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ABSTRACT

In this thesis linear and nonlinear partial differential equations with nonlocal
terms represented by the integrals from unknown functions are studied. Since
the presence of nonlocal terms makes the use of important classical methods
impossible, new approaches are developed.

Nonlocal thermistor models were introduced in [ABHLR]. In order to study
these models the related parametric linear problems are considered in this thesis
and the existence of the solutions is established. The range of values of the
parameter for which solutions are positive is found. The given estimates are
independent of the right hand sides of equations. The above results are applied
to the nonlinear nonlocal thermistor problem in order to obtain the existence of
positive solutions.

A different nonlocal thermistor problem is considered and the conjecture of
W. Allegretto and H. Xie [AX1] about the blow-up of solutions is answered.

Semilinear nonlocal elliptic equations are also studied. The existence results
are established for sublinear equations using Leray-Schauder Degree methods
and for the superlinear case by means of perturbation theory. The uniqueness
for the sublinear case is obtained using the upper-lower solutions procedure. The

above results are applied to problems of mathematical biology.
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CHAPTER I

INTRODUCTION

1.1. Nonlocal problems

Differential equations sharing a common feature - the presence of nonlocal
terms - have recently appeared in various mathematical models formulated trom
physical phenomena ( superconductivity, plasma reaction, thermal processes).
In many cases the presence of nonlocal terms arises from a more adequate de-
scription of physical processes. On the other hand, nonlocal problems are often
interesting from a purely mathematical point of view, since certain important
classical arguments may not apply. In this thesis we concentrate on equations

where a nonlocal term is represented by an integral of the unknown function.

It has already been emuphasized in several articles that the presence of non-
local terms changes significantly the behaviour of solutions as compared to the
local case. As an example, let us mention the work of Chipot and Rodrigues,
[CHR], where elliptic problems with coefficients depending on nonlocal terms
were studied. In particular they showed that the presence of integral termns in
the Dirichlet problem for even quite simple equations may imply the existence
of an uncountable number of solutions. Other examples are furnished in articles
where the dynamical behaviour of the solutions of reaction-diffusion equations
with nonlocal terms was studied, e.g. {FEI], [CPY], [FR1], [FR2],and where it
was shown that the asymptotic behaviour can be more interesting than in the
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corresponding local case. It is well known that if one considers homogeneous
Neumann boundary conditions the only stable solutions in the local case are
constants. In the nonlocal case, however, stable patterns may bifurcate from a

stable constant solution.

In this thesis we consider linear and nonlinear nonlocal problems which
arise from microsensors applications and mathematical biology. The nonlocal
terms in these models correspond to the simulations of physical and biological
phenomena which are essential for the given processes. It will be shown later
that the presence of nonlocal terms influences the mathematical behaviour of
these problems: it can spoil the positivity of operators and proveoke the blow-up

of solutions.

The reader who is interested in nonlocal problems can find more examples
and applications in the following works: [AXY], [BCR], [BRO], [CAT], [CAP],
[CHA], [CHR], [FIP], [FR1], [FR2], [FRG], [FUG], [HY1], [LIA], [LAL], [LZH],

[RST], [ZIQ].
1.2. Description of thermistor models

One class of nonlocal equations discussed in the thesis arises in the thermis-
tor microsensor model. Thermistors are semi-conductor type devices in which
the thermal and electrical processes are closely related. In particular the cur-
rent going through the thermistor leads to internal heating of the device (Joule
heating) and the change of temperature due to this heating causes a change in

electrical resistance. These processes are strongly affected by the external con-

2



ditions such as the form of the device, the temperature and type of surrounding
gas etc.

In the classical model for thermistors a local nonlinear system of partial
differential equations governs the distribution of potential ¢ and temperature
u in the device, which after scaling all mathematically irrelevant constants to

unity, takes the form

~V - (0{2)Vp) =0 (1.2.1)
up — V - (k(u)Vu) = o(u)|Vel|?. (1.2.2)

Here o(u) and k(u) represent electrical and thermal conductivities vrespectively.
Equation (1.2.1) is the charge conservation law and equation (1.2.2) deseribes
heat flow with the Joule heating term given by o(1)|[Ve |2, Note that since clee-
trical processes are much faster than the thermal ones it is common practice to
neglect the term .. Thus (1.2.1) is an elliptic equation while (1.2.2) is parabolic.
Usually the electrical and thermal conductivities are nonlinear functions of the
temperature and one of the most interesting and realistic cases is when they
degenerate as the temperature tends to infinity. This system is studied under
suitable boundary and initial conditions. There is a great deal of literature
devoted to the investigation of the steady state and time-dependent solutions
of nonlinear system (1.2.1)-(1.2.2) (see for example [CIM], [CIP], {XAL], [Y12],
[ACH], [AX2] and references therein).

In particular, Allegretto and Xie study in [AX1] the steady state solutions
of system (1.2.1), (1.2.2) with mixed boundary conditions and the given cur-
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rent source I which can be expressed mathematically as a nonlocal boundary

condition

Oy
I=/ —=ds
s, On

where S, is the part of the boundary. It was shown in [AX1] that for small
values of the current there exists a positive steady state solution of (1.2.1),
(1.2.2). Moreover if k and o are degenerate then the system does not have
steady state solutions for large values of I. It was conjectured that in this case
the time dependent solutions of (1.2.1), (1.2.2) will blow-up. We address this
question in Chapter IV of this thesis and show that if f * o#(s)ds < oo then
the temperature will blow-up in a finite time and if [~ k(s)ds < oo then the
temperature will be unbounded for large values of the current. Another blow-up
result was obtained by Antontsev and Chipot {ACH] for the Dirichlet pioblem
(1.2.1), (1.2.2) under the condition that o(s) — 0o as s — co and under certain
restrictions on boundary and initial data. Note that in our case the blow-up
occurs for all initial values of temperature. For more results on blow-up of
solutions of nonlinear parabolic equations see [CPY], [HY2], [YI1].

Another part of Chapter IV is devoted to the study of a different nonlocal
thermistor model which was suggested in [ABHLR] in order to study thermal
conductivity gas pressure sensors. It is supposed in this model that the device
is created by etching the silicon substrate and consequently there is a trench
with gas under the microsensor. The loss of heat from the thermistor occurs
to the substrate through the support arms and through the gas to the trench

4



sides and bottom as well as top. Since the device is very thin compared to
the depth of the trench, it is possible to modify the three-dimensional problem
(1.2.1), (1.2.2) into a two-dimensional one without neglecting the loss of heat
through the gas and other important effects. The time indepets 7% v ersion of the
thermal equation (1.2.2) was applied to a sitnple model where the the. . tor was
represented as a thin rectangular plate suspended over a deep trench filled with
gas. Writing equation (1.2.2) in the weak form and supposing that u = u(z,y)
due to the thinness of the plate, it was found that in the region of the plate the

temperature satisfies

- - k(u) —6u> -
-V - (k(v)Vu) + —— | —— = a(u)|Vel*
( ( ) ) T on top+bottom ( l (pl

where V operates in z — y plane. Here 7 is the thickness of the plate and the

parameters o and k are integral averages over this thickness. The small heat

loss from the sides of the plate is neglected. The term “T") ('a'z:‘) accounts for

the heat loss from the surface of the plate through the gas and we apply the

following argument to calculate it. We solve the equation

in a box of cross-section equal to the size of the plate and the depth equal to
the depth of the trench. We assume that there is no heat flow through the side
walls of the box and the temperature of the bottom is zero. This problem can
be solved using separation of variables. Therefore taking the first term of the
Fourier series for the solution and neglecting the heat loss from the top of the

5



device we cbtain that

LOYE

where Q is the region occupied by the plate. Now equation (1.2.2) becomes
-V - (k(u)éu} + 'r)/ u=0c(u)|Ve|?2 in Q. (1.2.3)
Q

F.ere the parameter 7 is positive and involves the geometry of the device, the gas
pressure as well as other factors. Observe that only positive solutions are phys-
ically meaningful. For a more detailed derivation of this model and numerical
results we refer the interested reader to [ABHLR].

We are thus led to seck positive solutions of system (1.2.1), (1.2.3) under

the Dirichlet boundary conditions:
¥ = o, u=0 on O

To show the existence of solutions we apply methods of [XAL]: we first obtain
a-priori bounds using Campanato spaces and then apply the Schauder Fixed
Point theorem. A brief review of Campanato spaces can be found in Chapter II.

The main difficulty is to show that there are positive solutions. As we
will see in the third chapter even a simpler operator L~! ,where Lu = —Au +
nfqu, u € H}(R), does not leave the cone of positive functions invariant for
large values of the parameter 7, thus the positivity of the right hand side of

Lu = f does not imply the positivity of solutions.



1.3. Linear nonlocal problem
In Chapter III we establish several results that later find particular appli-

cations to the thermistor problems discussed above. Specifically we study the

linear problem:

Au = —V(a(z)Vu(z)) + n¥(z) /;chu = f, u € Hy(Q)

where a(z), ¥, ¢ are sufficiently smooth functions and 7 is a parameter.

This problem has not receive a lot of attention. Catchpole in [CAT] stud-
ied the corresponding one-dimensional initial value problem and in particu-
lar he was interested in existence of solutions and the dimension of solution
space. We briefly address the same questions for boundary value problem in n-
dimensional space at the beginning of Chapter IIT and formulate existence and
uniqueness/nonuniqueness criteria.

Another aspect of this problem which was studied earlier is the eigenvalue
problem and its applications to related nonlinear equations, [FEI], [FR1]. In both
works the study of spectrum location was related to the linearization of a more
complicated nonlocal problem and motivated by the investigation of stability
of the stationary solutions. In particular Freitas in [FR1] gives a very detailed
picture of the behaviour of eigencurves when 7 varies. The results are obtained
for the one-dimensional case but can be immediately generalized to arbitrary
dimension. Let us emphasize that if > 0 and ¢ and 3 are nonnegative then
the nonlocal term has a stabilizing effect.

In this thesis we are interested in somewhat different question. Our main

7



result is to show that there exist two constants 0 < 7 = 7j(a(-)) and 0 > =

n(a(-)) such that if 7 <7 <7 then A™! is positive, i.e. the problem
Au=f (1.3.1)

has a nonnegative solution for f > 0. Since the usual methods do not work
due to the presence of the nonlocal term we take the following approach. We
apply first Harnack’s inequality to show that for small 7 the solutions of (1.3.1)
are positive in a small ball inside the domain 2 and then using the comparison
results we establish the positivity of these solutions in the rest of the domain.
We emphasize that our proof implies that 77,7 are independent of the specific f.
We get the even stronger result that there exists 0 < 7, < 77 which depends on
w,%, Q and on the ellipticity bounds on a(z), but not on a(z) itself, for which
the same positivity result holds for 0 < 7 < 7;. As an important consequence
of the existence of 77 we obtain the existence of a positive solution of nonlinear
system (1.2.1), (1.2.3).

It is significant for our applications to estimate 79, the maximum possible
value of 7, and we obtain an exact formula for the value of 7 in terms of the

Green’s function for the problem
—V(a(z)Vu(z))=f(z) in Q, u=0 on I9.

While it is not evident how to find the Green’s function explicitly for a general
domain {2, we were able to obtain the exact values of 79 in the 1-dimensional
case and for the case when Q is a ball in R®, n > 2. We also indicate how

8



to obtain bounds on 7o for sufficiently smooth domains in R* and some other
domains in R”".

The existence of 7o and the associated monotonicity properties for n < 70
also have certain implications on the spectrum location, and we address this
question in the end of Chapter III. As was mentioned above, the properties of

the eigencurves of the eigenvalue problem
Au = du, u€ HY(Q) (1.3.2)

were studied in [FR1], [FEI]. Here we concentrate on properties of the eigenfunc-
tions and in particular on the first one. We prove using Krasnosel’skii’s cone
theory that there exists a positive eigenfunction for (1.3.2) for < 1o and that
this eigenfunction corresponds to the first eigenvalue. Furthermore we formulate
analogues of the classical Barta’s inequality.

1.4. Biology models and related questions

The second part of the thesis is devoted to problems arising from mathe-
matical biology modelling. In the literature there are various interpretations of
nonlocal terms from the point of view of populational dynamics. For example

Feidler and Polécik in {FEI] considered the one-dimensional equation
1
Uy = Uzz + f(z,u) + c(z)/ v(z)u(z)dz, = €(0,1)
0

and suggested that in this equation u can be viewed as population density,
f(z,u) a birth/death rate and the integral represents coupling by which the
total population affects each individual. Another example is found in the work

9



of Calsina and Perell, [CAP]. where the equation

Uy = uzz + (:z - /01 u(z)dz)u, u € (0,1)

was considered. In that paper u(z,t) represents the population density at time
t of the species of characteristic z which corresponds to a growth rate. There-
fore here the nonlocal term appears as a competition depending on the total
population.

In this thesis we adopt the interpretation suggested in the work of Furter
and Grinfeld, [FUG], in order to model single-species populational dynamics
with dispersal. The general approach to modelling a single species in a domain
Q c R™, n > 3, is to suppose that the density of the population u(z,t) satisfies
the equation:

ur = Au+u-x(z,u), t>0, z€ (1.4.1)
subject to suitable boundary and initial conditions. The function x represents
the "crowding” effect, [OKU], [FUG], and is normzlly supposed to be smooth
and satisfy the condition that there exists tg > 0 such that x(z,%0) = Ofor z € Q.
It was suggested in [FUG] that the ”crowding” effect could depend not only on
the density of the population but also on nonlocal interactions. Mathematically
this situation corresponds to the case when we consider x = x(z,u, ¢(u)) where
¢ is a continuous functional of u.

That approach leads us to the study of semilinear differential equations of

the following type:

ur = Au+u- x(z,u,6(u)), t>0, z€ {1.4.2)

10



In [FUG] the model given by (1.4.2) was studied with homogeneous Neumann
boundary conditions. In particular, the authors studied the steady state solu-
tions of (1.4.2), the bifurcation from constant non-zero solutions an< the be-
haviour of branches of positive solutions. In this thesis we consider explicitly
equations of the type (1.4.2) subject to Dirichlet boundary conditions, i.e. there
is a population reservoir at the boundary, in the case when u - \ (&, u, ¢(u)) has
sublinear or superlinear growth with respect to u. The change in the boundary
conditions from Neumann to Dirichlet creates differences in the solution be-
haviour: no longer are there positive constant solutions to the stationary prob-
lem, and the proof of the existence of a positive stationary solution occupies
most of Chapter V. We also show the uniqueness of solution for the sublinear
case. Stability criteria are then obtained for some cases of equation (1.4.2) and

it is shown that the presence of a nonlocal term has a stabilizing effect.

Note that (1.4.2) without the nonlocal term is well studied (see e.g. [LIO]
and references therein), but to the best of our knowledge the problem we consider
here is new. Let us point out that many of the conventional methods of study of
super- and sublinear problems fail due to the presence of nonlocal terms. Still
we are able to show the existence for the sublinear case using Leray-Schauder

Degree methods and for superlinear case by the perturbation theory.
1.5. Thesis outline
The thesis is structured as follows. In Chapter Il we discuss briefly the

general background which will be used later on in the thesis, we present chosen

11



results from elliptic theory, degree theory, cone theory and or functional spaces.
In Chapter III we address a linear nonlocal problem and study the positivity of
solutions and related questions. Chapter IV is devoted to the study of nonlinear
nonlocal thermistor models. We show the existence of positive solutions for one
model and blow-up for another one. Finally in Chapter V we consider super- and
sublinear noi:local problems and discuss their applications to the mathematical
biology. We complete the thesis with a discussion where we formulate some open

questions.

12



CHAPTER 11

BACKGROUND

In this chapter we collect and discuss briefly for the reader’s convenience
some results which will be used later in the thesis.

2.1. Function spaces

In this section we describe certain classes of function spaces which are useful
in the study of elliptic problems. Throughout the whole section Q is a hounded
domain in R", n > 1.

An n-tuple a = (ai, ..., @n ) of nonnegative integers a; is called a multi-index

n
with |a| = 3 a;j. We denote by D* the differential operator of order |a|

Jj=1
o« _ o\ a \°"
Db "(azl) ' (a) '

We also define the support of a function u defined on the domain Q as

supp u = {z € Q: u(z) # 0}.

Let C*{Q), k > 0 denote the set of all the functions u that are continuous
in Q together with all their partial derivatives D* of crders |o| < k. We put
C>=(Q) = N ,C* (). The subspaces C§(R2) and C§(N) of C'() and C(R)
respectively consist of all the functions from these spaces which have compact
support in €.

Let C*(2), k > 0 be a subspace of functions u € C*(Q2) for which all
derivatives D*u are bounded on Q for 0 < |a| < k. These spaces are Banach

13



spaces under the norm

= D%ul.
Hllex ogﬁ‘ﬁ’éki'ég' u|

Now we define the space C*7(Q), k > 0, 0 < v < 1 as the set of functions

such that

_ De . o
u € Ck(Q) and sup I u(z) D u(y)l
z,yeﬂ l.’B - yl‘Y

<oo 0<L|o| Lk

C*7(Q) is a Banach space under the norm

|D%u(z) — D*u(y)|
llullgrn = llullox + max  sup lz —ylv '
TEY

It is easy to see that C*°{Q) = C*(Q). Note that functions from C®?! are called
Lipschitz continusus functions. The important property of these spaces is that
for 0 < k < 0o and 0 € v < v < 1 the space C¥¥(Q) is compactly embedded

into C*7(Q). For the proof see [ADA].

Now we will give the definition and discuss properties of Sobolev Spaces.
Let L?(S2), 1 < p < oo, denote the set of all measurable functions which are

p-integrable. This space is complete under the norm

1/p
lullzr = (/Qlul”d:v> .

Let also L*°(§2) denote the set of essentially bounded functions on ) with the

norm
Hullpe = esssup |ul.
z€Q

14



We define the weak derivative for a locally integrable function v on © in the

following way. For any multi-index a a locally integrable function v is called the

ath derivative of u and is denoted as D®u if

[pvdz =0 [ (D%phuds for all e OO,
Q Q

Finally we say that a function u belongs to the Sobolev space W P(Q) with
integer k > 0 if D®u € LP(Q) for all |a| < A. WHP(Q) is a Banach space under

the following norm

lullwes = 3 11D%ullzs.

laj<k

We denote Wé"p(ﬂ) the closure of C$°(£2) in WP (€Q) and note that it is also a
Banach space under this norm. It is customary to denote W1 2(Q) and W, #(1)

by H1(2) and Hj(Q) respectively. The important result is that H}(Q) can be

supplied with the norm

1/2
[ ( /ﬂ |Vu|2dz)

which is equivalent to its usual norm.
Next we formulate the Sobolev Embedding Theorem.

Thecrem 2.2.1. Let Q be a bounded Lipschitzian domain in R™. Then

we have

(1) WhP(§) s Lk/(n—kp)(Q) for kp < n;

(2) WkP(Q) — L7(Q) for all p < r < oo;

(3) Wkr(Q) < C™*Q) where 0 < m+ A <k — .

15



The proof of this theorem can be found in [ADA].
Finally we describe Campanato Spaces which provide a powerful tool for
studying elliptic problems. For more detailed exposition see [TRO].

Let © be a C! domain in R™, n > 1. For u > 0 define

L¥#(Q) = {u € L*(Q)| sup p"‘/ lu(z) — uzy,pl?dz < co}
005 Qzo, ]

where Q[zo, p] = {z € 2||z — zo| < p} and

1
mes(Q[zo, p]) Q[zo,p)

u(y)dy.

u-TJOnP =

L?%# is called a Campanato Space and is supplied with the norm

lullzzn = [lullz2 -+ [ul2,

where

o ={ sup o7 [ fu(e) = us s}V,
Z0,P,

xoen
o< p<L 00

The Campanato space for 0 < 4 < n 4 2 is complete under the above norm.

We will need the following properties of L2*# spaces.

Theorem 2.1.2. (i) If 0 < u < n then L®(Q2) C L?#(Q) and L*°() is a
space of multipliers for L2#(Q).

(i) ¥ n < g < n + 2 then L2#(Q) is isomorphic to C%7(Q) with v =
(1 —n)/2.

Theorem 2.1.3. Let u € H}(Q) and Vu € L*#(2) with 0 < u < n. Then

u € L#+2(Q) with

lullz2m+2 < C(l|ullz2 + |[Vul|z2.s)

16



where C is independent of u.
Theorem 2.1.4. Let u € H}(Q) satisfy

Q (1] =1

i,)=1
with A[|€]]2 < a&& < AJIEN%, A > A >0, & € R™N\{0}, fO € L2»=% and

fle L¥#(Q),i =1,...,n. Then Vu € L*#(Q) and, moreover, we have

1Vullow < c(||f°up.(p-.2>+ + SN e + nunm),

=1
where 0 < u < o =n—24 260, 0 < §p < 1, and §p, C only depend on A, A, and

Q.
All proofs can be found in [TRO)].
2.2. Elliptic theory: solvability and maximum principles

The detailed presentation and proofs of the results of this paragraph can be

found in [GIT].

Consider a linear differential operator of the form

n n
Ly = — Z a'l (z)Diju + Zbi(a:)Diu + c(z)u, a = a’ (2.2.1)
i,j:l =1

in a bounded domain 2 € R",n > 2, 7,7 = 1, ..., n. First we consider conditions
for the existence of classical solutions of (2.2.1), i.e. u should at least belong to
C?(2), as well as several of their properties.

Definition 2.2.1. We call L elliptic in Q if for all £ = (&4, ...,£,) € R™"\{0}

and z € Q it follows that

0 < A(z)¢I* < a¥(z)€:€; < Az)|€)>.
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If M(z) > Xo > O for some constant Ag then L is called strictly elliptic, and if
moreover A/) is bounded in Q then L is uniformly elliptic.
| I;éﬁnition 2.2.2. The domain § is said to satisfy an interior (resp. exte-

rior) ;phgre condition at zo € 09, if there exists a ball B C © (resp. R™\Q)
with z¢ € dB.

The first theorem we state gives a solvability result for equation (2.2.1).

Theorem 2.2.3. Let L be uniformly elliptic in a bounded domain 2 with
c(z) > 0 and let f and the coefficients of L be bounded and belong to C°*(Q).

Suppose that Q satisfies an exterior sphere condition at every boundary point.

Then, if ¢ is continuous on 9%, the Dirichlet problem
Lu=f in @, u=¢ on 09

has a unique solution u € C%() N C%%(Q).

The next theorem gives important information about the behaviour of the
solution of the Dirichlet problem near the boundary 6X2.

Theorem 2.2.4 (Strong Mazimum Principle). Suppose that L is uniformly
elliptic, b;(z) are bounded, c(z) = 0 and Lu > 0 in €. Let zo € 94! be such that

(i) u is continuous at zo;

(i) u(zo) < u(z) for all z € £;

(ii1) Q satisfies an interior sphere condition at zo.
Then the outer normal derivative of u at zg, if it exists, satisfies the strict
inequality

g—Z(zo) < 0.
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If ¢(x) > 0 and ¢/ is bounded in €2, the same conclusion holds provided u(xo) >
0, and if u(zo) = 0 the same conclusion holds irrespective of the sign of c(x).

Next we consider a linear differential operator in divergence form

Lu =— Z D;(a(z)Dju) + c()u 222

=1
in a smooth bounded domain @ € R",n > 2, 7,5 = 1,...,n. We do not require
that the coefficients a'’, ¢ be smooth and assume only that they are measurable
We look for solutions of the equation Lu = 0 in the class of generalized functions.
Definition 2.2.5. Let u be weakly differentiable and let the functions
a'’(z)Dju and ¢(z)u, i = 1,...n be locally integrable. Then u is said to satisfy

in weak or generalized sense Lu = 0(< 0, > 0 respectively) in €2 if

L(u,v) = a'’(z)D;uD;v + c(z)uvdz = 0(< 0,> 0) (2.2.3)
o j
1

ij=
for any non-negative functions v € C}(2). In particular (2.2.3; should hold
for any v € H3(2). The function u is called a solution, a subsolution or a
supersolution respectively.
Definition 2.2.6. Let f be locally integrable function in 2. Then a weakly

differentiable function u is called a weak or generalized solution of the inhomo-

geneous equation
Tu=f (2.2.4)
in Q if
L(u,v) = Lfvdz, Yv e C5(Q). (2.2.5)
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We assume for the rest of Chapter II that L is strictly elliptic and has
bounded coefficients, that is for some constants A and v > 0 we have for all
z €

S labi(@ < A%, ATMe(z)] < VR

Definition 2.2.7. A funciion u € H1(2) is called a solution of a generalized
Dirichlet problem

Lu=f in Q, u=¢ on O (2.2.6)

if u is the generalized solution of equation (2.2.4), » € H() and u—¢ € H3(Q).
The next theorem states the maximum principle for weak solutions.
Theorem 2.2.8. (Weak Mazimum Principle). Let ¢ > 0. Let u € H(Q)

satisfy Lu > 0(< 0) in 2. Then

infu > infu™ (supu < suput)
Q a2 Q an

where u+ = max{u,0} and v~ = min{u,0}.
Theorem 2.2.9. (Solvability). Let c¢(z) > 0. Thenfor ¢ € H'(2) and f €
L?(S2) the generalized Dirichlet problem {2.2.6) is uniquely solvable. Moreover

there exists a positive constant C depending only on L and 2 such that

Hulla: < C(Ifllz2 +lelia2)- (2.2.7)
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2.3. Regularity of weak solutions

In this section we give a-priori estimates and regularity theorems for weak
solutions of problem (2.2.6). All proofs can be found in [GIT]. We start by
stating results which suffice for the global boundedness of weak solutions.

Theorem 2.3.1. Sappose that f € LY/2(Q) for some ¢ > n. Thenifuisa
H} () subsolution (supersolution) of (2.2.4) satisfying u < 0 (> 0) on Q1 we

have

supu(—u) < |lu™(u7)|lz2 + Ck
Q

where k = A7Y||f||Les2 and C = C(n,v,q,|Q}) .
Theorem 2.3.2. Let ¢ > 0 and suppose that f € L9/2(Q) for some q > n.

Then if u is a H3(Q) subsolution (supersolution) of (2.2.4) we have
sup t(—u) < suput(u”) + Ck
Q o

where k = A7}Y||fllpes2 and C = C(n, v, q,|]) .

The next theorem gives us a local boundedness result.

Theorem 2.3.3 (weak Harnack inequality). Suppose that f € L/%(Q)
for some ¢ > n. Then if u is a H} () supersolution of equation (2.2.4) in £,

non-negative in a ball B4r(y) C Qand 1 < p < n/(n — 2), we have
R™?\|u||Le(Ban(yy) < C(inf u +k(R))
Br(y)

where k(R) = A—1R25”f“Lq,2, §=1- n/q and C = C(na A/)\,VR, Q1p)‘
Let us assume for the next two results that the coefficients a’/ € C%*()
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and ¢, f € L°°(Q). Suppose also that

max {|la"/||coa, llellL=} < K.

t,j=1,...,n

Then Theorems 2.3.4 and 2.3.5 give Holder estimates for the first derivatives of
weak solutions.
Theorem 2.3.4. Let u € C**(2) be a weak solution of (2.2.4) in a C*®

domain 2, satisfying u = ¢ on 9Q, where ¢ € C*'*(Q2). Then we have

llullcre < Clllull= + llellere + 11 fllze)

for C = C(n, A\, K, 0%2), where A and K are as above.

Theorem 2.3.5. Let the hypotheses of Theorem 2.3.3 hold and assume
that T is a (possibly empty) C''® boundary portion of a domain 2. Suppose
u € H3(R2) is a weak solution of (2.2.3) such that u = 0 on T (in the sense of

H}(Q)). Then v € C1*(QUT), and for any Q' CC QU T we have

Hullera(ay < Cllullre(ay + I fllze(a))

with C = C(n, )\, K,d', T) where )\ and K are as above and d' = dist(Q2',00—T).
Finally we state an existence and uniqueness theorem for continuous bound-
ary values and a theorem concerning higher-order regularity. In these theorems
L is given by (2.2.1).
Theorem 2.3.6. Let Q be a C!! domain in R"” and a7 € C°(Q), c €
L*°(2), ¢ > 0. Then if f € LP(R), p > n/2, ¢ € C°(89), the Dirichlet problem
Lu = f in Q, u = ¢ on 8Q has a unique solution u € HZP(Q) N C°().
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Theorem 2.3.7. Let u be a H.;?(Q2) solution of the equation Lu = f in
a domain §? where coefficients of L and f belong to C%%(2) with 0 < a < 1.
Then u € C2%(Q).

2.4. Eigenvalue problem

In this section we consider the eigenvalue problem
Au = du (2.4.1)

where A is an operator acting from a Banach space into itself. We call the
operator A compact if it is continuous and transformes every bounded set into
a precompact set. We start by formulating the Courant Min-Max Principle:

Theorem 2.4.1. Let X be a real Hilbert space, A be a linear compact
self-adjoint operator and (Az,z) > 0Oon X. Let S = {z € X : ||z|| = 1} and
Fn the family of all the n-dimensional subspaces of X. Then the eigenvalues
A1 > Az > ... of T are given by

An = max min (Az,z) = min max (Az,z).
FeF, z€SNF FE€Fn_y zeSNFL

The proof of this classical theorem can be foi.ad for example in [DEI].

The rest of this paragraph is devoted to the Krasnosel’skii theory of positive
operators, i.e. operators which map the cone of nonnegative functions into itself.
More precisely we need the following results concerning the existence of a positive
eigenfunction of (2.4.1) and the characterization of the corresponding eigenvalue.
For more general formulations and proofs see [KRA].
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Theorem 2.4.2. Let a linear positive operator A : L2(Q) — L%(Q) be
compact. Let the relation Af > af hold for at least one nonnegative nontrivial
function f € L2(f2) and some positive number a. Then the operator A has at
least one nonnegative eigenvector ug.

Definition 2.4.3. The linear operator A : C°(Q) — C°(Q) is called vo-
positive if there exist two positive numbers a, 8 such that for every nontrivial
nonnegative function f € C°(2)

ave < A™f < Bvo
for some n. Here vg € C°(Q) and is nonnegative.

We call the eigenvalue with the smallest absolute value the first eigenvalue,
the eigenvalue with the second smallest absolute value the second one and so on.
Moreover if the first and second eigenvalues are simple we call the corresponding
eigenfunctions the first and the second one respectively.

Theorem 2.4.4. Let up be a nonnegative eigenfunction of a ug-positive
operator A: Aug = Moup. Then )¢ is the first eigenvalue of the operator A.
Moreover g is simple.

Theorem 2.4.5. Let a linear operator A : C%°() — C% ) be uo-positive
where Aup = Aouo. Then for arbitrary nontrivial positive z € C°(2), = # kuo,

the elements Aoz and Az are incomparable, i.e. there exist ;, 2 € 2 such that
(Aug)(z1) < Xouo(z1) and (Aug)(zz) > douo(z2).

Finally we state Barta’s inequality for the Laplace operator which can be
treated as a specific case of Theorem 2.4.5. For another proof see [PRW].
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Theorem 2.4.6. (Barta's inequality). Let Ao be the first eigenvalue of

the homogeneous Dirichlet problem for the (—A). Then

for any positive v € C%(£2).
2.5. Leray-Schauder degree

In this paragraph we will formulate the main properties of the Leray-

Schauder Degree. For a detailed discussion see [DEI].

Let X be a real Banach space, G C X an open bounded domain. F' a
compact operator from G to X, I an identity operator and y ¢ (I — F)(9G).
On these triplets (I — F,G,y) an integer-valued function deg, which is called
Leray-Schauder Degree, is defined and it satisfies the following properties:

(L1) deg(I,G,y) =1for y € Q;

(L2) (additivity ) deg(I—F, G,y) = deg(I—F, Gy, y)+deg(I—F, G2,y) whenever
G, and G, are disjoint open subsets of G such that G = G; U G2 and y &
(I — F)(0G U 8G1 U 9G2);

(L3) (homotopy) deg(I — H(t,-), G,y(t)) is independent of t € [0, a] whenever
H : [0,a] x G — X is compact, y : [0,a] = X is continuous and y(t) & (I —
H(t,-))(8G) on [0,a];

(L4) deg(I — F,G,y) # 0 implies (I — F)"1(y) # 0.

One of the important consequences of the Leray-Schauder Degree Theory
is the Schauder Fixed Point Theorem.
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Theorem 2.5.1 (The Schauder Fized Point Theorem ). Let G be a closed
convex set in a Banach space X and let F be a continuous mapping of G into
itself such that the image F'G i1s precompact. Then F has a fixed point.

The proof of this theorem can be found in [GIT].
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CHAPTER I

POSITIVITY OF SOLUTIONS OF NONLOCAL LINEAR PROBLEMS

3.1. Introduction

In this chapter we consider the nonlocal problem

—V(a(z)Vu(z)) + 19(z) /Q ou = f(z) (3.1.1)

in a smooth bounded domain © C IR", subject to regularity and boundary
conditions specified below, and involving the constant 1. We show in this chapter
that there exist constants 0 < 77 = 7j(a(-)) and 0 > n = n(a(-)) independent of
specific f, such that if n < n < 7 then (3.1.1) has a nonnegative solution for
f > 0. Moreover we show the existence of 0 < 71 < 7] which depends only on the
ellipticity bounds on a{z), on ¢, and the shape of  and for which the same
positivity result holds for 0 < 7 < n;. We also address the important questions
of the estimation of 7p, the maximal possible value of 7, from below, and of the
eigenfuctions properties of the corresponding eigenvalue problem.

The chapter is structured as follows. In section 3.2 we formulate our assuimnp-
tions on the problem and consider the existence and uniqueness/nonuniqueness
of solutions for (3.1.1). In sections 3.3 and 3.4 we prove the existence of 7, 1
and 7n;. Sections 3.5 and 3.6 are devoted to the finding of bounds on 7. Finally
in section 3.7 we consider the corresponding eigenvalue problem. The tools we
employ are briefly as follows: to prove the existence of 7,7 and 7, we use general
elliptic theory and, in particular, Harnack’s inequality. In sections 3.5 and 3.6,
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we make use of Green'’s functions. To study the eigenvalue problem, we apply
variational methods and results of Krasnosel’skii’s cone theory.

In conclusion, we remark that at first sight it may appear to the reader that
the presence of a nonlocal term as in equation (3.1.1) has little effect upon the
properties of the solution. This is not the case, as the following one-dimensional

problem shows. Consider
—u" + 17/Q u=sinrz in (0,1), u(0)=1u(1l)=0, #>0.
Solving this problem explicitly we obtain
u(z) = 12n(z? — z)/(x* (12 + 1)) + sin(7z) /2.

and observe that for small 7, the solution u(z) is positive, but as n grows larger,
u(z) becomes negative near the end points: z = 0 and z = 1, even though the
right hand side is nonnegative and fixed.

3.2. Existence and uniqueness of solutions

To minimize technical difficulties while still presenting our ideas we impose
the following regularity assumptions on a(z), ¢, ¥:
(A1) a(z) e C1*(),0<a<1,a(z) >0 on
(A2) p(z),¥(z) € C*(Q), e, £ 0.
Moreover we always suppose that f # 0. We also assume that (3.1.1) is subject
to homogeneous Dirichlet boundary conditions, i.e. u =0 on 0.

Definition 3.2.1. We set L(p) = ¢ if and only if —V(a(z)Vp(z)) = ¢g(z)
weakly in 2, p = 0 on OQ.
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We give now an existence and uniqueness/nonuniqueness result for problem
(3.1.1). The following proposition generalizes a result of Catchpole [CAT] for
thé initial value problem in the one-dimensional case with o = .

Proposition 3.2.2. Let L(g) = . Then (3.1.1) has a unique solution for
every f € L3(Q) if 1 + 7 Jowg #0. f 1+ n [, ¥g = 0 then (3.1.1) is solvable if
and only if [, fg = 0. Moreover in the latter case the solution is not unique.

Proof. Suppose first that 1 4+ n fn g # 0. Taking the scalar product of g

with both sides of (3.1.1) we obtain

Jresn(foa) (o) = fo 7
Jue= fota] (e[ vs)

The last expression is well defined if  # —1/ [, ¥g. A direct calculation shows

and thus

that, in this case, (3.1.1) is equivalent to

—V(a(z)Vu) =f—-m,b(/n fg)/(1+q/9¢g> in Q, u=0on 9N

and since this problem is uniquely solvable, so is (3.1.1).

Consider now the case when 1 + 7 fn g = 0. The first equation in this
proof gives fn fg = 0, and to see that this condition is also sufficient we proceed
as follows. Let us define functions v and z by v = L™(¢), 2z = L~!(f). Then
(3.1.1) can be rewritter in operator form as (I 4+ K)u = z, where I
is the identity operator and K{u) = nv frz pu. Since K is a compact operator
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from L2() to itself, by Fredholm Theory, (3.1.1) has a solution if and only if
2z 1 Ker(I + K*), where K*(€) = nyp [, v€. Therefore (3.1.1) has a solution if
and only if [, z = 0 where £ satisfies { + ¢ fové =0, ie. £ =kp, k€ R.
Consequently (3.1.1) has a solution if and only if [, »z = 0 or equivalently
Jo fg=0.

To see that the solution is not unique, observe that kv, k € R, is a solution

of the homogeneous problem
—V(a(z)Vu) + m{:/ pu=0 in ©, u=0 on O
Q

if 1 +7 [, ¥g = 0, and the proposition is proved.

3.3. Existence of n and 7

Now we turn to the proof of the existence of n and 7 for (3.1.1). To get our
main result we need first the following lemma.

Lemma 3.3.1. Let 0 < f € L?(Q). Let u be a solution of (3.1.1). Then:

1. There exists n* independent of f such that if ¢ is sign-indefinite then for all

/c,o+u>0, /cp"u>0,
Q Q

where ¢ = p* — 97, p* = max{p,0}, ¢~ = —min{p,0}.

Inl <n*

2. If o > 0 then [, pu > 0 for || < 1/| [, ¥gl, where g = L™ ().

3. If both ¢, 9 are nonnegative, then for all 7 > 0 we have [, pu > 0 and

fu/ [euse.

where C depends on the ellipticity bounds on a(z), 2, ¢, ¥,n but not on f.
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Proof. Let » = vt — ¥~. Let us choose g = L™ }(¢*) and v = L~ (p7)
and observe that g and v are positive in Q. Let n > 0, and note that the case
n < 0 may be treated in the same way as below. After taking the scalar product

of g and v with both sides of equation (3.1.1) we get

[oorura([va)([oru- [omu)= [ 1a
/Q‘P‘u+n</ﬂ¢v)(/n<p+u-/ncp_u)=/s;fv.

From the first equation it follows that

o= [foren o) () on ) o

and substituting (3.3.1) into the second equation we obtain

/ ot = (Jq Fo)(1 +n Jgvg) —n(Jy fo)Jq Yv)
Q

: (3.3.2
147 Jog—n Jqv )

Since the functions g and v are fixed and depend only on 2 and ¢, are bounded,
are zero at the boundary and by the Strong Maximum Principle have nonzero
normal derivatives it follows that there exist two positive constants C; and Cj,

such that C; < g(z)/v(z) < C; for all z € Q. Therefore (3.3.2) implies that

- 1+7lfg¢g+7]clfg¢—v—7702fg¢+v)
> : . .3.
/n"9 u“( 1+1 fog—nfqgibv /nfv (3:3.3)
Repeating the same procedure for [, pTu we get
1 — 1 Jo ¥v+0(1/C2) fov*g —n(1/Ch) J w-g>
t > ( Q Q Q . 3.
,/g'z‘P v= 1+77fg¢g—'nfg¢v /Qfg (3.3.4)
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Since f, fv > 0, Jo fg > 0 and since the other terms on the right hand sides
of (3.3.3) and (3.3.4) do not depend on f, we can find n* also independent of
f such that for 0 < n < n" right hand sides of (3.3.3) and (3.3.4) are strictly
positive what implies the first statement of the lemma.

Note, that as before

/ﬂtpu=/ﬂfg/(1+nfn¢g>-

So, for nonnegative ¢, 3 we have that [ ¢u > 0 for all > 0. If ¢ changes sign

then [, pu > 0 for || < 1/] g ¥gl-

Finally, (3.1.1) implies that

[o=f) (- f) o

Hence for nonnegative 7, ¢ and 1 we have that

[utf [eusn [22w(i+n [vo) ([ 1270) /([ 1)

since [, ¢u > 0 by the previous remark.
Applying the previous argument we conclude that there exists a positive

constant C3 such that L=?(1)/g < Cs. Therefore

|/Qu|//n¢uSn[ﬂL'l(t/))+Cs(l+n/9¢g).<_C'

and the lemma is proved.
The main result of this chapter is
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Theorem 3.3.2. There exist 77 > 0 and < 0 such that forevery n < n <7
and for every 0 < f € L%(2), the solution of (3.1.1) is nonnegative. If f # 0,

the solution is positive.
Proof. We prove first the theorem for the case when ¢ and v are nonneg-
ative functions and n > 0, and since we can approximate a function from L*(2)

using smooth functions then it suffices to show the result for f # 0 smooth. Set

g= L™ (¢), 7= L™*(g) and v == L7 (). Then multiplying equation (3.1.1) by

/;vuﬁ-n(fntby)(_/fzsou):/;fg
L¢u=/;1fg/(1+"/s,¢9)- (3.3.5)

Let us set w = u/ [, pu . Then (3.1.1) and (3.3.5) imply that

V@V =£(1+1 [ ve) [ [ 1a

Taking the scalar product with 7 of both sides of the last equation yields

e sm= (o) ) Con o)

By the same argument as in Lemma 3.3.1 there exists a positive constant K

g yields

and

such that ig{] [7(z)/g9(z)] = K. Therefore

[ st +m) 2 k(1 +n [ 49) 2 K.
Q )
Note that K does not depend on f. Next we choose 7} small enough and a

subdomain ©; C Q such that for all n < 7
/ g(w+nv) < K/2.
o\Q,
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We can always do this, because g and v are fixed bounded nonnegative functioas
on Q, w + nv > 0 and the absolute value of fﬂ 1 is bounded by Lemma 3.3.1.
Note that, consequently, the choice of the domain ; does not depend on f and
w. Hence [, g(w +nv) = K/2, and Jo, (w +nv) > K/(2llglles)-

We observe that §; is compact and we cover it with a finite number of
balls Bl,..., BN C Q each of radius 7. Then we can choose from this set a ball
BJ° such that

Bjo(w + nv) = K/(2Nliglleo)-

Let us denote by B;’:/,‘,, j = 1,..., N balls of radius r/2 such that B£/2 C B
and have the same centers for all j. Now we can apply the weak Harnack’s
inequality to w + nv and conclude that for the ball Bi‘}z C B’ we have that

min (w+nv) > 2K,. It follows, that if i small enough then min (w) > K.

z€B, z€B,},

We show next that w > 0 in Q\B;’.‘}2 and the estimate on 7 does not depend

on jo. To do this, we consider N 4 1 equations:

—V(a(z)V(w+nv)) =20 in Q\Bi‘}z, w+nv > K; on an:‘;z, w+nv =0 on 90

—~V(a(z)Vz) =0 in Q\B},, zi =K on 8B, =z =0 on 3Q, i=1L1.N.

Then 2; > 0, 1 = 1”,...,N and we can choose 7 so small that z; —nv > 0 on
Q\Bf./z for all i = 1,..., N, since 8z;/8v > 0 on 99, where 8/0v denotes the
inward normal derivative. We get that w 4- v — 2z, =2 0 in Q\B;’:‘}Z. Hence for
small 7, it follows that w > zj, — nv > 0 where the estimate on 7 does not
depend on jo or f.
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Now we can consider the case with ¢» and ¥ both sign indefinite in Q and
71>0. Let o = ot — ™, ¥ =2+ — ™, as before. Then from Lemma 3.3.1, it

follows that for small n, fn ¢tu > 0 and fﬂ v~ u > 0. Therefore we can rewrite

equation (3.1.1) in the following form

~V(a)Vu) + 1w~ ([ otu- [ou) =1

It follows that

—V(a(z)VU)+771./)+/999+u+n¢‘/9‘9"u=f+n¢+/nsfu+n¢"/nso+u,

and we obtain

~V(a(@)Vw) + 19l [ lolu = £ +2m* fﬂ erut 2y [ otu

So we have reduced this case to the previous one. The case when ¢ and ¢ are

both sign indefinite and n < 0 may be treated similarly.

Observe now that if » < 0 and both ¢ and 3 are nonnegative putting

g = —n we obtain from (3.1.1)

—~V(a(z)Vu) =f+m,/)/ wu in 2, u=0 on ON.
Q

Then if g = L™ (yp), we get

fre= Lo/ (1w fy30)

Therefore we can conclude that if 4 < 1/ [, ¥ g our problem has a unique positive
solution. Moreover if u > 1/ [, ¥g then the solution changes sign. Finally, if
p =1/ [, ¥g the solution is no longer unique.
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Finally we may consider the case ¢,% < 0 and n < 0 in a similar way and
the theorem is proved.

Definition 3.3.3. We denote by 79 the supremum of values of i for which
solutions of (3.1.1) are positive for all nontrivial nonnegative right hand sides.

Corollary 3.3.4. Let n > 0 and ¢, > 0. If u solves (3.1.1) with n < 7o
and 0 < f € L%(Q) then the inward normal derivative of u at zo € 09 , if it
exists, satisfies (Gu/dv)(zo) >0 .

The statement of the corollary for small positive n follows immediately from
the proof of Theorem 3.3.2. Specifically, since w > zj, — nv > 0 for small n, we
easily obtain that dw/0v > 0 on 9S2.

Proof. For simplicity we can assume that f, (¢, are smooth. In the nota-

tion of Theorem 3.3.2,

un =17 = (n [ o/ (140 [ fo))v>0in 0

if n < no and f > 0. The normal derivative of v exists for all zo € 952, therefore
(Ouy/dv)(xo) exists if and only if (BL~1(f)/0v)(zo) exists. Since u,, > 0 in

-

and u,, = 0 on 99 it follows that
(Butno/Ov)(zo)

= (8L (f)/0v)(zo) — (770 fn fa/(1+no /ﬂ fg))(av/au)(:to) > 0.

Note, that (8L~1(f)/8v)(z0), (Ov/8v)(zo) > 0. Thus it is easy to see that for
n < no, (Bu,/0v)(zo) > 0. which implies the statement of the corollary.

36



3.4. Existence of n;
Next we turn to the proof of the existence of 73 > 0 which depends only

on the bounds on a(-), but not on a(-) itself and for which a positivity result
similar to Theorem 3.3.2 holds. In order to do this, we prove the following three
lemmas. Motivated by the physical example to which we apply our results later,
we consider for the rest of this section only nonnegative o, ¢ satisfying (A2) and
n20.

Lemma 3.4.1. Let a(x) satisfy (Al) and (i) 0< A4 < a(z),

(ii) lla(z)llcr.e < D. Let g(z) and 7(z) satisfy: L(g) = ¢, L(7) = g. Then

inf[r(z)/9(=)] 2 K, (3-4.1)

where K is a positive constant which depends on 4, D, Q and ¢ but not on
a(z).

Proof. If (3.4.1) fails then there exist sequences {an(z)},{gn(z)} and
{mn(z)} such that the following conditions hold:

1. 0<A<Zaq(z), llan(z)llcre <D

2. —V(an(z)Vgu(z)) =¢(z) in Q, go=0 on 9N

3. —V(an(®)VTa(z)) =gn(z) in Q, 7 =0 on 9N

o

inf [7.(z)/gn(z)] >0 as n - oo

ze€R

Note that Theorem 2.2.9 implies that gn,™ € H{}(f2). Since the embedding
of C1%(Q) into CV¥' (), &' < a, is compact and all a,(z) are bounded in
C1*(2) we can find a subsequence which we will denote again as a,(z) such
that an(z) — a(z) in C1*' () as n — o0, a' < a. Obviously a(z) € C1'(Q),
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0 < A < a(z) and |la(z)||ci.ar < D1 < oo. On the other hand, Theorem 2.3.2
implies that

sup lgn(z)| < CllellLasz
where ¢ > n and C depends on D, and 2. Thus by Theorem 2.3.5 we get that

gnlz) € C1*(Q) and

llgnllcra < Ci(llgnlle= + [lpllLe) < C2

where C; = Cy(n, A, D,8Q). Therefore we can find a subsequence of {g.} which
we will still denote by {gn} such that g.(z) — g(z) in C**' () as n — co. Now

we show that L{g) = ¢. Indeed,
llan(z)Vgn(z) — a(z)Vg(z)llcer =

l(an(z) — a(z))Van(z) + a(z)V(gn(z) — 9(z))llcr <
Czllan(z) — a(z)llgar + DlIV(gn(z) — 9(2)licar

where C; and D are as above. So an(z)Vgn(z) — a(z)Vg(z) in C*' () as
n — oo.

Then for every § € C§°({2) we have

/ a(z)Vg(z)Védz — / pédxr = /(a,(:z:)Vg(:c) — an(z)Vgn(z))Védz — 0.
Q Q Q

So L(g) = p. The same argument shows that L(7) = g. But then condition
4 implies that ;rexg [7(z)/g(z)] = 0. Since d7/0v > 0 by the Strong Maximum
Principle this is a contradiction.
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Lemma 3.4.2. Let a(z) and g(z) be as in Lemma 3.4.1. Then for every
sufficiently small € > 0 there exists £2;, a neighbourhood of 892, 2, C R, such
that i:%%af[g(m)] < € and the choice of Q; depends on A, D,¢,Q,:» but not on
a(zx).

Proof. If the statement of the lemma is not true then there exist subse-
quences {an(z)}, {gn(z)} and {za} such that they satisfy Conditions 1 and 2 of
Lemma 3.4.1, 2, = 29 € O as n — oo and gn(z,) = €. As in the previous
lemma we construct a(z) € C»(Q) and g(z) € C**(Q), o' < a, such that
an(z) =+ a(z) in CV*(2) as n — oo, a(z) satisfies (i), (ii), gn(z) — g(z) in
C1*'(§t; as n -~ oo and g(z) = L™1(p). But then [(dg/dv)(x0)| = oo, contra-
dicting the fact that g € C1®' () and the lemma is proved.

Lemma 3.4.3. Let a(r) be as in Lemma 3.4.1, v = L™ !(¥) and let B C

be a ball. Let z(z) satisfy
—V(a(z)Vz(z)) =0 in Q\B, z=0 on 9N, z=Hko on OB
where K is a positive constant. Then there exists 7. such that for all n < 7,
z—nv>0 in Q\B

and 7. depends on A, D,Q, B, Ky,% but not on a(z).
Proof. If the statement of the lemma fails then there exist sequences
{an(2)}, {zn(z)}, {vn(z)} and {n,} such that the following statements are true:
1. 0< A<an(z), |lan(z)licra <D
2. —V(an(z)Vua(z)) =9%(z) in Q, voa=0 on IN
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3. —V(an(z)Vza(z))=0 in Q\B, 2, =0 on 992, z, =Ky on OB

4. 7, -+ 0 as n — oo

5. There exists z, € Q\B such that (2, — 7,vn)(z.) < 0.
Then in the same way as kefore we get a,{z) — a(z) in C**' () , va(z) — v(z)
in CH*'(Q) , za(z) — 2(z) in C1e'(Q\B) as n — o0, o’ < a, and a(z), v(z) and
z(z) satisfy

~V(a(z)Vv(z)) =¢¥(z) in ©, v=0 on 2N
—~V(a(z)Vz(z)) =0 in Q\B, z=0 on 9%, z= Ko on 0B.

Since Q\ B is bounded, without loss of generality z, — z¢ € W asnn — oo.
We consider three possibilities: 1) zo € Q\B; 2) 7o € 8B; 3) 1o € 8. In the
first case we get (zn — nvn)(zn) = 2(zo) as n — oo and consequently z(zg) <0
which contradicts the maximum principle. Since Ko > 0 we get a contradiction
in the second case too. We show now that the third case is also impossible.
Consider a normal [z,,t,] through z, to the boundary of Q, t, € 3Q, and the
corresponding inner normal vector v,. Then there exists y, € [zn,t,] such that
Yn —> o as n — oo and (8(zn — NMrva)/Ovn)(yn) < 0. Thus passing to the
limit we obtain that (8z,/0v)(zo) < 0 which contradicts the Strong Maximum
Principle, and the lemma is proved.

Theorem 3.4.4. Let a(z) satisfy (Al) and conditions (i),(ii) from Lemma
3.4.1 and let ¢, > 0. Then there exists 71 > 0 such that for every n < m
and every nonnegative nontrivial f(z) € L?(Q) there exists a positive solution
of (3.1.1). Moreover 7; depends on A4, D,Q,v, ¢ but not on a(z).
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Proof. We need only combine Lemmas 3.4.1, 3.4.2 and 3.4.3 and the proof

of Theorem 3.3.2.

Obviously an exact analogue of Corollary 3.3.4 may also be obtained by the
above procedure.

3.5. General formula for 7

Since the methods of Section 3.3 are non-constructive we now pass to the
problem of estimating 7. In general this is very difficult, and we can give an
explicit estimate only in some special cases. In this section we obtain an explicit
formula for 79 and in the next one we give the resulting values as applications.
We conjecture that this approach could also be used to obtain the existence of
No, however we feel that the earlier procedure is simpler and also provides the
existence of 7;.

Consider (3.1.1) with n > 0, a(z), ¥(z) > 0,¢(x) > 0 satisfying hypotheses
(Al) and (A2) and homogeneous Dirichlet boundary conditions. Let G(x,y)
be the Green’s function of the operator L defined in section 3.2, g = L™!(y),
v = L™!(¢) and K = supsup|g(y)v(z)/G(z,y)]. Note, that G(z,y) exists even

yeQ zeN
for the case a(z) € L*(2), [STA]. Then we have

Theorem 3.5.1. Let 2 ¢ R” be a smooth bounded domain. Then if

/ v(z)p(z)dz < K < oo,
o)

it follows that
no = (K — Lw(z)v(x)dz)—l. (3.5.1)
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Note that from the results of Section 3.3 and from the last theorem it
follows that K is always finite. Since the previous examples show that ng cannot
be infinite, then we must always have [, @(z)v(z)dz < K. Observe, that since
G also exists for a(z) € L (Q), then no will also exist whenever the conditions
of Theorem 3.5.1 hold.

Proof. Without loss of generality set [, ¢(z)u(z)dzr = 1 in equation (3.1.1).

Then (3.1.1) becomes
—V(a(z)Vu(z)) = —n¥(z)+ f(z) in @, u=0 on 91, /Q(,ou =1. (3.5.2)

It is enough to consider only f(z) € C®(Q2). We look for a solution u(z) of
(3.5.2) of the form

u=—nv+h, h=L"1(f).
and observe that h can be written in integral form as h(z) = [, G(z,y)f(y)dy,

where f satisfies

[ [ eunswie@dyds = 1+ [ ol=)(z)ds. (3.5.3)

Note that u(x) > 0 if and only if A(z) > nu(z) for all z € Q, and furthermore
if u(z) is negative at some point then there exists zo € €2 such that u(zo) = 0,
since [, pu > 0 and thus u(z) cannot be negative everywhere.

We show that for n < (K — [, ¢(z)v(z)dz)~! condition (3.5.3) and the
condition that there exists a point zg € §2 such that hA(zo) = nv(zo) are contra-

dictory. Indeed, if A(xp) = nv(zo) for some zo € 2 then

h(z) = nv(zo) /9 G(:z:,z)f(z)dz/ /{; G(zo, 2) f(=z)d=.
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Note that here we can take arbitrary f since we can always find a constant C
such that C f satisfies (3.5.3) and because the last expression is invariant with

respect to multiplication of f by a scalar. Therefore

/ o(z)h(z)dz < 7 sup sup[ /Q v(20)g(2) f(=)d: / /Q G(wo,:)f(:)d:]-

IQEQ f

We claim that

sup sup [ fﬂ v(z0)g(z)f(z)d= / /ﬂ G(ro,z)f(z)dz] =

sup sup[v(xo)g(y)/ G(zo,y)] = K.
Io€EQN yE€

Indeed, first it is easy to see from the definition of A that

sup sup | [ vlwolg(2)f()es [ [ Glao,2) /()] < K.

€N f2>0

On the other hand , if we take a sequence {f,(2)} which tends to §(y —z), y € Q

when n — oo then

. fn v(z0)g(z) fn(2)dz
K = sup sup lim .
yeg zoeq n—> [o G(Zo,2)fn(z)dz

Therefore since K > [, o(z)v(z)dz then for n < (K — [, p(z)v(z)dz)™" it

follows that
/ e(z)h(z)dr <1+ 7)/ o(z)v(z)dz.
Q Q

But this contradicts (3.5.3), so we can conclude that u(z) is positive for the
given range of 7.

We show now that ng is actually equal to (K — [, ¢(z)v(z)dz)™!, i.e. that if
n > (K — [, p(z)v(z)dz)™?, then there exists f such that the solution of (3.1.1)
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changes sign. Indeed, if n > (K — [, ¢(z)v(z)dz)~! then we can find two points

Zo, Yo € 2 such that
-1
1> (2(20)9w0)/Glzo,10) - [ wleo(aiz) (3.5.4)
We construct a sequence 0 < fp(z) = é(z—yo) as n — oo and solve the problems
—V(a(z)Vwy,) + mb/ pwn=fn in , w,=0 on JIN.
Q

Using expression (3.3.5) for [, ¢(z)wn(z)dz and the fact that [, ¥(z)g(z)dz =

Jq w(2)v(z)dz we rawrite the last problem as

~V(a(@)Vwa)@) = fo(@) = 18(2) [ Fula()dz [ (141 [ o(eu(a)ds)

and therefore

wn(z) = L (n)&) = 1) [ Fuldot)d [ (140 [ wieinnas).

Then (3.5.4) implies that when n — oo

wn(zn) = ~mu(zoa(uo) / (147 [ P(2)0(2)dz ) + Glz0,30) < 0

and thus we conclude that w,(z¢) < 0 for large n. The theorem is proved.
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3.6. Applications of the general formula for 7,

This section is devoted to the application of the general formula (3.5.1)
to the special case of equation (3.1.1). Specifically we consider (3.1.1) with
a(z),¥(z), ¢(z) = 1. Then we have the following

Theorem 3.6.1. Let Q be a unit ball By in R", n > 1. Then

_ n2(n + 2)
M= @ (n+2)=1)°

where o, 1s the surface area of the unit ball in R" with o, = 2.

Proof. To prove the theorem we consider three separate cases.

Case 1. f n=1and Q@ = (—1,1) then

1l f(z+1)(1~-y) f —-1<z<y<l
G(x’y)—§{(1—$)(y+1) if -1<y<z2<1

g(z) = v(z) = (z + 1)(1 — z)/2.
Direct calculations yield that

1 {(y+1)(1—:c) if -

K = —supsua ;
2 ebsebl(l—y)(e+1) if -

b=
INIA
<R
IAIA
8w
IATA
—

j =2

and
/_11 v(z)dz = %/_11(1 — 2?)dz = 2/3.

Substituting these values into (3.5.1) we obtain that ng = 3/4 and therefore the

statement of the theorem is verified for n = 1.

Case 2. When n = 2 the Green’s function and v(z) = g(z) are

1
G(z,y) = i In

1—:7:y2

» v(z) = (1-lz|*)/4,

m—
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where z = (z1,Z2), Yy = (¥1,y2) are identified with complex numbers z =
3 +ir2, ¥y =y +iyz2. To apply the formula for n¢ given in Theorem 3.5.1 we

fir st nave to find

—

"

K= sup sup (1= 1aP)a— ) /1n| =

4 yeB, zeB

— Iy

1

Since (—A) is invariant with respect to the rotations of a ball then if T denotes

any rotation, we have G(Tz,Ty) = G(z,y). Therefore without loss of generality

we may put r = (z;,0). We can see that

1-zyl® _ (—zys) +2ef _ (=10 — W)
z:—yl (z1 —n)? +y3 lz —yf?

For convenience we denote

—lzI2\1 —
F(z,y)=(1- |x|2)(1—|y|2)/1n(1+ (a — ="} |y|2)>.

|z — yl?

Next we observe that

sup sup F(z,y) = sup sup F(z,y)
yEB, z€B; 0<r1<1 lzl=ry
0<r2<! |yl=r2

and

sup Flz,y) = (1~ (1 ~ ) [ (14 GO STE)

le)=ry (r1+12)?

lyl=ra
+ri72
1-— 1-—- In
- - /m(AEn)

Our claim is that

r2
sup sup F(z,y) = sup (1-—r3)(1— 7‘2)/111(1 + 1)1 27'2))
yE€EB, €6, gé:}'éi (1‘1 + r2)

(3.6.1)
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Indeed, first note that

im (1-r3)(1 - g}/m(l¢ (1 —r)1 —ri)

n (r1 +12)?

ro—1

}:E.n 1-r(1- r-,)/((:l — ——r%)) = hm (ry +r)°

ro~+1 (rl + 7-2)2 ri—t

ro—1t

Therefore to prove (3.6.1) it is enough to show that

(1—r2)(1 - r,_%)/ln (1 + 4 (rjfl(iq)zrz)) (3.6.2)

or equivalently

(1-r2)(1—r2) < 81n(%’"—‘%).

After the change of variables 2 =1 —r;, w=1-—r;, we get

2—z—w

wz(2—2)(2—-w) < SIn((2 —w=-z) 1).

The left and right hand sides of the previous inequality are equal when =z = w =
0, so it suffices to show that the partial derivatives with respect to z and w of
the left hand side are less than or equal to the corresponding derivatives of the
right hand side. Since both sides are symmetric it is enough to check only the
partial derivative with respect to w, i.e.

8(2 — 2)=

222 -=)(1 -w) < C-w-2z)(2-2)(2-~w)—-2+2z4+w)

Simplifying the last inequality we get that (3.6.2) is equivalent to

7‘2(1’1 + 1'2)(1 +7‘17‘2) S 4,
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But this inequality is obvious since 0 < r; <1, 0 <rz < 1. Finally we obtain

from the definition of K and F(z,y) that

k== sup sup F(z,y) = =.
4 yEB; z€EH

Taking in consideration that [; (1— |z]|?)/4 = =/8 we get from (3.5.1) that
no = 8/(7m7) and the theorem is proved for n = 2.

Case 3. In the case when n > 3 we recall from [MIKH] that

3 _ 2—n _ _ 2—-n -f 0
G(z,y) = (on(n —2))7" { ==l |z — ylfﬂf'— 1'1{”2‘11 sZ0 g

v(z) = (1~ |z*)/(2n), z € B,

and therefore we should find

K = sup sup [(1 — [z[*>)(1 — ¥I*)/(4n’G(z, y))}-
y€B, €8,

As before we set

- leP) - lP)
By = oGy

and, as in Case 2, suppose without loss of generality that =z = (z;,0,...,0),

¥y = (y1,Y2,.-,Yn) and z; > 0 . Then

(== )3 — 1y?)
F =
(z,y) e —y|2—" - |z/z1 — zyy]2™

_ Q== ~ lyP)z —yI"?|z/z1 — 21y 2
lz/z1 — z1y|"—2 — |z — y|n—2
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A= 1= P)A = yP)lz — yI" |z /z1 — z1y|" 2

n—3
(iz/z1 — zayl — |z — y}) kZ lz — yfFle/z1 — 2yy|n 3k
=0

_ 0 =1zP)1 = )z — " Ple/x — 2yl (e -yl + e/ - L1y))

(lz/z1 — z1y]% — |z — y}*) Z lz —yl¥lz/x) — £yyjm—3-k

Observing that
lz/z1 —z1yP — |z —y|> = QA—z131)? +21 (5 + .- +¥3) — (21 — 1) — (¥3 + ... +¥3)

= (1 —|z: )1 - [yl?)
we can rewrite F(z,y) as

— yln—2 — n—2 — —
Floy) = 2207/ = i —yl + lafz1 — 2

Z |z — yl¥|z/z) — z1y|m 3k
=0

Dividing the numerator and the denominator of F(z,y) by |z — y|* " 2|z/x, —

z1y|*~? yields

—_ — I
F(.‘B,y)= - (Il‘ yl+|1‘/$1 mlyl)

-3
> e —ylF=r+2iz /2y — 2y k!
k=0

n-—3

-1
(Z e —yI*" 2/ 2y — zay| k" 1) (Z o=y, — iy h *\

k=0

The supremum of F(z,y) is thus reached when z = (1,0, ...,0) and
y = (—1,0,...,0) and is equal to 2**!/(n — 2). Therefore K = ¢,2" " 'n~*
With some elementary calculations we get
[ a=laP)/(2n)dz = oan?/(n +2).
B,
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and thus from (3.5.1) we get that

n?(n +2)
a2 (n+2)—1)’

o =

The theorem is proved.

Remark 3.6.2. If we can map our domain 2 into the ball in such a way
that the differential operator under consideration transforms into the Laplace
operator, then we can apply Theorem 3.6.1 in order to estimate 1 from below.
Conformal mappings of smooth domains in R? can serve as an example for such
a situation for a variety of domains 2. In general the difficulty in applying
Theorem 3.5.1 are in the estimation of the resulting v, ¢ and G(z, y).

3.7. Some remarks about the eigenvalue problem

In this section we are interested in the eigenvalue problem associated with

(3.1.1) and first consider the self-adjoint problem
—Au+n(,a/ pu=Au in , u=0 on 99N, n=>0. (3.7.1)
Q

The properties of eigenvalues of (3.7.1) and of the nonself-adjoint version of
this problem were studied in [FR1], [FEI|. Here we mainly want to look at the
behaviour of the first eigenvalue and the first, eigenfunction of (3.7.1). A more
general case obtained by replacing Au by V(a(z)Vu) can be treated ..: the same
way.

Proposition 3.7.1. The first eigenvalue of (3.7.1), Ao(n), satisfies the

bounds 0 < A; € Ao(77) < A2 < o0, with

A1 = A0(0), Az = (a?/(e® + %)) (0) + (8%/(a? + 82))A:1(0)
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where  Ag(0), A1(0) are respectively the first and second eigen alues of the

unperturbed problem, and «, 8 are chosen in such way that

[ elauo(0) + guso)] = 0.

Here uo(0) and u;(0) are the first and the second eigenfunctions of the unper-

turbed problem, such that ||uol|r2(q) = |ju1ll2 o) = 1.

Proof. In order to prove the proposition we use the Courant Min-Max

Principle. Specifically

A = inf Vul|?: / ) 2
otn) = _ipf o (I19uliza +a( [ o) ) /il

> inf ||Vul|} 72 = Xo(0),
> nf 19ullts /Il = 20(0)

2
dolm =, ot (I9ulize+n( [ on) ) ldte < _int U0uligs /il
J.

[+
Ppu=0

Since fﬂ wlaue(0) + Bu1(0)] = 0, and uo(0) and u,(0) are orthogonal we obtain
Do(n) < (02| Vuo(0)][= + B2IVur (0)32)/(a? + 57)

= (a®/(a® + 8%))20(0) + (8% /(a® + B%)) M1 (0).
The proposition is proved.
Remark 3.7.2. Let ug(n) be the first eigenfuction of —V(a(z)Vu) +
N fn pu with norm equal to 1 in H3(Q). Note that A\o(n) is monotone in-
creasing in 77 by the Courant Min-Max Principle and is bounded by Proposition
3.7.1. We want to study the asymptotic behaviour of this family of functions

-
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when n — co. Since all ug(n) are bounded in Hj(f2) we can find a subsequence
which converges to some function @ strongly in L?(Q2) and weakly in H} ().

Taking into consideration that

/ﬂsou=ALL'1(¢)u/(l+nLL'1(¢)¢),

where L is the operator defined in Section 3.2, and that Ag(n) — Aoc when

1 — oo we obtain that u# satisfies the following nonself-adjoint problem

—V(a(z)VE) + Ao /Q L (e)a / /ﬂ L (0)p = Aooil.

The same is true for other eigenfunctions and eigenvalues. In particular it means
that we can determine the limit values of eigenvalues of our self-adjoint prob-
lem by considering the intersections of eigencurves of the latter nonself-adjoint
problem with the line n = A.

Consider now the nonself-adjoint problem
—~V(a(z)Vu) +mb/ pu=Au in @, u=0 on 992, n>0. (3.7.2)
Q

We are interested in the positivity of the first eigenfunction of (3.7.2). In general
for large 7, the first eigenfunction uo changes sign as the following example shows.

Example 3.7.3. Consider (3.7.2) with a(z) =1 and ¥(z) = p(z) =1 .
Assume ug(n) > 0 and thus observe that the integral of up can not be equal to
zero. Since equation (3.7.2) is linear we can put the value of the integral of ug

equal to one. Then integrating (3.7.2) and using Green’s formula we obtain

/ Buo(n)/8v = ho(n) — nIQ. (3.7.3)
N
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Since Ao(7n) is bounded above by Proposition 3.7.1, we have that if 7 is large
then Guo(n)/0v < 0 at some part of O and consequently that ug(n) changes
sign.

Example 3.7.4. In some cases ug remains positive for all n > 0. Indeed,
if we choose ¢ = ¥ in such way that fn pvo = 0, where vo > 0 is the first
eigenfunction of operator L, then ug(z) = vo(x) for all n > 0.

The next theorem concerns the existence of a positive eigenfunction of
(3.7.2) for n < 7.

Theorem 3.7.5. Let (o,9% > 0. Then problem (3.7.2) has a positive eigen-
function ug for n < ng. Moreover ug is in fact the first eigenfunction of (3.7.2)
and the corresponding eigenvalue \p is simple.

Proof. Let us denote by A, the following operator
4 1
Aqu = =V(a(@)Vu) + 19 | pu, u e HY(Q).
Q

Then by Proposition 3.2.1 and Theorem 3.3.2 for n < 7o the operator A;! :
L2(Q) — L?%(Q) is well defined and positive. Moreover, since f € L2(f2) and ¢,

¥ are nonnegative we have

uliy < ([ at@ivut + ([ wu) ([ on)) < cliflizaltullg

and so u € H}Q. This implies that the operator A7l is completely continuous
since the inciusion of H} () into L2(f2) is compact. Therefore by Theorem 2.4.2
in order to prove the first statement of the theorem, it is enough to show that
there exists a nonnegative nontrivial function f, € L?*(Q) such that AJ!f, >
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ay, fn for some positive a,. Let f, € Cg°(R), 0 < f, < 1. Then A;'f, >0in
Q and A;lf,, > a, > 0 on supp(f,) for some a,. Consequently, A,Tlf,, > anfq
in 2, and we obtain that there exists a nonnegative eigenfunction u¢ of (3.7.2).
Furthermore Theorem 3.3.2 implies that ug is positive and the first statement
of the theorem is proved.

Let us show now that the positive eigenfunction ug corresponds to the first
eigenvalue )\g and this eigenvalue is simple. Indeed, since we can rewrite (3.7.2)

as
—V(a(x)Vu)+m,[)/cpu—/\u=0 in Q, u=0o0on 092, n=>0
Q

then Theorem 2.3.1 implies that ug € C(f) and therefore by Theorem 2.3.5 ug €
C1(€). It means that the normal derivative of ug is well defined and positive
(Corollary 3.3.4). Moreover if we consider the operator A;! : C(Q) — C La(Q)
we obtain with the help of Theorem 3.3.2 and Corollary 3.3.4 that u = A} 1fis
also positive and have positive normal derivative on 92 for n < no. Therefore

we can find positive numbers v and 8 such that
yuo < A7 f < Buo

and thus the operator Ay 1 is ug-positive for n < 1y. So Theorem 2.4.4 implies
that ug is the first eigenfunction and the corresponding eigenvalue )¢ is simple.

We also obtain from the fact that A7 is uo-positive for n < 70 and as a
consequence of Theorem 2.4.3 that for every u € C?(), u > 0in Q, u =0 on
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on

do(n) 2 iaf | (=V(a(z)Vu) +ny [en) /4]

This is an analogue of the classical Barta’s inequality for our problem.
Remark 3.7.6. Equation (3.7.3) provides an upper estimate on 1, for the
particular cases of equation (3.7.2) with ¢ = ¥ = 1 but for a general domain.
We can easily see that o < A1(0)/ J, ¥, where A;(0) is the second eigenvalue of
L. If we embed the smaller domain ' for which we know the second eigenvalue

A1(0) of L, into €2, then the monotonicity properties of eigenvalues [MIKH] imply

that A1(0) > X1(0), and therefore no < A1(0)/ [, ¥.
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CHAPTER 1V

NONLOCAL THERMISTOR PROBLEMS

4.1. Introduction

In this chapter we consider two nonlocal problems which arise in the mod-
elling of thermal and electrical processes in thermistors. We recall that thermis-
tors are electrical devices whose resistivity depends on temperature. Usually the

processes in thermistors are descrived by the local system (1.2.1), (1,2,2).

In this chapter we shall first study the nonlocal version of problem (1.2.1),
(1.2.2) which arise in microsensor devices where heat loss to the surrounding
gas is of great importance. In particular we are interested in the case when the
thermal conductivity k(s) and the electrical conductivity o(s) tend to zero as
s tends to infinity. This behaviour of & and o is typical of that encountered
in thermistor structures that arise in microsensor applications. Sections 4.2
and 4.3 are devoted to the investigation of existence and positivity of steady
state solution of the thermistor problem with a nonlocal term appearing in the

temperature equation.

In sections 4.4 and 4.5 we discuss system (1.2.1), (1.2.2) with nonlocal
boundary conditions and we show that under suitable assumptions on k, o and
the shape of the thermistor blow-up occurs. We recall that Lacey in [LAC] stud-
ied one-dimensional thermistor model with constant thermal conductivity and
showed the blow-up of solutions under the condition that the elecirical conduc-
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tivity decreases rapidly enough. In our work we impose weaker restrictions on
the shape of thermistor and consider non-constant thermal conductivity.
4.2. Nonlocal thermistor problem with heat loss

to the surrounding gas

We consider the following nonlinear nonlocal system:
—V - (c(u)Ve)=0 in £, ¢=¢o on 9N (4.2.1)

—V - (k(u)Vu) + 17/Q u=0(u)|Vel2 in , u=0 on Q. (4.2.2)
We suppose here that n > 0.

The existence of positive solutions of (4.2.1),(4.2.2) when n = 0 was stud-
ied under a variety of assumptions (see [XAL], [CIM], [CIP] and the references
therein). In the next section we shall prove the existence of positive solutions of
(4.2.1), (4.2.2) for small n under the following hypotheses:

(H1) @ c R" is a smooth bounded domain;

(H2) @o(z) € C%A(Q)(B > 0) and there exists a positive constant s such
that 0 < wo(z) < wap on Q;

(H3) o(%) and k(%) are positive and smooth for all ¢ € IR, are bounded above,
k(t)/a(t) is a decreasing function of ¢ and [J° k(t)/o(t)dt > %, /2.

Let us emphasize that under these hypotheses problem (4.2.1), (4.2.2) can be

degenerate, i.e. o(s),k(s) = 0 as s — oo.
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4.3. Existence of positive solutions

The proof of the existence of solutions of (4.3.1) and (4.3.2) follows the same
general scheme, as introduced in [XAL] with the differences due entirely to the
presence of the nonlocal term. Thus we will discuss the main steps of the proof
concentrating only on these differences, and basing ourselves on the results given
earlier in Chapter III.

We rewrite system (4.2.1), (4.2.2) in weak form as
p—voe HY(Q), [ owVeVy=0 VpeHY®) (4.3.1)
Q

u € Hé (),

/Q k(u)Vqu+7]( /Q u> ( /9 v) = /9 o(w)eVeVy Vo e HY(Q). (4.3.2)

We start by proving the L°-boundedness of solutions of (4.3.1), (4.3.2).
Lemma 4.3.1. Let (u, ) be a C%(Q) solution of (4.3.1), (4.3.2). Then
0<e(z)<pm on Q, u(z)<M on Q, (4.3.3)
where M is a positive constant such that foM k(t)/o(t)dt = ©3,/2. Note that M
is independent of v and ¢ but depends on k and o.
Proof. Note first that since u € C%(Q) tb:2 « 1s bounded above and below
on  and so are k(u) and o(u). In particular this implies that equation (4.3.1)
is uniforily elliptic and by the Weak Maximum Principle 0 < ¢(z) < par in .

Moreover by Theorem 2.2.4 we have ¢ € C*().

Let £ satisfy

¢ € HA(Q), /,, k(1) VEVYH = /Q 1.4 Yo e H(Q). (4.3.4)
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Then the boundedness of k(u) yields that (4.3.4) is uniformly elliptic and once

again the Weak Maximum Principle implies that £ > 0 in Q. Thus since for

/Qu=/na(u)|v(p|ﬁe/(1+nfns)>o,

n = C we have

and by (4.3.2)

/ k{(u)VuVv < —/ o(u)pVeVy V 0<ve Hg(Q).
Q Q

Let ((z) = ¢*(2)/2+ fy O [k(t)/o(t)]dt and (o(z) = #3(2)/2. Then {(z), Go() €

H'(Q) and furthemore ((z) satifies
¢ — o € H (), / o(u)ViVu <0 V 0<ve H Q).
Q

Thus the Weak Maximum Principle applied to ¢ yields that

u{zx) u(z)
| ke <@z [ ko o0 < e

and we conclude by (H3) that u(z) < M on Q where M satisfies the conditions

of the lemma.

We choose now a smooth monotone increasing function x(t) satisfying the
following properties: 1) x(¢) = tfor 0 <t < M; 2) -1 < x(t) < M + 1 for all

t € R. We consider the truncated problem
© — o € HY(Q), / F(u)VeViyp =0 Vi e HI(Q) (4.3.5)
Q

u € Hy(9),
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/Q E(u)vaVv+n< /Q u) ( /Q v) = — /n 5(u)pVeVyv Vv e Hy(R2), (4.3.6)

where a(t) = o(x(t)), k(t) = k(x(t)), and note that all C*(€) solutions of
(4.3.5), (4.3.6) satisfy bounds (4.3.3). Indecd, the bounds for > follow immedi-
ately from the maximum principle. Then repeating the proof of Lemma 4.3.1
we obtain that
foﬂ k(t)/5(t)dt < 2,/2, where @ is the maximum of the solution of (4.3.5),
(4.3.6). If 2 > M then from the definition of M we get that Lf,, k(t)/5(t)dt <0
which 1s impossible.

In next three lemmas we establish H!(Q) and L?'#*(Q) bounds for the solu-
tions of the truncated s;stem.

Lemma 4.3.2. Let (u, ) be a C*(R) solution of (4.3.5), (4.3.6). Then

llellar < Cliwollar,  lullar < Cllollas.

Proof. Note first that there exist two positive constants A,, and Aps such

that

Am < k(u),5(u) < Am (4.3.7)

for any u solving (4.3.5), (4.3.6). Putting % = ¢ — @o in (4.3.5) we obtain

immediately that
/9 F(u)VeV(p — o) =0

and therefore

[ #@I¥(e - w0l = = [ 2w)TpoV(e - v0).
Q Q
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So (4.3.7) and Holder’s inequality imply that

V(e = @o)llze < ClIVyollrz < Cllwolln:-
Since ¢ — wo € H§(R2) we have that || — pollyr < Cl|V(y — wo)llr2 and thus

el < lle — wollar + livollzr: < Cllvolln: -

Finally since © € H{(€) putting v = u in (4.3.6) yields

/{;I?:(u)IVu[2 S/ﬂl—c(u)IVulz-i-r)(/Q u)2 = ——/Q&(u)chchu

and since ¢ € L°°(2) the same argument as before implies the second statement

of the lemma.

To establish L2-#-estimates we need the following lemma the proof of which
can be found in [St, Theorem 8.5].

Lemma 4.3.3. Let G(z,y) and G(z,y) be Green'’s functions of uniformly

elliptic operators L and L respectively. Then for every compact subset §' C

there exist positive constants C;, C such that

01SMSC2 for all z,y € .
G(z,y)

Here C,, C> depend on 2, ' and on bounds on coefficients of L and L.

Lemma 4.3.4. Let (u, @) be a C*(Q) solution of (4.3.5), (4.3.6). Then
IVellLzm, HVullr2 < Cllpollar + I VeellLan)

where C depends only on A, AMm, M, pprand Qand 0 < g < po = N — 2 4+ 24,

0 < éo < 1 depends only on A, and Ayy.
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Proof. The proof of this lemma is based on Campanato Space theory,
[Chapter 1I], and follows basically the proof of [Theorem 2.3, XAL]. We rewrite

(4.3.5) in the following form
& € HY(Q) /ﬂ 5(u)VEVY = — /Q 7(u)VepeVy Vi € HY(Q) (4.3.8)
where ¢(z) = ®(z) + wo(z) for z € Q. Thus by Theorem 2.3.3
IV®]lL2n < C(ll6(u)VeollL2.u + [[2]|21) (4.3.9)

where 0 <. . < g = N — 2+ 289 and 0 < ép < 1 depends only on A, and M.
Furthermore since [, 6(u)|Vp?v = — [, 5(u)pVeVv for all v € HY(Q) then

applying Theorem 2.3.3 to (4.3.6) we obtain

HVull2n < C(anQ ull p2.u-2+ +1F(u)eVepllLam + [luflmr). (4.3.10)

Since by Theorem 2.3.1 L(2) is a space of multipliers for L2#(Q)for0 < u < N

we have
16wV eollzzs < 115(u)lle=IVeollze < AaellVepoll s (4.3.11)

e (w)eVellpees < ||G(u)llLes lellLeIVellezs < AMemliVellpzs. (4.3.12)

To estimate the term 7 fﬂ u from above independently of n and u we replace

Jq u by its expression

[u= [atwnvore/(14n [ ),
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where £ satisfies

€ € HX(R), /Q E(u)VEVY = [9 ¥ Vi€ HYQ) (4.3.13)

and conclude that

n/ﬂusfnar(u)lwl‘-’&//ﬂs.

The numerator of the last expression can be bounded using the same technigne

as before:

l[/;C‘r(u)!Vsolzflng‘(,_:w = “/{;‘}(U)SQVS?VH’L:‘.(»—:'W
AMm
< CamemiIVellzlIVEL: < CA—tP,\fII?lltlt-

We claim, that [, £ > C; > 0, where C} is a constant independent of . Indeed,
let G(z,y) and G(z,y) be the Green’s functions of equation (4.3.13) and the
Laplace operator with homogeneous Dirichlet boundary conditions respectively,
and let @’ C Q be a fixed compact set. Then, since k(u) is bounded above and
below independently of u, Lemma 4.3.3 implies that G(r,y)/G(z,y) > C; > U
for all z,y € ', where C, depends on Q, Q' and on the L™ bounds on k. Thus,

since £ is nonnegative,

/ E(z)dz > / £(z)dz > Cs / Gz, y)dzdy
Q Q Q Jor
and
n/ﬂu < Cllellas. (4.3.14)

Finally comibining Lemma 4.3.2 and estimates (4.3.11), (4.3.12), (4.3.14) we
obtain from (4.3.9) and (4.3.10) the statements of Lemma 4.3.4.
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Lemma 4.3.5. There exist positive constants K, §g such that for any C=(Q)

solution (u, ) of (4.3.53), (4.3.6) we have

Hlulle+ < K and  |lgllcn < K

for all 0 < v < do.

This result follows immediately from Theorems 2.3.1, 2.3.2 and Lemma
4.3.4.

Theorem 4.3.6. The problem (4.3.5), (4.3.6) has at least one solution for
every 1 > 0. Moreover the: : exists n; > 0 independent of u and ¢ such that for
all 7 < 7; there exists a positive solution of (4.3.5), (4.3.6) and consequently of
the initial problem (4.2.1), (4.2.2).

Remark 4.3.7. Computer simulations show that for n large the solution
of (4.2.1), (4.2.2) may become negative at some points.

Proof. The proof of existence is based on the application of the Schauder
Fixed Point Theorem and follows exactly the proof of [Theorem 3.1, AX]. There-
fore there exists at least one C”({2) solution of (4.3.5), (4.3.6) satisfying
Hullevny < K, Hellev@y < K for 0 <y < do < 1, where do, K are positive con-
stants depending on the problem data, but not on v and (. Moreover applying
consequently Theorems 2.2.5, 2.2.6 and 2.2.7 along the same lines as in Remark
4.3.3 we obtain that (u, ) is actually a classical solution of (4.3.5), (4.3.6) and
Hullcz.eo(y < K1, ll@llcze0q) < K2 where 0 < ap < 1 and K}, K are positive
constants independent of u, . Therefore k(u) > D and ||k(u)||cr.a0(qy < C for
all u solutions of (4.3.5), (4.3.6). Here D depends on the upper bound M of u
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obtained in Lemma 4.3.1 and both D and C are independent of the partucular
u and ¢. Theorem 3.4.4 yields the existence of 1; independent of u, ¢ such that

for all » < m; there exists a positive solution of (4.3.3), (4.3.6) and, consequently,

of (4.2.1), (4.2.2). Thus the theorem is proved.

4.4. Nonlocal thermistor problem with a given current

The next two sections are devoted to a thermistor problem with nonlocal
boundary conditions corresponding to the case of a current source. We thus
consider the following system of nonlinear equations in the cylinder Q@ = 2 x
{t > 0} where Q is a smooth bounded domain that may be considered to be in

R’ = {(z,y, z)} without loss of generality:
uy — V(k(u)Vu) = a(u)|Vep|? in Q (4.4.1)

—V(o(u)Vp) =0 in Q (4.4.2)

and we associate with (4.4.1) and (4.4.2) the following boundary and initial
conditions: we decompose the boundary of  into two ways: 92 = SoU S5, U S,

and 92 = I'p UT n and we impose the following mixed boundary conditions

=0 on Sogx{t>0}, o=A(t) on S, x {t >0}, ?2=0 on S; x {t >0}

on
(4.4.3)
ou
u=0 on I'p x {t > 0}, E;:O on 'y x {t > 0} (4.4.4)
and initial conditions
u(-,O) = dug. (445)



Finally we suppose that the device is driven by a current source and the to-
tal current through the part of the boundary S is represented by a nonlocal

condition

I(t) = /S o—(u)%f-. (4.4.6)

Here I(t), A(t) are positive smooth functions, I is given and A is to be determined.
Setting ¢ = At) we rewite problem (4.4.1)-(4.4.6) in more convenient form:
uy — V(k(u)Vu) = At)20(u)|Vy]? in Q )

~V(o(u)V) =0 in Q
w=0o0nSyx{t>0},v=10onS5 x{t>0},22 =00n S, x {t >0}/
©u=0 on I'px{t>0}, 3£ =0 on Ty x {t >0} ()

u(-,0) = uo

I(t) = M2) [s, o(u) 32 )

Note that if I(¢) # 0 then A(¢) # 0 and solutions (u,®,A) of (P) generate

solutions (u,p, \) of the original problem (4.4.1)-(4.4.6). The converse is also
true.

Definition 4.4.1. The triplet (u, 1, A) is called an almost classical solution
of (P) if u,, A exist for t > T for some positive constant T’ and u, 1 are classical
everywhere except at SeNnNS,,5:NnS,, TpNTy fort > 0.

We impose the following conditions on ug, k, o, and the boundary of Q:
(C1) ug is non-negative and smooth in ;

(C2) o(s),k(s) € CY(RY)N L(RY), where RT = {t > 0} and o(s), k(s) > 0
for s > 0;
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(C3) there exist positive constants I and I; such that [ I(s)*ds > tI3 — Ii;
(Cq) (1) So0,S51,52,'p, ' are smooth; (2) I'p,Sp,S; are nonempty closed
subsets of Of2.

Note that (C3) holds if for example I(t) = constant or I(t) is a periodic function

with period T. Moreover we suppose that the following essential hypothesis

holds:

(C5) There exist two planes, which we may choose without the loss of generality
to be z = a and z = b for some 0 < a < b. such that Q N {(z.y.z)]a <
z < b} = A x [a,b] where A denotes a smooth domain in R?. PFurthermore:
SocQn{z<a},S1 c QN{z> b} and g—:=00naﬂﬂ{a§:$b}.

The last hypothesis means that we require that our thermistor have a small eylin-
drical part but we do not impose any restrictions on the rest of the thermistor.
In electrical engineering, this situation corresponds to the so-called narrowing
process, i.e. the case when, due to possible process malfunction, the thermistor
has a part which is much narrower than the rest of the device. Note that the

model considered in [LAC] requires that the whole thermistor have cylindrical

shape.

In was shown in [AX1] that if [~ k(s)/o(s)ds < oo then the problem (P)
under hypothesis (C2), (C4) and (C5) has no steady state solutions for large
value of constant current I. We show in the next section using methods devel-
oped in [AX1] and [ACH] that for the problem (P) there exists a current value,
determined by the narrow region, such that blow-up occurs if the input exceeds
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this value under the assumption of the convergence of [*° k(s)ds or [~ o(s)ds.

4.5. Nonexistence of solutions for problem (P)

Let first o(s) satisfy the following condition:
(R1) [T o(s)ds < o0, 0o'(s) <0, Vs>0.
In particular (R1) implies that o(s) — 0 as s — oco. Then we have

Theorem 4.5.1. Let hypotheses (C1)-(C5) and (R1) hold. There exists
a value I > 0 such that if Jo > I then all almost classical solutions (u,,)) of
problem (P) will blow up in finite time.

Proof. Suppose that we can find an almost classical solution (u,,) of
problem (P) which exists for all ¢ > 0. Then observe that (u, %) is classical in
Qs = {z € A x [a,b],t > 0}. The second equation of (P) and corresponding

boundary conditions imply that for any a < 2 <b
oy oy
I(t =At/au——=—At/ o(u)—=—, 4.5.1
0 =20 [ awFE =20 [ oz (45.1)
where A(z) = {(z,y, z)|(z,y) € A}. Using Holder’s inequality we conclude that
167 < 2ePu(a) [ PwIvel, (5.2
A(=)

where p(A) denotes the usual Lebesgue measure of the domain A. Next we

introduce the function

o
Y(z,1) =f / o(s)dsdzdy
A(z) Ju(z,y,z,1)

where z € (a,b). Condition (R1) and the positivity of u imply that Y(z., t) is
well defined and nonnegative. Taking the derivative of Y (z,t) with respect to ¢
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and using the first equation of (P) we obtain
Y'(z,t) = —/ o(u)udzdy
(2)

-/ VRV + 2o (IS Jdedy,
Since
o(u)V(k(u)Vu) = V(o(u)k(u)Vu) — o' (u)k(u)|Vul?

the assumption that ¢'(u) < 0 and (4.5.2) yield that
Y'(z,t) = —/ V(o(u)k(u)Vu)dzdy
A(z)

o' (u)k(u)|Vul|*dedy — 262 (u *dr
+/Am (kIVudedy — [ NP @IVHEdsdy

(=)

< - V(o(u)k(u)Vu)dzdy — I(t)*

o A (4.5.3)

To deal with the integral of the right hand side of the last inequality we apply

the transform w = [’ k(s)o(s)ds and get

62 32 62 N,
— V(o(u)k(u)Vu)dzd =—/ ( + + wdzdy.
o (o(u)k(u)Vu)dzdy ao \852 T B 032)

Sw

Observe now that since 5= = 0 on {04 x [a,b],t > 0} and the normal to the

cylinder A x [a,b] has no z-component then

wdzdy = 0 4.5.4
-/:4(2) (5’12 ) = ( )

and therefore

52
_ / V(o (u)k(u) Vu)dedy = -ai—z[ / wdxdy].
A(2) z A(z)
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Obviously &(z,t) = [,,,wdzdy is positive for ¢ < z < band ¢ > 0 and is
sufficiently smooth with respect to z. Thus an application of Barta’s inequality

yields that

| 2 (E(2,1)
SRR Tz(z =

where \; denotes the first eigenvalue of the homogeneous Dirichlet problem — 5@:—2

on (a,b), i.e. Ay = (S{_?i)_z‘ So there exists 20 € (a,b) such that

2
82 [/ wd:r:dy] < )q/ wdzdy. (4.5.5)
922 |J (o) A(22)

Substituting (4.5.5) into (4.5.3) with z = zp we conclude that

1(t)*
u(A)

t)? e
Y'(z0,t) < M\ / wdzdy — I(t) < Ap(A)|lkl|Lee / o(s)ds —
A(z0) p(A) ~ 0

Now integrating the last expression with respect to ¢ yields

0 < ¥(20,t) < Y (z0,0) — ;(1—;1) /O I(s)2ds + tAs (A) | Koo /0 ~ o(s)ds,

where

oo
Y (20,0) = / / o(s)dsdzdy.
A(:O) uO(inIsy)

Using (C3) we obtain that

I 2
0 < Y(z0,t) <Y(20,0) + —= (@) t(,u(A) /\1,,4(A)||k||°°/ a(s)ds)

and we conclude finally that a necessary condition for the solution (u,%,A) to
exist globally is

B < o ()P lkllee [ o(s)ds = 12

°"(b—-a)2“ < | o(s)ds := I*.
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The theorem is proved.
Note that the value of I does not deper.d on a particular ug.
We now replace condition (R1) with the following

(R2) Jo” k(s)ds < oo.

Then we have

Theorem 4.5.2. Let hypotheses (C1)-(C5) and (R2) hold. Then there
exists a value I* > O such that if Iy > I* and (u,%¥, ) is an almost classical
solution of (P) which exists for all t > 0 then u is unbounded in Q x {t > 0}.

Proof. Observe first that (4.5.1) which is still vulid under the conditions

of Theorem 4.5.2, and Hélder’s inequality imply that

167 <27 [ ot [ oIvel (4.5.6)
A(2) A(2)
Setting now w = [ k(s)ds we conclude that in 4 x [a,b] functions v and w
satisfy
uy — Aw = Mt)20(u)|Vy|? (4.5.7)

with %—': = 0 on AA x [a,b]. Next for any z € (a,b) we integrate (4.5.7) over

A(z) and using the same observation (4.5.4) as in Theorem 4.5.1 we obtain

0 52
ot d - 57 _ d = 2 \V 2.
6t(/A<,)“ xdy) azz<[4(z)wd$ y) so? [ IR4QI41

Therefore, (4.5.6) and Barta’s inequality yield that for some z € (a,b)

iy < (i) )
_— < = udzdy | + A1 su wdzdy
liollpepu(A) ot A(zo0) Y ! zE(al?b) J A(zo0) Y
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< %(/A(zo) udxdy) + Mu(A) (/Ooo k(s)ds),

where as before A\; = G=ajz- Thus

'aa't( /A o udzdy) > H;HIL(—?:(—A) — A p(A) ( /o = k(s)ds)

and integrating the last inequality with respect to ¢ implies that

1 t oo
udzd Z/ updzdy+ "% (/ I(S 2d5> —tAu(A / k s)ds
/4:1(20) Y A(z0) ° Ho|lpee p(A) 0 ) 11(A) o (

= /A(m) odedy ~ s ”(n—anL—‘im ~ Asl(4) (/ow "‘“"“))'

Therefore if

B 2 Mallollaw ) ([ Ks)ds) o= (27)?

then the solution u is unbounded and the theorem is proved.

Observe that the critical value 7* coincides exactly with the critical value
of the constant current obtained in [AX1]. This is characterized by the follow-
ing property: if the current I is greater than I*, then there are no stationary

solutions of problem (P) and correspondently (4.4.1)-(4.4.6).
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CHAPTER V

SEMILINEAR NONLOCAL PROBLEMS

5.1. Introduction

In this chapter we deal with semilinear partial differential equations involv-

ing a nonlocal term of the type:

ur = Au+u-x(z,u,é(u)), t>0, € (5.1.1)

which has been proposed by Furter and Grinfeld [FUG] to describe population
dynamics processes. Here Q is a bounded smooth domain in R" and ¢(u) is a
continuous functional representing a nonlocal term. We assume explicitly « = 0
on 9N and n > 3. We prove the existence of positive stationary solutions an«
show that such a solution is unique for sublinear case. Stability criteria are then
obtained for some cases of equation (5.1.1).

Our main tools are Leray-Schauder Degree Theory, upper-lower solution
procedures and the Maximum Principle for the proof of existence and Picone’s
identity for the proof of uniqueness. We emphasize that upper-lower solution
methods work only for some special cases and can not be applied in genecral.
This is related to the form of the term x(z,u, ¢(u)) and especially to the lack
of monotonicity. We recall in this regard that it was shown by Fukagai, Ku-
sano and Yoshida, [FKY], that the general upper-lower solution procedure fails
for superlinear local equations since upper and lower solutions then turn out to
be actual solutions, although it is well known that this method works well for
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sublinear local problems. Howeve: in the nonlocal case the upper-lower solu-
tion procedure may fail even for sublinear problems as the following elementary

equation shows. Consider
—Au+n/u=h(z) in Q, u=0 on 09, (5.1.2)
Q

with nontrivial 0 < h(zx) € L°(£2). Then the results from Chapter 111 show that
for some h(z) and large n > 0 the unique solution u must actually be negative
somewhere in Q. Yet equation (5.1.2) admits & = K and u = 0 as an upper-lower
solution pair, with K a large positive constant.

The chapter is structured as follows: we first prove the existence and unique-
ness theorems for the sublinear case and then pass to the superlinear problem.
We then conclude with examiples which include equation (5.1.1) and applications
to biological models. We discuss their stability and also briefly address the linear
case.

5.2. A sublinear problem

We consider the following -:onlocal nonlinear problem in a smooth bounded

domain Q c R", n >3,
—Au+g(z,u)p(u) = f(z,u) in @, u=0 on 9N (5.2.1)

We are interested in positive solutions of (5.2.1). Here f(z,u) and g(z,u) denote
functions with nontrivial dependence on u and ¢(u) is a continuous functional
fromn HJ () to R, whick maps bounded sets to bounded sets. We suppose here
that f(x,t) is sublinear with respect to t and reasonably smooth, that is:
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(F1) tl_i_)ngo igt—t—) = 0 uniformly foxj r € Q;
(F2) f(z,t) is locally Lipschitz continuous with respect to ¢ on R uniformly
for z € §2, where R = {te R | ¢t > 0} and belongs to C°*(Q),0 < a < 1,
uniformly for t € K for any compact K C R+;

(F3) f(z,t) >0fort >0, f(z,t) = f(z,0) for t <0, r € N and there exists

to > 0 such that f(z,t) > 0 for 0 < t < to.

Note that condition (F1) includes the case when f(z,t) vanishes for large ¢.
The functional ¢ represents the nonlocal term in problem (5.2.1) and we

require that ¢(u) satisfy

(21) #(0) = 0;

(®2) d(u) > ¢(v) for u,v € HF(R), v > v in Q with equality holding only if

u = v.

We suppose that g(z,t) is also locally Lipschitz continuous with respect to
t uniformly for = € 2, belongs to C%*(2), 0 < a < 1, uniformly for t € K for

any compact K C R” and satisfies

(G1) g(z,t) > 0fort > 0,z € Q, g(z,t) = g(z,0) = 0 for t < 0,z € @ and
g(z,t)/t is Lipschitz continuous at t = 0 with respect to ¢ uniformly for z € €2
(G2) there exists 0 < 8 such that limt_,wﬂfa‘—‘—l = 0 uniformly for z € €.
Observe that since we seek pasitive solutions, the behaviour of g(z,t) and f(z,1)
for t < 0 is irrelevant. If we are interested only in nonnegative nontrivial solu-

tions of (3.2.1) then the condition on the smoothness of g(z,t)/t at t = 0 can he
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dropped. We assume finally that the positive solutions of
—Au + ¢(u)g(z,u) = f(z,u) +tw in Q, =0 on 09

witht >0and 0 <w € CS°(Q2), are separated from 0. As examples of explicit
conditions which suffice for this to hrld, we state:

(F4) For 0 < u € H3(2) N L*>=(2)

where K > 0 and 0 < s < 1 and both K and s are independent of the particular
u;

(H1) there exist positive constants M and ! > 0 such that for any 0 < u € H§(R)

| (z,u)]
| ¢(u>gu ’,‘Ls‘ < Mijullie.

3 }:‘oo

That these conditions are indeed sufficient will be shown in the sequel. In ad-
dition we remark that most of the conditions on f, ¢ and g were motivated
by the examples that follow, and were chosen to minimize technicalities in the

presentation. The given proofs almost invariably hold in more general situations

with no changes.
5.3. Existence of solutions for sublinear case
First we prove the following lemma.

Lemma 5.3.1. Let 0 < i« € H}(Q) N L*°(S2) solve

~Au + Ag(z,u) = f(z,u), A=0 (5.2.1)
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under conditions (G1), (G2), (F1)-(F3). Then ||z||{;~ < C with C independent

of u.
Proof. Since u € H}(Q) is positive then g(r,u) is also positive in Q and
we have that —Au < f(z, #). Condition (F1) implies that for any ¢ > 0 there

exists C. > 0 such that f(z,u) < cu + C.. We thus have —Au — su < C. and

applying Theorem 2.3.1 we conclude

lulleee < Cr(lfullez +1) < C

for some constants C,, C independent of u.

Other proofs may also be easily given using bootstrapping arguments and

results in, e.g., [ADN].

We next establish the existence of positive solutions.

Theorem 5.3.2. Problem (5.2.1) has a positive solution u € HJ(2) N
L>(Q) under assumptions (F1)-(F4), (®1), (®2), (G1), (G2) and (H1).

Proof. We consider a modified problem
—Au+ Atg(z,u) = f(z,u) in Q, u=0 on I (5.3.2)

A = ¢(u) (5.3.3)

where A+ denotes as usual the positive part of A. Multiplying first (5.3.2) by

the negative part v~ of any nontrivial solution u we obtain using (G1)

—-/ |[Vu~|? =/f(:z:,u)u" >0
Q Q '
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and thus all solutions of (3.3.2) in HJ(Q) N L>=(Q) are nonnegative and A =
A+, Since moreover g(z,t)/t is Lipschitz continuous at ¢ = 0 with respect to ¢

uniformly for z € £, we rewrite (5.3.2) as
—Au+ A(M>u = flz.u) >0
u

and by Theorem2.3.5u € C Le(Q)) and therefore the Strong Maximum Principle
implies that u is positive.

We define the operator T(A,u) in the following way
1 - -
T(Au) = {50 +6(u), =A* (=2)Hg(z,u) + (=A) 7 (=, 4)}

where (—A)~! denotes the inverse of the Laplace operator with homogeneous
Dirichlet boundary conditions. It is easy to see that fixed points of T yield

solutions of (5.2.1). We define also the space
H =R x (H}(Q) n L=(Q))

with norm
N, Wl = (A% + Hulliyg)”2 + ||ulfzee.

We show first that T" acts from H to H. Let T(\,u) = (g, v). Then it is evident

that the p belongs to R. Next, since u € HJ ()N L°(R) then by Theorem 2.2.9
lollag < Cllg(z, w)llz2 + (| f (2, u)llL=)
and (F1) and (G2) imply that

ol my < CUIWP|L2 + luilzz 5 1) € C(lullfe + llullze +1) < oo
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Finally by [ADN], [GIT]

llollze < C(llg(z, ulllze + 1 f(z, wdlize) + llullpy

for large p. Thus since u € L°°(Q) we conclude that v belongs to Hg (Q)NL(82).
To show that T is continuous consider a sequence {(An,un)} from H such
that (An,un) — (A, u) in the norm of H as n — oco. If we put T(\n. un) =

(Kn,vn) and T(X,u) = (¢,v) then the continuity of ¢ yields that

it — 1l < 3 1n = Al [@(un) = ()| = 0

as n — oco. Moreover

[ 19—t

< /Q Aot lg(z, un) ~ gz, w)] [vm = vl + [An — Al /Q lg(z, w)] Jom — o
+ fa £ (2, un) = F(@,u)] lon — vl

< C(/ |un — u} lvn — v| + | An — )\I/ |vn ——vH—/ fun — u| |vn —vl)
Q J 82 Q

< Cljv — vallr2(llu - uUnllpz + A = 2nl + W — unlly2)-

Therefore {|vp — vijgy — 0 z5 n — co. Finally
|vn — vl|lLe=

< C(|IAg(z,u) = Ang(z, un)llLe + |1f(z,u) — f(z,un)iles) + llon = vl

< C([An = M+ Hlu = unlize + |l = unllLe) + flvn = viluy
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< C(IAn = M + llu — unllfe) + Hvn —vllgg — 0

as n — oo, and we conclude that T is cantinuous from H to H.

Finally we prove that T is a compact operator. Let {(An,un)} be a bounded
sequence from H. By continuity g(z,un) and f(z, 1) are bounded in L=°(§2) and
by Theorem 2.3.5 {v,} is bounded in C1>(Q). Thus we can find a subsequence
of {(tn,vn)} which converges in H.

Next, we employ Leray-Schauder Degree Theory to show the existence of
fixed points of T. Note first that all positive solutions (i.e. by (G1) all solutions)
of (A u) = vT(\, u) are bounded in H for a2l 0 < v < 1. Indeed the equation

(\,u) = vT(A, u) implies that
—Au + vig(z,u) = vf(z,u) (5.3.4)

A m ;?1:11()\ + é(u)) = 0. (5.3.5)

Then multiplying {%.7 i} by u and integrating over § yields

/QquP < ufgf(x,u)u

and therefore by (F1i)

lellfy < | (en + Cow) < elfullfe + Collulles.

Choosing ¢ small, we obtain that ||ul|gz; < C. Moreover Lemma 5.3.1 implies

that ||ul|Le < C. Finally (5.3.5) yields that

Ml-3)=36w)SC
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and we conclude that A is bounded. A homotopy property (L3) of degree implies
that

deg(I — T, Bgr,0) = deg(I, Br,0) = 1 where I is the identity operator and Bg
denotes & ball in H of large radius K. We remind the reader that here deg

denotes the Leray-Schauder Degree.

Next, we consider the operator equation

(A u) =T(\u) + (0, v) (5.3.6)

with ¢ > 0 and v chosen to be the eigenfunction corresponding to the first
eigenvalue p; of (—A) with homogeneous Dirichlet boundary conditions. € .ice
again (G1) implies that all solutions of (5.3.6) are positive. Equation {5.2.6) is

equivalent to the system
—Au + Mgz, u) = f(z,u) + v (5.3.7)

A= o(u). (5.3.8)
We want to zhow that there exists r > 0 such that any solution of (5.3.7), (5.3.8)
satisfies ||(A, u)||g > 7.

By Theorem 2.4.5 we have

iy 4 sap BEIEDY) [—Au + ¢(u)g(z,u)]
zEN u €N u
it [f(rc,u) N tmv] S inf [f(w,u)]
€N (7] U €N 73

and by (F4) and (H1) there exitiz K > 0 such that

S K1 + M“'U. y LX)
Tallim I
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therefore ||u||L= > C. Thus there exists a constant r > 0 such that {{u|lginre 2

|lu||z~ > 7, and so any solution of (5.3.7), (5.3.8) with ¢t > 0 satisfies ||(A, u)||z >

Tr.

Thus choosing a small r and constructing a suitable homotopy we obtain
deg(I — T, B,,0) = deg( — T — t(0,v), B,,0) = 0.
The additivity property (L2) of the Leray-Schauder degree implies that
deg(I — T, Br\B,,0) =1

and we conclude by (L4) that the operator T has at least one fixed point in the
aunulus Bg\B,. We must show that if (A,u) is one of these fixed points then
both A and u are nontrivial. If A = 0 then by (5.3.3) we have ¢(u) = 0 and
therefore u = 0. Thus it follows that ), and therefore also u, is nontrivial and
consequently u is a positive Hj () N L(Q)-solution of (5.2.1).

Remark 5.3.3. It follows from results of Chapter II that u is actually

‘mooth. Indeed, we rewrite (5.2.1) as
—Au = —¢(u)g(z,u) + f(z,u) in Q, u=0 on N (5.3.9)

and since u is bounded f(z,u) and g(z,u) are also bounded by (F1) and (G2).
Therefore all conditions of Theorem 2.3.5 hold and u € C1'*(2) for some 0 < a <
1. Next, condition (F2) and conditions on g(z,t) imply that f(z,u) and g(z,u)
are smooth enough to belong to L/2(Q) for some ¢ > n/2 and we conclude
by Theorem 2.3.6 that u € H ,20‘2 (€2). The same conditions on f and g and the
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smoothness of u imply that the right hand side of (5.3.9) belongs to C*(Q)

and finally we obtain using Theorem 2.3.7 that u € C%*(Q).
5.4. Uniqueness of solution for sublinear case

We turn next to the investigation of the uniqueness of the solution of (5.2.1).

Assume that the following holds:

g(zvtl) g(xat )—g(m3tl)
(G3) 1, - iz — 11

<0 for any 0 <t <ta.

We also recall that for the problem Au = f in Q, u € H}ii}}, where A is a
differential operator, functions v,w € H!(2) are called sub- and supersolution

respectively if they satisfy
Av< f in Q, <0 on 0

Aw > f in , w>0 on 9.

We need the following technical lemma.
Lemma 5.4.1. Let the sequence {z,}, z, € C*(Q), n = 1,2,..., converge
in C2(2) toz € C*(2) and let 0 < 2, < zin Q. Let Q, ={z € Q | =(x) > €}

for € > 0. Then

lIim lim zﬁ [(_Az") - (—Az)] = 0.
n—oo £—0 Q. Zn z

4

Proof. We show first that

im [ 22 [(-—Azn) B (—Az)] _ /ﬂzi[(-mn) ~ (~—Az)]

e—0 Jo, Zn z Zn z
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uniformly in n. Indeed since |z,/2z| < 1 and (—Az,) are uniformly bounded we

conclude that

fua. ™
Q\Q,

and the uniform convergence follows.

(—Azy,) _ (_Az)

Zn z

< [ |zn(—Azn)| + / |za(=Az)] < Ce
Q\Q, Q\Q.

Next it is easy to see that

lim . (—Azﬂ) - (—AZ) =0
n-—rco Q. n Zn z )

Thus applying the theorem about the commuting limits we obtain the statement
of the lemma.
Theorem 5.4.2. Let f(z,u), g(z,u) and ¢(u) satisfy the conditions of

Theorem 5.3.2 and (G3). Assume in addition that for any 0 < ?; < t2

f(z,ta) = fz,t) _ f@mt) = £(,0) _
to — tl 3] -

Then problem (5.2.1) has unique positive solution from HJ () N L>=(Q) .
Proof. We proved already existence and positivity. Suppose that there
exist two positive solutions u, v of problem (5.2.1), and assume without loss of

generality that ¢(v) > ¢(u). Then (5.2.1) implies
—Av + g(2,v)$(u) < f(z,0). (5.4.1)
Consider now an auxillary problem

—-Aw + g(z,w)p(u) = f(z,w) in Q, w=0 on N (5.4.2)
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where u is the solution of (5.2.1). Inequality (5.4.1) shows that v is a subsolution
for problem (5.4.2). Next, (G1), (G3) and (F1) imply that there exists a linear
function which bounds ¢(u)g(z,?) from below uniformly in x and another li;leax-
function with lesser slope which bounds f(z,t) from above uniformly in x. Thus
we can find a large constant N satisfying g(z, N)¢(u) > f(z,N) and N >
max{||v||ze, ||}lL=} which will be a supersolution for (5.4.2). Since f(x,t),
g(z, t) are locally Lipschitz continuous we can find M > 0 such that the operator
f(z,t) — #(u)g(=,t) + Mt is monotone on the order interval < v, N >. We define

the operator S which acts from H}(Q) to H}(R2) in the following way

Sr=p & —Ap+g(z,r)p(u) +Mp= f(z,r) +Mr in Q, p=0 on IN.
(5.4.3)
We show first that S maps the interval < v, N > into itself. Indeed ifv <r < N

then subtracting (5.4.3) from (5.4.1) and taking the scalar product of the result

with (v — p)* we obtain

r

Ty — +2 ] v — +12
- p)|+W/Q|( p)*]

< ¢(u) /Q(f(w,v) — f(z,m) — g(z,v) + g(z,7) + M(v —r))(v - p)* <0.

and therefore p > v. A similar argument shows that p < N and moreover S is
monotone on < v, N >.

Next we show that S is continuous. Let us consider a sequence {rp}, n =
1,2,..., 7n € H3(R), 7n = 7 as n — oo in H} () aud put Sr, = p, and St = p.

85



Then the local Lipschitz continuity of f anu g implies that

2 2
/Q|V(p-pn)| +J\/I/Q|P—Pn| sc/n(r—r,,)(p-pn)-

Thus ||p — pnllgg £ Cllr — 7alle2 and hence pn — p as n — oo in H3 ().
Note that since the inclusion of H3(Q) into L?(2) is compact then the previous
argument shows that S is a compact operator.

We construct a sequence {w,} as follows:
— AW, +g(z, Bp—1)p(u) + Mbn = f(2, Bn—1)+M®L,-1 in Q, 0, =0 on o0
for n = 1,2, ... with @ = N. Then by monotonicity we have

Wo = Wy > Wy > ... SV

and we set w = nli_x}r;ﬁ,,. Observe now that w solves /5.4.2), w > v and by
monotonicity if v < p < N is the solution of (5.4.2) then p < w. Thus since
N > |ju||L., we have v < w. Furthermore the same argument as in Remark
5.3.3 implies that w € C%(Q).

We will show that w = v and to do this we will use Picone’s Identity in the

following form, [ALL]:

where ¢ € C5°(f), ¥ >0inQ and ¥ € C%(Q).

Let {u,} and {w,} be two sequences of functions frem C§(£2) such that
up — u and w, — w in C?(Q) as n — oo, with 0 < wn — u, < w — u. Remark
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5.3.3 allows us to apply Picone’s identity to w, — u, and u and we obtain by

direct calculation:

w2l ¥ tn
Q u

[P

(wn — uy)?

(—Au)

= [ 190w - -

Q

Wp — Uy u
Define Q. = {z € @ | w(zx) — u(z) > ¢} for ¢ > 0. Then we have by the

countable additivity of Lebesgue’s integral

L = e
- uﬂ U

= lim/ (wq — un)"’[ A(w,, _‘l B _Au}

e—0

and equations (5.2.1) and (5.4.2) imply

~A(wn —Un) —/_\u}

Wy — Un U°

R =]

. —y
R

- [ fonmvop [ttt ot 0]

+ /Q (=’ [f(w, W) = S fte, u)]

w—u u

+ S(u)(wa — Un)? [ _ g(z,w) — g(z,u) + g(z,u)}
Q.

Since w > u in . then the conditions of the theorem and (G3) yield that for

T € Q.

f(.’L','LU) —f(:r:,u) _ f(z,u) _f($70) <0

w —Uu U
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_g(z.w) —g(z,u)  g(r.u)
w—u ' u

<0

and thus
[efe(z52)
Q u

Applying Lemma 5.4.1 and Fatou’s Theorem we can pass now to the hmit as

2

. Y —_3 W, —Uu ) ——A nw — u)
< lim (wWn — un)” (e nlo »_.__(_.V_;_.,,A.__, .
£—=0 o Wy — Uy u u

(5.4.4)

n — oo and conclude by (5.4.4) that

/ u? [v(w — “)] <0
Q u

and therefore w = u. But then we also have u > v and ¢(u) < o(v) which nnply

A

that v = u, and the uniqueness follows.

5.5. An example

In this section we consider equation (5.2.1) with g(r,u) = u”, o = 1,if

u>0and g(z,u) =0if u <0, ¢(u) = fQ u and f(z,u) = (v + 7)" where 7 22 0

and 0 < v < 1, 1e.

——Au-}-u"‘/u:(u—}-r)’ in Q uwu>0in Q, u=0 on JIN (L.5.1)
Q

In this case ¢(u) and g(z,u) satisfy hypotheses (®1), (®2), (G1), (G2) and

f(z,u) = (u+7)" satisfies (F1) and (F3). Note that (u+ 7)” is not in cOURT)

loe

but it is in C?JZ(R+)a 0 < v < 1 and this smoothness is sufficient fer the proof

of existence. We also note that hypothesis (F4) holds, since

. ) i
lnf (_u_j-__-l— Z 1nf E__ 2 —_-_}_l_—‘—'
z€N u €N U el '
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Finally || [, uilL= < ClluliL= and (H1) holds. Therefore we can apply Theorem
5.3.2 to obtain the existence of a positive solution of (5.5.1). Moreover since
g(z, t) satisfies (G3) for t > 0, Remark 5.3.3 holds and since monotonicity can
replace smoothness in the argument of Theorem 35.4.2 we conclude that the
positive solution of (5.5.1) is unique.

5.6. A superlinear problem

In this section we study the situation when f(z,t) has a superlinear growth
as t — oo. In particular let f(z,t) satisfy the earlier conditions (FZ)-(F3) and
instead of the sublinearity at infinity we assume that the following holds:

(F5) ‘1_1’1{.10 ﬂ—f—,—'l = r(z) uniformly for € 2 forsome 1 < s < (n+2)/(n=-2), n >
2 and 0 < r(z) € C%*(Q).

We consider first the case when f(z,t) has the following behaviour near
t=0:

(F6) f(z,0) = 0 and t}-ig-lo ﬁﬁt—tl < p1, where p, is the first eigenvalue of (—4)
with homogeneous Dirichlet boundary conditions.
We begin by formulating the following local results, which show that if the

nonlocal term is small, existence can be proved immediately from the local case

by routine perturbation arguments.

Proposition 5.6.1. Let € = {w|w € C*(f2), w =0 on JQ} equipped
with the C! norm and let f(z,t) satisfy (F2), (F3), (F5), (F6). Set F(u) =
(=AY '(f(z,u)). Then F: C — C, F(u) > 0 and there exist constants r, R >0
such that deg(I — F, BR\B,,0) # 0, where B, denotes the open ball of radius a
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in C.

Proposition 5.6.2. There exists § > 0 such that if Fy : C = Cisa
continuous and compact map with |[Fj(v)||c: < & for v € Bg, v > 0, and the
conclusions of Proposition 5.6.1 hold for F, then there exists 0 < u < By such
that u = F(u) + Fi(u).

The proofs of these propositions can be found in [ANZ].

Now we state our next theorem.

Theorem 5.6.3. Consider problem (5.2.1) under conditions (F2), (1°3),

(F5), (F6), (21), (®2), (G1). Let

H(=A)"Ho(v)g(z,v))llcr <8 for 0O < v e By

—_—
ot
<
—

—

where § and R are positive constants from Propositions 5.6.1 and 5.6.2. Then
there exists a positive solution of problem (3.2.1).

Proof. The result of the theorem follows immediately from Propositions
5.6.1 and 5.6.2 if we put Fiv = —(—=A)"}(&(v)g(z,v)).

Remark 5.6.4. Note that in many cases condition (5.6.1) can be casily
checked. Indeed if we consider ¢(v)g(z,v) = nv [, v or #(v)g(z,v) =1 [ v with
n > 0 then (5.6.1) holds for small 5. Unfortunately we were not able to prove
the existence of solutions of the superlinear problem in the general case, i.e. for
n large, but we conjecture that the statement of Theorem 5.6.3 will be still true.

Next we consider the case when f(z,0) > 0. We will need the following

local result

90



Proposition 5.6.5. Let f(z,t) satisfy (F2), (F3), (F5) and f(z,0) > 0.

Then the problem
—Au=Af(z,u) in Q, u=0 on N

has a positive solution in C for small ).

This result is well known, see for example [LIO] and references therein, but we
were unable to find an explicit proof and thus we sketch one for the reader’s
colvenience.

Proof. Note first that by Theorem 2.2.3 the problem —Awv = f(z,0) has a
unique solution in C such that v > 0 in Q. So we can find two balls B, and Br in
€ such that v € Bg\B, and therefore deg(I — (—A)"Y(f(z,0)), BR\B-,0) = 1.

We define now Fiw = (=A)"f(z,\w) — f(z,0)] with A > 0. Then the

Lipschitz continuity of f(z,t) and Theorem 2.3.4 imply that
Fiw|ler < CUIFiwllze + [1f(z, Aw) — f(z,0)]|L>)

< Cllf(z, dw) — f(z,0)||re < CAJjw]|= < KA

for w € Bgr with K > 0. Thus if we choose A small enough we can apply
Proposition 5.6.2 and conclude that there exists a positive solution of —Aw =
f(z, w) in C. Putting now u = Aw we obtain the statement of the proposition.

Remark 5.6.6. We recall that the result of Proposition 5.6.5 (and conse-
quently what follows) can not hold in general for all A > 0. To see this, choose
for example f(z,u) = u® +¢ with 1 < s < (n + 2)/(n — 2) and € > 0 and ob-
serve that if v is the eigenfunction of (—A) with Dirichlet boundary conditions
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corresponding to the first eigenvalue then we have:

plf ve = / v(—Au = ,\f v(u® + &),
Q Q Ly

Choosing X so large that 2p1t < A{t* + ¢£) then gives [, vu = 0, contradicting
the assumption u > 0.

Consider now the parametrized version of (5.2.1)
—Au+ g(r.u)d(u) = Af(z.v) in Q. u=0 on 0N (5.6.2)

Then we can prove the following theorem.
Theorem 5.6.7. Let f(z,t) satisfy (F2), (F3), (F5) and f(«,0) > 0, ¢(u)
satisfy (®1), (®2) and g(z,t) satisfy (G1). There exist A* > 0 such that problem

(5.6.2) with A < A* has a positive solution.

Proof. The proof proceeds the same way as in Proposition 5.6.5 except

that we put now

Fiw = (=8 [z, 3w) = £(z,0) - A=) )

and note that (G1) implies that

|

for small A and w € Bpg.

stz dwin)|| < ol

gz, \w é
e < —
Aw ||C||w“c -2

5.7. Applications to niathematical biology
As it was mentioned before the study of semilinear equations was inspired
by the model which describes single-species population dynamics with dispersal.
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So we suppose that the density of the population u(z,t) satisfies the equation:

ue = Au+u- x(z,u,¢(uv)), t>0, z€ (5.7.1)

subject to suitable boundary and initial conditions. The function x represents
the "crowding” effect and ¢ is a continuous functional of u. In what follows we
investigate steady state solutions of (5.7.1) with homogeneous Dirichlet bound-
ary conditions and various x.

Example 5.7.1. We start by considering x(u) = a(1 —u) — Jo u™ where
a, m are positive constants such that a > gy and 1 <m < 2. In the notations
of Section 5.7.2 we have that f(z,u) = au(l —u) if 0 <« <1 and f(z,u) =0
if u> 1, g(z,u) = u and ¢(u) = [, u™. Then ¢(u) satisfies (®1)-(22), f(z,u)
satisfies (F1)-(F3), but not (F4). Nevertheless we still can ensure that solutions
of (5.3.6) are bounded away from zero. Indeed, repeating the argument from

Theorem 5.3.2 we obtain
w1+ Mljullfe 2 @ — allul|ze

and thus {|ullze~ > C. Therefore the arguments of Theorems 5.3.2 and 5.4.1
hold and we conclude that in this case (5.7.1) has a unique positive solution ug
such that uo < 1.

The natural question which arises is that of the stability of uo, and in
order to deal with this problem we will apply the spectral theory for nonlocal
problems elaborated in [FR1]. Note that it was shown in [FEI], [FR1] that in
general the linearized nonlocal problems can have very complicated dynamics,
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and to simplify matters we first guarantee that the linearized eigenvalue problem
does not have complex eigenvalues and then investigate the stability.

To do this we will need the following results the proofs of which can be
found in [FR1]. We consider the one-parameter family of linear operators

Lyu = —Au+ bu+ r;z,/)/ pu, u€ HY(N)
Q

with ¥, € C(R). Let {vx(n)}, k = 1,2, ... denote the complete set of eigenvalues
of L, and {wi} be the complete system of eigenfunctions of Lo. Then we have

Proposition 5.7.2.

o (L) (/)

2. Let I < IR be such that vx(n) is real for n € I. Then v (7n) does not change

sign for n € I.
Proposition 5.7.3. If the product (fQ cpwk> (jfz 1/)wk) does not change
sign for all k then all vx(7) remain real for all real 7.

We start by writing the linearized operator for problem 5.7.1 at 1o which

is of the form

Lmv=—Av+bv+muo/ u(')"_lv
1]

where b(z) = —a(1—2uo(z))+ [ ud*. If m = 2 then the operator Ly is selfadjoint
and all eigenvalues of Lovg = vi(2)vk are real. If 1 < m < 2 then the situation
becomes more complicated. We recall that if we let {w} be the complete system
of eigenfunctions of the corresponding local operator Lg, i.e. Lowy = —QAwg +
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bwy = Axwg, and if up is such that the following condition holds:

(/uowk></ u(',"—lwk) does not change sign for all k (5.7.2)
Q Q

then Proposition 5.7.3 implies that all eigenvalues of L., are real. Unfortunately
condition (5.7.2) is very hard to check explicitly except that for m = 2 it is
automatically satisfied.

Assuming that (5.7.2) holds, since w; > 0 and ug > 0 in Q2 we conclude that
(fn uowk) (fﬂ ug‘"lwk> > 0 for all k, and Proposition 5.7.3 yields that
vi{m) > Mg for all k, and moreover vi(m) > A;. Thus if A\; > 0 we conclude
that uo is an asymptotically stable solution of the nonlocal proklem.

Example 5.7.4. Next we consider the problem (5.7.1) with x(z,u) =

p(z)u?™! —n [ou,ie.
—Au—i—nu/ u=p(z)u? in Q, u=0 on JIN (5.7.3)
Q

where 7, v are positive constants, 1 < v < 2%2 and 0 < p(z) € Cc%2(Q). In
this case f(x,u) = p(z)u? is superlinear and satisfies (F5), (F6), and it follows
from Theorem 5.6.3 that problem (5.7.3) has a positive solution for small n. If

we now put w = Au, then equation (5.7.3) becomes
—Aw + -}w/ w=A""Tp(z)w? in Q, w=0 on IQ.
Q
Thus for any general o by choosing A = n/ng we obtain that w sclves

—Aw-l—now/w=/\1_7p(a:)w'7 in €, w=0 on OJ9.
Q



Note that since 771 was small it follows that \1=7 will be large. Therefore we

conclude that for the parametrized version of (5.7.3), i.e (5.7.3) with right

hand side which 1s equal to vp(z)u”, for any 71 there exists 1p such that for

v > vg our problem will have a positive solution.

Example 5.7.5. Our last example deals with the case when \ (@ u) =

a— Jo p(z)u(z)dz. Let us consider the problem

-—Au-i—uf plz)u(z)dr = au in Q. u=0 on O, (5.7.1)
Q

with 0 < p(z) € co (), p(z) #0 and a > ju1 where jip is the

first eigenvalue

of —Au = pu with homogeneous Dirichlet boundary conditions. The right hand

side of problem (5.7 .4) is now linear with respect to u and we can not apply

directiy Cealis Sections 5.3, 5.4 and 5.6. But it is possible to check that the

first eigenfunction 0 < n1 of =Lou - i with Ja p(x)vy (x)de = a— p solves
(5.7.4). Moreover using the same argument as in Theorem 5.4.2 we can show

that this solution is unique.

The stability analysis for problem (5.7.4) shows that the nonlocal term

plays a stabilizing role. Indeed, using once again ideas from FR1] we write the

linearized operator at v in the form

Lv=—-Av+ (Lp(z)vl(z)dm — a)v + v / p(z)v(z)dz
. Q
= —Av—mv+n Lp(x)v(z)d:r.

Let {vk}, F = 1,2.. be the complete system of eigenfunction of the opera-

tor —Av — v = AV with the corresponding eigenvalues {X }. Then since
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(fn vf) (fﬂ p‘()]) > 0 and (fn vlvk> (fn pvk> = 0 for all £ > 1 we conclude

again by Proposition 5.7.3 that all eigenvalues {v} of the operator L are real.

Moreover Proposition 5.7.2 implies that v; > A; =0 and vz = At for £ > 1 and

once again v; is asymptotically stable.

97



CHAPTER VI

DISCUSSION

In this thesis we have studied some partial differential equations with non-
local terms. We establishcd results about existence, blow-up, positivity and
uniqueness of the solutions of these problems. We also consider applications
to the nonlocal microsensor models and mathematical biology. The previous

results and models considered in [ABHLR], [AX1], [FUG] were improved and

generalized in the following aspects:

[1] The results of Chapters III and IV give mathematical justification to the
numerical calculations presented in [ABHLR]. Since only positive solutions of
the nonloca.i system describing processes in thermistors have physical sense we
studied the problem of positivity of solutions. As far as we’are aware this ques-

tion was not addressed before. The methods which we applied differ essentially

from the classical ones.

[2] We answered the conjecture formulated in [AX1] about the blow-up of prob-
lem (P) (Chapter IV). We formulated conditions under which the blow-up of
temperature occurs. In electrical engineering the situation considered in this
chapter corresponds to the narrowing processes and the estimation of the value
of current for which the blow-up occurs is of some importance in applications.

[3] We generalized to the n-dimensional case and to Dirichlet boundary condi-
tions the model suggested in [FUG] describing the single-species populational
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dynamics with nonlocal crowding effect (Chapter V). We established the exis-
tence of positive stationary solutions and discussed their stability.

Since these nonlocal problems are just starting to attract widespread atten- -
tion there are several open questions in this area. We conclude the thesis by
mentioning some of them:

[1) We obtained in Chapter III the formula for the critical value of the parameter
7n for which (3.1.1) has positive solutions. Unfortunately this formula depends
on the Green’s function of the domain and thus is not usually explicitly known.
Therefore it would be useful to obtain an estimate from below for this critical
value of 7.

[2] It would be interesting to consider nonlocal thermistar problem (4.2.1), (4.2.2)
with various boundary conditions, in particular mixed or nonlocal conditions.
[3] In Chapter V we showed the existence of positive solutions of equation (5.2.1)
with certaiu restrictions on the norm of the nonlocal term. We were not able to

show existence for the general case but conjecture that this is the case.
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