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Chapter 1 

Introduction

1.1 Computer Games Research

Games such as chess have long been accepted as useful research test-beds in com

puting science, for many reasons. First, games have well-defined rules and clearly 

specified goals, which makes it easier for researchers to measure progress and per

formance. Second, games can be formally specified and provide non-trivial do

mains to simulate real-world problems. The relative success obtained by game- 

playing systems can be applied to problems in other non-game areas. In addition, 

developing a game-playing program requires tire application of theoretical concepts 

and algorithms to practical situations. By using games as testbeds, many valuable 

lessons can be obtained while studying the thought processes of the human brain. 

These lessons will help researchers to reach tire ultimate goal for AI, constructing 

computers that exhibit the intellectual capabilities of human beings.

Over tire past 40 years, amazing progress has been made in the field of games. 

Today, computer programs can beat the strongest human players in many areas. As 

early as in 1979, the Backgammon program BKG by Hans J. Berliner beat tire hu

man world champion Luigi Villa [3]. In 1994, a research team lead by Jonathan 

Schaeffer developed tire checkers program Chinook at tire University of Alberta, 

which won the world man-machine championship [23], The Othello program Lo- 

gistello by Michael Buro [5], which is based on a well-tuned evaluation function

1
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and machine learning techniques, beat the world champion Mr. Murakami with 

six straight wins 6-0. Perhaps one of the most remarkable achievements is that die 

chess program Deep Blue defeated tire world chess champion Garry Kasparov in 

1997. Since then, the effectiveness of brute-force search has been confirmed in 

many games. In addition, methods developed in game playing systems can also be 

used in several areas within mathematics, economics, and computer science such as 

combinatorial optimization, theorem proving, pattern recognition and complexity 

theory [8],

1.2 Why Study Computer Go?

Go is a two-player perfect information game. Two players compete against each 

other on a board with 19 by 19 lines for a total of 361 points. Each player puts 

his stones on the board and seeks to occupy territory. Once the stones are put on 

the board, they cannot move again, but may be removed if drey are completely 

surrounded by the opponent’s stones (captured). The elegant and fascinating com

plexities of Go arise from the struggle to occupy the most territory. After a game, 

the player who has the most territory wins die game.

Although many AI methods have been successfully applied to other games, they 

do not enable the AI community to make a strong Go program. There are two major 

features that make Go different from other games:

1. Go has a very high branching factor. A Go game normally runs over 200 

moves. Each turn offers roughly 250 choices of legal moves on average. The 

search tree is huge and it has been estimated as about 10160 nodes. Such a 

high branching factor makes a deep brute-force search mediod unfeasible for 

Go.

2. It is very hard to make a good evaluation function for Go. For Chess and

2
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other games, it is comparably easy to evaluate each piece’s value. In contrast, 

deciding whether two stones have similar values in Go can involve a com

plicated reasoning process. Humans use many powerful reasoning methods 

and a lot of knowledge, but computers have difficulties to follow the same 

approach. Currently no Go program can reach a reasonably high degree of 

accuracy by using a static evaluation function. Dynamic evaluation is also 

hard since there is no easy way to convert human knowledge and experience 

to a program. So far, no clear theoretical model for evaluating Go positions 

has emerged.

Due to the above reasons, the brute-force search techniques used in other games 

do not work in Computer Go. As early as in 1978, Berliner predicted [2]:

. . .  even if a full-width search program were to become World Chess 

Champion, such an approach cannot possibly work for Go, and this 

game may have to replace chess as the task par excellence for AI.

Although much encouraging progress has been made in the past few decades, the 

strength of current Computer Go programs is still relatively weak. Human amateur 

players of 8-kyu level (beginner) can beat them easily.

In general, there are plenty of research problems and a large variety of possi

ble methods to investigate in Computer Go. To understand how Go knowledge is 

gained, processed and used by human players may provide fruitful lessons which 

lead not only to progress in Go programs, but can also have wide applicability to 

other applications such as pattern recognition, knowledge representation, machine 

learning and planning. Thus, Computer Go will remain an attractive and challeng

ing domain for AI research for a long time.

3
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1.3 Safety of Territory and the Weakly Dependent 
Region Problem

The objective of this thesis is to develop search-based methods to recognize safe 

territory in the game of Go. The project builds on Miiller’s previous work [14], 

The effort is concentrated on developing a high performance safety solver for Go 

endgames.

In practice, although most games of Go last roughly 250 moves, the difference 

in final score of a game between two strong players usually turns out to be small. 

Therefore, no matter how well a program performs in tire beginning and the middle 

of the game, a failure to recognize the safety of territories in tire endgame can 

completely change the game result. Such mistakes even happen occasionally in tire 

games of professional players.

Recognizing the safety of territory is similar to solving a Life and Death prob

lem, but there are several differences. First, a Go program needs to recognize Life 

and Death throughout the whole game. However, recognizing safe territory nor

mally is used in the endgame or close to the endgame of Go. Second, the goal of 

the Life and Death recognition is to prove whether target stones in a specific area 

(region) can live or not. However, to prove that a territory is safe, not only the sur

rounding boundary stones need to be proved safe, but also the surrounded region 

needs to be proved safe. This means that no opponent stones can live inside. There

fore, proving territory safe needs to deal with a more complicated goal. Figure 1.1 

shows an example where the white surrounding stones are safe but the surrounded 

region is not.

Several methods have been proposed to prove tire safety of territory and stones. 

Benson proposes an algorithm for unconditionally alive blocks [1], It identifies sets 

of blocks and basic regions that are safe, even if the attacker can play an unlimited 

number of moves in a row, and the defender always passes. Muller [14] defined

4
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Figure 1.1: Safe white stones, non-safe white region

static rules for detecting safety by alternating play, where the defender is allowed 

to reply to each attacker move. Muller also introduced local search methods for 

identifying regions that provide one or two sure liberties for an adjacent block [14].

The state of the art safety solver in [14] implements Benson’s algorithm, static 

rules and a 6 ply search in the program Explorer. However, there are still many 

remaining problems in recognizing territory safe. One of them is the Weakly De

pendent Regions problem. Towards the end of a Go game, tire board tends to be 

divided into many regions. If two regions with the same color share only one bound

ary block, we call these regions Weakly Dependent Regions. Figure 1.2 provides an 

example. In this figure, the common boundary black block @  has only 1 liberty in 

each of the regions A and B. In local region A, whenever White plays X, the com

mon boundary block is in atari. So tire safety of region B is affected. A similar 

situation happens in local region B. Therefore, the safety of region A depends on 

region B and vice-versa. However, simply merging two regions together will make 

the search space too large, thus it is not feasible in practice.

The previous solver sequentially processes regions one by one and ignores the 

relationships between them. Therefore, it is unable to solve a problem involving 

weakly dependent regions.

5
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Figure 1.2: An example of weakly dependent regions

1.4 Contributions

The research contributions of this thesis include:

•  Identifying the major requirements of a high-performance safety solver in 

Go.

• New region processing techniques. A new, more efficient technique for se

lectively merging regions is developed.

• A solution to the problem of weakly dependent regions.

•  Problem-specific game tree search enhancements such as move ordering and 

forward pruning.

•  The new solver improves the percentage of points proved safe in a standard 

test set from 26% in [14] to 51%. The speedup observed in our experiments 

is about 70 times faster than the solver in [14],

1.5 Overview of the Thesis

The structure of this thesis is as follows: Chapter 2 introduces basic game-tree 

algorithms. Chapter 3 surveys relevant work in the field of Computer Go. The 

basic definitions that are relevant to follow ing chapters are also provided. Chapter 

4 describes the techniques used to process regions and to solve weakly dependent 

regions. Chapter 5 describes the search enhancements. Chapter 6 presents and

6
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analyzes experimental results. Chapter 7 summarizes the research and discusses 

future work on this project.

7
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Chapter 2 

Game Tree Search

This chapter provides some background on game tree search and Computer Go. We 

briefly introduce the concepts of game-tree and minimax search in Section 2.1. In 

Section 2.2, the standard algorithm of minimax search, Alpha-Beta, is introduced. 

Section 2.3 discusses common enhancements to Alpha-Beta. Section 2.4 provides 

a summary of this chapter.

2.1 Minimax Search

Go is a two-player zero-sum game, in which the loss of one player is the gain of tire 

other. A player selects a legal move that maximizes the score, while his opponent 

tries to minimize it. Both players move alternately.

In order to analyze a game, we can construct a graph representation to analyze 

all possible positions and moves for each player in a game. Figure 2.1 provides an 

example of such a graph. It is called a game tree.

In a typical minimax tree as shown in Figure 2.1, the two players are called Max 

player and Min player. By convention, the max player plays first. A node in the 

minimax tree represents a position in a game. The possible moves from a position 

are represented by unlabelled links in the graph called branches. The node at the 

top which represents the start position is called root node. The nodes in which the 

max player is to play are called Max nodes, while nodes in which tire min player is

8
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to play are called Min nodes. By considering all possible moves for both the max 

and rnin player, the tree is constructed. If in one node the next player to move has 

no legal move to continue, then the value of the node is decided by the rules of the 

game. Such a node is called a terminal node. Samuel introduced tire term ply [20], 

which represents the distance from the root, i.e. tire depth of a game-tree. A d-ply 

search means the program searches d moves ahead from the root node.

Figure 2.1 illustrates a mininrax tree. For example, tire value of C is 23 because 

C is a max node, and the max player will choose the maximal value of its children, 

which is 23. Then the value of 23 is backed up to B by comparing the values of C 

and J, because B is a nrin node. After traversing the whole minimax tree, the value 

39 is achieved by the path of node A, N, 0  and R, showing tire best play by both 

players. This path is called a principal variation (PV). The nodes on this path are 

also called PV nodes. In case of ties, there may be several PV’s, all with the same 

value.

23 3 9

12 823 39

j | Max P l a y e r  f  \  Min P l a y e r

14 39  4 0  1 2 8

—►  P r i n c i p a l  V a r i a t i o n

Figure 2.1: Mininrax tree

A d-ply search of a minimax tree visits all the leaf nodes at the depth of d to 

determine the mininrax value. Let d be the search depth and b the average branching 

factor at each node, and N rninrmax be the total number of leaf nodes visited by tire 

nrinimax algorithm. Then:

N  ■ ■ = b d1 y m i n i m a x  u

9
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Since the search grows exponentially as a function of tire depth d, the search depth 

reached in ganre-playing programs is limited, especially under tournament condi

tions. However, the minimax value can be found by visiting fewer leaf nodes. Knuth 

and Moore showed that the least number is [10]:

Nbest =  &Ld/2j +  bV™ -  1

This is a big improvement over mininrax. It means that with proper pruning, pro

grams can search up to twice as deep as in full nrinimax. This is achieved by elimi

nating nodes from the search drat can be shown to be irrelevant to determining the 

value of dre tree. The rest of this chapter discusses enhanced mininrax algorithms 

that try to achieve this best-case result.

2.2 Alpha-Beta

In a nrinimax tree, it is not necessary to explore every node to get the correct min

inrax value. Some branches can be cut off safely. For example, nrax(5, nrin(2, X)) 

will always return 5 no matter what the value of X is. This is dre basic idea of 

Alpha-Beta pruning.

The Alpha-Beta algorithm has been in use by the computer game-playing com

munity since the end of dre 1950’s [4, 24, 10], Alpha-Beta uses two parameters a  

and 0, which form a search window (a, 0) to test pruning conditions, a  represents 

a lower bound and 0  represents an upper bound. Values outside dre search window 

do not affect the minimax value of the root.

Alpha-Beta starts searching the root node with a  = -oo and 0  = +00, and it 

traverses the game tree in a depth-first manner until a leaf node is reached. Then 

the value of the leaf node is evaluated and backed up to its parent node to become 

a bound. As more nodes are explored, dre bounds become tighter, until finally a 

nrinimax value is found inside dre search window.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.2 shows an example of the Alpha-Beta algorithm’s progress, which 

is modified from [17]. Let us assume that Alpha-Beta searches in a left-to-right 

order. At the root node A, Alpha-Beta is called with a search window (-00, + 00) 

and passes the initial window to search A, B, C, D and E. Node E is a leaf. It returns 

its mininrax value g of 22 to its parent. At node D, the values of g and /? are updated 

to 22. Since g > a  (because 22 > —00) the search continues to its next child F. 

This node is searched with a window of (-00, 22). Parent D returns 7, which is tire 

minimum of 22 and 7. Parent C updates g and a  to 7. In node C, its next child G is 

searched since 7 <  + 00. The search window for node G becomes (7, +00). Node 

G returns the minimum of 19 and 71 to C, and C returns tire maximum of 7 and 19 

to B. Since node B is already as low as 19 and B is a nrin node, the value of B will 

never increase. In node B the search is continued to explore node J. Since node J is 

a nrin node and the g-value 19 becomes an upper bound, tire search window for J is 

reduced to (-00, 19), which means that parent B already has an upper bound of 19. 

Therefore, if in any of the children of B a lowerbound, > 1 9  occurs, dre search can 

be stopped. In node J the search is continued to its child K, which returns a value 

of 53. This causes a cutoff of its siblings in node J because 53 is not less than 19.

Alpha = + CO

> = 4 22 7

53

27+00 2 2
•CO

2 2 7 19 84 53 15 2 8 2 7 4 9 4 271

Max Player Min Player  ! ►  Principal Variation

Figure 2.2: Example tree for Alpha-Beta

11
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At the root node A the g-value is updated to the new lower bound of 19. Search

ing the sub-tree below N can still increase this g-valuc. Nodes N, O, P and Q are 

all searched with die window (19, +00). Node Q returns 15, and it causes a cutoff 

at its parent P since 15 is outside of the search window. Consequently, node P also 

returns 15. Next nodes R, S, T, U, V, W and X are searched. The sub-tree below V 

returns 42. This causes a cutoff in its parent U since 42 is not smaller than 27. Node 

U returns 42 and node N returns the minimum of 27 and 42, and root A returns die 

maximum of 19 and 27. Finally, the minimax value of die tree has been found, 

which is 27.

2.3 Alpha-beta Enhancements

2.3.1 Selective Search

In Alpha-Beta, die backed-up values of leaves are used for pruning. A pruning 

method like this is sometimes called backward pruning. A drawback of this ap

proach is that it searches all nodes to the same depth. Thus, a bad move gets 

searched as deeply as a promising good move. To address this problem, many 

selective search mediods have been developed. The main idea of selective search is 

that some of the “non-promising” branches should be discarded in order to reduce 

the size of die search tree. In contrast to backward pruning, pruning methods used 

in selective search are called forward pruning. One example of selective search is 

N-best search [9], It only considers the N best moves at each node; all other moves 

are directly pruned. When the search depth becomes larger, die value of N is de

creased accordingly. In addition, a successful example of selective extension is die 

ProbCut algorithm, presented by Buro [6], ProbCut uses information from a shal

low Alpha-Beta search to decide with a certain probability whether a deep search 

would yield a value outside the current window. In the game of Othello, ProbCut 

has been shown to be effective in investigating die relevant variations more deeply.

12
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Selective search is an effective way to reduce the size of tire search tree, perhaps 

to even less than the minimal game tree. However, it has several drawbacks. First, 

the heuristics used to select “good” or “bad” moves are very application-dependent. 

An obviously “bad” move at a low level (close to the root) could turn out to be a 

winning move after a deeper search. Therefore, ignoring such a “bad” move might 

slow down the search or even miss tire win. Second is the performance measure

ments. In fixed-depth search, improvements mean more cutoffs in the search tree. 

Therefore, one only needs to compare the sizes of the tree and tire search speed 

while measuring tire algorithm performance. However, since selective search artifi

cially cuts off tire search tree, the quality of decision becomes more important.

Despite these disadvantages, developing a good forward pruning method is still 

worth trying, because in tire search tree really bad moves should not be considered 

at all. How to develop a reliable forward pruning strategy combined with sound 

heuristic knowledge, is still an open problem.

2.3.2 Move Ordering

To improve tire efficiency of Alpha-Beta pruning, the moves at each node should be 

ordered so that the most promising ones can be examined first. A nrinimax tree that 

is ordered so that the first child of a max node has the highest value, or a value high 

enough to cause a cutoff. And the first child of a min node has tire lowest value 

or low enough, is called a best-ordered tree (minimal tree). Figure 2.3 shows the 

minimal tree of the example in Figure 2.2.

The minimal tree has three kinds of nodes, which are defined by Knutlr and 

Moore in [10], Type 1 nodes form the path from tire root to the best leaf (the 

principal variation). Therefore they are also called PV nodes. Type 2 nodes in tire 

minimal tree have only one child; other children have been cut off. They are also 

called CUT nodes. Type 3 nodes have all children, therefore they are also called

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.3: Minimal Alpha-Beta tree

ALL nodes. For the PV nodes, the minimax value is computed. The value in CUT 

and ALL nodes can only be worse or equal to the mininrax value. Therefore, CUT 

and ALL nodes are only used to prove that it is unnecessary to search further.

Many approaches have been proposed to improve move ordering. A first ap

proach is to use application-dependent knowledge. For example in chess, a capture 

normally leads to an advantage in material. Therefore, moves can be ordered by 

the value of captured pieces. In addition, several other approaches do not rely on 

application-dependent knowledge. These approaches are proven to be powerful 

for ordering moves at an interior node. For example, Slate and Atkin developed 

the killer heuristic [25], which maintains only the two most frequently occurring 

’’killer” moves at each search depth. Schaeffer presents another powerful technique 

called history heuristic, which automatically finds moves that are repeatedly good 

[21, 22], The history heuristic is a generalization and improvement upon tire killer 

heuristic. It contains a history table for moves. Whenever a move causes a cut-off 

or turns out to be a good move, the history score of this move increases accordingly. 

For a node in the search tree, tire possible moves are ordered by their scores stored 

in the history table. In this way, tire history heuristic provides an effective way to 

identify good moves throughout tire tree, rather than using information of nodes at 

the same search depth.

14
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2.3.3 Iterative Deepening and Transposition Tables

The basic idea of iterative deepening arose in die early 1970’s for the following 

two reasons. First, for many early game-playing programs, a simple fixed depth 

search normally can only reach a very shallow depth, especially if it has to be done 

under tournament conditions. Therefore, it is necessary to find a good time control 

mechanism. Second, a shallow search in a game-playing system is normally a good 

approximation of a future deeper search. Slate and Atkin proposed the iterative 

deepening approach in 1977 [25]. The basic idea is as follows: before doing a d- 

ply search, perform a 1-ply search, which can be done almost immediately. Then 

increase the search depth step by step to 2, 3, 4, . . . ,  (d-1) ply searches. Since 

the search tree grows exponentially, tire previous iterations normally take much 

less time compared to the last iteration. If an iteration takes too long to return the 

solution, the program can just abort tire current iteration and use the result from tire 

previous iteration.

Although at first sight iterative deepening seems very inefficient because interior 

nodes have been searched over and over again, in experiments iterative deepening is 

actually more efficient than a direct d-ply search. The efficiency of iterative deepen

ing is based on the transposition table. The best moves from the previous iteration 

can be stored and reused to improve the move ordering. Therefore, the overhead 

cost of the d-1 iterations is usually recovered through a better move ordering, which 

leads to a faster search in iteration d.

In many application domains, the search space is a graph, not a tree. Transpo

sition tables can also be used to prevent re-expansion of searched nodes that have 

multiple parents [12,22], After searching a node, information about this node such 

as the best score, depth, upper bound, lower bound, and whether the score is exact, 

is stored in the table. During the search, whenever the same position recurs, dre tree 

search algoridrm checks the table before searching it. If the current node is found,

15
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then the information from the previous search might be used directly. From this 

point of view, using a transposition table is an example of exact forward pruning.

In general, transposition tables are implemented as hash tables. By far tire most 

popular method for implementing a transposition table is proposed by Zobrist in 

1970 [28], By using Zobrist’s method to generate the hash key, the information 

stored in the hash table can be retrieved directly and rapidly.

2.3.4 Variable Window Search

In the Alpha-Beta algorithm, tire bounds a  and f3 form tire search window. If the 

value of a node falls outside the search window, a cut-off can occur when value is 

larger than fj but not when value is smaller than a. Normally using a wider search 

window means visiting more nodes, and using a smaller search window means 

visiting fewer nodes. By default, the search window for Alpha-Beta is set to (- 

oo, +oo). Therefore, reducing the window artificially seems to be a good way to 

achieve more cut-offs. However, Alpha-Beta already uses all the return values from 

leaves to reduce the window as much as possible, and guarantees that the minimax 

value can be found. Reducing the search window artificially runs tire risk that the 

minimax value cannot be found. In this case, re-search in the window with proper 

bounds is necessary.

In practice, many studies have reported that the cost of re-search is relatively 

small compared to the benefits of having a well-narrowed search window [12, 7,16] 

because of the transposition table. Since variable window search is not used in this 

thesis, here we only briefly discuss several widely used techniques.

In many games the values of parent nodes and child nodes are related. If we 

can estimate an initial value for Alpha-Beta to narrow the search window in the 

beginning of the search, then we can achieve more cut-offs. This window is called 

an aspiration window because we expect the result will fall into the bounds of the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



window.

Knuth and Moore introduced the following three properties of Alpha-Beta [10], 

Let g be the return value of Alpha-Beta and F (n) be the minimax value of node n. 

The postcondition has the following three cases:

1. a  < g < (3 (success), g = F(n).

2. g < a  (fail low), then g < F(n).

3. g > (3 (fail high), then g > F{n).

By using an aspiration window in an Alpha-Beta search, in the first case we 

have found the exact minimax value cheaply. In the other two cases, we need to 

perform a re-search. Since tire failed search also returns a bound, the re-search 

can benefit from a window smaller than the initial window (-oo, +oo). In general, 

aspiration window search is used at the root of tire tree. A reasonable estimation 

can be derived from a relatively cheap shallow search. In practice, this estimation 

can be derived from iterative deepening.

Null-window pushes the narrowed-window-plus-re-search technique to its limit. 

If a window is set to (a, a  +1) instead of (a, /?), it is called a null window. For

example, let alpha be tire value of the leftmost child. When performing the null

window search for the rest of siblings, if Ore returned value is smaller than or equal 

to alpha, we can prune this node safely because it is not better than the leftmost 

node. In this case, Ore null window search ensures tire maximum cutoffs. If tire 

returned value is bigger than alpha, then this node becomes the new candidate as 

a PV node. Therefore, it should be re-searched with a wider window to get its 

exact value. Many studies have proven that the savings outweigh the overhead of 

rc-search [12, 7, 16].

Several widely used Alpha-Beta improvements have been proposed such as 

Scout [15], NegaScout [19], and Principal Variation Search (PVS) [11] . They

17
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all use the idea of null window search.

A further improved Alpha-Beta algorithm is MTD(t) [18], which is simpler 

and more efficient than previous algorithms. MTD(f) gets its efficiency by using 

only null window search. Since null window search will only return a bound on 

the minimax value, MTD(f) has to call Alpha-Beta repeatedly to adjust the search 

towards the minimax value. In order to work, MTD(f) needs a first estimate of the 

minimax value. The better tire first guess is, the more efficient MTD(f) performs 

because it will call Alpha-Beta less times. In general, MTD(f) works in an iterative 

deepening framework. A transposition table is necessary for MTD(f).

2.4 Summary

The Alpha-Beta tree-searching algorithm has been in use since the end of the 1950’s. 

Most successful game-playing programs use the Alpha-Beta algorithm with en

hancements like move ordering, iterative deepening, transposition tables, narrow 

search windows. Forty years of research have improved Alpha-Beta’s efficiency 

dramatically. However in Computer Go, there is no direct evidence that deeper 

search will automatically lead to better performance of a Go program.
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Chapter 3 

Terminology and Previous Work

3.1 Terminology and Go Rules

Our terminology is similar to [1, 14], with some additional definitions. Differences 

are indicated below. A block is a connected set of stones on the Go board. Each 

block has a number of adjacent empty points called liberties. A block that loses 

its last liberty is captured, i.e. removed from the board. A block that has only one 

liberty is said to be in atari. Figure 3.1 shows two black blocks and one white block. 

The small black block contains two stones, and has five liberties (two marked 

A and three marked B).

Given a color c £ {Black, W h ite}, let A !C be the set of all points on the Go 

board which are not of color c. Then a basic region of color c (called a region in 

[1, 14]) is a maximal connected subset of A_,c. Each basic region is surrounded by 

blocks of color c. In this thesis, we also use tire concept of a merged region, which

Figure 3.1: Blocks, basic regions and merged regions
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Figure 3.2: The interior and cutting points of a black region

is the union of two or more basic regions of the same color. We will use the term 

region to refer to either a basic or a merged region. In Figure 3.1 A  and B  are basic 

regions and A  U B  is a merged region.

We call a block b adjacent to a region r if at least one point of b is adjacent to 

one point in r. A block b is called interior block of a region r  if it is adjacent to r 

but no other region. Otherwise, if b is adjacent to r and at least one more region it is 

called a boundary block of r. We denote the set of all boundary blocks of a region 

r  by Bd(r). In Figure 3.1, the black block is a boundary block of the basic 

region A but an interior block of tire merged region A  LJ B. The defender is the 

player playing tire color of boundary blocks of a region. The other player is called 

the attacker.

Given a region, the interior is the subset of points not adjacent to the region’s 

boundary blocks. There may be both attacker and defender stones in the interior. A 

cutting point is a point that is adjacent to two or more boundary blocks. In Figure 

3.2, tire black region has two boundary blocks marked by triangles and squares 

separately. The interior consists of four points marked A, and this region contains 

two cutting points marked C.

The accessible liberties of a region is the set of liberties of all boundary blocks 

in the region. A point p  in a region is called a potential attacker eye point if  the 

attacker could make an eye there, provided the defender passes locally. Figure 3.3
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Figure 3.3: Accessible liberties (A) and potential attacker eye points (B) of a black 
region

Figure 3.4: Intersection points (A) of a black region

shows some examples.

An intersection point of a region is an empty point p  such that region, — {p} 

is not connected and p is adjacent to all boundary blocks. In Figure 3.4, the black 

region has two intersection points, which are marked by letter A.

If two basic regions have one or more common boundary blocks, we call these 

two regions related. By further analyzing the relationship between related regions, 

we distinguish between strongly dependent regions, which share more than one 

common boundary block, and weakly dependent regions with exactly one com

mon boundary block. In Figure 3.5 on the left, two basic black regions A and B 

are related. Further, they are strongly dependent because they have two common 

boundary blocks (marked by triangles). In Figure 3.5 on the right, the two basic 

black regions C and D are weakly dependent because they have only one common 

boundary block (marked by a square).

A N akade  shape is a region that will end up as only one eye [27], Therefore it
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Figure 3.5: Strongly and weakly dependent regions

Figure 3.6: Two black nakade shapes

is not sufficient to live. In Figure 3.6 left and right, both black regions A and B are 

nakade shapes.

Our results are mostly independent of the specific Go rule set used. As in previ

ous work [1,14], suicide is forbidden. Our algorithm is incomplete in the sense that 

it can only find stones that are safe by two sure liberties [14], Because ko requires 

a global board analysis and the problem can turn out to be very complicated, we 

exclude cases such as conditional safety that depends on winning a ko, and also 

less frequent cases of safety due to double ko or snapback. Figure 3.7 provides an 

example of double ko. In this figure, neither black nor white can win both ko fights 

in A and B in one move. Therefore, the black block @  and white block (Q ) are 

safe even though they only have one sure eye.

Figure 3.8 provides an example of snapback. In this figure, the white block (Q ) 

has only 1 liberty. However, if black captures this block by playing at A, white can 

immediately recapture the black block and remains safe.

In addition, tire safety solver does not yet handle coexistence in seki. Figure 3.9
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Figure 3.7: An example of double ko

Figure 3.8: An example of snapback.

provides two examples of seki. On die left, black block (fi)  and white block (Q ) 

share two common liberties marked A and B. On the right, black block and 

white block (S )  both have one sure eye, and share one common liberty marked C.

3.2 Previous Work

Benson’s algorithm for unconditionally alive blocks [1] identifies sets of blocks 

and basic regions diat are safe, even if the attacker can play an unlimited number of 

moves in a row, and die defender passes on every turn. Benson’s algorithm is a start-

Figure 3.9: Two examples of seki
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Figure 3.10: Two black regions are alive

Figure 3.11: Two black regions are not alive

ing point for recognizing safe territories and stones, and it is also the first theorem 

in the theory of Go. However, it has limited applications in practice. Muller [14] 

defined static rules for detecting safety by alternating play, where the defender is 

allowed to reply to each attacker move. Miiller also introduced local search meth

ods for identifying regions drat provide one or two sure liberties for an adjacent 

block. Experimental results for a preliminary implementation in the program Ex

plorer were presented for Benson’s algorithm, static rules and a 6 ply search.

Van der Werf implemented an extended version of Muller’s static rules to pro

vide input for his program that learns to score Go positions [26], Vila and Cazenave 

developed static classification rules for many classes of regions up to a size of 7 

points [27].

The following figures provide several examples that are modified from [27], 

They all can be identified by using die static eye classification. In Figure 3.10, both 

black regions A and B are alive no matter who plays first and no matter what die 

surrounding conditions are. In Figure 3.11, botii black regions are not uncondition-
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ally alive. In the left, if black loses all the external liberties, then it will be in atari. 

In the right, the black region is not alive due to a ko fight inside. If black wins the 

ko, then tire region is alive. If white wins the ko, then the region turns out to be a 

size 6 nakade shape.

3.3 Definitions

The following definitions, adapted from [14], are the basis for our work. They are 

used to characterize blocks and territories that can be made safe under alternating 

play, by creating two sure liberties for blocks, and at tire same time preventing tire 

opponent from living inside tire territories. During play, the liberty count of blocks 

may decrease to 1 (they can be in atari), but they are never captured and ultimately 

achieve two sure liberties.

Regions can be used to provide eidrer one or two liberties for a boundary block. 

We call this number tire Liberty Target LT(b, r) of a block b in a region r .  A search 

is used to decide whether all blocks can reach dreir liberty target in a region, under 

the condition of alternating play, with dre attacker moving first and winning all ko 

fights.

Definition: Let r be a region, and let B d (r ) =  {bi, . . . ,  bn} be the set of non

safe boundary blocks of r. Let hi = LT(bh r) , G {1,2}, be the liberty target of 

bi in r. A defender strategy S  is said to achieve all liberty targets in r if each bi has 

at least k, liberties in r initially, as well as after each defender move.

Each attacker move in r  can reduce the liberties of a boundary block by at most 

one. The definition implies that the defender can always regain ki liberties for each 

bi with his next move in r. The following definition of life under alternating play is 

analogous to Benson’s:

Definition: Let EL(b) be die external safe liberties of a block b. A set of blocks 

B  is alive under alternating play in a set of regions R  if there exist liberty targets
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L T (b ,r)  and a defender strategy S  drat achieves all drese liberty targets in each 

r £ R  and

\fb £ B  EL(b) +  £  LT(b, r) >  2
r£R

Note drat this construction ensures that blocks in B  will never be captured. 

Initially each block has two or more liberties. Each attacker move in a region r 

reduces only liberties of blocks adjacent to r, and by at most 1 liberty. By tire 

invariant, the defender has a move in r  that restores the previous liberty count. 

Each block in B  has at least one liberty overall after any attacker move and two 

liberties after the defender’s local reply. In addition, if a block has one sure external 

liberty (E L (b ) = 1), then tire sum of liberty targets for such a block can be reduced 

to 1. If E L(b ) = 2, dren the block is already safe ad need not be considered here.

Definition: We call a region r 1 -vital for a block b if b can achieve a liberty 

target of one in r, and 2-vital if b can achieve a liberty target of two.

3.4 Recognition of Safe Regions

The attacker cannot live inside a region surrounded by safe blocks if tiiere are no 

two nonadjacent potential attacker eye points, or if the attacker eye area forms a 

nakade shape (as introduced in Section 3.1). The current solver uses a simple static 

test for this condition as described in [14],

The state of the art safety solver in [14] implements Benson’s algoritiim, static 

rules and a 6 ply search in the program Explorer. However, tiiere are still many 

remaining problems in recognizing territory safe. One of diem is die Weakly De

pendent Regions problem. The solver sequentially processes regions one by one 

and ignores die relationships between them. Therefore, it is unable to solve a prob

lem involving weakly dependent regions.
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Chapter 4 

Safety Solver

4.1 Search Engine

The search engine in the program Explorer [13] is an Alpha-Beta search frame

work with enhancements including iterative deepening and transposition table as 

described in Chapter 2). Oilier enhancements to this Alpha-Beta framework such 

as move ordering and heuristic evaluation functions will be described in Chapter 5.

The safety solver uses this search engine and includes the following sub-solvers:

Benson solver Implements Benson’s classic algorithm [1] to recognize uncondi

tional life.

Static solver Uses static rules to recognize safe blocks and regions under alternat

ing play, as described in [14]. No search is used.

1-vital solver Uses search to find regions that are 1-vital for one or more boundary 

blocks. As in [14] there is also a combined search for 1-vitality and con

nections in tire same region, that is used to build chains of safely connected 

blocks.

Generalized 2-vital solver Uses searches to prove that each boundary block of a 

given region can reach a predefined liberty target. For safe blocks, the target 

is 0, since their safety has already been established by using other regions.
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Blocks that have one sure external liberty (eye) outside of this region are 

defined as external eye blocks. For these blocks the liberty target is 1. For all 

other non-safe boundary blocks the target is 2 liberties in this region. All the 

search enhancements described in the next section were developed for this 

solver.

The 2-vital solver in [14] could not handle external eye blocks. It tried to 

prove 2-vitality for all non-safe boundary blocks.

Expand-vital solver Uses search to prove the safety of partially surrounded areas, 

as in [14]. This sub-solver can also be used to prove that non-safe stones can 

connect to safe stones in a region.

4.2 High-level Outline of Safety Solver

Figure 4.1 shows the processing steps on a final position of a 19 x 19 game from test 

set 1 in Section 6.1. In this typical example, much of the board has been partitioned 

into relatively small basic regions that are completely surrounded by stones of one 

player.

The basic algorithm of the safety solver for this example is as follows:

1. The static solver is called first. It is very fast and resolves the simple cases. 

The result is shown in Figure 4.2. In this position, the static solver can solve 

a total of 9 basic regions A, B, C, D, E, F, G, H and I. The stones that have 

been proved safe or dead for attacker stones inside are marked by triangles.

2. The 2-vital solver is called for each region. As a simple heuristic to avoid 

computations that most likely will not succeed, searches are performed only 

for regions up to size 30. Many small regions remaining in this position can 

not be solved because they are related regions. In this step, since the 2-vital 

solver treats regions separately, it only solves 2 more regions J and K. The

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.1: A whole board example (before step 1)
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Figure 4.2: The result of step 1
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Figure 4.3: The result of step 2

sizes of these two regions are small, 12 and 7 points respectively. Figure 4.3 

shows the result.

3. The expand-vital solver is called for regions that have some safe boundary 

blocks. The safety of those blocks has been established by using other re

gions. In this example, the expand-vital solver does not solve any region at 

this step.

Muller’s previous solver [14] only used the steps so far. The result is shown 

in Figure 4.3.

4. (New) Region merging. After the previous steps, all the easy-to-prove safe 

basic regions have been found. In this step the remaining unproven related
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Figure 4.4: The result of step 4

regions are merged. For each small-enough merged region (up to size 14 

in tire current implementation) the generalized 2-vital solver is called. The 

mechanism is described in detail in Section 4.3. Figure 4.4 shows the result 

of this step. The solved merged regions are P  U Q, L U M  U N  u  O, IV U V  

with an external eye U for white and R  U S  U T  for black. Most of the 

remaining related regions have been solved except for two weakly dependent 

black regions at the bottom.

5. (New) Weakly dependent regions. A new algorithm deals with weakly de

pendent regions. In this step both the 1-vital solver and the 2-vital solver 

are used to prove whether a region is 2-vital safe or not. A detailed descrip-
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Figure 4.5: The black region is a 2-vital region

Figure 4.6: The black region is not a 2-vital region

tion about processing weakly dependent regions is given in Section 4.4. One 

of the remaining weakly dependent black regions X is solved. Figure 4.5 

demonstrates the proving process.

However, the other remaining black region Y cannot be proved as a 2-vital 

region in this step, even though it has a safe boundary block. Figure 4.6 

provides a modified example of region Y to demonstrate the reason. In this 

figure, when white plays move 1 black has to connect because it is atari. 

After white plays move 3, the black region turns out to be a nakade shape. 

Therefore it is not 2-vital safe.

Figure 4.7 shows the result of this step.

6. (New) As in step 3, the Expand-vital solver is called for those regions for 

which one or more new safe boundary blocks have been found. In this step, 

the expand-vital solver can easily solve die last weakly dependent black re

gion Y. Figure 4.8 shows die result of diis step. In diis example, the solver
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succeeds in proving the safety of every point on the board.

4.3 Region Merging

One of the major drawbacks of Muller’s previous solver [14] is that it processes 

basic regions one by one and ignores the possible relationship between them. Figure 

4.9 shows an example of two strongly dependent regions. The previous solver treats 

regions A and B separately, and neither region can be solved. However tire merged 

region A U B can be solved easily.

The first algorithm step of region merging scans all regions and merges all re

lated regions. They are either strongly or weakly dependent. After the merging
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Figure 4.9: Two related regions

Figure 4.10: Strongly and weakly dependent regions

step, the 2-Vital solver is used to recognize safe merged regions.

This method can solve simple cases such as the one in Figure 4.9. However, 

since merging all related regions often creates a very large merged region, the search 

space can become too large.

Our current solver uses a two-step merging process. In the first step, strongly 

dependent basic regions are merged. In tire second step groups of weakly dependent 

regions are formed. A group can contain both basic regions and merged regions 

computed in the first step. Figure 4.10 shows an example.

In this figure, there are a total of 6 related black regions A, B, C, D, E, and F. 

Since the huge outside region contains surrounding white stones that are already 

safe, we do not need to consider it here.

A simple merge yields a combined new region with size 32, which is too large
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to be fully searched in a reasonable time. Two-step merging creates the following 

result: The first step identifies connected components of strongly dependent regions 

and merges them. A, B and C are strongly dependent and are merged into a new 

region R x = A  U B  U C, Next D and E are merged into R 2 — D IJ E. Region F 

is not strongly dependent on any other region and is not merged. The second step 

identifies weak dependencies between R \, R 2 and F and builds the group. R\ and 

R 2 are weakly dependent through block ®  , and R '2  and F are weakly dependent 

through block . The result is a group of weakly dependent regions {Ri ,  R 2, F }  

with region sizes of 15, 14 and 3 respectively. The regions within a group are not 

merged but searched separately, as explained in the next section.

The common boundary block between two weakly dependent regions has both 

internal and external liberties relative to each region. For example, for block ®  

and R<i =  D  U E, the liberty Y is internal and the liberty X is external.

4.4 Weakly Dependent Regions

We distinguish between two types of weak dependencies. In type 1, tire common 

boundary block has more than one liberty in both weakly dependent regions. For 

example, in Figure 4.11 the shared boundary block of regions A and B has more 

than 1 liberty in each region. In type 1 dependencies, our search in one region does 

not consider tire external liberties of tire common block.

In type 2 weak dependencies, the common boundary block has only one liberty 

in at least one of tire weakly dependent regions. Figure 4.12 provides a typical 

example of type 2 weakly dependent regions. The black block ®  has only 1 

liberty in each of tire regions X and Y. We need to consider the external liberties for 

the common block because moves in region X will affect the result of tire region 

Y. However, we do not want to merge these two regions because of tire resulting 

increase in problem size.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.11: First type of weakly dependent regions

Figure 4.12: Second type of weakly dependent regions
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Figure 4.13 demonstrates the separate 2-vital search processing for regions X 

and Y. In local region X, considering an external attacker move at A is necessary. 

Whenever White plays A, the common boundary block loses its external liber

ties. Therefore, it is in atari. In this case, Black will connect at B in response. A 

similar situation happens in region Y. If White plays at A, since common boundary 

block is in atari, Black is forced to answer at C to capture diis white block. In 

addition, considering one external move in B is also necessary for proving region Y 

safe. Therefore, if we consider region X and Y locally, both regions can be proved 

safe.

Proof o f reg ion X  Proof of reg ion Y

B lack  CB lack  B

W hite  A W hite  A

X  is  safe Y  is safe

Figure 4.13: Separate searches in regions X and Y

However, from die global point of view we need to handle die relationship be

tween regions. In real game if White plays at A, for region X Black should connect 

at B while for region Y Black should play a move at C to capture the white stone. In 

this situation, which move should Black play? Figure 4.14 demonstrates die 2-vital 

search processing for both weakly dependent regions X and Y.

If White plays in A, since A is located at region Y, we look at diat region first. 

If die white block at A only has one liberty, we always play die capture move in 

region Y. After removing the white block in A, from X ’s point of view the common 

boundary block ®  will gain one external liberty again. Therefore, in diis case 

after White A and Black C in region Y die result will not affect the local search in
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C o m b in e d  p ro o f of reg ion  X a n d  reg ion  Y

Yes No

W hite A

gion Y is not safe, only 

search for region X

Does white b lock at A  have more 
than 1 liberty?

Play local capture move a t c, 
continue local searches in 

both region X and Y

X  is safe and Y  is not

X  is safe Y  is safe

Figure 4.14: Search considering both region X and Y

Figure 4.15: White block in A has more than 1 liberty

region X.

If the white block at A has more than one liberty such as in tire example shown 

in Figure 4.15, then the situation is different. In region Y, since the black block 

already lost all its internal liberties and we can not guarantee that it can achieve 

more external liberties outside of region Y, tire safety search for region Y will fail 

immediately. For region X, even if the region Y is not safe, since white A is an 

external move for its local search, black will answer at B locally. Therefore, in this 

example, region X can be proved safe and region Y can not.

The pseudo code in Figure 4.16 describes the method for processing groups of 

weakly dependent regions.
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for each weakly dependent group G
if ( total size of all regions in G <  14)// 14 is a constant determined empirically

ra = merge all regions in G ; 
call 2-vital solver for re ; 

else
for each region r e  G

for each shared boundary block b between r and another region r 2 e  G
do a 1-vital search for b in r 2; 

if (all 1 -vital searches succeed)
reduce liberty target for all tested boundary blocks to 1; 
call 2-vital solver for r; 

else
reduce liberty target for all successfully tested boundary blocks to 1; 
take unproved (1 -vital search not successful) blocks as special blocks; 
generate external moves for special blocks (for both attacker/defender); 
call 2-vital solver for r;

Figure 4.16: Search for weakly dependent groups

4.5 Other Improvements

The following further enhancements were made to tire solver beyond the version

described in [14],

External eyes of blocks If a boundary block of a region r  has one sure liberty else

where, this information is stored and used in the search for r by lowering the 

liberty target for that block. In Figure 4.17, after Black plays the first move, 

the previous solver recognizes that both two white boundary blocks (marked 

by squares and triangles) could be in atari, and returns the result that the 

region is not safe. However, since the white boundary block marked by trian

gles has one external eye, the liberty target for this block can be reduced to 1. 

By using this additional information it becomes possible to prove the region 

safe.
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Figure 4.17: Block with an external eye
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Chapter 5 

Search Enhancements

5.1 Move Generation and Move Ordering

In this work, we focus on proving that a region and its boundary blocks are safe. 

Therefore we have concentrated our efforts on generating and ordering the de

fender’s moves. For the attacker, all legal moves in the region plus a pass move 

are generated. When processing weakly dependent regions as described in Sec

tion 4.4, extra moves outside of the region might be generated for either attacker 

or defender. The attacker is allowed to immediately recapture a ko. Therefore, the 

attacker will always win a ko fight inside a region.

Currently there is no move ordering for the attacker. For the defender, the fol

lowing safe forward pruning technique is used: When a boundary block of a region 

is in atari, only moves diat can possibly avert the capturing threat, such as extending 

the block’s liberties or capturing the attacker’s adjacent stones, are generated. If no 

such forced moves are found, all legal moves for the defender are generated.

For ordering the defender’s moves, both a high priority move detector and a 

normal scoring system are used. The detector analyzes the purpose of the attacker’s 

previous move, and classifies Hie situation as one of three priorities:

1. Attacker’s move close to one of the empty cutting points.

2. Attacker’s move extending one or more cutting blocks.
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3. Other attacker move.

For priority 1 and 2 positions, a set of high priority moves according to the 

attacker’s motivation is generated first. For priority 1, most likely tire attacker is 

trying to cut, so the cutting points close to this move, as well as the cutting points’ 8 

neighbor points, have high priority. For priority 2, most likely tire attacker is trying 

to expand its own cutting block. Capturing this block is an urgent goal for tire 

defender. Therefore, all liberties of this block are given high priority. The irunrber 

of adjacent empty points is used to order liberties.

All moves in priority 3 positions and all remaining moves in priority 1 and 2 

positions are sorted according to a score that is computed as a weighted sum:

Move score = ,/j * LIB + f 2 * NDB +  / 3 * NAB +  f 4 *CB + / 5 * AP.

The formula uses tire following features:

1. Liberties of this defender’s block (LIB)

2. Number of neighboring defender’s blocks (NDB)

3. Number of neighboring attacker’s blocks (NAB)

4. Capture bonus (CB): 1 if an opponent block is captured, 0 otherwise

5. Self-atari penalty (AP): -1 if  move is self-atari, 0 otherwise

The following set of weights worked well in our experiments: f \  =  10, f 2 =

30, / 3 =  20, / 4 =  50, / 5 =  100.

5.2 Evaluation Functions

5.2.1 Heuristic Evaluation Function

The evaluation function in [14] used only three values: proven-safe, proven-unsafe 

and unknown. Since most of the nodes during tire search evaluate to unknown, we
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can improve tire search by using a heuristic evaluation to differentiate nodes in this 

category. The heuristics are based on two observations:

1. An area that is divided into more subregions is usually easier to evaluate as 

proven-safe for our static evaluation function.

2. If tire attacker has active blocks with more than 1 liberty, it usually means that 

tire attack still has more chances to succeed.

Let NSR be the number of subregions and NAB be the number of the attacker’s 

active blocks. Then tire heuristic evaluation of a position is calculated by the fol

lowing formula:

eval = f \  * NSR + f 2 * NAB, f x = 100, / 2 =  -5 0

5.2.2 Exact Evaluation Function

The exact evaluation function recognizes positions that are proven-safe or proven- 

unsafe. A powerful function is crucial to achieve good performance. However, 

there is a tradeoff between evaluation speed and power. In our evaluation function 

there are two types of exact static evaluations, HasSureLiberties() and StaticSafe().

HasSureLiberties(j is a quick static test to check whether all boundary blocks 

of a region have two sure liberties and the opponent cannot live inside the region. It 

uses tire following two conditions for checking:

1. All empty points inside the regions are liberties of some boundary blocks.

2. The region has two or more intersection points as described in Section 3.1, or 

it has two separate eyes.

Condition 1 implies that there is no eye space for the attacker. Condition 2 

utilizes tire miai strategy. If there are two equal-value points, a miai strategy means

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.1: An example of miai

that no matter which point one player chooses, the other player can always get the 

other point. Figure 5.1 shows an example of a miai strategy. In the black region, 

White cannot occupy both points A and B in one move. Therefore, tire black region 

is alive under alternating play. If both conditions of HasSureLiberties() are satisfied, 

then tire region is safe.

StaticSafe() is a simplified static safety solver which takes the subregions cre

ated by the search into account. It takes the set of all points of the region as input 

and processes tire following steps:

1. Generate all tire subregions and blocks inside tire input region.

2. As in Benson’s algorithm [1], find all the healthy subregions for blocks. A 

region is healthy for a block if tire block is ad jacent to all empty points of tire 

region.

3. Implement Benson’s algorithm [1] to find all the blocks that have two or more 

healthy subregions. Mark them as safe.

4. Call HasSureLiherties() for each subregion. If the subregion is proven as 

static 2-vital, then mark this subregion as safe. Otherwise, if all the boundary 

blocks of this subregion are already marked as safe, and there is no space 

inside this subregion for the attacker to make two eyes, then also mark this 

subregion as safe.

5. If all the points in the input point set are marked as safe, then StaticSafeQ
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returns safe. Otherwise, returns non-safe.

Each time StaticSafe() is called, it has to compute subregions and boundary 

blocks that are generated during the search. Furthermore, HasSureLiberties() is 

used for testing each subregion. Therefore, StaticSafe() is much slower than Has- 

SureLiberties(). The relative speed of the two methods varies widely, but 5-10 

times slower is typical. For efficiency, we use the following compromise rule: If 

the previous move changes the size of a region by more than 2 points, then Static- 

Safe() is used. Otherwise, the quicker HasSureLibertiesQ is used. In contrast, [14] 

used only a weaker form of HasSureLiberties().
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Chapter 6 

Experiments

The safety solver described here has been developed as part of the Go program 

Explorer [13]. To compare the performance of our current solver with the previous 

solver [14], our test set 1 is the same, the problem set IGS3 1  -counted, from the 

Computer Go Test Collection [13]. The set contains 31 problems. Each of them is 

the final position of a 19 x 19 game played by human amateur players.

Since test set 1 was used to develop and debug the solver, we created an inde

pendent test set 2 and test set 3. Test set 2 contains 27 final positions of games 

by the Chinese professional 9 dan player ZuDe Chen, Test set 3 contains 35 final 

positions of games by Korean professional Go players. All three sets are available 

at h t t p : //w w w . c s  . u a l b e r t a  . ca/~mnvue H e r  / e g o / g e n e r a l . h tm l.

All experiments were performed on a Pentium 4 with 1.6 Ghz and a 64MB 

transposition table. The following abbreviations for the solvers and enhancements 

are used in the tables:

Benson Benson’s algorithm, as in [14].

Static-1997 Static solver from [14].

Search-1997 Search-based solver, 6 ply depth limit, from [14],

Static-2004 Current version of static solver.
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Version Safe points Safe blocks Safe regions
Benson 
Static-1997 
Search-1997 
Static-2004

1,886 (16.9%) 
2,481 (22.2%) 
2,954 (26.4%) 
2,898 (25.9%)

103 (9.2%) 
168 (15.0%) 
198 (17.6%) 
212 (18.9%)

204 (25.4%) 
N/A 
N/A 

321 (40.0%)
M l
M2
M3
M4
M5
M6 (Full)

4,017 (35.9%) 
4,073 (36.4%) 
5,029 (44.9%) 
5,070 (45.3%) 
5,396 (48.2%) 
5,740 (51.3%)

326 (29.0%) 
330 (29.4%) 
444 (39.5%) 
451 (40.2%) 
484(43.1%) 
523 (46.6%)

404 (50.4%) 
406 (50.6%) 
495 (61.7%) 
498 (62.1%) 
519(64.7%) 
548 (68.3%)

Perfect 11,191 (100%) 1,123 (100%) 802 (100%)

Table 6.1: Search improvements in test set 1 

M l A basic 2-liberties search, similar to the one in [14],

M 2 M l + consider external eyes of blocks as in Section 4.5.

M3 M2 + region merging method as in Section 4.3.

M4 M3 + move ordering and pruning as in Section 5.1.

M5 M4 + improved heuristic and exact evaluation functions as in Section 5.2.

M6 Full solver, M5 + weakly dependent regions as in Section 4.4.

6.1 Experiment 1: Overall Comparison of Solvers

Table 6.1 shows the results for all methods listed above for test set 1. The set 

contains 31 full-board positions with a total of 31 x (19 x 19) = 11,191 points, 

1,123 blocks and 802 regions. For methods M1-M6, a time limit of 200 seconds 

per region was used. For results with shorter time limits, see Experiment 2.

Table 6.2 shows the results for all methods listed above for test set 2. This test 

set contains a total of 27 x (19 x 19) = 9,747 points, 1,052 blocks and 742 regions.

Table 6.3 shows the results for all methods listed above for test set 3. This test 

set contains a total of 35 x (19 x 19) = 12,635 points, 1,362 blocks and 869 regions.
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Version Safe points Safe blocks Safe regions
Benson
Static-2004

1,329 (13.6%) 
2,287 (23.5%)

106 (10.1%) 
188 (17.9%)

160(21.6%) 
251 (33.8%)

M l
M2
M3
M4
M5
M6 (Full)

3,244 (33.3%) 
3,305 (33.9%) 
4,079 (41.9%) 
4,220 (43.3%) 
4,594(47.1%) 
4,822 (49.5%)

273 (25.9%) 
278 (26.0%) 
380 (36.1%) 
394 (37.5%) 
440 (42.0%) 
483 (45.9%)

320(43.1%) 
325 (43.8%) 
409 (55.1%) 
420 (56.7%) 
455 (61.4%) 
481 (64.9%)

Perfect 9,747 (100%) 1,052(100%) 742 (100%)

Table 6.2: Search improvements in test set 2

Version Safe points Safe blocks Safe regions
Benson
Static-2004

1,319 (10.4%) 
2,643 (20.9%)

86 (6.3%) 
214(15.7%)

140 (16.1%) 
282 (32.5%)

M l
M2
M3
M4
M5
M6 (Full)

3,906 (30,9%) 
4,109 (32.5%) 
4,792 (37.9%) 
4,887 (38.7%) 
5,130 (40.6%) 
5,291 (41.9%)

322 (23.6%) 
353 (25.9%) 
435 (31.9%) 
448 (32.9%) 
472 (34.7%) 
499 (36.6%)

364(41.9%) 
381 (43.8%) 
449 (51.7%) 
455 (52.4%) 
474 (54.5%) 
493 (56.7%)

Perfect 12,635 (100%) 1,362(100%) 869 (100%)

Table 6.3: Search improvements in test set 3
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In the results of test set 1, the current static solver performs similarly to tire 

best 1997 solver. Adding search and adding region merging yield the biggest single 

improvements in performance, about 10% each. The heuristic evaluation function 

and weakly dependent regions add about 3% each. Other methods provide smaller 

gains with these long time limits, but they are essential for more realistic shorter 

times, as in the next experiment.

Results for test set 2 and set 3 are a little bit worse than for test set 1, but that 

is true even for the baseline Benson algorithm. There does not seem to be a bias of 

tuning our solver especially for the problems in test set 1.

6.2 Experiment 2: Detailed Comparison of Solvers

This experiment compares the six search-based methods M1-M6 in more detail on 

test set 1. The static solver can prove 321 out of 802 regions safe. The best solver 

M6 can prove 548 regions with a time limit of 200s per region. The remaining 254 

regions have not been solved by any method.

A total of (548-321) = 227 regions can be proven safe by search. To further 

analyze the search improvements, we divide these regions into four groups of in

creasing difficulty, as estimated by tire CPU time used.

Group 1, very easy (regions 322-346): This group contains 25 regions. Most 

regions in this group have small size, less than 10. All methods M1-M6 solve all 

25 regions quickly within 0.1s (0.2s for M l).

Group 2, easy (regions 347—408): This group contains 62 regions. Figure 6.1 

shows two examples. Table 6.4 shows the number of regions solved by each method 

with different time limits. The number in braces is the difference between two 

methods. The performance of M l and M2 is not convincing. By using region 

merging, M3 solves all 62 regions within 0.5s. The more optimized methods M 4- 

M6 solve all within 0.1s. Region merging dramatically improves the performance
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Left: A merged white region (Size: 10). Right: A basic white region (Size: 11)

Figure 6.1: Two examples of easy problems in group 2

Version Ml M2 M3 M4 M5 M6
T=0.1s 0 23 38 62 62 62
T=0.5s 29 (+29) 31 (+8) 62 (+24)
T=1.0s 39 (+10) 40 (+9)
T=5.0s 43 (+4) 42 (+2)
T=10s 43 (+0) 44 (+2)
T=50s 43 (+0) 49 (+5)
T=200s 43 (+0) 49 (+0)
Solved 43 49 62 62 62 62

Table 6.4: Search results for Group 2, easy (62 regions)

of solving these easy regions.

Group 3, moderate (regions 409-495): This group contains 87 regions. Figure 

6.2 shows two examples. The left example in this figure contains two white regions. 

The smaller white region (size 3) can be treated as an external eye of a white bound

ary block (as described in Section 4.5). However, since it is not a simple eye, tire 

current solver will merge two white regions together.

Table 6.5 contains the test results. In this group, the search enhancements dra

matically improve the solver. M l and M2 solve few problems. M3 can solve 79 

regions, but more than half of them need more than 10 seconds. The evaluation 

function dramatically speeds up the solver. M5 solves all regions within 10 seconds. 

M6, using weakly dependent regions, solves 23 regions within 0.1s, as opposed to 

0 for M5. All 87 regions are solved within 5 s. In this category M6 outperforms all
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Left: A merged white region (Size: 16). Right: A basic white region (Size: 19)

Figure 6.2: Two examples of moderate problems in group 3.

Version M l M2 M3 M4 M5 M6
T=0.1s 0 0 0 0 0 23
T=0.5s 0 0 14 (+14) 14 (+14) 10 (+10) 37 (+14)
T=1.0s 0 6 (+6) 33 (+19) 33 (+19) 38 (+28) 59 (+22)
T=5.0s 0 6 (+0) 38 (+5) 38 (+5) 68 (+30) 87 (+28)
T=10s 0 8 (+2) 38 (+0) 40 (+2) 87 (+19)
T=50s 0 10 (+2) 73 (+35) 79 (+39)
T=200s 13 (+13) 17 (+7) 79 (+6) 82 (+3)
Solved 13 17 79 82 87 87

Table 6.5: Search results for Group 3, moderate (87 regions) 

other methods.

Group 4, hard (regions 496-548): This group contains the 53 regions that are 

solved in 5s-200s by M6. Figure 6.3 shows three examples. In Figure 6.3 (c) 

there are three white regions (size: 13, 14 and 2). However, the white region in 

the right corner (size 2) can also be treated as an external eye of a white boundary 

block (as described in Section 4.5). Therefore, it is possible to further improve the 

current solver to handle external eyes. Table 6.6 contains tire test results. This group 

includes 20 weakly dependent regions that cannot be solved by M1-M5. Many of 

these problems take more than a minute even with M6. They represent tire limits of
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Version M l M2 M3 M4 M5 M6
T=0.1s
T=0.5s
T=1.0s
T=5.0s
T=10s
T=100s
T=200s

0
0
0
0
0
0
5 (+5)

0
0
0
0
0
0
5 (+5)

0
0
0
0
0

15 (+15) 
17 (+2)

0
0
0
0
0

17 (+17) 
20 (+3)

0
0
0
0

11 (+11) 
21 (+10) 
33 (+12)

0
0
0
0

11 (+11) 
28 (+17) 
53 (+25)

Solved 5 5 17 20 33 53

Table 6.6: Search results for Group 4, hard (53 regions) 

the current solver.

6.3 Experiment 3: Comparison with GNU Go

GNU Go program is one of the strongest Go programs nowadays. The version 

we choose is the latest 3.5.6 (available at h t t p : /  /www. g n u . o r g / s o f t w a r e /  

g n u g o / d e v e l  .h tm l .  In GNU Go, there is a safety solver that checks the un

conditional status of stones on the Go board and returns one of the following five 

results: Black territory, White territory, Live, Dead and Unknown. The first four 

results are exact.

We compare our Benson solver and static solver with the GNU Go safety solver. 

Table 6.7 shows the results for all three test sets. The table shows the number of 

stones that are proved to be safe. Even though GNU Go is a strong Go program, its 

safety solver is relatively weak. It is a little bit better tlran our Benson solver, but 

much worse than our Static solver. Therefore, it is unnecessary to compare GNU 

Go’s safety solver with our other improved solvers.
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(a) A merged white region (Size: 17)

(b) Two weakly dependent white regions (Size: 11 and 9)

(c) Three weakly dependent white regions (Size: 13,14 and 2) 

Figure 6.3: Three examples of hard problems in group 4

Version Set 1 Set 2 Set 3
Benson
Static-2004
GNU Go safety solver

1,886 (16.9%) 
2,898 (25.9%) 
1,926 (17.2%)

1,329(13.6%) 
2,287 (23.5%) 
1,335 (13.7%)

1,319(10.4%) 
2,643 (20.9%) 
1,330 (10.5%)

Perfect 11,191 (100%) 9,747 (100%) 12,635 (100%)

Table 6.7: Comparison with GNU Go
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Chapter 7 

Conclusions and Future Work

The results of our work on proving territories safe are very encouraging. Using 

a combination of both new region-processing methods and search enhancements, 

the current safety solver is significantly faster and more powerful than the previous 

solver described in [14] and the GNU Go solver. However, most large areas with 

more than 18 empty points still remain unsolvable due to the size of the search 

space. Figure 7.1 shows an example. Although this region has only 18 empty 

points, our current solver could not solve it within 200 seconds and a 14 ply search. 

In order to handle larger areas, tire current solver can be improved in the following 

areas:

Move generation More Go knowledge could be used for safe forward pruning. In

stead of generating all legal moves, in many cases the program could analyze 

the attacker’s motivations and generate refutation moves. Move ordering and

Figure 7.1: Example of an unsolved region (Size: 18)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pruning for the attacker should also be investigated.

Evaluation function The current exact evaluation function is all-or-nothing, and 

tries to decide the safety of the whole input area. If the area becomes partially 

safe during the search, this information is ignored. However, it would be very 

useful in order to simplify the further search. Also, more research on fine- 

tuning tire evaluation function is needed.

More future work ideas include:

• Handle special cases such as seki, snapback, double ko.

• Use dre solver in Explorer to prove regions unsafe and find successful inva

sions, or defend against them.

•  Develop a heuristic version that can find possible weaknesses in large areas.

•  Develop a safety solver using a depth first proof number (df-pn) search en

gine.
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Appendix A 

Test Data

This appendix gives the test positions of test set 1. Only safe and dead stones are 
marked by triangles. The other two test sets are available at h t t p : /  /www. c s  . 
u a l b e r t a . c a / ~ g a m e s / g o / s a f e t y / .

A .l Test Positions
Test Set 1 (31 board positions).

Position 1 Position 2

Position 4Position 3
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Position 5 Position 6

Position 8Position 7

Position 9 Position 10
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Position 11 Position 12

Position 13 Position 14

Position 15 Position 16
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Position 21 Position 22
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Position 23 Position 24

Position 25 Position 26

Position 28Position 27
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Position 30Position 29

Position 31
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