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Abstract

Dyna is an architecture for reinforcement learning agents that interleaves plan-

ning, acting, and learning in an online setting. This architecture aims to make

fuller use of limited experience to achieve better performance with fewer envir-

onmental interactions. Dyna has been well studied in problems with a tabular

representation of states, and has also been extended to some settings with

larger state spaces that require function approximation. In Dyna, the environ-

ment model is typically used to generate one-step rollouts from selected start

states, but longer trajectories could also be generated. Given a fixed budget of

computation, planning could take on a variety of shapes: many short rollouts,

or fewer long rollouts. In this work, one-step Dyna was applied to several

games from the Arcade Learning Environment (ALE) and the result was that

the model-based updates offered surprisingly little benefit over performing

more updates with the agent’s existing experience, even when using a perfect

model. However, when the model was used to generate longer trajectories of

simulated experience, performance improved dramatically. The results show

that to get the most from planning, the model must be used to generate unfa-

miliar experience, and that performing longer rollouts is an effective strategy

to accomplish this. Similar observations were made with pre-trained learned

models and a model that was learned online along with the value function.
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Preface

Some of the work presented in this thesis — namely, the perfect model ex-

periments described in Chapter 3, and the Rollout-Dyna-DQN experiments

with the pre-trained learned model in Section 4.1.1 — was presented at the

ICML 2018 workshop on Prediction and Generative Modeling in Reinforce-

ment Learning. At the time of writing, a version of that work is under review

for AAAI 2019, with the addition of the online learned model results in Sec-

tion 4.2. This thesis is the definitive and expanded treatment of these topics.

Additionally, the Sarsa experiments with the learned model in Section 4.1.2,

and the Monte-Carlo experiments in Appendix B are new to this thesis.
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Hofstadter’s Law: It always takes longer than you expect, even when you take

into account Hofstadter’s Law.

– Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid.
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Chapter 1

Introduction

Reinforcement learning (RL) is a computational approach to learning from

interaction. In RL problems, an agent typically interacts with the environment

by selecting actions over a series of discrete time steps to maximize a sum of

scalar reward signals. Often, a policy, which is a way of behaving, can be

learned to solve these problems without learning a predictive model of the

environment; approaches that do this are called model-free. In contrast, model-

based methods make use of an explicit environment model — a model that

can predict future states and rewards, conditioned on actions — to perform

planning. In this sense planning is any process that takes a model and uses it to

produce or improve a policy. Although they are generally more complex than

model-free methods, model-based methods have been shown to learn a good

policy with fewer environmental interactions, making better use of limited

experience (e.g., Sutton, 1990; Moore and Atkeson, 1993; Peng and Williams,

1993). This is especially important for domains where interacting with the

environment and collecting real experience is expensive.

There are many ways that an environment model could be used for plan-

ning. One particularly appealing way is to use the model to generate simulated

experience alongside the real experience observed from the environment. To

plan, a start state is selected, either from the agent’s prior experience or gener-

ated by some other process. Simulated experience is generated from that state

and treated as though it were real experience in the environment. The real

and simulated experience could then both be used in the same way: to update
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the agent’s value function and/or policy. This is the paradigm underlying the

Dyna architecture, and planning that proceeds in this way is referred to as

Dyna-style planning. Another core idea of Dyna is that conceptually, plan-

ning, acting, and learning all occur simultaneously, and as fast as possible.

However, for practical reasons, the computation available at each time step is

shared between these three processes in proportions that can be set accord-

ing to the resources available and the required response time of the system.

Much of the work on Dyna has been based on tabular problems or relatively

low-dimensional continuous problems. This thesis seeks to study it in a more

complex, higher-dimensional setting: the Arcade Learning Environment.

High-dimensional domains, like those based on images, provide challenging

environments for testing RL algorithms. The Arcade Learning Environment

(ALE; Bellemare, Naddaf, Veness, and Bowling, 2013) is an important testbed

in this category, where agents learn to play games from the Atari 2600 system

with raw images as input. For agents to succeed in the ALE, they need to

have general competency to learn to act in complex environments with var-

ied dynamics across many games. The goal of general competence is a key

component for creating more powerful artificial intelligence systems.

Many model-free approaches exist for playing games from the ALE (e.g.,

Mnih et al., 2015; Mnih et al., 2016; Hessel et al., 2018), but there are surpris-

ingly few model-based approaches (e.g., Oh, Singh, and Lee, 2017). Ostens-

ibly, this is because learning a model of an Atari game and planning with it

is difficult, which makes the ALE a good testbed for model based approaches.

Because of its high-dimensional observation space, the most successful ap-

proaches in the ALE have used non-linear function approximation. In this

setting, unlike in the tabular or linear function approximation setting, start

states for planning cannot be easily generated. However, they can be sampled

from the agent’s real experience, and planning could take on a variety of shapes

to allow learning to occur over different distributions of states. From a start

state selected from the agent’s history, experience can be generated by rolling

out a single step to the next state — which is the most common approach —

or longer trajectories can be generated. This concept can be referred to as
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planning shape. This raises the question: with Dyna-style planning, given a

fixed budget of computation, what is the most effective planning shape? Is it

more effective to generate many short rollouts, or fewer long rollouts?

To investigate this question, Dyna’s performance was evaluated on several

games from the ALE using a variety of planning shapes. First, experiments

using a perfect model were conducted to explore the idealized performance of

the algorithm. Surprisingly, in these experiments, Dyna-style planning with

many one-step rollouts provides almost no benefit over simply doing more

updates with the real data already collected by the algorithm — a trivial form

of a model. It is only when the model is used to produce multi-step rollouts,

sequences of more than one decision, does the additional computation required

for planning become beneficial.

The experiments were then repeated using a learned model by extending

Oh, Guo, Lee, Lewis, and Singh’s (2015a) action-conditional video prediction

architecture to predict future rewards in addition to the future frames, and

pre-training it on expert data. Even when the model is imperfect, planning

with rollouts of length greater than one tend to provide the most benefit.

The empirical results demonstrate that rollout length is a key factor in the

effectiveness of Dyna-style planning.

Finally, this thesis explores learning the model online alongside the value

function, which is Dyna in its most complete form. For some games, learning

and planning in this manner improves the performance over simply doing more

updates with the real data, which is the first time this has been demonstrated

in the ALE.

Despite the introduction of increasingly effective approaches for learning

predictive models in Atari Games (Bellemare, Veness, & Bowling, 2013; Belle-

mare, Veness, & Talvitie, 2014; Oh et al., 2015a), the application of model-

based methods to the ALE is still an open problem, with many challenges

to overcome. This thesis empirically studies one piece of the puzzle: the

consideration of planning shape’s impact on Dyna-style planning in problems

with high-dimensional state spaces. For the first time (as far as the author is

aware), a sample-complexity benefit was demonstrated from learning a dynam-
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ics model in some games. Additionally, the results give guidance for further

progress. The perfect model results show that even if there were dramatic im-

provements in model-learning, where highly accurate models could be learned

very quickly, there would still be little benefit when using one-step rollouts

from previously visited states. Longer rollouts — as one means of generating

a more diverse distribution of states to learn from — shows promise to allow

planning to exploit more accurate models.
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Chapter 2

Background

This chapter contains some relevant background and notation. By convention

scalar random variables are denoted by capital letters (e.g. St, At), sets by

calligraphic font (e.g. S, A), matrices by bold upper case letters (e.g. W),

vectors by bold lower case letters (e.g. x, θ), and functions by non-bold lower

case letters (e.g. q(s, a)).

2.1 Reinforcement Learning

Reinforcement learning (RL) problems are characterized by sequences of de-

cisions typically modelled as a Markov Decision Process (MDP) (Sutton &

Barto, 1998, 2018). In this framework, an agent interacts with an environment

over a series of discrete time steps. Formally, an MDP is a tuple ⟨S,A, p, r⟩,

where S is the set of all possible states, A is the set of all possible actions, p is

the state-transition probability, and r is the reward function. At each time step,

t, the agent receives information from the environment about its current state,

St ∈ S, and uses this information to select an action At ∈ A. Then the agent

transitions to a new state St+1 ∈ S according to the state-transition probabil-

ity, p(s′|s, a)=̇Pr{St+1 = s′|St = s, At = a}, and receives a reward Rt+1 ∈ R,

according to the reward function r(s, a, s′)=̇E[Rt+1|St = s, At = a, St+1 = s′].

Typically, the goal of a reinforcement learning agent is to maximize the

expected discounted return: Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + ..., where γ ∈ [0, 1]

is a discount factor. This is accomplished by learning a policy, π(a|s), that is

the probability of selecting action a, when in state s.
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There are a class of solution methods called value-based methods that learn

a value function that estimates the expected return when selecting an action

a, while in state s and following policy π:

qπ(s, a) = Eπ [Gt|St = s, At = a] . (2.1)

The optimal policy, π∗, is the policy that maximizes (2.1). Q-learning (Watkins,

1989; Watkins & Dayan, 1992) is a particular method that estimates the op-

timal policy by observing new rewards, and using old estimates of action-values

to estimate new action-values according to the update rule:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (2.2)

where α ∈ (0, 1] is a step size parameter. Q-learning is considered a bootstrap-

ping method because its update is based on an old estimate of the action-value

function.

Tabular solution methods can be used when the state and action spaces

are small enough so that it is possible to maintain the estimates of the value

functions in an array or table. When the state space is large and/or continuous,

approximate solution methods need to be used, which combine RL algorithms

with some kind of function approximation scheme.

With approximate solution methods, an approximate parameterized form

of the action-value function is learned. In particular, the action-value function

is parametrized by a weight vector θ ∈ Rn, and the approximate action-value

function can be written as q̂(s, a,θ) ≈ qπ(s, a) (Sutton & Barto, 2018).

One important class of learning methods for function approximation is

stochastic gradient descent (SGD). With SGD methods, the weight vector

is a column vector with a fixed number of real valued components, and the

approximate action-value function, q̂(s, a,θ), is a differentiable function of θ

for all s ∈ S and a ∈ A. Since θ will be updated over a series of time steps,

it is given a subscript denoting the weight vector at each step — e.g. θt.

SGD methods adjust the weight vector for each observed example — or

batch of examples — in the direction that would most reduce the error. As-

suming the objective function being minimized is the mean squared value error
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(MSVE), the approximate update to the parameters is given by:

θt+1 = θt −
1

2
α∇ [Ut − q̂(St, At,θt)]

2 (2.3)

= θt + α [Ut − q̂(St, At,θt)]∇q̂(St, At,θt), (2.4)

where the update target Ut is some estimate of qπ(St, At). For Q-learning,

Ut = Rt+1 + γmaxa q̂(St+1, a,θt).

Bootstrapping estimates of qπ(St, At), such as the target for Q-learning,

depend on the current value of the weight vector θt. Thus, if they are used

for the update target Ut, then the step from (2.3) to (2.4) is not possible as

written because it relies on the target being independent of θt. As a result,

bootstrapping methods are not instances of true gradient descent, and be-

cause they make use of only part of the gradient, they are called semi-gradient

methods. Q-learning as a semi-gradient method can be written as:

θt+1 = θt + α
[
Rt+1 + γmax

a
q̂(St+1, a,θt)− q̂(St, At,θt)

]
∇θt q̂(St, At,θt).

(2.5)

Methods like Q-learning are examples of model-free RL since they do not

learn or make use of an explicit model of the environment’s dynamics, but

there are also RL methods that make use of a model, which are discussed in

the next section.

2.2 Model-based RL

Any approach that uses a model for planning can be considered a model-

based RL method. Planning in this sense is the process of using a model of

the environment to improve the value function and/or policy. An environment

model is anything that can be used by an agent to predict the consequences

of its actions. Given a starting state and action, a model often predicts the

next state and reward, and can be used to simulate experience.

If the environment is stochastic, then there can be multiple possible next

states and rewards. If the model of a stochastic environment produces the av-

erage of all possible outcomes, weighted by their respective probabilities, then
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it is an expectation model. A limitation of expectation models is that the ex-

pected next state and reward might not be realizable in the real environment.

If the model produces a description of all the possibilities and their associ-

ated probabilities, then it is considered a distribution model (Sutton & Barto,

2018). If the model produces a single outcome according to the probabilities,

then it is considered a sample model. Distribution models are more powerful

than expectation and sample models, since they can be used to produce the

expectation or samples, but expectation and sample models are often simpler

and easier to describe or learn.

The simplest example of a sample model is experience replay (Lin, 1992).

Experience replay works by storing transitions — state, action, next state, and

reward — in a buffer that the agent can later use for planning. In fact, there

is a deep connection between a more general class of models and experience

replay; van Seijen and Sutton (2015) showed an exact equivalence between the

sequence of value functions found by a model-based method with a multi-step

linear model, and a model-free method with replay. However, experience replay

as a model cannot generalize to new situations that have not been experienced

by the agent and thus are not contained in the replay buffer (although the value

function could provide some generalization). More powerful models might be

able to generalize to novel states that have never been experienced by the

agent. The results in this thesis suggest that a model that can generate novel

experience can offer dramatic benefits over experience replay.

Learning a model to use for planning presents several challenges. The

model and policy are closely connected, and if the model is trained using data

generated under a different policy than is later used to query the model —

called the train-test mismatch — poor performance can result. For example,

imagine the model is trained using some state-action pair distribution, X ,

that is the result of following some policy π1. Then, the model is used for

planning and creates a new policy π2 that induces a new state-action pair

distribution Y . However, there may be state-action pairs in Y that are not in

X . Therefore, when the model is asked to make predictions about the states

in Y that it has not been trained on, poor performance can result. Ross and
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Bagnell (2012) showed that to achieve good model performance, continuously

mixing states generated by the current policy into the model training data

is required. Learning a model online, using the agent’s current observations,

is one way that this could be accomplished. Another related issue is the

problems that arise when the model is used to roll out multiple steps. Since

the model is learned, it is necessarily imperfect, and will make small errors

in each prediction. When rolling out, the model’s prediction at the current

step is used to predict the next step. This can result in compounding errors

which increase at each step in the rollout. Talvitie (2014, 2017) showed that

to stabilize rollouts, the model needs to be trained on its own samples so that

sensible predictions are made when its own samples are given as input. Oh et

al. (2015a) addressed this issue by training the model on multi-step prediction

error via backpropagation through time. This thesis employs their approach

in Chapter 4.

There are many ways that a model can be used for planning. For example,

Value Iteration Networks (Tamar, Wu, Thomas, Levine, & Abbeel, 2016) takes

a dynamic programming approach and uses a neural network with an embed-

ded planning module that approximates the value-iteration algorithm (Bell-

man, 1957) to improve the policy. Another example of using a model is online

model-predictive control, which uses the model in a search process at every

step in order to select a single action like in DAgger-MC (Talvitie, 2015). An-

other similar example is Imagination-Augmented Agents (Weber et al., 2017)

where the model predictions are used as additional input to the policy, which

is learned in a model-free way, to select actions. The model can also be used

to generate simulated experience alongside real experience collected from the

environment. The real and simulated experience can then be used in the same

way to update the value function, which is the basis of the Dyna architecture

described in the next section.
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2.3 Dyna

Dyna is a general architecture for model-based RL, which is the focus of this

work. The core idea is to integrate planning, learning, and acting. Conceptu-

ally, planning, learning, and acting in the environment happen simultaneously,

and as fast as possible. While collecting real experience from the world, Dyna

plans by using a model to also generate simulated experience. The real and

simulated experience are treated in the same way to update the agent’s value

function and/or policy. Any planning that is done in this way is called Dyna-

style planning. Dyna allows for flexible control over the amount of planning

done by the agent: for every step taken in the environment, there can be

many planning steps to generate additional simulated experience. This can be

important in environments where acting is computationally or temporally ex-

pensive, and where simulating experience may be much faster than collecting

it.

An important part of Dyna is that the real experience is not only used to

learn the value function online, but it is also used to learn the model. In this

work, the online model learning aspect of Dyna is omitted initially to better

isolate the effects of planning shape. Nevertheless, Dyna with a online learned

model is investigated at the end of Chapter 4.

One of the first instantiations of Dyna was Dyna-Q (Sutton, 1990). Dyna-

Q combines one-step tabular Q-learning, with a model that, from a given

start state, can predict the next state and reward. After taking a step in the

environment the value function is updated with the conventional model-free

Q-learning update, which is followed by a model learning update. Then, the

following planning procedure is repeated n times: sample a start state, S,

uniformly at random from the set of previously seen states; sample an action,

A, uniformly from the the set of actions previously chosen in S; use the model

to predict the next state, S ′ and reward, R; and update the value function

using S, A, S ′, and R with the same Q-learning update.

Search control refers to the process of selecting start states and actions

for planning, as well as how computation is distributed and executed during
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planning. The idea of selecting a planning shape can be thought of as a form

of search control. In Dyna-Q, start states are selected uniformly at random

from all the states experienced so far, but this uniform strategy might not be

the most efficient. Instead, it may be possible to focus planning on particular

states. This idea is the basis for prioritized sweeping (Moore & Atkeson, 1993;

Peng & Williams, 1993), which maintains start states for planning in a priority

queue according to some indicator of importance, like how much the value of

the state changed when its value was last updated. During planning, it then

selects the state with the highest priority from the queue, and works backwards

by simulating the predecessor states and updating their values.

Dyna has been extended to use linear function-approximation, combined

with a linear expectation model of the environment, so that it could be applied

to problems that do not admit an easy tabular state representation (Sutton,

Szepesvari, Geramifard, & Bowling, 2008). The function approximator maps

states to feature vectors which are then used for planning and learning the

value function. Instead of selecting start states from previously visited states,

feature vectors can be generated according to a probability distribution. Lin-

ear Dyna was later extended to incorporate multi-step projections of sampled

features, which was found to speed learning (Yao, Bhatnagar, Diao, Sutton,

& Szepesvári, 2009).

There has been little previous work applying Dyna to high-dimensional

state spaces like images, where non-linear function approximation may be im-

portant for success. Faulkner and Precup (2010) combined Dyna with deep

belief networks as the function approximator and demonstrated its perform-

ance on toy image domains. Gu, Lillicrap, Sutskever, and Levine (2016) and

Kalweit and Boedecker (2017) combined Dyna with neural networks to solve

simulated robot control problems. During planning, they both used the model

to roll out multiple steps, but did not study the impact of rollout length extens-

ively. This thesis continues to explore Dyna-style planning and its application

to complex problems with high-dimensional state spaces, as embodied in the

ALE benchmark.
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2.4 The Arcade Learning Environment

The Arcade Learning Environment (ALE) is a platform for evaluating gen-

eral competency in artificial intelligence (AI), and is the problem domain used

in this thesis. The ALE provides an interface for agents to play a suite of

games for the Atari 2600 system. Atari 2600 games present an interesting and

challenging set of problems for AI agents for several reasons: they are var-

ied enough to present an assortment of different tasks, thus requiring general

competence; they are interesting and challenging for humans; and they are

free from experimenter bias, since they were not originally designed for RL

experiments (Bellemare, Naddaf, et al., 2013; Machado et al., 2017).

Agents designed for the ALE generally perceive the game environment

through the video stream of game frames without using game specific inform-

ation. Each frame produced by the emulator is an 210 × 160 pixel image and

occurs on the time scale τ . The reward at time τ is the difference between the

game score at time τ and time τ − 1. In the ALE, the agent does not usually

select an action after receiving every frame. Instead, when the agent selects

an action, the action is repeated for a fixed number of times called the frame

skip. Let the time scale at which the agent selects actions be denoted by t.

Thus, a single step experienced by the agent may consists of multiple time

steps in the emulator. The reward received by the agent at time t is then the

sum of all the intermediate rewards produced by the emulator for the skipped

frames between time t− 1 and t.

In general, a single frame does not have the Markov property — for ex-

ample, a single frame does not contain enough information to predict which

directions objects on the screen are moving, or sometimes objects on the screen

blink in and out of view — and thus is not a state in the MDP sense. However,

there are some methods to help deal with the partial observability and provide

an approximate state, which are described in Sections 2.5 and 2.6.

Originally, the ALE was entirely deterministic as the Atari 2600 system

had no way to generate pseudo-random numbers. Various extensions have

been employed to add forms of stochasticity to the ALE (random no-ops, Mnih
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et al., 2015; human starts, Nair et al., 2015; random frame skips, Brockman

et al., 2016), but none have been universally accepted. Recently, Machado

et al. (2017) proposed a new approach call sticky actions, which is considered

the definitive solution to add stochasticity to the ALE and is the approach

used in this thesis. The goal of adding stochasticity is to encourage the agent

to learn robust policies, and discourage the agent from learning brittle polices

by simply memorizing action sequences.

Sticky actions introduces a stickiness parameter ς to the environment that

is the probability at each time step that the previous action sent to the emu-

lator is repeated, instead of executing the current action. Sticky actions also

interact well with frame skipping: for every action sent to the emulator, in-

cluding actions to be executed on the skipped frames, there is a probability ς

that the previous action will be executed. Machado et al. (2017) recommend

setting ς = 0.25.

The following sections describe two effective algorithms for agents in the

ALE that are used in this thesis.

2.5 Deep Q-networks

Deep Q-networks (DQN) (Mnih et al., 2015) is a model-free deep RL method,

based on Q-learning, that uses a deep convolutional neural network to ap-

proximate the value function. The network consists of two hidden convo-

lutional layers, followed by a hidden fully connected layer, then finally an

output layer, to estimate the action-values. The network parameters, θ, are

updated, by computing a gradient with backpropagation, according to the

semi-gradient Q-learning update rule from (2.5). For stability reasons, DQN

maintains a copy of the parameters, θ−, to compute the Q-learning update

target, Rt+1+ γmaxa∈A q̂(St+1, a,θ
−). The target parameters are copied from

the estimator parameters at a longer interval than the estimator parameters

are updated. This is referred to as the target network update frequency. For

a given state, the network outputs the action-value estimate for each possible

action simultaneously. This makes computing the maximum, which is required
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when computing the target, more efficient.

Generally, DQN uses an ϵ-greedy behaviour policy to select actions. With

probability ϵ, the policy selects a random action, and with probability (1− ϵ),

it selects the action with the highest value. During learning, ϵ is annealed

from a high starting value, encouraging more exploration, to a low, but still

non-zero, final value.

Unlike Q-learning, DQN does not update the value function after every step

using a single transition; instead, DQN uses experience replay (Lin, 1992),

and places each observed transition into an experience replay buffer. DQN

uses the replay buffer to temporally decorrelate the samples for the sake of

neural network training, and not necessarily to perform more updates than

it has interactions with the environment. Then, for a single training step,

the algorithm selects a mini-batch of transitions from the experience buffer

uniformly at random to update the parameters. Training steps are performed

after every f observed transitions, which is referred to as the training frequency.

When DQN is used with the ALE, the the emulator frames are converted

to grayscale and scaled to be 84× 84 pixels. Then, the pixelwise maximum of

the current and previous emulator frames (i.e. frames τ − 1 and τ) is taken

to produce the preprocessed frame at time τ : xτ . When the frame skip is

greater than one, the agent receives frames and makes decisions at a different

timescale than the emulator produces frames. For example, with a frame skip

of 5, the agent selects an action every 5th emulator frame, and the selected

action is sent to the emulator for each intermediate frame between decisions.

The agent’s approximate state that is used to select an action at time t is a

stack of the current preprocessed frame, xt, and the frames from the previous

three agent steps:

xt−3:t=̇(xt−3,xt−2,xt−1,xt) ∈ R84×84×4. (2.6)

This is illustrated in Figure 2.1. This frame stack is an approximation of the

state and helps account for the partial observability inherent in a single frame.
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Figure 2.1: How the input to DQN is constructed. This figure shows a sequence
of emulator frames (gray squares) and the agent decision points (light gray
squares) for a frame skip of 5. At each time t the agent’s approximate state is
the frames at times t − 3, t − 2, t − 1, and t (red box), which the agent uses
to select the action At. The action is then repeated 5 times in the emulator,
and the intermediate frames are ignored (dark gray squares), before the next
action is selected. For simplicity the pixelwise maximum operation, and the
emulator’s sticky actions are not shown.
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2.6 Sarsa with Linear Function Approxima-

tion

Sarsa is a RL solution method for control that updates the value function

using state and reward samples observed from the environment similar to Q-

learning. Unlike Q-learning, Sarsa does not compute the maximum over the

possible actions in the update target, and instead uses the action that was

actually taken at time t+ 1:

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] . (2.7)

Therefore Sarsa does not necessarily learn the value function for the optimal

policy, but instead learns the value function for the policy being used to select

the actions. However, if the policy is greedy, or nearly greedy, with respect to

the value function, then Sarsa can learn a policy that is close to the optimal

policy. To be able to use Sarsa with the ALE, it needs to be extended to use

function approximation.

Linear function approximation is an important special case of function ap-

proximation where the approximate action-value function, q̂(·, ·,θ), is a linear

function of the weight vector θ, and where each state-action pair corresponds

to a real valued vector of features ϕ(s, a) with the same number of compon-

ents as θ. The approximate action-value function is then given by the inner

product between θ and ϕ(s, a):

q̂(s, a,θ) = θ⊤ϕ(s, a). (2.8)

With linear function approximation,∇q̂(s, a,θ) = ϕ(s, a), and thus the update

rule for Sarsa with linear function approximation can be written as:

θt+1 = θt + α [Rt+1 + γq̂(St+1, At+1,θt)− q̂(St, At,θt)]ϕ(St, At). (2.9)

2.6.1 Blob-PROST Features

To use Sarsa with linear function approximation in the ALE, you need a way to

extract features from the games screens to produce ϕ(·, ·). This work makes use
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of Blob Pairwise Relative Offsets in Space and Time (Blob-PROST) features

(Liang, Machado, Talvitie, & Bowling, 2016), which builds upon many of

the ideas presented in earlier work on feature extraction for the ALE (e.g.

Bellemare, Naddaf, et al., 2013).

Atari 2600 screens are 160 × 210 pixels in size with a 128 colour palette.

Blob-PROST works by first processing the screen into blobs, which are con-

tiguous regions of pixels that are all the same colour. The position of a blob

is then the centroid of the smallest bounding box. The screen is then divided

into tiles 4 × 7 pixels in size, and for every tile (c, r) and colour k, where

c ∈ {1, ..., 40}, r ∈ {1, ..., 30}, and k ∈ {1, ..., 128}, the feature ϕblob
c,r,k is 1 if the

tile (c, r) contains the blob of colour k.

Next, features are generated to capture the relative offsets between the

blobs on the screen. If there is a pair of blobs on the screen with colours

k1, k2 ∈ {1, ..., 128} separated by an offset (i, j), where −29 ≤ i ≤ 29 and

−39 ≤ j ≤ 39, then the feature ϕspace
k1,k2,(i,j)

is 1.

Finally, features are generated to capture the relative offsets between the

blobs on the current screen and a screen from the past. These features help

deal with some of the partial observability inherent in a single frame from the

ALE. If there is a pair of blobs with colours k1, k2 ∈ {1, ..., 128} separated by

an offset (i, j), where the blobs of colours k1 and k2 are from the current screen

and the screen 5 frames in the past respectively, then the feature ϕtime
k1,k2,(i,j)

is

1.

This procedure results in a total of 114,702,400 possible Blob-PROST fea-

tures. However, the blobs are generally sparse, and thus many of the features

are never generated.

2.7 Learning a Model in the ALE

To do planning in Dyna, a model of the environment’s dynamics is required.

However, learning a model that can predict future screens in Atari 2600 games

is a hard problem. The screens are high dimensional and the games often have

complex dynamics. A particular line of work (Bellemare, Veness, & Bowling,
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2013; Bellemare et al., 2014), divides the game screen into patches and applies

a Bayesian framework to predict the next screen. An attractive alternative

approach using a neural network for predicting frames in Atari was proposed

by Oh et al. (2015a) and is the learned model that is used in this work. The

model, which is discussed in the next section and employed in Chapter 4, is

able to make multi-step predictions conditioned on actions.

2.7.1 Action-conditional Video Prediction

Oh et al. (2015a) introduced a deep-neural network architecture that was

shown to make visually accurate predictions for hundreds of steps on video

input from Atari games conditioned on actions. The architecture was presen-

ted in two variants: a feedforward encoding, and a recurrent encoding. For

the purposes of this work only the feedforward version is examined.

The feedforward version of the architecture takes as input a stack of four

frames (concatenated through channels). The architecture can be used to

predict video frames in general, but specifically when used in combination with

DQN, the input at time t would be the same as the input to the DQN network:

four preprocessed frames, xt−3:t ∈ R84×84×4. The input is then encoded into a

feature vector using a series of convolutional layers, followed by a single fully

connected layer. The encoded feature vector at time t, henc
t ∈ Rn, given the

stack of history frames, xt−3:t, is:

henc
t = encode(xt−3:t). (2.10)

The effect of the action is applied via a multiplicative interaction between

the feature vector and the action as suggested by Memisevic (2013):

hdec
t,i =

∑
j,l

Wijlh
enc
t,j at,l + bi, (2.11)

where hdec
t ∈ Rn is the action-transformed feature vector, at ∈ Rz is a one-hot

encoding of the action, W ∈ Rn×n×z is a 3-way weight tensor, and b ∈ Rn is a

bias. Computing hdec
t can be prohibitively expensive if W is large. However,
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W can be approximated by factorizing into three matrices:

Wijl =
∑
f

W enc
jf W dec

if W act
lf , (2.12)

where f is the factor number, Wenc ∈ Rf×n, Wdec ∈ Rn×f , and Wact ∈ Rf×z.

The number of factors is a hyper-parameter, and Oh et al. (2015a) used 2048.

Then, substituting the factorized weight matrix in (2.11), hdec
t becomes:

hdec
t,i =

∑
j,l

(∑
f

W enc
jf W dec

if W act
lf

)
henc
t,j at,l + bi,

=
∑
f

W dec
if

(∑
j

W enc
jf henc

t,j

)(∑
l

W act
lf at,l

)
+ bi. (2.13)

Finally, the transformation can be re-written more compactly as:

hdec
t = Wdec

(
Wenchenc

t ⊙Wactat

)
+ b. (2.14)

After the action transformation, the resulting vector is decoded using a

single fully connected layer followed by a series of deconvolutions before finally

outputting the single next predicted frame:

x̂t+1 = decode(hdec
t ). (2.15)

The model can be used to make k-step predictions by concatenating the

predicted frame with the most recent three history frames, and running the

model forward another step. For example, if the model has just predicted the

frame at time t+ 1, x̂t+1, and we wish to predict the frame at time t+ 2, the

input to the network will be (xt−2,xt−1,xt, x̂t+1). The output of the network

will be x̂t+2. To predict the frame at time t+ 3, the input to the network will

be (xt−1,xt, x̂t+1x̂t+2), etc... A diagram of the model is shown in Figure 2.2.

To train the model, Oh et al. (2015a) created a training data set by running

a trained DQN agent and recorded the actions and frames. Then, batches of

image histories, actions, and image targets are drawn and used to train the

model to minimize the average squared error between the predicted and target

frames (denoted x̂ and x respectively) over the k-steps:

Lk(θ) =
1

2k

k∑
κ=1

∥x̂κ − xκ∥2 . (2.16)
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Figure 2.2: The feedforward grayscale version of Oh et al.’s (2015a) action-
conditional video prediction model.

To increase stability during training a curriculum approach is used: the model

is first trained to make 1-step, 3-step, then 5-step predictions.

The loss function being minimized (squared error) makes this model an ex-

pectation model. Unlike a sample model, which predicts a particular outcome,

an expectation model learns to predict what will happen on average. Thus,

when the environment is stochastic, predictions will be some combination of

the possible outcomes that minimizes the loss on the training data. This is

potentially problematic when making multi-step predictions since to roll out,

the model predictions are treated as samples and used to predict the frame,

but the model might predict combinations of frames that are not real frames

that could ever be generated by the emulator. Nevertheless, making multi-step

predictions in this way appears to work well in practice. This could be due in

part to the relatively low stochasticity imparted by sticky actions in the ALE,

and to the curiculum training approach; the model learns to make predictions

based on its own potentially wrong predictions, which helps the model remain

stable during rollouts.
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Chapter 3

Planning with a Perfect Model

This chapter explores the idealized performance of two algorithms that make

use of Dyna-style planning — Dyna-DQN and Dyna-Sarsa — by assuming a

perfect sample model is available. This isolates the effects of planning from

the accuracy of the model and provides an estimate of the maximum benefit

that the model can provide.

3.1 The Ineffectiveness of One-step Rollouts

Planning in the Dyna architecture is accomplished by using a model to make

predictions of future states based on a start state and action. When the state

is high dimensional, like an image, it is not clear how to generate reasonable

start states. One solution is to sample the start state from the previously

observed states, as in Dyna-Q. The advantage of selecting states in this way

is that the distribution or structure of the state space does not need to be

known, but planning may not well cover the state space. To explore this

strategy DQN and Sarsa with linear function approximation are extended to

incorporate Dyna-style planning, and their performance is evaluated in several

Atari games.

3.1.1 Dyna-DQN

It is straightforward to extend DQN to use the Dyna architecture. After every

step taken in the environment, simulated experiences are generated starting

from a state sampled from a planning buffer containing the agent’s recent real
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experience. Keeping a separate planning buffer from the experience replay

buffer ensures that start states are always from the agent’s actual experience.

Using the agent’s current policy to select actions, transitions are simulated

from the start states using a model and placed into the experience replay

buffer alongside the transitions observed from the real environment. Training

continues to happen after every f observed transitions — real or simulated.

As a result, mini-batches sampled at training time will contain a mix of real

and simulated experience.

Experiments

Experiments were run on six games from the ALE. Sticky actions were used

to inject stocasticity into the emulator (repeat action probability = 0.25), as

suggested by Machado et al. (2017). Each game usually has 18 possible actions,

but some actions are redundant in certain games. Therefore, the minimal

action set like Mnih et al. (2015) was used.

The games chosen for the experiments are from the original training set

outlined by Bellemare, Naddaf, et al. (2013), supplemented with two additional

games, Q-Bert and Ms. Pac-Man, that Oh et al. (2015a) used to evaluate

their model learning approach, which is employed in Chapter 4. Results in

Freeway have been omitted since the implementations of DQN and Dyna-

DQN used in this work almost always score zero points at the number of

training frames used in the experiments.

The implementation of DQN used the same hyper-parameters as Mnih et

al. (2015) with a couple of small changes used by Machado et al. (2017) (see

Table 3.1). At each step, the DQN algorithm has an ϵ probability of selecting

a random action instead of the best action. ϵ was annealed from 1.0 to 0.01

over the first 10% of frames (real and simulated) during learning. The frame

skip is the number of times a selected action is repeated before a new action

is selected. A frame skip of 5 was used. Additionally, to reduce memory use,

an experience replay buffer size of 500k transitions instead of the original 1M

was used.

In these experiments, Dyna-DQN made use of an environment model that
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Table 3.1: DQN Hyperparameters used in the experiments.

Hyperparameter Value Description

Step-size (α) 0.00025 Step size used by the RMSProp optimizer.

Gradient momentum 0.95 Gradient momentum used by RMSProp.

Squared gradient
momentum

0.95
Squared gradient momentum used by
RMSProp (in the denominator).

Min squared
gradient

0.01
Constant added to the denominator of the
RMSProp update.

Discount factor (γ) 0.99
Discount factor used in the Q-learning
update rule.

Initial exploration
rate (ϵ)

1.0
Initial probability that a random action
will be taken at each time step.

Final exploration
rate (ϵ)

0.01
Final probability that a random action
will be taken at each time step.

Final exploration
frame

10%
Percentage of total training frames over
which to linearly anneal ϵ.

Minibatch size 32
The number of states over which the
value function update is computed.

Replay memory size 500,000
The number of states to keep in the
replay buffer.

Replay start size 50,000
The number of steps using the random
policy used to populate the replay buffer
at the start of training.

Agent history length 4
The number of recent frames observed by
the agent that are input into the network.

Training frequency 4
The number of agent steps between
updates to the value function.

Target network
update frequency

40,000

The frequency (in terms of agent steps) at
which the estimator network parameters
are copied to the target network
parameters.

was a perfect copy of the emulator. Start states for planning were selected

from the planning buffer containing the 10,000 most recent real states ob-

served by the agent, which for all games was multiple episodes of experience.

In preliminary experiments it was found that larger planning buffers tended

to perform better than smaller planning buffer, but little to no benefit was ob-

served by increasing the buffer size beyond 10,000 states. For each real step,
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Figure 3.1: The results of running Dyna-DQN on six games from the ALE
compared to several DQN baselines. Dyna-DQN provides almost no bene-
fit over simply doing more updates with the same amount of data from the
environment.

Dyna-DQN did 100 iterations of planning. Dyna-DQN was trained for 100k

real frames, or equivalently 10M combined model and real frames. The train-

ing frequency was every 4 steps of real and model experience. After training,

the mean score in 100 evaluation episodes using a fixed ϵ = 0.01 was recor-

ded. This training and evaluation procedure was repeated for 30 independent

runs. The mean scores and standard errors for the six games are shown in

Figure 3.1 (bright green bars are Dyna-DQN). To better understand the be-

nefit of model-based updates, Dyna-DQN was also compared to the following

model-free DQN baselines.

DQN 100k: DQN trained only for 100k real frames (yellow bars). This

allows us to compare DQN and Dyna-DQN with an equivalent amount of real

experience. This benchmark serves as a sanity check to show that using the

perfect model to gather additional data does improve sample complexity. As

expected, Dyna-DQN outperformed DQN 100k; it uses the model to generate

more experience and does many more updates. However, this benchmark does
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not indicate whether the performance increase is due to the additional data

generated by Dyna-DQN, or the extra updates to the value function completed

during planning.

DQN Extra Updates: DQN trained for 100k real frames, but with the

same number of updates to the value function as Dyna-DQN (red bars). For

each time DQN would normally perform a single training step, DQN Extra

Updates performs 100 training steps. This way DQN Extra Updates is like

Dyna-DQN, but it uses only experience gathered from the environment, while

Dyna-DQN also generates experience from the model. DQN Extra Updates

allows us to evaluate the advantage of using the model to generate new ex-

perience compared to simply doing more updates with the real experience.

Surprisingly, in every game except Seaquest, Dyna-DQN provided little be-

nefit over DQN Extra Updates, even with a perfect model. This indicates that

most of the benefit of planning was from simply updating the value function

more often, which does not require a model.

DQN 10M: DQN trained for 10M frames (cyan bars). This allows us to

compare DQN and Dyna-DQN with an equivalent amount of total experience.

One might hope the experience generated by a perfect model would allow

Dyna-DQN to perform comparably to this baseline, but in most games the

performance of Dyna-DQN did not approach that of DQN 10M. This shows

that there is significant room to improve the performance. Dyna-DQN and

DQN 10M both gather additional data from the true system and perform the

same number of updates; the only difference is the distribution over the start

states of the additional transitions.

These experiments used only one set of hyperparameters for both DQN

and Dyna-DQN, and therefore the strength of the conclusions may be limited.

However, many of the parameters should not interact with planning and were

kept consistent across all the experiments. The discount factor and the frame

skip remained the same in each case, and can be considered part of the problem

rather than the agent. The optimizer parameters, such as the step-size, should

not interact with planning since 1-step update targets are always used, and

the network inputs and rewards will be on the same scale whether it is a
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real or simulated transition. The exploration rate was kept the same in each

condition, and was annealed in the same way. The minibatch size remained

constant to be consistent, and to ensure that the value function updates were

computed over the same number of samples. The agent history length specifies

the approximate state that is used to make decisions, and thus was the same

in each case. The training frequency affects how many updates are made to

the value function given a fixed number of training frames, and thus should

remain the same in each case. Nevertheless, the DQN 100k baseline did 100

times fewer updates than Dyna-DQN and DQN 10M since it saw fewer training

frames. The DQN Extra Updates baseline attempts to normalize this and

provide an additional point for comparison by doing 100 times more updates

than DQN 100k, but using the same amount of real experience. Changing the

target network update frequency might affect stability and is closely related

to the training frequency. Since the training frequency remained the same in

each case, the target network update frequency was kept the same as well.

The only hyperparameter that might interact with planning is the size of

the experience replay buffer. With Dyna-DQN, for every real step there was

100 planning steps. As a result, there was 100 times more simulated experience

in the buffer than real experience. Therefore, the amount of real experience

contained in Dyna-DQN’s replay buffer is much less than that contained in

DQN’s replay buffer. This difference could have some effect on learning, and

having an larger experience replay buffer that contains a larger amount of real

experience might affect performance. Due to computational restrictions, the

size of the buffer could not be increased, and thus this hypothesis was not

tested. However, a similar set of experiments was repeated using Sarsa with

Blob-PROST features (as described in the next section), which does not use

an experience replay buffer, and a similar trend was observed. This could

indicate that if the amount of real experience contained in the buffer does

affect performance, the effect is likely small.
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Table 3.2: Sarsa with Blob-Prost Features Hyperparameters

Hyperparameter Value Description

Step-size (α) 0.5
Step size used in the Sarsa update
rule.

Discount factor (γ) 0.99
Discount factor in the Sarsa update
rule.

Exploration rate (ϵ) 0.01
Probability of selecting a random
action at each time step.

Feature set Blob-PROST
The feature set used with Sarsa.
See Section 2.6.1 for details.

3.1.2 Dyna-Sarsa

Sarsa can also be extended to use the Dyna architecture. As with Dyna-

DQN, after every step taken in the environment, simulated experiences are

generated starting from a state sampled from a planning buffer containing the

agent’s recent real experience. However, instead of placing the transitions in

an experience replay buffer, the value function is updated with the transition

immediately using the normal Sarsa update rule.

Experiments

The experimental setup is the same as for Dyna-DQN in Section 3.1.1, but

Sarsa with linear function approximation and Blob-PROST features (Liang

et al., 2016) was used (see Table 3.2). The same hyper-parameters as Liang

et al. (2016) were used, except λ = 0, instead of λ = 0.9, to better isolate the

effects of planning shape from any interactions with eligibility traces.

The start states for planning were selected uniformly at random from the

10k most recent states experienced by the agent. Like with Dyna-DQN, for

these experiments the agent was assumed to have access to a perfect model.

The results are shown in Figure 3.2. The reported scores are the mean for each

algorithm in 100 evaluation episodes after learning for 10M combined real and

model frames, and are an average of 30 independent runs. The model-free

baselines that Dyna-Sarsa was compared to are similar to the ones used for

Dyna-DQN.
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Figure 3.2: The results of running Dyna-Sarsa on six games from the ALE com-
pared to several Sarsa baselines. Similar to Dyna-DQN, Dyna-Sarsa provides
no benefit over simply doing more updates with the same amount of data from
the environment.

Sarsa 100k: Sarsa agent trained for 100k real frames (yellow bars). Unlike

Dyna-DQN, Dyna-Sarsa did not strongly outperform this baseline even though

it does many more updates.

Sarsa Extra Updates: Sarsa trained for 100k real frames, except after

every real step it does 100 extra updates using experiences sampled from the

agent’s recent history (red bars). Similarly to Dyna-DQN, in every game

Dyna-Sarsa provided no benefit over Sarsa Extra Updates. In some games like

Q-Bert, Dyna-Sarsa even performed significantly worse.

Sarsa 10M: Sarsa agent trained for 10M real frames (cyan bars). As was

the case with Dyna-DQN, the performance of Dyna-Sarsa did not approach

that of Sarsa 10M.

Like with the Dyna-DQN experiments, these experiments use only one set

of hyperparameters. However, like the previous experiments, the hyperpara-

meters should not interact with planning and are kept consistent across all

the experiments. The discount factor and the frame skip remained the same
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in each case, and are parameters that are chosen as part of the problem. The

exploration rate was kept constant (nearly completely greedy) in every case to

remain consistent. The same feature set and step size were also used in each

case. These choices are unlikely to interact with planning since in these ex-

periments the model is perfect, thus the features generated by Blob-PROST,

and the scale and distribution of the rewards, will be similar with both the

real and simulated experience.

Overall, the extra computation required by both Dyna-DQN and Dyna-

Sarsa to utilize the model does not appear to be worth the effort. A possible

explanation for these results is that planning in this way — taking a single

step from a previously visited state — does not provide data that is much

different than what is already contained in the experience replay buffer. If

true, a strategy is needed to make the data generated by the model different

from what was already experienced.

3.2 Planning with Longer Rollouts

One possible strategy to generate more diverse experience is to roll out more

than a single step from the start state during planning, as was done by Gu et

al. (2016) and Kalweit and Boedecker (2017). Since the current policy will be

used for the rollout, the model may generate a different trajectory than what

was originally observed. Longer rollouts would also allow the agent to see

the longer-term consequences of exploratory actions or alternative stochastic

outcomes in the environment.

It is straightforward to modify each planning iteration of Dyna-DQN and

Dyna-Sarsa so that instead of rolling out a single step, the model is used to

rollout k steps from the start state, producing a sequence of k states and re-

wards. Let these algorithms be called Rollout-Dyna-DQN and Rollout-Dyna-

Sarsa. With Rollout-Dyna-DQN the transitions observed during the rollouts

are placed in the experience replay buffer, and training continues to occur and

at the training frequency, f , of combined steps in both the real environment

and the model. With Rollout-Dyna-Sarsa the value function is updated using
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Figure 3.3: The results of running Rollout-Dyna-DQN on six games from the
ALE compared to the DQN baselines. The performance of Rollout-Dyna-
DQN tends to increase as the rollout length increases across all the games.
The horizontal lines show the same baseline scores as Figure 3.1.

the normal Sarsa update rule after every step of the rollouts. When k = 1 we

recover exactly Dyna-DQN and Dyna-Sarsa described in Sections 3.1.1 and

3.1.2.

Given a budget of planning time in terms of a fixed number of model

prediction steps, planning could take on a variety of shapes. Let the planning

shape be described by the notation n×k, where n is the number of planning

iterations. For example: 100 rollouts of 1 step (100×1); 10 rollouts of 10 steps

(10×10); or 1 rollout of 100 steps (1×100), each require the same amount

of computation from the model, but the way that the resulting predictions

are distributed in the state space are very different. In the next section we

investigate the effects of planning shape on the performance of Rollout-Dyna-

DQN and Rollout-Dyna-Sarsa compared to the baselines.

3.2.1 Experiments

The experimental setup is the same as in Sections 3.1.1 and 3.1.2, but now

the planning shape for Dyna-DQN and Dyna-Sarsa is varied. 100×1, 33×3,
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10×10, 2×50, and 1×100 planning shapes were evaluated.

The results for Rollout-Dyna-DQN in the six games are shown in dark

green in Figure 3.3. The 100×1 planning shape is the same as Dyna-DQN

and remains bright green. Note that the ratio of real transitions to simulated

transitions remains the same in each case. The DQN baselines are the same

as in Section 3.1.1 and are shown as horizontal lines: yellow is DQN 100k, red

is DQN Extra Updates, and cyan is DQN 10M.

In each game there was a longer rollout length that resulted in a dramatic

improvement over 100×1 planning, significantly outperforming DQN Extra

Updates. Further, in every game, there was a planning shape that approached

the performance of DQN 10M.

Like in the previous experiments, one set of hyperparemeters was used,

but now the planning shape is varied. However, the only hyperparameter that

planning shape might interact with is the experience replay buffer size. As was

the case before, the amount of real experience in the replay buffer of Rollout-

Dyna-DQN is much less than DQN, and this could affect performance in some

way. Although it is not clear how planning shape specifically would interact

with the buffer size, since the ratio of real experience to simulated experience

is the same in each case. Despite this caveat, the positive impact of longer

rollouts is also not specific to DQN.

Similar results to Rollout-Dyna-DQN were obtained with Rollout-Dyna-

Sarsa, shown in Figure 3.4. The Sarsa baselines are the same as in Sec-

tion 3.1.2: yellow is Sarsa 100k, red is Sarsa Extra Updates, and cyan is Sarsa

10M. Similar to Rollout-Dyna-DQN, in every game there was a planning shape

with a rollout length greater than one that outperformed both 100×1 planning

and Sarsa Extra Updates. These results demonstrate that this phenomenon is

not specific to only DQN.

Again, recall that the only difference between two planning shapes is the

distribution of experience generated by the model. Thus, the results sug-

gest that with the Dyna architecture it is critical for the model to generate

sufficiently novel experience, and using multi-step rollouts appears to be an ef-

fective strategy. Doing longer rollouts during planning makes using the model
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Figure 3.4: The results of running Rollout-Dyna-Sarsa on six games from the
ALE compared to the baselines. There is a planning shape with a rollout length
greater than one that outperforms both 100×1 and Sarsa Extra Updates (red
line) across all the games.

worth the effort whereas the 100×1 planning is no better than doing extra

updates with only real experience. Also, recall that in these experiments the

agent had access to a perfect model. With a learned model, performance will

likely be worse due to model errors, so rollouts may be the only way to obtain a

benefit over simply performing extra updates using the agent’s real experience.
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Chapter 4

Planning with an Imperfect
Model

In the previous chapter we have drawn conclusions from an ideal setting, but if

the agent has an imperfect model do the same conclusions hold? To investigate

this question the perfect copy of the emulator was replaced with a learned

model. First, using a learned model pre-trained on data from expert play is

explored, then results for a model learned online alongside the value function

are presented.

Previously, we have seen that increasing the length of the rollouts during

planning tends to provide an increased benefit to performance. However, since

the model is now imperfect, there is a limit on how far it can roll out before

small errors compound and make the predictions unreliable (e.g. Talvitie,

2014). Therefore, it is reasonable to hypothesize that there will be competing

effects: the algorithm benefits from long rollouts, but the model’s performance

degrades as rollout length increases. This may result in the best performance

at shorter rollout lengths.

4.1 The Imperfect Model

In its original formulation, Oh et al.’s (2015a) action-conditional video pre-

diction model described in Section 2.7.1 predicts only the next state, but an

environment model for reinforcement learning needs to predict both the next

state and the next reward. Therefore, the model was extended to make reward
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Figure 4.1: The feedforward grayscale version of Oh et al.’s (2015a) action-
conditional video prediction model (black) and its extension to predict the
next reward (red).

predictions by adding a separate fully connected layer after the action trans-

formation, followed by an output layer that predicts a single scalar reward

(shown in red in Figure 4.1). Thus, in addition to the k-step image recon-

struction loss, the model is trained to minimize the k-step squared difference

between the predicted, and target rewards (r̂ and r respectively):

Lk(θ) =
1

2k

k∑
κ=1

(
∥x̂κ − xκ∥2 + ∥r̂κ − rκ∥2

)
. (4.1)

This approach is similar to what was used by Leibfried, Kushman, and Hof-

mann (2017) to jointly predict frames and rewards. As input, the reward

history is provided for the three transitions associated with the input frames.

After the reward history input layer, there is a fully connected layer, before

joining with the output of the encoder at the beginning of the action trans-

formation. Since DQN clips the rewards to the interval [−1, 1], the input and

target rewards for the model are also clipped to the same interval. This new

architecture was used to train three different models for each game. Details of

the training procedures can be found in Appendix A.

4.1.1 Rollout-Dyna-DQN Experiments

For this section, the experimental setup is the same as in Chapter 3, but the

perfect model has been replaced with an imperfect model trained using the
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Figure 4.2: The results of running Rollout-Dyna-DQN with the perfect and
imperfect models on six games from the ALE. Like the perfect model, using
an imperfect model with a rollout length greater than one provides the most
benefit. The horizontal lines show the same baseline scores as Figure 3.1.

approach described above.1 Three different models were pre-trained and eval-

uated with Rollout-Dyna-DQN to ensure that any trends that were observed

were not specific to a particular model. With each of the three models held

fixed, the experiment from Section 3.2.1 was repeated, measuring Rollout-

Dyna-DQN’s performance with various planning shapes. Note that because

each model is pre-trained on a single dataset, our results cannot be used to

draw reliable conclusions about the comparative effectiveness of the different

training regimes. The aim in this experiment is only to study the impact of

model error on Rollout-Dyna-DQN. As such, the models are referred to merely

as Models A, B, and C. The results of applying Rollout-Dyna-DQN with the

three imperfect models are shown in Figure 4.2. The perfect model results and

baselines are the same as in Figure 3.3.

As with the perfect model, rollouts longer than one step provided the most

1The performance of the learned models is explored in a different context using 1-ply
Monte-Carlo planning in Appendix B.
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benefit. For every game, except for Space Invaders, there was a model

and planning shape that performed better than DQN Extra Updates, which

demonstrates that even when the model has flaws, planning with rollouts can

provide some benefit. The reason the performance was poor in Space In-

vaders is that the model had trouble predicting bullets, which is fundamental

to scoring points in the game. Oh et al. (2015a) attribute this flaw to the low

error signal produced by small objects, which can make it difficult to learn

about small details in the image.

The results also support the hypothesis that there is a trade-off between

the benefits of long rollouts for planning and the model’s error increasing with

rollout length. For example, in Asterix using Model C, the performance

peaked at 10×10 planning and dropped off as rollouts became shorter or longer.

Similarly, in most other game and model combinations the best-performance

was achieved at medium rollout length.

4.1.2 Rollout-Dyna-Sarsa Experiments

The predictions of the imperfect model worked well with Rollout-Dyna-DQN,

but in preliminary experiments it was found that the model does not work

well with Sarsa and Blob-PROST features.

The root of the problem is likely that Blob-PROST operates on images

encoded in the NTSC colour palette, which has 128 indexed colours, but the

output of the colour version of Oh et al.’s (2015a) model is a three channel RGB

image. Therefore, each pixel from the model prediction needs to be projected

to the nearest NTSC palette colour before it can be used with Blob-PROST.

Since the model predictions will not always be able to reproduce the target

image exactly, and there will be some amount of noise in the predicted image,

there may be artifacts in the resulting projected image. Because of the way

Blob-PROST detects blobs — by finding contiguous regions of pixels that are

all the same colour — model predictions with artifacts contain many features

that would never occur in the real emulator screens; even a single pixel that

is a different colour from its surroundings will be treated as a new blob.

An example of this effect in Seaquest during a model rollout can can be
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Table 4.1: The problem that results when projecting the RGB predictions
from the model to the NTSC colourspace. Small artifacts appear around the
submarines that are not present in the ground truth images. This results in
many more features in the predictions than in the ground truth.

Step 1 Step 2 Step 3

Model
RGB
prediction

NTSC
projection

Features 4674 7187 9623

Ground
truth

Features 1271 1243 1080

seen in Table 4.1. The RGB model prediction images have a small amount

of noise around the submarines (there is noise in other parts of the image as

well that is not shown in the cropped images.) In the projected images, this

noise turns into isolated pixels that are a different colour from the background.

These isolated pixels, that are not present in the ground truth images results

in many more features being extracted by Blob-PROST.

To test the impact of this effect, some preliminary experiments were con-

ducted using the same setup as in Chapter 3, but the perfect model has been
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Figure 4.3: The results of running Rollout-Dyna-Sarsa with the perfect (green
bars) and imperfect models (blue bars). The horizontal lines show the same
baseline scores as Figure 3.2.

replaced with a learned model. The only other difference is that the reported

scores are only an average of five runs, thus their error bars have been omitted.

Figure 4.3 shows the performance of Rollout-Dyna-Sarsa with the learned

model in Asterix and Seaquest. The scores are poor and do not even

reach the performace of Sarsa 100k (yellow line). The extra features appear

to inhibit the ability of the Rollout-Dyna-Sarsa agent to learn effectively.

In contrast, the value function for DQN seemed to be much more robust to

small errors in the image produced by the model. It may be that learning the

feature representation using both the real and predicted images helps account

for the model error. The network is likely able to ignore errors in the predicted

images that are not important for predicting the value of a state.

4.2 Learning and Planning Online

In all the experiments so far, a perfect model or a pre-trained learned model

has been used; the obvious next step is to study Rollout-Dyna-DQN in the

case where the model is learned alongside the value function. Learning the

model and value function together adheres to the original conception of Dyna.
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Figure 4.4: The results of running Rollout-Dyna-DQN with an online learned
model, compared to Rollout-Dyna-DQN with the pre-trained learned models,
on six games from the ALE. In Asterix, Seaquest, and Ms. Pac-Man,
there was at least one planning shape that outperformed the DQN Extra
Updates baseline (red horizontal line). Standard error bars have been omitted
for Rollout-Dyna-DQN with an online learned model since these scores are
only an average of 10 runs.

4.2.1 Experiments

The experimental setup was the same as in the previous experiments with

Rollout-Dyna-DQN, except the model was learned online alongside the value

function. Details of the online model training procedure are available in Ap-

pendix A.

The results for the six games from the ALE compared to the pre-trained

learned models and the model-free baselines are shown in Figure 4.4. Due to

computational limitations, only 10 independent runs for Rollout-Dyna-DQN

with an online learned model were completed, thus the standard error bars

have been omitted and strong conclusions about trends in performance cannot

be made. In Asterix, Seaquest, and Ms. Pac-Man, Rollout-Dyna-DQN

consistently outperformed the DQN Extra Updates baseline. As was the case
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with the perfect and pre-trained models, the best performance was achieved

using a planning shape with a rollout length greater than one. In Beam

Rider, Space Invaders, and Q-Bert, there was no planning shape with

the online learned model that outperformed the DQN Extra Updates baseline.

However, in Space Invaders and Q-Bert the pre-trained learned models

generally did not outperform that baseline either. Overall, these results indic-

ate that in some cases there may be an advantage to learning and planning

with a dynamics model online, over simply doing more updates with the real

experience. To the author’s knowledge, this is the first time that this has been

demonstrated in the ALE.
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Chapter 5

Conclusion

Despite the introduction of increasingly effective approaches for learning pre-

dictive models in Atari Games (Bellemare, Veness, & Bowling, 2013; Bellemare

et al., 2014; Oh et al., 2015a), this is the first time that a learned dynamics

model has been successfully used for planning in this challenging domain. The

results show that, combined with deep RL methods, Dyna is a promising

approach for model-based RL in high-dimensional state spaces and that plan-

ning shape is a critical consideration in extracting the most benefit from the

model. In every game from the ALE that was tested, the best performance

was achieved using a rollout length greater than one. Even when the model

was learned online and was necessarily imperfect, in some games there was a

planning shape with a rollout length greater than one that outperformed DQN

Extra Updates. Longer planning rollouts appears to be an effective strategy

for generating novel experience, which seems to be necessary to use the model

to its full potential.

The findings in this thesis suggest multiple next steps. Some of the model

flaws observed by Oh et al. (2015a) were indeed harmful for planning — per-

haps improvements in architecture or the introduction of new loss functions

could benefit planning performance. In the experiments start states for plan-

ning were selected from a buffer containing the agent’s recent real history; it

would be interesting to study Rollout-Dyna-DQN where start states are gen-

erated, and may not have been visited by the agent. This would necessarily

involve learning a generative model of the states, which might be accomplished
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with a solution like a variational autoencoder (Kingma & Welling, 2013) or

a generative adversarial network (Goodfellow et al., 2014). Finally, though

longer rollouts were found to be an effective way to use the model to gen-

erate experience, there are other promising approaches. For instance Pan,

Zaheer, White, Patterson, and White (2018) and Goyal et al. (2018) use in-

verse dynamics models to effectively propagate value updates backwards in

a manner similar to prioritized sweeping (Moore & Atkeson, 1993; Peng &

Williams, 1993). It may be possible to combine these insights, exploiting a

forward model’s ability to reveal novel states and a backward model’s ability

to efficiently improve the value function.

Overall, there are several important conclusions from this work to consider

when approaching a new problem with Dyna. The first is that the value

function being learned should be robust to errors produced by the model; we

saw that Blob-PROST features are sensitive to model error, while the neural

network used by DQN appears to be more robust. Next, the model should

be able to make multi-step predictions since the best performance might be

achieved with rollouts longer than a singe step. Finally, planning shape is an

important consideration to be able to extract the most benefit from the model.
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Appendix A

Details of Learned Model
Training

This appendix describes how the learned dynamics models from Chapter 4

were trained. To train the models, a procedure similar to what was used by

Oh et al. (2015a) was employed. In addition to the extension of the archi-

tecture to enable reward prediction, there were also two other changes from

the original description. Instead of RMSProp (Tieleman & Hinton, 2012),

the Adam optimizer was used (Kingma & Ba, 2015), which Oh et al. (2015b)

found converged more quickly. And for preprocessing the images, instead of

computing and subtracting a pixelwise mean, the mean value per channel

was computed and subtracted (grayscale has one channel), following Chiappa,

Racaniere, Wierstra, and Mohamed (2017).

Model A. For each game, a single DQN agent was trained for 10M emu-

lator frames. The trained agent was then run for a series of episodes without

learning, and 500k transitions (frames, actions, next frames, and rewards)

were recorded to create the training set. The model was then trained, using

the training set, for 1M updates with a 1-step prediction loss (batch size 32,

learning rate 1× 10−4), followed by 1M updates with a 3-step prediction loss

(batch size 8, learning rate 1× 10−5), for a total of 2M updates.

Model B. The procedure and training data was exactly the same as for

Model A, except that it was trained for an additional 1M updates using a

5-step prediction loss (batch size 8, learning rate 1× 10−5), for a total of 3M

updates.
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Model C. For this model, several independent DQN agents at different

times during their learning were used to collect the training data. For each

game, five independent DQN agents were trained for 10M frames. Then, 25k

transitions were recorded from evaluation episodes using a snapshot of each

agent at 2.5M, 5M, 7.5M, and 10M frames during their learning. The resulting

500k transitions were then combined to create the training set. The model

was then trained for 1M updates with a 1-step prediction loss (batch size 32,

learning rate 1× 10−4), followed by 500k updates with a 3-step prediction loss

(batch size 8, learning rate 1× 10−5), then finally 500k updates using a 5-step

prediction loss (batch size 8, learning rate 1×10−5), for a total of 2M updates.

Online Learned Model. To train the model online, batches of data are

sampled from the agent’s real experience in the experience replay buffer. The

model is first trained on 1-step predictions using a learning rate of 1×10−4 for

125k updates (500k agent steps, with training occurring every 4 steps), before

switching to 3-step predictions with a learning rate of 1 × 10−5. The batch

size is 32 for both phases of training.
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Appendix B

1-Ply Monte-Carlo Experiments

To explore the effectiveness of the learned models in a different context from

Dyna-DQN, several experiments using 1-ply Monte-Carlo planning were con-

ducted using the six games from the ALE. Monte-Carlo planning isolates using

the model from learning a policy, which may provide insight into how well the

models have learned the environment’s dynamics.

In 1-ply Monte-Carlo planning, at each time step t, an estimate of the

return for every possible action is obtained by using the model to simulate

rollouts from the next states that result from taking each action. Specifically,

from the current state St, the result of taking each action ai ∈ A is simulated

using the model to obtain a set of next states and rewards Snext = {Si
t+1 |

i ∈ 1, 2, ..., |A|}, and Rnext = {Ri
t+1 | i ∈ 1, 2, ..., |A|}. Then from the each

Si
t+1 ∈ Snext, k random rollouts of length n are performed. Let the notation

k × n be referred to as the rollout shape. Next, the mean n-step return,

G̃i
t:t+1+n = Ri

t+1 +
1

k

k∑
j

n∑
l

γlRi,j
t+1+l,

for all the rollouts is computed. Finally, the action ai that had the highest

estimated return is then executed in the real environment.

Several experiments were conducted using 1-ply Monte-Carlo planning us-

ing both the learned models A, B, and C, and the perfect model. 5×10, 10×5,

10×10, and 5×20, rollout shapes were evaluated. Note that the pairs 5×10

and 10×5, and 10×10 and 5×20 share the same number of simulation steps.

In each case γ = 1. The results of these experiments are shown in Figure B.1.
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Figure B.1: The results of running 1-ply Monte-Carlo planning on six games
from the ALE using both imperfect and perfect models. For each game and
rollout shape there was a model that outperformed the random policy baseline
(in red).

As a baseline, the result of the random policy — selecting actions uniform

at random — is shown as a red horizontal line. The scores reported are the

average of 30 independent episodes.

With the perfect model in each game, as the rollout depth is increased,

the score tends to increase as well. In addition, there was at least one imper-

fect model that outperformed the random policy. This demonstrates that the

models are able to learn useful information about the environment and that

they are functional for planning.
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