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Abstract 

The world's energy consumption and greenhouse gas emissions are on the rise due to increasing 

energy usage in buildings. To address this problem, it is important to design energy-efficient 

buildings with advanced control systems. One key aspect of these systems is having reliable 

thermal dynamic models can provide necessary information for the control systems. Thermal 

resistor-capacitor (RC) models are one of the commonly used methods for thermal dynamic 

modeling in control systems. RC models represent the thermal behavior of building components 

using parameters related to fundamental physical principles. The R's and C's in the model are 

equivalent thermal resistors and capacitors that represent the effective resistance to heat flow and 

thermal energy storage capacity of the nodes, respectively. These model parameters are used to 

relate system inputs (e.g., heating and cooling supply) and temperature states. RC model 

parameters and inputs (e.g., actual solar heat gain) are difficult to be directly measured but can be 

estimated with historical data. Accordingly, this thesis aims to develop a practical and dependable 

method for estimating RC model parameters and input simultaneously with and without partially 

missing states. By estimating model parameters and creating a trustable thermal dynamic model 

the developed method will be used to obtain required heating, ventilation, and air conditioning 

(HVAC) outputs for temperature control purposes. 

To estimate unknown parameters and inputs, the method uses unscented Kalman filter (UKF) in 

combination with nonlinear least square (NLS) estimation method. To evaluate the effectiveness 

of this method, two case studies are conducted. The first case study involves made-up data, while 

the second case study uses real-world data from a single detached house. The performance of the 

method is assessed by comparing estimated parameter and input values to true values in the made-

up case, as well as the accuracy of the updated thermal dynamic model (created based on the last 
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estimated model parameters) in predicting temperature responses in the real-word case. Both 

estimation and prediction studies indicate that the developed method can accurately estimate the 

unknown model inputs and parameters. 

The method can also be used to estimate the required heating and cooling supply for controlling 

the temperatures of multiple zones. To evaluate the effectiveness of this approach, two case studies 

are conducted: one with made-up data and one with real-world data from a single detached house. 

The performance of the method is assessed by simulating the thermal model with applying the 

estimated heating and cooling supply to the model and generate the system response for the zone 

temperature that requires control and verify whether the controlled zone's temperature meets the 

expected temperature or not. The results of the two case studies indicate that the method can 

accurately estimate the heating and cooling supply. 

Overall, the primary objective of this thesis is to develop a practical and dependable method for 

estimating RC model parameters and inputs simultaneously, even when some states are partially 

missing. Furthermore, the developed method will be used to obtain the required HVAC outputs 

for temperature control purposes. Achieving these goals will not only advance the relevant field 

but also provide feasible solutions for real-world applications. 
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Preface 

This thesis includes original research conducted by Vahid Zamani and is divided into four 

Chapters, with Chapters 1 and 4 serving as the introduction and conclusion, and Chapters 2 and 3 

presenting the research in the form of journal papers.  

Chapter 2 provides an overview of the research focused on developing a method for parameter-

input estimation of thermal dynamic systems. The chapter covers the introduction, methodology, 

model validation, results, and discussion. It concludes with a summary of the main points and will 

be submitted for publication as “Parameter-Input Estimation of RC Thermal Models of 

Buildings using Unscented Kalman Filter and Nonlinear Least Square Method.” Vahid 

Zamani, Shaghayegh Abtahi, Yuxiang Chen, Yong Li., Vahid Zamani was responsible for 

conceptualization, developing methodology, analysis implementation, and writing the original 

draft. Shaghayegh Abtahi was in charge of assisting in writing the draft. Both Drs. Yuxiang Chen 

and Yong Li were in charge of supervision, conceptualization, and manuscript revisions. 

Chapter 3 employs the developed method for estimating the necessary heating and cooling supply 

for controlling zone temperatures at desired levels. The chapter covers the introduction, 

methodology, model validation, results, and discussion. It concludes by highlighting the key points 

and will be submitted for publication as “Heating and Cooling Supply Estimation to Control 

Building Temperature Using RC Thermal Models, Unscented Kalman Filter and Nonlinear 

Least Square Method.” Vahid Zamani, Shaghayegh Abtahi, Yong Li, Yuxiang Chen., Vahid 

Zamani was responsible for conceptualization, developing methodology, analysis implementation, 

and writing the original draft. Shaghayegh Abtahi was in charge of assisting in writing the draft. 

Both Drs. Yuxiang Chen and Yong Li were in charge of supervision, conceptualization, and 

manuscript revisions. 
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1 Introduction 

The global building sector consumes the most energy, surpassing a third of all final 

energy and 50% of global electricity usage [1]. Without efforts to enhance energy efficiency, 

it is projected that energy consumption in the building sector will grow by 50% by 2050 [2]. 

In response to this growing energy demand, there is a recognition of the importance of energy 

efficiency in buildings. Thus, actions are being taken to promote and implement energy-

efficient measures. These actions include enhancing building codes and standards [3], 

encouraging the use of energy-efficient technologies [4], and investing in the research and 

development of new technologies.  

 Among these practices, building energy management with control systems has 

demonstrated its critical importance in mitigating the negative impact of the rising trend in 

building energy consumption [5-7]. Control systems require thermal dynamic models, making 

it crucial to use a reliable model to achieve energy efficiency in buildings [8]. Thermal 

dynamic modeling involves creating a mathematical representation of a building or system, 

which helps in predicting buildings’ thermal behavior (e.g., temperature response) and 

building system behavior (e.g., heating, and cooling supply). There are three types of 

modeling strategies: white box, black box, and gray box modeling [9-12]. 

White box (physics-based) modeling like using Energy Plus [13] involves describing 

building dynamics based on construction information, and utilize parameters derived from 

technical specifications like geometry, material properties, and equipment specifications [14]. 

Despite its ability to simulate building dynamics well, collecting these necessary information 

can be time-consuming, and the model may lack the flexibility to accommodate changes or 

variations over time [15]. On the other hand, Black box modeling involves pure mathematical 
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machine-learning techniques, such as Artificial Neural Networks to develop a model from 

collected data without explicitly taking physical aspects into account. Although this modeling 

approach requires a significant amount of data to build an accurate model, it may outperform 

white box modeling in terms of accuracy [16, 17]. Gray box modeling such as thermal 

resistor-capacitor network (RC) is a hybrid of white box and black box modeling. It combines 

the physical principles of white box modeling with the data-driven approach of black box 

modeling. Gray box modeling can be a good choice for systems where the physical principles 

are only partially understood or where the data is limited. The gray box modeling approach is 

widely used as a standard modeling strategy for thermal dynamic modeling [18-20].  

RC models are based on a set of equivalent model parameters, resistors (R's) and 

capacitors (C's), to relate system inputs (e.g., heating and cooling supply) and temperature 

states. The R's and C's in the model are equivalent thermal resistors and capacitors that 

represent the effective resistance to heat flow and thermal energy storage capacity of the 

nodes, respectively [21].The model parameters can be influenced by both internal and external 

factors. Internal factors such as people, furniture, and electric consumption, as well as external 

factors like adjacent obstructions, infiltration, and weather-related influences, can all impact 

the model. Therefore, RC model parameters are not meant to be directly measured or simply 

calculated based on building construction details. Rather than directly measuring the model 

inputs or estimating the model parameters by calibrating the model based on physical details, 

the optimal model inputs or parameters can be estimated using purposely measured data 

(usually temperature states). [21, 22].  

Parameter estimation can be conducted via offline estimation (i.e., batch), assuming the 

parameters are constant within the period of a set of collected measurements and using the 
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measurements to estimate the parameter. This approach can result in significant inaccuracies 

in predictions due to ongoing data evolution and uncertainties arising from building 

conditions, weather changes, temperature, and occupant actions [23, 24]. To address this 

issue, an online manner (e.g., adaptive) estimation approach can be used to continuously 

update the model whenever new real-time measurements are available [25]. The Unscented 

Kalman filter (UKF) based estimation method has been shown to be effective and reliable for 

applying online estimation to thermal dynamic modeling with RC models for parameter 

estimation which can handles nonlinear systems and provide accurate estimation [21, 25]. 

UKF can update its estimates recursively as new measurements arrive. This method enables 

the model to be updated in real-time based on the most current measurements, resulting in 

more precise predictions making it efficient in updating parameters in real-time applications. 

However, the computational complexity of UKF increases with the number of states and 

measurements, making it less efficient for large systems when used alone [26]. 

In certain real-life scenarios, estimating RC model parameters can be challenging due to 

the temporary missing of historical data including heating and cooling supply (i.e., RC model 

inputs) and the zone’s temperature (i.e., RC model state). Such missing data can result from 

sensor malfunctions or unavailability due to limitations in practices (e.g., too difficult to 

obtain accurate data) and resources (e.g., too expensive to install many sensors). To overcome 

this issue, the primary goal of this thesis is to develop a practical and dependable method for 

jointly estimate model parameters and unknown inputs, with and without partially missing 

states. Furthermore, after estimating RC model parameters and creating reliable thermal 

dynamic model, the developed method will be used to obtain the required heating and cooling 

supplies for building’s temperature control purposes. Obtaining the accurate heating and 
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cooling supply for building temperature control purposes is essential for a number of reasons. 

First, it can optimize energy consumption, leading to cost savings and a smaller carbon 

footprint [27, 28]. Second, it can aid in keeping buildings at a comfortable temperature, which 

is essential for health and productivity [29, 30]. Thirdly, it can aid energy providers in 

anticipating future demand and ensuring a steady supply [31-33]. The accomplishment of 

these objectives will not only advance the relevant field but also provide solutions applicable 

to real-world applications.  

1.1 Objective and Scope 

The primary objective of this thesis is to develop a dependable and feasible approach for 

simultaneously estimating RC thermal model parameters and input, even in cases where some 

states are partially missing. The development of a suitable model structure (i.e., number of 

temperature nodes, inputs, R, C, and their connections) is beyond the scope of this study and, 

therefore, will not be discussed in this thesis. After obtaining a suitable model structure, the 

RC model parameters, inputs, and possibly unavailable states are estimated using a UKF-

based parameter-input estimation method integrated with NLS. Specifically, the UKF is 

mainly used for parameter and state estimation, while the NLS is used to estimate unknown 

inputs. 

Accordingly, once the parameters have been estimated and a trustworthy thermal 

dynamic model is created, then attention is redirected toward employing the developed 

method by utilizing the created thermal model to determine the necessary heating and cooling 

supply for controlling zone temperatures to desired levels. This is one of the key applications 

of the developed method in situations where the temperature needs to be controlled by 

obtaining the necessary heating and cooling supply. Controlling the temperature in thermal 
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zones can be challenging when multiple interconnected zones with different temperatures are 

involved, especially when estimating the heating and cooling supply needed for the future. 

This makes the developed method particularly useful in real-world applications. These 

objectives will be achieved by addressing the following: 

Part1:  

I. Introduce an RC thermal dynamic modeling and explain how it can be used to 

simulate thermal behavior of buildings. 

II. Develop an estimation method and demonstrate how it can be integrated to 

estimate the previously developed RC model for parameters, and inputs 

estimation. 

III. Apply the developed method to a simple case study using made-up data to 

evaluate its performance. 

IV. Evaluating of the developed method's capability in real-world scenarios by 

applying the method to a real single-family detached house. 

Part 2:  

I. Employing the developed method with known RC model (developed previously) 

parameters which are estimated based on part 1 for obtaining necessary heating 

and cooling supply for temperature control purposes.  

II. Apply the developed method to case studies using made-up and real-world data 

in different scenarios, to evaluate its capability in estimating heating and cooling 

supply for controlling zone temperatures. 
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To summarize, the thesis's focus is on developing an approach that can estimate RC 

model parameters (e.g., thermal resistance), and model input (e.g., heating and cooling 

supply) with or without some missing temperature states. Furthermore, the thesis also 

highlights employing the developed method with known (i.e., estimated) model parameters 

to estimate necessary heating and cooling supply to control zone temperatures. The capability 

of the developed method is evaluated using case studies with made-up and real-world data. It 

is worth noting that the key difference between the two parts of the thesis is that in the first 

part, the RC model parameters were estimated in the presence of unknown model input and 

unmeasured temperature states (if any). In contrast, in the second part, there is not any model 

parameter estimation, and the estimated parameters are used in the defined RC thermal model 

for heating and cooling supply estimation. Additionally, in the second part, temperature 

measurements were considered as the desired temperature level, while in the first part, they 

came from recorded data. 

It is worth noting that the efficacy of the method in determining the necessary heating 

and cooling supply depends on the accuracy of the created thermal dynamic model. If the 

estimated model parameters for the presented RC model can accurately represent the thermal 

behavior of the real system, then the developed method can provide an accurate estimation of 

the necessary heating and cooling supply. However, the accuracy of the results depends on 

the structure of an RC thermal model. Creating an appropriate model structure, which includes 

determining the number of temperature nodes, inputs, as well as the relationships between R, 

C, and their connections falls outside the scope of this study and will not be addressed in this 

thesis. 

1.2 Thesis Organization 
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The thesis is structured into four chapters, with the research presented in Chapters 2 and 

3 in a journal paper format. Chapter 4 concludes the thesis with a summary of key points and 

proposals for future work and limitations.  

The remaining chapters of the thesis are arranged as follows:  

Chapter 2 - Develop a method for estimating RC model parameters and input 

simultaneously with and without partially missing states. The method is evaluated using two 

case studies, one with made-up data and another with real-world data. 

Chapter 3 - Employ the developed method to estimate necessary heating and cooling 

supply to control temperature. The method is evaluated with case studies with made-up and 

real-world data with different case studies.  

Chapter 4 Conclusion - Summarizes key findings from chapters 2 and 3. Following that, 

potential future work and limitations are discussed. 

 

 

 

 

2 Parameter-Input Estimation of RC Thermal Models of Buildings using Unscented 

Kalman Filter and Nonlinear Least Square Method  

2.1 Introduction 
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Buildings currently consume approximately 40% of global energy and contribute to 31% of 

world CO2 emissions [34]; therefore, reducing buildings’ energy consumption is critical to 

meeting global sustainability targets [5, 35]. Among the efforts to reduce buildings’ energy 

consumption, building energy management with control systems that can optimize building 

energy consumption are being developed and deployed [6, 7]. These systems are proven to 

have the potential to save energy by up to 28% [36]. Control systems require reliable thermal 

dynamic models in order to estimate buildings’ thermal parameters (e.g., effective thermal 

resistance) and behavior (e.g., temperature response) [6].  

 Different modeling strategies, including "white box", "black box", and “gray box” 

modeling, have been developed in the literature to predict the thermal behavior of buildings 

and their systems [9-12]. White-box (physics-based) modeling , such as using Energy Plus 

[15], requires detailed construction information (e.g., dimensions) and can simulate building 

physics in detail [14]. Due to the unknowns of building conditions (e.g., material degradation, 

user behavior, and operation strategies), using this modeling strategy on existing buildings 

can be problematic [15]. On the other hand, black-box modeling uses pure mathematical 

machine-learning techniques, such as using Artificial Neural Network [16], to create non-

interpretable (hidden) relationships between input and output data without necessitating 

physics [37]. Black-box modeling requires a large amount of high-quality data [17]. "Gray 

box” modeling strategy, such as thermal resistor-capacitor (RC) models, is based on a physics-

base model structure and uses mathematical optimization techniques to estimate the 

equivalent physical parameters of the model. The strategy incorporates the benefits of both 

white-box to eliminate outliers and that of black-box strategies to reduce the necessity of 



9 

 

detailed information. The gray-box modeling approach has been widely used for thermal 

dynamic modeling [18-20].  

RC models are based on a set of equivalent model parameters, resistors (R's) and 

capacitors (C's), to relate system inputs (e.g., heating and cooling supply) and temperature 

states. [21]. The model parameters can be influenced by both internal and external factors. 

Internal factors include people, furniture, and electric consumption, while external factors 

encompass adjacent obstructions, air infiltration, and weather-related influences. Thus, RC 

model parameters are not meant to be directly measured or calculated simply based on the 

construction details of buildings. The unknown parameters and inputs can be estimated 

through calibration with measured data (usually temperature states). [21, 22, 25].  

RC model parameter estimation is typically an inverse optimization problem, which can 

be solved by various algorithms (e.g., genetic algorithms [38], least squares regression system 

identification [39], stochastic filtering [23], linear Kalman filter [40], extended Kalman filter 

[23], and unscented Kalman filter (UKF) [25]). Using extended Kalman filter and UKF with 

low-sampling-rate historical data, Baldi et al. [41] estimated the unknown states and 

parameters of a simple RC model. Later on, Li et al. [25] demonstrated the capability of UKF 

to jointly estimate the unknown states and model parameters in complex RC models 

representing real-life buildings. 

 Parameters can be obtained via offline estimation (i.e., batch) assuming the parameters 

are constant within the period of a set of collected measurements and using the measurements 

to estimate the parameter. This approach may result in inaccurate estimations and, 

consequently inaccurate predictions due to time-variant building physical conditions and 

occupant behaviors [42] [23, 24]. To address this issue, parameter estimation can be 
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conducted in an online manner (e.g., adaptive), in which the model parameters are updated 

continuously with new measurements in a computationally efficient manner [25] [43-45]. 

There are various online parameter estimation methods in the literature, including recursive 

least square [46], recursive prediction error minimization [47], linear Kalman filter, extended 

Kalman filter , and UKF. Numerous studies in the literature have employed the Kalman filter 

methods to demonstrate how RC models and the Kalman filter can work well together for 

online parameter estimations [25, 48]. In particular, Radecki et al. [48] demonstrated that 

temperature predictions are accurate when UKF is used to estimate the parameters of a multi-

zone thermal RC model. Later on, a framework was proposed by Maasoumy et al. [49] for an 

online building model that simultaneously estimates the states and unknown parameters and 

continuously tunes the model parameters. In another study, extended Kalman filter was 

applied to an RC model of a passive house [23] to create an online thermal model that can 

accurately predict indoor temperature states. 

 In terms of paper organization, Section 2.2, presents a method for online parameter-

input estimation of building RC models. The method uses UKF integrated with nonlinear least 

squares (NLS). Section 2.3, demonstrates and evaluates the newly developed method in two 

examples: one simple made-up RC model (made-up parameters and inputs, and states 

simulated using the model) and one complex RC model with real-life data (unknown 

parameters, and measured inputs and states). Through these two examples, the capability of 

the developed method is evaluated for estimating unknown model parameters and inputs in 

different scenarios with different numbers of available temperature states. A conclusion 

section is present after Section 2.4. 

2.2 Problem Statement and Methodology 
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In practice, some inputs of a building thermal system can be unavailable, immeasurable, 

or difficult to measure for various reasons, as mentioned earlier in the Introduction Therefore, 

there is a need to estimate both unknown RC model parameters and inputs. One approach to 

doing so is to use available system temperature state measurements. Furthermore, it is not 

often that all the system states are measured and/or can be easily measured, and thus some of 

them may also be unknown. Accordingly, this study develops a feasible method that can be 

used to estimate model parameters and unknown inputs with possibly missing states, as 

illustrated in Figure 2.1. The missing states can also be simultaneously estimated by the 

proposed method. The development of a suitable model structure (i.e., number of temperature 

nodes, inputs, R, C, and their connections) is beyond the scope of this study and, therefore, 

will not be discussed in this paper. After obtaining a suitable model structure, the RC model 

parameters, inputs, and possibly unavailable states are estimated using a UKF-based 

parameter-input estimation method integrated with NLS [50-52]. Specifically, the UKF is 

mainly used for parameter and state estimation, while the NLS is used to estimate unknown 

inputs. This section presents the two essential components of the developed method: (1) 

thermal dynamic modeling using RC models and (2) a parameter-input estimation method 

developed based on the integration of the UKF and NLS. 
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Figure 2.1 General procedure of the proposed parameter-input estimation method 

 

2.2.1 Thermal dynamic modeling using RC models 

In using an RC model to model the thermal dynamics of a building thermal zone, the 

temperature nodes within the zone can be represented by model nodes. Then the model nodes 

are connected to model parameters (i.e., R’s and C’s) and inputs (e.g., solar heat gain or 

mechanical heating/cooling supply). The model nodes are connected to each other through 

the R’s. The parameters, inputs, and model nodes together create a thermal RC network. 

Running the RC model with inputs (i.e., simulation) will provide temperatures at the model 
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nodes (i.e., states). The thermal dynamics at each node can be presented by ordinary 

differential equations (ODEs). The typical equation for a node, say 𝑗th, is shown in Eq. (2.1) 

𝑑𝑇𝑗

𝑑𝑡
=  

1

𝐶𝑗
(∑

𝑇ℎ − 𝑇𝑗

𝑅ℎ,𝑗
+∑𝑄𝑗)

𝑗ℎ

 (2.1) 

where, 𝑇𝑗 represents the temperature of the 𝑗th node, 𝐶𝑗 is the thermal capacity associated 

with  the 𝑗th node, 𝑇ℎ shows the temperature of the ℎth node adjacent to the 𝑗th node, 𝑅ℎ,𝑗 

denotes the thermal resistance between the 𝑗th and ℎth nodes, and 𝑄𝑗 is the heat input to the 

𝑗th node, if any. A RC mode can be described by a system of continuous-time linear state 

ODEs, which can be represented in a matrix form as a shown in Eq. (2.2):  

𝒔̇(𝑡) =  𝑨𝑐𝒔(𝑡) + 𝑩𝑐𝒖(𝑡) (2.2) 

where 𝒔 represents a vector containing the nodal temperatures (i.e., temperature state 𝑇𝑗) 

of all nodes considered, 𝒖 denotes for system inputs vector, 𝒔̇  is the first-order time derivative 

of the state vector 𝒔, and 𝑨𝒄 and 𝑩𝒄 are the state and input matrices, respectively, defined by 

the model parameters. Note that the superscript c denotes a continuous-time model. Examples 

of Eqs. (2.1) and (2.2) can be found in Appendices A and B. 

2.2.2 Parameter-input estimation method 

This section describes the method for estimating unknown model parameters, inputs, and 

unmeasured states, if any, using the UKF integrated with NLS. The model parameters are 

grouped to form a vector of parameters, denoted by θ. The model parameters are assumed to 

be time-invariant in this study, but for estimation purposes, it is modeled as a random process 

[21, 25]. In order to adjust the method for dealing with cases in which information regarding 

one or more states is also unavailable/unmeasured in addition to the model parameters, the 
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state-parameter vector 𝒙 at time t is defined by augmenting state vector s(t) (which includes 

all states of the thermal system) with the model parameter vector 𝜽(𝑡), at time t, as shown in 

Eq. ( 2.3) [53]:  

𝒙(𝒕) =  [𝒔(𝒕) 𝜽(𝒕)] 
( 2.3) 

 

 After considering additive process noise, which represents the estimation error, Eq. ( 

2.3) can be transformed to a state-transition equation in state-space format shown in Eq. (2.4): 

𝒙̇(𝑡) =  [𝒔̇(𝑡) 𝜽̇(𝑡)]  

𝒙̇(𝑡) =  𝑓𝑐 (𝒙(𝑡), 𝒖𝒌𝒏(𝑡) , 𝒖𝒖𝒏(𝑡)) + 𝒘𝑐(𝑡) 
 

(2.4) 

𝑓𝑐 (𝒙(𝑡), 𝒖𝒌𝒏(𝑡) , 𝒖𝒖𝒏(𝑡)) =  𝑨𝒄𝒙𝒙(𝑡) + 𝑩𝒄𝒙 [
𝒖𝒌𝒏(𝑡)

𝒖𝒖𝒏(𝑡)
] 

 

where 𝑓𝑐 represents the continuous-time nonlinear state function, and 𝒖𝒌𝒏 and 𝒖𝒖𝒏 are 

the known and unknown input vectors, respectively. In addition, 𝒘𝒄 represents the process 

noise, which is assumed to be Gaussian white noise with zero mean and covariance matrix G, 

and 𝑨𝒄𝒙 and 𝑩𝒄𝒙 are state and input matrices adjusted to the state-parameter vector as shown 

in Eq. (2.5):  

 

 

 where 𝑛𝑠, 𝑛𝜃, 𝑛𝑢, and 𝑛𝑥 represent respectively the number of the states, model 

parameters, model inputs (including known and unknown), and state-parameter vector 

𝑨𝑐𝑥 = [
𝑨𝑐𝑛𝑠×𝑛𝑠 0𝑛𝑠×𝑛𝜃
0𝑛𝜃×𝑛𝑠 0𝑛𝜃×𝑛𝜃

]
𝑛𝑥×𝑛𝑥

 𝑩𝑐𝑥 = [
𝑩𝑐𝑛𝑠×𝑛𝑢
0𝑛𝜃×𝑛𝑢

]
𝑛𝑥×𝑛𝑢

 
(2.5) 
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components. Eq. (2.4) can be discretized by using the matrix exponential method [53], and 

become to Eq. (2.6): 

𝒙𝑘+1 =   𝑓(𝒙𝑘, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) + 𝒘𝑘 
 

(2.6) 

where,𝑓(𝒙𝑘, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) =  𝑨𝒅𝒙𝒙𝑘 + 𝑩
𝒅𝒙 [

𝒖𝒌
𝒌𝒏

𝒖𝒌
𝒖𝒏] 

 

in which 𝒙𝑘+1 is the state-parameter parameter vector at time step (𝑘 + 1), 𝒖𝒌
𝒌𝒏 and 𝒖𝒌

𝒖𝒏 

are the known and unknown input vectors at time step k. 𝑨𝑑𝑥 and 𝑩𝑑𝑥 in this equation are 

respectively derived from 𝑨𝑐𝑥 and 𝑩𝑐𝑥 to produce the discrete-time state and input matrices. 

𝑨𝑑𝑥 = 𝑒𝑨𝑐𝑥∙∆𝑡 and 𝑩𝒅𝒙 = ∆𝑡𝑨𝑑𝑥𝑩𝑐𝑥, with ∆𝑡 being the time duration of a time step.

 Corresponding measurements of the system states can be linked to predictions from 

the thermal dynamic model through the measurement equation shown in Eq.(2.7): 

𝒚𝑘+1 =   ℎ(𝒙𝑘+1, 𝒖𝑘+1
𝑘𝑛 , 𝒖𝑘+1

𝑢𝑛 ) + 𝒗𝑘+1 

(2.7) 
ℎ(𝒙𝑘+1, 𝒖𝑘+1

𝑘𝑛 , 𝒖𝑘+1
𝑢𝑛 ) = 𝒙𝑛,𝑘+1 

in which 𝒚 is the measurement vector, ℎ is the nonlinear measurement function whose 

output is the predicted state vector corresponding to available measurements, 𝑣 is the 

measurement noise modeled by Gaussian white noise with zero mean and covariance matrix 

Z, 𝒙𝑚,𝑘+1 corresponds to the available measurements in the state-parameter vector with m 

representing the index of the measured states, and subscript 𝑘 denotes the 𝑘th step in the 

discrete-time (𝑘 = 0, 1, … ,𝑁 − 1,  where 𝑁 is the total number of data samples). [51] 

 Using discretely monitored system states (i.e., node temperatures) to estimate 

unknown thermal dynamic model parameters and inputs necessitates an estimation method 

dealing with the nonlinear discrete-time state-space model. In this regard, the UKF method is 
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selected for parameter and state estimation, because it has been proven to be robust and 

effective for highly nonlinear problems [26, 52]. Furthermore, to efficiently estimate the 

unknown model inputs, the NLS algorithm is integrated into UKF. The combination of UKF 

and NLS allows to estimate unknown model inputs and parameters, together with unmeasured 

states [50-52]. 

UKF is a Kalman-based technique, employing a prediction-correction two-step strategy 

based on unscented transformation (UT) [54]. In the prediction step, UT estimates the mean 

and covariance matrix of the nonlinear state function by evaluating the function using a set of 

deterministically selected points, known as sigma points (SPs). The unscented transformation 

requires a selection of 2𝑛𝑥 + 1 SPs, where 𝑛𝑥 is the dimension of the state-parameter vector 

[55]. Accordingly, SPs are calculated using Eq.(2.8): 

𝝌𝑘|𝑘
(𝑖)

=

{
 
 

 
 

 𝒙𝑘|𝑘 𝑖𝑓 𝑖 = 0

𝒙̂𝑘|𝑘 + [(𝛾√𝑷̂𝑘|𝑘
𝑥𝑥 )

𝑖

]

𝑇

 𝑖𝑓 𝑖 = 1,…… , 𝑛𝑥  

𝒙̂𝑘|𝑘 − [(𝛾√𝑷̂𝑘|𝑘
𝑥𝑥 )

𝑖

]

𝑇

𝑖𝑓 𝑖 = 𝑛𝑥 + 1,…… ,2𝑛𝑥

 

 

 (2.8) 

  

 

where 𝒙̂ and 𝑷̂𝑥𝑥 are the mean and covariance of the state-parameter vector, respectively, 

𝑖 denotes the ith row of the corresponding matrix, and k is the kth time step. The value in front 

of the vertical bar “|” indicates the time step of the prior estimate (prediction step) while the 

value after the “|” indicates the time step of the posterior estimate (correction step). 

Furthermore, 𝛾 =  √𝑛𝑥 + 𝜆 and 𝜆 =  𝛼2(𝑛𝑥 + 𝜅) − 𝑛𝑥, in which 𝛼 is a constant parameter 

related to the distribution of the SPs around the mean and 𝜅 is a secondary scaling parameter. 

In this paper, α and κ are assigned with 0.01 and 0, respectively [54]. 
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By using the initially determined SPs (i.e., 𝝌𝑘|𝑘) in, a new set of SPs (i.e., 𝝌𝑘+1|𝑘) can be 

obtained by applying the 𝝌𝑘|𝑘 to the nonlinear state function: 

  

 By using the initially determined SPs (i.e., 𝝌𝑘|𝑘) in, a new set of SPs (i.e., 𝝌𝑘+1|𝑘) can 

be obtained by applying the 𝝌𝑘|𝑘 to the nonlinear state function: 

𝝌𝑘+1|𝑘
(𝑖)

= 𝑓 (𝝌𝑘|𝑘
(𝑖)
, 𝒖𝑘

𝑘𝑛, 𝒖𝑘
𝑢𝑛)   (2.9) 

 With these propagated sigma points, prior estimates of the mean vector and the 

covariance matrix of the nonlinear state function at time step (k+1) can be obtained. However, 

in cases with unknown inputs in the nonlinear state function, model input estimation becomes 

a prerequisite for computing a new set of SPs (i.e., 𝝌𝑘+1|𝑘) based on Eq. (2.10). Therefore, it 

is essential to first estimate the unknown input. Using UKF alone to simultaneously estimate 

states, parameters, and inputs can be computationally demanding [26]. In this study, NLS is 

integrated into UKF to estimate the unknown model inputs. This integration reduces the 

number of SPs needed if UKF is used alone, thereby resulting in a more efficient estimation 

process. This integration not only adds efficiency to the estimation process but also improve 

the performance of the model [50, 52].  NLS algorithm numerically solves the resulting least-

squares problem using gradient-based methods, such as the Levenberg Marquardt method, 

also known as the damped least-squares method [56]. The Levenberg-Marquardt method 

interpolates between the Gauss-Newton algorithm and the gradient descent method, which 

results in increasing the robustness of the approach in locating the global minimum in 

optimization problems [57]. 
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 In order to estimate the unknown model inputs, the developed method works as an 

optimization tool to minimize the estimation error (i.e., ∆𝑘+1) which is defined as the 

difference between the predicted mean of the measurement vector (i.e., 𝒚̂𝑘+1|𝑘), or in other 

words, the output of a measurement function ℎ (i.e., SPs 𝝌𝑚,𝑘+1
(𝑖)

) and measurements (𝒚𝑘+1), 

as shown in Eq. (2.10): 

∆𝑘+1= 𝒚𝑘+1 − 𝝌𝑚,𝑘+1
(𝑖)  (2.10) 

 Therefore, by adjusting the unknown inputs for minimizing estimation error 

(i.e., ∆𝑘+1), which is the difference between the output of a measurement function and 

measurements, the estimated model input (i.e., 𝒖𝑘+1
𝑢𝑛(𝑖)

) is calculated. Accordingly, the final 

values of the estimated inputs equal: 

𝒖𝑘+1
𝑢𝑛 =

∑ 𝒖𝑘+1
𝑢𝑛(𝑖)2𝑛𝑥

𝑖=0

2𝑛𝑥+1
     

(2.11) 

 

 

 SPs are defined to represent a nonlinear function. Weighting coefficients will be 

applied to them so they can be used to calculate the mean and covariance of the nonlinear 

function as shown in Eqs. (2.13) and (2.14). These weighting coefficients can be classified 

as 𝑊𝑚
(𝑖)

and 𝑊𝑐
(𝑖)

, where 𝑚 and 𝑐 correspond to the mean and covariance, respectively. 

These coefficients can be determined with Eq. (2.12) 

 

: 

𝑊𝑚
(0)
=

𝜆

𝑛𝑥 + 𝜆
 

(2.12) 
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𝑊𝑐
(0)
=

𝜆

𝑛𝑥 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

𝑊𝑚
(𝑖)
= 𝑊𝑐

(𝑖)
=

1

2(𝑛𝑥 + 𝜆)
 , 𝑖𝑓 𝑖 = 1,…… ,2𝑛𝑥 

 

 

where 𝛽 is a factor used to emphasize the relative weight of each SPs. In this paper, β 

equals to 2 [54]. 

Once the unknown model input is estimated and SPs weighting coefficients are 

calculated, the prior estimates for the mean vector 𝒙̂ and the covariance matrix 𝑷̂𝒙𝒙 at time 

step (𝑘 + 1) can be determined using Eqs. (2.13) and (2.14). 

𝒙̂𝑘+1|𝑘 =∑𝑊𝑚
(𝑖)
𝝌𝑘+1|𝑘
(𝑖)

2𝑛𝑥

𝑖=0

 
(2.13) 

 

𝑷̂𝑘+1|𝑘
𝑥𝑥 =∑𝑊𝑐

(𝑖)
[𝝌𝑘+1|𝑘

(𝑖)  

2𝑛𝑥

𝑖=0

− 𝒙̂𝑘+1|𝑘][𝝌𝑘+1|𝑘
(𝑖)

 – 𝒙̂𝑘+1|𝑘]
𝑇 + 𝑮𝑘 

(2.14) 

 

Then, the predicted mean and covariance matrices of the measurement vector at time step k 

+1 can be determined as follows: 

𝒚̂𝑘+1|𝑘 = ∑ 𝑊𝑚
(𝑖)
𝒚̂𝑘+1|𝑘
(𝑖)2𝑛𝑥

𝑖=0    (2.15) 

𝑷̂𝑘+1|𝑘
𝑦𝑦

=  ∑𝑊𝑐
(𝑖)
[𝒚̂𝑘+1|𝑘
(𝑖) − 𝒚̂𝑘+1|𝑘]

2𝑛𝑥

𝑖=0

[𝒚̂𝑘+1|𝑘
(𝑖)

-𝒚̂𝑘+1|𝑘]
𝑇 + 𝒁𝑘+1 

(2.16) 

At time step (𝑘 + 1), the correction step is performed by integrating the measured 

response 𝑦𝑘+1 with the posterior mean vector and covariance matrix of vector 𝑥𝑘+1, as 

illustrated in Eqs. (2.17) to (2.20): 

𝒙̂𝑘+1|𝑘+1 = 𝒙̂𝑘+1|𝑘 +𝑲𝑘+1(𝒚𝑘+1 − 𝒚̂𝑘+1|𝑘) 
 

(2.17) 
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𝑷̂𝑘+1|𝑘+1
𝑥𝑥 = 𝑷̂𝑘+1|𝑘

𝑥𝑥 −𝑲𝑘+1 𝑷̂𝑘+1|𝑘
𝑦𝑦

𝑲𝑘+1
𝑇     (2.18) 

where:  

𝑲𝑘+1 = 𝑷̂𝑘+1|𝑘
𝑥𝑦

(𝑷̂𝑘+1|𝑘
𝑦𝑦

)−1   
 

(2.19) 

  𝑷̂𝑘+1|𝑘
𝑥𝑦

=  ∑ 𝑊𝑐
(𝑖)
[𝝌𝑘+1

(𝑖) −
2𝑛𝑥
𝑖=0  𝒙̂𝑘+1|𝑘][𝒚̂𝑘+1|𝑘

(𝑖)
-𝒚̂𝑘+1|𝑘]

𝑇 (2.20) 

in which 𝑷̂𝑘+1|𝑘
𝑥𝑦

 is the cross-covariance matrix between the measurement vector and the 

state-parameter vector, and 𝑲𝑘+1 is the Kalman gain. 

  To summarize, Figure 2.2 presents a flowchart for the developed method that can be 

used for parameter and inputs estimation in cases with unknown model inputs and unmeasured 

states. 
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Figure 2.2 Parameter-input estimation method based on UKF integrated with NLS 
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2.3 Application Examples  

Two case studies are presented in this section to illustrate and evaluate the developed 

method: (1) one simple made-up RC model consisting of two thermal resistors and two 

thermal capacitances (i.e., 2R2C), for which simulated responses are considered as 

measurements, and (2) one real-world single-family house with noticeably more complexity 

(10R6C) and real-world recorded data. The capability of the method is evaluated by 

comparing the estimated parameters, inputs, and states to the corresponding values in both 

study cases. 

2.3.1 A simple case study  

The made-up RC model, labelled as 2R2C, is shown in Figure 2.3. This model consists 

of four model parameters, two thermal resistors (i.e., R2 and R3 in °C kW⁄ ) and two thermal 

capacitors (i.e., C2 and C3 in kWh °C⁄  ), as well as three model inputs: outdoor temperature T1 

in ℃,  thermal load Q1 in kW, and space heating and cooling supply Q2 in kW.   

 

Figure 2.3 2R2C model  

  The ordinary differential equations of this RC model and three hourly made-up 

(referred to as “true”) model inputs are shown in Appendix A, and the made-up (true) model 

parameters are shown in Eq. (2.21). To generate responses (i.e., states), the discrete-time 

linear state equations of the model are derived based on the true model parameters and then 
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run with made-up inputs. The simulated responses (i.e., temperature states) are considered the 

true states, and then they are contaminated by adding white Gaussian noise to generate 

measured states. The noise has a mean of zero and a standard deviation of 0.16 °C, which is 

based on the expected accuracy of ±0.5 °C of the thermocouples used in real practice [58]. 

Hourly data [59] (true inputs, and states) are generated for one month (i.e., 720 hours). The 

first 540 hours of data are used for estimation and evaluation purposes, while the final 180 

hours of data are employed to evaluate the prediction accuracy of the calibrated model, which 

uses the model parameters estimated at the end of the 540 hours estimation period. 

𝜽true = [𝑅2 true(
°C
kW⁄ ) 𝑅3 true(

°C
kW⁄ ) 𝐶2 true (

kWh
°C⁄ ) 𝐶3 true(

kWh
°C⁄ )]

𝑇
 

 

𝜽𝑡𝑟𝑢𝑒 = [3.1 28.5 2.06 1.04]𝑇  ∈  ℝ4×1 

 

 

(2.21) 

 Considering the contaminated responses as measurements, one parameter-input 

estimation scenario (2R2C-1) and two state-parameter-input estimation scenarios (2R2C-2 

and 2R2C-3) are investigated, as summarized in Table 2.1. All model parameters and space 

heating and cooling supply (Q2) are unknown in all scenarios. In Scenarios 2 and 3, one of the 

states (T2 or T3) is unknown in addition to the unknown model parameters and input and needs 

to be estimated. 

Table 2.1 Different scenarios defined for the 2R2C model 

Scenario Available states Unavailable states Unknown 

input 

2R2C-1 𝑇2, 𝑇3 None 𝑄2 

2R2C-2 𝑇2 𝑇3 𝑄2 
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2R2C-3 𝑇3 𝑇2 𝑄2 

 

The state vector of this RC model is defined by 𝒔 = [𝑇2 𝑇3]
𝑇 ∈  ℝ2×1, model 

parameters vector is 𝜽 = [𝑅2 𝑅3 𝐶2 𝐶3]
𝑇  ∈  ℝ4×1, and the model inputs vector is 𝒖 =

[𝒖𝒌𝒏 𝒖𝒖𝒏]
𝑇  ∈  ℝ3×1 which 𝒖𝒌𝒏 = [𝑇1 𝑄1]

𝑇 and 𝒖𝒖𝒏 = [𝑄2] .The initial mean estimation 

of the state-parameter vector, 𝒙̂, is presented in Eq. (2.22) : 

𝒙̂ 0|0 = [𝒔̂0|0 𝜽̂0|0]
𝑇
 ∈  ℝ6×1 

 

𝒔̂0|0 = [21 30]𝑇 (2.22)  

𝜽̂0|0 = [4.45 26.35 2.64 1.2]𝑇 

 

 

 Since the states and parameters of the RC model are assumed to be uncorrelated, the 

initial covariance matrix 𝑷̂𝟎|𝟎
𝒙𝒙  is diagonal. The diagonal terms of the initial covariance matrix 

are determined by (𝑷̂0|0
𝑥𝑥 )states = [1.0 × (𝒔̂0|0)]

2 for the states (𝒔). In addition, the diagonal 

terms of the initial covariance matrix for the model parameters (𝜽) are defined using 

(𝑷̂0|0
𝑥𝑥 )parameters = [0.05 × (𝜽̂0|0)]

2. The measurement noise covariance matrix is diagonal, 

time-invariant, and equal to 𝒁 = (0.3°C)2. Similarly, the process noise covariance matrix is 

diagonal, time-invariant, and equal to 𝑮 = [1 × 10−5 × 𝒙̂0|0]
2. The values for initial 

covariance matrices and process noise covariance matrix are calculated based on references 

[26, 53]. 

 Figure 2.4 presents the time histories of model parameter estimation for Scenario 

2R2C-1, where all the states are measured. In these figures, the dashed black line shows true 

model parameter values, the red line shows the mean estimate. The shaded grey area shows 
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the mean +/- two standard deviations obtained from the covariance matrix 𝑷̂𝑘|𝑘
𝑥𝑥 . As shown in 

Figure 2.4 (a), the thermal resistance parameters R2 and R3 are estimated accurately and 

converged near their true values. Similar estimation results for the thermal capacitances C2 

and C3 are shown in Figure 2.4 (b). The estimated model parameters' standard deviation is 

higher at the beginning of the estimation history, indicating a higher level of uncertainty in 

these values initially. While the estimated model parameters may be sufficiently accurate, 

they may not reach their true values. This difference is due to the presence of nonlinearity in 

the system and measurement noise. Nonlinearity can introduce complexities in the input-

output relationship, leading to potential numerical errors in the estimation results [60, 61]. It 

should be emphasized that the model parameter estimation results for Scenarios 2R2C-2 and 

2R2C-3 are also converged but are not shown here for brevity. The final estimated model 

parameters for these scenarios can be found in Appendix A.  
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(a) 

 

(b) 

Figure 2.4 Time histories of model parameter estimations for Scenario 2R2C-1: (a) thermal 

resistance, and (b) thermal capacitances 

 Figure 2.5 presents the estimation history of the unknown model input 𝑄2 compared 

to its true value in Scenario 2R2C-1. To better illustrate the estimation results, the 540 hours 

of time histories are divided into three 180-hour segments, of which the first segment is shown 

in Figure 2.5 and the rest are shown in Appendix A. These results reaffirm that the developed 

method can accurately estimate the unknown model input. Furthermore, to provide a 

quantitative comparison, Mean Absolute Percentage Error (MAPE), a measure of precision 

for constructing fitted time series values when trend estimation is involved [62], is used in 

this study, as defined by Eq.(2.23):  
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MAPE = (
∑ |

𝑇𝑟𝑢𝑒𝑖  − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑖 
𝑇𝑟𝑢𝑒𝑖

|𝑛
𝑖=1

𝑛
) × 100(%) 

 

(2.23) 

where True represents the true value, Calculated is the predicted or estimated value, and n 

shows the number of data points. MAPE of model input estimation in Scenario 2R2C-1 is 

1.1%, indicating that the developed method can accurately estimate the model input.  

 

Figure 2.5 Comparison between true and estimated model input for Scenario 2R2C-1 

 Using the developed method, parameters, input, and states are estimated at each 

timestep of the estimation period. Figure 2.6 compares the estimated and the true profiles of 

the two states of the 2R2C model (i.e., T2 and T3) in the Scenario 2R2C-1. The MAPE of the 

estimated state and the true one for both temperatures are 0.4% and 0.82% for T2 and T3, 

respectively, which indicates excellent agreement between the estimated results and the 

corresponding true states. The accuracy of the estimated T3 is not as high as that for T2. This 

is due to the unknown input, Q2, in the estimation period being linked to T3, as shown in 

Figure 2.3. Figure 2.4 to Figure 2.6 also show that the developed method is able to estimate 

the parameters, inputs, and states relatively accurate within the first few time steps. This 

observation indicates the suitability of the method for on-line estimations. 
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Figure 2.6 Comparison between true and estimated temperature responses for Scenario 

2R2C-1 

  

The MAPE value for the estimated model input and states for all scenarios is shown in 

Table 2.2. The MAPE for the estimated model input in Scenarios 2R2C-2 and 2R2C-3 is 

slightly higher than that of Scenario 2R2C-1. Additionally, the MAPE of the estimated states 

for Scenarios 2R2C-2 and 2R2C-3 is also higher but less than 2.5%. These observations 

reaffirm that more known measurements can result in a more accurate estimation. 

Table 2.2 MAPE of estimated input and states for scenarios for 2R2C-2 and 2R2C-3 

MAPE 2R2C-1 2R2C-2 (𝑇2 available) 2R2C-3 (𝑇3 available) 

Q2 1.1% 2.12% 1.36% 

T2 0.4% 1.83% 2.16% 
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T3 0.82% 2.32% 1.26% 

 

Using the parameters obtained at the end of the 540-hour estimation period, the RC 

models are used to simulate the states in the prediction period (with known inputs). The 

predicted temperature responses are generated at each time step, hourly from hours 541 to 

720. Figure 2.7 compares the predicted temperature responses for Scenario 2R2C-1. It can be 

observed that both temperature responses T2 and T3 are predicted with good accuracy, with 

the MAPE values being 0.92% and 2.55%, respectively. Again, the accuracy of the predicted 

response for T3 is not as high as that for T2, due to the unknown input, Q2, in the estimation 

period linked to T3, as shown in Figure 2.3. This comparison indicates that the inaccuracy in 

the parameter estimation will not result in a significant error in states prediction; therefore, 

the developed method is sufficient for the analysis of building thermal dynamics when all 

states are measured. 
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Figure 2.7 Comparison between true and predicted temperature responses for scenario 

2R2C-1 

  

 Furthermore, the MAPE values calculated for both states in Scenarios 2R2C-2 and 

2R2C-3 are found to be less than 5 %, as shown in Table 2.3. These values indicate that the 

prediction results are acceptable, even when certain state measurements are unavailable. The 

impact of the quantity of unavailable state measurements will be further investigated in the 

following real-world case study. 

Table 2.3 MAPE of predicted states for scenarios 2R2C-2 and 2R2C-3 

MAPE 2R2C-1 2R2C-2 2R2C-3 

T2 0.92% 3.91% 4.41% 
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T3 2.55% 4.92% 3.05% 

 

2.3.2 A Case study with real-world data 

In this section, the developed method is tested on a real-world low-energy wooden-frame 

house in Eastman, Quebec, Canada, shown in  Figure 2.8 [38]. The study uses 720 hours of 

measured data. The first 540 hours of data, organized on an hourly basis, are designated as 

the estimation dataset, and the remainder as the prediction dataset. Various scenarios are 

defined based on the availability of different state measurements. Accordingly, the 

effectiveness of the developed method is evaluated by 1) comparing the estimated values of 

states and input with their measured (true) values in the estimation dataset, and 2) by 

comparing the predicted responses obtained using the final estimated model parameters with 

the measured responses in the prediction dataset. 
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Figure 2.8 A Single-detached house as a case study [38] 

 

Figure 2.9 RC model Structure for the single detached house 

 The RC model structure of the detached single-family house shown in Figure 2.9 was 

developed by Wang et al. [38]. In this RC model, the basement, second floor, and main floor 

are labeled as b, u, and m, respectively. This RC model is called 10R6C, as it consists of 10 
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thermal resistances and 6 thermal capacitances, Tm, and Tb in °C represents the zone 

temperature of the second floor, main floor, and basement, respectively. Tum, Tmm, and Tbm are 

the internal thermal mass temperature responses, which were not measured. The ODEs of this 

RC model are shown in Appendix B. 

 The hourly model inputs for this RC thermal model are shown in Appendix B. The 

model inputs include 1) global irradiation Qs in kW per unit area on the south facade, which 

is used to obtain approximate effective solar heat gains weighted by solar gain factors (𝛼 s), 

and 2) heating supply from the geothermal heat pump Qhp in kW, which is, considered as the 

unknown model input. This heating supply is distributed across three levels using the 

distribution factor 𝛼ℎ𝑝. 3) Tg is the ground temperature, which is approximately 13 °C 

constant. 4) T0 is the outdoor temperature in °C. 5) Qelec is the gross electricity demand in kW, 

which is used to calculate internal heat gains weighted according to internal gain factors (𝛼 

e). 6) Qvcs in kW is the thermal energy charged to the slab located in the basement. 

 The state vector of this RC model can be defined by 𝒔 =

[𝑇𝑢, 𝑇𝑢𝑚, 𝑇𝑚, 𝑇𝑚𝑚, 𝑇𝑏 , 𝑇𝑏𝑚]
𝑇  ∈  ℝ6×1, model inputs vector 𝒖 = [𝒖𝑘𝑛 𝒖𝑢𝑛]𝑇  ∈  ℝ6×1, 

known input vector 𝒖𝑘𝑛 = [𝑇0, 𝑇g, 𝑄s, 𝑄elec, 𝑄vcs]
𝑇 , and unknown input vector 𝒖𝑢𝑛 = [𝑄ℎ𝑝]. 

The state-parameter vector can also be expressed as Eq. (2.24), , where s is the previously 

described state vector and θ is the unknown model parameters: 

𝒙 = [𝒔 𝜽]𝑇  ∈  ℝ30×1 (2.24) 

𝜽 = [𝑅𝑇 𝐶𝑇 𝐹𝑠
𝑇 𝑝𝑒

𝑇 𝛼ℎ𝑝
𝑇 ]

𝑇
 ∈  ℝ24×1   (2.25) 

where 𝑹 = [𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10]
𝑇  ∈  ℝ10×1,  in °C kW⁄ , 

and 𝑪 = [𝐶𝑢𝑖 𝐶𝑢𝑚 𝐶𝑚𝑖 𝐶𝑚𝑚 𝐶𝑏𝑖 𝐶𝑏𝑚]
𝑇  ∈  ℝ6×1,  in kWh °C⁄ . Additionally, the solar 
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gain factors are 𝜶𝒔 = [𝛼𝑠𝑢 𝛼𝑠𝑚 𝛼𝑠𝑏]𝑇  ∈  ℝ3×1, in m2, and the internal gain factors are 

𝜶𝒆 = [𝛼𝑒𝑚 𝛼𝑒𝑏]𝑇  ∈  ℝ2×1,. The heating power distribution factor for the second floor, 

main floor, and basement are 𝜶𝒉𝒑 = [𝛼ℎ𝑝𝑢 𝛼ℎ𝑝𝑚 𝛼ℎ𝑝𝑏]𝑇  ∈  ℝ3×1, respectively, which 

should satisfy: 

∑ 𝛼ℎ𝑝𝑖
𝑖=𝑢,𝑚,𝑏

= 1 (2.26) 

To evaluate the performance of the developed method, this study considered various 

scenarios with different available measured temperature responses, as shown in Table 2.4. 

Scenario 10R6C-1 has all three-room temperature state measurements (𝑇𝑢, 𝑇𝑚, 𝑇𝑏). Interior 

thermal mass temperature states (𝑇𝑢𝑚, 𝑇𝑚𝑚, 𝑇𝑏𝑚) are not available in all scenarios. 

Table 2.4 Different scenarios for the 10R6C model 

Scenarios Available states Unavailable states Unknown Input 

10R6C-1 𝑇𝑢, 𝑇𝑚, 𝑇𝑏 None 𝑄ℎ𝑝 

10R6C-2 𝑇𝑢, 𝑇𝑚 𝑇𝑏 𝑄ℎ𝑝 

10R6C-3 𝑇𝑢, 𝑇𝑏 𝑇𝑚 𝑄ℎ𝑝 

10R6C-4 𝑇𝑚, 𝑇𝑏 𝑇𝑢 𝑄ℎ𝑝 

10R6C-5 𝑇𝑢 𝑇𝑚, 𝑇𝑏 𝑄ℎ𝑝 

10R6C-6 𝑇𝑚 𝑇𝑢, 𝑇𝑏 𝑄ℎ𝑝 

10R6C-7 𝑇𝑏 𝑇𝑢, 𝑇𝑚 𝑄ℎ𝑝 

 

 In the estimation phase, the initial mean estimates for the state-parameter vector can 

be expressed as follows: 

𝒙0|0 = [𝒔̂0|0 𝜽̂0|0]
𝑇

 (2.27) 

where, 
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𝒔̂0|0 = [22 21.3 21.1 22.5 21.2 20.5][unit:℃]  

 

(2.28) 

 

𝜽̂0|0 = [𝑹̂0|0
𝑇 𝑪̂0|0

𝑇 𝛼̂𝑠 0|0
𝑇 𝛼̂𝑒 0|0

𝑇 𝜶̂ℎ𝑝 0|0
𝑇 ]

𝑇
 

𝑹̂0|0 = [1.36 1.69 20.7 2.4 4.98 35.25 12.75 2.49 29.59 16.13] 

[unit: °C kW⁄ ] 

𝑪̂0|0 = [1.42 2.67 2.60 25.67 3.74 9.06] [unit:kWh °C⁄ ] 

𝜶̂𝑠 0|0 = [1.83 2.93 1.51]𝑇    [unit:m2]  

𝜶̂𝑒 0|0 = [0.50 0.14]𝑇    [unit:−−]  

𝒂̂ℎ𝑝 0|0 = [0.25 0.38 0.35]𝑇   [unit:−−]  

 As explained in the case study of a simple RC model, the diagonal terms for the states 

(𝒔) of the initial covariance matrix are selected as (𝑷̂0|0
xx )𝑠𝑡𝑎𝑡𝑒𝑠 = [1.0 × (𝒔̂0|0)]

2, 

(𝑷̂0|0
xx )parameters = [0.05 × (𝜽̂0|0)]

2,  𝑹 = (0.3°C)2 and 𝑮 = [1 × 10−5 × 𝒙0|0]
2, 

respectively. 

 The results of the estimation of model parameters, including thermal resistances (R), 

thermal capacitances (C), solar gain factors (𝜶𝑠), internal gain factors (𝜶𝑒), and heating power 

distribution factors (𝜶ℎ𝑝), for Scenario 10R6C-1, are presented in Appendix B. These results 

show convergence in some of the thermal resistances and capacitances. No clear convergence 

trend is observed for the solar gain factors, internal gain factors, and heating power 

distribution factors. But in general, the variations in the values are small. The variations over 

the estimated time are due to the constant changes of building conditions, such as closed-open 

windows or blinds, on-off ventilation systems, and moving furniture. 

 The performance of the developed method in estimating the model input is 

demonstrated in Figure 2.10, which compares the estimated model input Qhp to its true value 
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in Scenario 10R6C-1. To illustrate the estimation results more clearly, the 540 hours of time 

histories are divided into three 180-hour segments, of which the first segment is shown in 

Figure 2.10 and the remaining are shown in Appendix B. The MAPE of estimated input is 

about 10%. Notably, there are specific time periods where Qhp experiences both 

overestimations and underestimations. A significant contributor to these fluctuations in input 

estimation can be the global irradiation on the south facade of the house. Elevated levels of 

irradiation, particularly during the early morning and late afternoon when the sun is not 

positioned directly in front of the house, tend to result in overestimation. Consequently, these 

overestimations may introduce errors in the model's parameter estimation during these 

specific time periods.  

 

Figure 2.10 Comparison between true and estimated model input for Scenario 10R6C-1 

 Figure 2.11 compares the estimated and true temperature response histories for 

Scenario 10R6C-1. The MAPE of the estimated states (Tu, Tm, and Tb) and the corresponding 

measured (true) values is less than 2% for the three available measurements. indicating a 

strong agreement between the estimated and the true states. The maximum difference is 

approximately 1°C. These comparisons demonstrate that the developed method can be 

effectively applied to real-time temperature prediction for real-world practices. 
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Figure 2.11 Comparison between true and estimated temperature responses for 

Scenario10R6C-1 

 Table 2. displays estimation results for the unknown input for all scenarios. Since the 

maximum MAPE difference between Scenario 10R6C-1 and the other scenarios is only about 

4%, it can be concluded that the developed method can estimate the unknown model input 

with acceptable accuracy even when there are limited available measurements. Additionally, 

Table 2. displays the MAPEs of state estimation of temperature responses and their true values 

for the seven scenarios. The difference between Scenario 10R6C-1 with three available 

measurements and scenarios with only one measurement is approximately 2%, which proves 
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that when sparse measurements (one or two measurements) are available and included in the 

estimation process, the state estimation can still be accurate. This observation evaluates the 

robustness and excellent agreement of both measured and unmeasured responses. 

Additionally, this verifies that the developed method is suitable for application in buildings 

where only a limited number of temperature responses can be measured. It is worth noting 

that the estimation profiles of Scenario 10R6C-3 selected as an example of a scenario with a 

limited number of temperature responses are shown in Appendix B – Real-world case study 

information and results for parameter-input estimations, other scenarios are not shown for 

brevity. 

Table 2.5 MAPE of the estimated model input and states for all scenarios of 10R6C 

 Scenarios 

MAPE of 

Estimation 

10R6C-1 10R6C-2 10R6C-3 10R6C-4 10R6C-5 10R6C-6 10R6C-7 

Qhp 10.38% 12.13% 11.74% 12.36% 14.32% 13.42% 14.03% 

Tu 0.82% 1.54% 1.62% 2.12% 3.26% 2.75% 2.95% 

Tm 1.13% 1.32% 1.73% 1.45% 3.54% 2.68% 2.74% 

Tb 1.58% 1.91% 1.23% 2.01% 3.38% 2.94% 2.65% 

   

 

To show the performance of the calibrated RC model for temperature state prediction,  

Figure 2.12 compares the measured temperature responses from the prediction dataset to those 

predicted responses using the parameters obtained at the end of the 540-hour estimation 

period, the RC models are used to simulate the states in the prediction period. Predicted 

temperature responses are computed at each hourly time step within the time span from hour 
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541 to 720. The MAPE in the predicted state and measured temperature responses is around 

2.5% for each available measurement, indicating that the measured and predicted 

temperatures are in excellent agreement. This also indicates that the error in estimating the 

input is acceptable because it doesn’t cause a significant error in the parameter estimation and 

state prediction. Table 2. presents the MAPEs of the measured temperatures and predicted 

states based on the final estimated model parameters derived from the estimation dataset for 

all scenarios. All MAPE values are less than 5.2%. The accurate predictions of future states 

reflected by Figure 2.12 and Table 2. indicate that the model parameters were effectively 

estimated even with a limited number of missing state measurements. 

 

Figure 2.12 Comparison between true and predicted temperature responses for Scenario 

10R6C-1 
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Table 2.6 MAPE of the predicted responses for the 10R6C model in different scenarios 

 Scenarios 

MAPE of 

Prediction 

10R6C-1 10R6C-2 10R6C-3 10R6C-4 10R6C-5 10R6C-6 10R6C-7 

Tu 2.74% 4.14% 4.11% 4.46% 4.69% 4.87% 4.79% 

Tm 2.18% 3.92% 4.21% 4.12% 4.76% 4.36% 5.2% 

Tb 2.53% 4.18% 3.82% 4.25% 5.12% 5.03% 4.55% 

 

 

 

RC model parameters plays crucial roles, as they can be used to interpret a building's 

thermal properties [38]  and be used in RC thermal models to predict future states. Table 2. 

summarizes the estimated model parameters at the final time step for all seven scenarios. It 

can be seen that even with certain missing state measurements, the final estimated parameter 

values for each scenario are relatively consistent. 

Table 2.7 Final estimated parameters in different scenarios for the 10R6C model 

 Scenarios Max error 

compared 

to 

10R6C-1 

% 

Parameters 10R6C-

1 
10R6C-

2 
10R6C-

3 
10R6C-

4 
10R6C-

5 
10R6C-

6 
10R6C-

7 

𝑅1 1.32 1.27 1.30 1.38 1.39 1.38 1.36 5% 

𝑅2 1.59 1.57 1.76 1.63 1.72 1.65 1.68 11% 

𝑅3 19.06 18.52 17.72 14.48 14.74 12.87 18.13 32% 

𝑅4 2.78 2.71 2.67 2.79 2.53 2.66 2.42 13% 

𝑅5 5.26 5.06 5.44 5.51 4.98 5.02 5.06 5% 

𝑅6 26.35 18.96 30.41 29.07 30.31 27.51 31.51 28% 

𝑅7 12.49 12.69 12.34 12.49 12.76 12.77 12.9 3% 

𝑅8 2.42 2.48 2.39 2.42 2.48 2.49 2.47 3% 

𝑅9 20.62 23.18 20.55 20.73 26.92 25.62 26.31 31% 
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𝑅10 13.72 14.37 13.44 13.70 15.20 14.78 14.81 11% 

𝐶𝑢𝑖 1.39 1.40 1.39 1.35 1.35 1.36 1.42 3% 

𝐶𝑢𝑚 2.37 2.46 2.21 2.47 2.44 2.57 2.67 13% 

𝐶𝑚𝑖 2.16 1.95 2.52 2.35 2.46 2.21 2.60 20% 

𝐶𝑚𝑚 25.96 25.32 25.99 24.87 26.56 25.86 26.47 4% 

𝐶𝑏𝑖 3.74 3.66 3.67 3.83 3.71 3.66 3.52 6% 

𝐶𝑏𝑚 9.62 9.36 9.92 9.68 9.11 9.03 9.08 6% 

𝛼𝑠𝑢 1.97 1.78 2.06 2.01 1.80 1.80 1.75 11% 

𝛼𝑠𝑚 3.05 2.83 3.05 3.26 2.81 2.83 2.69 12% 

𝛼𝑠𝑏 1.22 1.43 1.13 1.14 1.46 1.46 1.38 20% 

𝛼𝑒𝑚 0.37 0.39 0.43 0.4 0.45 0.42 0.45 22% 

𝛼𝑒𝑏 0.13 0.13 0.14 0.14 0.14 0.14 0.13 8% 

𝛼ℎ𝑝𝑏 0.35 0.32 0.34 0.35 0.34 0.33 0.36 9% 

𝛼ℎ𝑝𝑚 0.40 0.40 0.37 0.39 0.38 0.40 0.36 10% 

𝛼ℎ𝑝𝑢 0.23 0.25 0.26 0.24 0.26 0.25 0.25 13% 

 

2.4 Conclusion 

Previous research focused on developing methods for model parameter estimation with 

all model inputs available. This study developed an effective method for estimating RC model 

parameters and inputs with possible unmeasured temperature states. In this regard, the thermal 

resistor-capacitor network (RC) is used for thermal dynamic modeling and the unscented 

Kalman filter (UKF) is integrated with the nonlinear least squares (NLS) method to estimate 

unknown model parameters and inputs. In order to show the applicability of the developed 

method, two case studies were conducted: one with made-up data and the other with real-

world data. Scenarios with different numbers of available temperature measurements are 

created to evaluate the capability and performance of the developed method in different 

circumstances. 

The estimated model input and states are compared with their true values. The estimated 

model inputs in all scenarios of the case study with made-up data have a MAPE (Mean 

Absolute Percentage Error) less than 2.5%, while less than 14.5% in the scenarios of the case 
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study with real-world data. Furthermore, comparing model predictions with the true 

measurements in all scenarios of both case studies shows a maximum MAPE of 

approximately 5%. These low MAPE values prove that the developed method can effectively 

estimate unknown model parameters, input, and possible missing states. 
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3 Heating and Cooling Supply Estimation to Control Temperature Using RC 

Thermal Model, Unscented Kalman Filter, and Nonlinear Least Square Method 

3.1 Introduction 

Buildings are responsible for consuming approximately 40% of the world's energy [34]. 

Hence, it is essential to decrease the energy usage of buildings in order to align with 

worldwide sustainability objectives [35]. Efforts to decrease buildings' energy consumption 

involve development and deployment of building energy management systems equipped with 

control systems that can effectively optimize the energy usage in buildings[6]. Studies suggest 

that the utilization of these control systems can lead to a notable reduction of up to 30% in 

building energy consumption [36, 63]. Control systems necessitate thermal dynamic models 

and estimation methods to estimate heating and cooling supply required for temperature 

control purposes.   

Control systems are widely considered a promising algorithm for achieving energy 

efficiency in smart buildings [64]. These control systems rely on dynamic and simplified 

building energy models that describe the thermal behavior of buildings [65]. Various 

modeling strategies, such as “white box,” “black box,” and “gray box” modeling, have been 

developed in the literature. [10, 11].  

White-box modeling, also known as physics-based modeling, involves describing 

building dynamics based on construction information and utilizes parameters derived from 

comprehensive technical documentation, such as geometry, material properties, and 

equipment specifications [14, 66]. Although white-box modeling can provide accurate 

simulations of building dynamics, the model's inflexibility may limit its ability to account for 
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changes and variations over time. As a result, applying white-box models in control systems 

can be challenging [67, 68]. Conversely, black-box modeling employs pure mathematical 

machine-learning techniques, such as Artificial Neural Networks, to establish relationships 

between input and output data without relying on explicit physics-based knowledge [37, 69]. 

This modeling approach can offer higher precision than white-box modeling but demands a 

substantial amount of data to build an accurate model [67, 70]. However, employing black-

box modeling in control systems can be difficult due to its data-intensive nature, potential 

lack of interpretability [71].  

Gray box modeling, such as thermal resistor-capacitor network (RC), is rooted in a 

physics-based structure and utilizes mathematical optimization techniques to estimate the 

model's equivalent physical parameters [18]. This approach combines the advantages of both 

white-box modeling to eliminate outliers and black-box modeling to reduce the need for 

detailed information [18]. By striking a well-balanced compromise between interpretability 

and accuracy, gray box models prove highly suitable for integration into control systems [42]. 

[42]. RC models are based on a set of equivalent model parameters, resistors (R's) and 

capacitors (C's), to relate system inputs (e.g., heating and cooling supply) and temperature 

states. The gray-box modeling approach has been widely used for thermal dynamic modeling. 

[18, 24, 42]. To develop a reliable control system besides having a reliable thermal dynamic 

model, a dependable estimation technique is required that can be integrated with RC models 

to accurately estimate behavior of building systems, particularly for estimating heating and 

cooling supply (i.e., RC model input). 

The successful implementation of control systems relies on the precise controlling of 

future building’s temperature states with estimation of building systems behavior (i.e., heating 
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and cooling supply). This is because these estimations directly impact the building's 

performance and energy efficiency [42]. For instance, in heating, ventilation, and air 

conditioning systems, inaccurate estimation of supply can cause excessive heating or cooling 

supply, resulting in increased energy consumption, and operating costs. Such inaccuracies in 

estimation of building systems behavior (i.e., heating and cooling supply) can significantly 

affect overall building performance [72]. Therefore, reliable estimation methods should be 

integrated as part of control systems in addition to thermal models. One such method is 

Unscented Kalman filter (UKF) which is widely used in estimation problems [21, 25]. As a 

result, this paper aims to develop an approach for buildings control applications that utilizes 

the UKF-based estimation technique in combination with RC models to estimate the heating 

and cooling supply, for controlling the temperature of thermal zones. 

In terms of paper organization, Section 3.2, presents a method for combining thermal 

dynamic models with an estimation method for control systems. This involves a description 

of the RC models used for thermal dynamic modeling, as well as the UKF integrated by the 

Nonlinear Least-Square (NLS) as an estimation method. Section 3.3, two application 

examples will be provided to demonstrate the use of the developed method: The first example 

will use a made-up simple RC model (made-up parameters and inputs, and states simulated 

using the model), while the second example will use a complex RC model with real-life data. 

These examples will test the capability of the developed method in estimating heating and 

cooling supply for temperature control purposes. 

3.2 Problem Statement and Methodology  

Controlling temperature in thermal zones can present significant challenges, particularly 

when estimating and planning the heating and cooling supply. This challenge becomes even 
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more pronounced when dealing with multiple interconnected zones, each with varying 

temperatures, as it requires estimating the temperature of uncontrolled zones within the 

network. To ensure a precise estimation of the required supply for a specific zone, it is crucial 

to consider the temperatures of other interconnected zones. To achieve this, a method as 

shown in Figure 3.1 can be developed that can estimate the necessary mechanical supply (i.e., 

RC model input), based on the expected temperature set points. The developed method utilizes 

a defined RC thermal dynamic model to represent a thermal system, such as one or multiple 

thermal zones. To estimate the required mechanical supply of a thermal system represented 

by an RC thermal model, several additional variables need to be considered. These include 

the uncontrolled zone temperature which is measured for the current step and estimated for 

the rest, as well as the temperature set point, which needs to be defined based on the desired 

temperature level. Additionally, other boundary conditions, such as outdoor temperature and 

solar irradiation, must be considered. These boundary conditions are measured for the current 

time and predicted for the rest of the controlling dataset. Accordingly, the method involves 

the use of RC models and UKF and NLS estimation methods to estimate the necessary 

mechanical supply for controlling the temperature of different zones.  

In this section, thermal dynamic modeling employing RC models will be discussed, 

followed by the estimation method based on the integration of the UKF and NLS. The UKF 

is used to estimate the temperatures of the uncontrolled zones, while the NLS is employed to 

estimate the required heating and cooling supply. It is worth noting that this method operates 

recursively, allowing it to update itself with new measurements and estimate the heating and 

cooling supply based on recent data. This adaptive capability enables the tool to adjust to new 

information, such as outdoor temperature or solar irradiance, and calculate the necessary 
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adjustments to maintain the desired temperature in the designated zones. As such, this tool 

can continuously monitor and update its estimates to ensure optimal performance and energy 

efficiency. 

 

Figure 3.1 General Procedure of mechanical supply estimation to control temperature 

3.2.1 Thermal dynamic modeling using RC Models 
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In modeling the thermal dynamics of a building, the RC model is utilized to represent 

temperature nodes within the building's thermal zones. Each temperature node is connected 

to model parameters (represented by R's and C's) and inputs (such as solar heat gain or 

mechanical heating/cooling supply). These interconnected model nodes form an RC thermal 

model, where the connections between nodes are represented by R's. The parameters, inputs, 

and model nodes together create a thermal RC model. Running the RC model with inputs (i.e., 

simulation) will provide temperatures at the model nodes (i.e., states). The thermal dynamics 

at each node can be presented by ordinary differential equations (ODEs). The typical equation 

for a node, say 𝑗th, is shown in Eq. (3.1): 

𝑑𝑇𝑗

𝑑𝑡
=  

1

𝐶𝑗
(∑

𝑇ℎ − 𝑇𝑗

𝑅ℎ,𝑗
+∑𝑄𝑗)

𝑗ℎ

 
(3.1) 

where 𝑄𝑗 denotes the 𝑗𝑡ℎ heat input into the 𝑗𝑡ℎ node (e.g., heating and cooling supply); 

𝑇𝑗  shows the temperature of the 𝑗𝑡ℎ node; 𝑇ℎ represents the temperature of the ℎ𝑡ℎnode 

adjacent to the 𝑗𝑡ℎnode; 𝐶𝑗  is the thermal capacity attached to the 𝑗𝑡ℎ node; and the thermal 

resistance between the 𝑗𝑡ℎ and ℎ𝑡ℎ node is denoted by 𝑅ℎ,𝑗. The continuous time linear state 

equation shown in Eq. (3.2) can be used to calculate the thermal dynamics of a building in 

matrix form based on these ODEs: 

𝒔̇(𝑡) =  𝑨𝑐𝒔(𝑡) + 𝑩𝑐𝒖(𝑡) (3.2) 

where  𝑨𝒄 and 𝑩𝒄  are the state and input matrices respectively and are defined by the model 

parameters vector (θ), 𝒔 denotes the nodal temperatures or states, 𝒔̇  is the time derivative of 

the state vector 𝒔, and model inputs are represented by 𝒖 including both known and the ones 

that need to be estimated, and c stands for a model with a continuous time model.  
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3.2.2 Model input (e.g., heating and cooling supply) estimation method 

 This section describes the method for estimating unknown model inputs, and 

uncontrolled temperature states, using the UKF integrated with NLS. Eq. (3.2) can be written 

as a continues nonlinear state equation in the presence of additive process noise shown in Eq. 

(3.3):  

𝒔̇(𝑡) =  𝑓𝑐 (𝒔(𝑡), 𝜽, 𝒖𝒌𝒏(𝑡) , 𝒖𝒖𝒏(𝑡)) + 𝒘𝑐(𝑡) 

Where 𝑓𝑐 (𝒔(𝑡), 𝜽, 𝒖𝒌𝒏(𝑡) , 𝒖𝒖𝒏(𝑡)) =  𝑨𝒄𝒔(𝑡) + 𝑩𝒄 [
𝒖𝒌𝒏(𝑡)

𝒖𝒖𝒏(𝑡)
] 

 

(3.3) 

where 𝑓𝑐 represents the continuous time nonlinear state function,  𝒔 , 𝜽 , 𝒖𝒌𝒏 and 𝒖𝒖𝒏  

are model states, parameters, and known and unknown (i.e., need to be estimated) model 

inputs vectors respectively. Moreover,  𝒘𝑐 expresses process noise and assumed Gaussian 

white noise with zero mean and covariance matrix G. Then, Eq. (3.3)  can be transformed to 

discrete time (e.g., using the matrix exponential method [53]) as below: 

 

𝒔𝑘+1 =   𝑓(𝒔𝑘, 𝜽, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) + 𝒘𝑘 

𝑓(𝒔𝑘, 𝜽, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) =  𝑨𝒅𝒙𝑘 + 𝑩
𝒅 [
𝒖𝒌
𝒌𝒏

𝒖𝒌
𝒖𝒏] 

(3.4) 

where 𝒔𝑘+1 (i.e., nodal temperatures) are the states at the time step (𝑘 + 1); 𝑨𝑑 and 𝑩𝑑 

are derived from 𝑨𝑐 and 𝑩𝑐 to produce the discrete-time state and input matrices, respectively. 

which 𝑨𝑑 = 𝑒𝑨𝒄.∆𝑡  and 𝑩𝑑 = ∆𝑡. 𝑨𝑑. 𝑩𝑐, e stands for the matrix exponential and ∆𝑡 is the 

time step.  
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In the estimation method, measurements of thermal dynamic model responses (i.e., 

defined set points or controlled zone’s temperature) can be linked to the model prediction 

through the measurement equation, shown in Eq. (3.5): 

𝒚𝑘+1 =   ℎ(𝒔𝑘+1, 𝜽, 𝒖𝑘+1
𝑘𝑛 , 𝒖𝑘+1

𝑢𝑛 ) + 𝒗𝑘+1 

ℎ(𝒔𝑘+1, 𝜽, 𝒖𝑘+1
𝑘𝑛 , 𝒖𝑘+1

𝑢𝑛 ) = 𝒔𝑚,𝑘+1 
(3.5) 

in which ℎ𝑐 is continues time nonlinear response function, 𝒚 is the measured or controlled 

temperature and 𝒗𝒄 is the measurement noise, modeled by Gaussian white noise with zero 

mean and covariance matrix Z, 𝒔𝑚,𝑘+1 corresponds to those temperature nodes that are 

controlled in the state vector where subscript m represents the index of controlled temperature 

in the state vector,  and subscript 𝑘 denotes the 𝑘th step in the discrete time (𝑘 = 0, 1, … ,𝑁 −

1,  where 𝑁 is the total number of data samples). It is worth noting that those temperature 

states that do not need to be controlled are not included in the 𝒔𝑚,𝑘+1 vector. To estimate the 

heating and cooling supply in order to control the system states (i.e., zone’s temperatures), an 

estimation method requires that be compatible with a discrete nonlinear model. In this study, 

the UKF integrated with NLS methods is utilized to address this problem. This approach has 

been chosen because it has been demonstrated to be robust in a variety of nonlinear estimation 

problems [26, 50-52]. 

UKF is a Kalman-based technique that combines a measurement-based correction 

strategy with a prediction strategy based on unscented transformation (UT). In the prediction 

step, UKF utilizes UT to estimate the mean and covariance matrix of a nonlinear function by 

evaluating a nonlinear function of a set of deterministically selected points, known as sigma 
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points (SPs). The UT requires the selection of 2𝑛𝑠 + 1 SPs (where  𝑛𝑠 is the dimension of the 

state vector).  Accordingly, SPs are calculated utilizing Eq. (3.6): 

𝑺𝑘|𝑘
(𝑖)

=

{
 
 

 
 

 𝒔̂𝑘|𝑘 𝑖𝑓 𝑖 = 0

𝒔̂𝑘|𝑘 + [(𝛾√𝑃̂𝑘|𝑘
𝑠𝑠 )

𝑖

]

𝑇

 𝑖𝑓 𝑖 = 1,…… , 𝑛𝑠  

𝒔̂𝑘|𝑘 − [(𝛾√𝑃̂𝑘|𝑘
𝑠𝑠 )

𝑖

]

𝑇

𝑖𝑓 𝑖 = 𝑛𝑠 + 1,…… ,2𝑛𝑠

 

 

(3.6) 

 

where the state vector's mean and covariance are denoted by 𝑠̂  and 𝑃̂𝑠𝑠, respectively. 

𝑖 represents the 𝑖𝑡ℎ row of the matrix inside the parentheses, k represents the time step which 

the value in front of the vertical bar “|” indicates the time step of the prior estimate (prediction 

step) while the value after the “|” indicates the time step of the posterior estimate (correction 

step). Furthermore, 𝛾 =  √𝑛𝑠 + 𝜆 , 𝜆 =  𝛼2(𝑛𝑠 + 𝜅) − 𝑛𝑠 , 𝛼 is a constant relating to the 

spread of the sigma points around the mean, and 𝜅 is a secondary scaling parameter. In this 

paper, α and κ are assigned with 0.01 and 0, respectively [54]. 

By using the initially determined SPs (i.e.,𝑺𝑘|𝑘)  in the kth step to evaluate in the 

prediction step, a new set of SPs (𝑺𝑘+1|𝑘) can be developed with a nonlinear state function: 

𝑺𝑘+1|𝑘
(𝑖)

= 𝑓 (𝑺𝑘|𝑘
(𝑖)
, 𝜽, 𝒖𝑘

𝑘𝑛, 𝒖𝑘
𝑢𝑛)  (3.7) 

With these propagated sigma points, prior estimates of the mean vector and the 

covariance matrix of the nonlinear state function at time step (k+1) can be obtained. However, 

as the state function includes model inputs that need to be estimated, estimation of these inputs 

becomes a prerequisite for calculating a new set of SPs (i.e., 𝑺𝑘+1|𝑘). Consequently, it is 

necessary to initially estimate the model inputs. In this study, UKF is integrated with NLS to 

estimate the model inputs based on defined temperature set points. The integration of UKF 
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and NLS is utilized to improve the accuracy and efficiency of estimating unknown inputs of 

the model. This combination is particularly useful in situations where the model input is 

unavailable or uncertain. Additionally, while UKF is a powerful tool for state and model input 

estimation, it can be computationally demanding when used alone, leading to long 

computation times [26]. The incorporation of NLS optimization techniques can reduce 

computational costs and improve the efficiency of the estimation process by reducing the 

number of SPs needed if UKF is used alone. The reduced computational burden allows for 

faster processing times, making it a valuable tool in real-time applications [50, 51]. Overall, 

the integration of UKF and NLS provides an effective approach for improving the accuracy 

and computational efficiency of input and state estimation in various scenarios. NLS 

algorithm numerically solves the resulting least-squares problem by using gradient-based 

methods, such as the Levenberg-Marquardt method. The Levenberg-Marquardt method is a 

well-known optimization algorithm, also known as the damped least-squares method [56], 

which interpolates between the Gauss-Newton algorithm and the gradient descent method. 

This improves the robustness of the approach and increases the chances of locating the global 

minimum in optimization problems [57]. 

In order to estimate heating and cooling supplies (i.e., model inputs), NLS works as 

an optimization tool to minimize the estimation error. In particular, the estimation error (i.e., 

∆𝑘+1) is defined as the difference between the output of a measurement function ℎ (i.e. SPs 

𝑺𝑚,𝑘+1
(𝑖)

) and defined temperature setpoints (𝒚𝑘+1), as shown in Eq. (3.8): 

∆𝑘+1= 𝒚𝑘+1 − 𝑺𝑚,𝑘+1
(𝑖)  (3.8) 
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Therefore, adjusting the unknown inputs for minimizing estimation error (i.e., ∆𝑘+1), 

which is the difference between the output of a measurement function and measurements, the 

estimated model input (i.e., 𝒖𝑘+1
𝑢𝑛(𝑖)

) is calculated. Accordingly, the final value of the estimated 

input equals: 

𝒖𝑘+1
𝑢𝑛 =

∑ 𝒖𝑘+1
𝑢𝑛(𝑖)2𝑛𝑠

𝑖=0

2𝑛𝑠 + 1
 

 

(3.9) 

 

SPs are intended to represent a nonlinear function, which necessitates weighting 

coefficients to calculate the mean and covariance of the nonlinear function as shown in Eqs. 

(3.9) and (3.10). They categorized as 𝑊𝑚
(𝑖)

 and 𝑊𝑐
(𝑖)

, where m and c correspond, respectively, 

to the mean and covariance. These coefficients can be determined with Eq. (3.10): 

𝑊𝑚
(0)
=

𝜆

𝑛𝑠 + 𝜆
 

𝑊𝑐
(0)
=

𝜆

𝑛𝑠 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

𝑊𝑚
(𝑖)
= 𝑊𝑐

(𝑖)
=

1

2(𝑛𝑠 + 𝜆)
 , 𝑖𝑓 𝑖 = 1, … ,2𝑛𝑠 

 

(3.10) 

 

where 𝛽 is a factor used to emphasize the relative weight of each SPs. In this paper, β equals 

to 2 [54]. 

Once the model inputs are estimated and SPs weighting coefficients are determined, 

the prior estimates for the mean vector 𝒔̂ and covariance matrix  𝑷̂𝒔𝒔at the time (𝑘 + 1), can 

be calculated as follows: 
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𝒔̂𝑘+1|𝑘 =∑𝑊𝑚
(𝑖)
𝑺𝑘+1|𝑘
(𝑖)

2𝑛𝑠

𝑖=0

 (3.7) 

𝑷̂𝑘+1|𝑘
𝑠𝑠 =∑𝑊𝑐

(𝑖)
[𝑺𝑘+1|𝑘
(𝑖) − 𝒔̂𝑘+1|𝑘][𝑺𝑘+1|𝑘

(𝑖)
 - 𝒔̂𝑘+1|𝑘]

𝑇 + 𝑮𝑘

2𝑛𝑠

𝑖=0

 

(3.8) 

Then predicted mean and covariance matrices of the measurement vector at time step 

k +1 can be calculated as shown in Eqs. (3.9) and (3.10), in which covariance matrix of the 

measurement noise vector is 𝒁𝑘+1. 

𝒚̂𝑘+1|𝑘 =∑𝑊𝑚
(𝑖)
𝒚̂𝑘+1|𝑘
(𝑖)

2𝑛𝑠

𝑖=0

 

 

(3.9) 

𝑷̂𝑘+1|𝑘
𝑦𝑦

=  ∑𝑊𝑐
(𝑖)
[𝒚̂𝑘+1|𝑘
(𝑖) − 𝒚̂𝑘+1|𝑘][𝒚̂𝑘+1|𝑘

(𝑖)
-𝒚̂𝑘+1|𝑘]

𝑇 + 𝒁𝑘+1

2𝑛𝑠

𝑖=0

 

(3.10) 

As shown in Eqs. (3.11) to (3.14) the correction step is carried out at time step (𝑘 +

1)  by integrating defined set points (i.e., 𝒚𝑘+1) with the posterior mean vector and covariance 

matrix of 𝒔𝑘+1:  

𝒔̂𝑘+1|𝑘+1 = 𝒔̂𝑘+1|𝑘 +𝑲𝑘+1(𝒚𝑘+1 − 𝒚̂𝑘+1|𝑘) (3.11) 

𝑷̂𝑘+1|𝑘+1
𝑠𝑠 = 𝑷̂𝑘+1|𝑘

𝑠𝑠 −𝑲𝑘+1 𝑷̂𝑘+1|𝑘
𝑠𝑠 𝑲𝑘+1

𝑇  (3.12) 

where:  

𝑲𝑘+1 = 𝑷̂𝑘+1|𝑘
𝑠𝑦

(𝑷̂𝑘+1|𝑘
𝑠𝑠 )−1 

(3.13) 

 

𝑷̂𝑘+1|𝑘
𝑠𝑦

𝑷̂𝑘+1|𝑘
𝑠𝑦

=  ∑𝑊𝑐
(𝑖)
[𝑺𝑘+1
(𝑖)

2𝑛𝑠

𝑖=0

− 𝒔̂𝑘+1|𝑘][𝒚̂𝑘+1|𝑘
(𝑖)

-𝒚̂𝑘+1|𝑘]
𝑇 

(3.14) 
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𝑲𝑘+1 is the Kalman gain, and 𝑷̂𝑘+1|𝑘
𝑠𝑦

 is the cross-covariance matrix between the 

measurement vector and the state vector.  

In summary, Figure 3.2 shows a flowchart for the developed method that can be used 

for model input (i.e., heating and cooling supply) and uncontrolled zone’s temperatures 

estimation that can be employed for controlling zone's temperature.   
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Figure 3.2 Model input estimation method based on UKF integrated with NLS 
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3.3 Application Examples  

Two case studies are presented in this section to illustrate and evaluate the developed 

method. The first case study uses a simple made-up RC model with two thermal resistances 

and two thermal capacitances (known as a 2R2C model). The second case study involves a 

real-world single-family house, which is notably more complex (10R6C). The capability of 

the developed method in estimating heating and cooling supply (i.e., model inputs) is 

evaluated by applying the estimated supply and simulating defined RC models to generate the 

zone temperature and determining whether it is controlled at the desired level or not. 

3.3.1 A case study with an artificial RC model 

Figure 3.3 shows the made-up RC model, labelled as 2R2C. This model comprises four 

parameters, including two thermal resistances (i.e., 𝑅2, 𝑅3 in °C kW⁄ ) and two thermal 

capacitances (i.e., 𝐶2 and 𝐶3 in 𝑘𝑊ℎ °C⁄  ). Additionally, it has four model inputs: outdoor 

temperature 𝑇1 in °C, thermal load 𝑄1 in kW and heating and cooling supply to nodes 2 and 

3 are 𝑄2 and 𝑄3 in kW respectively. In this study, outdoor temperature 𝑇1 in °C and thermal 

load 𝑄1are considered made-up, but in real cases, the outdoor temperature can be determined 

based on forecasted weather data, while thermal load can be estimated using solar irradiance 

forecast data and an assumed operating schedule, including occupancy, lighting, and 

equipment schedules [17, 73].   
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Figure 3.3 2R2C Model  

The ordinary differential equations for the made-up RC model, as well as the two 

assumed known 10-minute made-up model inputs (Q1 and T1), are provided in Appendix . 

The case study with made-up data considers three scenarios. In the first scenario, Q2 is 

assumed to be zero, and the aim is to estimate the heating and cooling supply (Q3), which is 

required to maintain the temperature of the zone 𝑇3 at 26 ℃ for 6 hours, starting from hour 2 

to hour 8. This six-hour period is called the "controlling dataset," and the two hours before it 

(hours 0 to 2) represents prior control conditions, which taken every 10 minutes (i.e., time 

step). In the second scenario (2R2C-Ct2), the objective and assumptions are the same as the 

first scenario, but with a restriction on the amount of heating and cooling supply (Q3), This 

means that the equipment providing heating cannot exceed a specific amount. In the last 

scenario (2R2C-Ct3), both nodes T3 and T2 are controlled at 26°C and 3°C, respectively. In 

this scenario, in contrast with the first two scenarios, heating and cooling supply, Q2 relating 

to node T2 is not zero and is estimated alongside Q3. These scenarios are summarized in Table 

3.1. 

Table 3.1 2R2C scenarios 

Scenario Controlled State Estimated model input 

2R2C-Ct1 𝑇3 at 26 ℃ 𝑄3 



59 

 

2R2C-Ct2 𝑇3 at 26 ℃ 𝑄3 with limitation 

2R2C-Ct3 𝑇3 at 26 ℃ and 𝑇2 at 3 ℃ 𝑄2 and 𝑄3 without limitation  

 

 

Estimated model parameters and initial states of the RC model are presented in Eq. (3.15). 

These values are gotten from the previous chapter. 

𝜽 = [𝑅2(
°C
𝑘𝑊⁄ ) 𝑅3(

°C
𝑘𝑊⁄ ) 𝐶2 (

𝑘𝑊ℎ
°C⁄ ) 𝐶3(

𝑘𝑊ℎ
°C⁄ )]

𝑇
∈  ℝ4×1 

𝜽 = [3.02 27.81 2.11 1.11]𝑇 
(3.15) 

𝒔̂0|0 = [T2 T3]
𝑇 

𝒔̂0|0 = [−0.5 31]𝑇 

The initial covariance matrix 𝑃̂0|0
𝑠𝑠  is assumed to be diagonal, which it’s diagonal terms 

of the are determined by the expression 𝑃̂0|0
𝑠𝑠 = [1.0 × (𝑠̂0|0)]

2. Additionally, it is assumed 

that the measurement noise covariance matrix is diagonal, time-invariant, and equal to 𝒁 =

(0.3°C)2, and the process noise covariance matrix is also diagonal, time-invariant, and equal 

to 𝑮 = [1 × 10−5 × 𝑠̂0|0]
2. The values of the initial covariance matrix and the process noise 

covariance matrix are derived from [26, 53].     

In Scenario 2R2C-Ct1, in addition to the Q3, the model state 𝑇2  is also estimated to show 

behavior of T2 when T3 is controlled. Figure 3.4 depicts estimated heating and cooling supply 

(Q3) and uncontrolled state (T2) for the controlling dataset. Accordingly, Figure 3.4. (a) 

displays the estimated heating and cooling supply Q3 with an initial value of – 5.2 kW 

(negative means cooling supply) and then varies between 0 to 1 kW to maintain T3 at 26 °C. 
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In addition, Figure 3.4 (b) illustrates the estimated state T2 which varies between 0 °C and 8 

°C when T3 is controlled. 

 

(a) 

 

(b) 

Figure 3.4 (a) Estimated heating and cooling supply, (b) Estimated state T2 when T3 controlled at 

26°𝐶 

To validate the estimated heating and cooling supply, the estimated Q3   must be taken 

into account and the previously described 2R2C model simulated in order to generate the 

system response for T3 and determine whether it is controlled at 26°C or not. Accordingly, 

Figure 3.5 depicts the simulation result for T3 in the controlling dataset.  The graphs show that 

T3 falls sharply from 31°C to 26°C in the first 10 minutes and remains at 26°C for the rest of 

the controlling period, which starts from hours 2 to 8, it is worth noting that hours 0 to 2 

indicate zone temperature T3 behavior prior controlling. This demonstrates that the presented 

method can accurately estimate the required heating and cooling supply to control T3. 
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Figure 3.5 T3 in the controlling dataset 

For Scenario 2R2C-Ct2 there is a limitation on the maximum value of the model input, 

or in other words, equipment with a limited heating and cooling supply capacity. Specifically, 

the maximum capacity is set at 1kW. Figure 3.6 presents the results of this scenario, showing 

the estimated Q3 in this scenario. To maintain T3 at 26°C and manage the demand for heating 

and cooling supply, it is essential to sustain the estimated supply at its maximum capacity for 

an extended period. This is necessary because the required amount of heating and cooling 

exceeds the capacity of the equipment providing these services. 
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Figure 3.6 Limited heating cooling supply to 1kW 

Figure 3.7 compares the simulated T3 response in two instances, one where Q3 is not 

limited and the other where Q3 is constrained to a maximum of 1kW. The first red line 

corresponds to the scenario in which Q3 is not limited, while the blue line represents the 

scenario where Q3 is limited to 1kW. It can be observed that when the estimated Q3 is limited, 

T3 takes longer to reach 26°C due to the insufficient heating and cooling supply. This 

highlights the significance of accounting for equipment capacity limitations while estimating 

the heating and cooling supply and managing building energy. Although the developed 

method can still estimate the optimal heating and cooling supply required to maintain a 

constant temperature within the zone, even with limited equipment capacity, it may take more 

time to achieve the desired temperature. 
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Figure 3.7 comparison of T3 for two Scenarios 2R2C-Ct1 and 2R2C-Ct2 

In some situations, it may be necessary to control the temperature of multiple zones 

simultaneously. In such cases, it is important to estimate the required heating and cooling 

supply for each zone. For this purpose, Scenario 2R2C-Ct3 is defined, which the objective of 

this scenario is to control T3 and T2 at 26°C and 3°C respectively, while determining the 

corresponding heating and cooling supplies needed to sustain these zones at their expected 

temperatures. 

The estimated heating and cooling supply (Q2) required to control node T2 at 3°C is 

illustrated in Figure 3. (a). The estimated Q2 initially amounts to 7.8 kW and varies between 

0 and -2 kW (negative, meaning cooling) to maintain T3 at 26°C. Figure 3. (b) depicts sharp 

increase in T2 from about 0°C to 3°C within the first 10 minutes, after which it remains 

constant for the control period. Additionally, Figure 3. (a) depicts the estimated heating and 

cooling supply required to control T3 at 26°C. The initial Q3 is -5.5 kW and varies between 0 

and 1 kW to maintain T3 at 26°C. Figure 3. (b) displays the simulation results for T3 in the 
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control dataset. It is observed that T3 drops quickly from 31°C to 26°C within the first 10 

minutes and stays at 26°C for the remainder of the control period. 

 

(a) 

 

 

(b) 

Figure 3.8 (a) Estimated heating and cooling supply Q2, (b) T2 in controlling dataset 



65 

 

 

(a) 

 

 

(b) 

Figure 3.9 (a) Estimated heating and cooling supply Q3, (b) T3 in controlling dataset 
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3.3.2 Case study with real-world data 

In this section, the developed method is tested on a real-world low-energy wooden-frame 

house in Eastman, Quebec, Canada, shown in Figure 3.8. The RC thermal model structure for 

this house shown Figure 3.9, and was developed by Wang et al. [38]. This RC model is used 

for heating and cooling supply estimation for controlling the temperature of different zones 

of this house for a period of 6 hours at 10-minute intervals (control dataset). Two scenarios 

are defined based on controlling different zones temperatures. Accordingly, the capability of 

the developed method is evaluated by applying the estimated supplies and simulating the RC 

model to generate the zone temperature and determining whether they are controlled at the 

desired level or not.  
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Figure 3.8 A single detached house as a case study [38] 

This RC model is called a 10R6C, as it consists of 10 thermal resistances and 6 thermal 

capacitances corresponding to 6 temperature nodes, indicated by Tu, Tm, and Tb in °C for the 

temperature responses of the second floor, main floor, and basement, respectively. Note that 

Tum, Tmm, and Tbm are the auxiliary internal temperature responses. The ODEs of this RC model 

are shown in Appendix .  

The 10-minute model inputs for this RC thermal model in the controlling dataset (6 

hours including hours 2 to 8) are shown in Appendix . These inputs include 1) global 

irradiation Qs in kW per unit area on the south façade, which is used to obtain approximate 

effective solar heat gains and is weighted by solar gain factors (𝛼s). 2) Tg ground temperature, 

which is approximately at 13 C° constants as shown by measurements. 3) T0 outdoor 

temperature in C°. 4) Qelec gross electricity demand in kW and used to calculate internal heat 

gains and are weighted according to internal gain factors (𝛼e). 4) Qhp in kW is the heating 

supply from the geothermal heat pump, which needs to be estimated in order to control the 

main floor temperature. 5) Qhp is distributed using the alpha distribution factor (𝛼ℎ𝑝) across 

three levels. It's worth noting that for this case study, the known inputs are based on recorded 

data. However, it's possible to predict these inputs as well. For example, the outdoor 

temperature can be predicted based on forecast weather data, and the gross electricity can be 

predicted based on the operating schedule of lighting and electrical equipment [17, 73]. 
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Figure 3.9 Single-detached house RC model 

The state vector of this RC model can be defined by 𝒔 =

[𝑇𝑢, 𝑇𝑢𝑚, 𝑇𝑚, 𝑇𝑚𝑚, 𝑇𝑏 , 𝑇𝑏𝑚]
𝑇 ∈  ℝ6×1, additionally, the model parameters of this single 

detached house can be described as thermal resistances,  𝑹 =

[𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10]
𝑇 ∈  ℝ10×1 in °C

𝑘𝑊⁄ ; thermal 

capacitances,  𝑪 = [𝐶𝑢𝑖 𝐶𝑢𝑚 𝐶𝑚𝑖 𝐶𝑚𝑚 𝐶𝑏𝑖 𝐶𝑏𝑚]
𝑇 ∈  ℝ6×1 in kWh °C⁄   ; solar gain 

factor, 𝜶𝒔 = [𝛼𝑠𝑢 𝛼𝑠𝑚 𝛼𝑠𝑏]𝑇 ∈  ℝ3×1, in 𝑚2; internal gain factor  𝜶𝒆 = [𝛼𝑒𝑚 𝛼𝑒𝑏]𝑇 ∈

 ℝ2×1, unitless and heating power distribution factor for the second, main floor, and basement 

respectively as 𝜶𝒉𝒑 = [𝛼ℎ𝑝𝑢 𝛼ℎ𝑝𝑚 𝛼ℎ𝑝𝑏]𝑇 ∈  ℝ3×1. To evaluate the performance of the 

developed method, this study considered two scenarios. The first scenario involves controlling 

the temperature of the main floor (Tm) at 22°C and estimating the required heating and cooling 

supply (Qhp) to maintain the desired temperature. In the second scenario, the objective is to 

control the temperature of both the main and second floors. In this scenario, Qhp is eliminated, 

and two separate heating sources (Qm and Qu) are added to the main and second floors, 
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respectively, as shown in Figure 3.10. No heating to Tb, these two heating sources are 

estimated to control the temperatures of both floors. Table 3.2 shows these scenarios. 

 

Figure 3.10 Thermal model for controlling two zones' temperature 

Table 3.2 10R6C scenarios 

Scenario Controlled State Estimated model input 

10R6C-Ct1 𝑇𝑚 at 22 ℃ 𝑄ℎ𝑝 

10R6C-Ct2 𝑇𝑚 at 23 ℃ and 𝑇𝑢 at 21 ℃ 𝑄𝑚 and 𝑄𝑢 

 

The estimated model parameters and initial states of the RC model is presented in Eq. 

(3.16) and are gotten from the previous chapter. 

𝒔̂0|0 = [20.30 20.45 20.96 21.2 19.8 18.8]𝑇 [𝑢𝑛𝑖𝑡:℃] 

(3.16) 

 

 

𝜽 = [𝑅𝑇 𝐶𝑇 𝐹𝑠 
𝑇 𝑝𝑒

𝑇 𝛼ℎ𝑝
𝑇 ]

𝑇
 

𝑹 = [1.32 1.59 19.06 2.78 5.26 26.35 12.49 2.42 20.62 13.72] 

[𝑢𝑛𝑖𝑡: °C 𝑘𝑊⁄ ] 
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𝑪 = [1.39 2.37 2.16 25.96 3.74 9.62] [𝑢𝑛𝑖𝑡: kWh °C⁄ ] 

𝑭𝒔 = [1.97 3.05 1.22]𝑇[𝑢𝑛𝑖𝑡:𝑚2] 

𝒑𝒆 = [0.37 0.13]𝑇[𝑢𝑛𝑖𝑡:−−] 

𝒂𝒉𝒑 = [0.35 0.40 0.23]𝑇[𝑢𝑛𝑖𝑡:−−] 

 

As explained in the case study of a simple RC model, the initial covariance matrix 𝑃̂0|0
𝑠𝑠  

is diagonal, with diagonal terms selected as 𝑷̂0|0
𝑠𝑠 = [1.0 × (𝒔̂0|0)]

2. The measurement noise 

covariance matrix is assumed to be diagonal and time-invariant, equal to 𝒁 = (0.3°C)2. The 

process noise covariance matrix is also assumed to be time-invariant and diagonal entries 

having values equal to 𝑮 = [1 × 10−5 × 𝒔̂0|0]
2  as described in [26, 53].  

In Scenario 10R6C-Ct1, the developed method employed to estimate the heating 

cooling supply Qhp to maintain the main floor temperature Tm at 22°C. Furthermore, Tu and Tb 

representing second floor and basement temperature will also be estimated during the 

expected controlling dataset. It is important to note that the maximum capacity of the heat 

pump installed in this house is 10.55 kW, so the estimated Qhp cannot exceed this value. 

Figure 3.11 (a) shows the estimated Qhp and uncontrolled state (Tu and Tb) for the 

controlling dataset. The estimated Qhp starts with an initial value of 5 kW and then mostly 

varies between 0 to 4 kW to maintain Tm at 22°C. Figure 3.11 (b) displays the estimated 

temperature for the second floor and basemen which are around 21°C  and 20.5°C, 

respectively, when temperature of the main floor is controlled.  
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(a) 

 

(b) 

Figure 3.11 (a) Estimated heating and cooling supply. (b) Second floor and basement 

estimated temperature when Tm controlled 

To validate the estimated heating and cooling supply, the estimated Qhp is taken into 

account and the previously described 10R6C model is simulated to check if the temperature 

Tm is controlled at 22°C or not. Figure 3.12 shows the simulation result for Tm in the 

controlling dataset. It can be observed that Tm increases rapidly from around 21°C to 22°C in 

the first 10 minutes and remains at 22°C for the remainder of the controlling period which 

starts from hours 2 to 8, it is worth noting that hours 0 to 2 indicates zone temperature Tm 
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behavior prior controlling. This indicates that the presented method can accurately estimate 

the required heating and cooling supply to control the temperature of the main floor Tm.  

 

 

Figure 3.12 Tm results for the controlled data set 

Scenario 10R6C-Ct2 focuses on controlling the temperature of multiple zones, 

specifically the main floor (Tm) and second floor (Tu), with estimation of corresponding 

heating and cooling supplies. To accomplish this, Qm and Qu have been added to the 

corresponding floor's node (i.e., main and second floors). ODEs relating to this scenario are 

shown in Appendix . The goal of this scenario is to maintain the temperature of the main floor 

at 23°C and the second floor at 22°C. 

Figure 3.13 (a) illustrates the estimated heating and cooling supply Qu which is used 

to control the temperature of second floor Tu at 22°C. Initially, the estimated Qu is 3.1 kW, 
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but it varies between 0 and 0.5 kW to maintain Tu at the desired temperature. Figure 3.13 (b) 

shows generated responses for Tu when estimated Qu is applied. It can be observed that Tu 

quickly increases from about 20.5 to the expected temperature (22°C) within the first 10 

minutes and remains constant throughout the control dataset.   

 

(a) 

 

 

(b) 
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Figure 3.13 (a) Estimated heating and cooling supply Qu, (b) Tu results in controlling dataset 

Figure 3.14. (a) shows the estimated heating and cooling supply represented as Qm, 

used to control the temperature of the main floor (Tm) at a constant value of 23°C. The initial 

value of estimated Qm is 4 kW and it mostly varies between 0 and 3 kW to maintain Tm at the 

desired temperature. Figure 3.14 (b) illustrates the generate temperature response of the main 

floor in the control dataset when estimated Qm is applied to the RC model. It is observed that 

Tm increases rapidly from about 21°C to 23°C in the first 10 minutes and stays at 23°C for the 

entire control period. 

 

(a) 
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(b) 

Figure 3.14 (a) Estimated heating and cooling supply Qm, (b) Tm results in a controlling 

dataset 

3.4 Conclusion 

This study develops a method for estimating heating and cooling supplies (i.e., RC 

thermal model inputs) for temperature control purposes. In this regard, the method employs 

thermal resistor-capacitor network (RC) for thermal dynamic modeling and the Unscented 

Kalman filter (UKF), integrated with the Nonlinear Least Square (NLS) method, to estimate 

the heating and cooling supply. To evaluate the capability of the developed method, two 

application examples are presented: one using made-up data and the other using real-world 

data. Different scenarios, including limiting the maximum amount of the heating and cooling 

supply and controlling temperatures in multiple zones, are created to evaluate the capability 

and performance of the developed method in different circumstances. 

In the case study with made-up data, the estimated heating and cooling supply sharply 

drops the zone's temperature from about 30°C to 26°C in the first 10 minutes and maintains 
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that temperature for the remainder of the controlling dataset. Similarly, in the case of real-

world data, the developed method accurately estimates the heating and cooling supply to 

control one and two zones. The considered zone temperatures reach the expected temperature 

set points of 22°C and 23°C in the first 10 minutes and remain constant throughout the 

controlling dataset. These accurate estimation of heating and cooling supply and controlling 

zone’s temperature on their expected level prove that the developed method is an effective 

technique for estimating heating and cooling supply of RC thermal models and can be used 

in control strategies. 
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4 Conclusion 

4.1 Summary  

To summarize, the focus of this thesis is to develop and evaluate a method for 

simultaneously estimating thermal resistor and capacitor (RC) model parameters and inputs, 

even when some states are partially missing. The method uses RC models for thermal dynamic 

modeling and incorporates Unscented Kalman Filter (UKF) and Nonlinear Least Square 

(NLS) estimation method. The developed method is evaluated using both made-up and real-

world data from a single-family detached house. Once the parameters have been estimated 

and a trustworthy thermal dynamic model is created, then attention is redirected towards 

employing the developed method without parameter estimation to determine the necessary 

heating and cooling supply for controlling zone temperatures to desired levels. The capability 

of this method is also evaluated using case studies with made-up and real-world data as well.  

4.2 Contribution  

This research introduces a method for estimating RC model parameters and inputs, even 

in cases where some states are partially missing.  Furthermore, the developed method is 

utilized to control zone temperatures by estimating the required heating and cooling supply. 

In this context, the major contributions of this thesis include:  

Part 1: 

I. Development of RC model parameters and input estimation method: The 

developed method is a new approach for estimating RC model parameters and 

inputs with and without partially missing states. This method utilizes RC thermal 
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model and UKF and NLS estimation method to estimate the unknown parameters 

and inputs. 

II. Evaluation of the developed method using different case studies: The capability 

of the developed method is demonstrated by applying it to case studies both with 

made-up and real-world data in different scenarios. The case studies show that 

the developed method performs well in estimating the RC model parameters, and 

inputs, even when the temperature states are partially missing. 

Part 2: 

 

I. Employing the developed method without parameter estimation for controlling 

zone temperature purposes: The developed method is used for estimating the 

necessary heating and cooling supply for controlling zone temperatures to desired 

levels.  

II. The developed method's capability in terms of estimating necessary heating and 

cooling supply is evaluated through case studies that employ made-up and real-

world data in diverse scenarios. These case studies demonstrate the method's 

capability in estimating the required heating and cooling supply to regulate zone 

temperatures accurately.  
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4.3 Future works and limitations 

Several future works can be considered to expand the scope and applicability of the 

developed method. Firstly, the developed method can be validated using data from other 

complex buildings with varying building types, sizes, and thermal characteristics to assess its 

generalizability. Secondly, investigating the potential for integrating the developed method 

with existing building automation systems can enable real-time control and optimization of 

heating and cooling supply, thus enhancing building energy efficiency, and reducing 

operating costs. Additionally, designing user-friendly toolboxes that allow for easy 

implementation of the developed method can enhance its accessibility and usability. These 

toolboxes can include graphical user interfaces, documentation, and open-source codes to 

facilitate the adoption of the developed method by building energy practitioners and 

researchers. 

While the developed method is deemed reliable, there are still some challenges that need 

to be addressed. One of these challenges is the assumption that the RC model accurately 

represents the thermal behavior of the building, which may not always hold true. This means 

that the accuracy of the estimated parameters and control strategies is reliant on the quality of 

the RC model. Additionally, uncertainties in input and state measurements may also impact 

the performance of the proposed method, and it is necessary to investigate the extent of this 

impact. 
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Appendix A – A simple RC model case study information and results for parameter-input 

estimations 

For the case study with made-up data, i.e., the 2R2C model, the ordinary differential equation 

can be shown below: 

 𝐶2
𝑑𝑇2
𝑑𝑡

=
𝑇1 − 𝑇2
𝑅2

+
𝑇3 − 𝑇2
𝑅3

 
 

(A.1) 

𝐶3
𝑑𝑇3
𝑑𝑡

=
𝑇2 − 𝑇3
𝑅3

+ 𝑄1 + 𝑄2 
(A.2) 

 Accordingly, the state-space equation of the 2R2C model, when Q2 is assumed to be 

unknown, can be written as: 

𝒔̇(𝑡) =  𝑨𝑐𝒔(𝑡) + 𝑩𝑐𝒖(𝑡) 

 

 

𝑑

𝑑𝑡
[
𝑇2
𝑇3
] =

[
 
 
 
−1

𝑅2𝐶2
−

1

𝑅3𝐶2

1

𝑅3𝐶2
1

𝑅3𝐶3
−

1

𝑅3𝐶3]
 
 
 

[
𝑇2
𝑇3
] +

[
 
 
 
1

𝑅2𝐶2
0 0

0
1

𝐶3

1

𝐶3]
 
 
 

[
𝑇1
𝑄1
𝑄2

] 

 

(A.3) 

 

𝒙̇(𝑡) =  [𝒔̇(𝑡) 𝜽̇(𝑡)]  

𝒙𝑘+1 =   𝑓(𝒙𝑘, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) + 𝒘𝑘 
 

 

𝑓(𝒙𝑘, 𝒖𝑘
𝑘𝑛, 𝒖𝑘

𝑢𝑛) =  𝑨𝒅𝒙𝒙𝑘 + 𝑩
𝒅𝒙 [

𝒖𝒌
𝒌𝒏

𝒖𝒌
𝒖𝒏] 

 

 

 

(A.4) 
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𝑨𝑑𝑥 = [
𝐴𝑑2×2 02×4
04×2 𝑑𝑖𝑎𝑔(1)4×4

]
6×6

 

 

𝑩𝑑𝑥 = [
𝑩𝑑2×3
04×3

]
6×3

 
 

(A.5) 

 

 

Figure A.1 2R2C model inputs 

Regarding the results for 2R2C-2 and 2R2C-3 scenarios, the last estimated model 

parameters are shown in Table A.1  

Table A.1 Last estimated model parameters for Scenarios for 2R2C-2 and 2R2C-3 

Model 

parameters 

True values 2R2C-2 2R2C-3 

R2 4.45 2.85 3.45 

R3 26.35 25.1 25.23 

C2 2.64 2.3 2.63 

C3 1.2 1.2 1.14 



86 

 

 

 

 

Figure A. 2Comparison between true and estimated temperature responses for Scenario 

2R2C-2 
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Figure A. 3Comparison between true and estimated temperature responses for Scenario 

2R2C-3 

Comparison between true and estimated model input for Scenario 2R2C-1: 
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Figure A. 4 Comparison between true and estimated model input for Scenario 2R2C-1 

 

 

Figure A. 5 Comparison between true and estimated model input for Scenario 2R2C-2 
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Figure A. 6 Comparison between true and estimated model input for Scenario 2R2C-3 

 

Appendix B – Real-world case study information and results for parameter-input estimations 

The ODEs shown below are derived for the 10R6C model:  

𝐶𝑢𝑖
𝑑𝑇𝑢
𝑑𝑡

=
𝑇0 − 𝑇𝑢
𝑅3

+
𝑇𝑢𝑚 − 𝑇𝑢

𝑅1
+
𝑇𝑢𝑚 − 𝑇𝑢
𝑅2

+ 𝛼ℎ𝑝𝑢𝑄ℎ𝑝 + 𝛼𝑠𝑢𝑄𝑠 
 

𝐶𝑢𝑚
𝑑𝑇𝑢𝑚
𝑑𝑡

=
𝑇𝑢 − 𝑇𝑢𝑚

𝑅1
 

 

𝐶𝑚𝑖
𝑑𝑇𝑚
𝑑𝑡

=
𝑇0 − 𝑇𝑚
𝑅6

+
𝑇𝑚𝑚 − 𝑇𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚
𝑅5

+
𝑇𝑢 − 𝑇𝑚
𝑅2

+ 𝛼ℎ𝑝𝑚𝑄ℎ𝑝 + 𝛼𝑠𝑚𝑄𝑠

+ 𝛼𝑒𝑚𝑄𝑒𝑙𝑒𝑐 

(B.1) 
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𝐶𝑚𝑚
𝑑𝑇𝑚𝑚
𝑑𝑡

=
𝑇𝑚 − 𝑇𝑚𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚𝑚

𝑅7
 

 

𝐶𝑏𝑖
𝑑𝑇𝑏
𝑑𝑡

=
𝑇0 − 𝑇𝑏
𝑅9

+
𝑇𝑏𝑚 − 𝑇𝑏

𝑅8
+
𝑇𝑚𝑚 − 𝑇𝑏

𝑅7
+
𝑇𝑚 − 𝑇𝑏
𝑅5

+ 𝛼ℎ𝑝𝑏𝑄ℎ𝑝 + 𝛼𝑠𝑏𝑄𝑠 + 𝛼𝑒𝑏𝑄𝑒𝑙𝑒𝑐 
 

𝐶𝑏𝑚
𝑑𝑇𝑏𝑚
𝑑𝑡

=
𝑇𝑏 − 𝑇𝑏𝑚
𝑅8

+
𝑇𝑔 − 𝑇𝑏𝑚

𝑅10
+ 𝑄𝑣𝑐𝑠 

 

 

Therefore, the state space form of the 10R6C model can be written as follows: 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

=  𝐴𝑐

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

+ 𝐵𝑐

[
 
 
 
 
 
𝑇0
𝑇g
𝑄s
𝑄hp
𝑄elec
𝑄vcs ]

 
 
 
 
 

   

 

 

 

where 

𝐴𝑐 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

𝐶𝑢𝑖
(
1

𝑅1
+
1

𝑅2
+
1

𝑅3
)

1

𝑅1 ∗ 𝐶𝑢𝑖

1

𝑅2 ∗ 𝐶𝑢𝑖
0 0 0

1

𝑅1 ∗ 𝐶𝑢𝑚

−1

𝑅1 ∗ 𝐶𝑢𝑚
0 0 0 0

1

𝑅2 ∗ 𝐶𝑚𝑖
0

−1

𝐶𝑚𝑖
(
1

𝑅2
+
1

𝑅4
+
1

𝑅5
+
1

𝑅6
)

1

𝑅4 ∗ 𝐶𝑚𝑖

1

𝑅5 ∗ 𝐶𝑚𝑖
0

0 0
1

𝑅4 ∗ 𝐶𝑚𝑚

−1

𝐶𝑚𝑚
(
1

𝑅4
+
1

𝑅7
)

1

𝑅7 ∗ 𝐶𝑚𝑚
0

0 0
1

𝑅5 ∗ 𝐶𝑏𝑖

1

𝑅7 ∗ 𝐶𝑏𝑖

−1

𝐶𝑏𝑖
(
1

𝑅5
+
1

𝑅7
+
1

𝑅8
+
1

𝑅9
)

1

𝑅8 ∗ 𝐶𝑏𝑖

0 0 0 0
1

𝑅8 ∗ 𝐶𝑏𝑚

−1

𝐶𝑏𝑚
(
1

𝑅8
+

1

𝑅10
)
]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

B𝑐 =

[
 
 
 
 
 
 
 
 

1

𝑅3∗𝐶ui
0

𝛼su

𝐶ui

𝛼hpu

𝐶ui
0 0

0 0 0 0 0 0
1

𝑅6∗𝐶mi
0

𝛼sm

𝐶mi

𝛼hpm

𝐶mi

𝛼em

𝐶mi
0

0 0 0 0 0 0
1

𝑅9∗𝐶bi
0

𝛼sb

𝐶bi

𝛼hpb

𝐶bi

𝛼eb

𝐶bi
0

0
1

𝑅10∗𝐶bm
0 0 0

1

𝐶𝑏𝑚]
 
 
 
 
 
 
 
 

  

 

(B.2) 
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𝑨𝑑𝑥 = [
𝑨𝑑6×6 06×24
024×6 𝑑𝑖𝑎𝑔(1)24×24

]
30×30

 𝑩𝑑𝑥 = [
𝑩𝑑6×6
024×6

]
30×6

 
(B.3) 

 

Single detached house (10R6C) model inputs: 
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Figure B.1 10R6C model inputs 
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Figure B. 2 10R6C model parameters estimation: thermal resistances for Scenario 10R6C-1 
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Figure B.3 10R6C model parameters estimation: thermal capacitances for Scenario 10R6C-1 
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Figure B. 410R6C model parameters estimation: solar and internal gain factors for 

Scenario 10R6C-1 
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Figure B. 5 Comparison between true and estimated model input for Scenario 10R6C-1 
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Figure B. 6 10R6C model parameters estimation: thermal resistances for scenario 10R6C-3 
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Figure B. 710R6C model parameters estimation: thermal capacitances for scenario 10R6C-3 
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Figure B. 810R6C model parameters estimation: solar and internal gain factors for scenario 

10R6C-3 
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Figure B. 9 Comparison between true and estimated model input for scenario 10R6C-3 

 

 



107 

 

 

Figure B. 10Comparison between true and estimated temperature responses for scenario 

10R6C-3 
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Figure B. 11Comparison between true and predicted temperature responses for scenario 

10R6C-3 

Appendix C – A simple case study information for temperature control 

For the case study with made-up data, i.e., the 2R2C model, the ordinary differential 

equation can be shown below: 

 𝐶2
𝑑𝑇2
𝑑𝑡

=
𝑇1 − 𝑇2
𝑅2

+
𝑇3 − 𝑇2
𝑅3

 
(C.1) 

𝐶3
𝑑𝑇3
𝑑𝑡

=
𝑇2 − 𝑇3
𝑅3

+ 𝑄1 + 𝑄3 
(C.2) 

Accordingly, the state-space equation of the 2R2C model, when Q2 needs to be estimated. 
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𝑑

𝑑𝑡
[
𝑇2
𝑇3
] =

[
 
 
 
−1

𝑅2𝐶2
−

1

𝑅3𝐶2

1

𝑅3𝐶2
1

𝑅3𝐶3
−

1

𝑅3𝐶3]
 
 
 

[
𝑇2
𝑇3
] +

[
 
 
 
1

𝑅2𝐶2
0

1

𝐶2
0

0
1

𝐶3
0

1

𝐶3]
 
 
 

[

𝑇1
𝑄1
𝑄2
𝑄3

] (C.3) 

 

Figure C.1 2R2C model inputs 

Appendix D – Real-world case study information for temperature control 

The ODEs shown below are derived for the 10R6C model:  

𝐶𝑢𝑖
𝑑𝑇𝑢
𝑑𝑡

=
𝑇0 − 𝑇𝑢
𝑅3

+
𝑇𝑢𝑚 − 𝑇𝑢

𝑅1
+
𝑇𝑢𝑚 − 𝑇𝑢
𝑅2

+ 𝛼ℎ𝑝𝑢𝑄ℎ𝑝 + 𝐹𝑠𝑢𝑄𝑠 
 
 

𝐶𝑢𝑚
𝑑𝑇𝑢𝑚
𝑑𝑡

=
𝑇𝑢 − 𝑇𝑢𝑚

𝑅1
  

𝐶𝑚𝑖
𝑑𝑇𝑚
𝑑𝑡

=
𝑇0 − 𝑇𝑚
𝑅6

+
𝑇𝑚𝑚 − 𝑇𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚
𝑅5

+
𝑇𝑢 − 𝑇𝑚
𝑅2

+ 𝛼ℎ𝑝𝑚𝑄ℎ𝑝 + 𝛼𝑠𝑚𝑄𝑠

+ 𝛼𝑒𝑚𝑄𝑒𝑙𝑒𝑐 
 

𝐶𝑚𝑚
𝑑𝑇𝑚𝑚
𝑑𝑡

=
𝑇𝑚 − 𝑇𝑚𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚𝑚

𝑅7
 (D1) 

𝐶𝑏𝑖
𝑑𝑇𝑏
𝑑𝑡

=
𝑇0 − 𝑇𝑏
𝑅9

+
𝑇𝑏𝑚 − 𝑇𝑏
𝑅8

+
𝑇𝑚𝑚 − 𝑇𝑏

𝑅7
+
𝑇𝑚 − 𝑇𝑏
𝑅5

+ 𝛼ℎ𝑝𝑏𝑄ℎ𝑝 + 𝛼𝑠𝑏𝑄𝑠

+ 𝛼𝑒𝑏𝑄𝑒𝑙𝑒𝑐 
 

𝐶𝑏𝑚
𝑑𝑇𝑏𝑚
𝑑𝑡

=
𝑇𝑏 − 𝑇𝑏𝑚
𝑅8

+
𝑇𝑔 − 𝑇𝑏𝑚

𝑅10
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 Therefore, the state space form of the 10R6C model can be written as follows: 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

=  𝐴𝑐

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

+ 𝐵𝑐

[
 
 
 
 
𝑇0
𝑇g
𝑄s
𝑄elec
𝑄hp ]

 
 
 
 

 

 

(D.2) 

 

where 

𝐴𝑐 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

𝐶𝑢𝑖
(
1

𝑅1
+
1

𝑅2
+
1

𝑅3
)

1

𝑅1 ∗ 𝐶𝑢𝑖

1

𝑅2 ∗ 𝐶𝑢𝑖
0 0 0

1

𝑅1 ∗ 𝐶𝑢𝑚

−1

𝑅1 ∗ 𝐶𝑢𝑚
0 0 0 0

1

𝑅2 ∗ 𝐶𝑚𝑖
0

−1

𝐶𝑚𝑖
(
1

𝑅2
+
1

𝑅4
+
1

𝑅5
+
1

𝑅6
)

1

𝑅4 ∗ 𝐶𝑚𝑖

1

𝑅5 ∗ 𝐶𝑚𝑖
0

0 0
1

𝑅4 ∗ 𝐶𝑚𝑚

−1

𝐶𝑚𝑚
(
1

𝑅4
+
1

𝑅7
)

1

𝑅7 ∗ 𝐶𝑚𝑚
0

0 0
1

𝑅5 ∗ 𝐶𝑏𝑖

1

𝑅7 ∗ 𝐶𝑏𝑖

−1

𝐶𝑏𝑖
(
1

𝑅5
+
1

𝑅7
+
1

𝑅8
+
1

𝑅9
)

1

𝑅8 ∗ 𝐶𝑏𝑖

0 0 0 0
1

𝑅8 ∗ 𝐶𝑏𝑚

−1

𝐶𝑏𝑚
(
1

𝑅8
+

1

𝑅10
)
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

B𝑐 =

[
 
 
 
 
 
 
 
 

1

𝑅3∗𝐶ui
0

𝛼su

𝐶ui
0

𝛼hpu

𝐶ui

0 0 0 0 0
1

𝑅6∗𝐶mi
0

𝛼sm

𝐶mi

𝛼em

𝐶mi

𝛼hpm

𝐶mi

0 0 0 0 0
1

𝑅9∗𝐶bi
0

𝛼sb

𝐶bi

𝛼eb

𝐶bi

𝛼hpb

𝐶bi

0
1

𝑅10∗𝐶bm
0 0 0 ]
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Figure D. 1. 10R6C Model inputs 

 

The ordinary differential equations for the RC thermal model for controlling two zones’ 

temperatures is depicted below:   
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𝐶𝑢𝑖
𝑑𝑇𝑢
𝑑𝑡

=
𝑇0 − 𝑇𝑢
𝑅3

+
𝑇𝑢𝑚 − 𝑇𝑢
𝑅1

+
𝑇𝑢𝑚 − 𝑇𝑢
𝑅2

+ 𝑄𝑢 + 𝛼𝑠𝑢𝑄𝑠 
 
 

𝐶𝑢𝑚
𝑑𝑇𝑢𝑚
𝑑𝑡

=
𝑇𝑢 − 𝑇𝑢𝑚

𝑅1
  

𝐶𝑚𝑖
𝑑𝑇𝑚
𝑑𝑡

=
𝑇0 − 𝑇𝑚
𝑅6

+
𝑇𝑚𝑚 − 𝑇𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚
𝑅5

+
𝑇𝑢 − 𝑇𝑚
𝑅2

+ 𝑄𝑚 + 𝛼𝑠𝑚𝑄𝑠 + 𝛼𝑒𝑚𝑄𝑒𝑙𝑒𝑐  

𝐶𝑚𝑚
𝑑𝑇𝑚𝑚
𝑑𝑡

=
𝑇𝑚 − 𝑇𝑚𝑚

𝑅4
+
𝑇𝑏 − 𝑇𝑚𝑚

𝑅7
 (B3) 

𝐶𝑏𝑖
𝑑𝑇𝑏
𝑑𝑡

=
𝑇0 − 𝑇𝑏
𝑅9

+
𝑇𝑏𝑚 − 𝑇𝑏
𝑅8

+
𝑇𝑚𝑚 − 𝑇𝑏

𝑅7
+
𝑇𝑚 − 𝑇𝑏
𝑅5

+ 𝛼𝑠𝑏𝑄𝑠 + 𝛼𝑒𝑏𝑄𝑒𝑙𝑒𝑐  

𝐶𝑏𝑚
𝑑𝑇𝑏𝑚
𝑑𝑡

=
𝑇𝑏 − 𝑇𝑏𝑚
𝑅8

+
𝑇𝑔 − 𝑇𝑏𝑚

𝑅10
  

 
 

 

The state space model of the new RC thermal model can be written as follow.  

𝑑

𝑑𝑡

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

=  𝐴𝑐

[
 
 
 
 
 
𝑇𝑢
𝑇𝑢𝑚
𝑇𝑚
𝑇𝑚𝑚
𝑇𝑏
𝑇𝑏𝑚 ]

 
 
 
 
 

+ 𝐵𝑐

[
 
 
 
 
 
𝑇0
𝑇g
𝑄s
𝑄elec
𝑄𝑢
𝑄𝑚 ]

 
 
 
 
 

   

 

(E.4) 

which 

𝐴𝑐 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

𝐶𝑢𝑖
(
1

𝑅1
+
1

𝑅2
+
1

𝑅3
)

1

𝑅1 ∗ 𝐶𝑢𝑖

1

𝑅2 ∗ 𝐶𝑢𝑖
0 0 0

1

𝑅1 ∗ 𝐶𝑢𝑚

−1

𝑅1 ∗ 𝐶𝑢𝑚
0 0 0 0

1

𝑅2 ∗ 𝐶𝑚𝑖
0

−1

𝐶𝑚𝑖
(
1

𝑅2
+
1

𝑅4
+
1

𝑅5
+
1

𝑅6
)

1

𝑅4 ∗ 𝐶𝑚𝑖

1

𝑅5 ∗ 𝐶𝑚𝑖
0

0 0
1

𝑅4 ∗ 𝐶𝑚𝑚

−1

𝐶𝑚𝑚
(
1

𝑅4
+
1

𝑅7
)

1

𝑅7 ∗ 𝐶𝑚𝑚
0

0 0
1

𝑅5 ∗ 𝐶𝑏𝑖

1

𝑅7 ∗ 𝐶𝑏𝑖

−1

𝐶𝑏𝑖
(
1

𝑅5
+
1

𝑅7
+
1

𝑅8
+
1

𝑅9
)

1

𝑅8 ∗ 𝐶𝑏𝑖

0 0 0 0
1

𝑅8 ∗ 𝐶𝑏𝑚

−1

𝐶𝑏𝑚
(
1

𝑅8
+

1

𝑅10
)
]
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B𝑐 =

[
 
 
 
 
 
 
 
 
 
 

1

𝑅3 ∗ 𝐶ui
0

𝛼su

𝐶ui
0

1

𝐶ui
0

0 0 0 0 0 0
1

𝑅6 ∗ 𝐶mi
0

𝛼sm

𝐶mi

𝛼em

𝐶mi
0

1

𝐶mi
0 0 0 0 0 0
1

𝑅9 ∗ 𝐶bi
0

𝛼sb

𝐶bi

𝛼eb

𝐶bi
0 0

0
1

𝑅10 ∗ 𝐶bm
0 0 0 0

]
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 


