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ABSTRACT 

Chloramine, a widely-used water disinfectant with long-lasting residuals, can pose serious 

environmental risks when reaches the aquatic environment through its introduction to storm sewers 

after different outdoor tap water uses, and consequently harm receiving water bodies and their 

aquatic biota. Although the allowable chloramine concentration in stormwater effluents is 0.02 

mg/L, recent sampling results in Edmonton found concentrations as high as 0.39 mg/L. To date, 

there is no analytical framework capable of simulating chloramine decay and then predicting its 

related concentrations throughout a drainage system. And with recent studies about chloramine 

decay coefficients variability spatially and temporally, no available stormwater quality tool can 

adequately simulate this complex decay. Therefore, this knowledge gap provides an opportunity 

to structure a hazard assessment framework for stormwater quality to assess chloramine loads in 

stormwater effluents. This framework comprises 1) a stormwater model for runoff and pipe flow 

quantitative routing, 2) a new stormwater quality model to simulate chloramine decay in the sewer, 

3) a hazard assessment framework for system operators that can quickly and accurately assess 

chloramine release incidents. 

A stormwater model was built in MIKE URBAN that used rainfall data for hydrological input and 

pipe flow data of monitoring stations for model validation. High correlation between model 

predictions and observed pipe flows was found. Next, a new Variable Decay Coefficient Simulator 

model (VDCS) was developed to predict chloramine concentrations in the sewer system 

considering the spatial and temporal variability of its decay coefficients. The model inputs include 

the hydrodynamic simulations results of the stormwater model, the sewer system attributes, and 

the pollutant loads and decay characteristics. Then, the model outputs pollutographs at all system 
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manholes and outlets. Results of the VDCS simulations were validated showing very high 

agreements at all system points. 

Running stormwater simulation models can be very time-consuming, and by the time results are 

available, mitigation actions may no longer be necessary. Stormwater system managers need 

reliable and fast tools to assess stormwater quality hazards at system outlets as a result of releases 

from any point in the stormwater basin. The solution comes in the form of new standalone maps 

that can be used as tools to quickly assess the severity of release incidents. Under different weather 

conditions, two types of maps were devised; 1) concentration maps show pollutant concentrations 

at the system outlet resulting from point-source pollutant releases anywhere in the stormwater 

basin, 2) hazard maps work similarly but show the spatial variation of pollution hazards instead of 

concentrations.  

The hazard assessment framework was applied to study chloramine pollution in a stormwater basin 

in Edmonton, Alberta, in which results of stormwater MIKE URBAN and VDCS were used to 

develop concentrations and hazard maps. Concentration maps showed that under dry weather 

conditions chloramine over the entire basin was higher than the regulatory limit. For design storms 

of 2 and 5-year, it was found that 60% and 80% of the study area generated concentrations within 

the safe range. Storms with higher return periods, more than 5-year, posed no significant 

environmental concerns. Chloramine hazard maps were developed using two approaches. In the 

first, chloramine hazard scores were calculated based on event mean concentrations (EMC) which 

include total pollutant mass, concentrations and total stormwater volumes. This EMC-based hazard 

scores showed that approximately 25% of the basin at moderate to high risk of chloramine-related 

water pollution. In the second, fuzzy logic was utilized to include more chloramine-affecting 
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factors to better represent contaminant hazard in the study area. These factors included EMC 

values, land-use types, the spatial variation of chloramine decay, annual rainfall, ground slopes, 

property assessment values and proximity to the drainage network. The fuzzy-based hazard maps 

generated a different hazard pattern as a result of incorporating more pollutant-inducing factors, 

predicting that approximately 54% of the basin at moderate to high risk of chloramine-related 

water pollution.  

This study shows that the development of a reliable concentration and hazard maps is achievable 

even for a complex pollutant like chloramine, and hence can be adopted to other stormwater 

pollutants. Applying the hazard assessment framework presented here, stormwater pollution and 

unregulated release incidents can be effectively controlled, focusing resources on areas with higher 

hazard susceptibility without the need for long simulations that preclude taking required measures 

in time.    
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PREFACE 

 

This thesis is my original work. The thesis is organized in two formats. Chapter 2 and 3 are 

presented in a thesis chapter format. Chapter 2 provides a literature review on the topic of modeling 

stormwater networks and chloramine dissipation. Chapter 3 presents information about the process 

of stormwater modeling including model structure, computations and validation of results. Each 

of Chapter 4 and 5 is organized in a journal article format, as a standalone article for journal 

submission. Finally, Chapter 1 provides an overall introduction to the thesis, and Chapter 6 

summarizes and concludes this research, and presents recommendations for future studies. Due to 

the mixed format of this thesis, duplication of some ideas, data presentation and figures could not 

be totally avoided; however, it was kept to the minimum. The task of preparing this thesis has been 

to produce from those activities a single piece of work. Hence, all chapters are integrated into a 

cohesive unit with a logical progression from one chapter to the next. Each chapter has its own 

introduction, hypothesis, and conclusions.  

 

To date, this work has led to the submission of two manuscript for publication in peer-reviewed 

academic journals. For Chapter 5, Mr. Shereif Mahmoud provided advice on conducting geospatial 

analyses in ArcGIS and recommendations on the formulation of Section 5.2.3. My supervisor, Dr. 

Evan Davies contributed to all manuscripts composition and editing for all chapters and provided 

recommendations on the models’ development. 

 

Some of the research conducted for this thesis forms a part of a research project led by Drs. Evan 

Davies, Yang Liu, and James Bolton. The project received ethics approval from the University of 

Alberta Research Ethics Board, and support of NSERC and the City of Edmonton Drainage 

Services department through a Collaborative Research and Development grant to Dr. Evan Davies 

(principal investigator), called "A study of chlorine transport and dissipation in stormwater 

systems", No. CRDPJ 468429-14, September 2014. 
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A research is never finished. 

Even when it seems so. 

It is a work in progress. 

And ever will be. 
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CHAPTER 1  

INTRODUCTION 

1.1     Background 

Although chlorine was discovered in the mid-18th century in Sweden, it took about one-and-a-half 

centuries to recognize chlorine and chlorine-containing products as effective disinfectants 

(Connell, 1996; Zhang et al., 2017); instead, early chlorine applications aimed to control the foul 

odors in water, which were believed to be responsible for waterborne diseases (AWWA, 2006). 

By the 1940s, chlorine disinfection became a standard, widely-used approach for water treatment 

that is still used today by many municipalities (Crittenden et al., 2012). In spite of its wide 

acceptance, chlorine has some known disadvantages, including the volatility of chlorine which 

causes it to dissipate rapidly in distribution systems, and the reactivity of chlorine with naturally 

found organic matters in water systems, which results in the production of disinfection by-products 

(DBPs) that pose considerable risks to public health (AWWA, 2006; Hrudey, 2009). Since the first 

report of DBPs in 1974, research has focused on understanding the producing reactions, method 

of prevention and acceptable concentrations of DBPs, along with looking for alternative 

disinfection methods (AWWA, 2006).  

An alternative to chlorine, called chloramine, was first used by a water treatment plant in Ottawa 

in 1916 to reduce treatment costs (Connell, 1996). During chloramination, ammonia is added to 

convert the residual chlorine to chloramines including monochloramine (NH2Cl), dichloramine 

(NHCl2) and trichloramine (NCl3) (Vikesland et al., 2001). NH2Cl is the dominant chloramine 

species, and so the term “chloramine” is used in this work to describe all chloramine species – 

monochloramine, dichloramine and trichloramine – for simplicity. Initially, chlorine and 

chloramine were used widely for disinfection purposes; however, the U.S. Public Health Service 

observed chlorine’s rapid effect on several bacteria in 1943, which reduced the use of chloramine 

significantly (Crittenden et al., 2012). Thus, it was not until the discovery of chlorine DBPs in the 

1970s that chloramine started to be used widely as a disinfectant (AWWA, 2006; Zhang et al., 

2018a), because (1) although chloramines do form DBPs, they do so to a much lesser degree than 

chlorine (Duirk et al., 2005; Moradi et al., 2017); and (2) monochloramine has a desirable longer-

lasting residual that prolongs its disinfection efficiency (WHO, 2004). By 2004, approximately 

http://www.usphs.gov/
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30% of U.S water suppliers were using chloramination for disinfection (Maestre et al., 2016), and 

today it is widely used worldwide (Wahman and Speitel, 2012), including by the City of Edmonton 

(CoE) (Zhang et al., 2018c).  

Given its long-lasting residual, a concern is that the DBPs and chloramines in treated drinking 

water may reach the aquatic environment through their introduction to stormwater drainage 

systems after outdoor or industrial tap water use (Zhang et al., 2018c, 2017).  Sources include 

distribution system leaks and breaks, lawn and garden watering, car and driveway washing, pool 

emptying, street cleaning, firefighting, construction activities, hydro-testing of industrial pressure-

vessels and boilers, and industrial or commercial wash-down activities (Balling et al., 2008; 

Manning et al., 1996; Mayer and DeOreo, 1998; Zhang et al., 2018c, 2017). In Edmonton, 

stormwater eventually enters the North Saskatchewan River or tributary creeks from over 200 

storm sewer outfalls, in which some of the stormwater system discharges flow directly from the 

point of discharge into receiving waters (CoE, 2013). 

In growing recognition of the detrimental environmental effects of stormwater runoff, the past 

several decades have witnessed a broader shift toward management of stormwater quality 

(Goulden et al., 2018; Tsihrintzis and Hamid, 1997a; Zoppou, 1999). In terms of chlorine, it was 

found that the long-lasting NH2Cl disinfectant poses considerable environmental risk for receiving 

water bodies and their aquatic biota (Zhang et al., 2018a). Typically, water treatment produces a 

total active chlorine (TAC) concentration of 2.0 mg/L (Milne et al., 1993). Many studies 

demonstrated the chlorine-induced harmful, and potentially fatal, influences on fish habitat and 

possible changes in species composition (Bellanca et al., 1977; Grothe and Eaton, 1975; Manning 

et al., 1996; NRC, 2008; Svecevicius et al., 2005; US EPA, 1988, 1984; Zillich, 1972; Zvinavashe 

et al., 2008). However, the chlorine effects of exposure depend on the concentration, duration, fish 

species, and other environmental factors. Field studies and biological surveys found a TAC 

exceeding only 0.02 mg/L to harm aquatic life. Consequently, the Canadian Council of Ministers 

of the Environment issued new Canada-wide guidelines for the protection of aquatic life that 

reduced the maximum TAC concentration in municipal effluents discharged to surface waters to 

0.02 mg/L (CCME, 2009). In this light, the CoE has recently adjusted its Sewers Use Bylaw 

(Bylaw 16200, 2016) to reduce the permissible total chlorine discharge concentration to 0.02 mg/L 

(CoE, 2018); however, monitoring of the TAC concentrations at selected locations of Edmonton 
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storm sewers showed TAC concentrations up to 0.39 mg/L, which is substantially greater than the 

reported detrimental level. Further, a new study has found TAC concentrations as high as 0.77 

mg/L in stormwater samples (Zhang et al., 2018c). Therefore, there is a need to understand and 

anticipate chloramine dissipation behaviour in stormwater systems. 

1.2     On urbanization 

Chloramine contamination results from many problems driven by urban development and growth 

in today’s world. With more than 50% of human beings inhabiting cities and over 500 cities with 

over 1 million residents (Fletcher et al., 2013), urbanization has several serious impacts on 

receiving waters in terms of water quality and flood intensity (Wang et al., 2019). As it alters the 

natural ground surface, urban growth increases impervious land area, which leads to less 

infiltration, and more and peakier runoff (Butler and Davies, 2011). In addition to more intensive 

floods as a result of suburban development, urbanization contributes to more severe pollutant 

loadings (Lee and Heaney, 2003). Related factors coinciding with urbanization such as land-use 

changes, human activities and population growth aggravate the impact of urban sprawl on the 

quality of stormwater effluents that eventually reach surface waters (Zhang et al., 2018c). There 

are many sources of urban water pollution such as precipitation, soil erosion, and the accumulation 

and wash-off of street dirt, fertilizers, pesticides and harmful chemical constituents, as well as 

direct pollutant inflows to the drainage system (Brezonik and Stadelmann, 2002). In many cities, 

stormwater is a significant contributor to water bodies, thus exacerbating pollution that is often 

routed directly to receiving streams and rivers, impairing local water supplies and causing 

unnecessary risks to human and aquatic health (Bernhardt and Palmer, 2007; Davis et al., 2001; 

Eriksson et al., 2007; Gnecco et al., 2005; Howell et al., 2012; Makepeace et al., 1995; Roy et al., 

2008). 

Over decades, urbanization-inducing effects on stormwater quality have been discussed and 

proven (Haris et al., 2016). Several studies have reported the impact of polluted stormwater on 

freshwater ecosystems and human health (Konrad, 2005; Paul and Meyer, 2001; Roy et al., 2008; 

Walsh, 2000). The large amounts of pollutants released to receiving watercourses lead to water‐

quality degradation, and in return may cause potential health risk of waterborne diseases in many 

urban streams (Jiang et al., 2015). For instance, it was found that 91% of the UK river basins 
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considered at risk were located downstream of heavily altered urban waters (Ellis et al., 2012); 

while in the US, urban stormwater is regarded as the primary source of water quality impairments 

of 13%, 18% and 32% of all rivers, lakes and estuaries respectively (NRC, 2008). Many studies 

have found similar patterns regarding urban water pollution, see Meyer et al. (2005).  

In conclusion, because of the detrimental impacts on receiving waters, the uncertainty about decay 

processes, the value for planning purposes and the expense of obtaining pollution data, interest has 

grown in developing predictive models for urban stormwater pollutant loads (Dotto et al., 2012; 

Zhang et al., 2015). Such models can help both stormwater management practitioners and 

scientists make estimates for pollution loading over the watershed (Brezonik and Stadelmann, 

2002). 

1.3     Problem statement 

Although research over the past two decades has increasingly focused on modeling stormwater 

quality, as discussed later in Section 2.2 and 2.3, studies on modeling chloramine dissipation in 

stormwater networks are lacking. There is not, to-date, a comprehensive analytical framework 

capable of simulating chloramine dissipation and then predicting its related concentrations 

throughout a drainage system. The complex nature of chloramine decay pathways makes a full 

representation of the interacting chemical and biological mechanisms of formation, transport, 

decomposition and decay of chloramines challenging, and a tool capable of modeling them 

extremely helpful. Such a tool would help managers and engineers, in both public and private 

sectors, to predict chloramine concentrations in stormwater networks according to defined inputs 

and to support decision makers in maintaining released concentrations below the assimilation 

capacity of receiving streams in the future.  

The research presented here was part of a research project to study the decay of chloramine in 

Edmonton’s storm sewers in a collaboration between the University of Alberta and City of 

Edmonton. The other part of the project – conducted by Dr. Yang Liu’s research group – studied 

the chemistry of chloramine decay. Recent findings based on field sampling results, laboratory 

experiments and an analytical chemistry model (Zhang et al., 2018a, 2018c, 2018b) showed that 

chloramine decay characteristics can vary temporally and spatially because of the complex 
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interactions with biofilms and natural organic matter (NOM), which no available stormwater 

simulation tool is capable of modeling, as further discussed in Section 2.3. 

This knowledge gap provides opportunities to (1) expand our knowledge and capability of 

simulating chloramine dissipation in storm sewers, (2) investigate the necessary input parameters, 

equations and variables for proper simulations, (3) examine the effects of including chloramine 

decay coefficient variability in chloramine simulations, and (4) study the effect of different pipe 

flow characteristics, weather conditions, and rainfall properties on chloramine dissipation rates, 

using the simulation tool. 

1.4     Research objectives 

The ultimate aim of this research is to provide a hazard assessment framework for water quality in 

stormwater systems that can project chloramine concentrations and consequently anticipate related 

water quality hazards in the storm sewer system before chloramine pollution reaches surface water 

bodies. Such a tool can be generalizable to other Canadian cities and internationally, and can be 

made flexible enough to apply in the future to study the dissipation of other constituents in sewer 

systems. Implementing this hazard assessment framework for a complex stormwater pollutant with 

many decay mechanisms and pathways like chloramine means that the framework is applicable to 

many other stormwater pollutants.  

Toward this overall aim, specific objectives are, 

1. To build, calibrate and validate a stormwater simulation model including the surface runoff 

hydrological routing and hydrodynamic pipe flow computation. This entails improvement of 

GIS-based catchment property estimations, such as imperviousness and ground slope 

estimations for different surfaces and ground slopes. Quantitative simulations of this model 

will be tested against rainfall and pipe flow data records provided by CoE’s Drainage Services. 

Validity will be assessed using a group of statistical measures to evaluate model predictions. 

2. To build a new water quality simulation model that can simulate chloramine decay in the 

stormwater system considering the variability of its decay coefficients both temporally and 

spatially. 
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3. To study the effect of including the variability of chloramine decay rates on the predictions of 

the water quality models under different weather conditions and pollution source types. 

4. To develop a GIS model for mapping chloramine concentration in a GIS application like 

ArcGIS, in which suitable mapping techniques are tested and validated using available 

chloramine concentration records and results of field sampling and laboratory experiments. 

5. To structure an analytical hazard assessment framework for chloramine dissipation in 

stormwater systems that incorporates the stormwater simulation model, the stormwater quality 

model and the GIS-mapping model to generate GIS-based decision support tool. 

6. To estimate chloramine hazard probabilities across the study area considering, i) different 

weather conditions, ii) various chloramine-pollution release factors, and iii) both pollutant 

mass and concentration at the system outlet. 

7. To produce standalone, easy-to-use chloramine hazard maps that can help system operators to 

quickly assess stormwater-induced pollution in the study area. 

1.5     Novelty and contribution 

For simulating degradable chemical constituents, all commercial stormwater modeling tools are 

basic and do not include necessary modeling options. The water quality model to be developed in 

this work will support modeling of different decay orders such as zero, first and second orders, 

considering variable decay coefficients over the study period and area. It will readily accept 

hydrodynamic simulation results from any stormwater software to produce a complete system for 

stormwater modeling.  

 

The chloramine hazard assessment framework introduced in this work can be applied to any 

stormwater model to predict stormwater quality risk associated with point-source release incidents. 

That hazard assessment framework can be generalized to different chemical substances that can 

harm receiving waters environment.  This framework is built to function as one whole model 

structure, which is new. The developed hazard map in this work adopts a new concept of assessing 

chloramine concentration at the most critical points in the sewer system such as outfalls. The 

hazard maps are new to stormwater quality assessment and would help save municipal resources. 

 

With the growing public awareness of the necessity of protecting water resources and aquatic life, 

a need to predict the concentrations of chloraminated water discharged in stormwater systems is 
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required. Many local governments are required to develop sustainable water usage management 

plans, which demand stormwater quality management options and contaminated discharge 

controls. Ideally, the proposed research will support many municipalities and water industries, 

which aim to minimize urban pollution and environmental footprint, by developing cost-effective 

techniques to simulate and subsequently predict chloramine dissipation in drainage systems,        

and thus pollutant concentrations that may enter surface waters. Furthermore, the intended           

research here will expand our capabilities of simulating chloramine dissipation in stormwater 

networks. It is hoped that the analytical modeling framework developed here will be applicable to 

a larger range of pollutant discharges from stormwater systems. On a broader scale, the outcomes 

of this project will contribute to the efforts of reducing negative environmental impacts of polluted 

urban water discharges to surface waters. 

1.6    Thesis layout 

This thesis is organized into six chapters. Both Chapter 4 and Chapter 5 are formatted as two main 

contributions and paper submissions to peer-reviewed journals.  

Chapter 1 gives a background, defines the problem statement, and provides the motivation, 

objectives, and the novel contribution of the research. 

Chapter 2 summaries the available material in the literature about stormwater models, stormwater 

quality simulations and the dissipation of chlorine and chloramine in both water distribution and 

stormwater networks.  

Chapter 3 describes the analytical framework of stormwater modeling including the runoff, pipe 

flow and water quality computations. In addition, the chapter addresses details of stormwater 

modeling efforts including the selection of study areas, data collection, selection of efficiency 

measures, model sensitivity analysis, calibration and validation of the stormwater models.  

Chapter 4 introduces the Variable Decay Coefficient Simulator (VDCS) that integrates results of 

the model described from Chapter 3 in order to simulate the dissipation of chloramine considering 

the variability of its decay coefficients spatially and temporally. This chapter was submitted to the 

Journal of Hydrology, April 2019. 
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Chapter 5 presents the “4-stage-3-model” hazard assessment framework for stormwater quality 

and applies the framework to the study of chloramine pollution in a stormwater basin in Edmonton, 

Alberta. This chapter was submitted to the Journal of Cleaner Production, April 2019. 

Chapter 6 provides a concluding overall summary of the thesis. It includes the research summary 

and principal conclusions of the study. It also sets recommendations for future studies on similar 

topics. 

Bibliography and Appendices from all chapters are combined and presented after Chapter 6. Six 

appendices are included in the thesis. Appendix A comprises a description for all the data collected 

for this research, along with their source, format type and application. Appendix B sheds more 

light upon the definition of the stormwater model in MIKE URBAN. Appendix C provides a 

detailed model description, user guide, and code required to reproduce the VDCS model. 

Appendices D and E are the supporting material for Chapter 4 and Chapter 5, respectively. Finally, 

Appendix F lists a group of associated literature on chloramine dissipation in stormwater networks. 
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CHAPTER 2  

LITERATURE REVIEW 

 

This chapter aims to summarise the material found in the literature related to simulation of 

chloramine in stormwater systems. First, the available simulation models of stormwater systems 

are reviewed, and their capabilities are analysed. Second, related published studies on water quality 

in the storm and combined sewers are presented. Finally, due to lack of enough research on 

chloramine dissipation in stormwater systems, a focused review on studies of chlorine or 

chloramine decay in water distribution and stormwater networks is conducted. An extended 

discussion of available decay models then follows, compiling alterations and modifications of 

chloramine models over the years. 

 

2.1 Available stormwater models 

With advances in computer technologies, complex stormwater quality and quantity models capable 

of simulating stormwater processes started to be developed in the early 1970s (Butler and Davies, 

2011). The following decades have witnessed the development of a large number of such models 

and more are being developed continuously. Today, there are literally hundreds of models 

available for urban stormwater modeling with varying capabilities and applications (Zoppou, 

2001).  

Many factors differentiate these models from one another. First, there are two main uses for such 

models: design of new systems and simulation of existing systems (Elliott and Trowsdale, 2007). 

Design models determine the physical details of different components of a proposed drainage 

system, while simulation models test system responses to particular conditions, including surface 

flooding and water quality (Butler and Davies, 2011). In addition, depending on the type of model 

inputs, models can be either deterministic or stochastic, and both may be further subdivided into 

conceptual or empirical (Devi et al., 2015). Stormwater models can be further distinguished 

according to temporal resolution. Event-based models are used for simulation during and after 

individual storm events, especially ones that may cause flooding and transport large amounts of 

sediment, while continuous models are usually used for studying the effects of hydrological 
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changes and management practices over longer terms like months or seasons (Borah et al., 2006). 

In terms of spatial variability, a model is described as distributed when it acknowledges spatial 

variability, or lumped when it does not (Zoppou, 1999). For quantity computations, models apply 

different methods for representation of runoff generation, routing to and within the drainage 

network, and estimating infiltration and groundwater movement (Obropta and Kardos, 2007). 

Further, in water quality simulations, the types of contaminants included in each model and 

methods used in generation and transport of contamination also vary considerably (Elliott and 

Trowsdale, 2007). There are many published reviews for these models with helpful comparisons 

for application and capability such as Borah et al. (2019, 2009), Borah and Bera (2004a), Elliott 

and Trowsdale (2007), Gironas et al. (2009), Haris et al. ( 2016), Jayasooriya and Ng (2014), 

Mitchell et al. (2007), Obropta and Kardos ( 2007), Rubinato et al. (2013) and Zoppou (2001). 

Table 2.1 compares some popular stormwater models.  
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Table 2.1 Characteristics of some available stormwater packages 
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DRAINS, Watercom Pty Ltd, 

1998 
 ∎ ∎ ∎ ∎ ∎ ∎   ∎ ∎ ∎     

HEC-HMS, Hydrologic 

Engineering Center, 1992 
 ∎  ∎  ∎ ∎  ∎   ∎ ∎    

HSPF, US EPA, 1980 ∎  ∎  ∎ ∎ ∎  ∎ ∎ ∎   ∎  ∎ 

Infoworks ICM SE, Innovyze, 

1990s 
 ∎  ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎  

MIKE-SWMM, DHI, 1990s  ∎ ∎ ∎ ∎ ∎ ∎  ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ 

MIKE URBAN (MOUSE), DHI, 

2008 
 ∎ ∎ ∎ ∎ ∎ ∎  ∎ ∎ ∎ ∎ ∎ ∎ ∎  

MOUSE, DHI, 1985 ∎   ∎ ∎ ∎ ∎  ∎ ∎ ∎ ∎ ∎  ∎  

MUSIC, Monash University, 

2000  
 ∎  ∎ ∎ ∎ ∎  ∎ ∎ ∎   ∎ ∎  

QQS, (Geiger and Dorsch, 1980) ∎  ∎  ∎ ∎ ∎  ∎ ∎ ∎ ∎   ∎ ∎ 

RUNQUAL, Cornell University, 

1999 
∎  ∎ ∎   ∎ ∎  ∎     ∎  

SLAMM, USGS, 1970s  ∎ ∎ ∎   ∎ ∎  ∎     ∎  

STORM, US Army Corps of 

Engineers, 1977 
∎  ∎    ∎  ∎ ∎    ∎   

SWAT, USDA, 1986 ∎  ∎ ∎  ∎   ∎ ∎ ∎      

SWMM, USEPA, 1971 ∎  ∎ ∎ ∎ ∎ ∎  ∎ 
∎
1 

∎ 
∎
2 

 ∎ ∎ ∎ 

UVQ, Monash University, 2000 ∎   ∎  ∎   ∎ ∎     ∎  

WBM, Greater Vancouver 

Regional District, 2004 
 ∎5 ∎ ∎ ∎  ∎ ∎  ∎     ∎  

Wallingford 3, Hydraulic 

Research Institute, 1978 
 ∎ ∎ ∎ ∎ ∎ ∎  ∎ ∎ ∎ ∎ 

∎
4 

 ∎  

1 Flow balance only, 2 with EXTRAN module, 3 Including WASSP, MOSQITO, and 

WALLRUS, 4 Advection only, 5 Free basic package. 
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2.2 Water quality simulations in stormwater systems 

Many models have been used over the last two decades to study stormwater quality in urban water 

systems, including the transport mechanisms of a variety of pollutants such as total suspended 

solids, nitrogenous and phosphorus compounds, biochemical oxygen demand (BOD) or chemical 

oxygen demand (COD), total organic carbon (DOC), dissolved oxygen (DO), and heavy metals. 

However, modeling studies on chloramine dissipation within storm sewer networks are lacking.  

Available stormwater models range from (1) loading models, like GWLF and PLOAD, that 

estimate sediment or chemicals loads from a watershed outlet into a receiving water body; (2) 

receiving water models, like WASP, AQUATOX, CE-QUAL-W2 and QUAL2K, that simulate 

water quality in a receiving water body based on contributing watershed loadings; and (3) 

watershed models, like HSPF, SWAT, STORM, Wallingford, SWMM, and DHI's MOUSE model, 

which combine the capacities of loading models with features of receiving water models (Borah 

et al., 2006; Zoppou, 2001). A variety of model reviews provide comparisons of their applications 

and capabilities; see for example Borah and Bera (2004b, 2003), Brabec et al. (2002), Duncan 

(1995), Elliott and Trowsdale (2007), Marsalek (1991), Obropta and Kardos (2007), Tsihrintzis 

and Hamid (1997a), Vaze and Chiew (2003), and Zoppou (2001). Table 2.2 lists a number of recent 

simulation studies for water quality parameters in stormwater systems.  
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Table 2.2 Review of some recent stormwater quality models 

Author, year Model 
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Artina et al. (2007) Mouse/Walli

ngford 
∎        ∎  

Becouze-Lareure et al. 

(2019) 

 
 ∎    ∎  ∎ ∎ ∎ 

Dembélé et al. (2011)  ∎        ∎ ∎ 

Fraga et al. (2016) MEDUSA ∎       ∎ ∎  

Gamerith et al. (2009) SMUSI 5.0    ∎     ∎ ∎ 

Goonetilleke et al. (2005)   ∎ ∎ ∎  ∎ ∎   ∎  

Heineman et al. (2013) SWMM ∎ ∎ ∎ ∎    ∎ ∎  

Hussein et al. (2015) SWMM ∎   ∎     ∎  

Lee et al. (2009) SWMM ∎ ∎ ∎ ∎      ∎ 

Lee et al. (2010) SWMM/HSP

F 
∎ ∎ ∎ ∎     ∎  

Mannina and Viviani (2010)  ∎   ∎     ∎  

Maruéjouls et al. (2014)  ∎   ∎     ∎ ∎ 

May and Sivakumar (2009)  ∎ ∎ ∎ ∎    Pb ∎  

Metadier and Bertrand-

Krajewski (2012) 

 
∎   ∎   ∎  

∎ ∎ 

Miguntanna et al. (2010)  ∎ ∎ ∎   ∎     

Rossi et al. (2013) REBEKA II ∎         ∎ 

Shon et al. (2012) SWMM ∎ ∎ ∎ ∎ ∎    ∎  

Shorshani et al. (2014) SWMM ∎       ∎ ∎ ∎ 

Shrestha and He (2017) SWMM ∎        ∎  

Temprano et al. (2006) SWMM ∎ ∎ ∎ ∎      ∎ 

Tsihrintzis and Hamid 

(1997b) 

 
∎ ∎  ∎    Pb ∎  

Tsihrintzis and Hamid 

(1998) 

SWMM 
∎ ∎ ∎ ∎    Pb ∎  

Zhang et al. (2012)  ∎ ∎ ∎ ∎     ∎  
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Several factors affect the generation and transport of pollutants in urban stormwater systems. 

Regarding the generation of pollutants, urban sprawl and land-use type are major factors 

contributing to changes in generated pollutants (Bian et al., 2011), increasing concentrations of 

chemical contaminants produced by human activities which differ significantly from the naturally-

produced chemicals in any catchment (House et al., 1993). Other group of factors control the 

transport of pollutants to receiving waters. One are the characteristics of the surface identified by 

the surface type, material composition, surface slope, local losses, exposure and spatial location, 

and imperviousness degree (Gobel et al., 2007). Second are the rainfall characteristics, because 

pollutants detach from surfaces as a result of rainfall impact and then may be transported by excess 

surface runoff (Bian et al., 2011). Rainfall intensity, duration and volume considerably influence 

pollutant concentrations and loads (Brezonik and Stadelmann, 2002). Finally, third are the 

characteristics of the sewer system identified by the following interrelated components: physical 

properties of the system’s static elements, hydrodynamic properties, environmental conditions, 

and biological, chemical and physical processes in sewer system (Kowalska et al., 2013).  

In conclusion, practical use of physically-based water quality models is limited due to the 

complexity of processes, the change in governing mechanisms among different pollutants and the 

source of the pollutant (He et al., 2011; Obropta and Kardos, 2007). The generation and transport 

of pollutants in urban drainage systems depends on a group of combined factors that do not lend 

themselves to a simple mathematical model, and oversimplification of modeling assumptions and 

approaches can lead to gross errors in model predictions (Goonetilleke et al., 2005). Hence, a 

special investigation of chloramine dissipation characteristics is needed to build an accurate 

simulation tool, as discussed in the next section. 

2.3 Chlorine/Chloramine dissipation models for water networks 

Comprehensive studies on chloramine dissipation in storm sewer networks are lacking in the 

literature (Zhang et al., 2018c). At the time our research team started the current research, the 

decay of chloramine/chlorine in stormwater systems had not well-studied previously. To date, our 

research team’s work is the only work published on the topic; in Gaafar et al. (under review) and 

Zhang et al. (2018b, 2018c, 2018a). Since there no enough research on the dissipation of chlorine 
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and/or chloramine in stormwater networks, this review includes some important published work 

on the dissipation of such compounds in water distribution systems (WDS), as well.  

 

In WDS, chlorine (Cl) has been used to reduce numbers of microorganisms in drinking water 

(WHO, 2004), despite being relatively chemically-unstable and highly-reactive with a variety of 

inorganic and organic substances, which cause its gradual dissipation within the supply system 

(Ahn et al., 2012). Maintaining an effective residual Cl concentration from the system entry to its 

farthest end is important to prevent waterborne diseases (Fisher et al., 2012). Still, excessive 

concentrations may leave unpleasant tastes and odours, and increase the potential of producing by-

products, some of which are suspected carcinogens (Al-omari et al., 2004). In large WDS, booster-

dosing stations are used to keep uniform Cl residuals throughout the system by allowing lower 

entry concentrations while maintaining adequate downstream-end residual (VanBriesen et al., 

2011). Therefore, there is a real need for powerful modeling tools that can simulate Cl decay 

which, in spite of much effort, is still complex as it depends on improvements both in hydraulic 

and Cl decay kinetic models (Monteiro et al., 2014).  

Cl decay starts immediately after the dose application, rapidly at first and then relatively slower 

after 4 to 5 hours. The oxidation of inorganic compounds is a rapid process while the substitution 

reactions with natural organic matter (NOM) are relatively slow; however, the overall decay rates 

in WDS depend on characteristics of the source water and the distribution system as well (Boccelli 

et al., 2003). Models that include both stages are known as two-reactant models (2R), and represent 

an approach first proposed by Kastl et al. (1999). The fast stage is typically modeled by zeroth-

order or second-order decay models. As rapid decay is considered complete by the time water 

leaves the treatment plant (Boccelli et al., 2003), the main focus here is the slower decay in the 

water network which is generally modeled according to first-order kinetics (Ahn et al., 2012; 

Rossman et al., 1994; Savic et al., 2009), as: 

 𝑑𝐶

𝑑𝑡
= −𝐾𝐶 (2.1) 

where C is the chlorine concentration, K is the first-order decay constant and t is the time. This 

phase of Cl decay involves two distinct processes. As Cl travels in pipes, it reacts with chlorine-
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consuming substances in the bulk fluid, and with the pipe’s internal wall material and biofilms; 

these coefficients are known as the bulk decay (Kb) and wall decay (Kw) coefficients, respectively 

(Rossman et al., 1994), so that, 

 𝐾 = 𝐾𝑏 + 𝐾𝑤 (2.2) 

A number of studies have attempted to determine Kb and Kw and their associated processes, using 

laboratory experiments or field measurements with  regression analysis; see for instance Ahn et al. 

(2012), Al-omari et al. (2004), Boccelli et al. (2003), Castro and Neves (2003), Clark et al. (1995), 

Fisher et al. (2011b), Hallam et al. (2002), Powell et al. (2000), and Vasconcelos et al. (1997). The 

Kb is usually described in terms of temperature, total organic carbon (TOC), transport time and 

initial Cl concentration and contaminant, while Kw is affected by pipe age, diameter, material, 

roughness, corrosion and biofilm. In some WDS models, the decay coefficient is simply calibrated 

to minimize the model error against field measurements (Ahn et al., 2012; Mostafa et al., 2013; 

VanBriesen et al., 2011). 

However, the first-order model of Eq. 2.1 is not the only description available in this regard. Some 

other modified versions of the first-order decay model were examined, e.g. parallel and limited 

first-order models, as listed in Table 2.3. Some of these models provided a better fit to available 

data sets, although not significantly or consistently better in most cases – see, for instance, Ahn et 

al. (2012), Helbling and VanBriesen (2009), and Vasconcelos et al. (1997). Other groups focused 

on a second-order decay kinetic model – see, for example, Clark (1998), Fisher et al. (2011b), and 

Islam et al. (1997). Typically, only small differences existed between first- and second-order 

models in terms of Cl decay. For instance, Boccelli et al. (2003) found second-order models 

generally equaled or bettered the performance of first-order models, while Kim et al. (2015) 

compared the performance of nine different chlorine decay models for a pilot scale water network 

and found that the first-order model outperformed all others under all studied conditions.  

On one hand, as a water disinfectant, chloramine poses additional challenges for modeling 

compared with chlorine (Mutoti et al., 2007). During chloramination, ammonia is added to convert 

residual chlorine to chloramines (Connell, 1996). Chloramination produces different residuals in 

the WDS, including NH2Cl, NHCl2, and NCl3, as well as organic chloramines (Milne et al., 1993). 

On the other hand, in stormwater systems, chloramine behaves differently compared to other 
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stormwater pollutants. Unlike many stormwater pollutants generated from deposition on different 

urban surfaces and accumulated over antecedent dry periods between rainfalls (Wei et al., 2019), 

chloramine does not exhibit build-up and wash-off characteristics. In either WDS or storm sewers, 

the reactivity between chloramines and the following physical factors and substances naturally 

found in water environments adds more challenges to studying chloramine dissipation (Crittenden 

et al., 2012; Zhang et al., 2018a). 

The predominant chloramine residual, NH2Cl, dissipates through auto-decomposition, bio-

degradation and direct chemical reactivity with waterborne constituents (Sung et al., 2005; Zhang 

et al., 2018c). The auto-decomposition process allows formation of free ammonia added to excess 

ammonia from chloramine formation (Vikesland et al., 2001), and causes an increased availability 

of assimilable organic carbon that promotes growth of nitrifying bacteria in bulk water (Moradi et 

al., 2017; Sathasivan et al., 2009). Nitrification is a two-step microbiological process where 

ammonia is oxidized to nitrite by ammonia oxidizing bacteria (AOB), and then nitrite is oxidized 

to nitrate by nitrite oxidizing bacteria (NOB), which in turn consumes chloramine and accelerates 

its decay (Sathasivan et al., 2008). Moreover, sediments and biofilms have interchangeable effects 

(Adhikari et al., 2012). Sediments provide habitat to microbial growth, which enhances microbial 

activity and biofilm development (Herath et al., 2015; Sathasivan et al., 2009): the more sediments 

and biofilms in a water system, the faster chloramine decays (Adhikari et al., 2012). In contrast, 

higher pH (pH>8.5) reduces the activity of nitrifiers and, in turn, decelerates chloramine decay 

(Sarker and Sathasivan, 2012). Various other factors have been linked to NH2Cl decay including 

bromide (Vikesland et al., 2001), temperature (Adhikari et al., 2012; Regan et al., 2002), 

cometabolism (Maestre et al., 2016), alkalinity (Zhang et al., 2017), corrosion (Clark et al., 2006), 

flow velocity (Westbrook and Digiano, 2009) and pipe materials (Mutoti et al., 2007). The 

presence of natural organic matter (NOM) significantly accelerates the NH2Cl loss rate (Hrudey, 

2009; Zhang et al., 2017). A study on chloramine dissipation in stormwater systems (Zhang et al., 

2018c) has shown the NOM concentration to be the dominant factor in monochloramine 

dissipation in stormwater. They also found that, like in WDS, ammonium can decrease the decay 

rate because it promotes regeneration of NH2Cl during its auto-decomposition, while reactivity 

with nitrite, organic components, and biofilm accelerates the decay process. 
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Table 2.3 Recent models of chlorine/chloramine decay in WDSs 
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Ahn et al. (2012) 
∎
AB

C 

  ∎ ∎ ∎   ∎  
Cl decay & 

Predicting DBPs 
EPANET 

Al-omari and Chaudhry 

(2001) 
∎  ∎      ∎  Inverse Cl modeling Inv. Math. Model 

Al-omari et al. (2004) ∎   ∎ ∎ ∎     
Modeling Cl 

residuals 
WaterCAD 

Blokker et al. (2014) ∎  ∎     ∎ ∎  
Residual Cl at WDS 

extremities 

EPANET / 

EPANET-MSX 

Castro and Neves 

(2003) 
∎   ∎  ∎   ∎  Modeling Cl decay EPANET 

Constans et al. (2003) ∎  ∎      ∎  Simulating Cl decay 
EPANET/Numer

ical model 

Dukan et al. (1996) ∎  ∎ ∎     ∎  
Cl and bacterial 

growth in WDS 
Piccolo 

Fisher et al. (2011a) ∎   ∎   ∎  ∎  
Cl bulk decay 

models 
2R-Model 

Fisher et al. (2016) ∎   ∎   ∎  ∎  
Simulating Cl 

residuals in WDS 

2RA / 

AQUASIM 

Hamdy et al. (2014) ∎  ∎      ∎  Free residual Cl WaterCAD 

Helbling and 

VanBriesen (2009) 

∎
AB

CD 

∎ ∎     ∎ ∎  

Microbial 

contamination 

effects 

EPANET-MSX 

Huang and Mcbean 

(2008) 
∎ ∎  ∎ ∎ ∎   ∎  Estimating Cl decay EPANET 

Islam et al. (1997) ∎  ∎      ∎  Inverse Cl modeling Inv. Math. Model 

Kohpaei et al. (2011) ∎ 
∎
E 

∎     ∎ ∎  
Second-order Cl 

Decay 
EPANET-MSX 

Monteiro et al. (2014) 
∎
C 

∎   ∎ ∎ ∎ ∎ ∎  Modeling Cl decay 
EPANET / 

EPANET-MSX 

Mostafa et al. (2013) ∎   ∎ ∎ ∎   ∎  Simulating Cl decay EPANET 

Nagatani et al. (2006) ∎   ∎ 
∎
F 

   ∎  
Simulating free 

residual Cl 

MIKE 

URBAN/EPANE

T 

Nejjari et al. (2014) ∎ ∎     ∎  ∎  Modeling Cl decay 
Piccolo / 

EPANET 

Ozdemir and Ucak 

(2002) 
∎   ∎ ∎    ∎  

2D simulation of Cl 

decay 

EPANET / 

DYNAQ 

Rossman et al. (1994) ∎   ∎ ∎ ∎   ∎  Modeling Cl decay EPANET 

Tamminen et al. (2008) ∎   ∎ ∎    ∎  Pipe material effects EPANET 

Vuţǎ and Pîrǎianu 

(2008) 
∎   ∎ ∎    ∎  

Simulating Cl 

residuals 

Infoworks / 

EPANET 
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There has been some effort on modeling chloramine decay in WDS. The EPANET-MSX (Multi-

Species extension model (Shang et al., 2007) can simulate complex reactions in both bulk flow 

and at the pipe wall. Citing literatures, using EPANET-MSX, Shang et al. (2008) studied the auto-

decomposition of NH2Cl to ammonia in the presence of NOM and Alexander and Boccelli (2010) 

investigated the reactions take place in bulk fluid within chloraminated water system.  Despite the 

complexity of its decay chemistry, chloramine decay is better represented as a first-order process 

than chlorine (Fisher et al., 2009). In general, NH2Cl is considered to act like free chlorine but with 

slower dissipation (Lee et al., 2003). Maier et al. (2000) developed two different models to 

simulate chloramine decay using EPANET: a constant overall first-order decay coefficient and a 

bulk-wall coefficient. Their results were similar for cases with higher flow conditions, while the 

second model performed better in lower flows. Second-order equations have not yet been used in 

simulating chloramine decay. A review of previous studies on chlorine/chloramine dissipation in 

WDS is provided in Table 2.3.  

Spatial and temporal variability within the stormwater system plays an important role in 

chloramine decay (Marsalek, 1991): spatially, with varying characteristics of stormwater effluents 

per land-use type and human activities (Zhang et al., 2018c), distribution of the decay-inducing 

parameters within the sewers (Potgieter et al., 2018) such as biofilms, and change in the properties 

of the sewer network itself (Savic et al., 2009), which produces varying velocities and 

VanBriesen et al. (2011) ∎   ∎ ∎    ∎  
Cl residuals - 

Booster response 
EPANET 

Vasconcelos et al. 

(1997) 

∎
AB

C 

 ∎ ∎ ∎ ∎   ∎  Cl decay kinetics EPANET 

Alexander and Boccelli 

(2010) 
∎  ∎    ∎   ∎ 

NH2Cl decay in 

WDS 
EPANET-MSX 

Clark et al. (2006) ∎   ∎ ∎ ∎   ∎ ∎ 
Decay in metallic 

pipes 

EPANET /mass 

trans. model 

Lee et al. (2003) ∎  ∎       ∎ 
Combined chlorine 

variation 

EPANET /mass 

trans. model 

Maier et al. (2000) ∎  ∎ ∎ ∎    ∎ ∎ 
Cl and NH2Cl decay 

in WDS 
EPANET 

Shang et al. (2008) ∎       ∎ ∎ ∎ 
Multiple species in 

WDS 
EPANET-MSX 

Zhang et al. (2017) ∎     ∎    ∎ NH2Cl decay Kinetic model 

*Some authors provided additional versions to model decay kinetics, as follows; A Limited first-

order kinetics, B Parallel first-order kinetics, C nth order decay kinetics, D Limited nth order 

kinetics, F Parallel second-order, and E Zero-order. 
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consequently travel times; and temporally, as a result of fluctuations in the pollutant mass fluxes 

over time (Clark, 1998), changes in the levels of the decay-affecting parameters such as 

temperature (VanBriesen et al., 2011), and the dynamic nature of pipe hydraulics (Westbrook and 

Digiano, 2009) and decay rates (Jonkergouw et al., 2009). In partcular, decay rates are known to 

decrease with time (Courtis et al., 2009), because chloraminated flows traveling in a pipe react 

with chloramine-consuming substances where present (Sathasivan et al., 2008), both in bulk water 

and in biofilms at the pipe wall (Hallam et al., 2002). These reactions slow over time as reactants 

are consumed (Kohpaei et al., 2011; Zhang et al., 2018b). To represent these temporal and spatial 

changes, chloramine decay in stormwater systems can be better modeled using varying decay 

coefficients than constant values (Kohpaei et al., 2011; Zhang et al., 2018b). Based on field 

sampling results, laboratory experiments (Zhang et al., 2018c, 2018a), and model development in 

COMSOL (Zhang et al., 2018b), the temporal variation of chloramine decay rates can be described 

with the following relationship, 

 
𝐾𝑡,𝑖 =

1

𝛼 𝑡 + 𝛽
∗ (𝑓𝑖) (2.3) 

where Kt,i is the decay coefficient at time t for land-use i, f is a land-use dependent coefficient 

derived from the analytical chemistry COMSOL model using water quality characteristics, t is the 

discharge time in minutes, 𝛼 =1.73, and 𝛽 =1.0. 

In summary, Sections 2.2 and 2.3 showed that enough research on simulating chloramine 

dissipation in stormwater systems is lacking. The proposed research here is intended to address 

this gap and requires a powerful simulation tool to perform accurate water quality simulations for 

chloramine dissipation. Section 2.1 reviewed capabilities of the available stormwater models, and 

Table 2.1 showed that MIKE URBAN can simulate distributed rainfall-runoff and unsteady flow 

in pipe and channel networks, and contains one of the most comprehensive water quality modules. 

It promises a high ability to simulate pollution transport, dissipation and interaction between 

different water quality processes such as advection, dispersion, sediment transport and biological 

processes. MIKE URBAN was selected for the present study for its capabilities in serving the 

research objectives adequately, and because it is used by the CoE. A detailed discussion on the 

MIKE URBAN model in the next chapter.  
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CHAPTER 3  

STORMWATER MODELING IN MIKE URAN 

 

3.1 Analytical framework in MIKE URBAN 

Drainage system simulations and computations are conducted in two distinct stages in many 

software packages (Butler and Davies, 2011), including MIKE URBAN. The first stage is the 

runoff computations, which simulate the hydrological surface processes and routing of surface 

flow in modeled catchment areas based on precipitation input and selected hydrological model 

parameters and processes (Borah et al., 2009). Where network simulations are included, catchment 

connections to the drainage network must be defined (DHI, 2017a). In the second stage, the 

network computations, the computed runoff from the previous stage is typically used as a hydraulic 

load to the collection system (Guan et al., 2015). MIKE URBAN can represent different sewer 

system components such as pipes, manholes, curb inlets, outfalls and structures including orifices, 

weirs and pumps. Finally, the model applies the selected routing model to simulate the 

hydrodynamics of the pipe flow (DHI, 2017a). These steps are shown in Fig. 3.1. 

 

Fig. 3.1 Information flow of in hydrological modeling (DHI, 2017a) 



     

22 

  

  

3.2 Runoff computations 

MIKE URBAN provides four different options for runoff computations. The selection of the 

appropriate runoff routing method is an essential step in modeling that may result in very different 

simulated runoffs (DHI, 2017b). Further, each method uses different sets of input data and model 

parameters, and applies different runoff computation concepts as well (Zoppou, 2001), making it 

critical to understand the assumptions and hence the limitations of the runoff model applied (Borah 

and Bera, 2004a). Some sets of the runoff model data are independent of the choice of the runoff 

model – for example, the basic catchment information such as size, geographical location and 

connection point to the drainage network (Overton and Meadows, 1976). In turn, each runoff 

method accounts for hydrological losses and ground surface properties differently, which requires 

different input parameters. Model-specific data requirements for each runoff method depend on 

the adopted runoff computations. For example, land-use types are accounted differently in each 

runoff technique, which necessitates specific input parameters (Butler and Davies, 2011). The 

available runoff methods in MIKE URBAN are the, 

 

▪ Time-area method, which can be viewed as an extension and improvement of the rational 

method (Chow et al., 1988). The outlet discharge is the summation of flow contribution from 

subdivisions of the catchment defined by time contours, or isochrones, which are lines of equal 

travel times to the outlet where the discharge is required (Butler and Davies, 2011). A time–area 

diagram is constructed by summing the areas between the isochrones that define the hydrological 

response of a catchment (Karamouz et al., 2010), as illustrated in Fig. 3.2. When combined with 

rainfall in depth increments of IN flow at any time, Q(t) is: 

 

𝑄(𝑡) = ∑
𝑑𝐴(𝑗)

𝑑𝑡

𝑁

𝑚=1

𝐼𝑚  (3.1) 

where dA(j)/dt is the slope of the time–area diagram at time j, and Im is the rainfall depth in the 

mth of N blocks of duration dt. Water first flows from areas close to the outlet and thus the 

percentage of total contributing area increases progressively with time (Bedient and Huber, 2013). 

This simple method applies assumptions that (1) all catchment storage is neglected in all sub-
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catchments by assuming that the outlet hydrograph results from pure translation of runoff through 

the watershed (Karamouz et al., 2010), (2) the runoff amount is only controlled by an assumed 

initial loss and size of the contributing area and by a continuous hydrological loss, and (3) the 

shape of the runoff hydrograph is only controlled by the time of concentration and by the time-

area curve (DHI, 2017b). These two parameters represent a conceptual description of the 

catchment reaction speed and the catchment shape (Butler and Davies, 2011). These assumptions 

and the method representation in MIKE URBAN preclude proper modeling for different surfaces 

within the same catchment – for example, differences in the imperviousness ratio – and impose a 

simplified conceptual description of only homogenous basins with constant properties, which is 

not the case for most urban areas.  

 

Fig. 3.2 Time-area method , modified from (Butler and Davies, 2011; DHI, 2017b) 

 

MIKE URBAN provides three pre-defined types of time-area curves, namely, rectangular, 

divergent and convergent catchment, see Fig. 3.2, along with user-specified curve option for 

irregularly shaped catchments. In order to account for directly connected impervious areas, this 

model applies a hydrological reduction factor to reduce runoff from impervious surfaces of a 

catchment (DHI, 2017b). 

 

▪ Unit hydrograph method (UH), which is defined as the direct runoff produced from a unit depth 

of rainfall excess falling uniformly over the basin (Butler and Davies, 2011). This approach 
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assumes that each basin has one UH that does not change in shape as long as the basin 

characteristics, e.g. drainage area, slope, etc., remain unchanged (Karamouz et al., 2010). Firstly, 

the UH should be derived in areas under consideration, then the concept of hydrograph convolution 

can be used to construct the catchment response to any rainfall event, as described by Butler and 

Davies (2011), 

 

𝑄(𝑡) = ∑ 𝑈𝑗

𝑁

𝑖=1

𝑃𝑖   (3.2) 

where Q(t) is the runoff hydrograph ordinate at time t, Uj is the unit hydrograph ordinate at time 

j, Pi is the rainfall excess in the ith of N blocks of a rainfall event, and j = t - (i-1). 

 

In MIKE URBAN, the UH module provides an alternative for areas where a unit hydrograph has 

already been established. As spatial variations of physical characteristics within the watershed are 

not represented – each catchment is considered as one unit and therefore the parameters represent 

average values for the catchment – it is classified as a lumped method (DHI, 2017b). Some inherent 

assumptions limit the applicability of the approach (Chow et al., 1988). Specifically, the UH (1) 

can only account for single storm events for any number of pre-defined catchments, (2) distributes 

excess rainfall uniformly spatially and temporally for all storms of equal duration, (3) produces 

hydrographs with equivalent time bases for rainfall excesses of equal duration, regardless of rain 

intensity, (4) holds the time distribution of direct runoff as independent of preceding precipitation, 

and (5) produces direct runoff values that are directly proportional to rainfall excess volumes for 

all hydrographs of a common base time (Bedient and Huber, 2013). 

 

▪ The linear reservoir, which represents overland flow processes as one or more reservoirs 

connected in series (DHI, 2017b), where outputs from one reservoir are considered as inputs to the 

next one, is based on the two equations of storage and continuity: 

 𝑄(𝑡) = 𝐶 y(t) (3.3) 

 ∂y 

∂t 
+

1 

A 
𝑄(𝑡) = 𝐼𝑒 (3.4) 

where y(t) is the runoff depth at time t, Ie is the effective precipitation depth, A is the contributing 

catchment surface area, and C is a linear reservoir constant that can be determined from an 
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empirical equation as a function of the imperviousness ratio and the slope, length and area of the 

catchment; or alternatively can be used as a calibration parameter (Artina et al., 2007). 

 

In this method, the reservoir is linear, by definition, as represented by the storage equation. This 

method enables surface runoff modeling with minimum data requirements (DHI, 2017a); however, 

the runoff routing is less detailed and depends only on one empirical constant that should be 

estimated via calibration (Butler and Davies, 2011). MIKE URBAN provides this method in two 

versions developed for two basins, one in France and one in the Netherlands. The representation 

of catchment-related properties purely as the routing of surface runoff with a single coefficient is 

unrealistic and may affect validation results. 

 

▪ Kinematic wave method for overland flow, which is a more physically-based approach that 

solves a simplified version of the Saint-Venant Equations (Stephenson and Meadows, 1986), with 

surface runoff based on gravitational and friction forces (Borah et al., 2009). Further, the different 

hydrological losses and size of the contributing area determine the runoff volume, while the runoff 

hydrograph is shaped by catchment-related parameters including length, slope and surface 

roughness coefficients (Miller, 1984). 

 

In MIKE URBAN, the kinematic wave runoff computations comprise two processes: runoff 

computations and runoff routing (DHI, 2017b). In the first step, the runoff computations, different 

hydrological losses are included in calculating the effective precipitation intensity, Ie, i.e., the net 

rainfall depth that contributes to surface runoff. In this process, the total precipitation intensity (IP) 

is assumed to be uniformly distributed over each catchment. Then, portions of storm events are 

lost to wet the ground surface (IWL), fill depressions (ISL), and infiltrate soil (IIL) – see Fig. 3.3. 

MIKE URBAN provides reference values to be used for assuming these losses on different 

surfaces, which is not the case in other software packages such as the Wallingford model that apply 

empirical equations to determine these losses (Mansell and Rollet, 2008). It is then through 

evaporation that depression storage is recovered and water in detention ponds is reduced (Gironas 

et al., 2009). In the water balances of urban areas, evaporation is typically neglected, since attention 

is usually paid to the runoff from short-duration or single rainfall events, which are insensitive to 

evaporation losses (Mansell and Rollet, 2008). Also, infiltration is assumed to start when the 

wetting loss of any surface is completed. The kinematic wave method applies the well-known 
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Horton infiltration model. In summary, hydrological simulation accounts for all those losses 

according to this equation:  

 𝐼𝑒(𝑡) = 𝐼𝑃(𝑡) − 𝐼𝐸𝐿(𝑡) −  𝐼𝑊𝐿(𝑡) −  𝐼𝐼𝐿(𝑡) − 𝐼𝑆𝐿(𝑡) (3.5) 

where 𝐼𝑒 is the effective precipitation intensity at time t, Ip(t) is the total precipitation intensity, 

IEL(t) is the Evaporation loss, IWL(t) is the wetting loss, IIL(t) is the infiltration loss, ISL(t) is the 

surface storage loss (DHI, 2017b).  

 

Fig. 3.3 The simulated processes in kinematic wave model, based on (DHI, 2017b) 

The kinematic wave model can distinguish up to five different surface types so that the individual 

catchment area can be divided into up to five sub-catchments, with percentages of each area 

specified by the modeler. The input dialogue box of the kinematic wave runoff routing method is 

shown in Fig. 3.4. For each surface type, only the relevant loss types are applied. For example, 

infiltration losses are associated with pervious sub-catchments exclusively, while wetting losses 

are considered for all surfaces. At the end, the excess rainfall from a catchment is obtained as a 

sum of the fractional contribution of each sub-catchment. 



     

27 

  

  

 

Fig. 3.4 The kinematic wave parameters editor in MIKE URBAN 

 

In order to calculate surface runoff discharges, the one-dimensional Saint-Venant Equations are 

commonly used to model surface runoff and transient channel flow in many models, including 

HEC-RAS, SWMM5, MIKE 11, InfoWorks, MOUSE and MIKE SHE (Wong, 2009; Zoppou, 

2001). It is a simplification of the shallow water equations that neglects the spatial and temporal 

variations in lateral and transverse directions, such that flow in a river or channel system can be 

represented as a unidimensional process along the longitudinal direction (Miller, 1984). Common 

applications of the 1-D Saint-Venant Equations include dam break analyses, storm pulses in an 

open channel, as well as storm runoff in overland flow (Kowalska et al., 2013). Based on the 

Navier-Stokes equations, a clear derivation of these equations is available in Henderson (1966). 

The full one-dimensional theoretical treatment leads to a pair of equations – the continuity and 

dynamic equations – that are usually referred to as the Saint-Venant Equations (Borah and Bera, 

2003). The continuity equation is, 

 ∂Q 

∂x 
+

∂A 

∂t 
= 0 (3.6) 
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and the dynamic equation is either in terms of velocity, 

 
1 

g 

∂v 

∂t 
+

𝜕𝑦

𝜕𝑥
+

v 

g 

∂v 

∂x 
+ 𝑆𝑓 = 𝑆𝑂 (3.7) 

or in terms of discharge, 
∂Q 

∂t 
+

𝜕

𝜕𝑥
(𝛼

𝑄2 

A 
) + 𝑔𝐴

∂y 

∂x 
− 𝑔𝐴 (𝑆𝑂 − 𝑆𝑓) = 0 (3.8) 

Where x is the longitudinal distance, Q is the flow rate, A is the area of the flow cross-section, t is 

time, y is the flow depth, v is the velocity, 𝛼 is the velocity distribution coefficient, So is the average 

overland slope, and Sf is the friction slope. The Saint-Venant Equations are based on the following 

assumptions (Liggett, 1994; Overton and Meadows, 1976; Zoppou, 1999): (1) water is 

incompressible and homogeneous, i.e. there is negligible variation in density, and the vertical 

pressure distribution is hydrostatic; (2) the sewer bed slope is small so that flow depth measured 

vertically is almost the same as that normal to the bed and so that the cosine of its angle may be 

replaced by unity; (3) wave lengths are large compared to water depth; (4) lateral flow is negligible, 

and for a channel cross-section, the velocity distribution is uniform and the water level is 

horizontal; (5) the boundary friction and turbulence losses estimated by steady flow equations are 

valid in unsteady flow; and (6) the flow is primarily sub-critical. 

In addition, there are three different levels of flow description simplifications (dynamic, diffusion 

and kinematic), that are further discussed in Section 3.3 on pipe hydraulics. For surface runoff 

computations, the kinematic wave simplification is commonly applied. This is the greatest 

simplification, and assumes that the relation between Q and y can be described as steady uniform 

flow, which reduces Eq. 3.8 to, 

 𝑆𝑜 = 𝑆𝑓 (3.9) 

Then, following an approach first proposed by Henderson and Wooding (1964) and Wooding 

(1965), hydraulic routing is applied to compute the overland flow based on the continuity equation 

and the kinematic wave formula with Manning’s equation. The continuity and momentum 

equations for overland kinematic waves can be reduced to the following two equations (Zoppou, 

2001). First, the continuity equation for a unit width is,  
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 ∂q 

∂x 
+

∂y 

∂t 
= 𝐼𝑒 (3.10) 

and with
 
Eq. 3.9, a simplified form of Eq. 3.8 is, 

 q = 𝑎 𝑦𝑚 (3.11) 

In these equations, y is the depth of overland flow, t is the time, x is the longitudinal distance, q is 

the overland flow per unit width, and a and m are the conveyance factor and a constant, 

respectively, both depending on the applied resistance equation. If Manning’s equation is used,      

m = 5/3 and a = So
0.5/n , where n is the Manning roughness coefficient (Wong, 2009). Together, 

Eq. 3.10 and 3.11 form the kinematic wave equation for overland flow. Substituting for q in          

Eq. 3.10, q and y at any (x, t) can be obtained as,  

 ∂y 

∂t 
+ 𝑎 𝑚 𝑦𝑚−1

∂y 

∂x 
= 𝐼𝑒 (3.12) 

Eq. 3.12 has only one dependent variable in terms of x, t and Ie. Once solved, the discharge can 

be obtained from the momentum equation (Henderson, 1966). A schematic of the computations 

is shown in Fig. 3.3. 

The Kinematic Wave module uses a relatively large number of parameters and allows for full 

spatial variation by applying local values of these parameters for individual catchments. However, 

for practical applications, MIKE URBAN applies a default set of parameters that enables running 

the entire model with a small amount of available data, as depicted in Fig. 3.4. It is then up to the 

modeler to define sufficient parameters, as needed, to represent the spatial variability adequately. 

 

The kinematic wave module was chosen for the current study to ensure maximum accuracy. In 

order to assess the individual effect of each term in the dynamic equation, Eq. 3.7, sample values 

from previous studies are listed in Table 3.1 from which conclusions can be drawn about the 

relative weights of each term in the equation. Note that lower bed slope reduced the significance 

of the neglected terms by the kinematic wave, which favors its use in modeling drainage networks 

where most slopes are relatively low.  
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Table 3.1 Relative weight of the dynamic equation terms 

Dynamic equation terms SO ∂y/∂x v/g . ∂v / ∂x 1/g . ∂v / ∂t 

Stephenson and Meadows (1986) 76.9% 7.7% 7.7% 7.7% 

Henderson (1966), alluvial river flow 98.9% 0.2% 0.7% 0.2% 

Miller (1984), gutter flow 90.3% 4.8% 2.4% 2.4% 

Miller (1984), overland flow 91.5% 7.1% 0.7% 0.7% 

 

3.3 Pipe flow computations 

After calculating the surface runoff, the hydrodynamic calculations follow in order to route 

stormwater flows through the sewer system. The pipe flow computations in MIKE URBAN also 

apply the 1-D Saint-Venant Equations; however, additionally, all the three different levels of flow 

description approximations are available in the MIKE URBAN Pipe Flow Module, as follows: 

 

▪ Kinematic wave, which assumes a balance between friction and gravity forces. The approach 

is valid when the changes in wave height over distance and velocity over distance and time are 

negligible; for instance, in shallow flows in steep pipes (Wong, 2009). In addition, the kinematic 

wave is independent of the downstream conditions, meaning that waves only propagate 

downstream and so the approach cannot simulate backwater effects (Novak et al., 2010). 

 

▪ Diffusive wave, which includes the pressure, friction, and gravity terms in Eq. 3.8, but neglects 

the inertia terms, leading to the following simplified form: 

 ∂y 

∂x 
+ 𝑆𝑓 = 𝑆𝑜 (3.13) 

The approach accounts for downstream boundary conditions and thus enables simulation of 

backwater profiles. With the assumption of negligible inertial acceleration, this approach is 

appropriate for slowly propagating waves where bed and wall resistance dominate (Borah and 

Bera, 2003). 

▪ Dynamic wave, which is valid for all channel flow scenarios, as it uses the full one-dimensional 

Saint-Venant Equations including acceleration forces, which allows simulation of fast transients 

and backwater effects (Novak et al., 2010). The dynamic flow description should be used when 
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both inertial and pressure forces are important and backwater effects are not negligible (Miller, 

1984). For instance, in cases with mild slope channels with downstream control. A Simple 

comparison of the three approximations is shown in Table 3.2. 

Depending on the problem under consideration, the most appropriate and efficient description 

should be selected. In general, the dynamic wave is recommended in all cases except when either 

the diffusive or kinematic waves provides higher computational efficiency, in terms of 

computation time and/or when the ignored terms have an insignificant effect on model predictions 

(DHI, 2017b). In the current study, the dynamic wave description was adopted in all pipe flow 

simulations for two reasons: 1) the focus here was on single storm events, so that computational 

time was not a critical condition, and 2) some pipes have downstream control such as control 

structures or external water levels, which may cause backwater effects. In addition, the dynamic 

wave should be used when the change in inertia of the water body over time and space is important, 

which is the case with rapid changes in flows and water depths in the sewer system due to storm 

events with varying duration and intensity. 

 

Table 3.2 Different simplifications of wave equations (Butler and Davies, 2011) 

Accounts for Kinematic wave Diffusion wave Dynamic wave 

Wave translation ✓ ✓ ✓ 

Backwater X ✓ ✓ 

Wave attenuation X ✓ ✓ 

Flow acceleration X X ✓ 

 

3.4 Water quality computations 

MIKE URBAN provides several modules for simulating water quality in stormwater systems         

for both catchment surfaces and pipe systems. These modules are called Surface Runoff Quality, 

Pipe Sediment Transport, Biological Processes, and Pipe Advection-Dispersion. Using these 

modules, many water quality problems can be simulated within MIKE-URBAN such as                

build-up and wash-off of sediment particles, transport of pollutants attached to sediment particles, 

transport of dissolved substances and suspended fine sediments in pipe flow, sediment erosion, 
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biofilms, water age, decay of BOD/COD in biofilm and water phases, re-aeration and bacterial 

fate (DHI, 2017a).  

The main focus here is the Pipe Advection-Dispersion (AD) module that simulates the transport 

and dissipation of dissolved materials in the stormwater pipe-flow system (DHI, 2017c). This 

module can simulate conservative substances as well as non-conservative substances subject to a 

linear decay. A Pipe Advection-Dispersion simulation must be preceded by a hydrodynamic model 

simulation in order to provide the pipe flow discharges, water levels and cross-sectional flow areas 

that are used in the AD computations.  

The transport of dissolved substances is typically described by the advection-dispersion equations 

(DHI, 2017c). The one-dimensional advection-dispersion equation used in MIKE-URBAN 

accounts for both advective and dispersive transport (DHI, 2017d), and is given as, 

 
𝜕(𝐴𝐶)

𝜕𝑡
+

𝜕(𝑄𝐶)

𝜕𝑥
−

𝜕

𝜕𝑥
(𝐴𝐷

𝜕𝐶

𝜕𝑥
) = −𝐴 𝐾 𝐶 + 𝐶𝑆 𝑞 (3.14) 

where C is the concentration, A is the flow cross-sectional area, K is the linear decay coefficient, 

CS the source/sink concentration, q is the lateral inflow, x is distance, t is time, and D is the 

dispersion coefficient, which is calculated as a function of the mean flow velocity as, 

 D = a ub (3.15) 

where u is the mean flow velocity, a is the dispersion factor, and b is a dimensionless exponent. 

Both a and b are user-specified constants.  

The main assumptions of this module are (1) complete mixing over cross-sections, (2) transport of  

conservative substances or substances subject to first-order decay, and (3) proportionality of 

dispersive transport to concentration gradients of dissolved matter (Zoppou, 2001). Although 

dispersion includes several phenomena such as molecular diffusion, turbulent diffusion and the 

effect of a non-uniform velocity distribution over the cross-section, the first two processes are less 

significant than the third (DHI, 2017c). 
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The two main inputs to the AD module are a concentration time series at the system boundaries 

and data for defining the modeled substance, such as initial concentrations, dispersion coefficients 

and decay rates that allow non-conservative compounds to decay according to a first-order 

expression, as discussed earlier. The output of a water quality simulation is a set of longitudinal 

concentration profiles and pollutographs at points of interest, typically control structures or storm 

sewer outfalls. 

 

3.5 The modeling process in MIKE URBAN 

3.5.1 Selection of study locations 

A field sampling program was designed to collect stormwater samples from four locations with 

different land-use types to understand chloramine dissipation better, and for model validation later. 

Thus, four Edmonton neighborhoods were selected to represent four major land-use types: (1) 

residential, as a reference for comparison with other land-uses; (2) parks and recreation, for their 

extensive green areas and correspondingly more-uniform irrigation and fertilizer use than 

residential areas; (3) commercial, with a focus on areas with a high density of automobile 

dealerships and rental businesses; and (4) industrial, with a focus on areas with pressure vessel 

fabricators. Each neighbourhood lies within one of two stormwater catchments, Kennedale in north 

Edmonton and 30th Avenue in south Edmonton, which were selected in consultation with City of 

Edmonton Drainage Services personnel because of their relatively long monitoring records and 

existing preliminary MIKE URBAN drainage models. The 30th Avenue stormwater basin is the 

main focus of this study to study chloramine decay; however, the Kennedale basin was used 

because a potential park could not be found in the 30th Avenue basin. The Kennedale and 30th 

Avenue catchment maps are shown in Fig. 3.5. 
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(a)  Selected stormwater basins locations within 

the City of Edmonton boundaries 

 

 

 

(b) Kennedale 

 
(c) 30th Avenue 

 

Fig. 3.5 Selected stormwater basins maps, labels for selected neighborhoods 

(R) residential, (P) parks, (I) industrial and (C) commercial 

 

Within these two catchments, the four neighborhoods were then selected according to the 

following criteria and process of elimination. Stormwater drainage system characteristics of 

potential neighborhoods played a key role, particularly the location of the neighborhood within the 

pipe network, the presence of stormwater ponds upstream, availability of access points for water 

sampling, and existence of monitoring data for water quality and flow. Two of the criteria – the 

location of the neighborhood within the pipe network and availability of access points for sampling 

– produced conflicting requirements: 1) sampling near the sewer network’s upstream-end would 

ensure that stormwater flows originated in the catchment under consideration, while sampling 

farther downstream would make it difficult to attribute pollutants to probable sources, but 2) 

sampling too near the upstream-end of the network might not provide sufficient sample volumes. 

In addition, for the observation of total active chlorine (TAC) dissipation, as described in Section 

I 

R 

C 

P 

30th Avenue basin 

Kennedale basin 

Edmonton 
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2.3, the presence of long, uninterrupted sections of pipe was important, since the absence 

of additional inflows at pipe junctions would permit attribution of changes in water quality to 

chemical and biological interactions within the pipe section, and give more time for such 

interactions to occur. Potential locations with mixed land- uses within or upstream of the 

neighborhood were excluded. Finally, several potential neighborhoods were eliminated because of 

logistical hurdles, such as traffic conditions, poor accessibility and sampling difficulty (e.g. 

manhole location and sewer depth). 

Additional criteria were applied for specific land-use types, based on Marsalek (1991) and Zhang 

et al. (2018c). In selecting the residential location, low-density neighborhoods with relatively 

higher property values were favored because of their larger lawn and garden areas (cf. the 

Albuquerque, New Mexico, study conducted by Al-Kofahi et al., 2012), and were identified from 

CoE data and aerial photos, as shown in Fig. 3.6(a). Then, the property assessed-values were 

categorized into three sets based on the assessed value of each property: low <$300k), medium 

($300k-$600k), and high (>$600k), as shown in Fig. 3.6(b). Application of the above criteria 

resulted in selection of the high property-value Blue Quill Estates neighborhood, shown in Fig. 

3.7(a). 

 

Low density  Value <$300k  $300k< Value <$600k    Value >$600k Selected location 

(a) Low-density residency (b) Property assessed value 

Fig. 3.6 Selection of the residential study location 

 

The M. E. Lazerte Park in the Kennedale catchment was selected among the irrigated parks of the 

two catchments, based on data availability for determining irrigation volumes, type of water used 

for irrigation (potable), and park location within the neighborhood and sewer pipe network, along 

with the aforementioned criteria. Its location is shown in Fig. 3.7(b). Note that this was the only 
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study location outside the 30th Avenue catchment, in the Kennedale stormwater catchment instead, 

since no suitable park within the 30th Avenue catchment was available.  

For the commercial site, a cluster of approximately two dozen automobile-related service providers 

such as car rental agencies, car washers and dealerships was selected. The location selected – at 

93rd Street near 34th Avenue – had the largest number of automotive services businesses and met 

the pipe network based criteria described above, see Fig. 3.7(c). 

Last, for the industrial location, the pressure vessel industry is potentially a large point-source 

contributor of chloramine pollution. Pressure-vessel fabricators rely on large volumes of potable 

water for testing vessel integrity; this testing water is occasionally discharged to storm sewers 

rather than the sanitary system. Many pressure-vessel manufacturers were near the intersection of 

97th Street and 45th Avenue in the 30th Avenue basin, as presented in Fig. 3.7(d). The selected 

locations along with their associated stormwater networks are shown in Fig. 3.7, and the average 

stormwater network properties are listed in Table 4.1.  

 
(a) Blue Quill Estates, residential (b) M. E. Lazerte, park 
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(c) Parsons Industrial, commercial (d) Papaschase, industrial 

 

Fig. 3.7 Aerial maps and storm sewer network for study sites 

(red arrows represent flow directions) 

 

 

3.5.2 Data collection 

The City of Edmonton provided a variety of data sets that were used both to establish study site 

selection criteria and to select the sites themselves. The data included (1) GIS data, including aerial 

images, land-use maps, property assessment maps and digital elevation models (DEM) with spatial 

resolution of 1.5 m, and resolution of topography of 0.1 m; (2) attributes and layouts of the 

stormwater network components from the DRAINS database; (3) MIKE URBAN sewer system 

models built to the trunk level (which means that only the main drainage features – lines with 

diameters approximately larger than 800 mm – were included); and (4) data about the city’s 

parklands, i.e. area, irrigation status and type of watering source. Online sources including Google 

Table 3.3 Average stormwater network properties of the study locations 

Study site Residential  Commercial  Industrial  Park  

Material Concrete Concrete Concrete Concrete 

Diameter (mm) 610 1050 750 375 

Slope (%) 0.99 2.03 0.48 0.84 

Length (m) 45 95 110 70 

Drainage area, ha 34 104 148 27 

Imperviousness 62% 90 65 51 

BMP No No No No 
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maps and telephone listings were used to find locations of pressure vessel manufacturers and 

commercial car dealerships in the two basins. Some of these data sets are shown in Fig. 3.8. 

Field sampling was conducted every 2-3 weeks during the summers of 2015 and 2016 under both 

dry and wet weather conditions. Stormwater measurements included TAC concentrations, 

temperature, pH, conductivity, and dissolved oxygen (DO). The eight sampling locations are 

shown in Fig. 3.7. Also, microbial biofilm concentrations were measured for each land-use type at 

the following locations: BioR, BioP, BioC, and BioI in the sewer system, see Fig. 3.7. Then, 

laboratory analyses were conducted to estimate different physical, biological and chemical 

characteristics including DOC, COD, TSS, alkalinity, turbidity and biofilm genomic DNA. Most 

of these data sets were used to study chloramine decay mechanisms and determine decay 

coefficients of different land-use types. For more details on data acquired from stormwater samples 

and laboratory experiments, and their application, see Zhang et al. (2018c, 2018b).  

In addition, the following data sets were collected for the case study locations: (1) temporary pipe 

flow monitoring values for the summer seasons of 2015 and 2016 at three locations, one for each 

of the commercial, industrial and parks land-uses, see  Fig. 3.8 and 3.9; (2) long-term pipe flow 

records from other permanent metering stations; and finally (3) long-term rain gauge data for the 

two stormwater basins, as shown in Fig. 3.8.  
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               Manhole                    Sewer pipe  Rain gauge network 

(a) Stormwater network  (b) Rain gauge distribution 

  

645m  720m  Res.   Com.   Park   Ind. 

(c) DEM  (d) Main land-use types 

  

(e) Flow monitoring stations  (f) Sampling locations 

Fig. 3.8 Collected data for the 30th Avenue stormwater basin 

  

Stn(1) 

Stn(2) 

Stn(3) 
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Fig. 3.9 Sample pipe flow data collected at a monotoring station, Stn(2) 
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3.5.3 Preliminary MIKE URBAN models 

The City of Edmonton had built MIKE URBAN stormwater models for the 30th Avenue and 

Kennedale catchments to the trunk level. This level of detail was intended for the study of urban 

floods, but was not sufficient for water quality in sewers. Therefore, stormwater basin and sub-

catchment delineations was conducted by standard geospatial analytical tools and GRASS GIS 

(GRASS, 2016), with data obtained from local administrators, using digital elevation model 

(DEM), land-use data records and stormwater network characteristics. Hence, the first goal was to 

improve the models by including all the real stormwater network components for the study 

locations.  

Second, the catchment drainage models were uncalibrated, and so model inputs were based on 

assumptions that needed further investigation in some cases. Some parameters were set to a 

constant value for the entire model, such as catchment slopes. Thus, the model computed pipe 

flows that were significantly higher than the observed values, as shown in Fig. 3.10, with peak 

values about 2.5 times higher than the monitored values.  

As model input, rainfall data collected by the City from a large group of rain gauges in and around 

the two stormwater basins were available, from approximately mid-June to mid-October, for most 

of the rain gauges. Fig. 3.8(b) shows the rain gauges for the 30th Avenue basin. Moreover, flow-

metering records of flow depth, velocity and discharge were collected at three stations (COM2, 

IND2, and PRK2), see Fig. 3.7, for 2015 and 2016 from mid-May to the end of October. 

 
        Simulated                     Observed 

Fig. 3.10 Example of comparison between observed and simulated pipe flows 
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Improving the match between simulated and observed flows required, (1) selecting appropriate 

statistical measures to assess the model performance and improvements through model calibration, 

(2) analyzing the model sensitivity to specific parameter variations, (3) fine-tuning identified 

parameters, and (4) calibrating and validating the model results, as elaborated in the next sections. 

 

3.6 Selecting the model efficiency assessment measures 

Models are intended to reflect physical processes (McCuen et al., 2006). However, in order to trust 

model outputs, the model should be scientifically robust and defensible, and the criteria by which 

model performance is assessed should be discussed before starting model evaluation (US EPA, 

2002). Models used for simulating hydrological processes typically require calibration prior to 

application, in which having reliable goodness-of-fit criteria, or efficiency assessment measures, 

is essential for the modeling process (Ritter and Munoz-Carpena, 2013). In theory, efficiency 

measures provide a mathematical evaluation of model’s prediction accuracy compared to 

independently obtained observations (Ye et al., 1998). Although the coefficient of determination, 

R2, is well defined and therefore its statistical significance is easily assessed (Legates and McCabe, 

1999), it provides a biased view of the model performance (Kessler and Neas, 1994) and is 

oversensitive to extreme values (Willmott, 1981). 

For a first assessment of the model performance, graphical techniques are essential (Moriasi et al., 

2007). Indeed, it is recommended to evaluate models using graphical techniques along with other 

quantitative statistics (ASCE 1993; Legates & McCabe 1999; Moriasi et al. 2007). Firstly, visual 

inspection for hydrographs of predicted and observed flows throughout the modelled periods helps 

to identify model bias to over- or under-prediction (ASCE, 1993), as well as differences in timing, 

base and peak flows, rising and falling limbs, and runoff volumes  (Krause and Boyle, 2005). This 

method can make it easier to identify potential outliers or to examine the homogeneity of model 

performance throughout the prediction period (Ritter and Munoz-Carpena, 2013). In addition, 

scatter plots are an important tool that may reveal definite conclusions about model performance 

(Jain and Sudheer, 2008). For example, in a scatter plot of observations against predictions, the 

degree to which the slope of the best-fit regression line is close to one and y-intercept is close to 

zero indicates how good the predictions are (Ritter and Munoz-Carpena, 2013). 
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Then, quantitative measures are applied to statistically evaluate model predictions. These can be 

divided into three main groups: (1) absolute criteria such as the widely used root mean square error 

(RMSE) and mean absolute error (MAE), (2) normalized criteria such as the index of agreement 

(IA) and percent bias (PBIAS), and (3) indicators modified for particular cases such as logarithmic 

and relative measures. Definitions and examples of these indices, including discussions on the 

limitations and suitability of each index, can be found in ASCE (1993), Legates and McCabe  

(1999), Krause and Boyle (2005), Moriasi et al. (2007), Reusser et al. (2009), Pushpalatha et al. 

(2012), Jain and Sudheer (2008), Ritter and Munoz-Carpena (2013), and Zambrano-Bigiarini  

(2015). 

The choice of appropriate efficiency measures is critical as each measure allows different 

interpretations of the model predictions. These interpretations guide the calibration to emphasize 

different aspects of model output and thus dramatically affect the model predictions (Ye et al., 

1998). Efficiency measure selection can be a challenge even for experienced hydrologists (Krause 

and Boyle, 2005), since each measure emphasizes different factors, including sample size, outliers 

and magnitude bias (McCuen et al., 2006). As emphasized by many authors, the hydrological 

community has struggled to identify the most appropriate statistical measures even in the relatively 

simple terms of the best measure of goodness-of-fit. The problem is magnified by a lack of 

agreement on the most suitable measure in each case for evaluating model accuracy (Gupta et al., 

2009).  

There is no best statistical efficiency criterion for hydrological models (Wȩglarczyk, 1998), and 

hence, studies have recommended and demonstrated the advantages of using multiple efficiency 

measures over a single one (Krause and Boyle, 2005; Pushpalatha et al., 2012; Yapo et al., 1998). 

The modeler should take into account the interdependency among measures (Wȩglarczyk, 1998), 

and suitability for the model’s intended use (Janssen and Heuberger, 1995). Generally, at least one 

absolute measure and one normalized or relative measure should be selected to quantify the 

model’s goodness-of-fit (Legates and McCabe, 1999; Pushpalatha et al., 2012). Therefore, in the 

current study, graphical techniques will be applied and the coefficient of determination (R2) and 

bR2 will be reported, but the calibration and validation will be driven by the following three 

efficiency measures:  
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▪ The Nash-Sutcliffe efficiency (NSE). Since it was first introduced by Nash and Sutcliffe (1970), 

the NSE has been widely used in hydrological modeling (Garrick et al., 1978; McCuen et al., 2006; 

Ritter and Munoz-Carpena, 2013; Wong and Koh, 2008) and received the most attention, 

modification and discussion (Gupta et al., 2009; Jain and Sudheer, 2008; Krause and Boyle, 2005; 

Legates and McCabe, 1999; McCuen et al., 2006; Moriasi et al., 2007; Oudin et al., 2006; 

Pushpalatha et al., 2012; Ye et al., 1998) of all efficiency measures. The NSE has three main 

advantages: (1) it was recommended by ASCE (1993); (2) its wide use provides an extensive 

record of reported values (Moriasi et al., 2007); and (3) it is flexible enough to be applied to a 

variety of model types (McCuen et al., 2006). The NSE is given by, 

 
𝑁𝑆𝐸 = 1 −  

∑ (𝑂𝑖 −  𝑃𝑖)2𝑁
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

 (3.16) 

where Oi is the ith observed value, 𝑃𝑖 is the ith predicted value, �̅� is the mean of the observed values, 

and N is the total number of observations. The NSE ranges between −∞ and 1.0, where 1.0 

indicates a perfect fit, and values < 0.0 mean that �̅� is a better predictor than the model and hence 

a poor agreement (Wilcox et al., 1990). Statistically speaking, R2=0.8 and NSE=0.8 have different 

meanings, where the R2 value shows that the model can predict 80% of the variance in the observed 

data, while the NSE indicates that the model mean squared error represents 20% of the observed 

variance (Ritter and Munoz-Carpena, 2013). There is currently no widely-accepted interpretation 

for NSE values between 0.0 and 1.0 (Ritter and Munoz-Carpena, 2013), since interpretation of 

different levels of performance depends on model type and purpose (Moriasi et al., 2007). A review 

of values from the literature can be found in Table 3.4. 

▪ The root mean square error (RMSE). This well-established statistical index has been widely 

used in evaluating hydrological models, and is recommended to be reported for all models (Legates 

and McCabe, 1999). The RMSE is defined as, 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑂𝑖 −  𝑃𝑖)2

𝑁

𝑖=1

    (3.17) 
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It ranges between 0.0 and ∞, where 0.0 indicates a perfect fit. Also, due its absolute nature, it 

shows the actual size of model-produced errors in units of the constituent of interest (Willmott, 

1981). Ritter and Munoz-Carpena (2013) provides criteria to which RMSE can be compared and 

on the basis of which it can be interpreted, see Table 3.4. 

▪ Logarithmic NSE, ln(NSE). The NSE has been criticized over the years for emphasizing high 

flows and outliers over low flows (Pushpalatha et al., 2012). This occurs because the differences 

between the observed and predicted values are calculated as squared values (Legates and McCabe, 

1999). Calibrations depending only on NSE tend to fit higher and peak flows at the expense of 

lower flows (Krause and Boyle, 2005). Therefore, many researchers have argued that NSE is 

unsuitable for low flows (Ye et al., 1998), and have instead suggested modified versions, including 

the modified NSE (Legates and McCabe, 1999), the logarithmic NSE (Krause and Boyle, 2005), 

the relative NSE, and the squared root transformation (Oudin et al., 2006).  However, none of these 

measures have been sufficiently tested or used and reported values are lacking (Moriasi et al., 

2007; Pushpalatha et al., 2012). In this work, owing to the need to obtain accurate low flows, the 

ln(NSE) is used as it is more affected by low flows, and it shows nearly no correlation with NSE 

(Krause and Boyle, 2005). It is defined as, 

 
𝑙𝑛(𝑁𝑆𝐸) = 1 −  

∑ | 𝑙𝑛 𝑂𝑖 −  𝑙𝑛 𝑃𝑖|2𝑁
𝑖=1

∑ |𝑙𝑛 𝑂𝑖 −  𝑙𝑛 𝑂̅̅ ̅̅ ̅|
2𝑁

𝑖=1

 (3.18) 

with         𝑙𝑛 𝑂̅̅ ̅̅ ̅ =  
1

𝑁
∑  𝑙𝑛 𝑂𝑖

𝑁

𝑖=1

 (3.19) 

Table 3.4 Reported performance ratings and interpretations of NSE, RMSE and ln(NSE) 

Reference Criteria Model Value Performance 

Donigian et al. (1983)A NSE HSPF > 0.80 Satisfactory 

Ramanarayanan et al. (1997) A NSE APEX > 0.40 Satisfactory 

Gupta et al. (1999) A NSE SAC-SMA < 0.70 Poor 

Gupta et al. (1999) A NSE SAC-SMA > 0.80 Efficient 

Saleh et al. (2000) A NSE SWAT > 0.65 Very good 

Saleh et al. (2000) A NSE SWAT 0.54 to 0.65 Adequate 

Santhi et al. (2001) A NSE SWAT > 0.50 Satisfactory 
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Singh et al. (2004) A NSE SWAT and HSPF > 0.65 Satisfactory 

Porretta-Brandyk et al. (2011) NSE WetSpa 0.65 to 0.85 Very good 

Porretta-Brandyk et al. (2011) NSE WetSpa 0.50 to 0.65 Good 

Shamseldin (1997) NSE SLM and LPM 0.80 to 0.90 Satisfactory 

Shamseldin (1997) NSE SLM and LPM < 0.80 Unsatisfactory 

Ritter and Munoz-Carpena (2013) RMSE 
Compared to the 

standard deviation 

(SD) 

< 0.32 SD Very good 

Ritter and Munoz-Carpena (2013) RMSE 0.32 SD to 0.46 SD Good 

Ritter and Munoz-Carpena (2013) RMSE 0.46 SD to 0.59 SD Acceptable 

Ritter and Munoz-Carpena (2013) RMSE > 0.59 SD Unsatisfactory 

Porretta-Brandyk et al. (2011) ln(NSE) WetSpa 0.65 to 0.85 Very good 

Porretta-Brandyk et al. (2011) ln(NSE) WetSpa 0.50 to 0.65 Good 

A As provided by Moriasi et al. (2007) 

 

3.7 Sensitivity analysis 

Calibration efficiency improves when modelers concentrate on the parameters to which model 

outputs are most sensitive (US EPA, 2002). Therefore, calibration usually begins by evaluating 

the sensitivity of outputs to changes in model inputs or initial boundary conditions, and 

determining the accuracy needed in estimating model parameters, through an approach called 

sensitivity analysis (Zoppou, 2001). Sensitivity analysis is defined as the process applied to 

determine the relative change in model output corresponding to changes in model inputs or initial 

boundary conditions, and the accuracy needed in estimating model parameters (Moriasi et al., 

2007).  

In a simple, commonly applied technique, a sensitivity analysis proceeds by keeping all parameters 

constant, and perturbing parameter values one at a time so that the related variation in the fit 

between observations and model predictions can be examined (James, 2005). If large changes are 

found, the model is sensitive to that parameter, while parameters to which model results are not 

sensitive may not need to be accurately estimated, or could possibly be ignored during calibration 

(Overton and Meadows, 1976). Consequently, parameters can be ranked by sensitivity gradient of 

each parameter around its mean or expected value (Loucks and van Beek, 2017). 

In this work, a sensitivity analysis identified critical parameters. The main categories investigated 

were imperviousness, catchment surface properties, infiltration indices, depression and initial 
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losses, and surface roughness, which are represented in MIKE URBAN by approximately 34 

global parameters. In each case, the parameter under investigation was altered by a certain 

percentage (e.g., ±10%) and the corresponding changes in model outputs, represented by the 

selected efficiency measures discussed earlier in Section 3.6, were reported. The results showed 

that model performance was very sensitive to surface roughness, imperviousness and depression 

storage, while changes in catchment length and infiltration parameters were relatively ineffective, 

as shown in Fig. 3.11. These findings matched the results of previous studies, such as Brabec et 

al. (2002), Goonetilleke et al. (2005), Lee et al. (2009), and Tsihrintzis and Hamid (1998). 

Therefore, the next step was to adjust the identified parameters during model calibration and 

validation. 

 

Catchment slope       Catchment length           Wetting  Impervious surf.  Perv. surf. 

(a) Catchment properties                                 (b) Storage/Wetting losses 

   

 

Impervious surfaces  Pervious surfaces         Steep surfaces    Flat surfaces 

(c) Manning coefficient (d) Imperviousness ratio 
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 Minimum capacity    Maximum capacity  Dry          Wet         

(e) Horton capacity (f) Horton’s exponent 

Fig. 3.11 Sensitivity analysis of the 30th Avenue stormwater model 

 

Table 3.5 Results of Sensitivity analysis of the MIKE URBAN model 

Perturbation % 

Percentage change in average RMSE 

-50 -25 0 25 50 

Catchment slope -2.62 -1.02 0 0.78 1.44 

Catchment length 4.46 2.01 0 -1.62 -2.80 

Wetting losses 0.05 0.00 0 0.00 0.00 

Depression storage (Impervious) 0.97 0.44 0 -0.17 -0.34 

Depression storage (Pervious) 2.06 1.07 0 -1.10 -2.25 

Manning number (Impervious all)* -3.56 -1.32 0 0.99 1.69 

Manning number (Pervious) -2.55 -1.04 0 0.76 1.33 

Horton's max capacity 0.16 0.07 0 -0.04 -0.16 

Horton's min capacity* 23.72 10.58 0 -7.40 -11.27 

Imperviousness ratio (Impervious flat)* -20.49 -10.23 0 10.25 20.48 

Imperviousness ratio (Impervious steep)* -13.01 -6.27 0 6.46 12.98 

(*) Indicating relatively sensitive model variables 

 

3.8 Model validation 

The process of adjusting parameters in a model to cause its predictions to represent measured 

variables accurately is called calibration (James, 2005). Variables used for model calibration may 

be flow rates, depths or velocities. Since any model inherently incorporates simplifications to a 
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physical system, calibration is necessary for all hydrological models (Butler and Davies, 2011). 

Further, because simplifications entail errors in model predictions (Savic et al., 2009), adjustments 

of model parameters are necessary to reduce them and improve the goodness-of-fit between model 

predictions and physical observations (Gironas et al., 2009). With increasing improvements in 

software and hardware capabilities, the selection of appropriate values of the model parameters 

should be given more care so as to simulate rainfall-runoff models accurately (Loucks and van 

Beek, 2017). 

  

3.8.1 Improving estimations of GIS-dependent parameters 

GIS applications can improve the estimates of some model parameters. Here, the most sensitive 

parameters, as determined from the sensitivity analysis, include the percentage of impervious 

surfaces and catchment slopes. 

Impervious surfaces include roadways, parking lots, driveways, sidewalks and roofs. The  

imperviousness ratio plays a key role in model performance in terms of runoff volumes and 

hydrograph shapes (Zoppou, 1999). Lee and Heaney (2003) found that when a directly connected 

impervious area represented 44% of the total catchment area, it contributed to 72% of the total 

surface runoff, since it transmits 100% of its runoff. Aerial images and land-use maps were used 

to prepare specific GIS-layers to identify the imperviousness ratio of each catchment. As an 

example, an aerial image of the commercial location is shown in Fig. 3.12 with superimposed 

layers representing different types of impervious surfaces. Roofs were also recognized as flat or 

inclined. These layers were then used to identify the imperviousness ratio of each catchment –  see 

Fig. 3.13 – in which the upper chart shows the default surface percentages used in the CoE’s model 

based on city zoning, while the lower charts display the GIS-based percentages of the seven sub-

catchments contributing to runoff at this location. These values were used to improve the model’s 

hydrological estimations.  
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Fig. 3.12 Special GIS layers to improve imperviousness estimations 

 

 

Fig. 3.13 Change in surface percentages among commercial sub-catchments 

 

Further, the digital elevation map provided by the CoE in ArcGIS format permitted the calculation 

of actual slopes for each catchment. The outcome of this step, shown in Fig. 3.14, was used to 

improve the model’s parameter values. 



     

51 

  

  

 

Fig. 3.14 Catchments slopes of the 30th Avenue stormwater basin 

 

3.8.2 Calibration and validation results 

The application of the kinematic wave runoff module requires a basic group of 34 parameters, 

neglecting spatial variability. The model was calibrated by adjusting the 34 parameters including 

the wetting losses, depression storage losses, maximum and minimum infiltration capacity, 

roughness coefficients and Horton’s exponents for different type of ground surfaces. Appendix B 

shows the kinematic wave module global parameters after model calibration. In addition, model 

calibration also included introducing of GIS-estimated parameters to the MIKE URBAN 

stormwater model, such as catchment slope, length and percent imperviousness. Although these 

parameters are computed, it is common practice to adjust the computed values iteratively to 

enhance model performance (DHI, 2017b). For example, catchment length and slope are inherently 

approximations, even where they are measured. Moreover, GIS-based imperviousness values 

require reduction, because some fraction of these areas is not directly connected to the system, and 

thus their related runoff remains as surface or subsurface storage and does not contribute to 

hydrological loads (Lee and Heaney, 2003). Other calibration parameters that cannot be directly 

measured are usually adjusted to represent measured data. However, estimating these parameters 

individually for each catchment presents a challenge, and so global values are used as much as 

possible (DHI, 2017a). Finally, unmeasured parameters that are included in the model but do not 
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contribute significantly to calibration, as determined through the sensitivity analysis, were kept 

constant (wetting losses, for example).  

Flows are the primary parameter used for calibration. The goal of calibration depends on the 

specific use of the model (Elliott and Trowsdale, 2007); in this case, this model must represent 

discharges, flow volumes and hydrograph shape accurately. In the present study, the calibration 

goals were adapted from a similar study , Carr et al. (2010), defined by a discharge correlation 

coefficient (R2 ≥ 0.80), a maximum volume difference (±15%), a total volume error (±10%), and 

a peak volume error (±10%). Additionally, the monitoring conducted by the CoE provided rainfall, 

flow, depth and velocity measurements at 5-min intervals. 

The basis of the calibration was a data set from the CoE, which conducted monitoring of rainfall, 

flow, depth and velocity measurements at 5-min intervals over the summers of 2015 and 2016. 

Therefore, despite the fact that the model was run at smaller time steps (10 or 30 seconds), the 

model output was aggregated to 5-minute intervals to match the time step of the observed data. 

Shrestha and He (2017) used a total of 12 storm events to calibrate the runoff computations of their 

SWMM stormwater model, in which 8 events were used in calibration and the rest were used in 

model validation. Similarly, in the current work, for the summers of 2015 and 2016, a total of 21 

independent storm events were identified along with their related observed pipe flows, with peak 

flows ranging from 0.12 to 0.63 m3/sec, and flow durations of between 24 and 60 hours. Examples 

of some of the pre-calibration model sewer pipe hydrographs are shown in Fig. 3.15, and the 

related statistical measures are listed in Table 3.6(a). 

These hydrographs were divided into two groups with similar hydrograph shapes, peaks and 

durations. Half of the data were used for model calibration and the other half were used for model 

validation. In the manual calibration, each efficiency assessment measure was tracked according 

to adjustments in model parameters in order to balance the model performance over the entire 

hydrograph while noting the produced errors compared to the observed data (Savic et al., 2009). 

In general, higher performance ratings should be pursued for the model calibration stage than for 

the validation stage (James, 2005), because parameter values are optimized during model 

calibration but are kept constant in validation, where ideally different conditions are encountered 

compared than for calibration (Moriasi et al., 2007). 



     

53 

  

  

Ultimately, the model performed well for the selected storms. The assessment measures and 

calibration goal statistics were within the acceptable criteria. In summary, the data correlation was 

good (R2 = 0.95, NSE = 0.91, RMSE = 0.024 m3/sec, maximum volume difference+11.3%, total 

volume error+8.8%, and peak volume error+9.8%). These results were considered very good 

compared to previous studies in the literature (Carr et al., 2010; Shrestha and He, 2017). For two 

storm events, storm C5 and V4, the model performance was relatively poor because of low peak 

flows for the C5 and V4 storms, and the predicted flows were highly affected by hydrological 

losses, which in turn affected all their statistical measures, see Fig. 3.16. These cases were retained 

to illustrate the limitations of the model. Table 3.6(b) summarizes the results of the post-calibration 

model and validation in addition to the calculated assessment measures for both.  

A water quality model can provide reliable results only when flows are accurately represented 

(Savic et al., 2009); therefore, after calibration and validation, the model is now ready for the next 

step: water quality simulations. 
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(a) Calibration storms 

 

(b) Validation storms 

                     Observed                                               Simulated 

Fig. 3.15 A sample of pre-calibration model results for some storm events for Stn(1) 
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(a) Calibration storms 

 

 

(b) Validation storms 

                     Observed                                               Simulated 

Fig. 3.16 A sample of post-calibration model results for some storm events for Stn(1) 
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Table 3.6 Efficency assessment measures for the sample group of storm events for Stn(1) 

(a) Pre-calibration model stasistics 

Storm C1 C2 C3 C4 C5 C6 V1 V2 V3 V4 V5 V6 
Average 

Duration 60 32 56 48 32 24 48 24 56 56 32 48 

NSE -0.621 -1.082 -1.070 -2.719 -4.485 -1.259 -0.620 -1.487 -0.786 -1.484 -1.551 -1.267 -1.536 

RMSE 0.106 0.045 0.081 0.315 0.064 0.099 0.074 0.125 0.048 0.014 0.086 0.112 0.098 

R2 0.956 0.823 0.828 0.941 0.899 0.848 0.930 0.894 0.869 0.490 0.871 0.966 0.860 

Slope (b) 0.500 0.426 0.429 0.371 0.331 0.447 0.480 0.404 0.447 0.364 0.408 0.409 0.418 

Ln (NSE) 0.384 2.045 0.247 0.901 0.831 1.802 3.622 0.999 0.868 0.953 2.683 0.601 2.862 

bR2 0.478 0.351 0.355 0.349 0.297 0.379 0.446 0.361 0.388 0.178 0.356 0.395 0.361 

(b) Post-calibration model stasistics 

Storm C1 C2 C3 C4 C5 C6 V1 V2 V3 V4 V5 V6 
Average 

Duration 60 32 56 48 32 24 48 24 56 56 32 48 

NSE 0.939 0.692 0.805 0.814 0.353 0.748 0.863 0.817 0.823 0.253 0.874 0.939 0.912 

RMSE 0.021 0.017 0.025 0.071 0.022 0.033 0.022 0.034 0.015 0.008 0.019 0.021 0.022 

R2 0.949 0.704 0.826 0.953 0.865 0.803 0.876 0.878 0.883 0.299 0.925 0.949 0.961 

Slope (b) 0.927 0.892 0.920 0.751 0.597 0.827 0.905 0.814 0.800 1.598 0.844 0.927 0.829 

Ln (NSE) 0.374 2.029 0.140 0.805 0.763 1.738 3.517 0.980 2.645 0.638 2.385 0.374 0.592 

bR2 0.880 0.627 0.760 0.715 0.517 0.664 0.793 0.715 0.706 0.187 0.780 0.880 0.797 



57 

 

CONNECTING TEXT TO CHAPTER 4 

 

The stormwater simulation model developed using MIKE URBAN package in Chapter 3 is 

integrated with a newly-developed model in Python programming language. The variable decay 

coefficient simulator (VDCS) was created in order to conduct stormwater quality simulations for 

monochloramine dissipation. The VDCS model computes pollutant concentrations in the storm 

sewers considering the spatial and temporal variability in its decay coefficients, which is not 

available in any current stormwater model. The VDCS model utilizes the findings of published 

literature about chloramine dissipation behaviour in the sewer environments to define the decay 

characteristics. The following chapter includes a full description of the VDCS model development, 

processes and application along with sample results of carefully-designed simulation scenarios. 

Further, a complete model description is provided in the form of Python coding is presented in 

Appendix C. All equations, variables, input data functions and scripts are also provided in 

Appendix C. 
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CHAPTER 4  

IMPACT OF SPATIAL AND TEMPORAL VARIABILITY IN DECAY COEFFICIENTS 

ON SIMULTION OF MONOCHLORAMINE DISSIPATION IN STORMWATER 

SYSTEMS 

 

4.1 Introduction 

Chloramine was first used by a treatment plant in Ottawa, Canada, in 1916 to reduce drinking 

water treatment costs (AWWA, 2006). During chloramination, ammonia is added to convert the 

residual free chlorine to chloramines. Initially, chlorine and chloramine were both used widely for 

disinfection purposes; however, after the U.S. Public Health Service observed chlorine’s rapid 

effect on several bacteria in 1943, chloramine use decreased significantly (Crittenden et al., 2012). 

It was not until the discovery of chlorine disinfection by-products (DBPs) in the 1970s that 

chloramine started to be used widely as a disinfectant (Connell, 1996) because, (1) although 

chloramines do form DBPs, they do so to a much lesser degree than chlorine (Zhang et al., 2017); 

and (2) monochloramine (NH2Cl), the most dominant chloramine species, has a desirable longer-

lasting residual that prolongs its disinfection efficiency (WHO, 2004). By 2008, approximately 

30% of U.S. water suppliers used chloramination for disinfection (Maestre et al., 2016), and today 

it is widely used worldwide as a drinking water secondary disinfectant (Moradi et al., 2017; 

Wahman and Speitel, 2012), including by the City of Edmonton (CoE) in Alberta, Canada. 

Given its long-lasting residual, the DBPs and chloramines in treated drinking water may reach the 

aquatic environment through their introduction to stormwater drainage systems after outdoor or 

industrial tap water use (Zhang et al., 2018c). Sources include distribution system leaks and breaks, 

lawn and garden watering, car and driveway washing, pool emptying, street cleaning, firefighting, 

construction activities, industrial hydro-testing, and industrial or commercial wash-down (Balling 

et al., 2008; Manning et al., 1996; Mayer and DeOreo, 1998). In Edmonton, stormwater eventually 

enters the North Saskatchewan River or tributary creeks from over 200 storm sewer outfalls, from 

which some of the stormwater system discharges flow directly, without any treatment, into 

receiving waters (CoE, 2013). 

http://www.usphs.gov/
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Over the past several decades, a shift has occurred toward the control of the water quality of 

discharges from urban areas to stream ecosystems (Goulden et al., 2018; Shrestha and He, 2017). 

In the case of the chloramine discharges in stormwater effluents, a number of studies have 

demonstrated harmful, and potentially fatal, influences of chlorine on fish habitat and possible 

changes in species composition (Bellanca et al., 1977; Grothe and Eaton, 1975; Manning et al., 

1996; Svecevicius et al., 2005; Zillich, 1972; Zvinavashe et al., 2008). The effects of exposure 

depend on the concentration, duration, fish species and other environmental factors. Field studies 

and biological surveys have found a total active chlorine (TAC) concentration exceeding 0.02 

mg/L to harm aquatic life, where TAC represents the combination of chloramines and free chlorine 

species released from chloramines. Consequently, the Canadian Council of Ministers of the 

Environment (CCME, 2009) issued new Canada-wide guidelines for the protection of aquatic life 

that lowered the maximum TAC concentration in municipal effluents to 0.02 mg/L. In Edmonton, 

recent monitoring of the TAC concentrations at selected storm sewer outfalls showed TAC 

concentrations up to 0.39 mg/L, which are substantially greater (1950% higher) than the reported 

detrimental level. Combined together, these factors establish requirements to understand and then 

control chloramine concentrations in stormwater systems.  

Comprehensive studies on chloramine dissipation in storm sewer networks are lacking in the 

literature (Zhang et al., 2018c). Previous studies have addressed TAC dissipation in water 

distribution networks for human health concerns (Ahn et al., 2012; Alexander and Boccelli, 2010; 

Fisher et al., 2016; Shang et al., 2008); however, the reactivity between chloramines and a group 

of substances naturally found in storm sewer environments causes chloramine dissipation to differ 

significantly in stormwater (Zhang et al., 2018a). Further, the spatial and temporal variability 

within the stormwater system should be considered (Marsalek, 1991): spatially, with varying 

characteristics of stormwater effluents per land-use type and human activities (Zhang et al., 

2018c), distribution of the decay-inducing parameters within the sewers (Potgieter et al., 2018) 

such as biofilms, further discussed below, and changes in the properties of the sewer network itself 

(Savic et al., 2009), which produces varying velocities and consequently travel times; and 

temporally, as a result of fluctuations in the pollutant mass fluxes over time (Clark, 1998), changes 

in the levels of the decay-affecting parameters such as temperature (VanBriesen et al., 2011), and 

the dynamic nature of pipe hydraulics (Westbrook and Digiano, 2009) and decay rates 

(Jonkergouw et al., 2009). In partcular, decay rates are known to decrease with time (Courtis et 
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al., 2009), because chloraminated flows traveling in a pipe react with chloramine-consuming 

substances where present (Sathasivan et al., 2008), both in bulk water and in biofilms at the pipe 

wall (Hallam et al., 2002). These reactions slow over time as reactants are consumed (Kohpaei et 

al., 2011; Zhang et al., 2018b). The mathematical representation of these temporal and spatial 

changes employs varying decay coefficents to model chloramine decay in the stormwater system 

(Zhang et al., 2018b).  

Therefore, there is a real need for a stormwater model that can predict concentrations of pollutants 

with spatially and temporally variable decay coefficients in stormwater effluents; however, tools 

capable of simulating such pollutants are lacking. Available software tools such as SWMM, 

MOUSE and Infoworks WS can simulate first-order decay processes with a constant decay rate 

for an entire stormwater network over the simulated period of time (Butler and Davies, 2011; 

Elliott and Trowsdale, 2007; Rubinato et al., 2013). These models contain sophisticated runoff and 

pipe flow routing modules, and have been applied to study water quality in terms of the transport 

of suspended solids, heavy metals, phosphorus, COD/BOD in stormwater networks (Becouze-

Lareure et al., 2019; Fraga et al., 2016; Lee et al., 2010; May and Sivakumar, 2009; Shon et al., 

2012; Zhang et al., 2012). However, they are unsuited to simulation of pollutants with variable 

decay coefficients.  

This paper therefore presents a novel system for simulation and prediction of chloramine 

concentrations in stormwater effluents throughout a drainage network, including the important 

spatial and temporal variations in chloramine decay coefficients at different points in that network. 

This system includes field sampling, laboratory experiments and a stormwater simulation model. 

First, a number of chemical, physiochemical and biological properties of stormwater were 

investigated in terms of their effects on chloramine dissipation rates under dry and wet weather 

conditions (Zhang et al., 2018c, 2018a, 2018b). The temporal and spatial variability of chloramine 

decay rates was also determined through field samples and laboratory experiments (Zhang et al., 

2018c, 2018b). Second, a stormwater model was built, calibrated and validated – as described 

below – to give satisfactory flow routing and water quality predictions. Third, a new model, called 

the variable decay coefficient simulator (VDCS), was developed to predict chloramine-related 

concentrations in a drainage system using temporally- and spatially-variable decay coefficients. 

Finally, the previously-determined chloramine decay rates were applied to the VDCS model for a 
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stormwater basin in order to predict pollutant concentrations throughout the stormwater system 

and particularly at the storm sewer outlet.  

This model system allows us to investigate the impact of variable rates of chloramine decay on 

stormwater model predictions. Specifically, we compare the more commonly-used constant 

average decay value against, 1) spatially-varying values per land-use, and 2) more comprehensive 

temporally- and spatially-varying decay rates. We hypothesize that higher spatial and temporal 

variability in observed decay rates will lead to more accurate model predictions as compared with 

measured concentrations in the system. Importantly, the system developed in this research is not 

limited to chloramine. It can be applied to study the dissipation of other degradable pollutants in 

storm sewers, such as nitrite and organic matter, and to reduce the uncertainties that preclude 

accurate prediction of their concentrations in different pipe systems. Note that this more-detailed 

representation of decay variability requires significantly more sampling and modeling effort than 

an approach that uses a single, average decay coefficient for water quality simulations.  However, 

it should improve the ability of decision makers to anticipate pollutant fluxes in the sewer system 

and maintain released concentrations below regulated values.  

4.2 Literature review 

 

4.3.1 Parameters important for chloramine decay 

The dissipation of chlorine and/or chloramine has been studied primarily in water distribution 

systems (WDS).  Chloramine is known to dissipate in these systems through chemical reactivity, 

bio-degradation and auto-decomposition (Crittenden et al., 2012; Zhang et al., 2018a). Some 

parameters are known to have a greater effect on the dynamics of chloramine decay, such as natural 

organic matter (NOM) (Hrudey, 2009; Zhang et al., 2018a), temperature (Adhikari et al., 2012; 

Regan et al., 2002), pH (Sarker and Sathasivan, 2012), nitrite (Moradi et al., 2017; Sathasivan et 

al., 2009) and biofilm (Sathasivan et al., 2009, 2008), in addition to other reported parameters, 

such as bromide (Vikesland et al., 2001), microbiological growth (Herath et al., 2015; Sung et al., 

2005), cometabolism (Maestre et al., 2016), alkalinity (Zhang et al., 2017), corrosion (Clark et al., 

2006), flow velocity (Westbrook and Digiano, 2009) and pipe materials (Mutoti et al., 2007). The 

large number of factors involved in chloramine dissipation creates challenges for the modeling of 

chloramine decay (Mutoti et al., 2007). Further, unlike many stormwater pollutants generated from 



62 

 

deposition on various urban surfaces and accumulated over antecedent dry periods between 

rainfalls (Wei et al., 2019), chloramine does not exhibit build-up and wash-off characteristics. To 

date, a single study on chloramine dissipation in stormwater systems (Zhang et al., 2018c) has 

shown the NOM concentration to be the dominant contributer for monochloramine dissipation in 

stormwater. It also showed that ammonium can decrease decay rates through promoting the 

regeneration of NH2Cl, while reactions with nitrite, organic components, and biofilms accelerate 

the decay process. 

4.3.2 Modeling TAC decay in water networks 

The decay of both chlorine and chloramine disinfectant in water networks is generally modeled 

with first-order kinetics (Ahn et al., 2012; Rossman et al., 1994; Savic et al., 2009), as: 

 
𝑑𝐶

𝑑𝑡
= −𝐾𝐶 (4.1) 

where C is the concentration and K is the first-order decay constant. Chloramine decay involves 

two distinct processes: as it travels in pipes, it reacts both with consuming substances that may 

exist in the bulk fluid, and with the pipe’s internal wall material and biofilms. These two processes 

are known as the bulk decay (Kb) and wall decay (Kw), respectively (Rossman et al., 1994), so that, 

 
𝐾 = 𝐾𝑏 + 𝐾𝑤 (4.2) 

Many attempts have been made to determine Kb and Kw and their associated processes, using 

laboratory experiments or field measurements with  regression analysis – see for instance Ahn et 

al. (2012), Al-omari et al. (2004), Boccelli et al. (2003), Castro and Neves (2003), Clark et al. 

(1995), Fisher et al. (2011b), Hallam et al. (2002), Powell et al. (2000) and Vasconcelos et al. 

(1997). Kb usually varies with temperature, total organic carbon (TOC), transport time and initial 

Cl concentration and contaminant, while Kw is affected by pipe age, diameter, material, roughness, 

corrosion and biofilm. In some models, the decay coefficient (K) is simply calibrated to minimize 

the model error against field measurements (Ahn et al., 2012; Mostafa et al., 2013; VanBriesen et 

al., 2011). 
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However, equation (4.1) is not the only first-order decay model available. Other versions of the 

first-order decay model, such as parallel and limited first-order models were also studied. Some of 

these models provide a better fit to available data sets, although they are not significantly or 

consistently better in most cases – see, for instance, Ahn et al. (2012), Helbling and VanBriesen 

(2009) and Vasconcelos et al. (1997). Other studies focus on second-order decay kinetic models, 

including those by Clark (1998), Fisher et al. (2011b), and Islam et al. (1997). The second order 

decay models used to study chlorine decay showed neither considerable nor constant 

improvements compared to first-order ones. For instance, Boccelli et al. (2003) found second-

order models generally equaled or bettered the performance of first-order models, while Kim et al. 

(2015) compared the performance of 9 different chlorine decay models for a pilot scale water 

network and found that the first-order model outperformed other models under all studied 

conditions. Thus, despite the complexity of its decay chemistry, chloramine decay is better 

represented as a first-order process than chlorine (Fisher et al., 2009); it acts like free chlorine but 

with slower dissipation (Lee and Heaney, 2003; Maier et al., 2000).  

Because temporal and spatial changes in chloramine decay rates do not lend themselves to a simple 

representation, they can be better modeled in stormwater systems using variable decay coefficients 

(Kohpaei et al., 2011; Zhang et al., 2018b). Based on actual field sampling results, laboratory 

experiments (Zhang et al., 2018c, 2018a), and model development in COMSOL (Zhang et al., 

2018b), the temporal variation of chloramine decay rates can be described with the following 

relationship, 

 
𝐾𝑡,𝑖 =

1

𝛼 𝑡 + 𝛽
∗ (𝑓𝑖) (4.3) 

where Kt,i is the decay coefficient at time t for land-use i, f is a land-use dependent coefficient 

described in Zhang et al. (2018b), t is the discharge time in minutes, 𝛼 =1.73, and 𝛽 =1.0. 

  



64 

 

4.3 Methods and material 

 

4.4.1 Location selection  

Four study locations were selected to represent major land-uses within two stormwater catchments, 

Kennedale in north Edmonton and 30th Avenue in south Edmonton; see Fig. 4.1. These locations 

included, (1) a residential site, as a reference for other land-uses, (2) a park site, for higher 

application of irrigation and fertilizer compared to residential areas, (3) a commercial site, focusing 

on automobile dealerships and rental locations, and (4) an industrial site, focusing on pressure 

vessel fabricator locations.  

General characteristics of the stormwater network played an important role in site selection, such 

as the location of the neighborhood within the pipe system, the presence of stormwater ponds 

upstream, manhole accessibility for water sampling and existence of monitoring data for water 

quality and flow. Moreover, long, uninterrupted sections of pipe were preferred to permit 

attribution of changes in water quality to chemical and biological interactions taking place within 

the water mass, and to provide sufficient time for such interactions to occur. The sampling location 

within the network itself was also important, since sampling close to the upstream-end of the 

stormwater network would ensure that stormwater flows resulted from the catchment under 

consideration but could lead to limited flow volumes, while sampling farther downstream would 

make the attribution of contamination to specific sources difficult. Finally, potential 

neighborhoods with mixed land-uses within or upstream of the neighborhood were avoided, and 

some neighborhoods were excluded because of high traffic, poor accessibility and sampling 

difficulty. 
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 Residential        Commercial        Park        Industrial 

Fig. 4.1 The 30th Avenue stormwater basin in Edmonton, Alberta. (a) Basin boundaries and 

main sewer system components, labels for significant points on the main trunk. (b) Land-use 

characterization map 
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Additional criteria were applied for specific land-use types, similarly to approaches applied by 

Marsalek (1991) and Zhang et al. (2018b). For the residential location, low-density neighborhoods 

with relatively higher property values were favored because of their larger lawn areas (Al-Kofahi 

et al., 2012), and were identified from CoE data and aerial photos, as shown in Fig. 4.2(a). Then, 

the CoE property assessment values were categorized as shown in Fig. 4.2(b). For the industrial 

location, pressure-vessel fabricators were selected because of their reliance on large volumes of 

chloramine-containing potable water for testing vessel integrity. Last, for the commercial site, a 

cluster of commercial automobile services, including car rental locations, car washes and car 

dealerships was selected. Fig. 4.3 shows the selected neighborhoods and their associated storm 

sewer networks and Table 4.1 shows a summary of their storm sewers’ characteristics.  

 

low density        value <$300k  $300k< value <$600k    value >$600k  selected location 

(a) Low-density residency                                (b) Property assessed value 

Fig. 4.2 The selection of the residential study location 

4.4.2 Data collection  

The City of Edmonton provided a number of data sets that were used first to establish study site 

selection criteria and then to select the sites themselves. The data comprised (1) GIS data, including 

aerial images, land-use maps, property assessment maps and digital elevation models (DEM); (2) 

attributes and layouts of the stormwater network components from the DRAINS database; (3) 

MIKE URBAN sewer system models built to the trunk level (which represents the main drainage 

features – pipes with diameters greater than approximately 800 mm); and (4) data about the city’s 

parklands, i.e. area, irrigation status and type of watering source. Online sources including Google 
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maps and telephone listings were used to find locations of pressure vessel manufacturers and 

commercial car dealerships in the two basins.  

 
(a) Residential (b) Park 

 
 (c) Commercial (d) Industrial 

Fig. 4.3 Selected study neighborhoods and their stormwater network 

 (Adapted from Zhang et al., 2018b) 

Table 4.1 Average stormwater network properties of the study neighborhoods 

Study site Residential Commercial Industrial Park 

Material Concrete Concrete Concrete Concrete 

Diameter (mm) 610 1050 750 375 

Slope (%) 0.99 2.03 0.48 0.84 

Pipe length (m) 45 95 110 70 

Drainage area, ha 34 104 148 27 

Imperviousness (%) 62 90 65 51 

200 m 
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For calibration and validation of the stormwater model, the following data sets were collected for 

case study locations: (1) flow metering records from temporary flow meters installed in the 

summer seasons of 2015, 2016 and 2017 at three locations, one for each of the commercial, 

industrial and parks land-uses; (2) long-term pipe flow records from other permanent metering 

stations; and finally (3) long-term rain gauge data for the two stormwater basins. 

4.4.3 Stormwater modeling 

In many stormwater modeling tools, drainage system simulations and computations are conducted 

in two distinct stages (Zoppou, 1999), as shown in Fig. 4.4 . The first stage is runoff computations, 

which simulate the hydrological surface processes and routing of surface flow in modeled 

catchment areas, based on precipitation input and selected hydrological model parameters and 

processes (Elliott and Trowsdale, 2007). The second stage is network computations, which uses 

the computed runoff from the previous stage as a hydraulic load to the collection system 

(Thorndahl and Schaarup-Jensen, 2007). These steps are described in Zoppou (2001). 

 

Fig. 4.4 Processes incorporated in a stormwater model (Zoppou, 2001) 
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The present study uses MIKE URBAN as the stormwater simulation tool. MIKE URBAN can 

simulate distributed rainfall-runoff and unsteady flow in pipe and channel networks, contains one 

of the most comprehensive water quality modules (Borah et al., 2009; Carr et al., 2010; Haris et 

al., 2016), and is used by the CoE for decision support. In terms of water quality, it can simulate 

pollution transport, dissipation and interaction between different water quality processes such as 

advection, dispersion, sediment transport and biological processes (DHI, 2017a). However, the 

water quality module can only simulate first-order decay with a constant decay coefficient. Finally, 

the selected routing techniques in MIKE URBAN included the kinematic wave method for surface 

flows and the dynamic wave method for pipe flow, which together balance the need for accurate 

results with relatively shorter simulation times. 

The City of Edmonton provided a MIKE-URBAN stormwater model for the 30th Avenue 

catchment built to the trunk level. This level of detail allowed the simulation of urban floods, but 

did not meet requirements for simulating water quality in sewers (Butler and Davies, 2011). Hence, 

the model was modified to include network components down to the smallest pipe section at the 

system’s upstream ends at all study locations. Next, to calibrate the model, a sensitivity analysis 

was conducted for 34 parameters to identify critical model inputs; we perturbed parameter values 

sequentially to examine the related variation in the fit between observations and model predictions, 

using a procedure adapted from James (2005) and Loucks and van Beek (2017). These parameters 

included imperviousness, catchment surface properties, infiltration indices, depression and initial 

losses, and surface roughness. The results showed that model performance was very sensitive to 

surface roughness, imperviousness and depression storage, while changes in catchment length and 

infiltration parameters were relatively ineffective. Therefore, GIS applications were used to 

improve estimates for some model parameters, as described by Liu et al. (2010). Aerial images 

and land-use maps were used to adjust the imperviousness ratios of each catchment, and digital 

elevation maps from the CoE improved catchment slope calculations. 

The following model efficiency assessment measures were used for model calibration: bR2 

(Moriasi et al., 2007; Zambrano-Bigiarini, 2017), Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970; Ritter and Munoz-Carpena, 2013), RMSE (Legates and McCabe, 1999; Willmott, 

1981), and Logarithmic NSE, which is a useful measure for low flow rate performance 

(Pushpalatha et al., 2012; Ye et al., 1998). From the flow monitoring records of 2015 and 2016, 
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rainfall events were identified to represent different storm durations, patterns and magnitudes, and 

their respective sewer flow hydrographs were measured at three different locations within the 

stormwater basin. These events were then divided into two groups to be used in the calibration and 

validation processes. A sample of twelve validation results is shown in the Supplementary 

Materials in Fig. B2 and B3, which compares storm hydrographs from the calibrated MIKE 

URBAN stormwater model against observed sewer flows. Values of the model efficiency 

measures used to assess the performance of the stormwater model pre- and post- calibration model 

and validation are shown in Fig. 4.5, where model accuracy was significantly improved in terms 

of model prediction errors, and the correlation of both peak and low flows to observed stormwater 

discharges.  

 

 

 
Fig. 4.5 Comparison of pre- and post-calibration model performance  

(the C and V indexes denote calibration and validation storm events, respectively) 
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4.4.4 Python model (VDCS) 

Because the available stormwater modeling software packages do not allow the definition of 

spatially or temporally variable chemical decay coefficients, it was necessary to develop a new 

simulation tool. The Variable Decay Coefficients Simulator (VDCS), developed in Python, can 

simulate concentrations of a degradable chemical substance in a water network based on input 

from existing hydrodynamic simulations. It applies the nth order decay model (Butler and Davies, 

2011) to represent the degradation reactions of individual pollutants, as, 

 𝑑𝐶

𝑑𝑡
= 𝐾[𝐶]𝑛 (4.4) 

where C is the substance concentration, K is the decay constant, and n is the order of the reaction 

with respect to that substance. Focusing on chloramine dissipation in this study, the VDCS model 

applies a first-order decay model following the recommendations and work of Fisher et al. (2009), 

Lee and Heaney (2003) and Maier et al. (2000); however, VDCS can simulate lower or higher 

decay orders, if required.  

Application of Eq. 4.3 generated the decay rates represented in Fig. 4.6 for the four different land-

uses in the current study, where the decay rates start high at the beginning of release events and 

then decrease over time.  Different water characteristics, especially biofilm presence, result in 

spatial variability in decay rates as well. These differences among land-uses were higher in 

absolute terms at the beginning of the event and then decreased toward the end of the simulations.  
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 Residential        Commercial        Park        Industrial 

Fig. 4.6 Spatial and temporal variability of chloramine decay rates 

 

The water quality computation process in the VDCS is shown in Fig. 4.7. The first tier represents 

the required inputs to the VDCS in the form of spreadsheets, either in .csv or .xls file formats. 

Inputs are categorized into three groups. First, sewer system attribute data are required, which 

describe different system properties for sewer pipes, manholes, and outlets, in terms of diameters, 

lengths, material and invert levels, and manhole IDs at both upstream and downstream ends of 

each pipe in the system. The VDCS uses these data to reconstruct the physical geometry of the 

water network from upstream branches, diversion and collection nodes, and through to the system 

outlet. This reproduction of the network layout is required later to determine the paths of pollutants 

through the sewer system. Second, hydrodynamic results from independent stormwater 

simulations are imported to provide time series of flow rates and velocities throughout the sewer 

system. Organization of the hydrodynamic results in spreadsheet form allows the VDCS to import 

them from any stormwater simulation model. Third, pollutant introduction points such as fire 

hydrants and industrial releases are defined for specific locations in the drainage system along with 

variations of their loads over the simulation period. Finally, the decay order is selected, and the 
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decay rate variation is set to one of three levels, 1) constant average value, 2) spatially-varying per 

land-use, or 3) varying both spatially and temporally. 

 

 
 

 

 

 

Fig. 4.7 Inputs, process flow and outputs of in the VDCS model 
 

Employing the provided data sets, the VDCS calculates concentrations of the degradable substance 

along its transit path through the sewer system to the system outlet. The VDCS model 

computations start by identifying contamination paths, which use the constructed network flow 

map to trace pollutants from previously-defined introduction points from manhole-to-manhole to 

the system outlet. The model then identifies common pollution paths stemming from pollutant 

introductions at different locations in the network and combines their loads in the subsequent water 

quality computations. Based on the concentration at introduction points and volumetric flow rates, 

the pollutant load can be calculated and then tracked over the calculated contaminant path 
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according to the selected decay order. For chloramine dissipation with a first-order decay model, 

the VDCS calculates the concentration at the downstream node through, 

 𝐶𝐷𝑆 = 𝐶𝑈𝑆 𝑒−𝐾𝑡 (4.5) 

where 𝐶𝑈𝑆 and 𝐶𝐷𝑆 are the chloramine concentrations at upstream and downstream ends of the 

current sewer link respectively, K is the first-order decay coefficient, and t is the travel time 

between the upstream and downstream nodes calculated from the pipe length and flow velocity. 

Depending on the selected decay coefficient behavior, the VDCS sets the decay coefficient to a 

constant value or computes it at every timestep from Eq. 4.3. Similarly, beginning at the 

introduction points and then moving manhole-to-manhole to the system outlet, the VDCS model 

applies Eq. 4.5 to calculate the concentration downstream based on a known upstream 

concentration. At diversion or collection points, downstream concentrations are calculated by 

converting all upstream concentrations to mass fluxes, and then distributing the total mass to the 

downstream links according to their relative volumetric proportions, assuming uniform and full 

mixing at all junctions.  

The VDCS produces pollutographs for different system nodes, such as manholes and outlets. 

Results can be exported to spreadsheets or plotted within the Python environment. As presented 

below in Section 4.5, the VDCS results were verified against the MIKE URBAN stormwater 

model, using the same inputs and chloramine loads. 

 

4.4 Simulation scenarios 

A set of three simulation scenarios was designed to demonstrate the effects of spatial and temporal 

variation in decay coefficients on chloramine concentrations in a storm sewer system – see Table 

4.2. These scenarios investigate the effects of, (1) a constant decay rate, which uses a fixed decay 

coefficient value throughout the sewer network over the simulation period; (2) a spatially-varying 

decay rate, which specifies a fixed value for each land-use type; and (3) spatially- and temporally-

varying decay rates, that incorporate differences in land-use types and times from initial pollutant 
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releases. The chloramine decay coefficient values for each scenario are shown in Fig. 4.8, and 

were determined from field sampling described by Zhang et al. (2018b).  

For fixed decay coefficient values, the performance of the VDCS model was tested under both wet 

and dry weather conditions, defined as zero precipitation preceding and during the simulation 

period, and consistently matched the chloramine concentrations generated by the MIKE URBAN 

water quality module (R2 = 0.96). We focus below on dry weather simulations because simulated 

chloramine concentrations were not significant throughout the sewer network during wet weather 

periods, as found also in previous studies (Lee et al., 2009; Zhang et al., 2018c). 

Table 4.2 Properties of different simulation scenarios 

Scenarios Release type 
Chloramine 

load 

Weather 

condition 

Decay rate variation 

Wet Dry Con-

stant 

Spatial Temporal 

Scenario 1 
A Point source Maximum X ✓ ✓ X X 

B Nonpoint source Average X ✓ ✓ X X 

Scenario 2 
A Nonpoint source Average X ✓ X 

First-

flush 

X 

B Nonpoint source Average X ✓ X Average X 

Scenario 3   Nonpoint source Average X ✓ X ✓ ✓ 
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 Residential        Commercial        Park        Industrial 

Fig. 4.8 Variability of decay coefficients for different simulation scenarios 

 

4.5.1 Scenario 1: Validation of the Variable Decay Coefficient Simulator 

The first set of simulations assesses the performance of the VDCS against the MIKE URBAN 

model for the 30th Avenue catchment, using a constant decay coefficient as in MIKE URBAN. 

Therefore, in scenario (1A), an arithmetically-averaged decay coefficient value was applied as an 

input for both models, as shown in Fig. 4.8. This scenario represents a practical case of a point-

source contaminant release from a single fire hydrant to demonstrate the chloramine dissipation 

process with network flow to the system outlet. A similar approach could be taken to represent the 

effects of watermain breaks or prohibited industrial releases, potentially important chloramine 

contamination sources with high flows over a relatively long period of time. The simulated point 
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source release from a hydrant – next to manhole RES1, Fig. 4.3(a), in the residential neighborhood 

– was simulated as a constant discharge of 150 L/sec for two. The initial concentration of 

chloramine was assumed as high as the regulated chloramine limit in drinking water of 2.0 mg/L, 

which is more conservative as these concentrations might be lower in reality. 

Next, to validate VDCS performance under a different set of conditions, scenario (1B) was 

designed to represent nonpoint source chloramine releases from different land-uses, to replicate 

more general conditions where chloramine releases occur at the same time from a number of 

outdoor activities. Scenario (1B) also applies a constant decay rate for both MIKE URBAN and 

the VDCS, as shown in Fig. 4.8. In addition to model validation, scenario (1B) results are also 

compared with other scenario results to study the effects of decay coefficient variations on 

chloramine decay rates. 

4.5.2 Scenario 2: Effect of spatially variable decay coefficients 

The second set of scenarios investigated the effects of spatially-variable decay coefficients, with 

coefficient values dependent on the mix of land-uses in each catchment. Temporal variations in 

decay rates were omitted such that each coefficient was constant over the simulation period, as 

shown in Fig. 4.8. To provide a plausible lower-bound estimate for the chloramine concentrations 

at the sewer outfall, the highest plausible decay rate, associated with a first-flush event, was used 

for scenario (2A). Scenario (2B) was then used to assess a lower, time-averaged decay rate value 

for each land-use type. Together, this set of simulations illustrates the importance of selecting 

appropriate decay coefficient values for the different land-use types.  

For these scenarios, although the land-uses were limited to four main types (residential, 

commercial, industrial and parks) with the four individual decay rate values shown in Fig. 4.8, 

each catchment had unique chloramine load and decay coefficient values based on its drainage 

area and the proportional mix of the four land-use types. From the field sampling results, to select 

appropriate time-averaged decay coefficients for these simulations, two decay rates were used as 

in scenario (1), the first flush decay rate and the average decay rate, which were calculated as: 

 
𝑘𝑖 = ∑ 𝑘𝑛  ×  𝜀𝑛

𝑛

𝑖=1

 (4.6) 
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where 𝑘𝑖 is the land-use averaged decay coefficient of catchment 𝑖, 𝑘𝑛  is the decay coefficient of 

land-use n, and 𝜀𝑛 is the percentage of land-use n in catchment 𝑖 as per the municipal land-use 

maps.  

4.5.3 Scenario 3: Effect of spatially- and temporally-varying decay coefficients 

In the last scenario, both spatial and temporal variabilities of the decay coefficients were simulated 

in the VDCS, as shown in Fig. 4.8. This scenario was intended to represent a more realistic 

situation in which chloramine decay rates decreased with time, with results applicable for water 

managers and decision-makers for the regulation and treatment of degradable pollutants. 

Consequently, scenario (3) represents a conservative case, since the chloramine concentrations it 

simulates would be expected to be significantly higher throughout the sewer system and at the 

system outlet than in the other scenarios. The average nonpoint chloramine load used in scenario 

(1B) and (2) was applied to this scenario. 

4.5 Results and discussion 

 

4.6.1 VDCS Model performance assessment  

The first set of scenarios was intended to validate the VDCS against results from the MIKE 

URBAN water quality module. Scenario (1A) simulates chloramine dissipation from a single, 

potable water point-source, using the pipe flow hydrographs for hydrodynamic simulations from 

MIKE URBAN shown in Fig. 4.9.  Lag and attenuation effects are apparent in the flow hydrograph 

for discharge introduced at point (H) that traveled downstream through points (J), (K) and (O) – 

see Fig. 4.1(a) for the locations of these points. Fig. 4.9 also shows that the corresponding 

chloramine concentrations decreased from an initial concentration of 2.0 mg/L to reach 0.47 mg/L 

at the system outfall, point (O) – a value that is still considerably higher than the allowable 

chloramine discharge concentration.  

The chloramine concentrations, peaks, and patterns simulated by the VDCS closely matched those 

produced by the water quality module of MIKE URBAN, as shown in the pollutographs of Fig. 

4.9(b). In terms of a statistical assessment of model performance, the VDCS produced very high 

agreement at all points with MIKE URBAN results: R2 = 0.98, RMSE= 0.02 mg/L and NSE = 

0.96. Further, the small discrepancies between the two results can be attributed to differences in 
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the hydrodynamic input to the two water quality models. MIKE URBAN used data directly 

generated from flow routing, while the VDCS used flow parameters at set timestep intervals of 5 

minutes. 

 Source, H     Point J       Point K     Outlet, O      MIKE URBAN       x  VDCS 

Fig. 4.9 Hydrographs and Pollutographs generated by the VDCS and MIKE URBAN models  

for three manholes D/S a fire hydrant release; (a) pipe flows, (b) concentrations 

An alternative view of scenario (1A) focuses on longitudinal profiles of the chloramine 

concentration from the source at (H) to the system outfall at (O), a total length of about 5.0 km, 

for specific initial release times, as shown in Fig. 4.10. For example, after 2 hours (t = 2.0), the 

chloramine concentration was 2.0 mg/L at point (H) (km = 0.0), dropped to 1.00 mg/L after 2.0 

km in the sewer line, and reached 0.0 mg/L after 3.0 km. Likewise, after 8.0 hours (t = 8.0) when 

the release event ended, chloramine pollution no longer existed at the release point (H), while the 

maximum chloramine concentration along the release path was 0.53 mg/L at km = 1.75. 

Longitudinal pollutant concentration profiles, as presented in this work, offer many clear 

advantages in understanding the transport of any contaminant in a stormwater system. They 

simplify investigation of the propagation of the pollutant plume through the sewers, identify the 
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location and value of peak concentrations at different time intervals, and mark time periods after 

which pollutant concentrations are below regulation limits throughout the water network. 

 

 t =2.0 hr     t =3.0 hr     t =6.0 hr     t =8.0 hr     t =11.0 hr 

Fig. 4.10 Longitudinal chloramine concentration profiles along the path of scenario (1A) 

In scenario (1B), the VDCS was evaluated for nonpoint sources, where chloramine effluents were 

defined as variable by land-use. The pipe flow hydrographs computed by MIKE URBAN at 

respective points (A),(B), (C), (D), (J), (K), and (O) on the main trunk – see Fig. 4.1(a) – are shown 

in Fig. 4.11(a). The passage of the stormwater wave through the drainage system is clearly visible, 

beginning at point A and then increasing along the main trunk, as the collected stormwater volume 

increased to reach its peak value at the system outfall (O). Because this scenario represented 

nonpoint contaminant sources, the shapes of simulated hydrographs and their corresponding 

pollutographs were affected by many different characteristics of the sub-catchments connected to 

the key manholes on the main trunk, such as the drainage area, geometry, and land-use types and 

their distributions within the various sub-basins. 

Chloramine concentrations computed for point O with MIKE URBAN and the VDCS – see Fig. 

4.11(b) – using the decay rate value for scenario (1B) from Fig. 4.8, were significantly higher than 

the allowable discharge concentration to surface waters over the entire simulation period. 

Comparison of the two sets of results also reveals high agreement of the VDCS to MIKE URBAN 
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values, as shown in Fig. 4.11(b).  The average values for the statistical measures were R2 = 0.97, 

RMSE= 0.026 mg/L, NRMSE = 7.74%, and NSE = 0.94. Note that the slightly higher differences 

in these measures resulted from the considerably higher flows encountered in scenario (1B). 

  

 u/s end, A      point B   point C       point D   point J   point K    outlet, O   MIKE URBAN  ×VDCS 

 

Fig. 4.11 Results of Scenario 1B; (a) pipe flows at 7 different location in the sewer system, (b) 

pollutograph at the system outlet, O 

4.6.2 Spatially-variable decay coefficients  

Scenarios (2A) and (2B) focused on model results for spatially-variable but temporally-constant 

decay coefficient values. Nonpoint source chloramine contaminants introduced to the stormwater 

model were set at the same level as Scenario (1B), as shown in Fig. 4.8, and pipe flow hydrographs 

computed by MIKE URBAN are shown in Fig. 4.11(a).  

Further, pollutographs at the system outlet, point (O), show chloramine concentrations at the 

system outlet above the allowable discharge concentration to surface waters. As shown in Fig. 

4.12, the average concentrations in scenario (2B) were consistently higher than those of scenario 

(2A), which used the first-flush decay coefficients, because of the significant difference between 
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the two decay coefficient values. However, the first-flush values were used to generate a lower-

bound scenario for chloramine concentrations, which is not intended to be realistic over the entire 

simulation period – such high decay rates tend to last only briefly after chloramine introduction, 

because of the reduction in chloramine dissipation by biofilm over time (Kohpaei et al., 2011; 

Zhang et al., 2018b). 

 

Scenarios   2A    2B 

Fig. 4.12 Pollutographs of the system outlet considering fist-flush and avrage decay coefficints, 

results of second scenario (2A) and (2B) 

Interestingly, the differences between the scenario results were not constant throughout the 

simulation period. For instance, during the first quarter of the simulation period, the difference 

between the computed concentrations in the two scenarios reached a maximum relative value of 

38% for the chloramine levels of Scenario (2A), while the results of Scenario (2B) were 67% 

higher than Scenario (2A) by the end of the simulation period. Over the full simulation period, the 

average difference in the two pollutographs was 43%, a significant difference in chloramine 

concentrations in the sewer system. This comparison illustrates the importance of selecting an 

appropriate coefficient value, even where the temporal change in decay coefficients is ignored. 
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4.6.3 Impact of spatial and temporal variability of in the decay coefficient  

The scenarios of group (3) incorporated both temporal and spatial variations in the decay 

coefficient (see Fig. 4.8), and applied the pipe flow hydrographs shown in Fig. 4.11(a). Results 

from the three varying levels of the decay rates – constant, spatially-variable, and temporally- and 

spatially-variable – are shown in Fig. 4.13. The following analysis focuses on the stormwater 

outlet, because of its proximity to the receiving waters.  

Overall, the results of spatial disaggregation considered in scenario (2B) showed very high 

agreement with scenario (1B), because of the small differences in the decay coefficient values 

between the two scenarios. Interestingly, despite the incorporation of different decay coefficients 

for specific land-uses in scenario (2B), the spatially-averaged decay coefficient value was quite 

similar to the single decay coefficient used in scenario (1B) – see Fig. 4.13. However, because this 

result may have stemmed from the combination of decay coefficient values for the included land-

use types, it should not be taken as a general conclusion of the current work.  

In contrast to the similarity between scenarios (1B) and (2B), incorporation of both spatial and 

temporal variations in the decay coefficients in scenario (3) produced a significantly different 

pollutograph, shown in Fig. 4.13. The maximum simulated concentration in scenario (3) was 0.65 

mg/L, which comes closest to 0.7 mg/L, the measured concentration at the system outlet of the 

30th Avenue basin during field samples in summer 2015 (Zhang et al., 2018c). Interestingly, the 

rank of scenario (3) changed over time relative to the other scenarios, from relatively low for the 

first-quarter of the simulation period, where it lay between the values for scenarios (2B) and (2A), 

to the highest value in the last three-quarters. Further, as the stormwater volumes collected from 

farther neighborhoods began to reach the system outlet by the second-third of the simulation 

period, the differences between the scenarios became more visible with higher chloramine 

concentrations in scenario (3) than in scenarios (1B) and (2B). This result can be attributed to 

higher decay rates for case (1B) and (2B) in this part of the simulation period. Finally, in the last-

third of the simulation period, the concentrations of scenario (3) were at a maximum of about 

100% higher than those predicted in scenario (2A). In absolute terms, the highest predicted 

chloramine concentrations at the outlet, point (O), were 0.54, 0.32, 0.55 and 0.65 mg/L for 
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scenarios (1B), (2A), (2B) and (3), respectively, due to the much lower chloramine decay rates in 

scenario (3) than in the other scenarios. 

 

Scenarios  1B    2B  2A    3    

Fig. 4.13 Pollutographs at the system outlet for scenarios (1B), (2A), (2B) and (3) 

It is important to consider mass fluxes in addition to concentrations. System operators and 

managers prioritize pollutant concentrations over mass fluxes, both because concentrations can be 

measured more easily in the field and because guidelines like those of the CCME focus on 

maximum allowable concentrations. However, maximum mass fluxes may not occur concurrently 

with maximum concentrations. For example, in the first-third of the simulation period, the 

concentrations shown on the pollutograph were relatively high; however, the corresponding mass 

flux of 0.5 g/sec (at t = 1 hr) was low because of a relatively low discharge at that time. In the 

middle third, which had the lowest concentrations at the outfall, the maximum discharge occurred 

and a high mass flux of 5.7 g/sec (at t = 4 hr) resulted. Finally, by the end of the simulation period, 

with the highest concentrations at the system outfall, the corresponding discharge was relatively 

low and a similar mass flux of 5.1 g/sec (at t = 7 hr) resulted. The difference between mass fluxes 

and concentrations shows that care must be taken in the analysis and interpretation of model 

results, and that a focus only on pollutant concentrations may omit potential environmental 
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consequences of high mass/low concentration releases of pollutants. Regulators and water 

managers should incorporate mass fluxes as parameters in guidelines and regulations. 

4.6 Conclusions 

This study investigated the importance of spatial and temporal variability of monochloramine 

dissipation rates in stormwater networks. The new Variable Decay Coefficient Simulator model 

(VDCS) was developed to simulate spatial and temporal variations in coefficient values, and field 

measurements and results from DHI’s MIKE URBAN simulations with constant coefficient values 

were used to validate model performance. Three scenarios were designed to compare the 

application of 1) constant decay coefficient values throughout the sewer network over the 

simulation period, with 2) spatially-varying decay rates per land-use type, and 3) spatially- and 

temporally-varying decay rates that incorporate changes in coefficient values with time from the 

initial pollutant releases. 

Comparison of the scenario results demonstrated the importance of including both temporal and 

spatial variations of decay coefficients when simulating degradable chemical pollutants in sewer 

systems. The combination of spatial and temporal variability in chloramine decay rates affected 

the predicted chloramine concentrations significantly, with implications for environmental and 

regulatory measures. To accommodate variable decay rates for degradable chemicals, the available 

water quality models require modification. In their current state, they omit important dynamics of 

pollutant concentrations in stormwater systems and may underpredict discharge concentrations, 

with adverse consequences for the quality of receiving water bodies.  

For future studies, an extensive stormwater quality monitoring program is recommended to 

improve water quality simulations that involve degradable chemicals in stormwater networks. 

Although resource-intensive and potentially costly, such monitoring programs would improve the 

estimation of pollutant decay rates, improve understanding of the role of different land-uses and 

pollutant loads on pollutant concentrations and aid validation of stormwater quality simulations.   

Finally, especially for dry weather conditions, close attention should be paid to chloraminated 

effluents toward the middle and end of the discharge period, rather than at the early stages of 

release events. After a dry period, which would allow biofilms to accumulate, both chloramine 
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mass fluxes and concentrations would initially be relatively low, but they rise significantly as 

decay rates decrease and more distant sections of the drainage system contribute to produce higher 

flow rates. Results will differ by basin geometry, the mixture of land-uses and system attributes, 

and water use and quality characteristics, and so pollutants must be assessed for each stormwater 

basin individually.  

  



87 

 

CONNECTING TEXT TO CHAPTER 5 

 

The next chapter introduces the procedure of building a practical stormwater quality framework to 

help decision-makers to assess and control contamination incidents in drainage systems. The 

framework incorporates; (1) the stormwater simulation model of MIKE URBAN presented in 

Chapter 3, (2) the water quality simulator of VDCS presented in Chapter 4, and (3) a hazard 

assessment procedure to develop standalone hazard maps for stormwater basins. That framework 

is then applied to study chloramine dissipation in the 30th stormwater basin. 
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CHAPTER 5  

A PRACTICAL GIS-BASED HAZARD ASSESSMENT FRAMEWORK FOR WATER 

QUALITY IN STORMWATER SYSTEMS 

 

5.1 Introduction  

Urban stormwater significantly affects the quality of surface waters (He et al., 2011; Konrad, 2005; 

Paul and Meyer, 2001; Roy et al., 2008). Land-use change, human activity and population growth 

all aggravate the impact of urban sprawl on the quality of stormwater effluents that eventually 

reach surface waters (Walsh, 2000; Zhang et al., 2018c). In many cities, stormwater is a significant 

contributor to local freshwater bodies, and provides a route for pollutant introduction to receiving 

streams and rivers, impairing local water supplies (Davis et al., 2001; Eriksson et al., 2007; Gnecco 

et al., 2005; Howell et al., 2012; Roy et al., 2008). In addition to higher runoff volumes and more 

intensive floods resulting from increased impervious surfaces, urbanization contributes to more 

severe pollutant loadings (Lee and Heaney, 2003). Several studies have reported the unnecessary 

risks of polluted stormwater on aquatic ecosystems and human health as it conveys harmful 

chemicals, sediments, nutrients, heavy metals, microbial pathogens, and waterborne diseases into 

receiving waters (Bernhardt and Palmer, 2007; Jiang et al., 2015; Makepeace et al., 1995; NRC, 

2008).  

For instance, Coleman et al. (1974) investigated the effect of urbanization on the microbial content 

of the North Saskatchewan River and found that urban centers altered the microbial composition 

of the river to such a degree that its effect was still discernible 480 km downstream from the city. 

Similarly, Walsh et al. (2016) found that stormwater systems significantly contribute to the 

degradation of stream ecosystems, alter stream hydrology, and increase the frequency of 

disturbance to biota in urban environments. Luo et al. (2018) analyzed the potential effects of rapid 

urbanization on water quality and macroinvertebrate communities of Chinese streams; they found 

that rapid urbanization has dramatically deteriorated the water quality of streams and threatens 

aquatic ecosystem health. Further, 91% of the UK river basins considered as at risk are located 

downstream of heavily altered urban waters (Ellis et al., 2012), and in the US, urban stormwater 

is considered the primary source of water quality impairments of 13%, 18% and 32% of all rivers, 
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lakes and estuaries respectively (NRC, 2008). Many studies have found similar patterns, see Meyer 

et al. (2005). 

To control and mitigate these serious environmental risks, water quality monitoring studies have 

been based for decades on costly, time- and labor-intensive field sampling programs and real-time 

control (Niu et al., 2014). However, geographic information systems (GIS) can also play a crucial 

role in managing and modeling many water resources problems related to urban drainage, point- 

and nonpoint-source pollutants, and water and stormwater systems (Tsihrintzis et al., 1996). 

Advanced statistical methods have been successfully integrated into GIS applications, which have 

enhanced the capabilities of water quality assessment over different spatial scales (Machiwal et 

al., 2018). Over the last decade, many researchers have used GIS-based application in assessing 

and managing stormwater quality-related risks. Mitchell (2005) developed a GIS model to map 18 

key diffuse urban stormwater pollutants in the Aire basin, Yorkshire, UK. Their GIS model 

successfully identified the locations of scattered pollution hot spots in the stormwater system. In 

another study, Ellis et al. (2012) developed a GIS-based pollution index to assess risk levels for 

different urban land-use types using surface impermeability, runoff loads and drainage system best 

management practices. Wijesiri et al. (2018) employed GIS-Bayesian Networks to model urban 

water quality and develop health risk maps depending on water pollution. These studies 

demonstrate an essential need for methods to monitor and predict stormwater quality to ensure that 

levels of harmful chemicals in surface water systems are maintained below assimilation capacities, 

and to help decision makers to take appropriate measures. 

From an operational perspective, stormwater system managers need reliable and fast tools to assess 

the severity of unregulated/prohibited point-source contamination spills. Environmental engineers 

consider pollutant concentrations at the most important point in the system, the system outlet, as 

the primary concern in managing stormwater effluents to surface waters. Consequently, an 

effective tool should predict stormwater quality hazards at system outlets as a result of releases 

from any point in the stormwater basin. However, running simulation models for surface runoff, 

pipe flow and water quality can be very time-consuming, and by the time results are available, 

mitigation actions may no longer be necessary. Regulators and decision makers can also benefit 

from an analysis of points in a system where intervention is necessary after a pollutant release, and 

where it may dissipate sufficiently that no action is necessary.  
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Hence, this work introduces a practical, fast and useful tool to assess pollutant concentrations and 

potential hazards of point-source spills, particularly at system outlets, without the need to conduct 

resource-intensive simulations. This hazard assessment tool can identify areas in the system that 

contaminant releases from which generates high pollutant concentrations and consequently can 

delineate high- and low-risk areas. The solution comes in the form of pollutant concentration and 

hazard maps. A pollutant concentration map represents the predicted concentration at a system 

outlet associated with point-source contamination occurring at any location in the stormwater 

system. Thus, for example, if the pollutant concentration at a specific location on the map is 1.0 

mg/L, this means that a pollutant release at this location, although initially higher than 1.0 mg/L 

at its point of release, would produce a maximum concentration of 1.0 mg/L at the system outlet. 

Similarly, a hazard map represents the same concept but with a hazard score as a percentage rather 

than as a concentration. This simple, but effective and accurate, tool will assist and expedite 

stormwater quality regulation. Such hazard maps can also be generalized to various water systems 

and extended to different chemical substances and contamination source types as well. 

The novel GIS-based hazard assessment framework for stormwater quality introduced here 

includes stormwater hydrodynamic modeling, pollutant fate and transport modeling, concentration 

mapping, and hazard estimation and mapping. It therefore comprises four different stages and three 

individual modeling tools, producing a “4-stage-3-model” framework described below. The goal 

of implementing this framework is to develop  a stand-alone assessment tool for pollution 

concentrations and water quality hazards so that it can help municipal engineers and planners to 

better predict water-quality-related risks. Section 5.2 of the paper describes the different stages of 

the “4-stage-3-model” framework methodology, including the inputs and outputs of each stage and 

the necessary computations. Section 5.3 presents information on the study area, a stormwater basin 

in Edmonton, Alberta, Canada, the selected pollutant, monochloramine, and the study scenarios. 

Section 5.4 provides the results and analysis from application of the framework to the case study, 

and Section 5.5 concludes the paper.  

5.2 Generic framework methodology 

This framework adopts a “4-Stage-3-model” methodology (see Fig. 5.1) that incorporates 

stormwater hydrological, hydraulic and quality simulations, geostatistical mapping analyses, and 
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pollution hazard assessments. The first three stages were implemented using a stormwater 

modeling tool, pollution transport and fate model, and GIS-based mapping analyst, respectively. 

The accuracy of such models determines the reliability of their outcomes, and thus the 

effectiveness of the decisions taken by system managers, so much care is required in developing 

and validating their results (Butler and Davies, 2011). The sections below describe each of these 

steps briefly. 

 

Fig. 5.1 Diagram of the “4-stage-3-model” stormwater quality framework 

 

5.2.1 Stage 1: Stormwater system modeling  

Stormwater modeling is the first stage of the framework, as shown in Fig. 5.2, and uses available 

modeling software packages such as the MOdel for Urban SEwers (MOUSE), StormWater 

Management Model (SWMM) and infoWorks. Typical stormwater models conduct drainage 

system computations in two distinct steps (Butler and Davies, 2011). The first step is the runoff 

computations, which simulate the hydrological surface processes and routing of surface flow in 

modeled catchment areas based on precipitation input and selected hydrological model parameters 

and processes (Borah et al., 2009). The second step is the network computations, which use the 

computed runoff from step one as a hydraulic load to the collection system. Then, the model 

applies the selected routing model to simulate the hydrodynamics of the pipe flow (Zoppou, 2001). 
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Once the model is built, a procedure presented in Overton and Meadows (1976) and James (2005) 

is followed to calibrate and validate the model predictions. 

 

Fig. 5.2 Diagram of Stage (1) Stormwater modeling inputs, outputs and processes 
 

In the present work, DHI’s MIKE-URBAN v.2017 stormwater model was selected as the 

stormwater modeling tool as it can simulate both distributed rainfall-runoff and unsteady flow in 

pipe and channel networks (Borah et al., 2009; Carr et al., 2010). Delineation of the stormwater 

basin and its sub-catchments was conducted with standard geospatial analytical tools and GRASS 

GIS (GRASS, 2016), using data obtained from local administrators including a digital elevation 

model, land-use data records and stormwater network characteristics. The stormwater model was 

built, calibrated and validated to give acceptable predictions in terms of runoff and pipe flow 

routing (Supplementary Fig S.1 and S.2). The calibration involved a sensitivity analysis for 34 

parameters to identify critical model inputs, and the model performance was found to be sensitive 

to surface roughness, imperviousness and depression storage, while changes in catchment length 

and infiltration parameters were relatively ineffective, see Table 5.1. The model applied kinematic 

wave and dynamic wave techniques for surface runoff and pipe flow routing, respectively, to 

achieve the best available accuracy. Storm hydrographs from the stormwater model were validated 

against historical data from monitoring stations. The model results were in good agreement with 

both recorded sewer flows in terms of model prediction errors, and correlation of both peak and 

low flows to observed stormwater discharges, with average R2 = 0.95, NSE = 0.91, RMSE = 

0.024 m3/sec, maximum volume difference+11.3%, total volume error+8.8%, and peak volume 

error+9.8%. Two sample rainfall events and their associated observed and simulated pipe flows 

are shown in Fig. 5.3. These results compared favorably with previous studies in the literature 

(Carr et al., 2010; Shrestha and He, 2017).  
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Table 5.1 Sensitivity analysis of the stormwater model 

Perturbation % 

Percentage change in average RMSE 

-50 -25 0 25 50 

Catchment slope -2.62 -1.02 0 0.78 1.44 

Catchment length 4.46 2.01 0 -1.62 -2.80 

Wetting losses 0.05 0.00 0 0.00 0.00 

Depression storage (Impervious) 0.97 0.44 0 -0.17 -0.34 

Depression storage (Pervious) 2.06 1.07 0 -1.10 -2.25 

Manning number (Impervious all)* -3.56 -1.32 0 0.99 1.69 

Manning number (Pervious) -2.55 -1.04 0 0.76 1.33 

Horton's max capacity 0.16 0.07 0 -0.04 -0.16 

Horton's min capacity* 23.72 10.58 0 -7.40 -11.27 

Imperviousness ratio (Impervious flat)* -20.49 -10.23 0 10.25 20.48 

Imperviousness ratio (Impervious steep)* -13.01 -6.27 0 6.46 12.98 

(*) Indicating relatively sensitive model variables 

 

 
                     Observed                   Simulated                   Precipitation 

Fig. 5.3 Stormwater model inputs and outputs for two sample storm events 
 

5.2.2 Stage 2: Stormwater quality modeling 

Stormwater pollutants can be modeled with a Pipe Advection-Dispersion (AD) model that 

simulates the transport and dissipation of dissolved materials in the stormwater pipe-flow system 

(Butler and Davies, 2011). This model can simulate conservative substances as well as non-
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conservative substances subject to a linear decay (Islam et al., 1997). An AD simulation must be 

preceded by a hydrodynamic simulation in order to provide the pipe flow velocities that are used 

in the one-dimensional AD equation (Islam et al., 1997; Zoppou, 2001), which is given as, 

 
𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
) −

𝜕𝐶

𝜕𝑥
𝑣 −  𝐾 𝐶 (5.1) 

where C is the concentration, K is the linear decay coefficient, x is distance, t is time, and D is the 

dispersion coefficient, which is considered in MOUSE as a function of the mean flow velocity (v) 

after Taylor (1954) (Artina et al., 2007). Not all stormwater quality models include dispersion 

because almost all practical examples of flow in drainage systems are dominated by advection 

(Butler and Davies, 2011). Hence, a simplified approach can be used to model an individual non-

conservative pollutant, using a summary first-order model of the reactions (Savic et al., 2009) 

where, 

 
𝑑𝐶

𝑑𝑡
= −𝐾𝐶 (5.2) 

where C is the concentration and K is the first-order decay constant.  

However, the water quality modules of available commercial stormwater quality models have 

limited capacity to simulate degradable chemical substances (Gaafar et al., under review), since 

their advective-dispersion (AD) calculations only represent first-order decay with a constant decay 

rate, K, for the entire basin/model (Butler and Davies, 2011; Elliott and Trowsdale, 2007; Rubinato 

et al., 2013).  This approach does not represent other available models for non-conservative 

pollutants such as second order, parallel first and second orders, and nth order models (Helbling 

and VanBriesen, 2009; Kohpaei et al., 2011); further, these models typically omit temporal and 

spatial variations of the decay coefficients (Gaafar et al., under review; Kohpaei et al., 2011; Zhang 

et al., 2018b). Therefore, the suitability of the available built-in modules depends both on the 

pollutant under consideration and the acceptable level of accuracy.  

In this study, the Variable Decay Coefficient Simulator (VDCS) was used to model stormwater 

quality (Gaafar et al., under review). The VDCS was developed in Python and validated using 

results from water quality simulations of MIKE URBAN and a field sampling program. It 
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simulates the dissipation of point- and nonpoint pollution sources in water distribution and 

drainage systems, and can simulate different decay orders as well as account for the temporal and 

spatial variability of decay coefficients. These capabilities specifically suit the simulation of 

monochloramine decay, as discussed later in Section 5.3.2, since chloramine exhibits spatio-

temporal changes in its decay rates (Zhang et al., 2018b). The main structure of the stormwater 

quality model is shown in Fig. 5.4.  

 

Fig. 5.4 Diagram of Stage (2) Stormwater quality modeling inputs, outputs and processes 

 

The four basic inputs to the VDCS module are: (i) the drainage system characteristics, (ii) pollution 

data such as introduction points and concentration time series, (iii) data for defining the modeled 

substance, such as initial concentrations, decay order, and decay coefficient variability, and (iv) 

results of the hydrodynamic simulations from stage 1. The VDCS model accept inputs in 

spreadsheet format which makes the model sufficiently flexible to support simulation results from 

any stormwater model. Next, VDCS utilizes the system characteristics dataset to identify the 

pollutant path from introduction points to the system outlet and then computes the mass flux at 

each node using the previously-defined decay order and coefficients. Model outputs are a set of 

longitudinal concentration profiles and pollutographs at points of interest, most likely control 

structures or storm sewer outfalls. Further details on the VDCS model structure and computations 

are available from (Gaafar et al., under review). 

5.2.3 Stage 3: Stormwater quality mapping 

The third stage of the framework is the development of water quality maps for stormwater 

pollutants, based on pollution loads from stage 2. To develop standalone concentration maps, 

simulated pollutant loads are first exported to a GIS-application tool as data records at specific 

spatial locations defined by longitudes and latitudes in the stormwater network (Ellis et al., 2012). 

Many GIS-applications provide built-in groups of widely-used mapping models, such as empirical 
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Bayesian Kriging, radial basis functions, kernel interpolation with barriers and inverse distance 

weighted models (Nas and Berktay, 2010; Sahu, 2012; Xie et al., 2011). From the imported data 

values, these models have different approaches to increase the number of records required for 

accurate mapping in various water resources management applications such as flood risk, natural 

hazard, groundwater vulnerability and environmental assessment maps (Aydi, 2018; Jiang et al., 

2012; Mahmoud, 2014; V. G. Mitchell et al., 2007; Nath et al., 2018; Salman et al., 2019). Fig. 5.5 

presents the inputs, outputs and processes of the stormwater quality mapping stage. 

 

Fig. 5.5 Diagram of Stage (3) GIS-based stormwater quality mapping 

 

In this work, the focus here is on the Inverse Distance Weighted (IDW) and the Bayesian Kriging 

Model (BKM) modules. The two methods are widely applied for geostatistical analysis (Roy et al., 

2018; Sahu, 2012), for soil, air and water quality mapping with high prediction accuracy (Leggett 

and Bockstael, 2000; Matějíček et al., 2006; Nas and Berktay, 2010; Xie et al., 2011). IDW is a 

deterministic method, which calculates the concentration at a specific location (L0) based on the 

surrounding concentration values as follows, 

 
�̂�(𝐿0) = ∑ 𝑊𝑖𝐶(𝐿1)

𝑚

𝑖=1
 (5.3) 

where m is the number of chloramine concentration points, C(L1), surrounding chloramine 

concentration locations; 𝑊𝑖 is the assigned weight to each measured chloramine concentration. 

This weight can be determined using the following formula, 

 
𝑊𝑖 =

𝑆𝑖0
−𝑝

∑ 𝑆𝑖0
−𝑝𝑚

𝑖=1

 , ∑ 𝑊𝑖 = 1
𝑚

𝑖=1
 (5.4) 
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where Si0 is the distance between the predicted concentration location, s0, and the measured 

concentration, Si, and p is a parameter that influences the weighting of the measured concentration 

location. 

An alternative is the Bayesian Kriging Model (BKM), which is based on statistical models that 

include autocorrelation between the measured concentrations. This method can successfully 

generate prediction maps, provide the accuracy of the predictions, and is more accurate than other 

kriging methods because it accounts for the uncertainty of semivariogram estimation (Rossi et al., 

2018; Roy et al., 2018; Sahu, 2012; Shakeel et al., 2014).  In the present study, the unknown 

chloramine concentration value f(x) at an arbitrary location x is assumed to be a probability of a 

stochastic function F(x) (i.e. VDCS concentration values). Subjective probabilities are s(x), and 

their random function is S(x). The first two moments of S(x) are a priori, where E[S(x)] = µS (x) 

and Cov [S(x + h), S(x)] = CS (x + h, x), where h is the variogram lag distance between each two 

points. The covariance can depend on both points (x + h) and (x); therefore, the variogram function 

for the subjective probabilities can be defined as follows, 

 𝛾𝑆(𝑥 + ℎ, 𝑥) =
1

2
[𝐶𝑆(𝑥, 𝑥) + 𝐶𝑆(𝑥 + ℎ, 𝑥 + ℎ)] − 𝐶𝑆(𝑥 + ℎ, 𝑥)     (5.5) 

The conditional variogram of F(x) can be expressed as, 

 𝑉𝑎𝑟[(𝐹(𝑥 + ℎ) − 𝐹 (𝑥))|𝑆(𝑥)] = 2𝛾𝐹|𝑆 (ℎ) (5.6) 

If F(xi), i =1: n is the set of chloramine concentration, BKM predicts the concentration at point 

𝑥0 from the following linear estimator, 

 
𝐹∗(𝑥0) = ∑ 𝜏𝑖

𝑛

𝑖=1

𝐹𝑇(𝑥𝑖) + 𝜇𝑆(𝑥𝑖) (5.7) 

where 𝜏𝑖  is a set of constant weights; and 𝐹𝑇(𝑥𝑖) is as follow, 

 𝐹𝑇 (𝑥𝑖) = 𝐹(𝑥𝑖) − 𝜇𝑆(𝑥𝑖) (5.8) 
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By applying the Lagrange multiplier, the following Bayesian kriging model was obtained (Omre, 

1987), 

 ∑ 𝜏𝑖
𝑛
𝑖=1 [𝛾𝐹|𝑆|(𝑥𝑖 , 𝑥𝑗) + 𝛾𝑆(𝑥𝑖, 𝑥𝑗)] + 𝐿 = 𝛾𝐹|𝑆|(𝑥0, 𝑥𝑗) + 𝛾𝑆(𝑥0, 𝑥𝑗)                                                     (5.9) 

as, ∑ = 1 𝑛
𝑖=1 with j = 1, 2, …, n (5.10) 

where L is a Lagrange multiplier. The estimation error at point 𝑥0 is given by, 

 𝜎2(𝑥0) = ∑ 𝜏𝑖
𝑛
𝑖=1 [𝛾𝐹|𝑆|(𝑥0 − 𝑥𝑗) + 𝛾𝑆(𝑥0, 𝑥𝑗)] − 𝐿                            (5.11) 

Omre (1987) suggests that an unbiased estimator for γF|S|(h) for all lag distances can be calculated 

as follows: 

𝛾𝐹|𝑆(ℎ) = 1 2𝑛ℎ⁄ ∑ [(𝐹(𝑥𝑖 + ℎ) − 𝐹(𝑥𝑖))2 − (𝜇𝑆(𝑥𝑖 + ℎ) − 𝜇𝑆(𝑥𝑖))
2

𝑛ℎ

𝑖=1

− 2𝛾𝑆(𝑥𝑖 + ℎ , 𝑥𝑖)] 

(5.12) 

In this study, ESRI’s ArcGIS v.10.3.1 Geostatistical Analyst was employed to develop             

stormwater quality maps. The IDW and BKM models were applied to produce comprehensive 

chloramine concentration maps for the study stormwater basin, which are compared and validated 

in Section 5.4.2. 

5.2.4 Stage 4: Stormwater quality hazard mapping  

Stage 3 reveals the maximum pollution concentrations from specific sources, which aids 

identification of worst-case scenarios and helps to keep pollutant concentrations under permissible 

limits. This outcome provides guidance for stormwater system operators, since regulatory agencies 

often set guidelines on maximum allowable concentrations, which are relatively straightforward 

to measure in the sewer system. However, the magnitudes of pollutant loads can vary significantly 

even for a single release event (He et al., 2010). Therefore, stage 4 aims to provide more insight 

into contamination pollutographs through an important additional parameter, the total pollutant 
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mass load (Bertrand-Krajewski et al., 1998). The mapping of stormwater quality hazard requires 

the three steps shown in Fig 5.6.  

 

Fig. 5.6 Diagram of Stage (4) GIS-based stormwater quality mapping 

 

First, the Event Mean Concentration (EMC) calculation provides the total mass of a chemical 

substance at the system outlet divided by the total stormwater volume (Mitchell, 2005) from the 

results of stormwater hydrodynamic and quality simulations, particularly hydrographs and 

pollutographs at the system outlets. EMC has been widely applied to assess a variety of pollutants 

in water resources systems such as total suspended solids (TSS), chemical and bio-chemical 

oxygen demand (COD and BOD), nitrate, nitrite and nitrogen (NO2
-, NO3

-, N), total Kjeldahl 

nitrogen (TKN), total phosphorus and heavy metals (Becouze-Lareure et al., 2019; Bian et al., 

2011; Brezonik and Stadelmann, 2002; Dembélé et al., 2011; Metadier and Bertrand-Krajewski, 

2012; Shrestha and He, 2017). It computes a flow-weighted concentration over the storm event 

duration as, 

𝐸𝑀𝐶 =  
∑ 𝐶𝑖 𝑄𝑖 𝑡𝑖

∑ 𝑄𝑖 𝑡𝑖
  (5.13) 

where Ci is the pollutant concentration at time i, Qi is the flow rate in the ith interval, and ti is the 

time interval (Bian et al., 2011). Applying Eq. 5.13, EMC can be then calculated for all pollutant 

release incidents throughout the study area. EMC values can be calculated either for all, or for only 

the most critical, weather conditions from the Stage 3 results.  

Next, calculated EMCs can be used to generate a stormwater quality hazard score. A hazard score 

is a percentage value that represents the cumulative environmental risks associated with a 

stormwater pollutant. Scores range between 0.0 and 100, where 0.0 indicates no hazard. Simple 

unitless hazard scores can be developed by normalizing concentrations to their maximum, 
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minimum, mean or standard deviation values in the study area – see for example Mitchell (2005) 

and Nas and Berktay (2010). More sophisticated hazard scores can be devised by incorporating 

additional hazard-driving factors. Depending on the system and the pollutant under consideration, 

the key driving factors can be identified; common factors include proximity to specific land-uses, 

such as industrial or roadway, soil type, permeability, topography, curve number (CN), traffic 

volumes, residential density, annual rainfall and ground slope (Aydi, 2018; Nath et al., 2018; 

Vojtek and Vojteková, 2019).  Next, a number of procedures can be applied to rank and weigh 

identified hazard-driving factors for pollutants, such as fuzzy logic (Pradhan et al., 2009; Yao et 

al., 2015), analytic hierarchy processes (Aydi, 2018) and artificial neural networks (Liu et al., 

2018), in which the affecting factors can be ranked according to their relative effect of the 

stormwater pollutant (Salman et al., 2019). 

To generate hazard risk maps in this study, two hazard assessment tools were used and compared, 

including the EMC-based hazard score and the fuzzy logic module in ArcGIS. In the first, 

calculated EMCs were used to calculate chloramine hazard-score percentages. In the second 

approach with fuzzy logic, the following procedure was followed in ArcGIS. First, based on 

available literature on chloramine dissipation and pollution susceptibility, a group of factors known 

to drive chloramine contamination in the sewer system was identified, relevant spatial data were 

collected, and then the factors were introduced into the ArcGIS environment (Aydi, 2018). Second, 

each hazard-driving factor is ranked with respect to their relevance to pollution hazard and level 

of susceptibility into classes ranging from very low to very high pollution hazard (Mahmoud and 

Gan, 2018), based on an extensive literature review and ranking technique described by 

Emrouznejad and Ho (2018). For example, different types of land-use (classes) are ranked based 

on their relative weight on pollutant decay. Third, fuzzy membership functions were used to define 

the individual classes in each map according to their degree of membership. The process of 

transforming the original input values to the 0–1 membership scale is called the fuzzification 

process. The classes in each map are assigned fuzzy membership values in an attribute table based 

on the fuzzy algebraic product operator (Pradhan et al., 2009), which is defined as: 

𝜇𝑐 = ∏ 𝜇𝑖

𝑛

𝑖=1

 (5.14) 
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where 𝜇𝑐 is the fuzzy combination, n number of maps to be combined, 𝜇𝑖 the fuzzy membership 

function for the ith map. Thus, the possibility of a particular location belonging to one set or 

multiple sets has only two possibilities, i.e. the location is either a member of a set or it is not. For 

more details, see Emrouznejad and Ho (2018), Nobre et al. (2007), and Pradhan et al. (2009). 

After estimating EMC-based and fuzzy-based hazard scores values across the study area, hazard 

maps can be developed. A hazard map shows the spatial variation of hazard scores throughout    

the study area, similar to a concentration map but representing hazard scores instead of pollutant 

concentrations. As in Stage 3, mapping models can then be utilized to develop the final              

hazard map(s) for the stormwater system. Information on adopted hazard scores calculations is 

presented in Section 5.4.3. 

5.3 Case study 

5.3.1 Study area and data collection  

The study area is the 30th Avenue stormwater drainage basin in the City of Edmonton, Alberta, 

Canada (Fig. 5.7), located between latitudes 53°25'52.4" and 53°30'2" N and longitudes 

113°23'38.7" and 113°36'22.2" W, with an approximate area of 5223 ha. The area has a humid 

continental climate with average annual precipitation of 485 mm, as shown in Fig. 5.8(a); rainfall 

data are collected through a gauging network shown in Fig. 5.8 (b). The 30th Avenue basin’s 

topographic characteristics are presented in a digital elevation model (DEM, spatial resolution of 

1.5 m, resolution of topography 0.1 m) in Fig. 5.8(c). The highest point of the basin is 720 m 

above sea level. Groundwater resources are very limited. Land-use types, ground slopes and 

identification numbers of different stormwater catchments are shown in Fig. 5.8(d-e-f), 
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respectively, based on data obtained from the City of Edmonton online portal 

(www.data.edmonton.ca).  

 

Fig. 5.7 30th Avenue stormwater basin and main components of the sewer system, with the main 

trunk highlighted between the start point (A) and the outlet point (O)  
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475mm  500mm  Rain gauge 

(a) Annual rainfall (mm/yr)  (b) Rain gauge distribution 

  

645m  720m 
 Residential   Commercial  

 Park   Industrial 

(c) Digital elevation model  (d) Main Land-use type 

  

1%  18% 

(e) Ground slope 

(f) 30th Avenue neighborhoods ID (see also 

Table E1 in the appendices)  

Fig. 5.8 Characterization of the study area (30th Avenue basin) 

To validate the stormwater model, additional data sets were collected: (i) temporary pipe flow 

monitoring for the summer seasons of 2014-2017 at each land-use type (ii) long-term pipe flow 
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records from permanent metering stations; and (iii) long-term rain gauge data for the stormwater 

basin. Additional data such as aerial images were obtained from the City of Edmonton, and 

stormwater network layouts and their attributes were acquired from the DRAINS database. 

5.3.2 The Pollutant: Monochloramine  

To demonstrate the risk assessment framework, monochloramine (NH2Cl) was selected as the case 

study pollutant. NH2Cl is the dominant disinfectant in chloramination (Zhang et al., 2018a), a 

drinking water treatment approach used by approximately 30% of U.S. water suppliers as of 2008 

(Maestre et al., 2016). As compared with chlorination, NH2Cl has a desirable longer-lasting 

residual that prolongs its disinfection efficiency (WHO, 2004). However, chloramines pose 

environmental concerns as treated drinking water may find its way to the aquatic water system 

through storm sewers (Zhang et al., 2018c), which can collect chloraminated water from different 

outdoor tap water uses such as lawn watering, car and driveway washing, pool emptying, street 

cleaning, firefighting, construction activities, and industrial activities (Balling et al., 2008; Mayer 

and DeOreo, 1998; Zhang et al., 2018a). In Edmonton, about 200 storm sewer outfalls discharge 

collected stormwater effluents to the North Saskatchewan River, many of which have no end-of-

pipe treatment (CoE, 2013). The Canada-wide Strategy Standard recommended a lower 

permissible concentration of 0.02 mg/L (CCME, 2009) in surface waters, a level that is a source 

of concern since recent field sampling programs in Edmonton’s storm sewers have shown 

discharge concentrations as high as 0.77 mg/L (Zhang et al., 2018c). 

Few studies have focused on chloramine dissipation in storm sewer networks (Zhang et al., 2018c), 

and effective simulation tools are lacking because of the complexity and uncertainty associated 

with the reactivity between chloramines and a large group of other stormwater constituents (Gaafar 

et al., under review).  The decay of both chlorine and chloramine disinfectant in water networks is 

generally modeled with first-order kinetics (Ahn et al., 2012; Fisher et al., 2009; Savic et al., 2009) 

as,  

 
𝐶𝐷𝑆 = 𝐶𝑈𝑆 𝑒−𝐾𝑡 (5.15) 

where CUS and CDS are the concentrations at upstream and downstream ends of a sewer pipe 

respectively, K is the decay coefficient, and t is the travel time through the pipe. However, 
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chloramine decays according to several pathways including auto-decomposition, and chemical and 

biological reactions (Ahn et al., 2012). Important parameters include temperature, pH, natural 

organic matter, nitrite, flow velocity, biofilm, corrosion and microbial growth (Moradi et al., 2017; 

Sathasivan et al., 2008; Zhang et al., 2018c), the combined effects of which result in varying 

chloramine decay coefficients both spatially and temporally (Gaafar et al., under review). A 

combination of field sampling results, laboratory experiments (Zhang et al., 2018c, 2018a), and 

models (Zhang et al., 2018b) reveals that the spatial- and temporal variability of chloramine decay 

coefficients can be described with the following relationship, 

 
𝐾𝑡,𝑖 =

1

𝛼 𝑡 + 𝛽
∗ (𝑓𝑖) (5.16) 

where Kt,i is the decay coefficient at time t for land-use i, f is a land-use dependent coefficient 

described in Zhang et al. (2018b), t is the discharge time in minutes, 𝛼 =1.73, and 𝛽 =1.0.  

A number of land-use categories were selected for the case study, (1) residential areas, for outdoor 

carwash and lawn watering, (2) parks, for denser and higher application of irrigation compared to 

residential areas, (3) commercial areas, for car washing, and (4) industrial sites, for pressure vessel 

fabrication. Details of the selection process are provided by Gaafar et al. (under review) and Zhang 

et al. (2018c). Applying the relationship in Eq. 5.16 for each land-use produces chloramine decay 

curves for each type, as shown in Fig. 5.9. At the beginning of release events, decay rates were 

high and then decreased over time, with the highest decay rate observed in residential and industrial 

areas and somewhat lower rates found in commercial and park areas. More than one hour after 

release, similar decay rates were observed for the four land-use types.  
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Fig. 5.9 Spatial and temporal variability of chloramine decay rates 

To simulate chloramine dissipation and resulting concentrations in the stormwater system – 

accounting for variability in chloramine decay coefficients over the simulated period – the VDCS 

model was used to conduct the stormwater quality simulations. Sample VDCS chloramine 

dissipation outputs are shown in Section 5.4.1. 

5.3.3 Simulation scenarios 

To provide the stormwater quality hazard maps in a practical, useful format that covers both wet 

and dry weather conditions (here defined as zero precipitation preceding and during the simulation 

period), standard wet weather conditions were selected in consultation with Drainage Services 

personnel at the City of Edmonton. Specifically, three typical design storm hyetographs with return 

periods of 2, 5 and 10 years were developed, using published IDF curves for Edmonton 

(Government of Canada, 2015) and the alternating block method (Chow et al., 1988). Fig. 5.10 

shows the three hyetographs. All four weather scenarios were defined in the MIKE URBAN 

stormwater model. Further, based on chloramine-release characteristics described by Zhang et al. 

(2018b), one incident of a chloramine-containing release was also simulated to represent a 

hypothetical fire hydrant flow of 150 m3/sec over 1 hour. Such flows were then simulated 

individually for multiple different locations in the 30th Avenue stormwater basin to represent 

realistic scenarios of chloramine release. Maximum initial concentrations of chloramine were set 

to 2.0 mg/L as per the guidelines of the local water utility and field measurements (Zhang et al., 

2018b). In addition to the three design storms, higher return periods were also examined; however, 
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these storms generated chloramine concentrations below the permissible limit (<0.02 mg/L) 

throughout the entire stormwater entire basin, and so were omitted.  

 

Fig. 5.10  Design storm hyetographs 

5.4 Results and analysis 

5.4.1 VDCS stormwater quality results  

As Stage 2 of the 4-stage-3-model framework, this section describes the results of the stormwater 

quality simulations conducted with the VDCS models and applies the procedures described in 

Section 5.2.2.  The example results focus on a dry weather flow (DWF) simulation of point-source 

chloramine pollution, which is introduced at point (A) and then travels downstream through points 

(B), (D), (J) and (O), along the main trunk (Fig. 5.7). The inflow has a constant chloramine 

concentration of 2.0 mg/L over a period of 1 hour. As the flow travels through the sewer system, 

Fig. 5.11(a) shows decreasing chloramine concentrations, with each curve showing the 

concentration at a different manhole, from the standard 2.0 mg/L at point (A) to 0.25 mg/L at the 

system outfall, point (O), twelve hours after the release. The concentration at the outlet is 

significantly higher than a safe chloramine discharge concentration.  

As can be seen from Fig. 5.11(a), concentrations decrease slightly with increasing travel time in 

the main trunk. The longitudinal chloramine concentration profiles in Fig. 5.11(b) show similar 

trends with distance. The x-axis of this figure represents the length of the main trunk of the sewer 

system, while each time series shows the concentration for a specific time segment measured from 
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the beginning of the chloramine release at point (A) to its discharge at point (O). These two figures 

show the variation of chloramine concentrations spatially and temporally within the sewer system.   

 

 

 
 

Fig. 5.11 VDCS outputs for a sample chloramine release at the first point on the system’s main 

trunk, (a) pollutographs at different distances downstream from the introduction point (c, t), and 

(b) longitudinal chloramine concentration profiles along the main trunk line (c,x) 
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5.4.2 Chloramine concentration maps 

Based on the chloramine simulations for the 30th Avenue basin, a geostatistical analysis was 

conducted as Stage 3 of the framework, as described above in Section 5.2.3. IDW and BKM 

mapping models were used to map the spatial distribution of chloramine concentration data linked 

to the stormwater system database built in ArcGIS. The simulated pollutographs from VDCS for 

all system nodes (manholes and outlets) were exported in spreadsheet (csv) format from Python 

and then converted into a GIS-compatible format (see Fig. 5.4). These data sets consisted of four 

different sub-datasets: one for the dry weather conditions, and three for wet weather conditions (2-

year, 5-year, and 10-year events).  

The concentration maps produced with the BKM and IDW methods are shown in Fig. 5.12 and 

5.13, respectively.  Although the mapping results generally agree, concentration values for the 

IDW method were lower than those predicted by the BKM method in some locations. Therefore, 

we performed cross-validation analyses in ArcGIS to check the accuracy of the concentration maps 

against point values obtained from VDCS. Fig. 5.14(a) indicates that the BKM methods 

successfully predicted the concentrations at all the manholes, while the IDW failed at some of 

them particularly around peak values. For instance, as shown in Fig. 5.14(b), the concentrations 

predicted by the IDW for manhole numbers 400 to 600 were considerably lower than both the 

actual values and the BKM predicted values. 

The chloramine concentration map for DWF, Fig. 5.12(a), shows the spatial distribution of 

predicted concentrations from the BKM method. In general, the chloramine concentration over the 

entire basin is higher than the safe range, with values from 0.076 mg/L at the farthest point 

downstream to 1.79 mg/L at the upstream end.  Fig. 5.12(a) also shows very high concentration 

zones in the western part of the basin, mainly in neighborhoods 1 to 16 (refer to Fig. 5.8(f) and 

Supplementary Table 1). In contrast, the concentration map for the 2-year event shows that 

chloramine concentrations fall within the safe range for 60% of the basin, while the remaining 40% 

has concentrations from 0.02-0.1 mg/L. This decrease in concentration results from the 

introduction of wet weather flows in the model, which cause the concentration to decrease with 

the increase in rainfall. The 5-year event-based concentration map shows a further decline in the 

concentration in the majority of the 30th Avenue stormwater basin, with about 80% of the basin 
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falling within the safe range. Areas with higher concentrations (0.02-0.05 mg/L) are mainly in the 

western end of the basin in neighborhoods 1 to 7, close to the system outfall, see Fig. 5.12(c). 

Finally, in the 10-year event, the entire basin falls within the safe range, as shown in Fig. 5.12(d).  

Overall, these findings reveal that even in the wet weather conditions of 2- and 5-year events, the 

concentration is higher than the safe range in the northwestern part of the basin.  Further, 

neighborhoods 1 to 7 fall within the very high-risk zones under all weather conditions except for 

the 10-year event. All these high-risk neighborhoods are in close proximity to the single system 

outfall to North Saskatchewan River. Note that the distribution of chloramine concentrations 

within the study area is affected by the fact that the system has a single outfall at the northwest 

corner, which causes concentrations to decrease as they move upstream from the outfall. In a 

stormwater system with multiple outlets, pollutant concentrations could vary in a number of 

different directions, resulting in more complicated dissipation patterns.  



     

111 

  

  

 
 

 
Chloramine concentration (mg/L):  1.8-1.5  1.5-1.2  1.2-0.8   0.8-0.4   0.4-0.1   0.1-0.075  

 0.075-0.05  0.05-0.02  0.02-0.008  0.008-0.004   0.004-0.002   0.002-0.0009   0.0009-0.0007 

 

Fig. 5.12 Concentration maps based on BKM method 

(a) dry conditions, (b) 2-year event, (c) 5-year event, and (d) 10-year events 

(d) 

 

(a) 

 

(c) 

 

(b) 
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Chloramine concentration (mg/L):  1.8-1.5  1.5-1.2  1.2-0.8   0.8-0.4   0.4-0.1   0.1-0.075  

 0.075-0.05  0.05-0.02  0.02-0.008  0.008-0.004   0.004-0.002   0.002-0.0009   0.0009-0.0007 

 

Fig. 5.13 Concentration maps based on IDW model 

(a) dry conditions, (b) 2-year event, (c) 5-year event, and (d) 10-year event 
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Fig. 5.14 Validations of predicted concentrations for the (a) BKM and (b) IDW models,  

as compared with VDCS results 

5.4.3 Hazard maps 

Following the methods presented in Section 5.2.4 for Stage 4, event mean concentrations (EMC) 

were calculated for all chloramine point-sources considering only the DWF, since it was 

responsible for the highest chloramine concentrations and associated contamination risk. A simple 

approach to calculate hazard scores for all chloramine point-sources was adopted, in which the 

EMCs calculated were normalized by dividing their values by the maximum EMC value 

encountered in the 30th Avenue basin. Note that these EMC values incorporate a number of factors, 

including pollution concentration and total mass, stormwater volume, effect of land-use type on 

chloramine decay rates, and characteristics and layout of the sewer system. Next, the hazard score 
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percentages over the basin area calculated from the EMC results were imported into the ArcGIS 

geostatistical analyst to develop a chloramine hazard map with the more accurate BKM model. To 

aid hazard map interpretation and application, an average hazard score for each sub-catchment was 

calculated using the arithmetic mean of all hazard values in its smaller constituent catchments. The 

resulting chloramine pollution hazard map for the 30th Avenue stormwater basin is presented in 

Error! Reference source not found.(a), in which chloramine hazard scores were categorized into t

he following hazard ranges based on available information in the literature (Hammouri and El-

Naqa, 2008; Mitchell, 2005; Salman et al., 2019; Zhang et al., 2018c): very low (<15), low risk 

(15 to 30), moderate risk (30 to 50), high risk (50 to 85), and very high risk (>85). 

The EMC-based hazard map presents a similar pattern to that of the concentration maps, since the 

system has only one outlet to the northwest of the system, as shown in Error! Reference source n

ot found.(a). Approximately 4%, 6%, 14%, 45%, and 51% of the basin were found to be in the 

very high, high, moderate, low, and very low areas, respectively. Neighborhoods 1 to 7 were all in 

very high to high risk pollution hazard areas, while industrial land-use areas in neighborhoods 20 

to 22 were mainly in very low risk areas, refer to Fig. 5.8(f). Northeastern and southeastern parts 

of the basin were in no chloramine pollution risk areas: neighborhoods 27, 36, 40, 41, 45 and 46.  

Clearly, the distance between the point-source location and the outlet played the main role in 

determining the total chloramine mass at the system outfall. However, hazard maps based on 

EMCs produce slightly different spatial distribution patterns from chloramine concentration maps, 

because the former accounts for the total pollutant mass while the latter shows the maximum 

concentration reached at each manhole, irrespective of flow volume. The difference between the 

measures is most obvious in northwestern sub-catchments close to the system outfall, which have 

higher concentration loads than areas closer to the upstream ends. This is because the variance 

between EMC and the maximum concentration values is significantly larger close to the system 

outfall than farther upstream in the system, where EMC and the maximum concentration are 

typically closer in magnitude.  
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For fuzzy-based hazards, using available literature on chloramine decay and previous findings of 

this study, a group of pollution susceptibility factors were identified including EMC values, land-

use types, annual average rainfall, ground surface slopes, property assessment values, spatial 

variations of chloramine decay rates, density of impervious areas and proximity to the sewer 

network. Each hazard-driving factor had five possible levels: (1) very low, (2) low, (3) moderate, 

(4) high, and (5) very high pollution susceptibility, ranked according to their relative importance 

to pollution hazard. The assigned susceptibility factors and explanations are shown in Error! R

eference source not found.. Next, as discussed in Section 5.2.4, fuzzy memberships were used to 

define the individual classes in ArcGIS to generate the fuzzy-based hazards. Error! Reference 

source not found.(b) shows the fuzzy-based hazard map for the 30th Avenue stormwater basin. 

Approximately 13%, 19%, 22%, 34%, and 12% of the basin were found to be in the very high, 

high, moderate, low, and very low areas, respectively. 
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Table 5.2 Fuzzy membership classes for chloramine pollution thematic layers 

Factor Categories Index Comment 

Event mean 

concentration, 

mg/L 

Very low 1 Hazard severity increases as EMC increases. Classes were defined 

similarly to EMC-based hazard scores. Low 2 

Moderate 3 

High 4 

Very high 5 

Annual rainfall, 

mm 

Moderate 3 Simulation results in section 5.4.2 revealed that more rainfall causes 

more dilution to chloramine pollution and consequently less risk.  High 2 

Very High 1 

Land-use type Residential 4 Based on field sampling program over two summer seasons at 8 

sampling locations covering the four land-use types in the study area 

(Zhang et al., 2018c). 

Park 3 

Commercial 3 

Industrial 2 

Surface slopes, % < 3 1 Travel times over steeper grounds are much shorter, generating less 

decay and hence higher pollution risk (cf. the Maceio, Brazil, study 

conducted by Nobre et al., 2007). 

3 - 6 2 

6 - 9 3 

9 - 12 4 

> 12 5 

Chloramine 

decay rates 

Low 2 Based on chloramine decay curves presented in Section 5.3.2, and 

values from the literature (Gaafar et al., under review; Zhang et al., 

2018b), the decay rates per land-use from high to low were residential, 

park, commercial and industrial, respectively. The highest decay rate 

was associated with the lowest hazard and vice versa. 

Moderate 3 

High 4 

Very high 5 

Property 

assessment value, 

$ 

<$200k 1 Higher property assessment values are known to be associated with 

relatively larger lawn and garden areas, and potentially higher 

chloramine pollution (Al-Kofahi et al., 2012; Gaafar et al., under 

review; Zhang et al., 2018c).  

$200-$400k 2 

$400-$600k 2 

$600-$800k 4 

>800k 5 

Proximity to the 

drainage network, 

m 

<100 5 Areas closer to the sewer system can release pollutants faster into the 

system with higher pollutant concentrations and therefore pose higher 

risk. See more information at Aydi (2018).  
100-200 3 

>200 1 

Density of  

impervious areas 

Low 2 Areas with higher imperviousness pose higher pollution risk, see 

Zoppou (2001) and Lee et al. (2010). High 4 
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Chloramine hazard by percentile:  Very low  Low  Moderate   High   Very high   

 

Fig. 5.15 Chloramine pollution hazard map for study area (numbers indicate neighbourhoods) 

 (a) EMC-based and (b) Fuzzy-based 
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(b) 
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The inclusion of more factors in the fuzzy-based hazard map resulted in greater variation in the 

spatial pattern of hazard categories, as shown in Error! Reference source not found.(b). Mainly a

ffected by land-use types, EMC values and rainfall density, neighborhoods 1 to 5 retained the very 

high hazard category. Similarly, a cluster of central neighbourhoods, 13 to 17, and eastern 

neighbourhoods, 42 to 46, retained their general results as subject to high and low hazards, 

respectively. However, in comparing the EMC-based and fuzzy-based maps, some clusters exhibit 

more significant changes. For neighbourhoods 9 to 10 in the western part of the basin, the hazard 

assessment changed from low to high, mainly because of high property assessment values with 

larger lawn areas and higher potential chloramine inputs. Neighborhoods 24 to 29, 34 and 35 had 

higher hazard assessments because of higher park areas and a denser stormwater network.  

Uncertainties are inherent in all hazard assessment techniques (Nobre et al., 2007); therefore, 

further investigation would help to provide qualified or comparative analyses between hazard map 

results. Researchers have attempted to reduce these uncertainties in pollution hazard assessment 

by accounting for larger numbers of pollution driving factors in fuzzy-based approaches as 

compared with EMC-based hazards, which mainly focus on pollutant decay mechanisms. Fuzzy-

based maps can help to identify potential “hot spots” or assess remediation measures at local 

locations in the network. To validate the results of the developed hazard methodologies, local 

authorities should test the accuracy of those two models through collecting extensive pollutant 

data under varying conditions. 

Decision makers should use both concentration maps and hazard maps, since each provides a 

different perspective on pollutant introduction to surface waters. On one hand, concentration maps 

can help to evaluate acute changes in the pollution load, and in turn, the need for pollutant control 

measures in compliance with the local regulations. Because of the nature of the regulations, system 

operators need to anticipate high concentration incidents regardless of their mass loads. On the 

other hand, hazard maps can be more important to environmental pollution control and 

management, since the highest pollutant concentrations can be associated with small stormwater 

discharges, which makes them a lesser concern for surface water quality (Gaafar et al., under 

review). The quality of receiving water bodies is not determined by the maximum pollution 

concentrations of stormwater effluents, as in concentration maps, but rather by the total pollutant 

mass discharged into the system. To keep pollution levels below the assimilation capacity of 
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receiving waters, decision makers should take the total pollutant mass into account as well 

(Brezonik and Stadelmann, 2002; Dembélé et al., 2011). 

Some of the considerations taken here were adopted specifically to represent the worst-case 

scenario for chloramine releases, but other measures should be designed based on the pollutant. 

For example, DWF represents the lowest rainfall input, which should increase chloramine 

concentrations. However, other pollutants that accumulate on the ground surface over antecedent 

dry periods would not share the same characteristics, such as TSS and heavy metals. The hazard 

score used here is suitable for chloramine, as it builds on calculations that incorporate the factors 

important for chloramine chemistry in the EMC calculations. Applying the framework to other 

pollutants may require additional work to determine the factors important in hazard score 

definitions (Nath et al., 2018; Vojtek and Vojteková, 2019). Once these environmental factors are 

identified, they should be evaluated and their relative weights on hazard score should be estimated 

(Liu et al., 2018). Future studies can improve the hazard score calculations by incorporating 

additional factors that affect the hazard level associated with different pollutants. Ranges of 

different factors should be assessed to evaluate their potential effect on the pollution hazard. 

Conducted properly, this hazard assessment methodology can promote taking more effective and 

faster environmental precautionary measures. Finally, the framework presented here can improve 

stormwater quality by helping to target monitoring and enforcement resources, leading to higher 

surface water quality and healthier aquatic ecosystems. 

5.4.4 Assessing chloramine pollution hazard 

Analyses of chloramine concentration and hazard maps show that significant parts of the 30th 

Avenue basin can produce significant risks to surface waters from stormwater discharges. 

Concentrations were generally higher than the allowable chloramine discharge concentration of 

0.02 mg/L, especially during dry weather periods. A large number of studies has demonstrated the 

severity of chloramine on aquatic habitat. According to the US EPA, chloramine concentrations 

as low as 0.0053 mg/L can cause 50% mortality to some invertebrate species  (US EPA, 1984). In 

addition, high total active chlorine (TAC) can be lethal to crayfish, snails and some fish-food 

organisms over exposures of 6 min to 48 h  (Zhang et al., 2018c). Long-lasting elevated chloramine 

concentrations can be toxic for fish growth at much lower concentrations,  leading to detrimental 
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environmental risks (Brungs, 1973). In the James River, chloramine toxicity was found to be 

responsible for major fish kills because of its oxidization of hemoglobin and the resulting death by 

anoxia (Grothe and Eaton, 1975; Bellanca et al., 1977). Some species are more sensitive to 

chloramine than others, including invertebrate species such as amphipods, hermit crabs and 

shrimps, which are sensitive to chlorine exposure at concentrations ranging from 0.090 to 0.687 

mg/L (Manning et al., 1996). 

5.5 Conclusions 

This study presented a new hazard assessment framework and decision support system for better 

managing point-source pollutants in stormwater effluents and their effects on surface water quality. 

The primary goal of the 4-stage-3-model framework introduced in this work is to generate reliable 

standalone concentration and hazard maps that can help municipalities to control pollutant 

discharges from urban stormwater systems. This framework consists of 1) stormwater hydrological 

and hydrodynamic simulations that model surface runoff and pipe flows, 2) a stormwater quality 

model that traces pollutants from introduction points through the sewer system to predict their 

mass loads and concentrations at the system outlet, 3) a GIS-based model to produce concentration 

maps, and 4) the generation of stormwater hazard maps from EMC-based and fuzzy-based hazard 

values. 

The 4-stage-3-model framework was applied to chloramine pollution in stormwater discharged to 

the North Saskatchewan River in Edmonton, Alberta, Canada. Three models were built and used 

to; 1) simulate surface runoff and pipe flow rates, 2) predict chloramine pollution loads at the 

system outfall, and 3) develop chloramine concentration and hazard maps for the study area. Two 

mapping models were applied and validated, Inverse Distance Weighted (IDW) and the Bayesian 

Kriging Model (BKM), and the BKM model was found to be more accurate in predicting 

chloramine loads. The framework successfully generated chloramine concentration and hazard 

maps that showed the spatial variation of hazards of chloramine releases in the study basin. 

Concentration maps showed that chloramine concentrations over the permissible limits under dry 

weather flows throughout the basin, and only a design storm of a 10-year return period produced 

chloramine concentrations below regulation discharge limits. Chloramine hazard maps showed 
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approximately that 25% and 54% of the basin at moderate to high risk of chloramine-related water 

pollution as per EMC- and fuzzy-based calculations, respectively.  

The new framework for developing concentration and hazard maps can improve water quality 

management by helping municipalities and water utilities to comply with regulations that usually 

permit a maximum pollutant concentration in stormwater (concentration maps), and to distinguish 

areas that pose high risk to receiving waters and that therefore require additional water quality 

monitoring and enforcement to control prohibited/unregulated releases (hazard risk maps). Further, 

highlighting areas with low to no-risk of chloramine pollution can optimize local resources by 

focusing efforts on vulnerable areas with hazardous releases. The framework can be generalized 

to other chemical substances that impair stormwater quality through either point or non-point 

source pollution. Its value lies in the production of a tool for stormwater system operators that 

provides a rapid and accurate pollution hazard assessment without the need to perform time- and 

labor-intensive calculations on a case-by-case basis and focus mitigation measures on releases 

from specific locations in the system. Hazard and concentration maps should be used in parallel to 

anticipate maximum concentrations and to assess potential risks of chloramine pollution. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Summary and conclusions 

The aim of the present study was to develop a hazard assessment framework for water quality         

in storm sewer systems that can simulate chloramine decay and anticipate chloramine-related 

hazards in stormwater networks. The “4-stage-3-model” framework introduced in this                 

work introduces reliable standalone concentration and hazard maps that can help municipalities    

to control pollutant discharges from urban stormwater systems in a timely and effective way.      

Thus, the hazard assessment framework and decision support system can promote better 

management of point-source pollution sources and in turn their effects on surface water          

quality. Next, the key conclusions of this work are categorized according to the research objectives 

presented in Chapter 1. 

6.1.1 Building a reliable stormwater simulation model 

A stormwater model was built in MIKE URBAN using kinematic wave method for surface runoff 

routing and dynamic wave method for pipe flow routing, in which both were selected to ensure 

accuracy of model predictions. Collected rainfall data over two summer seasons of 2015 and 2016 

were used as inputs for the hydrological model, while pipe flow monitoring stations inputs and 

data were used for model calibration and validation. Preliminarily, the model computed pipe flows 

that were significantly higher than the observed values with peak values about 2.5 times higher 

than the monitored values.  

To assess model sensitivity to perturbations in model inputs, a sensitivity analysis of the model 

inputs was conducted, and it revealed that; 

1. parameters including wetting losses, infiltration exponents and pervious surface 

roughnesses did not significantly affect model results, while, 

2. the most critical parameters were imperviousness ratios, catchment slope and length, and 

Manning coefficients, and 
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3. ArcGIS was useful in estimating GIS-based model variables such as catchment slopes and 

the ratio of impervious surfaces.  

To validate model results, twenty-one independent storm events in the summers of 2015 and 2016 

were identified along with their related observed pipe flows, with peak flows ranging from 0.12 to 

0.63 m3/sec, and flow duration of between 24 and 60 hours. Half of the data were used for model 

calibration, and the other half were used for model validation. Then, a group of model efficiency 

statistical measures were selected including NSE, RMSE and ln(NSE). As a result of model 

validation, correlation between model predictions and observed pipe flows.The pre-calibration 

model statistics (R2 = 0.84, NSE = -1.7, RMSE = 0.105 m3/sec, and ln(NSE) = 2.86) improved 

considerably compared with the post-calibration values (R2 = 0.95, NSE = 0.91, RMSE = 0.024 

m3/sec, ln(NSE) = 0.59, maximum volume difference +11.3%, total volume error +8.8%, and 

peak volume error +9.8%). Correlation between model predictions and observed pipe flows was 

good, in which: 

1. The NSE was a better representation of overall improvements in model performance rather 

than R2, as it accounts better for the predicted error over the observed variance.  

2. Focusing on low flow conditions, model performance was found limited in very low flow 

conditions (flows<0.05 m3/s) affected by slight changes in minor losses such as wetting 

losses and depression storage, not affecting the overall model accuracy because of limited 

occurrence of such events.  

3. The ln(NSE) was not able to reflect model improvements for low flow conditions in all the 

studied cases. Many assessment measures for low flow were tested; however, none of 

which performed perfectly. 

6.1.2 Building a reliable water quality simulator for chloramine decay  

The available stormwater simulation modeling tools do not permit the definition of the spatial and 

temporal variability of chloramine decay coefficients, so it was necessary to develop a new 

simulation modeling tool. The new Variable Decay Coefficient Simulator model (VDCS) was 

developed in Python programming language to trace chloramine inflows from introduction points 

through the sewer system to predict their mass loads and concentrations at the system outlet. The 
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advantage of the VDCS model lies in its capability of simulating the spatial and temporal variations 

in chloramine decay coefficients. The VDCS model collects four input data sets;  

1. The sewer system attribute data which describe different stormwater system characteristics 

for sewer pipes, manholes, and outlets, in terms of diameters, lengths, material and invert 

levels, and manhole IDs at both upstream and downstream ends of each pipe in the system. 

2. The hydrodynamic results of stormwater simulations in the form of time series of flow 

rates and velocities throughout the sewer system. 

3. The chloramine pollutant introduction points such as fire hydrants and industrial releases 

are defined at respective locations in the drainage system along with variations of their 

loads over the simulation period. 

4. The decay rate variation is set to one of three levels, a) constant average value, b) spatially-

varying per land-use, or c) varying both spatially and temporally. 

Organization of all inputs in spreadsheet form allows the VDCS to import hydrodynamic results 

from any stormwater simulation model. The VDCS model utilizes these data to construct the 

physical geometry of the water network so that it can identify pollutant path and then trace 

pollutants through the stormwater system. 

Results of DHI’s MIKE URBAN simulations with constant coefficient values were used to 

validate model performance. The VDCS produced very high agreements at all points with R2 = 

0.98, RMSE= 0.02 mg/L and NSE = 0.96. Small discrepancies in results can be attributed to 

differences in the hydrodynamic input to the two water quality models. MIKE URBAN used data 

directly generated from flow routing, while the VDCS used flow parameters at set timestep 

intervals of 5 minutes. Therefore, statistically-speaking, the VDCS performance was considered 

very reliable.  

6.1.3 Studying the effect of chloramine decay variability on simulation results  

The importance of incorporating the spatial and temporal variability of chloramine decay 

coefficients in storm sewers was investigated. Three scenarios were designed to compare the 

application of a) constant decay coefficient values throughout the sewer network over the 

simulation period, with b) spatially-varying decay coefficients per land-use type, and c) spatially- 
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and temporally-varying decay rates that incorporate changes in coefficient values with time from 

the initial pollutant releases. Results revealed the following: 

1. Comparison of the scenario results demonstrated the importance of including both the 

temporal and spatial variations of decay coefficients when simulating degradable chemical 

pollutants in sewer systems. The combination of spatial and temporal variability in 

chloramine decay rates affected the predicted chloramine concentrations significantly, 

reaching concentration values about 100% higher than those predicted neglecting decay 

variability.  

2. Simulation of variable decay coefficients for degradable chemicals should be included in 

available water quality models. In their current state, these models neglect important 

pollutant dynamics in stormwater systems that are important for prediction accuracy. 

Neglecting variable decay coefficients may cause models to underpredict discharge 

concentrations with adverse consequences for the quality of receiving waters.  

3. Maximum mass fluxes may not occur concurrently with maximum concentrations. 

Currently, system operators and managers prioritize pollutant concentrations over mass 

fluxes, both because concentrations can be measured more easily in the field and because 

guidelines like those of the CCME (2014) focus on maximum allowable concentrations. 

Therefore, it is important to consider mass fluxes in addition to concentrations. Focusing 

only on pollutant concentrations may ignore potential environmental consequences of high 

mass/low concentration releases of pollutants. Regulatory agencies should incorporate 

mass fluxes as parameters in guidelines and regulations. 

4. Particularly for dry weather conditions, close attention should be paid to chloraminated 

flows toward the middle and end of the discharge period, rather than at the early stages of 

release events. As biofilms accumulate over dry periods, chloramine loads are initially 

relatively low. As biofilms are consumed, chloramine concentrations rise significantly with 

decreasing decay rates. However, results will differ by basin geometry, the mixture of land-

uses and system attributes, and water use and quality characteristics, and so pollutants must 

be assessed for each stormwater basin individually. 
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6.1.4 Developing and validating a GIS model for mapping chloramine concentration 

A new approach to the development of chloramine pollutant maps was designed to predict 

concentrations at the system outlet resulting from point-source pollutant releases. This approach 

was used to generate two types of maps – concentration and hazard maps – for use as standalone 

tools to quickly assess the severity of release incidents. Under different weather conditions, two 

types of maps were devised; 1) a chloramine concentration map represents the pollutant 

concentration at the system outlet associated with point-source release occurring at any location in 

the stormwater basin, 2) a hazard map works similarly but rather shows the spatial variation of 

chloramine hazards instead of concentrations. 

Two mapping models, Inverse Distance Weighted (IDW) and the Bayesian Kriging Model (BKM), 

were applied in ArcGIS. The performance of these models was compared and validated against 

chloramine concentrations records and the BKM model was found to be more accurate. The error 

in IDW model predictions was considerably higher for chloramine peak concentrations. 

6.1.5 Structuring a hazard assessment framework to stormwater quality  

The “4-stage-3-model” hazard assessment framework was constructed to evaluate stormwater 

pollution risks in stormwater networks.  It incorporates a stormwater surface runoff and pipe 

hydrodynamic model, a stormwater quality model, GIS-based mapping model and GIS-based 

hazard assessment maps. This framework was applied to study chloramine pollution in stormwater 

discharged to the North Saskatchewan River in Edmonton, Alberta, Canada. This application 

required;  

1. a stormwater simulation model in MIKE URBAN to simulate surface runoff and pipe flow 

rates,  

2. a newly-developed stormwater quality model (VDCS) to predict chloramine loads at the 

system outfall considering variability of chloramine decay coefficients, and  

3. a mapping model in ArcGIS using Bayesian kriging interpolation to develop chloramine 

concentration and water quality hazard maps for the study area.  
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The framework successfully generated chloramine concentration and hazard maps that showed the 

spatial variation of hazards from chloramine releases over the study basin. Results showed 

approximately 25% and 54% of the basin at moderate to high risk of chloramine-related water 

pollution based on EMC and Fuzzy hazards, respectively. 

6.1.6 Applying the framework to study chloramine pollution in stormwater systems 

A new hazard score system was developed based on EMC values. EMCs calculated were 

normalized by dividing their values by the maximum EMC value found in the study area. This 

hazard score is suitable for chloramine, as it builds on calculations that incorporate the factors 

important for chloramine chemistry in the EMC calculations including pollution concentration and 

total mass, stormwater volume, effect of land-use type on chloramine decay rates, and 

characteristics and layout of the sewer system. This EMC-based hazard scores successfully 

generated a chloramine hazard map that showed the spatial variation of hazards of chloramine 

releases in the study basin as a result of individual point-source releases.  

In the second approach, fuzzy logic, using available literature on chloramine decay and previous 

findings of this study, factors affecting chloramine pollution in the storm sewer system were 

identified including EMC values, land-use types, annual average rainfall, ground surface slopes, 

property assessment values, spatial variations of chloramine decay rates, density of impervious 

areas and proximity to the sewer network. All relevant spatial data were collected and introduced 

into the ArcGIS environment. Each hazard-driving factor had five possible levels: (1) very low, 

(2) low, (3) moderate, (4) high, and (5) very high pollution susceptibility, ranked with respect to 

their relative weight affecting pollution hazard. Then, fuzzy membership functions were used to 

define the individual classes in each map according to their degree of membership. These two 

techniques were applied and their results were compared 

 

6.1.7 Producing hazard assessment maps for chloramine pollution 

Concentration maps showed that under dry weather conditions chloramine concentration over the 

entire basin was higher than the safe range (0.02 mg/L), with a minimum value of 0.076 mg/L. for 

design storms of 2 and 5-year it was found that 60% and 80% of the 30th Avenue basin developed 
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concentrations within the safe range. Return periods higher than 5-year posed no significant 

environmental concerns producing chloramine concentrations below regulation discharge limits 

over the entire basin. EMC- and fuzzy-based hazard techniques successfully generated chloramine 

hazard maps for the study area. This application showed that;  

1. system operators should not be concerned with chloramine releases approximating hydrant 

discharge levels outside dry weather and small rainfall periods,  

2. hazard and concentration maps should be used in parallel to anticipate maximum 

concentrations and to assess potential risks of chloramine pollution, since each provides a 

different purpose. Concentration maps can help to evaluate sudden changes in the 

pollution load, and in turn, anticipate high concentration incidents regardless of their mass 

loads. Hazard maps can be more important to environmental pollution control and 

management, since the highest pollutant concentrations can be associated with small storm 

discharges, which makes them a lesser concern for surface water quality, 

3. the new framework for developing concentration and hazard maps can improve water 

quality management by helping municipalities and water utilities to comply with 

regulations that usually permit a maximum pollutant concentration in stormwater 

(concentration maps), and to distinguish areas that pose high risk to receiving waters and 

that therefore require additional water quality monitoring and enforcement to control 

prohibited/unregulated releases (hazard risk maps), 

4. this hazard assessment methodology can promote the effectiveness and speed of provided 

environmental solutions. In addition, this framework can improve stormwater quality by 

helping to target monitoring and enforcement resources, leading to higher surface water 

quality and healthier aquatic ecosystems. 

5. further, highlighting areas with low to no-risk of chloramine pollution can optimize local 

resources by focusing efforts on vulnerable areas, and 

6. its value lies in the production of a tool for stormwater system operators that provides a 

rapid and accurate pollution hazard assessment without the need to perform time- and 

labor-intensive calculations on a case-by-case basis.  
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6.2 Recommendations 

The work presented here related to stormwater quantity and quality modeling and hazard 

assessment methods could benefit from further study. The following are suggestions for future 

work on stormwater modeling that may help modelers and system operators to overcome 

limitations, optimize resources, extend capabilities and widen applications of stormwater models. 

 

6.2.1 For stormwater model developers 

Some available stormwater models like MIKE URBAN lack auto-calibration features, which save 

modelers a lot of time and effort in conducting a large number of simulations during manual 

calibrations. Some software packages, like PC-SWMM, have features that show approximate 

changes in the model results that correspond to defined perturbations in model input; such features 

really aid model validation.  

Newly-developed stormwater models have built-in tools to import attributes for different system 

components from GIS systems like ArcGIS. However, those models do not utilize available GIS 

data to automatically determine/estimate the key characteristics of model variables. For example, 

using digital elevation maps, models can easily calculate catchment slope and area, and GIS spatial 

analysis tools can be devised to delineate catchment areas. Also, image processing tools can 

identify specific land-use types such as parks and residential areas. Incorporating these tools in the 

stormwater model environment would make it much easier for modelers to achieve reliable model 

predictions. 

Simulation summary reports of stormwater models can be improved by automatically calculating 

commonly used statistical measures such as R2, NSE, RMSE, MAE, and IA. Such additions could 

help to assess model performance within the model environment. 

Available water quality models require improvements to enhance simulation capabilities of 

different water pollutants with different characteristics. As revealed in this research, the addition 

of a variable decay coefficient tool would increase the advective dispersion module capability in 

stormwater models, and in turn, improve model results. Such an improvement can be achieved by 

allowing the definition of local decay coefficients for user-selected groups of pipe segments. 
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Uncertainty assessments should be conducted so as to determine various uncertainty sources and 

allow uncertainty predictions for future stormwater modelling work. 

 

6.2.2 For future studies 

The framework developed in this work can be generalized to other chemical substances that impair 

stormwater quality through either point or non-point source pollution. Considering that some of 

the steps taken here were adopted specifically to represent the worst-case scenario for chloramine 

releases, other measures should be designed based on the pollutant. For example, DWF represents 

the lowest rainfall input, which should result in increased chloramine concentrations at the system 

outfall. However, other pollutants that accumulate on the ground surface over antecedent dry 

periods would not share the same characteristics, such as total suspended solids and heavy metals. 

For each pollutant, the key determinants should be established, and then proper hazard assessment 

techniques should be applied. Implementing this hazard assessment framework for a complex 

stormwater pollutant with many decay mechanisms and pathways like chloramine means that the 

framework is applicable to many other stormwater pollutants. 

Such stormwater pollution hazard assessment tool can be generalizable to other Canadian cities 

and internationally, and can be made flexible enough to apply in the future to study the dissipation 

of other constituents in sewer systems. 

Future studies on risk assessment of chloramine pollution can test the adequacy of different GIS-

based hazard assessments tools, such as analytical hierarchy procedure, fuzzy logic and artificial 

neural networks. Comparison of different assessment tools against actual water quality 

measurements can help to assess their results and identify the most reliable technique for each 

stormwater system. Also, different classes of each factor can be assigned and relative weights of 

affecting-factors can be adjusted. 

Future work can improve water quality monitoring by using data loggers and autosamplers to 

determine pollutant input from specific outdoor uses such as irrigation water application in park 

areas, commercial outdoor car washers and unregulated industrial releases. Such data would help 

to identify actual pollutant loads for different land-uses. 
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Many statistical measures have been designed particularly to assess model performance for low 

flow conditions, but none of these has been sufficiently tested for different water resources 

applications. Further, researchers disagree on the most suitable low flow measures. In this research, 

ln(NSE) was tested and found not to reflect the improvement in model performance through the 

validation process. Future studies should either evaluate current low flow measures or introduce 

new measures to better serve different water resources applications. 

6.2.3 For municipalities and regulatory agencies 

For future studies, an extensive stormwater quality monitoring program is recommended to 

improve water quality simulations that involve degradable chemicals in stormwater networks. 

Although resource-intensive and potentially costly, such monitoring programs would improve the 

estimation of pollutant decay rates, enhance understanding of the role of different land-uses and 

pollutant loads on pollutant concentrations and aid validation of stormwater quality simulations. 

The quality of receiving water bodies is not determined by the maximum pollution concentrations 

of stormwater effluents, but rather by the total pollutant mass discharged into the system. To keep 

pollution levels below the assimilation capacity of receiving waters, system managers should take 

the total pollutant mass into consideration as well. Therefore, new regulations should set limits on 

mass fluxes along with concentrations to mitigate environmental risks related to stormwater 

contamination. Scientists should work on tools or procedures to readily estimate pollutant mass at 

system outlets.  
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APPENDIX A 

DESCRIPTION OF COLLECTED DATA 

 

Table A1 Collected data description, source and application 

Item Source Format Description 

Data application 
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A) GIS Data 

Aerial images City of Edmonton, 

update version 2014 

Raster images Satellite raster images that cover the area 

of the 30th Avenue and Kennedale 

stormwater basins 
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DEM City of Edmonton, 

update version 2013 

Shapefile 

Feature Class 

digital elevation models with spatial 

resolution of 1.5 m, and resolution of 

topography of 0.1 m 

∎   ∎ 

Land-use data City of Edmonton, 

update version 2015 

Shapefile 

Feature Class 

Simplified land-use types were used to 

represent spatial variability of land-use 

across the study area. 

∎ ∎  ∎ 

Property 

assessment 

maps 

City of Edmonton, 

update version 2015 

KML files Data was downloaded directly from the 

City’s open portal (ww.edmonton.ca) ∎   ∎ 

Low 

development 

residential 

uses 

Developed based on 

Google maps, 

update version 2016 

KML files Based on aerial images and the provided 

property assessment data by the City of 

Edmonton, the low development 

residential land-use was estimated. 

∎   ∎ 

Parklands 

locations 

Developed based on 

Google maps, 

update version 2016 

KML files Location of different parks within the 

study area and accessibility. ∎    

Stormwater 

ponds 

locations 

Developed based on 

Google maps, 

update version 2016 

KML files Location of different wet stormwater 

ponds within the study area. ∎    

Locations of 

pressure 

vessel 

manufacturers 

Developed based on 

Google, Alberta 

Pressure Vessel 

Manufacturing Sector 

website and telephone 

listings, update 

version 2016 

KML files Spatial distribution of pressure vessel 

manufacturers in Edmonton different 

wet stormwater ponds within the study 

area. ∎    

Locations of 

car services 

vendors 

Developed based on 

Google maps and 

telephone listings 

KML files Automobile-related service providers 

such as car rental agencies, car washers 

and dealerships 
∎    

Catchment 

Slopes 

Developed from 

DEM 

File System 

Raster 

Using DEM data, catchment slopes were 

estimated using geospatial analyst in 

ArcGIS. 

∎   ∎ 
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Impervious 

surfaces 

density 

Developed from 

aerial images and 

land-use maps. 

Shapefile 

Feature Class 

Based on roofline data provided by the 

CoE and special GIS layers prepared for 

roadways, parking areas and driveways. 
∎   ∎ 

 Neighborhoods City of Edmonton Shapefile 

Feature Class 

Sub catchments / neighborhoods in the 

study area. 
  ∎ ∎ 

Average 

annual rainfall 

for Edmonton 

Environment 

Canada 

Excel sheets Historical rainfall data collected over the 

last decade was used to develop average 

annual rainfall for Edmonton 

(Environment Canada, 2018). 

   ∎ 

B) Sewer system attributes 

Sewer system 

attributes 

City of Edmonton, 

update version 2015 

DGN files 

and 

spreadsheets 

attributes and layouts of the stormwater 

network components from the DRAINS 

database. 
∎ ∎ ∎ ∎ 

MIKE 

URBAN 

models 

City of Edmonton, 

update version 2015 

DHI MOUSE 

files 

Models of the two study basins were 

provided uncalibrated to the trunk level. ∎    

Parklands 

attributes 

City of Edmonton, 

update version 2016 

Excel sheets Data about the city’s parklands, 

including area, irrigation status, metering 

and type of watering source. 

∎    

C) Other 

Rainfall data City of Edmonton, 

update version 2017 

Spreadsheets Long-term rainfall data was provided for 

a network of rain gauges in and around 

the study basins. 

∎    

Pipe flow 

monitoring 

data 

City of Edmonton Spreadsheets Temporary pipe flow monitoring values 

for the summer seasons of 2015 and 

2016 at one permeant and three 

temporary locations. 

∎    

Field 

sampling 

results 

Collected Spreadsheets Field data collection over the two 

summers of 2015 and 2016, data 

available at Zhang et al. (2018a, 2018b, 

2018c). 

 ∎ ∎ ∎ 

Design storm 

data 

Government of 

Canada 

Charts IDF curves for Edmonton were obtained 

and used to calculate design storms of 

return periods of 2, 5 and 10 years 

(Government of Canada, 2018). 

   ∎ 

Chloramine 

decay 

 Zhang et al ( 

2018a, 2018b, 

2018c) 

Collected Land-use dependent coefficients for 

commercial, residential, industrial and 

park areas were 0.00888, 0.00089, 

0.00846 and 0.0019 respectively. 

 ∎ ∎ ∎ 
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APPENDIX B 

ADDITIONAL INFORMATION ON THE STORMWATER MODEL IN MIKE URBAN 

 

This section presents the main settings used to build the stormwater model of the 30th Avenue 

stormwater basin in MIKE URBAN. As discussed earlier, the kinematic wave and dynamic wave 

modules were used to conduct the surface runoff and pipe flow routings, respectively. 

B1    System definitions 

 

 

Fig. B1 Definition of the catchment geometry 
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Fig. B2 Definition of the catchment surface hydrology 
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Fig. B3 Definition of the system nodes in MIKE URBAN 
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Fig. B4 Definition of the system outlet nodes in MIKE URBAN 
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Fig. B5 Definition of a stormwater pump in MIKE URBAN 
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Fig. B6 Definition of a stormwater orifice in MIKE URBAN 
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Fig. B7 Definition of the stormwater pipes in MIKE URBAN 
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B2    Module parameters 

 

Fig. B8 The global Kinematic Wave Model editor in MIKE URBAN 
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Table B1 The Kinematic Wave Model calibrated parameters for the 30th Avenue basin 

Model Parameter  Unit Minimum Average Maximum 

Wetting losses (impervious steep) m 5.0x10-4 7.0x10-4 9.0x10-4 

Wetting losses (impervious flat) m 5.0x10-4 7.0x10-4 9.0x10-4 

Wetting losses (pervious low) m 5.0x10-4 7.0x10-4 9.0x10-4 

Wetting losses (pervious medium) m 5.0x10-4 7.0x10-4 9.0x10-4 

Wetting losses (pervious high) m 5.0x10-4 7.0x10-4 9.0x10-4 

Storage losses (impervious flat) m 1.0x10-3 2.0x10-3 4.0x10-3 

Storage losses (pervious low) m 9.0x10-3 1.1x10-2 2.5x10-2 

Storage losses (pervious medium) m 9.0x10-3 1.1x10-2 2.5x10-2 

Storage losses (pervious high) m 9.0x10-3 1.1x10-2 2.5x10-2 

Horton’s infiltration maximum capacity 

(pervious low) 

m/s 8.0x10-7 4.0x10-6 8.0x10-6 

Horton’s infiltration maximum capacity 

(pervious medium) 

m/s 2.5x10-6 6.0x10-6 1.25x10-5 

Horton’s infiltration maximum capacity 

(pervious high) 

m/s 4.2x10-6 8.1x10-6 2.1x10-5 

Horton’s infiltration minimum capacity 

(pervious low) 

m/s 8.0x10-7 1.0x10-6 1.2x10-6 

Horton’s infiltration minimum capacity 

(pervious medium) 

m/s 9.5x10-7 1.12x10-6 1.425x10-6 

Horton’s infiltration minimum capacity 

(pervious high) 

m/s 1.1x10-6 1.35x10-6 1.65x10-6 

Horton’s exponent wet conditions 

(pervious low) 

N/A 9.0x10-4 1.2x10-3 1.2x10-3 

Horton’s exponent wet conditions 

(pervious medium) 

N/A 9.0x10-4 1.2x10-3 1.2x10-3 

Horton’s exponent wet conditions 

(pervious high) 

N/A 9.0x10-4 1.2x10-3 1.2x10-3 
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Horton’s exponent dry conditions 

(pervious low) 

N/A 3.0x10-5 3.0x10-5 3.0x10-5 

Horton’s exponent dry conditions 

(pervious medium) 

N/A 3.0x10-5 3.0x10-5 3.0x10-5 

Horton’s exponent dry conditions 

(pervious high) 

N/A 3.0x10-5 3.0x10-5 3.0x10-5 

Manning number (impervious steep) N/A 48.0 52.0 56.0 

Manning number (impervious flat) N/A 48.0 52.0 56.0 

Manning number (pervious low) N/A 26.0 28.0 30.0 

Manning number (pervious medium) N/A 26.0 28.0 30.0 

Manning number (pervious high) N/A 3.3 3.3 3.3 

Manning number (concrete pipe) N/A 68 77 85 
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APPENDIX C 

VARIABLE DECAY COEFFICIENT SIMULATOR: MODEL DISCRIPTION, USE 

GUIDE, AND MODEL CODE 

 

This appendix describes the different component of the Variable Decay coefficient Simulator 

(VDCS), its modeling interface, inputs and input files, and how to run. The appendix also provides 

the model code in Python. This appendix is supplemented with the information provided for the 

model development as discussed in both Chapter 4 and Chapter 5. Therefore, this document is not 

a standalone but rather complements the model description provided earlier.  

 

C1    About Python 

The VDCS model is implemented using a programming language called Python. Python is an 

interpreted, high-level, general-purpose programming coding language, created by Guido van 

Rossum and first released in 1991, which is available for free from the Python Software 

Foundation, at (https://www.python.org/). 

The installment guide of Python and the user’s guide can be accessed through the website of 

Python at (https://www.python.org/doc/). Fig. C1 shows the user interface of Python. 

 

Fig. C1 User interface of Python 

https://www.python.org/
https://www.python.org/doc/
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C2    Model structure 

The water quality computation process in the VDCS is shown in Fig. C2. The first tier represents 

the required inputs to the VDCS. The second tier represents the model computations. The last tier 

is for the model outputs.  

 

 
 

 

 

 

Fig. C2 Simplified schematic diagram of inputs, process flow and outputs  

of in the VDCS model 
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Results 
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along Identified Paths 

 

Identify Pollutant Paths 
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Geometry 

Nodal Pollutographs 
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C3    Model inputs 

For simplicity, the VCDS reads the required inputs from files in the form of spreadsheets, either 

in .csv or .xls file formats. Inputs are categorized into three groups. First, sewer system attribute 

data are required, which describe different system properties for sewer pipes, manholes, and 

outlets, in terms of diameters, lengths, material and invert levels, and manhole IDs at both upstream 

and downstream ends of each pipe in the system. The VDCS uses these data to reconstruct the 

physical geometry of the water network from upstream branches, diversion and collection nodes, 

and through to the system outlet. This reproduction of the network layout is required later to 

determine the paths of pollutants through the sewer system. A sample of this input is shown in Fig. 

C3. 

 

Fig. C3 System attributes input 
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Second, hydrodynamic results from independent stormwater simulations are imported to provide 

time series of flow rates and velocities throughout the sewer system. Organization of the 

hydrodynamic results in spreadsheet form allows the VDCS to import them from any stormwater 

simulation model. A sample input of the hydrodynamic simulation results is shown in Fig. C4. 

 

Fig. C4 Input of the hydrodynamic simulation results 

Third, pollutant introduction points such as fire hydrants and industrial releases are defined for 

specific locations in the drainage system along with variations of their loads over the simulation 

period. A sample of this input is shown in Fig. C5. 
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Fig. C5 Input of the hydrodynamic simulation results 

 

Finally, the decay order is selected, and the decay rate variation is set to one of three levels, 1) 

constant average value, 2) spatially-varying per land-use, or 3) varying both spatially and 

temporally. Varying decay coefficients are introduced in this input, as shown in Fig. C6. 



     

174 

  

  

 

Fig. C6 Input of the pollutant decay variability definition 

 

 

C4    Model process 

Employing the provided data sets, the VDCS calculates concentrations of the degradable substance 

along its transit path through the sewer system to the system outlet. The VDCS model 

computations start by identifying contamination paths, which use the constructed network flow 

map to trace pollutants from previously-defined introduction points from manhole-to-manhole to 

the system outlet. The model then identifies common pollution paths stemming from pollutant 

introductions at different locations in the network and combines their loads in the subsequent water 

quality computations. Based on the concentration at introduction points and volumetric flow rates, 

the pollutant load can be calculated and then tracked over the calculated contaminant path 

according to the selected decay order. For chloramine dissipation with a first-order decay model, 

the VDCS calculates the concentration at the downstream node through, 
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 𝐶𝐷𝑆 = 𝐶𝑈𝑆 𝑒−𝐾𝑡 (C1) 

where 𝐶𝑈𝑆 and 𝐶𝐷𝑆 are the chloramine concentrations at upstream and downstream ends of the 

current sewer link respectively, K is the first-order decay coefficient, and t is the travel time 

between the upstream and downstream nodes calculated from the pipe length and flow velocity. 

the temporal variation of chloramine decay rates can be described with the following relationship, 

 

𝐾𝑡,𝑖 =
1

𝛼 𝑡 + 𝛽
∗ (𝑓𝑖) 

(C2) 

where Kt,i is the decay coefficient at time t for land-use i, f is a land-use dependent coefficient, t is 

the discharge time in minutes, 𝛼 =1.73, and 𝛽 =1.0. 

Depending on the selected decay coefficient behavior, the VDCS sets the decay coefficient to a 

constant value or computes it at every timestep from Eq. C2. Similarly, beginning at the 

introduction points and then moving manhole-to-manhole to the system outlet, the VDCS model 

applies Eq. C1 to calculate the concentration downstream based on a known upstream 

concentration. At diversion or collection points, downstream concentrations are calculated by 

converting all upstream concentrations to mass fluxes, and then distributing the total mass to the 

downstream links according to their relative volumetric proportions, assuming uniform and full 

mixing at all junctions.  

 

C5    Model output 

The VDCS produces pollutographs for different system nodes, such as manholes and outlets. 

Results can be exported to spreadsheets (.csv or .xls) or plotted within the Python environment.  
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C6    Model code 

The code of the VDCS model is presented below in the format of the Python coding. 

 

 
 #Importing modules 

import csv 

import scipy 

import numpy as np 

import pylab as py 

import pandas as pd 

import math 

import datetime 

import matplotlib.pyplot as plt 

import sys 

''' 

# Globally divert all print statements to THIS TXT file: 

import sys 

sys.stdout = 

open("c:\\Users\\MGaafar\\PycharmProjects\\no_1\\Results.txt", "w") 

print ("test sys.stdout") 

''' 

 

### [1] FIRST importing the MU Simulation results csv file : pipe 

flows,(T, Q, V) 

print ("\n [1] Imported data from MU\'s simulations \n", "-"*45) 

    ## Listing IDs of pipes imported from MU's simulation 

with open('1.csv') as file_1a:      #describe location (path) 

    myReader1a = list(csv.reader(file_1a, delimiter="|"))    #Name the 

file = describe delimiter 

 

    MU_pipes = myReader1a[0][1:]  # Reading pipe IDs of MU simulation 

starting row [0], column [1]:[end] 

    MU_pipes = list(filter(None, MU_pipes))  # this line to remove any 

empty strings processed as pipe IDs 

print ("Number of pipes imported from MU hydrodynamic simulation file:", 

len(MU_pipes)) 

print ("With Pipe IDs: ", MU_pipes, "\n") 

 

    ##Pipes time series 

        # importing data from 1.csv 

file_1b = "1.csv"  #opening the 1.csv again different method to get time 

series data 

myReader1b = [line.strip().split('|') for line in open(file_1b)] # to 

transfrom data 

del myReader1b[0:2] # Removing the first TWO header rows from the 

myReader1b List 
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print myReader1b 

        # initializing a new time series list to store pipes time-series 

data into 

No_timesteps = len(myReader1b)          #No of data lines in the time 

series for Q and V 

print ("No. of time series found:", No_timesteps) 

timeStep = 300                          #CHANGE it to readable afterwards: 

in seconds = 5min*60=300 sec 

No_columns1 = len(MU_pipes) * 2 + 1     # each pipe has Q and v columns 

plus one for time/date column 

timeSeries_1 = [[] for i in range(No_columns1)] 

print timeSeries_1   # one list has each col as a sub-list 

 

# Saving data in the new time series list 

for i in range(No_timesteps):      # To switch col to rows and rows to col 

between myReader1b and timeseries_1 

    for j in range(No_columns1):        # i is the row number from 0 to 

length of list myReader1b 

        item_ij = myReader1b[i][j]      # j column of data like time, Q or 

v 

        timeSeries_1[j].append(item_ij)         #every loop the new row 

item item_ij get added to list 

 

print('MU\'s pipes time-series data (strings) :',timeSeries_1) 

print ("MU\'s pipes time-series data (strings) :") 

 

for i in range(No_columns1): # i column in timeseries_3 

    if i!=0:     #For the date/time col only 

        for j in range(No_timesteps):        # i is the row number from 0 

to length of list myReader3b 

            timeSeries_1[i][j] = str(timeSeries_1[i][j])      # j column 

of data like time, Q or C 

col_width = 18  # col width to enter 

for row in timeSeries_1: 

    print ("".join(word.ljust(col_width) for word in row)) 

 

# transforming data in time-series list to floats and date/time 

 

for i in range(No_columns1): # i column in timeseries_3 

 

    if i==0:     #For the date/time col only 

        for j in range(No_timesteps): 

            timeSeries_1[i][j] = 

datetime.datetime.strptime(timeSeries_1[i][j], "%Y-%m-%d %H:%M") #time 

format 

 

    else:       # all other columns 'str' to 'float' 

        for j in range(No_timesteps):        # i is the row number from 0 

to length of list myReader3b 
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            timeSeries_1[i][j] = float(timeSeries_1[i][j])      # j column 

of data like time, Q or C 

                 #every loop the new row item item_ij get added to list 

 

#print 'MU\'s pipes time-series data (adjusted) :', timeSeries_1 

 

#Extracting separate DateTime, V and Q time series: 

 

DT_timeSeries_1=[]    #starting DateTime list 

Q_timeSeries_1=[]           #starting Discharge nested list, list for each 

pipe 

V_timeSeries_1=[]           #starting Velocity nested list, list for each 

pipe 

 

for i in range(No_timesteps): # i row in timeseries_1 

    DT_timeSeries_1.append(timeSeries_1[0][i]) #time format 

 

for i in range(len(MU_pipes)): 

    Q_timeSeries_1.append(timeSeries_1[2*i+1])  #picking only the odd 

columns after the time column 

    V_timeSeries_1.append(timeSeries_1[2*i+2]) #picking only the even 

columns after the time column 

 

print("DateTime :", DT_timeSeries_1) 

print("Discharge :", Q_timeSeries_1) 

print("velocity :", V_timeSeries_1) 

 

 

### [2] Second second csv data (pipe data): Using a dictionary within a 

list 

print ("\n"," [2] Pipe attributes data from the city of Edmonton \n", "-

"*55) 

    ## Building the pipes dictionary 

pipes = [] 

with open('2.csv', 'r') as file_2: 

    myReader2 = csv.reader(file_2, delimiter="|") 

    next(myReader2) 

    i = 1    #To initiate the dictionary ID 

    for row in myReader2: 

        pipes.append({'dictID': i, 'pipeID': row[0], 'Diameter': 

float(row[1]), 'Slope': float(row[3])/100, 'Length': float(row[4]), 

'typeUS': row[6], 'pipeUS': row[5], 'typeDS': row[11], 'pipeDS' : row[10], 

'pipe1/N' : float(row[15]), 'pipeLandUse' : row[16]}) 

        i = i + 1 

 

    ## Printing pipes{} dictionary values: 

      # following 1st method: (Read comment below) 

 

    ## There are TWO ways to print data in the pipes{} dictionary: 
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        # 1st method 

print ('\nSewer network attributes :\nDrainage pipes attributes :') 

for i in range(len(pipes)): 

    print (pipes[i]) 

 

''' 

        # 2nd method 

for i in pipes: 

     print i 

 

    ## How to access a dictionary key value present inside a list 

x = pipes[0]['pipeID']       # Remember 1st = [0], last = [n-1] 

print x 

 

for i in range(len(pipes)): 

    y = pipes[i]['pipeID'] 

    print y 

''' 

 

#Listing all MHs found in the pipe Data 

print ("\n","  List of All Manholes in the sewer network \n", "-"*40) 

MHs=[]  #starting the list 

for i in range(len(pipes)): 

    item_US = pipes[i]['pipeUS'] 

    item_DS = pipes[i]['pipeDS'] 

    MHs.append(item_US);MHs.append(item_DS) #adding all US and DS MHs to 

the list 

MHs = sorted(set(MHs))  #set() to remove duplicates and sorted() to sort 

alphabetically 

 

print("No. of network Manholes:",len(MHs),"\t","Found Manhole IDs:",MHs) 

 

### [3] Third importing chloramine-introducing manholes (pollutants data): 

Using a dictionary within a list 

print ("\n [3] Importing data of chloraine inflows\n", "-"*42) 

 

with open('3.csv', 'r') as file_3a: 

    myReader3a = list(csv.reader(file_3a, delimiter="|")) 

 

    ##Number of chloramine MHs 

    No_chl_int_MHs = int(myReader3a[0][1])  # Reading the Number of 

chloramine-introducing MHs # transferring to integer 

    print ('Number of chloramine-introducing MHs : ', No_chl_int_MHs) 

 

    ## Listing IDs of chloramine MHs 

    chl_int_MHs = myReader3a[0][3:] # Reading chloramine-introducing MHs 

IDs starting row [0], column [3]:[end] 

    chl_int_MHs = list(filter(None, chl_int_MHs)) # this line to remove 

any empty strings processed as MHs IDs 
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    print ('List of chloramine-introducing MHs : ', chl_int_MHs) 

    print ("Checking all MHs are processed in the MHs IDs list : ", 

bool(len(chl_int_MHs)== No_chl_int_MHs)) 

 

    ##MHs time series 

        # importing data from 3.csv 

file_3b = "3.csv"  #opening the 3.csv 

myReader3b = [line.strip().split('|') for line in open(file_3b)] # to 

transfrom data in file_3b to each line to a list of stings using '\t' as a 

separator 

del myReader3b[0:3] # Removing the first three header rows from the 

myReader3b List 

#print myReader3b 

        # initializing a new time series list to store MHs time-series 

data into 

No_columns3 = No_chl_int_MHs * 2 + 1    # each MH has Q and C columns plus 

one for time/date column 

timeSeries_3 = [[] for i in range(No_columns3)] 

print timeSeries_3   # one list has each col as a sub-list 

 

# Saving data in the new time series list 

for i in range(No_timesteps):      # To switch col to rows and rows to col 

between myReader3b and timeseries_3 

    for j in range(No_columns3):        # i is the row number from 0 to 

length of list myReader3b 

        item_ij = myReader3b[i][j]      # j column of data like time, Q or 

C 

        timeSeries_3[j].append(item_ij)         #every loop the new row 

item item_ij get added to list 

 

print ('\nChloramine concentrations time-series :\nMHs time-series data 

(strings) :',timeSeries_3) 

 

# transforming data in time-series list to floats and date/time 

for i in range(No_columns3): # i column in timeseries_3 

    if i==0:     #For the date/time col only 

        for j in range(No_timesteps): 

            timeSeries_3[i][j] = 

datetime.datetime.strptime(timeSeries_3[i][j], "%Y-%m-%d %H:%M") #time 

format 

 

    else:       # all other columns 'str' to 'float' 

        for j in range(No_timesteps):        # i is the row number from 0 

to length of list myReader3b 

            timeSeries_3[i][j] = float(timeSeries_3[i][j])      # j column 

of data like time, Q or C 

                 #every loop the new row item item_ij get added to list 

 

print ('MHs time-series data (adjusted) :',timeSeries_3) 
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#Extracting separate Q_MHs and C time series 

Q_MHs_timeSeries_3=[]    #starting Discharge nested list, list for each 

pipe 

C_timeSeries_3=[]  #starting concentrations nested list, list for each 

pipe 

 

for i in range(No_chl_int_MHs): 

    Q_MHs_timeSeries_3.append(timeSeries_3[2*i+1])  #picking only the odd 

columns after the time column 

    C_timeSeries_3.append(timeSeries_3[2*i+2]) #picking only the even 

columns after the time column 

 

print ("Manholes discharges :", Q_MHs_timeSeries_3) 

print ("inflow concentrations :", C_timeSeries_3) 

 

### [4] Forth importing the un-chlorminated inflows at MHMU Simulation 

results csv file : pipe flows,(T, Q, V) 

print ("\n [4] Importing Un-chloraminted inflows data from MU\'s 

simulations \n", "-"*65) 

    ## Listing IDs of pipes imported from MU's simulation 

with open('4.csv') as file_4a:      #describe location (path) 

    myReader4a = list(csv.reader(file_4a, delimiter="|"))    #Name the 

file = describe delimiter 

 

    un_Chl_MH_inflows = myReader4a[0][1:]  # Reading pipe IDs of MU 

simulation starting row [0], column [1]:[end] 

    un_Chl_MH_inflows = list(filter(None, un_Chl_MH_inflows))  # this line 

to remove any empty strings processed as pipe IDs 

    No_of_un_Chloraminated_inflows = len (un_Chl_MH_inflows)  # each pipe 

has Q and v columns plus one for time/date column 

print ("Number of Un-chloraminated inflow found : ", 

No_of_un_Chloraminated_inflows) 

print ("Linked to the following MHs : ", un_Chl_MH_inflows, "\n") 

 

    ##un-chloraminated inflow timeseries 

        # importing data from 4.csv 

file_4b = "4.csv"  #opening the 4.csv again different method to get time 

series data 

myReader4b = [line.strip().split('|') for line in open(file_4b)] # to 

transfrom data in file_4b to each line to a list of stings using '|' as a 

separator 

del myReader4b[0:2] # Removing the first TWO header rows from the 

myReader4b List, 2 not included 

print ("Data imported as is:",myReader4b) 

 

        # initializing a new time series list to store MHs discharges 

found 

timeSeries_4 = [[] for i in range(No_of_un_Chloraminated_inflows+1)] #each 
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MH has one sub-list 

print ("Time series 4 initiated:",timeSeries_4)   # one list has each col 

as a sub-list 

 

        # Saving data in the new time series list 

for i in range(No_timesteps):      # To switch col to rows and rows to col 

between myReader1b and timeseries_1 

    for j in range(No_of_un_Chloraminated_inflows+1):        # i is the 

row number from 0 to length of list myReader4b 

        item_ij = myReader4b[i][j]      # j column of data like time or Q 

        timeSeries_4[j].append(item_ij)         #every loop the new row 

item item_ij get added to list 

 

del timeSeries_4[0:1] # Removing the first list from the timeSeries_4 

List, note 1 not included; time/date column 

print ("Time series 4 :", timeSeries_4) 

 

        #Starting a new un-chloraminated MHs inflows time series 

un_Chloraminated_inflows_timeSeries_4 = [[] for i in 

range(No_of_un_Chloraminated_inflows)] #each MH has one sub-list 

print ("Un-chloraminated MHs inflows (empty list) :", 

un_Chloraminated_inflows_timeSeries_4) 

 

        # transforming data in timeseries_4 to the new list of 

un_chlo_inflows only, all floats and skip the time/date column 

for i in range(No_of_un_Chloraminated_inflows): # i list in timeseries_4 

    for j in range(No_timesteps):  # j is for each time step, the row 

number from 0 to length of list timeSeries_4 

        item_ij = float(timeSeries_4[i][j])      # string to float 

        un_Chloraminated_inflows_timeSeries_4[i].append(item_ij) # every 

loop the new row item item_ij get added to list 

 

print ("Un-chloraminated MHs inflows :", 

un_Chloraminated_inflows_timeSeries_4) 

 

### Tracking MHs downstream every chloramine-introducing MH: 

    ##Starting new Lists each has No. of sub-lists = No. of chl MHs 

MH_tracking_MHs = [[] for i in range(No_chl_int_MHs)]   #to extract all 

MHs D/S of each chl MH 

MH_tracking_pipes = [[] for i in range(No_chl_int_MHs)] #to extract all 

pipes D/S of each chl MH 

 

    ##Filling the MHs list 

print ("\nTotal number of sewer pipes :",len(pipes)) 

for i in range(No_chl_int_MHs):      #For every chl MH 

    item_US = chl_int_MHs[i]           # the most US item is the chl-int 

MH 

    MH_tracking_MHs[i].append(item_US)  # adding 1st item to MHs list 

    for k in range(len(pipes)):         #to scroll over the whole list of 



     

183 

  

  

pipes again 

        for j in range(len(pipes)):         # for all items j in the list 

pipes 

            if item_US == pipes[j]['pipeUS']:   # if the US of the item j 

is the US/item 

                MH_tracking_MHs[i].append(pipes[j]['pipeDS'])   # adding 

the D/S of that item to the MHs list 

                item_US= pipes[j]['pipeDS']                     # Now the 

D/S of that item becomes the U/S of the next one 

 

print ('MHs path D/S chloramine-introducing MHs :', MH_tracking_MHs) 

 

    ##Filling the pipes list13313#$ 

 

for i in range(No_chl_int_MHs):      #For every chl MH 

    item_US = chl_int_MHs[i]           # the most US item is the chl-int 

MH 

    #MH_tracking_pipes[i].append(item_US)  # adding 1st item to pipes list 

    for k in range(len(pipes)):  # to scroll over the whole list of pipes 

again 

        for j in range(len(pipes)):         # for all items j in the list 

pipes 

            if item_US == pipes[j]['pipeUS']:   # if the US of the item j 

is the US/item 

                MH_tracking_pipes[i].append(pipes[j]['pipeID'])   # adding 

the pipeID of that item to the pipes list 

                item_US = pipes[j]['pipeDS']                     # Now the 

D/S of that pipe becomes the U/S of the next one 

 

print ('Pipes D/S chloramine-introducing MHs :', MH_tracking_pipes) 

 

    ##Identifying common paths (occurrences) 

chl_pipes_flat_list = [item for sublist in MH_tracking_pipes for item in 

sublist] 

chl_MHs_flat_list = [item for sublist in MH_tracking_MHs for item in 

sublist] 

 

""" 

which means? 

for sublist in MH_tracking_pipes: 

    for item in sublist: 

        flat_list.append(item) 

""" 

 

import collections 

No_chloramine_sources_pipes = collections.Counter(chl_pipes_flat_list) 

print ('No. of chloramine sources U/S each pipe :', 

No_chloramine_sources_pipes) 

No_chloramine_sources_MHs = collections.Counter(chl_MHs_flat_list) 
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print ('No. of chloramine sources U/S each MH :', 

No_chloramine_sources_MHs) 

# another way to count specific item -->  list.count('item') 

 

### Forth: First-order decay model calculations 

print ("\n [4] First-order decay model calculations \n", "-"*42) 

 

###Calculating travel times in every pipe in the network (individually): 

 

    #Building the list of single pipe travel time 

print ("\n  Calculating pollutant travel time in each pipe separately:\n", 

" -"*28) 

 

single_pipe_travel_time = [[] for i in range(len(pipes))]    #intializing 

the list for every pipe 

print ("All travel time items saved in one nested list of length = ", 

len(single_pipe_travel_time), "pipes") 

print ("The single pipe travel times empty list :", 

single_pipe_travel_time,"\n") 

 

    #Filling the single pipe travel time List: 

for j in range(len(pipes)): 

    length_x = pipes[j]['Length']                        #calling each 

pipe length 

    for k in range(No_timesteps): 

        vel_jk= V_timeSeries_1[j][k]             #calling the velocity 

value from its list 

        tt_x = round(length_x/vel_jk,0) if vel_jk != 0 else 0   # calc 

travel time = L/v #to avoid Div/0 error 

        tt_seconds = datetime.timedelta(seconds=tt_x)  #convert to time 

variables NOT USED LATER 

        single_pipe_travel_time[j].append(tt_x)     #updating travel_time 

list 

    print ("Pipe",pipes[j]['pipeID'], "Travel Times in sec :", 

(single_pipe_travel_time [j])) 

#print (single_pipe_travel_time, "\n") 

 

###Accumulative travel time for  pipes in each chloramine path: 

--------------------------------------------------------------- 

 

print ("\n  Calculating accumulative travel time up to each pipe\n", " -

"*28) 

 

    #Building the accumulated travel time list (3rd order list) [pipes] 

acc_travel_times_pipe = [[] for i in range(No_chl_int_MHs)] # No. of sub-

lists = No. of MH paths 

for i in range(No_chl_int_MHs): 

    for j in range(len(MH_tracking_pipes[i])): 

        acc_travel_times_pipe[i] = [[] for k in 
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range(len(MH_tracking_pipes[i]))] #No. of sub-sub-lists = No. of pipes in 

each MH paths 

print ("Accumulative travel time items saved in a list of 

[",No_chl_int_MHs,"] nested lists  = ",No_chl_int_MHs,"of chl. paths") 

print ("The accumulative travel times (pipes) empty list :", 

acc_travel_times_pipe) 

 

    #Filling the accumulated time travel list 

for i in range(No_chl_int_MHs):             #i every MH path (list) 

    print ("\nChloramine source No.", i+1, ", with Manhole ID :", 

chl_int_MHs[i],  ". Pipes in this path:") 

 

    for j in range(len(MH_tracking_pipes[i])):      #j every pipe in i 

every MH path 

        pipeID_x = MH_tracking_pipes[i][j]  # calling ID of pipe no.j 

 

        for k in range(len(pipes)):         #Only to get the DictID for 

each pipe in j 

            if pipeID_x == pipes[k]['pipeID']: 

                dictID_x = pipes[k]['dictID'] # calling dictID of pipe 

no.j 

        print ("\tAt location :", j + 1, " pipe ID: ", pipeID_x, ",with 

DictID:", dictID_x) 

 

        for k in range(No_timesteps):  #for every time step 

            if j==0:        #for the first pipe j=0 in each MH path i 

                

acc_travel_times_pipe[i][j].append(single_pipe_travel_time[dictID_x-1][k]) 

#importing travel time data for 1st pipe 

 

            else:           # for the following pipes accumulating begins 

                #before adding travel times must convert time strings TO 

datetime 

                previous_pipe_value = acc_travel_times_pipe[i][j-1][k] 

                current_pipe_value = single_pipe_travel_time[dictID_x - 

1][k] 

                acc_travel_times_pipe[i][j].append(current_pipe_value + 

previous_pipe_value) 

 

        print ("\t\ttravel time to end of pipe", MH_tracking_pipes[i][j], 

":", acc_travel_times_pipe[i][j]) 

 

##Accumulative travel time for  Manholes in each chloramine path: 

print("\n  Calculating accumulative travel time up to each Manhole\n", " -

" * 30) 

    # Building the accumulated travel time list (3rd order list) 

[Manholes] 

acc_travel_times_MH = [[] for i in range(No_chl_int_MHs)]  # No. of sub-

lists = No. of MH paths 
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for i in range(No_chl_int_MHs): 

    for j in range(len(MH_tracking_MHs[i])): 

        acc_travel_times_MH[i] = [[] for k in 

range(len(MH_tracking_MHs[i]))]  # No. of sub-sub-lists = No. of MHs in 

each MH paths 

print("Accumulative travel time items saved in a list of [", 

No_chl_int_MHs, "] nested lists  = ", No_chl_int_MHs,"of chl. paths") 

print("The accumulative travel times (MHs) empty list :", 

acc_travel_times_MH) 

 

    # Filling the accumulated time travel list 

for i in range(No_chl_int_MHs):  # i every MH path (list) 

    print("\nChloramine source No.", i + 1, ", with Manhole ID :", 

chl_int_MHs[i], ". Pipes in this path:") 

 

    for j in range(len(MH_tracking_MHs[i])):  # j every MH in i every MH 

path 

        # To get pipedID and DictID of the pipe U/S of each MH j 

        MH_ID_x = MH_tracking_MHs[i][j]  # calling ID of MH no.j 

        pipeID_x = "No chloramine pipes U/S"    #apply only for 1st MH in 

each path, , for next MHs value will be over-written 

        dictID_x = "N/A"        #apply only for 1st MH in each path, for 

next MHs value will be over-written 

 

        for k in range(len(pipes)):  # Only to get the PipeID and DictID 

for the pipe U/S of this MH j 

            if MH_ID_x == pipes[k]['pipeDS'] and pipes[k]['pipeID'] in 

MH_tracking_pipes[i]: 

                pipeID_x = pipes[k]['pipeID'] 

                dictID_x = pipes[k]['dictID']  # calling dictID of pipe 

no.j 

        print("\tAt location :", j, " MH ID: ", MH_ID_x, "chl. Pipe U/S:", 

pipeID_x, ",with DictID:", dictID_x) 

 

            #Now travel times of first MH (j=0) in each path i 

        for k in range(No_timesteps):  # for every time step 

            # adding delay time at MHs: 

            Delay_time_at_MH = 0       #define delay time at a single MH 

in Seconds 

            if j == 0:  # for the first MH j=0 in each MH path i 

                acc_travel_times_MH[i][j].append(0)  # setting first MH 

value to Zero 

 

            elif j==1:  # for the second MH (j=1) in each MH path i 

                

acc_travel_times_MH[i][j].append(single_pipe_travel_time[dictID_x - 

1][k]+Delay_time_at_MH)  # importing travel time data for 1st pipe to 2nd 

MH (j=1) 

            else: 
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                previous_MH_value = acc_travel_times_MH [i][j-1][k] 

                current_MH_value = single_pipe_travel_time [dictID_x-1][k] 

                

acc_travel_times_MH[i][j].append(current_MH_value+previous_MH_value+Delay_

time_at_MH) 

 

 

        print("\t\ttravel time to manhole No.", MH_tracking_MHs[i][j], 

":", acc_travel_times_MH[i][j]) 

 

 

###Ccalculating pollutant Mass from single sources: 

print ("\n  Calculation of Pollutant Mass D/S each introduction MH \n", " 

-" * 18) 

 

        #Building the pollutant mass matrix for manholes (3rd order list) 

pol_assembly_MH = [[] for i in range(No_chl_int_MHs)] # No. of sub-lists = 

No. of chloramine paths 

for i in range(No_chl_int_MHs): 

    for j in range(len(MH_tracking_MHs[i])): 

        pol_assembly_MH[i] = [[[],[]] for k in 

range(len(MH_tracking_MHs[i]))] 

        #No. of sub-sub-lists = No. of MHs in each MH paths each sublist 

has two lists [time],[c] 

print ("The MHs pollution assembly matrix (Empty List):", pol_assembly_MH) 

 

for i in range(No_chl_int_MHs):             #i every chloramine path 

(list) 

    print ("\n", "-" *2, "Pollutant Mass D/S chloramine source No.", i+1, 

", Manhole No.", chl_int_MHs[i],  ". MHs in this path:") 

 

    # Calling Data of all first MHs (IDs, Dicts, chl_sources U/S) 

    for j in range(len(MH_tracking_MHs[i])):      #j every MH in i every 

MH path 

 

        ##Getting the current MH data [ID, No. of chl sources US, pipes US 

and DS, MHs US] 

            # getting the ID of MH no.j 

        MH_x_ID = MH_tracking_MHs[i][j] 

            # getting the ID of the MH just US of MH no.j 

        MH_US_x_ID = MH_tracking_MHs[i][j-1] if j != 0 else "N/A" 

            # getting No. of chloramine sources US of MH no.j 

        MH_x_No_chl_sources = No_chloramine_sources_MHs[MH_x_ID] 

            # getting pipe_ID of the next pipe D/S  on the current chlo 

path --> so MH is U/s of it 

        pipe_US_x_ID = MH_tracking_pipes[i][j - 1] if j != 0 else "N/A" 

        print ("pipe US ID : ",pipe_US_x_ID) 

 

        if j < len(MH_tracking_MHs[i])-1:      #as long as it is not the 
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last MH 

            pipe_DS_x_ID = MH_tracking_pipes[i][j] 

        else: 

            pipe_DS_x_ID = "N/A"      # Last MH has no D/S pipe 

 

        #print ("pipe DS ID : ", pipe_DS_x_ID) 

        for k in range (len (pipes)): 

 

            if pipe_US_x_ID == pipes[k]['pipeID']: 

                pipe_US_x_dictID = pipes[k]['dictID'] 

                #print ("pipe US dict ID : ",pipe_US_x_dictID) 

            if pipe_DS_x_ID == pipes[k]['pipeID']: 

                pipe_DS_x_dictID = pipes[k]['dictID'] 

                #print ("pipe DS dict ID : ", pipe_DS_x_dictID) 

 

 

        # bring all the U/S and D/S pipes and MHs: 

        pipe_dictID_DS_x = [pipes[k]['dictID'] for k in range(len(pipes)) 

if MH_ID_x == pipes[k]['pipeUS']]  # calling dictID of pipe k      

        pipe_dictID_US_x = [pipes[k]['dictID'] for k in range(len(pipes)) 

if MH_ID_x == pipes[k]['pipeDS']]  # calling dictID of pipe k, that will 

bring all pipes u/s 

        MH_dictID_US_x =[]      # to get the ID of the closest MHs U/S --> 

so MH is D/s of all of them 

        for x in pipe_dictID_US_x: 

            MH_ID_US_x = [pipes[k]['pipeUS'] for k in range(len(pipes)) if 

x == pipes[k]['dictID']]  # calling dictID of pipe k 

         

        # Which account for the conc. 

        for k in range(len(pipes)): 

            if MH_x_ID == pipes[k]['pipeUS']: 

dictID_DS_x.append(pipes[k]['dictID']) 

            if MH_x_ID == pipes[k]['pipeDS']: 

dictID_US_x.append(pipes[k]['dictID']) 

 

        print ("\n\tDS MH No.", j, " of ID:", MH_x_ID,"\t", "No. sources 

US:", MH_x_No_chl_sources,"\t", "ID next pipe DS:", pipe_DS_x_ID,"\t", "ID 

first pipe US:", pipe_US_x_ID,"\t", "ID first MH US:", MH_US_x_ID) 

 

    # Calculating initial pollutant Mass (Mo) in every first receiving MHs 

(j=0) in every chloramine path (i) 

 

        # Now calculating and filling the first MH list with (time, Co) 

        for k in range(No_timesteps):  # k  --> for every time step, 

''''''''+1 because first time it goes in the j==0 direction 

            if j == 0:  # for the first MH j=0 in each chloramine path i 

               # MHs with No un-chloraminated inflows 

                # Now calling each first MH data 

                Datetime_MH_0 = timeSeries_3[j]                    #print 
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("\t\tDateTime:", Datetime_MH_0)  # first list in timeSeries_3 is the 

datetime series 

                Q_MH_0 = Q_MHs_timeSeries_3[i]                     #print 

("\t\tQ_MHs_0:", Q_MH_0) 

                C_MH_0 = C_timeSeries_3[i]                       #print 

("\t\tC_MH_0:", C_MH_0) 

 

                #calculation of (Co) 

                Q_pipe_0 = Q_timeSeries_1[pipe_DS_x_dictID - 1]      

#print ("\t\tQ_pipe_0:", Q_pipe_0, "\n") 

 

                # Calculating Co (c_first) for pipe j due to mixing at 

introduction MH i 

                c_fisrt_MH_0 = round(C_MH_0[k] * Q_MH_0[k] / 

Q_pipe_0[k],3) if Q_pipe_0[k] != 0 else 0 

 

                pol_assembly_MH[i][j][0].append(Datetime_MH_0[k])  # [i]MH 

path, [j]MH in that path,[0]first list is always for time 

                pol_assembly_MH[i][j][1].append(c_fisrt_MH_0)  # [i]MH 

path, [j]MH in that path,[1]second list is always for conc. 

 

 

                # Calculating Mo (M_first) for pipe j due from given Co 

and Q at introduction MH i 

                mass_fisrt_MH_0 = round(C_MH_0[k] * Q_MH_0[k],4)        

#mass in grams 

 

                pol_assembly_MH[i][j][0].append(Datetime_MH_0[k])  # [i]MH 

path, [j]MH in that path,[0]first list is always for time 

                pol_assembly_MH[i][j][1].append(mass_fisrt_MH_0)  # [i]MH 

path, [j]MH in that path,[1]second list is always for Mass. 

 

                print (pol_assembly_MH[i][j][0], pol_assembly_MH[i][j][1]) 

                

print(len(pol_assembly_MH[i][j][0]),len(pol_assembly_MH[i][j][1])) 

 

            else: # for every other MH j>=0, in each chloramine path i 

 

                decayCoeff = 0.50  # unit = hr^(-1) 

                delaytime = 0  # unit is seconds 

 

                ## Now calling previous MH data All Lists at [j-1] 

                print ("j-1:", len (pol_assembly_MH[i][j-1][0]), len 

(pol_assembly_MH[i][j-1 ][1])) 

                previous_MH_time = pol_assembly_MH[i][j - 1][0]  # 

datetime of the Mass list 

                print (previous_MH_time) 

                print (len(previous_MH_time)) 
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                previous_MH_mass = pol_assembly_MH[i][j - 1][1]  # Mass 

list 

                print (previous_MH_mass) 

                print (len(previous_MH_mass)) 

 

                previous_MH_ID = MH_tracking_MHs[i][j - 1]  # previous MH 

ID 

                print (previous_MH_ID) 

 

                previous_pipe_tt = 

single_pipe_travel_time[(pipe_US_x_dictID - 1)] 

                print(previous_pipe_tt) 

                print (len(previous_pipe_tt)) 

 

                # Calculating time to the current MH = previous_MH_time + 

Previous pipe tt 

                tt_MH_x = previous_pipe_tt[k] + delaytime  # the travel 

time value, still as a float 

                print (tt_MH_x) 

 

                Datetime_MH_x = previous_MH_time[k] + datetime.timedelta 

(seconds=tt_MH_x)  # adding the travel time to the datetime object 

                mass_US_MH_x = previous_MH_mass[k]  # calling the mass of 

the first U/S MH, mass_US_MH_x 

 

                # Calculating pipe-end mass at each MH(j) 

                mass_end_MH_x = round (mass_US_MH_x * math.exp (-1 * 

decayCoeff * tt_MH_x / 60 / 60),6);  # print ("\t\tc_end_MH_x:", 

c_end_MH_x) 

 

                pol_assembly_MH[i][j][0].append ((Datetime_MH_x))  # [i]MH 

path, [j]MH in that path,[0]always for time list 

                pol_assembly_MH[i][j][1].append (mass_end_MH_x)  # [i]MH 

path, [j]MH in that path,[1]always for mass list 

 

 

 

                    if c_end_MH_x == 0.0: pass # to skip all zero 

velocityvalues --> zero travel time values also zero conncentration values 

tra 

                    else: 

                        pol_assembly_MH[i][j][0].append((Datetime_MH_x))  

# [i]MH path, [j]MH in that path,[0]always for time list 

                        pol_assembly_MH[i][j][1].append(c_end_MH_x)  # 

[i]MH path, [j]MH in that path,[1]always for conc. list 

 

 

            #round first acc travel time up 

        from datetime import datetime, timedelta 
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        def RoundUp_dt(dt, deltaUP): #round the time up to closest 

timestep 

            return dt + (datetime.min - dt) % deltaUP 

        def RoundDown_dt(dt, deltaDown): #round the time down to closest 

timestep 

            return dt + (datetime.min - dt) % deltaDown - 

timedelta(minutes=(timeStep/60)) 

 

        pol_assembly_MH[i][j][0][0]= 

RoundUp_dt(pol_assembly_MH[i][j][0][0], timedelta(minutes=(timeStep/60))) 

#modify the first value only 

        pol_assembly_MH[i][j][0][-1] = 

RoundDown_dt(pol_assembly_MH[i][j][0][-1], 

timedelta(minutes=(timeStep/60)))#modify the last value only 

 

 

        print ("\t\tDatetime:", (pol_assembly_MH[i][j][0]), "\n", 

"\t\tMass:", pol_assembly_MH[i][j][1]) 

        print (len(pol_assembly_MH[i][j][0]), 

len(pol_assembly_MH[i][j][1])) 

 

#Modification of Manhole mass decay data:   Edit times and interpolate 

mass between 

print ("\n  Modification of Time and Mass Time Series \n", " -" * 28) 

print ("\n  Editing DateTime object to match timesteps and end with last 

timestep, interpolate mass values \n") 

 

        #Building the modified pollution matrix for manholes (3rd order 

list) 

mod_pol_assembly_MH = [[] for i in range(No_chl_int_MHs)] # No. of sub-

lists = No. of chloramine paths 

for i in range(No_chl_int_MHs):                # 

 

    for j in range(len(MH_tracking_MHs[i])): 

 

        mod_pol_assembly_MH[i] = [[[],[]] for k in 

range(len(MH_tracking_MHs[i]))] 

        #No. of sub-sub-lists = No. of MHs in each MH paths each sublist 

has two lists [time],[c] 

print ("The modified MHs' pollution assembly matrix (Empty List):", 

mod_pol_assembly_MH) 

 

        #all other MHs need editing DateTime and interpolation of mass 

for i in range(No_chl_int_MHs):                #i for every chloramine 

path (list) 

    for j in range(len(MH_tracking_MHs[i])):      #j for every MH in i 

every MH path 

            # First MH in every path needs NO-Edit, copy directly from 

pol_assembly_MH 
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        if j==0:  # only for the first MH j=0, in every path i 

            added_time_lists = pol_assembly_MH[i][j][0] 

            added_mass_lists = pol_assembly_MH[i][j][1] 

 

        if j!=0:    #to except the 1st MH (j=0) in every path i 

                #adding Original time lists to every MH time list 

 

            added_time_lists = pol_assembly_MH[i][j][0] + DT_timeSeries_1  

# add the two time lists 

 

                # adding list of (None or 1000 mass grams) to previously 

calculated mass in MH_pol_assm 

            mass_imaginary_list = [1000] * No_timesteps    #None list of 

the same length of the original time series 

            added_mass_lists = pol_assembly_MH[i][j][1] + 

mass_imaginary_list  # add the two mass lists 

 

                # Zip(T,C) together and then and sort according to 

DateTime value 

            added_time_lists, added_mass_lists = 

zip(*sorted((zip(added_time_lists, added_mass_lists)))) 

                # Converting sorted (T,C)back to lists again 

            added_time_lists, added_mass_lists = (list (t) for t in zip 

(*sorted (zip (added_time_lists, added_mass_lists)))) 

 

                # finding 1st calculated mass value in the added mass list 

            first_calc_mass_value = next(item for item in added_mass_lists 

if item is not 1000) 

                # finding the index of 1st calc mass value in the added 

mass list 

            index_1st_calc_mass_value = added_mass_lists.index 

(first_calc_mass_value) 

 

            #Interpolation of mass between None values 

            for k in range(len(added_time_lists)):    #for all values in 

the combined Datetime series 

 

                # before 1st calculated mass all values set to zero 

                if k < index_1st_calc_mass_value:  # all cono. before the 

first cono value 

                    added_mass_lists[k] = 0.000  # all these None values 

are set to Zero 

                #before 1st calculated mass all values set to zero 

 

                else:       #for all other mass values after the first 

calculated mass value 

                    if added_mass_lists[k] is not 1000:  # if there is 

already a calculated value 
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                        pass  # Do nothing 

 

                    else:  # If there is an imaginary value there of (None 

or 100), we will replace it with interpolated one 

 

                        M_before = added_mass_lists[k - 1]   #mass before 

that value 

                        T_before = added_time_lists[k - 1]   #DateTime 

before that value 

 

                        T_current = added_time_lists[k] 

 

                        for nxt_valu in range (k+1, len 

(added_time_lists)):  # searching for the next calculated mass 

                            if added_mass_lists[nxt_valu] is not 1000:  # 

So it got a value 

                                if  added_time_lists[nxt_valu] not in 

DT_timeSeries_1:  # and with NOT original timestep 

                                    M_after = added_mass_lists[nxt_valu]  

# calling the next calculated C value 

                                    T_after = added_time_lists[nxt_valu]  

# calling the corresponding T value 

                                    break       #Once found break out loop 

 

                        diff_T_before = T_current - T_before  # DT diff 

before 

                        diff_T_before = diff_T_before.seconds  # convert 

to seconds 

                        diff_T_after = T_after - T_current  # DT diff 

after 

                        diff_T_after = diff_T_after.seconds  # convert to 

seconds 

                        diff_T_total = T_after - T_before  # DT diff total 

                        diff_T_total = diff_T_total.seconds  # convert to 

seconds 

 

                        #mass Interpolation function 

                        M_current = 1 / diff_T_total * (diff_T_after * 

M_before + diff_T_before * M_after) if diff_T_total != 0 else 0  # 

interpolation, if for DIV/0 

 

                        ''' 

                        #print statment to check interpolation calculation 

                        if i==15 and j==21: 

                            print("\nCurrent Time 

Slot",T_current,"\tbefore",T_before , "\tafter",T_after , 

"\n\tdiff_T_before",diff_T_before,"\tdiff_T_after", diff_T_after, 

"\tdiff_T_total",diff_T_total, "\n\tM before:", M_before, "\tM after:", 

M_after,"\n\t\tinterpolation M", M_current) 
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                        ''' 

 

                        #replacing with the calculated mass 

                        added_mass_lists[k] = round (M_current, 8)  # 

coping it to the pol assembly 

 

        print (len(added_mass_lists)) 

        mod_pol_assembly_MH[i][j][0] = added_time_lists 

        mod_pol_assembly_MH[i][j][1] = added_mass_lists  # all other MHs 

need editing DateTime and interpolation of mass 

 

        print ("path:", i,"\t","MH No.:",j,"\t","DT:", 

mod_pol_assembly_MH[i][j][0]) 

        print ("path:", i, "\t", "MH No.:", j, "\t", "C:", 

mod_pol_assembly_MH[i][j][1]) 

 

    #Removing time values not in the original time series 

for i in range(No_chl_int_MHs):  # i for every chloramine path (list) 

    for j in range(len(MH_tracking_MHs[i])):  # j for every MH in i every 

MH path 

            # First MH in every path needs NO-Edit, copy directly from 

pol_assembly_MH 

 

        added_time_lists = mod_pol_assembly_MH[i][j][0] 

        added_mass_lists = mod_pol_assembly_MH[i][j][1] 

 

        print(len(added_time_lists)) 

        for k in added_time_lists:  # for all values in the combined 

Datetime series 

            index_k = added_time_lists.index(k) 

 

            if k not in DT_timeSeries_1: #if time value in the original 

timeSeries 

 

                added_time_lists[index_k]=1000      #replace time value 

with a 1000 

                added_mass_lists[index_k]=1000     #and replace its mass 

with 1000 too. 

 

                #Now delete all 1000s from both lists 

        added_time_lists = list(filter(lambda x: x !=1000, 

added_time_lists)) 

        added_mass_lists = list(filter(lambda x: x !=1000, 

added_mass_lists)) 

 

        #Removing replicant time values and mass values 

        for ki in added_time_lists:  # for all values in the combined 

Datetime series 

            index_ki = added_time_lists.index(ki) #Index current 
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            index_kj = index_ki + 1 if ki != added_time_lists[-1] else 

index_ki #index next, for last one=index last one 

            kj = added_time_lists[index_kj]       #next Time value 

 

                #Removing time replicants 

            if ki== kj and ki != added_time_lists[-1]: #current=next, and 

not for last object 

                    #calculating avergae mass for replicant DT values 

                mav= 1/2*(added_mass_lists[index_ki]+ 

added_mass_lists[index_kj]) 

                added_mass_lists[index_kj]= mav     #replacing mass with 

average value 

 

                added_time_lists[index_ki] = 1000  # replace time value 

with a 1000 

                added_mass_lists[index_ki] = 1000  # and replace its mass 

with 1000 too. 

 

            # Now delete all 1000s from both lists 

        added_time_lists = list (filter (lambda x: x != 1000, 

added_time_lists)) 

        added_mass_lists = list (filter (lambda x: x != 1000, 

added_mass_lists)) 

 

        mod_pol_assembly_MH[i][j][0] = added_time_lists 

        mod_pol_assembly_MH[i][j][1] = added_mass_lists 

 

        print ("T", len (added_time_lists)) 

        print ("M", len (added_mass_lists)) 

        print (len(added_mass_lists)) 

        print ("path:", i,"\t","MH No.:",j,"\t","DT:", 

mod_pol_assembly_MH[i][j][0]) 

        print ("path:", i, "\t", "MH No.:", j, "\t", "Mass:", 

mod_pol_assembly_MH[i][j][1]) 

 

    #editing odd mass values by averiging them 

for i in range(No_chl_int_MHs):  # i for every chloramine path (list) 

    for j in range(len(MH_tracking_MHs[i])):  # j for every MH in i every 

MH path 

        for k in range(1,(len(mod_pol_assembly_MH[i][j][1])-1)):  #except 

the first and last items 

            variance = 1.20   #allowable diff beetween 

 

            x_before = mod_pol_assembly_MH[i][j][1][k-1] 

            x_after = mod_pol_assembly_MH[i][j][1][k+1] 

            x_current = mod_pol_assembly_MH[i][j][1][k] 

 

            if x_current > (x_before*variance) and x_current > 

(x_after*variance): 
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                print ("UP",i, j, k, x_before, x_current, x_after)#to see 

values odd values before 

                x_current = (x_before+x_after)/2 

                mod_pol_assembly_MH[i][j][1][k] = x_current 

                print ("UP",i, j, k, x_before, x_current, x_after) 

 

            if x_current < (x_before/variance) and x_current < 

(x_after/variance): 

                print ("DN",i,j,k,x_before,x_current,x_after) 

                x_current = (x_before+x_after)/2 

                mod_pol_assembly_MH[i][j][1][k] = x_current 

                print ("DN",i,j,k,x_before, x_current, x_after) 

 

 

#trial data extraction 

# Printing mass-time values  #EDIT MH ID below: 

for i in range (len(pol_assembly_MH[0][73][0])): 

    print (pol_assembly_MH[0][73][0][i]) 

#Mass values 

for i in range (len(pol_assembly_MH[0][73][1])): 

    print (pol_assembly_MH[0][73][1][i]) 

 

for i in range (len(mod_pol_assembly_MH[0][73][0])): 

    print (mod_pol_assembly_MH[0][73][0][i]) 

#Mass values 

for i in range (len(mod_pol_assembly_MH[0][73][1])): 

    print (mod_pol_assembly_MH[0][73][1][i]) 

 

##### NEXT: Assemble collected mass at each MH: 

print ("\n","  Pollutographs of Manholes in the sewer network \n", "-"*40) 

#Manholes with zero sources U/S 

 

        # starting a new MH pollutographs time series 

MH_pollutographs = [[[],[]] for i in MHs] #each MH has one sub-list 

print(MH_pollutographs) 

#filling Date-Time lists: 

for i in range(len(MH_pollutographs)): 

    MH_pollutographs[i][0]= DT_timeSeries_1 

 

for i in MHs: 

 

    MH_ID_i = i                 #ID of curernt MH 

    index_MH_i = MHs.index(i)   #index of current MH in the [MHS] list 

 

    MH_pollutographs[index_MH_i][0] = DT_timeSeries_1  # this MH time 

series is set to original timeseries 

 

    if i not in No_chloramine_sources_MHs: #MH not D/S of chl sources 
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        MH_pollutographs[index_MH_i][1] = [0.00] * No_timesteps 

        print("Zero chloramine sources U/S of MH ID :", i) 

 

    if i in No_chloramine_sources_MHs: 

 

        #all other MH 

        No_chl_sources_i = No_chloramine_sources_MHs[i] 

        print ("Pollutograph of MH ID: ",i,"\tNo. of chloramine sources 

U/S :", No_chl_sources_i) 

 

        # pipes U/S of current MH 

        pipes_US_MH_i =[]   #New lists One for Pipe IDs 

        pipes_US_MH_i_dict = []  # And One for Dict IDs 

        for k in range(len(pipes)): 

            if i == pipes[k]['pipeDS']:  # if MH i is the DS pipe k (so 

pipe k is u/S of MH i) 

                pipes_US_MH_i.append(pipes[k]['pipeID']) 

                pipes_US_MH_i_dict.append (pipes[k]['dictID']) 

                print("\tpipes U/S :", pipes_US_MH_i, "with dictIDs:", 

pipes_US_MH_i_dict) 

 

 

        #Un-chloraminated Q at MH: 

        if i in un_Chl_MH_inflows: 

            index_MH_i_unchl = un_Chl_MH_inflows.index(i) 

            Q_unchl_MH_i = 

un_Chloraminated_inflows_timeSeries_4[index_MH_i_unchl] 

        else: 

            Q_unchl_MH_i = [0.00] * No_timesteps 

            print("\tNo Un-chloraminated inflow") 

        # [2] preparing the Discharge matrices, first: Chloraminated 

inflow at each MH 

        # Chloraminated Q at MH: 

        if i in chl_int_MHs: 

            index_MH_i_chl = chl_int_MHs.index(i) 

            Q_chl_MH_i = Q_MHs_timeSeries_3[index_MH_i_chl] 

            C_chl_MH_i = C_timeSeries_3[index_MH_i_chl] 

            print ("\tChloraminated inflow defined") 

        else: 

            Q_chl_MH_i = [0.00] * No_timesteps 

            print ("\tNo Chloraminated inflow defined") 

 

        total_MH_Q = [0.00] * No_timesteps 

        for j in range (len (DT_timeSeries_1)): 

            for k in pipes_US_MH_i_dict: 

                total_MH_Q[j] = total_MH_Q[j] + Q_timeSeries_1[k-1][j] 

 

            total_MH_Q[j] = total_MH_Q[j] + Q_chl_MH_i[j] + 

Q_unchl_MH_i[j] 
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        print ("\ttotal MH Q :", total_MH_Q) 

 

        total_MH_mass = [0.00] * No_timesteps 

        counter_mass = 0 

        for j in range(len(MH_tracking_MHs)): 

            for k in range(len(MH_tracking_MHs[j])): 

 

                if MH_ID_i == MH_tracking_MHs[j][k]: 

                    for x in range(len(DT_timeSeries_1)): 

                        total_MH_mass[x] = 

round(mod_pol_assembly_MH[j][k][1][x]+ total_MH_mass[x], 5) 

                    counter_mass = counter_mass +1 

        print( "\ttotal MH mass added : ", counter_mass, "\tmass:", 

total_MH_mass ) 

 

        final_MH_conc = [0.00] * No_timesteps 

        for j in range (len (DT_timeSeries_1)): 

 

            final_MH_conc[j] = round (total_MH_mass[j] / total_MH_Q[j], 5) 

if total_MH_Q[j] != 0 else 0 

 

        print ("\tFinal MH concentration : ", final_MH_conc) 

 

# [1] preparing the Discharge of un-chloramineated Q at MH i 

 

 

#### Finally, find the resultant concentrations at each D/S MH 

 

        #starting two lists for Q pipes and 

        MH_pollutographs = [[[], []] for i in MHs]  # each MH has one sub-

list 

        MH_pollutographs = [[[], []] for i in MHs]  # each MH has one sub-

list 

 

print ("\nTotal number of sewer pipes :",len(pipes)) 

for i in range(No_chl_int_MHs):      #For every chl MH 

    item_US = chl_int_MHs[i]           # the most US item is the chl-int 

MH 

    MH_tracking_MHs[i].append(item_US)  # adding 1st item to MHs list 

    for k in range(len(pipes)):         #to scroll over the whole list of 

pipes again 

        for j in range(len(pipes)):         # for all items j in the list 

pipes 

            if item_US == pipes[j]['pipeUS']:   # if the US of the item j 

is the US/item 

                MH_tracking_MHs[i].append(pipes[j]['pipeDS'])   # adding 

the D/S of that item to the MHs list 

                item_US= pipes[j]['pipeDS']                     # Now the 
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D/S of that item becomes the U/S of the next one 

 

print ('MHs path D/S chloramine-introducing MHs :', MH_tracking_MHs) 

 

    ##Filling the pipes list 

for i in range(No_chl_int_MHs):      #For every chl MH 

    item_US = chl_int_MHs[i]           # the most US item is the chl-int 

MH 

    #MH_tracking_pipes[i].append(item_US)  # adding 1st item to pipes list 

    for k in range(len(pipes)):  # to scroll over the whole list of pipes 

again 

        for j in range(len(pipes)):         # for all items j in the list 

pipes 

            if item_US == pipes[j]['pipeUS']:   # if the US of the item j 

is the US/item 

                MH_tracking_pipes[i].append(pipes[j]['pipeID'])   # adding 

the pipeID of that item to the pipes list 

                item_US = pipes[j]['pipeDS']                     # Now the 

D/S of that pipe becomes the U/S of the next one 

 

No_chloramine_sources_pipes = collections.Counter(chl_pipes_flat_list) 

print ('No. of chloramine sources U/S each pipe :', 

No_chloramine_sources_pipes) 

No_chloramine_sources_MHs = collections.Counter(chl_MHs_flat_list) 

print ('No. of chloramine sources U/S each MH :', 

No_chloramine_sources_MHs) 

# another way to count specific item -->  list.count('item') 

 

MHs=[]  #starting the list 

for i in range(len(pipes)): 

    item_US = pipes[i]['pipeUS'] 

    item_DS = pipes[i]['pipeDS'] 

    MHs.append(item_US);MHs.append(item_DS) #adding all US and DS MHs to 

the list 

MHs = sorted(set(MHs))  #set() to remove duplicates and sorted() to sort 

alphabetically 

 

print("No. of network Manholes:",len(MHs),"\t","Found Manhole IDs:",MHs) 

''' 

''' 

for i in range(No_chl_int_MHs):  # i for every chloramine path (list) 

    for j in range(len(MH_tracking_MHs[i])):  # j for every MH in i every 

MH path 

        for k in range(1,(len(mod_pol_assembly_MH[i][j][1])-1)):  #except 

the first and last items 

            variance = 1.20   #allowable diff beetween 

 

            x_before = mod_pol_assembly_MH[i][j][1][k-1] 

            x_after = mod_pol_assembly_MH[i][j][1][k+1] 
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            x_current = mod_pol_assembly_MH[i][j][1][k] 

 

            if x_current > (x_before*variance) and x_current > 

(x_after*variance): 

                print ("UP",i, j, k, x_before, x_current, x_after)#to see 

values odd values before 

                x_current = (x_before+x_after)/2 

                mod_pol_assembly_MH[i][j][1][k] = x_current 

                print ("UP",i, j, k, x_before, x_current, x_after) 

 

            if x_current < (x_before/variance) and x_current < 

(x_after/variance): 

                print ("DN",i,j,k,x_before,x_current,x_after) 

                x_current = (x_before+x_after)/2 

                mod_pol_assembly_MH[i][j][1][k] = x_current 

                print ("DN",i,j,k,x_before, x_current, x_after) 

 

''' 

 

''' 

 

#trial data extraction 

# Printing mass-time values  #EDIT MH ID below: 

for i in range (len(pol_assembly_MH[0][73][0])): 

    print (pol_assembly_MH[0][73][0][i]) 

#Mass values 

for i in range (len(pol_assembly_MH[0][73][1])): 

    print (pol_assembly_MH[0][73][1][i]) 

 

for i in range (len(mod_pol_assembly_MH[0][73][0])): 

    print (mod_pol_assembly_MH[0][73][0][i]) 

#Mass values 

for i in range (len(mod_pol_assembly_MH[0][73][1])): 

    print (mod_pol_assembly_MH[0][73][1][i]) 

 

##### NEXT: Assemble collected mass at each MH: 

print ("\n","  Pollutographs of Manholes in the sewer network \n", "-"*40) 

#Manholes with zero sources U/S 

 

        # starting a new MH pollutographs time series 

MH_pollutographs = [[[],[]] for i in MHs] #each MH has one sub-list 

print(MH_pollutographs) 

#filling Date-Time lists: 

for i in range(len(MH_pollutographs)): 

    MH_pollutographs[i][0]= DT_timeSeries_1 

 

for i in MHs: 

 

    MH_ID_i = i                 #ID of curernt MH 
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    index_MH_i = MHs.index(i)   #index of current MH in the [MHS] list 

 

    MH_pollutographs[index_MH_i][0] = DT_timeSeries_1  # this MH time 

series is set to original timeseries 

 

    if i not in No_chloramine_sources_MHs: #MH not D/S of chl sources 

 

        MH_pollutographs[index_MH_i][1] = [0.00] * No_timesteps 

        print("Zero chloramine sources U/S of MH ID :", i) 

 

    if i in No_chloramine_sources_MHs: 

 

        #all other MH 

        No_chl_sources_i = No_chloramine_sources_MHs[i] 

        print ("Pollutograph of MH ID: ",i,"\tNo. of chloramine sources 

U/S :", No_chl_sources_i) 

 

        # pipes U/S of current MH 

        pipes_US_MH_i =[]   #New lists One for Pipe IDs 

        pipes_US_MH_i_dict = []  # And One for Dict IDs 

        for k in range(len(pipes)): 

            if i == pipes[k]['pipeDS']:  # if MH i is the DS pipe k (so 

pipe k is u/S of MH i) 

                pipes_US_MH_i.append(pipes[k]['pipeID']) 

                pipes_US_MH_i_dict.append (pipes[k]['dictID']) 

                print("\tpipes U/S :", pipes_US_MH_i, "with dictIDs:", 

pipes_US_MH_i_dict) 

 

 

        #Un-chloraminated Q at MH: 

        if i in un_Chl_MH_inflows: 

            index_MH_i_unchl = un_Chl_MH_inflows.index(i) 

            Q_unchl_MH_i = 

un_Chloraminated_inflows_timeSeries_4[index_MH_i_unchl] 

        else: 

            Q_unchl_MH_i = [0.00] * No_timesteps 

            print("\tNo Un-chloraminated inflow") 

        # [2] preparing the Discharge matrices, first: Chloraminated 

inflow at each MH 

        # Chloraminated Q at MH: 

        if i in chl_int_MHs: 

            index_MH_i_chl = chl_int_MHs.index(i) 

            Q_chl_MH_i = Q_MHs_timeSeries_3[index_MH_i_chl] 

            C_chl_MH_i = C_timeSeries_3[index_MH_i_chl] 

            print ("\tChloraminated inflow defined") 

        else: 

            Q_chl_MH_i = [0.00] * No_timesteps 

            print ("\tNo Chloraminated inflow defined") 
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        total_MH_Q = [0.00] * No_timesteps 

        for j in range (len (DT_timeSeries_1)): 

            for k in pipes_US_MH_i_dict: 

                total_MH_Q[j] = total_MH_Q[j] + Q_timeSeries_1[k-1][j] 

 

            total_MH_Q[j] = total_MH_Q[j] + Q_chl_MH_i[j] + 

Q_unchl_MH_i[j] 

 

        print ("\ttotal MH Q :", total_MH_Q) 

 

        total_MH_mass = [0.00] * No_timesteps 

        counter_mass = 0 

        for j in range(len(MH_tracking_MHs)): 

            for k in range(len(MH_tracking_MHs[j])): 

 

                if MH_ID_i == MH_tracking_MHs[j][k]: 

                    for x in range(len(DT_timeSeries_1)): 

                        total_MH_mass[x] = 

round(mod_pol_assembly_MH[j][k][1][x]+ total_MH_mass[x], 5) 

                    counter_mass = counter_mass +1 

        print( "\ttotal MH mass added : ", counter_mass, "\tmass:", 

total_MH_mass ) 

 

        final_MH_conc = [0.00] * No_timesteps 

        for j in range (len (DT_timeSeries_1)): 

 

            final_MH_conc[j] = round (total_MH_mass[j] / total_MH_Q[j], 5) 

if total_MH_Q[j] != 0 else 0 

 

        print ("\tFinal MH concentration : ", final_MH_conc) 

 

plt.plot(mod_pol_assembly_MH[18][10][0], mod_pol_assembly_MH[18][10][1], 

'r') # plotting t, a separately 

plt.plot(mod_pol_assembly_MH[18][10][0], mod_pol_assembly_MH[18][10][1], 

'b') # plotting t, b separately 

plt.plot(mod_pol_assembly_MH[18][10][0], mod_pol_assembly_MH[18][10][1], 

'g') # plotting t, c separately 

plt.show() 

 

plt.plot(mod_pol_assembly_MH[0][4][0], mod_pol_assembly_MH[0][4][1], 'r') 

# plotting t, a separately 

plt.plot(mod_pol_assembly_MH[1][3][0], mod_pol_assembly_MH[1][3][1], 'b') 

# plotting t, b separately 

plt.plot(mod_pol_assembly_MH[2][2][0], mod_pol_assembly_MH[2][2][1], 'g') 

# plotting t, c separately 

plt.show() 
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APPENDIX D 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

The MIKE URBAN stormwater model sensitivity was tested. Fig. D1 shows the model sensitivity, 

presented as a change in the root mean square error (RMSE) on the vertical axis, to perturbations 

in model inputs such as catchment properties, storage and wetting losses, Manning coefficients 

and imperviousness ratios. Fig. D2 shows pre-calibration results and Fig. D3 shows post-

calibration results for the stormwater model. Table D1 provides statistical measures of MIKE 

URBAN model performance for twelve sample storm events, both pre- and post-calibration. 
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Catchment slope       Catchment length           Wetting  Impervious surf.  Perv. surf. 

(a) Catchment properties                                 (b) Storage/Wetting losses 

   

 

Impervious surfaces  Pervious surfaces         Steep surfaces    Flat surfaces 

(c) Manning coefficient (d) Imperviousness ratio 
 

 

 Minimum capacity    Maximum capacity  Dry          Wet         

(e) Horton capacity (f) Horton’s exponent 

Fig. D1 Results of sensitivity analyses 
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(a) Calibration storms 

 

(b) Validation storms 

                     Observed                                               Simulated 

Fig. D2 Pre-calibration model results for some storm events 
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(a) Calibration storms 

 

 

(b) Validation storms 

                     Observed                                               Simulated 

Fig. D3 Post-calibration model results for some storm events 
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Table D1 Efficiency assessment measures for a sample group of storm events 

Pre-calibration model statistics 

Storm C1 C2 C3 C4 C5 C6 V1 V2 V3 V4 V5 V6    Average   

Duration 60 32 56 48 32 24 48 24 56 56 32 48 N/A 

NSE -0.621 -1.082 -1.070 -2.719 -4.485 -1.259 -0.620 -1.487 -0.786 -1.484 -1.551 -1.267 -1.536 

RMSE (m3/s) 0.106 0.045 0.081 0.315 0.064 0.099 0.074 0.125 0.048 0.014 0.086 0.112 0.098 

R2 0.956 0.823 0.828 0.941 0.899 0.848 0.930 0.894 0.869 0.490 0.871 0.966 0.860 

Slope (b) 0.500 0.426 0.429 0.371 0.331 0.447 0.480 0.404 0.447 0.364 0.408 0.409 0.418 

Ln (NSE) 0.384 2.045 0.247 0.901 0.831 1.802 3.622 0.999 0.868 0.953 2.683 0.601 2.862 

bR2 0.478 0.351 0.355 0.349 0.297 0.379 0.446 0.361 0.388 0.178 0.356 0.395 0.361 

Post-calibration model statistics 

Storm C1 C2 C3 C4 C5 C6 V1 V2 V3 V4 V5 V6 Average 

Duration 60 32 56 48 32 24 48 24 56 56 32 48 N/A 

NSE 0.939 0.692 0.805 0.814 0.353 0.748 0.863 0.817 0.823 0.253 0.874 0.939 0.912 

RMSE (m3/s) 0.021 0.017 0.025 0.071 0.022 0.033 0.022 0.034 0.015 0.008 0.019 0.021 0.022 

R2 0.949 0.704 0.826 0.953 0.865 0.803 0.876 0.878 0.883 0.299 0.925 0.949 0.961 

Slope (b) 0.927 0.892 0.920 0.751 0.597 0.827 0.905 0.814 0.800 1.598 0.844 0.927 0.829 

Ln (NSE) 0.374 2.029 0.140 0.805 0.763 1.738 3.517 0.980 2.645 0.638 2.385 0.374 0.592 

bR2 0.880 0.627 0.760 0.715 0.517 0.664 0.793 0.715 0.706 0.187 0.780 0.880 0.797 
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APPENDIX E 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

 

 

Fig. E1 EMC spatial distribution map 
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Table E1 Sub catchments / Neighbourhoods in the study area 

No. Neighbourhood No. Neighbourhood 

1 RAMSAY HEIGHTS 24 SOUTH EDMONTON COMMON 

2 RHATIGAN RIDGE 25 RESEARCH AND DEVELOPMENT PARK 

3 OGILVIE RIDGE 26 TWEDDLE PLACE 

4 HENDERSON FALCONER 27 MICHAELS PARK 

5 CARTER CREST 28 RICHFIELD 

6 HADDOW 29 LEE RIDGE 

7 LEGER 30 TIPASKAN 

8 HODGSON 31 KAMEYOSEK 

9 TERWILLEGAR TOWNE 32 MEYONOHK 

10 MAGRATH HEIGHTS 33 MILL WOODS PARK 

11 SOUTH TERWILLEGAR 34 MENISA SATOO 

12 MACTAGGART 35 EKOTA 

13 BLUE QUILL ESTATES 36 GREENVIEW 

14 SWEET GRASS 37 HILLVIEW 

15 BLUE QUILL 38 TAWA 

16 SKYRATTLER 39 MEYOKUMIN 

17 STEINHAUER 40 SAKAW 

18 ERMINESKIN 41 MINCHAU 

19 KEHEEWIN 42 WEINLOS 

20 CORONET ROSEDALE 43 BISSET 

21 PAPASCHASE 44 POLLARD MEADOWS 

22 STRATHCONA INDUSTRIAL PARK 45 DALY GROVE 

23 PARSONS INDUSTRIAL 46 CRAWFORD PLAINS 
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APPENDIX F 

ASSOCIATED PUBLICATIONS 

 

 

 

Table F1 Related publications on chloramine decay in water distribution and storm sewers 

No. Publication 

1 

Title : Monochloramine Loss Mechanisms in Tap Water 

Authors : Qianyi Zhang, Evan Davies, James Bolton and Yang Liu 

Journal : Water Environment Research, Volume 98(11), p 1999-2005 (2017) 

DOI : 10.2175/106143017X14902968254421 

2 

Title : Field data analysis of active chlorine-containing stormwater samples 

Authors : Qianyi Zhang, Mohamed Gaafar, Rong-Cai Yang, Chen Ding, Evan Davies, 

James Bolton and Yang Liu 

Journal : Journal of Environmental Management, Volume 206, p 51-59 (2018) 

DOI : 10.1016/j.jenvman.2017.10.009 

3 

Title : Monochloramine loss mechanisms and dissolved organic matter 

characterization in stormwater 

Authors : Qianyi Zhang, Evan Davies, James Bolton and Yang Liu 

Journal : Science of the Total Environment, Volume 631, p 745-754 (2018) 

DOI : 10.1016/j.scitotenv.2018.02.335 

4 

Title : Monochloramine dissipation in storm sewer systems: field testing and model 

development 

Authors : Qianyi Zhang, Mohamed Gaafar, Evan Davies, James Bolton and Yang Liu 

Journal : Water Science & Technology, Volume 78 (11), p 2279-2287 (2018) 

DOI : https://doi.org/10.2166/wst.2018.512 

 


