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Abstract

Genome-wide association study (GWAS) is an approach with high-throughput

genotyping to uncover genetic susceptibilities of complex diseases. However,

the genetic susceptibilities discovered usually carry very small risk increments.

Additionally, the current approach to assess whether these genetic associations

are shared among a group of diseases relies mainly on statistical significance

alone, ignoring biologically relevant information such as magnitude and direc-

tion of the associations.

The methodology proposed takes into account not only strength and direc-

tion of the associations but also the resemblance of the biological mechanism

by using logic regression to generate a graphical representation of the similar-

ity of the associations. We found evidence that 149 genetic associations have

certain degree of uniqueness with Crohn’s Disease, Rheumatoid Arthritis, and

Type I Diabetes while 11 were shared between at least 2 diseases. Addition-

ally, the gene-level analysis of TB cases stratified by age, strain, and lineage

identified 3 new susceptibility genes (ZFHX1B, FER, and FAM77 ) associated

with different TB subgroups.
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Chapter 1

Introduction

1.1 Thesis Organization

This paper-based thesis was prepared in accordance to the Faculty of Graduate

Studies and Research (FGSR) of the University of Alberta guidelines. The

thesis is organized as follows:

Chapter 2 - First manuscript

Identification of shared and distinct genes: Crohns Disease, Type I Dia-

betes & Rheumatoid Arthritis in WTCCC data

Chapter 3 - Second manuscript

Novel Tuberculosis Susceptibility Genes Discovered by Logic Regression:

a Stratified Analysis in Thai Population

Chapter 4 - Summary and Conclusions

1.2 Rationale

Autoimmune diseases are chronic conditions that involve an inappropriate re-

sponse of the body to non-harmful substances and tissues in the body. This

type of disorders are thought to arise due to a combination of genetic and en-

vironmental factors. The familial clustering of autoimmune diseases as well as
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association of multiple disorders in single individuals suggest that there might

be common genetic susceptibility factors shared among this type of diseases [1].

Genome-wide association studies (GWAS) is a high-throughput approach

currently used to uncover genetic susceptibilities of complex diseases by exam-

ining many genetic variants of individuals to assess if any of them is associated

with a trait [2]. GWAS has also been used to assess shared and/or unique

genetic susceptibilities of multiple diseases that are hypothesized to be biolog-

ically related [3] [4] [5]. However, the current approach widely used in GWAS

to assess whether genetic variants are commonly or uniquely associated with

multiple diseases overlooks relevant information by focusing largely or sorely

on statistical significance.

To our knowledge, the current approach to assess whether genetic associ-

ations are shared among a group of diseases fails to take into consideration

relevant information such as the magnitude and direction of the genetic effect

which could potentially lead to inaccurate inferences about the sharedness of

the associations. Chapter 2 of this thesis proposes a method that aims to

provide a better insight of the genetic associations with a group of diseases by

not only taking into account statistical significance, but also strength, direc-

tion, and similarity of the biological association. This Chapter also presents a

test of the methodology using the Wellcome Trust Case Control Consortium

(WTCCC) GWAS data of Crohn’s Disease, Rheumatoid Arthritis, and Type

I Diabetes [6].

GWASs have identified thousands of genetic variants associated with com-

plex diseases and traits providing a better understanding of their genetic eti-

ology. However, most of these genetic variants carry small risk increments

which can only explain a small proportion of the clustering observed in family

studies leading to a phenomenon called missing heritability [7]. Most human

geneticists hypothesize that additional variants that have not been discovered

can provide the explanation of this phenomenon. Specifically, many quantita-

tive geneticists and biologists recognize that interactions might be responsible
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for the missing heritability phenomenon since they can greatly affect the her-

itability calculations and they are rarely investigated in GWASs [8].

Chapter 3 investigates whether genetic interactions can uncover novel sus-

ceptibility loci for tuberculosis (TB) in Thai. The analysis was performed on

different subgroups stratified by age (> 45 years, ≤ 45 years) [9], TB strain

(ancient, modern), or TB lineage (Beijing, EAI, other) with shared controls.

An additional analysis was performed to assess whether the associations un-

covered by the stratified GWASs were shared with other subgroups.

1.3 Research Questions

Chapter 2

1. Do p-values provide enough information to assess whether a genetic

associations is shared among a group of diseases?

2. Does taking into account strength, direction, and similarity of the

biological association provide better insight of the sharedness of

genetic associations among a group of diseases?

Chapter 3

1. Does stratified analysis of SNP-SNP interactions uncover new ge-

netic TB susceptibilities in Thai?

2. Are the newly discovered genetic susceptibilities shared among dif-

ferent TB subgroups?

1.4 Hypotheses

Chapter 2
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• P-values alone do not provide enough information to assess whether

a genetic association is shared among a group of diseases and can

lead to inaccurate inferences.

• Taking into account strength, direction, and similarity of the bio-

logical association provide better insight and a stricter definition of

the sharedness of genetic associations among a group of diseases.

Chapter 3

• SNP-SNP interactions are responsible for a proportion of the TB

susceptibility and explain to a greater extent the TB genetics.

• Some of the genetic susceptibilities are shared while others are

unique for certain TB subgroups.
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Chapter 2

Identification of shared and
distinct genes: Crohns Disease,
Type I Diabetes & Rheumatoid
Arthritis in WTCCC data

2.1 Introduction

Autoimmune diseases, such as Crohn’s Disease (CD), Type I Diabetes (T1D),

and Rheumatoid Arthritis (RA), are hypothesized to share similar genetic

factors given the disease mechanisms and the observed clustering of diseases

within families [1]. Crohn’s disease is a type of inflammatory bowel disease

characterized by the presence of abdominal pain, fever, and bowel obstruction

or diarrhea with passage of blood, mocus or both [2]. Type I Diabetes results

from an autoimmune destruction of β-cells in the pancreas which causes defects

in insulin secretion, action, or both [3]. Rheumatoid Arthritis is an inflamma-

tory disease that affects mainly the joints of the hands and feet as the result

of over-expressed degradative enzymes which destroy articular tissues [4].

Although it has been suggested that CD, T1D, and RA share similar ge-

netic etiology due to their autoimmune nature and a number of articles has

been published addressing this scientific hypothesis, most of the approaches

taken to identify common susceptibility loci has been rather simplistic and sta-
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tistically oriented with a lack of biological relevance [5] [6]. The most common

type of study involves performing a systematic review of previously reported

susceptibility loci in genome-wide association studies (GWAS) for each indi-

vidual disease and compare the findings across the diseases. If a loci was found

to be significantly associated with two or more diseases, the association is con-

sidered “shared”, if it was significantly associated with a single disease, it is

considered “distinct”. For example, it has been reported that gene PTPN22 is

commonly associated with CD, T1D, and RA [7]. The main limitation about

this type of studies is that they don’t take into consideration the strength and

direction of the associations as well as the commonality of the SNPs encom-

passed in the reported genes.

Another approach, similar to the one discussed previously, has gone further

in understanding the genetic etiology of autoimmune diseases. It has been

reported that SNPs/genes rs917997/IL18RAP and rs1738074/TAGAP are

commonly associated with Type I Diabetes and Celiac Disease by analyzing

the association of SNP-disease independently of the other disease. The authors

go further in the discussion section by noting that the minor allele in both

SNPs is negatively associated with Type I Diabetes but positively associated

with Celiac Disease suggesting opposite biological effects [8]. However, this

approach still lacks an analysis of the strength of the associations which might

indicate a minor/major role in the underlying biological mechanism depending

on the disease.

Novel approaches that have tried to address the issues of incorporating

the strength and direction of the associations include the calculation of a Ge-

netic Variation Score (GVS) for each disease-SNP pair given by GV S[d, s] =

sign(log(OR[d, s]))× log(p-value[d, s]) where d, s, and OR represent a specific

disease, a specific SNP, and the odds ratio of the association, respectively.

After calculating the GVS vector for each disease, a correlation coefficient is

calculated as an estimate of the degree of genetic concordance between pairs

of diseases. In the formula, the term sign(log(OR[d, s])) captures the direc-
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tion of the association while the log(p-value[d, s]) term is supposed to capture

the strength of the association [9]. Although the direction of the association

is effectively captured by this score, there is a statistical misconception that

p-value indicates the strength of an association while it is a function of the

sample size and can be changed by the sample size. Furthermore, the calcula-

tion of a correlation coefficient between pairs of vectors just gives an idea of the

overall tendency of the statistical significance of the SNP-disease associations.

Even though the methodologies mentioned above fail to address some im-

portant issues in the analysis of shared and distinct genetic variants among a

group of diseases, they have the advantage that they can be performed based

solely on summary statistics (i.e., odds ratios and p-values) without requiring

the raw data. Additionally, the computational requirements are relatively low

which make the analyses easy to perform.

2.2 Materials and Methods

2.2.1 Logic Regression Gene-level Association Analysis

The proposed method involves gene-level association analysis by incorporat-

ing specific forms of SNP-SNP interactions that are biologically meaningful.

Specifically, we investigated two forms of interactions: the first is SNP-SNP

intersection which states that multiple SNPs need to have their respective

high-risk genotypes in order for the disease-risk to be elevated (i.e., SNP-A

and SNP-B). The second form of interaction is SNP-SNP union which states

that any of the SNPs needs to have their respective high-risk genotype in

order for the disease-risk to be elevated (i.e., SNP-A or SNP-B). To incor-

porate these interaction into our analysis, we used logic regression to explore

the best set of SNP-SNP interactions that are associated with the phenotype

of interest [10]. Logic regression is a technique used to model an outcome

(e.g., phenotype) using intersections and unions of potential binary predic-

tors, such as SNP genotypes (i.e., indicator of the minor allele homozygous)
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as potential predictors. In the context of set theory, intersection and union

are called Boolean operations because they act on binary variables. The logic

regression model has the form shown in Eq. 2.1 where Y is the binary phe-

notype (i.e., disease and controls), β0, ..., βp are the parameters, and L0, ..., Lp

are Boolean combinations of SNP genotype indicators which are also called

logic trees. Logic regression has been succesfully applied to SNP data analysis

with selected candidate genes as well as GWAS to explain to a greater extent

the disease genetics of highly heritable diseases [11] [12] [13].

logit (E [Y ]) = β0 + β1L1 + β2L2 + ...+ βpLp (2.1)

Logic regression was performed on each gene independently 20 times vary-

ing the seed for the random number generator at the beginning of the stochas-

tic search of logic regression. The seed variation allows us to search more

broadly the solution space and diminish the probability of converging to a

local optimum.

To evaluate the evidence of association, we also perform logic regression

using the same genotype data but with 20 sets of permuted phenotype labels;

each of the 20 is fit 20 times varying the starting random seed. This procedure

allows us to perform a statistical significance test by obtaining an approximate

distribution of the test statistic under the null hypothesis by comparing the

likelihood of the original vs. the phenotype-permuted label models. These

comparisons yield an approximate Bayes Factor (BF) for each gene. BF can

be used as a measure of statistical evidence. Here we use it merely as a test

statistic and for calculating a p-value. Specifically, the p-value for each gene

is calculated as the proportion of all permuted BF values of all genes larger

than the gene’s observed BF. This calculation takes into account properly the

multiple testing.
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2.2.2 Shared vs. Distinct Gene Analysis using Logic
Regression

The method is composed of two stages. In the first stage, we perform logic re-

gression on each gene for each of the three diseases independently as described

in Subsection 2.2.1. After determining which genes are strongly associated

with each individual disease, we proceed with the next step but restricting the

analysis to genes that achieved statistical significance in at least one disease.

The second step involves performing several logic regression analysis by merg-

ing data from diseases and controls in order to evaluate to what degree the

gene can differentiate between groups of diseases and controls.

For each of the genes that were found to be strongly associated with at

least one disease, we perform additional logic regression analyses by combin-

ing any of the disease groups and the control group to create two new groups

(e.g., Disease 1 & Disease 2 vs. Control) or taking any two of the groups (e.g.,

Disease 1 vs. Disease 2). The newly created groups could be interpreted as

a fictional cluster of subjects with characteristics that averages both groups

involved. The purpose of these extra analyses is to use the deviance of the

logic regression model as a measure of whether the combining of the two groups

was biologically appropriate. Two diseases truly sharing the association can be

combined and should give a similar association as when each disease was eval-

uated for the association. Multiple diseases can show individual significance

for the association but when combined may show no association if the biologi-

cal association underlying the statistical association is not identical across the

diseases.

Since the deviance is a function of the sample size and different phenotipic

groups are merged, there will be an innate bias towards higher deviance val-

ues among those comparisons involving more than 2 groups (e.g., Disease 1 &

Disease 2 vs. Controls). To address this issue, we perform a robust standard-

ization of the deviances to make them comparable given by:

11



std dev = (dev ori−MEDIAN [perm dev])/IQR[perm dev]

where dev ori is the deviance calculated with the original data and perm dev

is a vector of the 20 deviances calculated with the randomly permuted pheno-

type labels. At the end of this analysis and assuming 3 diseases under study

(D1, D2, D3) with shared controls (CL), we obtain a total of 18 standardized

deviances coming from all the 6 pairwise comparisons among those 4 groups (3

diseases + controls), as well as 12 comparisons of those 4 groups and selected

new phenotypic groups created by merging group pairs (i.e., D1 & D2, D1 &

D3, D2 & D3, D1 & CL, D2 & CL, D3 & CL) in such a way that no group

appears twice in a comparison (e.g., D1 & D2 vs. D1 is not performed, but

D1 & D2 vs. D3 is). A comprehensive list of the source of the 18 deviances

can be found in the last code-comment section of Appendix A.1.

The standardized deviances can be interpreted as “distances” of biologi-

cal similarity of the gene-disease association among the different groups. The

smaller the standardized deviance is between 2 groups, the more we suspect

the groups are biologically similar with respect to the gene-disease association.

The distance (standardized deviance) given by the logic regression models in-

volving merged data (e.g., Disease 1 & Disease 2 vs. Controls) can be inter-

preted as the distance between the midpoint of the two merged groups (e.g.,

Disease 1 & Disease 2) and the third one (e.g., Controls).

After calculating the distances between groups, we perform an uncon-

strained nonlinear optimization [14] to estimate the best set of coordinates

on a 3-dimensional euclidean space for highly significant gene-disease associ-

ations on at least 1 disease. The best solution is the set of coordinates that

minimizes the sum of the errors between the estimated distances based on the

coordinates and the calculated distances based on the standardized deviances.

We opted for minimizing the sum of the errors rather than the vector of errors

because the later gives higher fitting priority to longer distances. The errors

whose sum we want to minimize are given by:
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ε = dist([G1x, G1y, G1z]&[G2x, G2y, G2z])− distempirical

where dist([G1x, G1y, G1z]&[G2x, G2y, G2z]) is a function that returns the Eu-

clidean distance between two sets of coordinates corresponding to groups G1

and G2 and distempirical is the distance (standardized deviance) from the ex-

periments mentioned previously.

Once we get the best estimate of the set of coordinates for each group,

we proceed to plot these points, as well as pairwise distances, to get a visual

representation of the degree of sharedness of the gene-disease associations. If

two disease groups are close to each other, we expect the association to be

shared. If two disease groups are separated from each other, we expect that

the underlying biological mechanism acts in a different way for each disease,

even though the gene-disease association might be highly significant for both

diseases.

The method was tested on the Wellcome Trust Case Control Consortium

(WTCCC) dataset of Crohn’s Disease (1748 subjects), Type I Diabetes (1963

subjects), and Rheumatoid Arthritis (1860 subjects) and shared controls (2936

subjects) [15]. The list of candidate genes were obtained based on the work

of Sharaf Eldin et al. entitled Within-Gene Interactions in GWAS Identifies

Novel Susceptibility Loci - WTCCC Revisited as well as [11] and consisted of

158 genes which showed strong evidence of association with at least one of

the diseases under study. These studies also limited the number of logic trees

to 2 and the number of SNPs interacting in the model to 5 due to the high

computational requirement of the stochastic search for the optimum solution

in a high-dimensional space of the logic regression.

2.3 Results

In this section, we present some key examples to illustrate the method and the

different scenarios that were found followed by a summary of the findings by
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categorizing genes based on the potential sharedness of the association among

the 3 diseases.

We analyzed gene HLA-DRA in Chromosome 6 which was strongly associ-

ated with each of CD, T1D, and RA. The distance plot for this gene is shown

in Figure 2.1. We can observe that all disease groups are far away from each

other and CD is close to the Control group. This suggests that the strength

of the association differs greatly between CD and T1D & RA. We can also tell

by the distances and locations that the three diseases are strongly associated

with HLA-DRA but with a different underlying biological mechanism among

them. Additionally, we can analyze the individual logic regression models to

get a better understanding of the SNP interactions that might be ocurring.

Table 2.1 shows a small effect of gene HLA-DRA on Crohn’s disease odds

ratios which range from 0.63 to 1.61. On the other hand, Tables 2.2 and

2.3 show a stronger effect on the Type I Diabetes and Rheumatoid Arthritis

odds ratios which range from 1.00 to 32.28 and 1.00 to 6.24, respectively. We

can also note that most of the SNPs that appeared in the model for each

individual disease are unique for the particular disease and the strength of the

associations vary broadly.

Although it has been reported by several studies that HLA loci associations

are shared among autoimmune diseases [5] [16] [17], these results suggest that,

even though all diseases were found to be associated with gene HLA-DRA,

each of them follows its own biological mechanism so it would be inaccurate

to call this association “shared”.
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Figure 2.1: Distance plot of gene HLA-DRA.
† indicates statistical significance.

Table 2.1: Logic structures, frequencies, and associated Crohn’s Dis-
ease odds ratios of the HLA-DRA gene

SNP rs9268831 rs9268877 rs7194 rs9268862 rs3135393
Genotype TT AG or GG AG or GG AA AG or GG Logic-based

Cases 420 (24.03%) 1521 (87.01%) 1057 (60.47%) 950 (54.35%) 535 (30.61%) Risk Groups
Controls 717 (24.42%) 2526 (86.04%) 1879 (64.00%) 1633 (55.62%) 976 (33.24%)
Logic 1 (( AND ) OR ) AND Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 677 862 1.61
Logic-based Logic 1 = YES Logic 2 = NO 536 1098 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 531 963 1.13

Logic 1 = YES Logic 2 = YES 4 13 0.63

Table 2.2: Logic structures, frequencies, and associated Type I Dia-
betes odds ratios of the HLA-DRA gene

SNP rs9268831 rs3129877 rs9268645 rs5000563 rs9268877
Genotype TT AA or AG CG or GG GG GG Logic-based

Cases 638 (32.50%) 1273 (64.85%) 1638 (83.44%) 226 (11.51%) 1233 (62.81%) Risk Groups
Controls 717 (24.42%) 1460 (49.73%) 1777 (60.52%) 263 (8.96%) 1111 (37.84%)
Logic 1 ( OR ) AND ( OR ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 48 958 1.00
Logic-based Logic 1 = YES Logic 2 = NO 682 867 15.71
Risk Groups Logic 1 = NO Logic 2 = YES 104 413 5.03

Logic 1 = YES Logic 2 = YES 1129 698 32.28
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Table 2.3: Logic structures, frequencies, and associated Rheumatoid
Arthritis odds ratios of the HLA-DRA gene

SNP rs9268853 rs9268645 rs3177928 rs3129877 rs9268853
Genotype TT CC GG GG CT or TT Logic-based

Cases 437 (23.49%) 442 (23.76%) 1248 (67.10%) 967 (51.99%) 1341 (72.10%) Risk Groups
Controls 1180 (40.19%) 1159 (39.48 %) 2120 (72.21%) 1476 (50.27%) 2544 (86.65%)
Logic 1 ( OR ) Frequency OR
Logic 2 ( ( OR ) AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 744 489 6.24
Logic-based Logic 1 = YES Logic 2 = NO 318 555 2.35
Risk Groups Logic 1 = NO Logic 2 = YES 546 858 2.61

Logic 1 = YES Logic 2 = YES 252 1034 1.00

Gene PTPN22 illustrates a different possible scenario: the gene was found

to be strongly associated with RA & T1D but not CD. It can be seen from

Figure 2.2 that T1D and RA are clustered together and far from the CD and

Control group. This suggests that the biological mechanism of this gene is the

same for RA and T1D so the association could be shared among them, but

distinct from CD. We can obtain a better insight of the SNP interactions by

looking at the logic trees of the individual models.

Figure 2.2: Distance plot of gene PTPN22.
† indicates statistical significance.
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Table 2.4: Logic structures, frequencies, and associated Crohn’s Dis-
ease odds ratios of the PTPN22 gene

SNP rs1217414 rs2488457 rs2488457 rs1217414
Genotype GG CC or CG CC AA Logic-based

Cases 922 (52.75%) 1693 (96.85%) 1150 (68.79%) 160 (9.15%) Risk Groups
Controls 1573 (53.58%) 2814 (95.84%) 1869 (63.66%) 212 (7.22%)
Logic 1 (( AND ) OR ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 219 448 0.81
Logic-based Logic 1 = YES Logic 2 = NO 1369 2276 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 0 0 —

Logic 1 = YES Logic 2 = YES 160 212 1.25

Table 2.5: Logic structures, frequencies, and associated Type I Dia-
betes odds ratios of the PTPN22 gene

SNP rs2488457 rs1217414 rs3789609 rs2488457
Genotype CC or CG GG CC CC Logic-based

Cases 1818 (92.61%) 1091 (55.58%) 1023 (52.11%) 1062 (54.10%) Risk Groups
Controls 2814 (95.84%) 1573 (53.58%) 1431 (48.74%) 1869 (63.66%)
Logic 1 (( AND ) OR ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 146 122 2.23
Logic-based Logic 1 = YES Logic 2 = NO 755 945 1.49
Risk Groups Logic 1 = NO Logic 2 = YES 304 456 1.24

Logic 1 = YES Logic 2 = YES 758 1413 1.00

Table 2.6: Logic structures, frequencies, and associated Rheumatoid
Arthritis odds ratios of the PTPN22 gene

SNP rs2488457 rs3789609 rs1217414 rs2488457
Genotype CG or GG TT AA or AG CC or CG Logic-based

Cases 844 (45.38%) 137 (7.37%) 806 (43.33%) 1739 (93.49%) Risk Groups
Controls 1067 (36.34%) 255 (8.69%) 1363 (46.42%) 2814 (95.84%)
Logic 1 ( OR ( AND )) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 0 0 —
Logic-based Logic 1 = YES Logic 2 = NO 121 122 1.82
Risk Groups Logic 1 = NO Logic 2 = YES 1014 1869 1.00

Logic 1 = YES Logic 2 = YES 725 945 1.41

The logic tables for gene PTPN22 and the diseases show that T1D and

RA might share the association since the SNPs and the risk-increasing alleles

involved in the models match while CD does not show a strong association with

the gene. Although, given that only 4 SNPs were in the gene, high similarity

of the models is expected. The difference in the distance from T1D and RA to
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the Control group could be attributed to the strength of the association since

PTPN22 is showing bigger odds ratios while also being further away from the

Control group compared to RA.

Based on our analyses, out of 158 genes, we have evidence supporting

that 3 gene-disease associations are shared among all 3 diseases, 4 between

T1D & RA, 3 between CD & RA, and 1 between CD & T1D . It can be

noticed that the vast majority of the associations are distinct for a specific

individual disease. These results suggest that most of the traditional and

novel approaches overestimate the degree of sharedness of the genetic etiology

of diseases since they are based only on significance without taking into account

strength and direction of assocation.

2.4 Discussion

The methodology proposed here is based on a strict definition of “shared”

association. By using this approach, we take into account not only single-

disease significance, direction, and strength of the gene-level associations when

making inferences, which are measures relevant to single SNPs analysis, but

also incorporate the idea of how a set of SNPs of a gene are associated with

the diseases. This strict definition of “shared” association was used because

even if 2+ diseases are associated with the loci with the same OR direction,

it does not mean they share the biological association (e.g., through the same

biological pathway).

The higher accuracy of the method requires a significant amount of compu-

tational time due to the neccesity of fitting additional logic regression models

on top of the high computational time required by the gene-level logic re-

gression GWAS analysis. We reduced the computational demand of the logic

regression by limiting the number of SNPs interacting in the model which

makes the search not comprehensive and more complex interactions will not

be discovered.
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Despite the limitation imposed by fixing the number of SNPs interacting

in the logic regression models, we were able to demonstrate the potentially er-

roneous inferences that can arise when assessing whether a genetic association

is shared or distinct among a group of diseases if only limited information such

as p-values and odds ratios are used. For most of the associations studied in

this paper, the results suggest some degree of uniqueness in the gene-disease

associations which indicate a potentially different biological role of the genes

on the etiology of each disease.

The methodology was designed to be applied to GWASs using the same

genotyping platform which might present a limitation when working with

cross-platforms studies. In case the platforms differ among disease groups,

we could adapt the method to allow the analysis to be done. One way to

overcome this limitation is by using just the matching SNPs across platforms

which could significantly reduce the number of available SNPs to work with

and the results might not represent the single-disease analysis results. An-

other alternative could be to select proxies for the non-matching SNPs based

on proximity (if any) to compensate for the mismatch. A third more elabo-

rate approach would involve an imputation process before the single-disease

analysis [18].

There has been an increasing attention paid to pathway analysis in GWAS

[19]. The methodology proposed could be extended to candidate pathway-

level analysis with some adaptations. The main challenge with pathway-level

analysis is the computational demand and convergence since the number of

SNPs involved would be high and the solution space to explore would be big

increasing the chances of convergence to a local optimum if the space is not

explored appropriately.

Future work involves quantifying the variance of the association strength

and direction possibly by using a random-effects model. This would allow us to

obtain disease-specific estimates of effect and statistically test their significance

making able to quantify the sharedness of the gene-disease associations.
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Chapter 3

Novel Tuberculosis
Susceptibility Genes Discovered
by Logic Regression: a
Stratified Analysis in Thai
Population

3.1 Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tubercu-

losis and it is one of the leading causes of death in developing countries. The

infection is generally transmitted by droplets generated during abrupt respira-

tory movements such as coughing. Tuberculosis infection can be either active

or latent, depending on the presence or absence, respectively, of symptoms,

which usually involve cough, chest pain, shortness of breath, fatigue, weight

loss, fever and night sweats. Latently infected people cannot transmit the

disease to other people but remain at risk of becoming actively infected [1].

While environmental factors play major roles in TB infection, the role of ge-

netics in the active infection of tuberculosis has been acknowledged by several

family studies [2] [3] [4]. Further genome-wide association studies (GWAS)

have discovered susceptibility loci such as single-nucleotide polymorphisms

(SNPs) rs3024505 and rs9373180 of genes IL10 and IFNGR1, respectively [5].

22



However, these findings are still far from explaining the heritability of tuber-

culosis as it is common for most GWASs of complex diseases [6].

Recently, a new GWAS uncovered a new susceptibility locus by empirically

stratifying the TB case group as young (≤ 45 years old) and old patients (> 45

years old) in Thai and Japanese populations. SNP rs6071980 of the HSPEP1-

MAFB region was found to be significantly associated with TB with odds

ratios of 1.82 and 1.81 for young Thai and Japanese populations, respectively

[7]. Given the success of novel approaches to explore SNP-SNP interactions

such as logic regression to explain complex disease genetics in GWASs [8], we

hypothesize novel suceptibility genes could be discovered by following a similar

approach on stratified TB cases.

To explore SNP-SNP interactions in our TB GWAS analysis, we propose

using logic regression which incorporates SNP intersection, union and combi-

nations of them to assess whether a group of SNPs are jointly associated with

a stratified phenotype [9]. As mentioned before, logic regression has been suc-

cesfully applied to groups of SNPs but mostly based on candidate genes due to

the high computational demand [10] [11] [12]. To further analyze whether the

gene-disease associations are shared among the stratified groups, we propose

to do a shared vs. distinct analysis as described in Chapter 2.

3.2 Materials and Methods

The method we proposed is a gene-level analysis that is performed by incor-

porating two specific forms of SNP-SNP interactions which are motivated by

biological knowledge. One form of interaction is SNP-SNP intersection, which

requires that multiple SNPs need to have their high-risk genotypes for the

disease-risk to be elevated (i.e. SNP-A and SNP-B). The second form of in-

teraction is SNP-SNP union, which requires the high-risk genotype of at least

one of the two SNPs for the disease-risk to be elevated (i.e. SNP-A or SNP-

B). Logic regression incorporates these two types of SNP-SNP interactions
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into the models by exploring the optimum set of SNP-SNP interactions that

are associated with the disease or trait of interest [9]. By using logic regression,

we model the outcome (i.e. TB case or control status) as intersections and

unions of binary SNP genotype indicators. The logic regression model used

has the specific form shown in Eq. 3.1 where Y is the binary phenotype (i.e.

TB case and controls), β0, ..., βp are the model parameters, and L0, ..., Lp are

combinations of SNP genotype indicators which are also referred to as logic

trees. Logic regression has been succesfully applied to GWAS to explain to

a greater extent the disease genetics of Crohn’s Disease, a highly heritable

disease [8].

logit (E [Y ]) = β0 + β1L1 + β2L2 + ...+ βpLp (3.1)

The logic regression SNP-SNP interaction analysis we performed used only

those SNPs in such a way that no pair of them within a gene were in linkage

disequilibrium (r2 ≥ 0.8). The maximum number of logic trees we allowed in

our models was two (L1, L2) with at most five interacting SNPs in total. These

restrictions were specified in our models due to the large number of possible

interactions to explore and the exponencially increasing computational cost

associated with each additional tree or leaf. Since the search of the solution

space is done stochastically by means of a simulated annealing algorithm, we fit

the logic regression 20 times varying the initial random seed of the stochastic

search. At the end of the 20 fitting processes, we keep the model with the

lowest deviance among them. This process is also repeated with 20 sets of

case-control randomly permuted labels.

The deviance of the best model in addition to the deviances of the best

model with case-control labels randomly permuted allow a statistical signifi-

cance test. A Bayes Factor (BF) can be obtained from this comparison, which

can later be used to calculate a p-value by ordering all the BF values and

then calculate the fraction of all permuted BF values smaller than the gene’s

observed BF. This p-value calculation incorporates the multiple testing cor-
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rection and takes into account the potential for genes with more SNPs to

overfit. Further analysis to assess whether the common associations for both

age groups are shared or not was also carried out to determine if each gene is

potentially affecting the same biological mechanism.

The samples for the genome-wide genotyping included 613 TB patients

and 727 healthy controls; 206 cases were less than 45 years old, our empirical

age threshold to identify young TB subjects based on the distribution of age

at onset of TB in Thailand [13]. Statification by TB strain was also carried

out with a total of 182 and 184 subjects with ancient and modern TB strains,

respectively as well as stratification by TB lineage with a total of 140, 181, and

45 Beijing, East African-Indian (EAI), and “other” subjects, respectively. The

patients were recruited from Chian Rai, Lampang, and Bangkok provinces of

Thailand due to the high similarity of their populations [14]. All cases were

human immunodeciency virus-seronegative when TB was diagnosed and later

confirmed by microscopic identification or mycobacterial culture. The geno-

typing was performed using Illumina Hapmap 610 chip (Illumina, San Diego,

CA, USA). For each gene, we excluded subjects with missing genotype values

for any of the SNPs within it since the logic regression package cannot deal

with missing values. Standard quality control was performed including Hardy-

Weinburg equilibrium cutoff at p-value < 10−5 and minimum allele frequency

of 0.05. Multidimensional scaling of pairwise identity by state statistics was

carried out using GenABEL package [15] and indicated three outlier samples,

which were excluded. The genomic inflation factor (λ) was calculated from

trend test p-values; at λ = 1.02 the level of population stratification was ac-

ceptable.

3.3 Results

The number of old and young TB cases is shown in Table 3.1 and Table

3.2, respectively, stratified by strain and lineage for those cases with available
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relevant information. Lineage and strain information was not available for 247

cases. It can be observed that all Beijing cases and most “other” lineage cases

were modern TB strain holders while all EAI cases were ancient TB strain

holders.

Table 3.1: Number of old TB cases by lineage and strain.

Ancient strain Modern strain
Beijing 0 76

EAI 135 0
Other 0 24

Table 3.2: Number of young TB cases by lineage and strain.

Ancient strain Modern strain
Beijing 0 64

EAI 44 0
Other 1 20

3.3.1 Age-stratified analysis

We examined 18,278 genes. Out of these, 6 were found to have a strong

assocation with young TB cases and 3 with old TB cases with an overlap of

2 genes among those. A summary of the findings can be found in Table 3.3.

Genes ZFHX1B and FER showed a strong association with both age groups so

we decided to investigate further whether the association is shared or distinct

among them. Further analysis showed that the association with each gene is

highly likely to be shared as shown in the Figure 3.1 since both age groups

seem to be equally distant from control group and close to each other.

The shared gene ZFHX1B encodes zinc finger E-box-binding homeobox 2

proteins and has been associated with several congenital neural disorders at

different levels such as Mowat-Wilson syndrome, congenital heart disease, hy-

pospadias, and renal tract anomalies [16]. Gene emphFER encodes proto-

oncogene tyrosine kinase protein which participates in intracellular signalling

or differentiation processes [17].
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Table 3.3: Genes with the strongest evidence of association with ei-
ther young or old TB risk with chromosomal locations and approx-
imate p-values.

Gene Location Young TB p-value Old TB p-value
ZFHX1B 2q22.3 < 2.73× 10−6 < 2.73× 10−6

FER 5q21.3 < 2.73× 10−6 < 2.73× 10−6

DAB2IP 9q33.2 3.56× 10−5 0.808
GNAQ 9q21.2 6.57× 10−5 0.364
C8orf48 8p22 7.93× 10−5 0.155
C11orf16 11p15.4 8.21× 10−5 0.616
SH3MD2 4q32.3 9.03× 10−5 0.195

Table 3.4: Logic structures, frequencies, and associated old-TB odds
ratios of the ZFHX1B gene

SNP rs2052807 rs7568133 rs7565134 rs2162571 rs7565134
Genotype AA AA AA AA AA or AG Logic-based

Cases 73 (18.11%) 50 (12.41%) 119 (29.53%) 266 (66.00%) 223 (55.33%) Risk Groups
Controls 114 (15.90%) 76 (10.60%) 399 (55.65%) 489 (68.20%) 522 (72.80%)
Logic 1 ( AND ) Frequency OR
Logic 2 ( ( OR ) AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 267 282 3.33
Logic-based Logic 1 = YES Logic 2 = NO 9 1 31.61
Risk Groups Logic 1 = NO Logic 2 = YES 123 482 1.00

Logic 1 = YES Logic 2 = YES 4 2 7.02

Table 3.5: Logic structures, frequencies, and associated young-TB
odds ratios of the ZFHX1B gene

SNP rs17738837 rs12691693 rs3770305 rs6738630 rs7565134
Genotype AA AG or GG AG or GG AA AG or GG Logic-based

Cases 182 (88.78%) 155 (75.61%) 195 (95.12%) 312 (19.02%) 147 (71.71%) Risk Groups
Controls 609 (84.94%) 515 (71.83%) 678 (94.56%) 118 (16.46%) 318 (44.35%)
Logic 1 ( ( OR ) AND ) OR ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 0 32 0.00
Logic-based Logic 1 = YES Logic 2 = NO 58 367 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 0 17 0.00

Logic 1 = YES Logic 2 = YES 147 301 3.09

27



Table 3.6: Logic structures, frequencies, and associated old-TB odds
ratios of the FER gene

SNP rs4957798 rs9326759 rs4957798 rs9326761 rs17391678
Genotype GG AA or AG AG or GG AG or GG AC or CC Logic-based

Cases 247 (61.44%) 74 (18.41%) 358 (89.05%) 114 (28.36%) 37 (9.20%) Risk Groups
Controls 292 (40.44%) 139 (19.25%) 541 (74.93%) 260 (36.01%) 105 (14.54%)
Logic 1 ( ( OR ) AND ) Frequency OR
Logic 2 ( OR ) Cases Controls

Logic 1 = NO Logic 2 = NO 78 220 1.00
Logic-based Logic 1 = YES Logic 2 = NO 200 198 2.85
Risk Groups Logic 1 = NO Logic 2 = YES 16 119 0.38

Logic 1 = YES Logic 2 = YES 108 185 1.65

Table 3.7: Logic structures, frequencies, and associated young-TB
odds ratios of the FER gene

SNP rs11952637 rs9326745 rs4957798 rs12657495 rs6875865
Genotype GG GG AA or AG AG or GG GG Logic-based

Cases 113 (54.33%) 81 (38.94%) 87 (41.83%) 42 (20.19%) 86 (41.35%) Risk Groups
Controls 446 (61.77%) 333 (46.12%) 430 (59.56%) 210 (29.09%) 304 (42.11%)
Logic 1 ( ( OR ) AND ) Frequency OR
Logic 2 ( AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 168 365 1.00
Logic-based Logic 1 = YES Logic 2 = NO 32 277 0.25
Risk Groups Logic 1 = NO Logic 2 = YES 6 51 0.26

Logic 1 = YES Logic 2 = YES 2 29 0.15

(a) ZFHX1B (b) FER

Figure 3.1: Distance plots of genes ZFHX1B and FER for age-stratified TB
subgroups.
† indicates statistical significance.
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3.3.2 Strain-stratified analysis

We found 7 genes strongly associated with either modern or ancient strains

of TB although only gene ZFHX1B achieved statistical significance in the an-

cient strain group. A summary of the results can be found in Table 3.8. The

consistent appearance of genes ZFHX1B and FER as top genes between the

age-stratified and strain-stratified analyses suggests these genes play an impor-

tant role in the disease etiology and a potential common biological mechanism

acting on these subgroups.

Figure 3.2 presents the results of the analysis performed to assess whether

the ZFHX1B and FER associations are shared between the two subgroups

based on the strain stratification. The strain-stratified analysis shows a po-

tential common susceptibility between ancient and modern TB strains as il-

lustrated by the distance to the control group from both disease subgroups

and the relatively small separation between the two disease subgroups.

To further analyze the ZFHX1B and FER gene-disease associations, we

constructed the logic tables of each individual subgroup model. The odds

ratios range from 0 to 26.89 with p-value of 0.130 and from 2.97 to 18.75 with

p-value of 1.09× 10−5 associated to FER gene in the modern and ancient TB

strains, respectively. The odds ratios range from 0.18 to 0.68 with p-value of

0.157 and from 2.77 to 8.95 with p-value of < 3.8×10−6 associated to ZFHX1B

gene in the modern and ancient TB strains, respectively.
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Table 3.8: Genes with the strongest evidence of association with ei-
ther ancient or modern TB strain risk with chromosomal locations
and approximate p-values.

Gene Location Modern TB p-value Ancient TB p-value
ZFHX1B 2q22.3 0.157 < 3.8× 10−6

FER 5q21.3 0.130 1.09× 10−5

LOC646024 6q25.1 0.168 1.37× 10−5

LOC387720 10q26.2 8.21× 10−6 0.822
FAM77C 1p35.2 2.19× 10−5 0.960

LOC646952 1p21.2 2.19× 10−5 0.265
SALF 2p16.3 6.84× 10−5 0.462

(a) ZFHX1B strain-stratified (b) FER strain-stratified

Figure 3.2: Distance plots of genes ZFHX1B and FER for strain-stratified TB
subgroups.
† indicates statistical significance.

Table 3.9: Logic structures, frequencies, and associated ancient TB
strain odds ratios of the ZFHX1B gene

SNP rs2052807 rs13002663 rs12691693 rs13413446 rs7565134
Genotype AA or AC GG AA GG AG or GG Logic-based

Cases 118 (65.56%) 62 (34.44%) 61 (33.89%) 10 (5.56%) 130 (72.22%) Risk Groups
Controls 439 (61.4%) 229 (32.03%) 202 (28.25%) 30 (4.20%) 316 (44.20%)
Logic 1 ( OR ) AND ( OR ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 34 341 1.00
Logic-based Logic 1 = YES Logic 2 = NO 16 58 2.77
Risk Groups Logic 1 = NO Logic 2 = YES 97 279 3.49

Logic 1 = YES Logic 2 = YES 33 37 8.95
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Table 3.10: Logic structures, frequencies, and associated modern TB
strain odds ratios of the ZFHX1B gene

SNP rs13413446 rs4662223 rs7599224 rs7565134 rs1365778
Genotype AG or GG AA or AG AA or AC AG or GG AG or GG Logic-based

Cases 73 (40.33%) 66 (36.46%) 145 (80.11%) 110 (60.77%) 130 (71.82%) Risk Groups
Controls 274 (38.82%) 260 (36.36%) 534 (74.69%) 316 (44.20%) 462 (64.42%)
Logic 1 (( OR ) AND ) OR Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 5 73 0.18
Logic-based Logic 1 = YES Logic 2 = NO 46 180 0.68
Risk Groups Logic 1 = NO Logic 2 = YES 18 162 0.30

Logic 1 = YES Logic 2 = YES 112 300 1.00

Table 3.11: Logic structures, frequencies, and associated ancient TB
strain odds ratios of the FER gene

SNP rs4616948 rs17161562 rs17473831 rs4957798 rs9326761
Genotype GG AA AC or CC GG AA Logic-based

Cases 147 (81.22%) 147 (81.22%) 178 (98.34%) 110 (60.77%) 126 (69.61%) Risk Groups
Controls 602 (83.61%) 612 (85.00%) 720 (100.00%) 291 (40.42%) 461 (64.03%)
Logic 1 ( ( OR ) AND ) Frequency OR
Logic 2 ( AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 11 4 18.75
Logic-based Logic 1 = YES Logic 2 = NO 72 491 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 1 0 Inf

Logic 1 = YES Logic 2 = YES 97 225 2.94

Table 3.12: Logic structures, frequencies, and associated modern TB
strain odds ratios of the FER gene

SNP rs10477929 rs12657495 rs9326758 rs3797838 rs9326758
Genotype AA AG or GG AA AA or AG AA Logic-based

Cases 115 (62.84%) 44 (24.04%) 7 (3.83%) 60 (32.79%) 7 (3.83%) Risk Groups
Controls 491 (68.19%) 210 (29.17%) 10 (1.39%) 224 (31.11%) 10 (1.39%)
Logic 1 AND (( OR ) AND ) Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 176 676 1.00
Logic-based Logic 1 = YES Logic 2 = NO 0 34 0.00
Risk Groups Logic 1 = NO Logic 2 = YES 7 1 26.89

Logic 1 = YES Logic 2 = YES 0 9 0.00

3.3.3 Lineage-stratified analysis

We found 5 genes strongly associated with either Beijing, EAI or other lin-

eages of TB. Two genes achieved statistical significance in the EAI lineage

subgroup, one gene in the Beijing lineage subgroup, and no gene in the other

lineage subgroup. A summary of the results can be found in Table 3.13.

The consistent appearance of genes ZFHX1B and FER as top genes among
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the age-stratified, strain-stratified, and lineage-stratified analyses keeps adding

evidence that these genes play an important role in the disease etiology and a

potential common biological mechanism acting on these subgroups.

Figure 3.3 presents the results of the analysis performed to assess whether

the ZFHX1B and FER associations are shared between the three subgroups

based on the lineage stratification. The lineage-stratified analysis shows a po-

tential common susceptibility between Beijing and other TB lineages but dif-

ferent than the susceptibility to EAI lineage as illustrated by the close distance

between Beijing and other subgroups and the significant separation between

these two subgroups and the EAI lineage.

To further analyze the ZFHX1B and FER gene-disease associations, we

constructed the logic tables of each individual subgroup model. The odds

ratios range from 0 to 4.81 with p-value of < 3.8 × 10−6, from 2.97 to 17.05

with p-value of 0.127, and from 0.06 to 2.15 with p-value of 0.171 associated to

FER gene in the EAI, Beijing, and other TB lineages, respectively. The odds

ratios range from 0.21 to 1.68 with p-value of < 3.8× 10−6, from 0.63 to 3.81

with p-value of 0.058, and from 0.00 to 15.79 with p-value of 0.165 associated

to ZFHX1B gene in the EAI, Beijing, and other TB lineages, respectively.

Table 3.13: Genes with the strongest evidence of association with TB
risk in Beijing, EAI, and other lineages with chromosomal locations
and approximate p-values.

Gene Location Beijing lineage
TB p-value

EAI lineage
TB p-value

Other lineage
TB p-value

ZFHX1B 2q22.3 0.058 < 3.8× 10−6 0.165
FER 5q21.3 0.127 < 3.8× 10−6 0.171

LOC646024 6q25.1 0.141 5.47× 10−6 0.327
FAM77C 1p35.2 < 3.8× 10−6 0.971 0.090

RGS6 14q24.2 0.428 0.976 6.29× 10−5
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(a) ZFHX1B lineage-stratified (b) FER lineage-stratified

Figure 3.3: Distance plots of genes ZFHX1B and FER for lineage-stratified
TB subgroups.
† indicates statistical significance.

Table 3.14: Logic structures, frequencies, and associated EAI-lineage
TB odds ratios of the ZFHX1B gene

SNP rs7565134 rs1365778 rs10185359 rs7599224 rs12691693
Genotype AA AA or AG AA or AG AA or AC AG or GG Logic-based

Cases 50 (27.93%) 143 (79.89%) 75 (41.90%) 128 (71.51%) 118 (65.92%) Risk Groups
Controls 399 (55.80%) 606 (84.76%) 293 (40.98%) 534 (74.69%) 513 (71.75%)
Logic 1 ( AND ( OR )) Frequency OR
Logic 2 ( AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 69 126 1.68
Logic-based Logic 1 = YES Logic 2 = NO 25 180 0.43
Risk Groups Logic 1 = NO Logic 2 = YES 72 221 1.00

Logic 1 = YES Logic 2 = YES 13 188 0.21

Table 3.15: Logic structures, frequencies, and associated Beijing-
lineage TB odds ratios of the ZFHX1B gene

SNP rs7600752 rs7565134 rs7568133 rs10185359 rs10196335
Genotype AA or AG GG GG AA or AG AA Logic-based

Cases 115 (83.94%) 59 (43.07%) 68 (49.64%) 56 (40.88%) 15 (10.95%) Risk Groups
Controls 549 (76.78%) 193 (26.99%) 329 (46.01%) 293 (40.98%) 115 (16.06%)
Logic 1 (( OR ) AND ) OR Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 79 525 1.00
Logic-based Logic 1 = YES Logic 2 = NO 43 75 3.81
Risk Groups Logic 1 = NO Logic 2 = YES 8 84 0.63

Logic 1 = YES Logic 2 = YES 7 31 1.50

33



Table 3.16: Logic structures, frequencies, and associated other-
lineage TB odds ratios of the ZFHX1B gene

SNP rs13413446 rs1035822 rs3928425 rs7599224 rs7565134
Genotype AG or GG AA or AG AA CC AA Logic-based

Cases 23 (51.11%) 20 (22.22%) 31 (68.89%) 6 (13.33%) 18 (40.00%) Risk Groups
Controls 274 (38.32%) 73 (10.21%) 405 (56.64%) 181 (25.31%) 399 (55.80%)
Logic 1 (( AND ) AND ) Frequency OR
Logic 2 ( AND ) Cases Controls

Logic 1 = NO Logic 2 = NO 38 600 1.00
Logic-based Logic 1 = YES Logic 2 = NO 7 7 15.79
Risk Groups Logic 1 = NO Logic 2 = YES 0 103 0.00

Logic 1 = YES Logic 2 = YES 0 5 0.00

Table 3.17: Logic structures, frequencies, and associated EAI-lineage
TB odds ratios of the FER gene

SNP rs4616948 rs17161562 rs17473831 rs4957798 rs9326761
Genotype GG AA AC or CC GG AA Logic-based

Cases 147 (81.67%) 146 (81.11%) 177 (98.33%) 110 (61.11%) 126 (70.00%) Risk Groups
Controls 602 (83.61%) 612 (85.00%) 720 (100.00%) 291 (40.42%) 461 (64.03%)
Logic 1 ( ( AND ) OR ) Frequency OR
Logic 2 ( OR ) Cases Controls

Logic 1 = NO Logic 2 = NO 10 4 17.05
Logic-based Logic 1 = YES Logic 2 = NO 72 491 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 1 0 Inf

Logic 1 = YES Logic 2 = YES 97 225 2.94

Table 3.18: Logic structures, frequencies, and associated Beijing-
lineage TB odds ratios of the FER gene

SNP rs9326745 rs4365877 rs10477929 rs4957798 rs9326758
Genotype GG GG GG AA or AG AG or GG Logic-based

Cases 56 (40.29%) 37 (26.62%) 4 (2.88%) 67 (48.2%) 132 (94.96%) Risk Groups
Controls 333 (46.25%) 243 (33.75%) 13 (1.81%) 429 (59.58%) 710 (98.61%)
Logic 1 (( OR ) AND ) OR Frequency OR
Logic 2 Cases Controls

Logic 1 = NO Logic 2 = NO 7 7 4.81
Logic-based Logic 1 = YES Logic 2 = NO 0 3 0.00
Risk Groups Logic 1 = NO Logic 2 = YES 132 635 1.00

Logic 1 = YES Logic 2 = YES 0 75 0.00

Table 3.19: Logic structures, frequencies, and associated other-
lineage TB odds ratios of the FER gene

SNP rs7710223 rs4957798 rs7710223 rs7737443 rs7715208
Genotype AA or AG AG or GG GG AA or AC AA Logic-based

Cases 32 (71.11%) 41 (91.11%) 13 (28.89%) 34 (75.56%) 38 (84.44%) Risk Groups
Controls 554 (76.94%) 539 (74.86%) 166 (23.06%) 554 (76.94%) 572 (79.44%)
Logic 1 ( ( OR ) OR ) Frequency OR
Logic 2 ( OR ) Cases Controls

Logic 1 = NO Logic 2 = NO 1 229 0.06
Logic-based Logic 1 = YES Logic 2 = NO 31 411 1.00
Risk Groups Logic 1 = NO Logic 2 = YES 13 80 2.15

Logic 1 = YES Logic 2 = YES 0 0 —
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3.4 Discussion

The results of these gene-level analyses illustrate the power of logic-regression

to uncover multiple-SNP interactions that could potentially explain the ge-

netics of complex traits. We found strong evidence of association of 13 newly

identified genes with different strains, lineages, and age groups of TB that

traditional single-SNP analysis have not been able to uncover, explaining to a

greater extent the genetics of TB.

Genes FER and ZFHX1B were found to be consistently associated with

different age groups as well as specific strains and lineages. Gene FER has been

found to encode a member of the FPS/FES protein-tyrosine kinase family. It

is involved in the regulation of cell-cell adhesion as well as the mediation

of signaling from the cell surface to the cytoskeleton [18]. Gene ZFHX1B

encodes protein zinc finger E-box-binding homeobox 2 and mutations of this

gene has been associated with Mowat-Wilson syndrome which is characterized

by a number of defects such as microcephaly, mental retardation, and epilepsy,

among others [19].

For our analyses, we reduced the computational intensity by limiting the

case-control label permutations to 20, number of SNPs interacting to a maxi-

mum of 5, and number of logic trees to 2. These limitations make the search

not comprehensive as there might be higher-order interactions that could ex-

plain the genetic TB-risk. Nevertheless, the structure permits an approximate

of more complex interaction structures, far closer to them than the single-SNP

analysis could approximate.

False positive results are a common concern in GWASs due to the large

number of tests performed. Findings should be further validated in order to

rule-out spurious associations due to population stratification or genotyping

errors [20]. An alternative to reduce the computational demand of logic regres-

sion applied to data-driven approaches such as GWAS is to use a candidate-

genes analysis by just analyzing the highly significant genes in the primary
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GWAS. Adequate phenotyping is also a major concern in this type of studies

to be able to discover new genetic associations. Special attention should be

paid to GWAS of infectious diseases due to the possibility of controls becom-

ing cases later on as well as the definition used as the findings can be highly

sensitive to these factors [21].

Increasing attention has been paid to pathway analysis in GWAS [22].

This approach is biologically appealing because it would incorporate gene-

interactions that are not currently being captured by our approach. Logic

regression has the potential to be extended to pathway-level analysis but the

computational requirements would be too demanding given the dimensionality

of the solution space and the necessity of minimizing the possibility of converg-

ing to a local optimum. There would also be a need to incorporate biological

knowledge to the pathway analysis to understand how genes interact within

the pathway in order to model the interactions accurately [23].

36



Bibliography

[1] Anastasios Konstantinos et al. Testing for tuberculosis. Australian Pre-
scriber, 33(1):12–18, 2010.

[2] Richard Bellamy, Nulda Beyers, Keith PWJ McAdam, Cyril Ruwende,
Robert Gie, Priscilla Samaai, Danite Bester, Mandy Meyer, Tumani Cor-
rah, Matthew Collin, et al. Genetic susceptibility to tuberculosis in
africans: a genome-wide scan. Proceedings of the National Academy of
Sciences, 97(14):8005–8009, 2000.

[3] Annette Jepson, Amanda Fowler, Winston Banya, Mahavir Singh, Steve
Bennett, Hilton Whittle, and Adrian VS Hill. Genetic regulation of ac-
quired immune responses to antigens ofmycobacterium tuberculosis: a
study of twins in west africa. Infection and immunity, 69(6):3989–3994,
2001.

[4] Jamila El Baghdadi, Marianna Orlova, Andrea Alter, Brigitte Ranque,
Mohamed Chentoufi, Faouzia Lazrak, Moulay Idriss Archane, Jean-
Laurent Casanova, Abdellah Benslimane, Erwin Schurr, et al. An autoso-
mal dominant major gene confers predisposition to pulmonary tubercu-
losis in adults. The Journal of experimental medicine, 203(7):1679–1684,
2006.

[5] Thorsten Thye, Fredrik O Vannberg, Sunny H Wong, Ellis Owusu-Dabo,
Ivy Osei, John Gyapong, Giorgio Sirugo, Fatou Sisay-Joof, Anthony En-
imil, Margaret A Chinbuah, et al. Genome-wide association analyses
identifies a susceptibility locus for tuberculosis on chromosome 18q11. 2.
Nature genetics, 42(9):739–741, 2010.

[6] Teri A Manolio, Francis S Collins, Nancy J Cox, David B Goldstein, Lu-
cia A Hindorff, David J Hunter, Mark I McCarthy, Erin M Ramos, Lon R
Cardon, Aravinda Chakravarti, et al. Finding the missing heritability of
complex diseases. Nature, 461(7265):747–753, 2009.

[7] Surakameth Mahasirimongkol, Hideki Yanai, Taisei Mushiroda, Watoo
Promphittayarat, Sukanya Wattanapokayakit, Jurairat Phromjai, Rika
Yuliwulandari, Nuanjun Wichukchinda, Amara Yowang, Norio Yamada,
et al. Genome-wide association studies of tuberculosis in asians identify
distinct at-risk locus for young tuberculosis. Journal of human genetics,
57(6):363–367, 2012.

37



[8] Irina Dinu, Surakameth Mahasirimongkol, Qi Liu, Hideki Yanai,
Noha Sharaf Eldin, Erin Kreiter, Xuan Wu, Shahab Jabbari, Katsushi
Tokunaga, and Yutaka Yasui. Snp-snp interactions discovered by logic
regression explain crohn’s disease genetics. PloS one, 7(10):e43035, 2012.

[9] I. Ruczinski, C. Kooperberg, and M. LeBlanc. Logic regression. Journal
of Computational and Graphical Statistics, 12(3):475–511, 2003.

[10] Charles Kooperberg and Ingo Ruczinski. Identifying interacting snps us-
ing monte carlo logic regression. Genetic epidemiology, 28(2):157–170,
2005.

[11] Yutaka Suehiro, Chi Wai Wong, Lucian R Chirieac, Yutaka Kondo, Lan-
lan Shen, C Renee Webb, Yee Wai Chan, Annie SY Chan, Tsun Le-
ung Chan, Tsung-Teh Wu, et al. Epigenetic-genetic interactions in the
apc/wnt, ras/raf, and p53 pathways in colorectal carcinoma. Clinical
Cancer Research, 14(9):2560–2569, 2008.

[12] Ingo Ruczinski, Charles Kooperberg, and Michael L LeBlanc. Explor-
ing interactions in high-dimensional genomic data: an overview of logic
regression, with applications. Journal of Multivariate Analysis, 90(1):178–
195, 2004.

[13] Potjaman Siriarayapon, Hideki Yanai, Judith R Glynn, Somboonsak Yan-
paisarn, and Wat Uthaivoravit. The evolving epidemiology of hiv infec-
tion and tuberculosis in northern thailand. JAIDS Journal of Acquired
Immune Deficiency Syndromes, 31(1):80–89, 2002.

[14] Surakameth Mahasirimongkol, Wasun Chantratita, Somying Promso,
Ekawat Pasomsab, Natini Jinawath, Wallaya Jongjaroenprasert, Vi-
raphong Lulitanond, Phanida Krittayapoositpot, Sissades Tongsima,
Pathom Sawanpanyalert, et al. Similarity of the allele frequency and
linkage disequilibrium pattern of single nucleotide polymorphisms in drug-
related gene loci between thai and northern east asian populations: im-
plications for tagging snp selection in thais. Journal of human genetics,
51(10):896–904, 2006.

[15] Yurii S Aulchenko, Stephan Ripke, Aaron Isaacs, and Cornelia M van
Duijn. Genabel: an r library for genome-wide association analysis. Bioin-
formatics, 23(10):1294–1296, 2007.

[16] Meredith Wilson, David Mowat, Dastot-Le Moal, Valère Cacheux, He-
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Chapter 4

Conclusions

4.1 Review of Hypotheses

Chapter 2

• P-values alone do not provide enough information to assess whether

a genetic association is shared among a group of diseases and can

lead to inaccurate inferences. – We found evidence that in-

ferences based solely on p-values tend to overestimate the

degree of sharedness of genetic associations among a group

of diseases since the association might be in opposite direc-

tion, in different magnitude, and/or biologically different.

• Taking into account strength, direction, and similarity of the bio-

logical association provide better insight and a stricter definition of

the sharedness of genetic associations among a group of diseases. –

We found evidence that by taking into account strength,

direction, and similarity of the biological association we

were able to detect some disimilarities among commonly

reported “shared” genetic susceptibilities. Furthermore,

we found evidence that some shared associations might ex-

ist among groups of diseases that the traditional approach
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wouldn’t have been able to uncover if the association is not

found statistically significant in one of the diseases.

Chapter 3

• SNP-SNP interactions are responsible for a proportion of the TB

susceptibility and explain to a greater extent the TB genetics. – We

found evidence of 3 genes statistically significantly associ-

ated with different TB subgroups that, to our knowledge,

haven’t been reported before. Additionally, we found ev-

idence of an additional 11 genes which were strongly as-

sociated with different TB subgroups but did not achieve

statistical significance. These findings contribute to the

understanding of TB genetic susceptibility.

• Some of the genetic susceptibilities are shared while others are

unique for certain TB subgroups. – We found evidence that

the two most statistically significant gene-disease associa-

tions, ZFHX1B and FER, were shared between > 45 and

≤ 45 TB age subgroups as well as ancient and modern TB

strains while these associations seem to be different among

TB lineage subgroups.

4.2 Discussion

As mentioned in Chapter 2, our methodology proposed is based on a strict

definition of ”shared” association since we take into account not only direc-

tion and strength of the gene-disease associations, but also incorporate the

structure of how a set of SNPs of a gene are associated with the diseases.

This strict definition of ”shared” association was used because even if a gene

is statistically significantly associated with 2+ diseases, with the same odds
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ratio magnitude and direction, it does not mean they share the same biological

association.

The stricter definition of a “shared” association used in this thesis uncov-

ered that the traditional approach which focuses mainly on p-values overesti-

mate the degree of sharedness. Our analysis showed that only 11 out of 158

genes that achieved statistical significance in at least one out of the three (CD,

RA, T1D) GWASs could be stated as ”shared” associations between 2 or more

diseases. All the other genes showed hints of a certain degree of uniqueness

in the association either because of the strength, direction or the SNP-SNP

interactions within the gene.

The methodology has certain limitations when compared to other ap-

proaches such as the need of using the same genotyping platform and access

to the raw data. The simplest way to perform the analysis in this scenario is

to only use matching SNPs across the different platforms, but this might sub-

stancially reduce the number of available SNPs in the analysis. Another way

to deal with different genotyping platforms is to perform an imputation pro-

cess although it is computationally intensive procedure and requires specific

knowledge of how to perform it.

In Chapter 3 we found that genes FER and ZFHX1B were consistently

associated with different age groups as well as specific strains and lineages.

To our knowledge, these genes have not been reported to be associated with

TB before. The role of gene FER has been found to be encoding a member

of the FPS/FES protein-tyrosine kinase family and it is involved in the regu-

lation of cell-cell adhesion as well as the mediation of signaling from the cell

surface to the cytoskeleton [1]. GeneZFHX1B encodes protein zinc finger E-

box-binding homeobox 2 and mutations of this gene has been associated with

Mowat-Wilson syndrome which is characterized by a number of defects such

as microcephaly, mental retardation, and epilepsy, among others [2].

The discovery of these two novel gene susceptibilities for TB keeps adding

evidence of the power of logic regression to uncover new gene-disease associ-
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ations and help explain to a greater extent the genetics of complex diseases

that traditional SNP-level GWAS cannot achieve. For our analyses, we re-

duced the computational demand by permuting the case-control label only 20

times, fixing the number of SNPs interacting to a maximum of 5 as well as

the number of logic trees to 2. These restrictions make the random search

not comprehensive since there might be more interactions that could better

explain the genetic TB-risk. Still, the model specifications used can be used

as an approximate of more complex structures.

Regarding the findings in Chapter 3, false positive results are a common

concern in GWASs due to the large number of tests performed. Since the

analysis is not hypothesis-driven, these findings should be validated in order to

rule-out the possibility of spurious associations due to population stratification

or genotyping errors. Additionally, GWAS of infectious diseases are prone to

the possibility of controls getting infected and become cases later in time so

the findings can be biased because of these factors as well as the protocol used

to identify cases [3].

4.3 Future Work

Further research aims to extend the shared gene analysis to other groups of

diseases which are more challenging and time consuming due to the different

platforms used for genotyping the subjects. Additionally, we need to perform a

replication study to confirm our TB findings in order to rule out the possibility

of spurious association due to population stratification and other factors.

Specifically, some of the research goals that arose from the work presented

in this thesis are:

• To enable to quantify the degree of sharedness of the gene-disease asso-

ciations and perform the appropriate statistical hypothesis tests

• Develop methods for handling multiple diseases GWASs with different

genotyping platforms
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• Replicate the TB study using new independent GWAS dataset

4.4 Conclusions

In conclusion, traditional analysis performed to assess whether genetic associ-

ations are shared or distinct among a group of diseases tend to overestimate

the degree of sharedness because they rely mostly on p-values and statistical

significance. Our approach considers a stricter definition of a “shared asso-

ciation” since it takes into account not only strength and direction of the

association, but also a complete biological similarity. We were able to uncover

some interesting patterns in the gene-disease associations the traditional and

recent novel approaches are not able to do. This provides a better insight of

the biological mechanism acting on each disease.

Additionally, we were able to demonstrate the power of logic regression to

uncover new genetic susceptibilities and explain to a greater extent the genetics

of complex diseases. We found 3 newly identified genes that were statistically

significant associated with different subgroups of TB: ZFHX1B, FER, and

FAM77. We additionally identified 11 genes which were strongly associated

with different subgroups of TB but did not achieve statistical significance at

the GWAS level.
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Appendix A

R codes

A.1 Logic Regression – WTCCC

args=commandArgs(trailingOnly = TRUE);
ChrNum=as.numeric(args[1]);
GeneName=as.character(args[2]);

#Load the library
library('LogicReg')

#DATA LOADING AND GENE SELECTION#

#Load the genotype file of all 3 diseases
infile=paste('A01Chr',ChrNum,'.txt',sep='')
gene=read.table(infile,sep='\t',header=TRUE)
gene=gene[as.character(gene[,4])==GeneName,]

#Total phenotype vector matching the genotype file
respTotal=rbind(as.matrix(rep('Control',2936)),

as.matrix(rep('CD',1748),as.matrix(rep('T1D',1963)),
as.matrix(rep('RA',1860)))

#LOGIC REGRESSION SETUP#

#Logic regression parameters
nsnp=length(unique(geneCD[,1]))
leaf=min(nsnp,5)
trees=2

#Deviances calculation function of the
#phenotype vector and genotype matrix
devianceCalc = function(resp, gene, trees, leaf){

set.seed(1)
dev=rep(1000000,21)

#Deviances for the original response model
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for (i in 1:20){
myfit = logreg(resp=resp,bin=t(gene[,-c(1:4)]),
type=3,select=1,ntrees=trees,nleaves=leaf)
if (myfit$model$score<dev[1]){

dev[1]=myfit$model$score
}

}

#Deviances for the permuted response models
for (i in 1:20){

respPerm=sample(resp,length(resp),replace=FALSE)
for (j in 1:20){

myfit = logreg(resp=respPerm,bin=t(gene[,-c(1:4)]),
type=3,select=1,ntrees=trees,nleaves=leaf)
if (myfit$model$score<dev[i+1]){

dev[i+1]=myfit$model$score
}

}
}

return(dev)
}

#THE CODE CALLS THE FUNCTION ABOVE 18 TIMES WITH
#DIFFERENT DATA SUBSETS AND PHENOTYPE VECTORS:
#dev1. CD & T1D vs. Controls
#dev2.. CD & RA vs. Controls
#dev3. T1D & RA vs. Controls
#dev4....... CD vs. T1D & Controls
#dev5....... CD vs. RA & Controls
#dev6...... T1D vs. CD & Controls
#dev7...... T1D vs. RA & Controls
#dev8....... RA vs. CD & Controls
#dev9....... RA vs. T1D & Controls
#dev10...... CD vs. T1D & RA
#dev11..... T1D vs. CD & RA
#dev12...... RA vs. CD & T1D
#dev13...... CD vs. T1D
#dev14...... CD vs. RA
#dev15..... T1D vs. RA
#dev16...... CD vs. Controls
#dev17..... T1D vs. Controls
#dev18...... RA vs. Controls

deviance=cbind(dev1,dev2,dev3,dev4,dev5,dev6,dev7,dev8,
dev9,dev10,dev11,dev12,dev13,dev14,dev15,dev16,dev17,dev18)

outfile=paste('dev ',GeneName,'.txt',sep='')

write.table(deviance,outfile,sep='\t',
col.names=FALSE, row.names=FALSE, quote=FALSE)
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A.2 Logic Regression – TB

args=commandArgs(trailingOnly = TRUE);
ChrNum=as.numeric(args[1]);
GeneName=as.character(args[2]);

#Load the library
library('LogicReg')

#DATA LOADING AND GENE SELECTION#

#Load the genotype file of all TB cases and controls
infile=paste('A01Chr',ChrNum,'.txt',sep='')
gene=read.table(infile,sep='\t',header=TRUE)
gene=gene[as.character(gene[,4])==GeneName,]

#Load the phenotype file of all TB cases and controls
pheno=read.table('pheno extended.txt',sep='\t',

header=TRUE, colClasses = 'character')

#Eliminate samples with missing values
keep=which(colSums(gene=='\00')==0)
gene=gene[,keep]
pheno=pheno[keep[5:length(keep)]-4,]

#Logic regression parameters
leaf=min(5,dim(gene)[1]/2)
bin=as.matrix(t(gene[,5:dim(gene)[2]]))
class(bin)='numeric'

#Deviances calculation function of the
#phenotype vector and genotype matrix
devianceCalc = function(resp, gene, trees, leaf){

set.seed(1)
dev=rep(1000000,21)

#Deviances for the original response model
for (i in 1:20){

myfit = logreg(resp=resp,bin=t(gene[,-c(1:4)]),
type=3,select=1,ntrees=trees,nleaves=leaf)
if (myfit$model$score<dev[1]){

dev[1]=myfit$model$score
}

}

#Deviances for the permuted response models
for (i in 1:20){

respPerm=sample(resp,length(resp),replace=FALSE)
for (j in 1:20){

myfit = logreg(resp=respPerm,bin=t(gene[,-c(1:4)]),
type=3,select=1,ntrees=trees,nleaves=leaf)
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if (myfit$model$score<dev[i+1]){
dev[i+1]=myfit$model$score

}
}

}

return(dev)
}

#THE CODE CALLS THE FUNCTION ABOVE 6+6+18 TIMES WITH
#DIFFERENT TB DATA SUBSETS AND PHENOTYPE VECTORS

#For the age-stratified analysis:
#dev1. ≤ 45 & >45 vs. Controls
#dev2....... ≤ 45 vs. >45 & Controls
#dev3........ >45 vs. ≤ 45 & Controls
#dev4....... ≤ 45 vs. >45
#dev5....... ≤ 45 vs. Controls
#dev6........ >45 vs. Controls

dev age=cbind(dev age1,dev age2,dev age3,dev age4,dev age5,dev age6)

outfile=paste('devAge ',GeneName,'.txt',sep='')

write.table(dev age,outfile,sep='\t',
col.names=FALSE, row.names=FALSE, quote=FALSE)

#For the strain-stratified analysis:
#dev1. modern & ancient vs. Controls
#dev2........... modern vs. ancient & Controls
#dev3.......... ancient vs. modern & Controls
#dev4........... modern vs. ancient
#dev5........... modern vs. Controls
#dev6.......... ancient vs. Controls

dev strain=cbind(dev strain1,dev strain2,dev strain3,
dev strain4,dev strain5,dev strain6)

outfile=paste('devStrain ',GeneName,'.txt',sep='')

write.table(dev strain,outfile,sep='\t',
col.names=FALSE, row.names=FALSE, quote=FALSE)

#For the lineage-stratified analysis:
#dev1.... Beijing & EAI vs. Controls
#dev2.. Beijing & Other vs. Controls
#dev3...... EAI & Other vs. Controls
#dev4.......... Beijing vs. EAI & Controls
#dev5.......... Beijing vs. Other & Controls
#dev6.............. EAI vs. Beijing & Controls
#dev7.............. EAI vs. Other & Controls
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#dev8............ Other vs. Beijing & Controls
#dev9............ Other vs. EAI & Controls
#dev10......... Beijing vs. EAI & Other
#dev11............. EAI vs. Beijing & Other
#dev12........... Other vs. Beijing & EAI
#dev13......... Beijing vs. EAI
#dev14......... Beijing vs. Other
#dev15............. EAI vs. Other
#dev16......... Beijing vs. Controls
#dev17............. EAI vs. Controls
#dev18........... Other vs. Controls

dev lin=cbind(dev lin1,dev lin2,dev lin3,dev lin4,dev lin5,
dev lin6,dev lin7,dev lin8,dev lin9,dev lin10,dev lin11,
dev lin12,dev lin13,dev lin14,dev lin15,dev lin16,
dev lin17,dev lin18)

outfile=paste('devLineage ',GeneName,'.txt',sep='')

write.table(dev lin,outfile,sep='\t',
col.names=FALSE, row.names=FALSE, quote=FALSE)
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Appendix B

MATLAB codes

B.1 2D distance error calculation

function f = distance2D(x)
%Function receives as argument a vector size 3
%corresponding to the 3 non-fixed coordinates
%3 coordinates have to be fixed (to 0) to converge

%Declaration of dist as a global variable
%containing the standardized deviances
global dist
x(1) = x(1); %x-coordinate Disease #1
x(2) = x(2); %y-coordinate Disease #1
x(3) = x(3); %x-coordinate Disease #2
x(4) = 0; %y-coordinate Disease #2
x(5) = 0; %x-coordinate Controls
x(6) = 0; %y-coordinate Controls

%Disease #1 & Disease #2 vs Controls
f(1) = abs(sqrt(((x(1)+x(3))/2-x(5))ˆ2 + ...

((x(2)+x(4))/2-x(6))ˆ2) - dist(1));
%Disease #1 vs Disease #2 & Controls
f(2) = abs(sqrt(((x(3)+x(5))/2-x(1))ˆ2 + ...

((x(4)+x(6))/2-x(2))ˆ2) - dist(2));
%Disease #2 vs Disease #1 & Controls
f(3) = abs(sqrt(((x(1)+x(5))/2-x(3))ˆ2 + ...

((x(2)+x(6))/2-x(4))ˆ2) - dist(3));
%Disease #1 vs Disease #2
f(4) = abs(sqrt((x(1)-x(3))ˆ2 + (x(2)-x(4))ˆ2) - dist(4));
%Disease #1 vs Controls
f(5) = abs(sqrt((x(1)-x(5))ˆ2 + (x(2)-x(6))ˆ2) - dist(5));
%Disease #2 vs Controls
f(6) = abs(sqrt((x(3)-x(5))ˆ2 + (x(4)-x(6))ˆ2) - dist(6));

%Return the sum of the vector of errors
f=sum(abs(f));
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B.2 3D distance error calculation

function f = distance3D(x)
%Function receives as argument a vector size 7
%corresponding to the 7 non-fixed coordinates
%5 coordinates have to be fixed (to 0) to converge

%Declaration of dist as a global variable
%containing the standardized deviances
global dist

x(1) = x(1); %x-coordinate Disease #1
x(2) = x(2); %y-coordinate Disease #1
x(3) = x(3); %z-coordinate Disease #1
x(4) = x(4); %x-coordinate Disease #2
x(5) = x(5); %y-coordinate Disease #2
x(6) = x(6); %z-coordinate Disease #2
x(7) = x(7); %x-coordinate Disease #3
x(8) = 0; %y-coordinate Disease #3
x(9) = 0; %z-coordinate Disease #3
x(10) = 0; %x-coordinate Controls
x(11) = 0; %y-coordinate Controls
x(12) = 0; %z-coordinate Controls

%Disease #1 & Disease #2 vs Controls
f(1) = pdist([x(1)/2+x(4)/2,x(2)/2+x(5)/2,x(3)/2+x(6)/2; ...

x(10),x(11),x(12)],'euclidean') - dist(1));
%Disease #1 vs Disease #2 & Controls
f(2) = pdist([x(10)/2+x(4)/2,x(11)/2+x(5)/2,x(12)/2+x(6)/2; ...

x(1),x(2),x(3)],'euclidean') - dist(2));
%Disease #2 vs Disease #1 & Controls
f(3) = pdist([x(1)/2+x(10)/2,x(2)/2+x(11)/2,x(3)/2+x(12)/2; ...

x(4),x(5),x(6)],'euclidean') - dist(3));
%Disease #1 & Disease #3 vs Controls
f(4) = pdist([x(1)/2+x(7)/2,x(2)/2+x(8)/2,x(3)/2+x(9)/2; ...

x(10),x(11),x(12)],'euclidean') - dist(4));
%Disease #1 vs Disease #3 & Controls
f(5) = pdist([x(7)/2+x(10)/2,x(8)/2+x(11)/2,x(9)/2+x(12)/2; ...

x(1),x(2),x(3)],'euclidean') - dist(5));
%Disease #3 vs Disease #1 & Controls
f(6) = pdist([x(1)/2+x(10)/2,x(2)/2+x(11)/2,x(3)/2+x(12)/2; ...

x(7),x(8),x(9)],'euclidean') - dist(6));
%Disease #2 & Disease #3 vs Controls
f(7) = pdist([x(4)/2+x(7)/2,x(5)/2+x(8)/2,x(6)/2+x(9)/2; ...

x(10),x(11),x(12)],'euclidean') - dist(7));
%Disease #2 vs Disease #3 & Controls
f(8) = pdist([x(7)/2+x(10)/2,x(8)/2+x(11)/2,x(9)/2+x(12)/2; ...

x(4),x(5),x(6)],'euclidean') - dist(8));
%Disease #3 vs Disease #2 & Controls
f(9) = pdist([x(4)/2+x(10)/2,x(5)/2+x(11)/2,x(6)/2+x(12)/2; ...

x(7),x(8),x(9)],'euclidean') - dist(9));
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%Disease #1 vs Disease #2 & Disease #3
f(10) = pdist([x(4)/2+x(7)/2,x(5)/2+x(8)/2,x(6)/2+x(9)/2; ...

x(1),x(2),x(3)],'euclidean') - dist(10));
%Disease #2 vs Disease #1 & Disease #3
f(11) = pdist([x(1)/2+x(7)/2,x(2)/2+x(8)/2,x(3)/2+x(9)/2; ...

x(4),x(5),x(6)],'euclidean') - dist(11));
%Disease #3 vs Disease #1 & Disease #2
f(12) = pdist([x(1)/2+x(4)/2,x(2)/2+x(5)/2,x(3)/2+x(6)/2; ...

x(7),x(8),x(9)],'euclidean') - dist(12));
%Disease #1 vs Disease #2
f(13) = pdist([x(1),x(2),x(3);x(4),x(5),x(6)], ...

'euclidean') - dist(13));
%Disease #1 vs Disease #3
f(14) = pdist([x(1),x(2),x(3);x(7),x(8),x(9)], ...

'euclidean') - dist(14));
%Disease #2 vs Disease #3
f(15) = pdist([x(4),x(5),x(6);x(7),x(8),x(9)], ...

'euclidean') - dist(15));
%Disease #1 vs Controls
f(16) = pdist([x(1),x(2),x(3);x(10),x(11),x(12)], ...

'euclidean') - dist(16));
%Disease #2 vs Controls
f(17) = pdist([x(4),x(5),x(6);x(10),x(11),x(12)], ...

'euclidean') - dist(17));
%Disease #3 vs Controls
f(18) = pdist([x(7),x(8),x(9);x(10),x(11),x(12)], ...

'euclidean') - dist(18));

%Return the sum of the vector of errors
f=sum(abs(f));
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B.3 2D Unconstrained Nonlinear Optimization

%Declaration of dist as a global variable
%containing the standardized deviances
global dist

%Initial solution guess set to 1's
x0=ones(1,3);

%Change sign of standardized deviances and make
%the remaining negatives ones to 0 + small cap
dist=max(-dist,zeros(1,6)+.01);

%Set maximum iterations to a big number and hide iteration details
options=optimset('MaxFunEvals',1000000,'Display','off');

%Get the solution
[x,fval] = fminunc(@distance2D,x0,options);
x=[x, zeros(1,3)];

B.4 3D Unconstrained Nonlinear Optimization

%Declaration of dist as a global variable
%containing the standardized deviances
global dist

%Initial solution guess set to 1's
x0=ones(1,7);

%Change sign of standardized deviances and make
%the remaining negatives ones to 0 + small cap
dist=max(-dist,zeros(1,18)+.01);

%Set maximum iterations to a big number and hide iteration details
options=optimset('MaxFunEvals',1000000,'Display','off');

%Get the solution
[x,fval] = fminunc(@distance2D,x0,options);
x=[x, zeros(1,5)];
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