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ABSTRACT

One o f the debates in infant nutrition concerns whether or not dietary C18:3n-3 can 

provide for accretion o f C22:6n-3 in neonatal tissues. The functional significance of 

C22:6n-3 in brain has not been fully elucidated. The objectives o f this study were to 

investigate if: (1) increasing maternal dietary linolenic acid (C18:3n-3) increases the 

docosahexaenoic acid (C22:6n-3) content in neuronal cell phospholipids in two-week-old 

rat pups; (2) increasing maternal dietary C18:3n-3 increases the C18:3n-3 and C22:6n-3 

content o f different tissues of two-week-old rat pups; (3) maternal dietary C22:6n-3 is 

more effective than high C18:3n-3 at increasing the C22:6n-3 content in neuronal and 

glial cell phospholipids in rat pups at two weeks of age; (4) maternal dietary C20:4n-6 

and C22:6n-3 increases synaptic plasma membrane (SPM) phospholipid and cholesterol 

content, SPM phospholipid C20:4n-6 and C22:6n-3 content, and SPM sodium-potassium 

adenosine triphosphatase (Na, K-ATPase) activity in rat pups at two and five weeks of 

age; (5) C20:4n-6 and C22:6n-3 are present in gangliosides o f SPM; (6) C20:4n-6 and 

C22:6n-3 content in SPM gangliosides can be altered by diet fat; and (7) alkaline 

ceramidase (CDase) activity is present in the SPM in two-week-old rat pups. The stomach 

fatty acid composition of the rat pups reflected the diets o f their respective dams. 

Objective (1) established that phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

and phosphatidylserine (PS) of neuronal cells showed no significant increase in C22:6n-3 

content with high levels o f C18:3n-3 in maternal diet; objective (2) showed that C18:3n-3 

content in the whole body, brain, liver, skin, epididymal fat pads, and muscles was 

significantly greater in rat pups fed high compared to low C18:3n-3 diet but the C22:6n-3 

content in these tissues was not quantitatively different; objective (3) showed that the
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C22:6n-3 content in PE and PS o f both neuronal and glial cell was higher when rat pups 

were fed C22:6n-3 compared C18:3n-3 diet (p<0.05); and objective (4) demonstrated that 

rats fed a maternal diet with C20:4n-6 and C22:6n-3 from two to five weeks o f age: a) 

does not increase SPM cholesterol and phospholipid content, b) increases the C20:4n-6 

(mainly PS) and C22:6n-3 content o f SPM phospholipids, c) increases the SPM Na, K- 

ATPase Vmax (activity) (~2-fold) but not Km compared to a low C18:3n-3 diet; 

objective (5) showed by gas-liquid chromatography (GC) and GC-mass spectrometry that 

C20:4n-6 and C22:6n-3 are present in gangliosides o f  SPM of two-week-old rats; 

objective (6) suggest that the C20:4n-6 and C22:6n-3 content o f SPM gangliosides of 

two-week-old rats can be altered by diet fat; and objective (7) showed that alkaline CDase 

activity is present in the rat SPM and is approximately 15-fold greater than brain 

homogenate.

It is concluded that dietary C22:6n-3 but not C18:3n-3 supports accretion of 

C22:6n-3 in neonatal tissues and that increasing the C22:6n-3 content o f brain membrane 

phospholipid increases the activity o f SPM Na, K-ATPase. It is also concluded that the 

presence o f alkaline CDase activity in the SPM with the changes in C20:4n-6 and 

C22:6n-3 content of SPM gangliosides by diet fat may alter the activity o f SPM alkaline 

CDase. Thus, dietary C18:3n-3 and C22:6n-3 can influence the structure and function of 

brain membrane lipids. This study supports the rationale for providing C20:4n-6 and 

C22:6n-3 in infant formulas.
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ABBREVIATIONS

AA Arachidonic acid

ANOVA Analysis o f  variance

ATP Adenosine triphosphate

ATPase Adenosine triphosphatase

BBM Brush border membrane

C2 Two carbons

C6 Six carbons

CAPK Ceramide activated protein kinase

CAPP Ceramide activated protein phosphatase

CDase Ceramidase

cDNA Complementary deoxyribonucleic acid

Cer Ceramide

CDP Cytidine diphosphate

CMP Cytidine monophosphate

CoA Coenzyme A

CTP Cytidine triphosphate

Da Dalton

DHA Docosahexaenoic acid

EDTA Ethylenediaminetetraacetic acid

EPG Ethanolamine glycerophospholipid

ERK Extracellular-regulated kinase

g Gram

Gal Galactose

GalNac N-acetylgalactosamine

GDI a Ganglioside (disialic acid; “a” sialo-isomer)

GDIb Ganglioside (disialic acid; “b” sialo-isomer)

GLC Gas-liquid chromatography

G M la Ganglioside (monosialic acid; “a” sialo-isomer)
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GT1 b Ganglioside (trisialic acid; “b” sialo-isomer)
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HMG-CoA P-hydroxy-P-methyl-glutaryl-CoA
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IFN Interferon

IL Interleukin

K Potassium
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kDa Kilo-Dalton

Km Michaeiis constant

LA Linoleic acid

LCP Long-chain polyenes (20-22 carbon atoms)

LCPUFA Long-chain polyunsaturated fatty acid

(20-22 carbon atoms)
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LNA Linolenic acid

M Molar concentration

MAPK Mitogen-activated protein kinase

MEK Mitogen-activated extracellular-regulated

kinase-activating kinase 
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min Minute

mL Milliliter, 10'3 litre

mM Millimolar concentration

mmol Millimole

mRNA Messenger ribonucleic acid

MUFA Monounsaturated fatty acid

N-3 Omega-3
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N-6 Omega-6

Na Sodium

NADPH Nicotinamide adenine dinucleotide phosphate

NANA N-acetylneuraminic acid

NeuAc Neuraminic acid

PAH phenylalanine hydroxylase

PA Phosphatidic acid

PAGE Polyacrylamide gel electrophoresis

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PEMT Phosphatidylethanolamine methyl transferase

pH measure o f acidity; = -log [H+]

PHE phenylalanine

PI Phosphatidylinositol

PK.U Phenylketonuria

PKC Protein kinase C

PL Phospholipids

PLD Phospholipase D
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PUFA Polyunsaturated fatty acids

SAP Sphingolipid activator proteins

SAT Sialic acid transferase

SDS Sodium dodecyl sulfate
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SPP Sphingosine-1-phosphate
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CHAPTER I. LITERATURE REVIEW

A. INTRODUCTION

Lipids provide most o f the dietary energy and constitute the major energy store in 

infants and children. Research over the past three decades has shown that there is interest 

in the quality o f dietary lipids supplied during fetal and neonatal periods when there is 

rapid development o f the nervous system.

Dietary fatty acid, particularly, linoleic (C18:2n-6) and linolenic (C18:3n-3) acid 

have received most of the attention in studies of the effects o f dietary lipids on the central 

nervous system. The reason is that C18:2n-6 and C18:3n-3 cannot be synthesized by 

mammals but must be supplied in the diet. These two fatty acids are precursors o f two 

series o f long-chain polyunsaturated fatty acids (PUFAs). arachidonic (C20:4n-6) and 

docosahexaenoic (C22:6n-3) acid which constitute a large portion o f the fatty acids in 

brain. Insufficient C20:4n-6 and/or C22:6n-3 delays growth and development o f  the brain 

and this may result in reversible and/or irreversible damage to the structure and function 

o f  the central nerv ous sy stem.

In infant nutrition, human breast milk is the gold standard. It is clear that infant 

formulas do not meet all the qualities of mother's milk. Beside the psychological 

advantages o f "bonding" through continuous breast-feeding or immunological factors, it 

is evident that the nutritional aspects o f formulas do not contain all components o f human 

milk such as enzymes, immune compounds, hormones, or growth factors. Improvements 

in the separation of fatty acids by gas-liquid chromatography (ie. capillary vs. packed 

columns) over the last 20 years have allowed scientists to study in greater detail the fatty 

acid composition of human milk and dev elop new infant formulas.

In North America, infant formulas generally derive their lipid composition from 

vegetable and animal oils and thus do not contain C20:4n-6 and C22:6n-3 as found in 

human milk. The absence o f C20:4n-6 and C22:6n-3 in infant formulas compared to 

human milk has been shown over time to decrease brain membrane phospholipid C20:4n- 

6 and C22:6n-3 content (Farquarson et al.. 1992; Makrides et al.. 1994). This suggests 

that C18:2n-6 and C18:3n-3 present in infant formulas is inadequate for optimal nutrition
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in early life. In fact, the in vivo biosynthesis o f C20:4n-6 and C22:6n-3 may be limited 

in newborns (Clandinin et al.. 1980a; Salem et al. 1996; reviewed by Innis et al. 1999).

This chapter will review literature on the importance of brain growth and 

development; brain membrane lipids, in particular, phospholipids and gangliosides; and 

the effects o f  dietary n-6 and n-3 fatty acids on brain membrane structure and function. 

This information will be needed to support the rationale to be developed in subsequent 

chapters o f this thesis.

B. BRAIN

1. Neuronal and Glial Cell Structure and Function

a) Neuronal Cells

The neuronal cell is the unit o f structure and function of the nervous system, 

composed o f a cell body and one or more processes (Figure 1.1). Neuronal cells are 

classified on a morphologic basis according to the number o f their processes or upon the 

length o f the axon (review ed by Siegel et al.. 1981).

Dendrites

Axon
Terminals

Figure 1.1 Structure of Neuronal Cell

(Adapted from Siegel et al. 1981)
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i) Classification Based on Number o f Processes

Neuronal cells may be unipolar, bipolar, or multipolar. Neuronal cells that have 

one. two. and more than two processes are called unipolar, bipolar, and multipolar 

neurons, respectively. Unipolar neuronal cells (sensory ) are found almost exclusively in 

the peripheral nervous system (reviewed by Siegel et al.. 1981). Bipolar neuronal cells 

have a dendrite and an axon attached to opposite ends o f the cell body (reviewed by 

Siegel et al.. 1981). Bipolar neuronal cells are found in the retina, in cochlea and 

vestibular ganglion, and some places in the central nervous system (reviewed by Siegel et 

al., 1981). Multipolar neuronal cells have only one axon, but several dendrites, each of 

which may give rise to secondary branches (reviewed by Siegel et al.. 1981). Multipolar 

neuronal cells comprise the bulk o f the neuronal cells whose cell bodies lie within the 

central nerv ous sy stem (rev iewed by Siegel et al.. 1981).

ii) Classification Based on Axon Length

Morphologically, these neuronal cells are all o f  the multipolar type. Golgi type I 

neuronal cells have long axons, most o f which leave the central nervous system via 

ventral root o f spinal nerves (rev iewed by Siegel et al.. 1981). Golgi type II neuronal cells 

have short axons, all of which stay in the central nervous sy stem (reviewed by Siegel el 

al.. 1981). The majority o f intemeurons are of this type (reviewed by Siegel et al.. 1981).

The major function o f the neuronal cell is to help in the processing of incoming 

information so that appropriate motor responses can occur (reviewed by Siegel ct al.. 

1981). The neuronal cell uses dendrites and axons to achieve these responses (reviewed 

by Siegel et al.. 1981). Dendrites receive messages from the sense organs or other 

neuronal cell and carry them to the cell body (rev iewed by Siegel et al.. 1981). Axons, in 

turn, carry the resultant messages from the cell body to the other neuronal cells until an 

effector organ is reached (reviewed by Siegel et al.. 1981). Hence, dendrites, cell body , 

and axons are crucial for neuronal cells to process and establish an appropriate response.

b) Glial Cells

In the nervous system, glial cells support neuronal cell function. There are four 

types o f  glial cells: astrocytes, oligodendrocytes, ependy mal, and microglia (Figure 1.2:
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reviewed by Siegel et al.. 1981). Astrocytes are found throughout the central nervous 

system (reviewed by Siegel et al.. 1981). Astrocytes are responsible for the blood-brain 

barrier, which prevents certain substances to pass from blood to the brain and neuronal 

cell tissue repair after brain injury (reviewed by Siegel et al., 1981). Oligodendrocytes are 

found in gray and white matter o f the central nervous system (Siegel et al.. 1981). 

Oligodendrocytes appear to hold gray matter together, whereas, in white matter, they are 

responsible for the myelin sheath around the axons (reviewed by Siegel et al.. 1981). 

Ependymal cells line inner surface o f the brain, in the ventricles (reviewed by Siegel et 

al., 1981). No physiological role has been assigned to these cells, however, the cilia 

present on the surface o f  these cells may be involved in propulsion o f cerebrospinal fluid 

within the ventricles (reviewed by Siegel et al.. 1981). Microglia unlike astrocytes and 

oligodendrocytes are highly mobile (reviewed by Siegel et al.. 1981). Microglia serve as 

macrophages to remove debris from the nervous system (reviewed by Siegel et al.. 1981).

Ependymal cells

Microglial

Astrocyte

Oligodendroglia cells

Figure 1.2 Structure of Glial Cells

(Adapted from Thompson et al.. 1993)

2. Development

The human brain follows a general pattern o f  development, beginning as a neural 

tube and gradually acquiring the features o f the adult brain (reviewed by Cowan. 1979). 

Eight major stages can be identified in the development o f any part o f the brain. In order 

of appearance, they are: (1) the induction of the neural plate. (2) the proliferation o f cells. 

(3) the migration of cells from the region in which they are generated to the place w here
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they finally reside. (4) the aggregation o f  cells to form identifiable parts o f  the brain. (5) 

the formation o f connection with other neuronal cells (synaptogenesis). (6) the selective 

death o f certain cells, (7) the elimination o f some connections that were initially formed 

and the stabilization o f others. (8) the myelination o f  axons by oligodendrocytes entering 

the brain.

a) Neuronal Induction

During embryogenesis, the basic structure o f the nervous system develops by 

formation o f  the primitive streak dun’ng blastula stage (rev iewed by Balinsky. 1975). This 

primitive streak separates the mesoderm from the ectoderm and endoderm (reviewed by 

Balinsky. 1975). The transformation o f  the ectoderm into neural plate is induced by the 

underlying mesoderm (Spemann. 1938). The inductive process may vary in different 

regions o f the neural plate because brain stem and spinal cord arise under the chordal 

mesoderm whereas the forebrain arises under the influence o f prechordal mesoderm 

(Nieuwkoop. 1952; Sidman & Rakic. 1982; Eyal-Giladi. 1984). The neural tube is 

formed by folding of the neural plate along the rostral-caudal axis, a process known as 

neuralation (O'Rahilly & Gardner, 1979). This process begins toward the end of the third 

embryonic week in humans (reviewed by Lou. 1982) and in rats (reviewed by 

Herschkowitz. 1989) between the first and second day of gestation. As neuralation 

progresses, the sequential association o f  the mesoderm and ectoderm results in induction 

o f brain regions (forebrain, midbrain, and hindbrain) and spinal cord structures (reviewed 

by Lou. 1982).

At the time of neural tube closure, cells at the edge of the neural plate separate 

from neuroepithelium and migrate into the extracellular matrix to become neural crest 

cells (Angevine & Sidman. 1961). Following migration of neural crest cells to their final 

locations, these neural crest cells differentiate into neuronal and glial cells o f dorsal roots 

and autonomic ganglia; neural crest cells provide the gastrointestinal tract and sensory 

ganglia o f the cranial nerves and melanocytes (Brown et al., 1991). The neuroepithelium, 

or ventricular zone, that contains pseudostratified columnar epithelial cells that line the 

wall o f the neural tube are actively proliferating (Sauer. 1935). As the cells within the 

neuroepithelium become postmitotic (never divide again) and migrate outward and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

differentiate, the neural tube becomes thicker from the outer surface and the ventricular 

zone becomes defined (Sidman et al., 1959; Watterson, 1965). The cells o f  the 

neuroepithelium differentiate into two cell types o f the nervous system: the neurons, 

which form the functional unit o f  the nervous system, and the glia cells which provides 

various types o f support functions to neuronal cells and are important in myelin function 

(Sidman & Rakic. 1982).

b) Neurogenesis

Neuronal cell proliferation occurs within the neuroepithelium lining the 

ventricular zone o f the neural tube (Sauer & Chittenden. 1959; Sidman et al.. 1959; 

Fujita. 1962). Neuronal proliferation begins around fourteenth week of gestation and is 

completed by the twenty-fifth week when an adult number o f neuronal cells is present 

(Dobbing & Sands. 1970; reviewed by Lou. 1982). In rats, the developmental events 

occur at eighteen days o f gestation and is completed by twenty days gestation (reviewed 

by Lou. 1982). The period o f  neuronal cell proliferation may well be extended over 

longer periods o f time. In rats, it has been show n that the number of neuronal cells in the 

hippocampus increase until one year o f age (Bayer et al.. 1985). These results suggest 

that also in humans the number o f neuronal cells in some regions may increase 

postnatal ly.

c) Gliogenesis

Glial cells tend to originate after neuronal cells in any particular region o f the 

brain (Ichikawa & Hirata. 1982). Glial cells differ from neural cell formation. Firstly, 

cells that produce glia lie outside the neuroepithelium, at or near the site where they will 

be located in adults (Bayer, 1985). Secondly, glial cell production continues throughout 

life (Jacobson. 1970). Gliogenesis is a postnatal event after term gestation (Das. 1977), 

but in some brain regions it has been detected before birth (Das. 1977; Rodier. 1980). 

Early gliogenesis is completed by the fifteenth week o f  gestation in human and the 

sixteenth day in rats (reviewed by Morgane et. al.. 1993), and thirdly, damage to glial 

cells is not permanent. Glial cells can recover from low level o f irradiation and brain 

injury (Bayer & Altman. 1975).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

d) Neuronal Cell Migration

Since neuronal cells o f the central nervous system are generated close to or at the 

neuroepithelium o f the neural tube, they must subsequently undergo migration past other 

cells before reaching their definitive locations where they will reside for life (Sidman & 

Rakic. 1973). The peak time for this occurrence in humans is the third to fifth month o f 

gestation, although it has been detected in certain brain regions as early as the second 

month and slightly after the fifth month (Sidman & Rakic. 1973). In the 1970s, it became 

clear that neuronal cells migrate radially outward from the ventricular layers along 

surface o f radial glial cells (Rakic, 1977). Evidence for this relationship between neuronal 

cells from radial glial cells came from the Weaver mouse (Rakic & Sidman. 1973). In this 

mouse model. Bergmann glial cells in the cerebellar cortex degenerated at an early stage 

and failed to migrate granule cells from external to the internal granule layer (Rakic & 

Sidman. 1973). These findings suggested that granule cells failed to migrate due to the 

lack of glial cell guidance (Rakic & Sidman. 1973). In a comprehensive series o f  

experiments. Rakic (1971a and 1971b) studied the development o f the cerebral cortex, 

hippocampus, and cerebellum in monkeys and humans (rev iewed by Rakic 1988a. 1988b. 

1990. 1995). The formation of the various cell types and their migration to their final 

destinations have been followed by light and electron microscopy and by labeling of the 

glial cells with specific antibodies (Rakic. 1971a and 1971b). Similar experiments in 

mice (Luskin. 1988) were performed with recombinant retroviruses encoding a marker 

gene to infect early neuronal and glial cell progenitors (reviewed by Luskin. 1994: 

Goldman & Luskin. 1998; and Pavlath & Luskin. 1999). The results o f these studies 

demonstrated that neuronal cells moved along the glial cell processes during development 

(Rakic. 1971a and 1971b; Luskin et al., 1988; reviewed by Rakic 1988a. 1988b. 1990. 

and 1995).Thus. glial cells are needed for neuronal cell migration.

e) Neuronal Cell Aggregation

Neuronal cell migration ceases in brain when the cells reach their destination and 

selectively aggregate to form a group or a cortical layer (Sidman & Rakic, 1973). The 

underlying mechanism of aggregation is not yet known but it has been suggested that 

adhesion molecules may play a major role in the aggregation process (reviewed by
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Nybrue & Bock, 1989). Cell adhesion molecules are proteins that mediate cellular 

interaction in the embryo. Cell adhesion molecules function in the pattern formation and 

morphogenesis o f tissues (reviewed by Edelman. 1989). Neuronal cell adhesion 

molecules, which are expressed by all major cell types in the nervous system could be 

responsible for neuronal cell migration (reviewed by Edelman, 1989).

f) Axon and Dendrite Outgrowth

As neuronal cells migrate along radial glia, many neuronal cells extend processes 

that are recognizable as axons (reviewed by Bray & Hollenbeck. 1988). The tips o f  each 

process are composed of a specialized motile structure, a growth cone (reviewed by Bray 

& Hollenbeck. 1988 and Jacobson. 1991). Growth cones are constantly moving by local 

extension and retractions (reviewed by Jacobson. 1991). When in contact with 

appropriate substrate, growth cones crawl forward and leave behind the elongating axon 

(reviewed by Bray & Hollenbeck. 1988). Axon outgrowth is a prenatal and a postnatal 

event in both the human and rats (reviewed by Herschkowitz. 1989). The mechanism 

involved in the growth and guidance o f axons appear to be specific and non-specific 

(reviewed by Herschkowitz. 1989).

The migrating neuronal cells begin to sprout dendrites as soon as they arrive at the 

cortical plate (Juraska & Fitkova. 1979). The apical and basilar dendrites are formed first 

which is followed by oblique branches off the apical dendrites (Juraska & Fifkova. 1979). 

Golgi-Cox studies o f cortical neuronal cells show that the complexity o f dendrites 

continues to increase for at least twenty-four months postnatally (Conel. 1939). There are 

regional differences in rate o f dendritic growth (Purpura. 1975; Goldman & Rakic. 1983).

g) Synaptogenesis

Synaptogenesis is the contact between axons and target cells. Synaptogenesis 

starts before neurogenesis is completed (reviewed by Jacobson. 1978). Synaptic 

formation differs appreciably among brain regions in the human brain (reviewed by 

Jacobson. 1978). Synapses appear in the human cerebral cortex as early as the third 

month o f gestation (Molliver et al.. 1973). The number o f synapses increases coincident 

w ith the elaboration of dendritic spines, which are the primary sites onto w hich synaptic
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contacts are made (Paldino &  Purpura, 1979a and 1979b). Quantitative determination by 

electron microscopy have demonstrated that the number o f synapses increases until eight 

months postnatally in the striate cortex and until twenty-four months after birth in the 

frontal cortex (Huttenlocher. 1979; Huttenlocher et al.. 1982; Huttenlocher & de Courten. 

1987). After reaching these peak values, a slight reduction in number occurs over the 

course o f many months (Huttenlocher & de Courten, 1987). Although patterns of 

neuronal cell connection are initiated by directed axon outgrowth, ultimate cortical 

organization is effected by specific neuronal cell interaction (Sperry, 1963: reviewed by 

Edelman, 1983). These interactions appear to be mediated by molecules on the surface of 

neuronal cells and neuronal cell processes that result in the selective linking o f axons to 

certain neurons by specific chemical affinity (Sperry', 1963). Neuronal cell adhesion 

molecules have been shown to promote cell-to-cell interactions among neuronal cells 

(reviewed by Edelman. 1983) but the final pattern o f  synaptic connectivity appears to be 

shaped by events such as competition for trophic factors and modulators that affect 

neuronal cell activity or target cells (Purves & Lichtman. 1985; Purves. 1988).

Following synaptogenesis, a period o f synaptic refinement occurs which is 

fundamental for normal neuronal cell function. Synaptic refinement decreases the number 

of inputs per cell by eliminating weaker connections by apoptosis (programmed cell 

death) and strengthening o f  the remaining connection through successful competition for 

trophic substances (Lictman & Purves, 1980: Purves & Lictman. 1980). Therefore, 

apoptosis and synapse refinement thus follows as the final stage of brain morphogenesis 

(Bayer. 1985).

h) Myelination

Undifferentiated oligodendrocytes arise within the ventricular zone and migrate in 

the cerebral wall (Oksche, 1968; reviewed by Colello & Pott. 1997). As these precursors 

migrate in the brain, they respond to local influences o f other neuronal and glial cells by 

proliferation and differentiation (Noble. 1986). The oligodendrocytes then align along 

axons and elaborate cell processes that ultimately form myelin sheath (Peters. 1969: 

reviewed by Colello & Pott. 1997). In the central nervous sy stem, oligodendrocytes may 

produce myelin for up to forty parallel axon segments (Peters. 1964). Myelination
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exhibits pronounced regional variation (Yakovlev & Leaours, 1967; reviewed by Colello 

& Pott. 1997). In human, myelination begins in the prenatal period and continues into 

adult life (reviewed by Herschkowitz. 1988 and Colello & Pott. 1997).

3. Critical Periods

The cells, regions, and various structures o f the brain do not develop uniformly as 

in other tissues and organs (Dobbing & Sands. 1979; Dobbing. 1990). There are 

characteristic, well-defined stages o f growth that occur anatomically and biochemically 

(Gottlieb et al.. 1977; Albers, 1985) and result in significant growth spurts or critical 

periods in fetal and neonatal life. Critical periods are defined as specific times of 

increased metabolic activity during which a particular developmental process 

predominates (Dobbing & Sands. 1979). In view of the complexity o f the brain, it is 

conceivable that normal brain development could be disrupted by any number of events, 

particularly during the critical periods o f brain growth and development. Influences o f 

exogenous factors, such as. the amount or type of dietary n-6 and n-3 fatty acids on brain 

membrane lipid composition during development could possibly alter brain structure and 

function (e.g. sodium-potassium adenosine triphosphatase transport activities) (Foot et 

al.. 1982; reviewed by Hargreaves & Clandinin. 1990; Clandinin et al., 1997; Clandinin. 

1999).

C. SODIUM-POTASSIUM ADENOSINE TRIPHOSPHATASE

1. Biological Functions

The sodium-potassium adenosine triphosphatase (Na. K-ATPase). or sodium 

pump, is a membrane bound protein that establishes and maintains the high internal 

potassium ion and low internal sodium ion concentration typical o f  most animal cells 

(reviewed by Wallick. 1979). The Na. K-ATPase transfers chemical energy of hydrolysis 

o f adenosine triphosphate (ATP) to potential energy of electrochemical ion gradients 

found by sodium ions and potassium ions across the cell membrane (reviewed by 

Wallick. 1979). Na. K-ATPase transports three sodium ions out in exchange for two 

potassium ions that are taken into the cell (reviewed by Wallick. 1979). The
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electrochemical gradient that Na, K-ATPase generates is for a large number o f basic and 

specialized cellular functions like regulation of cell volume, the resting membrane 

potential o f tissues, and excitable properties of muscle and nerve cells (reviewed by 

Jorgensen, 1990). A variety o f secondary active systems that transport ions (calcium, 

hydrogen, chloride, sulphate, and phosphate) or nutrients (glucose and amino acids) 

across the cell membrane are driven by the inwardly directed electrochemical gradient for 

sodium ions (reviewed by Skou & Esmann. 1992 and Glynn, 1993).

2. Structure

Na. K-ATPase is an oligomeric integral membrane protein that is composed of 

stoichiometric amounts o f two major polypeptides, the alpha and beta subunits (reviewed 

by Jorgensen & Anderson, 1988 and Lingrel. 1992). The alpha-subunit is a multi- 

spanning membrane protein with a molecular mass o f about 112 kDa (reviewed by 

Jorgensen & Anderson. 1988 and Lingrel, 1992). This subunit is responsible for both 

catalytic and transport functions o f the enzyme (reviewed by Jorgensen & Anderson. 

1988 and Lingrel. 1992). The alpha subunit comprises o f a binding site for cations, 

adenosine triphosphate, and cardiac glycosides (i.e. ouabain, digoxin. or digitoxin: 

reviewed by Jorgensen & Anderson. 1988 and Lingrel, 1992). Three isoforms o f  the 

alpha-subunit (<*i. a :, and a.}) appear to be expressed in rodent brains (Shull et al.. 1986). 

The three isoforms from cDNA clones show about 85% sequence homology, with the 

most substantial differences occurring in the N-terminal region (Shull et al.. 1986). The 

regions including the catalytic phosphorylation site are identical for a length o f 85 amino 

acid residues, and there are major hydrophobic domains with 94-96% homology between 

the three isoforms (Shull et al.. 1986). The three alpha-subunit isoforms are expressed to 

varying extents at different stages o f development (Shull et al.. 1986). There is evidence 

that at least five different genes encode for the alpha-subunit (Shull et al.. 1986). 

Transcriptions o f the ai-subunit genes were detected in all tissues, whereas a i  and a.} 

subunits mRNA were expressed predominately in brain (Emanuel et al.. 1987).

The smaller constituent, beta subunit mainly Pi and P2. is a polypeptide that 

crosses the membrane once and. depending on the degree o f glycosylation in different 

tissues, has a molecular weight between 40 and 60 kDa (Blanco et al.. 1994). The subunit
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was for a long time believed not to participate directly in the catalytic cycle or binding of 

cardiac glycosides. Recently, it was demonstrated that assembly o f a (alpha-beta) 

heterodimer is necessary' for a stable and functionally competent configuration o f the 

pump (Figure 1.3); in particular, the beta subunit is needed for the alpha subunit to exit 

from the endoplasmic reticulum and to acquire the correct configuration (Geering et al.. 

1989; Kawamura & Noguchi, 1991). The beta subunit appears to be involved in the 

occlusion of potassium ion and the modulation o f  the potassium and sodium ion affinity 

o f the enzyme (Lutsenko & Kaplan. 1993). The amino acid sequence o f the beta subunits 

has been detected from cDNA clones and the tissue distribution o f the beta isoforms and 

the corresponding mRNA has been examined (Shull et al.. 1986; Mercer et al.. 1986; 

Young et al.. 1987; Martin-Vasallo et al., 1989; Levensen. 1994). The Pi-subunit was 

composed of 304 amino acid residues, whereas the Pz-subunit had 290 residues 

(Levenson. 1994). The two beta-subunits had approximately 58% amino acid sequence 

homology (Levenson. 1994). The p-subunit gene encodes mRNA ranging in size from 

approximately 1.9 to 3.9 Kb (Levenson, 1994). Prev ious studies has shown that multiple 

beta subunits mRNAs are derived by alternative splicing and encodes a single p-subunit 

polypeptide (Young et al.. 1987). The pattern o f  expression of beta-subunit mRNA is 

complex and tissue-specific (Mercer et al.. 1986; Emanuel et al.. 1987). but is distinct 

from the alpha-subunit mRNA (Mercer et al.. 1986; Emanuel et al.. 1987).

Gamma-subunit\
PLASMA MEMBRANE

Alpha-subunit---- j —►

Figure 1.3 Structure o f Na, K-ATPase

(Adapted from Mercer. 1999)
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A third protein termed the gamma-subunit with a molecular mass between 8 to 14 

kDa has been detected as part o f  the native enzyme in purified separations (Reeves et al.. 

1980). The gamma subunit is expressed primarily in renal tissues (Therien et al.. 1997). 

Expression studies have shown that the gamma subunit is not required for normal Na. K- 

ATPase activity (Hardwicke & Freytag, 1981; Detomasso et al.. 1993). However, 

recently it was shown that the gamma subunit can modify the voltage dependence of 

potassium ion activation when expressed in Xenopus oocytes (Beguin et al.. 1997). It 

appears that the gamma subunit can stabilize the El conformation o f the enzyme (Therien 

et al.. 1997). Although there is increasing evidence that the gamma subunit can modify 

Na. K-ATPase function, the exact role o f the subunit in Na, K-ATPase function awaits 

further investigation. Further studies have shown that the gamma-subunit of Na. K- 

ATPase consists o f 58 amino acids with a molecular mass o f approximately 6.5-7.0 kDa 

(Mercer et al.. 1993). cDNAs for the human (Kim et al.. 1997) and .V. laevis (Beguin et 

al.. 1997) gamma subunits have been cloned and sequenced. Amino acid sequence 

comparisons shown strong homology (-75%) among different species, which is further 

increased to 93% when only mammalian sequences are compared (Kuster et al.. 2000).

3. Cellular Localization

In the nervous system. Na. K-ATPase has been found to be associated with both 

neuronal and glial cells (Cummins & Hyden. 1962). Na. K-ATPase is found to be 

particularly most active in the gray matter of the nervous tissue (Bonting et al.. 1962). 

The gray matter exhibits approximately fivefold more enzyme activity than the white 

matter (Bonting et al.. 1962). Hosie (1965) and Albers et al. (1965) have shown that an 

enriched preparation of Na. K-ATPase can be obtained from nerve endings fraction of 

brain (synaptic plasma membrane; SPM). Kurokawa et al. (1965) confirmed by sucrose 

gradient technique that there was indeed high specific activity o f Na. K-ATPase in nerve 

fraction of brain.
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4. Transport Cycle

Na. K-ATPase belongs to a class o f P-type ATPase that are responsible for active 

transport o f a variety o f cation across cell membranes (Sachsand & Munson. 1991; Apell. 

1997; Holmgren et al., 2000). The P-type description refers to the unique characteristic of 

ATPase in forming a transient, phosphorylated aspartyl residue during the catalytic cycle 

(Sachsand & Munson. 1991; Apell, 1997; Holmgren et al.. 2000). Accompanying the 

phosphorylation-dephosphorylation process, the P-type ATPase bind, occlude, and 

transport ions by cycling between two different cation-dependent conformations, called 

El and E2 (Repke & Schon. 1992; Apell. 1997; Holmgren et al., 2000). The precise 

molecular mechanisms that couple the hydrolysis o f adenosine triphosphate to the 

conformational changes and the translocation o f ions remain unknown.

The description o f the Na. K-ATPase transport is based on the hypothesis 

proposed by Albers (1967) and Post et al. (1969) (Figure 1.4). The Na. K-ATPase 

undergoes a sequence of transition between the El conformation with inward facing 

cation binding sites and high affinity for sodium ion and the E2 conformation with 

outward facing cation binding sites and high affinity for potassium ion (Albers. 1967; 

Post et al., 1969). Transitions between these two conformations are induced by the 

phosphorylation (El-P and E2-P; Figure 1.4) -dephosphorylation (El and E2; Figure 1.4) 

reactions (Albers. 1967; Post et al.. 1969). In the El Na. K-ATPase form, three 

intracellular sodium ions become bound (Albers. 1967; Post et al.. 1969). Hydrolysis of 

adenosine triphosphate and phosphorylation o f  the protein (El-P; Figure 1.4) leads to 

occlusion o f the three sodium ions followed by a transition to the E2-P form (Albers. 

1967; Post et al.. 1969). Sodium ion is now released externally, and instead two 

potassium ions become bound; this leads to spontaneous dephosphorylation and 

occlusion of the potassium ions (E2; Figure 1.4; Albers. 1967; Post et al.. 1969). 

Stimulated by adenosine triphosphate, a conformational change back to El form is 

induced, potassium is fed into the cytoplasm and the transport cycle is completed (Albers. 

1967; Post et al.. 1969).

The role o f membrane lipids on the function o f Na. K-ATPase is discussed on 

page 26.
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EI-P

The top is extracellular. 
The bottom is intracellular.

Figure 1.4 Na, K-ATPase Transport Cycle

(Adapted from Dalton. 1999)

5. Significance in Brain

In brain, at least 40% of the energy released by respiration is required by the Na. 

K-ATPase in order to maintain the ionic gradients of sodium and potassium across cell 

membranes, even under resting conditions (Whittam, 1962; Ritchie. 1980; Astrop et al.. 

1981; Yarowasky & Ingvar, 1981; Hansen. 1985). The Na, K-ATPase has a critical role 

in the functioning o f the brain. The activity o f Na, K-ATPase is present in high 

concentrations in both neuronal and glial cells (reviewed by Sweadner & Goldin. 1980). 

In addition, to maintaining the ion gradients required for nerve impulses, the enzyme is
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implicated in the indirect modulation o f synaptic action (reviewed by Sweadner & 

Goldin. 1980). When the enzyme is very active, it hyperpolarizes the nerve membrane 

altering the threshold for synaptic action (reviewed by Albers. 1967). When Na. K- 

ATPase activity is low, sodium ions accumulate in the nerve terminals and are exchanged 

for extracellular calcium by sodium / calcium exchange system (Goddard & Robinson. 

1976; Akerman & Nicholls. 1981; DiPolo & Beauge, 1983). The elevated intraterminal 

calcium concentration then facilitates the release of neurotransmitters during subsequent 

impulses, since the release o f neurotransmitter is calcium dependant (reviewed by Lees. 

1991). These processes may operate to different extents in the presynaptic and 

postsynaptic cells (reviewed by Lees. 1991). Also, it has been reported that the activity of 

Na. K-ATPase is increased by certain neurotransmitters (reviewed by Lees. 1991). In 

glial cells, the Na, K-ATPase plays a critical part by taking up the potassium released by 

neurons during periods of intense activity, when potassium reaches extracellular 

concentrations high enough to depolarize the nerve membrane (reviewed by Lees. 1991). 

The failure o f this process can result in epileptic seizure (Hertz, 1978).

D. PHOSPHOLIPIDS

1. Structure

Phospholipids contain both fatty acids and phosphoric acid esterified to an alcohol 

(reviewed by Ramsey & Nicholas. 1972; Strickland, 1973; Porcellati et al.. 1976). Polar 

head groups such as choline, ethanolamine. serine, and inositol may be esterified with the 

second acid group on the phosphate (Figure 1.5). Further diversity in phospholipids is 

provided by the variation in the fatty acids present with palmitic (C l6 :0), stearic (C l8:0). 

oleic (C18:ln-9) . C18:2n-6. C20:4n-6. and C22:6n-3 being most common. In general, 

the hydroxyl group at position-1 o f the glycerol moiety o f a PA is esterified with a 

saturated fatty acid and that at position-2 is esterified with an unsaturated fatty acid 

reflecting the specificity of the enzymes involved in the synthesis (Strickland, 1973; 

Porcellati et al., 1976). Regardless o f  structure, all phospholipids are markedly polar, 

possessing both a hydrophobic tail (two hydrocarbon chains) and a hydrophilic head 

(containing the phosphate group and the second alcohol which rotate away from the tail).
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Figure 1.5 Structure of Phospholipids

2. Role in Cell Membranes

Phospholipids along with cholesterol are the primary lipid constituents of 

membranes. The two opposing lipid leaflets make up the membrane bilayer which serves 

as a permeability barrier imparting cellular compartmentalization and support matrix for 

membrane-bound proteins (Singer & Nicholson. 1972). Biological membranes are fluid 

in nature w hich permits lateral diffusion o f lipid and protein in the plane of the membrane 

(Coleman. 1973; Sun et al.. 1983). The hydrophilic head group and hydrophobic fatty 

acyl tails make phospholipids amphipathic. In the membrane bilayer, phospholipids 

orient in such a way that their hydrophilic head groups face outward contacting the
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aqueous phase while the hydrophobic fatty acyl tails aggregate and exclude water (Singer 

& Nicholson, 1972).

3. Synthesis in Brain

Before the 1940*s, it was generally assumed that once phospholipids are 

synthesized in the nervous system o f mammals during growth and development they 

were static entities (Ansell & Spanner, 1961). The introduction o f isotopes into research, 

especially [32P] inorganic phosphate dispelled this assumption when it was shown that 

once [32P] inorganic phosphate were available to the intracellular pool, they become 

rapidly incorporated into membrane phospholipids (Ansell & Spanner. 1967).

The pathways of phospholipid biosynthesis are similar among different tissues 

and organs (Ansell & Spanner. 1967). However, the central mechanism regulating the 

changing levels and composition of phospholipids during brain development are not well 

understood. Precursor availability and/or the levels and modulators o f  enzyme activity 

could be mechanisms that regulate phospholipid synthesis (Ansell & Spanner. 1967).

a) Phosphatidylcholine

Two pathways exist for the de novo synthesis of phosphatidylcholine (PC): (1) the 

cytidine diphosphate (CDP)-choline pathway which synthesizes PC from CDP-choline 

and diacylglvcerol (DAG), and (2) the phosphatidylethanolamine methyl transferase 

(PEMT) pathway which converts phosphatidylethanolamine (PE) to PC.

i) CDP-Choline Pathway

When labeled choline was injected intracerebally into the adult rat and the 

specific radioactivity and time sequence o f phosphorylcholine. CDP-choline. and PC 

were determined, it became apparent the cytidine route was the principal pathway for de 

novo biosynthesis o f PC (Ansell & Spanner. 1968) (Figure 1.6). Choline derived mostly 

from diet or by synthesis in liver can enter the brain and be rapidly phosphorylated by 

choline kinase to form phosphorylcholine (McCaman, 1962). The structural gene for 

choline kinase has been cloned from yeast (Hosaka et al.. 1989) and the cDNA from rat 

liver (Uchida & Yamashita. 1992). The conversion of phosphocholine into CDP-choline
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requires a cytidylyltransferase enzyme (Porcellati & Arienti, 1970). To date, cDNAs for 

cytidylyltransferase have been cloned from several mammals (humans, mouse, and 

Chinese hamster) (Rutherford et al.. 1993; Kalmar et al., 1994; Sweitzer & Kent. 1994). 

The deduced protein sequence o f these enzymes is 95-99% identical to each other. The 

enzyme has a subunit molecular weight o f 42 kDa, and the purified forms exists as a 

dimer (Cornell, 1989; Weinhold et al., 1989). The CDP-choline can then be transferred to 

DAG by CDP-choline; 1,2-DAG choline transferase to form PC (McCaman & Cook. 

1966). CDP-choline: 1,2-DAG choline transferase has been cloned from yeast (Hjelmstad 

& Bell. 1990) but only partial purification of this enzyme from liver has been achieved so 

far (O & Choy. 1990). CDP-choline: 1.2-DAG choline transferase from yeast has 407 

amino acids with a predicted molecular weight o f  approximately 46 kDa (Hjelmstad and 

Bell, 1990). This enzyme has been shown to display its highest activity in vitro 

preparation of neonatal tissue and neuronal rich gray matter (McCaman & Cook. 1966). 

Thus, demonstrating the importance of this enzyme in neonatal neuronal PC biosynthesis.

ii) Phosphatidylethanolamine Methyltransferase

The transfer o f methyl groups from S-adenosylmethionine to PE by 

methyltransferase is an alternative route for the formation o f PC (Figure 1.6; Bremer et 

al.. 1960). This methylation pathway is quantitatively significant only in liver where it 

may account for about 20-40% o f the synthesis o f  PC (Sundler & Akesson. 1975). In all 

other tissues, including brain, the activity o f the methylation enzyme(s) is very low 

(Sundler & Akesson, 1975). Sastry et al. (1985) suggested that two enzymes function in 

animal tissues for the methylation reaction, one transferring the first methyl group to PE. 

and a second enzyme catalyzing the second and third methylation. Pajares et al. (1984) 

purified methyltransferase from rat liver and found that this enzyme catalyzes all three 

methylation steps of PE synthesis. However, in Saccharomyces (Greenberg et al.. 1983) 

and in Neurospora (Scarborough & Nyc. 1967). it appears that at least two enzymes are 

involved in the stepwise methylation sequence. Thus, it is possible that different tissue 

express different number o f methyltransferase in the PEMT pathway. Recently, the 

murine gene that codes for PEMT was cloned and characterized (Walkey et al.. 1996).
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This gene predicts a 199 amino acid protein with a molecular weight o f 22.5 kDa and has 

greater than 92% homology with rat PEMT cDNA (Walkey et al., 1996).

Diets containing different ratios o f  soybean and sunflower oil were mixed to 

produce a range o f dietary n-6 to n-3 fatty acids ratios (Hargreaves & Clandinin. 1989). 

Resulting levels o f  C22:5n-6 found in microsomal membrane PE correlated with 

production o f phosphatidylmethylethanoiamine via the PEMT pathway, but was 

negatively correlated with CDP-choline pathway (Hargreaves & Clandinin, 1989). Thus. 

PC synthesis via PEMT and CDP-choline pathways responds to change in diet fat.

b) Phosphatidylcthanolamine

i) CDP-Ethanolamine Pathway

The de novo synthesis of PE occurs via the CDP-ethanolamine pathway (Figure 

1.6). The phosphorylation of ethanolamine by kinase is different from that o f choline as 

seen by different requirements o f kinase for magnesium and adenosine triphosphate 

(Spanner & Ansell. 1979). This suggests that two separate enzymes may be involved in 

choline or ethanolamine phosphorylation. The formation of CDP-ethanolamine by 

cytidine triphosphate (CTP):ethanolamine phosphate cytidylyltransferase seems to be the 

rate-limiting enzyme in the formation o f PE (Porcellati et al., 1971). Nakashima et al

(1997) reported the cloning of a human cDNA for CTP:ethanolamine phosphate 

cytidylyltransferase by complementation in vivo of a yeast mutant o f which the 

CTP:ethanolamine phosphate cytidylyltransferase gene was disrupted. The deduced 

protein encoded by the cDNA consists o f  389 amino acids with a calculated molecular 

mass o f approximately 43.8 kDa (Nakashima et al., 1997). The combining o f CDP- 

ethanolamine and DAG by CDP-ethanolamine: 1,2-DAG ethanolamine 

phosphotransferase is the final step in PE formation (Ansell & Metcalfe. 1971). The 

DAG species containing PUFAs rather than monenoic. dienoic. or trienoic species seems 

to be the preferred substrates for PE synthesis (Holub, 1978). Complementation of .S'. 

ccrevisiae mutants defective in CDP-ethanolamine: 1.2-DAG ethanolamine 

phosphotransferase has resulted in the isolation of a gene encoding CDP- 

ethanolamine: 1.2-DAG ethanolamine phosphotransferase activity (Hjelmstad & Bell. 

1991). The derived amino acid sequence for the S. cerevisiae CDP-ethanolamine: 1.2-
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DAG ethanolamine phosphotransferase gene predicts a protein of 44.5 kDa containing 

seven membrane-spanning domains (Hjelmstad & Bell, 1991). Recently, CDP- 

ethanolamine: 1.2-DAG ethanolamine phosphotransferase has been purified from bovine 

liver microsomes (Mancini et al., 1999). The isolated protein has a molecular mass of 

about 38 kDa (Mancini et al., 1999). Future research should provide amino acid 

sequence and gene cloning for this enzyme.

ii) Decarboxylation o f Phosphatidylserine

PE formation occurs by decarboxylation o f  phosphatidylserine (PS; Figure 1.6). 

Bremer et al (1960). using radiolabeled L-[3-l4C] serine showed in vivo labeling o f PE in 

liver. Wilson et al. (1995) who incubated labeled serine with liver mitochondria and brain 

homogenates also showed the appearance of the label in the ethanolamine moiety o f PE. 

Dennis & Kennedy (1972) clearly demonstrated the decarboxylation o f PS by a 

mitochondrial enzyme in liver. PS decarboxylase (Dennis & Kennedy. 1972). 

Experiments by Yavin & Ziegler (1977) established that about 13% of PE were formed 

via this route in differentiating cells o f the cerebral hemisphere. The cDNA for the 

mammalian PS decarboxylase was cloned in somatic cell mutants (Kuge et al.. 1991; 

Kuge et al.. 1996). The full-length cDNA for PS decarboxylase was isolated by 

polymerase chain reaction methods and it encodes for a protein of 409 amino acids (Kuge 

etal.. 1991; Kugeetal., 1996).

c) Phosphatidylinositol

Studies by Agranoff et al. (1958) and Pautes & Kennedy (1958) lead to the 

discover)' o f  CDP-DAG:myoinositol phosphatidyltransferase that catalyzes the synthesis 

of phosphatidylinositol (PI; Figure 1.6). CDP-DAG-myoinositol phosphatidyltransferase 

catalyzes the reaction o f CDP-DAG with myoinositol (Agranoff et al.. 1958; Paules & 

Kennedy. 1958). This enzyme appears to be located in the microsomal fraction o f  liver 

(Takenawa & Egawa. 1977) and brain (Ghalayini & Eichberg. 1985). The enzyme shows 

high selectivity for myoinositol (Benjamins & Agranoff, 1969). Unfortunately, no amino 

acid sequence information has yet been obtained for the mammalian enzyme. However.
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recently Tanaka et al (1996) has cloned the rat CDP-DAG:myoinositoI 

phosphatidyltransferase cDNA by functional complementation of a S. cerevisiae CDP- 

DAG:myoinositol phosphatidyltransferase mutant, deficient in CDP-DAG:myoinositol 

phosphatidyltransferase activity. The cloned cDNA encodes a protein o f  213 amino acids 

with a calculated molecular mass o f approximately 24 kDa (Tanaka et al.. 1996).

d) Interconversion or Base Exchange: Phosphatidylcholine,

Phosphatidylethanolamine, and Phosphatidylserine Synthesis

It is known that base-exchange enzymes o f the nervous system exist that are 

responsible for the energy-independent incorporation of choline, ethanolamine. and 

serine into membrane phospholipid with the formation of PC, PE. and PS. respectively 

(Figure 1.6; Porcellati et al.. 1971; Kanfer. 1972). These enzymes are membrane-bound 

to the microsomal fraction (Porcelatti et al., 1971; Kanfer, 1972) and have a strict 

requirement for calcium (Buchanan & Kanfer. 1980). The serine-base exchange enzymes 

(PS synthase) seem to be the sole route for PS production in brain as well as other tissues 

and PE seems to be the preferred substrate for exchange (Yavin & Zeigler. 1977). PS 

synthase cDNA has been isolated from Chinese hamster ovaries (Kuge et al.. 1991). It 

has been shown by immunoprecipitation that the PS synthase has an apparent molecular 

mass of 42 kDa (Kuge et al.. 1991). Recently, partial human cDNA encoding PS synthase 

has been found (Kuge et al., 1997). The gene sequence is indicative o f  a protein of 

approximately 474 amino acids (Kuge et al., 1997).
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4. Composition of Phospholipids and Developmental Changes

Past research has examined the changes in whole brain phospholipid composition 

with development and aging. However, analysis o f  whole brain does not consider the 

differences in brain region, cell type, or subcellular fractions as well as the timing of 

maturation (Sun & Horrocks. 1970). It is well established that the content o f each lipid 

class and their fatty acyl constituents change continuously from fetal life to old age 

(Rouser& Yamamoto. 1968).

a) Whole Brain

In the human fetus, phospholipid content changes from about 13-17% o f the brain 

dry weight to about 50% in term infants (Svennerholm, 1964). Among the individual 

phospholipids. PC comprises about half o f the phospholipid in fetal brain (Svennerholm. 

1964). Rouser & Yamamoto (1968) examined the phospholipids o f male human brain 

from birth to 98 years. It was found that the phospholipid composition changes 

continuously throughout aging (Rouser & Yamamoto, 1968). Most o f the brain 

phospholipids increase up to age thirty and then start to decline (Rouser & Yamamoto. 

1968). Generally, it was found that the greatest increase in brain phospholipids occurred 

during the first year o f life, which was five to fourteen times greater than any other year 

(Rouser & Yamamoto. 1968).

In rodents, the total brain phospholipids increase markedly from birth to 50 days 

o f age with about a two-fold increase by ten days o f age (Cuzner & Davidson. 1968). 

After ten days, the level o f phospholipids in brain starts to plateau (Erickson & Lands. 

1959). Wells & Dittmer (1967) examined the morphological changes in rat brain with 

deposition o f lipid classes. Among the phospholipids, the study revealed that during 

active myelination (10-20 days), there was a rapid increase (2-4 fold) in sphingomyelin 

(SM) and PA content (Wells & Dittmer. 1967). The other phospholipids, in contrast to 

SM and PA. showed marked elevations prior to myelination. Therefore. SM and PA may 

be associated with changes in myelin membrane structures while PC. PE. PS, and PI 

(about 49-60% o f adult brain levels) are associated with non-myelin structures during 

development (Wells & Dittmer, 1967). In rat brain, when phospholipids are considered as 

a percentage o f the total lipids, there is a fall from 74-56% during maturation (Norton &
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Poduslo, 1973). Individual phospholipids expressed relative to total lipid, PE and PS 

remain constant during development at about 25% and 6%, respectively, whereas PC 

decreases from 30-18% (Galli & Cecconi, 1967; Norton & Poduslo, 1973). SM increases 

from 1% to 3-4% by 37 days (Ansell & Spanner, 1961; Marshall et al., 1966).

b) Neuronal and Glial Cells

Many papers have reported the lipid composition o f  cell types and subcellular 

fraction in brain, however, only a few have examined the changes in lipid composition 

during development. Norton & Poduslo (1971) studied the lipid composition o f neuronal 

and glial cell preparation in rats during myelination. The study revealed that neuronal and 

glial cell lipid composition was similar. Both neuronal and glial cells showed high levels 

o f phospholipid content (71% of total lipid) and neither cell type exhibited obvious 

changes with age (Norton & Poduslo. 1971). Interestingly, glial cells have less PI but 

more PS than neuronal cells, and both cell types have less PS than whole brain at any age 

(Norton & Poduslo, 1971). The levels o f SM were similar in the two cell types and did 

not seem to vary with age. despite observed changes o f about 45% in whole brain 

(Norton & Poduslo. 1971). Thus, the study reveals that both neuronal and glial cell 

phospholipid composition remain relatively unchanged during development.

c) Synaptic Plasma Membrane

In rat SPM. there is an early rise in total phospholipids, which retlects the general 

increase in whole brain (Cuzner & Davidson. 1968). Differences in the absolute amount 

o f phospholipids per brain in each fraction were observed (Cuzner & Davidson, 1968). 

However, the differences observed in amount of phospholipids may be related to the 

contribution o f each fraction to the whole brain weight (Cuzner & Davidson. 1968). For 

example, myelin and synaptosomes together make up about 50% o f the phospholipids in 

whole brain homogenates while microsomes constitute about 11.5% (Cuzner & 

Davidson. 1968). Nevertheless, changes in phospholipid content o f  SPM do occur with 

age.

Alterations o f brain synaptosomal and microsomal membrane content and 

composition by diet fat was examined by Foot et al. (1982). The composition o f these
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membranes was compared for rats fed different types o f fat. Synaptosomal membrane 

content o f PE, ethanolamine plasmalogen. or SM was not affected by dietary' fat 

treatment (Foot et al., 1982). Levels o f PC and cholesterol were altered by diet fat (Foot 

et al.. 1982). Increase in PC content o f the membrane was strongly correlated with an 

increase in membrane cholesterol content (Foot et al., 1982).

5. Effect on Sodium-Potassium Adenosine Triphosphatase

Phospholipids are important for optimum activity o f the Na, K-ATPase and 

purified preparation contain 250-300 mol phospholipid/mol enzyme (reviewed by Stahl. 

1986). The negatively charged phospholipids. PS and PI are present in these preparations 

and it has been suggested that they have an important role in modulating enzymatic 

activity (Kimelberg & Papahadjoupoulos. 1974; Roelofsen, 1981). However. De Pont et 

al. (1978) exchanged PS for PE in membrane preparations and found that Na. K-ATPase 

activity was not significantly affected, suggesting that PS is not specifically important for 

modulating Na. K-ATPase activity. However, this issue has not been completely 

resolved, since preparations devoid o f PS may still contain negatively charged detergents, 

or tightly bound PI. which might modulate enzymatic activity (Brotherus et al., 1980). 

Brotherus et al. (1980) suggested that basic amino acids residues of the Na. K-ATPase 

e.g. arginine and lysine, may be located near the surface boundary of the lipid layers. 

Specific phospholipids like PS and PI in the bilayer may segregate to match appropriate 

hydrophobic and hydrophilic portions o f the enzyme so that acidic phospholipids are 

required for optimum Na, K-ATPase activity (Brotherus et al., 1980). Stekhoven et al 

(1994) reinforced the importance o f PS for Na, K-ATPase activity by demonstrating that 

monoclonal antibodies to PS inhibited the Na, K-ATPase activity. Alternatively, it has 

been suggested that enzymatic activity is primarily modulated by the fluidity of the acyl 

chains o f the fatty acids present in the bulk membrane phospholipids (Kimelberg & 

Papahadjoupoulos. 1974). Thus. Na. K-ATPase activity can be modulated by 

phospholipids, in particular, PS and PI, and/or the fatty acyl constituents of 

phospholipids. Also, other ATPases. such as. mitochondrial oligomycin-sensitive 

ATPase, has been shown to be affected by the membrane polar head group content by 

diet fat. indicated by altered membrane PC to PE ratios with subsequent changes in the
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thermotropic and kinetic properties o f mitochondrial ATPase exchange reactions (Innis & 

Clandinin, 1981).

E. SPHINGOLIPIDS

1. Sphingomyelin

SM is different from PC, PE. PS. and PI. In SM, a fatty acid is acylated to 

ceramide instead o f  glycerol (Ong & Brady, 1973: Figure 1.7). SM is ubiquitously 

distributed in all membranes of mammalian cells and in serum lipoproteins (Barenholz & 

Gatt. 1982). Generally, SM distribution coincides with that o f cholesterol, and in most 

cells, there is an increasing gradient o f SM and cholesterol compared to other lipids from 

the nuclear membrane through the various organelles to the plasma membrane 

(Barenholz & Thompson. 1980). SM is located predominately in the outer leaflet of the 

plasma membrane (reviewed by Kolesnick. 1991).

CH3-(CH2 ) i:-CH=CH-CHOH  

H H O

CH3-(CH. h r  C-C- C -N -C -H
I I I
H H H 0  c h 3

H l +
h ,c -o - p - o -c h .-c h 2-n  - c h 3

1 I
O '  CH3

Figure 1.7 Structure o f Sphingomyelin

a) Serine Palmitoyl Transferase

The de novo rate-limiting step in SM synthesis begins with condensation o f L- 

serine and palmitoyl-CoA to produce a C18 carbon molecule, D-3-ketosphinganine 

(Figure 1.8; Merrill & Jones. 1990; van Echten & Sandhoff, 1993). This reaction, 

catalyzed by serine palmitoyl transferase (SPT) was first demonstrated in cell-free 

extracts made from the yeast H. ciferrii (Stoffel et al.. 1967) and later in rat liver (Stoffel 

et al.. 1968) and mouse brain (Braun et al.. 1970). SPT requires pyridoxal phosphate for 

its activity (Brady et al.. 1969). This enzyme is highly specific for saturated fatty acyl-
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CoA's. particularly. 16-carbon atoms, which explains the prevalence o f the 18-carbon 

sphingoid bases found in most sphingolipids (Karlsson. 1970). SPT has not yet been 

purified from any organism despite only a 100-fold enrichment in activity (Merrill. 

1983). SPT is membrane-bound, particularly, in the endoplasmic reticulum (Mandon et 

al., 1992). In S. cerevisiae. at least two genes, LCB (long chain base) 1 (Buede et al..

1991) and LCB 2 (Nagiec et al., 1994) have been found and are necessary for SPT 

activity. Mammalian cDNA homologs o f both LCB 1 (Hanada et al., 1997: Weiss & 

Stoffel, 1997) and LCB 2 (Nagiec et al.. 1996; Weiss & Stoffel, 1997) have been 

identified.

b) 3-Ketosphinganine Reductase

3 -K.etosphinganine reductase reduces 3-ketosphinganine to dihydrosphingosine 

(sphinganine: Figure 1.8; Stoffel et al., 1968). This enzyme is NADPH-dependant and is 

very active in vivo since 3-ketosphinganine is not detected in cells (Merrill et al.. 1985: 

Merrill & Wang, 1986). 3-Ketosphinganine reductase has been shown to be localized to 

the cytosolic side o f  the endoplasmic reticulum (Mandon et al.. 1992). In 5. cerevisiae 

csg 2A mutants that were calcium sensitive to temperature, the gene TSC10/YBR265w 

was found to encode the 3-ketosphinganine reductase (Beeler et al.. 1998). However, 

characterization o f 3-ketosphinganine reductase has not been done in mammalian tissues.

c) Sphinganine N-Acyl Transferase

Sphinganine N-acyl transferase (ceramide synthase) is responsible for the 

acylation of sphingosine with fatty-acyl CoA to form dihydrorceramide (Figure 1.8; 

Morell & Radin. 1970; Akanuma & Kishimoto. 1979; Merrill & Wang, 1986). However, 

a fatty acyl CoA independent synthesis o f dihydroceramide has also been described 

(Singh, 1983). The acylation of sphinganine occurs very rapidly in vivo since free 

sphingosine is not detected in cells unless stimulated by hormones and cytokines (Merrill 

& Wang. 1986). This reaction has been shown to take place at the cytosolic surface of the 

endoplasmic reticulum (Mandon et al.. 1992; Hirschberg et al.. 1993). Shimeno et al.

(1998) partially purified sphinganine N-acyl transferase from bovine liver mitochondria. 

Western blot analysis showed that this enzyme migrated as two major protein bands
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(subunits) of 62 and 72 kDa (Shimeno et al., 1998). The molecular mass o f  the enzyme 

was estimated to be approximately 240-260 kDa (Shimeno et al., 1998). Future studies on 

the purification o f ceramide synthase to homogeneity are needed.

L-Serine
+

Palmitoyl-CoA ̂ Serine Palmitoyl Transferase

3-Ketosphinganine
+

NADPH

 ̂3-Ketosphinganine Reductase

Sphinganine
+

Fatty-acyl-CoA

 ̂Sphinganine N-Acyl Transferase

Di hydroceram ide
+

NADPH
+

0 2 ̂Dihydroceramide Desaturase

Ceramide
+

Phosphatidylcholine| Sphingomyelin Synthase

Sphingomyelin
+

Diacylglycerol

Figure 1.8 Biosynthesis o f Sphingomyelin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

d) Dihydroceramide Desaturase

Dihydroceramide desaturase catalyzes the conversion o f  dihydroceramide to 

ceramide (Figure 1.8: Michel et al.. 1997; Geeraert et al.. 1997). This reaction introduces 

a 4.5 trans double bond in the dihydroceramide not sphinganine (Michel et al.. 1997: 

Geeraert et al.. 1997; Mikami et al., 1998). Dihydroceramide desaturase in mouse has 

been found to be localized at the cytosolic face o f the endoplasmic reticulum (Mandon et 

al.. 1992). The in vitro assay of this enzyme has recently been described in the 

microsomal fraction o f rat liver (Michel et al., 1998). Recently, Causeret et al (2000) has 

further characterized dihydroceramide desaturase activity in rat. Dihydroceramide 

desaturase was found to be enriched in rat liver (Causeret et al.. 2000). Subcellular 

fractionation of liver homogenate and density gradient separation o f microsomal fraction 

demonstrated dihydroceramide desaturase activity to be localized in the endoplasmic 

reticulum (Causeret et al.. 2000). Unfortunately, little is known about this enzyme in 

humans since it has not been isolated and characterized.

e) Sphingomyelin Synthase

The major pathway for the synthesis o f SM is by transfer of the phosphoryl 

choline groups from PC to ceramide. yielding diacylglycerol and SM (Figure 1.8; Ullman 

& Radin. 1974). The formation of SM does not occur via CDP-choline (Diringer et al.. 

1973; Kurtz & Kanfer. 1973; Voelker & Kennedy. 1982). This reaction is catalyzed by 

SM synthase (PC; ceramide-phosphoryl choline transferase; Ullman & Radin. 1974). SM 

synthase activity has been detected in isolated plasma membrane and microsomal 

preparations (Ullman & Radin, 1974). Controversy still exists as to the major site of SM 

synthesis in vivo. However, it is believed that SM synthesis occurs in the Golgi apparatus 

using fluorescent analogs o f ceramide (Barenholz & Thompson. 1980; Lipskv & Pagano. 

1983 and 1985; Merrill & Jones. 1990; Koval & Pagano, 1991). Further evidence for the 

localization o f SM synthesis at the Golgi apparatus was provided by the separation and 

characterization o f subcellular components (Futerman et al.. 1990; Jeckal et al.. 1990). 

Interestingly, the brain which is enriched with SM has little SM synthase activity 

(Nikolova-Karakashian. 1999). Purification and characterization o f SM synthase has been
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difficult because mild detergent treatment causes loss o f activity (Nikolova-Karakashian, 

2000).

2. Gangliosides

To date, brain lipids, more specifically, gangliosides have not been extensively 

examined in relation to compositional changes due to alteration in dietary fat. This 

section will discuss the role o f  gangliosides and their importance in brain.

a) Nomenclature

Ganglioside nomenclature was developed by Lars Svennerholm in 1963 

(Svennerholm. 1963; reviewed by Svennerholm, 1980 and 1988). In Svennerholm's 

notation. G denotes ganglio-family. the capital letters M. D. T. and Q refer to the number 

o f  neuraminic (NANA) or sialic acid residues in the ganglioside (Svennerholm & Raal. 

1961; Svennerholm. 1963; reviewed by Brunngraber. 1979). Numbers one. two, or three 

refer respectively to gangliosides whose total hexose and hexosamine residues are four, 

three, and two. respectively (reviewed by Brunngraber. 1979 and Svennerholm. 1980 and 

1988). Small letters a. b. or c following the numbers distinguish between the position of 

the sialo-isomers (reviewed by Brunngraber, 1979 and Van Echten & Sandhoff. 1993). 

This notation developed by Svennerholm used to designate gangliosides is the least 

complex o f all the other systems and will be used to describe the gangliosides in this 

thesis.

b) Chemical Structure and Composition

Gangliosides. a subclass o f glycosphingolipids. are acidic complex lipids that are 

composed of two regions (Figure 1.9; reviewed by Rapport, 1981 and Svennerholm. 

1988). The first is the hydrophobic region. The hydrophobic region consists o f two long 

chain molecules: a long-chain base, sphingosine. which can be eighteen or twenty 

carbons in chain length, and a fatty acid chain (usually stearic acid; C l8 :0 ) that is linked 

to the sphingosine by an amide bond (reviewed by Rapport, 1981 and Svennerholm. 

1988). The two long chain molecules together are called a ceramide (reviewed by 

Rapport. 1981 and Svennerholm. 1988). The second is the hydrophilic region, which is
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composed of sugar residues; mainly glucose, galactose, and N-acetylgalactosamine 

(hexosamine) that are bonded to the primary hydroxyl group o f  the sphingosine 

(reviewed by Brunngraber. 1979). In addition to the sugar residues in the hydrophilic 

region, there are neuraminic acid residues, which characterize gangliosides from other 

glycosphingolipids (Klenk. 1942; reviewed by Rapport. 1981 and Svennerholm. 1988). 

These neuraminic acid residues can attach to galactose or other neuraminic acid 

molecules by a glycoside bond (reviewed by Rapport, 1981 and Svennerholm, 1988). 

Thus, this addition o f neuraminic acid in the hydrophilic region of the molecule gives the 

gangliosides their acidic nature and different mobility in thin-layer chromatography.

HYDROPHILIC REGION___________

Hexosamine

I
Galactose-Neuraminic Acid (NANA)

I
Glucose

CERAMIDE

HYDROPHOBIC REGION

x = varying number of carbon atoms

Figure 1.9 S tructu re  of a Ganglioside

There are more than sixty different ganglioside molecules that have been 

identified all varying in structure and composition (reviewed by Rapport, 1981 and 

Svennerholm, 1988). Variations in these structures result from a number o f factors, such

H
I

HOH
I I

H3C-(CHi)p - C=C-C-C-CH,M  -

(fatty1 acid chain)

-(sphingosine)

H H

HN-C-(CH2)x - CH3
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as. the number of sugar residues, the number of neuraminic acid residues, the position of 

attachment o f  the neuraminic acid, the presence o f fucose residues, the substitution of 

glucosamine for galactosamine. and the presence o f O-acetyl groups (reviewed by 

Rapport, 1981 and Svennerholm, 1988). However, this thesis will focus only on four of 

these gangliosides: GMla, G D la, G D lb, and GTlb (Figure 1.10).

G M la GDla

DODO CERAMIDE CERAMIDE

G D lb  G Tlb

DODO CERAMIDE JO^O- CERAMIDE

LEGEND:

□  Galactose O '  Hexosamine O  Glucose A  NANA

Figure 1.10 Gangliosides GM la, G D la, G D lb, and GTlb

c) Cellular Localization

Gangliosides occur on the outside o f cellular plasma membrane especially at the 

synaptic regions in which there are enriched amounts (reviewed by Wiegandt. 1985 and 

Svennerholm. 1988; Figure 1.11). However, it is not clear whether or not gangliosides 

are evenly or unevenly distributed on the outer surface o f the neuron (reviewed by 

Wiegandt. 1985 and Svennerholm, 1988). Low levels o f gangliosides have also been
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detected in the membrane o f the Golgi apparatus, endoplasmic reticulum, and lysosome 

(rev iewed by Wiegandt. 1985). These findings suggest that ganglioside metabolism is 

localized in these structures and that they may serve some special biological functions 

(reviewed by Wiegandt. 1985 and Svennerholm. 1988).

Extracellular

G Dla GTlb
G ^ Ib  G M la Hexosamine

NANA

f ,
“  ■ •^"G alactose -  

Glucose

I
Intracellular (cytoplasm)

Figure 1.11 Gangliosides in Cell Membrane

d) Distribution in Central and Peripheral Nervous System

Gangliosides are found in most, if not all. mammalian tissues with their 

concentrations being highest in gray matter o f the brain (reviewed by Rapport. 1981 and 

Wiegandt. 1985). Sixty-five to eighty-five percent o f the gangliosides content in 

mammalian brain is o f four molecular species: GM la, GDla. G D lb. and GTlb 

(reviewed by Rapport. 1981; Wiegandt. 1985). However, gangliosides from the 

peripheral nervous system are quite different to those o f the central nervous system 

(reviewed by Wiegandt. 1985). Peripheral nervous system gangliosides are o f  the lacto-
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series rather the ganglio-series found in the central nervous system (reviewed by 

Wiegandt, 1985). This difference in composition might be related to their function. 

Nevertheless, gangliosides localized in the central nervous system are different in sugar 

composition than in peripheral nervous system.

e) Composition in Neuronal Membranes

Gangliosides are the most specific lipids in neuronal membranes. The amount of 

neuraminic acid per gram wet weight o f human brain gray and white matter are 

approximately 880 and 275 pg, respectively (reviewed by Thomas & Brewer. 1990). 

Although gangliosides constitute approximately 10% of the total membrane-bound lipids 

(Wiegandt. 1985) on the whole neuron surface, gangliosides are more concentrated in the 

synaptic region (Hansson et al., 1977). In the SPM. there are higher ratios o f ganglioside 

to phospholipid compared to the plasma membrane of most non-neuronal tissues 

(reviewed by Thomas & Brewer, 1990). The SPMs from human and rat brain contains 

approximately 15% GMla. 40% G D la, 14% GDlb, and 21% G T lb  (reviewed by 

Thomas & Brewer. 1990). Interestingly, it has been shown that there is an increased 

amount of G D lb  and GTlb (70-80%) in the synaptic junction (reviewed by Thomas & 

Brewer. 1990).

f) Physiochemical Properties

Gangliosides. because o f their hydrophobic (ceramide) and hydrophilic (oligosaccharide) 

regions, are amphiphilic and can form micelles above 10' 10 M range (Corti et al.. 1987). 

In contrast to other amphiphilic molecules like phospholipids, gangliosides do not have 

bilayer structures (reviewed by Curatolo, 1987). In addition, the neuraminic acid residues 

on the gangliosides molecule contribute significantly to the negative electrical charge on 

the membrane (reviewed by Langner et al.. 1988 and Thompson & Brown. 1988).

It is well established that under certain conditions gangliosides can form 

microdomains (clusters) (Myers et al.. 1984: Masserini & Freire. 1986). These clusters 

indicate that not only do gangliosides have chemical diversity but also aggregational 

diversity which may play a significant role in allowing ganglioside-ligand interaction to 

occur (Myers et al.. 1984; Masserini & Freire. 1986).
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Due to the location o f the gangliosides on the outer leaflet o f the synaptic 

membrane, it is not surprising that gangliosides possess high binding potential. Numerous 

agents such as viruses, serotonin, flbronectin. and antibodies have been demonstrated to 

bind primarily the oligosaccharide region o f the ganglioside (Tettamanti & Masserini. 

1987). The specificity o f  binding of these agents seems to be due to a particular sequence 

o f oligosaccharides that can be shared by different gangliosides. This is most evident w ith 

cholera toxin binding G M la (Holmgren et al., 1994) and Fuc-GMla (Masserini et al..

1992).

Gangliosides interaction with proteins in the membrane have also been 

demonstrated, but it is not clear whether aggregated or molecularly dispersed forms are 

involved (Myers et al.. 1984). These ganglioside-protein interactions have been seen 

specifically in GM la and G Tlb and it is speculated that these proteins are responsible for 

ganglioside internalization via endocytosis (Yasuda et al.. 1988: Tiemeyer et al.. 1990: 

Fueshko & Schengrund, 1990: Sonnino et al.. 1992).

g) Metabolism

i) Biosynthesis

The oligossacharide chain o f gangliosides is formed by a stepwise addition of 

nucleotide bound monosaccharides like uridine diphosphate (UDP)-galactose or cytidine 

monophosphate (CMP)-neuraminic acid onto an acceptor molecule, ceramide. which is 

the product of condensation and reduction between L-serine and palmitoyl-CoA in the 

endoplasmic reticulum (Walter et al.. 1983). The transfer of nucleotide-activated 

monosaccharides takes place in the Golgi apparatus, with the involvement o f specific 

membrane-bound glycosyltransferases (Hirschberg & Snider. 1987). The reaction 

sequences for the biosynthesis o f gangliosides and the involved enzymes are shown in 

Figure 1.12. Initiation o f  the three distinct ganglioside pathways (A. B. C) are dependant

on the strict specificity of sialic acid transferases (SAT). SAT-1. SAT-2, and SAT-3,

which act on lactosylceramide, GM3, and GD3. respectively (reviewed by Tettamanti & 

Masserini, 1987). Further glycosylation are catalyzed by enzymes like N- 

acetylgalactosamine (GalNAc) transferase-1. which converts GM3 to GM2. GD3 to 

GD2. and GT3 to GT2 (reviewed by Tettamanti & Masserini, 1987). Similarly. ( 1 )
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galactosyltransferase-2 catalyzes the transformation of GM2 to G M la, GD2 to GDlb. 

and GT2 to GTlc; (2) SAT-4 converts G M la to G D la  G D lb to G Tlb, and GTlc to 

GQlc: and (3) SAT-5 converts G D la to G Tla, GTlb to G Q lb, and G Q lc to GPlc 

(reviewed by Tettamanti & Masserini, 1987). After synthesis in the Golgi apparatus of 

the neuronal cell body, the gangliosides travel by fast axonal transport to the SPMs 

(reviewed by Ledeen. 1989).
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Figure 1.12 Biosynthesis of Gangliosides
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The regulation o f ganglioside biosynthesis has not been fully elucidated. Changes 

in the pattern o f ganglioside expressed on cells during development, differentiation, and 

oncogenic transformation have been observed, as well, as differences in the composition 

of mammalian organs (reviewed by Ledeen, 1989, Hakomori, 1990 and Rahmann, 1992). 

The changes or differences observed in ganglioside patterns are thought to be regulated at 

the transcription level via the expression o f certain glycosyltransferase (Sandhoff & van 

Echten. 1993). Using transfected cells with cDNA probes for specific glycosyltransferase 

has been shown to increase the respective ganglioside (Kojima et al., 1994). Other studies 

have suggested that glycosyltransferase might be regulated by protein 

phosphorylation/dephosphorylation reaction (Scheidler & Dawson. 1986). Sugar 

nucleotides can also modulate the synthesis o f gangliosides (Burczak et al., 1984). The 

sugar nucleotide is transported into the Golgi by specific transport proteins in the Golgi 

membrane, which may regulate the availability o f sugar nucleotides for ganglioside 

biosynthesis (Burczak et al., 1984).

ii) Biodegradation

Ganglioside catabolism consists o f the sequential removal o f individual sugar 

residues by exoglycohydrolases, with formation of ceramide (Sandhoff et al.. 1987). 

Ceramide is then degraded by ceramidase (CDase) into sphingosine and fatty acid 

(Spence et al.. 1986). The glycohydrolases involved in neural ganglioside degradation 

reside in the lysosomes (Riboni et al.. 1991). In fact, it was shown by Fiorilli et al. (1989) 

that in highly purified lysosome preparations from rat brain that glycohydrolases 

affecting ganglioside catabolism were present. However, if any of these enzymes in the 

lysosomes are absent or defective, gangliosidosis develops (Fiorilli et al.. 1989). 

Therefore, demonstrating the significance of these enzymes in ganglioside catabolism.

( 1) Glycosidases

The constitutive degradation o f gangliosides occurs in the acidic compartments of 

the cell: endosomes and lysosomes. Gangliosides reach the lysosomal compartment by 

endoscytic membrane flow, presumably on the surface o f intraendosomal and 

intralvsosomal vesicles (Sandhoff et al., 1998). In the lysosomes. the gangliosides are
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cleaved by stepwise action o f hydrolytic enzymes (Sandhoff et al., 1998). Glycosidases 

cleave off the sugar residues from the non-reducing end of gangliosides (Sandhoff et al.. 

1998). Gangliosides with short oligosaccharide chains o f less than four sugar residues, 

the glycosidases need protein cofactors, sphingolipid activator protein (SAP: Sandhoff et 

al., 1998). There are four SAP that are involved in ganglioside degradation: SAP-A. 

SAP-B. SAP-C. and SAP-D (Sandhoff et al., 1998). These proteins seem to facilitate 

interaction o f gangliosides with glycosidases in or at the membrane (Kolter & Sandhoff.

1998). Deficiencies o f glycosidases and/or SAPs cause accumulation o f sphingolipids in 

lysosomes leading to lysosomal storage diseases such as Tay-Sachs and Gaucher's 

disease (Kolter & Sandhoff, 1998).

(2) Ceramidases

CDase hydrolyses ceramide to a free sphingoid base (usually sphingosine) and a 

fatty acid (Gatt. 1966). CDase activity was first characterized as an enzyme with an 

acidic pH optimum present in all tissues examined (Gatt. 1966; Yavin & Gatt. 1969). A 

genetic deficiency o f this enzy me was later shown to account for Farber's disease w here 

there is an accumulation o f ceramides in the ly sosomes o f spleen, cerebellum, fibroblasts, 

and kidney (Levade et al., 1995; Nikolova-Karakashian & Merrill, 2000). CDases with 

neutral (pH 7.6) and alkaline (pH 9.0) pH optimum have been found (Nilsson et al.. 1969; 

Morell & Braun, 1972; Yada et al.. 1995). Recently, the acid CDase from human urine 

was purified (Bernardo et al., 1995) and the cDNA encoding human and mouse acid 

CDase has been cloned (Koch et al., 1996; Li et al.. 1998).

Neutral CDase was purified and characterized in mouse liver (Tani et al.. 2000). 

The enzyme was a monomeric polypeptide with a molecular mass of 94 kDa and was 

highly gly cosylated w ith N-glycans (Tani et al.. 2000). The amino acid sequence of the 

mouse liver neutral CDase was homologous to that o f the alkaline CDase in P. 

aeuriginosa (Okino et al.. 1998) and D. discoideum (Tani et al.. 2000). The neutral 

CDase was cloned from mouse liver and the cDNA encoded for polypeptide of 756 

amino acids with nine putative N-glycosylation sites (Tani et al.. 2000). Northern blot 

analysis revealed that the enzyme is expressed widely in mouse tissues with liver and 

kidney showing the highest levels (Tani et al.. 2000).
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Two alkaline CDase have been best characterized in guinea pig skin epidermis, 

one to apparent homogeneity and the other only partially (Yada et al., 1995). These two 

enzymes were membrane-bound, and their estimated molecular masses on SDS-PAGE 

were 60 and 148 kDa, respectively. Recently. El Bawab et al. (1999) purified a 

membrane-bound non-lysosomal (neutral/alkaline) CDase from rat brain and human 

mitochondria (El Bawab et al., 2000) to apparent homogeneity. The enzyme appeared as 

a single protein o f 90 kDa (El Bawab et al.. 1999). Interestingly, the activity o f this 

enzyme was stimulated by PS and PA and does not require cations (El Bawab et al..

1999).

(3) Sphingosine Kinase

Sphingosine kinase catalyzes the phosphorylation o f long-chain sphingoid bases 

(usually sphingosine) on their primary hydroxyl group to sphingosine-1-phosphate (SPP: 

Kohama et al.. 1998). Rat sphingosine kinase has been purified to homogeneity with an 

apparent molecular mass o f approximately 49 kDa (Kohama et al., 1998). Based on 

peptide sequences derived from the purified rat sphingosine kinase, the mammalian 

sphingosine kinase were cloned from the mouse (Kohama et al., 1988). Amino acid 

sequence analysis indicate that sphingosine kinases are correlated to other known kinases, 

yet comparison of sphingosine kinase sequence with that cloned from S. cerevisiae 

(Dickson et al.. 1997) and C. elegans (Kohama et al.. 1998) reveals several domains that 

are highly conserved in all of these sphingosine kinases (Kohama et al.. 1998). Northern 

blot analysis o f mouse tissues showed that sphingosine kinase mRNA was most abundant 

in the adult lung and spleen (Kohama et al., 1998). Further characterization o f 

mammalian sphingosine kinase in mammalian tissues are needed.

(4) Sphingosine-1 -Phosphate Lyase

Sphingosine-1-phosphate lyase belongs to the class o f  pvridoxal phosphate 

dependant carbon-carbon lyases and acts on the 1-phosphorylated derivatives o f 

sphingoid base (sphingosine; Merrill & Wang, 1992; Zhou & Saba, 1998). The cleavage 

products are an aliphatic fatty aldehyde (2 -trans-hexadecanal) and phosphoethanolamine 

(Merrill & Wang. 1992: Zhou & Saba. 1998). This enzyme is present in all tissues in
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vertebrates, invertebrates, plants, fungi, and unicellular protozoa (Merrill & Wang, 1992; 

Zhou & Saba. 1998). The sphingosine-1-phosphate lyase is associated with the 

endoplasmic reticulum and has its catalytic site facing the cytosol (Merrill & Wang. 

1992; Zhou & Saba. 1998). The yeast sphingosine-1-phosphate lyase cDNA has been 

cloned (Saba et al., 1997) and subsequently by homology the murine (Zhou & Saba. 

1998). The mRNA encodes a protein with a molecular mass of approximately 61-65 kDa 

(Zhou & Saba. 1998). Characterization of a human sphingosine-1-phosphate lyase has 

not been done.

iii) Recycling

Studies administrating exogenous radioactive gangliosides to cultured cells or to 

animals to ascertain recycling processes in ganglioside biosynthesis have been very 

useful. It was demonstrated in liver (Ghidoni et al.. 1983; Trinchera & Ghidoni. 1990)

and in cultured cerebellar granule cells (Riboni & Tettamanti. 1991) that gangliosides

upon degradation release galactose. N-acetylgalactosamine, neuraminic acid, fatty acid, 

and sphingosine that are re-used for the synthesis o f new gangliosides. glycoproteins, 

phospholipids, and sphingomylein. Moreover, the recycling process appeared to be 

blocked by inhibiting lysosome function by chloroquine or preventing endocytosis 

(Riboni & Tettamanti. 1991; Riboni et al.. 1992). Thus, suggesting that lysosomes play a 

role in ganglioside recycling processes.

h) Composition and Developmental Changes in Brain

Early research has demonstrated that there is an increase in concentration for all 

major gangliosides with age in the brain o f rats and humans, but the rate o f increase of 

each ganglioside is different (Svennerholm, 1964; Suzuki. 1965). Vanier et al. (1971) 

proposed that there are three major periods o f ganglioside development. The first period 

is characterized by a growth of neurons and glial cells with a moderate increase in 

ganglioside concentration (Vanier et al.. 1971). In this period. G M la and G Tlb 

predominate with G D la gradually increasing in concentration (Vanier et al.. 1971). The 

duration o f this period is until birth for rats and until the twenty-fifth week o f gestation in 

humans (Vanier et al.. 1971). The second period shows the outgrowth o f  dendrites and
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axons with the production o f neural connection (Vanier et al.. 1971). This period 

corresponds to the first ten days after birth in rats and the thirtieth week o f gestation to 

term in humans (Vanier et al.. 1971). In this period, there is a maximal rate o f increase in 

ganglioside concentration for G D la but a decline for G M la and G Tlb (Vanier et al.. 

1971). The last period which represents between ten and twenty days o f age in the rat and 

the first eight months in humans demonstrates an increase in neural connection as well as 

the beginning of myelination (Vanier et al., 1971). During this stage. G D la becomes the 

predominant ganglioside fraction (Vanier et al., 1971).

Changes in the ceramide composition with increasing age have also been shown 

in human brain gangliosides (Mansson et al.. 1978). Until the age o ften , the ratio of 

twenty carbon and eighteen-carbon sphingosine increases rapidly (Mansson et al.. 1978). 

The sphingosine content in brain levels off w ith 60-70% of sphingosine being the tw enty- 

carbon type after thirty years o f age (Mansson et al.. 1978). The fatty acids composition 

o f ceramide from gangliosides also changes with age (Mansson et al., 1978). At birth. 

93% of the ganglioside fatty acids is Cl 8:0. whereas at age 98 only 78% of this fatty acid 

is present (Mansson et al.. 1978). Concomitantly, there is an increase from 3 to 9% of 

fatty acids in gangliosides with twenty or more carbons (Mansson et al.. 1978). Thus the 

developmental patterns o f individual gangliosides in the brain are different, however, 

between rat and human brain the patterns are quite similar (reviewed by Ledeen. 1985 

and Yu and Saito. 1989). Hence, the rat serves as a good model for extrapolating to 

humans.

i) Biological Functions

Presently, the function o f gangliosides have not been fully elucidated (Tettamanti 

& Riboni. 1994). It appears that gangliosides can serve multivalent roles that are now 

beginning to be understood. There is increasing evidence that gangliosides can serve as: 

( 1 ) molecular tools for appropriate interactions between the cell plasma membrane an 

extracellular substances (Bird & Kimber. 1984). (2) modulators of membrane-bound or 

intracellular functional proteins like receptors, ion channels, enzymes, and ion carriers 

(Benos & Sorscher. 1992). and (3) precursors o f intracellular metabolic regulators, for
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examples, sphingosine and ceramide derivatives (Hannun & Bell. 1989; Merrill & Jones. 

1990;Younes et al.. 1992)

j) Sphingolipid Metabolites as Modulators of Cellular Processes

i) Sphingomyelinase Cycle

The SM cycle was first described by Okazaki et al (1989 and 1990). This cycle is 

composed o f six major components ( 1 ) a ligand like a hormone or a cytokine which can 

bind to a receptor on the surface o f a c e ll ; (2 ) a receptor on the surface o f the cell w hich 

can receive a ligand; (3) a SM which is predominantly at the cell's plasma membrane that 

can act as the substrate for SMase; (4) the SMase which hydrolyzes the SM; (5) the 

ceramide and the choline-phosphate that results from the SM hydrolysis; and (6 ) 

enzymatic pathways for the resynthesis o f SM. This cycle is initiated when an agonist 

such as TNF- alpha (Kim et al.. 1991; Dressier et al.. 1992) or IL-1 (Mathias et al.. 1993) 

binds to a receptor on the cell this causes the activation o f SMase. The ceramides 

generated by SMase action can now act as a second messenger by transmitting messages 

through the cell's interior like inhibiting or stimulating other enzymes within the cell like 

phospholipase D (PLD) and ceramide-activated protein kinase (CAPK). respectively 

(Mathias et al.. 1991; Hannun & Linardic. 1993). Consequently, the inhibition or 

stimulation o f these intracellular enzymes by ceramides can alter biological response by 

affecting other downstream effectors or substrates. The SM cycle is completed when SM 

and ceramide return to basal levels.

ii) Ceramide

(1) Role in Growth Suppression

Growth suppression is the inability of a cell to grow when the proper factors e.g. 

hormones or cytokines are received by the cell. Experiments with HL-60 cell line 

revealed that these cells which responded to 1-alpha -25-dihydroxy vitamin D3 to 

differentiation caused the inhibition o f their cell growth (Miyaura et al.. 1981). With the 

recent knowledge that 1-alpha -25-dihydroxyvitamin D3 caused SM hydrolysis in these 

cells, it was suggested that the growth inhibition effects o f  1-alpha -25-dihydroxy vitamin 

D3 might be mediated via the SM cycle (Hannun & Linardic, 1993). The findings by
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WoltT et al. (1994) confirmed this idea by demonstrating that cell permeable C2-ceramide 

can cause growth inhibition by down regulation o f c-myc proto-oncogene, which is 

known to be up-regulated in cells during proliferation. This down regulation o f  c-myc 

which occurs within thirty minutes after receiving C2-ceramide is due to the inhibition o f 

RNA accumulation by blocking transcription elongation between the first and third exon 

in the gene (Kronke et al., 1987; Tobler et al., 1987). This mechanism of ceramide on c- 

myc is similar to the effects o f TNF-alpha (Wolff et al.. 1994). Hence, the connection 

between C2-ceramide inducing the down regulation o f c-myc by similar mechanism is 

important because it shows a link between extracellular messengers, signal transduction 

and nuclear events.

(2) Role in Cell-Cycle Arrest

Initial studies using the HL-60 cells demonstrated anti-proliferative activity o f 

ceramides (Okazaki et al., 1990). In subsequent studies with serum-dependant MOLT-4 

leukemia cells, the withdrawal o f serum led to a significant accumulation o f ceramides 

this coincided with the development o f  cell-cycle arrest in G 0Gj phase (Javadev et al.. 

1995). Further investigation with this cell line with C6-ceramides revealed a specific 

arrest in the cell cycle that was dose and time dependant (Jayadev et al.. 1995). The 

specificity o f the cell cycle arrest by C6-ceramide was demonstrated when C6- 

dihydroceramide did not result in cell cycle arrest. The retinoblastoma gene product (Rb). 

a tumor suppressor or nuclear phosphoprotein has been implicated as an important 

inhibitor o f cell cycle progression (Weinberg. 1990). In the serum-dependant Molt-4 cell 

line the removal o f serum resulted in a substantial amount o f dephosphorylation o f  Rb 

(Weinberg. 1990). The dephosphorylation o f Rb is the mechanism that is responsible for 

the cell cycle arrest (Weinberg, 1990). It has been shown in vitro that 10- 20 uM o f  C6- 

ceramide can cause an early dose-dependant dephosphorylation o f Rb which leads to cell 

cycle arrest within four hours (Dbaibo et al.. 1995). Therefore, linking intracellular 

ceramide generation to Rb dephosphorylation, which results in cell cycle arrest.
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(3) Role in Cell Differentiation

In HL-60 cell line there appears to be a direct relationship between activation of 

SM signaling pathway and the differentiation o f  HL-60 cells (Kim el al., 1991: Okazaki 

et al., 1989 and 1990). When 1-alpha -25-dihydroxyvitamin Dj were added to these cells 

in tissue culture the HL-60 cells began to differentiate along the monocytic lineage 

(Okazaki et al., 1989 and 1990). Further, the addition of C2-ceramide (a short-chain fatty 

acid ceramide) and 1 -alpha -25-dihydroxyvitamin D3 at sub-threshold concentrations also 

induced monocytic differentiation in HL-60 cells (Okazaki et al.. 1989 and 1990). In 

addition, other studies have shown that TNF-alpha and IFN-gamma were also able to 

cause differentiation o f  the HL-60 cells to monocytes (Kim et al.. 1991). The effects seen 

in these cell lines by 1-alpha -25-dihydroxyvitamin D3. TNF-alpha. and IFN are due to 

these agonists binding onto a cell surface receptor that causes the activation o f SMases 

which in turn can cleave SM to ceramide and choline-phosphate (Kim et al.. 1991: 

Dressier et al.. 1992). The ceramide, in turn, by some unknown mechanism causes the 

activation of protein kinase C (Kim et al., 1991). The activated protein kinase C can then 

cause phosphory lation o f an unknown substrate which can cause the transcription factor 

(NF-kB) to bind to a specific region on a DNA in the nucleus allow the HL-60 cells to 

differentiate into the observed monocytes (Kim et al.. 1991).

(4) Role in Apoptosis

Apoptosis or programmed cell death is an integral component of embryonic 

development and organogenesis and is characterized by distinct morphological features 

like nuclear and cytoplasm shrinking and fragmentation, membrane blebbing and 

breakdown of DNA by specific endonucleases as seen on a agarose gel electrophoresis of 

DNA ladder indicative o f DNA degradation (Ribeiro. 1993). Studies with C2- ceramide 

on U937 myeloid cells resulted in potent induction of intemucleosomal DNA 

fragmentation which were seen as early as two hours after 1- 6  uM o f C2-ceramide was 

added (Hannun & Bell, 1993; Merrill et al.. 1997). However, the dihydroceramide (a 

ceramide with no 4-5 trans double bond) when given to these same cells did not 

demonstrate apoptosis (Hannun & Bell. 1993; Merrill et al.. 1997). The target for the 

ceramide-induced apoptosis was shown in vitro to be a ceramide-activated protein
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phosphatase (CAPP; Hannun & Obeid. 1995; Merrill et al., 1997). CAPP is a serine / 

threonine phosphatase o f  the PP2A subfamily. The PP2A subfamily is defined by a 

common catalytic subunit (C). which may exist as a monomer, as a heterodimer with an 

A-subunit o f  unknown function or as a hete rot rimer with the A and an additional B- 

subunit (Hannun & Obeid, 1995; Merrill et al.. 1997). The B-subunit appears to suppress 

the activity o f the phosphatases and has been suggested to function as a regulation o f 

cellular phosphatase activity (Hannun & Obeid. 1995; Merrill el al., 1997). Ceramides 

activate the heterotrimer phosphatase but not monomeric or heterodimeric PP2A. thus 

demonstrating a requirement for the B-subunit o f PP2A in mediating the activation by 

ceramide (Hannun & Obeid, 1995; Merrill et al.. 1997). Therefore, the mechanism by 

which ceramides can induced apoptosis in these cells could be that the agonists such as 

TNF-alpha. fas-ligand. and ionizing irradiation (Uckun et al. 1992 and 1993) can cause 

activation of SMases which generates ceramides that cause the activation o f CAPP and 

its down regulation of c-myc which in turn can lead to apoptosis (Cifone et al.. 1994). 

Further research has also shown that Jurkat T cells and HUT-78 (a human T-cell 

lymphoma line) cells are induced to apoptosis by ceramides.

iii) Sphingosine

Sphingosine-1-phosphate (SPP) produced by sphingosine kinase has been 

reported to be involved in the modulation o f cell functions. Cellular processes modulated 

by SPP include proliferation (Zhang et al., 1991; Olivera & Spiegel. 1993; Rani et al..

1997). survival (Cuvillier et al.. 1996; Kleuser et al., 1998), organization of the 

cytoskeleton (Bomfeldt et al.. 1995; Wang et al.. 1997). motility (Wang et al., 1999). 

neurite retraction and cell rounding (van Brocklyn et al.. 1999), and differentiation 

(Edsall et al.. 1997; Rius et al.. 1997). SPP has also been shown to modulate several 

signaling pathways, including the activation o f phospholipase D leading to the fomiation 

o f PA (Desai et al.. 1992). activation of the Raf/MEK/ERK signaling cascade (Wu et al.. 

1995). and mobilization o f calcium from internal stores via a mechanism that is 

independent o f PI hydrolysis and C20:4n-6 release (Mattie et al.. 1994; Melendez et al..

1998). Moreover. SPP can have dual actions, acting intracellularlv as a second messenger 

and receptors (van Brocklyn et al.. 1998).
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F. CHOLESTEROL

Extensive studies on the biosynthesis o f cholesterol in the central nervous system 

have been performed (Galli et al.. 1968; Gautheron et al.. 1969; Fumagalli et al.. 1969). 

The endoplasmic reticulum enzyme HMG-CoA reductase catalyzes the rate-determining 

step in the synthesis o f cholesterol and other polyisoprenoid compounds in animal ceils 

(reviewed by Goldstein & Brown. 1990). A previous study has shown that the rate o f 

brain cholesterol biosynthesis is high in the fetus and newborn animal and that as the 

animal matures, cholesterol synthesis in brain is low (Dietschy. 1997).

Cholesterol (Figure 1.13) and cholesterol esters are abundant in mammalian 

tissues but can also be found in lesser quantity in mitochondria. Golgi complexes, and 

nuclear membranes (reviewed by Yeagle, 1985). Plasma membranes are highly enriched 

in cholesterol. In SPM. cholesterol accounts for over 40 mol % o f the total membrane 

lipid (Wood et al.. 1989; Schroeder et al., 1991). Cholesterol in the SPM is not evenly 

distributed throughout but is located in different pools or domains (Schroeder et al.. 1991; 

Wood et al.. 1993). Lateral domains o f cholesterol have been described and these 

domains have been identified in neuronal tissue (Leibel et al., 1987: Rao et al.. 1993: 

Wood et al.. 1993). In addition to lateral domains, transbilayer cholesterol domains 

(exofacial and cytofacial leaflet) have also been described in neuronal tissues (Wood et 

al.. 1990: Igbavboa et al.. 1996 & 1997). The SPM cytofacial leaflet contains over 85% 

of the total SPM cholesterol (Igbavboa et al., 1996 & 1997).

Cholesterol interrelates among the phospholipids o f  the membrane, with its 

hydroxyl group at the aqueous interface and the remainder o f the molecule within the 

bilayer (reviewed by Kabara. 1973). The importance o f cholesterol in mammalian cells is 

most likely for regulation and maintenance o f membrane properties such as. membrane 

fluidity and rigidity (reviewed by Yeagle. 1991) which in turn may modulate the 

activities o f numerous membrane proteins (reviewed by Bloch. 1965). The interaction of 

cholesterol with membrane proteins has been described in both neuronal and non

neuronal tissues (Michelangeli et al.. 1990; reviewed by Bastiaanse et al.. 1997). 

However, the biological role o f cholesterol in neuronal cells is still not completely 

understood (Yao et al.. 1988: Yao. 1988).
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CH3

Figure 1.13 Structure o f Cholesterol 

G. N-6 AND N-3 FATTY ACIDS

1. Classification

N-6 and n-3 fatty acids are two families o f PUFAs that can be distinguished from 

each other by the position of their first double bond (reviewed by Gurr & Harwood. 

1991). C18:2n-6 and C18:3n-3 are examples o f  n-6 and n-3 fatty acids which have their 

first double bond six and three carbons away from the terminal methyl carbon, 

respectively (Figure 1.14; reviewed by Gurr & Harwood. 1991). These two fatty acids, in 

addition to being the precursors o f C20:4n-6 and C22:6n-3 biosynthesis (Figure 1.14) are 

essential for mammals (reviewed by Gurr & Harwood, 1991 and Sprecher. 2000). These 

fatty acids are essential because mammals do not have the enzymes necessary for 

inserting double bonds beyond the ninth carbon atom in the fatty acid chain (reviewed by 

Gurr & Harwood. 1991). Therefore, these fatty acids must be supplied by the diet 

(Sprecher. 2000).
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N-6 FATTY ACIDS N-3 FATTY ACIDS

C18:2n-6 C18:3n-3

C20:4n-6 C22:6n-3

Figure 1.14 N-6 and N-3 Fatty Acid Structures

2. Metabolism

The metabolism of n-6 and n-3 fatty acid involves several enzymes called 

desaturases and elongases (reviewed by Gurr & Harwood. 1991 and Sprecher. 2000: 

Figure 1.15). The formation of long-chain PUFAs from C18:2n-6 and C18:3n-3 begins 

with the delta-6 desaturase and is followed by elongation to a twenty-carbon molecule 

(reviewed by Gurr & Harwood, 1991 and Sprecher. 2000; Figure 1.14). This twenty 

carbon molecule is further desaturated and elongated until the most prominent long-chain 

PUFA of n-6, C20:4n-6; and n-3. eicosapentanoic acid (C20:5n-3) and C22:6n-3 are 

fomied (reviewed by Gurr & Harwood, 1991 and Sprecher, 2000).

The final steps in the pathway o f C22:5n-6 and C22:6n-3 formation independent 

of delta-4 desaturase were recently elucidated with in vitro studies using animal cells 

(Voss et al., 1991; reviewed by Sprecher, 2000; Figure 1.15). The synthesis o f C22:5n-6 

from C20:4n-6 proceeds via elongation to C22:4n-6 and then to C24:4n-6 with a delta-6 

desaturase to form C24:5n-6 and partial beta-oxidation in peroxisomes to C22:5n-6 (Voss 

et al., 1991; and reviewed by Sprecher, 2000). The synthesis o f C22:6n-3 from C20:5n-3 

seems to be similar to that o f the n-6 fatty acids: C20:5n-3 to C22:5n-3 to C24:5n-3 to 

C24:6n-3. with beta-oxidation to C22:6n-3 (Voss et al., 1991; and reviewed by Sprecher. 

2000). Recently. Li et al. (2000) unequivocally demonstrated in developing piglets that
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microsomes and peroxisomes are both required for biosynthesis o f C22:6n-3 from 

C18:3n-3. It is still uncertain as to the type o f delta-6 desaturase and elongase enzymes 

required by this pathway but further research should provide an understanding o f this 

point (Sprecher, 2000).

N-6 N-3

C18:2n-6 CI8:3n-3

1
Delta-6-Desaturase

1
C18:3n-6 C18:4n-3

Elongase
1 1

C20:3n-6 C20:4n-3

^  Delta-5-Desaturase^

C20:4n-6 C20:5n-3

^  Elongase ^

C22:5n-3—Elongase C24:5n-3

I

C24:4n-6 < -  Elongase— C22:4n-6 

I I
Delta-6-Desaturase Delta-4-Desaturase Delta-4-Desaturase Delta-6-Desaturase

^  Beta- ^  ^  Beta- I
C24:5n-6 < - oxidation-  C22:5n-6 C22:6n-3 ^ -O x id a t io n -  C24:6n-3

(peroxisomes) (peroxisomes)

Figure 1.15 Polyunsaturated Fatty Acid Biosynthesis
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a) Delta-6-Desaturase

The delta-6 desaturase has been isolated and characterized from different species, 

including plants (Sayonara et al.. 1997). moss (Grime et al., 1998). nematodes (Napa et 

al., 1998). and recently human (Cho et al., 1999). Tissue distribution analysis o f human 

delta-6 desaturase revealed that there are high mRNA levels in brain, liver, heart, and 

lung (Cho et al., 1999). The human delta-6 desaturase gene encodes a 444 amino acid 

protein which contains a membrane spanning domain, a cytoplasmic bs-like domain and 

three conserved histidine-rich domains (Cho et al., 1999).

b) Del ta-5-Desatu rase /

The delta-5 desaturase has also been isolated and characterized from several 

sources, including bacteria (Aguilar et al.. 1998). fungus (Knutzon et al.. 1998). and 

nematode (Watts & Browse. 1999). Recently, Leonard et al (2000) cloned and 

characterized delta-5 desaturase in human liver. It was found that the human delta-5 

desaturase gene also encodes a 444 amino acid protein which contains an N-terminal 

cytochrome bs-like domain, as well as three histidine rich domains (Leonard et al.. 2000). 

The delta-5 and delta-6 desaturase had approximately 62% homology based on the 

predicted amino acid sequence encoded by the cDNA and both enzymes were localized 

on chromosome 11 q 12 (Leonard et al.. 2000). The tissue expression profile o f delta-5 

desaturase revealed that this gene was highly expressed in fetal liver and brain, adult 

brain, and adrenal gland (Leonard et al.. 2000). Interestingly, the level o f delta-5 

desaturase mRNA was six-fold greater in fetal liver than adult liver (Leonard et al..

2000).

c) Elongase

In plants and mammals, the microsomal fatty acid elongation system depends on 

four distinct enzymatic activities: a P-ketoacyl-CoA synthase, a P-ketoacyl-CoA 

reductase, a P-hydroxylacyl-CoA dehydratase and an enoyl-CoA reductase (Fehling & 

Mukherjee. 1991; reviewed by Cinti et al., 1992). It is assumed that the first enzyme. P- 

ketoacyl-CoA synthase, in this sequence determines the substrate specificity o f elongase 

system as well as the extent of fatty acid elongation (Millar & Kunst. 1997). Several
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genes for the elongation enzymes have been cloned from plant (Lassner et al.. 1996; 

Todd et al.. 1999) and yeast (Toke & Martin, 1996: Oh et al., 1997). However, these 

elongase enzymes have been responsible for the synthesis o f saturated and/or 

monounsaturated very long-chain fatty acids not PUFAs. Zank et al (2000) cloned and 

characterized a fatty acid elongase enzyme specific for n-6 PUFAs in moss, P. patens. 

The complete nucleotide sequence for the P. patens cDNA consisted of 1200 base pairs 

which contained an open reading frame o f 873 base pairs encoding a protein o f  290 

amino acids with a calculated molecular mass o f 33.4 kDa. Recently, the elongase 

enzyme has been isolated and characterized from yeast (Lassner et al., 1996; Millar & 

Kunst, 1997) and fungus (Parker-Bames et al., 2000). Recently. Zhang et al. (2001) 

found a gene in humans with Stargardt-like macular dystrophy that has DNA sequence 

homology to yeast elongase. This gene (EL0VL4) found on chromosome 6q 14 (Stone et 

al.. 1994; Edwards et al.. 1999) encodes a putative protein o f  314 amino acids with 

approximately 35% identity to the yeast elongase protein (Zhang et al., 2001). Tissue 

distribution analysis o f elongase mRNA showed that this gene was only expressed in 

retina and brain (Zhang et al.. 2001). Future work on the elongase gene expression will be 

needed to fully elucidate their role in PUFA biosynthesis.

3. Very-Long Chain N-6 and N-3 Fatty Acids

a) Structure and Tissue Distribution

Very long chain fatty acids with carbon chain lengths >22 occur in human and rat 

brain (Poulos et al.. 1988; Robinson et al., 1990). High levels o f  these fatty acids are also 

found in human brain with inherited peroxisomal disease, such as. Zellweger's syndrome 

and adrenoleukodystrophy (Poulos et al.. 1986a; Poulos et al.. 1988). In brain, very long 

chain fatty acid are polyenoic with 4. 5. or 6 double bonds and belong to n-6 and n-3 

families with carbon chain lengths up to forty in brain (Poulos et al.. 1986b; Sharp et al.. 

1991). These fatty acids occur exclusively in PC and are esterified mainly in the sn-1 

position o f the glycerol backbone, whereas saturated, monounsaturated, and other PUFAs 

are part o f the sn-2 position (Aveldano, 1988; Poulos et al.. 1988; Robinson et al.. 1990). 

This positioning contrasts to that typical o f most membrane phospholipid species in other 

tissues (Poulos et al.. 1988). In normal brain, the polyenoic very' long chain fatty acids
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represent a minor component o f the total fatty acid fraction (<1%) but is increased in 

brain with Zellweger’s syndrome, and inherited metabolic disease characterized by 

peroxisomal deficiency (Poulos et al.. 1986a and 1986b and 1988). The fatty acid 

composition of the very long chain polyenoic fatty acids is also different in normal and 

diseased brain. Tetra- and pentaenoic n-6 derivatives are the major 32-38 carbon fatty 

acids in normal brain, whereas Zellweger patients contain predominately pentaenoic and 

hexaenoic acids (Poulos et al., 1988; Sharp et al., 1991). In normal rat brain, these fatty 

acids belong to both n-6 and n-3 series up to 38 carbons (Robinson et al., 1990). Johnson 

et al. (1992) reported the existence of very long chain monoenoic fatty acids in human 

brain up to 28 carbons in chain length. These fatty acids contain predominately two 

positional isomer series, the n-7 and n-9 cis homologues (Johnson et al.. 1992). Robinson 

et al (1990) speculated that this unique brain lipid may be required for the correct 

orientation o f integral membrane proteins.

b) Biosynthesis

Synthesis of polyenoic very long chain fatty acid has been shown to occur in a 

number o f  different mammalian tissues using either radiolabeled polyenoic fatty acids or 

acetate as precursors. Labeled polyenoic very long chain fatty acids are formed from 

[ l4C] acetate and [l4C] C20:4n-6, respectively, by isolated rat spermatocytes and 

spermatids (Grogan & Lam. 1982; Grogan & Heath. 1983). [ I4C] C20:4n-6 injected into 

rat testis was also elongated in vivo to form n-6 tetra- and pentaenoic very long chain 

fatty acids with up to thirty carbon atoms (Grogan. 1994). Very long chain polyenoic 

fatty acids have been shown to be synthesized by elongation from shorter chain polyenoic 

fatty acids in brain (Figure 1.16; Robinson et al., 1990). Also, the presence of n-6 

hexaenoic very long chain fatty acids in brain suggests some desaturation o f  PUFAs with 

>24 carbon atoms may also occur (Poulos et al.. 1986a; Sharp et al.. 1991).

Intracerebral injection o f [ 1 - l4C] C26:4n-6 into rats was elongated to form 

polyenoic very long chain fatty acids with up to 36 carbons (Robinson et al.. 1990). Also, 

significant amounts o f label were detected in C26:5n-6 and C28:5n-6. indicating that 

desaturation of the 26 carbon fatty acids can take place in brain (Robinson et al.. 1990). 

Recently, Suh et al. (2000) has shown that long chain PUFAs are involved in the
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synthesis o f very long-chain polyenoic fatty acids in retina. It was found that C20:5n-3 

but not C22:6n-3 injected into the vitreal fluid o f the eye o f rats was a substrate for 

formation o f very long chain polyenoic fatty acids. The C22:5n-3 fatty acid derived from 

C20:5n-3 was highly labeled and was detected in the pentaenoic and hexaenoic very long 

chain fatty acids while greater than 90% o f the injected 3H-C22:6n-3 into the eye 

remained as C22:6n-3. Therefore, this study suggests that long chain PUFAs particularly. 

C20:5n-3 and C22:5n-3 can synthesize very long chain polyenoic fatty acids in the retina. 

However, it is still not known whether there are separate elongases or individual 

elongases specific for the very long chain n-6 and n-3 fatty acids (Poulos et al.. 1986a).

/
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These reactions are catalyzed by elongase enzymes.

Figure 1.16 Very Long Chain N-6 and N-3 Fatty Acid Biosynthesis
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c) Biological Function

The physiological role o f the polyenoic very long chain fatty acids is not known. 

Recently, the possible involvement o f very long chain fatty acids in membrane signal 

transduction has been explored in rat brain (Hardy et al., 1994). C32:4n-6 and C34:6n-3 

activates purified rat brain protein kinase C in vitro with maximal activity being between 

25 and 50 uM (Hardy et al., 1994). The same effect was also observed by the same 

authors when long-chain fatty acid (C20:4n-6, C20:5n-3, or C22:6n-3) were used (Hardy 

et al.. 1994). Therefore, it is hard to distinguish the unique role o f very long chain fatty 

acids in brain.
/

4. Composition and Developmental Changes in Brain

Similar to brain phospholipids profiles during development, the fatly acid 

composition o f  these phospholipids are also distinct and exhibit changes with age. Some 

studies examining changes in fatty acyl constituents o f phospholipids during development 

have analyzed total phospholipids, while others analyzed individual phospholipids which 

is a weakness in brain lipid research because o f the selectivity o f individual 

phospholipids for specific fatty acids.

a) Total Phospholipids

Crawford et al. (1977) examined human fetuses and infants up to two years of 

age. The study found that 60-70% o f adult long-chain polyene levels were accumulated at 

birth. After this period, the rate o f accumulation o f these fatty acids declines. Changes 

between the types o f long-chain polyenoic families in human brain were different 

(Martinez et al., 1974).

Biran & Bartley (1964) and Kishimoto et al. (1965a) studied the fatty acid 

composition o f  total phospholipids in developing rodent brain. They suggested that some 

fatty acid ratios could be correlated to brain maturity. For example, the C l6 :0 /C l8:0 ratio 

drops with increasing age while C l8:1 /C l8:0 increases. Sinclair and Crawford (1972a) 

correlated myelination in brain to the accumulation o f C20:4n-6 and C22:6n-3 in gray 

matter and C 24:1 and C20:1 in myelin.
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b) Individual Phospholipids

In human brain, Svennerholm et al. (1964. 1965. 1968. 1973, 1978a. & 1978b) 

reported the fatty acid composition o f  individual phospholipids with varying ages.

i) Phosphatidylcholine

Differences in the acyl group profiles o f PC are found in cerebral cortex during 

development (Svennerholm, 1968). Fatty acids o f the n-6 series, mainly C20:4n-6 are low 

during the fetal period but increase shortly after birth (Svennerholm & Vanier. 1973)

ii) Phosphatidylethanolamine /

In the cerebral cortex o f human brain, the PE C20:4n-6 and C22:4n-6 decline with 

age. whereas the n-3 series C22:5n-3 and C22:6n-3 increase with age (Svennerholm. 

1968; Svennerholm & Vanier. 1973).

iii) Phosphatidylserine

In human brain cortex, the PS C20:4n-6 and C22:4n-6 content increase during 

fetal development to term and then decrease with age (Svennerholm. 1968; Svennerholm 

& Vanier. 1973). On the other hand, C22:6n-3 increases with age (Svennerholm. 1968; 

Svennerholm & Vanier. 1973).

iv) Phosphatidylinositol

The fatty acid composition o f PI in human brain during fetal and postnatal 

maturation into aging has been reported (Svennerholm. 1968; Svennerholm & Vanier.

1973). PI is characterized by high levels o f C20:4n-6 and modest level o f C22:6n-3 

(Svennerholm. 1968). The C20:4n-6 content o f PI increases up to four years o f age in 

cerebral cortex (Svennerholm. 1968; Svennerholm & Vanier. 1973).

c) Sphingolipids

In general, brain sphingolipids contain less than twenty different fatty acids 

(Giusto et al.. 1992). The fatty acids that are amide linked to the sphingosine moiety 

varies from twelve to over thirty carbons in chain length, but are mainly C l6:0. C l8:0.
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C22:0. C24:0, and C24:1 (O'Brien & Sampson. 1965; Stallberg-Stenhagen & 

Svennerholm. 1965; Rouser et al.. 1972; Rouser & Yamamoto, 1972; White. 1974; 

Barenholz & Thompson. 1980). Sphingolipids species with polyenoic long-chain fatty 

acids, and with 2-hydroxy fatty acid have been described (Dawson & Vartanian. 1988; 

Robinson et al.. 1992). Sphingolipid levels tend to increase with age in different organs, 

and may also vary with diet (Myher et al., 1981; Barenholz & Thompson. 1981). Dietary 

fat induced changes in brain sphingolipid n-6 and n-3 fatty acids composition with 

development are limited.

5. Accretion in Brain /

Formation o f neuronal membranes requires synthesis and assembly o f membrane 

phospholipids containing significant amounts o f  essential fatty acid, primarily C20:4n-6 

and C22:6n-3. Little quantitative evidence exists prior to twenty-four weeks o f gestation 

in the human. Accretion o f essential fatty acids during the last trimester o f intrauterine 

development has been estimated (Clandinin et al.. 1981a).

Analyses of whole-body fat content (Widdowson. 1968; Widdowson et al.. 1979) 

indicates that preterm infants, with appropriate weight for gestational age o f 1300 g at 

birth, have a total body fat content of about 30 g compared w ith the term infant of 3500 g 

with a total body fat content of 340 g. Clandinin et al. (1981b) estimated that 

approximately 2783 mg o f n-6 fatty acids and 387 mg n-3 fatty acids accrue in adipose 

tissue each week in utero. For premature infants, birth after only a few more weeks of 

intrauterine development would dramatically increase the potential reserve o f fatty acids 

in adipose tissue both for total fatty acids used for energy production and for essential 

fatty acids used for synthesis of structural tissues (Clandinin et al.. 1981b). These 

estimates are also supported by the body o f research by Van Houwelingen et al. (1992). 

suggesting that the growing fetus represents a large draw' upon maternal essential fatty 

acid stores and perhaps that a limitation in the size o f the maternal essential fatty acid 

stores may impact on fetal growth and development, particularly brain growth and 

development.

During the third trimester of human development, n-6 and n-3 fatty acids accrue 

in fetal tissues as an essential component o f structural lipids and rapid synthesis o f brain
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tissues occurs (Clandinin et al.. 1980a). This rapid synthesis causes increases in cell size, 

cell type and cell number (Clandinin et al., 1980a). Brain lipid levels increase rapidly 

during this period (Clandinin et al.. 1980a). Levels o f C18:2n-6 and C18:3n-3 are 

consistently low in the brain during the last trimester o f pregnancy (Clandinin et al.. 

1980a). However, accretion o f long-chain essential fatty acid desaturation products 

C20:4n-6 and C22:6n-3 occur and the absolute accretion rates o f  the n-3 fatty acids, 

specifically, C22:6n-3, are greater in the prenatal period compared with the postnatal 

period (Clandinin et al.. 1980a and 1980b). It is apparently critical that the developing 

fetus obtains the correct types and amounts o f fatty acids to ensure complete and proper 

development o f  brain membranes (Clandinin et al.. 1980a and 1980b). Timing of the 

availability o f these fatty acids is also a factor (Clandinin et al.. 1980a and 1980b). 

Collectively, this quantitative information indicates that large amounts o f C22:6n-3 and 

C20:4n-6 are required during development o f  neural tissue when cellular differentiation 

and active synaptogenesis are taking place (Clandinin et al.. 1980a and 1980b: reviewed 

by Cunnane et al.. 2000).

6. Endogenous Sources for Fetal Brain

a) Placenta

The placenta is a specialized organ that provides nutrients to the fetus and 

exchanges metabolic waste products from the fetus (Crawford et al.. 1976: reviewed by 

Craw ford. 2000). Research has shown that all of the n-6 and n-3 fatty acids acquired by 

the fetus come from maternal circulation via the placenta (reviewed by Innis. 1991. 

Dutta-Roy. 2000, Crawford, 2000). This transfer o f fatty acids from the mother to the 

fetus influences the composition o f fatty acid in the developing tissue o f the fetus 

especially the central nervous system (reviewed by Innis, 1991. Dutta-Roy. 2000. and 

reviewed by Crawford. 2000). Since glycerolipids and triglycerides can not enter the fetal 

circulation, hydrolysis of these lipids to free fatty acids by lipoprotein lipase on the 

maternal side o f  the placenta are required (Hummel et al.. 1976: Elphick & Hull. 1977).

The long-chain products from C18:2n-6 and C18:3n-3 metabolism, specifically. 

C20:4n-6 and C22:6n-3 are higher in fetal plasma compared to maternal plasma with 

even a greater accumulation in the fetal tissue (Crawford et al., 1976: reviewed by
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Crawford, 2000). This process o f increased long-chain PUFAs in fetal versus maternal 

blood is known as biomagnification (Crawford et al., 1976; reviewed by Crawford. 

2000). It has been hypothesized that this process is the result o f a specific mechanism 

within the placenta that can sequester and release C20:4n-6 and C22:6n-3 into the fetal 

circulation (Crawford et al.. 1976; reviewed by Crawford, 2000). This unidirectional 

transport o f long-chain PUFAs. particularly. C22:6n-3. from maternal to fetal circulation 

have been shown to be driven by high-affinity C22:6n-3-specific transport proteins in the 

placenta (Campbell et al., 1998; reviewed by Crawford. 2000). Thus, prov iding the fetus 

with long-chain PUFAs needed for growth and development.
/

b) Intestine

After dietary lipids have been digested by a series o f lipases, long-chain fatty 

acids in bile salt micelles are prolonated by the acidified unstirred water layer adjacent to 

the brush border membrane (BBM; Isola et al.. 1995). This protanation o f micelles in the 

unstirred water layer releases the long-chain fatty acids and allows for their uptake by 

either fatty acid binding or fatty acid transporter proteins in the BBM (Zhou et al.. 1995; 

Poirier et al.. 1996; Abumrad et al.. 1999; Stahl et al.. 1999). The long-chain fatty acids 

in the intestinal cells will be reassembled into triacylglycerols and packaged into 

chylomicrons (rev iewed by Thomson et al.. 1997). Moreover, these chylomicrons will be 

transported into the lymphatics and enter the blood via the portal vein (Linscheer & 

Vergroesen. 1988). Once in the blood, the long-chain fatty acids can cross the placenta 

and go into the fetal circulation where it can be taken up by the fetal brain (Sinclair. 

1975; Green & Yavin. 1993). Interestingly, a major serum protein during fetal 

development, alpha-fetoprotein. has been suggested to be involved in the transfer of 

C20:4n-6 and C22:6n-3 (Lampreave et al.. 1982; Calvo et al.. 1988). Garg et al. (1988) 

found that intestinal cells have a delta-6 and delta-9 desaturase activity. These 

desaturases may have a role in the modification o f dietary n-6 and n-3 fatty acid. C18:2n- 

6 and C18:3n-3. respectively, into long-chain PUFAs that may be transported out o f  the 

enterocytes and go into the fetal circulation where it can be taken up by the fetal brain via 

a long-chain PUFAs-specific fatty acid binding protein (Balendirian et al. 2000). 

Recently, delta-5 and delta-6 desaturase mRNA were found in the small intestine o f the
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human using quantitative polymerase chain reaction methodology (Leonard et al.. 2000). 

However, whether or not these enzymes are fully active in premature infants have yet to 

be examined.

c) Liver

Recent research by Bazan & Scott (1990) has established that the liver can 

synthesize and transfer C20:4n-6 and C22:6n-3 via lipoproteins to the brain but this 

phenomenon has not been demonstrated in neonates. However, later studies by Green & 

Yavin (1993) and Burdge & Postle (1994) indicated that the contribution of liver to 

C20:4n-6 and C22:6n-3 in the brain is negligible. Therefore, indicating that placental 

transfer may play a significant role in providing long-chain PUFAs to the fetal brain 

especially during the third trimester.

d) Metabolism in Brain Cells

Many questions remain about the role o f  brain in synthesizing C20:4n-6 and 

C22:6n-3 from dietary' precursors. Animal studies with radio-labeled C18:2n-6 and 

C18:3n-3 indicate that the brain is capable o f desaturating and elongating C18:2n-6 and 

C18:3n-3 to C20:4n-6 and C22:6n-3. respectively (Dhopeshwarkar et al.. 1971a and 

1971b: Sinclair & Crawford. 1972b; Dhopeshwarkar & Subramanian. 1976: Cohen & 

Bemsohn. 1978; Cook. 1978; Purvis et al. 1983: Clandinin et al.. 1985: Anderson & 

Connor. 1988). These studies of brain fail to clarify which cell types within this tissue 

can provide C20:4n-6 and C22:6n-3. Studies with isolated brain cells provide evidence 

that both neuronal and glial cells may desaturate and elongate C18:2n-6 and C18:3n-3 to 

C20:4n-6 and C22:6n-3. respectively (Yavin & Menkes. 1974; Dhopeshwarkar & 

Subramanian. 1976; Cohen & Bemsohn. 1978: Clandinin et al.. 1985a; Anderson & 

Connor. 1988).

Microvessels and plasma contain amounts o f C18:3n-3 and C20:5n-3. thus it is 

possible that these fatty acids could supply C22:6n-3 to brain (Edelstein. 1986; Clandinin 

et al.. 1997). Moore et al. (1990) investigated whether cerebroendothelial cells could 

desaturate and elongate C18:2n-6 and C18:3n-3 to C20:4n-6 and C22:6n-3. respectively. 

Isolated cerebroendothelial cells were incubated with radiolabeled C18:2n-6 or C18:3n-3
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and were found to take up C18:2n-6 and C18:3n-3 equally and desaturate and elongate 

C18:2n-6 to C22:4n-6 and C18:3n-3 to C22:5n-3 (Moore et al.. 1990). The major 

metabolite o f C18:2n-6 was C20:4n-6 and of C18:3n-3 was C20:5n-3 (Moore et al.. 

1990). Desaturation and elongation o f C18:3n-3 by cerebroendothelial cells far exceeded 

that o f  C18:2n-6. suggesting some specificity for n-3 fatty acids (Moore et al.. 1990). 

Delton-Vandenbroucke et al. (1997) demonstrated that cerebroendothelial cells can 

metabolize C22:5n-3 to C20:5n-3. C22:6n-3. C24:5n-3, and C24:6n-3. The presence o f 

twenty-four carbon n-3 metabolites in cerebroendothelial cells lipids and culture media 

suggests that metabolism of n-3 fatty acids in cerebroendothelial cells were using a delta- 

4 desaturase independent pathway similar to that shown in rat liver (Voss et al.. 1991). 

Thus, cerebroendothelial cells can desaturate and elongate C18:2n-6 and C18:3n-3 to 

C20:4n-6 and produce a small amount of C22:6n-3. respectively.

Moore et al. (1991) determined that astrocytes from rat brain can desaturate and 

elongate C18:2n-6 and C18:3n-3 to C20:4n-6 and C22:6n-3. respectively. Rat type I 

astrocytes from either cerebrum or cerebellum cultured for twelve days were incubated 

with radio-labeled C18:2n-6 or C18:3n-3 formed C20:4n-6 and C22:6n-3. respectively 

(Moore et al.. 1990). In contrast, cultures o f rat cerebral or cerebellum neuronal cells did 

not desaturate fatty acid to produce C20:4n-6 and C22:6n-3 (Moore et al.. 1990). Instead, 

the neuronal cells appear to only elongate C18:2n-6 and C18:3n-3 (Moore et al.. 1990). 

Hence, astrocytes, not neuronal cells, appear to synthesize C20:4n-6 and C22:6n-3 in 

brain. Cerebroendothelial cells and astrocvtes together supply C22:6n-3 to neuronal cells 

(Moore. 1993). In co-cultures, astrocvtes synthesize and release large amounts o f C22:6n- 

3 from C20:5n-3 made by the cerebroendothelial cells (Moore. 1993). Neuronal cells then 

take up C22:6n-3 released from astrocvtes and incorporate fatty acid into neuronal cell 

plasma membranes (Moore. 1993). Thus, cerebroendothelial cells and astrocvtes seem to 

be needed together to synthesize C22:6n-3 for uptake by the neuronal cell during growth. 

These observations on the cellular partitioning of C20:4n-6 and C22:6n-3 synthesis in 

brain cells are based primarily on the rat and are largely undetermined for the human 

brain.
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7. Exogenous Sources for Neonatal Brain

a) Human Milk

The n-6 and n-3 fatty acid composition o f human milk is partly dependent on the 

maternal diet (Chappell et al., 1985). The content o f C18:2n-6. C20:5n-3, and C22:6n-3. 

but not C20:4n-6, in breast milk responds to the quantity o f  these fatty acids in the 

mother's diet (Chappell et al.. 1985). The fat in mature human milk is contained within 

membranes called fat globules. The core o f the fat globules has 98-99% triglyceride with 

the membrane mainly composed of phospholipids, cholesterol, and proteins (Hamosh et 

al.. 1987).

Human milk contains both n-6 and n-3 fatty acids (Clandinin et al.. 198la). Ten to 

fifteen percent C18:2n-6 and one percent C18:3n-3 are typical amounts o f essential fatty 

acids in the breast milk fat of North American and European women (Clandinin et al., 

1981a). Based on quantitative analysis o f twenty-four hour milk collections, the n-6 long- 

chain polyenes are at 0.5-1.5% and the n-3 long-chain polyenes at 0.3-0.6% (Clandinin et 

al.. 1981a: Jensen. 1989; reviewed by Hamosh & Salem. 1998). The long-chain polyenes 

in human milk is predominately C20:4n-6 for n-6 and C22:6n-3 for n-3 fatty acids 

(Clandinin etal.. 1981a).

The fatty acid composition in human milk is not only a result o f maternal dietary 

fat intake, but also other factors, such as. mobilization of fat from maternal fat stores 

(adipose tissue) and endogenous synthesis by the mammary glands (Jensen. 1989). But. 

C18:2n-6 and C18:3n-3 is not synthesized by the mammary gland and must be supplied 

by the maternal diet (Chappell et al.. 1985). The synthesis of long-chain polyenes of n-6 

and n-3 fatty acids might occur in the mammary' gland independently o f the length of 

gestation (Hamosh et al., 1992). However, the proportion o f long-chain PUFAs to 

saturated fatty acids present in human milk has been shown to correspond with the ratio 

o f polyunsaturated to saturated fatty acids in the maternal diet (Chappell et al.. 1985).

Studies have shown that there are differences in the fat content o f milk from 

mothers o f term and preterm infants. Chappell et al. (1983) found that milk from mothers 

who delivered preterm infants showed a higher content of C18:2n-6 and C18:3n-3 and 

their long-chain polyenoic homologues compared to term mothers. Furthermore, the level 

o f their long-chain polyenoic homologues were shown to be significantly higher in
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colostrum and milk of mothers o f premature infants than mothers delivering full term 

infants (Bitman et al.. 1983). Luukkainen et al. (1994) studied the content o f  C20:4n-6 

and C22:6n-3 in human milk o f mothers who delivered preterm and term infants from 

one week to six months o f lactation. The results from this study demonstrated that the 

concentrations of C20:4n-6 and C22:6n-3 in human milk after six months o f lactation 

were higher in preterm than term infants. This suggests that human milk can provide and 

meet the C20:4n-6 and C22:6n-3 requirements in preterm infants when there is a reduced 

supply o f these fatty acids to the fetus via placenta in utero (reviewed by Cunnane et al. 

2000).
/

b) Infant Formulas

Human milk provides the optimal source o f nutrition for infants to at least three 

months o f age (FAO Expert Committee. 1977). Hence, it is conceivable that formulas 

intended for feeding infants for whom mother’s milk is not available should mimic the 

composition of human milk as closely as possible. Special formulas have been designed 

to provide adequate intake o f calories, proteins, carbohydrates, fluids, vitamins, and 

minerals, necessary to support the rapid growth and development o f the infant (Reichman 

et al.. 1981; Garza et al.. 1987). The fat content of infant formulas whether cow 's milk or 

soy protein based is provided by one or more vegetable oils (Jensen et al.. 1978; Jensen. 

1989). However, the vegetable oils used in these infant formulas do not contain n-6 and 

n-3 long-chain PUFAs (Clandinin et al.. 1980a and 1980b). Research over the past three 

decades has focussed on the essential fatty- acid requirements o f preterm infants and the 

quantities o f C18:2n-6. C18:3n-3. C20:4n-6, C20:5n-3. and C22:6n-3 that should be 

added to infant formulas. Although dietary' intake o f 1-2 % kilocalories for C18:2n-6 

prevents and avoids signs o f essential fatty acid deficiency in infants, such low intake of 

C18:3n-3 can not support adequate accretion of C22:6n-3 in the neonate (Clandinin et al.. 

1980a and 1980b). Infant formulas supplemented with C20:4n-6 and C22:6n-3 produce a 

clear dose response in the content o f C20:4n-6 and C22:6n-3 in erythrocyte total plasma 

membrane phospholipids with 0.6% C20:4n-6 and 0.4% C22:6n-3 in the formula fat 

providing sufficient amounts o f these fatty acids to achieve a fatty acid composition of 

C20:4n-6 and C22;6n-3 similar to that o f  infants fed human milk (Clandinin et al.. 1992;
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Clandinin et al.. 1997). Recently. Clandinin et al. (1999) determined the magnitude o f the 

plasma essential fatty acid pools in individual lipoprotein fractions o f preterm infants fed 

commercial formula devoid of C20:4n-6 and C22:6n-3 and compared this with similar 

infants fed formulas containing a range o f 0.32-1.1% C20:4n-6 and 0.24-0.75% C22:6n-3 

o f the total fatty acids in the formula. The results o f the study revealed that on a 

quantitative basis the phospholipid fraction o f lipoproteins contain >75% o f the C20:4n-6 

and C22:6n-3 in plasma (Clandinin et al.. 1999). Moreover, high density (HDL) and low 

density (LDL) lipoprotein phospholipids and cholesterol esters contained the largest pool 

o f C20:4n-6 and C22:6n-3 in plasma lipoproteins (Clandinin et al.. 1999). Infants fed a 

formula without C20:4n-6 and C22:6n-3 showed a reduction in C20:4n-6/level in the 

phospholipid fraction o f all lipoprotein and HDL and LDL cholesterol ester fraction 

(Clandinin et al.. 1999). Supplementing infant formulas with increasing levels o f C20:4n- 

6 and C22:6n-3 produced a clear dose response in the level o f C20:4n-6 found in the 

HDL and LDL phospholipid fraction (Clandinin et al.. 1999). From comparison of the 

fatty acid levels present in the lipoproteins it appears that a formula level o f 0.49% 

C20:4n-6 and 0.35% C22:6n-3 provides sufficient levels of these fatty acids to achieve a 

similar fatty acid content to that o f infants fed breast milk for the major lipoprotein 

fraction (Clandinin et al.. 1999).

Many international advisor)' committees, such as. European Society o f Pediatric 

Gastroenterology and Nutrition (1991) (ESPGAN). British Nutrition Foundation (1992) 

(BNF). International Society for the Study o f Fatty Acids and Lipids (1994) (ISSFAL). 

and Food and Agriculture Organization (FAO)/ World Health Organization (1994) 

(WHO) have recommended that infant formulas be supplemented with n-6 and n-3 long- 

chain PUFAs. However, despite these recommendations, a few countries continue to use 

formulas based on vegetable oils. In North America, there are no commercial formulas 

that contain polyunsaturated fatty acids greater than eighteen carbons in chain length 

(Raiten et al.. 1998; Clandinin. 1999). Therefore, it is important to establish if infants 

possess the enzymes and their level o f activities for elongation and desaturation of long- 

chain PUFAs that are required for growth and development o f the infant.
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H. FACTORS AFFECTING NEURAL TISSUE N-6 AND N-3 FATTY ACID

COMPOSITION AND FUNCTION

I. Diet

Brain membranes were generally viewed as resistant to structural change by both 

endogenous and exogenous factors. Data has shown that brain membranes are much more 

sensitive to changes in composition induced by dietary fat than previously thought (Jope 

& Jenden, 1979; Wurtman et al., 1981; Foot et al.. 1982; Lee, 1985; Bourre et al.. 1989a; 

reviewed by Clandinin. 1999). Moreover, the extent of the changes in brain membrane 

composition by dietary fat varies between brain regions, cell types, and organelles 

(reviewed by Hargreaves & Clandinin, 1990. Clandinin et al.. 1991 and Clandinin et al.. 

1997).

Earlier studies examining the role o f dietary fat on brain membrane composition 

have used rodents that were fed C18:2n-6 deficient diets for several weeks to a few 

generations. Results from these studies demonstrate qualitative changes in brain 

membrane fatty acid composition associated with essential fatty acid deficiency (i.e. 

increase in C20:3n-9 and decrease in C20:4n-6: Paoletti & Galli. 1972; Sun & Sun.

1974).

By feeding nutritionally adequate diets, dietary intake o f C18:2n-6. C18:3n-3. or 

the proportion of C18:2n-6 to C18:3n-3, particularly during development, has been 

shown to influence the content o f  PUFAs in membrane lipids by changing the 

composition o f whole brain, oligodendrocytes, myelin, astrocytes; mitochondrial, 

microsomal, synaptosomal membrane, and recently neurites (axons and dendrites) 

(Lamptey & Walker. 1976; Tahin et al.. 1981; Foot et al., 1982; Bourre et al.. 1984; 

Hargreaves & Clandinin. 1989; Innis & de la Presa Owens, 2001). Feeding diets with a 

C18:2n-6 to C18:3n-3 fatty acid ratio between four to one to seven to one to rats from 

birth to one. two. three, and six weeks o f age indicates that diet alters neuronal and glial 

cell membrane fatty acid composition differently, and in a region and time specific 

manner (Jumpsen et al.. 1997a and 1997b).

The functional effect o f diet-induced changes in the fatty acid composition of 

membrane phospholipids in brain has been the subject o f some research (reviewed by
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Stubbs & Smith. 1984; Lee et al.. 1986; Salem et al.. 1988). Dietary fat induced change in 

membrane fatty acid composition can affect membrane function by modifying membrane 

fluidity' and thickness, lipid phase properties, polar lipid composition or specific 

interactions with membrane proteins (Clandinin et al.. 1985b; Litman & Mitchell. 1996; 

reviewed by Clandinin et al., 1997 and Femstrom. 1999). Previous studies showed that 

deficiency of n-3 fatty acid in the diet changed membrane physical properties (Park & 

Ahmed, 1992: Yoshida et al., 1997; Huster et al.. 1998), membrane-bound enzymes 

(Bourre et al., 1989; Vaidyanathan et al.. 1994; Tsutsumi et al., 1995; Martin. 1998), 

membrane channels (Poling et al.. 1995; Hamano et al. 1996). receptor activity (Delion et 

al. 1994). and neurotransmission (Chalon et al.. 1998). However, these changes induced 

by dietary n-3 deficiency do not reflect an overall change in membrane fluidity but rather 

indicate selective changes in the microenvironment o f the membrane-bound proteins 

(Dratz & Deese. 1986; Salem et al., 1988). Many membrane-bound proteins have a 

specific requirement for the annular lipids surrounding them (reviewed by Yeagle. 1989). 

The annular lipids allow the membrane protein to achieve an active conformation for 

function in brain (Capaldi, 1977; Tanford. 1978; Marinetti & Cattieu. 1982: reviewed by 

Yeagle. 1989). Hence, any changes in these annular lipids by dietary fat may influence 

the function of proteins in the membrane. Several studies have shown that diets, in the 

absence o f essential fatty acid deficiency, containing various dietary fats change the 

activities of membrane-bound enzymes, receptors, and carrier-mediated transport 

(reviewed by Clandinin et al.. 1997). It is conceivable that these changes in membrane 

function by dietary fat can have an impact on brain function.

Animal studies have shown that when rodents or monkeys were maintained on a 

n-3 deficient diet, electroretinogram abnormalities (Benolken et al.. 1973; Bourre et al.. 

1989b; Weisinger et al., 1996a), reduced visual acuity (Neuringer et a!.. 1984. 1986). 

altered stereotyped behavior (Reisbick et al.. 1994). and decreased level o f  learning and 

memory' occur (Lamptey & Walker. 1976; Yamamoto et al., 1987. 1988; Mills et al.. 

1988; Bourre et al., 1989b). Dietary n-3 fatty acid deficiency affects brain functions of 

preterm infants as measured by cortical visual evoked potential, electroretinograms and 

behavioral testing o f visual acuity (Uauy et al.. 1990; Birch et al.. 1992; Carlson et al.. 

1993a). Human term and preterm infants fed infant formulas without C22:6n-3 were also
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shown to have abnormal electroretinograms, as well as. decreased visual acuity compared 

to infants fed formulas containing C22:6n-3 (Uauy et al., 1990; Carlson et al.. 1993a; 

Birch et al.. 1998; Hoffman et al., 2000). Furthermore, infants fed formulas with no 

C22:6n-3 had lower cognitive scores compared to infants fed formulas with C22:6n-3 

(Lucas et al.. 1992; Carlson et al., 1994; Makrides et al., 1995; Agostoni et al.. 1995; 

Werkman & Carlson. 1996; Willatts et al.. 1998; Birch et al., 2000). The mechanism for 

these changes in membrane proteins and brain function induced by diet fat is not known.

2. Gene Expression of Desaturases and Elongases

The content o f n-6 and n-3 fatty acids in neural tissues may be influenced by the 

expression o f delta-6 and delta-5 desaturase and elongase enzymes. Recent cloning and 

characterization o f  delta-6 and delta-5 desaturase and elongase enzymes have allowed for 

analysis o f their content and distribution in different tissues. Using the mouse cDNA for 

delta-6 desaturase. it was found that the level o f delta-6 desaturase mRNA in human 

brain was several-fold higher than other tissues, such as. liver and lung (Cho et al.. 1999). 

Similarly, delta-5 desaturase was expressed in human brain at comparable levels to delta- 

6 desaturase (Leonard et al.. 2000). Recently. Northern blot analysis with a probe for 

elongase revealed the presence o f EL0VL4 mRNA in only human retina and brain. The 

level of elongase mRNA was higher in retina than brain (Zhang et al.. 2001). The 

expression o f mRNA for delta-6 and delta-5 desaturase and elongase enzymes in human 

brain is consistent w ith >30% of the total fatty acids in brain phospholipids being PUFAs 

(Martinez, 1992). However, future work will be needed to determine whether gene 

expression o f delta-6 and delta-5 desaturase and elongase enzymes in neural tissue is 

correlated and regulated by n-6 and n-3 PUFA content.

3. Phenylketonuria

Phenylketonuria (PKU) is an inborn error o f phenylalanine (PHE) metabolism 

that occurs once in approximately seven thousand to one in fifteen thousand live births 

(Bickel et al.. 1981; Elsas & Acosta, 1994). PKU is inherited as an autosomal recessive 

disorder and occurs in all ethnic groups (reviewed by Eisensmith & Woo. 1992 and 

Eisensmith et al. 1992). One in fifty people is a heterozygous carrier o f this disease
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(Pietz. 1998). PKU is caused by a deficiency or absence o f phenylalanine hydroxylase 

(PAH) (Enzyme commission 1.14.16.1), which converts PHE. an essential amino acid in 

humans, to tyrosine (Jervis, 1953; Hsia. 1966; Guttler et al.. 1987). The deficiency or 

absence of PAH causes a metabolic block in PHE catabolism which results in 

accumulation o f PHE and reduced levels o f  ty rosine plasma and urine (Jervis, 1940). In 

untreated PKU. plasma concentrations o f PHE are sufficiently high such that alternate 

pathways o f PHE metabolism are activated leading to formation o f PHE metabolites, 

such as. phenylpyruvate, phenylacetate, phenylacetylglutamine, and phenyllactate 

(Bowden & McArthur, 1972). High levels o f these metabolites if not immediately 

diagnosed and treated in infancy can cause severe central nervous system abnormalities 

(Okano et al.. 1991; Burgard et al.. 1996).

a) Phenylketonuria causes loss of brain myelin

In both animal models and human PKU. there is defective myelination (Alvord et 

al.. 1950; Prensky et al.. 1971; Shah et al.. 1972; Loo et al.. 1978; Lane et al.. 1980). The 

reduced amount o f myelin in hyperphenylalanemic (HPH) rats and brain o f PKU 

individuals was either caused by inhibition o f myelin synthesis or increased myelin 

degradation. It was demonstrated in HPH rats using radio-labeled lysine that myelin 

turnover was increased compared to healthy control rats (7 days for HPH rats versus 17 

days for control rats) (Hommes, 1982). Hommes et al. (1982) showed that the increased 

turnover o f myelin in HPH rats was due to the fast component o f myelin (the myelin 

fraction that has the shortest half-life) and was not due to inhibition of myelin synthesis. 

Taylor & Hommes (1983) confirmed increased myelin turnover in HPH rats but also 

show ed that this increase in myelin turnover in HPH rats continued at later stages o f brain 

development. Hence, the increase turnover o f myelin in HPH rats is not compensated by 

an increased rate o f myelin synthesis, leading to a net loss o f myelin (Hommes. 1985). 

Thus. HPH in rats causes reduced amounts o f brain myelin that is a result o f increased 

myelin degradation.
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b) Phenylketonuria causes a loss o f brain fatty acids

i) Monounsaturated Fatty Acids

In human PKU. the content o f monounsaturated fatty acids (MUFAs) is decreased 

in brain phospholipids, although the extent o f  the reduction varies for each type of 

phospholipids. In brain from autopsied PKU individuals, the amount o f MUFAs in 

myelin PE and PC was decreased by 7% and 15%, respectively, compared to non-PKU 

individuals (Shah, 1979). PS and PI MUFA content from myelin o f  PKU individuals 

was reduced by 28% (Shah. 1979). The MUFA content of sphingoiipids in myelin. SM 

and cerebrosides. was reduced by 31% and 11% compared to non-PKU individuals 

(Shah, 1979). In synaptosomes. oleic acid is the major MUFA present in phospholipids 

(Sun. 1973). The amount of oleic acid in PC o f synaptosomes in PKU subjects was 

reduced by 12% compared to non-PKU subjects (Shah. 1979). The MUFA content in 

synaptosomes PE, PS and PI, and SM were also decreased by PKU (Shah. 1979). 

Therefore, the content o f MUFAs in myelin and synaptosome phospholipids and 

sphingoiipids are reduced in PKU.

ii) Polyunsaturated Fatty Acids

The PUFA content o f each phospholipid in myelin is different and the values for 

the proportion of PUFA in the same phospholipid fatty acid component varies widely 

(O'Brien & Sampson. 1965). PUFA. particularly. C20:4n-6 and C22:6n-3 are 

predominant in myelin phospholipids, especially PE and PS (O'Brien & Sampson. 1965). 

The content o f PUFA in brain of autopsied PKU individuals are significantly reduced 

compared to non-PKU individuals (Shah, 1979). In myelin phospholipids, the content of 

PUFA in PE. and PS and PI is reduced by 15% and 9%, respectively, compared to non- 

PKU individuals (Shah. 1979). The synaptosome PUFA content is also significantly 

reduced in PKU. In PC o f synaptosome. the PUFA content was decreased by 4% and in 

PE by 19% in PKU versus non-PKU individuals. The greatest decrease in PUFA content 

in synaptosome phospholipids o f PKU was in PS and PI which was approximately 33% 

(Shah, 1979). However, since the content o f PE in synaptosome is greater than PS and PI 

combined, the reduction in PUFA , mostly C20:4n-6 and C22:6n-3. is more pronounced 

in PE o f synaptosome (Johnson et al. 1977). Thus, the finding o f these studies
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demonstrate that the content o f  PUFAs is reduced in brain myelin and synaptosome o f 

PKU.

The reason for the low content of MUFAs and PUFAs in PKU compared to 

normal brain could be due to the metabolites o f phenylalanine, which has been shown to 

inhibit substrates, and enzymes that are important for MUFA and PUFA biosynthesis. 

The formation of phenylacetate in PKU brain has been shown to use acetyl-CoA 

generated in brain (Loo et al. 1976). The depletion o f  acetyl-CoA in brain by the 

formation o f phenylacetate inhibits the synthesis o f fatty acids in brain (Loo et al. 1985). 

This inhibition of fatty acids in brain by phenylacetate may contribute to the low levels o f 

MUFAs and PUFAs observed in PKU. A study by Shah & Johnson (1975f has shown 

that two other metabolites o f phenylalanine, phenylacetate and phenyllactate, cause in 

vitro inhibition of brain desaturase activity. Elevated levels o f phenylalanine have also 

been shown to interfere with the availability o f nicotinamide adenine dinucleotide, which 

is a cofactor for fatty acyl CoA desaturase (Shah et al. 1970; Glazer & Weber. 1971). 

Thus. MUFAs and PUFAs are decreased in brain o f PKU individuals by inhibition o f 

enzymes involved in their biosynthesis.

I. CHAPTER SUMMARY

The studies presented in this chapter indicate that n-6 and n-3 fatty acids are 

important for brain growth and development and that alterations in dietary n-6 and n-3 

fatty acids can alter brain membrane composition and function. However, the question of 

whether high levels o f C18:2n-6 and C18:3n-3 can be synthesized to C20:4n-6 and 

C22:6n-3. respectively, and if  providing C18:2n-6 and C18:3n-3 or their long-chain 

homologues in the diet will have an effect on brain structure and function still persists. 

Therefore, the purpose of this thesis is to investigate whether dietary n-6 and n-3 fatty 

acids, specifically. C18:2n-6 and C20:4n-6: and C18:3n-3 and C22:6n-3 can alter brain 

structure and function. Sprague-Dawley rats will be used as an animal model in this 

thesis because o f similar brain growth and development patterns to that of humans. Thus, 

the results from this thesis w ill provide further understanding as to the role o f the quality 

o f dietary fat on brain structure and function.
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CHAPTER II. RESEARCH PLAN

RATIONALE

Early studies on brain morphology by Dobbing and Sands (1979) demonstrated 

that brain growth is non-linear and occurs in “spurts" which, depending on species may 

be either before or after birth. Also, studies by Dobbing and Sands (1979) have led to the 

concept o f precocial (neurologically mature at birth e.g. sheep and guinea pig) and non- 

precocial (neurologically immature at birth e.g. man and rat) species (Figure 2.1). In this 

context, the rat provides a useful animal model for human brain development providing 

that account is taken of different gestational time periods. Thus, the use o f two and five- 

week old rats in this study is adequate to mimic the pattern o f brain development in 

preterm infants which occurs postnatally (Dobbing & Sands. 1979; Figure 2.1).

.EP
' 5
$
3

-o
C3

Uuu.
'J

C l.

Man

Monkey6
Rat

Sheep
Rabbit4

Guinea pig

+20-20 Birth +10 +30-30 -10
Age

Figure 2.1 Brain Growth as a Function of Age in Different Species (expressed as 

increase in brain weight as percentage o f the adult brain weight) as a function of age 

w here the units o f time are: rat and guinea pig. days; rabbit. 2 days; monkey. 4 days; 

sheep. 5 days; pig. weeks; man. months (Adapted from Dobbing & Sands. 1979)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Most research in infant nutrition investigating the effects of diets w ith or w ithout 

C20:4n-6 and/or C22:6n-3 has shown compositional differences in the C20:4n-6 and/or 

C22:6n-3 content of membrane phospholipids. However, no study to date has examined 

whether diets with or without C22:6n-3 can increase the C22:6n-3 content o f  neuronal 

and glial cell phospholipids from whole brain o f rats. It is not known whether a high 

intake o f C18:3n-3 or a low ratio o f C18:2n-6 to C18:3n-3 will result in increased 

C22:6n-3 accumulation in neuronal and glial cell phospholipids from rat whole brain. 

The metabolic fate of C18:3n-3 in the w hole body o f developing rats is also not know n.

The SPM plays a very important role in communication between brain nerve 

cells, and contains high levels o f phospholipids (Cotman et al.. 1971: Breckenridge et al.. 

1973; DeGeorge et al.. 1991: Jones et al., 1997). However, there is little information 

pertaining to the effects o f dietary C20:4n-6 and C22:6n-3 on SPM phospholipid content 

and fatty acid composition in developing rats.

Although gangliosides are enriched in the SPM (Hakomori & Igarashi. 1993). It is 

not known if C20:4n-6 and C22:6n-3 are present as the fatty acyl moiety o f  rat SPM 

gangliosides. It is also not known if dietary fat can alter the C20:4n-6 and C22:6n-3 

content o f rat SPM gangliosides.

Phospholipids and sphingolipids are important for cell membrane structure and 

functions (Singer & Nicholson. 1972). Membrane-bound enzymes, such as. Na. K- 

ATPase which are particularly located in the SPM. play a key role in neuronal conduction 

in brain (Skou. 1967). Previously. Tsutsumi et al. (1995) showed that rats fed C18:3n-3 

deficient diets had significantly lower brain Na. K-ATPase activity (Vmax) than rats fed 

diets with adequate C18:3n-3. The affinity (Km) o f Na. K-ATPase for ATP was not 

significantly different between rats fed diets with or without C18:3n-3 (Tsutsumi et al.,

1995). However, current knowledge of the effects o f  dietary fat with C20:4n-6 and 

C22:6n-3 and age on SPM Na. K-ATPase kinetics in rats is limited.

Past research has shown that sphingolipid metabolites, ceramide and sphingosine. 

play an important role in biological functions, such as cell differentiation, proliferation, 

apoptosis and signal transduction (reviewed by Merrill et al., 1997). Since sphingolipds. 

particularly. SM and gangliosides are concentrated in the SPM. it would be o f interest to 

determine whether membrane-bound CDase activity is present in the SPM. Thus.
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studying the effects o f diets with or without C18:3n-3 and/or C20:4n-6 and C22:6n-3 on 

brain membrane composition and function o f rats may provide additional information on 

the role o f these fatty acids in brain.

B. HYPOTHESES

Dietary' fat will induce changes in phospholipid content, phospholipid and 

ganglioside fatty acid composition in developing brain. Specifically, dietary' C20:4n-6 

and C22:6n-3 will increase the C20:4n-6 and C22:6n-3 content o f rat brain phospholipids 

with subsequent increases in SPM Na. K-ATPase activity. /

It is specifically hypothesized that:

1. Feeding a high C18:3n-3 diet will not increase the C22:6n-3 content in neuronal cell 

phospholipids from w hole brain o f rats at tw o weeks o f age.

2. Feeding a high C18:3n-3 diet will increase the C18:3n-3 content in whole body and 

tissue lipids o f rats at two weeks of age.

3. Feeding diets with C22:6n-3 will increase the content o f C22:6n-3 in neuronal and

glial cell phospholipids from whole brain o f rats at two weeks o f age.

4. Feeding a diet with C20:4n-6 and C22:6n-3 will increase the total and individual 

phospholipids and decrease cholesterol content of the SPM of rats at two and five 

weeks o f age.

5. Feeding a diet with C20:4n-6 and C22:6n-3 will increase the C20:4n-6 and C22:6n-3 

content in phospholipids of the SPM o f rats at two and five weeks o f age.

6 . The Km and Vmax of Na. K-ATPase will increase in the SPM o f  rats from two to

five weeks o f age.
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7. Feeding a diet with C20:4n-6 and C22:6n-3 will not alter the Km but increase the 

Vm&x of Na. K-ATPase in the SPM of rats at two and five weeks o f  age.

8 . C20:4n-6 and C22:6n-3 are present as the fatty acid moiety o f SPM gangliosides and 

feeding dietary fat will alter the C20:4n-6 and C22:6n-3 content o f individual 

gangliosides in the SPM of two-week-old rats.

9. Alkaline CDase is present in the SPM o f rat pups at two weeks o f  age.

C. CHAPTER FORM AT 7

The hypotheses posed are tested in a sequence of experiments. These experiments 

are organized in chapters as follows:

C hap ter III test hypothesis 1.

The effect o f providing a high dietary C18:3n-3 level on the C22:6n-3 content of 

neuronal cell phospholipids from whole brain is determined using the control diet with 

C18:2n-6 or C18:3n-3 added. The 20% (wt/wt) fat diets supplying C18:3n-3 from 1.6% 

(C18:2n-6/C18:3n-3 =21.6) to 17.5% (C18:2n-6/C18:3n-3 =1.0) o f  the total fatty acids 

are fed to the dams at parturition. The rat pups received the C18:3n-3 diets from the 

dam 's milk from birth to tw o w eeks o f age.

C hap ter IV tests hypothesis 2.

The effects o f  feeding a high C18:3n-3 diet on the C18:3n-3 content in whole 

body and tissue lipids are determined using the control diet with C18:2n-6 or C18:3n-3. 

The 20% (wt/wt) fat diets supplying C18:3n-3 from 1.6% (C18:2n-6/C18:3n-3 =21.6) 

and 17.5% (C18:2n-6/C18:3n-3=1.0) of the total fatty acids are fed to the dams at 

parturition. The rat pups received the same diet fat treatments from the dam 's milk from 

birth to two weeks o f age.
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Chapter V tests hypothesis 3.

The effect of dietary C22:6n-3 on the neuronal and glial cell phospholipid 

C22:6n-3 content from rat whole brain is examined. The 20% (wt/wt) fat diets are 

formulated to reflect the fatty acid composition o f a conventional infant formula (SMA) 

providing a C18:2n-6 to C18:3n-3 ratio o f 7.8:1 (control diet). The C18:2n-6 to C18:3n-3 

ratio o f  4:1 diet has been made by adding C18:3n-3 to the control diet. Diet with 0.7% 

C22:6n-3 has been made by adding this fatty acid to the control diet. The rat pups 

received the same diet fat treatments from the dam 's milk from birth to two weeks o f age.

Chapter VI tests hypothesis 4. 5. 6 . and 7. /

The effects of feeding diets with or without C20:4n-6 and C22:6n-3 on the total 

and individual content o f phospholipids and cholesterol (hypothesis 4); the C20:4n-6 and 

C22:6n-3 content of phospholipids (hypothesis 5): the kinetics o f Na, K-ATPase with age 

(hypothesis 6 ): and diet treatment (hypothesis 7) are measured using control, low C18:3n- 

3, and C20:4n-6 and C22:6n-3 diets. The low C18:3n-3 diet has been made by adding 

safflower oil (C18:2n-6) as the fat blend. The C20:4n-6 and C22:6n-3 diet has been made 

by adding these two fatty acids to the control diet. The rat pups received the same diet fat 

treatments from the dam 's milk from birth to two weeks o f age. After weaning, the rat 

pups w ill be fed the same diets as their dams to five weeks of age.

Chapter VII tests hypothesis 8 .

The presence of C20:4n-6 and C22:6n-3 in SPM gangliosides and the effects o f 

feeding diets with or without C20:4n-6 and C22:6n-3 on SPM ganglioside fatty acid 

content are determined using control, low C18:3n-3. and C20:4n-6 and C22:6n-3 diets. 

The low C18:3n-3 diet has been made by adding safflower oil (C18:2n-6) as the fat 

blend. The C20:4n-6 and C22:6n-3 diet has been made by addition o f these two fatty 

acids to the control diet. The rat pups received the same diet fat treatments from the 

dam 's milk from birth to two weeks o f age.
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Chapter VIII tests hypothesis 9.

The presence o f alkaline CDase in the SPM will be determined with rat pups fed 

a maternal diet with a C18:2n-6 to C18:3n-3 fatty acid ratio o f 7.8:1 from birth to two 

w eeks o f age.

Chapter IX provides a general summary, conclusions, implications and suggestions for 

future research

Chapter I.

(Selected sections from this chapter have been published in) /

Clandinin. M. T., Bowen. R. A. R.. & Suh. M. (2001). Impact o f Dietary Essential Fatty 
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Chapter III.
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CHAPTER III. DOES INCREASING DIETARY C18:3N-3 ACID CONTENT 
INCREASE THE C22:6N-3 CONTENT OF PHOSPHOLIPIDS IN NEURONAL 
CELLS OF NEONATAL RATS?

A. INTRODUCTION

C20:4n-6 and C22:6n-3 are among the most abundant fatty acids in the central 

nervous system phospholipids. These fatty acids are found in high concentrations in brain 

SPM and in photoreceptor cells (Sinclair et aL  1972; Anderson et al., 1974; Fliesler & 

Anderson. 1983). C20:4n-6 plays an important role as a precursor o f biologically active 

molecules like prostanoids, leukotrienes, and other lipoxygenase products (Kinsella et al.. 

1990). C22:6n-3 is involved in providing a specific structural environment within the 

phospholipid bilayer that influences important membrane functions, such as. ion or solute 

transport, receptor activity, and adenylate cyclase activity (Stubbs & Smith. 1984; Sastrv. 

1985).

Research in infant nutrition has demonstrated that during the last trimester of 

gestation the fetal brain accrues fatty acids o f the n- 6  and n-3 types (Clandinin et al.. 

1980a). These fatty acids may be derived from the placenta in ntero with formation of 

major neural tissue requiring approximately 43 mg o f n- 6  and 22 mg of n-3 fatty acids 

per week (Clandinin et al.. 1980a and 1980b; Clandinin et al.. 1981). The accretion of 

essential fatty acids in neural tissues is predominately C20:4n-6 and C22:6n-3 (Clandinin 

et al., 1980b). It has also been estimated that requirements for n- 6  and n-3 fatty acids in 

neuronal tissue synthesis can only be supplied from labile hepatic fatty acid reserves for 9 

and 2.3 days, respectively, (Clandinin et al., 1981). The essential fatty acid reserves in the 

adipose tissue develops during the last trimester o f fetal growth (Clandinin et al.. 1981). 

Thus, the hepatic and adipose reserves cannot meet whole body needs for essential fatty 

acids and total fat if fetal development is interrupted by premature birth early in the third 

trimester.

Quantitative analysis o f the composition o f human milk from mothers giving birth 

to preterm infants (Clandinin et al., 1981) indicates that mothers' milk provides levels of 

C20:4n-6 and C22:6n-3 essential fatty acids approximating the predicted requirements at 

day 16 of life at oral intake levels o f approximately 1 2 0  kcal / kg o f body weight
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(Clandinin et al.. 1981). Long chain essential fatty acids are synthesized from C18:2n-6 

or C18:3n-3; however, the amounts produced in vivo may be inadequate to support the 

accretion rates attained in breast-fed infants (Salem et al.. 1996). Thus, it seems prudent 

to feed the preterm infant human milk or formulas with a fatty acid balance similar to 

human milk containing long chain polyenoic homologs o f C18:2n-6 and C18:3n-3 

(Clandinin et al., 1982).

Currently, infant formulas marketed in North America contain IC18:2n-6 and 

C18:3n-3 and are devoid o f C20:4n-6 and C22:6n-3 (Clandinin et al., 1992a and 1992b). 

Therefore, infants fed these formulas must rely on in vivo elongation and desaturation of 

C18:2n-6 and C18:3n-3 to support a similar rate o f accretion of C20:4n-6 and C22:6n-3 

to that attained in breast-fed infants (Clandinin et al.. 1981: Salem et al.. 1996). It has 

been proposed (Clandinin et al., 1981; Clandinin et al., 1982) and recommended 

(European Society o f  Pediatric Gastroenterology and Nutrition, 1991; British Nutrition 

Foundation. 1992: Food and Agriculture Organization/World Health Organization. 1994; 

International Society for the Study o f Fatty Acids and Lipids. 1994) that formulas fed to 

preterm infants be designed with a fatty acid balance similar to human milk containing 

C20:4n-6 and C22:6n-3. In the United Kingdom. Europe. South America, and Australia 

C20:4n-6 and C22:6n-3 have been added to preterm infant formulas using single-cell oils 

and in Europe using phospholipids.

In infants formulas, the question persists if preformed C22:6n-3 is needed or if 

providing more C18:3n-3 can be synthesized into C22:6n-3. In weanling rats, increasing 

dietary C18:3n-3 by decreasing C18:2n-6 to C18:3n-3 ratio from 7.3:1 to 4:1 increased 

the C22:6n-3 content in neuronal cell PE but not in other phospholipids from the 

cerebellum (Jumpsen et al., 1997). Results from other studies using whole brain (Woods 

et al.. 1996) or subcellular fractions (Dyer & Greenwood. 1991) have also shown 

increases in C22:6n-3 content with increasing dietary' C18:3n-3. However, none of these 

studies have investigated the effects o f increasing CI8:3n-3 on individual cell types from 

whole brain. Therefore, the present study utilized neonatal rat brain at two weeks o f age. 

before the consumption o f solid food, to test the hypothesis that increasing maternal 

dietary C18:3n-3 content front 1.6% (C18:2n-6 to Cl8:3n-3=21.6:1) to 17.5% (C18:2n-6 

to C18:3n-3=1:1) o f the total fatty acids will increase the C22:6n-3 content o f neuronal
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cell phospholipids of rat pups. The results from this present study show that increasing 

maternal dietary C18:3n-3 by decreasing C18:2n-6 to C18:3n-3 ratio does not 

significantly increase the C22:6n-3 content in PC. PE. and PS of neuronal cell 

phospholipids o f rat pups at two weeks o f age.

B. MATERIALS AND METHODS

1. Animal Care

All animal procedures were approved by the University o f Alberta Animal Ethics 

Committee. Sprague-Dawley rats were obtained from the University of Alberta vivarium. 

During breeding, three females and one male were housed together for a two-week 

mating period. Females were then moved to individual cages in a room maintained at 

21°C with a 12 hr light and 12 hr dark cycle. Water and food were supplied ad libitum. 

Laboratory rodent diet. 5001 (PM1 Feeds, Inc., St. Louis. MO) was fed to the rats when 

not receiving experimental diets. Rats were switched to experimental diet on the day of 

parturition. All litters were culled to twelve pups within 24 hr of parturition. Pups 

received only maternal milk. Pups were sacrificed at two weeks o f age.

One entire litter o f  rat pups fed the same diet was sexed and weighed prior to 

decapitation. Excised brains were placed in ice-cold 0.32 mol/L sucrose. Six brains from 

the same sex were pooled per sample. Stomach contents of three rats from each litter 

were also removed and analyzed for fatty acid composition to reflect the composition of 

maternal milk. Three litters per diet treatment were used.

2. Diets

The basal diet fed meets all essential nutrient requirements and contained 20% 

(wtAvt) fat of varying C18:2n-6 and Cl8:3n-3 fatty acid composition (Clandinin & 

Yamashiro, 1980). Diet fats were formulated to approximate the fatty acid composition of 

an existing infant formula providing an C18:2n-6 to C18:3n-3 ratio of 7.3 to 1. This fat 

blend served as the control fat treatment. Three experimental diets were formulated by 

addition of various triglycerides to alter the fatty acid composition of this control fat 

formulation (Table 3.1). An C18:2n-6 to C18:3n-3 fatty acid ratio of 21.6 to 1 was
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obtained by addition of com oil to the diet fat blend. The C18:2n-6 to C18:3n-3 fatty acid 

ratio o f 4.4 to 1 and 1 to 1 was obtained by the addition of flaxseed oil. These diets were 

nutritionally adequate, providing for all known essential nutrient requirements [ingredient 

and concentration (g/kg diet), respectively]: fat 200: starch. 200; casein. 270; glucose. 

207.65; nonnutritive fiber, 50; vitamin mix. 10; mineral mix, 50.85: L-methionine. 2.5: 

choline 2.75: and inositol. 6.25. The A.O.A.C. vitamin mix (Teklad Test Diets. Madison. 

Wl) provided the following per kilogram o f complete diet: 20.000 1U of vitamin A; 2.000 

1U of vitamin D: 100 mg of vitamin E; 5 mg o f menadione; 5 mg o f thiamine-HCl; 8  mg 

of riboflavin; 40 mg o f pyridoxine-HCl: 40 mg of niacin: 40 mg o f pantothenic acid: 

2.000 mg o f choline. 100 mg of myoinositol: 100 mg of p-aminobenzoic acid; 0.4 mg of 

biotin: 2 mg o f  folic acid, and 30 mg o f vitamin Bi:; Bemhart Tomarelli mineral mix 

(General Biochemicals. Chargin Falls. OH) was modified to provide 77.5 mg of Mn: * 

and 0.06 mg Se2* per kilogram o f complete diet. In order to minimize any changes in 

sample composition due to fatty acid oxidation, the diets were sealed under nitrogen and 

stored in a freezer at -30°C in darkness. Every day the required amount o f diet was taken 

out. mixed, and placed in individual feed cups.
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Table 3.1 Fatty Acid Composition of Experimental Diets Fed to Lactating Dams at 

Two Weeks of Age

Diet C18:2n-6 to C18:3n-3 Ratio 

21.6:1' 7.8:12 4.4:13 1:13

Diet Fatty Acid Composition (% wt/wt) 

C12:0 6.4 8.4 9.4 6 . 0

C14:0 3.8 5.2 5.5 3.6

0 6 : 0 1 2 .2 14.0 13.9 11.4

0 8 : 0 9.8 7.4 6.9 6.4

C18:ln-7+n-9 29.2 39.9 37.4 7 33.8

0  8:2 n-6 34.5 17.2 16.6 17.6

C18:3n-3 1 .6 2 . 2 3.8 17.5

C20:4n-6 nd nd nd nd

C22:6n-3 nd nd nd nd

1 C 18:2n-6:C 18:3n-3 o f  21.6:1 was obtained by the addition o f  com  oil to the fat blend.
: C I8 :2n-6 :C I8:3n-3  o f  7.8:1 diet approxim ates the fatty acid com position used in SMA" infant formula. 
O ther diet blends were achieved by mixing com  oil (diet C I8:2n-6 :C 18:3n-3  fatty acid ratio o f  21.6:1) or 
flaxseed oil (diet C18:2n-6:C 18:3n-3 fatty acid ratio o f  I : I o r 4 .4 :1) into this basic fat blend.
’ C 18:2n-6:C  18:3n-3 o f  4 .4 :1 and I : I was obtained by the addition o f  flaxseed oil. 
nd = not detected

3. Isolation of Neuronal Cells

Neuronal cells were isolated according to the method described by Sellinger & 

Azcurra (1974). Briefly, pooled brains were placed in beakers containing 7.5% (wt/vol.) 

polyvinylpyrrolidone and 10 mmol CaCb /L at pH 4.7 and 25°C. Brain tissue was minced 

and poured into a 20 mL plastic syringe, fitted with a reusable filter unit (Millipore.

Swinnex disc holder, 25mm). The sample was pressed, three times each, through a series

of combined nylon mesh filters. The final filtrate volume was adjusted, then layered on a 

two-step sucrose gradient o f 1.0 moI/L and 1.75 mol/L. Gradients were centrifuged in a 

Beckman SW-28 rotor at 41.000 g for 30 min at 4°C.

Neuronal cell bodies were recovered in the pellet. Aliquots o f cells were stained

with methylene blue and examined for purity under a light microscope (Zeiss. 1600X;
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Appendix 1; Hamberger& Svennerholm. 1971). Gel electrophoresis and immunoblotting 

were performed to ensure purity o f neuronal cell fractions prepared by these procedures 

(Jumpsen et al.. 1997). Proteins isolated from neuronal cells were compared by gel 

electrophoresis and immunoblotting to neurofilament protein standard (data not shown). 

Neuronal cells isolated contain only neurofilament proteins.

4. Lipid Analysis

The neuronal cell lipid was extracted by a modified Folch method (Folch et al.. 

1957). Separation o f individual phospholipids was completed on silica gel thin-layer 

chromatography (TLC) H-plates (20x20 cm. Analtech. Newark. DE. USA)^ The plates 

were developed in a solvent system containing chloroform.methanol.triethylamine.l- 

propanol:0.25% (wt/vol.) KC1 (30:9:18:25:6. by vol.) for approximately 90 min 

(Touchstone et al.. 1980). TLC plates were air dried for 5 min and visualized with 0.1% 

(wt/vol.) anilino napthalene sulfonic acid in water.

Phospholipid fractions on the plate corresponding to standards were scraped into 

culture tubes. Fatty acid methyl esters were prepared with 14% (wt/wt) boron trifluoride 

in methanol following the method of Morrison & Smith (1964).

5. Fatty Acid Analysis

Fatty acid methyl esters were separated by automated gas-liquid chromatography. 

(Varian model 6000 GLC equipped with a Vista 654 data system and a Vista 8000 

autosampler; Varian Instruments, Georgetown. ON) using a bonded fused silica BP20 

capillary column (25 mm x 0.25 mm inside diameter) and quantitated using a flame 

ionization detector (Hargreaves & Clandinin. 1987). These conditions are capable of 

separating methyl esters o f saturated, cis-monounsaturated. and cis-PUFA from 14 to 24 

carbons in chain length. Quantitation and identification of peaks was based on relative 

retention times compared to known standards (PUFA 1 and 2. bacterial methyl ester mix- 

14; Supelco Canada. Mississauga. ON, Canada; Hargreaves & Clandinin. 1987).
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6. Statistical Analysis

The effect o f diet treatment and sex o f rat pups on the fatty acid composition o f 

neuronal cell phospholipid fractions was assessed by two-way analysis of variance 

(ANOVA) procedures using the SAS package, version 6.11 (SAS Institute Inc.. 1988). 

Significant differences between diet treatments and sex were determined by a Duncan's 

multiple range test at a significance level o f p<0.05 after a significant ANOVA (Steel & 

Torrie. 1960). Values are expressed as mean ± SEM for n=6 . Two-way ANOVA 

procedures were performed on six diet treatments (including DHA and AA + DHA). 

however, in this chapter statistical analysis on four diet treatments were presented for the 

fatty acid composition of neuronal cell phospholipid fractions in the figures add tables.

C. RESULTS

1. Growth Characteristics

No significant differences were observed between males and females for body 

weight or total brain weight and the fatty acid composition o f the individual phospholipid 

fractions. Thus, statistical analyses to test subsequent effects o f diet treatments were 

combined for both sexes. Body and brain weight did not differ significantly between rat 

pups fed the four experimental diets. Final body weights were (mean ± SEM): 35.8 ± 0.9 

g. 35.9 ± 1.0 g, 35.3 ± 0.8 g, and 35.6 ± 1.3 g for 21.6:1. 7.8:1. 4.4:1. and 1:1 diet 

treatments, respectively. Final brain weights were (mean ± SEM): 1.2 ± 0.1 g. 1.2 ± 0.1 g. 

1.2 ± 0.1 g. and 1.1 ± 0.1 g for 21.6 :1. 7.8:1.4.4:1, and 1:1 diet treatments, respectively.

2. Purity of Neuronal Cell Preparations

The neuronal cell preparations contained only minor cross contamination (^5%) 

from cell membrane fragments and microvessels as determined by microscopic 

examination. The presence o f neurofilament in neuronal samples were previously verified 

by gel electrophoresis and immunoblotting (Jumpsen et al., 1997). These results indicate 

that the neuronal cell preparation is primarily neuronal cell bodies with attached 

extensions.
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3. Fatty Acid Composition of Stomach Contents

The fatty acid composition o f stomach contents o f rat pups was analyzed. These 

analyses relate to the dams’ milk composition (Nouvelot et al.. 1983; Lien et al.. 1994; 

Jumpsen et al., 1997). The increase in dietary C18:2n-6 or C18:3n-3 fed to the dams 

altered the stomach contents o f the rat pups (Table 3.2) indicating that the range of 

dietary fat composition fed in the present experiment produced changes in the fat 

composition o f dams' milk.

Table 3.2 The Content of Fatty Acids in the Stomach of Rat Pups at Two Weeks 

of Age1 /

Diet C18:2n-6 to C18:3n-3 Ratio 

21.6:I2 7.8: l 3 4.4:14 I :!4

Stomach Content o f n-6 and n-3 fatty acid (% wt/wt)

C10:0 7.9 ±2.11 b 7.2 ± 0.78 b 8.9 ± 1.903 6.9 ± 2.23 b

C12:0 10.9 ± 1.12 b 15.1 ± 0 .3 6 3 16.0 ±2.32 3 10.8 ± 0.58 c

0 4 : 0 7.3 ±0.31 c 15.3 ±0.48 3 9.8 ± 0.53 b 7.2 ± 0 .300

0 6 : 0 12.6 ± 0.94 b 17.7 ±0.66 3 13.9 ± 1.35 h 12.9 ± 0.43 b

0 8 : 0 4.4 ± 0.35 a 3.4 ± 0.13 b 4.0 ± 0.19 b 4.8 ±0.21 3

C18:ln-7+n-9 28.2 ± 1.5 a 24.7 ± 0.69 3 28.0 ± 1.5 3 26.7 ± 0.993

C18:2n-6 24.7 ± 0.05 3 12.5 ± 0.07 c 10.4 ± 0.08 d 13.7 ± 0.07 b

C18:3n-3 1.1 ± 0 . 0 2  d 1.6 ± 0.03 c 2.1 ± 0.03 h 8 . 8  ±0.13 3

C20:4n- 6 1.0 ±0.07 3 0.5 ± 0.04 b 0.5 ± 0.02 b 0.5 ± 0.08 b

C22:6n-3 0 .1  ± 0 . 0 2  b 0.1 ± 0 .0 1  b 0 .1  ± 0 . 0 2  b 0.2 ± 0.03 3

C18:2n-6:C18:3n-3 22.5 7.8 5.0 1 .6

'Values are mean ± SEM with n=9 for each experimental diet. For each horizontal set o f  values, those that 
have the same superscript letters (a, b, c, or d) are not significantly different. Those that have different 
leners are statistically significantly different, at p<0.05.
’ C18:2n-6:C 18:3n-3 o f  2 1.6 :1 w as obtained by the addition o f  com  oil to  the fat blend.
5 C I8:2n-6:C I8:3n-3 o f  7.8:1 diet approxim ates the fatty acid com position used in S M A ‘ infant formula. 
O ther diet blends were achieved by mixing com  oil (diet C I8:2n-6 :C I8 :3n-3  fatty acid ratio  o f  21.6:1) or 
flaxseed oil (diet C18:2n-6:C 18:3n-3 fatty acid ratio o f  I : I or 4 .4 :1) into this basic fat blend. 
4C I8:2n-6:C I8:3n-3 o f  4.4:1 and 1:1 was obtained by the addition o f  flaxseed oil.
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4. Neuronal Cells Phospholipid Fatty Acid Composition

a) Phosphatidylcholine and Phosphatidylethanolamine

In brain, PC and PE are quantitatively the two most abundant phospholipids and 

constitute approximately 90% of total brain phospholipid (Green & Yavin. 1996). The 

major fatty acids observed in PC were C l 6:0, C l8:0. and C l8:1 (47-52%, 13-14%. 15- 

16% o f total fatty acids, respectively). Feeding a maternal diet providing a ratio o f 

C18:2n-6 to C18:3n-3 from 21.6:1 to 1:1 did not significantly alter the content ofC20:4n- 

6  and C22:6n-3 in neuronal cell PC o f  rat pups (p>0.05) (Figure 3.1). In PE, C l8:0, 

C20:4n-6, C22:6n-3. and C l6:0 (23-28%, 16-20%, 16-22%, and 13-17% o f total fatty 

acids, respectively) were the predominant fatty acids. Increasing C18;3n-3 in the 

maternal diet did not significantly alter the C20:4n-6 and C22:6n-3 content in neuronal 

cell PE o f the rat pups (p>0.05) (Figure 3.1).
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Figure 3.1 C20:4n-6 and C22:6n-3 Content in Neuronal Cell Phosphatidylcholine and

Phosphatidylethanolamine
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b) Phosphatidylserine and Phosphatidylinositol

Analysis of the fatty acid profile in neuronal cell PS demonstrated that C l 8:0 and 

C22:6n-3 (36-40% and 14-28% o f the total fatty acid, respectively) were the major fatty 

acid. The large content o f C22:6n-3 in PS of the rat pups was significantly decreased by 

increasing the maternal dietary levels of C18:3n-3 (p<0.0001). The maternal diet, 

providing a ratio o f C18:2n-6 to C18:3n-3 ratio o f 7.8 to 1, resulted in the highest level o f 

C22:6n-3 in the rat pups (Table 3.3). The C l6:0 content o f  PS increased from 7.2-20.1% 

of the total fatty acids when the C18:2n-6 to C18:3n-3 ratio was lowered from 7.8:1 to 

1:1 (Table 3.3).

In neuronal cell PI. the major fatty acids were C l8:0 and C20:4n-6 (28-39% and 

19-35% o f the total fatty acids, respectively). When increasing dietary levels of C18:3n-3 

was provided in the maternal diet there was a significant increase in neuronal cell 

C22:6n-3 content of *11% from a dietary C18:2n-6:C18:3n-3 ratio of 7.8:1 to 4.4:1 

(p<0.05) with a concomitant decrease in C20:4n-6 of = 15.5% in PI in the rat pups (Table 

3.4).
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Table 3 3  Effect of Varying C18:2n-6 to C18:3n-3 Ratio on the Fatty Acid 

Composition of Neuronal Phosphatidylserine1

Diet C18:2n-6 to C18:3n-3 Ratio 

21.6:1 7.8:1 4.4:1 1:1
Fatty Acid (% wt/wt)

C14:0 0.4 ± 0 .0 a 0.3 ±0.1 3 0 . 6  ± 0 .1  3 0.7 ± 0 .2 3

C16:0 13.4 ± 1.3 b 7.2 ± 0.5 c 15.0 ± 0 . 8  b 20.1 ±2.7 3

C18:0 39.0 ± 1.3 3 36.9 ± 2.8 3 36.0 ± 1 .73 38.8 ±0.3 3

0 8 : 1  n-9 9.2 ± 0.3 3 9.0 ±3 .5  3 7.4 ± 1.83 10.5 ±0.4 3

C18:ln-7 1.4 ± 0.1 3 0.5 ±0.1 b 2.9 ± 1.4 3 1 .78  ± 0 . 2  3

C18:2n-6 0 . 6  ± 0 .0 b 0.4 ± 0 .0 c 0 . 8  ± 0 .0 3 0 . 8  ± 0 . 0  3

C20:4n-6 6.3 ± 0 .1 3 6 . 2  ± 0 . 8  3 8 .8  ± 1 .6  3 6 .1  ± 0 . 6  3

C22:4n-6 4.4 ± 0.2 b 5.4 ± 0.5 3 4.1 ±0.3 b 3.0 ± 0.4 c

C22:5n-6 3.0 ± 0 .1ab 2 . 8  ± 0 . 1 b 1.7 ±0.1 ab 1.3 ±0.3 3

C18:3n-3 0 . 0  ± 0 .0 3 0 . 0  ± 0 .0 3 0 . 0  ± 0 .0 3 0 .1  ± 0 . 0  3

C20:5n-3 0 .1  ± 0 .0 b 0 . 2  ± 0 .1  3 0.1  ± 0 .1  b 0 . 0  ± 0 . 0  c

C22:5n-3 0 . 2  ± 0 .0 b 0.4 ± 0 .0 3 0.4 ± 0 .0 3 0.4 ± 0 .1 3

C22:6n-3 2 0 . 0  ± 1 .1 b 28.0 ± 0 .7 3 2 0 .1  ± 1. 1 b 14.1 ± 2 .9c

'Values are mean ± SEM  with n=6 for each experim ental diet. For each horizontal set o f  values, those that 
have the same superscript letters (a or b) are not significantly different. Those that have different letters are 
statistically significantly different, at p<0.05.
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Table 3.4 Effect o f Varying C18:2n-6 to C18:3n-3 Ratio on the Fatty Acid 

Composition of Neuronal Phosphatidylinositol1

Diet C18:2n-6 to C18:3n-3 Ratio

 21.6:1___________7.8:1___________ 4.4:1 1:1
Fatty Acid (%wt/wt)

C14:0 0.9 ±0.1 a 0.6 ±0.1 a 0.4 ± 0 .0 3 0.8 ±0.1 3

C l 6:0 13.8 ± 1.3 ab 7.4 ± 1.7 b 12.5 ±0.5  ab 15.2 ±0.3 3

C18:0 28.1 ± 1.3 c 34.7 ± 0.5 ab 38.6 ± 1 .93 31.0 ± 1.0bc

C18:ln-9 8.1 ± 0 .6 b 6.1 ± 0.7 b 1.8 ± 1.5 c 12.3 ±2.1 3

C18:ln-7 1.8 ±0.1 ab 1.4 ±0.1 * 0.4 ± 0.3 c 2i  ±0.1 3

C18:2n-6 0.8 ± 0 .0 b 0.7 ±0.1 b 0.8 ± 0.0 b 1.0 ± 0 .0 3

C20:4n-6 26.5 ± 1.6 b 35.4 ± 2.3 a 19.9 ± 0.2 c 19.0 ± 1.4c

C22:4n-6 3.1 ± 0.5 a 1.8 ±0.1 b 3.9 ± 0 .4  3 3.0 ± 0 .1 3

C22:5n-6 1.3 ± 0 .2 a 0.5 ± 0 .1 b 1.0 ±0.1 ab 0.8 ± 0 .0 b

C18:3n-3 0.3 ± 0.3 a 0.1 ± 0 .0 a 0.1 ± 0.0 3 0.1 ± 0 .0 3

C20:5n-3 0.4 ± 0.3 a 0.1 ± 0 .0 a 0.2 ±0.1 3 0.1 ± 0.0 b

C22:5n-3 0.2 ± 0 .0a 0.2 ± 0.0 3 0.3 ± 0.0 3 0.4 ± 0 .03

C22:6n-3 11.1 ± 1.6b 6.2 ± 0.3 c 17.5 ±2 .0  3 10.7 ± 0.5 b

'Values are mean ± SEM with n=6 for each experim ental diet. For each horizontal set o f  values, those that 
have the same superscript letters (a. b. or c) are not significantly different. Those that have different letters 
are statistically significantly different, at p<0.05.

D. DISCUSSION

The present study was initiated to determine the effects o f increasing maternal 

dietary C 18:3n-3 content by decreasing the C 18:2n-6 to C 18:3n-3 ratio from 21.6 :1 to 1:1 

on the C22:6n-3 content in neuronal cells o f rat pups at two weeks o f age. The results 

demonstrate that increasing maternal dietary C18:3n-3 content does not significantly 

increase the C22:6n-3 content of neuronal cell PC. PE. and PS o f  rat pups at a stage o f
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brain development when C22:6n-3 is needed for rapid neural plasma membrane 

synthesis.

The reason for the similar C20:4n-6 and C22:6n-3 content in PC and PE of 

neuronal cells between the four experimental diets may be due to the fact that desaturase 

activity is age-related (Bordoni et al., 1988; Hrelia et al., 1989; Bourre et al., 1990; 

Ulmann et al.. 1991) and that at two-weeks o f  age activity may be limited. Bourre et al. 

(1990) demonstrated in rats that delta- 6  desaturase activity, a rate-limiting step in 

C20:4n-6 and C22:6n-3 synthesis (Stoffel, 1961; Holloway et al., 1963; Brenner. 1971) 

varies during the first 21 days following gestation. Therefore, if  delta- 6  desaturase 

activity is low at two-weeks of age, the amount o f  C18:2n-6 and C18:3n-3 £dded in the 

diet would not have any significant effect on increasing the C20:4n-6 and C22:6n-3 

content o f membrane phospholipids.

The significant decrease in C22:6n-3 content in PS with increasing dietary 

C18:3n-3 may be attributed to different PS molecular species being produced by 

deacylation and reacylation processes (Lands, 1960).

PI represents approximately 4% o f the total brain phospholipids (Green & Yavin. 

1996). The deacylation o f C20:4n-6 from PI followed by reacylation o f  PI with C22:6n-3 

from other phospholipids such as PS could account for the decrease in C20:4n-6 and 

increase in C22:6n-3 content in PI when the C18:2n-6 to C18:3n-3 ratio was decreased 

from 7.8:1 to 1:1 (Table 3.4).

PS and PI although minor phospholipids in brain membranes are of special 

interest because both are involved in cellular functions (Berridge. 1984). PS is 

responsible for the activation of several protein kinase C isoforms (Epand & Lester. 

1990) while PI plays an important role in signal transduction (Hokin. 1985) and in 

production of eicosanoids (Wood, 1986). Moreover, the fatty acyl composition of PS and 

PI has been demonstrated to be one o f the regulatory functions in enzyme activation 

(Bolen & Sando. 19 9 1). Therefore, the changes observed in PS in C22:6n-3 content and 

PI C20:4n-6 and C22:6n-3 content, while small on the basis o f total brain content, could 

have functional implications.

In vivo studies have suggested that it is more effective to supply a dietary source 

o f  preformed C22:6n-3 to maintain the C22:6n-3 level in membrane phospholipids, rather
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than increasing the dietary content o f  C18:3n-3 (Sinclair, 1975; Anderson et al.. 1990). 

The results from the present study appear to support these findings since increasing the 

dietary C18:3n-3 content by *11 fold (Table 3.1) did not significantly increase the 

C22:6n-3 content in neuronal cell PC, PE, and PS (Figure 3.1 and Table 3.3).

The findings o f this study may have important implications for neonatal feeding. 

If the present findings in neonatal rats are extrapolated to infants, it appears that 

increasing the C18:3n-3 content by decreasing the C18:2n-6 to C18:3n-3 ratio in preterm 

infant formulas will not stimulate an increase in levels of C22:6n-3 in the early neonatal 

period.
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CHAPTER IV. HIGH DIETARY CI8:3N-3 INCREASES THE C18:3N-3 BUT 
NOT THE C22:6N-3 CONTENT IN THE WHOLE BODY, BRAIN, SKIN, 
EPIDIDYMAL FAT PADS AND MUSCLES OF SUCKLING RAT PUPS

A. INTRODUCTION

Research in infant nutrition has demonstrated that during the last trimester of 

gestation the fetal brain accrues fatty acids o f the n- 6  and n-3 types (Clandinin et al.. 

1980b). These fatty acids may be derived from the placenta in utero (Clandinin et al.. 

1980a and 1980b; Clandinin et al.. 1981). The hepatic and adipose reserves cannot meet 

whole body needs for essential fatty acids and total fat if fetal development i£ interrupted 

by premature birth early in the third trimester (Clandinin et al.. 1981). Mothers' milk 

provides C20:4n-6 and C22:6n-3 approximating the predicted requirements at day 16 of 

life at oral intake (Clandinin et al.. 1981). Long chain essential fatty acids are synthesized 

from C18:2n-6 or C18:3n-3; however, the amounts produced in vivo may be inadequate 

to support the accretion rates attained in breast-fed infants (Demmelmair et al.. 1995; 

Camielli et al., 1996; Salem et al., 1996; Sauerwald et al.. 1996; Sauerwald et al.. 1997). 

Deficiencies of dietary C22:6n-3 during perinatal development results in poor C22:6n-3 

accretion in brain and retina, subsequently leading to altered neurological and visual 

function in animals (Bourre et al., 1989; Connor et al.. 1990). Thus, it seems prudent to 

feed the preterm infant human milk or formulas with a fatty acid balance similar to 

human milk containing long chain polyenoic homologs o f C18:2n-6 and C18:3n-3 

(Clandinin et al., 1982).

Current infant formulas in North America contain C18:2n-6 and C18:3n-3 but are 

devoid o f C20:4n-6 and C22:6n-3 (Clandinin et al., 1992a and 1992b). Infants fed these 

formulas must rely on in vivo elongation and desaturation o f C18:2n-6 and C18:3n-3 to 

support a similar rate o f accretion o f C20:4n-6 and C22:6n-3 to that attained in breast-fed 

infants. Addition of C20:4n-6 and C22:6n-3 to preterm infant formulas to optimize brain 

development has been recommended (Clandinin et al., 1981; Clandinin et al., 1982; 

European Society o f Pediatric Gastroenterology and Nutrition. 1991; British Nutrition 

Foundation. 1992; International Society for the Study o f Fatty Acids and Lipids. 1994; 

FAO/WHO. 1994). Infant formulas supplemented with C20:4n-6 and C22:6n-3 produce a
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clear dose response in the content o f C20:4n-6 and C22:6n-3 in erythrocyte total plasma 

membrane phospholipids with 0.6% C20:4n-6 and 0.4% C22:6n-3 in the formula fat 

providing sufficient amounts o f these fatty acids to achieve a fatty acid composition of 

C20:4n-6 and C22:6n-3 similar to that o f infants fed human milk (Clandinin et al., 1997). 

Thus, in the United Kingdom, Europe, South America, Australia, and the Middle East 

C20:4n-6 and C22:6n-3 have been added to infant formulas.

The question of whether preformed C22:6n-3 is needed or if  providing more 

C18:3n-3 can enable synthesis o f C22:6n-3 persists. In human adults that it is more 

effective to supply a dietary source o f preformed C22:6n-3 from fish oil to increase the 

C22:6n-3 content in plasma phospholipids than C18:3n-3 from flaxseed oil (Layne et al.,

1996). Increasing maternal dietary C18:3n-3 by decreasing the diet C18:2n-6:C18:3n-3 

from 7.3:1 to 4:1 was not as effective as preformed C22:6n-3 at raising the C22:6n-3 

content o f neuronal cell phospholipids o f weanling rats (Jumpsen et al.. 1997a and 

1997b). Increasing maternal dietary C18:3n-3 content does not significantly increase the 

C22:6n-3 content in PC, PE, or PS o f neuronal cell phospholipids o f rat pups at two- 

weeks of age (CHAPTER III). These observations beg the question if C18:3n-3 does not 

give rise to significant quantities o f C22:6n-3 then what is the metabolic fate o f high 

intakes o f C18:3n-3?

The purpose o f this study was to determine if  the dietary' C18:3n-3 consumed 

could increase the C18:3n-3 and C22:6n-3 content of other whole body tissue lipids. It 

is hypothesized that increasing maternal dietary C18:3n-3 by decreasing the C18:2n- 

6:C18:3n-3 ratio will increase the C18:3n-3 and C22:6n-3 content in the whole body, 

liver, skin (epidermis, dermis, and subcutaneous tissue), epididymal fat pads, and 

muscles (front and back legs) in two-week-old rat pups.

B. MATERIALS AND METHODS

1. Animals and Diets

Breeding o f Sprague-Dawley rats have been described in Chapter III. Pups were 

sacrificed at two weeks of age. One entire litter of rat pups fed the same experimental diet 

was sexed and weighed prior to decapitation. Rat pups randomly chosen for whole body
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lipid analysis were frozen in liquid nitrogen. The brains, livers, skin (epidermis, dermis, 

and subcutaneous tissue), epididymal fat pads, and muscles (front and back legs) were 

quickly removed and rinsed with ice-cold physiological saline, blotted dry. weighed, and 

frozen in liquid nitrogen. Stomach contents o f  three rats from each litter were also

removed and analyzed for fatty acid composition to reflect the composition o f maternal

milk. All tissue samples were stored under nitrogen and kept in a -80°C freezer until 

analysis. Analysis o f whole organs was performed on at least three individual rat pups 

from each o f three different litters per diet treatment.

The basal diet fed to the dams contained 20% (wt/wt) fat varying in C18:2n-6 and 

C18:3n-3 fat composition. Two experimental diets were formulated by/addition of 

various triglycerides from vegetable oils to alter the fatty acid C18:2n-6 : C18:3n-3 ratio 

(Table 4.1). An C18:2n-6 to C18:3n-3 fatty acid ratio o f 24.7 to 1 (low C18:3n-3) was 

obtained by addition of com oil to the diet fat blend. The C18:2n-6 to C18:3n-3 fatty acid 

ratio o f  1 to 1 (high C18:3n-3) was obtained by the addition o f flaxseed oil. The low and 

high C18:3n-3 fatty acid diet was nutritionally adequate, providing for all known 

essential nutrient requirements as described earlier (Clandinin & Yamashiro. 1980). To 

minimize any changes in sample composition due to fatty acid oxidation, the diets were 

sealed under nitrogen and stored in a freezer at -30°C in darkness. Every day the required 

amount o f  diet was taken out, mixed, and placed in individual feed cups.

2. Lipid Extraction and fatty acid analysis

Total lipids were extracted from aliquots o f  tissue homogenate (Folch et al.. 

1957). The extracted lipids were evaporated under nitrogen and weighed to determine the 

total fat content of the tissues. The tissue lipids were saponified by a 0.5N KOH in 95% 

methanol solution and heated at 100°C for 1 hr. Fatty acid methyl esters were prepared 

using BF3 / methanol reagent (Morrison & Smith. 1964).

Fatty acid methyl esters were analyzed by automated gas-liquid chromatography 

as described in Chapter III.
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Table 4.1 Fatty Acid Composition of Experimental Diets Fed to Lactating Dams 

and Stomach Content of Rat Pups of Two Weeks of Age*

Diet Stomach Content

Low
C18:3n-3

High
C18:3n-3

Low
C18:3n-3

High
CI8:3n-3

Fatty Acid (% wt/wt)

C12:0 15.3 7.90 0 .2  ± O.Oa 0 .1  ± 0 .0 2 *

C14:0 6 .8 3.1 20.2 ± 1.5* 16.11 ± 1.4*

C16:0 13.1 9.0 21.1 ±0.3* 18.5 ± 0.8b

0 8 : 0 4.7 3.7 4.0 ± 0.2* 3.3 ± 0.2b

C18:ln-7+n-9 26.4 27.2 26.7 ± 0.9* 26.2 ± 0.7*

C l 8:2 n-6 27.2 20.4 25.4 ± 0.4* 19.3 ± 0.4h

C18:3n-3 1.1 2 0 .1 1.1 ± 0 .2 b 14.9 ±1.1*

C20:4n-6 nd nd 0.7 ±0.1* 0.4 ±0.1*

C22:6n-3 nd nd 0.04 ±0.01* 0 . 1 2  ± 0 .0 *

Z S atb 43.4 30.3 46.1 ± 1.3* 38.7 ± 2.1h

Z Monoc 28.2 29.2 26.7 ± 0.9* 26.2 ± 0.7*

Z N -6d 27.2 20.4 26.1 ±0.5* 19.7 ± 0.4b

I N - 3 ' 1.3 2 0 .1 1 .2  ± 0 .2 h 15.4 ± 1.2*

C18:2n-6 to C18:3n-3 24.7:1 1.0 :1 23.1:1 1.3:1

nd=not detected"
Values represent mean ± SEM  for n=9 rat pups (5 m ale and 4 female) for each experim ental diet. Values 
without a com mon superscript are significantly different at P<0.05.
'T  Sat. sum o f  saturated fatty acids 
‘X  Mono, sum o f  m onounsaturated fatty acids 

N-6. sum o f  N-6 fatty acids 
‘X  N-3, sum o f  N-3 fatty acids

3. Statistical Analysis

The effect o f  diet treatment and sex o f  rat pups on the lipid content and fatty acid 

composition o f whole body and tissues lipids was assessed by one-way analysis of 

variance (ANOVA) procedures using the SAS package, version 6.11 (SAS Institute Inc.. 

1988). Significant differences between diet treatments and sex were determined by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

Duncan's multiple range test at a significance level o f p<0.05 after a significant ANOVA 

(Steel & Torrie. 1960). Values are expressed as mean ± SEM for n=9 rat pups.

C. RESULTS

1. Fatty Acid Composition o f Stomach Contents.

The stomach content o f  rat pups was analyzed for the fatty acid composition.

These analyses reflected dams' milk composition (Nouvelot et al., 1983; Yonekubo et al.. 

1993; Lien et al.. 1994; Jumpsen et al., 1997a and 1997b; Wainwright et al.. 1997). The 

increase in dietary’ C18:3n-3 fed to the dams increased the C18:3n-3 in the stomach 

contents o f the rat pups (Table 4.1) indicating that the range o f dietary fat composition 

fed in the present experiment produced changes in the fat composition of the dams' milk 

as predicted.

2. Whole Body and Tissue Weights and Lipid Content

Whole body and tissue weights, lipid content, and fatty acid composition o f the 

tissues were not significantly different for male (n=5) and female (n=4) rat pups (data not 

shown), hence in statistical analyses to test subsequent effects o f  diet treatments were 

combined for both sexes. The whole body and tissue weights were not significantly 

different among the two experimental diet treatments (Table 4.2). indicating that the body 

and tissue growth in the two-week-old rat pups is not different between low and high 

C18:3n-3 fatty acid diets. The lipid content of whole body and tissues was not 

significantly different in rat pups fed either the low or high C18:3n-3 fatty acid diet 

(Table 4.2). Differences in fertility were not observed between dietary treatments.
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Table 4.2 Whole Body, Tissue Weights, and Lipid Content of Rat Pups at Two 

Weeks of Age"

Weight (g) % Lipid

Low C18:3n-3 High C18:3n-3 Low C18:3n-3 High C18:3n-3

Whole Body 31.8 ± 1.0a 32.0 ± 1.2“ 13.6 ± 1.0a 13.4 ± 0 .8a

Brain 1.15 ± 0.0a 1.12 ± 0.1a 4.40 ± 0.4 a 4.20 ± 0 .3 a

Liver 0.66 ± 0.1a 0.67 ± 0.1a 6.90 ± 0.7a 6.90 ± 0 .8 8

Skin 9.00 ± 1.0a 8.95 ± 1.0a 24.0 ± 1.3a 25.0 ± 1.18

Epididymal Fat Pads 0.05 ± 0.0a 0.05 ± 0.0a nd nd
/

1.60 ± 0 .0 8Muscles 1.00±0.0a 0.91 ±0 .1a 1.70 ± 0.0a

nd = not determined
^Values represent m ean ± SEM for n=9 rat pups (5 male and 4 female rat pups except foe 
epididymal fat pads in which 9 male rat pups were used) for each experimental diet. Values 
without a common superscript are significantly different at P<0.05.

a) Brain

The brain o f  two-week-old rat pups contained small amounts of C18:2n-6 and 

C18:3n-3. The C18:2n-6 content o f  brain was significantly increased in animals fed the 

low compared to a high C18:3n-3 fatty acid diet (Table 4.3). The C18:3n-3 content of 

brain was significantly increased in rat pups fed the high compared to the low C18:3n-3 

fatty acid diets (Table 4.3). C20:4n-6 and C22:6n-3 were the predominant n- 6  and n-3 

fatty acids in brain o f  rat pups fed low or high C18:3n-3 fatty acid diet, respectively. The 

C20:4n-6 content o f brain was significantly increased in rat pups fed the low vs. high 

C18:3n-3 fatty acid diet (Table 4.3). The C22:6n-3 content o f brain was not significantly 

different in the animals fed the high compared to the low C18:3n-3 fatty acid diets (Table

4.3). The C20:5n-3 content o f brain was not significantly different between rat pups fed 

low vs. high C18:3n-3 fatty acid diet (Table 4.3). However, the C22:5n-3 content o f brain 

was significantly different between rat pups fed low vs. high C18:3n-3 fatty acid diet 

(Table 4.3).
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b) Liver

The partial fatty acid composition of liver from two-week-old rat pups is shown 

(Table 4.3). High content o f C18:2n-6 and C20:4n-6 was observed in the liver o f rat pups 

fed either a low or high C18:3n-3 fatty acid diet. The C18:3n-3 and C22:6n-3 content of 

liver was considerably lower than the C18:2n-6 and C20:4n-6 content for animals fed 

either the low or high C18:3n-3 diet. Significant differences were observed in the 

C18:2n-6 content of liver between rat pups fed low vs. high C18:3n-3 fatty acid diet. The 

content o f  C18:3n-3 in liver was approximately 3% in animals fed the high C18:3n-3 

fatty acid diet and was significantly different when compared to animals fed the low 

C18:3n-3 fatty acid diet. The C20:4n-6 content o f liver did not differ between rat pups 

fed low vs. high C18:3n-3 fatty acid diet (Table 4.3) whereas, the C22:6n-3 content of 

liver was significantly increased in animals fed high vs. low C18:3n-3 fatty acid diet 

(Table 4.3). The C20:5n-3 and C22:5n-3 content o f liver was significantly different 

between rat pups fed low vs. high C18:3n-3 fatty acid diet (Table 4.3).
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Table 4.3 Effect of Low and High C18:3n-3 Diet on the Essential Fatty Acid Composition of Whole Body and Tissue Lipids a

Whole Body Brain Liver Skin Enididvmal Fat Muscles
Pad

Fatty Acid (% wt/wt) Diet CI8:3n-3 Content

Diet 18:3n 
Content:

Low High Low High Low High Low High Low High Low High

24.5a±0.4 19.3b±0.3 2.8a±0.5 1.7b±0.0 16.3a±0.2 13.0b±0.4 21.6a± l.l 15.5h±0.5 19.9“±0.6 18.8a±0.6 20.8a±1.8 15.9b±0.7

0.9b±0.0 14.7a±0.4 0.1b±0.0 0.5a±0.0 0.2b±0.1 3.3a±0.3 0.7b±0.1 11.6a±0.4 1.8b±0.7 13.3a±0.7 1.6b±1.0 10.7b±0.3

1.7a±0.1 1.0b±0.1 12.0a±0.3 10.0b±0.2 15.0a±2.1 12.4a±1.0 0.8a±0.2 0.6a±0.1 1.1 "±0.1 0.9a±0.1 1.7“±0.3 0.9b±0.3

0.0b±0.0 0.7a±0.0 0.0a±0.0 0.1a±0.0 0.1b±0.0 1.5a±0.1 0.0b±0.0 0.5a±0.0 0.1b±0.0 0.4"±0.1 0.1 b±0.1 0.6a±0.1

0.1b±0.0 0.7“±0.0 0.1b±0.0 0.5a±0.0 0.4b±1.3 1.3a±0.1 0.0b±0.0 0.4“±0.0 0.1b±0.0 0.3a±0.1 0.0a±0.0 0.2B±0.1

0.3a±0.1 ().5a±0.1 6.5a±0.3 7.1a±0.6 3.5b±0.8 6.1 “±0.6 0.2a±0.1 0.4a±0.0 0.2a±0.1 0.4a±0.1 0.2a±0.1 0.38±0.1

‘Values represent mean ± SEM for n=9 rat pups (5 male and 4 female rat pups except for epididymal fat pads in which 9 male rat pups were used) for each 
experimental diet. Values without a common superscript for each fatty acid arc significantly different at P<0.05.
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c) Skin (Epidermis, Dennis, and Subcutaneous Tissue)

The fatty acid composition o f  skin (epidermis, dermis, and subcutaneous tissue: 

Table 4.3) shows that C18:2n-6 plus C20:4n-6 were major fatty acids o f skin comprising 

approximately 23 and 17% for animals fed the low and high C18:3n-3 fatty acid diet, 

respectively. The C18:2n-6 content in skin was significantly higher in rat pups fed low 

compared to a high C18:3n-3 fatty acid diet. However, there was no significant difference 

in C20:4n-6 content of skin among the two diet groups. Similar to liver, the C18:3n-3 

content o f skin was significantly increased by high maternal dietary C18:3n-3 content 

(Table 4.3). The C22:6n-3 content o f  skin, however, was not statistically different in 

animals fed either the low or high C18:3n-3 diet (Table 4.3). The C20:5n-3 add C22:5n-3 

content o f skin was significantly different between rat pups fed low vs. high C18:3n-3 

fatty acid diet (Table 4.3).

d) Epididymal Fat Pads

Similar to skin and liver, the C18:2n-6 content of epididymal fat pads from male 

rat pups was high containing approximately 19-20% of the total fatty acids (Table 4.3). 

The C18:2n-6 content in epididymal fat pads was not significantly affected by the two 

dietary fat treatments. However, unlike C18:2n-6, the C18:3n-3 content o f this tissue was 

significantly increased by the dietary C18:3n-3 content (Table 4.3). The content of 

C18:3n-3 in epididymal fat pads was approximately 1.8 and 13.3% for animals fed either 

lowr or high C18:3n-3 fatty acid diet, respectively. C20:4n-6 and C22:6n-3 content in 

epididymal fat pads was not significantly different between animals fed the two diet 

groups (Table 4.3). The C20:5n-3 and C22:5n-3 content o f  epididymal fat pads was 

significantly different between rat pups fed low vs. high C18:3n-3 diet (Table 4.3).

e) Muscles (Front and Back Legs)

The fatty acid composition o f muscle (front and back legs) from two-week-old rat

pups is shown (Table 4.3). The C18:2n-6 content in muscles was significantly different

between rat pups fed low vs. high C18:3n-3 fatty acid diet. The C18:2n-6 content in 

muscles o f  rat pups fed low- or high C18:3n-3 fatty acid diet was approximately 21 and 

16%. respectively. The C18:3n-3 content o f muscles was significantly different between
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rat pups fed low vs. high C18:3n-3 fatty acid diet (1.6 vs. 10.7%. respectively). The 

C20:4n-6 content in muscles o f  rat pups was significantly higher in the low compared to 

the high C18:3n-3 fatty acid diet (1.7 vs. 0.9%. respectively). No significant differences 

were observed in the C22:6n-3 content o f muscles in the two diet groups. The C20:5n-3 

but not the C22:5n-3 content o f muscles was significantly different between rat pups fed 

low vs. high C18:3n-3 fatty acid diet (Table 4.3).

f) Tissue C18:3n-3 Content in Whole Body

Feeding a low C18:3n-3 fatty acid diet to the dams significantly increased the 

C18:2n-6 content o f whole body lipids o f the rat pups compared to the high C18:3n-3 

fatty acid diet (Table 4.3). Raising the C18:3n-3 content from a low to a high C18:3n-3 

fatty acid diet significantly increased the C18:3n-3 content o f whole body lipids (Table

4.3). The C20:4n-6 content o f whole body lipids was significantly different between rat 

pups fed low or high C18:3n-3 fatty acid diet. However, the C22:6n-3 content o f  whole 

body lipids was not significantly different between rat pups fed the low vs. high C l 8:3n-3 

fatty acid diet (Table 4.3). The C20:5n-3 and C22:5n-3 content o f whole body was 

significantly different between rat pups fed low vs. high C18:3n-3 fatty acid diet (Table

4.3). Based on the lipid and C18:3n-3, C20:5n-3. C22:5n-3. and C22:6n-3 content, as 

well as. the weight o f the tissues examined in the present study, the C18:3n-3. C20:5n-3. 

C22:5n-3, and C22:6n-3 content in whole body o f  rat pups fed either low or high C 18:3n- 

3 fatty acid diet was calculated to be approximately 39 and 630 mg. 0 and 30 mg. 4.3 and 

30 mg. 12.9 and 21.4 mg, respectively (data not shown). The other tissues examined in 

this study including brain, liver, epididymal fat pads, and muscles (front and back legs) 

from two-week-old rat pups fed either low or high C18:3n-3 fatty acid diet contained 

small amounts of C18:3n-3, C20:5n-3, and C22:5n-3 (data not shown). Interestingly, the 

skin (epidermis, dermis, and subcutaneous tissue) o f rat pups fed either low or high 

C18:3n-3 fatty acid diet contained a significant amount o f C18:3n-3. The total C18:3n-3 

content in skin for the low and high C18:3n-3 fatty acid diet was approximately 15 and 

260 mg. respectively (data not shown).
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D. DISCUSSION

The results from the present study demonstrate that increasing maternal dietary 

C18:3n-3 significantly increases the C18:3n-3 but not the C22:6n-3 content o f whole 

body, brain, skin (epidermis, dermis, and subcutaneous tissue), epididymal fat pads, and 

muscles (front and back legs) in two-week-old rat pups. Two-week-old rat pups were 

used in the present study because at this age very' active brain growth occurs with rapid 

accretion of PUFAs. especially C22:6n-3. for brain membrane synthesis (Sinclair & 

Crawford. 1972; Dobbing & Sands. 1979). Therefore, the demand for C22:6n-3 in two- 

week-old rat pups for postnatal brain growth and development is high ahd must be 

provided by the maternal diet.

It is well known that the fatty acid composition o f tissues can be readily modified 

by dietary fat [reviewed by Clandinin et al. (1985 & 1991)]. The significant differences 

observed in whole body and tissue C18:2n-6 and C18:3n-3 content between rat pups fed 

low vs. high C 18:3n-3 fatty acid diet were largely a reflection o f the dietary fatty acid 

composition (Field et al.. 1985; Bourre et al.. 1990; Lin & Connor. 1990; Srinivasarao et 

al.. 1997).

The content o f  C22:6n-3 was not significantly increased in whole body, brain, 

skin (epidermis, dermis, and subcutaneous tissue), epididymal fat pads, and muscles 

(front and back legs) when rat pups were fed the high C18:3n-3 diet. This could be 

because desaturase activity is age-related and that at two weeks o f age desaturase activity 

may be limited. In this regard. Bourre et al. (1990) demonstrated in rats that delta-6 - 

desaturase activity’, a rate-limiting step in C20:4n-6 and C22:6n-3 synthesis varies during 

the first twenty-one days following gestation. Therefore, if delta-6 -desaturase activity is 

low at two weeks o f age. the amount o f C18:3n-3 added in the diet would not have any 

significant effect on increasing the C22:6n-3 content o f these tissues. The significant 

increase in C20:5n-3 (except brain) and C22:5n-3 (except muscles) but not C22:6n-3 

content of tissues examined in this study w hen rat pups were fed the high compared with 

low C18:3n-3 diet shows that C18:3n-3 is metabolized to long-chain n-3 metabolites but 

that there is a limit on the conversion of C20:5n-3 and C22:5n-3 to C22:6n-3.
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The milk (stomach contents) provided to the rat pups by the dam during the two- 

week feeding period provide some preformed C22:6n-3 (Table 4.1). It is possible that the 

preformed C22:6n-3 (0.1%) present in the dams' milk fed the high C18:3n-3 fatty acid 

diet (Table 4.1) is sufficient to significantly increase the content o f C22:6n-3 observed in 

liver o f rat pups fed the high C18:3n-3 fatty acid diet (Table 4.3) without the need for 

additional synthesis o f C22:6n-3 from dietary C18:3n-3. With exception o f brain, 

increasing dietary C18:3n-3 by reducing the C18:2n-6:C18:3n-3 ratio from 24.7:1 to 

1.0:1 did not show any competitive effect o f reduced C20:4n-6 and increased C22:6n-3 

incorporation into whole body or tissue lipids. This would suggest that either desaturase 

activity is low or that a lower C l 8:2n-6:C18:3n-3 ratio than that used in the present study 

may be required to reduce the C20:4n-6 and increase the C22:6n-3 content in the tissues 

examined (Jumpsen et al., 1997a).

Quantitative analysis o f the C18:3n-3 content in rat pup tissues examined in the 

present study showed that significant amount o f C18:3n-3 was incorporated into whole 

body lipids. The C18:3n-3 content o f rat pup whole body lipids was significantly greater 

in rat pups fed the high compared to the low C18:3n-3 diet (approximately 630 vs. 39 mg. 

respectively). The skin o f  rat pups fed low or high C18:3n-3 fatty acid diet contained 

significant quantities o f C18:3n-3 (approximately 39 and 41% o f the total C18:3n-3 

content in whole body, respectively). The high amounts of C18:3n-3 found in skin was 

stored as part of the fatty acid component o f triglycerides in the subcutaneous fat (data 

not shown). Thus, it appears that the skin including epidermis, dermis, and subcutaneous 

tissue, is a major deposition site for C l 8:3n-3 in two-week-old rat pups.

The saturated fatty acid content in whole body, skin, and epididymal fat pads was 

significantly decreased (p<0.05) when the pups were fed maternal milk from the dams 

fed the high C18:3n-3 diet (data not shown). This decrease in the saturated fatty acid 

content o f tissues was due to the substantial increase in the content o f C18:3n-3 in these 

tissues by the high C18:3n-3 diet.

In conclusion, the results from the present study demonstrate that increasing 

maternal dietary C18:3n-3 content from 1.1 to 20.1% of the total dietary fatty acids 

significantly increases the C18:3n-3 but not the C22:6n-3 content in most tissues. If the 

present findings from this study are extrapolated to neonates, it appears that increasing
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the dietary C18:3n-3 content o f the neonate’s feed will significantly increase the C18:3n- 

3 but not the C22:6n-3 content o f neonatal tissues.

/
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CHAPTER V. DIETARY C22:6N-3 IS MORE EFFECTIVE THAN LOW  
OR HIGH LEVELS OF C18:3N-3 IN INCREASING THE C22:6N-3 CONTENT IN 
PHOSPHOLIPIDS OF NEURONAL AND GLIAL CELLS FROM WHOLE 
BRAIN IN NEONATAL RAT

A. INTRODUCTION

C20:4n-6 and C22:6n-3 are the most abundant PUFAs in phospholipids o f  the 

central nervous system (O’Brien & Sampson, 1965; Sun & Horrocks, 1968) and can be 

synthesized in animal tissues by desaturation and elongation o f their dietary precursors, 

C18:2n-6 and C18:3n-3 (Dhopeshwarkar & Subramanian. 1976). C20:4n-6 and C22:6n-3 

are found in high concentrations in brain SPM (Cotman et al.. 1969; Breckenridge et al.. 

1972; Sun & Sun. 1974; Foot et al.. 1982) and in photoreceptor cells (Anderson et al., 

1974). C20:4n-6 plays an important role as a precursor o f  biologically active molecules 

like prostanoids, leukotrienes. and other lipoxygenase products (reviewed by Kinsella et 

al.. 1990). C20:4n-6 and C22:6n-3 are involved in providing a specific environment 

within the phospholipid bilayer that influence important membrane functions, such as. 

ion or solute transport, receptor activity, and adenylate cyclase activity (reviewed by 

Stubbs & Smith. 1984; Sastry. 1985).

C20:4n-6 and C22:6n-3 accumulate rapidly in the brain during the fetal and early 

postnatal periods, depending on the species. In rats, C22:6n-3 accumulates during the 

embryonic period and first three postnatal weeks o f life (Kishimoto et al., 1965; Sinclair 

& Crawford. 1972; Green et al., 1999). In humans, accretion o f C20:4n-6 and C22;6n-3 

takes place during the last trimester and first 6 - 1 0  months after birth (Clandinin et al.. 

1980a & 1980b). The rapid accumulation o f C20:4n-6 and C22:6n-3 in rat and human 

brain suggests that these fatty acids may be essential for neural and visual development. 

Manipulation of brain C22:6n-3 content by C22:6n-3 deprivation has been attempted to 

determine some functions o f C22:6n-3 in the central nervous system. In this regard, rats 

fed diets deficient in C18:3n-3 but with adequate C18:2n-6 had lower levels o f C22:6n-3 

in brain and retina compared to rats fed C18:3n-3 (Bourre et al.. 1989) and have delayed 

electrophysiological responses in the retina (Bourre et al., 1989) together with poorer 

performance in behavioral tests o f  learning, memory', and habituation (Lamptey &
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Walker, 1976; Yamamoto et al., 1987; Bourre et al.. 1989; Enslen et al., 1991; Frances et 

al., 1996; Belzung et al., 1998; Carrie et al., 1999 & 2000). Activity o f Na, K-ATPase has 

also been shown to be lower in rats fed diets deficient compared to adequate in Cl8:3n-3 

(Gerbi et al.. 1994; Tsutsumi et al., 1995). These studies reinforce the essentiality o f 

C22:6n-3 in rat brain. The importance o f C22:6n-3 in brain has given rise to the question 

o f whether C18;3n-3 is sufficient to enable synthesis of adequate amounts o f  C22:6n-3 

for optimal brain growth and development?

Studies with isolated brain cells have provided evidence that astrocytes (glial 

ceils) and cerebroendothelial cells but not neuronal cells can synthesize C20:4n-6 and 

C22:6n-3 from C18:2n-6 and C18:3n-3. respectively (Moore et al., 1991). Further work 

has also shown that neuronal cells take up C22:6n-3 released by astrocytes and 

cerebroendothelial cells and incorporate C22:6n-3 into neural plasma membranes 

(Moore, 1993; Delton-Vandenbroucke et al, 1997). It is not known whether C20:4n-6 and 

C22:6n-3 are synthesized from precursors by astrocytes and cerebroendothelial cells in 

amounts that can meet neuronal cell requirements for DHA in vivo.

In weanling rats, increasing maternal dietary C18:3n-3 by decreasing the C18:2n- 

6  to C18:3n-3 fatty acid ratio from 7.3:1 to 4:1 increased the C22:6n-3 content only in 

neuronal cell PE from the cerebellum during the first two weeks o f life. Other 

phospholipids from frontal or hippocampal regions were not significantly affected 

(Jumpsen et al.. 1997a & 1997b). Recently, it has been shown that increasing maternal 

dietary C18:3n-3 by lowering the C18:2n-6 to C18:3n-3 fatty acid ratio does not 

significantly increase the C22:6n-3 content in PC, PE. and PS o f neuronal cells from 

whole brain o f two-week-old rat pups (Chapter III). Taken together, these studies 

suggest that astrocytes and cerebroendothelial cells may not synthesize enough C22:6n-3 

from C18:3n-3 to provide for maximal levels o f C22:6n-3 in plasma membrane 

phospholipids o f neuronal cells in brain.

It is known that diets supplemented with C22:6n-3 fed to dams or directly to 

suckling animals enrich the C22:6n-3 content o f brain phospholipids (Galli et al.. 1971; 

Anderson et al., 1990). It is not known if maternal dietary C18:3n-3 compared to C22:6n- 

3 can significantly increase the C22:6n-3 content of both neuronal and glial cell 

phospholipids from whole brain o f rats. Therefore, the present study used neonatal rat
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brains at two weeks of age, before consumption of solid food, to test the hypothesis that 

dietary C22:6n-3 but not C18:3n-3 will significantly increase the C22:6n-3 content o f 

both neuronal and glial cell phospholipids of whole brain. The novelty o f this study is 

that it examines: (1) high levels o f maternal dietary C18:3n-3 intake and (2) the C22:6n-3 

content o f  both neuronal and glial cells isolated from whole brain.

B. MATERIALS AND METHODS

1. Animals and Diets

Breeding o f Sprague-Dawley rats have been described in Chapter III. Pups 

received only maternal milk. Pups were sacrificed at two weeks of age. One entire litter 

of rat pups fed the same diet was sexed and weighed prior to decapitation. Excised brains 

were placed in ice-cold 0.32 moI/L sucrose. Six brains from the same sex were pooled 

per sample. Stomach contents o f  three rats from each litter were also removed and 

analyzed for fatty acid composition to represent the composition o f maternal milk. Three 

litters per diet treatment were used.

The basal diet fed to the dams contained 20% (wt/wt) fat (Table 5.1). Diet fats 

were formulated to approximate the fatty acid composition o f an existing infant formula 

providing an C18:2n-6 to C18:3n-3 fatty acid ratio of 7.3 to 1 (medium LNA) (Jumpsen 

et al., 1997a and 1997b). This fat blend served as the control fat treatment. An C18:2n-6 

to C18:3n-3 fatty acid ratio o f 21.6:1 (low LNA) was obtained by addition of com  oil to 

the medium LNA diet. The diet with a C18:2n-6 to C18:3n-3 fatty acid ratio o f  1 to 1 

(high LNA) was obtained by the addition of flaxseed oil to the medium LNA diet. The 

C22:6n-3 (DHA) diet was achieved by the addition o f 0.6% (wtAvt) C22:6n-3 to the 

mediun LNA diet. The C20:4n-6 (AA) + 22:6n-3 diet was achieved by the addition o f 1% 

(wt/wt) C20:4n-6 and 0.6% (wt/wt) C22:6n-3 to the medium LNA diet. The AA and 

DHA triglycerides utilized were obtained from single cell oils (Martek Biosciences. 

Columbia, MD). The amount C20:4n-6 (l% ) and C22:6n-3 (0.6%) used in this study has 

been shown by Clandinin et al. (1989) to reflect the C20:4n-6 and C22:6n-3 content 

found in human milk. The five diets were nutritionally adequate, providing for all known 

essential nutrient requirements as described earlier (Clandinin & Yamashiro. 1980).
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To minimize any changes in sample composition due to fatty acid oxidation, the diets 

were sealed under nitrogen and stored in a freezer at -30°C in darkness. Every day the 

required amount o f  diet was taken out, mixed, and placed in individual feed cups.

Table 5.1 Fatty Acid Composition of Experimental Diets Fed to Lactating Dams 

at Two-Weeks of Age

DIET FAT:
Low
LNA1

Medium
LNA2

High
LNA3

DHA4 AA+DHA5

Fatty Acid Composition (% wt/wt) /

C12:0 6.4 8.4 6 . 0 7.5 7.7

CI4:0 3.8 5.2 3.6 5.3 5.3

0 6 : 0 1 2 .2 14.0 11.4 14.6 14.5

0 8 : 0 9.8 7.4 6.4 7.3 7.4

C18:ln-7+n-9 29.2 39.9 33.8 38.6 39.4

C18:2n-6 34.5 17.2 17.6 16.2 16.5

C18:3n-3 1 .6 2 .2 17.5 1 .8 1.9

C20:4n-6 nd nd nd nd 1 .0

C20:5n-3 nd nd nd nd nd

C22:6n-3 nd nd nd 0 . 6 0 . 6

1 Low LNA diet was obtained by the addition o f  com  oil to the medium LNA diet.
* Medium LNA diet approxim ates the fatty acid composition used in SMA" infant formula.
3 High LNA diet was obtained by the addition o f  flaxseed oil to the medium LNA diet.
4 DHA was obtained by the addition  o f  0.6%  C22:6n-3 triglyceride to the medium LNA diet.
5 AA + DHA was obtained by addition o f  1% C20:4n-6 and 0.6%  C22:6n-3 triglyceride to  the 

medium LNA diet.
Nd = not detected.

2. Isolation of Neuronal and Glial Cells from Whole Brain

Neuronal and glial cells were isolated from whole brain (cerebrum and

cerebellum) according to the method described by Sellinger & Azcurra (1974). Briefly,

pooled brains were placed in beakers containing 7.5% (wt/vol.) polyvinylpyrrolidone and
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10 mmol CaClz /L at pH 4.7 and 25°C. Brain tissue was minced and poured into a 20 mL 

plastic syringe, fitted with a reusable filter unit (Millipore, Swinnex disc holder, 25mm). 

The sample was pressed, three times each, through a series o f combined nylon mesh 

filters. The final filtrate volume was adjusted, then layered on a two-step sucrose gradient 

of 1.0 mol/L and 1.75 moI/L. Gradients were centrifuged in a Beckman SW-28 rotor at

41,000 g for 30 min at 4°C.

Neuronal cell bodies were recovered in the pellet. Glial cells were obtained at the 

interface o f 1.0 mol/L and 1.75 mol/L sucrose. Aliquots o f each cell type were stained 

with methylene blue and examined for purity under a light microscope (Zeiss, 1600X; 

Appendix 1). Gel electrophoresis and immunoblotting were performed to ensure purity o f 

cell fractions prepared by these procedures (Jumpsen et al., 1997a and 1997b). Proteins 

isolated from neuronal and glial ceils were compared by gel electrophoresis and 

immunoblotting to neurofilament and glial fibrillary acid protein standards. Neuronal and 

glial cells isolated should only contain neurofilament proteins and glial fibrillary acid 

proteins, respectively.

3. Lipid Extraction and Fatty Acid Analysis

The neuronal and glial cell lipid was extracted by a modified Folch method (Folch 

et al., 1957). Individual phospholipids from neuronal and glial cells were separated by 

thin-layer chromatography (Touchstone et al., 1980) and fatty acid methyl esters were 

prepared following the method of Morrison and Smith (1964). Fatty acid methyl esters 

were analyzed by automated gas-liquid chromatography as described in C hapter III.

4. Statistical Analysis

The effect o f diet treatment and cell type on the C20:4n-6 and C22:6n-3 content 

of neuronal and glial cell PC, PE, PI, and PS was assessed by a two-way analysis o f 

variance (ANOVA) procedure using the SAS™ package, version 6.11 (SAS™ Institute 

Inc., 1988). Significant differences between diet treatments and cell type were determined 

by a Duncan's multiple range test at a significance level o f p<0.05 after a significant 

ANOVA (Steel & Torrie, 1960). Values are expressed as mean ± SEM for n=6. Two-way
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ANOVA procedures were performed on six diet treatments (including a C18:2n-6 to 

C18:3n-3 fatty acid ratio o f 4.4:1), however, in this chapter statistical analysis on five diet 

treatments were presented for the fatty acid composition o f neuronal cell phospholipid 

fractions in the figures and tables.

C. RESULTS

1. Whole Body and Brain Weights

Whole body and brain weights were not significantly different for male and 

female rat pups (data not shown), hence statistical analyses to test subsequent effects o f 

diet treatments were combined for both sexes. The whole body and brain weights were 

not significantly different among the three experimental diet treatments, indicating that 

whole body and tissue growth in the two-week-old rat pups is not different between diets 

with or without C22:6n-3. Final body weights were (mean ± SEM): 35.8 ± 1.0 g. 35.9 ±

1.0 g, 35.6 ± 1.3 g, 36.1 ± 0.5 g, and 36.1 ± 0.5 g for low LNA, medium LNA, high LNA, 

DHA, and AA + DHA diet treatments, respectively. Final brain weights were (mean ± 

SEM): 1.2 ±0.1 g. 1.2 ±0.1 g. 1.1 ±0.1 g, 1.2 ± O.lg, 1.2 ±0.1 g for low LNA. medium 

LNA. high LNA, DHA, and AA + DHA diet treatments, respectively. Differences in 

fertility were not observed between the dietary treatments.

2. Purity of Neuronal and Glial Cell Preparations from Whole Brain

Neuronal and glial cell preparations contained only minor cross contamination 

(*5%) from cell membrane fragments and microvessels as determined by microscopic 

examination. The presence o f  neurofilament in neuronal samples and glial fibrillary acid 

protein in glial cells samples was previously verified by gel electrophoresis and 

immunoblotting (Jumpsen et al., 1997a and 1997b). These results indicate that the cell 

preparations are primarily neuronal and glial cells.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

3. Fatty Acid Composition of Stomach Contents

The rat pup stomach contents at day 14 o f  life contained no particulates indicative 

o f  diet consumption and therefore reflected the composition o f their dams' milk. The 

fatty acid composition o f stomach contents o f  rat pups was analyzed. These analyses have 

been shown to be similar to dams' milk composition (Nouvelot et al., 1983; Yonekubo et 

al., 1993; Lien et al., 1994; Jumpsen et al., 1997a and 1997b). The dietary C18:3n-3 or 

C22:6n-3 fed to the dams altered the stomach contents o f the rat pups (Table 5.2) 

indicating that the dietary fat fed in the present experiment produced similar changes in 

the fat composition o f  the dams' milk.

/
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Table 5.2 The Content of Fatty Acids in the Stomach of Rat Pups at Two Weeks of 

Age1

DIET FAT: Low

LNA1

Medium

LNA2

High

LNA3

DHA4 AA+DHA5

Fatty Acid Composition (%  wt/wt)

C10:0 7.9 ± 2 .1 a 7.2 ± 0 .8 a 6.9 ± 2 .2 a 6.7 ± 0.7 a 6.2 ± 0 .8 a

C12:0 10.9 ±1.1 c 15.1 ± 0 .4 a 10.8 ± 0 .6 c 13.8 ± 0.2 b 12.2 ± 0 .1 b

0 4 :0 7.3 ± 0.3 c 15.3 ± 0.5 a 7.2 ± 0.3 c 9.3 ± 0 .1b 9.2 ±0.1 b

0 6 :0 12.6 ± 0 .9 c 17.7 ± 0.7 a 12.9 ± 0.4 c 14.9 ± 0 .2b /15.9 ± 0 .2 b

0 8 :0 4.4 ± 0.4 a 3.4 ± 0.1 b 4.8 ± 0.2 a 4.6 ± o . r 4.8 ±0.1 b

Cl8:ln-7+n-9 28.2 ± 1.5 a 24.7 ± 0.7 b 26.7 ± 1.0 b 31.5 ± 0.8 a 29.2 ± 0 .6 a

Cl8:2n-6 24.7 ±0.1 a 12.5 ± 0.1 b 13.7 ± 0.1 a 13.8 ± 0.2 a 13.1 ±0.1 b

C18:3n-3 1.1 ± 0 .0 C 1.6 ± 0.0 b 8.8 ± 0.1 a 1.5 ± 0 .0  b 1.6 ± 0 .0 b

C20:4n- 6 1.0 ±0.1 a 0.5 ± 0.0 b 0.5 ± 0.1 b 0.5 ± 0.0 b 1.1 ±0.1 a

C22:6n-3 0.1 ± 0 .0 C 0.1 ± 0.0° 0.2 ± 0 .0 b 0.6 ± 0 .0 a 0.7 ± 0 .0 a

Cl8:2n-6:C18:3n-3 22.5 7.8 1.6 9.2 8.2

'Values are mean ± SEM  with n=9 for each experim ental diet. For each horizontal set o f  values, those that 
have the same superscript letters (a. b. o r c) are not significantly different. Those that have different letters 
are significantly different, at p<0.05.
2 Low LNA diet was obtained by the addition o f  com  oil to the medium LNA diet.
' Medium LNA diet approxim ates the fatty acid com position used in SMA" infant formula.
4 High LNA diet was obtained by the addition o f  flaxseed oil to the medium LNA diet.
5 DHA was obtained by the addition o f 0.6%  C22:6n-3 triglyceride to the medium LNA diet.
6 AA + DHA was obtained by addition o f  1% C 20:4n-6 and 0.6%  C22:6n-3 triglyceride to the 

medium LNA diet.
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4. Neuronal and Glial Cells Phospholipid Fatty Acid Composition

a) Phosphatidylethanolamine

The analysis o f the fatty acid profile in neuronal and glial cell PE from 

whole brain demonstrated that C l6:0, C l8:0, C20:4n-6, and C22:6n-3 (11-16%, 24-26%, 

16-20%, and 16-29% o f  the total fatty acids, respectively) were the predominant fatty 

acids. There was no significant difference in the C20:4n-6 content o f  PE between 

neuronal and glial cells (Figure 5.1). However, the C22:6n-3 content o f PE was 

significantly different between neuronal and glial cells (p<0.05) (Figure 5.1). Glial cells 

contained a significantly greater amount o f  C22:6n-3 in PE than neuronal cells. The 

C20:4n-6 content o f PE from both cell types was not significantly differen/between the 

diet treatments (Figure 5.1). The C22:6n-3 content o f PE in neuronal cells was 

significantly increased by feeding the DHA and AA + DHA diet treatments compared to 

feeding diets providing low LNA. medium LNA. high LNA (Figure 5.1). The C22:6n-3 

content of glial cell PE was significantly increased with animals fed the DHA diet (Figure 

5.1). The C22:6n-3 content o f neuronal cell PE was (mean ± SEM; %wt/wt); 2 1.2 ± 

0.6%. 17.4 ± 2.2 % . 15.7 ± l . I % , 26.2 ± l .6%, and 26.8 ± 0.6%. for animals fed the low 

LNA, medium LNA. high LNA, DHA, and AA + DHA diet treatments, respectively 

(Figure 5 .1). The C22:6n-3 content o f glial cell PE was (mean ± SEM; %wt/wt); 17.7 ± 

l .3%. 20.9 ± 2.4% . 25 .1 ± 0.3%. 3 1.6 ± 0.2%. and 23.8 ± 0.5% . for animals fed the low 

LNA. medium LNA, high LNA, DHA. and AA + DHA diet treatments, respectively 

(Figure 5 .1).
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Figure 5.1 Fatty Acid Composition of Neuronal and Glial Cell 

Phosphatidylethanolamine * Cell Type Difference a t p<0.05

b) Phosphatidylserine

The major fatty acids in neuronal and glial cells PS from whole brain were C l6:0. 

Cl 8:0, and C22:6n-3 (7-20%, 36-44%, and 14-33% of the total fatty acids, respectively). 

The C20:4n-6 content of PS between neuronal and glial cells was not significantly 

different. The C22:6n-3 content o f  PS was different between neuronal and glial cells w ith 

glial cells containing a significantly greater amount o f C22:6n-3 than neuronal cells 

(p<0.05; Figure 5.2). The C20:4n-6 content of PS from both cell types was not 

significantly different between the diet treatments (Figure 5.2). Feeding the DHA and AA 

+ DHA diet significantly increased the C22:6n-3 content of neuronal PS compared to the 

diets providing a C18:2n-6 to C18:3n-3 fatty acid ratio of 21.6:1 and 1:1 but not 7.8:1
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(p<0.0001; Figure 5.2). The C22:6n-3 content o f neuronal cell PS was (mean ± SEM; 

%wt/wt): 20.0 ± 0.7%, 28.0 ± 0.7% , 14.1 ± 2.9% , 29.5 ± 1.4%. and 29.5 ± 0.9%. for 

animals fed low LNA. medium LNA, and high LNA. DHA, and AA + DHA diet 

treatments, respectively (Figure 5.2). In glial cells, the C22:6n-3 content o f  PS was 

significantly increased with animals fed DHA and AA + DHA diet compared to the 

animals fed low and high LNA, but not the mediun LNA diets (p<0.0001: Figure 5.2). 

The C22:6n-3 content o f glial cell PS was (mean ± SEM; %wt/wt): 23.2 ± 0.6%, 25.5 ± 

3.2%, 22.7 ± 1.5%, 34.1 ± 1.6%. and 31.3 ± 0.5%, for animals fed low LNA, medium 

LNA, high LNA, DHA, and AA + DHA diet treatments, respectively (Figure 5.2).
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Figure 5.2 Fatty Acid Composition of Neuronal and Glial Cell Phosphatidylserine 
‘ Cell Type Difference a t p<0.05
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c) Phosphatidylcholine and Phosphatidylinositol

The predominant fatty acids observed in PC were C l6:0, C l8:0, and C l8:1 (47- 

52%, 9-16%, 18-22% o f  the total fatty acids, respectively; Table 5.3). PC C20:4n-6 and 

C22:6n-3 content was significantly different between neuronal and glial cells. Neuronal 

cells had greater amounts o f C20:4n-6 and C22:6n-3 in PC than glial cells (Table 5.3). 

Feeding a maternal diet providing a fatty acid ratio of C18:2n-6 to C18:3n-3 from 21.6:1 

to 1:1, and DHA and AA + DHA did not significantly increase the C20:4n-6 and C22:6n- 

3 content of PC in neuronal and glial cells (Table 5.3). In neuronal and glial cell PI. the 

major fatty acids were C l6:0, C l8:0. C l8:1, and C20:4n-6 (8-15%, 28-37%, 5-12%, and 

19-35% of total fatty acids, respectively; Table 5.4). C20:4n-6 but not the C22:6n-3 

content was significantly different between neuronal and glial cells with neuronal cells 

containing significantly more C20:4n-6 in PI than glial cells (Table 5.4).
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Table 5.3 Effect o f Low to High Dietary C18:3n-3 Compared to Feeding C22:6n-3 on the Fatty Acid Composition of 

Neuronal and Glial Cell Phosphatidylcholine1

DIET FAT: Low Medium High DHA5 AA + DHA6
LNA2 LNA3 LNA4

Fatty Acid (% wt/wt)

Neuronal Glial Neuronal Glial Neuronal Glial Neuronal Glial Neuronal Glial

0 6 : 0 50.4±0.6a 46.811.6“ 46.710.9“ 51.510.4“ 50.610.0“ 48.610.4“ 50.710.3“ 50.810.5" 48.311.2“ 52.010.9*

0 8 : 0 13.310.3“ 12.811.2“ 15.510.4“ 8.910.0“ 13.410.2“ 14.410.9“ 9.4i0.5b 10.511.0b 10.711.4b 10.5i0.3b

C I8:ln-9 15.310.1“* 17.110.9“ 15.110.3“* 16.410.0“ 15.210.0“* 16.610.3“ 15.911.3“* 17.110.2" 14.113.6"* 16.510.3“

C18:2n-6 1.210.0“ 2.510.8“ 1.2+0.0b 1.2i0.0b 1.2+0.0“b 1.410.1 “b 1.5i0.2“b 1.310. l “b 1.2+0.1b 0.910.1“

CI8:3n-3 0.010.0“ 0.110.1“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0" 0.010.0" 0.010.0“

C20:5n-3 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0“ 0.010.0" 0.110.1"

C22:5n-3 0.110.0“* 0.210.2 “ 0.110.0“* 0.110.0“ 0.210.0“* 0.110.1“ 0.110.1“* 0.110.0" 0.110.0 "* 0.110.0"

C22:6n-3 3.210.2“* 3.110.5“ 3.610.2“* 3.310.1“ 3.110.4“* 2.610.1“ 3.910.6“* 3.410.4" 4.310.5“* 2.910.3"

C20:4n-6 7.010.1“* 6.610.6“ 7.210.1“* 7.010.1“ 6.510.1“* 6.810.3“ 7.510.6"* 6.510.7" 8.510.8"* 6.510.6“

C22:4n-6 0.910.1 “* 0.410.3 “ 1.210.1 “* 0.610.1 “ 0.810.0“* 0.610.1 “ 0.810.1 “* 0.710.1“ 1.010.1 "* 0.710.1 *

C22:5n-6 0.410.0“ 0.310.1 “ 0.310.0“ 0.110.0“ 0.210.0“ 0.110.0“ 0.210.0" 0.110.0" 0.310.1“ 0.110.0“

1 Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within a cell type, those that have the same superscript letters (a 
o r b) are not significantly different. Those that have different letters are statistically significant different at p<0.05.
2 Low LNA diet was obtained by mixing safflower oil into the medium LNA diet.
1 Medium LNA diet approxim ates the fatty acid com position used in SM AV infant formula.
4 High LNA diet was obtained by the addition o f  flaxseed oil to the medium LNA diet.
5 DHA was obtained by the addition o f 0.6%  C22:6n-3 triglyceride to the medium LNA diet.
6 AA + DHA was obtained by addition o f  1% 20:4n-6 and 0.6%  C22:6n-3 triglyceride to the medium LNA diet.* Cell type difference at p<0.05.
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Table 5.4 Effect of Low to High Dietary C18:3n-3 Compared to Feeding C22:6n-3 on the Fatty Acid Composition of 

Neuronal and Glial Cell Phosphatidylinositol1

DIET FAT: Low Medium High DHA5 AA + DHA6
LNA*’ LNA1 LNA4

Neuronal Glial Neuronal Glial

Fatty Acid (%wt/wt) 

Neuronal Glial Neuronal Glial Neuronal Glial

(1 6 :0 13.8±1.3ab 13.311.3ab 7 .4 il.7 bc 14.3l2.7bc 15.210.3° 15.111.0° 10.211.6C 8.7i0.6c 11.7i0.7bc 11.510.8^

€18:0 28.1±1.3b 28.111.l b 34.710.5° 34.811.4" 31.011.0b 28.4+0.7b 33.610.0° 33.810.8° 36.712.9° 32.412.1°

C18:ln-9 8.1±0.6b 9.711.9b 6.1±0.7b 6.0+0.5b 12.311.0° 11.311.5° 6.7l0.8b 5.2l0.4b 5 .1 il.5 b 6.8l0.8b

C 18:2n-6 0.8±0.0a 1.8+0.3a 0.710. l b 0.410. lb 1.010.0" 1.010.0° 0.5i0.0b 0.510. l b 0.410. l b 0.410. lb

C 18:3n-3 0.3±0.3“ 0.310. l a 0.1i0.0b 0.0l0.0b 0.1+0.0b 0.0+0.0b 0.0l0.0b 0.2±0.2b 0.0i0.0b 0.0i0.0b

C20:5n-3 0.4±0.3 “* 1.710.4" 0.110.0 b* 0.110.0 b 0.110.0 b* 0.210.1 b 0.210.0"* 1.110.8° 0.210.0°* 0.910.7°

C22:5n-3 0.2+0.0"* 0.610.3a 0.210.0"* 0.410.3 ° 0.410.0"* 0.510.1° 0.210.0°* 0.110.0° 0.210.0°* 0.710.4°

C22:6n-3 11.111.6" 8.711.9a 6.2i0.3b 7.2l0.9b 10.710.5° 13.111.5" 6.810.7° 13.710.6° 9.8l0.7°b 7 .9 ll .l° b

C20:4n-6 26.5+1.6°* 21.811.7° 35.412.3°* 27.814.0° 19.011.4°* 20.111.5° 35.111.6°* 27.711.7° 28.511.3°* 30.511.8°

C22:4n-6 3.110.5a 2.110.5" 1.810.1° 1.310.4° 3.010.1" 3.510.4° 1.910.3° 1.810.1" 2.610.1“ 2.110.3°

C22:5n-6 1.310.2a 0.810.3a 0.510.1 ° 0.810.5“ 0.810.0° 1.010.1 ° 0.310.18 0.410.1 “ 0.710.0" 0.610.1°

1 Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within a cell type, those that have the same superscript letters (a 
o r b) are not significantly different. Those that have different letters are statistically significant different at p<0.05.
'  Low LNA diet was obtained by mixing safTlower oil into the medium LNA diet.
1 Medium LNA diet approxim ates the fatty acid composition used in SM A” infant formula.
4 High LNA diet was obtained by the addition o f  flaxseed oil to the medium LNA diet.
'  DHA was obtained by the addition o f  0.6%  C22:6n-3 triglyceride to the medium LNA diet.
h AA r DHA was obtained by addition o f  1% 20:4n-6 and 0.6%  C22:6n-3 triglyceride to the medium LNA diet.* Cell type difference at p<0.05.
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D. DISCUSSION

The present results establish the hypothesis that dietary C22:6n-3 but not 

increased intake o f C18:3n-3 will significantly increase the C22:6n-3 content o f both 

neuronal and glial cell phospholipids from whole brain. These observations extend 

previous information (Jumpsen et al., 1997) by establishing that maternal dietary C22:6n- 

3 is more effective at increasing the C22:6n-3 content o f whole brain neuronal and glial 

cell membrane phospholipid in two-week-old rat pups than feeding low or high levels of 

maternal C18:3n-3.

The results from this study are in accordance with other studies shotoing that rat 

brain uses C22:6n-3 instead o f  C18:3n-3 to maintain the C22:6n-3 content o f  membrane 

in phospholipids (Sinclair, 1975; Anderson & Connor. 1988; Edmond et al.. 1998). This 

study has shown that C22;6n-3 can be taken up by the brain and used for neuronal and 

glial cell membrane phospholipids synthesis.

Feeding low or high maternal dietary C18:3n-3 did not significantly increase the 

C22:6n-3 content in PE. PS. and PC from neuronal and glial cells compared to feeding 

diets containing C22:6n-3. The lack of significant increase in C22:6n-3 with rat pups fed 

the high LNA diet may be explained by delta-6 desaturase. the rate-limiting enzyme in 

the synthesis of C22:6n-3, being not fully active at two weeks of age (Bemhart & 

Sprecher, 1975). Rodent studies have demonstrated that liver (Nouvelot et al, 1986). 

astrocytes (Moore et al.. 1990 and 1991). choroid plexus (Bourre et al, 1997) and 

microvessel endothelial cells (Delton-Vandenbroucke et al., 1999) have delta-6 

desaturase activity and that C18:3n-3 is converted to C22:6n-3 in these cell types (Ravel 

et al. 1985; Sanders and Rana. 1987; Bourre et al. 1990). Whether rat pups at two weeks 

of age are able to convert sufficient amounts o f C18:3n-3 into C22:6n-3 to provide for 

maximal incorporation o f C22:6n-3 into neuronal cell membrane phospholipid synthesis 

is not known. The findings from the present study are in agreement with our previous 

study showing that low to high maternal C18:3n-3 diets does not significantly increase 

the C22:6n-3 content o f neuronal cell membrane phospholipids (Chapter III). In two- 

week-old rat pups, the metabolic fate of feeding a high maternal C18:3n-3 diet is
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deposition of C18:3n-3 in the skin, including subcutaneous fat and adipose tissue, of two- 

week-old rat pups (Chapter IV).

The C20:4n-6 content o f neuronal and glial cells PE, PS. PC, and PI was not 

significantly different among rat pups fed the different diet treatments at two-weeks o f 

age. The reason for the non-significant difference in C20:4n-6 content o f individual 

phospholipids o f rats fed the different diet treatments may be explained by the C20:4n-6 

present in the stomach contents (Table 2). It is possible that the level o f the C20:4n-6 

(>0.5%) present in the stomach contents o f rat pups may be sufficient to prevent a 

significant decrease in C20:4n-6 content o f  PE, PS. PC. and PI from neuronal and glial 

cells o f two-week old rat pups. /

In early postnatal rat brain. PE and PS constitute approximately 30% and 6% of 

the total phospholipids, respectively (Green and Yavin. 1996). PE and PS in brain are 

particularly enriched in C22:6n-3 (Breckenridge et al.. 1972: Salem et al.. 1980: 

Martinez. 1989) and contain most o f the C22:6n-3 (-92%) esterified into the total brain 

phospholipids by the first week of postnatal life (Green and Yavin. 1996). Therefore, any 

changes in whole brain neuronal and glial cell C22:6n-3 content caused by dietary fat 

treatments used in this study should be detected in PE and PS.

Glial cells contained significantly more C22:6n-3 in PE and PS than neuronal 

cells. Neuronal cells contained greater amounts o f C22:6n-3 in PC and C20:4n-6 in PC 

and PI than glial cells. This difference between neuronal and glial cells C22:6n-3 and 

C20:4n-6 content is similar to previous findings (Jumpsen et al. 1997a & 1997b) in which 

differences were observed between C22:6n-3 and C20:4n-6 content in phospholipids of 

both cell types in the frontal, cerebellum, and hippocampal regions o f  brain o f developing 

rat pups. Thus, it may be concluded that neuronal and glial cells respond differently to 

dietary- fat treatment.

The functional implications o f an increase in C22:6n-3 content o f PE and PS of 

neuronal and glial cells with rat pups fed diets with C22:6n-3 at two-week-old rat pups is 

not known. Investigations of functional changes associated with an increase in C22:6n-3 

content o f PE and PS from neuronal and glial cells would be o f  great interest since 

modification of the PUFA content o f cell membranes has a large impact on membrane 

properties and the functioning of a variety o f membrane-associated proteins such as
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transporters, enzymes, and receptors (reviewed by Spector & Yorek, 1985 and Clandinin. 

1997). PS is involved in variety o f cell functions (Salem & Niebylski, 1995) such as 

signal transduction via its activation o f several protein kinase C isoforms (Bell & Bums. 

1991) or Raf-1 kinase to cell membranes (Ghosh et al., 1996), modulation o f 

synaptosomal benzodiazepine receptors (Levi deStein et al., 1989). and increases 

synaptic efficiency (Borghese et al., 1993). Therefore, it is likely that the diet-induced 

alterations in neuronal and glial cell C22:6n-3 content observed in PS in the present study 

may have a physiological impact.

In conclusion, the findings from this study demonstrate that maternal C22:6n-3 is 

more effective in increasing the C22:6n-3 content o f brain PE and PS in iteuronal and 

glial cells in two-week-old rat pups than maternal dietary levels o f C18:3n-3. The results 

of this study in rats suggest that neonates will achieve increased brain C22:6n-3 levels 

more effectively if preformed C22:6n-3 is fed instead o f increased intake of C18:3n-3.

In both two-week-old rat pups and six-month-old human infants, early gliogenesis 

and macroneurogenesis are completed while microneurogenesis, late gliogenesis. and 

myelination are continuing in both species during this period (reviewed by Morgane et 

al.. 1993). Rat pups and human infants have a similar metabolic pathway for synthesis o f 

C20:4n-6 and C22:6n-3 via desaturation and elongation of precursors. Rodents have a 

markedly higher desaturase activity compared to human infants (Cunnane et al., 1984; 

Horrobin et al.. 1984). Thus, it is reasonable to speculate that infants may produce 

relatively less C22:6n-3 in neuronal and glial cell phospholipids when compared to 

C22:6n-3 production by rat pups fed the same level o f dietary intake o f C18:3n-3.
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CHAPTER VI. DIETARY LINOLENIC AND DOCOSAHEXAENOIC ACID 
ALTER SYNAPTIC PLASMA MEMBRANE PHOSPHOLIPID FATTY ACID 
COMPOSITION AND SODIUM-POTASSIUM ADENOSINE
TRIPHOSPHATASE KINETICS IN DEVELOPING RATS

A. INTRODUCTION

The SPM is comprised of phospholipids with high levels o f PUFAs, particularly. 

C22:6n-3 (Cotman et al., 1969; Breckenridge et al., 1972; Sun & Sun, 1972; Foot et al.. 

1982; Hargreaves et al., 1989). Histological (Mashanskii et al., 1969) as well as 

biochemical studies have shown that Na, K-ATPase (EC 3.6.1.37) is associated with 

brain SPM (Kurokawa et al., 1965; Cotman et al., 1969). Na, K-ATPase in SPM has a 

specific and distinct function in maintenance o f cation gradients across neuronal 

membrane, impulse propagation, release and uptake o f  neurotransmitters (Skou. 1957; 

Schwartz et al., 1975, Gloor, 1997; da Silva et al.. 1999). Past research has shown that 

activity o f SPM Na. K-ATPase can be modulated by phospholipids and cholesterol 

(Goldman & Albers, 1973) as well as by the fatty acyl groups of the SPM phospholipids 

(Sun & Sun, 1974; Kimelberg & Papahadjopouios, 1974; Srivivasarao et al., 1997; Gerbi 

& Maxient. 1999). Alterations in diet fat have been shown to induce changes in the 

phospholipid content (Foot et al.. 1982; Hargreaves and Clandinin, 1987) and fatty acyl 

composition o f SPM (Foot et al., 1982), accompanied by alterations in activity of 

membrane-associated enzymes (Sun & Sun, 1974; Foot et al., 1983; Bourre et al.. 1989; 

Tsutsumi et al.. 1995; Gerbi & Maxient, 1999). and regulation o f neurotransmitters 

(Delion et al.. 1994; Zimmer et al., 1998). Feeding rats and their offspring diets deficient 

in C18:3n-3 (LNA) dramatically alters the fatty acid composition o f SPM phospholipids 

by decreasing n-3 PUFA and increasing n-6 PUFA, particularly, C22:4n-6 and C22:5n-6 

(Salem et al.. 1986; Bourre et al., 1984,1989, & 1993; Gazzah et al.. 1993). Long term n- 

3 deficiency affects membrane-bound enzymes activities (Salem et al., 1986; Bourre et 

al.. 1989; Tsutsumi et al., 1995) decreasing Na, K-ATPase activity at optimal (Bourre et 

al., 1984) and suboptimal (Tsutsumi et al.. 1995) ATP concentrations.

Increasing maternal dietary C18:3n-3 from 1.6% to 17.5% o f total fatty acids, by 

lowering the C18:2n-6 to C18:3n-3 fatty acid ratio from 22:1 to 1:1. does not
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significantly increase the C22:6n-3 content in PC. PE, and PS o f  neuronal cells from 

whole brain o f two-week-old rat pups (Chapter III). The metabolic fate of feeding a 

high C18:3n-3 diet is deposition o f  C18:3n-3 in tissues, particularly, skin (epidermis, 

dermis, and subcutaneous tissue) (Chapter IV). Human and animal studies have shown 

that feeding preformed C22:6n-3 from fish or single-cell oils can significantly increase 

the C22:6n-3 content o f brain (Jumpsen et al., 1997), erythrocytes, and plasma 

phospholipids (Makrides et al, 1994; Clandinin et al. 1997). Since C22:6n-3 is enriched 

in SPM phospholipids, it would be o f interest to determine whether change in SPM 

phospholipid C22:6n-3 content occurring in rats fed diets containing C18:3n-3 or 

C22:6n-3 has functional consequences. /

Thus, the objective o f the present study was to investigate if  maternal dietary 

C20:4n-6 (AA) and C22:6n-3 compared to feeding adequate or low levels of C18:3n-3 

(LNA) increases SPM cholesterol and phospholipid content, phospholipid C20:4n-6 and 

C22:6n-3 content, and Na. K-ATPase kinetics in rat pups at two and five weeks of age.

B. MATERIALS AND METHODS

1. Animal Care

Breeding o f Sprague-Dawley rats have been described in Chapter III. All litters 

were culled to twelve rat pups following parturition. Rats sacrificed at two weeks o f age 

received only maternal milk. Rats sacrificed at five weeks o f age were weaned at three 

w eeks of age to the same diet received by their respective dams.

One entire litter of rat pups fed the same diet was sexed and weighed before 

decapitation. Birth and weaning weights were not determined. Excised brains were 

placed in ice-cold 0.32 M sucrose. Six brains from the same sex were pooled per sample 

for isolation o f  SPM. Stomach contents o f three rats from each litter were also removed 

and analyzed for fatty acid composition to reflect the composition o f maternal milk and 

diet. Three litters per diet treatment and age were used.
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2. Diets

Three semi-synthetic 20% (wt/wt) fat diets were fed (Clandinin & Yamashiro. 

1982). The diets differed by the amount or nature o f  n-6 and n-3 fatty acids (Table 6.1). 

The control fat diet was formulated to approximate the fatty acid composition o f an 

existing infant formula providing an C18:2n-6 to C18:3n-3 ratio o f 7.1:1 (Table 6.1). The 

low LNA diet was obtained by addition of saflflower oil as the diet fat blend. The 

AA+DHA diet was obtained by addition o f C20:4n-6 (ARASCO™) and C22:6n-3 

(DHASCO™) triglycerides from single cell oils (Martek Biosciences, Columbia, MD. 

USA) to the control diet fat blend. These diets were nutritionally adequate, with 

exception of the low LNA diet (0.04% of energy as C18:3n-3), providing for all known 

essential nutrient requirements as described in Chapter III. To minimize fatty acid 

peroxidation, the diets were sealed under nitrogen and stored in a freezer at -30°C in 

darkness. Each day the required amount o f diet was mixed thoroughly and placed in 

individual feed cups.

3. Isolation of Synaptic Plasma Membrane

Rat brains in 0.32 M sucrose were homogenized in 10 volumes o f 0.32 M sucrose

with 1 mM EDTA, pepstatin A (20 pg/mL). aprotinin (20 pg/mL), trypsin inhibitor (20

pg/mL), phenylmethylsulfonyl fluoride (5 pg/mL), and leupeptin (20 pg/mL). pH 7.4 

homogenizing buffer (Nikolova-Karakashian & Merrill, 2000; Cotman. 1974). The 

homogenate was centrifuged at 3,000 g for 5 min to remove the nuclear fraction (Cotman. 

1974). Supernatant was then centrifuged at 10,500 g for 20 min to obtain the crude 

mitochondrial pellet (Cotman, 1974). The pellet obtained was resuspended in 3 mL of 

homogenizing buffer, layered over a preformed discontinuous sucrose gradient o f 0.8 M 

and 1.2 M and centrifuged in a swinging-bucket rotor (Beckman SW-28) at 97,000 g for 

2 hr (Appendix 2; Cotman. 1974). The band at the interface of 0.8 M and 1.2 M sucrose 

was diluted and lysed in ice-cold distilled water for 1 hr at 4°C (Cotman, 1974). The 

SPM was recovered by centrifugation in a fixed angle rotor (Beckman JA-20 rotor) at 

19,000 g for 30 min. This pellet was resuspended in homogenizing buffer and used for 

subsequent analysis o f  lipid, protein, and Na. K-ATPase (Esmann, 1988). The SPM
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purity was tested by measuring the RNA content for microsomes (Fleck & Begg, 1965) 

and succinic dehydrogenase for mitochondrial contamination (Pennington, 1961).

Table 6.1 Fatty Acid Composition of Experimental Diets0

Diet Treatment: Low LNAt Control AA +  DHA*
Fatty acid (% wt/wt) 
C10:0 nd 1.23 1.92

C12:0 nd 11.7 13.1

C14:0 0.11 5.70 6.39

C16:0 6.66 12.5 12.7

0 8 : 0 2.52 6.13
/

7.27

C18:ln-9 13.6 40.3 37.2

C18:ln-7 0.40 3.21 2.57

C18:2n-6 75.2 17.9 16.5

C18:3n-3 0.09 2.51 2.54

C20:4n-6 nd nd 1.11

C22:6n-3 nd nd 0.64

£  Sat 9.29 37.3 41.3

£  Mufa 14.0 43.5 39.8

£  N-6 75.2 17.9 17.6

£  N-3 0.09 2.51 3.18

C18:2n-6 to C18:3n-3 ratio 835 7.13 6.50

“  nd = not detected: X sat, sum  o f  saturated fatty acids; X m ufa, sum o f  monounsaturated fatty  acids; X n-6. 
sum o f  n-6 fatty acids; and X n-3, sum o f  n-3 fatty acids.
T Low LNA diet (0.04%  o f  energy) was obtained by the addition o f  safflower oil as the fat blend.
+ The control fat diet o f  C 18:2n-6 to  C18:3n-3 fatty acid ratio  o f  7 .1: 1 approximates the fatty acid 
composition used in SMA* infant formula.
'  The AA + DHA diet was obtained by the addition o f  A RA SC O ,'‘ and DHASCO"  oil to  the  control diet 
fat blend.

4. Lipid Analysis

Total lipids within the SPM fraction were extracted as described by Folch et al. 

(1957). The lower chloroform phase o f the lipid extract was evaporated to dryness under 

a stream of nitrogen. The residue was resuspended in 2 mL chloroform : methanol (2:1,
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by vol.) and aliquots were taken for determination o f total and individual phospholipid 

and cholesterol content and fatty acid analysis. Total phospholipid from aliquots o f lower 

phase chloroform : methanol (2:1. by vol.) were determined by spotting the samples on a 

prewashed silica gel “G” thin-layer chromatography (TLC) plate (20 x 20 cm, Analtech. 

Newark, DE) and developing the plate in a solvent system containing petroleum ether : 

diethyl ether : acetic acid (80:20:1, by vol.) for approximately 1 hr (Suh et al.. 1996). The 

total phospholipid band was visualized with 0.1% (wt/vol.) aniline naphthalene sulfonic 

acid (ANSA) in water. Separation o f individual phospholipids was completed on 

prewashed silica gel, “H” TLC plates (20 x 20 cm, Analtech, Newark, DE). TLC plates 

were developed in a solvent system containing chloroform : methanol : triethylamine : 1 - 

propanol : 0.25% (wt/vol.) KC1 (30:9:18:25:6, by vol.) for approximately 90 min. 

(Touchstone et al.. 1980). TLC plates were air-dried for 5 min. and visualized with 0.1% 

ANSA.

Total and individual phospholipid content o f SPM was determined in triplicate by 

inorganic phosphorous assay after digestion with 72% perchloric acid at 180 °C for 1 hr 

(Chen et al.. 1956). Cholesterol was measured according to the procedure o f  Zlatkis & 

Zak (1969). Individual SPM phospholipid fatty acid methyl esters were prepared with 

14% (wt/wt) boron trifluoride in methanol following the method o f Morrison & Smith 

(1964).

5. Fatty Acid Analysis

Fatty acid methyl esters were analyzed by automated gas-liquid chromatography 

as described in C hapter III.

6. Na, K-ATPase Assay

The Na, K-ATPase activity was measured following the method described by 

Esmann (1988) and Tsutsumi et al. (1995). An aliquot (lOOpL) o f the SPM fraction was 

incubated at 37 °C for 15 min. with reaction buffer containing 100 mM NaCl. 20mM 

KC1, 5 mM MgCh, various concentrations o f  ATP from 0.5 to 6 mM. and 30 mM 

histidine buffer. pH 7.4 in the presence and absence o f 1 mM ouabain, a specific inhibitor
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o f Na. K-ATPase (Kawamura et al., 1999) in a total volume o f 1 mL. The reaction was 

terminated by adding 0.5 mL 10% (wt/vol.) trichloroacetic acid. After a 10 min 

centrifugation, lOOpL o f supernatant was removed and assayed for inorganic phosphate 

content (Pi). Inorganic phosphate liberated was determined spectrophotometrically (Chen 

et al., 1956) using K2HPO4 as standard. Na, K-ATPase activity was obtained by the 

difference between total ATPase and Mg2+-ATPase (ouabain-insensitive) activity 

(Esmann. 1988).

Na. K-ATPase activity is expressed as pmol Pi / mg / hr. The protein 

concentration in the SPM was estimated by the method of Lowry et al. (1951) using 

crystalline bovine serum albumin as a standard. Six different membrane''preparations 

were assayed in triplicate for each diet treatment and age. Data for kinetic analysis was 

plotted as an Eadie-Hofstee plot and analyzed by a linear regression program (Caspers et 

al., 1993). The slope (Km) and y-intercepts (Vmax) were determined.

7. Synaptic Plasma Membrane PAGE and Immunoblotting

For analysis o f  Na. K-ATPase pi-subunit, six different membrane preparations 

for each diet treatment and age were pooled. SPM protein (20 pg) samples from rats fed 

either the low LNA. control, or AA + DHA diets at two and five weeks o f age were 

separated by 7.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Laemmli, 

1970) and then transferred to nitrocellulose paper by electroblotting (Towbin et al.. 

1979). The quantity o f  protein in each lane as well as the efficiency of transfer was 

confirmed by staining with Ponceau S. Western blots were probed with an anti-pi 

antibody (dilution 1:1000) (Upstate Biotechnology, Lake Placid, NY, USA). The p i-  

subunit was detected by chemiluminescence (Pierce. Rockfort, Illinois. USA) and 

visualized on x-ray film (X-OMAT AR"). The protein bands corresponding to the p i-  

subunit o f Na, K-ATPase were quantitated by transmittance densitometry' using a Bio- 

Rad imaging densitometer (Life Science Group, Cleveland, Ohio, USA).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



189

8. Statistical Analysis

The effect o f diet treatment and age on body weight, brain weight, SPM lipid 

content, SPM fatty acid composition, and Na, K-ATPase kinetics was assessed by two- 

way analysis o f variance (ANOVA) procedures using an SAS'" package, version 6.11 

(SAS'" Institute, 1988). Significant differences between diet treatments and age were 

determined by Duncan's multiple range test at a significance level o f p<0.05 after a 

significant ANOVA (Steel & Torrie, 1960). Values are expressed as mean ± SEM for 

n=6.

C. RESULTS

1. Growth Characteristics

Body and brain weights were significantly different for male and female rat pups 

at two and five weeks o f age. Male rats had significantly greater body and brain weights 

compared to female rats at two and five weeks o f age. Body weights for male and female 

rats at two and five weeks o f  age were (mean ± SEM): 34.4 ±0.51 g and 33.0 ± 0.40 g 

(p<0.002) and 140 ± 2.0 g and 134 ± 1.5 g (p<0.003). respectively. Brain weights for 

male and female rats at two and five weeks o f age were (mean ± SEM): 1.24 ± 0.00 g and 

1.21 ± 0.01 g (p<0.02) and 1.73 ± 0.01 g and 1.69 ± 0.01 g (p=0.05), respectively. Body 

and brain weights and brain to body weight ratio, however, were not significantly 

different among diet groups at two and five weeks o f age (data not shown), indicating 

that body and brain growth in rats are not affected by adequate or low LNA or AA + 

DHA in the maternal diet at two and five weeks o f age. No gross differences in fertility 

were observed among diet groups at both ages.

2. Fatty Acid Composition of Stomach Contents

The rat pup stomach contents at day 14 o f life contained no particulates indicative 

of diet consumption, and therefore reflected the composition o f their dams' milk. The 

fatty acid composition o f stomach contents o f  rats at two and five weeks o f  age was 

analyzed. This analysis reflected dams' milk fatty acid composition (Nouvelot et al..
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1983; Lien et al., 1994; Jumpsen et al., 1997a & 1997b) and indicated that the range of 

dietary fat composition fed in the present experiment produced similar changes in the fat 

composition o f the dams'milk. The major fatty acids in the stomach contents o f rats fed 

either the low LNA, control, or AA + DHA diet treatments at two and five weeks of age 

were C l2:0. C l4:0, C l6:0, C l8:0, C18:ln-7+n-9, and C18:2n-6 (Table 6.2). The C l4:0 

content o f the stomach contents was higher at two compared to five weeks o f age (Table 

6.2).

Feeding mothers a low LNA compared with the control or AA + DHA diet 

produced a significant increase in C18:2n-6 and C22:5n-6 content and a decrease in 

C18:3n-3 content in the stomach at two weeks o f age (Table 6.2). Feeding mothers AA + 

DHA versus control or low LNA diets increased the C22:6n-3 content in the stomach of 

the rat pups at two weeks of age (Table 6.2). Rat pups fed the low LNA diet showed 

negligible levels o f C22:6n-3 in the stomach at two weeks of age (Table 6.2).

At five weeks of age, feeding rats a low LNA diet also resulted in significantly 

increased C18:2n-6 content in the stomach compared to animals fed the control or AA + 

DHA diet (Table 6.2). The C18:3n-3 content in the stomach was lower in animals fed the 

low LNA diet versus animals fed the control or AA + DHA diet at five weeks of age. The 

C20:4n-6 and C22:6n-3 content was significantly increased in the stomach o f animals fed 

AA + DHA compared to feeding the control or low LNA diet at five weeks o f age. 

Feeding rats a low LNA compared to feeding rats a control or AA + DHA diet increased 

the C22:5n-6 content o f the rat pups stomach at five weeks o f  age.
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Table 6.2 Content o f Fatty Acids in the Stomach of Rats at Two and Five Weeks of Age*

Diet Treatment: Low LNA1
2 Weeks 
Control AA+DHA* Low LNAt

5 Weeks 
Control1 AA+DHA:

Fatty acid (% wt/wt) 
C12:0 1.74±0.4h 14.710.7“ 16.111.1“ 1.5910.4° 18.113.1“ 11,9+0.4b
CI4:0 6.5210.1M 9.27l0.4“v 9.54±0.7“v 1.2010.1° 8.2610.6“ 6.71±0.1b
0 6 : 0 9.12±O.Oh 17.110.4“ 17.210.1“ 11.5±0.1b 19.7 il.9b 14.810.2“

C18:0 2.20±0.0h 4.2810.5“ 4.4110.2“ 2.0410.1° 3.08l0.7b 6.7210.1“

C I8:ln-7 + n-9 11.910. r 35.8.11.3“ 34.111.5“ 10.910.3° 32.811.l b 36.110.7“
CI8:2n-6 66.910.3“ 16.2±0.3b 15.3l0.2b 71.011.0“ 15.7i0.5b 17.8l0.2b
C18:3n-3 0.04i0.0b 1.7610.0“ 1.5010.2“ 0.2610.0° 1.89i0.2b 2.3610.0“
C20:4n-6 0.6610. l h 0.7010. l b 1.2910.0“ 0.1410.0° 0.39+0. l b 1.1410.0“

C20:5n-3 <0.10“ 0.0110.0“ 0.0210.0“ 0.0110.0“ <0.10“ <0.10“

C22:4n-6 <0.10“ 0.0110.0“ 0.0110.0“ 0.02+0.0b <0.10b 0.8710.3“

C22:5n-6 1.0610.0“ 0.01+0.0b 0.01l0.0b 1.2710.7“ <0.10b 0.9110.4“

C22:5n-3 <0.10“ <0.10“ <0.10“ <0.10“ <0.10“ <0.10“

C22:6n-3 <0.1 Ob 0.14l0.0b 0.6010.0“ 0.08+0.0b 0.17+0.1b 0.6310.0“

* Values are mean ± SEM with n=9 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a, b,
o r c) are not significantly different. Those that have different letters are statistically significantly different, at p<0.05.
1 Low LNA was obtained by the addition o f  safflower oil as the fat blend.
f The control fat diet o fC I8 :2 n -6  to C I8:3n-3 fatty acid ratio o f  7.3:1 approxim ates the fatty acid com position used in SM A^ infant formula.
: The AA + DHA diet was obtained by the addition o f  A RASCO '“and D H A SC O " oil to the control diet fat blcniK 
'  Age difference at p<0.05.
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3. Purity o f Synaptic Plasma Membrane Preparations

The purity o f the SPM preparation has been described previously (Hargreaves & 

Clandinin, 1987). The SPM preparation contained only minor cross-contamination (<5%) 

from microsomes and mitochondria as determined by RNA (SPM, 0 .0 1± 0.0 pg / mg: 

microsomes, 19.3 ± 0.8 pg / mg) and succinate dehydrogenase (p-iodonitrotetrazolium 

violet; INT) (SPM, 30.5 ± 7.3 nmol INT reduced / mg / hr; microsomes, 234.3 ± 54.4 

nmol INT reduced / mg / hr) analysis, respectively. The SPM marker. Na, K-ATPase, 

was approximately 8-fold greater in the SPM (35.8 ± 3.1 pmol Pi / mg / hr) compared to 

the brain homogenate (4.53 ± 1.4 pmol Pi / mg / hr).

4. Synaptic Plasma Membrane Protein Electrophoresis and Immunoblotting

Immunoblots o f pooled SPM protein were probed with the anti-pl antibody; a 

band at 55 kDa was identified (Appendix 3). No significant differences in relative 

abundance o f P 1 -subunit protein were found between rat pups at two and five weeks of 

age (data not shown). The diet treatments had no significant effect on SPM pi-subunit 

Na. K-ATPase protein abundance at two and five weeks o f age (Appendix 3). The 

relative abundance o f pi-subunit protein for rats fed either the low LNA. control, or 

AA+DHA diet was 34.6, 31.9. 34.5% for two-week-old and 32.0, 35.2. and 32.8% for 

five-week-old rat pups, respectively (Appendix 3).

5. Synaptic Plasma Membrane Phospholipid and Cholesterol Content

The total and individual phospholipid and cholesterol content, as well as, the fatty 

acid composition of SPM phospholipids did not differ between male and female rats at 

two or five weeks o f age (data not shown). Thus, statistical analysis to test subsequent 

effects o f diet treatments combined results from both sexes at each age. The amount of 

total and individual phospholipids and cholesterol content in SPM o f  rats fed different 

diets at each age group are similar to that o f Breckenridge et al. (1972) and Foot et al. 

(1982).

The relative distribution o f SPM phospholipids from two to five week-old rats is 

shown (Table 6.3). At all ages and diet treatments examined, the major SPM
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phospholipids were PC and EPG (Table 6.3). Other investigators have also found that the 

major phospholipids in rodent SPM were the PC and EPG (Breckenridge et al.. 1972; Sun 

& Sun, 1974; Foot et al., 1982; Hrboticky et al., 1989). There was no significant change 

in total and individual phospholipids and cholesterol to phospholipid ratio between diet 

treatments at two and five weeks o f  age (Table 6.3).

Table 6.3 Total and Individual Phospholipids and Cholesterol Content in Synaptic 

Plasma Membranes from Rats Fed Different Fat Diets at Two and Five Weeks of  

Age*

2 Weeks 5 Weeks7

Diet T reatment: Low LNAT C ontrof AA+DHA: Low LNAT Controf AA+DHA:

Total PLst 0.65±0.06 0.87±0.21 0.73±0.07 0.6610.08 0.6210.09 1.0110.27

SMf 0.13±0.04 0.10±0.02 0.08±0.02 0.0610.03 0.0610.02 0.0810.02

PC+ 0.19±0.04 0.38±0.08 0.39±0.05 0.2510.044 0.2510.03 0.2910.19

PS+ 0.13±0.03 0.14±0.03 0.16±0.04 0.1410.03 0.1010.02 0.1310.02

Pl+ 0.10±0.03 0.19±0.06 0.10±0.03 0.1010.03 0.0510.02 0.1010.05

EPG+ 0.27±0.10 0.37±0.07 0.32±0.05 0.3310.12 0.2510.03 0.3110.02

Cholesterol / PL* 0.37±0.08 0.61 ±0.26 0.69±0.18 0.3910.4 0.6110.09 0.7310.18

EPG, ethanolam ine glycerophospholipid (PE * ethanolamine plasmalogen); PL, phospholipids; SM , 
sphingom yelin: PC. phosphatidylcholine; PS, phosphatidylserine; PI, phosphatidylinositol; PE.
phosphatidylinositol
* V alues are mean ± SEM with n=6 for each experimental diet. ’ pmol/mg protein
* pm ol/pm ol
T Low LNA was obtained by the addition o f  safTlower oil as the fat blend.
* The control fat diet o f  C18:2n-6 to  C18:3n-3 fatty acid ratio o f  7.3:1 approxim ates the fatty acid 
com position used in SMA® infant formula.
* The AA + DHA diet was obtained by the addition o f  A RA SC O ^and D H A S C O " oil to the control diet fat 
blend.
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6. Fatty Acid Composition of Synaptic Plasma Membrane Phospholipids

a) Total Phospholipids

Consideration o f age- and diet-related changes in this study will be given to the 

C20:4n-6, C22:5n-6, and C22:6n-3 content o f rat SPM phospholipids at two and five 

weeks o f age.

SPM total phospholipids were comprised o f mostly saturated (C16:0 and C l8:0). 

C18:ln-9, C20:4n-6, and C22:6n-3 (Table 6.4). Age-related changes occurred in C16:0 

and C18:ln-7 content o f total phospholipids from two to five weeks o f  age (Table 6.4). 

No age-related changes were detected in C20:4n-6 and C22:5n-6. and C22:6n-3 content 

o f total phospholipids from two to five weeks o f age (Table 6.4). The C20:^n-6 content 

o f total phospholipids was higher in rat pups fed the AA+DHA diet compared to the 

control or low LNA diet at five but not two weeks of age (Table 6.4). Generally, diet- 

specific increase in C22:5n-6 and decrease in C22:6n-3 content was observed in the total 

phospholipids o f rat pups fed the low LNA versus control or AA+DHA diets at two and 

five weeks of age (Table 6.4).
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Table 6.4 Fatty Acid Composition of Total Phospholipids in the SPM of Rats Fed Low LNA, Control, or AA + DHA Diet*

Diet Treatment: Low LNA 1
2 Weeks 
C ontrol AA+DHA* Low L N A 1

5 Weeks 
Control1 AA+DHA:

Fatty acid (% wt/wt)

C14:0 0.85±0.8a 0.17±0.0a 0.8210.7° 1.0010.6“ 1.3411.3“ 0.7810.3“

C l 6:0 45.2±6.4aN' 31.7+0.5“̂ 28.5i3.4“v 29.611.6“ 31.410.5“ 25.213.1“

C18:0 23.3±1.3a 20.7±0.2a 18.610.7“ 22.311.4“ 24.212.1“ 24.710.9“

€18: ln-9 9 .6 6 ± l.r 11.4±0.0a 11.310.3“ 12.210.4“ 11.910.2“ 10.812.8“

C I8:ln-7 2.20i0.6“v 2.73+0. l “v 2.6510.11"' 3.4510.2“ 3.4910.2“ 2.8410.6“

C18:2n-6 1.10±0.1a 0.80±0.0ab 0.44l0.2b 1.1310.2“ 0.51l0.0b 0.76l0.2“b

C18:3n-3 0.34±0.2a 0.01±0.0a 0.0110.0“ 0.0410.0“ 0.0710.1“ 0.0710.1“

C20:4n-6 6.72±0.7b 12.7±0.1a 15.011.7“ 9.3910.7“ 8.6810.4“ 11.612.5“

C20:5n-3 0.03±0.0a <0.10a <0.10“ <0.10“ 0.0310.0“ 0.0110.0“

C22:4n-6 1,24±0.7a 3.0510. l a 2.3611.3“ 3.4210.7“ 2.7210.3“ 0.8110.8“

C22:5n-6 3.05±1.2a 1.7110.1“ 2.5211.2“ 6.1310.6“ 1.15i0.2b 2.72i0.9b

C22:5n-3 0.83±0.8a 0.0310.0“ 0.5510.4“ <0.10“ 0.0510.0“ 0.4510.4“

C22:6n-3 5.46±1.8b 15.010.4“ 17.211.8“ 11.411.3b 14.5+0.3“b 19.2+2.2“

* Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a or 
b) are not significantly different. Values that have different letters are statistically significantly different, at p<0.05.
1 Low LNA was obtained by the addition o f  safflower oil as the fat blend. x
f The control fat diet o fC I8 :2 n -6  to C I8 :3 n -3  fatty acid ratio o f  7.3:1 approxim ates the fatty acid composition used in SMA* infant formula. 
i  The AA + DHA diet was obtained by the addition o f  ARASCO *and DHASCO * oil to the control diet fat blend.
'  Age difference at p< 0.05.
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b) Phosphatidylcholine

The effect o f feeding low LNA, control, or AA+DHA diet on the fatty acid 

composition o f rat SPM PC is shown (Table 6.5). C l 6:0. Cl 8:0. C18:ln-9. and C20:4n-6 

were the major fatty acids present in PC (Table 6.5). Decrease in C l4:0. C l6:0, C18:2n- 

6, C18:3n-3, and C20:4n-6 content and increase in C l8:0 and C22:6n-3 content occurred 

in PC from two to five weeks o f age (Table 6.5). A diet-related decrease was found in 

C20:4n-6 and C22:6n-3 content in rat pups fed the low LNA compared to the control or 

AA+DHA diet at five but not two weeks o f age (Table 6.5).

c) Ethanolamine Glycerophospholipid 7

EPG constituted the most highly unsaturated phospholipid class in SPM (Table 

6.6). The predominant fatty acids in EPG were C l6:0. C l8:0, C20:4n-6. and C22:6n-3 

(Table 6.6). C I8:ln-9  and C l8 :In-7 content increased and CI8:2n-6, C18:3n-3, C20:4n-

6. C20:5n-3 content decreased in EPG from two to five weeks o f  age (Table 6.6). 

Decrease in the C22:6n-3 content of EPG was observed in rat pups fed the low LNA 

compared to control or AA+DHA diet at two and five weeks of age (Table 6.6). Feeding 

rat pups AA+DHA or the control diet increased the C20:4n-6 content in EPG compared 

to feeding the low LNA diet at two and five weeks o f age (Table 6.6).
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Table 6.5 Fatty Acid Composition of Phosphatidylcholine in the SPM of Rats Fed Low LNA, Control, or AA + DHA Diet*

Diet T reatment: Low L N A 1
2 Weeks 
C ontrol AA+DHA1 Low LNA T

5 Weeks 
Control1 AA+DHA:

Fatty acid (%  wt/wt) 

CI4:0 0.7710.4“̂ 0.45±0.1lW 0.6710.2“'' 0.4710.3“ 0.0410.0“ 0.1410.0“

C16:0 5 5 .0 + 1 .4 “'' 50.5+0.7bV 53.910.9“'' 52.611.4“ 43.9+2. lb 47.011.3b
0 8 : 0 9.6110.5“'/ 10.311.0“'' 8.9510.3“'' 12.410.3“ 13.610.5“ 12.610.4“
0 8 : 1  n-9 14.7±0.5bV 17.410.4“'' 17.710.3“'' 16.1+0.7b 18.9+0.6“ 18.710.5“
C18:ln-7 3.18i0.2“v 3.59+0.3“'' 3.9710. l aV 4.92i0.5b 5.9110.2“ 4.9810. l b
C18:2n-6 2.03+0.3“'' 1.25±0.1bV 0.8610.2'"' 1.5110.2“ 0.66l0.0b 0.75i0.0b

C18:3n-3 0.67±0.3^ 0.2410. l ab'' <0.10*"' 0.0410.0“ 0.02+0.0“ <0.1“

C20:4n-6 8.45+0.6M 10.610.4“'' 9 .22l0.3b'' 6.71l0.3b 7.7910.4“ 8.6310.2“
C20:5n-3 0.19±0.1b 0.47±0.2a <0.10b 0.1510.1b 0.5010.2“ <0.10b

C22:4n-6 0.75±0.2a 0.42±0.2a 0.1910.2“ 0.2610.2“ 0.51+0.2“ 0.17+0.1b

C22:5n-6 0.69±0.1a 0.63±0.1a 0.6710.1" 1.1110.2“ 1.06+0.4“ 0.8310.1“

C22:5n-3 0.41±0.2a 0.13±0.0b 0.08±0.0b 0.9610.5“ 0.1610.1 “b 0.04l0.0b

C22:6n-3 3.25+0.3b'' 4.3110.3^ 3.85l0.3aM 2.85l0.2b 7.06+0.4“ 6.21+0.2“

* Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a or 
b) arc not significantly different. Values that have different letters are statistically significantly different, at p<0.05.
1 Low LNA was obtained by the addition o f  safllower oil as the fat blend.
* The control fat diet o fC I8 :2 n -6  toC I8 :3n -3  fatty acid ratio o f  7 .3 :1 approxim ates the fatty acid composition used in SM Afc infant formula.
* The AA + DMA diet was obtained by the addition o f  ARASCOwand DHASCO '" oil to  the control diet fat biefld.
'  Age difference at p<0.05

o



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 6.6 Fatty Acid Composition of Ethanolamine Clycerophospholipid in the SPM of Rats Fed Low LNA, Control, or AA 

+ DHA Diet*

Diet Treatment: Low LNA 1
2 Weeks 
Control* AA+DHA: Low LNA 1

5 Weeks 
Control* AA+DHA*

Fatty acid (% wt/wt) 
C14:0 1.04±0.2a 0.01+0.0“ 0.77+0.7“ 0.78+0.2“ 0.67+0.6“ 0.94+0.8“

C16:0 22.5+1.6“ 7.47+0.3“ 7.3210.6“ 14.0+0.7“ 8.8910.5“ 17.118.6“

CI8:0 29.7+1.7“ 29.510.6“ 28.711.3“ 30.511.2b 37.012.3“ 25.3i3.0b

C I8:ln-9 5.88+0.4“v 6.73i0.3“v 6.55+0.2“'' 6.57+0.3b 8.8910.6“ 6.38i0.7b

C18:ln-7 0.48+0.2“v 0.80+0.0“v 0.86+0.0“'' 1.04+0.1“ 1.2310.1“ 0.8810.1“

C18:2n-6 2.36i0.5“'/ 0.5310. l bV 0.30+0.1M 0.8310.1“ 0.32+0.0b 0.19 l0 .0b
CI8:3n-3 0.5310. l “v 0.3310.1“'' <0.10*"' 0.08+0.1“ <0.10“ <0.10“

C20:4n-6 15.311. 3m 24.110.4“'' 24.010.6“'' 14.210.9“ 16.910.2“ 15.311.7“
C20:5n-3 1.4510.3“'' 0.0510.0m <0.101"' 0.2710.1“ <0.10b <0.10b

C22:4n-6 0.89+0.3“ 0.03+0.0“ 2.5911.3“ 1.43+1.4“ 1.6811.1“ 0.91+0.9“

C22:5n-6 4.2710.4“ 6.14+0.1“ 3.71+1.1“ 7.89+0.4“ 2.5810.5“ 3.35+1.0“

C22:5n-3 2.80+0.3“ 1.56+0.0b 1.06+0.3b 4.74+0.3“ 0.34+0. l b 0.9810.2b

C22:6n-3 12.8+1.4h 22.7+0.4“ 24.2+1.0“ 17.7±1.0b 21.5+1.9b 28.7+3.1“

* Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a or 
b) are not significantly different. Values that have different letters are statistically significantly different, at p<0.05.
1 Low LNA was obtained by the addition o f  saftlower oil as the fat blend. \
* The control fat diet o fC I8 :2 n -6  to C I8:3n-3 fatty acid ratio o f  7.3:1 approxim ates the fatty acid com position used in SMA “ infant formula.
* The AA + DHA diet was obtained by the addition o f  ARASCO *and D H A SC O " oil to the control diet fat blend.
'  Age difference at p<0.05
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d) Phosphatidylserine

The major fatty acids o f SPM PS were C l6:0, C l8:0, C18:ln-9. C20:4n-6. 

C22:4n-6, C22:5n-6, and C22:6n-3 (Table 6.7). PS contained high levels o f  C22:6n-3 

(Table 6.7). C l 8:0 and C18:3n-3 content o f PS was higher at two compared to five weeks

o f age (Table 6.7). The C18:ln-9, C22:5n-6, and C22:6n-3 content o f PS was generally

higher at five compared to two weeks o f  age. A diet-associated decrease in C22:6n-3 

along with increase in C22:5n-6 occurred in rats fed the low LNA versus rats fed the 

control or AA+ DHA diet at two and five weeks o f age (Table 6.7). Rat pups fed the 

AA+DHA diet at five weeks o f age contained a significantly higher C20:4n-6 content in 

PS compared to animals fed the low LNA or control diet (Table 6.7). '

e) Phosphatidylinositol

The PI fraction from SPM contained a large amount of saturated fatty acids, 

particularly, C l6:0 and C l8:0 (Table 6.8). C20:4n-6 and C22:6n-3 present in PI were the 

predominant n-6 and n-3 fatty acids, respectively. Increase in C20:4n-6 content o f PI 

occurred in rat pups from two to five weeks o f age (Table 6.8). The C20:4n-6 and 

C22:6n-3 content o f PI was lower in rats fed the low LNA compared to rats fed the 

control or AA + DHA diet at five weeks o f age (Table 6.8).
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Table 6.7 Fatty Acid Composition of Phosphatidylscrine in the SPM of Rats Fed Low LNA, Control, or AA + DHA Diet*

Diet Treatment: Low LNA 1
2 Weeks 
Control* AA+DHA* Low LNA 1

5 Weeks 
Control* AA+DHA*

Fatty acid (% wt/wt)
(1 4 :0 0.5710.2" 0.16+0.1" 0.18+0.1" 0.5410.2" 0.05i0.0b 0.05+0.0b
C16:0 12.912.0" 8.0111.3" 12.6+2.2" 15.611.0" 3.94i0.3c 6.21i0.5b

C18:0 30.0+2.6aV 37.911.9"*' 34.0+2.6"'' 32.712.lb 37.7+0.3" 15.1+0.3C

C18:ln-9 6.46+0.7'"' 8.6211.0“'' 8.28+0.6“'"' 9.37±0.4b 8.98+0.2b 11.4+0.1"

C18:ln-7 1.0210.3" 0.71+0.1" 1.29+0.3" 0.95+0.3" 0.5310.0" 0.99+0.1"

C18:2n-6 1.85+0.6" 0.90+0.7" 0.38+0.0" 0.88+0.2" 0.2310.1" 0.31+0.1"

C18:3n-3 4.33+1.4"'' 1.7911 .l"bV 0.42+0.4*"' 0.03+0.0" <0.10" 0.08+0.0"

C20:4n-6 8.1611.4" 9.28+1.4" 10.0+0.4" 3.8110.7b 2.81l0.4b 16.7+0.2"
C20:5n-3 4.1411.l"v 0.04i0.0tw 0.14±0.1bV 0.3910.1" 0.15+0.0b <0.10b

C22:4n-6 6.1211.1" 5.1510.9" 5.7810.3" 5.13±0.2b 0.1I10.0C 8.71+0.1"

C22:5n-6 4.6010.3"'' 1.89+0.3*"' 1.34+0.4'"' 10.010.5" 4.70+0.2b 0.8610. l c

C22:5n-3 2.2110.7" 1.54+1.2" 0.30+0.1" <0.10C 2.2510.1" 0.33±0.0b

C22:6n-3 17.7+2.1*"' 24.0+2.5"'' 25.2+0.9"v 20.6+1.0b 38.610.6" 39.210.4"

* Values are mean 1 SLM with n 6 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a or 
b) are not significantly different. Values that have different letters are statistically significantly different, at p<0.05.
1 Low LNA was obtained by the addition o f  safflower oil as the fat blend.
f The control fat diet o f  C I8 :2n-6  to C I8:3n-3 fatty acid ratio o f  7.3:1 approxim ates the fatty acid com position used in SMA* infant formula.
• The AA t DHA diet was obtained by the addition o f  ARASCO "and DHASCO oil to the control diet fat blend.
'  Age difference at p<0.05
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Table 6.8 Fatty Acid Composition of Phosphatidylinositol in the SPM of Rats Fed Low LNA, Control, or AA + DHA Diet*

Diet Treatment: Low LNA 1
2 Weeks 
Control AA+DHA* Low LNA 1

5 Weeks 
Control* AA+DHA*

Fatty acid (% wt/wt)

C14:0 1.74±0.5a 0.35±0.1b 0.98+0.4“b 2.36+0.6“ 0.30+0.2b 0.88+0.6“b

€16:0 29.3±5.6a 14.4±6.8b 18.412.3b 24.813.3“ 14.5i2.6b 12.8+2.3b

C18:0 27.9±1.7b 34.6±1.7a 36.511.8“ 30.112.7“ 31.312.5“ 33.0+1.1“

CI8:ln-9 6.85±1.0a 8.42+0.5“ 5.2611.5“ 7.6411.8“ 7.6511.5“ 7.4511.2“

C18:ln-7 0.61±0.3a 1.51 ±0.2“ 2.18+0.2“ 1.46+0.5“ 1.7210.2“ 1.49+0.2“

C18:2n-6 2.47±0.9a 0.69±1.6b 0.54+0.0b 1.75+0.4“ 0.5910. l b 0.6810. l b

CI8:3n-3 1.26±0.4a 1.69±0.5a 4.01 + 1.7“ 2.8711.8“ 0.1110.5“ 0.33+0.3“
C20:4n-6 21.2±4.4,w 23.513.1lW 22.8i2.2“v 20.811.9b 33.113.0“ 31.614.2“

C20:5n-3 0.75±0.3a 0.8710.3“ 0.70+0.6“ 0.9710.4“ 0.85+0.8“ 0.6710.6“

C22:4n-6 2.1910.9“ 2.3910.6“ 2.1810.7“ 1.8010.6“ 1.6511.0“ 1.9510.9“
C22:5n-6 1.39±0.6“ 0.7410.2“ 0.23+0.1“ 1.4410.5“ 0.70+0.2“ 0.6510.1“

C22:5n-3 0.13±0.1a 0.3110.1“ 0.3810.2“ 0.26+0.1“ <0.10“ 0.0110.0“

C22:6n-3 4.20±0.8b 10.611.4“ 5.87±0.5b 3.71 i0 .7 b 7.5511.4“ 8.4911.5“

* Values are mean ± SEM with n=6 for each experimental diet. For each horizontal set o f  values within an age group that have the same superscript letters (a or 
b) arc not significantly different. Values that have different letters are statistically significantly different, at p<0.0S.
1 Low LNA was obtained by the addition o f  satTlower oil as the fat blend.
* The control fat diet o fC I8 :2 n -6  to C18:3n-3 fatty acid ratio o f  7.3:1 approxim ates the fatty acid com position used in SM A* infant formula.
* The AA + DHA diet was obtained by the addition o f  A RA SCO '^and DHASCO '’ oil to  the control diet fat blend>
'  Age difference at p<0.05
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7. Na, K-ATPase Kinetics

Kinetic parameters o f Na. K-ATPase. obtained from SPM o f two and five week- 

old rats, were examined and the results are presented as Eadie-Hofstee plots (Figure 6.1). 

Among the three diet treatments, rat pups at two weeks o f age showed a low activity 

(Vmax = 7.85 -  21.8 pmol Pi/ mg / hr ) and high affinity (Km = 0.49 -  1.04 mM) 

compared to rat pups at five weeks of age which showed a high activity (Vmax = 24.92 -  

45.33 pmol Pi/ mg / hr) and low affinity (Km = 1.56 -  2.44 mM) (Table 6.9).

The Na. K-ATPase kinetics in the SPM of rats fed either the low' LNA. control, or

AA+DHA diets are shown (Figure 6.1). Rat pups fed the low LNA diet showed a
/

decrease in Vmax compared to pups consuming the control or AA+DHA diet at two 

weeks o f age (Figure 6.1). The Vmax o f Na. K-ATPase at two weeks o f age in low LNA 

rats was 7.85 compared to 21.6 and 21.8 pmol Pi/ mg / hr for control or AA + DHA diet, 

respectively (Table 6.9). The Vmax of Na. K-ATPase at five weeks o f age in rats fed low 

LNA was 24.9 compared to 45.3 and 39.7 pmol Pi/ mg / hr for rats fed control or AA + 

DHA diet, respectively.

The Km of Na. K-ATPase in SPM of rat pups at both ages also showed 

differences among diet treatments. The Km o f Na, K-ATPase in SPM of rat pups fed the 

low LNA or control diet was lower compared to the rats fed AA+DHA diet at two weeks 

o f  age. The Km o f Na. K-ATPase at two weeks of age was 0.57. 0.49, and 1.04 mM for 

rats fed the low LNA. control, or AA+DHA diet, respectively. Rat pups fed the low LNA 

diet had a higher Km compared to the rats fed the control or AA+DHA diet at five weeks 

o f age. The Km of the SPM Na. K-ATPase o f rats fed the low LNA was 2.44 mM 

compared to 1.56 and 1.67 mM for the rats fed control or AA+DHA diet, respectively.
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Figure 6.1 Synaptic Plasma Membrane Na, K-ATPase Kinetics of Rats Fed Low 
LNA, Control, or AA + DHA Diet at Two and Five Weeks of Age. Specific activity 
was determined by subtracting the activity observed in the presence o f 1 mM ouabain 
from total activity, a) a Michaelis-Menten plot o f Na, K-ATPase activity (pmol Pi/ mg / 
hr; V) vs. ATP (mM). Each point represents mean ± SEM of six experiments performed 
in triplicates. Values without a common letter among diet treatments at each ATP 
concentration (mM) differ significantly (p < 0.05). *Age differences at each ATP 
concentration (mM) at p < 0.05; b) an Eadie-Hofstee plot o f Na. K-ATPase activity (V) 
vs. Na. K-ATPase (V) / ATP (mM) [S]. The correlation coefficient (r) for straight line in 
the graph are indicated (df=4). Values are mean with n=6 for each experimental diet.
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D. DISCUSSION

The present study was conducted to compare the effects o f feeding rat pups diets 

w ith C18:3n-3 vs. C22:6n-3 on the SPM lipid composition and kinetic properties o f Na, 

K-ATPase at two and five weeks o f age. The results o f this study revealed that rat pups 

fed a low LNA compared to animals fed the control or C22:6n-3 diet have increased SPM 

phospholipid C22:5n-6 content, decreased SPM phospholipid C22:6n-3 and C20:4n-6 

content and decreased SPM Na, K-ATPase activity at two and five weeks o f age.

Age- and Diet-Related Changes in Synaptic Plasma Membrane Phosptiolipid and 
Cholesterol Content

The developmental changes in rat SPM lipid composition during the first five 

weeks o f life were small (Table 6.3). The lack of developmental change in rat SPM total 

and individual phospholipid and cholesterol to phospholipid ratio during the first five 

weeks o f life is similar to that o f weanling rats (Foot et al.. 1982; Hofteig et al.. 1985) and 

piglets (Hrbotickv et al.. 1989).

Dietary fat had a non-significant effect on SPM PC content (Table 6.3). The 

reason for the higher PC content in rats fed control or AA + DHA diet compared to the 

low LNA diet at two weeks o f age is unknown. However. Hitzemann (1982) found that 

PEMT activity was highest in rat synaptosomes at two weeks o f age. It is possible that 

the higher PC content in rats fed control or AA + DHA diet compared to feeding rats a 

low LNA diet may be due to the increased PEMT activity at two-weeks o f  age.

The content o f PS in SPM of rats was not significantly affected by the diet fat 

treatments used in this study (Table 6.3). Ikemoto et al (2000) which showed that dietary 

C18:3n-3 deficiency does not affect PS synthesis in rat synaptosomes.

The rats fed the control or AA + DHA diet showed a higher cholesterol to 

phospholipid ratio compared to rats fed the low LNA diet at two and five weeks o f age. 

The higher cholesterol to phospholipid ratio in SPM of rats fed control or AA + DHA 

diet at two and five weeks o f age may compensate for the higher n-3 fatty acids, 

particularly, the C22:6n-3 content in total phospholipids (Table 6.4).
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Age- and Diet-Related Changes in Synaptic Plasma Membrane Phospholipid Fatty 
Acid Composition

The high levels o f C20:4n-6 and C22:6n-3 in rat SPM phospholipids in this study 

are similar to data published by Breckenridge et al. (1972), Sun & Sun (1974). Foot et al. 

(1982), and Hargreaves et al. (1989). The developmental changes observed in rat SPM 

phospholipids C l6:0 and C l8:0 and the general increase in C22:6n-3 and decrease in 

C20:4n-6 fatty acid, which were observed in total phospholipids. PC. PS. and EPG are 

similar to data from other rodent SPM (Foot et al.. 1982).

The major effect o f feeding the low LNA compared to control or AA + DHA diet 

on the rat SPM was depletion of C22:6n-3 and a reciprocal enrichment o f C22:5n-6. 

Similar changes have been reported for SPM in rodents fed diets containing high C18:2n- 

6:C18:3n-3 fatty acid ratio (Foot et al.. 1982; Bourre et al.. 1984). Conceivably, this 

effect may be explained by competition o f  n-6 and n-3 fatty' acids for microsomal 

desaturation (Brenner & Peluffo. 1966; Cook. 1978; Sanders & Rana. 1987). Therefore, 

the significantly lower C22:6n-3 content in SPM phospholipids of rats fed the low LNA 

diet was compensated by a significantly higher level o f docosapentaenoic acid (C22:5n- 

6). indicating that polyunsaturation o f membrane phospholipids was preserved in 

agreement with prev ious reports (Youyou et al.. 1986; Connor et al.. 1990).

The higher C20:4n-6 and C22:6n-3 content in SPM phospholipids o f rats fed the 

AA + DHA diet compared to control or low LNA diet is similar to data by Anderson et 

al. (1990) and Jumpsen et al. (1997) which demonstrated that preformed C20:4n-6 and 

C22:6n-3 are more readily incorporated into brain phospholipids. Both delta-6- and delta- 

5 desaturases are present in liver and brain o f  the newborn rodents (Ravel et al.. 1985; 

Sanders & Rana. 1987; Bourre et al.. 1990) and some C18:2n-6 and C18:3n-3 can be 

converted to C20:4n-6 and C22:6n-3. respectively, in the suckling rat (Nouvelot et al..

1983). The data from this study demonstrates that the newborn rat is able to convert 

C18:2n-6 and C18:3n-3 into C20:4n-6 and C22:6n-3. respectively, but it is not as 

effective as preformed C20:4n-6 and C22:6n-3 at raising the SPM phospholipid C20:4n-6 

and C22:6n-3 content.
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Age- and Diet-Related Changes in Synaptic Plasma Membrane Na, K-ATPase 
Kinetics

The kinetic parameters o f Na, K-ATPase obtained from the present study shows 

that two-week-old relative to five-week-old rat pups possess high affinity ATP binding 

sites and low activity o f  SPM Na. K-ATPase. Conversely, the five-week-old relative to 

two-week-old rat pups have low affinity ATP binding sites and high activity SPM Na. K- 

ATPase. The results o f this study are in agreement with those o f Samson & Quin (1967). 

Mishra & Shankar (1980), and Tsutsumi et al. (1995). showing enhanced Na. K-ATPase 

activity with age. These findings o f increased SPM Na. K-ATPase activity with age differ 

from those reported by Calderini et al. (1983) who showed a decrease ( -  35%) in SPM 

Na. K-ATPase with age. The reason for this discrepancy between studies may be due to 

the time periods in which Na. K-ATPase activity was measured (weeks vs. months). The 

reason for this shift in Na. K-ATPase kinetics may be due to a mechanism essential for 

maintenance of ionic gradients at very' low concentration o f  ATP (Tsutsumi et al.. 1995). 

Expression of different molecular forms o f Na. K-ATPase could account for the altered 

Na. K-ATPase kinetics with age (Tsutsumi et al.. 1995). Thus, a high Na. K-ATPase 

affinity at a young age permits a greater tolerance of low levels o f ATP (Tsutsumi et al..

1995).

The results o f the present study show no significant changes in the total and 

individual change in the total and individual SPM phospholipid content between age and 

diet treatments. This finding is important because it has been shown that membrane 

phospholipids, such as PC (Tanaka & Strickland. 1965). PS (Tsakris & Deliconstantinos.

1984), and PE (Goldman & Albers, 1973) have a significant effect on Na. K-ATPase 

activity. Therefore, the lower Vmax o f SPM Na. K-ATPase o f rats fed low LNA 

compared to rats fed control or AA + DHA diet is not attributed to altered phospholipid 

content.

It is well known that alterations in the lipid environment o f membrane-bound 

enzymes may be associated with changes in kinetics parameters such as Vmax and Km 

for substrate (reviewed by Lenaz, 1979). The low Vmax o f Na. K-ATPase in SPM o f rats 

fed low LNA compared to rats fed control or AA + DHA diet is similar to that reported 

by Bourre et al. (1989) and Tsutsumi et al. (1995). The increased C22:5n-6 and decreased
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C22:6n-3 in the low LNA compared to control or AA + DHA fed rats may account for 

the low Vmax in low LNA compared to control or AA + DHA fed rats at two and five 

weeks of age. Recently. Swarts et al. (1990) showed a decrease in the dephosphorylation 

rate of the phosphorylated intermediate o f Na, K-ATPase in the presence o f unsaturated 

fatty acids, particularly n-6 fatty acids. Therefore the increase in C22:5n-6 content in 

SPM phospholipids o f rats fed the low LNA diet could result in lower levels of the 

dephosphorylated form o f Na. K-ATPase which may decrease Na, K-ATPase activity 

because dephosphorylated form of Na, K-ATPase is needed to bind potassium.

A role o f  dietary fat on Na, K-ATPase gene or protein expression could 

potentially be responsible for the differences in Na. K-ATPase Vmax for Tat pups fed 

either the low LNA. control, or AA + DHA diet (Takeuchi et al.. 1995; Clarke & Jump. 

1996). Western blot analysis o f the p i -subunit o f SPM Na, K-ATPase did not show any 

significant difference in amount o f Na, K-ATPase pi-subunit protein among diet groups 

at two and five weeks o f age (data stated in results section). This finding is in agreement 

with Sato et al. (1999) which showed that long-term C18:3n-3 deficiency induces no 

substantial change in the rate o f protein synthesis in rat brain. Therefore, the significant 

increase in Na. K-ATPase Vmax for rat pups fed either control or AA + DHA compared 

to the pups fed the low LNA diet is attributed to alterations in the SPM lipid 

environment.

The physiological significance of a lower Na. K-ATPase activity in animals fed 

the low LNA compared to the control or AA + DHA diet is unknown. Inhibition o f SPM 

Na. K-ATPase activity may result in decreased reuptake as well as increased release o f 

neurotransmitters (Benzi et al.,1993). Conceivably, the altered learning and memory 

abilities in rats and mice fed the low LNA diet may be due to lower Na. K-ATPase 

activity which may be a biochemical basis for the altered brain functions (Lamptey & 

Walker, 1976; Yamamoto et al.. 1987; Bourre et al.. 1989; Yonekubo et al.. 1994; 

Frances et al.. 1996; Belzung et al.. 1998; Carrie et al.. 1999 & 2000).

In summary, this study demonstrates that developmental changes in rat SPM 

lipids from two to five weeks o f age are not significantly altered by the diet fat treatments 

used in this study. Feeding rats diets with either C18:3n-3 or C22:6n-3 alters the SPM
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phospholipid fatty acid content, particularly, C20:4n-6. C22:5n-6, and C22:6n-3. The 

subsequent alterations in SPM Na, K-ATPase kinetic properties suggests that SPM 

phospholipid C20:4n-6. C22:5n-6, and C22:6n-3 content plays an important role in 

modulating Na, K-ATPase activity. Thus, the findings from the present study may have 

important implications for infant formulas that are devoid o f C22:6n-3.
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CHAPTER VII. DIETARY N-6 AND N-3 FATTY ACIDS ALTERS 
SYNAPTIC PLASMA MEMBRANE GANGLIOSIDE FATTY ACID 
COMPOSITION OF RATS AT TWO WEEKS OF AGE

A. INTRODUCTION

Gangliosides (sialic acid containing glycosphingolipids) are plasma membrane 

constituents, which are especially abundant in neuronal tissues (Panzetta & Ailende. 

2000). Although their precise function has not been clearly defined, gangliosides do play 

an important role in cell-cell interaction (Cheresh et al., 1986: Baker. 1988; Yang et al.. 

1996), recognition and signaling (Bremer et al., 1986: Hakomori, 1990: Nagai, 1995: 

Meuillet et al.. 1996). neuritogenesis (Wu et al., 1995). and cellular immunity (Massa. 

1993; Lu & Sharom. 1995). It has been shown using artificial (Palestini et al.. 1994: 

Stewart & Boggs, 1993) and intact biological membranes (Palestini et al.. 1991) that the 

hydrophobic portion (ceramide) o f glycosphingolipids is involved in controlling the 

availability o f gangliosides to interact with external ligands and enzymes as well as 

governing the aggregative and lateral phase separation properties (Masserini & Freire. 

1986; Masserini et al.. 1989; Palestini et al., 1991).

Previous studies have shown that ganglioside pattern and ceramide composition 

can undergo substantial changes with age (Merat & Dickerson. 1973: Ohsawa. 1989: 

Palestini et al.. 1990 & 1991). In this regard, in rat brain, it was shown that the long-chain 

base component of ceramides containing 18 and 20 carbon atoms and one double bond 

(C l8:1 and C20:1) constitute up to 97% of total long-chain base content at all ages 

(Palestini et al.. 1990 & 1991). The C20:l long-chain base occurs only in postnatal life 

and increases with age in all gangliosides with a maximal content in aged animals 

(Palestini et al., 1990 & 1991). The fatty acid composition o f the ceramide moiety from 

the brain gangliosides tends to remain constant with age with stearic acid (C l8:0) being 

the predominant fatty acid species (Palestini et al., 1990 & 1991).

Although there are extensive studies o f developmental changes o f brain 

gangliosides, studies concerning the effect of dietary fat on brain ganglioside fatty acid 

composition during development are limited. Berra et al. (1976) examined the effects o f 

diets with different fatty acid composition on whole brain gangliosides o f rats from birth 

to 100 days o f age. The authors reported that the fatty acid composition o f w hole brain
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ganglioside was unaffected by the diet treatments. However, the authors did not show any 

data on the fatty acid composition of the gangliosides and the fat content o f  the diet 

treatments was different. Recently, Saito & Saito (1991) reported that C22:0 and C24:l 

added to cell culture media can be incorporated into the fatty acyl moiety o f SM and 

gangliosides of cultured neuronal cells. Studies with neurotumor cell lines have shown 

incorporation o f 3H -C20:4n-6 into globosides and gangliosides (Dawson & Vartanian, 

1988). Taken together, these studies demonstrate that the fatty acid composition of 

gangliosides can be altered and that PUFAs can be detected as part o f  the fatty acyl 

moiety o f gangliosides. It is well established that C20:4n-6 and C22:6n-3 are present in 

membrane phospholipids, however, it is not known if C20:4n-6 and C22:6n-3 are present 

in SPM gangliosides.

Since gangliosides are enriched in SPM and modulation of some membrane 

functions may depend on the ceramide moiety o f  gangliosides, it is conceivable that 

dietary fat induced changes in the fatty acid composition o f the ceramide moiety o f brain 

gangliosides may affect membrane function similar to that shown with membrane 

phospholipids (reviewed by Stubbs & Smith. 1984 and Clandinin et al.. 1997). Therefore, 

the objectives o f this study were to determine if C20:4n-6 and C22:6n-3 are present in rat 

SPM gangliosides and to investigate whether dietary fat can alter the C20:4n-6 and 

C22:6n-3 content of rat SPM gangliosides.

B. MATERIALS AND METHODS

1. Animal Care

Breeding of Sprague-Dawley rats have been described in C hapter III. All litters 

were culled to twelve rat pups following parturition. Rats sacrificed at two weeks of age 

received only maternal milk. One entire litter o f rat pups fed the same diet was sexed and 

weighed before decapitation. Excised brains were placed in ice-cold 0.32 M sucrose with 

ImM EDTA, pepstatin A (20pg/mL), aprotinin (20 pg/mL), try psin inhibitor (20 pg/mL), 

phenylmethylsulfonyl fluoride (5 pg/mL), and leupeptin (20pg/mL), pH 7.4. Thirty-six 

brains were pooled per sample for isolation o f SPM. Thirty-six brains were determined to 

be the minimum amount needed to detect the fatty acid composition o f SPM
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gangliosides. Stomach contents o f three rats from each litter were also removed and 

analyzed to determine the fatty acid composition of maternal milk. Three litters per diet 

treatment were used.

2. Diets

Three semi-synthetic diets were used as described in Chapter VI (Table 6.1). To 

minimize fatty acid peroxidation, the diets were sealed under nitrogen and stored in a 

freezer at -30°C in darkness. Each day the required amount o f diet was taken out, mixed 

thoroughly, and placed in individual feed cups.

/

3. Isolation of Synaptic Plasma Membrane

SPMs from rat pups at two o f  age were isolated as described in Chapter VI.

4. Lipid Analysis

Total gangliosides were extracted from rat SPM according to the method of Folch 

(1957). which involves SPM extraction with chloroform:methanol (2:1, by vol.). 

Partitioning of gangliosides was carried out using 0.1 M KCI. The ganglioside containing 

aqueous phase was hydrolyzed with 5 mL o f 0.5 M potassium hydroxide in methanol: 

water (1:1. by vol.) at room temperature overnight to remove any glycerophospholipids 

present (Mansson et al, 1978). The pH o f  the solution was adjusted to 5-6 with HCI and 

methanol was removed from the solution by a rotary evaporator (Mansson et al. 1978). 

The remaining aqueous solution was lyophilized and resuspended in 10 mL 0.1 M KCI. 

This solution was applied three times to a Sep-Pak™ reverse-phase C l8 cartridge 

(Waters Associates) and gangliosides were eluted with chloroform : methanol (2:1. by 

vol.) and methanol (Williams & McCluer, 1980). Fractions containing gangliosides were 

evaporated to dryness under nitrogen. The dry residue was dissolved in chloroform : 

methanol (2:1, by vol.) and stored at -30°C until analysis.

Identification o f individual gangliosides was performed by high-performance 

thin-layer chromatography (HPTLC) using 10 x 10 cm silica gel 60 HPTLC plates 

(Whatman. Clifton. NJ). After spotting the sample on the HPTLC plate, the plate was 

developed with chloroform : methanol (85:15. by vol.) to remove interfering neutral
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lipids and phospholipids (Yu et al., 1988). When the plates were completely air-dried, the 

individual gangliosides were separated by developing the HPTLC plate in chloroform : 

methanol : 0.02% (wt/vol.) CaCty^HiO (55:45:10. by vol.; Ando et al.. 1978; Appendix 

3).

To confirm the presence o f gangliosides in the SPM, some SPM ganglioside 

samples were visualized on the HPTLC plate with resorcinol reagent spray (Svennerholm 

et al., 1957) and characterized by comparison with standard bovine brain gangliosides 

(GM1. GDI a. G D lb, and GTlb; Sigma Chemical Co., St. Louis, MO). For fatty acid 

analysis o f SPM gangliosides. the separated gangliosides on the HPTLC plate were 

sprayed with 0.01% (wt/vol.) primulin in water and visualized under UV light. 

Ganglioside fractions on the HPTLC plate corresponding to standards were scraped into 

culture tubes. Fatty acid methyl esters were prepared with 1.0 M hydrochloric acid in 

methanol for 26 hr at 80°C (Mansson et al., 1978).

5. Fatty Acid Analysis

Fatty acid methyl esters were analyzed by automated gas-liquid chromatography 

as described in Chapter III.

6. Gas-Chromatography Mass Spectrometry

For final identification of fatty acids in SPM gangliosides, a Hewlett Packard 

5890 GLC equipped with a flame ionization detector MS ChemStation (HP-UX series) 

data system was used. Mass spectra o f  individual saturated, monounsaturated, and 

polyunsaturated fatty acid in SPM gangliosides were compared with mass spectra o f the 

corresponding standards.

C. RESULTS

1. Growth Characteristics

The body and brain weights of rat pups at two weeks o f  age are similar to that 

shown in Chapter VI.
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2. Fatty Acid Composition of Stomach Content

The rat pup stomach contents at day 14 o f life contained no particulates indicative 

o f diet consumption, and therefore reflected the composition o f their dams' milk. The 

fatty acid composition o f the stomach contents o f  rat pups fed low LNA, control, or 

AA+DHA diet at two weeks o f age was similar to that shown in Chapter VI (Table 6.2).

3. Purity of SPM Preparations

The SPM purity was tested as described in Chapter VI.

4. Gas-Chromatography Mass Spectrometry Analysis /

Mass spectra o f C20:4n-6 and C22:6n-3 from SPM gangliosides were identical 

with mass spectra o f corresponding standards. These data appear to be the first evidence 

to show the presence o f C20:4n-6 and C22:6n-3 in rat SPM gangliosides (Figure 7.1).
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Figure 7.1 Total Ion Chromatogram of C20:4n-6 and C22:6n-3 methyl esters 

from GMla in Synaptic Plasma Membrane of Rats at Two Weeks of Age

5. Dietary Fat Changes in SPM Ganglioside Fatty Acid Content

Fatty acid composition o f  GM la, GDla. G D lb. and GTlb from the rat SPM at 

two-weeks o f age are shown in Table 7.1, Table 7.2, Table 7.3. and Table 7.4. 

respectively. The most abundant molecular species present in the SPM individual
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ganglioside fractions were C l6:0 and C l8:0, a feature already reported for gangliosides 

from whole brain (Palestini et al., 1990). The diet treatments used in this study appeared 

to alter the fatty acid composition o f  the individual gangliosides differently. The 

proportion o f C l 6:0 was higher and Cl 8:0 lower in GMla and GDI a (Table 7.1 and 7.2) 

compared to G D lb and G Tlb (Table 7.3 and 7.4) with the three diet treatments. The 

C20:4n-6 and C22:6n-3 content o f rat SPM gangliosides was also altered by the diet 

treatments at two weeks o f age (Table 7.1, 7.2, 7.3, and 7.4).

/
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Table 7.1 Fatty Acid Composition of GMla in the SPM of Rats Fed Low LNA, 

Control, or AA + DHA Diet at Two Weeks of Age*

Low LNAt C ontrol AA+DHA:
Fatty acid (% wt/wt) 

C12:0 1.04 0.14 0.42

C14:0 4.42 2.48 4.10

0 6 : 0 52.2 43.9 44.9

0 8 : 0 18.7 14.4 24.2

C20:0 2.75 0.69 0.86

C22:0 0.50 0.35 ^.39

C24:0 0.97 0.67 0.73

0 8 : 1  n-9 5.94 11.5 5.14

C18:ln-7 1.20 2.64 1.13

C20:ln-9 0.72 0.13 0.04

C22:ln-9 0.35 0.09 0.10

C24:ln-9 0.29 0.02 2.12

C18:2n-6 0.22 10.5 9.77

C20:4n-6 6.82 6.47 2.48

C18:3n-3 0.87 0.95 0.94

C22:6n-3 2.97 5.12 2.65

I  Sat 80.6 62.5 75.6

I  Mono 8.49 14.41 8.53

I N - 6 7.04 17.0 12.3

IN - 3 3.84 6.08 3.59

* n= i (36 pooled brains) for each experim ental diet.
T Low LNA w as obtained by the addition  o f  safflower oil as the fat blend.
f The control fat diet o f  LA to LNA o f  7.1:1 approximates the fatty acid com position used in S M A ' infant 
formula.
* The AA + DHA diet was obtained by the addition o f  A R A SC O " and DHASCO “ oil to  the control diet fat 
blend.
nd, not detected.
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Table 7.2 Fatty Acid Composition of G D la in the SPM of Rats Fed Low LNA,

Control, or AA + DHA Diet at Two Weeks o f Age*

Low LNAt Control* AA+DHA:
Fatty acid (% wt/wt)

C12:0 1.10 0.17 4.21

C14:0 5.07 2.34 4.15

C16:0 54.0 42.6 39.5

0 8 : 0 13.5 17.6 23.1

C20:0 2.68 1.19 0.62

C22:0 0.51 0.36 0.31

C24:0 nd 0.54 0.30

C18:ln-9 7.80 9.57 8.73

C18:ln-7 1.52 2.07 1.71

C20:ln-9 0.49 0.20 0.36

C22:ln-9 0.21 0.37 nd

C24:ln-9 nd 0.16 nd

C18:2n-6 6.78 9.29 8.83

C20:4n-6 4.54 7.77 5.01

C18:3n-3 0.43 0.93 0.73

C22:6n-3 1.38 4.89 2.42

I  Sat 76.8 64.8 72.2

I  Mono 10.0 12.4 10.8

I N - 6 11.3 17.1 13.8

I N - 3 1.81 5.82 3.15

* n= I (36 pooled brains) for each experimental diet.
1  Low LNA was obtained by the addition o f  safflower oil as the fat blend.
f The control fat diet o f  LA to LNA o f 7.1:1 approxim ates the fatty acid com position used in SMA" infant 
formula.
* The AA + DHA diet was obtained by the addition o f  A R A S C O 'a n d  DHASCO " oil to  the control diet fat 
blend.
nd, not detected.
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Table 7.3 Fatty Acid Composition of GDlb in the SPM of Rats Fed Low LNA,

Control, or AA + DHA Diet at Two Weeks of Age*

Low LNAt Control1 AA+DHA*
Fatty acid (% wt/wt) 

C12:0 0.65 11.0 0.61

CI4:0 3.31 12.0 2.37

C16:0 34.0 33.8 14.1

0 8 : 0 36.2 27.3 65.1

C20:0 4.38 1.34 2.11
/

C22:0 1.11 0.25 0.22

C24:0 1.55 1.62 0.57

C18:ln-9 6.20 3.87 2.95

C18:ln-7 1.10 0.54 0.52

C20:ln-9 2.55 0.26 0.39

C22:ln-9 0.77 0.61 0.39

C24:ln-9 0.14 2.86 5.01

C18:2n-6 4.02 2.27 3.03

C20:4n-6 1.97 0.59 0.42

C18:3n-3 0.28 0.94 1.85

C22:6n-3 1.79 0.77 0.34

I  Sat 81.2 87.3 85.1

I  Mono 10.8 8.14 9.26

2 N-6 5.99 2.86 3.45

Z N-3 2.07 1.71 2.19

* n=l (36 pooled  brains) for each experim ental diet.
T Low LNA was obtained by the addition o f  safflower oil as the fat blend.
* The control fat diet o f  LA to LNA o f  7.1:1 approximates the fatty acid com position used in SM A" infant 
formula.
* The AA + DHA diet was obtained by the addition o f  ARASCO'” and DHA S C O ” oil to the control diet fat 
blend.
nd. not detected.
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Table 7.4 Fatty Acid Composition of G T lb in the SPM of Rats Fed Low LNA,

Control, or AA + DHA Diet at Two Weeks o f Age*

Low LNAt C ontrol AA+DHA:
Fatty acid (% wt/wt) 

C12:0 0.85 0.46 0.56

C14:0 3.26 2.61 2.45

0 6 : 0 41.9 27.4 14.2

0 8 : 0 34.9 49.4 70.5

C20:0 3.81 1.39 2.39

C22:0 0.49 0.47 nd

C24:0 nd 0.43 nd

C18:ln-9 6.17 5.07 2.82

C18:ln-7 0.97 0.81 nd

C20:ln-9 0.90 0.50 0.69

C22:ln-9 0.68 1.27 nd

C24:ln-9 nd 0.26 nd

C18:2n-6 3.89 6.16 5.24

C20:4n-6 1.52 2.11 0.64

C18:3n-3 0.71 0.64 0.51

C22:6n-3 nd 1.02 nd

£ Sat 85.2 82.2 90.1

I  Mono 8.71 7.91 3.51

I N - 6 5.41 8.27 5.88

I N - 3 0.71 1.65 0.51

* n= J (36 pooled brains) for each experimental diet.
T Low LNA was obtained by the addition o f  safflower oil as the fat blend.
+ The control fat diet o f  LA to LNA o f  7.1:1 approxim ates the fatty acid composition used in S M A ‘ infant 
formula.
: The AA + DHA diet was obtained by the addition o f  A RA SCO  '" and DHASCO * oil to the control diet fat 
blend.
nd, not detected.
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A. DISCUSSION

The results obtained from this study demonstrate that C20:4n-6 and C22:6n-3 are 

present in SPM gangliosides and dietary fat can alter the C20:4n-6 and C22:6n-3 content 

o f SPM gangliosides.

The SPM gangliosides studied had one characteristic in common: the predominant 

fatty acid was C l6:0 and C l8:0. This finding is in agreement with other studies which 

showed that saturated fatty acids, particularly. C l6:0 and C l8:0 are abundant in 

gangliosides (Berra & Galli, 1971; Vanier et al., 1973; Svennerholm et al., 1991 & 1994). 

Analysis o f the fatty acid composition of SPM gangliosides by GC-MS revealed that 

C20:4n-6 and C22:6n-3 were present. The presence o f C20:4n-6 and C22:6n-3 in SPM 

gangliosides was unexpected since previous studies on the fatty acid composition of rat 

SPM gangliosides did not detect PUFAs. Avrova (1986) has also shown that C20:4n-6 

and C22:6n-3 are present as the fatty acyl moiety o f brain gangliosides in some species of 

fish. It was found in fish that C20:4n-6 and C22:6n-3 constituted up to 5 and 25 % of the 

total brain ganglioside fatty acids, respectively. This is the first study, to the author's 

knowledge, that has shown the presence o f C20:4n-6 and C22:6n-3 in the fatty acyl 

moiety o f rat SPM gangliosides.

The data suggests that the C20:4n-6 and C22:6n-3 content o f rat SPM 

gangliosides may be altered by dietary fat. However, a previous study by Berra et al. 

(1976) showed in w hole brain o f rats from birth to 100 days of age that alterations in diet 

fat altered the amount but not the fatty acid composition of individual gangliosides. The 

reason for the differences between the two studies could be due to the diet treatments, 

amount o f diet fat, or SPM vs. whole brain studied. The mechanism for the diet effect on 

the C20:4n-6 and C22:6n-3 o f SPM gangliosides may be due to the activity and 

specificity deacylation-reacylation enzymes for fatty acids of gangliosides similar to that 

observed with phospholipids (Saito & Saito. 1991). Moreover, there may be a common 

pool o f fatty-acyl CoA or ceramides that are altered by diet fat and used for synthesis of 

sphingolipids (Saito & Saito. 1991).

The presence o f C20:4n-6 and C22:6n-3 in SPM gangliosides and the effect of 

diet fat on their fatty acid composition could effect the fluidity o f SPM and the calcium
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flux involved in synaptic transmission. It has been proposed that the reversible binding of 

calcium to the sialic acid residue o f gangliosides at the SPM is involved in the 

mechanism of synaptic transmission (reviewed by Rahmann et al., 1982 and Wu & 

Ledeen, 1994). The release o f calcium from the ganglioside-calcium complexes may 

locally change the fluidity of SPM leading to neurotransmitter release. Thus, dietary fat 

induced alterations in the SPM C20:4n-6 and C22:6n-3 content o f ganglioside could alter 

the binding o f  calcium to the sialic acid residues o f gangliosides, and therefore modulate 

synaptic transmission.

In conclusion, the data from this study in rats at two weeks of age show' the 

presence of C20:4n-6 and C22:6n-3 in SPM ganglioside and suggest that dietary fat may 

induce changes in the C20:4n-6 and C22:6n-3 content o f SPM gangliosides.
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CHAPTER VIII. THE PRESENCE OF ALKALINE CERAMIDASE IN THE 
SYNAPTIC PLASMA MEMBRANE OF TWO-WEEK-OLD RAT PUPS

A. INTRODUCTION

Sphingoiipids are complex lipids that play a structural role in cell membranes 

(Coroneos, 1995). Sphingoiipids consist of a long-chain base (sphingosine), an amide- 

linked fatty acyl groups, usually saturated, and a polar or glycosidic head group (Hannun.

1996). Recently, derivatives o f  sphingolipid metabolism have been identified as 

membrane signal transduction molecules (Hannun, 1996; Hannun & Obeid. 1997). SM, 

the major membrane sphingolipid. can be hydrolyzed by SMase to form Ceramide. a 

secondary messenger which stimulates cell differentiation, inhibits proliferation and has 

been associated with apoptosis (Jarvis et al.. 1994; Jayadev et al., 1995). CDase (EC 

3.5.1.23) is widely distributed in animal tissues such as brain and catalyzes hydrolysis o f 

ceramide to yield sphingosine and a fatty acid (reviewed by Hassler & Bell. 1993). 

CDase is important to animal tissues because it is the only known mechanism for 

ceramide catabolism (Tani et al.. 2000). Sphingosine is also known to affect a variety o f 

biological functions (Ballou. 1992). There are three distinct isoforms of CDase (acidic, 

neutral, and alkaline) that have different pH optima. 4.0, 7.6, and 9.0, respectively. The 

acidic lysosomal CDase has been purified to apparent homogeneity (Bernardo et al.. 

1995) and characterized (Li et al.. 1998). Neutral CDase activity were found in porcine 

intestine (Nilsson, 1969; Nilsson & Duan. 1999). guinea pig skin (Yada et al.. 1995) and 

human fibroblasts (Morell & Braun, 1972) and recently purified and cloned from mouse 

liver (Tani et al., 2000). The alkaline CDase was described in human cerebellum (Sugita 

et al., 1972). fibroblasts (Momoi et al., 1982) and in many rat tissues (Spence et al..

1985). A non-lysosomal CDase from rat brain was recently purified and characterized (El 

Bawab et al., 1999). However, to date, no study has determined the presence of alkaline 

CDase in SPM. Based on the evidence that ceramide and sphingosine play an important 

role in biological processes and ceramide constitutes the core structure o f several 

sphingoiipids which are highly abundant in SPM. it would be o f interest to determine 

whether alkaline CDase activity is present in the SPM. The aim o f the present study was 

to determine if the SPM of rat pups at two-weeks of age has alkaline CDase.
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B. MATERIALS AND METHODS

1. Animal Care

Breeding o f Sprague-Dawley rats have been described in Chapter III. Rats 

sacrificed at two weeks of age received only maternal milk. One entire litter o f  rat pups 

fed the same diet was sexed and weighed before decapitation. Excised brains were placed 

in ice-cold 0.32 M sucrose. Six brains from the same sex were pooled per sample for 

isolation o f SPM. Three litters per diet were used.

2. Diets /

The diet contained 20% (wt/wt) fat and met all essential nutrient requirements

(Clandinin & Yamashiro, 1980). The control fat treatment was formulated to approximate 

the fatty acid composition o f an existing infant formula providing an C18:2n-6 to 

C18:3n-3 fatty acid ratio o f 7.8:1 (Table 3.1; Chapter III).

1. Synaptic Plasma Membrane Isolation

SPMs from rat pups at two-weeks o f age were isolated as described in Chapter 

VI. The SPM purity was tested as described in Chapter VI.

2. Ceramide Synthesis

The 3H-palmitoyl ceramide was prepared as follows (Kishimoto. 1975): to a 

mixture o f 34 pmol cold palmitic acid, 75 pCi (9, 10-3H) palmitic acid (30 -  60 Ci/mmol; 

New England Nuclear-DuPont, Boston, MA), 102 pmol triphenylphosphine (Sigma 

Chemical Co.. St. Louis. MO), and 102 pmol 2,2'-dipyridyldisulfide (Sigma Chemical 

Co.. St. Louis, MO) was added 0.4 mL of methylene chloride (Sigma Chemical Co.. St. 

Louis, MO ) solution containing 34 pmol sphingosine (free base; Sigma Chemical Co.. 

St. Louis, MO). This mixture was stirred at room temperature for 5 hr. The mixture 

became yellow' immediately after mixing. Solvent was removed from the reaction 

mixture by evaporation under nitrogen and the residue was resuspended in 500 pL of 

chloroform : methanol (2:1, by vol.). The ceramides synthesized were isolated and 

purified on a silica gel “G" plate (20 x 20 cm; Analtech. Newark, DE. USA) developed in
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a solvent system of chloroform : methanol : acetic acid (90:2:8. by vol.). The plate was 

sprayed with 0.01% (wt/vol.) primulin in water. Purified ceramide was located under 

ultraviolet light by comparison with ceramide standard (Sigma Chemical Co., St. Louis. 

MO), and eluted with chloroform : methanol (2:1, by vol.). An aliquot o f the chloroform : 

methanol solution was added to a liquid scintillation cocktail (ScintiSafe™, Fisher 

Scientific, Fair-Lawn, NJ. USA) and taken for liquid scintillation counting (Beckman LS 

5801). Counting efficiency was approximately 97% and all counts were corrected for 

counting efficiency. The ceramides were stable to alkaline hydrolysis (0.5 N KOH in 

methanol at 25 °C for 12 hr) under conditions where all fatty acid esters were released 

from total phospholipids. /

5. Ceramidase Assay

Alkaline CDase was assayed by measuring the amount o f radioactive palmitic 

acid released from 3H-palmitoyl ceramide as described by Nikolova-Karakashian & 

Merrill (1999). The ceramide suspension was prepared by adding 10 mg of Triton X-100 

(Sigma Chemical Co., St. Louis, MO) and 16 mg of sodium cholate (Sigma Chemical 

Co.. St. Louis, MO) in chloroform : methanol (2:1. by vol.) to 1 mL o f labeled 3H- 

palmitoyl ceramide in chloroform : methanol (2:1). The mixture was vortexed and 

evaporated to dryness under nitrogen. The residue was suspended in 1 mL o f  0.25 M 

sucrose -  ImM EDTA and the tubes were placed in a sonifying water bath at 37°C for 10 

min. The final suspension was free o f particulates and was opalescent. This suspension 

containing 0.25 mg Triton X-100, 0.40 mg sodium cholate, and 50 pmol o f 3H-palmitoyl 

ceramide in 25 pL solution was stored at 4 °C.

The reaction mixture consisted o f 50 pmol 3H-palmitoyl ceramide (20 pCi/pmol) 

solution. 250 -  500 pg o f SPM protein, and Hepes buffer (pH 8.0) in a final volume o f 

200 pL. After incubation in a shaking water bath at 37 °C for 1 hr, the reaction was 

stopped by adding 1 mL o f  chloroform : methanol (2:1, by vol.) containing 50 pg o f  

carrier palmitic acid. Tubes were vigorously mixed and centrifuged at 2000 g for 15 min. 

The lower phase was spotted on a silica gel "G" plate (20 x 20 cm) and developed in a 

solvent system of chloroform : m ethanol: acetic acid (94:1:5, by vol.). The free fatty acid 

band was located by using iodine vapor, and the corresponding areas were scraped from
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the plate into a scintillation vial with liquid scintillation cocktail (Scintisafe™. Fisher 

Scientific). The radioactivity o f the free fatty acid released was counted in a liquid 

scintillation counter (Beckman LS 5801). CDase activity after correction for blank value 

(boiled SPM protein in incubation mixture) was expressed as pmol 3H-palmitic 

acid/mghr.

C. RESULTS

1. Purity o f Synaptic Plasma Membrane Preparation

The purity o f the SPM preparation has been described previously (Hargreaves & 

Clandinin. 1987). The SPM preparations contained only minor cross-contamination 

(<5%) from mitochondria as determined by RNA and succinate dehydrogenase analysis 

(data not shown). The SPM marker, Na, K-ATPase. was approximately 8-fold greater in 

the SPM (33.8 ± 3.0 pmol Pi/mg/hr) compared to the brain homogenate (4.1 ± 1.2 pmol 

Pi/mg/hr).

2. Purity o f JH-Palmitoyl Ceramide

3H-Palmitoyl ceramide was synthesized after 5 hr at room temperature as 

indicated by thin-layer chromatography analysis of the reaction mixture (Figure 8.1). The 

3H-palmitoyl ceramide product was isolated with an overall yield o f  approximately 70%, 

which is similar to that shown by Kishimoto (1975).
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Solvent
Front

2 * ,2-Dipyridy Idisulfide

H-Ceramide

/

Origin  ► -

Chloroform:Methanol:Water 
(90:2:8, by vol)

Lane 1: Test sample ( JH-palmitoyl-ceramide synthesized in vitro) 
Lane 2: Ceramide standard ( C l6:0 and C24:l ceramide)
Lane 3: Palmitic Acid 
Lane 4: Triphenylphosphine 
Lane 5: 2'.2-D ipvridyldisulfide 
Lane 6: Sphingosine (free base)
Lane 7: Blank (no sample)

Figure 8.1 Separation of Synthesized 3H-Palmitoyl Ceramide on Thin-Layer

Chromatography Plate.
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Table 8.1 Alkaline CDase Activity of Rat Pups on a Control Diet at Two Weeks of 

Age*

Brain homogenate alkaline CDase activity: 49.6 ±11.7  pmol 3H-palmitic acid / mg / hr 

SPM alkaline CDase activity: 745 ± 160 pmol 3H-palmitic acid / mg / hr

Enrichment: SPM alkaline CDase activity = 15 . 0

Brain homogenate alkaline CDase activity

* Values are mean ± SEM for n=6.
/

D. DISCUSSION

In the present study, alkaline CDase activity was detected in the SPM of two- 

week-old rat pups. The CDase activity in SPM was 15-fold greater than in the brain 

homogenate (Table 8.1). The activity o f CDase in the SPM was lower than that reported 

by Spence et al. (1986) in rat cerebrum, cerebellum, and brain stem. The reason for the 

lower alkaline CDase in SPM in the present study compared to brain cerebrum, 

cerebellum, and brain stem homogenates may be due to the different age. strain, or diet 

treatment of the rats studied. In the study by Spence et al. (1986). the age and diet 

treatment is unknown. Although neutral and alkaline CDase has been detected in 

microsomes o f rat liver (Stoffel & Melzner. 1980). there is no contamination of 

microsomes in the SPM since the membrane preparation was devoid o f RNA.

3H-Palmitoyl ceramide was used to assay alkaline CDase activity in the SPM 

because palmitic, as well as, stearic acid are the predominant fatty acids associated with 

the ceramide moiety o f sphingoiipids. Also, comparison of brain alkaline CDase 

activities from the present study could be made to Spence et al. (1986) study.

Ceramide is involved as structural and functional components o f sphingoiipids 

(Hannun. 1996). Ceramide plays an important role as an intracellular signaling molecule 

(reviewed by Hannun et al.. 1993; Mathias & Kolesnick. 1993) and enzymes, such as. 

CDase can regulate the metabolism of ceramide and consequently ceramide mediated 

(unctions (Mao et al.. 2000: Tani et al.. 2000).
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In conclusion, the present study is the first to identify alkaline CDase activity in 

the SPM o f two-week-old rat pups. CDase is thought to be rate limiting enzyme in the 

production of sphingosine and sphingosine-1-phosphate because sphingosine is only 

generated from ceramide by the action o f CDase and not by de novo synthesis (Tani et 

al., 2000). Hence, alkaline CDase could play a critical role in signal transduction 

mediated by sphingosine and sphingosine-1-phosphate.
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CHAPTER IX. GENERAL SUMMARY, CONCLUSIONS, LIMITATIONS, 
IMPLICATIONS, AND FUTURE RESEARCH

A. GENERAL SUMMARY

The hypotheses (Chapter II) tested in this thesis have been verified as follows: 

Hypothesis 1.

It was hypothesized that feeding a high C18:3n-3 diet will not increase the 

C22:6n-3 content in neuronal cell phospholipids from whole brain o f rats at two weeks of 

age. The results obtained suggest that raising the dietary C18:3n-3 content is inadequate 

to increase the C22:6n-3 content o f neuronal cell phospholipids o f two-week-old rat pups.

Hypothesis 2.

It was hypothesized that feeding a high C18:3n-3 diet will increase the C18:3n-3 

content in whole body and tissue lipids o f rats at two weeks o f age. The results obtained 

suggest that the metabolic fate of high C18:3n-3 diet is deposition o f C l 8:3n-3 in adipose 

tissue and skin (epidermis, dermis, and subcutaneous tissue) of two-week-old rat pups.

Hypothesis 3.

It was hypothesized that feeding diets with preformed C22:6n-3 w ill increase the 

content of C22:6n-3 in neuronal and glial cell membrane phospholipids from whole brain 

o f rats at two weeks o f age. The results obtained suggest that preformed C22:6n-3 

significantly increases the C22:6n-3 content in PE and PS of neuronal and glial cell 

phospholipids from two-week-old rat pups.

Hypothesis 4.

It was hypothesized that feeding a diet with C20:4n-6 and C22:6n-3 will increase 

the total and individual phospholipids and cholesterol content o f the SPM o f rats at two 

and five weeks o f age. The results obtained suggest that diets with C20:4n-6 and C22:6n- 

3 does not alter the SPM total and individual phospholipid content and cholesterol 

content of rats at two and five weeks o f age.
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Hypothesis 5.

It was hypothesized that feeding a diet with C20:4n-6 and C22:6n-3 will increase 

the C20:4n-6 and C22:6n-3 content in total and individual phospholipids o f the SPM o f  

rats at two and five weeks o f age. The results obtained suggest that dietary C20:4n-6 and 

C22:6n-3 increases the C20:4n-6 and C22:6n-3 content o f SPM total and individual 

phospholipids o f rats at two and five weeks o f age.

Hypothesis 6.

It was hypothesized that the Km and Vmax o f  Na, K-ATPase in the SPM o f rats 

will increase from two to five weeks of age. The results obtained suggest7'that Na. K- 

ATPase Km is decreased and Vmax is increased from two to five weeks of age.

Hypothesis 7.

It was hypothesized that feeding diet with C20:4n-6 and C22:6n-3 will not alter 

the Km but increase the Vmax o f  Na. K-ATPase in the SPM o f rats at two and five weeks 

o f age. The results obtained suggest that dietary C20:4n-6 and C22:6n-3 does not alter the 

Km but increases the Vmax o f SPM Na. K-ATPase o f  rat pups o f two and five weeks o f 

age.

Hypothesis 8.

It was hypothesized that C20:4n-6 and C22:6n-3 were present in SPM 

gangliosides and feeding a dietary fat will alter the C20:4n-6 and C22:6n-3 content o f  

individual gangliosides in the SPM o f rats at two weeks of age. The results obtained 

demonstrate that C20:4n-6 and C22:6n-3 are present in SPM ganglioside and dietary fat 

may alter the C20:4n-6 and C22:6n-3 content o f individual gangliosides in the SPM o f 

two-week-old rat pups.

Hypothesis 9.

It was hypothesized that alkaline CDase is present in the SPM of rat pups at two 

weeks o f  age. The results obtained demonstrate that alkaline CDase is present in SPM o f 

rat pups at two weeks o f age.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



242

B. CONCLUSIONS

The data presented in this thesis expands on existing knowledge o f the effects o f 

dietary fat on membrane lipid composition and function in brain. Feeding diets with or 

without C18:3n-3 or C20:4n-6 and C22:6n-3 has been shown in this thesis to play an 

important role in brain structure and function. The important concepts that this thesis has 

contributed are as follows:

1. High dietary C 18:3n-3 content does not significantly increase the C22:6n-3 content in 
neuronal cells from w hole brains o f rats at tw o weeks of age. /

2. High dietary C18:3n-3 significantly increases the C18:3n-3 but not the C22:6n-3 
content o f whole body and tissue lipids with the major deposition site being the skin 
including the subcutaneous fat o f rats at two weeks of age.

3. Dietary' C22:6n-3 is more effective than high levels o f C18:3n-3 at significantly 
increasing the C22:6n-3 content in neuronal and glial cell phospholipids, particularly. 
PE and PS o f  rats at two weeks o f age.

4. Dietary' C20:4n-6 and C22:6n-3 does not increase the cholesterol, total and individual 
phospholipid content of SPM o f rats at two and five weeks o f age.

5. Dietary C20:4n-6 and C22:6n-3 increases the C20:4n-6 and C22:6n-3 content o f rat 
total and individual phospholipids at two and five weeks o f age.

6. The Vmax and Km of Na, K-ATPase in the rat SPM significantly increases during 
development from two to five weeks o f age.

7. Dietary C20:4n-6 and C22:6n-3 compared to low C18:3n-3 diet significantly 
increases the Vmax but does not alter the Km o f Na. K-ATPase in the rat SPM at two 
and five weeks o f age.

8. C20:4n-6 and C22:6n-3 are present and feeding a dietary' fat may alter the C20:4n-6 
and C22:6n-3 content of individual gangliosides in the rat SPM at two weeks o f age.

9. Alkaline CDase is present in the SPM o f rat pups at two w eeks o f age.
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C. LIMITATIONS

The studies presented in this thesis employed maternal dietary fat alterations as a 

method o f delivering various fatty acid compositions to rapidly growing rat pups. A 

limitation o f this maternal feeding model is that it hinders the ability to directly 

manipulate the fatty acid composition o f the nutrient supply to the rat pups during which 

most o f  the brain growth spurt is occurring in the first three postnatal weeks o f life 

(Dobbing and Sands, 1979). Therefore, in this model there is the confounding influence 

of LCPUFAs. such as C20:4n-6 and C22:6n-3, present in the stomach contents (dams’ 

milk) o f  rat pups. In addition, the maternal milk composition in this model can have 

changes that are secondary to the changes in dietary n-6 and / or n-3 fatty acids (i.e. 

hormones, cytokines, and growth factors) (Ward et al.. 1996).

The artificial rearing (AR) model in the rat pups would have been ideal to use in 

the studies presented in this thesis. In this model, rat pups are removed from their dams 

and fed. via gastrostomy tube, a rat milk substitute which closely resembles the 

composition o f rat milk, and whereby the fatty acid composition can be altered 

experimentally (Patel and Hiremagalar. 1992). This AR model permits the evaluation of 

dietary' fat treatments on brain development without the confounding influence of 

C20:4n-6 and C22:6n-3 present in the maternal diet and mammary processes (Patel and 

Hiremagalar, 1992). Furthermore, the AR model approximates the extremely premature 

infant who is exposed to the stress o f maternal separation, nasogastric formula feeding, 

testing, and surgical procedures (Ward et al. 1996). However, this model is very labor 

intensive and expensive.

D. IMPLICATIONS OF THESIS

The findings from this thesis in rats have important implications for neonatal 

feeding. Infant formulas currently marketed in North America are devoid of C20:4n-6 

and C22:6n-3. The only n-3 fatty acid present in these formulas is C18:3n-3. It has been 

questioned whether C18:3n-3 in infant formulas can meet the C22:6n-3 requirements for 

brain growth and development. The findings from this thesis demonstrate in rats that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244

raising the dietary C18:3n-3 content does not significantly raise the C22:6n-3 content of 

brain phospholipids. In fact, this thesis has shown that the metabolic fate o f high dietary 

C18:3n-3 is deposition o f C18:3n-3 in rat adipose and subcutaneous tissues especially 

skin. Furthermore, dietary C22:6n-3 was shown to be more effective than low or high 

levels o f C18:3n-3 at increasing the C22:6n-3 content o f rat brain phospholipids. 

Therefore, these results suggest that formulas providing only C18:3n-3 may not meet the 

C22:6n-3 requirements o f neonatal brain.

The functional importance o f C22:6n-3 in rat brain was demonstrated by showing 

that the low SPM C22:6n-3 phospholipid content is associated with low SPM Na, K- 

ATPase activity. Therefore, these findings suggest that infants with lower levels of 

C22:6n-3 in SPM phospholipids may have low SPM Na. K-ATPase activity that will 

ultimately affect synaptic transmission in infant brain.

The findings from this thesis indicated that rat SPM gangliosides contain C20:4n- 

6 and C22:6n-3 and the content o f C20:4n-6 and C22:6n-3 in SPM gangliosides may be 

altered by dietary fat. These results if extrapolated to human neonates would suggest that 

infants fed formulas containing C20:4n-6 and C22:6n-3 incorporate these fatty acids into 

the fatty acyl moiety o f SPM gangliosides.

The presence o f alkaline CDase activity in rat SPM is novel. This finding implies 

that neonates possess SPM alkaline CDase activity. The presence of alkaline CDase in 

neonatal SPM may be significant since sphingoiipids are involved in mediating biological 

responses. Hence, it is conceivable that SPM alkaline CDase in infants may play an 

important role in brain functions.

E. FUTURE RESEARCH

Progress has been made over the last decade in understanding the desaturation and 

chain elongation o f  essential fatty acids and the influence of these fatty acids and their 

long-chain homologues on membrane fatty acid composition and function. However, as 

new information is gathered on the mechanism, regulation, and function o f  fatty acid 

desaturation and elongation reactions in mostly animal models, the extent to which this 

information applies to human infants needs to be fully elucidated. The application of
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cloning techniques and molecular probe technologies to desaturation and elongation 

enzymes are beginning to be used but much more work is needed. Specific probes for the 

delta-6 desaturase will be beneficial for determining whether this rate-limiting enzyme(s) 

acting on C18:2n-6, C18:3n-3, C24:4n-6, and C24:5n-3 are identical. Specific studies on 

the modulation o f the desaturase enzymes should provide insight into regulation at the 

genomic level. The extent to which desaturase and elongase are regulated and if the 

sequence o f  reactions catalyzed by these enzymes are physically associated to provide 

“channeled” conversion to their major end products awaits further research. The 

subcellular location o f these enzymes to other compartments beside the endoplasmic 

reticulum like peroxisomes or nuclear and plasma membrane needs further w6rk.

The role and function o f C18:3n-3 in the skin o f rats needs to be understood. 

Further studies need to determine if C18:3n-3 present in the skin may be synthesized to 

other fatty acids, such as, C l6:0, C l8:0, and C18:ln-9, or cholesterol as observed in brain 

of suckling rats. Studies are also needed to determine whether the C18:3n-3 in skin is 

preferentially P-oxidized and used as a source of energy rather than for synthesis o f n-3 

long-chain polyenes like C20:5n-3 and C22:6n-3. The relevance o f C18:3n-3 in skin o f  

rats to human infants remains to be determined.

Future studies to determine the mechanism for the increased activity o f Na, K- 

ATPase observed with the control and AA + DHA compared to the low LNA diet are 

needed. It is conceivable that the increased activity of Na, K-ATPase w ith the control or 

AA+ DHA diet may be due to decreased degradation rate, or increased synthesis rate, or 

both processes working in concert. Hence, molecular biology techniques examining Na. 

K-ATPase protein and gene expression will be insightful.

Future research is needed to determine the exact role o f  diet fat on cholesterol and 

PUFA content in modulating the SPM Na. K-ATPase kinetics. It is possible that dietary 

fat affects the distribution of cholesterol in the exofacial and cytofacial leaflet thereby 

altering the fluidity o f  the two leaflets and thus Na, K-ATPase activity.

C20:4n-6 and C22:6n-3 in SPM may directly affect Na, K-ATPase kinetics by its 

presence as the fatty acid moiety by its presence as the fatty acid moiety of annular 

membrane phospholipids or indirectly via modulation o f eicosanoids that can affect Na.
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K-ATPase activity. Further investigations should clarify or provide further information to 

the exact mechanism o f C20:4n-6 and C22:6n-3 on Na, K-ATPase kinetics.

Despite the tremendous progress over the last decade in understanding the cellular 

function o f sphingolipids, this area is still in its infancy. The exact physiological roles 

which gangliosides play in biological processes must be studied further. Why are there so 

many different molecular species o f  gangliosides ? What role does C20:4n-6 and C22:6n- 

3 play in gangliosides ? Is the subtle changes induced by diet fat in the ceramide moiety 

o f  gangliosides to optimize its physical properties or to achieve a greater specificity in 

ganglioside-protein interaction; or are gangliosides synthesized for other reasons, such as. 

signal transduction ? Future work should provide answers to these questions/

The precise metabolic and biological roles o f  alkaline CDase are not entirely 

understood. In vitro catalytic activity and metabolic studies suggest that ceramide 

catabolism is their primary biological role. The alkaline CDase may be responsible for 

the recycling o f sphingosine from the cell sphingolipids. Moreover, alkaline CDase could 

be used to salvage unused ceramides synthesized for sphingolipids. Conceivably, alkaline 

CDase may also perform the task o f regulating the cellular levels o f sphingosine or 

ceramide that can be used as cellular effectors. Finally, alkaline CDases in the SPM may 

function to regulate the types and levels o f particular fatty acids, possibly PUFAs. 

incorporated into ceramides, and consequently its overall sphingolipid structure and 

function. The potential importance of alkaline CDase in producing sphingosine for a 

regulatory purpose within cells makes them prime candidates for future study. Some 

future research should be to characterize alkaline CDase activity with respect to dietary 

fat alterations and biological functions.

The studies in this thesis were performed on Sprague-Dawley rats. It would be of 

interest to study the effects o f dietary fat on brain C20:4n-6 and C22:6n-3 content in an 

animal model of PKU. Recently, a true mouse model o f PKU with a deficiency of 

phenylalanine hydroxylase (PAH) and a similar pathology to human PKU has been 

developed (Shedlovsky et al.. 1993). This mouse strain generated through mutagenesis of 

chromosome 10, the PAH gene, by ethylnitrosurea, closely simulates human PKU 

phenotype (McDonald. 1994). In this disease, there are low levels o f brain C20:4n-6 and 

C22:6n-3 partly due to the absence C20:4n-6 and C22:6n-3 in PKU formulas and the low
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C20:4n-6 and C22:6n-3 content in the diet o f individuals with PKU (Agostoni et al., 

1995; Poge et al., 1998). PKU formulas are used in place o f or in addition to human milk 

for infants bom with PKU (Greve et al., 1994). Most o f the commercial PKU formulas 

contain casein hydrosylate to which some vegetable oils like soy, coconut, palm, peanut, 

or com oil are added as the only fat component. These formulas contain only vegetable 

oils with C18:2n-6 and C18:3n-3 as the only source o f n-6 and n-3 fatty acids, 

respectively. None of the PKU formulas on the market contain preformed C20:4n-6 and 

C22:6n-3. The PKU diet is devoid o f meat and fish, which contain large amounts of

C20:4n-6 and C22:6n-3 (Agostoni et al.. 1995; Poge et al., 1998). Therefore, it is
/

conceivable that diet fat with C20:4n-6 and C22:6n-3 may normalize brain C20:4n-6 and 

C22:6n-3 levels in brain of individuals with PKU. It is also o f interest to study if these 

changes in C20:4n-6 and C22:6n-3 content o f PKU brain phospholipids could have some 

functional effects, such as alterations in the kinetics o f  SPM Na. K-ATPase. Therefore, 

dietary C20:4n-6 and C22:6n-3 may have a profound effect on brain phospholipid fatty 

acid composition and function, and hence alleviating some of the brain dysfunction in 

PKU individuals.

The outcome for preterm infants have steadily improved over the past three 

decades. Advances in neonatal care have resulted in improved survival o f infants born as 

early as 25 weeks of gestation. The provision o f  effective nutritional support for this 

vulnerable group has become an area o f increasing importance. Optimum nutrition should 

lead to more normal growth and development with fewer infections or metabolic 

disturbances. Infant formulas for preterm infants are continuously being refined and the 

ideal composition is unknown. The studies presented in this thesis show that dietary fat is 

a strong determinant of brain fatty acid composition and function. The data support the 

rationale for supplementing infant formulas with preformed C20:4n-6 and C22:6n-3.
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Neuronal Cells

Glial Cells

A PPEN D IX  1. Neuronal and glial cells isolated from whole brain o f  rat pups at two weeks o f  age ( I600x) 
(adapted from Hamberger &  Svennerholm , 19 7 1)
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A PPEN D IX  2. Isolation o f  synaptosomes on sucrose density gradient from whole brain o f  rat pups at 
two and five weeks o f  age.
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a) 2 Weeks

z '  t X
Low LNA Control AA+DHA

b) 5 Weeks

Low LNA Control AA+DHA

A P P E N D IX  3. SDS-PAGE o f  synaptic plasm a membrane Na, K-ATPase 01 -subunit o f  rats fed either low 
LNA, control, or AA+ DHA diet at a) 2 weeks and b) 5 weeks o f  age. G els w ere probed with monoclonal 
antibodies specific for 01 -subunit o f  N a, K-ATPase. Each lane contains 20 ug o f  SPM protein.
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a)

Lower phase
ofFolch
(Phospholipids)

Upper phase 
ofFolch 
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b)

(2weeks)
ampii 
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GM la standard

GDI a standard 
GDlb standard 
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(5weeks) (2weeks) (2weeks)

c)

GMla standard

GDI a standard 
GD lb standard 
GTlb standard

Sample I Sample 2 Sample 3 
(5weeks) (2weeks) (2.weeks)

A PPEND IX  4. Separation o f  gangliosides from SPM  o f  rats at two and five w eeks o f  age on high 
performance thin-layer chormatography plates: a) low er and upper phase o f  Folch extraction o f  sample 
sprayed with 0.01%  ANSA under ultraviolet light; b ) ganglioside standards and upper phase o f  Folch 
extraction from samples sprayed with 0.01%  ANSA under ultraviolet light; c) ganglioside standards and 
upper phase ofF o lch  extraction from samples sprayed with resorcinol-HCI.
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