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Abstract

This thesis aims to address two major problems in geophysical data processing: a) 

noise attenuation and (b) spatia-temporal spectral analysis of geophysical wavefields.

In order to enhance the signal-to-noise ratio of multichannel time series I propose 

methods that exploit the ability of the Singular Value Decomposition to extract 

coherent information from multi-channel data. In particular, I describe techniques 

to improve the signal-to-noise ratio of 2D and 3D seismic data sets.

In the second part I developed an algorithm based on the multiple signal classi­

fication method to retrieve high resolution estimates of the frequency-wavenumber 

energy distribution of shear Alfven waves recorded by the SuperDARN radars net­

work. This method allows us to estimate phase velocity of shear Alfven waves and 

retrieve information to constraint physical models that describe field line resonance 

(FLR) phenomena occurred in the Earth’s magnetosphere.
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Chapter 1 

Introduction

Statistical methods for signal processing and data analyzing have a wide range 
of applications, such as economics, medical physics, geophysics, astrophysics, etc. 
However, the objectives are often the same, namely, the extraction of parameters of 
interest from noisy observations.

A very common feature of seismic or astrophysics time series that singles it 
out from those occurring in other fields, is its very poor quality. A typical large 
seismic survey may be carried out in a place that has varying conditions, such as 
environmental and demographic restrictions, weather conditions, etc., that can have 
a significant impact on the data quality. In order to get some physical information 
from the raw data a time series analysis is required. For example, implementing 
a Fourier transformation to analyze significant periodicity in the raw data, and 
enhancing or attenuating a particular frequency by applying deterministic filters.

No m atter how our instruments are sophisticated and precise, the experimental 
measurements are never perfect. In general, any measurement is contaminated with 
two types of errors: random noise and systematic error. Random noise is statistical 
fluctuations in the measured data due to the precision limitations of the equipment. 
Random errors usually result from the experimenter’s inability to take the same 
measurement in exactly the same way to get exact the same number. Random noise 
is unpredictable. Systematic errors, by contrast, are reproducible inaccuracies that 
are often due to a problem which persists throughout the entire experiment.

The quality of a signal is usually expressed by a quantity called the signal-to- 
noise ratio (SNR), which is the ratio of the amplitude of the signal to the standard 
deviation of the noise. The greater the ratio, the less noise in the observed data.

In data processing, enhancing the SNR is a central issue. The fact that really
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distinguishes signal from random noise is that the noise is not reproducible. Ran­
dom noise is not the same from one measurement to the next. The real signal, 
however, is at least partially reproducible. So by measuring the signal for several 
times and adding up all the measurements point-by-point, one can enhance the SNR 
ratio significantly. This is called ensemble averaging. In seismology, the measure­
ments are usually done with an array of geophones (detectors) placed in a line (2D 
observation) or distributed in an area (3D observation). Note that each observa­
tion includes a time component. Adding all observations from each geophone in the 
array together will diminish the random noise and improve common signals among 
them. In seismology, this process is called stacking and it enhances the SNR of the 
data. In general situations, however, enhancing the SNR of a data structure is not 
a simple task. Several methods are known to enhance the signal-to-noise ratio, such 
as

• Principal Components Analysis (PCA) that attempts to determine a smaller 
set of synthetic variables or factors from the original set of variables and then 
reconstruct the data structure with the smaller set (Anderson, 1958).

•  Singular Value Decomposition (SVD) that separates a matrix into its eigenim­
ages in order to get matrices with rank 1 (Lanczos, 1961). The Singular Value 
Decomposition is a widely used technique that decomposes a matrix into sev­
eral rank 1 matrices to expose many of the useful and interesting properties of 
the original matrix. We will discuss this method in more detail in Chapter 2.

•  Karhunen-Loeve Transformation (KLT) that is the orthogonal transform for 
signal representation with minimum mean-square error (Hemon and Mace, 
1978).

Since the above methods are based on the eigenvectors and eigenvalues of the co- 
variance matrix of the data, they are usually called the eigenvector, eigenstructure 
or eigenimage methods. It is shown by several investigators that PCA, SVD and 
KLT have a very powerful noise reduction capabilities under the right conditions 
(Huang and Narendra, 1975; Andrews and Patterson, 1976; Jones and Levy, 1987; 
Done et ah, 1991). This follows from the fact that the decomposed eigenimages 
can be used to map the observed data into two signal and noise subspaces that are 
orthogonal to each other. As a result, the whole data with greater SNR value can 
be recovered from the signal subspace. For a highly correlated data structure, for

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3

example, a large percentage of the signal maps into one eigenimage (corresponding 
to the largest eigenvalue of data covariance matrix) only. Therefore, the whole data 
can be reconstructed with bigger SNR value using the information stored in this 
eigenimage.

The eigenimage techniques are frequently applied to a variety of seismic data 
processing problems. Following Hemon and Mace (1978) who were the first inves­
tigators that introduced and applied KLT to seismic data, the KLT transformation 
has been applied to one- and two-dimensional data compression by several authors. 
Levy et al. (1983) and Ulrych et al. (1983) extended the work done by Hemon and 
Mace (1978). Jones and Levy (1987) applied the KLT transformation to enhance 
stacked seismic sections and increase the SNR value by removing the information 
from the data that is incoherent from trace to  trace. Freire and Ulrych (1988) 
used the KLT in a different manner to analyze vertical seismic profiling (VSP) data 
and separate downgoing and upgoing signals. Using the singular value decomposi­
tions, they introduced low-pass, band-pass and high-pass filters and showed that the 
contribution of the horizontally aligned downgoing waves in the time-shifted VSP 
section can be recovered using the low-pass filter. The uncorrelated noise compo­
nent, however, can be filtered out by high-pass filter because it contributes to the 
last few eigenimages only. Interestingly, the separated upgoing waves are recovered 
after applying band-pass filters. Using SVD approach, Ulrych et al. (1988) and 
Freire and Ulrych (1990) studied several other problems including attenuation of 
multiple reflections.

Noise attenuation/suppression for 3D stacked data seismic sections is discussed 
through f-xy prediction method by Chase (1992) and through f-xy projection method 
by Ozdemir et al. (1999) and Soubaras (2000). Application of eigenimage decom­
position on 3D data in the frequency domain (f-xy) is discussed by Trickett (2003). 
In his method, the data is transformed to the frequency domain using the Fourier 
transformation and then each constant-frequency slice is decomposed independently. 
After reconstructing the constant-frequency slice using the first few eigenimages (de­
pending to the number of events) the data is transformed to the time domain by 
inverse Fourier transformation. The newly transformed data has greater SNR value 
compare to the original data structure.

Spatial and temporal analysis of a data structure is also considered as major 
issues in the data processing. Most of the observable phenomena in the empirical 
sciences have been collected through several receivers that are located at different
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places. The so called multichannel time series is usually constructed by detecting 
one or more natural and/or artificial sources through out a period of time by several 
geophones/radars located at different positions. As a result, the gathered data are 
a function of time and spatial offset. Extracting signal properties such as frequency 
and wavenumber from a noisy data structure is not a simple task. Several statis­
tical techniques are proposed to address precisely the following questions. For a 
data structure: how many sources are present in the data? W hat are the signals’ 
frequencies? Where are they located? W hat are their spectral levels?

For a temporal analysis of a given time series, the discrete Fourier transform 
(DFT) usually provide the signals’ frequency with acceptable resolutions through 
the power spectrum analysis. This is because of the fact that a time series is usually 
made of a large sample of time points, N  ~  O(102 — 103). Therefore, for a time 
duration, there is enough information in the data structure to retrieve the signals’ 
frequency in a precise manner.

For spatial analysis, however, the above argument may not be true. A multichan­
nel time series is usually observed with a small number of detectors, M  0 (  101).
Therefore, a spatial power spectrum using DFT will yield low resolution and then 
less accurate results due to the lack of data points. Implementing high resolution 
methods is the subject of array signal processing.

Array signal processing (or multichannel time series analysis) has been used for 
several decades in radar, sonar (SOund Navigation And Ranging) and seismic data 
analysis. A set of detectors that are spatially distributed at specific locations is 
usually considered as an array. These detectors receive and record incoming signals 
form sources in their field of view, see Figure 1.1.

Several techniques are proposed to analyze multichannel time series in order to 
provide higher spatial resolution. Capon (1969) first introduced the minimum vari­
ance method (also called maximum likelihood estimator) for a 2D problem (time- 
space) with high resolution in the spatial domain. The maximum entropy method 
proposed later by Burg (1975) that provided a high spatial resolution for ID prob­
lems. Several extensions of the maximum entropy method to accommodate 2D 
problems were developed by Roucos and Childers (1980), Lim and Malik (1981), 
and McClellan (1982). Linear prediction method and maximum likelihood estima­
tor are also proposed and studied for spectral analysis of ID and 2D problems (Good, 
1963; Schweppe, 1968; Hahn and Tretter, 1973; Frost and Sullivan, 1979; Jain and 
Raganath, 1978; Jackson and Chien, 1979; Kumaresan and Tufts, 1981; Wax and
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Figure 1.1: Schematic presentation of a linear array that records a down going plane wave 
with the wave vector k. xm\ m = 1, . . . ,  M, represents the position of each detector from 
the coordinate’s origin.

Kailath, 1983).
In case of narrow-band sources, however, the above methods failed to provide 

spectral densities with acceptable resolution. Narrow-band sources radiate within a 
small frequency band about a particular frequency, or class of frequencies. Since the 
frequency bandwidth is very small, the signal peaks merge together. To overcome 
such deficiency, in particular, Pisarenko (1972) developed a new method based on the 
eigenstructure of the covariance matrix of the observed data. The new method pro­
vides much better resolution than previous methods such as the minimum variance, 
maximum entropy, and linear prediction methods. Following Pisarenko’s study, 
several investigators improved and extended his method from a uniform array, as 
considered by Pisarenko (1972), to a general array (Reddi, 1979; Schmidt, 1979; 
Bienvenu and Kopp, 1980; Schmidt, 1981; Bienvenu and Kopp, 1981; Johnson and 
Degraff, 1982; Kumaresan and Tufts, 1983; Schmidt, 1986). For example, Pisarenko 
(1972) and Schmidt (1979) developed their methods based on the eigenstructure of 
the covariance matrix in time domain, while Bienvenu and Kopp (1980, 1981) used 
the eigenstructure of the spectral density matrix, i.e. the covariance matrix in the
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frequency domain. See also Pillai (1989) and Wax, Shan, and Kailath (1984) for 
detail and review about these methods.

Schmidt (1981, 1986) developed the eigenstructure method which is well suited 
for seismic data. This method that is called multiple signal classification (MUSIC) 
has shown a superior resolution over the other methods for seismic data (Goldstein 
and Archuleta, 1987). The term MUSIC addresses experimental and theoretical 
methods that are used to estimate the parameters of multiple wavefronts observed 
by an array of antennas, such as: number of signals, directions of signal arrival, 
polarizations, multiple frequency etc.

1.1 T he scope o f th esis

This thesis can be divided in two major sections: In the first section we discuss 
the possible enhancement of the signal-to-noise ratio of a data structure using the 
eigenimage decomposition method.

In chapter 2 we introduce the singular value decomposition (SVD) of a matrix 
that is known as one of the powerful tools in the SNR enhancement. The SVD 
analysis is basically an eigenanalysis technique that extracts a set of eigenvectors 
and their associated eigenvalues from a designated data structure. Similar to other 
statistical methods the main purpose of the SVD is to simplify a dataset by reducing 
dimensionality while retaining the characteristics of the dataset. We first review the 
mathematical framework of the SVD in a very general manner tha t is applicable to 
an arbitrary complex data structure. Following the definition, the eigenimage filter­
ing based on the magnitude of the singular values of the data matrix is presented. 
At the end, we discuss briefly the relationship between the SVD and the other sta­
tistical methods such as principal component analysis (PCA) and Karhunen-Loeve 
Transformation (KLT).

In chapter 3 we examine the SVD capability in enhancing SNR value with syn­
thetic data. At first we synthesize a seismic section that includes three reflected 
events from zero dip layers. We show that after moveout correction the SVD analy­
sis is very efficient in recovering the data structure with less noise. However, the SVD 
recovery is fairly poor on the same data if no moveout correction was carried. There­
fore, the results are still noisy. To continue we introduce a synthesized poststack 
3D data structure with three events (three layers). In general we assume that each 
layer can have different dips relative to the x- and y-direction. We show that a direct
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application of the SVD would not be able to recover the data structure very well. In 
this regard following Trickett (2003), we apply the eigenimage decomposition in the 
frequency domain rather than time domain. For linear events, we discuss that the 
Fourier transformed data has similar properties to the eigenimage decomposition. 
The latter method is then called f-xy eigenimage decomposition. After reconstruct­
ing the frequency domain data with greater SNR value, the reconstructed data is 
then transformed to the time domain.

In the second part of this thesis we discuss the spatial and temporal analysis for 
a time series.

As we discussed earlier, due to the small number of detectors, the total number 
of gathered data points in spatial dimensions is smaller than that of in temporal 
dimension by one (at least) order of magnitude. In chapter 4, following Schmidt 
(1981, 1986), we introduce the eigenstructure based method called multiple signal 
classification (MUSIC). This method has shown a superior resolution over the other 
methods for seismic data (Goldstein and Archuleta, 1987). The idea behind the MU­
SIC is to separate the data structure into two orthogonal signal and noise subspaces. 
Therefore, any arbitrary vector that is orthogonal to the noise subspace would be 
equal to a linear combination of the signal’s eigenvectors. By browsing through a 
pool of possible eigenvectors, one can determine the signals’ wave vector in high 
resolution. For more general situations, however, some smoothing procedures need 
to be done prior to the MUSIC power estimation. We apply the MUSIC method to 
the synthetic data that we introduced in chapter 3.

Spatial and temporal analysis of real space data observed by a high frequency(HF) 
radar is the subject of Chapter 5. The Super Dual Auroral Radar Network (Super- 
DARN) is a network of HF radars that monitors ionospheric plasma convection over 
the majority of the northern and southern polar regions. The pulsations in the 
Earth’s magnetic and electric field are often detected with these radars. In partic­
ular, observation of field line resonances by SuperDARN radar are common. Field 
line resonances are standing wave mode oscillations that transport energy from the 
outer magnetosphere in to the ionosphere. The observed quantity is the doppler 
velocity vector of the bulk flow in the ionospheric plasma. We first discuss the tem­
poral analysis of the data using the periodogram calculation (Chatfield, 1991). The 
spatial-temporal analysis is also carried out on the data using both 2D DFT and 
the MUSIC methods.

Chapter 6 is devoted for conclusion and further discussions. List of symbols and
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some definition are given in appendices A and B, respectively.
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Chapter 2 

Singular value decom position

As we discussed earlier, enhancing the signal-to-noise ratio (SNR) is an important 
issue in data processing. The SNR which is the ratio of the amplitude of the signal 
to the standard deviation of the noise, represents the quality of the signal in the 
data structure. As a result, the greater the ratio, the less noise in the observed data.

Practically, the SNR enhancing is not a easy task. Several methods are proposed 
in order to separate the signals from the random noises, such as Principal Compo­
nents Analysis (PCA), Singular Value Decomposition (SVD), and Karhunen-Loeve 
Transformation (KLT).

Singular value decomposition is known as one of the powerful tools in the SNR 
enhancement. However, it has several other applications in time series analysis such 
as filtering, detecting and estimating common structures (Ulrych, Sacchi and Freire, 
1999).

The SVD method is basically an eigenanalysis technique that extracts a set 
of eigenvectors and their associated eigenvalues from a designated data structure. 
Similar to other statistical methods the main purpose of SVD is to simplify a dataset 
by reducing dimensionality while retaining characteristics of the dataset.

In this chapter we first review the mathematical framework of the SVD in more 
detail. The procedure that is given here is very general and is valid for an arbitrary 
complex data structure. Eigenimage filtering of a data structure based on the mag­
nitude of the singular values is presented in section 2.2 The other statistical methods 
such as PCA and KLT and their relationship to the SVD are briefly discussed in 
sections 2.3 to 2.5. Section 2.6 is devoted to final remarks.
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2.1 M ath em atica l fram ework o f SV D  th eory

Basically, the singular value decomposition is an orthogonal transformation or an 
expansion of a matrix with rank r  in terms of matrices with rank-1 (Lanczos, 1961).

of a M  x N  (without loss of generality we assume that M  < N)  complex data matrix

where r < M  is the rank of the matrix X  (number of linearly independent rows 
or columns of a matrix). Here ()H =  ()*T indicates complex conjugate and matrix 
transpose. U  is a M  x N  orthonormal matrix consisting N  left singular vectors u, 
as its columns and V  is a N  x N  orthonormal matrix consisting N  right singular 
vectors v, as its columns. The eigen decomposition of the data structure X, equation 
(2.1), is schematically shown in Figure 2.1. Multiplying X  by X ^  once from right

See appendix A for definition of the matrix rank. The singular value decomposition

X  composed of M  traces with N  data points per trace can be written as (Lanczos, 
1961)

X  =  U X V ^,

=  y V jU jv f , (2 .1)
i= 1

X X ff =  (U X V ^ )(V S U H) 

=  U X 2U H, (2 .2)

and once from left

X ^ X  =  (V S U //)(U E V h ) 

=  V £ 2V ^ , (2.3)

indicates that u t is the zth eigenvector of the matrix X X s

X X H = U (2.4)

0 /

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



2.1. M ATHEM ATICAL FR A M EW O R K  OF SV D  THEORY 11

Time

X +  u„

Figure 2.1: Eigenimage decomposition of the data matrix X into the sum of weighted 
eigenimages. From Ulrych, Sacchi and Freire (1999).

and Vj is the zth eigenvector of the matrix X HX

/

X^X = V

Ai

V o o

V H (2.5)

Here \  are the eigenvalues of matrix X X 7/ or X /7X. E is a N  x N  diagonal complex 
matrix of the complex singular values at (a^a* = Xt)

(

E =

0 \

(7 r

o 0

(2 .6)

that are usually ordered decreasingly, i.e. |<ti| >  |cr2| >  . . .  >  \ar \ (Lanczos, 1961). 
The number of nonzero singular values depends on the rank of the matrix X. Equa­
tion (2.1) is usually referred as the singular value decomposition of X  and has wide 
range of applications in data processing in the last three decades, see Gerbarands 
(1981) and references therein.

The square of the singular values cq represent the variance or autocorrelation of 
the matrix X. Therefore, in the SVD method, the first eigenvector is extracted such 
that it accounts for a maximum amount of variance in the data, corresponding to
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the first and largest singular value, Then a residual data matrix

x rs =  X -  <TlU,vf (2.7)

is calculated to extract the second eigenvector. The procedure is repeated until 
there are no significant singular values left. Therefore, the variance accounted for 
by each eigenvector is measured by its eigenvalue. As a result, by examining the 
eigenvalues (or equivalently singular values) and their relative magnitudes one can 
estimates the number of significant factors or components in the data matrix X.

Based on the above property of the SVD, Andrews and Hunt (1977) introduced 
the outer dot product tq v ^  as the Ah eigenimage of the matrix X. Due to ortho­
normality of the eigenvectors rq and v*, the calculated eigenimages form an ortho­
normal basis that can be used to reconstruct X  according to (2.1). However, as seen 
from equation (2.1), the contribution of each eigenimage to the construction of X 
is weighted by the magnitude of corresponding singular value. Since the singular 
values are always in descending order, the greatest contributions in the representa­
tion of X  are contained in the first few eigenimages. If all M  traces that compose 
the data matrix X  are linearly independent, then r = M  which means that all cq 
are nonzero. So all the eigenimages are required in order to reconstruct X  perfectly. 
On the other hand, if all traces are linearly dependent the matrix X  has rank one 
and then can be reconstructed by using only the first eigenimage of X, cqujv^. In 
practice, however, the data matrix X  may be reconstructed from the first p < r 
eigenimages depending on the linear dependence which exists among the traces:

where X  is the reconstructed data matrix. In this case, the reconstruction error e, 
the least square error, can be calculated by

p
(2 .8)

i= 1

e | | X - X | |2
r P

r
(2.9)

i = p + 1
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where ||A ||2 =  t,r(AA/;) for any matrix A and tr  denotes trace of the matrix. 
Simplifying equation (2.9), one finds

e =  tr
H '

E  ^ u*vf  E  (T:i u i v j
ii=p+l /  \i=p+l

H

= tr I E  E  (T/fTj vr n/uj v:j
q=p+ij = p +l

=  E
i = p + l

(2.10)

where in the last step we use the identity tr(A B ) =  tr(B A ) and the orthonormality 
conditions that require vf*Vj =  =  cqujb Equation (2.10) shows that the error
in reconstructing data structure X  using the first p eigenvectors is simply adding 
together the unused (r — p) eigenvalues (A* =  cqof) of the covariance matrix X X H. 
As a result, the larger the p the smaller the error.

2.2 F iltering  a data  structure using eigen im ages

For large data structures like seismic time series, the computation of the full de­
composition would be a time consuming task. This is particularly due to the large 
temporal dimension N.  However, in most cases we are interested to recover a part 
of data that can be done by using only a few eigenimages. As a result, instead of 
computing the full decomposition of the data structure, one can reduce the problem 
to compute few eigen-decompositions.

Using the above idea, Freire and Ulrych (1988) decomposed the data matrix X  in 
terms of the ranges of their singular values by introducing low-pass X lp, band-pass 
X BP and high-pass X Hp eigenimages:

X — X lp +  X Bp +  X h p ,
p-i

X LP =  ^ a ^ v f ,
i—1 

Q

(2.11)

X Bp
i= p

r

(2.12)

X hp =  )T (X8 u2 v f ,
i = q +1

(2.13)
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where 1 < p < q < r. It is interesting to note that the low-pass image is constructed 
by highly correlated traces (corresponding to the larger singular values) while the 
high-pass image is constructed by highly uncorrelated traces (corresponding to the 
smaller singular values). As a result, the band-pass image is constructed by rejecting 
those extremes, the highly correlated as well as highly uncorrelated traces, p and q 
are chosen based on the relative magnitudes of the singular values. By plotting the 
eigenvalues A* =  of as a function of the index i. one can estimate p and q. Therefore, 
depending which part of the data is of more more interest, a filtered decomposition 
may be performed. As an application, Freire and Ulrych (1988) used the filtered 
decomposition to separate the down going and up going waves in a vertical seismic 
profile.

2.3 P rincipal C om ponents A nalysis

Principal components analysis (PCA) is a statistical technique that is used to sim­
plify a dataset by reducing dimensionality of the data matrix (Anderson, 1958; 
Gnanadesikan, 1977). A multivariate data structure often has a very large number 
of variables that makes its analysis very difficult. In PCA the number of vari­
ables is reduced by taking linear combinations of the variables and discarding the 
combinations with small variances. In other words, the object of the PCA is to 
find n  uncorrelated parameters Wi,  IP2, • • •, Wn from a combination of n  observable 
X 1, X 2, • • •, X n data (Anderson, 1958). If the original dataset is non-correlated, then 
Wi = Xi,  otherwise

W, = ' t u t jX1, (2.14)

or in matrix form
W  =  XJHX ,  (2.15)

where Uij are the eigenvectors of the covariance matrix R =  X X H with property 
U U H =  I where I is the identity matrix. The so called principal components Wi are
also ordered so that W\  is the largest amount of variation, W 2 is the second largest
amount of the variation and so on, i.e. Var(VFi)> Var(IP2)> • • • >  Var(Wn), where 
Var(Wj) denotes the variance of Wt. See equation (B.2) for definition of the variance. 
For an arbitrary dateset, the best result of principal component analysis can be 
obtained when the variance of most components Wj are so small to be negligible
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(Anderson, 1958).
A simple way to calculate the principal components is to use the covariance 

matrix of X, i.e. R  =  X X n . The largest eigenvalue is related to dimensions that 
have the strongest correlation/energy in the dataset. Note tha t Var(Vbj)= A * are the 
eigenvalues of the covariance matrix R  and we have Ai > A2 >  • • • >  An. Therefore,
the largest eigenvalue represents the direction or dimension in which the data has
the largest variation.

2.4 T he K arhunen-L oeve Transform

Similar to SVD and PCA methods, Karhunen-Loeve Transform (KLT) is looking for 
an optimal way to single out the signals from a data structure (Hemon and Mace, 
1978).

Consider a M  x N  complex X  matrix and a M  x M  orthogonal transformation 
K  (i.e K ^ K  =  K K ff = I). The matrix X can be transformed to a new matrix 
(representation) Y  (m x N)  by applying K w as

Y  =  K ^X . (2.16)

Calculating the covariance matrix X X ff as

X X H = K Y Y h K h , (2.17)

where X  is replaced from equation (2.16), X  =  K Y . It is very difficult to find the 
transformation matrix K  in general. One way is to approximate K  such that the 
mean-square error between X  and the reconstructed one Y  =  K X  is minimized, 
i.e. m in(||X  — K Y ||2). Interestingly, the minimization condition will be satisfied 
by choosing the transformation matrix K  such that the matrix Y Y H contains the 
eigenvalues matrix of X X H, i.e.

Y Y h =
(  Ax 0 \

\  0 A m )

(2.18)

See Ahmed and Rao (1975) for details. In this case the transformation matrix K  is 
called the Karhunen-Loeve transform. Obviously, the transformation matrix K  is
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the eigenvector matrix of the covariance matrix X X H.

2.5 R elationsh ip s b etw een  P C A , SV D  and KLT

In the last three sections we discussed SVD, PCA and KLT techniques that are used 
for different seismic data problems. It is interesting to see what relation holds among 
them. This has been subject of a long term debate among the experts. Anderson 
(1975) stated that the SVD and the PCA are very similar but the SVD and the 
KLT are not identical. Ahmed and Rao (1975) discussed that in the context of data 
compression the KLT and the PCA are similar. Taylor (1977) studied the SVD and 
the PCA and concluded these are identical techniques.

To elaborate the relationships, we start from the SVD decomposition of a data 
matrix X, equation (2.1),

X  =  U E V ^ . (2.19)

Calculating the covariance matrix X X H and using the orthonormality of V, one 
finds

X X H = V X V HV X U H

= U S 2U H, (2.20)

where X2 is X X //;s eigenvalues matrix. Comparing equations (2.17) and (2.20), we 
find that K  =  U  or in other words the matrix U  obtained by the SVD technique 
is the Karhunen-Loeve transform matrix with Y  =  E V H. As a result, the SVD 
decomposition of the matrix X, equation (2.19), can be considered as the Karhunen- 
Loeve transform of the matrix X

X  =  U  (E V h )

=  K Y . (2.21)

It is interesting to note that in the KLT technique, the matrix Y  is the representation 
of the original data matrix X  in the coordinate system made of principal axes. It 
means that elements of the matrix Y  are the principal components of the data
structure X. This shows that the KLT and PCA are similar. Therefore, we conclude
that all three methods, PCA, SVD and KLT are similar.
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2.6 Sum m ary

In this chapter we reviewed the mathematical framework of the SVD. Any complex 
valued data structure can be decomposed to its eigenimages weighted by singular 
values. Interestingly, the first few eigenimages are often enough to reconstruct the 
data structure with less noise. This is because the highly uncorrelated structures 
such as random noise are presented mostly in the eigenimages with smaller singular 
values. Several preparations such as stacking may be needed before applying the 
SVD. In the next chapter, we provide some synthetic data structures in order to see 
how the SVD method can handle the various situations.
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Chapter 3

Singular value decom position: 
application to seismic data

In this chapter we present different synthetic data to see how the SVD works. Specif­
ically we are interested in 3D data structure that is recorded in layers with nonzero 
dips. In section 3.2 we will discuss the SNR enhancement on data with zero dip 
events. We first consider a three-event data with moveout correction. Then we ap­
ply the SVD on the same data structure but with no moveout correction to demon­
strate the SVD ability to increase SNR. In Section 3.4 we introduce a poststack 3D 
data structure with three events (three layers). More generally we consider that 
each layer can have different dips relative to the x- and y-direction. We will show 
that a direct application of the SVD was not able to recover the data structure. 
In this regard f-xy eigenimage decomposition is introduced in section 3.5. Further 
discussions and concluding remarks are presented in section 3.6.

3.1 Seism ic surveys

Any seismic survey consists of three main stages, (a) data acquisition, (b) data 
processing and (c) interpretation. In the data acquisition phase, several seismic 
waves are generated synthetically and then detected after passing through the re­
gion of study. The most common form of seismic data acquisition is the reflection 
seismic survey. A reflection seismic survey typically involves generating hundreds to 
thousands of seismic shots (as sources) at different locations. After passing through 
the region of study, the generated energy by each shot is detected by geophones
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and/or hydrophones (known as receivers) located at different distances from the 
source positions. Each receiver generates a trace, a sequence of observations at 
different time that is recorded for further analysis. A main goal in seismic data 
processing is to improve the low signal-to-noise ratio (SNR) of the observed seis­
mic data. To achieve this goal, in data acquisition phase, one would use as many 
receivers per shot as possible and then collect the data. These data are usually 
processed using the common mid-point (CMP) method. In CMP processing, seis­
mic traces are grouped into CMP gathers on the basis of shared source-receiver 
midpoint bins. Velocity functions are calculated for selected CMP gathers based 
on arrival time variations as a function of source-receiver offset for a few reflection 
events in the gather. CMP velocity functions are then interpolated throughout a 
survey area to construct a velocity model of the layer. This velocity model is used 
to perform normal move-out (NMO) corrections throughout the survey. NMO is a 
non-linear stretching of the seismic time axis to remove the travel time component 
due to source-receiver offset. NMO is applied to each trace in a gather so that the 
reflection travel times on all traces approximate that of a trace with zero source- 
receiver offset (a coincident source and receiver). After NMO, all the traces in a 
CMP gather can be summed, or stacked. As a result, reflection events on the differ­
ent traces will sum constructively, producing a single trace with a SNR that is much 
higher than that of the individual prestack traces. By repeating this procedure for 
all CMP gathers in the survey, the prestack data set is replaced by a much smaller 
poststack data set but with higher signal quality.

3.2 Syn thetic  data: events w ith  zero dips

3.2 .1  F la t E ven ts

In this section, we apply the SVD method to a simple case, a M  x N  data structure 
X  consisting M  — 20 traces that are composed of three horizontal (parallel to the 
x-axis) events. Each trace contains N  = 450 time samples. This data can be 
considered as the observation of three horizontal seismic reflections by 20 geophones 
placed along the rr-axis after moveout corrections. See Figure 3.1a. The data are also 
contaminated with uncorrelated noise of standard deviation of 10% of the maximum 
amplitude a = max(X)/10, which corresponds to signal-to-noise ratio, SNR= 10 db.
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The SNR is defined as
SNR =  max(X)/cr. (3-1)

Figure 3.1b shows the reconstructed data X  using only one eigenimage, i.e.

X  =  o-i u i v f , (3.2)

where ()T indicates matrix transpose. It is clear tha t the original event is completely 
recovered. Furthermore, the reconstructed data is less noisy compared with the 
original one, see Figure 3.1(a).

Subtracting the raw data from the reconstructed one, i.e. its first eigenimage, 
gives

X  -  X  =  ^ 2  <Jiu iXT, (3.3)
i= p

where p =  2 and M  =  20. As seen in Figure 3.1(c), the result more or less is just the 
noise. The above observation can be explained by finding the singular values of the 
data matrix. Statistically speaking, each singular value represents the variance of 
the data stored in the corresponding eigenimage. In Figure 3.2, we plot the singular 
values for the above data structure. As shown, the first singular value is much 
larger than the others. This means that the first eigenimage contains a data with 
the largest variance.

These results can be also explained by noting that the singular values <T; are the 
square root of the eigenvalues Aj =  af  of the covariance matrix X X T. Physically 
speaking, eigenvector analysis decomposes the system into normal modes (or eigen­
states) with equal or different eigenvalues in which each eigenvalue represents the 
fraction of energy of the system in the corresponding mode. Therefore, the total 
energy of the system can be calculated as

£ =  ! > ? •  (3.4)
1 = 1

For the above data structure, it is easy to see that approximately 64% of the total 
energy is stored in the first eigenstate, i.e.

a
64%. (3.5)

As a result, one would expect to see most of the signal in the first eigenimage.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3.2. SY N TH ETIC  DATA: EV EN TS W ITH  ZERO D IPS 21

(a) (b) (c)

Offset (m)

Figure 3.1: (a) A data matrix X composed of three events and contaminated with an
uncorrelated noise with standard deviation of 10% of maximum amplitude. Note that only 
first 300 time samples are shown.(b) Reconstructed matrix X in t-x domain using the first 
eigenimage only, equation (3.2). Comparing with (a), the reconstructed data clearly has 
less noise, (c) Original data subtracted by reconstructed data, X — X. See equation (3.3). 
Note that amplitudes in (c) were scaled.
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Figure 3.2: Singular values, a*, for the moveout corrected event data structure. Figure 
3.1(a). The first singular value is approximately 5 times larger than the second one.
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Figure 3.3: (a) Same as Figure 3.1(a) with no moveout correction, (b) Reconstruction of 
the data matrix in t-x domain using the first eigenimage. (c) The residual, original data, 
Figure 3.3(a), subtracted by reconstructed data given by Figure 3.3(b). See equation (3.6).

3 .2 .2  H y p erb o lic  E ven ts

The data structure that we studied in section (3.2.1) can be considered as the move­
out correction of a more realistic data. In this section, we would like to consider a 
data structure with no moveout correction in the t-x domain to examine the effi­
ciency of the SVD method.

Similar to the last section, we consider a real M  x N  data structure X  consisting 
M  = 20 traces that are composed of three hyperbolic events which are corresponding 
to a direct observation of three reflectors by 20 geophones placed along the rr-axis 
in a seismic section. Each trace contains N  =  450 time samples. The data are also 
contaminated with uncorrelated noise of standard deviation of 10% of the maximum 
amplitude a = max(X)/10, i.e. SNR= 10. Figure 3.3(a) represents a data structure, 
X, with three parabolic events.
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Figure 3.4: (a) Same as Figure 3.3(a). (b) Reconstruction of the data matrix in t-x domain 
using the first 5 eigenimages. (c) The residual, original data, Figure 3.4(a), subtracted by 
reconstructed data given by Figure 3.4(b). See equation (3.6).

(a) (b) (c)

50

100

|  150

200

250

300
10 20

0 0 i f j j j l j j j j j j j j j f i f j i
I I 501111 5011111 1001 1 1 100 1

150 11 l i t i s  r :f 150 j { I ( I j M l I  (
I u  M i l ] t I I I l ( l i ); 111 M l !

illflil/Ki ;Kk>\R̂ 200 200')) III > U/fKiI I I  1 I 1 KlJlT 1 1 l l i l l
ffiilR 250S ill 2501 III
illlliim lm iluli 300 300 OSiililiiillflmil

10
Offset (m)

20 10 20

Figure 3.5: (a) Same as Figure 3.3(a). (b) Reconstruction of the data matrix in t-x 
domain using the first 10 eigenimages. (c) The residual, original data, Figure 3.5(a), 
subtracted by reconstructed data given by Figure 3.5(b). See equation (3.6).
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Applying the SVD method, we reconstruct the above data using the first eigen­
image only, the first 5 eigenimages, and the first 10 eigenimages. Figures 3.3(b), 
3.4(b) and 3.5(b) demonstrate the reconstruction of the data using 1 eigenimage, 5 
eigenimages and 10 eigenimages, respectively. It is clear, even after using 10 eigen­
images, the events are not fully recovered. As a result, one would expect to see a 
fraction of the events on the residual data, i.e.

as shown in Figures 3.3(c)-3.5(c). Here p = 1, q =  10 and M  = 20. These results, 
however, would be expected since the change in singular value magnitude is more 
gradual in this case compared to the flat event data, see Figure 3.6. Interestingly, 
the fraction of energy stored in the first eigenimage is approximately 12% of the 
total energy:

that is ~  5 times smaller than what we found in equation (3.5) for the correlated 
data.

It is necessary to note that the whole event can be fully recovered by adding more 
eigenimages to the reconstructed data. But this makes the eigenimage analysis 
more or less useless because by adding more eigenimages, the reconstructed data 
becomes more noisy. This can be seen by comparing Figures 3.3(c)-3.5(c). The 
more eigenimages that we use, the more noises appear in the reconstructed data. In 
order to avoid the above problem one must perform the moveout correction on the 
original data initially to increase correlation among traces. In the following section 
we will apply the eigenimage decomposition on a real seismic data gathered in the 
district of western Canadian sedimentary basin.

3.3 R eal data: rem oving ground roll

One of the common problem in the analysis of a real shot gather is the presentation 
of the surface waves in the data. Every shot produces three type of seismic waves: 
air waves, body waves, and surface waves. Body waves are compressional waves that

q M

X - V  o-jUivf =  . (3.6)
i—p i=q+ 1

(3.7)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



3.3. REAL DATA: REM O V IN G  G R O U N D  ROLL 25

4.5

3.5
er

2.5

Singular value index, i

Figure 3.6: Singular values, cq for the hyperbolic event data structure, Figure 3.3(a). In 
contrast with Figure 3.2, the singular values are changing gradually in this case.

travel within a layer and reflect from interfaces. Reflections are usually recognized 
by their hyperbolic travel times. In seismology, surface wave refers to perturbations 
that propagate close to the surface of the Earth. The amplitude of surface waves 
decreases rapidly in deeper layers. Based on the particle motion, the surface wave 
is usually classified into Love wave and Rayleigh wave. Love waves have transverse 
motion that produce horizontal shifting in the Earth’s surface. In contrast, the 
Rayleigh wave have both transverse and longitudinal motions. In the Rayleigh 
waves, the particle moves in a vertical circle or ellipse moving in the direction of 
propagation. These waves are generated by the interaction of P- and S- waves at 
the Earth’s surface.

Ground roll (source generated noise of surface wave) is type of Rayleigh waves 
that propagate along the free surface and characterized by their low frequencies, 
low velocities and strong amplitudes. These waves which are typically recorded as 
wiggles by each geophone are due to the ground motion caused by the shot (Yilmaz, 
1999).

Several methods are proposed for removing or attenuating the ground roll, such 
as stacking, muting, band-pass frequency filtering, and eigenimage decomposition
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Figure 3.7: (a) A typical seismic shot gather. Hyperbolic events represent reflections
from underlying layers and linear events produced by surface waves (ground roll), (b) 
Moveout corrected data, (c) Moveout corrected data after removing the reflected events 
using SVD.

(Ulrych, Sacchi and Freire, 1999; Yilmaz, 1999). Here we would like to attenuate 
the surface waves using the eigenimage decomposition. The data that we are going 
to use is recorded in the district of the western Canadian sedimentary basin.

The Western Canadian Sedimentary Basin (WCSB) is a vast sedimentary basin 
with an area about 1.4 million km2. It is mainly located in southwestern Manitoba, 
southern Saskatchewan, Alberta, northeastern British Columbia and the southwest 
corner of the Northwest Territories. The basin consists of a 6 km thick massive 
wedge of sedimentary rock under the Rocky Mountains in the west tha t thins to 
zero as it extends to the Canadian Shield in the east. This sedimentary basin is one 
of the largest reserves of petroleum, natural gas and coal in the world (Mossop and 
Shetsen, 1994).

Figure 3.7(a) represents a typical seismic shot gather that is taken from a region 
of the Western Canadian Sedimentary Basin. The data is recorded by 45 geophones, 
each separated by 50 m. Each trace contains 1000 time points with a time interval 
of .004 sec. Reflections from different layers are shown as hyperbolic events. These
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Figure 3.8: (a) The original shot gather, (b) The separated surface waves using SVD
decomposition, (c) The pure (hyperbolic) reflected events.

events are also contaminated by some (sloped) linear events produced by surface 
waves.

In order to single out the reflected signals from those surface waves, we use the 
eigenimage decomposition. Since the reflected events are hyperbolic we need to 
perform a moveout correction prior to the eigenimage decomposition, see section 
3.2.2. Figure 3.7(b) shows WCSB data after the moveout correction. It is clear 
that the reflected events are now more or less flattened. We separate the surface 
waves from the reflected events by employing the eigenimage decomposition and 
subtracting the first 10 eigenimages from the moveout corrected data. The result 
is shown in Figure 3.7(c) that has no significant reflected events. Therefore, Figure 
3.7(c) more or less contains surface waves and noise. Inverting moveout procedure 
on the Figure 3.7(c) and subtracting it from the original data, Figure 3.7(a), one 
can get the reflected events with no ground roll. This procedure is shown in Figure 
3.8. Figure 3.8(a) again represents the original shot gather while Figure 3.8(b) 
demonstrates the the ground roll and noise portion of the data (after implementing 
the eigenimage decomposition and inverse moveout procedure). Figure 3.8(c) shows 
the (hyperbolic) reflected events with no sign of ground roll.
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So far we have shown that SVD method works very efficiently on enhancing signal 
to noise ratio of data structures composed of flat events in t-x domain. However, 
as we will discuss in the next section, there are some shortcomings with eigenimage 
analysis in t-x domain, specifically, when the data structure is composed of dip 
events.

3.4 S yn thetic  data: linear d ipping events

In previous sections, we discussed the application of the SVD method for a data 
structure in t-x domain. We specifically demonstrated the efficiency of enhancing 
signal to noise ratio of SVD method for both (hyperbolic event) and (flat event) 
data. We concluded that in t-x domain, the SVD analysis on the flat data is more 
efficient and reliable.

The above analysis, however, was restricted to events with zero dips. In reality, 
however, the layers’ interface has significant dips relative to the horizontal direction. 
In this section we would like to consider a poststack data composed of several events 
with nonzero dips. See Figure 3.9(a).

Although, the eigenimage analysis is able to recover and enhance the signal- 
to-noise ratio of the flat events data (zero dips) with a few eigenimages in the 
t-x domain, it fails when the events have dips. This can be seen in Figures 3.9(b)- 
3.11(b), as we applied SVD on the data in Figure 3.9(a). Figures 3.9(b)-3.11(b) show 
the reconstruction of the data using 1 eigenimage, 5 eigenimages and 10 eigenimages, 
respectively. Similar to the hyperbolic events, the events are not fully recovered even 
after using 10 eigenimages. Therefore, the residual will carry a fraction of the events 
as shown in Figures 3.9(c)-3.11(c). The change in singular value magnitudes is also 
gradual, see Figure 3.12.

In the next section we will show that in the case of nonzero dips data, the SVD 
analysis could be more efficient in f-x  (frequency) domain rather than t-x domain. 
This was first introduce by Trickett (2003) who performed the SVD analysis on a 
stacked 3D seismic volume in the f-xy domain. He showed that in this domain, the 
SVD analysis performs equally well on flat or dipping events.

Transforming data to the f-x  domain also reduces the rank of the data matrix. 
As we mentioned, the eigenimage analysis is very sensitive to the rank of the data 
matrix. The higher the rank, the more uncorrelated traces in data. As a result, one
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Figure 3.9: (a) Data matrix composed from three events with nonzero dips. The data is 
also contaminated with an uncorrelated noise with standard deviation of 10% of maximum 
amplitude, (b) Reconstruction of the data matrix in t-x domain using the first eigenimage. 
(c) The residual, original data, Figure 3.9(a), subtracted by reconstructed data given by 
Figure 3.9(b).
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Figure 3.10: (a) Same as Figure 3.9(a). (b) Reconstruction of the data matrix in t-x 
domain using the first 5 eigenimages. (c) The residual, original data, Figure 3.10(a), 
subtracted by reconstructed data given by Figure 3.10(b).
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Figure 3.11: (a) Same as Figure 3.9(a). (b) Reconstruction of the data matrix in t-x 
domain using the first 10 eigenimages. (c) The residual, original data, Figure 3.11(a), 
subtracted by reconstructed data given by Figure 3.11(b).
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Figure 3.12: Singular values, cr* for the three events data structure with nonzero dips, 
Figure 3.9(a). Similar to Figure 3.6, the singular values are changing gradually.

would expect the eigenimage analysis performs more effectively in reconstructing 
the data in the f-x domain.

In the frequency domain one can perform a f-xy analysis to enhance signal to 
noise ratio such as f-xy prediction (Chase, 1992) and f-xy projection (Ozdemir et 
al., 1999) which are 3D methods.

3.5 F-xy  eigen im age analysis

In this section following Trickett (2003), we first show how the eigenimage analysis 
can be performed in a 3D manner in the f-xy domain. Basically, in the f-xy domain, 
each slice with constant frequency is processed independently.

Consider a 3-dimensional seismic section consisting of L  events such that each 
event has a constant dip across the section. Let X  be a Mx x M y x N  3D data matrix 
that is composed from Mx x My traces. Any trace d is a N  x 1 (t — 0,1, 2, • • •, N  — 1) 
column vector that can be represented as

d =  [d(0), d(l), • • •, d(N  — 1)]T. (3.8)
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Therefore, the f')th component of structure X  is a N  x 1 column vector d ^ ,

d ^  =  [<4r(0), dfc£(l)> • • •, dkt{Nt — 1)]T, (3.9)

where k = 1, 2, • • •, M x and  ̂ =  1,2,--*, My. We define as the (k, f)th trace of 
X. Note that in general M x ^  M y. however, in numerical analysis we assume that 
Mx =  My =  M  for simplicity. Figure 3.13 shows an example of a volume section 
composed of three planes representing the three events. Each plane has nonzero 
directional cosines (dips) with the x- and y- axes. Therefore, each plane can be 
specified mathematically by

t tom “I- ot’jyiX Pmy, ui — 1, 2,3. (3.10)

Here t0m represents the cross section of the mth plane with the Taxis, a rn and firn 
are corresponding directional cosines in x  and y directions, respectively. The travel 
time of a seismic signal can be also found by equation (3.10). In this case (x,y)  
represent the location of the corresponding geophone.

For a 3D seismic volume made of L  planes, each trace is composed by L  events 
(or signals), say, sm, m  — 1, 2 • • •, L. The magnitude of the signal for the rnth event 
can be represented as

Sm(t) — hn)i (^-H )

where am is the amplitude of the mth signal reflected from mth layer and t  = 
0,1, 2, • • •, N  — 1. Here w(t) is the wavelet and rm = tom + a mx  +  (3my .

It is obvious that each signal sm would have a contribution to every single trace 
dkt of the 3D structure X. Therefore, the (k,£)th trace can be found by adding all 
individual signals

L
dki(t) = ^2  t = 0,1,2, - ■ ■ , N  — 1, (3.12)

m=1

where d^{t)  is the component of the trace =  [d^(0), dki(l), • • •, dke(N — 1)]T and

Smktid) Tmki), (3.13)

Tmkl ~  0̂m T OimXk T (3.14)

Here am is the amplitude of mth signal and (xk, ije) is the position of (k, £)th geophone.
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Figure 3.13: 3D view of a seismic section with three events (layers). Each plane 
may have different dips (a, (3) relative to x — and y — axes.

W ithout loss of generality, we assume that the data structure X  is a poststack data 
that means all the moveout corrections and stacking are already done on the data. 
In order to see how we can apply SVD on these data, let us first transform the signal 
sm from time domain to frequency domain using Fourier transform:

where N f  — 2n~l such that n =  [log2(Ar)J and f J is the nearest integer function. 
Here we assign uj^f  as the Nyquist frequency. Inserting equation (3.15) into equation 
(3.12), one finds

1 N*
gm(t) = (3.15)

(3.16)
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Recalling the Fourier transformation of dkg(t)

i  N f
dki(t) = — J 2 d k£(ujJ) e ^ t , (3.17)

Z n  j = i

one concludes that (by combining equations 3.16 and 3.17)

L

dkiij-^j) ^  j  = 1) 2, • • •, Nf.  (3.18)
m =  1

Equation (3.18) states that similar to the time domain, every trace of the data 
structure in the frequency domain can also be found by adding all individual Fourier 
transformed signals smke(ujj). However, this has no new information by itself. One 
step further is to calculate the Fourier transform of the wavelet w(t — Tmkt) tha t is

1 Nf
w { t - T m k e ) =  Tmkt)

1 Nf
= — '52w(u>j )ew*te-'u*T”'kt, (3.19)

27r j=1

and inserting it into equations (3.13) and (3.15) that leads to

smkt(w) =  amw(uj)e iuJTmke, (3.20)

where we drop the index j  for simplicity. Inserting equation (3.20) into equation 
(3.18) and using the definition of t„iM. equation (3.14), one finds the component of 
(k, £)th trace in the frequency domain as

L
d k l (o j )  =  Y ,  a m w ( L o ) e - iujt0me - iu}amXke - iuj/3myt

m=1 
L

^ ] Arn(u>)'um^(cn)um̂ ((n), (3.21)
m=1

where A m(cu) — amw(uj) exp(—ia;t0m), urnk and vrn? are the kth and £th components 
of u m and v m vectors, respectively,

'U'mk — ®̂ -P( k̂-̂ m*£/c)) (3.22)

V m t =  [vm]* =  exp (- iuj (3mye).  (3.23)
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Note that u  runs from uq to uqvy, the Nyquist frequency. For a fixed frequency, uq 
equation (3.21) can be written as

L

dkt ) )  (3.24)
m= 1

where k = 1, 2, • • •, Mx and t  =  1, 2, • • •, My. As a result, du  is the (k , £)th compo­
nent of a Mx x M y matrix that can be written as

L

where u m =  [um(xi), • • •, um(xMx)]T and v m =  [um(yi), • • •, vm{yMy)]T . Comparing 
with definition of SVD for a matrix, equation (2.1), one can interpret equation
(3.25) as the singular value decomposition of into two vectors u m and vTO with 
singular value A m. Therefore, equation (3.25) says that at each frequency the data 
matrix X^ can be written as the sum of its eigenimages. It is clear that the matrix 
decomposition (3.25) naturally follows from the Fourier transformation properties 
and so it treats any poststack data with zero or nonzero dip events in the same 
manner.

Starting from the first frequency and carrying procedure (3.25) along to the whole 
spectrum, uq to  uqvy, one can reconstruct the whole section using the calculated X w

As the final step, an inverse Fourier transform is required to obtain the original data 
in time domain, t-xy, i.e. X  =  DFT_1(Xa;).

In practice, however, the matrix X w with size Mx x M y, can be reconstructed by 
adding few of its eigenimages:

where K  < L. This approximation will be made again for each frequency in the 
spectrum to obtain the whole matrix X:

(3.25)
m =1

(3.26)

K
(3.27)

m=1

X  =  D F T -1([XWl,X W2, - . . , X WN/]r ) (3.28)
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and after an inverse Fourier transformation the approximated matrix X  will be 
recovered in t-xy domain. It is interesting to note that the amount of attenuated 
noise can be increased by increasing the grid size, Mx x My, and also decreasing K  

the number of summed eigenimages.
In order to see how efficient the f-xy method is, we return to the example that 

we discussed in section (3.4). Recalling Figure 3.9a that was a seismic section in 
t-x domain consists of three events with nonzero dips. As we found out there, the 
SVD method was not very efficient in recovering those events even after adding 10 
eigenimages together, see Figure 3.11(b).

Here we consider a 3D seismic volume, X, observed by M x x My =  20 x 20 
geophones that are distributed in a :ry-plane. The data contains ~  300 time samples 
and consists of thee events with nonzero dips, see Figure 3.13. Intersecting this 
volumetric data with a y-eonstant plane would produce a data very similar to Figure 
3.9(a).

We now first transform data from t-xy domain to f-xy domain using Fourier 
transformation in time coordinate. Then we apply the SVD decomposition on the 
transformed data at a fixed frequency, u, and calculate the approximated data X^ 
using the first few eigenimages:

_  K
X , =  5 > jUivl, (3.29)

where K  <C rank(X^,). By calculating X w for all co from u j \ to a)pff , the Nyquist 
frequency, the 3D reconstructed matrix X  would be obtained. Finally we transform 
back to the t-xy domain. The result is reported in Figures 3.14-3.16 and 3.17. 
Figure 3.14(a) represents the cross section of the original 3D data. In Figures 
3.14(b), 3.15(b) and 3.16(b) we plot the reconstructed data using equation (3.29) 
for K  — 1, 2 and 3, respectively. As shown, all three events are not fully recovered in 
panels 3.14(b) and 3.15(b), however, panel 3.16(b) contains almost the whole data. 
This can be seen through panels 3.14c)-3.16(c) that show the residuals for panels 
3.14(b)-3.16(b), respectively. The efficiency of the f-xy analysis can be understood 
by plotting the singular values as function of the singular value index. In Figure 
3.18(a) we plot the singular values in terms of the singular value indices at each 
frequency. It is clear that for all frequencies, the first three singular values are sig­
nificantly larger than the others. This means that the most part of the observed 
signal is carried by the first three eigenimages. This fact is plotted in Figure 3.18(b)
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Figure 3.14: (a) The cross section of 3D data matrix composed from three events with 
nonzero dips. The data is also contaminated with an uncorrelated noise with standard 
deviation of 10% of maximum amplitude, (b) Reconstruction of the data matrix using f-xy 
method with the first eigenimage. See equation (3.29). (c) The residual, original data, 
panel (a), subtracted by reconstructed data given in panel (b).
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Figure 3.15: (a) Same as Figure 3.14(a). (b) Reconstruction of the data matrix using f-xy 
method with the first 2 eigenimages. (c) The residual, original data, panel (a), subtracted 
by reconstructed data given in panel (b).
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Figure 3.16: (a) Same as Figure 3.14(a). (b) Reconstruction of the data matrix using f-xy 
method with the first 3 eigenimages. (c) The residual, original data, panel (a), subtracted 
by reconstructed data given in panel (b).
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Figure 3.17: (a) 3D view of data matrix composed from three events with nonzero dips. 
The data is also contaminated with an uncorrelated noise with standard deviation of 
10% of maximum amplitude. The left and the right axes are x-offset and y-offset in 
meters, respectively, (b) Reconstruction of the data matrix using f-xy method with the 
first eigenimage, (c) the first 2 eigenimages and (d) the first 3 eigenimages. See equation 
(3.29). (e) The residual, original data, panel (a), subtracted by reconstructed data given 
in panel (b). (f) subtracted by panel (c). (g) subtracted by panel (d).
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Figure 3.18: (a) The magnitude of the singular values a as function of the singular
value index for each frequency, (b) The magnitude of the singular values <7,; as function 
frequency.

that demonstrates the magnitude of singular values as function of frequency. As 
shown, the first three singular values (plotted in blue, green and red, respectively) 
dominate over a wide frequency range.

Figure 3.19 depicts the relative energy as function of frequency, see equation 
(3.30). Panels a, b and c represent the relative energy stored in the first eigenimage 
(£ i/£ ), the first two eigenimages (8 2 /£ )  and the first three eigenimages ( 83/ 8 ) ,  

where
8k 
8

H = 1 '

<3-3°)

and k = 1,2 and 3. As shown in Figure 3.19, the first three eigenimages contains 
a large fraction of the signals’ energy. As a result, one would expect to reconstruct 
more or less the whole signal by adding the first three eigenimages as shown in 
Figure 3.16(b).

The efficiency of the f-xy analysis can also be examined by comparing Figure 
3.16(b) with Figure 3.11(b). Here, the all three events are recovered after adding 3 
eigenimages, while in Figure 3.11(b) the recovery wasn’t  successful even after adding 
10 eigenimages.
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Figure 3.19: (a) The relative energy stored in the first eigenimage (£ \/£ ) (b) in the first 
two eigenimages {€2 / 8 ) and (c) in the first three eigenimages (£3/ 5 ), where E^/E  is given 
by equation (3.30).
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3.6 Sum m ary

In this chapter we demonstrated the SVD analysis on several synthetic data. We 
first considered a 2D (x-t) seismic section with three zero dip layers. We showed 
that after moveout correction, the SVD directly enhances the signal-to-noise (SNR) 
of data even with the first eigenimage. However, the SNR enhancement will be poor 
if no prior moveout correction applied. In section 3.4 we considered a poststack 3D 
data structure with three events (three layers). In general we assumed that each 
layer has different dip relative to the x  and y directions. We demonstrated that 
a direct application of the SVD would not able to recover the data structure and 
so enhance the SNR. Following Trickett (2003), we introduced the f-xy eigenimage 
decomposition. In this method we first transform the data from t-xy domain to f-xy 
domain. In the frequency domain, we showed that the data matrix can be written 
as sum of the product of three matrices, similar to the SVD decomposition:

X „ =  £  AnUmv£. (3.31)
771=1

See equation (3.25) for more detail. Such separability enabled us to reconstruct the 
data in the f-xy domain with the first few eigenimages. Then, we transformed the 
reconstructed data to the t-xy domain. The reconstructed data in the t-xy domain 
shows a fairly good SNR enhancement, see Figure 3.17. The flow chart for applying 
f-xy eigenimage decomposition is given in Figure 3.20.
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X  is a M x  x  M v  x  N  3D data matrix

Calculate D FT on temporal coordinate 
X w =  D F T (X )

For every lo =  uji , . . .  ,u)Nyqujst, calculate 
[U, £ ,  V] =  SV D (X W) 

cr =  D iag(S )

Reconstructing data using eigenimages

~ X]m= 1 a,mUrnvm 
where K  <  number of events in the data

Inverting D F T  to  find data in t-domain 

X  =  D F T - 1 ( [XW1, X W2, • • •, Xi

Figure 3.20: Flow chart of f-xy eigenimage decomposition.
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Chapter 4 

Spatial and tem poral analysis

For a temporal analysis of a given time series, the discrete Fourier transform (DFT) 
usually provides signal frequencies with acceptable resolutions. This is because of 
the fact that a time series is usually made of a large sample of time points, N  ~  
0{  102 — 103). For spatial analysis, however, this may not be true. A multichannel 
time series is usually observed with a small number of detectors, M  ~  (9(H)1). As 
a result, a spatial DFT spectrum will yield low resolution and then less accurate 
results.

Array signal processing (or multichannel time series analysis) has been used for 
several decades in radar, sonar and seismic data analysis. A set of detectors that are 
spatially distributed at specific locations is usually considered as an array. These 
detectors receive and record incoming signals from sources in their field of view. 
Several techniques are proposed to analyze multichannel time series in order to 
provide higher spatial resolution. Schmidt (1981, 1986) developed the eigenstructure 
method called multiple signal classification (MUSIC) that is suitable for radar data.

The idea behind the MUSIC method is to  separate the data structure into two 
orthogonal signal and noise subspaces. Therefore, any arbitrary eigenvector that is 
orthogonal to the noise subspace would be equal to a signal’s eigenvector or to a 
linear combination of signal’s eigenvectors. By browsing through a pool of possible 
eigenvectors, one can determine the signals’ wave vector in high resolution. For 
more general situations, however, some smoothing procedures need to be done prior 
to the MUSIC power estimation.

In this chapter, following Schmidt (1986), Goldstein and Archuleta (1987) and 
Pillai (1989), we introduce MUSIC method in more detail. To illustrate its capabil­
ity, we then apply the method on our seismic synthetic data set and compare with
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DFT results.

4.1 T he m ultichannel data  structure: single source

Consider an array of M  detectors that observe M  samples of a quantity Y H = 
[Yj*, Y2*, • - - > Ym \ a ^ me where t =  0 ,1 , . . . ,  N  — 1. Here ()H =  ()*T indicates 
complex conjugate and matrix transpose. For example, Yk represent a seismic time 
series or the variation of oil price during a year. Introducing a zero-mean parameter 
X.H = such that

Xk = Yk -  E{Yk}, k = (4.1)

where E{  } represents the expectation value. For a single source problem, X k can 
be written as

X k = aks + ek, k = 1, • • •, M, (4.2)

where ak is the amplitude of the arrived signal s in the kth  detector. The variable s 
represent the signal wavefront that is common in all observed channels (detectors) 
and ek (k =  1, • • •, M)  are stationary, uncorrelated noise. For example for a plane 
wave wavefront s ~  exp(?'k • x  — not) where k  is the wave vector and ui is the angular 
frequency of the signal.

Since the noise is uncorrelated, one can write

E{ek} = 0, (4.3)

E{ejek} = a 25jk, (4.4)

E{eks} =  0, (4.5)

where <5 is the Kronecker delta function and a 2 is the noise intensity. In general, the 
amplitude ak(9) which is also called mode amplitude, depends on the kth detector, 
i.e. i t ’s position to the origin of the system, and direction of the arrived signal at fcth 
detector, 9. The mode amplitude ak can be zero, positive and/or negative complex 
value and may differ from channel to channel. Measuring the mode vector one can 
retrieve the incident angle of the signal to each detector.

The vectorial form of equation (4.2) can be written as

X  =  as +  e, (4.6)
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where =  [X j, • • ■, X ^ \  and aH =  [a ,̂ • • •, a*M\. The signal s is again the signal 
that is common in all channels, and a is the mode vector. The goal in MUSIC is 
to calculate angle of arrival, 9, wavenumber, or frequency of the signal from the 
eigenstructure of covariance matrix of the data

Seismic time series collected by M  detectors from a single natural and/or artificial 
source is an example of the model (4.6). Radar data that observed by an array of

Model (4.6) is restricted to a single signal s in all M  components of the X. In 
other words, all components of the vector X  are common in one pattern. For most 
empirical data, however, this is not the case. In general, two or more signals are 
present in the X  vector, e.g., X  =  a xsi +  a 2s2 +  e where ax and a 2 are the amplitude 
vectors. In the next section we generalize the method for L signals presented in 
data.

Assume that there are L  signals (L < M ) in the data. Introducing a L  x 1 vector 
sH =  [a/, • • •, 6'/] as the signal vector. Therefore, for each component Xk (k — 
1, • • •, M)  one needs L  weighting coefficients a^, % =  1, • • •, L such that

R  =  F {X X h }. (4.7)

antennas is another example of model (4.6). We will back to the radar data in 
Chapter 5.

4.2 G eneralized M odel for X

X k  — OfcxSx +  <Xk2S2 +  ' ’ ' +  CLkLSL +  Cfc,
L

(4.8)

or in compact form
X  — As T 6) (4.9)

where A is M  x L (L < M ) matrix:

 ̂ a n  ai2 aiL \  (  si \  (  ex \
X 2 a2x a22 &2L

(4.10)+

\  X M )  \  a- Ml  0-M2 ■ ■ ■ a>ML )  \  S l  /  \
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The quantity am is function of the array element locations and the angles of arrival. 
That is, a,ki{9i) is the response to the Ah signal arrived at the kth. detector by an angle 
of 9 i .  As we mentioned before, the general interest in MUSIC is to calculate angles
of arrival, 9 ,  wavenumbers, or frequencies of the signals from the eigenstructure of
covariance matrix of the data

R  =  E{XX.h }

=  E{{  As +  e)(A s +  e)F } =  E{(  A s +  e )(s^ A ^  +  e^)}

=  E  { A s s h A h +  A s e H +  esHA H +  eeH}

=  E {  Assh A h } + E { A s e H} + E{esHA H} +  E {e eH}

=  A E { ssh} A h +  A E fse^ } +  £ { e s H}A ^ +  E{eeH}

= A E {ss h } A h  +  cr2I, (4.11)

where I is the M  x M  identity matrix. In the last step we use result of equations
(4.3) to (4.5). As a result, the M  x M  covariance matrix R  can be written as

R  = A P A H + a 2l,  (4.12)

where P  =  E{ssH} is a L x L matrix. The covariance matrix P  is usually assumed 
to be nonsingular (as we assumed here) which is true for uncorrelated signals. For 
highly correlated signals (coherent signals), however, P  is singular and the following 
procedure would need to be modified slightly. Two signals are coherent if one is 
scaled version of the other one. In other words, they change simultaneously (same 
phase). See Pillai (1989) for more detail on the case of coherent signals.

The positive definite covariance matrix R  can be written as

R  =  A P A h +  cr2I =  U A U h , (4.13)

where U  is the unitary matrix of eigenvectors and A =  diag{Ai, A2, • • •, Am} is a 
diagonal matrix of eigenvalues that are ordered descendingly, i.e. A* > A2 > • • • > 
Am > 0. Furthermore, from equation (4.12), it is clear that any vector that is 
orthogonal to A is an eigenvector of R  with eigenvalue a 2

R v  =  cr2v, if A " v  =  0. (4.14)
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In fact, there are M  — L  of such vectors that are linearly independent. This can be 
understood by noting that the M  x M  matrix A P A H is a singular matrix with rank 
L  which is smaller than M.  This means that the first L  eigenvalues of the matrix 
A P A ^ are nonzero and the rest M  — L  eigenvalues are zero. Furthermore, since 
A P A ^ is singular, its determinant must be equal to zero, i.e.

lAPA^I |R  — <x III = 0. (4.15)

From the RHS of equation (4.15) it is clear that equation (4.15) holds if and only if 
cr2 is equal to one of eigenvalues of the covariance matrix R. However, the product of 
A PA H is nonnegative definite and requires cr2 to be equal to the minimum eigenvalue 
of the data covariance matrix R:

® Amin • (4,16)

As a result, the form of the diagonal matrix A will be

/

A =

A

A l
a

\ 0 cr /

(4.17)

L M - L

Since the matrix A P A H has rank L < M,  the minimum eigenvalue Am;n will repeat 
M  — L  times. This is clear by noting that equation (4.12) requires the eigenvalues of 
R  and A P A /7 =  R  — AmjnI to differ by Amjn. Since the M  — L  eigenvalues of A P A H 
are zero, then according to equation (4.17), the M  — L eigenvalues of R  must be 

Aminj he.
q = M - L

Al >  A2 >  • • • > Al >  Amj„ — ••• — Amin . 

Therefore, the number of incident signals can be estimated from

(4.18)

L = M  -  q, (4.19)

where q represents the multiplicity of the smallest eigenvalue, A m i n -  In practice,
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however, the values of q and L  are approximate, because for practical data the 
eigenvalues of the covariance matrix R  will be

Ai >  A2 >  . . .  >  A  ̂ > Ax,+i >  Al+2 > . . .  >  Am- (4.20)

So, if the number of incident signals are not known, at one point we should estimate
L.

4.2 .1  T h e signal and n o ise  su bspaces

The M  x M  covariance matrix of the data, R , has M  eigenvectors, ii*,, that satisfy

Rufc =  A/jU/j, fc =  l , . . . , M .  (4.21)

Combining equation (4.12) with (4.21), one finds

(A PA H +  a 2I)u fc =  A ^ ,  (4.22)

or

A P A ^ u fe =  (Afc -  cr2)ufc,

(Ak -  o"2)uk iffc < L 
0 if k > L

(4.23)

Therefore, the M  dimensional Hilbert space that is spanned by M  eigenvectors of 
R  can be divided in two subspaces: the signal subspace and the noise subspace, i.e.

R  =  U sAsU f  +  U „A „U " (4.24)

where As =  diag{Ai, A2, •. •, A^} and A N =  a 21. Equation (4.23) shows that the 
noise subspace has an interesting property that is

APA^Ufc =  0, k = L  + 1 , . . . ,  M,  (4.25)

or
A Hu k =  0, k = L  +  1 , . . . ,  M. (4.26)
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Figure 4.1: A linear array that all the detectors are placed along a line. xrn; m  =
1, . . . ,  M, represents the position of each detector from the coordinate’s origin.

The above equation states that the eigenvectors associated with noise subspace are 
orthogonal to the incident signal vectors. The property (4.26) is the key property in 
the theory of MUSIC. To determine the signal characteristics, one needs to search 
for vectors a  which have minimum projection in the noise subspace.

For a linear array, as shown in Figure 4.1, the mode vector a  may be chosen as

a {k) = —L [eikx' , eikx2, . . . ,  eikXM]T, (4.27)

where k represents the wavenumber with value k =  a; cos(9)/v, where u> is the wave 
frequency, v is the velocity of wave in the medium and 9 specifies direction of wave 
propagation. Here x m, m  = 1 , . . . ,  M, is the position of each detector from the
coordinate’s origin. Depending on the quantity if interest, the above method can be
performed to determine the signal’s wavenumber k and/or signal’s arrival directions 
9. For signal arrival angles, one may write equation (4.27) as

a ( 0 )  =  e *cos(f?)d2) _ _  ̂e icos(0)dM]T (4 2 g )
VM

where dj = x mj  (A/2tt) and A is the signal wavelength. For an uniform linear array 
where dm = m  d, the mode vector, equation (4.28), simplifies to

a (9) = --L[e * , e2̂ , . . . ,  eiM<t>]T, (4.29)
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where 4> =  dcos(O) and d is the normalized distance (by A/27r) between each detector. 
Introducing the noise matrix

U w =  [u i+ i uM], (4.30)

the power in MUSIC is defined by some investigators as (Schmidt, 1986; Pillai, 1989)

Pm vs'°  =  a"U „U "a’ (431)

° r  H

Pmi]sic = a - | :\  l '; ; a  (4'32)

as defined by others (Iwata et al., 2001; Krim and Viberg, 1996). Equivalently 
one can find vectors a that lie in the signal subspace, i.e. that have maximum 
projection in the signal subspace. However, finding the minimum projection onto 
the noise subspace provides a more precise measurement of the incident signal’s 
characteristic (Pillai, 1989).

4.3 Sm ooth in g

In a more general scenario where sources are not completely uncorrelated, the MU­
SIC spectrum may fail to resolve the signal wavenumbers and/or arrival angles with 
acceptable resolutions. This can be understood by noting that if there are I  (< L) 
coherent signals in the data, the signal covariance matrix P  will be singular with 
multiplicity £. This results in a(k)HXJN ^  0 for any k that reduces the resolving 
power of MUSIC for closely spaced and/or correlated signals (Krim and Proakis, 
1994).

One way to get around this problem is the so called forward-backward averaging 
of the data covariance matrix. The idea is to induce a phase difference among those 
coherent signals in order to de-correlate them. For uniform linear array the phase 
difference can be induced by multiplying the mode vector by i.e.

aB(0) =  e - i(M+1)^[e^,e2̂ , . . . , e jM̂ ]T/ ^ ,

=  [e~iM<l>, . . . ,  e_2i* e - ^ f / V M ,  (4.33)
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Figure 4.2: Schematic presentation of spatial smoothing technique: splitting the array
into several identical subarrays.
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where a B(0) represents the backward mode vector. See Krim and Proakis (1994) 
for example. The backward covariance matrix will be then

R s  =  A $ - (m+1)P $ ~ (m+1) A h +  cr21, (4.34)

where $  is a L x L  diagonal matrix with element el<l>l, I =  1 , . . . ,  L and 4>i is the 
phase for the Ith signal.

In more general approach, however, the forward-backward covariance matrix is 
calculated by

R  fb  = + X s X f) ,  (4.35)

where

X F = [X1 , X 2 , . . . , X M]T, (4.36)

X b =  [Xm , X m - i , ■ ■ ■ ,Xi]H. (4.37)

The forward-backward smoothing is very efficient when there are only two coherent 
signals in the data. In a more general cases, however, where more than two corre­
lated sources are present, forward-backward averaging fails to increase resolutions 
(Wiener, 1949). A more efficient way that is called spatial smoothing technique first 
introduced for uniform linear array by Wiener (1949) and then extended for more
general configurations by Evans et al. (1982), Shan et al. (1985) and Friedlander
and Weiss (1992). Such spatial smoothing induces a random phase modulation that 
de-correlates the coherent signals. The technique is to split the array into a number 
of overlapping subarrays as shown in Figure 4.2. Then a covariance matrix for each 
subarray will be calculated and averaged over all of them:

  M - K + l

R  =  ]T  X j X f / ( M - K + 1), (4.38)
3= 1

where R  represents the smoothed covariance matrix and

X , =  [ X j , X j + 1  X h k - ,]3'. (4.39)

Here K  (< M ) represents the number of detectors in the subarrays. For example, 
in Figure 4.2, K  =  5. The value for K  is arbitrary and can be chosen based on
the data. We note that the smoothed covariance matrix R  has dimension K  (i.e. a
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K  x K  matrix) rather than M .  As a result, the noise matrix (4.30) will be modified 
as

K  < M.  (4.40)

Therefore, the MUSIC power will reduce to

PUVS'C = a " u ] u ? a '  ( 4 ' 4 1 )

0 1  H

P m S K  =  (4 '42)

In summary, in order to apply the MUSIC method on multichannel time series, 
one may follow the flow chart shown in Figure 4.3.

4.4  S ynthetic  data

In this section we are going to examine the MUSIC method on the seismic synthetic 
data that we introduced in a previous chapter. We consider a seismic section con­
sisting of 3 events such that each event has a constant dip across the section. The
data is observed by 20 geophones distributed uniformly in the rr-axis (with 20 m
apart) where each receiver records ~  300 time samples.

In order to show how the smoothing procedure is important, we calculate the 
MUSIC power spectrum for different subarrays. Results are shown in Figure 4.4. 
Figures 4.4(a) to 4.4(d) represent the calculated power spectrum (in dB units) after 
spatial smoothing with twelve (K  = 8), eight (K  =  12), four (K  =  8), and two 
(K  = 18) subarrays, respectively. It is clear that an optimum value for K  should be 
chosen in order to get the best results. The bigger subarray, Figure 4.4(d), would 
produce a very noisy result while the smaller subarray, Figure 4.4(a), is lacking 
a good resolving power. The latter can be understood from the fact that for a 
small subarray the effective aperture of the array is reduced, since the subarrays 
are smaller than the original array. This is known as a shortcoming with spatial 
smoothing in array signal processing (Krim and Proakis, 1994). We note that in 
the above analysis, we first transform the data from time domain to the frequency 
domain using 1-D DFT. Then a spectral smoothing is applied on the frequency 
domain by applying a Hamming window with length I  — 15, see equation (4.43) 
below for more detail.
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X  =  [XU X 2, . . . , X M ]

Plot P (k)  for —k, < k < k ,

P ( k ) =  a » a ( a 'f U s U » a )
Calculating MUSIC power

- l

Calculating eigenvalues and eigenvectors of R  
U  =  Eigenvector(R)

Choosing L  (=  number of signals) 
in order to  make noise m atrix 

U N  =  [ u l + 1 , . . . , u k ] t

Introducing
a(k) = [exp(ifca;i), ex.p{ikxL+2 ) , ■ ■ ■ > ex p ( ik x M)]Tj — fei <  k <  fc,

Calculating th e  covariance matrix, R , 
using the smoothing procedure

r  = Ef=TK+1 x Jxf /( M -  *  + 1)
X j  =  [ X j , X j+1>. . . ,  X j+ K -i]7’, K  <  M

Figure 4.3: Flow chart of implementing MUSIC method.
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(a) (b)

■0.02 - 0.01 0 0.01 0.02 
k (cycle/m)k (cycle/m)

- 0.02 - 0.01 0  0.01 0.02 - 0.02 - 0.01 0 0.01 0.02 
k (cycle/m) k (cycle/m)

Figure 4.4: MUSIC power spectra (in dB units) of the synthetic seismic section. The
spatial smoothing is implemented with different subarrays: (a) twelve subarrays or K  =  8, 
(b) eight subarrays or K  = 12, (c) four subarrays or K  =  16 and (d) two subarrays or 
K  =  18 . For all cases L — 4. See equation (4.40).

Using such windowing functions is required to reduce the effects of the leakage 
that occurs during a Fourier analysis of the data. It is well known that there are 
some leakage amounts to spectral information from the DFT that are appearing at 
the wrong frequencies. If one could perform a Fourier analysis on a signal that runs 
on forever, the results would represent the exact frequencies and their amplitudes as 
they present in the signal. Such analysis, however, is impossible. Therefore, one has 
to truncate the data at some point. A sharp truncation of the data causes the leakage 
in the power spectrum. Although the leakage cannot be eliminated completely, by 
applying a smooth windowing one can minimize its effect. As a result, windowing 
will enhance the ability of an DFT to extract spectral data from signals.

It is necessary to note that Figure 4.4 shows six obvious lines while the original 
data structure is constructed from three linear events. This is due to  the tempo­
ral/spatial aliasing. Aliasing is an artifact that usually happens when a continues 
signal being sampled. In general the sampling frequency differs from the signal 
frequency that causes the high frequency components aliased with low frequency 
ones during signal reconstruction. However, a closer look reveals that there are only 
three lines with distinct slopes. Each slope represent the phase velocity of the signal,
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(a) (b)

K (cycle/m)

Time (ms) k (cycle/m)

Figure 4.5: Comparing the 2D periodogram (in dB units) calculated by DFT with that 
of produced by MUSIC, (a) Representing the seismic section with three events, (b) DFT 
power spectrum, (c) The spatially smoothed MUSIC power spectrum (K  = 14).

v =  u /k ,  where to = 2 n f  is the angular frequency. Therefore, there are only three 
true signals in Figure 4.4.

Finally, we would like to compare the power spectrum produced by MUSIC with 
one that is calculated by DFT. Figure 4.5(a) shows the synthetic seismic section 
containing three events with nonzero dips. In Figure 4.5(b), we plot the 2D peri­
odogram of the section calculated by 2D DFT. The computed 2D periodogram then 
smoothed with by Hamming window with length £ =  15:

w(j  +  1) =  0.54 -0 .4 6  c o s(2 tt^ -^ ); j  = 0 , 1 , . . . ,  £ - 1 .  (4.43)

See Chatfield (1991) for more detail. We will discuss this point further in the next 
chapter. The MUSIC power spectrum that is spatially smoothed with six subarrays 
(K  =  14), is shown in Figure 4.5(c). Similar to Figure 4.4, the frequency domain is 
calculated by 1-D DFT and smoothed by a Hamming window with length £ — 15. 
Clearly the MUSIC method provides results with better resolution and less noise.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



4.5. SUM M A R Y 58

4.5 Sum m ary

In this chapter we introduced the MUSIC method for spatial analysis. As we dis­
cussed earlier, Fourier analysis would not provide the result with acceptable reso­
lution due to the small number of data points in the spatial coordinate (same as 
number of detectors). The MUSIC method is based on a set of eigenvectors of the 
data covariance matrix with corresponding eigenvalues that are more or less equal 
to the noise level in the input data. Unlike the DFT method, the MUSIC method 
can be used for data with a low signal-to-noise ratio to obtain very high frequency 
resolution.

As a final remark, in Figure 4.6 we present the flow chart for f-k analysis of a 
given data X  in t-x domain, implementing the MUSIC method on spatial coordinate 
along with DFT on the temporal coordinate.
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X  =  [Xl y X 2, ■ ■ ■ , X m ] in ( t ,x )  domain

Plot P{k,u>) for —kmax <  k <  k, 
and i ''' ^Nyquist

Calculating eigenvalues and eigenvectors of Rq, 
U „  =  Eigenvector(Ru,)

Implementing spectral smoothing 
using Hamming window, W  
P(k,u>) =  conv2(w, P(k,  oj))

Transforming
= [ X i , X 2, . . . , X M ]

from (t, x)  domain to  (oj, x)  domain

' Calculating MUSIC power 
P(fc,u>) =  a H a (a H U WjvU a, ^ a )'“1

for femax ^  k <  fcnlax and i ’■ ^Nyquist

Choosing L  (=  number of signals) 
in order to  make noise matrix 

U „ w  =  [ u l + 1 , . . . , u x ] t

Introducing
a(fc) =  [exp(ifca:i), e x p ( i te i+2) , . . . ,  ex.p(ikxm )]T , —kmax <  k <  k,

Calculating the covariance matrix, R a , 
using the smoothing procedure

=  E  ™JiK+1 X ^ - X ^ f / ( M  -K  + 1)

X Wy =  [Xj ,  X j + 1 X j + K ^ } T , K  <  M

M - K + 1

Figure 4.6: Flow chart of implementing MUSIC method with spectral smoothing.
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Chapter 5

Spatial and tem poral analysis: 
A pplication to  real radar data

The Super Dual Auroral Radar Network (SuperDARN) is a network of high fre­
quency (HF) radars that monitors ionospheric plasma convection of the northern 
and southern polar regions. This network currently consists of 9 radars in the 
northern hemisphere and 6 radars in the southern hemisphere. The operating fre­
quency of the Super DARN radars is between 8 and 20 MHz. The network records 
the Doppler velocity of ionospheric plasma along the radar beam.

The pulsations in the Earth’s magnetic and electric field are often detected with 
these radars.

This chapter investigates the spatial and temporal analysis of a field line reso­
nance event recorded by a single radar of Super DARN.

5.1 F ield  Line R esonance

During dark nights near the north or south pole, a varying colorful light explores 
a wide area of the sky. This so called aurora is well known as the interaction of 
the Earth’s magnetosphere with the solar wind. The ionized and magnetized gas 
outflow from the Sun, travels as a wind and affects the planetary environments by 
transporting energy into their magnetospheres.

The solar wind that originates from the solar corona, is a neutral plasma com­
posed of protons and electrons with densities on the order of 10 cm-3 at the Earth. 
The solar wind plasma carries the Sun’s magnetic field that has an average strength
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Figure 5.1: Three dimensional cutway view of the Earth’s magnetosphere interacting with 
the solar wind. (From European Space Exploration, http://www.esa.int).
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of 6 nT at the Earth. The solar wind speeds up as it moves away from the Sun, typi­
cally reaching to 400 km /s at the Earth. This is much higher than local sound speed 
(Cs = \ jYpf  p ~  50 km/s) and Alfven speed (Va =  \ j B 2 / (p,0p) 40 km/s). Here B  
is the magnetic field strength, p  is the plasma pressure, p is the plasma density, E 
is the adiabatic index and p 0 — 47T x  10~7 N /A 2 is the permeability of free space. 
Therefore, a shock wave called the bow shock is formed in front of the Earth that 
slows and heats up solar wind particles as they approach the Earth. Behind the bow 
shock is the region of shocked solar wind known as the magnetosheath. Figure 5.1 
is a simple schematic of the interaction of the E arth’s magnetosphere with the solar 
wind. The magnetosphere, the region of space encompassing the Earth’s magnetic 
field and it is bounded by the magnetopause, is divided to several regions based on 
the plasma and the magnetic field characteristics. The plasma sheet is usually con­
tained particles of ionospheric or solar wind origin. Depending upon their energies, 
these particles may precipitate into the high-latitude ionosphere creating auroral. 
The magnetotail region is adjacent to the plasma sheet where the plasma density is 
very much reduced. The plasmasphere corotates with the Earth and extends to the 
plasmapause at approximately 5 E arth’s radii (Re)-

At the Earth’s magnetosphere, the transported energy by the solar wind can 
excite magnetohydrodynamic (MHD) waves through the magnetosphere’s plasma. 
MHD theory deals with a compressible, conducting fluid immersed in a magnetic 
field. In the general case, with the wave propagation in an arbitrary direction with 
respect to external magnetic field B, three MHD wave modes are found: Alfven 
wave, slow MHD wave, and fast MHD wave.

The Alfven wave is a transverse wave that propagates parallel to the mag­
netic field direction. The maximum phase velocity of the Alfven wave is given 
by Va = \ J b 2 / (pqp). The slow compressional MHD wave is a longitudinal wave and 
propagates parallel to B. Its maximum phase velocity is the adiabatic sound velocity, 
Cs =  yTp/p . The fast compressional MHD wave is a longitudinal wave. This wave 

propagates perpendicular to B with higher phase velocity, V  = y V f +  C 2, than the 
Alfven wave and the slow compressional MHD wave.

Field line resonances (FLRs) are the result of an energy transportation involving 
the propagation of fast compressional MHD waves and their coupling to the local 
resonant shear Alfven waves. Physically, the field line resonance mechanism is sim­
ilar to a propagating transverse wave along a fixed string. In this case, the string 
is a geomagnetic field line with foot points fixed at each ionosphere. The transverse
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wave along the magnetic field lines is produced when the magnetic field perturba­
tions are perpendicular to the background magnetic field. This mode of magnetic 
waves is called the shear Alfven wave.

The theory of FLRs was developed by Chen h  Hasegawa (1974) and Southwood 
(1974) who proposed that surface waves on the magnetopause generate compres­
sional waves in the magnetosphere which couple to the standing shear Alfven FLRs. 
Observations of FLRs in HF coherent scatter radar data (Ruohoniemi et al., 1991; 
Walker et al., 1992; Samson et al., 1992) and ground-based magnetometer data 
(Ziesolleck and McDiarmid, 1994; Samson et al., 1991) have shown that FLRs occur 
repeatedly at the same frequencies during different magnetospheric conditions. The 
most commonly observed frequencies were 1.3, 1.9, 2.6, and 3.3 mHz with uncer­
tainties less than 10%.

FLRs have a number of distinguishing properties. There is an inverse relation­
ship between frequency and latitude, i.e. lower frequency FLRs happens at higher 
latitudes. This behavior can be understood, knowing that the Alfven wave frequency 
decreases with radial distance. Since larger distances map to higher latitudes, we 
can see the inverse relationship between frequency and latitude. For further discus­
sion of the field line resonances see for instance Stix (1992), and for the example of 
the numerical simulation see Rickard & Wright (1994).

5.2 O bservation o f th e  d iscrete field line resonances

5.2 .1  T h e S uper D u a l A uroral R adar N etw ork

Recent observational and theoretical investigations in the space plasma physics show 
that FLRs and observed aurora dynamics in the E art’s magnetosphere are unique 
phenomena (Samson et al., 1996; Lotko et al., 1998; Rankin et al., 1999; Milan et 
al., 2001; Samson et al., 2003).

In order to increase the general understanding of the discrete FLR phenomenon, 
Fenrich et al. (1995) performed observational studies of field line resonance events 
using the Super Dual Auroral Radar Network (SuperDARN) of high frequency (HF) 
radars. HF radars produce radio signals that span the band 3-30 MHz (correspond­
ing with wavelengths between 10 meters and 100 meters).

The SuperDARN network currently contains 9 radars in the northern hemisphere 
and 6 in the southern hemisphere where 4 of them are located in Canada, the
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Prince George and Saskatoon radars operated by the University of Saskatchewan 
and Kapuskasing and Goose Bay radars operated by the Johns Hopkins University. 
The fields-of-view of these radars in the northern hemisphere are shown in Figure 
5.2. The letters T, P, K, and G represent the location of the Saskatoon, Prince 
George, Kapuskasing, and Goose Bay, respectively. Each of the radars has two sets 
of antennas operating in the 8-20 MHz band. The primary array consists of sixteen 
antennas, and the secondary, interferometer array, consists of four towers. The radar 
transmits a short sequence of pulses in the HF band and samples the returning 
echoes. At each time, a single beam is formed and advanced through 16 successive 
azimuths with an angular separation of 3.24 degrees yielding a total azimuthal field 
of view of about 52 degrees. The beams are numbered 0 to 15, from the westernmost 
to easternmost beam. A 3.75 s integration time at each beam azimuth results a 60 s 
complete scanning for all 16-beam. At each beam azimuth, over a period of 100 ms 
the superDARN radars transmit a 5 to 7 pulse sequences. The return backscatter 
from the pulse sequence is sampled and processed to determine the backscattered 
power, the mean Doppler velocity and the width of the Doppler power spectrum for 
each range gate. Each beam contains a maximum of 75 range gates that are spaced 
45 km apart.

The doppler velocities measured by these radars are presenting the bulk motion 
of the ionospheric plasma. It is obvious that the single beam measurements can 
only have information about the line-of-sight Doppler velocity, the component of 
plasma velocity that is along the beam direction. This restriction, however, can 
be overcome by considering the overlap measurements between SuperDARN radar 
pairs that provide the Doppler velocities in different directions. Therefore, the total 
velocity vectors of the plasma flow in the plane perpendicular to the magnetic field 
lines can be determined.

5.2 .2  T h e ob served  D op p ler  v e lo c ity  d ata

The SuperDARN radar system provides an excellent tool for observing and studying 
field line resonances. In the measured line-of-sight Doppler velocities of the plasma 
flow, some ultra-low frequency oscillations are observable. These oscillations are 
associated with field line resonances occurring in the plasma flow.

The data we use here is the line-of-sight Doppler velocity taken by the Prince 
George radar for a 3-hour time interval on Nov. 20-21, 2003 from 22:00 to 01:00 UT.
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Figure 5.2: Fields-of-view of the Super Dual Auroral Radar Network (Super­
DARN) in the northern hemisphere. Four radars are located in Canada at Prince 
George (P), Saskatoon (T), Kapuskasing (K) and Goose Bay (B). (Taken from 
http://superdarn, jhuapl.edu/)
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The data set contains 16 beams from beam 0 to 15 and each beam has data from 
8 range gates, gate 4 to 11. This time and region was chosen as it was previously 
determined to exhibit field line resonance characteristics. The time resolution of 
data is 60 s with 180 time points in total. As examples, Figure 5.3 shows beams 7 
and 8 that each contains eight channels of data corresponding to range gates 4 to 
11, and Figure 5.5 shows gates 6 and 7 that each includes sixteen channels of data 
corresponding to the sixteen beams at range 0 to 15. In these figures the data are 
shown with no correction.

In order to make use of the data, we first detrended it by subtracting a 30 minute 
running average, i.e. at each time point in a beam- range, the data is averaged for 
30 minutes centered around that point and then subtracted from the original data 
value at that point. Every beam and range gate of the data is then despiked by 
removing any points that were greater than 1.5 times the standard deviation of all 
points in the 3 hour interval at that particular beam and range gate. The latter 
provides better result in despiking than a fixed cutoff despiking since different beams 
and range gates have different wave amplitudes and would require a different cutoff. 
Finally the data are scaled to reduce the possibility of overflows during filtering. 
The results are presented in Figures 5.4 and 5.6.

5.3 Tem poral and spatia l analysis o f th e  d iscrete  

field line resonances

In order to extract discrete field line resonance characteristics from the data set, we 
need to employ a temporal and spatial spectral analysis on the data. The spatial 
and temporal spectral analysis would help us to single out signals associated with 
the time series and hence estimate their frequencies and wavenumbers. In general, 
the spectral analysis (both spatial and temporal) is very dependent on source and 
detector characteristics. For the temporal analysis of time series, the discrete Fourier 
transform (DFT) would provide signals’ frequency with acceptable resolution. For a 
the spatial analysis of multichannel time series observed with an array of detectors, 
however, DFT alone may not be a good choice.

As we discussed in Chap. 4, array signal processing (or multichannel time series 
analysis) has been used for several decades in radar, sonar and seismic data analy­
sis. A set of detectors that are spatially distributed at specific locations is usually
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considered as an array. These detectors receive and record incoming signals from 
sources in their field of view. Several techniques are proposed to analyze multichan­
nel time series such as Capon’s minimum variance and linear prediction method 
or eigenvector-based techniques such as multiple signal classification (MUSIC). See 
Pillai (1989) for detail and review about these methods.

In this section we first compute the temporal spectra using the DFT for the 
Doppler velocity data observed by SuperDARN radars. Then we spatially analyze 
our data with both DFT and the eigenvector-based method MUSIC .

5.3 .1  T em p oral an a lysis u sin g  D F T

In this section, following Chatfield (1991), we discuss the temporal power spectrum
of the Doppler velocity data given in Figures 5.4 and 5.6.

The spectral density function of a time series X  — [X (fo),X (U ). . . ,  X(Uv-i)]T 
with length N  is defined as

-| OO

/ M  =  -  ■ £ 7 (r)e-” ', (5.1)
^  T =  — OO

where u  is the angular frequency in the range (0, n) and r  is the lag value. The
lagged autocovariance function q (r) of the data X  is defined as

q (r) =  E{[X(t )  -  fi][X(t +  r )  -  /r]*}, (5.2)

Here E{  } means average over time and )i =  U{X) (Chatfield, 1991). More practi­
cally, the autocovariance coefficient 7  (r) can be estimated from

7(r ) =  N7 [ X( t ) ~  »][(X(t + T ) - n]*. (5.3)
JV t=0

It is shown that the above estimator is asymptotically unbiased (Priestley, 1981)

lim E { j ( r ) }  = 7 (r). (5.4)
N - +  OO
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Figure 5.3: Original data, (a) Beam 7 and (b) beam 8 from Prince George radar Doppler 
velocity data for a 3 hour time interval on Nov. 20-21, 2003 from 22:00 to 01:00 UT. The 
whole data contains 16 beams from beam 0 to 15 with each beam including data from 8 
range gates from gate 4 to 11. The gates 4 to 11 are ordered from bottom to top. The 
time resolution of data is 60 s with 180 time points in total.
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Figure 5.4: (a) Beam 7 and (b) beam 8 after detrending, despiking and scaling. The
amplitude in each gate is normalized to its own maximum and scaled with 50% excursion.
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Figure 5.5: Original data, (a) Gate 6 and (b) gate 7 from Prince George radar Doppler 
velocity data. The whole dataset contains 8 gates from gate 4 to 11 and each one includes 
data for 16 beams from 0 to 15. The beams 0 to 15 are ordered from bottom to top.
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Figure 5.6: (a) Gate 6 and (b) gate 7 after detrending, despiking and scaling. The
amplitude in each gate is normalized to its own maximum and scaled with 30% excursion.
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Equation (5.1) shows that the power spectrum function is the Fourier transform 
of the lagged autocovariance function 7 (r). Since 7 (r) is an even function, then 
equation (5.1) can be written as

/ M  =
7T

7 (0) +  2 7 (r) cos CUT
T = 1

(5.5)

Using the autocovariance estimate (5.3) the power spectral density function can be 
estimated

i f  n - i
7(0) +  2 2/ M  =  -7r

T — 1

(5.6)

The estimated power spectral density f(u>) is also called the periodogram, I  (to). 
Similar to the autocovariance estimator, equation (5.3), the estimated power spec­
trum or periodogram is also asymptotically unbiased

lim E{I (u ) }  = f(cj).
JV — ► OO

(5.7)

However, since the variance of I{uj) does not decreases as N  increases, the I  (to) is 
not a consistent estimator for /(a;). See Chatfield (1991) for detail.

Several smoothing procedures are proposed to provide a consistent estimate of 
the power spectral density function from the periodogram (5.6). The general idea in 
these smoothing procedures is to give less weight to the autocovariance coefficient 
7 (r) as r  increases. Therefore, instead of the periodogram (5.6), one may consider 
a weighted periodogram such as

/ M
1
7r

7 m  a x

£o7 (0) +  2 J 2  £t7 (t)  cos tor
T — 1

(5.8)

where {£T} are a set of weights called the lag window and r max(< N)  is called the 
truncation point. Comparing equations (5.6) and (5.8) reveals that the autocovari­
ance coefficients 7 (r) for r  > r max are no longer used.

ft is clear that the above smoothing procedure highly depends upon the choice 
of the lag window and the truncation point. There are several lag windows proposed 
for different data structures. The most popular lag windows is known as the Tukey 
window

1 /  'TT'T \
0, 1 , . . . ,  Tmax. (5.9)1 /7 7TT£T =  - ( 1  +  008— -  

^ \ » may
r
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This window is also known as the Tukey-Hanning or Blackman-Tukey window (Chat­
field, 1991).

The value for the maximum lag, rmax, should be optimized to get a smooth result 
with small variance and good resolution. The bigger rmax the higher the resolution 
and the larger the variance. r max «  N  provides high resolution results but with 
large variance and therefore are not trustable. In contrast, if r max is too small, the 
important features of the power spectral function f{ui) may be smoothed out. In 
practice, rmax «  2y/N  gives a smooth result with small variance and more or less a 
good resolution. This choice also well behaves asymptotically that as N  —> oo, so 
does Tm ax —> oo, but such that rmax/ N  — > 0. The latter ensures the variance of the 
smoothed periodogram decreases as N  increases.

Julius Von Hann introduced an alternative smoothing procedure that turned out 
to be equivalent to the Tukey window. He first calculates the truncated unweighted 
periodogram from equation (5.6) as

where Uj =  n j / rmax for j  =  1 , 2 , . . . ,  r inax — 1. Equation (5.11) is known as Hanning 
smoothing method or Hanning window. Substituting equation (5.10) into (5.11), 
one can easily show that the the Hanning window is equivalent with Tukey window. 
Although both procedures produce the same results, the Hanning window is slightly 
more efficient for computational manners.

Another well known technique that is very similar to Hanning method is so called 
Hamming, named after R. W. Hamming. The Hamming method is nearly identical 
to the Hanning technique except that the weights that are (0.23,0.54,0.23). In 
this chapter we calculate the smoothed power spectral function using the Hamming 
technique.

Figure 5.7 represents the temporal periodograms of Doppler velocity for the 
beams 7 and 8 . Gates 4 to 11 are arranged from bottom to top. Each channel is 
scaled by its maximum amplitude value times half of mean offset. Two dominant 
frequencies with relatively large amplitudes can be seen at ~  0.8 mHz and ~  1.6 — 2

FIELD LINE R ESO N A N C ES 71

^  T m a x

/i(tu) =  -  7 (0) +  2 7 ( r ) cos lo t  ,
7T rTT =  1

(5.10)

and then smooths it using the weights ( | ,  \  ) | )  as

f i i u j j -  7T/rmax) +  - f i f a )  + +  7r / r max), (5.11)
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Figure 5.7: Smoothed power spectra of the (a) beam 7 and (b) beam 8 for gates 4 to 11 
(from bottom to top). Each channel is scaled by its maximum amplitude value times half 
of mean offset.

(a) (b)
450

400

350

300

250<D
°  200
<D
m 150

100

0 2 4 6 8

500

400

300

200

100

0 2 6 84
Frequency (mHz) Frequency (mHz)

Figure 5.8: Smoothed power spectra of the (a) gate 6 and (b) gate 7 for beams 0 to 15 
(from bottom to top). Each channel is scaled by its maximum amplitude value times half 
of mean offset.
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mHz. Similarly, Figure 5.8 shows the smoothed Doppler velocity power spectrum 
for gates 6 and 7. Beams 0 to 15 are arranged bottom to top. Several dominant 
frequencies can be seen mainly about ~  .8 mHz, ~  1.6 — 2 mHz and ~  3 mHz.

The above frequencies can be associated to the observed FLRs in the Earth’s 
magnetosphere (Walker et al., 1992).

5 .3 .2  S patia l an a lysis u sing  D F T  and M U S IC

A 2D FFT is also carried out on the data to locate the signal wavenumbers. As we 
discussed earlier, each beam is separated from the other by 3.24 degree in azimuthal 
direction while the range gates are all separated by 45 km. For our data set, there 
is fixed range from the origin of the coordinate system to gate zero that is 180 km. 
Therefore, the range to gate n  from the origin is given by 180 +  45n km. As a result, 
each beam is separated from the other beam by a distance of

d(n) — (3.247r/180)(180 +  45n) km, (5.12)

where n  is the gate number.

In Figures 5.9 to 5.12 we plot the 2D power spectrum of the beam 7, beam 8 , 
gate 6 and gate 7, respectively. In each figure, panel (a) represents the original data, 
panel (b) shows the 2D periodogram (in dB) using DFT and panel (c) presents the 
power spectrum (in dB) estimated by MUSIC method. It is obvious that the MUSIC 
spectra provide higher resolution results than that of estimated by DFT method.

Tables 5.1 and 5.2 present signals’ frequency ( /) , latitudinal and azimuthal 
wavenumber (kx and ky. respectively), latitudinal and azimuthal components of 
phase velocity (Vx and Vy, respectively) of the radar data for the first three power 
maxima. The phase velocity is defined as

V  = J ,  (5.13)

where ui = 2 n f  is the angular frequency and k  =  2tt/A is the wavenumber. Further­
more, scatter plots of the latitudinal and azimuthal wavenumbers versus frequency 
are plotted in Figure 5.13. It is clear that the frequency ranges from ~  0.05 mHz to 
~  2 mHz. The latitudinal and azimuthal wavenumbers also vary between ~  —0.002 
and ~  0.004 km-1 . It should be noted that since the spatial scale of a FLR extends
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Figure 5.9: Smoothed f-k power spectra of the beam 7 for gates 4 to 11 (from bottom
to top), (a) The observed Doppler velocity data after despiking and detrending, (b) 2D 
periodogram of the data using DFT. (c) Power spectrum of the data using MUSIC after 
spatial smoothing (K  =  6). The wavenumber kx represents the latitudinal wavenumber.
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Figure 5.10: Similar to Fig(5.9) but for the beam 8.
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Figure 5.11: Smoothed f-k power spectra of the gate 6 for beams 0 to 15 (from bottom 
to top), (a) The observed Doppler velocity data after despiking and detrending, (b) 2D 
periodogram of the data using DFT. (c) Power spectrum of the data using MUSIC after 
spatial smoothing (K  = 12). The wavenumber ky represents the azimuthal (East-West) 
wavenumber.
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Figure 5.12: Similar to Fig(5.11) but for the gate 7.
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over a large portion of the field of view of a radar only clusters of points at specific 
frequencies in the scatter plots are significant in terms of being associated with a 
FLR. Single solitary points would not be associated with a FLR and may be due to 
noise or a transient wave.

As we mentioned kx/(2tt) represents the inverse wavelength of the wave in the 
latitudinal direction. Based on theory of the coupling between outer magnetospheric 
compression waves to the FLRs (which is beyond the scope of this thesis), there is a 
180 degree phase change with latitude across the resonance. Radar observations have 
shown the latitudinal width of the FLRs to vary from ~  100 — 400 km which given 
the 180 degree phase change would correspond to one-half of a spatial wavelength 
(Fenrich et al., 1995). So latitudinal wavelengths of the FLRs should be ~  200 — 800 
km which correspond to kx/(2tt) values of 1/wavelength ~  0.001 — 0.005 km -1 which 
is consistent with the listed values of kx/ (2 tt)  in Table 5.1. The kxj  ( 2 tt)  values 
< 0.001 km -1 indicate a small phase variation with latitude which may indicate 
wave modes that are not a FLR or may be due to a radar line of sight effect.

The sign of kx is an indication of where the energy source driving the FLR is 
coming from. The positive kx values indicate equatorward phase propagation of the 
wave which is consistent with an internal energy source provided by wave coupling 
to energetic particles in the inner magnetosphere. A negative kx value indicates 
poleward phase propagation which is consistent with an external energy source pro­
vided by coupling to a compressional wave in the outer magnetosphere. In the event 
presented here, Table 5.1 and Figure 5.13(a), the kx values are predominantly pos­
itive indicating a wave-particle coupling mechanism associated with the FLR. The 
small positive and negative kx/(2ir) values for the points clustered around 0.8 mHz 
most likely indicate that the wave mode at this frequency is not a FLR.

The variable ky represents the azimuthal or east-west spatial phase variation. 
FLRs are typically classified into high and low-m FLRs, where m  is the azimuthal 
wavenumber and is the number of wavelengths that would fit around the circumfer­
ence of the earth at that latitude. High-m FLRs typically of m  values greater than 
~  15 and low-m FLRs typically have m values less than 15 because high-m modes 
couple to energetic protons in the magnetosphere and these energetic protons have 
a maximum azimuthal drift speed which determines a minimum m value FLR mode 
it can couple to. At 70 degrees latitude a simple calculation shows that an m value 
of 15 corresponds to an azimuthal wavelength of ~  1000 km or a kyj  (27t) value of 
0.001 km-1 . As seen in Figure 5.13(b), in our event the ky/(2n)  values for the peaks
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clustered around the 1.7 — 2.1 mHz typically range from 0.002 — 0.003 km -1 which 
would correspond to an m  value range from ~  30 — 45. So these wave modes would 
be classified as high-m FLRs and associated with a wave-particle source.

The sign of ky indicates whether the wave is propagating eastward (negative ky) 
or westward (positive ky). Since the event reported here is at dusk westward is 
sunward and thus the FLR wave modes seen here are propagating predominantly 
westward. This is again consistent with a wave-particle source as the most likely 
particles coupling to the wave are energetic sunward drifting protons in the near 
earth region of the magnetosphere. These protons drift clockwise around the earth 
(looking down from north) at speed of ~  10 km /s due to whats called the gradient 
curvature drift but this is beyond the scope of this thesis. Again the peaks clustered 
around 0.8 mHz indicate both eastward and westward propagation which is not 
typical of an FLR mode.

The latitudinal and azimuthal components of the phase velocity are given in 
Tables 5.1 and 5.2 and are plotted as function of frequency in Figure 5.14. Figure 
5.14(a) shows no obvious variation in latitudinal phase velocity with frequency with 
most of the points falling between ~  0.5 — 5 km /s which is typical for FLRs. Figure 
5.14(b) shows a large variation in azimuthal phase velocity at the low frequencies, 
which again is not consistent with a FLR wave mode, while the higher frequency 
modes cluster closely around ~  1 km/s. Assuming a dipolar magnetic field an 
azimuthal phase speed of ~  1 km /s in the ionosphere corresponds to an azimuthal 
phase speed of ~  10 km /s in the equatorial plane of the magnetosphere. This phase 
speed is consistent with the drift speed of 30 keV protons which often populate the 
dusk side of the magnetosphere during enhanced period of activity as is the case in 
this event. These results again suggest that the 1.7 — 2.1 mHz FLR modes are due 
to a wave-particle source mechanism.

5.4 C oncluding R em arks

In this chapter, we study the spatial and temporal analysis of the Doppler velocity 
data observed by the Super Dual Auroral Radar Network. These radars that operate 
in the high frequency (HF) band monitor ionospheric plasma convection over the
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Figure 5.13: (a) Latitudinal and (b) azimuthal wavenumber as function of frequency.
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Figure 5.14: a) Latitudinal and (b) azimuthal phase velocity as function of frequency.
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Table 5.1: Signals’ frequency /  (mHz), latitudinal wavenumber kx/ (2tt) (10~3 km-1) 
and the latitudinal component of the phase velocity Vx = u / k x (km/s) of all beams 
for the first three maxima in power P  (dB).

/ kx/ (  2?r) P / kx/(2n) vx P
Beam 0 Beam 1

0.0326 -0.347 -0.094 -0.294 1.7090 -0.086 -19.86 -0.0041
1.7580 0.0868 20.254 -1.618 0.5534 0.6076 0.9108 -1.06
0.7487 -0.086 -8.706 -1.865 0.1139 -1.562 -0.073 -1.275

Beam 2 Beam 3
0.8464 0.6076 1.3930 0.0 0.1644 0.1736 0.9470 -0.0954
1.6760 0.4340 3.8617 -0.115 . 0.8138 0.6076 1.3394 -1.283
2.0500 0.3472 5.9043 -2.691 2.0670 0.6076 3.4019 -2.216

Beam 4 Beam 5
1.6760 0.1736 9.6543 -0.137 1.6440 0.6944 2.3674 -0.0349
0.7813 -0.173 -4.499 -0.776 0.7813 0.3474 2.2490 -2.358
2.0670 0.6076 3.4019 -1.805 2.0501 0.7812 2.6254 -3.717

Beam 6 Beam 7
1.6760 0.7812 2.1454 -0.0508 1.6930 1.5620 1.0838 0.0
0.7813 -0.260 -3.005 -1.180 1.8550 1.1280 1.6441 -0.725
2.0670 1.2150 1.7012 -1.971 0.7813 0.2604 3.0000 -2.348

Beam 8 Beam 9
1.6930 1.9100 0.8863 -0.212 1.6930 2.4310 0.6947 0.0
1.8880 1.0420 0.4529 -1.238 1.9210 1.4760 1.3015 -1.428
0.7478 0.4340 1.7230 -2.190 0.5046 1.0420 0.4843 -3.30

Beam 10 Beam 11
1.6760 2.6910 0.6228 0.0 1.8550 2.5170 0.7369 -0.177
0.7478 0.5208 1.4358 -1.591 1.6930 3.2990 0.5132 -0.403
1.9860 1.3020 1.5253 -3.126 0.7975 0.6944 1.1485 -1.284

Beam 12 Beam 13
0.7324 -0.173 4.2335 -0.070 1.8880 2.5170 0.7501 -0.209
1.6760 3.2120 0.5218 -2.058 0.7116 -0.347 -2.049 -2.475
1.8550 2.7780 0.6678 -2.367 1.0900 -1.042 -1.046 -4.518

Beam 14 Beam 15
1.8880 1.8230 1.0357 0.0 1.8880 2.0830 0.9064 -0.109
0.7487 0.7813 0.9583 -0.868 0.7813 -0.086 -9.085 -0.477
0.5859 2.7780 0.2108 -2.659 0.5859 2.6910 0.2177 -2.143
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Table 5.2: Signals’ frequency /  (mHz), azimuthal wavenumber ky/(2'n) (10-3 km-1) 
and azimuthal component of the phase velocity Vy =  ui/ky (km/s) of all gates for 
the first three maxima in power P  (dB).

/ k y / { 2 i r) V y P / k y / ( 2 t t ) V y P
Gate 4 Gate 5

0.6999 -0.576 -1.215 -0.214 2.0510 2.5580 0.8018 0.0
0.5208 1.1510 0.1440 -3.779 0.7161 0.3411 2.1873 -0.461
0.6673 -4.989 -0.134 -7.872 0.5534 1.3640 0.4057 -0.517

Gate 6 Gate 7
1.6930 2.1490 0.7878 -0.058 1.6760 2.3720 0.7066 0.0
2.0350 2.1490 0.9470 -1.80 1.9210 2.6580 0.7227 -2.220
0.7813 0.4605 1.6966 -2.281 0.8464 -0.558 -1.439 -3.268

Gate 8 Gate 9
1.6760 2.6860 0.6239 -0.015 1.6760 2.5980 0.6451 -0.031
1.9210 2.9420 0.6529 -2.264 0.7975 -0.354 -2.250 -1.157
0.7975 0.1279 6.2354 -7.610 1.9040 2.8340 0.6718 -2.350

Gate 10 Gate 11
1.6760 2.9600 0.5662 -0.038 1.6280 2.5580 0.6364 -0.011
0.7975 -0.986 -0.808 -3.336 0.8138 -0.921 -0.884 -2.974
1.9210 2.9600 0.6489 -4.50 1.0090 1.8420 0.5478 -3.040

majority of the northern and southern polar regions. The data from one particular 
radar is used and the frequencies and wavenumbers of a field fine resonance event 
are determined. Such spatial and temporal analysis can be used to understand the 
driving mechanism of the FLRs. Anti-sunward wave propagation (i.e. eastward at 
dusk or westward at dawn) are typical of solar wind driven mechanisms that gener­
ate compressional waves in the magnetosphere. These waves are believed to couple 
to the FLR with large azimuthal wavelengths. On the other hand sunward prop­
agation generally means the FLR is coupled to energetic particles drifting around 
the Earth trapped within the Earth’s magnetic field. For field line resonances to 
couple to energetic particle motions the azimuthal phase speed which is related to 
the azimuthal wave length must match the drift speed of the particles. Thus a mea­
sure of the azimuthal wave length and propagation direction can indicate if coupling 
to energetic particles is possible and what the energies of those particles might be. 
Typically only field line resonances with small azimuthal wavelengths can interact 
with drifting electrons and ions. Temporal analysis would also provide the coupling 
frequencies of the FLRs with source mechanisms.

For temporal analysis, a periodogram calculation is carried out. Several domi­
nant frequencies are detected in data that are about ~  .8 mHz, ~  1.6 — 2 mHz and

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5.4. C O N C L U D IN G  R EM ARK S 82

~  3 mHz. See Figure 5.7 and (5.8) for details.
For spatial analysis two different routines are applied: (a) a 2D periodogram 

and (b) the multiple signal classification method. We found that the latter provides 
results with higher resolutions. The results are shown in Figures 5.9 to 5.12 for 
beams 7 and 8, and gate 6 and 7. Furthermore, using the above analysis, we de­
termine the signals’ frequency (/),  latitudinal and azimuthal wavenumber (kx and 
ky, respectively), latitudinal and azimuthal components of phase velocity (Vx and 
Vy, respectively) for each beam and gate of the radar data selecting only the first 
three power maxima. These are listed in Tables 5.1 and 5.2. We found that the 
kx values are predominantly positive within range of ~  .001 — .005 km-1 that is 
corresponding to the latitudinal wavelength of ~  200 — 800 km. This is in good 
agreement with previous observations of FLRs (Fenrich et al., 1995). Values of the 
azimuthal wavenumber ky, however, are mostly found greater than 0.001 km" 1 that 
is consistent with the presence of high-m FLR events. Furthermore, the overall pos­
itive values of ky reveals that the wave modes are propagating westward at speeds 
consistent with energetic proton drift speeds. This also confirms a wave-particle 
source as a major mechanism for the FRLs excitation.

In brief, based on the above results, one can say the 1.7 — 2.1 mHz wave modes 
observed here are high-m FLR events associated with the wave-particle coupling 
mechanism. The ~  0.8 mHz wave modes observed are likely not a FLR and may be 
the signatures of a propagating non-resonant wave mode.
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Chapter 6 

Conclusion

The current project aims to address two major subjects in data processing: noise 
attenuation/suppression and spatial-temporal analysis of a data structure.

In the first part of this thesis, chapters 2 and 3, noise attenuation using eigen- 
image decomposition method is discussed. The mathematical framework of singular 
value decomposition (SVD) for a general matrix is reviewed. Then its application 
on 2D and 3D synthetic data structure is studied. We show that for a poststack 
2D seismic section containing zero dip events the noise compression can be done 
successfully by SVD decomposition. For prestack data, however, the results are 
fairly poor. This can be understood through the size of singular values of the data 
matrix, as for poststack data the magnitude of first few singular values are fairly 
large comparing to  the rest while for prestack data their sizes decreases more or less 
monotically.

For 3D poststack data, the direct application of SVD would not able to enhance 
the signal-to-noise ratio (SNR) of the data. As a result, following Trickett (2003), 
the f-xy eigenimage method that is the SVD decomposition for constant-frequency 
slice rather than time-constant slice, is introduced. In this method we first transform 
the data from t-xy domain to f-xy domain. In the frequency domain, we showed 
that the data matrix can be written as sum of three matrices that multiplied to each 
other, similar to the SVD decomposition:

L

X w =  A m U m V ^ .  ( 6 . 1 )
m=1

See equation (3.25) for more detail. Such separability enabled us to reconstruct the
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data in the f-xy domain with the first few eigenimages. Then, we transformed the 
reconstructed data to the t-xy domain. The application of f-xy on a 3D poststack 
synthetic data with nonzero dip events is studied. We found that the f-xy eigenimage 
method gives a superior result in noise compression for this type of data. The 
results are plotted in Figure 3.17 in the t-xy domain that shows a fairly good SNR 
enhancement. The flow chart for applying f-xy eigenimage decomposition is given 
in Figure 3.20.

In the second part of the current project, chapters 4 and 5, is devoted to the 
spatial-temporal analysis of given data structure. For temporal analysis the peri­
odogram can be calculated by discrete Fourier transform (DFT) after a Hanning 
smoothing. For spatial analysis, however, the DFT power spectrum would not pro­
vide high resolution results. This is due to the small number of data points in 
spatial dimension. In this regard, an eigenstructure based method called multiple 
signal classification (MUSIC) is reviewed. Both synthetic and real data are analyzed 
with 2D f-k (DFT) and MUSIC methods. The real data are observed by the Super 
Dual Auroral Radar Network (SuperDARN) that is a network of high frequency 
(HF) radars and monitors ionospheric plasma convection over the majority of the 
northern and southern polar regions.

In case of temporal analysis, a periodogram calculation is carried out. Several 
dominant frequencies are detected in data that are about ~  .8 mHz, ~  1.6 — 2 mHz 
and ~  3 mHz. See Figure 5.7 and (5.8) for details.

In case of spatial analysis, we implemented two different routines on the radar 
data: (a) a 2D periodogram and (b) the multiple signal classification method (MU­
SIC). Figures 5.9 to 5.12 are shown the results for beams 7 and 8 , and gate 6 and 
7. It is clear that the MUSIC method provides results with higher resolutions.

Using the above graphs, we calculate signals’ frequency (/) ,  latitudinal and az­
imuthal wavenumber (kx and ky, respectively), latitudinal and azimuthal compo­
nents of phase velocity (Vx and Vy, respectively) of the radar data for the first three 
power maxima. The results are listed in Tables 5.1 and 5.2 and plotted in Figures 
5.13 and 5.14.

The results indicate a number of discrete frequency modes in the radar data set 
studied here including 0.8 mHz, 1.7 mHz, 1.9 mHz and 2.1 mHz. The lower frequency 
0.8 mHz mode exhibits different kx and ky values from the other higher frequency 
modes in terms of both sign and magnitude and is inconsistent with what would be 
expected for a FLR mode. Thus the 0.8 mHz mode cannot be identified as a FLR.
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The higher frequency modes all exhibit positive kx values and large positive ky values 
which are all consistent with a high-m FLR event associated with a wave-particle 
coupling mechanism. Furthermore, calculation of the azimuthal phase speeds of the 
high-m FLRs shows good correspondence with typical energetic particle drift speeds.

Overall the MUSIC method could be a powerful tool for studying the FLRs. 
We have demonstrated tha t the method can provide frequencies, kx, ky and phase 
velocity values for the different wave modes present in the data. The k  values 
are significant because they indicate direction of propagation and potential source 
mechanisms. There is currently debate in the space science community about the 
source of these discrete FLRs, in particular what produces the specific discrete 
frequencies. The technique may help to answer the source question and whether the 
high-m modes are purely wave-particle driven or if they are seeded by an external 
source.

Only a handful of FLRs have been studied with the large SuperDARN data 
set primarily because it is very time consuming to search for and analyse the data 
for FLRs using current techniques. The MUSIC technique has the potential to be 
automated for analysis of a large portion of the SuperDARN data set and thus 
could provide valuable new information about magnetospheric waves and their role 
in energy coupling and dynamics in the magnetosphere.
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A ppendix A

Some definitions

A .l  T he m atrix  rank

The rank of a matrix is the maximum number of linearly independent rows or 
columns of it, which leads the following properties.

• only the zero matrix has rank 0

• the rank o f a m x n  matrix A  is at most m i n i m , n )

A .2 T he m ean vector and covariance m atrix

Let X  is a (N  x M)  data matrix with complex elements Xij (row i and column j).  
The mean of the ?th variable is

(B.l)

and the variance of the ith variable, Var(x,), is

1 £

where ()* denotes the complex conjugate. The covariance between the ith and j th
variables, Cov(xij),  is

(B.3)
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The above relations may also written in matrix notation,

(B.4)

Therefore, equation (B.3) can be written as

R =  E W -  -  x ) ( x r -  x )*,
r =1

(B.5)

where ()* is the complex conjugate and matrix transpose.

A .3 P robab ility

Probability, in mathematics, is a theory that describes the “chance” of a given event 
will occur. For discrete variables, probability is given by a number. For a continuous 
variable x, however, the probability is given by a function called probability density 
function (PDF), p(x). In this case probability is calculated by the area under the 
PDF. The total area under a PDF is therefore unity

Further, the probability of x  assuming a value between a and b is given by

which is the area under the PDF between a and b.
The normal or Gaussian probability density is an example of a PDF for single 

variable x

/ p(x)dx = 1. (B.6)
J — oo

(B.7)

(B.8)

where /i and a2 are known as the mean and variance, and a is called the standard 
deviation.
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A .4 E xp ecta tion  and m om ents

For a given PDF p(x),  the expected value of a function f (x )  is defined as

/ OO

p(x)f (x)dx,  (B.9)
-OO

where E{  } refers to the expectation operator. The nth moment of a distribution is 
given by

/ OO

x n p(x)dx.  (B.10)
-OO

The mean is therefore the first moment of the distribution

/ OO

x  p(x)dx.  (B-11)
-OO

For N  independent and identically distributed data points y = [yi,y2 , • • • ,Vn], 
the PDF will be

N

p(y) = Hp(y i ) ,  (B.12)

where p(y i )  is the Gaussian PDF of variable y t

Equation (B.12) is also called the likelihood function of the data set. In statistics,
p and cr2 are usually defined by maximizing equation (B.12), which leads to

iv  i = 1
and

~  p f -  (B.15)
1 N

*  i=i
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