University of Denmark (DHI, 2008) which accounts for the soil 

moisture content in four different but mutually interrelated conceptual storages, which 

represent different physical storages of a catchment, such as: 1) snow storage, 2) surface 

storage, 3) lower root zone storage and 4) groundwater storage (DHI, 2008). In addition, 

NAM allows human interventions of the hydrological cycle, such as irrigation and 

groundwater pumping. The lower root zone reservoir plays a central role in NAM such that 

surface and subsurface flows simulated vary linearly with the relative soil moisture content of 

this lower zone storage. NAM simulates overland flow, interflow and baseflow as outputs 

using a linear reservoir model. ETo was estimated using the FAO Penman-Monteith method 

(Allen et al., 1998) which estimates radiation and relative humidity based on maximum and 

minimum temperature, locations and limited amount of input data. Other variables such as 

wind speed and surface air pressure are obtained from WRF.  Different hydrologic processes 

modelled by NAM are conceptualised using empirical algorithms with model parameters that 

are manually calibrated, which is a trial-and-error approach against observed streamflow until 

the model parameters are optimized.  

4.3.2. Bias correction 

Between different bias correction methods such as linear scaling, local intensity scaling, 

power transformation and quantile mapping, Teutschbein and Seibert (2012) found that the 

quantile mapping method achieved the best bias correction of temperature and precipitation 

data of their study site. Because precipitation of UBN downscaled by WRF tends to be too 
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high compared to observed data, precipitation of UBN simulated by WRF was bias corrected 

at daily time scale based on monthly GPCC data using a linear scaling method, and at daily 

time scale based on the Climate Hazards Group Infrared Precipitation with Stations daily data 

(CHIRPS version 2.0, 1981-2005; Funk et al., 2014) using the quantile mapping method. 

WRF’s simulated, daily temperature for UBN was bias corrected using a linear approach by 

adding the difference between the monthly long-term mean observed CRU temperature of 

1976-2005 and the corresponding monthly mean of WRF’s simulation. The four GCMs 

output downscaled by WRF are compared and bias corrected before applied to the 

hydrological models. 

4.4. Results and discussions 

4.4.1. Hydrological models calibration and validation  

The calibration and validation results of three hydrological models versus observed daily 

streamflow of UBN are shown in Figure 4.2. Results of both Figure 4.2 and Table 4.1 show 

that all models generally captured the overall streamflow processes and dynamics in both 

calibration and validation periods. The Nash-Sutcliffe Efficiency (NSE), coefficient of 

correlation (R
2
), the root mean square error (RMSE), the mean error (ME) statistics of all 

models obtained are encouraging, with NSE and R
2
 above 0.6, small ME. The hydrologic 

models are further evaluated in terms of peak flow, low flow, and cumulative discharge. The 

cumulative discharge of VIC for the calibration and validation periods was over-simulated by 

about 8% while the other two models only marginally over simulated the cumulative 

discharge (< 2.5%).  Overall, the performance of NAM model is the best. 
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Figure 4.2: Calibration and validation time series plots using NAM, VIC and Watflood 

models for upper Blue Nile river basin. 

 

Table 4.1:  Performance of NAM, VIC and Watflood model in simulating the historical 

records for calibration and validation period.  

 Model NSE [-] ME [m3/s] RMSE [m3/s] R2 [-] 

Calibration NAM 0.74 10.87 889.1 0.76 
 VIC 0.69 176.1 977.6 0.75 
 Watflood 0.65 -31.5 1033 0.65 
Validation NAM 0.79 65.4 893.8 0.81 
 VIC 0.64 245.6 1163 0.75 
 Watflood 0.63 -12.3 1179 0.65 

 

High and low flow extremes selected from the streamflow time series simulated by NAM, 

VIC and Watflood are compared with the high and low flow extremes observed for UBN 

using scatterplots shown in Figure 4.3 after re-distributing the data by Box-Cox 

transformation (Box and Cox, 1964; Willems, 2009) so that the data errors are homoscedastic. 
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Solid and dotted lines in the scatterplots represent the mean and the standard deviation of 

model residuals, respectively. Figure 4.3 shows that all NAM, VIC and Watflood have well 

captured the peak flows, especially the NAM model, with a mean peak flow residuals of -

0.007, -0.29 and -0.43 m
3
/s respectively.  The extreme low flows are also well simulated by 

VIC and NAM, but over-simulated by Watflood and under-simulated by VIC for the 

validation periods. The mean low flow residuals for NAM, VIC and Watflood are +0.16, -

0.59 and +0.61 m
3
/s, respectively. The above results demonstrate that all NAM, VIC and 

Watflood models are well calibrated and therefore are adequate to assess the future hydrologic 

impact of climate change on UBN.  

 

Figure 4.3: Scatterplots of Box-Cox transformed annual peak and low flow extremes at daily 

time step for the upper Blue Nile river basin between observed and simulations of NAM, VIC 

and Watflood models. 
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4.4.2. Climate change impact on precipitation and temperature of UBN 

The projected changes in annual precipitation, maximum and minimum temperature for 

RCP4.5 and RCP8.5 climate scenarios of four CMIP5 GCMs downscaled by WRF for 2050s 

and 2080s with respect to 1976-2005 (base period) are shown in Table 4.2. The maximum 

(minimum) temperature of UBN are projected to increase by about 1.35 – 2.38 (1.72 – 2.74)
 

o
C under RCP4.5, and 2.22 – 4.47 (2.5 – 5.1)

 o
C under RCP8.5 climate scenarios for future 

periods with respect to the base period, respectively. As expected, projected changes in 

minimum temperature is higher than projected changes in maximum temperature. The results 

are consistent with that of previous studies, such as Elshamy et al. (2009) and Kim and 

Kaluarachchi (2009) who projected the mean annual temperature of UBN to increase by 2 – 

5
o
C at the end of the 21

st
 century under A1B scenario, and 1.4 – 2.6

o
C for 2050s under A2 

scenarios over the base period of 1961-1990, respectively. Based on RCP8.5 climate scenarios 

of four GCMs, the mean annual temperature of the BNRB is projected to increase by about 

2.5 – 3
o
C (3.9 – 4.6

o
C) in 2050s (2080s), respectively (Tariku and Gan, 2018).  However, a 

projected change in precipitation varies widely, ranging from -10.3 to 19.4% for both RCP 

climate scenarios over 2050s and 2080s. The average annual precipitation is projected to 

increase (decrease) based on downscaled climate scenarios of CanESM2 (MPI-ESM-LR) in 

both future periods, respectively. On the other hand, the average annual precipitation is 

projected to decrease by both ACCESS1-3 and GFDL-ESM2M under RCP8.5 scenarios in 

both future periods, but increase in 2050s and decrease in 2080s under RCP4.5 scenarios.  

Previous climate change studies conducted for UBN or its sub-basins also show different 
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projected changes (increase or decrease) in precipitation by different GCMs, e.g., Kim and 

Kaluarachchi (2009), and Tariku and Gan (2018). Kim and Kaluarachchi (2009) found 

projected change in the mean annual precipitation over UBN to range between -11 to 44% for 

2050s using six GCMs’ output under A2 emission scenarios. Using four GCMs downscaled 

by WRF, Tariku and Gan (2018) found the projected change in the annual precipitation for 

Blue Nile river basin to range between -9 and 18.6 % under RCP4.5, and -14 to 25% under 

RCP8.5 climate scenario over 2050s and 2080s. 

Table 4.2: The projected change in precipitation, minimum and maximum temperature of UBN under 

two RCP climate scenarios of four GCMs downscaled by WRF for 2050s and 2080s. 

  
ACCESS1-3 CanESM2 GFDL-ESM2M MPI-ESM-LR 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Relative change in precipitation (%) 

2050s 1.3 -6.5 11.2 10.4 2.6 -3.4 -6.6 -5.5 

2080s 0.6 -6.9 12.0 19.4 -2.6 -4.6 -5.4 -10.3 

Change in Maximum Temperature (oC) 

2050s 1.86 2.95 1.68 2.4 1.35 2.22 1.82 2.5 

2080s 2.38 4.47 2.02 3.86 1.79 3.6 2.1 4.38 

Change in Minimum Temperature (oC) 

2050s 2.20 3.03 2.27 3.1 1.72 2.51 1.69 2.5 

2080s 2.68 4.82 2.74 5.1 2.02 3.86 2.06 4.4 

 

Projected change in monthly precipitation of UBN based on RCP4.5 and RCP8.5 climate 

scenarios of four GCMs for 2050s and 2080s are shown in Figure 4.4.  Precipitation is 

projected to decrease marginally in May - July, to increase marginally in March-April and in 

August-September. However, it is projected to increase significantly from October to January 

which is the dry season of UBN. Under both climate scenarios of CanESM2, monthly 

precipitation is projected to increase almost throughout the year. In contrast, projected 
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changes in monthly min/max temperature are consistent between the four GCMs and the 

months. On a whole, maximum temperature is projected to a larger increase during the rainy 

than the dry seasons, but the reverse is projected for minimum temperature of UBN, a larger 

increase in the dry than the rainy season.  

 

Figure 4.4: Projected monthly precipitation of four GCMs downscaled by WRF for UBN 

under RCP4.5 and RCP8.5 climate scenarios for 2050s and 2080s. 

 

4.4.3. Projected Change to the Mean Annual streamflow 

The hydrologic models are driven by RCP4.5 and RCP8.5 climate scenarios of four GCMs 

downscaled by WRF to project the future runoff of UBN, assuming the calibrated model 

parameters remain valid under climate scenarios in future periods. The projected changes in 

the streamflow of UBN for 2050s and 2080s were assessed against the base period of 1976-

2005 to evaluate the hydrologic impact of climate change on UBN.   
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Projected changes in the future mean annual streamflow simulated by three models driven by 

two climate scenarios of four GCMs downscaled by WRF (see Table 4.3) vary widely due to 

the wide range of precipitation projected by the four GCMs.  The mean annual streamflow of 

UBN is projected to decrease by all three hydrologic models driven by both RCP climate 

scenarios of all GCMs, except for CanESM2 that projected a significant increase in future 

precipitation, which led to a significant increase in the projected mean annual streamflow of 

UBN. Projected changes in the mean annual streamflow differ slightly between the three 

models, e.g., NAM projected the largest decrease in the mean annual streamflow under the 

climate scenarios of three GCMs but the largest increase under CanESM2. The change in the 

mean annual streamflow simulated by Watflood is similar to the precipitation change 

projected by the GCMs, which are predominantly negative except for CanESM2 as explained 

above. On a whole, Watflood simulated a smaller decrease in the mean annual streamflow of 

UBN than NAM and VIC partly because the latter models estimated higher ETo than 

Watflood. The future streamflow of UBN will either increase or decrease, depending on the 

net change in rainfall and evapotranspiration loss subjected to climate change impact. As 

expected, a larger change in the mean annual streamflow was projected under RCP8.5 than 

RCP4.5 climate scenarios. On a whole, forcing the three hydrological models using climate 

scenarios of four GCMs, the median of the mean annual streamflow of UBN are projected to 

change by -7.6% with a range of -19.7 to 17.7% in the 2050s and by -12.7% with a range of -

26.8 to 31.6% in 2080s. Previous climate change studies on UBN also projected changes that 

range from an increase to a decrease in the future streamflow of UBN, depending mainly on 
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the projections of GCMs, e.g., Kim and Kaluarachchi (2009), and Elshamy et al. (2009). 

Using six GCMs’ output under A2 emission scenarios, Kim and Kaluarachchi (2009) 

projected changes in the mean annual streamflow of UBN to range between -32 and 80% in 

2050s. Elshamy et al. (2009) also projected the ensemble mean annual streamflow of UBN to 

decrease by 15%, with a range of -60% to +45% in 2081-2098 compared to the 1961-1990 

baseline period. 

Table 4.3 Percentage change in the mean annual flow projected by three hydrologic models driven by 

climate scenarios of four GCMs downscaled by WRF for 2050s and 2080s. 

 NAM Model Watflood VIC model 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

2050 2080 2050 2080 2050 2080 2050 2080 2050 2080 2050 2080 

ACCESS1-3 -1.9 -4.9 -24.9 -33.1 3.0 1.6 -8.7 -12.3 -5.24 -5.3 -19.7 -26.8 

CanESM2 28.5 26.9 26.5 48.6 17.7 18.2 17.4 31.6 15.6 15.9 14.7 27.7 

GFDL-ESM2M -5.0 -19.4 -25.7 -34.2 3.6 -5.3 -7.9 -8.7 -1.2 -10.7 -13.4 -20.3 

MPI-ESM-LR -24.6 -22.1 -19.6 -40.7 -10.7 -8.7 -7.2 -13.7 -16.4 -14.7 -13.3 -25.5 

 

Similar to projected changes to the mean monthly precipitation, projected changes to the 

mean monthly streamflow of UBN also differ from month to month (Figure 4.5). The mean 

monthly streamflow of UBN are projected to increase (decrease) by NAM driven by climate 

scenarios of CanESM2 (other GCMs).  However, the median of projected changes in monthly 

streamflow by NAM is consistently a decrease compared to the base period. On the other 

hand, the mean monthly streamflow of UBN are always projected to increase by VIC and 

Watflood when the models are driven by climate scenarios of CanESM2, but to always 

decrease when they are driven by climate scenarios of MPI-ESM-LR. VIC and Watflood 

driven by climate scenarios of all four GCMs projected the median of the mean monthly 
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streamflow changes of UBN to increase over the dry season but to decrease over the rainy 

season, which is more or less similar to the monthly projected change in precipitation.  

 

Figure 4.5: Monthly change in streamflow of UBN under four GCMs downscaled by WRF for RCP4.5 

and RCP8.5 climate scenarios and both future periods. 

 

Overall, the mean monthly streamflow of UBN projected by the three hydrological models 

differ from each other, partly because of different model structure.  Sources of uncertainties 

associated with streamflow projections can be broadly classified under the structure of 

hydrologic models, climate data, GCMs and climate scenarios, which are related to future 

emissions of greenhouse gases and their radiative forcing (Kerkhoven and Gan, 2011).  

However, it is difficult to estimate the proportion of uncertainties attributed to these few 

sources accurately, partly because we have only conducted this study using four GCMs, three 

hydrologic models, and two RCP climate scenarios. Mathematical models are simplified 
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versions of nature, we expect uncertainties associated with models to be related to the 

structure and complexity of models.  Given differences in the mean annual streamflow 

simulated by the three hydrologic models are larger than differences in the mean annual 

streamflow simulated by each hydrologic model driven by different GCMs, it seems that 

uncertainties attributed to hydrologic model structure are likely larger than uncertainties 

related to climate model structure and their climate scenarios. This could be partly because of 

significant differences in the structure between the three hydrologic models as explained 

above. Overall, median changes in the mean monthly streamflow of UBN are projected to 

increase in the dry season and to decrease in the rainy season by the three hydrologic models 

driven by two RCP scenarios of four GCMs in 2050s and 2080s with respect to the base 

period.  

4.4.4. Climate change impact on extremes  

From 30 years of daily observed and projected streamflow time series of UBN, the annual 

maximum (minimum) streamflow are selected and ranked in descending order to estimate the 

return periods of 30 annual maxima (minima) streamflow. There are obvious differences 

between annual maxima and minima projected by the three models for 2050s and 2080s. The 

projected change in the annual maxima is larger for high than for lower return periods as 

shown in Table 4.4.  Relative to the base period, annual maxima of high return period are 

projected to increase by a ratio of 1.08 to 1.13, while annual maxima of low return periods are 

projected to decrease by a ratio of about 0.85. On the other hand, annual minima of low return 

periods are projected to remain almost unchanged, but are projected to decrease under high 
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return periods, e.g., the ratio of the projected change of annual minima range from 1.0 to 0.73. 

This implies that UBN is likely to experience more frequent and/or more severe flooding and 

droughts in the future. 

Table 4.4: Ensemble range and median of change between observed and projected daily 

peak/low flow extremes for UBN under two downscaled RCP climate scenarios of four 

GCMs for 2050s and 2080s.  

Return period 

(years) 

Peak flows Low flows 

Range of 

Change for 

Projected 

over 

observed 

Median 

of 

Change  

Range of 

Change for 

Projected 

over 

observed 

Median 

of change  

1 0.53 – 1.99 0.85 0.83-1.45 1.00 

2 0.89 – 1.29 0.97 0.77-1.37 0.99 

5 0.98 – 1.31 1.08 0.68-1.41 0.90 

10 0.93 – 1.43 1.13 0.58-1.37 0.84 

25 0.92 – 1.42 1.10 0.47-1.46 0.73 
 

Under the same RCP climate scenarios for 2050s and 2080s, similar ranges of change for 

annual maxima are also projected by the three hydrological models. On a whole, there are 

larger differences between annual minima simulated by NAM, VIC and Watflood, e.g., NAM 

mostly simulated smaller annual minima of high return periods while Watflood simulated 

minimal change in the annual minima of UBN. This discrepancy between annual minima 

simulated by the three models is likely due to using different model structure for simulating 

baseflow. NAM uses the lumped approach and a simplified linear reservoir for modeling the 

baseflow, while VIC uses a distributed approach and routing schemes to compute the 

baseflow. The differences between annual minima simulated by the three models are larger 
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than differences simulated by the same hydrologic model driven by various downscaled 

climate change scenarios of the four GCMs.  

Given the considerable decrease in annual minima projected by all three models, it seems that 

UBN could experience more frequent or severe droughts under climate change impact, which 

would affect different sectors, such as the municipal and agriculture sectors, and the future 

navigation in the Nile for both upstream and downstream countries of the Nile river basin. 

Similar changes to UBN are also projected in previous climate change impact studies for the 

UBN cited in the Introduction, except in Aich et al (2014) who projected an increase in the 

annual minima of UBN.  

4.5. Summary and conclusions 

The potential impact of climate change on the future mean and extreme streamflow of UBN in 

the 2050s and 2080s was projected by three hydrological models (NAM, VIC and Watflood 

models) driven with RCP4.5 and RCP8.5 climate scenarios of four GCMs dynamically 

downscaled by WRF. The mean daily maximum (minimum) temperature of UBN are 

projected to increase by about 1.35 – 2.38 (1.72 – 2.74) 
o
C under RCP4.5, and 2.22 – 4.47 

(2.5 – 5.1) 
o
C under RCP8.5 climate scenarios for future periods with respect to the base 

period of 1976-2005. However, projected changes in the mean annual precipitation vary 

widely, ranging from -10.3 to 19.4%, but generally projected to decrease in the summer and 

increase in the winter, under both RCP climate scenarios over 2050s and 2080s.  

Driven with gridded ERA-Interim data dynamically downscaled by WRF, the NAM, VIC and 

Watflood hydrologic models were calibrated and independently validated against observed 
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streamflow of the El-Diem gauging station. Almost all models have captured the overall 

streamflow dynamics of the UBN river basin accurately. At the calibration and validation 

stages, NSE and R
2
 of simulated versus observed streamflow obtained are above 0.6, while 

the ME and RMSE are relatively low. On a whole, using three hydrological models driven by 

the RCP climate scenarios of four GCMs, the median of mean annual streamflow of UBN are 

projected to decrease by 7.6%, with a range of -19.7 to 17.7% in the 2050s, and by 12.7%, 

with a range of -26.8 to 31.6% in the 2080s.  The mean streamflow of UBN is projected to 

increase in the winter, decrease in the summer, but on a whole, its mean annual streamflow is 

projected to decrease. 

Both the annual maxima and minima of streamflow are projected to increase under climate 

scenarios of CanESM2 in both future periods compared with other GCMs. Annual maxima of 

high return periods are projected to increase by a ratio of 1.08 to 1.13, while annual maxima 

of low return periods are projected to decrease by a ratio of about 0.85. On the other hand, 

annual minima of low return periods are projected to remain almost unchanged, but are 

projected to decrease under high return periods, e.g., the ratio of the projected change of 

annual minima range from 1.0 to 0.73. This implies that UBN is likely to experience more 

frequent and/or more severe flooding and droughts in the future. This would affect different 

sectors of users, such as the municipal and agriculture sectors and future navigation in the 

Nile for both upstream and downstream countries of the Nile river basin. 

Differences between the streamflow simulated by NAM, VIC and Watflood, especially for 

low flow, are larger than differences in the streamflow simulated by each hydrologic model 
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driven by RCP climate scenarios of different GCMs, partly because of significant differences 

in the structure between the three models, conceptual and lumped (NAM) versus partial 

physically based and distributed models (VIC and Watflood). Therefore, decision makers who 

plan to adapt water resources management to mitigate potential impact of climate change 

should be aware of uncertainties associated with streamflow projections, and sources of 

uncertainties, such as hydrologic or climate model structure, climate data, future emissions of 

greenhouse gases and their respective radiative forcing. 

To overcome limitations of this study, such as using RCP climate scenarios of more GCMs 

(instead of only four GCMs) dynamically downscaled by a regional climate model such as 

WRF to resolutions of climate scenarios adequate to model basin scale hydrologic processes 

of UBN. Another limitation of this study is the possible effect of land use/cover change of 

UBN due to future developments of Ethiopia which could also exert significant impact on the 

future water resources of UBN.   
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Chapter 5 Optimal Operation of a Multipurpose Multireservoir system 

in the Blue Nile River Basin under climate change 

5.1. Introduction 

The Sub-Saharan Africa is the world’s largest consumer of biomass energy because only one 

person in four in Africa has access to electricity (WWAP, 2012) even though the Nile River 

Basin (NRB) has enough hydropower potential to meet the entire basin’s electricity needs.  

However, the hydropower potential of NRB is far from fully developed because of economic 

and political reasons (NBI, 2015). Furthermore, the amount of water withdrawn from the river 

is unevenly distributed among eleven riparian countries located in NRB (Goor et.al, 2010), 

such that Egypt and Sudan are the two largest consumers, which according to their agreement 

in 1959, get 55.5 billion m
3
 and 18.5 billion m

3
 of water per year, respectively. However, this 

agreement neglects upstream countries such as Ethiopia even though 85% of the Nile water 

comes from Ethiopian highlands. The Nile Basin Initiative launched in February 1999 by the 

Council of Ministers of Water Affairs of Nile Basin States has helped to develop the river in a 

more cooperative manner, to share socio-economic benefits from the river more equitably, 

and to promote regional peace and security (NBI, 2015). Currently, certain Nile riparian 

countries are developing their water resources to meet increasing food and energy demand 

due to population growth. For example, to boost hydropower production and food security, 

Ethiopia has started constructing one of four proposed reservoirs (Karadobi, Beko-Abo, 

Mendaya and Border), hydropower stations and irrigation areas in the Blue Nile River Basin 

(BNRB), based on studies conducted by the United States Bureau of Reclamation (USBR) in 
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1964 (Goor et.al, 2010; Block, 2007; Block and Strzepek, 2010). Given upstream 

developments will have both positive and negative impact on the downstream users, a proper 

overall planning and management of the whole NRB is recommended.  

In the past, various water resources management models have been developed to assess the 

hydropower and agricultural irrigation potential within Ethiopia and for the entire NRB 

(Guariso and Whittington 1987; Levy and Baecher 1999; Geogakakos 2006; Whittington et al. 

2005). Digna et al. (2016) provided a detailed review on past studies on the water resources 

management of NRB. These studies have provided insight to develop and to manage viable 

hydropower and irrigation projects for NRB, which will potentially have significant 

hydrologic and economic implications for the entire river basin. For example, Guariso and 

Whittington (1987) developed a linear programming model to predict long-term consequences 

of the proposed water resources development program of Ethiopia over the Blue Nile to Egypt 

and Sudan. They showed that developing the four reservoirs by Ethiopia would benefit 

downstream countries by effectively ending the annual Nile flood; by increasing the amount 

of water available for agriculture because the river could be more easily regulated 

downstream, thus reducing storage requirements in Sudan and evaporation losses from the 

Aswan High Dam Reservoir.  

Whittington et al. (2005) developed an economic model to optimize the water resources of the 

entire NRB. They used a non-linear, constrained optimization algorithm to determine the 

annual pattern of water use that will maximize the sum of economic benefits from irrigated 

agriculture and hydropower generation in the Nile basin. However, their study did not 
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consider the stochastic nature, possible climate change impact and climate variability of the 

Nile River. Goor et al. (2010) developed a stochastic, hydro-economic model for the Eastern 

Nile River Basin to assess the impacts of upstream development in the Blue Nile basin on the 

allocation decisions, reservoirs operating strategies, and the economic value of reservoirs in 

Ethiopia. They found that storage by upstream reservoirs in Ethiopia will generate positive 

benefits to both Ethiopia and Sudan. For example, by developing four proposed reservoirs, the 

hydropower production is projected to increase by 40TWh. Sudan will also benefit from 

increasing the irrigation water withdrawals by about 5.5%.  Even though they concluded that 

the four proposed reservoirs in Ethiopia would not affect the reliability of water supply to 

Egypt, their study has not considered the possible hydrologic impact of climate change to 

future streamflow of the NRB. From a deterministic, reservoir optimization model developed 

to assess the implications and the feasibility of the proposed reservoirs over the 21
st
 century, 

Block and Strzepek (2010) analyzed transient conditions associated with the period of filling 

the proposed reservoirs in Ethiopia, under the possible impact of climate variability and 

climate change impact. In their study, they found that neglecting the transition period of 

filling the reservoirs will result in over-estimating the total benefits by as much as $6 billion 

and the downstream flows by 170%. They also found that climate change and climate 

variability have considerable impact on the potential benefits of the proposed reservoirs but 

their results are based on raw climate change scenarios of global climate models, which are 

generally too coarse for the basin-scale, climate change impact study of the NRB. 

. 
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Various water resources management models have been developed to assess the impact of 

certain proposed reservoirs over the upper Blue Nile on countries downstream of Egypt and 

Sudan. Most of the past studies have not used climate change scenarios that are downscaled to 

assess climate change impact to the reservoir operations of BNRB. In this study, selected 

Representative Concentration Pathway (RCP) climate scenarios of IPCC (2013) were 

dynamically downscaled by a regional climate model, the Weather and Research Forecasting 

(WRF) (Skamarock et al., 2008) before they are used to drive a physically-based hydrologic 

model, VIC, to project the future streamflow of BNRB under climate change impact.  Next, 

the projected streamflow data are used to drive a stochastic dynamic programing model to 

investigate the potential impact of climate change on the water resources management and 

reservoir operations of the BNRB, with the objective of optimizing the hydropower 

production and optimal allocation of water for irrigation projects of the BNRB under future 

development plans. This will be enable policy makers to execute informed, prudent decisions 

on the future planning, design and management of water resources of the BNRB. 

The chapter is organized as follows: a brief description of the study area, climate scenarios, 

stochastic dual dynamic programming formulations, and model parameters and assumptions 

are presented in Section 5.2, results and discussions in Section 5.3, and summary and 

conclusions are in Section 5.4.  
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5.2. Materials and Methods  

5.2.1. Study Site 

The study site is the BNRB with an approximate drainage area of 210,000 km
2
, which 

contributes about 60% of the average annual flow of the Nile River. The NRB covers an area 

of about 3.35 x 10
6
 km

2
 which is 10% of Africa’s landmass. NRB countries have the fastest 

growing population, with about 54% of their total population living within the NRB (Swain, 

2011). The water resource of the NRB distributes unevenly between the NRB countries. A 

number of dams have already been constructed across the Nile River for hydropower 

generation, flood control, irrigation and domestic water supply, and for navigation. However, 

the BNRB is still unregulated, even though there is an increasing pressure to construct a new 

dam across the Blue Nile River for hydropower production and irrigation. Among the four 

major hydroelectric dams along the Blue Nile proposed by USBR in 1964, the Grand 

Ethiopian Renaissance Dam (GERD) is currently under construction based on a revised 

version of the original design of this dam. Given the runoff of the Blue Nile River is much 

higher than the White Nile River, this development over the Blue Nile would have significant 

impact on the downstream countries. Furthermore, possible hydrologic impact of climate 

change, such as rising temperature, increase or decrease in precipitation, and higher 

evaporation loss over the NRB would also affect its future water management. The proposed 

and existing reservoirs in the Blue Nile River basin are shown in Figure 5.1 and Table 5.1.  
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Table 5.1: List constructed and proposed reservoirs across the Blue Nile river basin 

Fig. Symbol Name Country Live storage (hm
3
) Hydropower 

Capacity (MW) 

RR1 Tis Abbay I and II Ethiopia Run-of-river 86 

RR2 Tana-Beles Ethiopia Run-of-river 270 

R2 Karadobi* Ethiopia 17000 1600 

R3 Beko-Abo* Ethiopia 20000 2100 

R5 Mandaya* Ethiopia 24000 1620 

R6 GERD** Ethiopia 75000 6500 

R7 Roseires Sudan 6900 275 

R8 Sennar Sudan 480 15 

         *=planned, **=under construction. Sources: ENTRO (2009) and Goor et al. (2010). 

 

 

Figure 5.1: Existing and planned reservoir layout of the Blue Nile River basin; i1 up to i5 represent the 

irrigation sites, while R1 to R8 represent the reservoir sites over the BNRB. 



 

128 

 

5.2.2. Climate Change Scenarios  

The Reginal climate model, WRF was set up for NRB (2
o
E to 57

o
E, 20

o
S to 37

o
N). The 

hydrologic impact of climate change on BNRB was assessed using climate variables of 

RCP4.5 and RCP8.5 climate scenarios of four GCMs (CanESM2, GFDL-ESM2M, MPI-

ESM-LR and ACCESS1-3) of IPCC (2013) dynamically downscaled by WRF at 36 km 

resolution over a one-domain framework that covers the entire NRB (Tariku and Gan, 2017 

and 2018; Tariku et al., 2018). Using the ERA-Interim reanalysis data, WRF was first 

configured and fine-tuned with various parameterization schemes until it could simulate 

representative regional climate of NRB (Tariku and Gan, 2017). Then WRF was used to 

downscale the historical data of four GCMs for the baseline period (1976-2005), and RCP4.5 

and RCP8.5 climate scenarios for 2050s (2041-2070) and 2080s (2071-2100) (Tariku and Gan, 

2018). The VIC macroscale hydrological model was used to simulate the water and surface 

energy fluxes of the BNRB in a fully distributed approach (Liang et al., 1996). Daily 

precipitation, maximum and minimum temperature, and wind speed simulated by WRF at 36 

km grid resolution, and the specific humidity, short and longwave radiative fluxes estimated 

from minimum and maximum temperature using methods described by Maurer et al. (2002) 

were used to force the VIC model to simulate the inflow upstream and the lateral inflow at 

each reservoir location.  The Lohmann et al. (1998) routing model is used to route the surface 

runoff and the baseflow output simulated by VIC for each land surface grid to the 

outlet/gauge station of the BNRB. 
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5.2.3. Stochastic dual dynamic programming (SDDP) 

Stochastic dynamic programming (SDP) is one of the most commonly used optimization 

algorithms in reservoir network management studies for it accounts for uncertainties 

associated with reservoir operations based on projected hydrologic inflows, and the economic 

use of water (Loucks and van Beek 2005). However, SDP suffers from the curse of 

dimensionality because computational and memory requirements grow exponentially as the 

dimension of the state vector increases (Powell, 2011). Various strategies have been 

developed to circumvent this curse of dimensionality in SDP, such as using coarse 

grid/interpolation techniques, dynamic programming successive approximations, incremental 

dynamic programming or discrete differential dynamic programming (Labadie, 2004). The 

Stochastic Dual Dynamic Programming (SDDP) used in this study has been developed to 

remove the computational burden of discrete SDP by constructing a piecewise linear 

approximation of the objective function at time step (t+1), 𝐹𝑡+1. SDDP was first developed by 

Pereira (1989) and Pereira and Pinto (1991) for operating power plants of Brazil.   

In SDDP, the reservoir operation problem will be solved using certain recursive stochastic 

dynamic programming equations which maximize an objective function, 𝐹𝑡, represented by 

the total, present ft (.) and expected future Ft+1 benefits obtained from the reservoir operation 

(Goor et al, 2010; Tilmant and Kelman, 2007; and Tilmant et al., 2008; 2009). The problem is 

set up as below: 

𝑭𝒕(𝒔𝒕, 𝒒𝒕, 𝒚𝒕) = 𝒎𝒂𝒙𝒓𝒕
 {𝒇𝒕(𝒔𝒕, 𝒒𝒕 , 𝒓𝒕, 𝒚𝒕)  + 𝑬𝒒𝒕+𝟏|𝒒𝒕

[ 𝑭𝒕+𝟏(𝒔𝒕+𝟏, 𝒒𝒕, 𝒚𝒕+𝟏)]}   (5.1) 
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Where st is the volume of water stored in the system at the beginning of period t and qt is the 

current or forecasted inflows to the system. rt is a vector of decision variables (outflow or 

reservoir release) and yt is the volume of water stored for irrigation water requirement at the 

beginning of period t and E[.] is the expectation operator for the forecasted inflow qt+1 given 

the current inflow of qt.   

The optimization of reservoir operations is subjected to several physical constraints: (a) the 

reservoir storage is bounded by lower ( 𝑠𝑡+1 ) and upper ( 𝑠𝑡+1 ) storage levels; (b) the 

maximum release (𝑟𝑡) is constrained by the turbine capacity of the hydropower station while 

the minimum release ( 𝑟𝑡 ) is to maintain a desired downstream minimum flow for 

environmental conservation, water quality, and navigation; and (c) the conservation of mass 

based on inflow, outflow and changes in reservoir storage.   

𝒔𝒕+𝟏 ≤ 𝒔𝒕+𝟏 ≤ 𝒔𝒕+𝟏 

𝒓𝒕 ≤ 𝒓𝒕 ≤ 𝒓𝒕 

𝒔𝒕+𝟏 − 𝑪𝑹(𝒓𝒕 + 𝒍𝒕) = 𝒔𝒕 + 𝒒𝒕 − 𝒆𝒕(𝒔𝒕) − 𝒊𝒕    (5.2) 

For irrigation constraints: (a) irrigation water withdrawals are limited by the pumping station 

or channel capacity and crop water requirements; (b) throughout the growing season a 

continuity equation is used to keep track of the mass balance of “dummy” reservoirs of 

accumulated water for irrigation purposes; and (c) lower and upper bounds of  “dummy” 

reservoirs. 
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𝒊𝒕 ≤ 𝒊𝒕 ≤ 𝒊𝒕 

𝒚𝒕+𝟏 − 𝝐𝒊𝒕 ≤ 𝒚𝒕 

𝒚𝒕+𝟏 ≤ 𝒚𝒕+𝟏 ≤ 𝒚
𝒕+𝟏

          (5.3) 

Where 𝑙𝑡 is the vector of spills; 𝐶𝑅 is the system connectivity matrix (𝐶𝑅(𝑗, 𝑘) = 1(−1) when 

reservoir j receives (releases) water from (to) reservoir k); 𝑒𝑡  is the vector of evaporation 

losses; 𝑖𝑡 is the vector of irrigation water withdrawals, 𝜖 is the vector of irrigation efficiencies, 

and 𝑦𝑡+1 representing the end-of-period accumulated water into those “dummy” reservoirs.  

The SDDP model will maximize net benefits from both irrigation and hydropower sectors by 

identifying optimal release rt (j) and irrigation withdrawal it (j) decisions at each node j and 

for each time t step ϵ [1,…T], where T is the study or the planning period. The time step can 

be hourly, daily, weekly, monthly, or even seasonal, depending on the nature and scope of the 

reservoir system optimization problem (Labadie, 2004).  A monthly time step was used for 

this study. The immediate benefit function ft (.) is the sum of hydropower production (𝑯𝑷𝒕), 

irrigated agriculture (𝑰𝑹𝒕) and penalties for not meeting the target constraints. 

𝒇𝒕(𝒔𝒕, 𝒒𝒕 , 𝑹𝒕, 𝒚𝒕) = 𝑯𝑷𝒕 + 𝑰𝑹𝒕 − 𝝃𝒕𝒙𝒕       (5.4) 

Where 𝒙𝒕 is a vector of slack/surplus variables which incur a lost of benefits to the objective 

function estimated using an assumed rate of penalties 𝝃𝒕 ($/unit of deficit or surplus) over 𝒙𝒕. 

The penalties represent the costs of not meeting the operational, physical, institutional, and/or 

legal constraints such as minimum flows, minimum storage volumes, minimum water 

withdrawals, etc. 

 



 

132 

 

1. The net benefits from hydropower generation 

The benefit of hydropower from J number of hydropower plants will be calculated as follow:  

𝑯𝑷𝒕  =  𝝉𝒕 ∑ (𝝅𝒕
𝒉(𝒋) − 𝜽𝒉(𝒋)) 𝜶(𝒋)�̂�𝒕

𝑱
𝒋=𝟏 (𝒋)    (5.5) 

Where τ is the number of hours in period t, �̂�𝑡 is the power generated by hydropower plant j 

during period t (MW), 𝜋ℎ(𝑗)  is the energy prices ($/MWh); 𝜃ℎ(𝑗)  is the variable cost 

(Operation and Maintenance) of hydropower plant j ($/MWh) and α is a dimensionless 

adjustment coefficient. The power production of hydropower plant j is given as follow: 

�̂�𝒕 =  𝜸𝜼(𝒔𝒕, 𝒔𝒕+𝟏, 𝒓𝒕). 𝒉(𝒔𝒕 , 𝒔𝒕+𝟏). 𝒓𝒕     (5.6) 

Where 𝜸 is specific weight of water (N/m
3
); h is net hydraulic head of turbine (m), depending 

on the average storage (𝑠𝑡, 𝑠𝑡+1) during period t; 𝜼  is turbines/generators efficiency as a 

function of the average hydraulic head and the rate of discharge during period t; and 𝒓𝒕 is the 

turbine outflow (m
3
/s). 

The hydropower production is a nonlinear function of the hydraulic head and the rate of 

release. There are many way to linearize this nonlinear function for SDDP. One approach is to 

assume that the hydropower production is dominated by the release term rt but not by the 

hydraulic head approximated as a constant. Wallace and Fleten (2003) and Tilmant and 

Kerman (2007) defined a production coefficient c
h
 (MW/m

3
/s) to characterize each 

hydropower station which only works when the difference between downstream and upstream 

water levels is small compared to the maximum level of the reservoir. The second method is 

proposed by Cunha et al. (1997) which approximates the hydropower function by linear and 
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concave functions of storage and total outflow of the power plant. The second method is used 

in this study, the detailed comparison of the two methods can be found in Goor et al, (2011). 

2. The net benefits from irrigated agriculture  

Tilmant et al. (2008) proposed to estimate net benefits from agricultural IRt by considering 

“dummy” reservoirs as accumulated water allocated to irrigation sites at the end of crop 

harvest.    

𝑰𝑹 = {
∑ 𝑰�̂�𝒕

𝒅[𝒚𝒕(𝒅)]𝑫
𝒅=𝟏       𝒊𝒇 𝒕 = 𝒕𝒇 

𝟎                                    𝒊𝒇 𝒕 ≠ 𝒕𝒇
         (5.7) 

The benefits of agricultural water use at demand site d can be approximated by a piecewise 

linear function of accumulated water throughout the growing season. The overall benefits of 

agricultural sector IR are the sum of net benefits obtained from each irrigation sites 

(d=1,2, …., D). 

The benefit-to-go function Ft+1 are dependent on the following constraints for L number of 

linear approximation functions: 

{
𝑭𝒕+𝟏 − 𝝋𝒕+𝟏

𝟏 𝒔𝒕+𝟏 − 𝜼𝒕+𝟏
𝟏 𝒚𝒕+𝟏 ≤ 𝜸𝒕+𝟏

𝟏 𝒒𝒕 + 𝜷𝒕+𝟏
𝟏

⋮
𝑭𝒕+𝟏 − 𝝋𝒕+𝟏

𝑳 𝒔𝒕+𝟏 − 𝜼𝒕+𝟏
𝑳 𝒚𝒕+𝟏 ≤ 𝜸𝒕+𝟏

𝑳 𝒒𝒕 + 𝜷𝒕+𝟏
𝑳

      (5.8) 

Detailed explanations and derivations of the parameters, 𝜑𝑡+1
1 , 𝜂𝑡+1

1 , 𝛾𝑡+1
1 , and 𝛽𝑡+1

1 , related to 

storage, irrigation demand, lateral inflow, and a physical constant for time step (t+1), 

respectively, are given in Tilmant and Kelman (2007), Tilmant et al. (2008) and Goor et al. 

(2011). The SDDP model is coded in MATLAB and relies on Gurobi linear programming 

solver.  
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5.2.4. Model parameters and assumptions  

In this study, similar to Whittington et al. (2005) and Goor et al. (2010), the seasonal, short-

run marginal cost (SRMC) are assumed to be 80 US$/MWh for the firm power and 50 

US$/MWh for the secondary power for both Sudan and Ethiopia. The dominant crops 

cultivated over the Sudan and Ethiopia irrigation sites are wheat, sorghum, sugar cane, 

groundnuts, and vegetables, and their crop water requirements are estimated using the 

software CROPWAT. The flat demand curves for irrigation water withdrawals are assumed to 

have a net return of 0.05 US$/m
3
 in this study (Goor et al., 2010 and Whittington et al., 2005).  

We chose to work with a planning horizon of 10 years (T=120 month). Twenty backwards 

openings or trials (K=20) are set up and the forward simulation is carried out using 30 

synthetic hydrological scenarios (M=30). The multisite, periodic autoregressive model of 

order p, PAR(p) are used to generate stochastic inflow to each reservoirs based on 43 years of 

historical streamflow (1954-1996). After obtaining optimal operation parameters of the 

reservoirs using a stochastic streamflow generator over the planning horizon, we re-run the 

full historical streamflow to evaluate the optimized results. 

In this study, we assumed that the entire proposed hydropower project over the BNRB will be 

implemented in the 2050s and 2080s. Projected changes to the streamflow of BNR vary 

widely between the RCP4.5 and RCP8.5 climate scenarios of the four selected GCMs 

downscaled by WRF for 2050s and 2080s as shown in Figure 5.2. From the streamflow 

simulated by VIC driven with these climate scenarios, the minimum, median, and maximum 

projected change in streamflow for 2050s and 2080s are estimated.  Next, these three sets of 
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projected change in streamflow (Δq) over the baseline period (1976-2005) are used to perturb 

the 43 years historical streamflow. The projected annual change in the streamflow at Lake 

Tana and GERD reservoir are shown in Figure 5.3, which shows that due to climate change 

impact, the mean annual streamflow of the BNRB are projected to decrease, but with a higher 

streamflow variability, in the mid and late 21
th

 century.  

 

Figure 5.2: The projected change of BNRB streamflow at Lake Tana outlet and Boarder (GERD 

reservoir) using the climate scenarios of four GCMs dynamically downscaled by WRF for 2050s and 

2080s. 
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Figure 5.3: Boxplots of the historical and projected annual mean streamflow of BNRB at Lake Tana 

outlet and Boarder (GERD reservoir) using the climate scenarios of four GCMs dynamically 

downscaled by WRF for 2050s and 2080s. 

 

5.3. Results and discussions 

5.3.1. Drawdown-refill cycles 

The drawdown-refill cycles for the GERD reservoir under historical, maximum, median and 

minimum projected change in streamflow of BNRB for 2050s and 2080s are shown in Figure 

5.4. Overall, it seems the GERD reservoir will likely not operate at full storage level, because 

the streamflow of BNRB is assumed to be regulated by three upstream reservoirs (R2, R3 and 

R5 in Figure 5.1). Because of flow regulation by upstream reservoirs, the depletion during dry 

season and refilling during the high flow season for the GERD reservoir is expected to be 

small. On the other hand, if without the upstream reservoirs, the GERD reservoir will reach 

full storage capacity during the rainy season and mostly depleted during the dry season. Even 

with the upstream reservoirs, under the maximum projected change in streamflow, the GERD 
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reservoir is still projected to refill to a high storage capacity. Under median and minimum 

projected changes in the streamflow, the operating storage of the GERD reservoir is projected 

to decrease compared to reservoir storage under the historical condition. In addition, based on 

the three projected changes in streamflow, the levels of the GERD reservoir are projected to 

be lower in 2080s than in 2050s. Under climate change impact, similar changes are also 

projected in the other three proposed upstream reservoirs.  However, due to their limited 

capacities, the downstream, Sennar and Roseires reservoirs are expected to always operate at 

the full reservoir capacity under all three projected changes in streamflow.  

5.3.2. Evaporation losses 

The evaporation losses from all the reservoirs is expected to increase in the future because the 

temperature of the BNRB is projected to increase by 1.67 – 3
o
C in 2050s and by 2 – 4.6

o
C in 

2080s. Under historical climate, the average annual evaporation loss in the four proposed 

reservoirs in Ethiopia is estimated to be about 822 hm
3
, which is projected to increase to 1190, 

986 and 811 hm
3
 under the maximum, median and minimum projected changes in streamflow 

for 2050s, respectively. The corresponding evaporation loss in Ethiopia is projected to 

increase to 1341, 1034 and 769 hm
3
 in the 2080s. Apparently, the evaporation loss in 

Ethiopian reservoirs under the minimum projected streamflow change is projected to be 

smaller than under the historical condition because the amount of water stored in the reservoir 

is projected to be smaller. In 2080s, the annual evaporation loss from Sennar and Roseires 

reservoirs are projected to increase from 2472 to 2918, 2764 and 2631 hm
3
 under the 

maximum, median and minimum projected change in streamflow, respectively. In 2050s, the 
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corresponding evaporation loss from Sennar and Roseires reservoirs are projected to increase 

to 2763, 2679 and 2599.7 hm
3
, respectively. As the climate becomes warmer over the 21

st
 

century, the evaporation losses in all reservoirs are projected to be higher in the 2080s than in 

the 2050s. Further, the evaporation losses of Sudan reservoirs are expected to be higher than 

that of Ethiopian reservoirs because Sudan has higher temperature and lower precipitation. 

This means that Ethiopian reservoirs should generally store a larger amount of water 

compared to reservoirs in Sudan or in Egypt. 

 

Figure 5.4: Simulated monthly storage of the GERD reservoir under current, maximum, median and 

minimum projected change in streamflow for (i) 2050s and (ii) 2080s. The dashed lines at the top and 

bottom of each graph mark the high and low storage levels, respectively.  

 

i) 
ii) 
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5.3.3. Hydrological risk 

The non-exceedance probability of annual outflows from the GERD reservoir under 

maximum, median and minimum projected change in streamflow are shown in Figure 5.5 for 

2050s and 2080s. Based on the simulations of SDDP driven under historical climate and 

under the regulation effect of upstream reservoirs, the optimal annual outflow to be released at 

the GERD reservoir is estimated to be 47 km
3
 y

-1
, up to a non-exceedance probability of about 

0.8. In 2050s, the median projected change in streamflow exhibits a similar, non-exceedance 

probability distribution with that under the historical climate, whereas under the minimum 

(maximum) projected changes in streamflow, the annual outflow is projected to be lower 

(higher) under the same non-exceedance probability. In contrast, by 2080s, under the median 

and minimum projected changes in streamflow, the annual outflow at GERD is projected to 

decrease while under the maximum projected change in streamflow, the annual outflow at 

GERD is projected to increase compared with the outflow under the historical climate. 

In 2080s, under the maximum projected change in streamflow, the annual outflow of GERD 

that will exceed 60 km
3
 y

-1
 will have an exceedance probability of 50% or higher, while under 

the median (minimum) projected change in streamflow, the corresponding annual outflow of 

GERD with 50% of exceedance probability or higher will only be about 43 (40) km
3
 y

-1
. The 

annual outflow of BNR at Khartoum is projected to decrease under median and minimum 

projected changes in streamflow for 2050s and 2080s, but it is projected to increase under the 

maximum projected change in streamflow. The annual outflow at Khartoum with a 50% 

exceedance probability or higher is projected to change from 32.5 km
3
 y

-1 
under historical 
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climate to 35 (43), 31.5 (26.7) and 29.4 (23.2) km
3
 y

-1
 under the maximum, median and 

minimum projected changes in streamflow for 2050s (2080s), respectively. This means that a 

higher risk of not meeting the future water demand of Egypt is projected under the median 

and minimum projected changes in streamflow, and under future development in Sudan.  

 

Figure 5.5: Empirical cumulative distribution functions of the projected annual discharge at GERD 

reservoir under maximum, median and minimum projected change in streamflow for 2050s and 2080s. 

 

5.3.4. Hydropower generation 

The projected annual hydropower production for the Blue Nile River in Ethiopia for 2050s 

and 2080s are presented in Table 5.2. At present, the hydropower production of Ethiopia over 

the BNRB is about 356MW, which is substantially smaller than the estimated full potential of 

13GW.  However, the hydropower production is expected to increase substantially because of 

the construction of GERD and the other three proposed reservoirs. The proposed future 
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development in Ethiopia will increase its future hydropower production to about 50TWh per 

year, assuming the climatic conditions remain more or less unchanged. However, after 

building the proposed reservoirs, the Beles hydropower will less likely to function much in 

the future because water passing the new reservoirs will be more productive economically 

than passing through the existing Beles hydropower plant. The hydropower production in 

Ethiopia is projected to increase under the maximum and decrease under the median and 

minimum projected changes in streamflow for both 2050s and 2080s (Table 5.2). In contrast, 

the hydropower production in Sudan is expected to remain unchanged because of flow 

regulation in Ethiopia.  

Table 5.2: Projected annual energy production (TWh) in Ethiopian hydropower 

development for 2050s and 2080s 

 Current Max 

projection 

change in 

streamflow  

Median 

projected 

change in 

streamflow  

Min 

projected 

change in 

streamflow  

2050s 
50 

57.5 48.6 45.1 

2080s 63.5 45.6 42.6 

 

5.3.5. Annual net benefits 

The projected annual benefits from hydropower and irrigation production in Ethiopia and 

Sudan over the BNRB for 2050s and 2080s are shown in Table 5.3. The requirement in 

irrigation water for BNRB is projected to increase due to warmer air temperature and future 

irrigation expansions in Sudan. Almost under all projected changes in the streamflow of 

BNRB, the hydropower production of Sudan is not expected to change mainly because under 

flow regulations of upstream reservoirs, its reservoirs will operate at full capacity. However, 
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under climate change impact, agriculture production due to irrigation in Sudan will change 

marginally. Generally, the annual net benefit of Sudan is projected to increase by about 0.014 

– 0.044, or decrease by about, 0.01 – 0.02 billion US$ under the maximum and minimum 

projected change in streamflow, respectively. In Ethiopia, the annual net benefit due to the 

development of the four proposed reservoirs will increase to about 3.95 billion US$/year, 

which could further increase by 0.41 – 0.72 billion US$, or it could decrease by 0.38 – 0.59 

billion US$ under maximum and minimum projected change in streamflow, respectively.  

Table 5.3: Projected annual net benefit (billion US$) in Ethiopian and Sudan under maximum, 

median and minimum projected change in streamflow for 2050s and 2080s. 

  Current 

2050s 2080s 

Max Median Min Max Median Min 

Annual Hydropower benefit (billion US$) 

Ethiopia 3.802 4.192 3.714 3.501 4.497 3.522 3.322 
Sudan 0.234 0.234 0.234 0.234 0.234 0.234 0.234 

Annual Irrigation benefit (billion US$) 

Ethiopia 0.148 0.166 0.134 0.067 0.174 0.165 0.039 
Sudan 0.747 0.761 0.745 0.730 0.791 0.762 0.736 

Annual Net benefit (billion US$) 

Ethiopia 3.95 4.36 3.85 3.57 4.67 3.69 3.36 
Sudan 0.981 0.995 0.979 0.963 1.02 0.996 0.969 
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5.4. Summary and conclusions 

The water resource of the Blue Nile River basin (BNRB) is under pressure due to increasing 

demands from competing users, and global warming impact. From projected changes in the 

streamflow of BNRB simulated by the VIC hydrological model driven by the RCP4.5 and 

RCP8.5 climate change scenarios of four GCMs dynamically downscaled by WRF for 2050s 

and 2080s, the maximum, median and minimum projected changes in streamflow for BNRB 

were estimated.  The potential impacts of climate change to future water allocations for 

hydropower production and irrigation water in BNRB were analyzed using a stochastic dual 

dynamic model (SDDP) driven by these three sets of projected changes in streamflow.  The 

results show that the development of the four proposed reservoirs in Ethiopia will result in a 

consistent, controlled outflow for all seasons which will benefit Ethiopia, Sudan and Egypt.  

Under climate change impact, the outflow from the GERD reservoir, or the annual flow of 

BNR at Khartoum is projected to increase under maximum, but will decrease under median 

and minimum projected changes in streamflow for 2050s and 2080s. 

The annual outflow at Khartoum with a 50% exceedance probability or higher is projected to 

change from 32.5 km
3
 y

-1 
under historical climate to 35 (43), 31.5 (26.7) and 29.4 (23.2) km

3
 

y
-1

 under the maximum, median and minimum projected changes in streamflow for 2050s 

(2080s), respectively. As a result, the annual net benefit is projected to increase under the 

maximum projected change in streamflow, but decrease under the median and minimum 

projected changes in streamflow for the BNRB. Generally, the result shows that the 
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hydrologic impact of climate change to the BNRB will be significant, which should be 

incorporated in the future design and development of the water resources of the BNRB.   
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Chapter 6 Summary, conclusions and recommendations 

6.1. Summary and Conclusions 

Climate change and climate variability will affect the food, water and energy security of 

African countries. Climate is a multifractal process, and hydrologic extremes are more than 

climate-driven, their patterns are difficult to pin down. The lack of good management and 

knowledge about the potential impact of climate change to the existing water resources could 

lead to unforeseen water crises in future. This needs a better understand of ongoing changes to 

the climatic and hydrologic regimes of the Nile. The objective of this research is to explore 

the potential impact of climate change to the water resources of the BNRB, and to optimize 

the management of water resources of BNRB subjected to the impact of climate change and 

future water system developments. 

In Chapter 2, WRF model was carefully configured to select the best optimal combination of 

parameterization schemes to simulate representative climate of the NRB using ERA interim 

data as the boundary condition.  As expected, no one parameterization scheme is consistently 

superior over other schemes under different evaluation criteria. Overall, with reference to 

NCEP reanalysis and CRU climate data, the T2 and LWRAD simulated are generally more 

accurate than precipitation and SWRAD data for all WRF parameterization schemes tested in 

this study.  The simulation of rainfall is more sensitive to the choice of PBL, Cu and MP 

schemes than other schemes of WRF. T2 is more sensitive to LSM and Ra than to Cu, PBL 

and MP schemes selected for NRB. The surface air temperature simulated using Noah as the 

LSM agrees better with observed data (e.g., small negative bias) than that simulated using 
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RUC as the LSM which has a high positive bias. The SWRAD simulated by WRF is 

generally more dependent on MP and Ra schemes than Cu, LSM and PBL schemes. While 

most SWRAD simulated by WRF tends to have a positive bias, SWRAD simulated from 

combining the Morrison MP scheme with the Dudhia radiation scheme tends to be more 

accurate than other combination of schemes. Finally, LWRAD simulated by WRF is highly 

sensitive to LSM, Ra and PBL schemes, but less sensitivity to Cu and MP schemes. On a 

whole, RUC, RRTMG and YSU schemes tend to result in simulating LWRAD with a positive 

bias than other schemes. Furthermore, with a strong positive bias in SWRAD, WRF tends to 

simulate low rainfall and low longwave radiation, and vice versa. Therefore, a careful 

selection of the configuration and physical parameterization schemes for WRF is essential to 

simulate representative key climate variables such as T2, precipitation, SWRAD and 

LWRAD. From a tedious effort calibrating WRF with the objective of simulating 

representative regional climate of NRB, we found the following combination of schemes to be 

more comprising than other schemes: the Single-moment WSM3 microphysics, KF cumulus, 

MYJ PBL, RRTM longwave radiation scheme, Dudhia shortwave radiation scheme, and 

Noah LSM.  In addition, these selected schemes are also efficient in terms of computation 

time as compared with other WRF parameterization schemes tested in this study. Lastly, the 

above configuration of WRF coupled to the Noah LSM has been shown to simulate 

representative regional climate of NRB over 1980-2001 which include a combination of wet 

and dry years of the NRB. 
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In Chapter 3, the potential impact of climate change on the future mean annual and extreme 

precipitation, and temperature of the Nile river basin in the 2050 and 2080s was investigated 

using RCP4.5 and RCP8.5 climate scenarios of four GCMs of CMIP5 dynamically 

downscaled by a regional climate model called WRF. As expected, precipitation projections 

using downscaled RCP scenarios of four GCMs for NRB exhibit wide range of possible 

changes as compared with temperature projections. Under downscaled RCP4.5 and RCP8.5 

climate scenarios, the annual precipitation of BNRB, Atbara, and Sobat river basin, El Ghazal 

and Lake Victoria sub-basins of NRB are projected to change by about [-7, 14.2], [-19, 25.3], 

[-7, 39], [-5.9, 23], and [3.6, 27] % in the 2050s, and [-14, 25], [-22.5, 39], [-4.7, 60.4], [-11, 

31], and [11.8, 41] % in the 2080s, respectively.  Between downscaled projections of GCMs 

for air temperature, the five sub-basin of NRB are projected to become warmer by about 1.67 

– 2
o
C in the 2050s and 2 – 2.5

o
C in the 2080s under RCP4.5 climate scenarios, and by about 

2.5 – 3
o
C in the 2050s and 3.9 – 4.6

o
C in the 2080s under RCP8.5 climate scenarios.   

Besides, extreme precipitation indices derived from precipitation projections of the four 

GCMs for NRB also exhibit wide range of possible changes. For example, R20mm, R95p, 

R99p and P30yr indices estimated for 2050s and 2080s are projected to mostly increase for all 

sub-basins of NRB. The R20mm index is projected to increase by 2.5–77.5% for all sub-

basins except for the Atbara river basin which is projected to decrease by 0.8–1.9% in 2050s, 

but then to increase by 0.9–1.4% in 2080s. The range of mean projected changes in R95p and 

R99p indices for all sub-basins is 0.75–55% and -13–90%, respectively. The P30yr index is 

also projected to increase by 15–60% for all sub-basins of NRB under RCP4.5 and RCP8.5 
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scenarios for 2050s and 2080s. The predominantly projected increase in extreme precipitation 

indices implies that NRB is expected to experience more severe extreme wet precipitation and 

more frequently in 2050s and 2080s. Similarly, RX1day and RX5day indices are projected to 

increase in 2050s and 2080s by about 1–40% and -0.3–28% for all sub-basins, which implies 

that flood causing precipitation events over the NRB could occur more frequently in the 

future.  

On the basis of extreme temperature indices derived from temperature projections of the four 

GCMs, NRB is projected to experience a large decrease in cold extremes (i.e., cool nights 

(TN10p) and cool days (TX10p)) but increase in warm extremes (i.e., warm nights (TN90p) 

and warm days (TX90p)), such that the number of days that exceed the historical 90
th

 

percentile values of Tmin (TN90p) and Tmax (TX90p) over the NRB could be at least equal to 

or greater than 48% and 55% in the 2050s periods, and at least equal to or greater than 50% 

and 80% in the 2080s, respectively. Correspondingly, the number of days that Tmin (TN10p) 

and Tmax (TX10p) will fall below the historical 10
th

 percentile values are projected to decrease 

to less than 1%, e.g., almost no cold night or days is expected to occur, in the 2050s and 

2080s. The indices for warm and cold spells also project an increase in warm spells but a 

decrease in cold spells in NRB. 

On a whole, results from the downscaled RCP climate scenarios of four GCMs project that 

NRB is expected to experience warmer climate, and extreme precipitation events, and 

extreme temperature are expected to occur more frequently and in greater severity in the mid 



 

152 

 

and late 21
st
 century, which could have significant impact to the future water resources of 

NRB.   

In Chapter 4, the potential impact of climate change on the future mean and extreme 

streamflow of the UBN in the 2050s and 2080s was projected by three hydrological models 

(NAM, VIC and Watflood models) driven with RCP4.5 and RCP8.5 climate scenarios of four 

GCMs dynamically downscaled by WRF. The mean daily maximum (minimum) temperature 

of UBN are projected to increase by about 1.35 – 2.38 (1.72 – 2.74) 
o
C under RCP4.5, and 

2.22 – 4.47 (2.5 – 5.1) 
o
C under RCP8.5 climate scenarios for future periods with respect to 

the base period of 1976-2005. However, projected changes in mean annual precipitation vary 

widely, ranging from -10.3 to 19.4%, but generally projected to decrease in the summer and 

increase in the winter, under both RCP climate scenarios over 2050s and 2080s.  

Driven with gridded ERA-Interim data dynamically downscaled by WRF, the NAM, VIC and 

Watflood hydrologic models were calibrated and independently validated against observed 

streamflow of the El-Diem gauging station. Almost all models have captured the overall 

streamflow dynamics of the UBN river basin accurately. At the calibration and validation 

stages, NSE and R
2
 of simulated versus observed streamflow obtained are above 0.6, while 

the ME and RMSE are relatively low. On a whole, using three hydrological models driven by 

the RCP climate scenarios of four GCMs, the median of mean annual streamflow of UBN are 

projected to decrease by 7.6% with a range of -19.7 to 17.7% in the 2050s and by 12.7% with 

a range of -26.8 to 31.6% in the 2080s.  The mean streamflow of UBN is projected to increase 
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in the winter, and decrease in the summer, but on a whole, its mean annual streamflow is 

projected to decrease. 

Both the annual maxima and minima of streamflow are projected to increase under climate 

scenarios of CanESM2 in both future periods compared with other GCMs. Annual maxima of 

high return period are projected to increase by a ratio of 1.08 to 1.13, while annual maxima of 

low return periods are projected to decrease by a ratio of about 0.85. On the other hand, 

annual minima of low return periods are projected to remain almost unchanged, but are 

projected to decrease under high return periods, e.g., the ratio of the projected change of 

annual minima range from 1.0 to 0.73. This implies that UBN is likely to experience more 

frequent and/or more severe flooding and droughts in the future. This would affect different 

sectors of users, such as the municipal and agriculture sectors and future navigation in the 

Nile for both upstream and downstream countries of the NRB. 

Chapter 5, from the projected changes in the streamflow of BNRB simulated by the VIC 

hydrological model driven by the RCP4.5 and RCP8.5 climate change scenarios of four 

GCMs dynamically downscaled by WRF for 2050s and 2080s, the maximum, median and 

minimum projected changes in streamflow for BNRB were identified.  The potential impacts 

of climate change to future water allocations for hydropower production and irrigation water 

in BNRB were analyzed using a stochastic dual dynamic model (SDDP) driven by these three 

sets of projected changes in streamflow.  The results show that the development of the four 

proposed reservoirs in Ethiopia will result in a consistent, controlled outflow for all seasons 

which will benefit Ethiopia, Sudan and Egypt.  Under climate change impact, the outflow 



 

154 

 

from the GERD reservoir, or the annual flow of BNR at Khartoum is projected to increase 

under maximum, but will decrease under median and minimum projected changes in 

streamflow for 2050s and 2080s. 

The annual outflow at Khartoum with a 50% exceedance probability or higher is projected to 

change from 32.5 km
3
 y

-1 
under historical climate to 35 (43), 31.5 (26.7) and 29.4 (23.2) km

3
 

y
-1

 under the maximum, median and minimum projected changes in streamflow for 2050s 

(2080s), respectively. As a result, the annual net benefit is projected to increase under the 

maximum projected change in streamflow, but decrease under the median and minimum 

projected changes in streamflow for the BNRB. Generally, the result shows that the 

hydrologic impact of climate change to the BNRB will be significant, which should be 

incorporated in the future design and development of the water resources of the BNRB..   

 

6.2. Recommendations 

The climate of the NRB is likely to change in the 21
st
 Century, which needs appropriate 

mitigation measure to reduce the climate change impact. If member countries of the NRB can 

better understand their vulnerability to potential climate change impact, they would better 

prepared to implement effective adaptation strategies to mitigate such impacts, and to 

establish effective warning systems that can issue reliable warnings of impending crisis of 

droughts or water shortfalls in a timely order.  

If the water resource of the Nile River could be managed properly between riparian countries, 

the risk of facing water shortage problems in downstream countries will be minimized. The 
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strengthening of water management institutions and collaboration between basin countries, 

such as NBI and ENTRO are essential to promote sustainable water resource development 

and to avoid conflicts from competing users of the water resources of the NRB. The increase 

in water availability due to climate change impact will boost the irrigation and hydropower 

production over the BNRB, but a decrease in water resource will leads to more severe water 

shortages for different water sectors. The projected water shortages due to climate change 

impact could be mitigated by increasing the water-use efficiency and productivity, such as 

cultivating drought resistant crops, implement water efficient irrigation systems, promote 

wastewater recycling and climate change education to enhance the protection and sustainable 

use of the water resources of the NRB. The potential impact of projected increase of flooding 

events in the downstream countries could be minimized by a proper management of the 

upstream reservoirs. Overall, findings of this research will be useful to policy makers to 

execute informed prudent decisions on the future planning, design and management of the 

water resources of the BNRB. It will be crucial for countries relying on the water resources of 

NRB to seriously consider implementing adaptation strategies and mitigation measures to 

combat the potential impact of climate change to NRB. 
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