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Abstract

Image texture is defined as visual patterns appearing in images. The powerful perceptive capability

of texture features has made texture analysis a major research topic in computer vision and image

processing. Texture features are used to detect defective products in factories, to understand human

actions in surveillance systems, to identify people from biometric data (e.g., fingerprint, iris scan,

and face photo), and to find abnormality in medical images. Indeed, many advanced applications

take a direct or indirect advantage of texture analysis in their processing.

An ideal texture feature should not only be discriminative but also be robust to imaging distor-

tions. The developement of robust texture features is first motivated by applying texture analysis to

Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease in which evidence

of the disease is not perceptible in routine magnetic resonance images (MRI) of the brain even to

a trained eye. Unlike brain tumors or multiple sclerosis, the lack of observable features possesses

challenges to the detection and diagnosis of ALS. These challenges and the great need in the ALS

research community to find a biomarker and to detect the patterns of degeneration in the brain have

encouraged the author to study this disease using texture analysis. The results of this thesis suggest

texture analysis is a potential biomarker for the disease and hence, open up new avenues towards

understanding the disease.

This thesis presents a useful approach for texture analysis of the brain. In contrast to the current

methods, the proposed approach does not need a region of interest. It performs a voxel based texture

analysis and provides a statistical map showing the regions in the brain statistically different between

the groups of patients and healthy subjects. A Computer Aided Diagnosis (CAD) tool is developed

for this purpose. This toolbox is called the Statistical MAp fRom Texture (SMART) and helps

doctors make diagnoses and monitor the progression of diseases using texture analysis.

Distortions and effects in real images (e.g., noise, illumination change, blurr effect) increase

demand for developing robuts texture features. To address the robustness issues, a novel approach

is presented called the Local Frequancy Descriptor (LFD). The LFD is the basis of several novel

2D and 3D texture features presented later in this thesis. It is also the basis of new image gradient

operators for 2D and 3D images and a novel image matching method. All texture features, methods,

and gradient operators defined based on the LFD show high accuracy and outperform the state-ofthe-

art methods. In addition, they present remarkable robutness to imaging effects.
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Chapter 1

Introduction

1.1 Motivation

Texture refers to the intensity variations or visual patterns in images. Indeed, what helps us to

perceive images is not limited to color. In gray scale images the human eye is able to distinguish

different objects and scenes by means of visual patterns. Intensity variations and visual patterns not

only help us identify objects but also can reveal the material of the objects. For instance, rugged

objects are perceived as uneven surfaces to the eye. Sharp objects appear with thin edges. Polished

surfaces look shiny. Hence, texture features play an important role in our perception. This impor-

tant role motivated several researchers including Bela Julesz to perform different experiments to

understand the visual perception of textures in human [168; 169].

The findings of Julesz and other researchers have established a foundation for todays texture

analysis methods and have made texture analysis an important research topic in computer vision and

image processing. Texture methods have been successfully used in many applications including but

not limited to automatic inspection, document processing, remote sensing, fingerprint identification,

object recognition, image matching, and medical imaging. Thanks to texture analysis methods, we

detect oil spills, ice surfaces, urban areas, mountains and woods from Synthetic Aperture Radar

(SAR) images. Biometric information (e.g., fingerprints, iris scans, face photos) is extensively used

by security agencies for accurate and fast personal identification. Three dimensional models of

cities and objects are constructed by matching texture features in ordinary two dimensional images.

Robots use texture features to understand their surroundings in space explorations and in other en-

vironments. Doctors are aided by CAD tools to detect, analyze, and monitor different disease by

means of texture features. Movie and game industries use textures for special visual effects. Facto-

ries take advantage of texture methods to identify defective products. Nowadays, many applications

employ methods that make a direct or indirect use of texture features.

One of the main applications of texture analysis is medical imaging. In this area, a motivation

of this thesis is to explore the capability of texture analysis to detect cerebral changes in MR images

of patients with ALS. ALS is a fatal neurodegenerative disease, the cause of which is unknown.
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To the best knowledge of the author, there is no known biomarker for ALS to date. A biomarker,

is generally referred to a measurable indicator of a biological state or condition and therefore, is

used to specify the state of a disease (i.e., ALS). Finding biomarkers is one of the most intense

areas of research in the general medical community, and particularly in neurology. A biomarker

helps doctors make the right diagnosis and make it sooner. It helps track disease progression and see

how that progression changes with treatment. Finally and more importantly, a biomarker leads to the

discovery of drugs faster as it is a more accurate measure of response than the crude non-quantitative

clinical measures.

Imaging is a popular method to identify biomarker for several diseases. It is a repeatable non-

invasive approach which provides spatial information of the region of interest. The spatial informa-

tion is used to find the changes occurring due to the pathology of a disease. Nevertheless, the current

medical imaging techniques to study ALS have several drawbacks and MR images are usually used

to rule out diseases that mimic ALS. From a technical point of view, analysis of the MR images in

ALS is challenging because the images do not show any changes visible to the human eye. For the

first time, this study shows that texture analysis can detect small variations in the brain images of

patients with ALS although they are not perceptible to the human eye. In addition to the technical

importance, this study suggests that texture analysis is a potential quantitative biomarker in ALS.

Such a biomarker is highly required because it facilitates research of the disease and helps evaluate

new drugs for ALS. Nonetheless, texture features are extracted from MR images, and hence, the

features should be robust to imaging effects inherited in MR images. The robustness lays out the

objectives of this thesis.

Indeed, development of robust texture features is important in many applications. In realistic

situations imaging effects are inevitable. For instance, MR images suffer from noise and non uniform

intensity changes. Scattered images look blurry. Illumination conditions change when images are

captured at different times or from different view points. Hence, developing robust and accurate

texture features has a marked impact in number of different applications particularly in medical

image analysis.

1.2 Objectives

This thesis explores the application of texture analysis in medical image analysis. The current texture

analysis methods are defined for a given region of interest. This imposes a huge burden for medical

image analysis. For instance, the texture analysis methods require an accurate segmentation of

the region of interest which is usually done manually. Moreover, region of interest based methods

require a priori hypothesis of where the disease is located spatially, however this may not always be

evident. To address these issues, this thesis presents an automatic method which obviates the need

for segmentation and finds the defective regions automatically.

The next goal of this thesis is to apply texture analysis methods to some select neurological
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diseases, including ALS. Since texture analysis has been very successful in many areas, using it in

ALS to develop such a biomarker is certainly promising. The success of the developed methods in

ALS will further motivate its usage in other neurodegenerative and non-neurodegenerative diseases.

In addition to ALS, the goal is to apply the proposed texture analysis methods to Alzheimer’s Disease

(AD). The pattern of degeneration in AD is more consistent across patients, hence, it assists in the

validation of the proposed methods.

Since the proposed texture methods can help detecting, analyzing, and monitoring different brain

related diseases, a CAD tool is developed which can be easily used by doctors to conduct research.

Ideal texture features are not only discriminative but are also robust to imaging distortions and

are invariant to different geometric transformations such as rotation, change of scale and viewpoint.

Indeed, texture features of an object in a given image should remain the same in spite of the view

under which the image is taken. Moreover, the features should not be affected by imaging dis-

tortions and illumination conditions. Imaging distortions include different types of noise and blur

effects. In realistic imaging these distortions are sometimes unavoidable. For instance, magnetic

resonance images usually have noise, underwater images are blurred, and images with long expo-

sure or fast movements suffer from motion blur. Illumination conditions make the situation more

difficult. While the intensity of images can change rapidly under different illumination conditions,

texture features should be invariant to such changes. Because of the mentioned challenges, there are

still many research groups trying to define robust and invariant features, making texture analysis an

active research topic in computer vision and image processing.

The next objective of this thesis is to develop texture features that have three properties:

1. highly discriminative,

2. invariant to some geometrical transformations, and

3. robust to common imaging effects.

This thesis introduces a new method called the Local Frequency Descriptor (LFD) which is the

basis of accurate, robust, and invariant features. LFD is inspired from one of the most successful

and popular texture methods called the Local Binary Patterns (LBP). Like the LBP, the LFD method

in 2D considers a neighboring function at each pixel on gray scale images. This discrete function

consists of N sample points located on a circle of radius R. The value of each point is computed by

bilinear interpolation if the point is not located on a center of a pixel. Then the function undergoes a

1D Fourier transform. The frequency components of this function are called the LFD and form the

basis of several new methods for texture analysis and image processing presented in this thesis.

Since 2D texture analysis methods are popular and widely used in different applications, the

first objective is to develop better 2D methods. Because there is a growing demand on 3D texture

analysis methods particularly in medical image analysis, the next goal of this research is to develop
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3D texture features with the aforementioned properties. In this regard, the LFD method is extended

to 3D and used to classify 3D volumetric data.

In addition to 2D and 3D texture methods, this research extends the application of the proposed

LFD methods to other areas of computer vision and image processing. In this regard, the next

objective of this thesis is to develop new image gradient operators. Image gradient information is

used in numerous applications in computer vision and image processing. Operators with robustness

to imaging effects will help these applications in challenging imaging conditions. To further show

the ability of the LFD method, this thesis also aims to extend the proposed method to the image

matching problem which is one of the widely used application in computer vision.

1.3 Thesis Organization

In Chapter 2 a general overview of texture analysis is presented. The chapter gives an introduction

to texture analysis, defines the general domains of research in texture analysis, explains the main

approaches taken by varying methods to define texture features, and discusses some applications of

texture analysis.

Chapter 3 focuses on the medical applications of texture analysis and, in particular, four well-

known brain related diseases: the brain tumour, epilepsy, multiple sclerosis (MS), and Alzheimer’s

disease (AD). This thesis entails texture analysis of the structural brain images acquired by MRI.

Thus, the main issues and challenges of MRI are also introduced in this chapter.

Chapter 4 provides an overview of ALS and the neuropathology of the disease. The current med-

ical imaging approaches to study the disease are also explained. The approaches include structural

MRI, diffusion tensor imaging, functional MRI and magnetic resonance spectroscopy. The utility

and shortcomings of each approach are discussed.

Chapter 5 presents a novel voxel based texture analysis approach useful for hypothesis-free

analysis of the brain images. This method obviates the need for defining the region of interest and

automatically detects regions with significant statistical difference between the group of healthy

subjects and patients.

In Chapter 6 texture analysis is performed to study ALS. First, a 2D analysis is performed in a

region of interest. Then, the proposed voxel based analysis approach is used to detect regions in the

brain that are statistically different between patients with ALS and healthy subjects.

In Chapter 7 the LFD is defined for 2D analysis. Two novel 2D texture classification methods

are presented as well. These methods use the magnitude and the phase of the LFD. The features

are rotation invariant and show robustness to noise. These methods have been published in [225]

and [226]. A novel image gradient computation operator is also suggested for 2D images. This

operator is based on the second component of LFD and has been published in [227] and [228].

Chapter 8 explains how the proposed 2D method can be extended to a fundamental computer

vision applications namely image matching. The proposed method not only outperforms the state-
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of-the-art methods but also presents high degree of robustness to imaging effects and illumination

changes. This method has been published in [227]

In Chapter 9 the texture classification method and the gradient operator are extended to 3D. This

method has been published in [228]. The method is applied to synthetic and realistic MR images

successfully and provides the highest accuracy compared to the state-of-the-art 3D methods.

Finally, in Chapter 10, the summary of this thesis is given and future works are discussed. This

thesis includes four appendices.

In Appendix A the Computer Aided Diagnosis (CAD) tool developed for brain analysis using

texture features is explained. This tool is called the Statistical MAp fRom Texture (SMART) and

is developed as a toolbox for the Statistical Parametric Map (SPM), a famous brain analysis soft-

ware. Appendix B includes examples of computing image gradient using the method proposed in

Chapter 7. In Appendix C, additional results of the proposed voxel based method (Chapter 5) are

presented. Finally, in Appendix D, the detailed proof of the theorem used in Chapter 8 is given.
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Chapter 2

Texture Analysis

2.1 Introduction

In many computer vision applications image regions are characterized by means of a small set of

features. One characteristic of a region is its color. The intensity of color in many real objects is

not uniform and its variations provides another important characteristic called texture. The textural

features give very distinctive information of a region or object. In many cases, the human eye can

detect different regions of a gray scale image using only texture features. Figure 2.1 shows some

texture examples.

Figure 2.1: Five texture samples from the Brodatz [38] album. Top: raffia, left: cotton canvas,
bottom: straw matting, right: oriental straw cloth, and center: pressed calf leather.

Texture analysis includes four general research domains:

1. Classification: Texture classification is one of the most popular research topics in texture anal-

ysis. Here, the textural features are used to determine to which class or category the observed

texture belongs. One application of texture classification is to determine if an image belongs

to a healthy subject or to a patient. This has been applied successfully to the classification

and detection of different diseases, including brain tumour [139; 107], breast [141] cancer,

epilepsy [307], multiple sclerosis [342; 401], and alzheimer’s disease [73; 373].
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2. Segmentation : The goal of the methods in this domain is to partition a given image into

homogeneous regions using textural features. For instance, a brain image can be segmented

into gray matter, white matter and cerebrospinal fluid regions using texture features [29] or

in an aerial photograph of natural habitats, the goal may be to segment an animal from the

surrounding environment by means of its texture features [183].

3. Texture synthesis: The third group of methods, particularly in computer graphics applications,

uses textural features to cover a given object to make it look different. For instance, in a

computer game the floor of a given environment can be covered by sand, grass, or any given

texture. Some known examples of texture synthesis include the Markov Random Fields [269],

the Aura matrices [284], texture exemplars [190; 128], and the grouplet transform [272].

4. Shape from texture: The methods in this domain use texture features of an object in a 3D

scene to estimate the surface orientation of the object. Some recent works include estimating

shape based on deformation of texture elements [221], or based on Fourier analysis [97; 98].

The performance of a texture descriptor is usually assessed using texture classification [266;

234]. Since the applications in this thesis including medical imaging applications are mainly cat-

egorized in the classification group, this thesis focuses on the texture classification domain. The

texture classification procedure usually consists of four steps:

1. Pre-processing: This step includes operations performed before extracting texture features.

For instance in medical image analysis the Region of Interest (ROI) should be chosen. The

images are also normalized in this step. The purpose of normalization is standardizing the

intensity range, such that the extracted properties from the images are comparable. Removing

artifacts (e.g., noise) are also performed in this step.

2. Feature extraction: Textural features of images are extracted in this step. Different methods

are used to find textural features.

3. Feature selection: In this step, useful features are selected. Sometimes the number of features

is huge. As well, some features may not be informative. The goal of this step is to reduce the

number of extracted features by selecting those giving discriminative textural information.

4. Classification: In this step, each image is assigned to one of the known texture classes. Differ-

ent classification methods can be used in this step. Some popular methods used in classifica-

tion include the Support Vector Machines (SVMs), and the Nearest Neighbor (NN) classifiers.

As mentioned before in the introduction chapter of the thesis, an ideal texture feature should be

invariant to geometric transformations (e.g., rotation) and be robust to different imaging effects such

as blurriness, noise, distortions, and illumination changes. In the next section, different approaches

for extracting invariant features are explained.

7



Figure 2.2: Human eye can perceive the structural information of some textures. The texture samples
are from the Brodatz [38] album.

2.2 Invariant Texture Methods

There are many different methods for texture classification, which can be categorized into four

general groups:

1. Structure-based methods: These methods decompose textures into textural elements known

as primitives or texels and use the invariant properties of the textural elements as features.

2. Model-based methods: This class of texture methods defines textures as probabilistic models.

The invariant texture features are extracted on the assumed model.

3. Filter-based methods: This group of methods applies filters to images in the spatial or the

frequency domains. The responses of the filters are used as texture features.

4. Statistical-based methods: The methods in this group use statistical features of textures. The

statistical information are gathered in a way that makes the features invariant to rotation and/or

other geometrical transformations.

Nonetheless, one may note that these categories are not completely independent of each other

and may overlap among themselves. Moreover, some methods may use a combined approach (e.g.,

statistical information and filter responses). In the next subsections, each category is briefly ex-

plained and some well-known representative methods in each group are described. In particular, this

thesis focuses on filter-based and statistical-based methods due to their popularity and their success

compared to the first two groups.

2.2.1 Structure-Based Methods

The structure-based methods assume that textures are composed of some elements called primitives

or texels. The texels and their spatial arrangements are used to characterize textures. The main mo-

tivation of using structural information is that the human eye can perceive the structural information

of some textures easily (Figure 2.2).

There are different approaches to finding texels and their invariant features. Some methods

define a texel as a maximally connected set of pixels with the same attributes [114; 115]. The

attribute is represented by the pixel’s characteristics (e.g., intensity or gradient). Then, different
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invariant properties of the texels such as the average element intensity [114], and the compactness

of texels are computed.

To extract texels, Zhang and Tan [399] segment a texture image into regions with uniform in-

tensity using adaptive thresholding and use morphological operations to remove small holes in texel

regions. They define the area ratio matrix where each entry r(i, j) is the ratio of area of the ith and

jth texels. Assuming that there are n texels, the probability that a texel pair has a value of r(i, j) is

fr = kr/N , where kr is the number of texel pairs (i, j) and N = n(n + 1)/2 is the total number

of possible texel pairs. The area-ratio histogram is defined as h(r) = fr, which is invariant to affine

transformation.

A popular structure-based approach is to apply morphological operations to extract texture fea-

tures. Mathematical morphology is a set-theoretic approach to analyzing geometrical structures in

images. A structuring element (i.e., geometrical pattern) is used to study how this shape fits in an

image. One of the basic morphological operations is “opening.” Opening of a binary image A with

a binary structuring element (SE) B is defined as the union of all the translations of B by vector z

that are subsets of A (i.e., fits in A) [112]:

A ◦B =
⋃
{(B)z : (B)z ⊆ A}, (2.1)

where (B)z is the translations of B by vector z. Morphological operations have been successfully

applied to granulometry in extracting texture features [19; 26; 30]. An opening granulometry is

defined based on a sequence of morphological openings using scaled SEs (Bt). The first element,

B1, has the same scale asB (B1 = B). The scaled SEs are defined asBt = B1 ◦Bt−1(t = 2, ..., n).

Opening A with Bt, where (t = 1, ..., n), results in the following sequence:

A ◦B1 ⊃ A ◦B2 ⊃ ... ⊃ A ◦Bn. (2.2)

The ratio of an image area removed after t successive openings of A by B to the original image area

defines the pattern spectrum:

Φ(t) =
P [A]− P [A ◦Bt]

P [A]
, (2.3)

where operator P [.] gives the area of the region. Different properties of the pattern spectrum such

as the mean, and standard deviation of granulometric moments are used as invariant features [180].

Some methods also compute the pattern spectrum without a need to define the SEs based on merging

the flat zones in the image [305; 306; 352].

Another approach in structure-based methods is fractal analysis [174; 370; 374; 379]. A fractal

is a structure which keeps its shape at all scales. In other words, a fractal can be decomposed into

N similar copies of itself, each scaled down by a factor s. Mathematically, a fractal follows the

power law between the N and s, N(s) ∝ s−D, where D is known as the fractal dimension which

is used as a texture feature. One simple way to compute the fractal dimension is known as box-

counting [309; 212]. Consider an object E in an image. The general idea in box counting is to cover
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the image by squares (boxes) with side of length ε and count the number of squares that are occupied

by E. The dimension is then computed as:

lim
ε→0

logN(ε, E)

−logε
. (2.4)

Some recent examples of using fractal for analyzing textures include the Multi-Fractal Spectrum

(MFS) method [380], multifractal analysis on wavelet domain [160; 382], multifractal analysis with

Gabor filter [377], and the dynamic fractal analysis [381].

Topographic map [44] is another approach in structure-based methods. A topographic map

consists of level lines defined as the boundaries of level sets. Consider an image, which is a mapping

function from pixels to real intensity values, I : Ω 7→ <. An upper level setXλ(I) includes all pixels

that have a value equal to or greater than λ:

Xλ(I) = x ∈ Ω, I(x) ≥ λ. (2.5)

A lower level set can be similarly defined. The boundaries of the (upper or lower) level sets are

the level lines. The level sets are nested. As a result the level lines can be represented in a tree

structure [254] which presents the topographic map. The topographic map has been used by several

groups for texture analysis [126; 372].

A key problem of the structure-based methods is how to define texels that represent different tex-

ture structures paticularly when the texture has no structure. In general, the structure-based methods

are better suited for textures with large structures (macrostructure) and do not work well with non-

structure textures and microtextures [400].

2.2.2 Model-Based Methods

The model-based methods assume that textures can be represented by probabilistic models. The

most well-known models include the Random Field (RF) models such as the Markov Random Fields

(MRF) [59; 392], and Gibbs Random Fields (GRF) [76; 83; 105]. The random field methods model

a texture as a stochastic process (random field) and characterizes the texture as distributions (joint

or conditional) of some random variables.

The MRF [66] of a random variableX is defined as a joint probability density with the following

three properties:

1. Positivity: p(X) > 0 for all X ,

2. Markovianity: p(X(x, y)| all points in the image except (x, y)) = p(X(x, y)| neighbors of

(x, y)),

3. Homogeneity: p(X(x, y)| neighbors of (x, y)) depends only on the configuration of the neigh-

bors of (x, y)). The homogeneity property also indicates that p(X(x, y)| neighbors of (x, y))

is translation invariant as long as the translation keeps the same neighborhood configuration.

10



(a)

(b)

Figure 2.3: Neighborhood configuration in the MRF. (a) The rectangular neighborhood configura-
tion. The numbers show the order of the neighbors. The rectangular neighborhood configuration
has been used by the conventional MRF-based texture methods [66]. (b) The circular neighborhood
configuration. There are three orders (eight neighbors at each order) in this figure. Rotation invariant
MRF-based methods [75; 239] use the circular neighborhood configuration.

Figure 2.3 shows two popular neighborhood configurations used by the MRF models.

One well-known texture analysis example using the MRF model is the Anisotropic Circular

Gaussian Markov Random Field (ACGMRF) model presented by Deng and Clausi [75]. In their

method, N concentric circular neighbors of a pixel are considered. The pixel’s value is estimated

as:

I(x, y) =
∑

(x+∆x,y+∆y)∈N
β(∆x,∆y)I(x+ ∆x, y + ∆y) + ν(x, y), (2.6)

whereN is the neighborhood system, (∆x,∆y) the relative position with respect to the center pixel,

β(∆x,∆y) the weight for the neighbors, and ν(x, y) a Gaussian noise with zero mean and known

autocorrelation. Then the 1D Fourier transform is applied to the MRF parameters and the magnitude

of the frequency component is computed as the texture feature.

Another example of using the MRF model in texture analysis is the Simultaneous Auto Regres-

sive (SAR) model [165; 239]. In the SAR model, the mean gray value of the image is consid-

ered [239]:

I(x, y) = µ+
∑

(x+∆x,y+∆y)∈N
θ(∆x,∆y)I(x+ ∆x, y + ∆y) + ν(x, y), (2.7)

where µ is the mean gray value of the image, and θ the parameter characterizing the dependence of

a pixel to its neighbors. To make the model rotation invariant, the neighbors on concentric circles

around a pixel are considered. The parameters θ and µ are computed by least squares estimate and

considered as the texture features.

The next popular model is the GRF, but before explaining the GRF method, the definition of

cliques is described. Given a neighborhood systemN , a clique C is defined as some single locations

or a subset of multiple locations in which each pair of distinct locations are neighbors. Figure 2.4

illustrates the concept of cliques. A Gibbs distribution has the following form [76]:

p(x, y) =
1

Z
e(−E(x,y)), (2.8)
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(a) (b)

Figure 2.4: a) A clique is a single location or a subset of multiple locations in which each pair of
distinct locations are neighbors. b) Considering an 8-neighbor system. The figure shows the first,
second, third and fourth order cliques.

where Z is the normalizing constant also known as the partition function, and E the Gibbs energy:

Z =
∑

all(x,y)

e−E(x,y), (2.9)

E(x, y) =
∑
c∈C

Vc(x, y), (2.10)

where Vc is a function of the pixel values in clique c, called the clique potential.

The key issue in the model-based methods is how to choose the correct model for a given texture

and how to effectively map a texture into the selected probability model [400]. In addition, these

models require many parameters to be determined which is not trivial when the neighborhood size

is large. Consequently, model-based methods are not as popular as other texture analysis methods.

2.2.3 Filter-Based Methods

This group of methods apply filters to images in the spatial or frequency domain. A basic frequency

domain analysis is usually performed by applying the Fourier transform. Fourier analysis has some

advantages that make it very popular for image processing. For instance, it is commonly known

that Fourier analysis is robust to perturbations in images (e.g. additive noise). In addition, the Fast

Fourier Transform (FFT) algorithm makes computing the frequency components efficient.

Since digital images are in the discrete domain, the Discrete Fourier Transform (DFT) is used

for image processing. The discrete Fourier transform of a 1D signal is defined as:

F (u) =
X−1∑
x=0

f(x)e−2πixu/X , (2.11)
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where f(x) denotes the 1D signal, X , the number of the components, i =
√
−1, and F (u) the

frequency components. Applying the DFT to a discrete function withN points generatesN complex

numbers. If the N samples are real numbers, N/2− 1 components of F (u) are complex conjugates

of the other N/2− 1 components. The 2D DFT is similarly defined:

F (u, v) =
X−1∑
x=0

Y−1∑
y=0

f(x, y)e−2πi( xuX + yv
Y ), (2.12)

where X and Y are the number of columns and rows, respectively, assuming that the coordinate

system ranges from [0, 0] to [X − 1, Y − 1]. Fourier analysis can be performed in the log-polar

coordinate system to provide scale and rotation invariant features [13].

Since the Fourier transform is applied to the whole domain of an image, it cannot capture local

texture features. As a result, localized spatial filters are suggested [36]. These filters are based

on the windowed signal processing approach by which the frequency information is computed in

a window rather than for the whole image. As a result, joint spatial/frequency information related

to the local spatial data is obtained. Windowed Fourier filters (also known as short term Fourier

transform, STFT) [27; 268; 287] and the multichannel Gabor filters [36; 125; 286] are among the

popular texture methods using joint spatial/frequency information. The short term Fourier transform

is defined as:

F (u, x) =
∑
y∈Nx

f(x− y)e−2πiuT y, (2.13)

where x is the location of the pixel, u the frequency, and y the location of all neighbors located in

the neighboring window around x. Note that in this definition, u, x, and y are all vectors (the size of

the vector depends on the dimension of the space, e.g., in a 2D image space the vector size is 2× 1).

A special case of STFT where the window function is Gaussian is called the Stockwell transform

(also known as the S transform) proposed by Stockwell [327] about two decades ago.

The Gabor function for a given pixel (x, y) with center frequency (U, V ) is defined as:

h(x, y) = g(x′, y′)e2πi(Ux+V y), (2.14)

where (x′, y′) = (xcos(φ) + ysin(φ),−xsin(φ) + ycos(φ)) are rotated coordinates, and g is a

Gaussian function with aspect ratio λ and scale parameter σ:

g(x, y) =
1

2πλσ2
e−

(x/λ)2+y2

2σ2 . (2.15)

The spatial frequency response of the Gabor function (2.14) is:

H(u, v) = e−2π2σ2[(u′−U ′)2λ2+(v′−V ′)2], (2.16)

where (u′, v′) and (U ′, V ′) are the rotations of (u, v) and (U, V ), respectively. To have rotation and

scale invariance the responses obtained at different orientations (φ) and different scales (σ) are used
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Figure 2.5: Computing the DWT coefficients using the pyramid scheme [235] with two levels.
At each level two coefficients are computed: the detail and the approximation coefficients. The
approximation coefficient is used as input to the next level.

Figure 2.6: The 1D DWT is applied to the image in the vertical and horizontal directions resulting in
four sub-bands: LL(low-low), HL(high-low), LH(low,high), and HH(high-high). The LL sub-band
is further decomposed into four sub-bands.

as features. In a recent work, Chu and Chan [56] use tunable Gabor filter banks to define rotation

and scale invariant features.

The wavelet transform [235] is also a very popular method for texture analysis. The one dimen-

sional Discrete Wavelet Transform (DWT) decomposes a 1D function in terms of a family of basis

functions (known as wavelets):

f(x) =
∞∑
m=0

∞∑
n=0

Cmn ψm,n(x) (2.17)

where ψm,n(x) = 2−m/2ψ(2−mx− n) is produced by dilations and translations of the basis func-

tion ψ(x) known as the mother wavelet. The Cmn coefficient can be efficiently computed using a

pyramid scheme implemented with a pair of lowpass(g[n]) and highpass(h[n]) filters [235] as shown

in Figure 2.5.

In the first step, the signal is filtered by a lowpass and a highpass filter and then the output from

each filter is down sampled by a factor of 2. The output obtained from the highpass filter after down-

sampling is kept as the detaile coefficient and the output of the lowpass filter after downsampling

is input to the next step. The decomposition can iteratively continue. For texture analysis the 2D

DWT is applied. This can be done by performing the 1D DWT in the vertical and in the horizontal

directions. Figure 2.6 shows the steps to construct a two-level DWT decomposition of an image.

Instead of the pyramidal structure in which the low band is decomposed, Chang and Kuo [49]

propose using a tree-structured wavelet transform to further analyze the components located in the

14



Figure 2.7: Leung and Malik [208] use 48 filters: two Gaussian derivative filters at six orientations
and three scales, eight Laplacian of Gaussian filters, and four Gaussian filters as their filter bank.

middle frequency channels. Jafari-Khouzani and Soltanian-Zadeh [154] extract rotation invariant

features using the Radon transform along with the wavelet transform. The wavelet transform is used

with a linear regression model for texture analysis by Wang and Yong [415]. In their model the

correlation between frequency regions are considered.

In addition to the methods that perform analysis in the frequency domain, some research studies

define texture features in the spatial domain. The most well-known invariant methods in this group

are the methods of Leung and Malik [208], Cula and Dana [67], and Varma and Zisserman [356;

357]. The main contribution of these methods is a framework to learn illumination and geometrical

changes occurring in textures from a given training set. The training set includes images of textures

acquired with different illumination conditions and from different viewpoints. A bank of filters is

applied to each image in the spatial domain. The filter banks consist of orientation and spatial-

frequency selective linear filters to capture textural features at different orientations and scales. For

instance, Leung and Malik [208] use 48 filters: two Gaussian derivative filters at six orientations and

in three scales, eight Laplacian of Gaussian filters, and four Gaussian filters (Figure 2.7).

By gathering the responses of the filters, at each pixel a vector of Nfilt responses is constructed,

where Nfilt is the number of filters. Then, the responses of all the images of the same texture in

the training set are concatenated together to form a set of data vectors. The data vectors are then

clustered using the K-means algorithm. Assuming that there are Nimg images of the same texture

class in the training set, the output of the K-means algorithm is a matrix of Nfilt×K centers. Each

row of the output (with size(1 × K)) is called a texton. By learning textons from different texture

classes, a texton dictionary is created. Finally, each texture image is represented as a histogram of

textons.

In a subsequent work, Varma and Zisserman [356] show that keeping all responses is not needed.

In their method known as Maximum Response (MR), they use two Gaussian derivative filters at six

orientations and three scales (the first 36 filters shown in Figure 2.7); however, they keep only

the maximum response of each scale (i.e., six responses). They also use 2 rotationally symmetric

filters, a Gaussian and a Laplacian of Gaussian filters, resulting in eight responses in total. With this
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approach they not only improve the performance but also reduce the memory requirement of the

method. However, in their recent method, Varma and Zisserman [357] argue that the filters remove

some informative texture information and demonstrate that the local patches of the original image

can provide a better performance.

Finally, some filter-based methods use local frequencies of samples around pixels to capture the

local changes. A popular approach is by applying the 1D Fourier transform to samples on a circle

(or multiple circles) around a pixel [17; 75; 216]. Any rotation induces a circular shift to the circular

samples, keeping the magnitude of the frequency components unchanged. The method of Arof and

Deravi [17] uses two concentric circles around a pixel. The magnitudes of the 1D Fourier transform

of the samples and of the difference of the samples with the center pixel are used as features. A

similar approach is used by Deng and Clausi [75] to construct the anisotropic circular Gaussian MRF

(ACGMRF) model (explained in Section 2.2.2). In a recent work, Liao and Chung [216] propose the

Composite Fourier Domain (CFD) method. Considering samples located on three concentric circles

around a pixel, the method computes the magnitude of the 1D Fourier transform on each circle.

Then a global multidimensional Fourier transform is applied to form the composite Fourier domain.

The null-space based linear discriminant analysis (nLDA) is used to construct the final features.

2.2.4 Statistical-Based Methods

The statistical-based methods are the most popular and successful approaches for texture analysis.

The main motivation of these methods is based on the findings of Julesz [168; 169], suggesting

that the human visual system uses statistical features to distinguish textures. The gray level co-

occurrence matrix (GLCM) proposed by Haralik et al. [131] is one of the first well-known methods

using this approach.

Suppose that a 2D image I with a length of Nx and a width of Ny has Ng gray level values (i.e.,

intensities of the image range 1 to G). The image I is represented as a function mapping the spatial

domain to the gray values:

I : Ly × Lx → G, (2.18)

where Ly = {1, ..., Ny} denotes the spatial domain along the y axis, Lx = {1, ..., Nx} the spatial

domain along the x axis, andG = {1, ..., Ng} the gray values. Here, the Haralik et al. notation [131]

is followed which assigns the y axis to the first dimension.

A co-occurrence matrix represents the relationship between intensity levels for a given direction

and distance (i.e., offset) in an image. An offset with distance d and direction angle θ is represented

by O = [a, b] = [dsin(θ), dcos(θ)] connecting pixel I(k, l) to pixel I(m,n) such that m = k + a

and n = l+ b. For instance, an offset with distance of 1 and angle of 90◦ increases m by 1 and n by

0 (or offsets them from the original position with [1, 0]). GLCMO is defined for the specific offset
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(a) (b) (c) (d)

Figure 2.8: Computing the GLCM. (a) A sample offset offset O = [1, 0] (d = 1, θ = 90◦). (b) A
sample image and the offset. (c) The computed GLCM. (d) The normalized GLCM.

O = [a, b] as follows:

GLCMO(i, j) = #
{

((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

m = k + a, n = l + b, I(k, l) = i, I(m,n) = j
}
. (2.19)

In other words, the GLCM for a specific offset is anNg×Ng matrix where the entry (i, j) shows

the number of times that I(k, l) = i and I(m,n) = j. In the GLCM, usually eight directions are

used (i.e. 0◦,±45◦,±90◦,±135◦, 180◦). A common approach is to combine diagonally opposite

pairs (i.e., θ and θ+180◦), making the GLCM symmetric and reducing the number of directions from

eight to four. The GLCM is also normalized (i.e., divided by the sum) to represent the probability

of the co-occurrence between gray levels.

Figure 2.8 illustrates the procedure of computing the GLCM of a sample image with gray level

values of 0, 1, 2 for offset O = [1, 0]. Different textural features are computed using the normalized

GLCM. Some well-known properties of GLCM are listed in Table 2.1.

The gray level Aura matrix (GLAM) [274; 275] is the generalization of the GLCM, developed

based on set theory. Consider an image I as a finite rectangular lattice with a neighborhood system

N = {Ns, s ∈ I}. The neighborhood Ns is built by translating the basic neighborhood (structuring

element) E to location s. Given two subsets: A,B ⊆ I , the Aura of A with respect to B for the

neighborhood system N , is defined as [275]:

ϑB(A,N) =
⋃
s∈A

(Ns ∩B). (2.20)

Similarly, the Aura measure of A with respect to B is defined as

m(A,B,N) =
∑
s∈A
|Ns ∩B|. (2.21)

Intuitively, the Aura of A with respect to B characterizes how the subset B is present in the

neighborhood of A and the Aura measure represents the number of B’s sites presented in the

neighborhood of A. Note that m(A,B,N) does not show the number of elements in the Aura

set ϑB(A,N), and in general m(A,B,N) 6= |ϑB(A,N)|. The Aura measures between different

gray level values are used to define the GLAM. Assume that there are G gray levels in the image,
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Table 2.1: Some popular texture features defined based on the co-occurrence matrix. P is the
normalized GLCM,G the number of gray levels. µx, µy, σx,, and σy denote the means and standard
deviations of the row and column sums of P †.

Texture Feature Formula

Autocorrelation f1 =
G∑
i=1

G∑
j=1

(ij)P (i, j)

Homogeneity f2 = 1
1 + |i− j|

G∑
i=1

G∑
j=1

P (i, j)

Energy f3 =
G∑
i=1

G∑
j=1

P (i, j)2

Correlation f4 =

G∑
i=1

G∑
j=1

(i−µy)(j−µx)P (i,j)

σxσy

Dissimilarity f5 =
G∑
i=1

G∑
j=1

|i− j|P (i, j)

Sum of Squares: Variance f6 =
G∑
i=1

G∑
j=1

(i− µ)2P (i, j)

Sum average f7 =
2G∑
i=2

iPx+y(i) ††

Sum entropy f8 = −
2G∑
i=2

Px+y(i)log(Px+y(i)) ††

Contrast f9 =
G∑
i=1

G∑
j=1

|i− j|2P (i, j)

Inverse difference moment normalized f10 =
G∑
i=1

G∑
j=1

1
1 + (i− j)2/G2P (i, j)

Sum variance f11 =
2G∑
i=2

(1− f8)2Px+y(i) ††

Entropy f12 = −
G∑
i=1

G∑
j=1

P (i, j)log(P (i, j))

Difference variance f13 = variance of Px−y †††

Difference entropy f14 = −
G−1∑
i=0

Px−y(i)log(Px−y(i)) †††

† µx =
G∑
i=1

G∑
j=1

j.P (i, j)

µy =
G∑
i=1

G∑
j=1

i.P (i, j)

σx =

√
G∑
i=1

G∑
j=1

(j − µx)2.P (i, j)

σy =

√
G∑
i=1

G∑
j=1

(i− µy)2.P (i, j)

†† Px+y(k) =
∑G
i=1

∑G
j=1

i+j=k

P (i, j)

††† Px−y(k) =
∑G
i=1

∑G
j=1

|i−j|=k
P (i, j)

I . The pixels that belong to each gray level are considered as a set Ii(0 ≤ i ≤ G − 1), such that
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(a)

(b) (c)

Figure 2.9: Computing the GLAM. (a) The basic neighborhood (structuring element). • denotes the
reference pixel and ◦ the neighboring pixel. (b) A sample binary image. (c) Assuming that subset A
is the set of all 1s and subset B the set of all 0s, the Aura set of A with respect to B, ϑB(A,N), for
the given basic neighborhood is shown in light gray.

G−1⋃
i=0

Ii = I , and Ii ∩ Ij = ∅ for i 6= j. The GLAM is a matrix with Aura measures as the entries, in

particular,

GLAM = m(Ii, Ij , N). (2.22)

Figure 2.9 shows an example of the Aura set of a sample binary image. The GLAM of this

sample image with the given basic neighborhood is

GLAM =

[
m(0, 0, N) m(0, 1, N)

m(1, 0, N) m(1, 1, N)

]
=

[
48 12

12 8

]

Similar to the GLCM, the GLAM is normalized and the texture features are computed using the

normalized GLAM (Table 2.1).

More recently, the GLAM have been extended to basic gray level Aura matrices (BGLAM) by

Qin and Yang [282; 283]. The BGLAM is an extension of the GLAM in which the neighborhood

system consists of only one element. Qin and Yang show that texture images can be retrieved with

a high precision using the BGLAM [282]. They also demonstrate that textures can be faithfully

synthesized from the BGLAM features [283; 284].

To have invariant features, the GLCM (and similarly the GLAM and the BGLAM) are com-

puted for several directions and distances. Since computing the features at different directions and

distances makes the feature vector large, a feature selection step (e.g., Principal Component Analysis

(PCA) [164]) is usually applied.

The Run Length Matrices (RLM) [99; 335] method defines a gray level run as consecutive pixels

of the same gray level in a given direction, and the length of the run is used as a texture feature.

Recently, the Local Binary Patterns (LBP) proposed by Ojala et al. [267] has been recognized

as one of the most successful statistical methods. Its popularity is due to its simple computation and

high accuracy. It has been extended by many research groups [123; 124; 137; 143; 202; 217; 410].

The method represents the relationship of each pixel and its neighbors (located on a circle around

the pixel) by a binary pattern and uses the histogram of these patterns for texture classification.
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Figure 2.10: Three common neighborhood settings in the LBP.

Consider N points on a circle with radius R at center pixel, tc. These N points (t0, t1, ..., tN−1)

are considered as the neighbors of the center pixel and their gray level values are determined by

interpolation if they are not located at the pixel locations. Figure 2.10 shows three popular config-

urations with radius of one, two, and three and their corresponding neighborhood size of 8, 16 and

24. The eight neighbors in the first neighborhood setting are labeled.

The signs of the differences of the gray value of the center pixel with the neighboring pixels

are computed. The sign is one if the difference is greater than or equal to zero, and zero otherwise.

By assigning a binomial factor 2n to each of the signs of differences and summing them together, a

binary number (pattern) is created,

LBPN,R =
N−1∑
n=0

s(tn − tc).2n, s(x) =

{
1 x ≥ 0
0 x < 0

, (2.23)

where s is the sign function and N the number of neighbors. To have rotation invariance, the binary

pattern is circularly shifted and the minimum value is kept as the final binary pattern. In other words,

the rotation invariant LBP is defined as

LBP riN,R = min{ROR(LBPN,R, i)|i = 0, 1, ..., N − 1}, (2.24)

where ROR(x, i) performs i times bitwise circular right shift on the binary number x.

The major problem of the LBP is the exponential growth of the number of patterns with respect

to the neighborhood size. To address this problem, several methods have been proposed. Ojala et

al. [267] show that some binary patterns are more common than others in some textures. These

patterns known as uniform patterns have a common property: the number of spatial transition be-

tween zero and one in the binary pattern (i.e., uniformity) is at most two. The uniformity measure is

defined as

U(LBPN,R) = |s(tN−1 − tc)− s(t0 − tc)|+
N−1∑
n=1

|s(tn − tc)− s(tn−1 − tc)|. (2.25)
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Rotation invariant uniform patterns have the uniformity of two or less and are defined as

LBP riu2
N,R =

{ ∑N−1
n=0 s(tn − tc).2n if U(LBPN,R) ≤ 2

N + 1 otherwise.
(2.26)

To further improve the results, V ARN,R operation is defined as follows and the joint histogram

of LBP riu2
N,R /V ARN,R is used for classification [267]:

V ARN,R =
1

N

N−1∑
n=0

(tn − µ)2, µ =
1

N

N−1∑
n=0

tn. (2.27)

Later, Guo et al. [124] argue that the V AR operation produces continuous values and the cor-

rect quantization of these values is challenging. They propose the LBP Variance (LBPV) in which

the histogram of LBPN,R is weighted by the V ARN,R instead of using the joint histogram of

LBP riu2
N,R /V ARN,R. The histogram of LBPVN,R is computed as

LBPVN,R(k) =
N∑
i=1

M∑
j=1

w(LBPN,R(i, j), k), k ∈ [0,K], (2.28)

where N and M are, respectively, the number of rows and columns of the LBP, and the weight is

computed as

w =

{
V ARN,R(i, j) if LBPN,R(i, j) = k
0 otherwise. (2.29)

Before computing LBPVN,R, they use the LBP to find the principal orientation of the texture and

align the binary patterns to that orientation (i.e. global matching).

The next approach to reducing the number of binary patterns is the work of Liao et al. [217].

They show that the uniform patterns are not necessarily the dominant patterns in all datasets and

suggest choosing the dominant patterns instead of the uniform ones. Unlike the uniform patterns, the

number of patterns for classification is not constant and is determined by choosing the k dominant

patterns such that they consist of 80% of the whole patterns; in particular,

k = argmin
k

( ∑k−1
n=0H[n]∑2N−1
n=0 H[n]

≥ 80%

)
, (2.30)

where N is the neighborhood size in LBPN,R, and H the histogram of patterns sorted in a descend-

ing order. The final histogram for classification is H[0...k]. They also use the Normalized Gabor

Filter (NGF) responses of the frequency spectrum to improve the classification rate.

Guo et al. [122] use the Fisher separation criterion to choose patterns. In their approach, the

dominant patterns in each image are found. The representative patterns of each texture class are

computed as the intersection of patterns that are dominant in all images of the same texture class.

Finally, the union of all class representative patterns is used to select the final patterns. The proposed

approach tries to maximize the inter-class distance and to minimize the intra-class similarity (i.e.,

the Fisher separation criterion).

In a recent work, Guo et al. [123] present the completed model of LBP (CLBP) in which they use

not only the sign of the difference between the center pixel and its neighbors but also the magnitude
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of this difference and the magnitude of the center pixel. They define three operators: CLBP S,

CLBP M , and CLBP C. The first operator is the same as the ordinary LBPN,R and makes a

binary pattern based on the sign of the difference of the center pixel and its neighbors. To make a

binary pattern from the magnitude of difference, CLBP M is defined as

CLBP MN,R =
N−1∑
n=0

s(tn − c).2n, (2.31)

where s is the sign function defined in equation (2.23) and c an adaptive threshold set to the mean

value of tn. Finally, to take the center pixel’s value into account, CLBP C is defined as

CLBP CN,R = s(tc − cI), (2.32)

where s is the sign function and cI a threshold set to the average gray value of all pixels. They use

the joint and concatenated frequency histogram of patterns produced by CLBP S, CLBP M , and

CLBP C.

There are other statistical methods such as using high order statistics [256; 345] and invariant

moments of an image [362; 320]; however, they are not robust in the presence of noise and other

distortions.

2.3 3D Texture Features

In some applications the images are in a 3D form. In particular, in medical imaging the acquired

slices of images form a volume. As a result, there is a great need in this area to efficiently capture

3D texture features. In spite of this demand, there are only a few methods that have been developed

to analyze 3D data mainly due to the computational cost in 3D image analysis.

The developed methods are usually the extension of the current popular 2D methods. For in-

stance, Kurani et al. [196] present a simple extension of the GLCM by considering the vectors in

3D. That is, a vector v = (∆x,∆y,∆z) connects voxel I(x1, y1, z1) to voxel I(x2, y2, z2) such that

x2 = x1 + ∆x, y2 = y1 + ∆y, and z2 = z1 + ∆z.

By considering the 3D connections and assuming 26 neighbors for each voxel, Xu et al. [376]

propose a simple 3D extension of the RLM.

Kovalev et al. [191] extend the GLCM method to extract 3D features from MRI using local

gradient information in addition to the gray values. Considering an arbitrary voxel pair (i, j) with

the Euclidean distance d(i, j), they define a 6D co-occurrence matrix:

W = ||w(I(i), I(j), G(i), G(j), a(i, j), d(i, j))||, (2.33)

where w is the quantization function, G =
√
G2
x +G2

y +G2
z the local gradient magnitude, and

a = cos−1(G(i).G(j)) the angle between local gradient vectors.

Qin and Yang [284] apply the 2D BGLAM to the three viewing directions (x,y,z) to synthesize

volumetric textures. However, they do not have a method to analyze 3D textures.
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Figure 2.11: The neighboring points considered by Paulhac et al. [270] to define the 3D LBP.

Jafari-Khouzani et al. [156] define 3D texture features as the energy of the 3D wavelet transform

of a volume. Three dimensional filtering has also been used by Reyes-Aldasoro and Bhalerao [15;

289] to extract 3D texture features. Madabhushi et al. [231] use statistical, gradient and Gabor filter

features at multiple scales and orientations to define 3D texture features.

There are also some recent model-based methods for 3D images. Ranguelova and Quinn [288]

present a 3D MRF model to capture 3D textures features. In recent works by Upadhyay et al. [351]

and Jain et al. [158], the Gaussian random field is used to model 3D textures features.

The LBP method has also been extended to 3D by Paulhac et al. [270], considering the neighbors

gp on the surface of a sphere around a center voxel, gc. Assume that S parallel planes cross the sphere

creating parallel circles on the surface of the sphere. For each circle, P vertices are regarded as the

neighbors (Figure 2.11). The relative coordinates of the neighbors with respect to the center of the

sphere are (Rcos(πp′/(S − 1))cos(2πp/P ),Rcos(πp′/(S − 1))sin(2πp/P ),Rsin(p′π)/(S − 1))

where R is the sphere radius, S the number of circles used to represent the sphere, P the number of

vertices in each circle, and p′ the index of the circles. The 3D LBP is defined as

LBP riu2
P ′,R =

{ ∑P ′−1
p=0 s(gc − gp) if LBPN,R(i, j) = k

P ′ + 1 otherwise,
(2.34)

where P ′ = (S − 2)P + 2 is the total number of neighbors.

There is another class of 3D texture methods that model textures that are not naturally 3D but

temporal such as the flame of a fire or the running water in a waterfall. This type of textures is known

as dynamic textures. Here, the 3D data includes a sequence of 2D images, each of which is acquired

at a different time. Some recent examples of these methods include but are not limited to extensions

of the LBP (e.g., the volume local binary patterns (VLBP) [404], the LBP on three orthogonal planes

(LBP-TOP) [408]), applying 3D steerable filters [398], using free form deformations [187], wavelet

decomposition [81], and distributions of space time orientation structure [77].

2.4 Applications

Texture features have been used in many applications including but not limited to automatic in-

spection, document processing, remote sensing, fingerprint identification, object recognition, image
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matching, and medical imaging.

Automatic inspection includes applications that employ texture features to detect defects in dif-

ferent products such as printed circuit boards [142; 149], wood [300], pearl [411], tunnel walls [395],

solar wafer surfaces [214; 344], steel surfaces [388], and food products [200; 322]. Some recent re-

views of the application of texture analysis to defect detection can be found in [195; 261; 375].

Document processing is the next popular application of texture analysis methods. After the ap-

pearance of Optical Character Recognition (OCR) technology to convert scanned images of text into

machine readable, texture analysis methods have been widely used to detect and localize the text.

These methods use different texture features extracted from the wavelet transform [389; 409], the

Gabor filter responses [391], the Fourier transform [319], and the GLCM [130]. Another interesting

document processing application is in text segmentation using texture features [117; 220; 302]. The

segmentation results can be used in mixed raster content (MRC)1 compression [129].

Texture features are also used to classify remotely sensed images, in particular, the Synthetic

Aperture Radar (SAR) images. The SAR images are insensitive of meteorological conditions and

illumination conditions, and therefore are popular for automatic and semiautomatic land cover clas-

sification [46]. Some applications include detecting oil spills [378], sea ice [104], urban areas [74],

and forests [397]. Recent land cover classification methods can be found in [46; 84; 233].

Fingerprint identification is another application of texture analysis. The application of texture

features to analyze fingerprints dates back to the 80’s [48]. Some methods employ frequency-based

features such as the responses of different filters (e.g., the Gabor filter [383], the short time Fourier

transform (STFT) [53], and the wavelet transform [255]). Non-frequency based features have also

been proposed [31; 54; 259].

Texture features can be used in object recognition and image matching. In particular, the rotation

invariant features can be easily extended for this purpose. Object recognition and image matching

are based on invariant local descriptors. These descriptors are created in two steps. In the first step

some salient points are detected in the image (region detection step). In the second step the area

around these salient points are used to extract features that are invariant under a class of transforma-

tions and image distortions (region description step). The most well-known method which is used

for both detection and description is the Scale Invariant Feature Transform (SIFT) [224]. Many

region detection methods (e.g., Laplacian, Hessian, and Harris region detectors) define an ellipti-

cal region around salient points. These elliptical regions are then normalized to a circle reducing

the affine transformation to a rotation transformation [248]. As a result, by using rotation invariant

features, one can define local descriptors that are invariant to affine transformations. This approach

makes rotation invariant texture features suitable for object recognition and image matching. One

recent example is the extension of LBP as an invariant local descriptor [137].

1The mixed raster content (MRC) is a framework for layer-based document compression that enables the preservation of
text detail while reducing the bit rate of encoded raster documents. The idea is to separate the text from the image which are
then compressed separately by efficient corresponding algorithms.
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Medical imaging is one of the most popular areas for the application of texture analysis. Texture

methods have been used in a variety of medical applications including but not limited to medical

image enhancement [18; 206], automatic [387] and semi-automatic [291] segmentation, and detec-

tion and monitoring of different diseases [175; 198]. Since the target application of this thesis is in

medical imaging and, in particular, neurodegenerative diseases, the applications of texture analysis

to brain related diseases are discussed further in Chapter 3.

Nonetheless, the applications of texture features are not limited to what are presented in this

document. Texture features can be extended to facial expression recognition [11], human action

recognition [390], background subtraction [136], and image retrieval [333] as well as to many other

computer vision and graphics applications. A complete review of all of these applications is certainly

beyond the scope of this document.

2.5 Summary

Texture analysis includes methods that use intensity variations of images to capture their features. In

general there are four research domains defined in texture analysis; namely, classification, segmenta-

tion, texture synthesis, and shape from texture. Nonetheless, the performance of a texture descriptor

is usually assessed using texture classification. The texture methods can be broadly divided into four

general approaches:

1. Structure-based methods: these methods decompose textures into textural elements and use

the invariant properties of the textural elements. These methods are usually useful for macro-

textures.

2. Model-based methods: this class of texture methods defines textures as probability models

and based on the assumed model extract invariant features. The main issue in this group of

methods is choosing a correct model and also providing a faithful map from the image to the

model.

3. Filter-based methods: this group of methods applies filters on texture images in spatial domain

or analyzes images in frequency domain. The responses of the filters are used as features. The

features extracted by these methods are robust, but they are not as discriminative as the ones

extracted by the statistical-based methods.

4. Statistical-based methods: this group of methods use statistical features of textures. The

methods usually demonstrate higher performances compared to the other groups.

Table 2.2 summarizes the methods explained in this chapter. One may note that the actual number

of texture methods is much higher than the methods explained in this chapter. However, it was

attempted to include the well-known and popular methods. The readers may also note that the

borders between categories are sometimes vague. For instance, some studies may categorize the
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Table 2.2: The well-known texture analysis methods. They are classified into four categories:
structure-based, model-based, filter-based, and statistical-based.

Category Methods References

Structure-based

Shape as maximally connected set of pixels [114; 115]
Shape as regions with uniform intensity [399]
Granulometry [19; 26; 30; 180; 305;

306; 352]
Fractal analysis [160; 174; 370; 374;

377; 379; 380; 381; 382]
Topographic map [126; 372]

Model-based Markov Random Field [59; 66; 75; 165; 239;
392]

Gibbs Random Field [76; 83; 105]

Filter-based

Fourier and STFT [13; 27; 268; 287]
Wavelets [49; 154; 160; 382; 415]
Gabor Filters [36; 56; 125; 286; 377]
Spacial Filters [67; 208; 356; 357]
Fourier transform of circular samples [17; 216]

Statistical-based

Cooccurrence-based methods [131; 274; 275; 282;
283; 284]

Run Length Matrices [99; 335]
LBP [123; 124; 137; 143;

202; 217; 267; 410]
High order statistics [256; 345]
Invariant moments [320; 362]

fractal analysis methods under the model-based approaches; however, this thesis defines the model

based approaches as the ones using probabilistic models for textures. Moreover, some methods may

use combinations of different approaches like using fractal analysis on the wavelet transform [382;

160]. Hence, in Table 2.2 such methods are put under both categories in the references column. In

the next chapter the applications of texture methods in medical imaging is discussed.
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Chapter 3

Texture Analysis in Medical Imaging

3.1 Introduction

Texture analysis methods have found success in different medical applications. In general, the appli-

cations use textural features to identify abnormalities. The majority of methods are developed for 2D

images. The imaging modality used is different depending on the disease. Some well-known modal-

ities include ultrasound, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). In

neuroimaging and in applying texture analysis methods to brain related diseases, MRI is preferred.

One on the advantages of MRI for brain imaging is that it provides high resolution information. In

contrast to CT which provides good details on bony structures, MRI captures details of soft tissues

effectively. Ultrasound images have the disadvantages of having low resolution and being noisy. It

is not possible to image the adult brain with ultrasound. Therefore, MRI is more desirable for brain

imaging. Additionally, and in contrast to CT, patients are not exposed to harmful radiation with MRI

which makes it a safer choice.

Routine structural MRI is used to observe the physical structure of the brain and as mentioned

above is preferred for texture analysis in neurological diseases. Hence, this chapter focuses on this

method of imaging. Depending on the protocols used to acquire MRI, different structural informa-

tion is captured from the brain. Some common protocols are T1-weighted, T2-weighted, and Fluid

Attenuated Inversion Recovery (FLAIR) MRI. The important distinctions between T1-weighted,

T2-weighted, and FLAIR with regards to the brain is the differences in the appearance of the gray

matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In T1-weighted images, GM is

darker than WM and CSF is black, whereas in T2-weighted images, WM is darker than GM and

CSF is essentially white. FLAIR is a T2-weighted image with the CSF signal suppressed so it ap-

pears black. A contrast agent, usually Gadolinium, may also be administered intravenously to the

subject to increase the contrast of abnormalities in T1-weighted images. Figure 3.1 shows images

from these three types of MRI sequences. In the next section the applications of texture analysis in

different diseases are discussed.
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(a) (b) (c)

Figure 3.1: The most common imaging types for texture analysis of the brain are T1-weighted, T2-
weighted, and FLAIR MRI. a) T1-weighted MR image, b) T2-weighted MR image, and 3) FLAIR
MR image of the same region of the brain.

3.2 Brain Tumors

The characterization of brain tumors is one of the applications of texture analysis. Schad et al. [313]

and Lerski et al. [207] are among the first groups which have used texture features to characterize

brain tumors. Lerski et al. [207] use GLCM features along with the histogram and gradient infor-

mation of the images to differentiate WM, GM, CSF, solid tumour, and edema. The features are

extracted from both T1-weighted and T2-weighted images. Schad et al. [313] use the RLM, the

GLCM, the gray level histogram, and the gradient distribution of images. Similar texture features

are employed by Herlidou-Meme et al. [139] to differentiate tumour from normal brain tissue. They

also examine the robustness of texture methods using three different scanners and report highly

reproducible results in the texture features.

Textural features extracted by fractal analysis have been used for tumour detection in several

research studies [144; 146; 147; 414]. It is shown in [414] that the tumour region has a statisti-

cally significant lower fractal dimension compared to that of a normal region. The combination of

wavelet and fractal analysis is used by Iftekharuddin et al. [145] for tumour detection. Kharrat et

al. [179] develop a three stage tumour detection method. In the first step they enhance the image

by morphological operations. Then, the image is segmented using wavelet features. Finally, the

k-means algorithm is employed to detect the tumour. Zacharaki et al. [396] use the Gabor filter

and rotationally invariant filters in the Fourier domain to extract texture features from T1-weighted,

T2-weighted and FLAIR.

Some methods use the Stockwell transform to study brain tumors [40; 79]. Brown et al. [40]

apply the Stockwell transform to T2-weighted MR images to detect oligodendroglioma among tu-

mour genotypes and achieve a sensitivity and specificity of 93% and 96%, respectively. Drabycz et

al. [79] apply the Stockwell transform to T2-weighted images to find the patients with high-grade

gliomas. They report that the texture features are significantly different between methylated and

unmethylated cases (p-value< 0.05).

The application of texture analysis to brain tumour segmentation is also noted by several research
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groups. Xuan and Liao [384] use the Gabor filter to compute textural features. These textural

features along with features extracted from the intensity and symmetry of the brain are used for brain

tumour segmentation. They achieve an average accuracy of 96.82% on tumour segmentation for 10

patients. By extracting fractal features from (gadolinium-enhanced) T1-weighted, T2-weighted, and

FLAIR MR images, Iftekharuddin et al. [147] achieve 100% accuracy on the tumour segmentation

of nine patients.

In addition to brain tumours, texture analysis has been used in other types of cancers such as

breast [10; 87; 211; 140], prostate [57; 324], lung [100; 102], colorectal [101; 250], and cervi-

cal [161; 257].

3.3 Epilepsy

Epilepsy is a neurological disorder characterized by seizures. Texture analysis has been used in

epilepsy to detect the lesions (focal pathology) that are responsible for seizures, such as cortical

dysplasia and hippocampal sclerosis [175]. The statistical-based texture methods are widely used

for epilepsy study [16; 307; 393]. There are also some methods that use the wavelet transform [152;

153; 156].

To detect focal cortical dysplasia, Bernasconi et al. [33] extract gradients of intensities from T1-

weighted MR images as texture features. They achieve 87.5% sensitivity and 95% specificity with

a dataset of 16 patients and 20 healthy controls. Antel et al. [16] use the GLCM features along with

the gray level intensities of T1-weighted MR images. In their method, first, a Bayesian classifier is

trained to classify voxels as GM, WM, CSF, transitional, or lesional. Then the voxels classified as

lesional are reclassified based on the GLCM texture features. In images acquired from 18 patients

and 14 healthy controls, they achieve 100% specificity and 83% sensitivity.

Yu et al. [393] apply texture analysis to proton density-weighted and T2-weighted images of

23 patients with unilateral temporal lobe epilepsy and 9 healthy controls to identify hippocampal

sclerosis. The texture features used in this work include the intensity histogram, the gradient sta-

tistical information (e.g., mean, variance, etc.), the RLM, and the GLCM. Sankar et al. [307] use

gradient and intensity information along with the GLCM features extracted from T1-weighted and

T2-weighted images to study temporal lobe epilepsy on 23 patients and 20 healthy controls. Their

method identifies hippocampal atrophy with 65% sensitivity and 100% specificity.

Bonilha et al. [35] extract textural features from T1-weighted MR images of 19 patients with

temporal lobe epilepsy and 39 healthy control subjects. They compute similar texture features as in

the work of Yu et al. [393]; however, the features are extracted from T1-weighted, T2-weighted, and

FLAIR MR images. Using the multivariate analysis of variance, they find eight texture features that

are able to discriminate between sclerotic and healthy hippocampi (p < 0.01).

Jafari-Khouzani et al. [153] extract texture features from T1-weighted images to study epilepsy

in the hippocampus. To do so, they first segment the hippocampus and then apply multiwavelet,
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wavelet, and wavelet packet transforms. The energy and entropy features in each sub-band are used

for texture analysis. In another study [156], they find the texture features of hippocampus using 2D

and 3D wavelet transforms. By combining hippocampus volume and texture features [155], they

identify the laterality of the epileptogenic area with more than 92% accuracy on a dataset of 55

patients. In their recent work [152], they apply texture analysis to T1-weighted and FLAIR images

of 25 healthy subjects and 36 patients for lateralizing mesial temporal lobe epilepsy. Texture analysis

using the wavelet transform lateralizes the epileptogenic area correctly in 94% of cases.

Hippocampal segmentation has an important application in the study of temporal lobe epilepsy.

As a result some studies use texture features for this purpose. For instance, Kim et al. [181; 182]

have recently employed texture features for hippocampal segmentation. They use the Gabor filter

responses along with gradient and intensity information to find the regional texture model which

is used for segmentation. In another work, Kim et al. [184] use intensity, spatial location, and

neighborhood features as well as GLCM properties. In this work, textural features and multiple

atlases are used for hippocampal segmentation.

3.4 Multiple Sclerosis

MS is an inflammatory disease of the central nervous system. In this disease, the insulating myelin

sheath around the axons of the brain and spinal cord are damaged (demyelination). This demyelina-

tion impairs the transmission of signals along axons resulting in functional impairment.

In the early stages of MS (known as the relapsing-remitting stage), the inflammation can be

readily identified using gadolinium-enhanced T1-weighted MR imaging. However, in the advanced

stage (i.e., secondary-progressive), the conventional MR imaging markers are not very helpful for

monitoring the disease [297]. Texture analysis has been used in several studies for identifying active

MS lesions and monitoring disease progression.

Yu et al. [394] are among the first who apply texture analysis to MS. In their approach, texture

features are extracted from T2-weighted images using the GLCM, the RLM, and the gradient matrix.

Linear Discriminant Analysis (LDA) is used to classify lesions into active and nonactive classes.

Applying this method to the images acquired from eight MS patients (four with active lesions), they

report that the GLCM features are not discriminative; however, the features extracted from the RLM

can classify the active lesions and the non-active lesions correctly with 88% sensitivity and 96%

specificity, respectively.

Zhang et al. [402] use the GLCM features to investigate the discriminative power of texture

analysis in classifying MS lesions, normal appearing white matter (NAWM) and normal white matter

(NWM) in early stages of MS. In the feature selection step, the features that provide the largest

difference between different tissue types are selected (i.e., MS lesions versus NWM, MS lesions

versus NAWM, and NWM versus NAWM). Applying their method to T2-weighted MR images

acquired from 16 relapsing remitting MS patients and 16 healthy subjects, they report over 90%
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classification accuracy between MS lesions and NAWM or NWM, 88.89% among the three tissue

groups, and 66.67% between NAWM and NWM. In a subsequent work, Zhang et al. [401] extract

more textural features. Here, features are computed from the gradient matrix, the run-length matrix,

the GLCM, the autoregressive (AR) model, and wavelet analysis. Using the same approach for

feature selection and classification, they report classification accuracy of 100% between MS lesions

and NAWM (or NWM), 88.89% among the three tissue groups, and 58.33% between NAWM and

NWM suggesting that GLCM-based features are more discriminative between NAWM and NWM,

but the combined features are more effective for classification between MS lesions and NAWM (or

NWM).

Theocharakis et al. [338], employ texture analysis to differentiate lesions of MS from that of

cerebral microangiopathy (CM). They use histogram information along with the GLCM and run

length properties of FLAIR images of 11 patients diagnosed with MS and 18 patients diagnosed

with CM. They report statistically significant differences between texture features of MS and CM

lesions.

Zhang et al. [407] apply the polar Stockwell transform to T2-weighted images on 12 acute le-

sions before, during, and after the development of gadolinium-enhancement. The sum of low fre-

quency energy is used as the texture feature. They demonstrate that the texture feature increases

in acute lesions during enhancement (p< 0.05). The texture feature does not change in NAWM,

while it increases in chronic T2-weighted lesions. The study suggests that texture analysis is more

informative than the conventional MRI analysis. It also reports that the texture method is able to

find abnormalities in pre-lesional normal appearing WM, quantify tissue injury in acute lesions, and

detect mild tissue injury in chronic lesions. In their recent work, Zhang et al. [406] use a similar

approach to differentiate between new T1-weighted hypointense lesions that persist and those that

resolve over time.

There are some works that demonstrate the correlation of texture features to the changes asso-

ciated with patient’s disability. Mathias et al. [241] use the mean and variance of the intensity and

the gradient along with the GLCM features extracted from T2-weighted images of the spinal cord

to quantify pathological changes in MS. They report that the mean gradient and the mean intensity

values are significantly correlated with disability as assessed by the expanded disability status scale

(EDSS) in MS subjects. In a recent study, Tozer et al. [342] also demonstrate that texture features

are correlated with neurological disability in MS.

In addition to the works that use texture analysis as a tool to study MS, there are some studies

to evaluate the robustness of the texture features. One recent example is the study by Harrison et

al. [132], evaluating the robustness of texture features with respect to image acquisition and process-

ing protocols. Three types of imaging sequences (T1-weighted with and without contrast agent, and

T2-weighted), two anatomical levels of interest (corona radiata and centrum semiovale), and two

methods of drawing the region of interest (standard-size boxes of 10 × 10 pixels versus freehand)
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are considered in this study. To find the significance of image slice selection, three sequential image

slices are used for analysis. A total of 280 texture features are evaluated including features extracted

from the histogram, the gradient, the run-length matrix, the GLCM, the AR model, and the wavelet

transform. The study reports an excellent distinction between the image regions corresponding to

MS plaques and WM or NAWM (with 96% to 100% accuracy) with no significant difference in the

results of classification between imaging sequences or between anatomical levels. According to this

report, using T2-weighted or T1-weighted MR images with and without contrast agent sequences

results in similar classifications with a slightly better results for T1-weighted images with contrast

agent. The report concludes that texture analysis is a robust quantitative tool for evaluating MS

lesions.

Finally, similar to tumour and epilepsy studies, texture features can be used for segmentation of

the abnormal regions as proposed by Ghazel et al. [108; 109].

3.5 Alzheimer’s Disease

AD is a progressive neurodegenerative disease and the most common cause of dementia. The defini-

tive diagnosis of the AD is obtained from an autopsy or brain biopsy which is not usually done.

Currently, there are no tests available to diagnose AD in vivo. As a result, texture analysis has been

used evaluated a non-invasive tool to diagnose and monitor AD.

Freeborough and Fox [94] are among the first who have used texture features to study AD. They

compute the GLCM for several directions and distances of T1-weighted images acquired from 40

normal controls and 24 AD patients. Using discriminant analysis they show that there is a statistical

difference between the texture features for the control and AD groups (p< 10−4).

Kaeriyama et al. [170] extract the properties of gray level intensity along with the RLM. They

achieve 69.0% sensitivity, 86.2% specificity, and 77.6% classification accuracy on a dataset of 29

AD patients and 29 healthy contorols.

Kodama and Kawase [186] use the GLCM and the RLM to differentiate between AD and demen-

tia with Lewy bodies (LBD, the second most frequent cause of dementia after AD). With a dataset of

T1-weighted images of 10 patients with Lewy bodies, 36 patients with AD, and 25 healthy controls,

they achieve a classification accuracy of 87.3%.

The capability of texture analysis to differentiate between amnestic mild cognitive impairment

(MCI) 1 and AD is studied by de Oliveira et al. [73]. In this study, the GLCM features are extracted

from T1-weighted and T2-weighted images from two regions: corpus callosum and thalamus. The

datasets that they use include 17 patients with amnestic MCI, 16 patients with mild AD, and 16

healthy subjects. In the corpus callosum region, the pairwise comparison shows a significant dif-

ference between AD versus controls and AD versus amnestic MCI. The texture features extracted
1MCI refers to the cognitive impairments beyond those caused by the aging effect, that are mild and do not interfere with

the patient’s daily activities. However, those with MCI are at increased risk of eventually developing AD.

32



from thalamus reveal laterality. They report that the texture features on the right side of the brain

are more discriminative than the ones extracted on the left side. The features extracted from tha-

lamus present statistical difference in all pairwise comparisons: AD and control, AD and amnestic

MCI, and amnestic MCI and control subjects. Wang et al. [364] also show that the textural features

(the GLCM and the RLM) in the corpus callosum region are statistically different between the AD

patients and and the healthy control group.

In a recent work, Xia et al. [373] show that the GLCM features can detect the underlying patho-

logical changes in AD. In a dataset of T1-weighted images of 29 AD patients, 19 age-matched

controls and 18 young healthy controls, the volumes of bilateral hippocampus and medial temporal

lobe are computed. They report significant differences in the volumes (p< 0.001) and the texture

features (p< 0.01) between the AD and the control groups. They also find a strong correlation be-

tween the texture features and the volume of bilateral hippocampus (p< 0.01) as well as the volume

of medial temporal lobe (p< 0.05) and conclude that texture analysis can be used as a quantitative

tool to measure pathological changes in AD.

In addition to the 2D texture methods, some research groups have used 3D texture analysis for

AD. For instance, Li et al. [215] extract 3D features of the GLCM and the RLM from T1-weighted

images to differentiate patients with AD, patients with MCI. In a dataset of 12 early AD patients,

12 MCI patients and 12 healthy controls, they demonstrate that the computed texture features are

significantly different among the AD, the MCI and the healthy subject groups. In another recent

work, Zhang et al. [403] compute 3D texture features of T1-weighted MR images of 17 AD patients

and 17 healthy controls. Circular 3D ROIs are considered in the hippocampus and entorhinal cortex

area. The features include statistical information extracted from the histogram of intensities, and the

absolute gradient values in the images along with the GLCM, and the RLM features. They achieve

a classification accuracy of 98.5% using an artificial neural network (ANN) classifier. Chincarini

et al. [55] use local 3D filter responses as textural features to study medial temporal lobe (MTL)

atrophy in AD. Using the SVM as a classifier, their method is able to discriminate controls from AD

with sensitivity of 89% and specificity of 94% on T1-weighted images of 144 AD patients and 189

age-matched controls.

Texture analysis of AD has also been done using other modalities such as PET [312], and

SPECT [80]; however, they are not as popular as structural MR images.

3.6 Challenges of MRI

MR images inherit some issues due to the limitations of the image acquisition process. As a result,

the texture analysis methods that use MRI should consider these challenges. The main issues are:

• Noise

• Partial volume averaging
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• Intensity non-uniformity

• Inter-slice intensity variations

• Intensity non-standardization

Noise is one of the inherent problems of MR images. A common approach to suppress noise is to

filter the image in either the spatial or the frequency domain. Some conventional methods include

using a median filter or a Gaussian filter. However, a good noise removal strategy should not make

the image blur (which is not addressed in the conventional denoising methods). As a result edge

preserving methods are preferred for noise removal [386]. Since noise in MR images follows the

Rician distribution [262], several recent methods have been developed to remove the Rican noise

from MR images including non-local means filter based methods [65; 237; 64], the wavelet sub-

band coefficient mixing method [63], the RNRAD and ORNRAD filters [193], and the ODCT3D

and the PRI-NLM3D filters [236].

The next issue of MR images is partial volume averaging. This issue is more evident in images

with low resolutions. When the acquisition resolution is low (e.g., slice thickness is high), the

intensity captured at each voxel will be affected by several types of tissue, appearing as the average

intensity of the enclosed tissues. This effect imposes blurring effect to the MR images. Acquiring

MR images with high resolution will alleviate this problem.

Intensity non-uniformity (INU also known as intensity inhomogeneity) is another issue in MR

images, which refers to the smooth intensity variation across a slice or region. This artifact can be

induced by different factors including the choice of the radio-frequency coil, the acquisition pulse

sequence, or even the nature and geometry of the sample itself. Several methods have been pro-

posed to address this problem and to correct this artifact. Some well-known approaches include

modeling the intensity non-uniformity by a smooth surface [201; 244; 328], applying spatial filter-

ing [37; 360; 412], performing frequency domain filtering [60; 127; 219], and modeling the inten-

sity as a probability distribution of random variables [218; 323]. Some recent studies in intensity

non-uniformity correction include using patches from an atlas of inhomogeneity-free images [298],

modeling the intensity non-uniformity as a polynomial surface [321] and as multiple Gaussian sur-

faces [163], employing Markov random fields [316], and using the max filter [28].

The next issue in MR imaging is inter-slice intensity variations caused by gradient eddy cur-

rents and crosstalk 2 between slices. A simple approach for correcting this artifact is to define the

intensity as a function of the slice intensity and its neighboring slice intensity [413]. Van Leem-

put et al. [205] model the MR images as a realization of a random process and apply an iterative

expectation-maximization (EM) strategy to correct inter-slice intensity variations. Chen et al. [50]

segment each slice to find the tissues. They consider the average intensity of each tissue type as

2If the slice distances are very small, the excitation pulses that should cover only one slice partially overlap. The tissues
located in the overlapped regions receive double excitation and contribute little to the detected signal. This effect is known
as crosstalk.
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the normalized intensity value. Dauguet et al. [72] use histogram scale-space analysis to address

inter-slice intensity variations. In this method, for each slice, a scale-space analysis of the histogram

is computed by smoothing the slice with a Gaussian kernel with increasing width. The scale-space

analysis provides a set of plausible tissue classification schemes. In an iterative procedure the best

classification scheme for each slice is found by maximizing the spatial consistency of the classifi-

cations across all slices. A recent work for inter-slice intensity correction is presented by Lee et

al. [204] which is a 3D wavelet-based method. In this method, two separate wavelet transformations

are applied: one filter bank to correct for the inhomogeneity within 2D images, and the other filter

bank along the slice direction to correct the inter-slice intensity variation.

Finally, the intensity of the MR images are not standardized. In other words, images of the same

tissue acquired from different subjects using the same scanner and protocol present large intensity

variations. Consequently, the absolute intensity values do not represent a specific tissue and can-

not be compared between subjects. Therefore, standardization is needed for correcting inter-subject

intensity variations. This issue was first demonstrated by Nyul and Udupa [263]. They present

a framework with two steps: a training step and a transformation step. In the training step, some

landmarks on a standard histogram are computed using the images in the training set. In the transfor-

mation step, the actual intensity transformation is found by mapping the landmarks on the histogram

of a given image and the standard histogram obtained in the training step. This framework has been

adopted in several other studies [103; 232; 264]. One of the popular approaches in recent methods of

standardization is in using joint histograms [157; 280; 292]. For instance, Jager and Hornegger [157]

perform a nonrigid image registration between the joint histogram of the reference image and that

of the acquired images. The nonparametric transformation obtained from this registration is used as

a mapping function between the corresponding intensity spaces. In another example, Robitaille et

al. [292] use the joint histograms of the MR images to compute intensity correspondence for each

tissue type between the input image and the standard images.

The above mentioned problem can also be addressed if the features are robust. For instance,

texture methods that are robust to noise can be directly extracted from MR images without having

to worry about the noise problem. Illumination invariant texture features can address the prob-

lems arising from intensity non-uniformity, inter-slice variability, and intensity non-standardization.

Therefore, texture analysis is not only able to analyze images but also offers robustness against many

challenges with MRI. Indeed, some recent studies corroborate this hypothesis by demonstrating that

texture features are relatively robust to several imaging variables [242; 311].

3.7 Summary

In this chapter an overview of the applications of texture analysis in medical imaging is given. In

particular, this chapter reviews the texture analysis methods used in four well-known diseases that

affect the brain: brain tumors, epilepsy, MS, and AD. The general trend is to use statistical based
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methods such as the GLCM and the RLM. The second popular approach is frequency-based methods

such as the Stockwell and wavelet transforms. The challenges in MR images are discussed and some

approaches to address them are described. The robust and invariant texture features can address the

above mentioned issues and can be directly used without a preprocessing step. Some recent research

studies have demonstrated the feasibility of such an approach [242; 311].

Nevertheless, the application of texture analysis is still missing in the study of ALS. The need

is exacerbated because in contrast to the diseases reviewed in this chapter, the MR images of ALS

patients do not demonstrate any visible pathological change that can be detected by the human eye.

In the next chapter an overview of ALS and the current medical imaging approaches to study it are

given.
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Chapter 4

Medical Imaging Applications in
Amyotrophic Lateral Sclerosis

4.1 Introduction

ALS is a fatal neurodegenerative disease. The progression of the disease is dramatically rapid and

80% of patients die within two to five years of diagnosis. The disease affects both the central nervous

system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal

cord. The PNS is responsible for transmitting messages between the CNS and the muscles and

sensory receptors. The neurons of the CNS and PNS involved in movement are called the upper

motor neurons (UMN) and the lower motor neurons (LMN), respectively. Both types of neurons are

damaged in ALS.

The main physical examination features related to degeneration of UMNs include loss of dexter-

ity, loss of muscle strength, spasticity, and hyperreflexia. Spasticity can appear as stiffness, slowness,

and dexterity can produce awkwardness of skillful movements. Hyperreflexia is the overactive re-

flexes of muscles. The LMN degeneration signs in ALS include loss of muscle strength, muscle

atrophy (reduced bulk), hyporeflexia, muscle hypotonia, fasciculations (involuntary muscle twitch-

ing), and muscle cramps.

As ALS progresses, the patients gradually loose their functional abilities. Progressing weakness

of the limbs is severely disabling. Patients become increasingly dependent. They eventually are

unable to move their limbs and are confined to bed. Many will lose their ability to speak. Many

patients will have problem swallowing. Most patients eventually need to be fed by a feeding tube.

Respiratory impairment is the most critical consequence of ALS progression. Depending on the

situation, invasive or non-invasive ventilation is eventually required. Most patients with ALS die

from respiratory failure, usually within three to five years from the onset of symptoms (with median

of 39 months) and only 4% survive longer than 10 years [349].

In addition to the symptoms mentioned above, mild cognitive and behavioral impairment is also

observed in up to 50% of patients [371] with frontotemporal dementia in 15% [290].
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ALS may begin at any age but it is most often observed in the later decades. The average age of

onset is about 66 years [355]. In some cases the ALS is observed within families. As a result, some

research studies have been conducted to find genetic disorders in ALS [166; 230; 296]. Nonetheless,

familial ALS consists only about 10% of all ALS cases [166].

Unfortunately, no cure has been found for ALS. Riluzole is the only approved disease-modifying

medicine for ALS. It can prolong survival by about 3 months [32; 199; 251]. Care of the patient with

ALS is complex and requires a multidisciplinary approach with a focus on maintenance of quality

of life.

At the moment, the diagnosis of ALS is based on the clinical assessment of UMN and LMN

degeneration as mentioned above. The progression of the disease is assessed using the Amyotrophic

Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R). The ALSFRS-R is a score in the

range [0 48] representing the general disability of a patient. It is computed by means of a question-

naire of 12 questions on daily activities (e.g. speech) and also on specific symptoms (e.g., shortness

of breath). Nonetheless, ALSFRS-R does not directly measure the involvement of the UMNs and

the LMNs in the disease.

While LMN dysfunction is more evident on examination and can be evaluated objectively by

means of electrodiagnostic techniques, the degeneration of UMN cannot be characterized precisely.

Another reason is that the manifestation of UMN clinical signs can be affected by severe simulta-

neous LMN signs. As a result, there is a need for an objective method to precisely quantify UMN

degeneration and cerebral degeneration in general. In this chapter the medical imaging methods

used to study ALS are overviewed, in particular, those that study UMN degeneration in ALS.

4.2 Neuropathology of ALS

The nervous system consists of neurons. Neurons are electrically excitable cells transmitting and

processing information in the nervous system. A neuron consists of three parts: the soma or cell

body, dendrites, and the axon (Figure 4.1). Dendrites are the branched projections of the neuron

receiving signals from other neurons. The signal is processed in the soma where the nucleus of the

cell is located. Finally, when a signal is fired from the soma, it is transmitted along the axon and to

the axon terminal. The signal is sent to a synapse, the junction that is passing the signal to the other

neurons by way of chemical neurotransmitters. Axons are protected by a myelin sheath.

Different microscopic pathological impairments are observed in ALS. The most important pro-

cess is loss of neurons in the cortex and their projecting axons. There is also injury to glial cells.

Glial cells refer to the non-neuronal cells that maintain homeostasis, form myelin, and provide sup-

port and protection for the neurons. Proliferation of glial cells in damaged areas of the CNS (known

as gliosis) is one of the pathological features in ALS. Axonal swelling or spheroids is also a micro-

scopic pathological feature of ALS.

The spatial distribution of CNS degeneration include different parts in the brain and spinal cord.
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Figure 4.1: A neuron consists of three parts: the soma or cell body where the nucleus of the cell is
located, dendrites, and the axon. Signals are received by dendrites, processed in the soma, and sent
by the axon. This figure is an edited version of the image from [1].

Figure 4.2: Brain consists of four lobes: frontal, temporal, parietal, and occipital. Motor cortex area
is located along the central sulcus and consists of primary motor cortex, premotor cortex, supple-
mentary motor area, and primary somatosensory cortex. This figure is an edited version of the image
from [3].

There are three important regions considered in UMN degeneration: the motor cortex area, the

corticospinal tract (CST), and the spinal cord.

The motor cortex area consists of UMNs and is responsible for planning, control, and execution

of voluntary movements. It consists of several parts with overlapping areas (primary motor cortex,

premotor cortex, supplementary motor area, and primary somatosensory cortex) located along a fold

called the central sulcus. Figure 4.2 illustrates the main four lobes of the brain and the location of

the motor cortex area.

In ALS, the number of large motor neurons (known as pyramidal cells) in the cerebral cortex is

decreased. The neuronal loss also occurs in the adjacent cortex regions including premotor cortex,

somatosensory cortex, and temporal cortex area. Studies show that in ALS the cortical neurons are

sparse and damaged, and their dendrites are shortened, disjointed, and disorganized [273]. Accumu-

lation of neurofilaments are also observed in the pyramidal cells. Nonetheless, the accumulations

are more frequent in the motor neurons of spinal cord. There are some other pathological features
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Figure 4.3: The CST pathway. CST connects the motor cortex area to the spinal cord. About 90% of
CST fibers cross over to the contralateral side (at pyramidal decussation), going to the lateral CST.
CST fibers are very dense in an area in the brain called the internal capsule. This figure is an edited
version of the image from [2].

Figure 4.4: The CST fibers are very dense in the internal capsule region. This density can even be
vaguely observed in T2-weighted images (yellow arrows).

like glial cell clusters which are not specific in ALS and can be observed in other conditions such as

aging or other neurodegenerative diseases.

The next region of interest to study UMN degeneration in ALS is the CST. The CST consists

of UMNs, extending from the motor cortex area to the LMNs in the spinal cord. The CST is di-

vided into two separate tracts in the spinal cord: the lateral CST and the anterior CST. Most of the

corticospinal fibers (about 90%) cross over to the contralateral side at the pyramidal decussation.

These fibers travel in the lateral CST. The rest of the fibers descend uncrossed. Figure 4.3 illustrates

the pathway of the CST. This pathway is a potential region to study UMN degeneration. Along

this path, there is an interesting region called the internal capsule where the CST fibers converge

and thus are very dense. The density can even be vaguely observed in T2-weighted images (Fig-

ure 4.4). The CST is damaged in ALS with axonal degeneration and accompanying demyelination.

The other pathological changes in CST include spheroids (axonal swelling) in which the neurons

contain packed neurofilaments and other cellular debris.

The spinal cord is also a region of interest in ALS and there are pathological changes in this
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region [116; 162; 258] which is beyond the scope of this document.

In addition to motor cortex degeneration, other parts of the brain are also relevant for investi-

gation. One very important current research trends is the study of degeneration of the frontal and

temporal lobes in the brain known as frontotemporal lobar degeneration (FTLD) [223; 354]. FTLD

is associated with cognitive and behavioral impairment. Some examples are behavioral variant, pro-

gressive non-fluent aphasia, and semantic dementia. FTLD is observed in about 15% of the patients

with ALS [290].

According to many research studies, the CST is not the only region affected by ALS [58; 88;

346]. Therefore, the whole brain is usually analyzed. The next section reviews some of the common

imaging methods to study ALS.

4.3 Medical Imaging Methods

A common modality to study brain diseases is MRI. The techniques include conventional structural

MRI, diffusion tensor imaging (DTI), functional MRI (fMRI), and magnetic resonance spectroscopy

(MRS). The next subsections explain the applications of these methods in ALS.

4.3.1 Structural MRI

Conventional MR images of the brain (T1-weighted, T1-weighted and FLAIR) are used in two

ways: qualitative visual assessment, and quantification of brain changes by means of morphometry

methods.

By using visual assessment, some studies report intensity changes of MR images in patients with

ALS. One of the changes reported by some studies [52; 113; 135] is the increased intensity (hyper-

intensity) in the CST region in T2-weighted and FLAIR images. Nevertheless, CST hyperintensity

does not correlate with clinical symptoms [134]. Moreover, the increased intensity in the CST region

have also been observed in healthy subjects and in other diseases [176; 252; 310; 337]. The other

change observed by some studies [52; 135; 366] is the decrement in the intensity (hypointensity)

of the posterior rim of the precentral gyrus on T2-weighted images. Nonetheless, these changes in

intensity are neither sensitive nor specific to the pathology of ALS and the purpose of routine MRI

assessment in the neurology clinic is to rule out diseases that mimic ALS [5].

The next important usage of structural MRI is to measure regional atrophy by means of brain

morphometry methods. The morphometry methods include voxel based morphometry (VBM), ten-

sor based morphometry (TBM), and surface based morphometry (SBM). The most well known

morphometry method used in ALS is VBM [151]. This method performs a voxel-wise comparison

between two groups of subjects in the whole brain (WM and GM). The procedure consists of five

steps:

1. Spatial normalization,
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2. Segmentation,

3. Modulation,

4. Smoothing, and

5. Statistical analysis.

The first step is spatial normalization. The main objective of spatial normalization is to localize

regions in a stereotactic space so the corresponding regions can be compared. Different registration

methods might be used for this purpose. This step is crucial in VBM, because accurate spatial nor-

malization and segmentation (i.e., the next step) are required such that the differences in the volumes

can be attributed to local effects, rather than to artifacts produced due to mis-registration. Nonethe-

less, there are always some errors in this step. Errors usually happen because the corresponding

points are not well defined between the images at a fine spatial scale. For example, many sulci are

shared between brains, but this is not the case for all sulci. Therefore, some sulci can be used as

corresponding points while others cannot.

In the second step, the images are segmented into the regions of interest, usually, gray matter,

white matter, and cerebrospinal fluid. Performing an accurate segmentation is very important and has

a significant impact to the final VBM results. If the segmentation is done after spatial normalization,

the prior spatial information can be used as a probability map for the regions’ location. This idea

is used by Ashburner and Friston [151] to develop an iterative algorithm for segmentation based on

the prior spatial information.

The spatial normalization step changes the volumes of brain regions because some regions grow

and some shrink. To preserve the actual amounts of each region within each voxel the modulation

step is performed. In this step, the partitioned images are multiplied (modulated) by the relative

voxel volumes before and after spatial normalization. The relative volumes are computed using

the Jacobian determinant of the images. If a point in a 3D space, p1(x1, y1, z1) is mapped to

p2(x2, y2, z2), the Jacobian is defined as the derivative of the elements of p1 with respect to the

elements of p2:

J =
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In the next step a smoothing filter is applied to the 3D image. As a result, the voxel intensity

values smoothly change between neighboring voxels. The objective is to remove noise and the

fine-scale structures that are not present among subjects. Indeed, by smoothing, one increases the

sensitivity of VBM to differences that are expressed in a larger spatial scale.

In the final step, a statistical analysis is performed. The general linear model (GLM) is used to

find the regions that are significantly different among the groups of subjects. The result of this step

is called the statistical parametric map (SPM) showing significant regional effects.
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VBM is one of the popular approaches to study ALS. Chang et al. [47] use VBM on T1-weighted

MR images to show that patients with ALS and ALS/FTLD (ALS associated with frontotemporal

lobar degeneration) have widespread gray matter atrophy in frontotemporal regions. They claim

that the main regions affected are the motor and premotor cortices, and the anterior portion of the

superior frontal gyrus. With a similar approach, Grosskreutz et al. [119] found in the precentral and

postcentral gyri bilaterally. In recent years, VBM has been widely used by different research groups

to study ALS including the works of Agosta et al. [8], Grosskreutz et al. [120], Chen and Ma [51],

Senda et al. [315], and Tsujimoto et al. [347].

Nonetheless, VBM have some limitations. For instance, the accuracy of registration and seg-

mentation can highly affect the VBM results. Consequently, any small error in registration or seg-

mentation changes the final result. Moreover, the parametric statistical tests assumes that the data

is normally distributed. Therefore, if the behavior of the data is not known, this assumption will be

violated.

The next morphometry method used to study ALS is TBM [24]. The TBM method is based on

the Jacobian matrix defined in Eq. 4.1. TBM is different from VBM in that it compares the rate

of volume change. This rate of volume change is more reliable than absolute deformation value

used by VBM. The reason is that the absolute deformation represents positions of brain structures,

rather than local shape. Consequently, the absolute deformation should be quantified relative to

some arbitrary reference position which needs registration. However, the rate of change captured

by the Jacobian matrix provides information about the local changes (e.g., stretching, contractions)

involved in the deformation and does not need registration. In a simple form of TBM, the relative

rate of volume changes of different brain structures are compared using univariate statistics (t- or F-

test) [23]. While the univariate statistics shows whether growth or volume loss has occurred, multi-

variate statistics can provide more useful information such as any difference among lengths, areas

and the amount of change. As a result, multi-variate statistics is used when the nature of changes is

unknown.

TBM is used in the work of Agosta et al. [6] on T1-weighted MRI. The study shows gray matter

atrophy in the left premotor cortex and the right basal ganglia in ALS patients compared to controls.

It also reports atrophy in the motor cortical area, the left caudate, and the right putamen in patients

with rapidly progressive ALS in comparison with patients with non-rapidly progressive ALS and

controls. TBM per se is not as popular as VBM and has not been widely used to study ALS. Indeed,

TBM is employed in the third step of VBM (modulation) to make VBM more accurate.

The main disadvantage of the above mentioned methods is that they disregard gyral and sul-

cal anatomical boundaries. As a result, these methods are not sensitive to detect subtle cortical

differences. To address this problem SBM [89] is proposed. In SBM, the cortical surface is first

segmented from the images. By using surface convexity and curvature features extracted from the

cortical surface the gyral anatomy is registered to a standard spherical template [69; 89; 90]. This
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procedure transfers the cortical surface into a stereotactic space in which the statistical comparisons

between brains is possible. The studies that use SBM report cortical thinning in the precentral gyrus

in patients with ALS. Some recent examples of SBM studies include the works of Roccatagliata et

al. [293], and Verstraete et al. [359]. In their recent study, Agosta et al. [9] demonstrate widespread

areas of cortical thinning including the primary motor, the prefrontal and ventral frontal cortices, the

cingulate gyrus, insula, the superior and inferior temporal and parietal regions, and the medial and

lateral occipital areas. Nonetheless, SBM is designed for estimation of cortical thickness.

4.3.2 Diffusion Tensor Imaging

A well-known MRI technique, DTI, is based on molecular diffusion of water. Molecular diffusion

refers to the random motion of molecules (also known as Brownian motion). This random motion is

caused by the thermal energy carried by these molecules and can give us important information about

the microscopic structures of tissues. DTI captures the Brownian motion of water molecules due to

its large concentration in brain tissue. During a typical diffusion time of about 50 milliseconds,

water molecules move about 10 micrometers. Using statistical analysis the movement distribution

of the water molecules can be found. This movement distribution provides valuable information

about the structure and geometric organization of the tissues at a microscopic scale. Specifically,

it gives us information about myelinated axonal fibers running in parallel because diffusion in the

direction of the fibers is faster than in the perpendicular direction. This characteristic is used to map

the orientation of the white matter fibers in the brain. When an abnormality occurs, it changes the

normal direction of diffusion which can be detected in DTI.

The diffusion process in an isotropic medium is expressed by the diffusion coefficient D [82],

D =
1

6τ
< RRT >, (4.2)

whereR is the displacement vector, τ is the diffusion time, T is the transposition operator, and< >

denotes the averaging operator. The effect of diffusion on the MRI appears as attenuation, A, in the

MRI signal [34]:

A = exp(−bD), (4.3)

where b is a parameter characterized by the timing, amplitude, and shape of the gradient pulses in

the MRI sequence.

To use DTI for image analysis, an anisotropic version of the diffusion process is needed. The

diffusion coefficient, D, is defined as a tensor describing a molecule’s motion along each direction

(x, y, z) and the correlation between the directions [34]:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (4.4)
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Here, the attenuation effect appears as:

A = exp(−
∑

i=x,y,z

∑
j=x,y,z

bijDij). (4.5)

where the elements of matrix b are characterized by the same properties of the gradient pulses in the

MRI sequence mentioned before. This equation is used to estimate D. To perform the estimation,

at least six independent measurements associated with six directions are required. In addition one

image is acquired without diffusion weighting (b = 0). In practice, images can be acquired in more

directions to improve the estimation. The classical method of DTI uses the least squares technique

to approximate D from the set of acquired images. This approximation gives a 3D image with 6

parameters describing the local tensor D at each voxel. A diffusion tensor D can be decomposed

to its eigenvalues (λ1, λ2, λ3) where λ1 ≥ λ2 ≥ λ3 and eigenvectors (e1, e2, e3). The eigenvectors

represent the direction of diffusion and the eigenvalues reflect the amount of diffusion in each direc-

tion. The popular measurements on DTI are Mean Diffusivity (MD), Fractional Anisotropy (FA),

and Relative Anisotropy (RA).

MD representing a directionless average measure of the diffusion rate is defined as:

MD =
λ1 + λ2 + λ3

3
. (4.6)

FA is the measurement of the directionality of diffusion and is defined as

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ1
2 + λ2

2 + λ3
2

. (4.7)

RA shows the ratio of the anisotropic part of the tensor to its isotropic part and is computed as

RA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

3MD
. (4.8)

By following the tensors that reveal a large value in a specific direction, fiber tracts can be

revealed and constructed. This approach called tractography is used to visually represent neural

tracts.

DTI has been widely used, particularly in recent years, to study white matter degeneration in

ALS. Sage et al. [304] show that changes in diffusion parameters occur throughout the brain, in-

cluding the frontal, the temporal and the parietal lobes. Using fiber tracking analysis, they also

observed that the CST is impaired in ALS patients. The CST degeneration was also observed by

Wong et al. [159] reporting decreased FA and increased MD in the CST. The decreased value of

FA in the CST has also been reported by Iwata et al. [150]. Zhang et al. [405] show that the FA

decrement is related to disease progression by doing a longitudinal analysis of DTI data. Some

other recent DTI studies related to ALS include but are not limited to the works of Nair et al. [258],

Prudlo et al. [279], Sage et al. [303], Agosta et al. [7], and Canu et al. [43].

Nevertheless, DTI suffers from some limitations. The main issues of DTI are the partial vol-

ume effect (i.e., diffusion characteristics measured by DTI is influenced by the volume of brain

structures) [361] and the problem of DTI to model non-Gaussian diffusions [25].
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4.3.3 Functional MRI

Functional MRI (fMRI) is an MRI technique that measures regional cortical activation of the brain.

Activation is detected by assessing changes in blood flow (e.g., using the blood oxygen level depen-

dent (BOLD) contrast). In this approach, the subject is asked to do a task and the activity of the

brain in response to that specific task is measured.

Konarl et al. [188] demonstrate that the activation pattern in ALS patients is different to that

in healthy controls by using fMRI and asking subjects to perform a finger flexion task. In the

study conducted by Schoenfeld et al. [314], the subjects press buttons with two simple and difficult

sequences. They observe activity in ipsilateral motor areas, and difficulty-related activity in the

left cerebellum of the ALS patients. They conclude that ALS patients use additional brain regions

compared to healthy controls to perform a motor task as brain activation was observed outside the

motor area. Increased activation of the contralateral sensorimotor cortex and the supplementary

motor area in ALS patients have been reported by Konradet et al. [189], and Stanton et al. [326]. In

regards to functional changes related to cognitive impairment, Abrahams et al. [4] show that there is

impaired activation in the middle and inferior frontal gyri, the anterior cingulate gyrus, and regions

of the parietal and temporal lobes during verbal fluency task in ALS patients.

Since controlling task performance is difficult for patients with cortical motor impairments, the

concept of functional connectivity is noticed in recent studies. The idea is that different brain regions

that are functionally connected can be considered as a network. These regions can be found during

a rest state (while the subject is instructed not to perform any physical or mental task) by their spon-

taneous coherent fluctuations of the BOLD signal (i.e., resting state imaging technique) [253]. With

this method, ALS can be investigated as a system failure of interconnected networks as suggested

by Turner et al. [348]. This method is recently used by Mohammadi et al. [253] to study the changes

of resting state brain networks in ALS. With a dataset of 20 healthy controls and 20 ALS patients,

they find significant differences between the two groups in two networks: the default-mode and the

sensorimotor networks. The default-mode network includes the ventral anterior cingulate cortex, the

medial prefrontal cortex, the orbitofrontal cortex, the posterior cingulate cortex, the inferior parietal

cortex, and the parahippocampal gyrus. The sensorimotor network consists of the primary motor

cortex, the anterior part of the cingulate cortex, the somatosensory region, and the auditory cortex.

Another recent trend is to use fMRI along with structural MRI to study motor network degener-

ation. Some examples include the works of Verstraete et al. [358], Douaud et al. [78], and Cosottini

et al. [62].

Nonetheless, fMRI is limited to finding alterations of cortical regions by detecting functional

impairment and does not reveal the pathology related to the structural changes occurring in the

whole brain.
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4.3.4 Magnetic Resonance Spectroscopy

MRS is a specialized MRI technique used to measure tissue metabolites. Similar to MRI it uses

signals from hydrogen protons; however in contrast to standard MRI that uses the signal informa-

tion to create images from water-containing protons, MRS uses the signal information to quantify

metabolites other than water. The main metabolites measured in MRS in neuropsychiatry are N-

acetylaspartate (NAA), creatine (Cr), myo-inositol (Ins), and choline (Cho). Both the concentration

of the metabolites and the ratio between them (e.g., NAA/Cr) are reported.

Pioro et al. [276] were among the first who used MRS to study ALS. Based on this study, ALS

patients have a significant decrease of the NAA/Cr ratio in the motor cortex (p < 0.001), and

in the primary sensory region (p < 0.01), as well as in the posterior premotor and the parietal

regions (p < 0.05). In another study [277], they investigate metabolite changes in the brainstem,

reporting decreased levels of NAx (N-acetylaspartate and N-acetylaspartylglutamate) and increased

Glx (glutamate and glutamine) in the medulla. Cwik et al. [68] also report a reduction of the NA/Cr

ratio in the pons and upper medulla. A large number of studies have been conducted in the primary

motor cortex area. Gredal et al. [118] report a significantly decreased concentration of NAA in the

primary motor cortex of ALS patients. The work of Wang et al. [363], corroborate the decrement of

NAA/Cr and NAA/Cho in this area in ALS patients. This study also reports a correlation between the

NAA/Cr ratio and the ALSFRS scores (p < 0.05). The study of Sarchielli et al. [308] demonstrates

significantly lower concentration of NAA in the precentral gyrus of ALS patients; however, it does

not find a correlation between this decrement and the ALSFRS scores. Kalra et al. [172] report a

decrease in NAA/Ins (p < 0.001), NAA/Cr (p < 0.04), and NAA/Cho (p < 0.05), and an increase

in Ins/Cr (p < 0.04) in the cerebral cortex of patients with ALS.

There are some longitudinal MRS studies to investigate if the change of metabolites occurs

longitudinally in the disease. For instance, Pohl et al. [278] find a significant drop in the NAA/Cho

ratio (p < 0.01) and a significant increase (p < 0.01) in the Cho/Cr ratio in the primary motor

cortex in ALS patients during a period of 12.1 ± 8.7 months. In a longitudinal study by Suhy et

al. [330], ALS patients are scanned after 1 month and 3 months following the initial acquisition. The

study reports a decline in NAA, Cr, and Cho concentrations in the motor cortex region; however, no

statistical change is observed in non motor regions in ALS patients.

MRS has also been used to investigate the effect of the potential drugs to retard the progression of

ALS. Kalra et al. [171] find that the NAA/Cr ratio is decreased in the precentral and the postcentral

gyri of patients with ALS. Whereas, in another study [173] using this approach, they report an

improvement in the cortical metabolic function in the motor cortex area early after riluzole treatment

evidenced by an increase in NAA/Cr.

Some recent studies of MRS in ALS include the works of Pyra et al. [281], Sudharshan et

al. [329], and Usman et al. [353]. Pyra et al. [281] demonstrate that the ratio of NAA/Cho and of

NAA/Cr are reduced in corona radiata and precentral gyrus. This finding indicates the degeneration
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of the CST in ALS patients. Sudharshan et al. [329] report the degeneration of the mid cingulate

cortex. Finally, Usman et al. [353] find that the medial prefrontal cortex is damaged in patients with

ALS by the finding of reduced NAA/Ins ratio.

Nonetheless, MRS has some restrictions and disadvantages. The main disadvantage of MRS is

the intrinsic insensitivity of the method. The signals recorded by MRS are small due to the low

concentrations of the target metabolites. This tends to results in relatively high variability in the

measures, and low resolution. Moreover, MRS is a complicated acquisition technique which limits

its usage.

4.4 Summary

In this chapter different imaging methods used to study ALS have been reviewed. These methods

can be categorized into four classes based on the imaging modality that they use: structural MRI,

DTI, fMRI, and MRS. Structural MRI are used for two purposes, to rule out the diseases that mimic

ALS, and to study the structural changes of the brain using different morphometry methods such

as VBM, TBM, and SBM. VBM and TBM methods are not robust and SBM can be used only for

cortical thickness measurements. DTI is used to find those parts of the brain that reveal abnormal

diffusivity to probe white matter integrity. The main parameters used to characterize diffusivity are

FA and MD. The limitations of DTI are the partial volume effect and modeling of non-Gaussian

diffusions. The fMRI methods are used to find functional abnormalities in ALS and do not show the

structural changes. Finally, MRS methods quantify tissue metabolites. The complicated acquisition

procedure and the insensitivity of the method are the limitations of MRS. While the current methods

provide promise in exploring the ALS pathology and each have their roles in evaluating cerebral

degeneration, there is still a great need for more sensitive techniques that can objectively quantify

UMN degeneration and cerebral degeneration in ALS.

Nonetheless, the ability of texture analysis has not been explored to study ALS. Texture analysis

methods have been successfully used in different research fields and shown promise in medical

image analysis. Several studies have shown that texture features are very discriminative and helpful

to detect and monitor different diseases including but not limited to brain tumors, epilepsy, MS, and

AD. In addition, as mentioned before in Section 3.6, texture features, in particular, the invariant

ones, show robustness to the acquisition parameters of MRI and can address the main issues in MR

imaging. Hence, developing texture analysis methods to study cerebral degeneration in ALS may

fill the current gap in this field. The ability to accurately quantify cerebral disease will assist with

making an accurate diagnosis quicker and with the evaluation of novel treatments. It could also

improve our understanding of the disease and its pathology. Robust texture methods could also be

used in other neurodegenerative diseases as well as in other non-medical applications. In the next

chapter, the proposed work is presented with the current status of the research.
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Chapter 5

Voxel-based Texture Analysis of the
Brain

5.1 Introduction

As mentioned before in Chapter 3, texture analysis methods have been successfully used to study

several brain neurological diseases including brain tumour, epilepsy, Alzheimer’s disease, and multi-

ple sclerosis. Robustness to MRI acquisition parameters makes texture analysis a reliable and attrac-

tive tool for investigation of neuropsychiatric conditions. Nonetheless, the current texture analysis

methods are defined for a region of interest (ROI). This is a limiting factor particularly in brain

image analysis, because it requires a priori hypotheses directing the analysis to specific regions.

An alternative approach to ROI analysis is the hypothesis free method in which regions with

significant statistical differences are automatically detected between groups. One of the most popu-

lar examples of this type of analysis is the voxel based morphometry (VBM) [21] in brain imaging.

VBM performs a voxel-by-voxel statistical analysis on gray matter (GM) or white matter (WM)

density.

Inspired by VBM, a novel method to perform voxel-based texture analysis in brain images is

presented in this chapter. The output of the proposed method is a statistical map, similar to that of

the VBM, indicating regions with statistically significant differences. However, a texture feature,

instead of the amount of GM or WM, is compared at each voxel. In Section 5.2 the proposed

methods are presented. The evaluation is explained in Section 5.3. Finally, the summary of this

chapter is given.

5.2 Voxel-based Texture Analysis Methods

In this section the voxel-based texture analysis methods are presented. The processing pipeline of the

proposed method includes three main parts: pre-processing, texture feature computation, and voxel-

based statistical analysis (Figure 5.1). The first and the last parts have been provided by several brain

image analysis tools. The second part is the core of the proposed method and has been developed
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Figure 5.1: The processing pipeline of the voxel-based texture analysis method.

as a toolbox which can be easily integrated with other brain analysis tools easily (Appendix A). The

next subsections explain each part in details.

5.2.1 Pre-Processing

The pre-processing part of the pipeline includes two main steps. The first step is to normalize (reg-

ister) images with a template atlas. The second step of preprocessing is correcting non-uniformity

variations and intensity standardization which makes the intensity of the images between subjects

comparable. The preprocessing step is performed using the VBM8 toolbox (http://dbm.neuro.uni-

jena.de/vbm/) with default parameters. The VBM8 toolbox is an extension of the unified segmen-

tation model [22] using the high-dimensional DARTEL procedure [20] to normalize images to the

MNI152 atlas.

The proposed methods in this section are the extensions of the 2D gray level co-occurrence

matrix (GLCM) method [131] such that the texture features are computed in a voxel-by-voxel basis

in 3D images.
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5.2.2 VGLCM-3D

Suppose that a 2D image I with a length of Nx and a width of Ny has Ng gray level values (i.e.,

intensities of the image range 1 to G). The image I is represented as a function mapping the spatial

domain to the gray values:

I : Ly × Lx → G, (5.1)

where Ly = {1, ..., Ny} denotes the spatial domain along the y axis, Lx = {1, ..., Nx} the spatial

domain along the x axis, andG = {1, ..., Ng} the gray values. Here, the Haralik et al. notation [131]

is followed which assigns the y axis to the first dimension.

On a 2D plane, an offset with distance d and direction angle θ is represented by O = [a, b] =

[dsin(θ), dcos(θ)] connecting pixel I(k, l) to pixel I(m,n) such that m = k + a and n = l + b.

For instance, an offset with distance of 1 and angle of 90◦ increases m by 1 and n by 0 (or offsets

them from the original position with [1, 0]). GLCMO is defined for the specific offset O = [a, b] as

follows:

GLCMO(i, j) = #
{

((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

m = k + a, n = l + b, I(k, l) = i, I(m,n) = j
}
. (5.2)

In other words, the GLCM for a specific offset is an Ng × Ng matrix where the entry (i, j)

shows the number of times that I(k, l) = i and I(m,n) = j. GLCM is easily expandable to 3D by

considering offsets in a 3D space [196]. Formally, a 3D image with G gray levels is defined as:

I : Ly × Lx × Lz → G, (5.3)

where Lz = {1, ..., Ny} denotes the spatial domain along the z axis. In the traditional GLCM,

the texture features are computed for a region of interest while the goal of the proposed method

is to find texture features at each voxel. To do this, a spherical volume of radius R is considered

around each voxel. Formally, the voxel-based GLCM in 3D (“VGLCM-3D”) is defined for a specific

neighborhood of radius R, and offset O = [a, b, c] for the voxel V located at (Vy, Vx, Vz):

V GLCM -3DR,O(i, j) = #
{

((k, l, u) , (m,n, v)) ∈

SR(Vy, Vx, Vz)× SR(Vy, Vx, Vz)|

m = k + a, n = l + b, v = u+ c,

I(k, l, u) = i, I(m,n, v) = j
}
, (5.4)

where SR(Vy, Vx, Vz) denotes the neighborhood region with a radius of R around the voxel:

SR(Vy, Vx, Vz) =
{

(y, x, z)|y = {1, ..., Ny}, x = {1, ..., Nx}, z = {1, ..., Nz}√
(y − Vy)2 + (x− Vx)2 + (z − Vz)2 ≤ R

}
. (5.5)
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After computing the co-occurrence matrices for all offsets, the GLCMs are summed over all

offsets and normalized (i.e., divided by the sum):

V GLCM -3Dsum
R (i, j) =

∑
∀O

V GLCM -3DR,O(i, j) (5.6)

V GLCM -3Dnorm
R (i, j) =

V GLCM -3Dsum
R (i, j)

G∑
1

G∑
1
V GLCM -3Dsum

R (i, j)

(5.7)

In this thesis, eight texture features are computed for analysis (f1 to f8 from Table 2.1). Addi-

tional texture features can also be computed. Nonetheless, these eight features are enough to show

their capability in texture analysis.

5.2.3 VGLCM-TOP-3D

It is notable that the computational expense of 3D analysis increases rapidly as distance d increases.

For a distance of d, there are (2d + 1)2 − 1 offsets in 2D and (2d + 1)3 − 1 offsets in 3D. For

example, for a distance of 1 there are 8 possible offsets in 2D (i.e., [-1,-1],[-1,0],...,[1,1]) but 26 off-

sets in 3D (i.e., [-1,-1,-1],[-1,-1,0],...,[1,1,1]). For a distance of 2, there are 24 offsets in 2D but 124

offsets in 3D. To alleviate the computational expense, in addition to the voxel-based GLCM on 3D

space (“VGLCM-3D”), a less computationally-expensive approach called voxel-based GLCM on

three orthogonal planes in 3D space (“VGLCM-TOP-3D”) is proposed. Herein GLCM is computed

individually in the axial, coronal, and sagittal planes at each voxel and the final feature value is the

average of these 3 texture values in the three planes. Using this approach there are 3×((2d+1)2−1)

offsets for computation. For instance, this approach uses 24 offsets for a distance of 1 and 72 offsets

for a distance of 2 (compared to 26 and 124 for VGLCM-3D), reducing the number of offsets partic-

ularly for large distances. Denote the z axis as the up-down direction, x axis the left-right direction,

and y axis the anterior-posterior direction in an MRI image. The axial, sagittal, and coronal planes

are defined as:

Iaxi(k, l, u) =
{
I(y, x, z)|y = {1, ..., Ny}, x = {1, ..., Nx}, z = u

}
, (5.8)

Isag(k, l, u) =
{
I(y, x, z)|y = {1, ..., Ny}, z = {1, ..., Nz}, x = l

}
, (5.9)

Icor(k, l, u) =
{
I(y, x, z)|x = {1, ..., Nx}, z = {1, ..., Nz}, y = k

}
, (5.10)

where u = 1, ..., Nz , l = 1, ..., Nx, and k = 1, ..., Ny denote the location of the slice in the axial,

sagittal, and coronal views, respectively. The voxel-based GLCM on three orthogonal planes in 3D

(“VGLCM-TOP-3D”) is defined for a specific plane P with a neighborhood radius of R and offset
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O = [a, b, c] for voxel V located at (Vy, Vx, Vz):

V GLCM -TOP -3DP,R,O(i, j) = #
{

((k, l, u) , (m,n, v)) ∈

SRP (Vy, Vx, Vz)× SRP (Vy, Vx, Vz)|

m = k + a, n = l + b, v = u+ c,

IP (k, l, u) = i, IP (m,n, v) = j
}
, (5.11)

where IP is defined by Eqs. 5.8, 5.9, and 5.10, and SRP is defined for the axial, sagittal, and coronal

planes, respectively:

SRaxi(Vy, Vx, Vz) =
{

(y, x, z)|y = {1, ..., Ny}, x = {1, ..., Nx}, z = u√
(y − Vy)2 + (x− Vx)2 ≤ R

}
, (5.12)

SRsag(Vy, Vx, Vz) =
{

(y, x, z)|y = {1, ..., Ny}, z = {1, ..., Nz}, x = l√
(y − Vy)2 + (z − Vz)2 ≤ R

}
, (5.13)

SRcor(Vy, Vx, Vz) =
{

(y, x, z)|x = {1, ..., Nx}, z = {1, ..., Nz}, y = k√
(x− Vx)2 + (z − Vz)2 ≤ R

}
, (5.14)

Similar to VGLCM-3D, the VGLCM-TOP-3D obtained for each plane is summed over all off-

sets and normalized. Now, at each voxel three GLCMs have been computed corresponding to the

axial, sagittal, and coronal planes (i.e., V GLCM -TOP -3Daxi,R,O, V GLCM -TOP -3Dsag,R,O,

and V GLCM -TOP -3Dcor,R,O). In this step the actual texture feature is separately computed for

each plane. Finally, each texture feature is obtained as the average of that feature computed in the

axial, sagittal, and coronal GLCMs. This process is illustrated in Figure 5.2.

The results of texture feature computation can be visualized as texture maps. Samples of these

texture maps are shown in Figure 5.3. The texture maps are subsequently used in a voxel-based

statistical analysis explained in the next section.

5.2.4 The Space for Computing Features

There are two spaces to compute the features: the original space and the stereotaxic space (i.e.,

atlas). Indeed, registration imposes some errors in the processing procedures. Even if the registration

is ideal the interpolation used to compute the values in the stereotaxic space produces some errors.

These errors are inevitable, however, they can occur before or after computing texture features.

In the first approach, texture features are computed in the original space. As a result, the textures

are computed with no registration error. However, when the textures are mapped into the stereotaxic

space the registration errors are added to the final texture values.

In the second approach, the image is first mapped into the stereotaxic space. As a result, the

registration errors are included in the image intensities. Then the textures are computed from these

inaccurate values. Figure 5.4 illustrates the two approaches. In Section 5.3, these two approaches

are compared.
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Figure 5.2: Derivation of VGLCM-TOP-3D texture features. Analysis for a voxel is performed in 3
orthogonal planes: Coronal (C), Axial (A), and Sagittal (S). Texture features (f1,...,f8) are computed
within a circle with radius R in each plane (GLCM(C), GLCM(A), GLCM(S)). The final texture is
the average of the 3 local textures in each plane.

5.2.5 Statistical Analysis

In this step, each voxel undergoes statistical analysis. Statistical analysis is possible because in the

preprocessing step all 3D images are registered to the same steroetaxic space. As a result, a voxel

located at (x,y,z) corresponds to the same location in the brain for all subjects. SPM8 software is

used to perform the voxel-by-voxel statistical analysis using the texture features computed in the

previous section. The F-test is used to produce statistical parametric maps. The F-test is chosen

instead of the t-test because texture features of the patient group could have higher or lower values

compared to that of the healthy subjects.

Since statistical analysis is applied to millions of voxels, correction for multiple comparisons

is required to reduce the occurrence of false positives. There are several methods to perform such

a correction. The most commons are the family-wise error (FWE) correction [95] and the false

discovery rate (FDR) correction [106]. The FWE correction controls the chance of any false pos-

itives (as in Bonferroni methods) across the entire volume, while the FDR correction controls the

expected proportion of incorrectly rejected null hypotheses (a.k.a., false positives or type I errors) in
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Figure 5.3: Example of texture features computed by VGLCM-TOP-3D and VGLCM-3D shown
on a sample coronal image: autocorrelation (f1), homogeneity (f2), energy (f3), correlation (f4),
dissimilarity (f5), sum of squares: variance (f6), sum average (f7), and sum entropy (f8).

a list of rejected hypotheses. In other words, FWE tries to reduce the probability of even one false

discovery, as opposed to the expected proportion of false discoveries. Thus, FDR procedures have

greater power at the cost of increased rates of false positive errors. For this analysis, the more lenient

correction, FDR with p < 0.05 is used.

5.3 Evaluation

In this section the evaluation of the proposed voxel-based texture analysis method is explained. First,

the descriptions of datasets are described. Then, the metrics used for the evaluation are described.

Finally, the results are shown and discussed in the subsequent sections.
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Figure 5.4: There are two spaces to compute the features: the original space and the stereotaxic
space. In the first approach, the registration map is applied to the textures computed in the original
space. In the second approach, the image is first mapped to the stereotaxic space and then the
texture features are computed. The registration errors are represented by dashed line. The textures
are shown by cross-hatching.

5.3.1 Datasets

To examine the validity of the proposed methods, two different approaches are used. First, an

MRI dataset with artificial effects is generated. Second, a dataset of healthy subjects and patients

with Alzheimer’s disease (AD) is used. AD is chosen because the spatial distribution of patholog-

ical changes in the brain is well known in this disease. Both datasets are derived from the OASIS

database [240] (http://www.oasis-brains.org) which includes a collection of 416 right handed healthy

controls and patients with early-stage AD and accompanying 3D T1-weighted magnetization pre-

pared rapid gradient echo (MPRAGE) images acquired at 1.5 Tesla (repetition time=9.7 ms, echo

time=4.0 ms, inversion time=20 ms, flip angle=10◦, orientation=sagittal, and resolution = 1.0× 1.0

mm2, slice thickness=1.25 mm). Subjects from this database with a diagnosis of mild (Clinical

Dementia Rating, CDR=1) or moderate (CDR=2) AD are selected (total number of 30) for our anal-

ysis. Twenty of these subjects are female, 10 are male, and the average age is 78 years. A group of

healthy control subjects from the OASIS database are selected that are matched for age and gender

of the subjects with AD. A database of artificial effects is created as the ground truth to validate

the proposed method. MRIs from the selected healthy control subjects are used for this purpose.

Eight types of artifacts are added which include hyper-intense and hypo-intense Gaussian signals

with varying size and properties. The specification of each type is given in Table 5.1.

For each type of artifact, 60 locations in the brain are chosen (30 in each hemisphere). Figure 5.5

illustrates the location of the signals. The locations include regions with pure GM, pure WM and
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Table 5.1: Specifications of the artificial effects.

Type Hypo/Hyper-Intense Size Mean of Gaussian STD of Gaussian
I Hypo-intense 3× 3× 3 200 50
II Hyper-intense 3× 3× 3 200 50
III Hypo-intense 3× 3× 3 400 50
IV Hyper-intense 3× 3× 3 400 50
V Hypo-intense 4× 4× 4 200 50
VI Hyper-intense 4× 4× 4 200 50
VII Hypo-intense 4× 4× 4 400 50
VIII Hyper-intense 4× 4× 4 400 50

Figure 5.5: The location of artificial lesions.

Figure 5.6: Schematic Venn diagram illustrating different possible regions considered for a detected
region and an artificial lesion.

mixed GM/WM (border of GM/WM).

5.3.2 Evaluation Metrics

The first and the most important metric used in the evaluation of the proposed method is detection

rate. The detection rate shows the percentages of the artificial lesions that are correctly identified. In

addition to detection rate, three extra measurements are determined: the Jaccard coefficient, the false

negative error, and the false positive error. The schematic Venn diagram in Figure 5.6 illustrates the

derivation of these measures.

Assume that texture features detect region D as the lesion while the exact lesion region is L.
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The voxels that are in D but not in L are denoted by D\L and the voxels that are in L but not in D

are denoted by L\D. A lesion detection occurs when L ∩D is not empty.

The first quality measurement used in our experiments is the Union Overlap (UO) [185] or the

Jaccard coefficient , the intersection over the union:

UO =

∑
r
|Lr ∩Dr|∑

r
|Lr ∪Dr|

, (5.15)

where r denotes the artificial lesions (r={1,...,60}), and |.|, the number of voxels. This measurement

indicates how well the detected regions represent the location and extension of the lesions. The next

measurement is the false negative (FN) error [185]:

FN =

∑
r
|Lr\Dr|∑
r
|Lr|

. (5.16)

This measurement represents how much of the lesions are incorrectly found as non-lesion. Fi-

nally, the false positive (FP) error is defined [185]:

FP =

∑
r
|Dr\Lr|∑
r
|Dr|

. (5.17)

FP shows how much of the detected regions are incorrectly labeled as lesion. These measure-

ments are computed for all 8 artificial effect types (each type includes 60 artificial lesions). To better

compare the effect of quantization level and the method of texture computation (VGLCM-TOP-3D

vs VGLCM-3D) the measurements undergo statistical analysis using two-tailed t-test (p < 0.05) to

show if a method or a specific quantization level is significantly better.

5.3.3 Results for Artificial Effects

In the first experiment, the performance of the methods is assessed when there is no registration error.

For this purpose images are first registered into the atlas and then artificial lesions are added. The

goal is to assess if texture analysis can detect lesions in the registered images (i.e., no registration is

applied after lesions are added).

Eight texture features (autocorrelation (f1), homogeneity (f2), energy (f3), correlation (f4),

dissimilarity (f5), sum of squares: variance (f6), sum average (f7), and sum entropy (f8)) have been

computed using the voxel-based VGLCM-TOP-3D and VGLCM-3D method for two quantization

levels of 8 and 16. Among these features f6 (Sum of squares: variance) has the best performance.

Table 5.2 shows the performance (i.e. detection rate, union overlap, false negative and false positive

errors) of this feature.

This feature (f6) achieves a 100% correct detection rate in all types of artificial lesions. The

last row for each method shows the average over all artificial lesion types. The highest UO and

the lowest FN and FP errors are 0.67, 0.07, and 0.23, respectively. The performances of the other
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Table 5.2: The performance of the best texture feature, f6 (Sum of squares: variance) computed
for the 8 artificial effect types. For each artificial effect type 60 artificial lesions are generated.
The statistical significance of quantization level is denoted by †. That is, if a quantization level
significantly improves a measurement (its result is significantly better), it is denoted by †. The
statistical significance of method (VGLCM-TOP-3D vs VGLCM-3D) is denoted by ∗. That is, if
a method has a significantly better performance in a specific measurement, that measurement is
denoted by ∗ for the better method. The significance is set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 100% 0.72±0.25 0.18±0.27 0.10±0.15 100% 0.71±0.25 0.16±0.26 0.13±0.19
II 100% 0.66±0.26 0.30±0.28 0.05±0.11 100% 0.72±0.26 0.18±0.27 0.11±0.17
III 100% 0.60±0.19 0.01±0.04 0.39±0.21 100% 0.56±0.20 0.02±0.05 0.43±0.22
IV 100% 0.61±0.19 0.00±0.02 0.39±0.20 100% 0.65±0.22 0.00±0.01 0.35±0.22
V 100% 0.76±0.19 0.13±0.21 0.12±0.13 100% 0.71±0.19 0.12±0.21 0.18±0.17
VI 100% 0.80±0.18 0.13±0.19 0.08±0.10 100% 0.78±0.19 0.09±0.18 0.13±0.16
VII 100% 0.61±0.16 0.01±0.02 0.39±0.17 100% 0.57±0.17 0.01±0.03 0.42±0.18
VIII 100% 0.68±0.17 0.00±0.01 0.32±0.17 100% 0.70±0.20 0.00±0.01 0.30±0.20
All 100% 0.67±0.21∗ 0.10±0.20 0.23±0.22∗ 100% 0.67±0.22∗ 0.07±0.18 0.25±0.23∗

V
G

L
C

M
-3

D

I 100% 0.64±0.23 0.23±0.27 0.14±0.15 100% 0.61±0.22 0.20±0.27 0.21±0.20
II 100% 0.57±0.24 0.37±0.28 0.08±0.11 100% 0.63±0.25 0.21±0.28 0.18±0.20
III 100% 0.52±0.15 0.03±0.07 0.45±0.21 100% 0.48±0.15 0.04±0.09 0.49±0.20
IV 100% 0.51±0.16 0.01±0.03 0.49±0.20 100% 0.56±0.19 0.01±0.02 0.44±0.20
V 100% 0.68±0.16 0.14±0.20 0.20±0.13 100% 0.62±0.17 0.14±0.21 0.26±0.18
VI 100% 0.72±0.16 0.17±0.19 0.12±0.10 100% 0.69±0.17 0.12±0.19 0.21±0.17
VII 100% 0.54±0.15 0.01±0.04 0.45±0.17 100% 0.53±0.15 0.02±0.04 0.46±0.17
VIII 100% 0.58±0.15 0.01±0.02 0.42±0.17 100% 0.61±0.17 0.01±0.02 0.38±0.17
All 100% 0.59±0.19 0.12±0.21 0.29±0.23† 100% 0.59±0.19 0.09±0.19† 0.33±0.22

features are shown in Appendix C. The statistical significance of quantization level is denoted by †.

That is, if a quantization level statistically improves a measurement (its result is significantly better),

it is denoted by †. The statistical significance of the method (VGLCM-TOP-3D vs VGLCM-3D) is

denoted by ∗ (p < 0.05). In other words, if a method has a significantly better performance in a

specific measurement, that measurement is denoted by ∗ for the better method. For instance, UO in

VGLCM-TOP-3D with Q=8 is significantly better (i.e., higher) than VGLCM-3D with Q=8 (shown

by ∗), while the FN error is significantly better (i.e., lower) in VGLCM-3D with Q=16 compared to

that of VGLCM-3D with Q=8 (denoted by †).

Statistical comparison of the rates reveals the VGLCM-TOP-3D has a higher UO and a lower FP

error. It can also be observed that the VGLCM-3D does not outperform VGLCM-TOP-3D in any

performance measurement.

With VGLCM-3D, a quantization level of 8 provides a lower FP error while a quantization

level of 16 gives a lower FN error. The detection rate does not change significantly by changing

the quantization level in either of the methods. To further compare the VGLCM-TOP-3D and the

VGLCM-3D methods the average performances of all 8 texture features are shown in Tables 5.3.

Similar to f6, the texture features computed by VGLCM-TOP-3D provide significantly higher

UOs and lower FP errors compared to that of the features obtained by VGLCM-3D. On the other

hand the FN error is significantly lower in the features computed by VGLCM-3D at Q=16. The

overall FN error of features is lower at Q=16 while their FP error is less that at Q=8 for VGLCM-
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Table 5.3: The average performance of the all features computed for the 8 artificial effect types. For
each artificial effect type 60 artificial lesions are generated. The statistical significance of quanti-
zation level is denoted by †. That is, if a quantization level significantly improves a measurement
(its result is significantly better), it is denoted by †. The statistical significance of method (VGLCM-
TOP-3D vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance
in a specific measurement, that measurement is denoted by ∗ for the better method. The significance
is set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 99% 0.48±0.27 0.35±0.31 0.31±0.25 99% 0.48±0.23 0.28±0.30 0.34±0.25
II 89% 0.42±0.29 0.50±0.34 0.18±0.23 94% 0.46±0.28 0.36±0.37 0.27±0.25
III 100% 0.41±0.18 0.13±0.22 0.56±0.20 100% 0.41±0.18 0.12±0.21 0.56±0.20
IV 100% 0.42±0.19 0.14±0.24 0.54±0.20 99% 0.45±0.22 0.19±0.28 0.47±0.22
V 100% 0.47±0.25 0.37±0.29 0.33±0.22 100% 0.48±0.22 0.29±0.29 0.36±0.21
VI 99% 0.50±0.27 0.34±0.32 0.29±0.22 100% 0.49±0.25 0.31±0.31 0.34±0.22
VII 100% 0.42±0.17 0.14±0.22 0.54±0.16 100% 0.42±0.16 0.13±0.22 0.54±0.17
VIII 98% 0.45±0.23 0.27±0.31 0.40±0.25 99% 0.46±0.23 0.24±0.30 0.41±0.24
All 99% 0.48±0.27∗ 0.35±0.31 0.31±0.25∗ 99% 0.48±0.23∗ 0.28±0.30† 0.34±0.25∗

V
G

L
C

M
-3

D

I 98% 0.43±0.23 0.36±0.30 0.36±0.25 98% 0.42±0.21 0.29±0.30 0.42±0.26
II 89% 0.35±0.25 0.53±0.34 0.25±0.27 94% 0.39±0.24 0.37±0.36 0.36±0.28
III 100% 0.34±0.15 0.11±0.18 0.64±0.17 100% 0.33±0.15 0.09±0.17 0.64±0.17
IV 100% 0.36±0.17 0.13±0.23 0.60±0.19 99% 0.39±0.20 0.16±0.25 0.56±0.22
V 100% 0.42±0.21 0.36±0.28 0.43±0.21 100% 0.42±0.17 0.28±0.27 0.47±0.19
VI 99% 0.45±0.23 0.33±0.31 0.37±0.24 99% 0.44±0.21 0.28±0.29 0.43±0.22
VII 100% 0.37±0.14 0.11±0.18 0.62±0.14 100% 0.36±0.14 0.09±0.16 0.62±0.14
VIII 100% 0.39±0.17 0.12±0.21 0.58±0.17 100% 0.41±0.19 0.18±0.23 0.55±0.19
ALL 98% 0.39±0.20 0.26±0.30 0.48±0.25† 99% 0.39±0.20 0.22±0.28∗† 0.50±0.24

TOP-3D. In addition, FN error is lower at Q=16 compared to that at Q=8 for VGLCM-TOP-3D.

Finally, the detection rate does not significantly change by changing the quantization level for either

method.

In general, the texture features have a higher performance on hypo-intense (Types I, III, V,

VII) compared to hyper-intense (Types II, IV, VI, VIII) artificial lesions for T1-weighted images

(Tables 5.2 and 5.3). This is favorable, because neurological diseases usually appear as hypo-intense

signals in T1-weighted images.

The statistical maps of f6 for the 8 different artificial effects computed by VGLCM-TOP-3D

at quantization level of 8 is shown in Figure 5.7. It can be observed that the artificial lesions are

correctly detected using the proposed method.

In the second experiment, the performance of textures is assessed in the presence of registration

errors. Two approaches are compared: applying registration to the texture features computed in

the original space and applying registration to the image and then computing textures in the regis-

tered image (Figure 5.4). For this purpose, VGLCM-TOP-3D with quantization level of 8 is used.

Figure 5.8 compares the performance of the two approaches for the eight texture features. In this

feature, detection rates have no error bars because they only represent one number (the proportion

of the lesions detected by the feature). On the other hand, UOs, FN errors, and FP errors have error

bars showing the standard deviations of the measurements (computed for each lesion separately).

The UOs, FN errors, and FP errors are not statistically different between the two approaches
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Figure 5.7: The statistical maps of sum of squares: variance (f6). The regions with statistically
significant difference (corrected by FRD at p < 0.05) are shown (i.e., detection regions). The
ground truth locations of lesions are shown in Figure 5.5. The type of artificial lesion are shown
by roman number (i.e., I, II,...,VIII). The maps are computed by VGLCM-TOP-3D at quantization
level of 8. The intensities represent the significance of the detected region. A darker region shows a
higher statistical difference. The detection capability of the texture feature varies depending on the
location and the type of the lesions (some regions are darker than others).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Comparing the performance of textures computed in the original versus stereotaxic
spaces.

for any of the texture features. Also, the detection rates of f1, f3, f5, f6, and f7 do not change

noticeably between the two approaches. The detection rates of f2, f4, and f8 are better when the

texture is computed in the original space (first approach).

62



Table 5.4: Regions detected by texture features and comparing that with regions reported by other
studies.

Brain Region Laterality Texture Features Other studies
Anterior Cingulate R 1,6,7,8 [317], [110], [41], [318]
Corpus Callosum L 1,6,7 [340], [45]
Corpus Callosum R 1,6,7 [340], [45]
Hippocampus R 1,5,6,7,8 [317], [110]
Hippocampus L 1,5,6,7,8 [317], [110]
Inferior Frontal Gyrus R 1,6,7 [295], [41], [285]
Inferior Frontal Gyrus L 1,7 [41], [318], [285]
Inferior Parietal Lobule R 5 [41], [111]
Insula L 1,6,7 [317], [110], [41], [111]
Insula R 1,6,7 [317], [110]
Medial Frontal Gyrus R 1,6,7,8 [110], [260]
Medial Frontal Gyrus L 1,6,7 [110], [295], [41], [318]
Middle Frontal Gyrus R 1,6,7 [295], [41],[318]
Middle Frontal Gyrus L 1,6,7 [295], [41], [318], [285]
Midbrain L 1,5,6,7,8 [368], [367], [111]
Parahippocampal Gyrus R 1,5,6,7,8 [317], [295]
Parahippocampal Gyrus L 1,5,6,7,8 [317], [295]
Precentral Gyrus R 1,6,7 [285], [70], [148]
Superior Frontal Gyrus L 7 [285]
Temporal Lobe L 1,5,6,7,8 [317], [295], [318], [111], [285]
Temporal Lobe R 1,5,6,7,8 [317], [295], [318], [111], [285]
Thalamus L 1,5,6,7,8 [317], [295], [111]
Thalamus R 1,5,6,7,8 [317], [295], [111]

5.3.4 Results for Dataset of AD

VGLCM-TOP-3D provided a better performance with detection of artificial lesions, and hence,

VGLCM-TOP-3D at Q=8 is used to study cerebral changes in AD. Also, as shown in the previous

section, the performance metrics do not change notably when texture features are computed in the

original versus stereotaxic space specially in features with high performances (f1, f6, and f7). Since

computing features in stereotaxic space is faster in our experiments, they are used for the AD dataset.

To decrease the false positive error FDR is set at p < 0.01 instead of p < 0.05, and only clusters

with at least 10 voxel extensions are considered in the generation of statistical maps. Figure 5.9

shows the statistical map produced by the eight texture features.

As can be seen in Figure 5.9, differences in AD in all textures except f2, f3, and f4 are found.

The bulk of the findings are concentrated in the medial temporal lobes. The results of f5 and f8 and

the results of f1, f6, and f7 are similar. Features f1, f6, and f7 show larger regions compared to f5

and f8. The regions detected by the texture features are found in other studies. Table 5.4 summarizes

the detected regions using the proposed method and from other studies in AD.
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Figure 5.9: Statistical map of the local textures corrected by FDR at p < 0.01. VGLCM-TOP-3D at
Q=8 is used to compute the features.

5.3.5 Discussion

While the current approach of ROI-based texture analysis has been successfully used in several

applications such as brain tumors, epilepsy, multiple sclerosis, and AD, it is limited to the analysis

of a specified anatomical region. To the best of our knowledge, there is no spatially non-specific
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Figure 5.10: Computing f1 by VGLCM-TOP-3D and VGLCM-3D methods for a voxel located on
a sagittal edge (i.e., between dark and bright regions). Top left, the original image, bottom left
VGLCM-3D, and right VGLCM-TOP-3D.

texture analysis method that provides a 3D statistical map. The most similar approach to our method

was performed by Bernasconi et al. [33]. Their work is primarily based on the first-order texture

analysis (i.e., GM thickness, gradient, relative intensity), which computes the ratio map (i.e., ratio

map =(GM thickness × relative intensity)/gray level intensity gradient). In the approach presented

in this thesis, however, a second order texture statistic (co-occurrence matrix) is used which is more

precise and accurate than the first order statistic. Moreover, the output of our method is a statistical

map similar to that provided by VBM.

In general, it can be observed that the proposed VGLCM-TOP-3D has a higher performance

compared to that of VGLCM-3D. It is because the approach that VGLCM-TOP-3D uses to extract

3D information is more sensitive to subtle changes occurring at edges. This is illustrated in Fig-

ure 5.10.

In the example shown in Figure 5.10, the value of autocorrelation (f1) using distance D=1 and

neighborhood radius R=1 is computed. It is explained how the two methods (VGLCM-3D, and right

VGLCM-TOP-3D) distinguish an edge that appears in the sagittal view (without loss of generality

the edge can be considered in the other directions). Consider two neighboring voxels (blue and red)

located on an edge. Assume that the blue and white voxels are located on the bright side of the edge

with a gray value of 8 and the red and gray voxels are located on the dark side of the edge with

a gray value of 1. As can be seen when the three orthogonal planes are considered at the red/blue
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voxels, the edge appears in the axial and coronal planes while from the sagittal view the blue and red

voxels are located in the pure bright and dark regions, respectively. As a result, the difference of the

texture values (e.g. f1) is remarkably different in the sagittal plane. This difference appears in the

final texture value which is the average of the texture values at the three planes. On the other hand,

VGLCM-3D considers all directions. As one can see, considering all directions results in a higher

difference of the texture feature (f1) compared to that of the coronal and axial views (Figure 5.10).

However, the final feature difference of VGLCM-TOP-3D is higher because of the high difference

of f1 in the sagittal view. In other words, since three different directions are considered in VGLCM-

TOP-3D an edge shows a significant difference in at least one of the planes which results in a higher

difference in the final feature values of the voxels located around the edge. This sensitivity to edges

makes VGLCM-TOP-3D more discriminative than VGLCM-3D. It can be observed in Figure 5.3

that the VGLCM-3D features are more blur than VGLCM-TOP-3D (it is more evident in f2, f3, f5,

and f8).

The comparison between two approaches for computing texture features in the original space

versus the stereotaxic space shows slight improvement of detection rate only for three texture fea-

tures (f2, f4, and f8) when the computation is performed in original space. Detection rate and other

quality measurements do not demonstrate the superiority of any of the approaches for other texture

features.

The results on the AD database show statistically different regions particularly in the temporal

lobe which is in concordance with the other findings of AD (Table 5.4) further confirming the validity

of the proposed voxel-based texture analysis.

There are several choices of parameters when one performs local texture analysis, which include

the number of gray levels, the neighborhood size, and the offset distance. Since texture features

are computed in a small spherical region around voxels, a small value of gray levels (G) is enough

to get good results (e.g., 8 or 16). Also, a change of G has negligible impact on the performance

of the methods particularly for VGLCM-TOP-3D. For VGLCM-3D, increasing the number of gray

levels reduces the FN error while it raises the FP error. The neighborhood radius (R) and the offset

distance (d) should be large enough to be able to distinguish texture patterns, while small enough to

detect local changes around each voxel. A value of 1 to 3 is a good choice for R and d.

The proposed methods do not require a pre-defined region of interest for analysis as they provide

a hypothesis-free analysis tool to detect regions affected by a disease; as such the method is more

easily applicable to clinical practice.

ROI-based texture analysis methods require segmentation. Accurate segmentation may best be

achieved when performed manually and this could become the bottleneck of the processing pipeline,

as was the case, for instance, in the work of [73] where relatively simple and easily segmented

structures (corpus callosum and thalamus) were studied in AD. The proposed method in this thesis

obviates the need for segmentation as it performs analysis on a voxel-by-voxel basis of the whole
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brain. The presented tool can be incorporated into current popular brain imaging analysis software

packages such as SPM and FSL and is a complementary method to VBM. In contrast to VBM which

compares the density of GM or WM in voxels, the proposed texture analysis method compares the

intensity value of the voxel with its neighboring voxels and captures structural information such as

curves, shape, etc.

While texture analysis provides useful information it requires additional computations to process

data. The average running time to compute texture features in stereotaxic space for a subject using

a typical PC with an Intel quad core i7 2.60 GHz CPU with 16GB RAM running Windows 7 Pro-

fessional is about 15 minutes for VGLCM-3D with Q=8, 33 minutes for VGLCM-3D with Q=16,

14 minutes for VGLCM-TOP-3D with Q=8, and 20 minutes for VGLCM-TOP-3D with Q=16. The

runtime to compute texture features in original space increases by a factor of roughly 2.

It should be noted that the pattern, strength, and extension of hypo/hyper intense are different

from disease to disease and therefore for each neurological disease a different set of texture features

might be useful. For instance, in the AD database f2, f3, and f4 did not reveal statistical difference

after FDR at p < 0.01, and f5, and f8 show a smaller region compared to f1, f6, and f7. As a

result, our recommendation is to first do an exploratory analysis by computing all textures features.

A combination of textures using methods such as discriminant analysis may be more robust.

5.4 Summary

In this chapter, a novel method for voxel-based 3D texture analysis is proposed as a powerful image

analysis tool. The output is a statistical map comparable to that of VBM; however, a different

type of information is used. The proposed analysis has been tested successfully to evaluate artificial

lesions and probe cerebral changes in an MRI database of AD. The method could detect the artificial

lesions accurately and the regions detected in the AD database are consistent with the known spatial

pathological distribution of this disease. The proposed method has been implemented as a toolbox

for SPM and can be used to study different diseases affecting the brain (please see Appendix A).
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Chapter 6

Application in ALS

6.1 Introduction

In this chapter our texture analysis experiments to study ALS are presented. As mentioned before,

the challenge is that MR images of the brain in patients with ALS do not show changes visible to

human eyes and the goal is to evaluate texture analysis as a potential biomarker to detect these subtle

changes.

The experiments include 2D and 3D texture analysis methods. For 2D methods, two slices

are selected: one that maximally include the corticospinal tracts (this region has been reported by

many research groups to be affected in ALS), and one through the occipital lobe (this region has

minimal pathological changes due to ALS). Two well-known methods, GLCM and GLAM are used

for texture extraction. A part of this study has been presented in [229]. The analysis is explained in

Section 6.2.

For 3D analysis the proposed voxel-based texture analysis explained in Chapter 5 is used to

detect regions affected by ALS. VBM analysis is also performed and its results are compared to

our results. The 3D analysis approach is presented in Section 6.3. Finally a summary is given in

Section 6.4.

6.2 2D Texture Analysis

Two well-known methods, GLCM and GLAM, are employed to extract texture features from routine

T1-weighted and T2-weighted MR images. Texture features are analyzed by statistical inference,

and receiver operator characteristic curve (ROC) analysis. Also the features are classified by support

vector machine to determine the ability of texture features to differentiate between patients with ALS

and healthy subjects.

6.2.1 Preprocessing Procedure

The imaging analysis pipeline for 2D analysis include pre-processing, texture feature extraction, and

feature selection. The features then undergo statistical analysis, as well as classification.
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(a) (b) (c)

Figure 6.1: Midline sagittal T2-weighted image (a) demonstrating slice selection for corresponding
coronal T2-weighted (b) and T1-weighted (c) images of the occipital lobe. These are used as an
internal control for texture analysis to compare with coronal images containing the CST.

Pre-processing

The pre-processing step includes slice and ROI selection, and intensity normalization. Two slices are

chosen for texture analysis on each of the coronal T1-weighted and T2-weighted images. The slice

that maximally includes the CST is selected, because, this is where the most significant pathological

changes of ALS are expected [150; 159; 304; 281]. As an internal control, a slice through the occip-

ital lobe is selected where there are minimal if any pathological changes due to ALS (Figure 6.1).

An intracranial ROI is manually defined for the CST slice to include the region above the inferior

horn of the lateral ventricles, and for the occipital lobe slice the region excluding the cerebellum

(Figure 6.2).

Image ROIs are normalized by converting each pixel’s gray value to z = (v − µ)/σ × Σ +M ,

where v is the original gray value at the pixel, µ the average gray value of the ROI, σ the standard

deviation of the ROI, M the new average, and Σ the new standard deviation of the ROI. M = 0.5

and Σ = 0.1 are used for our experiments. Using M = 0.5 and Σ = 0.1 result in the majority of

pixels to be set in the range of [0 1], however, there might be some outliers having a value out of this

range. Before further analysis pixel values below 0 are set to 0 and those above 1 are set to 1.

Finally, the gray values are quantized into N gray levels for texture analysis by Z = round(z×

(N − 1) + 1) which maps the real number z in the range [0 1] to an integer number Z in the range

[1 N ]. In our experiments, 32 gray levels are used (N = 32). This number of gray levels provides

accurate results without adding too much computational costs.

Texture Features Extraction

For GLCM usually eight directions are considered in 2D (i.e. 0◦,±45◦,±90◦,±135◦, 180◦). A

common approach is to consider diagonally opposite pairs together (i.e., θ and θ + 180◦), making
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Figure 6.2: Defined regions of interest on sample coronal T2-weighted images enclosing the (a)
CST and (b) occipital lobe.

the GLCM symmetric and reducing the number of directions from eight to four. In our experiments

a distance of d = 1 with a symmetric GLCM with four directions (considering diagonally opposite

pairs together) is used. Fourteen texture features of GLCM (listed in 2.1) are extracted and used as

textural features.

For GLAM all possible neighborhood system with size of 3 × 3 are considered. Similar to

GLCM, the GLAM matrix is normalized and 14 features of the normalized GLAM are computed as

texture features.

Texture Selection

Among the 14 features extracted for texture analysis, three features providing the highest perfor-

mance for both T1-weighted and T2-weighted MR images are chosen: correlation, contrast, and

inverse difference moment normalized (f4, f9, and f10 in 2.1). It has been observed that combining

the features does not improve the classification rate (by our SVM classifier). In addition, a single

feature can be easily shown in a figure. Therefore, each texture feature is analyzed separately and

the feature vector consists of only one feature for classification and statistical analysis.

Classification

Classification is the task of separating samples and assigning them to different classes which are

patients and controls in this study. Classification is usually performed in two stages. In the first

stage the classifier is trained by known samples of both patient and control classes. Then, in the

next stage, it determines to which class the given sample belongs. The Support Vector Machine

(SVM) [61] is used for classification. SVM [61] is a well-known classifier used in many medical

imaging applications [121; 222; 385; 325].

The SVM finds the optimal hyperplane which partitions the feature space of the training samples
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(of both control and patient groups) into two halves. Each training sample consists of a feature vector

and a label showing its class (patient or control). Suppose that the kth training sample is labeled by

lk = p, c (p as patient or c as control) and ~xk is its feature vector. A function, y, is used to map each

label to either 1 or -1:

y(l) =

{
+1 if l=p
−1 if l=c . (6.1)

The inverse of y, Y , is defined such that it provides the label of a given value (i.e. Y (y(l)) = l).

The SVM assigns the class of the given test sample ~xt as follows:

class(~xt) = Y (Sgn(
∑

∀k,lk∈{p,c}
y(lk)αkK(~xt, ~xk) + b)), (6.2)

where Sgn is the sign function, b the bias parameter of the optimal hyperplane of the SVM, αk

the Lagrangian multiplier for the training sample k, and K the kernel function. The parameters b

and αk are estimated by maximizing the margin of the decision boundary of the training samples

belonging to the patient and control groups [61]. The kernel function usually maps data into higher

dimensional spaces hoping that the data could be more easily separated. A linear kernel is used in

our experiments which is simply the dot product between two vectors. It is experimentally found

that the linear kernel provides the best results in our experiments.

To train the SVM, half of the subjects are chosen randomly for training and half for test. The

experiment is repeated 1000 times to reduce the effect of randomness. The average accuracy (clas-

sifications rate) is assessed for analysis.

Statistical Analysis

The Kruskal-Wallis [194] test is used for statistical analysis. This test is a non-parametric method

for testing whether samples originate from the same distribution and, therefore, can show if the

features extracted from patients with ALS and those extracted from healthy subjects are statistically

different. Statistical significance was set at 2-tailed p < 0.05. Receiver operating characteristic

(ROC) curve analysis is performed as a supplementary method. The ROC curve shows the true

positive rate versus false positive rate. The area under the ROC curve (AUC) is used as a standard

method to assess and compare the performance of the features. Finally, the optimal sensitivity and

specificity (minimal false negatives and false positives) are determined with ROC curve analysis.

6.2.2 Evaluation of 2D Methods

In this section, the specifications of the dataset used for evaluation is described. Also, the method of

aqcuisition is explained. It is always useful to compare the results of a new method (here, textrure

analysis) with a commonly used method in an analysis. Hence, a commonly used method of brain

atrophy analysis, the brain parenchymal fraction (BPF) method, is explained. The BPF is used as a
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Figure 6.3: Sagittal T2-weighted (a) and axial T2-weighted (b) images were used to assist in plan-
ning the coronal T2-weighted (c) and coronal T1-weighted MPRAGE (d) imaging which were used
for texture analysis. The CST appears hyperintense on the T2-weighted images.

baseline for evaluation of the 2D texture analysis. Finally, the results of texture analysis and BPF

analysis are presented.

DataSets

Nineteen patients (ten males, nine females) with clinically probable or definite sporadic ALS accord-

ing to the revised El Escorial criteria [39] have been recruited. All patients have clinical evidence

of UMN and LMN involvement. Patients have an average age of 56.7 ± 13.7 years (range 27–72

years) with a symptom duration of 25.5± 16.3 months (range 9–72 months).

Twenty healthy control subjects (nine males, eleven females) without neurological or psychiatric

disease are included. Their average age is 56.8± 12.4 years (range 24–81 years).

MR images have been acquired on a 1.5 Tesla system (Magnetom Sonata, Siemens Medical

Systems). Conventional sagittal and axial T2-weighted images are first acquired to plan the two

coronal sequences of interest: coronal T2-weighted images (TR=7510 ms, TE=113 ms, voxel size

1.1 × 0.9, 5 mm thick), and 3D T1-weighted MPRAGE (TR=1600 ms, TE=3.8 ms, TI=1100 ms,

voxel size 1.0 × 1.0, 1.5 mm thick). Coronal imaging is performed with an angulation parallel to

the CST observed on the sagittal images. Angulation is further refined by ensuring that the coronal

slice intersect the cerebral peduncles and the hyperintense signal of the CST in the posterior limb of

the internal capsule and corona radiata on the axial images (Figure 6.3).

Compared Methods

Brain atrophy has been reported in ALS by different research groups [8; 245; 47; 178]. One of the

well known methods to measure the brain atrophy is the brain parenchymal fraction (BPF) [167]

method. Since this method provides a quantitative measure, it can be compared with the defined

texture features.

The method computes the proportion of brain parenchymal volume to the total intracranial vol-

ume. However, to have a fair comparison with the texture features the method is modified to be
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Table 6.1: Statistical properties (mean±std, and p–value), classification rate, and the AUC of the
GLCM features extracted from T1-weighted images. f4, f9, and f10 represent correlation, contrast,
and inverse difference moment normalized, respectively. Sensitivity and specificity is reported for
significantly different features.

Slice Location CST Occipital Lobe
GLCM Texture Feature f4 f9 f10 f4 f9 f10

P0◦,1

Patients (9.66±0.03)×10−1 0.65±0.06 (999.37±0.06)×10−3 (9.57±0.05)×10−1 0.83±0.09 (999.19±0.08)×10−3

Controls (9.60±0.04)×10−1 0.76±0.08 (999.26±0.08)×10−3 (9.55±0.04)×10−1 0.87±0.09 (999.15±0.08)×10−3

p–value < 10−3 < 10−3 < 10−3 0.11 0.11 0.11
Classification Rate 74.82% 74.62% 74.03% 58.58% 58.66% 58.56%
AUC 0.86 0.86 0.86 0.65 0.65 0.65
Sensitivity 100.00% 89.47% 89.47% – – –
Specificity 55.00% 70.00% 70.00% – – –

P45◦,1

Patients (9.43±0.05)×10−1 1.10±0.10 (998.93±0.09)×10−3 (9.28±0.09)×10−1 1.39±0.17 (998.66±0.16)×10−3

Controls (9.33±0.07)×10−1 1.28±0.13 (998.76±0.12)×10−3 (9.25±0.08)×10−1 1.44±0.15 (998.60±0.15)×10−3

p–value < 10−4 < 10−4 < 10−4 0.47 0.47 0.45
Classification Rate 76.82% 76.18% 76.00% 47.52% 47.64% 48.23%
AUC 0.88 0.87 0.87 0.57 0.57 0.57
Sensitivity 78.95% 78.95% 84.21% – – –
Specificity 90.00% 85.00% 80.00% – – –

P90◦,1

Patients (9.64±0.03)×10−1 0.69±0.06 (999.33±0.06)×10−3 (9.59±0.05)×10−1 0.79±0.10 (999.23±0.10)×10−3

Controls (9.59±0.04)×10−1 0.78±0.08 (999.24±0.08)×10−3 (9.58±0.05)×10−1 0.81±0.09 (999.21±0.09)×10−3

p–value < 10−3 < 10−3 < 10−3 0.67 0.59 0.61
Classification Rate 74.96% 74.35% 74.25% 46.34% 46.53% 46.19%
AUC 0.83 0.83 0.83 0.54 0.55 0.55
Sensitivity 94.74% 94.74% 94.74% – – –
Specificity 65.00% 65.00% 65.00% – – –

P135◦,1

Patients (9.41±0.06)×10−1 1.13±0.11 (998.91±0.10)×10−3 (9.27±0.10)×10−1 1.40±0.18 (998.65±0.17)×10−3

Controls (9.31±0.08)×10−1 1.32±0.14 (998.73±0.14)×10−3 (9.24±0.09)×10−1 1.46±0.17 (998.59±0.16)×10−3

p–value < 10−3 < 10−3 < 10−3 0.26 0.31 0.30
Classification Rate 72.63% 72.44% 72.26% 51.93% 51.32% 51.61%
AUC 0.84 0.84 0.84 0.61 0.60 0.60
Sensitivity 89.47% 89.47% 100.00% – – –
Specificity 75.00% 70.00% 60.00% – – –

computed in one slice and the same ROI used for texture analysis.

This modified version is called as the region of interest parenchymal fraction (ROI-PF). To find

ROI-PF, first, the brain was automatically segmented into gray matter (GM), white matter (WM),

and CSF using SPM8. Then, the parenchymal fraction is computed as (GM + WM)/(GM +

WM + CSF ). T1-weighted images are used for ROI-PF computation, because of their higher

resolution compared to T2-weighted images.

Results of GLCM

The GLCM features extracted from the T1-weighted slice enclosing the CST are statistically differ-

ent between patients and controls while there is no difference in the occipital lobe slice as shown in

Table 6.1.

The direction of the GLCM influences the performance of the features. For instance, the clas-

sification performance of P45o,1 is higher than that of P0◦,1, P90◦,1, and P135◦,1. However, the

performance of the three selected features of the GLCM (f4,f9, and f10) are comparable in the same

directions. The highest classification and AUC are 76.82% and 0.88, respectively, for P45◦,1 : f4.

Depending on the feature and the direction, the optimal sensitivity ranges from 78.95% to 100% and

the optimal specificity from 60% to 90%. The optimal sensitivity and specificity of the best feature,

P45◦,1 : f4, is 78.95% and 90%, respectively. As expected, features are not significantly different in

the occipital lobe region and the classification rates are poor.

Similar to the analysis of the T1-weighted images, the GLCM features extracted from the T2-
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Table 6.2: Statistical properties (mean±std, and p–value), classification rate, and AUC of the GLCM
features extracted from T2-weighted images. f4, f9, and f10 represent correlation, contrast, and
inverse difference moment normalized, respectively. Sensitivity and specificity are reported for
significantly different features.

Slice Location CST Occipital Lobe
GLCM Texture Feature f4 f9 f10 f4 f9 f10

P0◦,1

Patients (9.18±0.11)×10−1 1.58±0.21 (998.48±0.19)×10−3 (8.86±0.17)×10−1 2.20±0.32 (997.89±0.30)×10−3

Controls (8.94±0.13)×10−1 2.03±0.24 (998.06±0.22)×10−3 (8.79±0.17)×10−1 2.33±0.31 (997.77±0.29)×10−3

p–value < 10−5 < 10−5 < 10−5 0.26 0.19 0.19
Classification Rate 82.05% 81.47% 81.83% 52.32% 54.75% 54.34%
AUC 0.92 0.92 0.92 0.61 0.62 0.62
Sensitivity 84.21% 78.95% 84.21% – – –
Specificity 95.00% 95.00% 90.00% – – –

P45◦,1

Patients (8.61±0.19)×10−1 2.68±0.36 (997.46±0.32)×10−3 (8.12±0.33)×10−1 3.61±0.61 (996.58±0.56)×10−3

Controls (8.22±0.23)×10−1 3.39±0.41 (996.83±0.36)×10−3 (8.00±0.32)×10−1 3.82±0.59 (996.39±0.52)×10−3

p–value < 10−4 < 10−5 < 10−5 0.38 0.43 0.47
Classification Rate 80.15% 79.17% 78.98% 50.99% 52.07% 51.71%
AUC 0.91 0.92 0.92 0.58 0.57 0.57
Sensitivity 89.47% 84.21% 89.47% – – –
Specificity 90.00% 90.00% 90.00% – – –

P90◦,1

Patients (9.08±0.17)×10−1 1.79±0.32 (998.29±0.30)×10−3 (8.93±0.23)×10−1 2.05±0.41 (998.03±0.39)×10−3

Controls (8.79±0.21)×10−1 2.31±0.37 (997.81±0.34)×10−3 (8.85±0.23)×10−1 2.21±0.41 (997.89±0.38)×10−3

p–value < 10−3 < 10−3 < 10−3 0.43 0.42 0.40
Classification Rate 77.05% 77.02% 76.85% 50.74% 50.41% 50.56%
AUC 0.86 0.86 0.86 0.57 0.58 0.58
Sensitivity 89.47% 89.47% 89.47% – – –
Specificity 80.00% 80.00% 80.00% – – –

P135◦,1

Patients (8.52±0.25)×10−1 2.86±0.48 (997.29±0.43)×10−3 (8.11±0.31)×10−1 3.64±0.57 (996.55±0.53)×10−3

Controls (8.07±0.30)×10−1 3.69±0.53 (996.56±0.46)×10−3 (8.00±0.29)×10−1 3.83±0.52 (998.38±0.48)×10−3

p–value < 10−4 < 10−4 < 10−4 0.37 0.35 0.35
Classification Rate 77.76% 74.91% 75.05% 51.26% 51.07% 50.55%
AUC 0.90 0.88 0.88 0.58 0.59 0.59
Sensitivity 84.21% 84.21% 84.21% – – –
Specificity 90.00% 90.00% 90.00% – – –

weighted slice enclosing the CST are statistically different between patients and controls and no

statistical difference is observed in the occipital lobe slice (Table 6.2).

Similar to the T1-weighted images, the performance of features depends on the direction of

GLCM. Here, the features of the GLCM on P0◦,1 and P45◦,1 have a higher performance. One can

see that in T1-weighted images directions P0◦,1 and P45◦,1 also demonstrate higher performance;

however, the performance in T1-weighted images is slightly better for direction P45◦,1. Similarly,

by comparing the AUC one can see that both T1-weighted and T2-weighted images demonstrate the

lowest performance in direction P90◦,1. Therefore, both types of images show consistent direction-

ality information.

The highest classification rate of the GLCM features on the T2-weighted images is 82.05%

corresponding to P0◦,1 : f4 higher than the highest classification rate of the GLCM on T1-weighted

images. The highest AUC is 0.92 demonstrated by all features of P0◦,1, and f9 and f10 of P45◦,1.

Similar to T1-weighted images, the performance of the three selected features of the GLCM (f4,f9,

and f10) are comparable in each direction. Sensitivity and specificity are 84.21% and 95% for

P0◦,1 : f4.

To visualize the power of the texture features, the best features of the GLCM extracted from

CST region on T1-weighted and T2-weighted images are depicted in Figure 6.4. These features

are computed by P45◦,1 on the GLCM of T1-weighted images, and P0◦,1 on the GLCM of T2-

weighted images, respectively. The mean and standard deviation of the two groups are also shown
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Figure 6.4: The texture feature values for all subjects as well as the mean and the standard deviation
of the two groups. The first, second, and third columns represent correlation (f4), contrast (f9), and
inverse difference moment normalized (f10), respectively. The first row shows the features of the
GLCM, P45◦,1, on the T1-weighted images. The second row represents the features of the GLCM,
P0◦,1, on the T2-weighted images.

for comparison. One can observe that the features extracted from T2-weighted images show a better

separation compared to that of T1-weighted images.

Results of GLAM

In order to compute the GLAM features, the shape of the basic neighborhood system should be

determined. To find the best performing neighborhood system, all variants of the 3×3 neighborhood

systems are examined and the top three neighborhood systems with the highest AUC are chosen.

Table 6.3 shows the best basic neighborhood systems and their statistical and classification results

on T1-weighted images.

As shown in Table 6.3, there is a statistical difference between the GLAM features of the two

groups (p< 10−4) in the CST region. The difference is comparable to the statistical difference

of the best GLCM on T1-weighted images (P45o,1). The classification performance of the GLAM

features are also comparable with the best GLCM with a slightly better result (76.92%). The highest

AUC is 0.88 for all features of neighborhood structure N1 and N2, and f9 and f10 in neighborhood

structure N3. Similar to the GLCM, no significant difference is observed on the features extracted

from occipital lobe. By comparing the performance of the best GLAM and the best GLCM, one

can see that the GLAM features perform equally or slightly better than those of the GLCM in T1-

weighted images.

The best basic neighborhood systems and their statistical and classification results on T2-weighted
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Table 6.3: Statistical properties (mean±std, and p–value), classification rate, and AUC of the GLAM
features extracted from T1-weighted images. Three neighborhood system with the highest AUC are
selected. f4, f9, and f10 represent correlation, contrast, and inverse difference moment normalized,
respectively. Sensitivity and specificity are reported for significantly different features.

Slice Location CST Occipital Lobe
GLAM Texture Feature f4 f9 f10 f4 f9 f10

N1 Patients (9.51±0.04)×10−1 0.95±0.08 (999.08±0.08)×10−3 (9.38±0.07)×10−1 1.20±0.14 (998.84±0.13)×10−3

Controls (9.42±0.06)×10−1 1.11±0.11 (998.93±0.10)×10−3 (9.35±0.07)×10−1 1.25±0.13 (998.79±0.12)×10−3

p–value < 10−4 < 10−4 < 10−4 0.31 0.38 0.30
Classification Rate 76.62% 76.69% 76.26% 50.01% 50.36% 49.94%
AUC 0.88 0.88 0.88 0.58 0.60 0.60
Sensitivity 78.95% 78.95% 78.95% – – –
Specificity 90.00% 90.00% 90.00% – – –

N2 Patients (9.54±0.04)×10−1 0.88±0.07 (999.15±0.07)×10−3 (9.42±0.07)×10−1 1.11±0.12 (998.92±0.12)×10−3

Controls (9.47±0.05)×10−1 1.02±0.10 (990.01±0.10)×10−3 (9.40±0.06)×10−1 1.16±0.12 (998.88±0.11)×10−3

p–value < 10−4 < 10−4 < 10−4 0.25 0.27 0.27
Classification Rate 76.40% 76.92% 76.56% 51.19% 52.24% 51.81%
AUC 0.88 0.88 0.88 0.60 0.61 0.60
Sensitivity 84.21% 73.68% 84.21% – – –
Specificity 85.00% 90.00% 80.00% – – –

N3 Patients (9.58±0.04)×10−1 0.80±0.07 (999.22±0.07)×10−3 (9.47±0.06)×10−1 1.01±0.11 (999.02±0.11)×10−3

Controls (9.51±0.05)×10−1 0.93±0.09 (999.10±0.09)×10−3 (9.45±0.05)×10−1 1.06±0.11 (998.97±0.10)×10−3

p–value < 10−4 < 10−4 < 10−4 0.21 0.26 0.21
Classification Rate 76.41% 76.57% 75.96% 53.27% 54.32% 53.26%
AUC 0.87 0.88 0.88 0.62 0.61 0.62
Sensitivity 84.21% 84.21% 84.21% – – –
Specificity 85.00% 85.00% 85.00% – – –

Table 6.4: Accuracy, sensitivity, and specificity of the four GLAM features on the T2-weighted
images. Four neighborhood system the classification performance of which are the highest are
shown. f4, f9, and f10 represent correlation, contrast, and inverse difference moment normalized,
respectively. Sensitivity and specificity are reported for significantly different features.

Slice Location CST Occipital Lobe
GLAM Texture Feature f4 f9 f10 f4 f9 f10

N1 Patients (8.90±0.15)×10−1 2.13±0.28 (997.97±0.25)×10−3 (8.49±0.25)×10−1 2.90±0.46 (997.24±0.42)×10−3

Controls (8.58±0.18)×10−1 2.71±0.31 (997.45±0.28)×10−3 (8.40±0.23)×10−1 3.07±0.42 (997.09±0.38)×10−3

p–value < 10−5 < 10−5 < 10−5 0.29 0.33 0.30
Accuracy 82.15% 81.18% 81.35% 52.15% 52.18% 51.97%
AUC 0.92 0.93 0.92 0.59 0.60 0.60
Sensitivity 89.47% 89.47% 89.47% – – –
Specificity 90.00% 90.00% 90.00% – – –

N2 Patients (8.99±0.13)×10−1 1.95±0.25 (998.14±0.23)×10−3 (8.62±0.22)×10−1 2.67±0.41 (997.46±0.38)×10−3

Controls (8.70±0.16)×10−1 2.48±0.29 (997.66±0.26)×10−3 (8.53±0.21)×10−1 2.83±0.37 (997.32±0.34)×10−3

p–value < 10−5 < 10−5 < 10−5 0.22 0.26 0.25
Accuracy 80.84% 80.26% 80.75% 52.25% 52.26% 52.15%
AUC 0.92 0.92 0.92 0.61 0.62 0.61
Sensitivity 89.47% 89.47% 89.47% – – –
Specificity 90.00% 90.00% 85.00% – – –

N3 Patients (9.01±0.15)×10−1 1.58±0.21 (998.48±0.19)×10−3 (8.86±0.17)×10−1 2.20±0.32 (997.89±0.30)×10−3

Controls (8.94±0.13)×10−1 2.03±0.24 (998.06±0.22)×10−3 (8.79±0.17)×10−1 2.33±0.31 (997.77±0.29)×10−3

p–value < 10−5 < 10−5 < 10−5 0.19 0.26 0.19
Accuracy 80.78% 80.22% 79.82% 53.19% 54.48% 54.38%
AUC 0.92 0.92 0.92 0.61 0.62 0.62
Sensitivity 84.21% 78.95% 84.21% – – –
Specificity 95.00% 95.00% 90.00% – – –

images are shown in Table 6.4. Similar to the GLCM features of T2-weighted images, there is a sta-

tistical difference between the GLAM features of the ALS patients and that of the control subjects

(p< 10−5). One of the best neighborhood systems for T2-weighted is N3, which includes only one

neighborhood pixel. One may note that the GLAM with one neighborhood pixel is equivalent to

the GLCM. For instance, in this experiment N3 is equivalent to P180◦,1 (or P0◦,1) in the GLCM.

Comparing the statistical properties and the AUC, one can see that the features of GLCM P180◦,1

(Table 6.2) are equivalent to the GLAM features computed byN3 neighborhood system (Table 6.4).

In other words, since the GLAM is a generalization of the GLCM, it automatically computes the
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Figure 6.5: The texture feature values for all subjects as well as the mean and the standard deviation
of the two groups. The first row depicts the features of the GLAM with N1 (Table 6.3), on the
T1-weighted images. The second row shows the features of the GLAM with N2 (Table 6.4), on the
T2-weighted images.

Table 6.5: Statistical analysis and classification results on the ROI-PF measured on the T1-weighted
images of ALS patients and control subjects.

Slice Location CST Occipital Lobe
Patients 0.79±0.05 0.74±0.08
Controls 0.84±0.04 0.78±0.07
p–value 0.001 0.152
Accuracy 71.16 56.45
AUC 0.80 0.63
Sensitivity 57.89 –
Specificity 95.00 –

GLCM features. The highest classification accuracy is 82.15% corresponding to f4 of N1 neigh-

borhood system. The highest AUC is 0.93 which is slightly higher (0.01) than the highest AUC of

GLCM. As expected, there is no statistical difference in the occipital lobe area.

The best features of the GLAM extracted from CST region on T1-weighted and T2-weighted

images are depicted in Figure 6.5. These features are computed byN1 on the GACM of T1-weighted

and T2-weighted images. The mean and standard deviation of the two groups are also shown for

comparison. One can observe that the features extracted from T2-weighted images show a better

separation compared to that of T1-weighted images.

Results of ROI-PF

The last analysis is the ROI-PF measured on the T1-weighted images of the two groups. As shown in

Table 6.5, there is mild atrophy in the CST slice in patients as evident by a 6% reduction in ROI-PF.

A reduction in ROI-PF calculated from the occipital lobe is not statistically significant (Table 6.5)
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Figure 6.6: The ROI-PF measured on the T1-weighted MR images.

A moderately good separation exist in the ROI-PF between groups on the CST slice (Figure6.6).

Increased variability is evident in the ALS group compared to the control group which have a more

uniform distribution with the exception of a single outlier (case 16). Notably, this case is not an

extreme outlier in the texture analyses.

Group difference in mean ROI-PF, its classification accuracy and the AUC are lower compared

to those of the GLCM texture features. Comparing the ROI-PF (Figure 6.6) with the features of the

GLCM and the GLAM (Figures 6.4 and 6.5) shows a better separation in texture features between

the two groups.

6.2.3 Discussion

So far, the usage of conventional MR images is limited to ruling out diseases mimicking ALS, as they

have had poor diagnostic accuracy. In this section the power of 2D texture analysis to differentiate

the images of ALS patients versus control subjects is examined. The GLCM and the GLAM texture

analysis methods could achieve high classification rates with more than 82% accuracy and an AUC

of 0.93. The significance of this work is that it uses conventional T1-weighted and T2-weighted MR

images which are routine and widely available acquisition methods.

The potential diagnostic capacity of non-volumetric imaging been alluded to by reports in a few

studies of varying sensitivities and specificities. For example, recent meta-analysis on pooled data

from 30 different DTI studies [92] reported sensitivity of 0.65, specificity of 0.67, and AUC of 0.76,

concluding that the capability of DTI to make a diagnosis of ALS is only modest.

To our best knowledge, the texture analysis capability of the gray level Aura matrix (GLAM)

has not been used to study abnormalities in a disease. It can be observed that the GLAM features

are superior to that of the GLCM. The reason is that they are the generalization of the GLCM. In

other words, the GLAM features include the GLCM features as well (e.g., the basic neighborhood

system with one neighbor equivalent to the GLCM). As a result, using the GLAM can provide

similar or better performance compared to the GLCM, though the improvement is very slight in our

experiments. One may also note that GLAM is computationally more costly than the GLCM, as it

needs to consider different neighborhood systems.
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BPF has previously shown global cerebral atrophy in ALS [245; 177]. Although ROI-PF (the

amended BPF to analyze the same ROI used by texture methods) is reduced in the CST slice, it is an

inferior discriminator compared to texture features as indicated by the lower classification rate and

AUC.

This study has some limitations. Image acquisition required user input to angulate the coronal

slices into the plane approximately in parallel to the CST. The imaging pipeline analysis is not

completely user-independent as the ROI was manually delineated. The 3D voxel based texture

analysis in the next section addresses these issues.

6.3 3D Texture Analysis

In this section our proposed voxel based texture analysis method (Chapter 5) is applied to study

ALS. The same database which is used for 2D analysis (Section 6.2.2) is employed here. In addition

to the proposed method, the data is analyzed by VBM. The processing procedure is explained in

Section 6.3.1

6.3.1 Processing Procedure

The VBM8 toolbox1 of the SPM8 software2 has been used to carry out preprocessing. The procedure

involves the following steps. First, the brains are extracted from the images, the intensities of the

images are corrected (i.e., standardization, or bias correction), and the brains are segmented into

GM, WM and CSF volume probability maps. Then, the high-dimensional DARTEL method [20]

is performed to register the images to the MNI152 atlas. Finally, the images are smoothed by a

Gaussian kernel with a fullwidth half-maximum (FWHM) of 8 mm.

To perform VBM analysis, the smoothed WM and GM images of the patients and controls

undergo the voxel-wise two sample t-test provided by the SMP8 software. The familywise error

(FWE) is performed on the statistics to correct for multiple comparisons. The significance level is

set to p < 0.05 after correction for multiple comparisons.

The output of the DARTEL registration step (before smoothing) is used for voxel based texture

analysis. Since VGLCM-TOP-3D has a better performance, it is used for texture computation. Eight

texture features (f1 to f8 in Table 2.1) are computed in the stereotaxic space. Here, d = 1, R = 3,

and 8 gray levels are used for VGLCM-TOP-3D.

Similar to VBM, statistical analysis is performed by SPM8; however, f-test is used for texture

analysis. The reason is that the texture features can have higher or lower values in comparison

between the patient and healthy groups.

1http://dbm.neuro.uni-jena.de/vbm/
2http://www.fil.ion.ucl.ac.uk/spm/
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Figure 6.7: Statistical map of VGLCM-TOP-3D after FWE correction at p < 0.05: (A) f1: auto-
correlation, (B) f6: sum of squares: variance, (C) f7: sum average, and (D) f8: sum variance. The
reported clusters appear at least on three texture statistical maps.

6.3.2 Evaluation of 3D Methods

In this section, the results of the VGLCM-TOP-3D method and those of the VBM are presented.

The outputs are 3D statistical maps showing the differences between the healthy and ALS groups.

Results of Voxel-based Texture Analysis

As mentioned before, eight texture features are computed for analysis. Four features including

autocorrelation (f1), sum of squares variance (f6), sum average (f7), and sum variance (f8) produce

statistical maps (corrected by FEW) that are significantly different between the control and ALS

patient groups. The other texture features (f2, f3, f4, and f5) do not provide difference between

the two groups. Figure 6.7 shows the statistical map for f1, f6, f7, and f8 after FWE correction at

p < 0.05.

Among the features providing statistical significance, sum variance (f8) provides the smallest p-

value. As one can see, the significant regions on the statistical maps of the textures are quite similar.

Several regions are reported consistently by at least three out of four texture features including
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Figure 6.8: Regions with statistical difference rendered on a 3D brain: (A) f1:autocorrelation, (B)
f6: sum of squares: variance, (C) f7: sum average, and (D) f8: sum variance. (FWE correction at
p < 0.05).

middle frontal gyrus, insula, inferior frontal gyrus, corpus callosum, superior temporal gyrus, and

precentral gyrus. Figure 6.8 shows the regions with statistical difference rendered on a 3D brain.

To further explore the regions with statistical difference, the uncorrected p-value is set to 0.00001.

Figure 6.9 shows this statistical map. This statistical map represents an extension of what is shown

in Figure 6.7. Similarly, the regions with small p-values are quite similar for all the four texture

features. However, there are some regions that do not appear at least by three texture features. The

3D rendered images of these regions are shown Figure 6.10.

Results of VBM

The VBM analysis of WM and GM did not show any statistical difference between the ALS patient

and the control groups (after applying FWE). The statistical map for the statistics at uncorrected
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Figure 6.9: Statistical map of VGLCM-TOP-3D at uncorrected p < 0.00001: (A) f1: autocorrela-
tion, (B) f6: sum of squares: variance, (C) f7: sum average, and (D) f8: sum variance. The clusters
that do not appear on at least three of the texture features are marked by red arrows.

p < 0.001 is show in Figure 6.11.

To better compare the results of VBM and VGLCM-TOP-3D, the important regions of interest

with small p-values for each method are shown in Table 6.6. The result of the VGLCM-TOP-3D is

presented after FEW correction, and at uncorrected p = 0.00001. As one can see, the regions with

statistical difference in VGLCM-TOP-3D have a small p-value on VBM statistical map on either

WM or GM; however, these regions could not be detected by VBM as statistically different regions

(after correction for multiple comparisons).

6.3.3 Discussion

Since this is the first voxel based texture analysis the author could not find any similar method

to compare other than VBM. Nonetheless, there are several indications that help us to argue that

the results are valid. First, the regions with statistical significance in texture analysis occur in the

same regions distinguished by VBM analysis (at uncorrected p < 0.001). The smoothing step in

VBM which is performed to alleviate misregistration errors can wash out positive results in regions
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Figure 6.10: Statistical map of VGLCM-TOP-3D at uncorrected p < 0.00001 rendered on a 3D
brain: (A) f1: autocorrelation, (B) f6: sum of squares: variance, (C) f7: sum average, and (D) f8:
sum variance.

with real difference. In other words, the regions distinguished by small uncorrected p-values in

VBM indicate both regions that are different due to pathology and the regions different due to

misregistration. For instance, one can see the middle occipital gyrus as a region with statistically

significant differences at a small p-value detected by VBM which is unlikely to be affected by ALS

disease but could be a result of misregistration errors. On the other hand, there are some regions

(e.g., Corpus Callosum, Precentral Gyrus, and regions located in frontal and temporal lobes) that

are very likely to be affected in ALS but are not statistically significant due to the smoothing step.

Texture analysis does not apply a smoothing step, and this may be the reason why it reports the latter

group with statistical significance.

The second reason indicating the validity of the texture analysis is that four features provided

quite similar regions. Since the computation of each texture feature is different (Table 2.1), similar
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Figure 6.11: VBM analysis on GM (A) and WM (B) comparing patients with ALS to healthy con-
trols (uncorrected at p < 0.001). The corrected statistical map (FEW at p < 0.05) did not reveal
any significant differences.

Table 6.6: Regional differences identified by VGLCM-TOP-3D compared to VBM. The laterality
of the findings is indicated by R (Right), L (Left), R/L (Right and Left).

Analysis Method VGLCM-TOP-3D VBM
Statistical Uncorrected FEW Uncorrected
Significance p < 0.00001 p < 0.05 p < 0.001

hhhhhhhhhhhhhhhRegion
Processed Feature

f1 f6 f7 f8 f1 f6 f7 f8 GM WM

1 Middle Frontal Gyrus R/L R/L R/L R/L R/L R/L R/L R/L R/L
2 Insula R R R R R R R R/L
3 Inferior Frontal Gyrus R/L R/L R/L R/L R R R R R/L
4 Corpus Callosum R/L R/L R/L R/L R/L R/L R/L R/L R/L
5 Superior Temporal Gyrus R R R R R
6 Middle Temporal Gyrus L L L L L L L L
7 Thalamus R/L R R R/L R/L
8 Superior Frontal Gyrus R/L R/L L L R/L L L L R
9 Precentral Gyrus R R R R R R R R R
10 Cingulate Gyrus R R R R R
11 Middle Occipital Gyrus R
12 Parahippocampal Gyrus R
13 Inferior Parietal Lobule R R

statistical maps possibly indicate differences of local texture changed due to pathological changes

of the brain.

Finally, the regions with statistical significance in our method have been repeatedly reported

by ALS studies using different methods such as VBM, SBM, and advanced MRI techniques (i.e.,

DTI, FMRI, and MRS). The regions with statistical significance between healthy subjects and ALS

patients include middle frontal gyrus [4; 336; 47], inferior frontal gyrus [8; 339; 47; 4], insula [303;

304; 9; 339], corpus callosum [8; 301; 339], superior temporal gyrus [8; 9; 339; 336], middle

temporal gyrus [43; 8; 245; 4], thalamus [301; 339; 47], superior frontal gyrus [47; 4], precentral

gyrus [9; 308; 339; 336; 47], and cingulate gyrus [213; 4; 329; 120]. Table 6.7 shows these studies

and the methods used by them for analysis.

This study suggests texture as a potential biomarker to quantify cerebral degeneration in ALS.
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Table 6.7: Regions with statistical significance (column one) found by the proposed method are also
reported by other studies with different imaging methods.

VBM DTI SBM fMRI MRS
Middle Frontal Gyrus [47] [4; 336]
Insula [339] [304; 303] [9]
Inferior Frontal Gyrus [8; 47; 339] [8] [4]
Corpus Callosum [177] [8; 301; 339]
Superior Temporal Gyrus [8; 47] [8; 339] [9]
Middle Temporal Gyrus [245] [43; 8] [4]
Thalamus [47] [301; 339]
Superior Frontal Gyrus [47] [4]
Precentral Gyrus [47] [339] [9] [336] [308]
Cingulate Gyrus [120] [213] [4] [329]

The results of the analysis support the view that ALS is a multi-system disease spread beyond the

motor cortex region.

6.4 Summary

In this chapter the capability of texture analysis as a potential biomarker for cerebral degeneration in

ALS has been explored. First, two well known 2D methods, the GLCM and GLAM, were applied to

conventional T1-weighted and T2-weighted MR images. The statistical properties of the texture fea-

tures showed a significant difference between patients with ALS and control subjects suggesting that

both methods are able to differentiate between the groups. It was observed that the GLAM features

slightly outperform the GLCM features. The classification showed high performances with higher

accuracy, sensitivity, and specificity for T2-weighted images compared to that for T1-weighted im-

ages.

For 3D analysis VGLCM-TOP-3D was applied to T1-weighted MR images to detect regions

affected by ALS. The detected regions include middle frontal gyrus, inferior frontal gyrus, insula,

corpus callosum, superior temporal gyrus, middle temporal gyrus, thalamus, superior frontal gyrus,

precentral gyrus, and cingulate gyrus. These findings are in concordance with other findings in

ALS suggesting that ALS is a multi-system disease. It was also observed that VBM is not able to

detect any difference after FWE correction. The evaluation results support that the proposed texture

analysis method can serve as a tool to detect and monitor ALS disease.

Nevertheless, the methods used in this chapter to analyze cerebral degeneration in ALS are quite

old and sensitive to imaging effects such as noise. This further motivates the development of novel

methods which are not only more accurate but are also more robust to imaging effects. In the next

chapters, an effective and robust approach for texture analysis is introduced.
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Chapter 7

Robust 2D Texture Features

7.1 Introduction

Properly chosen texture features should be able to discriminate between patterns that are similar.

In addition, texture features should be robust to imaging distortions and be ideally invariant to geo-

metrical transformations. In this chapter, our methods to extract texture features are presented. The

proposed methods are not only highly accurate but also robust to imaging effects.

Among different transformation invariance, rotation invariance is more popular. The reason is

that the rotation invariant features can be easily extended to become affine invariant [248]. The

affine transformation includes transformations such as translation, change of scale, reflection, ro-

tation, and compositions of them. As a result, the features can be used in a wide range of appli-

cations. Some examples of advanced applications include sparse texture classification [203] and

image matching [248] in which rotation invariant features are employed to obtain affine invariance.

In these applications, a set of elliptical regions are found using region detection methods such as

Hessian [248], or Harris [246] region detectors. Each elliptical region is normalized to a circle, and

rotation invariant features are computed on the normalized circle.

Considering neighbors on a circle (or multiple circles) around a pixel is a popular approach in

rotation invariant methods. The values of the circular neighbors are usually encoded in two ways:

1. Applying a threshold (e.g., the center pixel’s intensity) similar to the LBP [267] and its vari-

ants,

2. Transforming the values into frequency components as used by some texture classification

methods [17; 216; 226; 225].

It is demonstrated that the latter approach has several advantages compared to the first one [225]. The

frequency components of the circular sampling function are called the Local Frequency Descriptor

(LFD) in this thesis. It is shown how the magnitude and the phase of the LFD are used to define

robust texture features.

In Section 7.2 the LFD is defined and its advantages are compared to the LBP. The first texture
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Figure 7.1: A circular sampling with radius of one and sample size of 8.

classification method which is based on the magnitude of LFD is explained in Section 7.3. This

method has been presented in [225]. The second proposed method which uses both magnitude

and phase of LFD is demonstrated in Section 7.4. The method has been published in [226]. In

Section 7.5, it is explained that the LFD can be used to extract image gradient information and the

LFD Gradient (LFDG) operator is introduced. This approach has been presented in [228; 227].

The experimental results to evaluate the texture methods and the gradient operator are given in

Sections 7.6, and 7.7, respectively. The summary is presented in Section 7.8.

7.2 Local Frequency Descriptor (LFD) in 2D

As mentioned before, sampling on a circle (or multiple circles) around a pixel is a popular approach

in many rotation invariant methods. Consider P points with gray values of f1, ..., fP on a circle with

radius R at center pixel, fc. The gray level value of a sample, fi, is determined by interpolation if

it is not located at the center of a pixel. Figure 7.1 shows a sampling with radius of one and sample

size of 8.

The local circular function at a pixel, LCFP,R = (f1, ..., fP ), provides useful information.

Some methods such as Local Binary Patterns (LBP) and its variants apply a threshold (the gray value

of the center pixel, fc) and binomial factor 2n to construct the binary patterns from this function:

LBPP,R =
P∑
k=1

s(fk − fc).2k, s(x) =

{
1 x ≥ 0
0 x < 0

, (7.1)

where s is the sign function.

Similarly, CLBP uses two different thresholds to make two binary patterns from this function us-

ing CLBP S and CLBP M operations. Figure 7.2 shows an example illustrating how CLBP S

and CLBP M generate two different binary patterns from the same function LCFP,R.

Although LBP and its variants are very popular they suffer from several drawbacks. One of the

drawbacks is the exponential growth of the binary patterns which results in a large feature set (i.e.,

2P − 1 patterns for a given P ). The LBP-based methods are also sensitive to noise, because a small

change in the center pixel, fc, may result in a drastic change of the patterns. Finally, thresholding the

LCFP,R function removes some important information. For instance, consider two different circular
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Figure 7.2: Thresholding the LCFP,R function to make binary patterns. Top left, the value of the
center pixel and its eight neighbors located on a circle with radius of one. Right, the function and
the two thresholds used in CLBP S (LBP) and CLBP M . Bottom left, the two binary patterns
generated by CLBP S and CLBP M [225].

functions, F1 = {80, 110, 90, 120, 130, 110, 70, 50} and F2 = {50, 130, 75, 150, 110, 130, 80, 90}

with fc = 100. Using the center pixel as threshold results in the same LBP code (i.e., 01011100).

The proposed LFD method uses the same circular sampling method. However, to address the

mentioned issues of the LBP-based methods, the sampling function, LCFP,R, is transformed into

the frequency domain using the 1D Discrete Fourier Transform (DFT):

LFD(n) =
P∑
k=1

fk.e
−2πi(k−1)(n−1)

P , (n = 1, ..., P ), (7.2)

where the Local Frequency Descriptor, LFD(n), consists of P complex numbers representing the

frequency components of the LCFP,R function. Since the LCFP,R function consists of real num-

bers, the frequency components are conjugate symmetric about the DC component. That is, the 2nd

and the P th components (similarly the 3rd and the (P − 1)
th, and so on) have the same magnitude

but opposite phase.

It is shown later that the low frequency components of LFD comprise the majority of texture

signals and by using a few low frequency components of LFD the important features of textures

are captured. Hence, a compact feature set can be constructed to address the exponential growth of

LBP. In addition, the low frequency components of LFD are not affected by noise and, therefore,

the features are robust. Finally, unlike to thresholding, the Fourier transform keeps the important

information of textures. For instance, in the F1 and F2 functions mentioned before, applying

the Fourier transform to the two functions results in frequency components FrqComp1=(760.00,

−99.50 − 69.50i, 50.00 − 50.00i, −0.50 − 29.50i, −20.00, −0.50 + 29.50i, 50.00 + 50.00i,

−99.50 + 69.50i), and FrqComp2=(815.00, −102.43 − 37.43i, 5.00 − 20.00i, −17.57 − 47.43i,

−185.00,−17.57+47.43i, 5.00+20.00i,−102.43+37.43i), respectively, which are not identical.
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Figure 7.3: Left and middle, the function shown in Figure 7.2 is rotated by 45◦ and 90◦ respectively.
Right, the magnitude of the frequency components of the function and its rotated versions [225].

In the next two sections texture feature extraction using the magnitude and phase of LFD is

presented. Then, it is demonstrated that the second frequency component (or equivalently the P th

component) of LFD is highly affected by the local edge around the pixel and it can be used as an

operator to extract image gradient information.

7.3 LFD Magnitude based Features (LFD-MF)

In this section, our first set of texture features, the LFD Magnitude based Feature set (LFD-MF) [225],

is introduced. The magnitude of the LFD carries important information which are invariant to rota-

tion and hence, it is useful to construct texture features. Indeed, rotation induces a circular shift on

the LCF function, but a circular shift does not change the magnitude of its frequency components.

Figure 7.3 shows an example in which the function shown in Figure 7.2 is rotated by 45◦ and 90◦.

It can be verified that the magnitude of LFD for all rotated functions remain unchanged.

As mentioned before, applying the Fourier transform on circular samples has been used in re-

search studies [17; 75; 216]. In contrast to these approaches, not all of the frequency components

of the Fourier transform are used. It is observed that the low frequency components capture the ma-

jority of the energy of the signals in textures. As a result, the method starts with the low frequency

components and gradually adds higher frequency components until the best performance is reached.

By using low frequency components, the method can effectively suppress the effect of noise which

usually appears in high frequencies. The proposed method also applies rotation invariant bandpass

filters on the 2D Fourier transform of the LFD to further remove noisy information (which is ex-

plained later). Figure 7.4 shows some sample textures and the magnitude of the first three frequency

components computed by (P,R)=(8,1).

The local frequencies capture local texture properties. To analyze these properties each fre-

quency channel is considered separately. It is noteworthy that rotation has two consequences. First,

the function LCF(P,R) undergoes a circular shift, and second, the location of the function changes

(Figure 7.5). As a result, although the magnitude of the LFD does not change by rotation, the

rotation of the location should be addressed.
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Figure 7.4: Five texture samples and their first three frequency channels. The first row shows five
texture samples taken from Outex dataset (see, Section 7.6). The second, third, and fourth rows
show the first, second, and third frequency channels of the textures computed by (P,R)=(8,1) [225].

Figure 7.5: A sample LCF(P,R) function when an image is rotated. The rotated version of the
function, LCF rot(P,R), is different from LCF(P,R) by a circular shift and its location is rotated [225].

To address the rotation of location and to produce noise robust features, each frequency channel

undergoes the 2D DFT and then different filters (circular and directional) are applied to capture

textural features. The 2D frequency spectrum of each channel CHn is computed as:

CHn(k, l) =
X−1∑
x=0

Y−1∑
y=0

|LFD(n)(x,y)|.e−2πi( xkX + yl
Y ), (7.3)
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where X and Y are the number of columns and rows respectively, assuming that the coordinate

system ranges from [0,0] to [X-1,Y-1], and |LFD(n)(x,y)| is the magnitude of the nth frequency

component of LFD computed at pixel (x,y). It is noteworthy that before applying filters, the spec-

trum is circularly shifted such that the frequency component (0,0) is translated to the center of the

spectrum.

7.3.1 Disk Filters

To define rotation invariant features, disk shape filters are applied to the spectrum of the frequency

channels defined in Eq. 7.3. The disk filters are defined as:

Dr1,r2(x, y) =

{
1 if r1 ≤

√
x2 + y2 ≤ r2

0 otherwise,
(7.4)

where r1 and r2 are the radii representing the inner and outer boundaries of the disk. The features

computed by applying these band-pass filters to the magnitude of spectrum of frequency channels

CHn are called LFD C (C stands for Circular filter used for computing the features) in this thesis:

LFD C(r1, r2, n) =

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.Dr1,r2(k, l)

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

Dr1,r2(k, l)

, (7.5)

where |CHn| is the magnitude of the shifted spectrum of the frequency channels computed by

Eq. (7.3) and K and L are the number of columns and rows, respectively. The factor in the denomi-

nator averages the response of the disk filter and removes the effect of the disk’s size.

7.3.2 Directional Filters

Although using disk shape filters makes the features rotation invariant, the directionality information

of the spectrum is ignored. In fact, some textures have directionality and capturing that information

can lead to better discrimination. Figure 7.6 shows an example in which the texture has directional

information appeared in the spectrum of the frequency channels.

To capture the directionality information, directional filters are used. These filters are inspired

by the work of Varma and Zisserman [356]. The directional filter-bank are defined by means of

Gaussian filters at multiple orientations:

Gθ,σ1,σ2
(x, y) =

1

2πσ1σ2
e
−(

(x cos(θ)−y sin(θ))2

2σ
2
1

+
(x sin(θ)+y cos(θ))2

2σ
2
2

)
(7.6)

where θ is the angle of the filter, and σ1 and σ2 are the parameters controlling the width and length of

the filter, respectively. These filters are combined with the disk filters (Eq. 7.4) to create directional

bandpass filters. The combination of the disk and Gaussian filters (called DG here) are formally

defined as the multiplication of the two filters:

DGθ,σ1,σ2,r1,r2(x, y) = Dr1,r2(x, y)×Gθ,σ1,σ2
(x, y). (7.7)
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Figure 7.6: Directionality of textures. The first row shows three texture samples taken from Outex
dataset. The second and third rows show the logarithm of the magnitude ofCH1 andCH2 computed
by (N,R)=(8,1) [225].

Figure 7.7: Directional filters equally distributed in eight directions. First row, directional Gaussian
filters. Second row bandpass directional Gaussian filters [225].

Figure 7.7 shows the directional and directional bandpass Gaussian filters. The first row consists

of directional Gaussian filters with σ1 = 64 and σ2 = 2 equally distributed on eight directions. The

second row shows the bandpass version of the same filters.

These directional bandpass filters are applied to the spectrum of frequency channelsCHn. How-

ever, to have rotation invariant features, the maximum, the minimum, and the median responses are

considered. The idea is similar to the work of Varma and Zisserman [356]; however, in their work

only the maximum response is considered. It has been observed that similar to the maximum re-

sponse, the minimum and median responses carry useful texture information and improve the classi-

fication rate. The directional features (LFD D(θ, σ1, σ2, r1, r2)) produced by directional bandpass

Gaussian filters are formally defined as (the subscript variables r1, r2, θ, σ1, and σ2 are dropped

from the notation of DG and LFD D for brevity):

LFD Dmin = min
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l) (7.8)
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Figure 7.8: The flowchart of the proposed method. The final feature vector consists of LFD C ,
and LFD D [225].

LFD Dmax = max
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l) (7.9)

LFD Dmed = median
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l), (7.10)

where Θ is the set of directions (e.g., for a set of eight directions Θ = {0, 2π/8, ..., 14π/8} ).

The final feature vector consists of the two sets of features: LFD C(r1, r2, n) , andLFD D(r1, r2, n).

Figure 7.8 illustrates the flowchart of the proposed method. The details of the implementation are

explained in the next section.

7.3.3 Implementation Details

The implementation is done in Matlab. In the first step, images are normalized to have zero mean

and unit variance. The normalization makes the features invariant to linear changes of illumination.

In the next step, the local frequency channels are computed using Eqs. 7.2 and 7.3. The number and

size of the disk filters depend on the size and content of textures. The datasets that are used in the

experiments consist of images of two different sizes: 128×128 and 200×200. In this thesis, the radii

used for the disks are chosen empirically as follows: the first disk has an inner radius of 10 and outer

radius of 18. The other disk filters are constructed using non-overlapping disks with inner/outer radii

starting from 18/21 with an increment of 3. For textures of size 128×128, 10 concentric disks are

considered covering an area with inner radius of 10 and outer radius of 45. For images of 200×200

size, 20 concentric disks are used which results in a disk area with inner radius of 10 and outer radius

of 75.

After applying the filter disks to the frequency channels, LFD C is normalized with two differ-

ent factors:

LFD Cnorm1
=

LFD C(r1, r2, n)∑
r1,r2∈Rads

LFD C(r1, r2, n)
, (7.11)

LFD Cnorm2 =
LFD C(r1, r2, n)

max
−K2 ≤k≤K2
−L2 ≤l≤L2

|CHn(k, l)|
(7.12)

where Rads is the set of inner-outer radii defined for the disk filters. The first normalizing factor,∑
LFD C, makes the filter responses sum up to one. The term max|CHn(k, l)| in the second nor-

malizing factor is used to capture the relationship between the average bandpass filtered responses
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Figure 7.9: The classification rate for the Brodatz, Outex (TC10, TC12-“tl84”, and TC12-
“horizon”), CUReT, and KTH-TIPS datasets for different number of frequency channels computed
by LFD −MF24,3.

and the largest response of each channel CHn. The LFD D is normalized such that the features

add up to one:

LFD Dnorm{min,max,med} =
LFD D{min,max,med}(σ1, σ2, r1, r2, n)∑

r1,r2∈Rads
LFD D{min,max,med}((σ1, σ2, r1, r2, n))

(7.13)

The final feature vector of the first proposed method, LFD-MF [225], is composed of the nor-

malized features:

• LFD Cnorm1,

• LFD Cnorm2,

• LFD Dnorm{min,max,median}.

The optimum number of channels (n) for LFD C and LFD D are found by incrementing the

number of channels (starting from one) until the classification accuracy is maximized. Figure 7.9

shows the classification rate for different number of frequency channels used by LFD −MF24,3

for the Brodatz [38], Outex [265] (TC10, TC12-“tl84”, and TC12-“horizon”), CUReT [71], and

KTH-TIPS [96] datasets. The explanation of the datasets are given in Section 7.6.1.

Based on the results shown in Figure 7.9, the number of channels for the Brodatz, Outex, CUReT,

and KTH-TIPS is set to 4, 4, 9, and 11, respectively. The size of the final feature vector, LFD-MF,

is equal to (2× C + 3)×N , where C is the number of disk filters and N the number of frequency

channels.

7.4 LFD Magnitude and Phase based Features (LFD-MPF)

This section presents our second set of texture features, the LFD Magnitude and Phase based Fea-

ture set (LFD-MPF) [226]. One of our interesting findings is that the major energy of the LCFP,R
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Figure 7.10: The average energy of the low frequency components LFD(1), and LFD(2) (or
LFD(8)) as well as the aggregated energy of all the three components. A neighborhood setting
with (P,R) = (8, 1) is used.

function in textures are captured in the low frequency components of LFD. Figure 7.10 shows the

average energy of the low frequency components LFD(1), and LFD(2) for the Brodatz [38], Ou-

tex [265], CUReT [71], and KTH-TIPS [96] datasets, using eight neighbors on radius of one. Note

that the energy of LFD(8) is equal to that of LFD(2).

As one can observe, the first component, LFD(1), carries the major portion of the energy of

LCFP,R function. The second frequency component, LFD(2), (and similarlyLFD(8)) contributes

to about 10% of the energy. The energy captured in the three low frequency components (LFD(1),

LFD(2), and LFD(8)) consists of more than 90% of the total energy of the signal. Therefore,

using these three frequency components can provide enough information for texture discrimination.

Using the low frequency components has two advantages. First, the major energy of the textural

signal (which represents texture properties) is carried by the low frequency components. Second,

the noise sensitive information which usually appears in high frequencies is avoided. In practice,

only LFD(1) and LFD(2) are used, because LFD(8) is the conjugate of LFD(2) and does not

give additional information. In our second proposed method both magnitude and phase information

of LFD components are used for texture feature construction.

7.4.1 Phase Based Features

The DC frequency component (LFD(1)) has no phase information. As a result, the phase based

features are extracted from the second frequency component, LFD(2). The issue to be addressed

here is how to define rotation invariant features from phase, while the phase of the local frequency

components is not rotation invariant.

To have rotation invariant phase-based features, the method uses the phase difference (PHD)
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between the second Fourier coefficients of two circular functions located on two different radii:

PHD(x, y) = angle
(
LFD(2)

(Pi,Ri)
(x,y)

)
− angle

(
LFD(2)

(Pj ,Rj)

(x,y)

)
, (7.14)

where angle operator gives the phase of a complex number, and LFD(2)
(Pi,Ri)
(x,y) denotes the second

Fourier component of LCF with Radius of Ri and sampling number of Pi at location (x, y). Each

circular function carries textural information at a specific scale. When rotation occurs, both functions

incur the same amount of circular shift and the phase ofLFD(2) of the two functions changes by the

same rotation angle. As a result, the phase difference between the LFD(2) components of the two

circular functions remains unchanged and this property is used to define rotation invariant features.

So far, the phase difference at each pixel, PHD(x, y), has been defined. The phase difference is

an orientational information and has a value in the range of [0 2π). To construct the final features the

Histogram of Local Orientations (HLO) is used. The histogram is defined in a circular area around

each pixel, by accumulating the orientational information (here, PHD(x, y)) into d orientational

bins. Assume that there are d orientational bins centering at orii, (1 ≤ i ≤ d),

orii = (2π/d)× (i− 1). (7.15)

The orientational information, PHD(x, y), is linearly assigned to the closest orientational bins:

OriInfBini(x, y) =

{
2π/d−|orii−PHD(x,y)|

2π/d , if |orii − PHD(x, y)| < 2π/d

0 , otherwise.
(7.16)

The histogram of local orientations HLOi(x, y) for orientation orii is computed on a circular

region (C):

HLOi(x, y) =
∑

(X,Y )∈C
OriInfBini(X,Y ). (7.17)

The HLOi(x, y) represents the distribution of the local orientational information (e.g., PHD)

around pixel (x,y), discretized into d orientational bins. Figure 7.11 illustrates the steps to construct

the HLO. This histogram is comparable to the histogram of orientations in SIFT [224] in a sense

that it accumulates the orientations in a region around a keypoint location. However, no weighting

is used (e.g., the Gaussian weighting in SIFT) and the orientational information is extracted from

the phase of local frequency components instead of gradients.

Now that the histogram of d orientations at each pixel(x,y) is computed, the changes of each

histogram bin across the image is used as a texture feature. These changes are found by computing

the standard deviation as follows:

HLOstdi =

√√√√ 1

W ×H − 1

W−1∑
x=0

H−1∑
y=0

(HLOi(x, y)−HLOi), (7.18)
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Figure 7.11: The steps for computing the histogram of local orientations for a given pixel(x,y): A
circular region is considered, the orientational information is assigned to the two closest directions
bilinearly for each point in the region, and finally the bins in the circular region are summed to
construct the final histogram [226].

where W and H are the width and height of the image, respectively, and HLOi is the mean value

of all HLOi(x, y):

HLOi =
1

W ×H

W−1∑
x=0

H−1∑
y=0

HLOi(x, y). (7.19)

To compute the second set of phase-based features, the phase of LFD(2) is used as the orienta-

tional information (i.e., PH(x, y) = angle(LFD(2)(x,y))). Consequently, PHD(x, y) is replaced

by PH(x, y) in Eq. 7.16, resulting in a different set of features after applying Eq. 7.17, and Eq. 7.18.

Unlike the histograms of phase difference, the histograms of phase computed by this approach are

not rotation invariant. To have rotation invariance, 1D Fourier transform is applied to the standard

deviation computed by Eq. 7.18 and the magnitude of the frequency components is used. These

features are called the Frequency Magnitude of HLOstd or FMHLOstd in short form. A rotation

causes a circular shift of the output of Eq. 7.18. This circular shift does not change the magnitude

of the frequency components of HLOstd. This is similar to the magnitude based features of LFD.

Since half of the magnitude components are the same, the final feature size is d/2 + 1, where d is

the number of directions used to compute the HLO.

Our final feature set for the second proposed method, LFD-MPF [226], consists of these sets:

• LFD Cnorm1 (Eq. 7.11): magnitude based features. The difference of this method and the

first method is that here only two frequency channels are used (LFD(1) and LFD(2)).

• HLOPHDstd : the standard deviation of the bins of HLO, where the orientational information

is the phase difference of LFD(2) for two given circular functions, PHD(x, y).

• FMHLOPHstd : the frequency magnitude of the standard deviation of the HLO’s bins, where

the orientational information is the phase of LFD(2) for a given circular function, PH(x, y).
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Table 7.1: Circular local function settings used in the experiments.

R 1 2 3 4 5 6 7 8

N 8 16 24 28 32 36 40 44

7.4.2 Implementation Details

The proposed method is implemented in Matlab. In the first step, the images are normalized to

have zero mean and unit variance. The normalization step makes the features invariant to linear

changes of illumination. The local frequency components are computed using Eq. 7.2 and the low

frequency components, LFD(1) and LFD(2), are used. The same setting as our first method was

used to compute LFD Cnorm1 features. The HLO (Eq. 7.17) is normalized for both phase and

phase difference information such that the HLO histogram at each pixel sums up to one.

To compute the features, eight circular local functions are used. These settings are shown in

Table 7.1. The LFD Cnorm1
features are computed using the eight CLFP,R settings shown in Ta-

ble 7.1 resulting in 160 features (2 channels (LFD(1), and LFD(2))× 10 disk filters× 8 sampling

settings). Eight orientations (d=8) are considered for the phase based features and the computation

of HLO. To compute the phase difference, two reference phases of the settings with radii of 2 and 3

are used. Then, the difference of the reference phases and the phases of settings with radii of 5, 6, 7,

and 8 are found. Following this setting, 64 features are produced from phase difference (2 reference

phases× 4 phases× 8 orientations). Finally, the 8 given settings are used to compute the FMHLO

which gives 40 features (8 phase settings× 5 features for each setting). The total number of features

produced by the mentioned setting is 264.

7.5 Gradient Calculation by LFD

In this section, it is demonstrated that the second frequency component (or equivalently the P th

component) of the LFD is highly affected by the local edge around the pixel and can be used to

find the magnitude and orientation of local edges. Our motivation is based on the observation that

the low frequency components (LFD(1), LFD(2), and LFD(P )) comprise more than 90% of the

LCFP,R signal in some well known texture datasets (Figure 7.10), and therefore can well represent

the texture around a pixel.

7.5.1 Relation of LFD(2) with Edge

To explain the edge detection ability of LFD(2), the characteristics of the LCFP,R function when

it is around an edge is described. An edge is defined as the line separating a dark region from a

bright region as shown in Figure 7.12(a).

Now, consider the traversal of circular samples shown in Figure 7.12(a). By starting from a

dark region (f1), we cross the edge and go into the bright region (fi). After traversing the bright
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(a) (b)

Figure 7.12: Using LFDG operator to compute local edge. a) P sample are located on radius of R
around a pixel. b) The function of samples have a rectangular shape [228].

(a) (b)

Figure 7.13: a) The DFT of a rectangular shaped function is a sinc. The highest values of the sinc
function are at n = 1 and n = {2, P}. b) |LFD(2)| as a function of the distance of the center of
the sampling circle from the edge [227].

region and crossing the edge at fj , we return to the starting point in the dark region. Indeed, by

using the circular sampling approach (Figure 7.12(b)), the function of an edge can be characterized

as a rectangular shaped LCFP,R function. For simplicity, assume that the rectangular function has

a value of one. The DFT of the rectangular shaped function of width M (using Eq. 7.2) is a sinc

function of the following form:

LFDrect =
sin(π(n−1)M

P )

sin(π(n−1)
P )

× e−
iπ(n−1)(M−1)

P . (7.20)

The magnitude of this sinc function, | sin(π(n−1)M/P )
sin(π(n−1)/P ) |, has the highest value at n = 1 and then at

n = {2, P} (Figure 7.13(a)). Therefore, an edge (rectangular shaped LCFP,R function) manifests

itself with high values in LFD(1), LFD(2), and LFD(P ). This is consistent to the experimental

results in Figure 7.10 showing that these low frequency components comprise a large portion of

textural signals.

Among these three components, the LFD(1) (DC component) is affected by the average in-
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tensity, indicating if a pixel is located in a dark or bright region. Hence, the actual edge informa-

tion around the pixel is represented by LFD(2) (or LFD(P )). Another possible interpretation of

LFD(2) is that it approximates a rectangular shaped function better than the other components. To

better demonstrate the edge detection ability |LFD(2)| is plotted as a function of the distance of

the center of the circle from the edge for the given example shown in Figure 7.13(b). In this exam-

ple, points are chosen between pixels 2 and 5 with an increment of 0.1 pixels. The magnitude of

LFD(2) is shown for each point in Figure 7.13(b). As one can see, |LFD(2)| reaches its maximum

value at location 3.5 which is the exact point separating the dark region from the bright region.

7.5.2 LFD Gradient Operator

The Local Frequency Descriptor Gradient (LFDG) is formally defined by setting n = 2 in the LFD

formula (Eq. 7.2):

LFDG =
P∑
k=1

fke
−2πi(k−1)

P . (7.21)

The LFDG (i.e., the second component of LFD) is a complex number, and therefore, Eq. 7.21

can be further decomposed into real and imaginary parts:

Re(LFDG) =
P∑
k=1

fkcos

(
2π(k − 1)

P

)
, (7.22)

Im(LFDG) = −
P∑
k=1

fksin

(
2π(k − 1)

P

)
. (7.23)

The magnitude and phase of theLFDG can be simply computed by using the real and imaginary

parts.1 The magnitude of the LFDG represents the amount of rectangular shaped function (i.e., the

strength of an edge), while the phase indicates the starting location of the rectangular shaped function

(i.e., the edge orientation).

One may note that the exact value of the phase depends on the neighboring order strategy. The

proposed method starts on a horizontal line and traverses the neighbors in the clockwise direction as

shown in Figure 7.12(a). Using this protocol will result in the same orientation value computed by

the conventional gradient orientation formula.2

The rectangular shaped LCFP,R function is analogous to the uniform patterns in the LBP

method3 which represent edges of varying positive and negative curvatures [267]. However, the

uniform patterns are acquired by applying a threshold which makes the patterns sensitive to noise,

while the LFDG is a low frequency component which is less affected by noise. By using different

R and P , the edge information at different scales are obtained. Figure 7.14 compares the gradient

calculation of the LFDG operator with that of the central difference on a synthetic and a real image.

1|LFDG| =
√

Re(LFDG)2 + Im(LFDG)2, and ∠LFDG = atan2(Im(LFDG), Re(LFDG)) where atan2
is the operator that computes the arc tangent of the two variables by considering the signs of both arguments.

2The conventional gradient orientation is computed by atan2(∆y/∆x).
3Uniform patterns refers the binary patterns in which the transition between 0 and 1 is not greater than 2.
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(a) (b) (c)

(d) (e) (f)

Figure 7.14: Computing gradient on a synthetic (first row) and a real image (second row). The
first column is the original image. The 2nd and 3rd columns are the magnitude and orientation of
gradient computed by LFDG [227].

READ is computed with setting (P = 8, R = 1) and h = 1 pixel in the central difference method.

To make a fair visual comparison, the magnitude of the gradients are normalized to the range [0 1].

As can be observed, the locations of the maxima of the magnitude of the LFDG precisely corre-

sponds to the location of edges. That is, the magnitude of the LFDG is zero in flat regions, while it

is maximized on pixels located on an edge. This can be observed on both straight and curve edges.

The phase of the LFDG faithfully represents the orientation of the local edge. One may consider the

orientational values around the circle in the synthetic image. The color map in the right bottom of

the phase image shows the color associated with a given angle. It starts with black at 0◦ and goes to

green at 90◦, yellow at 180◦, and red at 270◦. It can be verified that the colors around the circle in

Figure 7.14(c) follow the colors of the color map. In other words, the color around the circle in the

phase image is black at 0◦, green at 90◦ and so on. This is because of the sampling protocol used

for the order of neighbors. One may note that the orientation value in the flat regions are not the

same. This is no surprise because when the magnitude of an edge is zero (i.e., the region is flat), the

orientation has no special meaning. This is similar to the gradient information. When the value of

the gradient is zero, the orientation of the gradient is meaningless.

Figure 7.15 gives another example of gradient computation on a synthetic image. In this figure,

the magnitude and the phase of the LFDG (P = 8, R = 1) is compared with the magnitude and

orientation of gradients computed by three common approaches: central difference (i.e., ∆hf(x) =
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

(j)

Figure 7.15: Comparing LFDG with other gradient calculators. A sample image is shown in (a).
The original size of the sample image is 1152× 253 pixels and its format is jpg. The magnitude and
orientation of gradients are computed by central difference (b and c), Sobel operator (d and e), first
order derivative of Gaussian (f and g), and LFDG (h and i). The upper right part of the number “7”
in the orientation maps in its original size is shown in (j) which is computed by central difference,
Sobel, derivative of Gaussian, and LFDG from left to right, respectively. The angular color map is
shown in the bottom right of the image showing the orientation [228].

f(x+h/2)−f(x−h/2), h = 2), the Sobel operator (with size of 3×3), and the first order derivative

of Gaussian (i.e., ∆f(x) = f(x)∗∆G(σ), where ∗ denotes convolution and ∆G(σ) = −2x√
2πσ3

e−
x2

2σ2 ,

the normalized derivative of Gaussian, with σ = 0.25).

Note that the orientational values computed by LFDG is smoother and involves more pixels

(see Figure 7.15(j)) compared to other methods. More examples of the LFDG gradient outputs are

presented in Appendix B.

The LFDG operator has several advantages that make it favorable for computer vision and
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image processing applications [228]. First, it is robust to noise. The reason is that noise appears in

the high frequency components. However, the LFDG is based on a low frequency component and

hence, is less affected by noise. Section 7.7 presents some experiments to show the robustness of

LFDG in the presence of noise.

LFDG can be made invariant to linear changes of illumination. A linear change of illumination

changes the magnitude of LCFP,R function linearly. However, it does not change the phase of the

LFDG (because the ratio of Im(LFDG) to Re(LFDG) remains the same). If the intensity of an

image is normalized before computing the gradients, the magnitude of LFDG remains unchanged.

In the proposed methods, the intensities are normalized such that the mean of the intensities is zero

and the standard deviation is one.

Finally, LFDG is robust to blurriness. The reason is that the blur effect mainly dampens the high

frequency components and the low frequencies (including LFDG) are less affected. This property

is shown in Section 7.7.

7.5.3 Implementation Details

The proposed LFDG operator for gradient calculation can be efficiently implemented. The idea is to

define a kernel to represent Eqs. 7.22, 7.24 and the gradient is computed by convolving the defined

kernel with the image. Let us start by the fact that Eqs. 7.22 and 7.23 can be interpreted as the

projection of the local samples into the x and y axes or gx and gy , respectively (G = [gx, gy]).

Indeed, Eq. 7.23 can be rewritten as:

Im(LFDG) =

P∑
k=1

fkcos

(
π

2
+

2π(k − 1)

P

)
. (7.24)

By comparing this equation with Eq. 7.22 one can see that the two equations differ only by a factor

of π
2 in the cos function. One may also note that the direction of the x axis can be obtained by

adding π
2 to the direction of y axis. Figure 7.16 illustrates the concept using eight samples.

The angle of each sample point with the x and y axes are shown by θx and θy , respectively. It

can be observed that

gx = Re(LFDG) =f1cos (0) + ...+ f8cos

(
14π

8

)
gy = Im(LFDG) =f7cos (0) + ...+ f6cos

(
14π

8

)
. (7.25)

In other words, the gradient along a given axis can be computed by multiplying the intensity value

of the samples (fk) by cos(θ), where θ is the angle between the sample’s location and the axis.

Now, let us construct a kernel which computes the projections of the circular samples onto an

axis. For a radius of R, the kernel has a size of N × N where N = 2R + 1. For instance, for

R = 1, the kernel is 3× 3. There are two factors to form the kernel: the value of the samples, fk, in

Eqs. 7.22, 7.24, and the cosine of the angle between each sample and the axis. Since the location of
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Figure 7.16: LFDG can be interpreted as the projection of the samples’ values onto an axis. a) The
angle between the samples and the y axis (θy) is π

2 larger than the angle of the samples with the x
axis (θx) [228].

Figure 7.17: Construction of a 3 × 3 kernel, matrix B represents the bilinear interpolation weights
and C the cosine coefficients [228].

the samples are known for a specific R and P , both factors can be found easily. The value of each

sample is found using bilinear interpolation from its four nearest neighbors. To compute the value

of each sample, fk, a P × N2 matrix is considered. The rows of the matrix represent the samples

and the columns the weight of each element in the kernel (assume that the elements of are put in a

1×N2 row vector). If a sample is located on a center of a pixel, no interpolation is needed. In this

case, only one element has the value of one and the rest of the elements are zero on that row. For

samples that are not located on the pixels’ location, bilinear interpolation is used. For these cases,

four elements in the corresponding row of the matrix have non zero values. This matrix is called B

representing the bilinear weights of the kernel. Figure 7.17 illustrates the construction of a 3 × 3

kernel.

In this example, fj is located exactly on pixel 2; hence, the entry (j, 2) in the matrix B is 1

and the rest of the elements on the jth row are zero. On the other hand, fi is not located on a

pixel. Therefore, four elements on the ith row of the B matrix have non-zero values. The values are
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Figure 7.18: Two sample kernels for the “x” axis: left (R = 1, P = 8), and right (R = 1, P =
16) [228].

w1 = (1−d1)(1−d4), w2 = (1−d2)(1−d4), w3 = (1−d1)(1−d3), and w4 = (1−d2)(1−d3),

where di are the distances shown in Figure 7.17.

Now, let us consider a 1×P row vector calledC to represent the cosine weights in Eqs. 7.22, 7.24.

Each element of C is the cosine of the angle between sample fk and the axis. The kernel is defined

as Ker = C ×B which is a 1×N2 row vector. The Ker is reshaped to N ×N , and the values of

Ker are reflected around the center for the convolution operation. The convolution of Ker with an

image is equivalent to the summations in Eqs. 7.22, 7.24.

Figure 7.18 shows two kernels for the “x” axis computed for radius of 1 but with different sample

numbers (P = {8, 16}). It can be observed that both kernels sum to 0, and have the differentiation

property (i.e., computing the difference in the direction of the axis) which is common in all gradient

calculators. Nonetheless, a different pattern is observed in each kernel.

7.6 Evaluation of Texture Features

In this section, the experimental results for evaluation of the proposed texture features are presented.

Four famous datasets are used to compare the proposed methods with the state-of-the-art methods:

the Brodatz [38], the Outex [265], the Columbia-Utrecht Reflectance (CUReT) [71], and the KTH-

TIPS [96] datasets. The descriptions of the datasets are given in Section 7.6.1. The state-of-the-art

methods used for comparison are described in Section 7.6.2.

In the first experiment the classification accuracy of the methods are presented. Then, the robust-

ness of the methods in the presence of different levels of Gaussian noise is shown. For classification,

the Nearest Neighbor (NN) classifier and L1 distance are used:

|f1 − f2| =
N∑
n=1

|(f1(n)− f2(n))| (7.26)

where f1 and f2 are the two given feature vectors, f1(n) and f2(n) are the nth feature in the vector,

and N is the total number of features. L1 distance is chosen because it is less sensitive to outliers

compared to L2.
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Figure 7.19: The 80 homogeneous texture images of the Brodatz dataset [38].

7.6.1 Datasets

The datasets used for the experiments include the Brodatz [38], the Outex [265], the Columbia-

Utrecht Reflectance (CUReT) [71], and the KTH-TIPS [96] datasets.

Brodatz [38] is perhaps the most well-known dataset used by many texture classification meth-

ods. This dataset includes texture images with size of 640×640 pixels. To have different images

from the same class, the provided texture images are divided into smaller pieces. Since the dataset

does not provide any geometric transformation, similar to many rotation invariant methods, the

smaller images undergo rotation. Figure 7.19 shows the 80 homogeneous texture images in the Bro-

datz dataset used for the experiments. Each texture image is divided into four 256×256 subimages,

and each subimage is rotated by 10 different angles (i.e., 0◦, 15◦, 30◦, ..., 135◦). Then, the center

part of each subimage (with size of 128×128) is taken for the experiments. The first four unrotated

images are used for training and the rest (4×9=36) for testing.

Unlike the Brodatz dataset, the Outex and CUReT datasets are designed to evaluate rotation and

illumination changes. The Outex dataset includes 24 texture classes shown in Figure 7.20. The

images are acquired under nine different rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and

90◦) and three different illuminations conditions (“horizon”, “inca”, and “tl84”). For each rotation

angle and illumination condition, 20 non-overlapping 128×128 gray-level images are produced.

The dataset consists of two test suites: TC10 and TC12.

The TC10 test suite has been designed for rotation invariant analysis. In this test suite, the

training set consists of images acquired under illumination condition “inca” and angle 0◦ (i.e.,

24×1×1×20=480 samples). The test set includes images produced by the same illumination condi-

tion, “inca”, but rotated by eight different angles, resulting in 3840 (24×1×8×20) images.

The TC12 test suite has been provided to analyze both rotation and illumination invariance. The

training set is the same as the one in TC10. However, the test set consists of two datasets: the first

test set includes the images produced under “tl84” illumination condition and the second set consists
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Figure 7.20: The Outex dataset [265] includes 24 different texture classes.

of images acquired under “horizon” illumination condition. Each set includes all rotation resulting

in a total of 4320 (24×1×8×20) samples.

The CUReT dataset consists of 61 real-world textures acquired under different viewing angles

and illumination conditions. Figure 7.21 shows the texture classes in the CUReT dataset. The dataset

includes 205 images from 61 texture types. This dataset is very challenging due to the similarity

among some of the samples. Following the evaluation method of the previous works [356; 123], 92

images that are large enough to be cropped to an area of 200×200 pixels are selected. The selected

images are converted to gray-level before analysis.

To assess the accuracy of the proposed method, the 92 images in each class are selected alter-

natively for training and for testing. As a result, each training and testing set includes 46 images.

Similar to [123] the first 23 samples in each class are used for learning texton dictionary in the

VZ MR8 and VZ Joint methods and for computing the cutting value of the V AR operation.

The KTH-TIPS dataset tries to add more real-world effects to the textures by using different

samples of the same material as well as adding scale variations. It consists of 10 CUReT texture

classes acquired at different illumination conditions and scales. Figure 7.22 shows the texture classes

in the KTH-TIPS dataset. The images in each class are selected alternatively for training and testing

sets.

7.6.2 Compared Methods

The proposed methods are compared to some well-known rotation invariant texture classification

methods. In general the LBP-based methods outperform the frequency based methods for rotation

invariant texture classes. As a result, in addition to some frequency-based methods, the state-of-the-

art LBP-based methods are considered for comparison due to their high performance. The original

LBP , LBP/V AR, LBPV , and CLBP are the LBP-based methods compared in this section. The

MR8 method [356] and image patch exemplars [357] proposed by Varma and Zisserman are also

among the compared methods. The first approach applies eight different spatial filters (i.e., two

anisotropic filters at six orientations and three scales, plus two rotationally symmetric filters) to the

textures while the second uses the original texture patches. In addition to the ACGMRF [75] and 1D
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Figure 7.21: The CUReT dataset [71] includes 61 different texture classes.

Figure 7.22: The KTH-TIPS dataset [96] includes 10 different texture classes.

DFT of Circular Neighborhood (DFT CN) [17], two well-known frequency based methods namely

the Gabor Wavelet [238], and the Circular Gabor filter [125] are also compared.

The proposed methods includeLFD−MPF , and two versions ofLFD−MF : LFD−MF24,3

which uses features extracted on 24 samples located on radius of three, and LFD − MF24,3 +

MF32,4 which is the multi-resolution extension of LFD. This is similar to the strategy used by

some LBP-based method [267; 123; 124] to improve accuracy. To do multi-resolution analysis,

the features extracted from two settings (R,N)=(3,24), (4,32), are simply combined using the same

number of channels used by LFD −MF24,3.

7.6.3 Classification Results

Table 7.2 shows the classification accuracy of the methods on the datasets. As one can see our

proposed methods provide the highest classification accuracy for the given datasets. In Brodatz,

LFD − MPF provides the perfect classification rate of 100% followed by LFD − MF24,3 +

MF32,4 and LFD − MF24,3. The next best methods for this dataset are CLBP S/M/C and
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Table 7.2: Classification rate on the Brodatz, Outex, CUReT, and KTH-TIPS datasets for different
state-of-the-art methods, and the proposed methods.

Method Brodatz TC10
TC12

CUReT KTH-TIPS
“tl84” “horizon”

DFT CN 97.92 88.98 33.36 43.38 74.91 68.64

ACGMRF 26.11 61.67 54.77 58.38 86.89 87.27

Gabor Wavelet 30.87 53.57 57.82 57.89 96.33 92.27

Circular Gabor 69.24 77.11 77.41 78.61 47.83 60.45

V Z MR8 94.86 93.59 92.55 92.99 97.51 94.55

V Z Joint 96.88 92.00 91.41 91.82 97.15 85.45

LBP riu2
24,3 88.47 95.07 85.04 80.78 87.53 89.09

LBP riu2
24,3 /V AR24,3 95.97 98.15 87.13 87.08 92.23 88.64

LBPV u2
24,3GMPD2 92.33 97.55 94.23 94.18 93.87 91.81

CLBP Sriu2
24,3 /M

riu2
N,R 99.06 99.32 93.58 93.35 93.83 95.91

CLBP Sriu2
24,3 /M

riu2
N,R /C 99.31 98.93 95.32 94.53 96.12 95.45

LFD −MF24,3 99.79 99.64 97.69 97.99 97.65 97.27

LFD −MF24,3 +MF32,4 99.69 99.40 97.62 98.29 98.08 97.73
LFD −MPF 100.00 99.38 98.77 98.66 97.90 97.73

CLBP S/M with 99.31% and 99.06% classification accuracies, respectively. DFT CN , texton-

based methods (V Z Joint and V Z MR8) and LBP-based methods performs quite well for this

dataset. On the other side, ACGMRF , Gabor Wavelet, and Circular Gabor perform poorly for

this dataset.

The proposed methods outperform other methods in all test suites of the Outex dataset. In

TC10 LFD −MF24,3 has the highest performance followed by LFD −MF24,3 + MF32,4 and

LFD −MPF . In this test suite, LBP based methods are the best methods after LFD based meth-

ods. Texton based methods andDFT CN stand in the middle of ranking and the Circular Gabor,

ACGMRF , and Gabor Wavelet have the lowest performances. The illumination changes of the

TC12 test suites make LBP and LBP/V AR lose much of their performances (more than 10%).

The performance drop in DFT CN is also remarkable (i.e., more than 45% and 55% in TC12-

“horizon” and TC12-“tl84”, respectively). The other methods do not lose much of their perfor-

mances in illumination change conditions. Among LFD based methods, LFD −MPF provides

the highest classification accuracy in TC12-“horizon” and TC12-“tl84” test suites.

By looking at the CUReT results in Table 7.2, it can be observed that the proposed method out-

performs the other methods on this dataset too. Unlike the Outex dataset, the texton-based methods

provide higher accuracy than those of the other LBP-based methods. Here, V Z MR8 is slightly

better than V Z Joint. After texton-based methods, the next top methods are the Gabor Wavelet

and the LBP based methods. ACGMRF , DFT CN , and Circular Gabor provide the lowest

performances in the CUReT dataset. In this dataset, LFD−MF24,3 +MF32,4 provides the highest
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Figure 7.23: A sample texture image undergoing different noise levels. From left to right: the
original texture image, the noisy image with SNR=5, 4, and 3 [226].

classification accuracy followed by LFD −MPF and LFD −MF24,3.

The last dataset is KTH-TIPS. Similar to the previous datasets, the LFD based methods have

the highest classification accuracy. The next top methods are CLBP S/M , CLBP S/M/C, and

V Z MR8. The other LBP based methods, Gabor Wavelet, ACGMRF , and V Z Joint stand

in the middle of ranking. DFT CN and Circular Gabor have the lowest performance on this

dataset. Among LFD based methods LFD−MPF and LFD−MF24,3 +MF32,4 are equally the

best methods followed by LFD −MF24,3.

7.6.4 Noise Robustness

Robustness to noise is one of the most important factors to assess texture methods. To measure the

robustness of the proposed method the three test suites of the Outex dataset are used. The reason

that the Outex dataset is chosen is because the impact of illumination changes and of rotation can

be separately studied on the robustness of the compared methods against noise. In addition to LFD

based methods, four top methods in the Outex dataset are chosen for noise robustness comparison.

In each experiment, random Gaussian noise with a specific Signal to Noise Ratio (SNR) is added.

In particular, the robustness of the methods with high levels of noise is studied. Figure 7.23 shows

a sample image with SNR={5, 4, 3}. To reduce the variability of randomness, each experiment is

repeated fifty times. The first noise experiment is conducted on the TC10 test suite. The average and

standard deviation of the classification rate for different SNRs on the Outex test suites are reported

in Table 7.3.

As one can see, the proposed LFD based method outperforms other methods in all levels of

noise for the TC10 datasets, particularly in high levels of noise. The most noise sensitive method

is CLBP S/M . The compared methods keep their performance for SNR≤10; however, their per-

formance drops suddenly when the SNR is decreased to 5. This drop ranges from about 7% for

the LBPV to more than 26% for the CLBP S/M . All the methods except the proposed meth-

ods perform very poorly in extremely noisy conditions (SNR={4, 3}). While LFD −MPF and

LFD−MF lose less than 3% and 4% of their performances for SNR=3, the second best method’s

performance (LBPV ) drops by about 30%. The loss is more than 62% for CLBP S/M .

The next experiment is conducted on the TC12 test suites. Similar to the TC10 test suite, LFD

based methods outperform the other methods on both TC12-“tl84” and TC12-“horizon” test suites
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Table 7.3: Classification rate on the Outex test suites with different signal to noise ratio.

SNR=10 SNR=5 SNR=4 SNR=3

T
C

10
LBP riu2

24,3 /V AR24,3 96.02±0.11 73.88±0.17 60.64±0.25 43.07±0.23

CLBP Sriu2
24,3 /M

riu2
N,R 98.28±0.10 72.87±0.24 53.31±0.21 36.72±0.19

CLBP Sriu2
24,3 /M

riu2
N,R /C 98.53±0.09 82.66±0.20 61.74±0.20 40.40±0.16

LBPV u2
24,3GMPD2 96.74±0.13 90.36±0.21 85.07±0.22 67.28±0.24

LFD −MF24,3 99.61±0.05 99.24±0.11 98.63±0.12 95.73±0.13

LFD −MPF 99.33±0.03 99.10±0.05 98.65±0.08 96.68±0.13

T
C

12
-“

tl8
4”

LBP riu2
24,3 /V AR24,3 87.95±0.16 64.91±0.18 55.53±0.17 42.34±0.18

CLBP Sriu2
24,3 /M

riu2
N,R 90.63±0.14 60.51±0.20 45.70±0.17 33.92±0.14

CLBP Sriu2
24,3 /M

riu2
N,R /C 94.22±0.11 72.85±0.19 52.72±0.21 37.00±0.13

LBPV u2
24,3GMPD2 92.26±0.21 84.50±0.24 77.43±0.23 61.25±0.31

LFD −MF24,3 97.52±0.06 96.91±0.06 96.13±0.27 92.23±0.22

LFD −MPF 98.63±0.04 97.57±0.10 96.42±0.11 92.98±0.13

T
C

12
-“

ho
ri

zo
n” LBP riu2

24,3 /V AR24,3 82.64±0.16 60.58±0.15 51.87±0.18 39.93±0.24

CLBP Sriu2
24,3 /M

riu2
N,R 90.19±0.14 58.45±0.20 41.95±0.18 31.31±0.13

CLBP Sriu2
24,3 /M

riu2
N,R /C 92.20±0.11 67.87±0.19 52.44±0.22 35.88±0.13

LBPV u2
24,3GMPD2 90.73±0.17 81.61±0.20 75.28±0.22 59.20±0.25

LFD −MF24,3 97.67±0.05 96.38±0.10 94.88±0.12 89.98±0.27

LFD −MPF 98.32±0.06 97.40±0.07 96.14 ±0.11 92.32±0.12

and in all levels of noise. The LFD-based methods also keep their high performances even in ex-

tremely noisy conditions. For instance, at SNR=3 the accuracy of the LFD −MPF is about 93%

for TC12-“tl84” and more than 92% for TC12-“horizon”. At this level of noise, LFD−MF has the

classific accuracy of about 92% and 90% for TC12-“tl84” and TC12-“horizon”, respectively. How-

ever, the accuracy of the second top method (LBPV ) is less than 62% and 60% for the TC12-“tl84”

and TC12-“horizon” test suites, respectively. As one can see, the most noise sensitive method is the

CLBP S/M for the TC-12 test suites.

A common observation in all Outex test suites is that the CLBP S/M/C is more accurate than

LBPV in low and moderate levels of noise; however, LBPV outperforms the CLBP S/M/C in

higher levels of noise (SNR≤5).

One can observe that all methods are more sensitive to noise when the illumination condition

is different for the training and the test sets. There is no exception to our methods. In general,

LFD−MPF shows more robustness to noise in comparison to LFD−MF . For instance at noise

level of SNR=3, the performance of LFD −MPF drops about 2.7%, 5.8%, and 6.3% on TC10,

TC12-“tl84”, and TC12-“horizon” test suites, respectively. This drop is about 3.9%, 5.5% and 8%

in these test suites. Hence, LFD−MPF is not only robust to noise in rotation condition, it is quite

robust in more complicated conditions when the illumination changes as well.
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Table 7.4: Number of features used by each method

Method Brodatz Outex CUReT KTH-TIPS

DFT CN 16 16 16 16

ACGMRF 36 36 36 36

Gabor Wavelet 48 48 48 48

Circular Gabor 4 4 4 4

V Z MR8 960 960 2440 2440

V Z Joint 960 960 2440 2440

LBP riu2
24,3 26 26 26 26

LBP riu2
24,3 /V AR24,3 416 416 416 416

LBPV u2
24,3GMPD2 1071 1071 1071 1071

CLBP Sriu2
24,3 /M

riu2
N,R 676 676 676 676

CLBP Sriu2
24,3 /M

riu2
N,R /C 1352 1352 1352 1352

LFD −MF24,3 92 92 387 473

LFD −MF24,3 +MF32,4 184 184 774 964

LFD −MPF 264 264 264 264

Table 7.5: Average computation time per image (in seconds) in each dataset.

Method Brodatz Outex CUReT KTH-TIPS

LFD −MF24,3 0.09 0.09 0.26 0.25

LFD −MF24,3 +MF32,4 0.19 0.19 0.56 0.54

LFD −MPF 0.27 0.27 0.78 0.75

7.6.5 Feature Size Comparison

The number of features are usually noted for comparison of methods. Table 7.4 shows the number

of features used by each method for the datasets used in our experiments. Some methods have quite

a small number of features including Circular Gabor, LBP riu2
24,3 , DFT CN , ACGMRF , and

Gabor Wavelet. On the other hand, some methods have a large feature size including V Z MR8

and V Z Joint,LBPV ,CLBP S/M , andCLBP S/M/C. The LFD based methods have medium

feature size. While the size of LFD −MF features varies depending on the number of channels,

LFD −MPF has a constant number of features.

7.6.6 Computation Time

The proposed methods are implemented by Matlab. Table 7.5 shows the average computation time

per image in each dataset. The runtime is measured on a PC with an Intel quad core 2.60 GHz i7

CPU with 16GB RAM running Windows 7. It can be observed that the LFD based features can be

computed in a reasonable time.
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7.7 Evaluation of Gradient Operator

In this section, the robustness of our proposed gradient operator, LFDG, is evaluated in different

imaging effects and artifacts including Gaussian noise, Salt & Pepper noise, Gaussian blur, and

motion blur. LFDG is compared with the central difference, the first order derivative of Gaussian

(i.e., ∆f(x) = f(x) ∗ ∆G(σ), where ∗ is convolution and ∆G(σ) = −2x√
2πσ3

e−
x2

2σ2 ), and Sobel

operator. Central difference is an old operator which is still used by many methods. First order

derivative of Gaussian is used in the Canny edge detector (a popular edge detector) and Sobel is a

known gradient operator. For the experiments the Flower, Foliage, Fruit, Winter, and Man Made

datasets from the McGill color image collections4 are used. This collection includes 821 color

images which are converted to the gray scale format. For the noise experiments, two types of noise

are added: Gaussian noise with a specific standard deviation (σ = 1, 1.5, ..., 3) and the Salt & Pepper

noise with different noise densities (density = 0.05, 0.10, ..., 0.35). For the blur effect experiment,

the images are smoothed with a Gaussian kernel (i.e., K(x, y) = e−
x2+y2

2σ2 ) with a window size of

W ×W (W = (1.5× σ + .5)× 2 + 1). The experiment is performed for σ = 1, 1.5, ..., 3. Finally,

the motion blur effect is generated by Matlab using distances of 4 to 36 pixels with a step size of 4

pixels. To make the result of the methods comparable, the gradient vector at pixels (Gi = [gx, gy]T )

is normalized in each image I:

Gi =
Gi∑

∀Gi∈I |Gi|
. (7.27)

Then the normalized error is measured:

Err =
1

N

N∑
i=1

|Gcori −Gorigi |
|Gorigi |

, (7.28)

where Gcori and Gorigi are the gradient vectors in the corrupted and the original image, and N

the number of pixels in the image. To avoid instability due to small values in the denominator, the

vectors with small magnitudes (|Gorigi | < 10−6) are excluded. Figure 7.24 compares the normalized

error of the different methods.

As can be observed, in the noise conditions (both Gaussian and Salt & Pepper) the proposed

LFDG operator and the first order derivative of Gaussian are equally the most robust methods. In

blur conditions (Motion and Gaussian) the LFDG operator outperforms the other methods. The

central difference is the most sensitive method in all experiments.

7.8 Summary

In this chapter the proposed 2D methods were presented. First, the local frequency descriptor (LFD)

was introduced as the frequency components of circular samples around each pixel. Then it is

explained how the magnitude and the phase of the LFD can be used to construct robust texture

4http://tabby.vision.mcgill.ca/html/welcome.html

113



1 1.5 2 2.5 3 3.5 4 4.5 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Gaussain Noise

σ

E
rr

o
r

 

 

CD

Sobel

GD

READ

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.4

0.5

0.6

0.7

0.8

0.9
Salt & Pepper Noise

Noise Density

E
rr

o
r

 

 

(b)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.25

0.4

0.55

0.7

0.85

Gaussain Blur

σ

E
rr

o
r

 

 

(c)

4 8 12 16 20 24 28 32 36
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Motion Blur

Pixel Motion

E
rr

o
r

 

 

(d)

Figure 7.24: The robustness of Central Difference (CD), Gaussian Derivative (GD), Sobel, and
LFDG for different imaging effects.

features. Four well-known datasets were used for the evaluation of methods including Brodatz,

Outex, CUReT, and KTH-TIPS. The experimental results on these datasets demonstrate the superior

performace of the proposed LFD based methods. The LFD based methods also show robustness to

Gaussian noise particularly in high levels of noise (SNR of 5, 4, and 3) in our experiments.

Also, it is explained that there is a close relationship between local edges and the second fre-

quency component of LFD. Then a robust local gradient calculator, LFDG, is presented. An efficient

kernel based implementation for LFDG is suggested which makes the usage of LFDG efficient in

practical applications. The experimental results show that LFDG provides comparable robustness

to Gaussian Derivative operator in noise conditions. As well, LFDG show more robustness to blur

effects compared to central difference, Gaussian derivative, and Sobel operators.
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Chapter 8

Image Matching

8.1 Introduction

In this chapter a robust and accurate region descriptor based on information extracted from our

gradient operator LFDG is presented. Local feature detection and description are among the most

important tasks in computer vision. The extracted descriptors are used in a variety of applications

such as object recognition and image matching, motion tracking, facial expression recognition, and

human action recognition.

The whole process can be divided into two major tasks: region detection, and region description.

The goal of the first task is to detect regions that are invariant to a class of transformations such as

rotation, change of scale, and change of viewpoint. These regions are usually defined by an ellipse

to account for affine geometric transformations. The detected regions are then described by a feature

vector. An ideal region descriptor should not only be invariant to geometric transformations but also

be robust to imaging effects such as blurriness, noise, distortions, and illumination changes [248].

This chapter focuses on the second task, region description. Local gradients are commonly

used by the state-of-the-art methods. Although local gradient information is very powerful, it is

susceptible to imaging effects such as noise, illumination changes, and blurriness. As discussed

before, the gradient information computed by LFDG is robust to imaging effects which makes it

suitable for region description.

In addition to using robust gradient information, a novel method for determining support regions

around the elliptical regions detected by affine detectors is presented. First, it is shown that in

theory the support regions can be scaled (with different scaling factors along the eigenvectors of the

elliptical affine region) and rotated. Then, through experiments it is demonstrated that this method

of support region definition can improve the results compared to the simple method of isotropic

scaling of the original elliptical regions which is suggested in [86].

The advantages of the new descriptor are first explored in common geometric transformations,

and then in more challenging imaging effects such as motion blur, non-uniform illumination changes

with moving shadows, and images with different levels and types of noise. Although they are very
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important, these challenging effects are less noted in the evaluation of the previous descriptors. The

descriptor proposed in this chapter is called Robust Edge Aware Descriptor (READ) and has been

published in [227].

8.2 Related Works

There are two main steps in finding corresponding points in two images. In the first step, interest

points (regions) are found in the images. Ideal points should be highly discriminative and robustly

detectable under different imaging conditions and geometric transformations. Some examples of

detection methods include Difference of Gaussian (DoG) [224], Harris-Affine [246], and Hessian-

Affine [248]. A review and comparison of region detection methods can be found in [248; 350].

Many detectors provide circular or elliptical regions with different sizes around the detected

points for point description. The size of the detected region is determined by the detected scale of

the region. By transforming the detected regions (elliptical and circular) to a circular region of a

fixed radius, the regions are normalized into a canonical form. As a result, an affine transformation

is reduced to a rotation, and an affine invariance on the original image can be obtained by rotation

invariance on the canonical region [248]. Hence, region descriptors usually define rotation invariant

features to provide descriptors that are invariant to local affine geometric transformations.

One of the most popular descriptors is the Scale Invariant Feature Transform (SIFT) [224]. The

main information used in SIFT is the magnitude and orientation of local gradients accumulated in

subregions. SIFT is later extended to the Gradient Location and Orientation Histogram (GLOH)

method [247]. Mikolajczyk and Schmid [247] demonstrate that SIFT and GLOH outperform other

descriptors such as those that use shape context, steerable filters, spin images, differential invari-

ants, complex filters, and moment invariants. Some other descriptors include the Center-Symmetric

Local Binary Pattern (CS-LBP) [137], the shape of MSER [93], the Local Intensity Order Pattern

(LIOP) [365], and KAZE [14].

DAISY is a successful method recently proposed by Tola et al. [341]. Similar to SIFT, DAISY

uses the magnitude and orientation of local gradients; however, the weighted sum of gradient ori-

entation is replaced by the convolution of the gradient in specific directions with several Gaussian

filters. Recently, it has been shown that the intensity ordinal information is more useful than the

fixed location bins used by many descriptors such as SIFT and DAISY. The idea has been used by

several descriptors such as LIOP [365], MROGH, and MRRID [85; 86].

A new promising approach is in developing binary descriptors such as BRIEF [42], Brisk [209],

ORB [299], Freak [12], and BinBoost [343] for real-time applications. A comparative evaluation of

these descriptors is presented in [138]. The recent paper by Miksik and Mikolajczyk [249] also com-

pares some of these methods in the accuracy and speed trade-offs suggesting that binary descriptors

provide comparable precision/recall results with SIFT and outperform in speed. On the other hand,

LIOP, MRRID, MROGH are slower but outperform SIFT and other binary descriptors.
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Figure 8.1: An example of two corresponding points detected by the Hessian-Affine detector.

8.3 Robust Edge Aware Descriptor

In this section the procedures to construct the new descriptor are presented. As mentioned before,

region detectors usually provide circular or elliptical regions with different sizes around the detected

points for point description. Figure 8.1 shows an example of two corresponding points detected by

the Hessian-Affine detector.

Using vector notation, a point XL in an ellipse satisfies XT
LMLXL = 0 in the homogeneous

representation, where ML is a symmetric matrix. The ellipse is transformed into its canonical form

(i.e., circle) easily by XLc = M
1/2
L XL. As shown by Mikolajczyk and Schmid [246], when two

elliptical regions XT
LMLXL = 0 and XT

RMRXR = 0 are corresponding, their canonical regions,

XLc = M
1/2
L XL and XRc = M

1/2
R XR, are related by a rotation:

XRc =R(α)XLc

⇒ XR =M
−1/2
R R(α)M

1/2
L XL. (8.1)

Figure 8.2 illustrates the canonical circular form of the detected elliptical regions shown in Fig-

ure 8.1.

The intensity information in the canonical regions is used by region descriptors to construct a

feature vector. Many successful descriptors such as SIFT, GLOH, DAISY, and MROGH define the

histogram of orientations. Similarly our descriptor is defined using the histogram of orientations;

however, instead of gradients the LFDG is used to find the orientation and magnitude of the under-

lying structure around a pixel.

One may note that although the magnitude of LFDG is rotation invariant, the phase of LFDG

changes by rotation. Assume that the phase of LFDG at an arbitrary point x is α. When a rotation by

θ◦ occurs, the phase will change to α′ = α+ θ. To achieve rotation invariance, the phase of LFDG

(i.e., α, α′) is decomposed into two components: a constant part related to the underlying structure

(β) and a variable part related to the the location of the point (γ, γ′) as shown in Figure 8.3.
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Figure 8.2: First row, the elliptical shape regions shown in Figure 8.1. Second row, the canonical
form of the elliptical regions.

Figure 8.3: Rotation invariant phase information [227].

This approach is similar to the local rotation invariant coordinate system used by some descrip-

tors such as MROGH [85], RIFT [203], and RIFF [332]. Instead of considering a new coordinate

system, this can be easily done in LFDG by just subtracting the angle of the location of the point

from the phase of LFDG computed in the regular coordinate system (i.e., β = γ − α = γ′ − α′)

which makes the computation fast.

By considering d orientational bins centering at orii, (1 ≤ i ≤ d), the phase of LFDG is linearly

assigned to the two closest orientational bins:

orii = (2π/d)× (i− 1). (8.2)

Bini(x, y) =

{
(2π/d)−|orii−∠LFDG(x,y)|

(2π/d) , if |orii − ∠LFDG(x, y)| < 2π/d

0 , otherwise.
(8.3)

The intensity ordinal information is used to form subregions. First, the pixels are sorted in a

non-descending order of their intensity values, X1, ..., Xn. Then, the ordered pixels, Xi, are divided

into k partitions,

Pr(p) = {Xi|Xdn(p−1)/k+1e ≤ Xi < Xdnp/ke}, (8.4)
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where d e denotes the ceiling operator. The orientational histograms in each partition, Pr(p), is

accumulated and weighted with the average magnitude of the LFDG in that partition,

Hist(p, i) =
∑

∀(x,y)∈Pr(p)
Bini(x, y).µLFDG(p), (8.5)

where Bini(x, y) is computed by Eq. 8.3 and µLFDG(p) by

µLFDG(p) =
1

|Pr(p)|
∑

∀(x,y)∈Pr(p)
|LFDG(x, y)|, (8.6)

where |Pr(p)| denotes the number of pixels in partition p. The final descriptor is a d × k feature

vector constructed by concatenating the orientational histograms in all subregions.

Some descriptors (e.g., MROGH, MRRID) use support regions defined as the scaled version of

the original detected region to improve their performance. Here, a novel and more flexible support

region definition is presented. It is suggested that the support region is obtained by rotating and

scaling with different scaling factors along the eigenvectors of the elliptical affine region (anisotropic

scaling). While below shows the necessary steps of the proofs, Appendix D provides more details.

As mentioned before, when two elliptical regions XT
LMLXL = 0 and XT

RMRXR = 0 are

corresponding, their canonical regions, XLc = M
1/2
L XL and XRc = M

1/2
R XR, are related by a

rotation (Eq. 8.1).

SinceML (and similarlyMR) is a symmetric matrix, it can be decomposed asML = ΣLΛLΣTL ,

where ΣL is the orthogonal eigenvector matrix, and ΛL the diagonal eigenvalue matrix. The trans-

formation H is defined for the scale matrix S =

[
s1 0
0 s2

]
:

H = ΣLS
−1ΣTL, (8.7)

Lemma 1. Transformation H maps XT
LMLXL = 0 into a new ellipse, the eigenvectors of which

are the same as that of the old ellipse but the eigenvalues are scaled by the (s1)2 and (s2)2 factors.

Proof. If the ellipse XT
LMLXL = 0 undergoes the H transformation, the new ellipse is defined as

X ′TL M
′
LX
′
L = 0, where X ′L = HXL and M ′L = H−TMLH

−1. Substituting ML = ΣLΛLΣTL in

the M ′L equation results in:

M ′L = (ΣLS
−1ΣTL)−TΣLΛLΣTL(ΣLS

−1ΣTL)−1 (8.8)

After a few steps of reduction this equation results in M ′L = ΣLSΛLS
TΣTL . Denoting the new

eigenvalue matrix, Λ′L = SΛLS
T , then M ′L = ΣLΛ′LΣTL which is claimed in Lemma 1.

Before presenting the theorem the following equations are required. Assume that S and D are

diagonal and Q is orthogonal, then it is easy to show (see Appendix D for details):

(QDQT )1/2 = QD1/2QT = QD1/2Q−1, and (8.9)

(QSDSTQT )1/2 = QD1/2STQT = QD1/2SQT . (8.10)
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Theorem 1. Assume that the original ellipses defined by ML and MR undergo the HL and HR

transformations, X ′L = RΣLS
−1ΣTLXL, and X ′R = RΣRS

−1ΣTRXR, where R is an arbitrary

rotation matrix. The canonical regions of X ′L and X ′R are related by a rotation.

Proof. It is enough to show that Eq. 8.1 holds forX ′L andX ′R with the new elliptical regions defined

by M ′L and M ′R. Let us start by multiplying Eq. 8.1 with HR

HRXR = HRM
−1/2
R R(α)M

1/2
L XL

= HRM
−1/2
R R(α)M

1/2
L H−1

L HLXL

= (RΣRS
−1ΣTR)(ΣRΛ

−1/2
R ΣTR)R(α)(ΣLΛ

1/2
L ΣTL)(Σ−TL SΣ−1

L R−1)HLXL

= (RΣRS
−1Λ

−1/2
R ΣTRR

−1)RR(α)R−1(RΣLΛ
1/2
L SΣ−1

L R−1)HLXL

= (H−TR MRH
−1
R )−1/2RR(α)R−1(H−TL MLH

−1
L )1/2HLXL.

⇒ X ′R = M
′−1/2
R R(γ)M

′1/2
L X ′L. (8.11)

Figure 8.4 illustrates the concept. The original regions detected by an affine detector (yellow)

are related by rotation. The red regions are anisotropically scaled and rotated version of the original

regions detected by an affine detector (yellow). It can be observed that the red regions are related

by rotation as well. This idea can be considered as a generalized form of support regions suggested

in MROGH in which R in the H transformation is an identity matrix and s1 = s2 in the S matrix.

Nonetheless, this generalized form gives more flexibility to choose the support regions.

8.4 Experimental Results

In this section, the experimental results for evaluation of the proposed READ descriptor are pre-

sented. First, it is shown how the parameters are tuned. Then the results for different datasets are

shown.

8.4.1 Tuning Parameters

First, an experiment is performed to find the best tuning parameters for the gradient scale, rotation,

and scaling factors of the supporting regions. A total of 50 image pairs with different transformations

(mainly rotation and zoom) are used 1. Six regions are considered (Figure 8.5).

All regions undergo isotropic scaling (IS) by a factor of 1.5 from the previous region, regions

1–3 undergo anisotropic scaling (AS) in the direction of eigenvectors of the elliptic region, regions

1 and 4 and regions 3 and 6 are rotated by θ◦ and −θ◦. The best gradient scale is searched for

R = 1, 2, 3, 4, 5 with corresponding P = 6, 8, 10, 12, 14. The best s1 and s2 are searched in the

range [0.7, 1.3] in steps of 0.05, and the best rotation angle from the range [0, 25]◦ with a step of

1Images downloaded from http://lear.inrialpes.fr/people/mikolajczyk/
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Figure 8.4: Using new support regions (red) as anisotropically scaled and rotated version of the
original regions detected by an affine detector (yellow). The new red regions are related by rota-
tion [227].

Figure 8.5: Using six support regions which are the anisotropically scaled and rotated versions of
the original region [227].

5◦, respectively. One may note that other configurations are also possible, and similar to DAISY

the best parameters can be learned systematically [369]. Nonetheless, this specific configuration is

sufficient to show the capability of the new descriptor. The best configuration is found to be R = 4,

P = 12, s1 = 0.75, s2 = 1.25, and θ = 20◦. Figure 8.6 compares the configuration with only

isotropic scaling (IS), and its combinations with anisotropic scaling (AS) and rotation (R). As one

can see, the suggested strategy to define support region improves the performance of the descriptor.
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Figure 8.6: Comparing different support region strategies: IS, and its combination with AS, and
R [227].

8.4.2 Oxford dataset

To evaluate the performance of the proposed descriptor, the evaluation protocol described by Miko-

lajczyk and Schmid [247] is employed which uses the standard Oxford dataset2. The dataset includes

image sets to evaluate different geometric transformations and imaging effects. The first image in

each set is considered as a reference image and the other images are acquired under the designated

change. A match is considered correct if the overlap error in the image area covered by two corre-

sponding regions is less than 50% of the union of the regions and the recall/1-precision is reported.

The proposed method is compared to SIFT (as the baseline), DAISY, and LIOP and MROGH

which have the highest performance according to the recent descriptor comparison study by Miksik

and Mikolajczyk [249]. Figures 8.7 and 8.8 shows the performance of the descriptors.

Two versions of our method are shown: 1) using only isotropic scaling for support regions

(READ−), and 2) adding anisotropic scaling and rotation to the previous version (READ). As

one can see, the proposed method outperforms the other methods in all cases including illumination

change (leuven), rotation and zoom (bark, boat), blur effect (trees, bikes), and view point change

(wall, graf). An interesting case is the “1-5” pair in the graf dataset in which adding anisotropic

scaling and rotation degrades the performance. This case shows that the performance of rotated

and anisotropically scaled support regions relies on the accuracy of the affine region detector. The

regions detected by the Hessian-affine detector is not very precise on the graf dataset due to the

textureless nature of the scene. Therefore, due to a large view-point change, a small inaccuracy

produces a large error when rotation and anisotropic scaling are used to define the support regions.

Without using rotation or scaling (READ−), however, a much better result for this special case is

obtained. Nevertheless, if the viewpoint change is smaller (e.g., less than 40◦ as shown in “1-4” pair

in graf) or if the scene has some texture to help better detection (e.g., the wall), anisotropic scaling

and rotation improve the result as shown in the other cases.

2Available at http://www.robots.ox.ac.uk/ vgg/research/affine/
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Figure 8.7: Performance of the descriptors on the Oxford dataset: boat (zoom and rotation), bark
(zoom and rotation), graf (viewpoint change), and wall (viewpoint change). The READ− is our
descriptor with no anisotropic scaling or rotation of support regions. The y axis is recall and the x
axis is 1-precision.

With the exception of “1-5” pair in leuven, the MROGH is the second best method. In general, all

the examined descriptors perform better than SIFT. The average runtime to compute the descriptors

on a PC with an Intel quad core 2.60 GHz CPU with 16GB RAM running Windows 7 Professional

is 2.4 ms for READ, 3.1 ms for MROGH, 2.1 ms for LIOP, 1.9 ms for DAISY, and 1.0 ms for SIFT.
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Figure 8.8: Performance of the descriptors on the Oxford dataset: leuven (illumination change),
trees (blur), and bikes (blur). The READ− is our descriptor with no anisotropic scaling or rotation
of support regions. The y axis is recall and the x axis is 1-precision.

Therefore, our method not only outperforms MROGH but also is quite faster.

8.4.3 Noise

To evaluate the performance of the descriptors in the presence of noise, the “1-5” image pairs of

the Oxford dataset and two types of noise (i.e., Gaussian and the salt & pepper, SP) are considered.

The Gaussian noise with different Signal to Noise Ratio (SNR), and SP noise with different noise

density are added to the “5” image while the reference image “1” is unchanged. The area under

the curve (AUC) is used for the recall/1-precision graphs for the original (AUCorig) and the noisy

(AUCnoise) conditions. The AUC drop ratio ((AUCorig − AUCnoise)/AUCorig) is shown in

Figure 8.9. As one can see, the READ method is the most robust one in all levels of both types of

noise. In some levels of noise READ− is slightly more robust than READ. After READ, the next

robust methods are MROGH, and DAISY. SIFT and LIOP are the most sensitive methods in the
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Figure 8.9: The AUC drop ratio in different levels of noise for a) Gaussian noise, b) salt & pepper
noise [227].

Gaussian and SP noise, respectively.

8.4.4 Motion Blur

Motion blur is one of the common and challenging problems in many computer vision applications.

In spite of its importance, and to the best knowledge of the author, the effect of motion blur on

the performance of descriptors have not been explored. To do so, the motion blur effect function

in MATLAB is applied to our images. This includes motion blur effect with distances of 4 to 16

pixels with a step size of 4 pixels. The images are shown in Figure 8.10. The performance of the

descriptors for this dataset is shown in Figure 8.11. One can see that the READ descriptor notably

outperforms the other methods.

8.4.5 Non-uniform Illumination

Non-uniform illumination and shadows are among the most challenging effects. To evaluate the

performance of the descriptors the “1-2” and “1-3” image pairs from the nuts dataset3 shown in

Figure 8.12 are used.

The performance of the descriptors in the nuts dataset is shown in Figure 8.13. It can be observed

that the READ descriptor remarkably outperforms the other methods.

8.5 Summary

In this chapter a novel region descriptor called READ has been described. The main goal for this

descriptor is robustness to imaging effects. In addition to using gradient information computed by
3Accessible at http://lear.inrialpes.fr/people/mikolajczyk/Database/
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(a)

(b) (c)

(d) (e)

Figure 8.10: Images used for the motion blur experiments. a) The original image, b) motion offset
of 4 pixels, c) 8 pixels, d) 12 pixels, and e) 16 pixels.
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Figure 8.11: Performance of the descriptors on the additional ice-bird dataset (motion blur).
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(a)

(b) (c)

Figure 8.12: Images used for the non-uniform illumination change experiments: a) reference image
(nuts1), b) nuts2, and c) nuts3.
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Figure 8.13: Performance of the descriptors on the additional nuts dataset (non-uniform illumination
changes).

LFDG, a novel method to define support regions has been described. The experimental results show

that the READ descriptor outperforms the state-of-the-art descriptors such as SIFT, LIOP, DAISY,

and MROGH in ordinary geometric transformations and common imaging effects. Additional ex-
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periments on noise, motion blur, and non-uniform illumination change further demonstrated the

robustness and superior performance of the proposed method.
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Chapter 9

Robust 3D Texture Features

9.1 Introduction

Texture analysis of 3D data can be broadly divided into two categories: spacetime texture and volu-

metric texture. Spacetime texture considers phenomena evolving in time such as fire flames, water-

falls, or even a group of runners on a street. The 3D data includes a sequence of 2D images, each of

which is acquired at a different time, and the data is defined as (x, y, t) where x and y denote space

and t represents time.

The second group, volumetric texture, is about the data acquired from a 3D volume. The data

is represented by (x, y, z), where x, y, and z denote space. Examples include medical images

acquired by different modalities such as magnetic resonance imaging (MRI), computed tomography

(CT), and ultrasound (US). There are a few methods to analyze 3D volumetric data. The developed

methods are usually extensions of current popular 2D methods. Nonetheless, the need for analysis

of volumetric data, particularly in the domain of medical image analysis, encourages developing

new texture methods that are able to analyze volumetric data in a robust and accurate manner.

In this chapter a novel 3D method to analyze volumetric data is presented. In this method first

the LFDG is extended to compute local gradient in 3D space. The construction of texture features

is based on 3D and 2D gradient information at each voxel. By using LFDG in 2D the gradient

information is extracted on the XYZ orthogonal planes at each voxel. This information is used to

form a local coordinate system. The local coordinate system and the local 3D gradient computed by

the proposed 3D LFDG are then used to define volumetric texture features. This method have been

published in [228].

In Section 9.2, the extension of LFDG into 3D Gradient operator is explained. The construction

of texture features is demonstrated in Section 9.3. The evaluation of the method is presented in

Section 9.4. Finally, the summary of this chapter is given in Section 9.5
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Figure 9.1: Extension of LFDG to 3D by sampling on a sphere using N = 4 and M = 8 set-
ting [228].

9.2 3D Gradient Estimation

In Section 7.5.3, it is explained that the 2D LFDG can be interpreted as the projection of the local

samples into the x and y axes. As a result, the gradient for a given axis can be computed by

multiplying the intensity value of the samples by the cosine of the angle between the sample’s

location and the axis. Using this intuition, the LFDG can be easily extended to 3D:

LFDGa =
P∑
k=1

fkcos(θa), (9.1)

where θa is the angle between an arbitrary axis (a) and the kth sample and the samples are located

on a sphere of radius R. To define the location of samples the range [−1 1] on axis a is divided into

N intervals. At each interval, M samples are used on the sphere. By considering 2 samples on the

poles (i.e., parallel, and anti parallel to the axis), (N − 1)M + 2 samples on the sphere are used

(Figure 9.1).

An example of gradient computation for a 3D MRI brain image is shown in Figure 9.2. In this

example, the gradients are computed for the x, y, and z axes (R = 2, N = 16, M = 4). The brain

is shown in 3 views: axial, coronal, and sagittal, and the coordinate system is shown for each view.

It is noteworthy that the pattern of distribution of samples on the sphere and the number of

patterns will produce different gradient estimation. Also, using a non-symmetric shape (e.g., elliptic

in 3D or oval in 2D) is possible. All these settings give further flexibility to generate different

estimations of gradients.

Similar to the 2D LFDG, the 3D LFDG can be implemented by an efficient kernel computation.

For a radius of R, the kernel has a size of N ×N ×N in 3D where N = 2R+ 1. For instance, for

R = 1, the kernel is 3× 3× 3. Here, the value of each sample is found using trilinear interpolation

from its eight nearest neighbors. A matrix T is defined to incorporate the estimation of each sample

fk (the matrix called B in the 2D LFDG to represent Bilinear interpolation). T is a P ×N3 matrix
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Figure 9.2: 3D LFDG on a sample MRI brain image. The rows show Axial, Coronal, and Sagittal
views. The first column is the original image, the next 3 columns are the gx, gy , and gz , and the last
column is the coordinate system for each view [228].

where the rows of the matrix represent the samples and the columns the weight of each element

in the kernel. If a sample is located in the center of a voxel, in the corresponding row only one

element has the value of one and the rest of the elements are zero. Otherwise, eight elements in

the corresponding row of the T matrix have non zero values representing the weights of the nearest

voxels to the location of that sample.

Similar to the 2D LFDG, a 1 × P row vector called C is considered to represent the cosine

weights in Eq 9.1. Each element of C is the cosine of the angle between the sample fk and the axis.

The kernel is defined as Ker = C × T which is a 1 × N3 row vector. The Ker is reshaped to

N ×N ×N , and the values of Ker are reflected around the center for the convolution operation.

9.3 3D Texture Features

In this section, the construction of the 3D texture features is explained. In the first step, the gradient

information is extracted on the XYZ orthogonal planes at each voxel using the 2D LFDG. This infor-

mation is used to form a local coordinate system. In the second step, the 3D gradient information is

extracted by the 3D LFDG and is quantized using the local coordinate system. Finally, the features

are constructed by pooling the quantized gradients into histogram bins using their intensity values.

These steps are explained in the next subsections.
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Figure 9.3: Construction of the local coordinate system. On the left, the original coordinate system
is shown. In this example, ~V1 = ~VXZ and ~V2 = ~VXY . The plane through ~V1 and ~V2 with normal
vector ~k is shown. On the right, the new local coordinate system is shown [228].

9.3.1 Local Coordinate System

To compute 3D texture features, first a local coordinate system is defined at each voxel. The 2D

LFDG operator is used to form the local coordinate system. To do so, the 2D LFDG is applied to

the XY , XZ, and Y Z planes to give local gradients on each plane. The 2D local gradient vectors

are called
#�

V XY ,
#�

V XZ , and
#�

V Y Z . The
#�

V XY ,
#�

V XZ , and
#�

V Y Z vectors are sorted based on their

magnitude. Assume that
# �

V1,
# �

V2, and
# �

V3 are the sorted version of
#�

V XY ,
#�

V XZ , and
#�

V Y Z :

| # �

V1| ≥ |
# �

V2| ≥ |
# �

V3|, (9.2)

where | | denotes the L2 norm operator. To avoid confusion with the original axes #�x = [1, 0, 0]T ,
#�y = [0, 1, 0]T , and #�z = [0, 0, 1]T , assume that the local coordinate system is represented by
#�

i = [xi, yi, zi]
T ,

#�

j = [xj , yj , zj ]
T , and

#�

k = [xk, yk, zk]T (using the right-hand rule), respectively.

To define the local coordinate system
# �

V1 and
# �

V2 are considered. The local coordinate system is

constructed such that the
#�

i and
#�

j axis are located on the plane passing from
# �

V1 and
# �

V2. To do so,
#�

i is set in the direction of
# �

V1. Then
#�

k is set as:

#�

k =

# �

V1 ×
# �

V2

| # �

V1 ×
# �

V2|
. (9.3)

Using this strategy,
#�

k is perpendicular to the plane passing through
# �

V1 and
# �

V2. Therefore,
#�

i and
#�

j

are located on the same plane passing through
# �

V1 and
# �

V2. Figure 9.3 illustrates the construction of

the local coordinate system.

The local 3D gradient
#�

V (vx, vy, vz) is computed along the x, y, and z axes using Eq. 9.1. The

direction of the gradient vectors are computed by normalizing the local gradients:

#�

V norm =

#�

V

| #�V |
. (9.4)
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(a) (b)

Figure 9.4: Tessellation of a unit circle for N = 8 and M = 6. a) The original tessellation (his-
togram bins), b) The triangle bins around the pole are merged to form one bin [228].

The normalization step makes the vector a point on the surface of a unit sphere.

9.3.2 Orientation Quantization

In the next step, the direction of local gradients are quantized into 3D histogram bins using their

local coordinate system. In order to quantize the vectors, the idea presented in [192] is used with

some modifications. In this approach, a unit sphere is parameterized by the elevation (−1 ≤ z ≤ 1)

and azimuth (0 ≤ φ < 2π). In order to have regions with equal area on the sphere, the elevation

(−1 ≤ z ≤ 1) is divided into N equal distances and the azimuth into M equal intervals. This

tessellation results in 2M spherical triangles at the poles and (N − 2)M spherical quadrangles

on the rest of the sphere each of which has the same solid angle of 4π/(NM). In this thesis the

triangles around the poles are merged which results in (N − 2)M + 2 regions. Figure 9.4 illustrates

a quantization for N = 8 and M = 6.

The regions around the two poles are merged to avoid instabilities occurring when a vector is

close to a pole. In such cases a small difference (e.g., noise) can change the vector’s designated bin.

9.3.3 3D Texture Features

Since a local coordinate system is used, it is needed to find an efficient way to assign vectors to

the bins. One may note that Eq. 9.4 gives the local gradients in the original coordinate system.

Therefore, the vectors
#�

i ,
#�

j , and
#�

k are used to find the corresponding bin for each vector
#�

V norm.

The elevation (e) and azimuth (a) indices are computed for this purpose. The elevation of
#�

V norm is

found by projecting
#�

V norm on the
#�

k axis:

#�

E = (
#�

V norm · #�

k )
#�

k , (9.5)
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where operator · is the dot product of the two vectors. The elevation index is then computed by:

e =


(
Sign(| #�E|)| #�E|+ 1

)
2

(N − ε)

 , (9.6)

where b c denotes the floor operator, ε a small positive number (i.e., 10−10), and Sign(| #�E|) the sign

operator:

Sign(| #�E|) =


−1 , if

#�

V norm · #�

k < 0

0 , if
#�

V norm · #�

k = 0

+1 , if
#�

V norm · #�

k > 0.
(9.7)

The range of the elevation index using Eq. 9.6 is [0 N − 1]. To compute azimuth first the projection

of
#�

V norm onto the ij plane is found. This can be done by subtracting
#�

E from
#�

V norm:

#�

V ij =
#�

V norm − #�

E. (9.8)

The angle between
#�

V ij and
#�

i can be found by:

φ = acos

(
#�

V ij

| #�V ij |
· #�

i

)
, (9.9)

where acos denotes arc cosine. One may note that this equation does not differentiate between

the vectors that have an angle of φ in the clockwise direction and those in the counter-clockwise

direction on the ij plane. To correct this, the cross product of
#�

V ij and
#�

i is used:

#�

C =
#�

i × #�

V ij . (9.10)

If
#�

C is in the direction of
#�

k (i.e., their dot product is greater than zero) then φ is a positive angle.

Otherwise φ is replaced by 2π − φ:

φ =

{
φ , if

#�

C • #�

k ≥ 0
2π − φ , otherwise.

(9.11)

The angle φ is in the range [0 2π). The azimuth index is now defined as:

a =

⌊
φM

2π

⌋
, (9.12)

where a is in the range [0 M − 1]. The bin index is a number in the range [1 (N − 2)M + 2]

computed based on the elevation and azimuth indices:

index(
#�

V norm) =

 1 , if e = 0
(N − 2)M + 2 , if e = N − 1

(e− 1)M + a+ 2 , otherwise.
(9.13)

To construct the final texture features the intensity ordering approach [86] is used. Assume that

a voxel with index n is represented by a quadruple V OX(n) = (I(n),
#�

V (n),
# �

V1(n),
# �

V2(n)), where

I(n) is the intensity of the voxel,
#�

V (n) the 3D gradient,
# �

V1(n), and
# �

V2(n), the two larger gradients

computed by the 2D LFDG (i.e., sorted “in-plane” gradients using Eq. 9.2). The voxels are sorted
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in ascending order of their intensity values, V OX(1), ..., V OX(N), where N is the total number of

voxels in the volume and I(1) ≤ I(2) ≤ ... ≤ I(N). The ordered voxels are divided intoK partitions,

Pr(k) =
{
V OX(n)|I(dN(k−1)

K +1e) ≤ I(n) < I(dN.kK e)
}
, (9.14)

where d e denotes the ceiling operator. In each partition, Pr(k), the orientation histograms are

computed separately:

H(k, i) =
1

|Pr(k)|
∑

∀V OX(n)∈Pr(k)

Bin(
#�

V (n), i).µ(k) (9.15)

where i is the index of the bins (i = {1, ..., (N − 2)M + 2}), |Pr(k)| the cardinality of partition k,

Bin(
#�

V (n), i) =

{
1, if index

( #�

V (n)

| #�V (n)|

)
= i

0, otherwise,
(9.16)

and µ(k) the ratio of the magnitude of the larger “in-plane” gradients in partition k with respect to

the whole volume

µ(k) =

∑
∀V OX(n)∈Pr(k) |

# �

V1(n)||
# �

V2(n)|∑
∀V OX(n)

| # �

V1(n)||
# �

V2(n)|
. (9.17)

The final feature vector is a (N − 2)M + 2 × K feature vector constructed by concatenating the

orientation histograms in all subregions:

LFD − 3D = {H(1, 1), H(1, 2), ...,H(K, (N − 2)M + 2)}. (9.18)

9.4 Evaluation

In this section the evaluation of the proposed method is explained. First, the description of the

datasets is given. After describing how the parameters are tuned, the classification results and ro-

bustness evaluations are presented. Finally, the run time of the methods is compared.

9.4.1 Datasets

In contrast to the 2D texture classification problem for which there are several standard evaluation

datasets, there is no standard 3D texture dataset for evaluation. As a result, it is common that each

method uses its own synthetic or realistic data which makes the comparison between methods hard.

To address this issue, four datasets (one synthetic and three realistic) that are publicly available are

used. The synthetic dataset [271]1 is composed of 15 texture classes. Each class has ten 64×64×64

samples generated by Fourier texture synthesis [210].

The realistic datasets are MRI images of the brain. In the first realistic dataset texture features

are evaluated for distinguishing between young versus old brains. It is well known that the brain

structure changes by aging [91], and therefore, it is useful if texture features can detect the changes.

1http://www.rfai.li.univ-tours.fr/fr/ressources/
3Dsynthetic images database.html
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Table 9.1: Specifications of 3D datasets.

Dataset Class No. Images in Class Type
Fourier 15 10 Synthetic
Aging 2 20 MRI
ISBR 3 18 MRI
Brain Tumor 2 10 MRI

Twenty images of young brains (average age of 18.6) and 20 old brains (average age of 86.8) from

the OASIS brain database 2 are picked. In each group half of the images belong to females and half

to males. The images are T1-weighted, with size of 176×208×176 and voxel size of 1×1×1mm3.

All images are preprocessed to remove the skull, to register to the Talairach atlas [334], and to correct

the intensity values (normalized).

The second realistic dataset aims to evaluate the capability of texture features for tissue classifi-

cation problem. To do this, the segmentation dataset of ISBR [294]3 is used. This dataset includes

18 T1-weighted brain MRIs (4 females and 14 males) in which the gray matter (GM), white matter

(WM) and cerebrospinal fluid (CSF) are segmented. The images are 256 × 128 × 256 with voxel

size of 0.94× 0.94× 1.5 mm3.

The third realistic dataset helps to evaluate the performance of the texture features to classify

tumour versus normal tissues in the brain. The pre-operative MRI (group 2) images from the BITE

(Brain Images of Tumors for Evaluation) dataset [243]4 are used. This brain tumour dataset consists

of 14 images of T1-weighted MRI with gadolinium. These images have been registered to a common

coordinate space. The images are 394×466×378 with voxel size of 0.5×0.5×0.5mm3. The masks

of the tumors are provided. To do the experiments the locations of the tumors are used to define the

non-tumour regions at the same location but on the opposite hemispheres. By this approach, for

each tumour region there is a corresponding non-tumour region. For simplicity the brains that have

only one tumour region are considered. Therefore, only 10 brains could be used. Table 9.1 shows

the specifications of the datasets.

9.4.2 Tuning Parameters

Three main parameters are used to compute the texture features. The first parameter is the scale at

which the 2D LFDG is computed. This information is used to construct the local coordinate system.

The radius of the 2D LFDG scale, Rc, is determined by the user. The number of samples, Pc, is

determined automatically from the size of the radius, Pc = 4 + 4Rc
5. The second parameter is the

scale at which the 3D LFDG is computed. This is used for computing the 3D gradient information

which is later quantized into orientational bins. Similarly, the radius, Rg , is defined by user. The

2http://www.oasis-brains.org/
3http://www.nitrc.org/projects/ibsr
4http://www.bic.mni.mcgill.ca/Services/ServicesBITE
5This is similar to the strategy of LBP-based methods in which the radius is set by the user and the number of samples is

determined by the given radius.
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Table 9.2: The parameter values used for each dataset.

Dataset Rg Pg Rc Pc K
Fourier 3 16 2 66 1
Aging 1 8 2 66 6
ISBR 3 16 2 66 2
Brain Tumor 3 16 1 34 3
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Figure 9.5: Parameters tuning step. a) the classification rate for the bast K for datasets. The entry
(i, j) in each 4 × 4 matrix shows the classification accuracy for Rc = i and Rg = j. b) the
classification rate for different values of K and best Rg and Rc.

number of samples, Pc, is set to Pg = 2+32Rg for the 3D LFDG. The third parameter is the number

of partitions, K. To learn these parameters, half of the data in each dataset is used. The radii of the

scales (Rc and Rg) are searched from 1, 2, 3, 4, and the best K is found from 1, 2, ..., 6. Table 9.2

shows the best parameters used for texture computation. Figure 9.5(a) shows the classification rate

for the best K for each dataset (e.g., K = 2 for ISBR). The entry (i,j) on each 4 × 4 matrix shows

the classification accuracy for Rc = i and Rg = j. For example, the classification rate for the ISBR

with Rg = 3, Rc = 2 is 99.74%. The higher classifcation rates are shown with a brighter color. In

Figure 9.5(b) the classification rate for different values of K and the best Rg and Rc are shown.

As one can see, the classification rate is affected by parameters changes. However, in most

of cases (specially Rc and Rg) the effect is quite small. In the Aging dataset there are several

parameters that result in 100% accuracy. In these cases any of the values could be selected. The

value of K=1 in the Fourier dataset indicates that partitioning (increasing K) does not improve the
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Table 9.3: The classification accuracy (mean±std) of different methods for the datasets. Methods
which significantly outperform are shown in bold.

Methods
Datasets

Fourier Aging ISBR Brain Tumor

3D GLCM (77.95±3.74)% (94.10±5.18)% (98.30±3.10)% (70.00±10.10)%

3D LBP (86.13±3.45)% (72.00±8.64)% (93.63±3.18)% (82.40±11.70)%

SOP (92.91±2.81)% (97.60±2.91)% (94.52±4.11)% (61.60±12.18)%

LFD-3D (98.64±1.09)% (100.00±0.00)% (100.00±0.00)% (84.20±9.71)%

results in this dataset.

No specific pattern is observed for choosing the number of partitions (K); however, it seems

that choosing a larger number (K ≥ 4) is a good option in a majority of cases. One may note that

increasing K has remarkably improved the performance in the Aging dataset. The best values for

Rc and Rg change from database to database, but there are some combinations which provide high

classification rates for all datasets (e.g., Rc = 2, Rg = 3).

9.4.3 Texture Classification

The proposedLFD−3D method is compared with three well-known texture classification methods:

3D GLCM [191], 3D LBP [270], and multiresolution Second Orientation Pyramid (SOP) [15; 289].

The author has implemented the first two methods since their codes are not publicly available and

uses the implementation provided the authors of the SOP method6. The recommended parameters

provided by the authors of these methods are applied. For GLCM the parameters have been set to

8 bins for intensity, 6 bins for gradient magnitude, 6 bins for gradient angle, and distance of 4. For

LBP, the parameters are: 2 for radius, 10 for number of samples, and 12 for number of uniform

patterns. For SOP the level of the pyramid is set to 4. For classification, the Nearest Neighbor (NN)

classifier, and L1 distance are used.

Half of the data are randomly selected for training and the rest are used for testing. To reduce

the variability of randomness, the classification is repeated 50 times. The classification accuracy

of the methods (mean±standard deviation) are shown in Table 9.3 and the best methods that are

statistically better than the others are shown in bold for each dataset.

As one can see, the proposed method provides the highest classification accuracy in all four

datasets. In the Tumor dataset 3D LBP is equally as good as the proposed method. While 3D GLCM

is the second best method for the ISBR, it is the third best method in the Aging, and Tumor datasets,

and the worst method in the Fourier dataset. SOP is the second best method for the Fourier and Aging

datasets, third best method for ISBR, and the worst method for the Tumor dataset. Finally, 3D LBP

is one of the best methods in the Tumor dataset and is the third best method in the Fourier dataset,
6http://www.dcs.warwick.ac.uk/∼creyes/m-vts/
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Figure 9.6: Classification rate of the methods in the presence of different levels of noise in the four
datasets: a) Fourier, b) Aging, c) ISBR, and d) Brain Tumor.

but has the lowest performance in the Aging and ISBR datasets. Overall, the proposed method

consistently outperforms the other methods. However, the performance of the other methods highly

depends on the dataset.

9.4.4 Robustness

To examine the robustness of the methods, noise and blur effects are added to the 3D images. In the

first experiment, a random Gaussian noise with a specific standard deviation (σ = 1, 1.5, ..., 3) is

added and the experiment is repeated 50 times. Figure 9.6 plots the average classification rate. The

image with σ = 0 represents the original classification where there is no noise.

It can be observed that the LFD-3D method has the highest classification rate at all levels of

noise in the Fourier, Aging, and ISBR datasets. The only exception is the Brain Tumor dataset in

which LFD-3D is the best method for low levels of noise, while for σ ≥ 2 3D LBP is the best

method. The most noise sensitive method in the Fourier and Aging datasets is the 3D GLCM which

looses its performance more than other methods. All methods have a good performance in the ISBR
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Figure 9.7: Classification rate of the methods in the presence of different levels of blur effect in the
four datasets: a) Fourier, b) Aging, c) ISBR, and d) Brain Tumor.

dataset. A possible reason is that that the texture of the white matter, gray matter, and CSF are quite

different and the noise does not change their separability very much. The ranking of the methods

remains the same in the Fourier, and ISBR; however, in the Aging and Brain Tumor datasets 3D

LBP improves its ranking.

In the next experiment the 3D images are blurred with a 3D Gaussian kernel with different band-

widths (σ = 1, 1.5, ..., 3). Figure 9.7 shows the performance of the methods. The first difference

between the noise and the blur effect is that the blur effect can improve the results in some cases.

This is no surprise as many applications in computer vision and image processing apply Gaussian

smoothing in the preprocessing step. This phenomenon is more obvious for the 3D GLCM. For

instance, in the Fourier dataset, 3D GLCM is fourth in ranking when there is no blur effect; how-

ever, after applying Gaussian blur its performance improves and the method becomes the second

best method at σ ≥ 2. Similarly, in the Brain Tumor dataset, 3D GLCM becomes the second best

method at σ ≥ 0.5. The most sensitive method to the blur effect is 3D LBP the performance of

which decreases in the Fourier, ISBR, and Brain Tumor dataset. The drop is quite significant in
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Table 9.4: The average run time in seconds of different methods for each image in different datasets.

Methods
Datasets

Fourier Aging ISBR Brain Tumor

3D GLCM 18.78 317.21 590.59 93.92

3D LBP 1.84 137.14 46.98 7.63

SOP 2.41 59.70 104.41 21.00

LFD-3D 0.91 9.51 22.91 3.79

the Brain Tumor dataset. The 3D LBP method has a different behavior in the Aging dataset and

its performance increases by applying the Gaussian blur kernel. The performance of SOP increases

in the Aging, ISBR, and Brain Tumor datasets; however, its performance decreases in the Fourier

dataset after the blur effect. The performance of LFD-3D in the Aging, ISBR, and Brain Tumor

datasets does not change noticeably, while its performance decreases slightly at σ ≥ 1.5 in the

Fourier dataset. Nonetheless, the LFD-3D has the best performance in all levels of blur effect for all

four datasets.

As one can observe, in general noise and blur effects have two different impacts. Increasing the

amount of noise usually degrades the performance of the methods. However, the blur effect some-

times improves the performance. The reason is that the blur effect removes the noise and smooths

the images which alleviates the effect of noise. This is particularly observable in the realistic datasets

(which have inherent noise) that the performance of some methods is improved. Nevertheless, be-

cause of the robustness of 2D and 3D gradient operators, the proposed method keeps its rank (as the

best method) in majority of cases for both effects.

9.4.5 Run Time

One important factor in practical usage is the run time of a method particularly in 3D data which

usually requires a high amount of processing. The efficient kernel based implementation of the

proposed method for gradient calculation makes it useful for practical usages. Table 9.4 shows

the run time of the methods. All methods have been efficiently implemented in Matlab (using

vectorization for speed). The programs run on a PC with an Intel quad core CPU with 16GB RAM

running Windows 7 Professional.

It can be observed that LFD-3D is the fastest method in all datasets. The next method is 3D

LBP in the Fourier, ISBR, and Brian Tumor. However, it has a slower runtime in the Aging dataset

which consists of large images. The slowest method is 3D GLCM since it needs to compute the

cooccurrence matrix for all directions with distances of 1 to 4. The proposed method is more than

two times faster than 3D LBP in small datasets, and more than 6 times faster than SOP (the second

fastest method) in the Aging dataset. Indeed, for the Aging dataset, LFD-3D can be computed in
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about 10 seconds, while it takes about 1 minute for SOP, more than 2 minutes for 3D LBP, and more

than 5 minutes for 3D GLCM.

9.5 Summary

In this chapter, a robust method for 3D texture classification has been presented. First, the LFDG

gradient operator was extended to 3D. The texture features are based on the proposed local gradients

computed “in plane” (by 2D LFDG) and “in volume” (by 3D LFDG). The 2D local gradients are

used to define a local coordinate system at each voxel. Using the two larger gradients make the

local coordinate system robust. The direction of the 3D local gradient vectors are quantized in

3D orientational bins defined using a local coordinate system. The local gradient computation is

efficiently implemented by 2D and 3D kernels. The experimental results on synthetic and realistic

image datasets demonstrate the accuracy, robustness, and speed of the proposed method compared

to that of the state-of-the-art volumetric texture classification methods. The proposed 3D gradient

operator can be used in general applications where a robust 3D gradient computation is needed.
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Chapter 10

Summary and Conclusions

Developing novel and robust texture analysis methods is important for many applications. One of

the main applications is in medical image analysis. Although texture analysis has been successfully

used in many medical imaging applications, its usage is challenging in some specific diseases. To

motivate the usage of texture analysis in more challenging medical applications, for the first time

this thesis has explored the power of texture features to study ALS (Chapter 6). The challenge

in ALS is that the pathological changes in the brain are not visible in MR images. The analysis

shows that texture features can distinguish between healthy subjects and patients with ALS. Also,

the proposed voxel based method is able to find regions with statistical difference. These regions

have been reported by other ALS studies.

This thesis presents novel voxel based texture analysis methods for the brain image analysis

(Chapter 5). While the current texture analysis applications in medical imaging need a priori hy-

potheses for defining the region of interests, the provided hypothesis free method detects significant

statistical difference automatically. The Statistical MAp fRom Texture (SMART) Toolbox has been

developed for public usage (Appendix A) which is a toolbox for SPM8 software.

This thesis also addresses the robustness issues by proposing the LFD which is first inspired by

the LBP. Based on the LFD, several methods have been established including two 2D and one 3D

texture classification methods (Chapters 7 and 9). It is shown that the proposed methods are not

only more accurate than the state-of-the-art methods but are also more robust to imaging effects

such as noise, blurriness, and illumination changes. These advantages led to defining novel gradient

operators for 2D and 3D data. It is also shown that the application of the proposed LFD features is

not limited to texture classification. The robust edge aware descriptor (READ) has been developed

which outperforms the state-of-the-art region descriptors for image matching (Chapter 8).

The list of the contributions of this thesis is:

1. Study ALS using 2D texture analysis: This is the first research work to apply texture analysis

to study ALS [229]. Two well-established 2D methods (e.g., GLAM and GLCM) are applied

to study ALS. The results justify using texture analysis to study ALS.
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2. A study of ALS using the voxel based texture analysis method: this study found several

regions affected by ALS and supports the view that ALS is a multisystem disease.

3. A new voxel based texture analysis framework: novel methods for texture analysis are pre-

sented for hypothesis free brain analysis.

4. A Computer Aided Diagnosis (CAD) tool for texture analysis of the brain: a CAD tool called

SMART is developed as a toolbox for SPM8 software to help doctors making diagnosis and

monitoring the progression of diseases by means of texture analysis.

5. Texture classification methods for 2D images: two methods are proposed based on LFD [225;

226]. the first method uses only the magnitude information of LFD, while the second method

employs both magnitude and phase information.

6. A new robust gradient operator for 2D images: it is shown that the phase and the magnitude

of the second frequency component of LFD can well represent local gradient orientation and

magnitude [228]. Therefore, a gradient operator has been defined. The method is imple-

mented by kernels and, hence, it is fast for common computer vision and image processing

applications.

7. Texture classification method for 3D images: a novel 3D volumetric texture classification

method is proposed which is based on the local gradients computed “in plane” (2D) and “in

volume” (3D) using the LFD gradient operators [228].

8. A robust gradient operator for 3D images: the 2D gradient operator is extended to 3D [228].

Similar to 2D operator, the 3D operator is implemented by kernels.

9. A new image matching method: a novel region descriptor, READ, is developed for image

matching [227]. By extending the LFD method to image matching application, the discrimi-

native power of the proposed method is further demonstrated.

10.1 Future Works

There are several works that can be done to extend work done in this thesis. Regarding data analysis,

T1 and T2 weighted MR images have been used in 2D ALS analysis. In 3D voxel based analysis T1

weighted images are used. Analysis can be performed in other imaging types such as DTI images

(e.g., FA map). Also, using larger and more datasets may help to see if the patterns of degeneration

are the same in this disease. Longitudinal analysis can be done as well.

The robust LFD-based methods proposed in this thesis are ROI based. The next interesting work

is to extend the idea to voxel based analysis and to apply it to ALS as well as other brain related

diseases. In addition, the CAD tool can be extended to include more texture analysis methods. At
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the moment, the toolbox includes VGLCM-3D, VGLCM-TOP-3D, and 3D GLCM ROI analysis

methods, but other analysis methods will enrich the toolbox.

The proposed LFD-based methods could be further improved. TheLFD−MF method needs to

choose the right number of channels for analysis. To include discriminative channels to the feature

vector, the channels are added from lower frequency to higher frequency one by one. Although this

strategy does not guarantee the best result, it has provided the highest accuracy compared to the

state-of-the-art methods. As a future work, the number of channels can be automatically selected

based on the frequency channel properties.

In LFD−MF and LFD−MPF the number and size of disk filters and the area of frequency

that the filters cover should be set by the user. There is a trade-off between the filtering area and

the robustness of method against noise. In conditions with high levels of noise, one may remove

the higher frequency components; however, in a normal condition the high frequencies may provide

useful information about the textures. Empirically 10 and 20 disks are chosen for the 128×128 and

200×200 images, respectively. Determining the disk filter settings based on the noise information

is an interesting research topic.

The 2D texture features and the proposed gradient operators can be used in several applications.

Robustness to noise, blur effect, and illumination changes makes the features favorable for different

computer vision and image processing applications. This thesis has extended the application of the

methods to image matching. Some other applications are:

• Segmentation: the texture features can be used to distinguish between different regions. The

features can be accompanied by intensity and/or color information. The noise robustness

makes the features more interesting for medical image segmentation where the noise is un-

avoidable.

• Registration: the texture features can be used for registration. The first approach is to find

landmarks using detectors such as SIFT and descriptors such as READ. Then by matching

the landmarks the transformation between the images could be found. The second approach

is to use texture information in addition to intensity information in the optimization-based

registrations.

• Search engines: the texture features can well represent the characteristics of images. As a

result, they can provide a concise representation of images favorable for search engines.

• Texture synthesis: the features can be extended for texture synthesis which has many applica-

tions including computer games and cartoon productions.

• Underwater imaging: the underwater images usually have poor quality. The proposed texture

features are robust to imaging effects and therefore are suitable for this type of images.
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The 3D texture features have been examined on MRI data. However, due to its accuracy and

robustness the method can be used for analysis of other types of medical images. As future works

one can explore the capabilities of the proposed feature in other image types. The proposed 3D

LFD method is not developed as a part of the CAD tool. A future work is to add this method to the

SMART toolbox.

Finally, the READ descriptor can be extended for object recognitions especially when illumina-

tion changes drastically and non-uniformly. A possible approach is to use bag of words using the

features as the words.
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[197] F. Kurth and E. Lüders. Vbm8 toolbox manual. URL: http://dbm.neuro.uni-jena.
de/vbm8/VBM8-Manual.pdf, Accessed in September, 2014.

[198] E.C. Kyriacou, C. Pattichis, M. Pattichis, C. Loizou, C. Christodoulou, S.K. Kakkos, and
A. Nicolaides. A review of noninvasive ultrasound image processing methods in the anal-
ysis of carotid plaque morphology for the assessment of stroke risk. IEEE Transactions on
Information Technology in Biomedicine, 14(4):1027–1038, 2010.

[199] L. Lacomblez, G. Bensimon, V. Meininger, P.N. Leigh, and P. Guillet. Dose-ranging study of
riluzole in Amyotrophic Lateral Sclerosis. The Lancet, 347(9013):1425–1431, 1996.

[200] A. Laddi, S. Sharma, A. Kumar, and P. Kapur. Classification of tea grains based upon image
texture feature analysis under different illumination conditions. Journal of Food Engineering,
115(2):226–231, 2012.

[201] S.H. Lai and M. Fang. A new variational shape-from-orientation approach to correcting
intensity inhomogeneities in magnetic resonance images. Medical Image Analysis, 3(4):409–
424, 1999.

[202] H. Lategahn, S. Gross, T. Stehle, and T. Aach. Texture classification by modeling joint dis-
tributions of local patterns with gaussian mixtures. IEEE Transactions on Image Processing,
19(6):1548–1557, 2010.

157

http://dbm.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf
http://dbm.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf


[203] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representation using local affine
regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1265–1278,
2005.

[204] J.D. Lee, H.R. Su, P.E. Cheng, M. Liou, J. Aston, A.C. Tsai, and C.Y. Chen. MR image seg-
mentation using a power transformation approach. IEEE Transactions on Medical Imaging,
28(6):894–905, 2009.

[205] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens. Automated model-based
bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging,
18(10):885–896, 1999.

[206] P. Lehana, S. Devi, S. Singh, P. Abrol, S. Khan, and S. Arya. Investigations of the MRI
images using aura transformation. Signal and Image Processing: An International Journal,
3(1):95–104, 2012.

[207] R.A. Lerski, K. Straughan, L.R. Schad, D. Boyce, S. Blüml, and I. Zuna. MR image texture
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[333] V. Takala, T. Ahonen, and M. Pietikäinen. Block-based methods for image retrieval using
local binary patterns. In Image Analysis, pages 882–891. Springer, 2005.

[334] J. Talairach and P. Tournoux. Co-planar stereotaxic atlas of the human brain. 3-dimensional
proportional system: an approach to cerebral imaging. 1988.

[335] X. Tang. Texture information in run-length matrices. IEEE Transactions on Image Process-
ing, 7(11):1602–1609, 1998.

164



[336] C. Tempelmann, C. Gaul, G.R. Kühnel, E. Düzel, J.M. Hopf, H. Feistner, S. Zierz, H.J.
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Appendix A

Statistical MAp fRom Texture
(SMART) Toolbox

A.1 Introduction

In this appendix, the toolbox developed for 3D voxel based texture analysis is described. This

toolbox is provided for SPM81 software using the Matlab2 programming language and is called

Statistical MAp fRom Texture (SMART).

To the best knowledge of the author, there are few publically available texture analysis toolboxes

for brain image analysis. The most well-known software product is MAZDA [331]. MAZDA pro-

vides only ROI analysis. Also, it is not incorporated into commonly used brain analysis tools such

as SPM or FSL and therefore is not easy to use for brain analysis. The SMART toolbox addresses

these issues and not only provides the voxel-based and ROI analyses but also is incorporated into

the SPM software which makes the texture analysis of the brain easy for research studies.

As described in Section 5.2 the processing pipeline includes, pre-processing, texture feature

computation, and voxel-based statistical analysis. Several brain analysis tools including SPM8 and

FSL3 provide the first and last parts in the processing pipeline. In this section the description of

performing these steps using SPM8 is given.

A.2 Preprocessing

The preprocessing step includes intensity bias correction and brain spatial normalization (i.e., reg-

istering to atlas). The VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) is used to perform pre-

processing. It is an extension of the unified segmentation model [22] using the high-dimensional

DARTEL procedure [20] to normalize images to the MNI152 atlas.

The Estimate and Write module in VBM8 toolbox provides functionality to correct the intensity

bias and to normalize (register) T1 weighted images to the MNI152 atlas. The default parameters

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.mathworks.com
3http://www.fmrib.ox.ac.uk/fsl/
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(a) (b)

Figure A.1: The SMART toolbox, a) selecting the toolbox from SPM, and b) the three types of
texture analysis available in the toolbox.

are usually good for preprocessing step. The explanation of the parameters can be found in [197].

The outputs of this step are identified by the prefix wmr, which stands for warped (w), bias corrected

(m), and realigned (r).

A.3 Texture Analysis

In order to install the SMART toolbox the provided zip file should be uncompressed and copied

into the toolbox folder in the SPM8. After installation, the texture analysis toolbox appears in the

SPM toolbox section (Figure A.1(a)). Three types of texture analysis are available in the toolbox:

VGLCM-TOP-3D, VGLCM-3D, and GLCM 3D ROI analysis (Figure A.1(b)).

The first two methods are the voxel based texture analysis methods explained in Sections 5.2.2

and 5.2.3. Once the user selects the VGLCM-TOP-3D or VGLCM-3D analysis, a form similar to

the form shown in Figure A.2 is displayed. In this form the values of the parameters of the method

can be adjusted. The parameters include:

1. Volumes: In this part the user should choose the location of the input images. These images

are the outputs of the preprocessing step (identified by the prefix wmr).
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Figure A.2: The parameters shown for the VGLCM-TOP-3D and VGLCM-3D methods.

2. Mask: The user should specify the location of the mask. The mask should be inclusive (i.e.,

the voxels that are marked by 1 are processed and those marked by 0 are ignored) and should

have the same size as the input images. The mask could be provided for analysis of the whole

brain or just a part of the brain (e.g., thalamus, white matter, etc.).

3. VGLCM Parameters: The parameters include the quantization level, the radius of neighbor-

hood, and the distance explained in Sections 5.2.2 and 5.2.3.

4. Smoothing Kernel Size: The output images could undergo the Gaussian smoothing if the

data is quite noisy. If the user chooses the kernel size of zero no smoothing is applied.

5. Texture Features: The texture features to be computed are selected in this section.

The outputs of the VGLCM-TOP-3D and VGLCM-3D methods are saved with the postfix of

TextureFuture D N Q S denoting the name of the texture features and the values of the parameters

(distance, neighborhood radius, quantization level, and smoothing kernel size). The runtime for

computing all texture features for an MR image with size of 94× 188× 100 voxels using 8 quanti-

zation levels, neighborhood radius of 1, and distance of 1 is about 27 minutes for VGLCM-TOP-3D

and 166 minutes for VGLCM-3D on a PC with an Intel quad core 2.60 GHz CPU with 16GB RAM

running Windows 7 Professional.

The third analysis option in Figure A.1(b) provides the conventional ROI analysis which com-

putes a texture feature for a given region of interest. There are two approaches to using ROI analysis.

In the first approach images are not registered into an atlas. For this approach the user should provide
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Figure A.3: ROI Analysis. a) Parameters form. b) Sample results in an excel file.

a mask for each image separately to specify the region of interest on that image. In the second ap-

proach all the images are registered into an atlas. Hence, the users need to provide only one mask to

mark the region of interest. Figure A.3(a) shows the form to define the parameters for ROI analysis.

The parameters include:

1. Directory: The output directory is specified in this part. The output is an excel file with the

name format of ROI D ROI Q denoting the distance and the quantization level used for ROI

analysis. In this excel file the value of the texture features are reported (Figure A.3(b)).

2. Volumes: The 3D MRI images are selected in this part.

3. Mask(s): The mask(s) should be inclusive (i.e., the voxels that are marked by 1 are processed

and those marked by 0 are ignored) and should have the same size as the input images. If the

images are registered to an atlas, one mask is enough; otherwise, a separate mask should be

provided for each image. In this case the order of the mask files should be the same as the

order of the image volumes listed above in the item 2.

4. GLCM Parameters: The parameters include the quantization level and the distance ex-

plained in Section 5.2.2.

5. Texture Features: The texture features to be computed are selected in this part.
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Figure A.4: a) Performing voxel based statistical analysis includes 3 steps: 1) constructing the model
(Basic Models), 2) estimation of the model (Estimate), and 3) displaying the results (Results). b)
Defining the statistical model (Basic models module).

A.4 Statistical Analysis

The first two types of texture analyses, VGLCM-TOP-3D and VGLCM-3D, need a further step. In

this last step the texture features undergo voxel by voxel statistical analysis. Here, it is explained how

to perform the voxel based two-sample t-test analysis in SPM8 to distinguish differences between a

group of patients and healthy subjects. Performing voxel based statistical analysis includes 3 steps:

constructing the model, estimation of the model, and displaying the results (Figure A.4(a)).

First, it is required to specify the statistical model. In the main menu of SPM8 the Basic models

module is chosen. In the model specification, these parameters are determined:

1. Directory: The output directory is specified as to where the analysis results are stored.

2. Design: Two-sample t-test is chosen. Then, the texture features computed by VGLCM-TOP-

3D or VGLCM-3D methods are selected. All the texture images that belong to patients are put

in one group (e.g., Group 1 scans) and all the texture images that belong to healthy subjects

are put in the other group (e.g., Group 2 scans).

3. Covariates: If the user wants to count the covariates (e.g., age and gender), they should be

specified in this part.

4. Masking: The Implicit Mask should be set to No and the same mask used for texture compu-

tation (item 2 in VGLCM-TOP-3D and VGLCM-3D parameters form) should be selected as

the Explicit Mask.
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Figure A.5: To estimate the model the user should select the SPM.mat file in the directory where the
statistical model is constructed.

These parameters are shown by red boxes in Figure A.4(b). The default values for the other

parameters are used. For more details please see the manual of SPM8. Now, the user may run this

module to create the statistical model. Once the model is generated, the Estimate module from the

SPM8 main menu is selected (Figure A.4(a)). In this module the SPM.mat file in the directory where

the statistical model is constructed (Figure A.5) is chosen.

After the estimation of the model, the results can be observed by selecting the Results module

from the SPM8 main menu (Figure A.4(a)). After selecting Results, similar to the previous step it is

needed to specify the SPM.mat file in the directory where the statistical model is located. Once the

SPM.mat file is selected the contrast is specified. A contrast is used to compare different conditions

in the study. Here there are two conditions: patient, and healthy.

There are two contrast types: T-contrast and F-contrast. T-contrast examines only a single con-

straint on the model. For instance, it can be examined if the texture value of healthy subjects is

higher than the texture value of patients. An F-contrast can be thought of an OR statement contain-

ing several T-contrasts. If any of the T-contrasts is true, then the F-contrast is true.

Since the difference of textures are found and the difference can appear as either higher or lower

values in patients compared to healthy subjects, it is required to define the F-contrast as follows:[
0.5 −0.5
−0.5 0.5

]
(A.1)

Each row in the above matrix is a T-contrast. The first row tests that the value of texture is higher

in the first group while the second row examines that the value of the texture is lower in the first

group. If there are some covariates, then for each covariate a column of zeros should be added to

mask the effect of the covariate. For instance, if age and gender are entered as covariates, then the

F-contrast is defined as: [
0.5 −0.5 0 0
−0.5 0.5 0 0

]
(A.2)
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(a) (b)

Figure A.6: a) Defining contrast. b) Setting parameters to display

Figure A.6(a) illustrates the form used to define contrast. Once the contrast is defined, the

following parameters are specified to display the result (Figure A.6(b)):

1. Applying Mask: No.

2. ROI Analysis: No.

3. Title for comparison: The title of the form displaying the result is entered into this box.

4. p value: The method of correction for multiple comparison should be selected (FDR or FWE).

Also need to set the p values for level of significance (often 0.05 or 0.01).

5. Extent threshold{voxels}: The clusters (i.e., adjacent voxels which are statistically different

between the two groups) smaller than this value are ignored.

The final display looks like Figure A.7 showing the regions statistically different between the patient

and control groups.

A.5 Summary

In this appendix the SMART toolbox has been presented. This toolbox has been developed for

SPM8 software and provides three types of texture analysis: VGLCM-TOP-3D, VGLCM-3D and

the conventional 3D ROI GLCM. The outputs of the two methods are the statistical maps represent-

ing the differences between groups. This toolbox can help doctors to have a new analysis tool to

study brain related diseases.
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Figure A.7: Displaying the regions statistically different between the patient and control groups.
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Appendix B

Gradient Computation with LFDG

In this appendix the LFDG gradient outputs for more images are shown. These images are obtained

from the Kodak dataset1.

(a)

(b) (c)

(d) (e)

Figure B.1: Edge characterization on a realistic image from the Kodak dataset. a) original image,
b) central difference, c) derivative of Gaussian, d) Sobel, e) LFDG. The last column is an enlarged
version of a part of image. The gradient orientation is smoother in LFDG.

1http://r0k.us/graphics/kodak/kodim08.html
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(a)

(b)

(c)

(d)

(e)

Figure B.2: Edge characterization on a realistic image from the Kodak dataset. a) original image,
b) central difference, c) derivative of Gaussian, d) Sobel, e) LFDG. The last column is an enlarged
version of a part of image. The writing on the helmet has faint edges that are more evident in the
magnitude of LFDG.
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(a)

(b)

(c)

(d)

(e)

Figure B.3: Edge characterization on a realistic image from the Kodak dataset. a) original image,
b) central difference, c) derivative of Gaussian, d) Sobel, e) LFDG. The last two columns are the
enlarged version. The faint wire edges are more evident in the magnitude of LFDG.
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Appendix C

Additional Results of Voxel-based
Texture Analysis

In this appendix, the performance of the texture features obtained by voxel-based methods, VGLCM-

3D, and VGLCM-TOP-3D are presented. The performance metrics include detection rate, union

overlap, false negative error, and false positive error. These measurements are reported for each of

the eight lesion types and for texture features f1, f2, f3, f4, f5, f7, and f8 in Table 2.1.

Table C.1: The performance of f1 (Autocorrelation) computed for the 8 artificial effect types. For
each artificial effect type 60 artificial lesions are generated. The statistical significance of quanti-
zation level is denoted by †. That is, if a quantization level significantly improves a measurement
(its result is significantly better), it is denoted by †. The statistical significance of method (VGLCM-
TOP-3D vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance
in a specific measurement, that measurement is denoted by ∗ for the better method. The significance
is set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 98% 0.67±0.26 0.20±0.29 0.14±0.17 98% 0.63±0.23 0.17±0.26 0.21±0.20
II 92% 0.53±0.28 0.42±0.31 0.06±0.11 95% 0.64±0.27 0.24±0.31 0.13±0.18
III 100% 0.51±0.17 0.01±0.03 0.48±0.19 100% 0.48±0.18 0.01±0.04 0.51±0.20
IV 100% 0.58±0.16 0.01±0.03 0.42±0.18 100% 0.62±0.18 0.02±0.03 0.37±0.19
V 100% 0.71±0.16 0.12±0.19 0.18±0.15 100% 0.66±0.15 0.10±0.18 0.26±0.16
VI 100% 0.74±0.19 0.17±0.21 0.10±0.12 100% 0.72±0.17 0.11±0.19 0.18±0.15
VII 100% 0.53±0.16 0.00±0.01 0.47±0.17 100% 0.50±0.17 0.00±0.01 0.50±0.18
VIII 100% 0.65±0.15 0.00±0.01 0.35±0.16 100% 0.68±0.16 0.01±0.01 0.32±0.17
ALL 99% 0.61±0.20∗ 0.11±0.19∗ 0.28±0.20∗† 99% 0.61±0.21∗ 0.08±0.19∗† 0.31±0.22∗

V
G

L
C

M
-3

D

I 98% 0.60±0.25 0.23±0.29 0.18±0.20 98% 0.55±0.24 0.21±0.29 0.26±0.22
II 90% 0.42±0.27 0.53±0.31 0.06±0.12 93% 0.56±0.26 0.30±0.32 0.15±0.19
III 100% 0.43±0.16 0.02±0.05 0.56±0.19 100% 0.40±0.16 0.02±0.06 0.58±0.19
IV 100% 0.51±0.17 0.03±0.08 0.47±0.20 100% 0.57±0.20 0.04±0.08 0.40±0.23
V 100% 0.61±0.15 0.15±0.22 0.27±0.17 100% 0.55±0.13 0.13±0.21 0.35±0.18
VI 100% 0.66±0.18 0.22±0.23 0.14±0.14 100% 0.63±0.17 0.15±0.21 0.24±0.17
VII 100% 0.45±0.12 0.01±0.02 0.55±0.13 100% 0.43±0.13 0.01±0.03 0.56±0.14
VIII 100% 0.56±0.14 0.01±0.03 0.44±0.16 100% 0.59±0.15 0.02±0.03 0.40±0.17
ALL 98% 0.52±0.21 0.16±0.26 0.33±0.25† 99% 0.53±0.20 0.11±0.22† 0.37±0.23
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Table C.2: The performance of f2 (Homogeneity) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 100% 0.44±0.19 0.29±0.29 0.39±0.22 100% 0.44±0.15 0.21±0.25 0.43±0.22
II 88% 0.45±0.27 0.42±0.36 0.20±0.23 90% 0.41±0.23 0.31±0.38 0.33±0.25
III 100% 0.34±0.09 0.03±0.11 0.66±0.09 100% 0.36±0.12 0.05±0.13 0.63±0.14
IV 100% 0.34±0.10 0.06±0.18 0.64±0.10 100% 0.41±0.12 0.15±0.24 0.49±0.19
V 100% 0.39±0.12 0.40±0.23 0.39±0.20 100% 0.41±0.10 0.28±0.24 0.43±0.20
VI 100% 0.44±0.17 0.30±0.31 0.36±0.17 100% 0.40±0.15 0.31±0.30 0.41±0.19
VII 100% 0.37±0.07 0.07±0.12 0.61±0.07 100% 0.39±0.09 0.09±0.15 0.59±0.10
VIII 100% 0.36±0.07 0.09±0.17 0.62±0.06 100% 0.36±0.10 0.30±0.25 0.54±0.13
ALL 98% 0.39±0.16∗ 0.21±0.28 0.48±0.23∗ 99% 0.39±0.14∗ 0.21±0.27 0.48±0.20∗

V
G

L
C

M
-3

D

I 97% 0.39±0.13 0.28±0.28 0.45±0.20 97% 0.39±0.14 0.22±0.27 0.49±0.24
II 87% 0.37±0.23 0.45±0.37 0.27±0.26 90% 0.31±0.16 0.33±0.40 0.41±0.28
III 100% 0.30±0.06 0.02±0.05 0.70±0.06 100% 0.31±0.08 0.02±0.06 0.68±0.09
IV 98% 0.29±0.08 0.07±0.20 0.67±0.13 98% 0.34±0.11 0.11±0.25 0.59±0.17
V 100% 0.35±0.10 0.37±0.24 0.50±0.15 100% 0.38±0.08 0.26±0.23 0.52±0.13
VI 96% 0.39±0.12 0.26±0.31 0.46±0.17 98% 0.37±0.11 0.25±0.30 0.50±0.15
VII 100% 0.32±0.05 0.04±0.11 0.67±0.05 100% 0.33±0.05 0.05±0.10 0.66±0.05
VIII 100% 0.32±0.06 0.06±0.15 0.67±0.07 100% 0.31±0.09 0.22±0.26 0.63±0.09
ALL 97% 0.34±0.13 0.20±0.29 0.54±0.21 98% 0.34±0.11 0.18±0.28 0.56±0.19

Table C.3: The performance of f3 (Energy) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 100% 0.43±0.15 0.32±0.27 0.38±0.20 100% 0.44±0.15 0.30±0.31 0.34±0.20
II 83% 0.36±0.25 0.52±0.35 0.23±0.24 87% 0.36±0.23 0.41±0.41 0.29±0.21
III 100% 0.43±0.11 0.07±0.12 0.55±0.12 100% 0.48±0.15 0.17±0.26 0.42±0.16
IV 100% 0.42±0.10 0.08±0.16 0.55±0.13 93% 0.35±0.17 0.43±0.34 0.39±0.18
V 100% 0.37±0.11 0.44±0.22 0.40±0.18 100% 0.42±0.15 0.35±0.31 0.35±0.16
VI 100% 0.41±0.17 0.35±0.32 0.39±0.14 98% 0.36±0.18 0.45±0.34 0.38±0.17
VII 100% 0.44±0.08 0.12±0.12 0.52±0.09 100% 0.48±0.13 0.20±0.25 0.42±0.14
VIII 100% 0.41±0.09 0.15±0.16 0.55±0.10 98% 0.35±0.15 0.48±0.27 0.40±0.18
ALL 98% 0.41±0.15∗ 0.26±0.28† 0.44±0.19∗ 97% 0.41±0.18∗ 0.35±0.33 0.37±0.18∗†

V
G

L
C

M
-3

D

I 100% 0.34±0.12 0.40±0.29 0.43±0.22 97% 0.35±0.13 0.35±0.34 0.41±0.25
II 88% 0.29±0.20 0.57±0.33 0.35±0.25 92% 0.28±0.16 0.40±0.41 0.39±0.27
III 100% 0.34±0.07 0.12±0.14 0.63±0.09 100% 0.37±0.09 0.17±0.24 0.57±0.13
IV 100% 0.32±0.08 0.13±0.20 0.64±0.11 96% 0.27±0.11 0.38±0.33 0.61±0.17
V 100% 0.32±0.08 0.45±0.21 0.50±0.15 100% 0.36±0.09 0.34±0.28 0.46±0.15
VI 100% 0.34±0.12 0.35±0.33 0.49±0.16 96% 0.30±0.11 0.40±0.32 0.53±0.17
VII 100% 0.36±0.05 0.14±0.13 0.61±0.05 100% 0.38±0.07 0.18±0.22 0.56±0.08
VIII 100% 0.33±0.07 0.15±0.18 0.63±0.08 100% 0.28±0.10 0.41±0.26 0.61±0.13
ALL 98% 0.33±0.11 0.29±0.29 0.53±0.19 98% 0.32±0.12 0.33±0.32 0.52±0.20
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Table C.4: The performance of f4 (Correlation) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 95% 0.22±0.11 0.70±0.17 0.37±0.28 98% 0.29±0.15 0.59±0.20 0.39±0.26
II 73% 0.12±0.11 0.85±0.14 0.25±0.26 93% 0.20±0.13 0.73±0.20 0.39±0.28
III 100% 0.27±0.12 0.51±0.16 0.56±0.26 100% 0.30±0.14 0.42±0.20 0.59±0.23
IV 100% 0.27±0.09 0.51±0.18 0.55±0.22 98% 0.30±0.15 0.49±0.23 0.53±0.24
V 96% 0.20±0.11 0.71±0.18 0.47±0.22 100% 0.23±0.13 0.65±0.20 0.48±0.22
VI 95% 0.19±0.11 0.76±0.15 0.35±0.21 98% 0.26±0.11 0.64±0.19 0.40±0.21
VII 100% 0.24±0.07 0.52±0.19 0.59±0.20 100% 0.27±0.09 0.47±0.18 0.60±0.19
VIII 100% 0.27±0.08 0.49±0.19 0.57±0.14 100% 0.31±0.09 0.49±0.16 0.50±0.18
ALL 95% 0.22±0.11∗ 0.63±0.21 0.46±0.26∗ 98% 0.26±0.13∗† 0.56±0.22† 0.48±0.24∗

V
G

L
C

M
-3

D

I 98% 0.21±0.09 0.65±0.20 0.49±0.25 100% 0.27±0.13 0.48±0.25 0.59±0.21
II 82% 0.12±0.09 0.84±0.12 0.37±0.32 97% 0.22±0.12 0.63±0.21 0.54±0.22
III 100% 0.23±0.11 0.41±0.17 0.72±0.14 100% 0.20±0.08 0.30±0.22 0.78±0.09
IV 100% 0.23±0.09 0.49±0.21 0.65±0.18 100% 0.25±0.10 0.39±0.23 0.66±0.18
V 98% 0.20±0.10 0.65±0.21 0.59±0.17 100% 0.23±0.08 0.54±0.22 0.63±0.13
VI 100% 0.18±0.09 0.74±0.15 0.49±0.22 98% 0.26±0.09 0.55±0.18 0.54±0.16
VII 100% 0.23±0.05 0.40±0.17 0.70±0.10 100% 0.23±0.06 0.27±0.14 0.75±0.08
VIII 100% 0.26±0.08 0.45±0.19 0.64±0.11 100% 0.29±0.09 0.35±0.16 0.63±0.15
ALL 97% 0.20±0.10 0.59±0.24∗ 0.58±0.23† 99% 0.24±0.10† 0.44±0.24∗† 0.64±0.18

Table C.5: The performance of f5 (Dissimilarity) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 97% 0.37±0.20 0.40±0.30 0.48±0.24 98% 0.36±0.17 0.28±0.30 0.53±0.22
II 85% 0.38±0.27 0.52±0.35 0.24±0.27 92% 0.38±0.23 0.35±0.38 0.40±0.26
III 98% 0.26±0.10 0.17±0.28 0.73±0.09 100% 0.24±0.08 0.10±0.23 0.75±0.07
IV 96% 0.26±0.11 0.20±0.32 0.72±0.09 100% 0.31±0.12 0.15±0.29 0.66±0.12
V 100% 0.33±0.13 0.53±0.20 0.43±0.20 100% 0.36±0.13 0.35±0.25 0.50±0.20
VI 100% 0.39±0.18 0.40±0.31 0.41±0.18 100% 0.38±0.17 0.31±0.31 0.49±0.16
VII 100% 0.31±0.09 0.18±0.25 0.67±0.07 100% 0.29±0.08 0.11±0.21 0.70±0.07
VIII 100% 0.30±0.09 0.20±0.27 0.68±0.06 100% 0.32±0.10 0.21±0.25 0.64±0.09
ALL 97% 0.33±0.17∗ 0.33±0.32 0.54±0.24∗† 99% 0.33±0.15∗ 0.24±0.30 0.58±0.20∗

V
G

L
C

M
-3

D

I 97% 0.34±0.14 0.36±0.29 0.50±0.20 95% 0.32±0.13 0.27±0.30 0.57±0.20
II 85% 0.34±0.23 0.48±0.38 0.28±0.27 90% 0.32±0.18 0.35±0.38 0.47±0.26
III 100% 0.23±0.06 0.09±0.20 0.77±0.06 100% 0.21±0.06 0.06±0.17 0.79±0.06
IV 98% 0.25±0.09 0.13±0.27 0.71±0.13 100% 0.28±0.10 0.11±0.25 0.69±0.13
V 100% 0.30±0.10 0.47±0.23 0.55±0.14 100% 0.31±0.10 0.34±0.26 0.59±0.12
VI 96% 0.37±0.13 0.32±0.30 0.48±0.16 98% 0.36±0.13 0.25±0.31 0.54±0.14
VII 100% 0.26±0.06 0.12±0.22 0.73±0.05 100% 0.25±0.06 0.07±0.18 0.75±0.06
VIII 100% 0.27±0.07 0.13±0.24 0.71±0.06 100% 0.30±0.09 0.12±0.25 0.67±0.07
ALL 97% 0.30±0.13 0.27±0.31∗ 0.59±0.22† 98% 0.30±0.12 0.20±0.29† 0.63±0.18
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Table C.6: The performance of f7 (Sum average) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 98% 0.67±0.26 0.22±0.29 0.13±0.16 98% 0.61±0.23 0.19±0.28 0.22±0.19
II 90% 0.52±0.28 0.45±0.31 0.05±0.10 95% 0.62±0.27 0.27±0.31 0.12±0.17
III 100% 0.51±0.17 0.01±0.03 0.49±0.18 100% 0.48±0.18 0.01±0.02 0.51±0.19
IV 100% 0.60±0.17 0.01±0.03 0.39±0.19 100% 0.64±0.19 0.03±0.05 0.34±0.21
V 100% 0.70±0.17 0.12±0.20 0.19±0.15 100% 0.65±0.15 0.11±0.19 0.26±0.16
VI 100% 0.73±0.19 0.19±0.22 0.09±0.11 100% 0.72±0.17 0.13±0.20 0.16±0.14
VII 100% 0.53±0.16 0.00±0.01 0.47±0.16 100% 0.50±0.17 0.00±0.01 0.50±0.17
VIII 100% 0.67±0.16 0.01±0.01 0.32±0.16 100% 0.71±0.17 0.01±0.02 0.28±0.18
ALL 98% 0.62±0.22∗ 0.13±0.24∗ 0.26±0.22∗† 99% 0.62±0.21∗ 0.10±0.20∗† 0.30±0.22∗

V
G

L
C

M
-3

D

I 95% 0.58±0.25 0.26±0.30 0.18±0.20 97% 0.54±0.23 0.23±0.30 0.26±0.22
II 88% 0.41±0.26 0.55±0.31 0.06±0.12 93% 0.53±0.25 0.34±0.32 0.15±0.19
III 100% 0.42±0.16 0.02±0.06 0.56±0.18 100% 0.41±0.16 0.02±0.06 0.58±0.18
IV 100% 0.53±0.17 0.04±0.09 0.44±0.21 100% 0.58±0.19 0.06±0.10 0.38±0.23
V 100% 0.60±0.15 0.16±0.22 0.27±0.17 100% 0.54±0.14 0.15±0.22 0.35±0.18
VI 100% 0.64±0.19 0.24±0.24 0.14±0.14 100% 0.63±0.17 0.17±0.22 0.22±0.17
VII 100% 0.45±0.12 0.01±0.03 0.54±0.13 100% 0.44±0.13 0.01±0.03 0.56±0.13
VIII 100% 0.58±0.15 0.02±0.04 0.41±0.16 100% 0.61±0.16 0.03±0.04 0.37±0.18
ALL 98% 0.53±0.20 0.17±0.26 0.32±0.24† 99% 0.53±0.20 0.13±0.23† 0.36±0.24

Table C.7: The performance of f8 (Sum entropy) computed for the 8 artificial effect types. For each
artificial effect type 60 artificial lesions are generated. The statistical significance of quantization
level is denoted by †. That is, if a quantization level significantly improves a measurement (its result
is significantly better), it is denoted by †. The statistical significance of method (VGLCM-TOP-3D
vs VGLCM-3D) is denoted by ∗. That is, if a method has a significantly better performance in a
specific measurement, that measurement is denoted by ∗ for the better method. The significance is
set to (p < 0.05).

Q=8 Q=16
Type Detect UO FN Error FP Error Detect UO FN Error FP Error

V
G

L
C

M
-T

O
P-

3D

I 100% 0.34±0.14 0.46±0.23 0.48±0.20 100% 0.36±0.10 0.36±0.25 0.48±0.19
II 93% 0.31±0.18 0.54±0.31 0.37±0.22 100% 0.32±0.15 0.42±0.35 0.42±0.23
III 100% 0.32±0.09 0.20±0.24 0.66±0.08 100% 0.34±0.09 0.15±0.20 0.63±0.09
IV 100% 0.28±0.09 0.21±0.26 0.69±0.08 100% 0.31±0.08 0.30±0.24 0.61±0.13
V 100% 0.32±0.10 0.53±0.17 0.45±0.16 100% 0.37±0.11 0.37±0.23 0.46±0.17
VI 100% 0.34±0.13 0.41±0.29 0.50±0.13 100% 0.33±0.10 0.40±0.27 0.51±0.13
VII 100% 0.35±0.09 0.22±0.20 0.61±0.07 100% 0.37±0.08 0.17±0.20 0.60±0.07
VIII 100% 0.31±0.08 0.23±0.23 0.65±0.06 100% 0.30±0.07 0.38±0.21 0.60±0.11
ALL 99% 0.32±0.12∗ 0.35±0.28 0.55±0.18∗ 100% 0.34±0.10∗† 0.32±0.27 0.54±0.17∗

V
G

L
C

M
-3

D

I 100% 0.30±0.10 0.46±0.25 0.53±0.15 100% 0.30±0.08 0.36±0.27 0.56±0.15
II 93% 0.26±0.14 0.48±0.35 0.52±0.21 100% 0.24±0.08 0.39±0.35 0.59±0.20
III 100% 0.27±0.04 0.17±0.16 0.71±0.05 100% 0.27±0.05 0.14±0.15 0.72±0.06
IV 100% 0.24±0.05 0.14±0.19 0.74±0.07 100% 0.25±0.05 0.22±0.22 0.73±0.07
V 100% 0.30±0.07 0.48±0.18 0.55±0.10 100% 0.32±0.07 0.36±0.23 0.57±0.10
VI 100% 0.29±0.09 0.34±0.30 0.61±0.09 100% 0.28±0.07 0.34±0.27 0.63±0.09
VII 100% 0.30±0.05 0.17±0.15 0.67±0.05 100% 0.30±0.05 0.15±0.13 0.68±0.06
VIII 100% 0.26±0.06 0.16±0.20 0.72±0.08 100% 0.26±0.05 0.27±0.17 0.70±0.08
ALL 99% 0.28±0.09 0.31±0.28∗ 0.63±0.14 100% 0.28±0.07 0.28±0.25∗ 0.65±0.13
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Appendix D

Proofs in Details

In this section a more detailed version of the proof is presented which is not given in the paper due

to the space limit. Before we start, let’s establish the required equations and facts.

Using vector notation, a point XL in an ellipse satisfies XT
LMLXL = 0 in the homogeneous

representation, where ML is a symmetric matrix. Consider two elliptical regions XT
LMLXL = 0

and XT
RMRXR = 0 with canonical regions, XLc and XRc:

XLc = M
1/2
L XL (D.1)

XRc = M
1/2
R XR (D.2)

As shown by Mikolajczyk and Schmid [246], if the two elliptical regions are corresponding,

their canonical regions are related by a rotation:

XRc =R(α)XLc

Substituting Eq. (D.1),(D.2)⇒

M
1/2
R XR =R(α)M

1/2
L XL

XR =M
−1/2
R R(α)M

1/2
L XL (D.3)

Since ML and MR are symmetric matrices, they can be decomposed to the following forms:

ML = ΣLΛLΣTL, (D.4)

MR = ΣRΛRΣTR, (D.5)

where ΣL and ΣR are eigenvector matrices (i.e., orthogonal), and ΛL and ΛR the eigenvalue matri-

ces (i.e., diagonal). We define the transformation H:

H = ΣLS
−1ΣTL, (D.6)

where ΣL represents the eigenvector matrix of ML, and

S =

[
s1 0
0 s2

]
. (D.7)
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Lemma A. When D is diagonal and Q is orthogonal, then:

(QDQT )1/2 = QD1/2QT = QD1/2Q−1.

Proof. Since D is a diagonal matrix, D = D1/2D1/2:

D =

[
d1 0
0 d2

]
=

[ √
d1 0
0

√
d2

] [ √
d1 0
0

√
d2

]
Moreover, Q is orthogonal (QT = Q−1) and therefore QTQ = Q−1Q is the identity matrix.

(QDQT )1/2 =(QD1/2D1/2QT )1/2

Adding QTQ⇒

=(QD1/2QTQD1/2QT )1/2

=((QD1/2QT )(QD1/2QT ))1/2

=((QD1/2QT )(QD1/2QT )T )1/2

=((QD1/2QT )2)1/2

=QD1/2QT

=QD1/2Q−1

Lemma B. When S and D are diagonal and Q is orthogonal, then:

(QSDSTQT )1/2 = QD1/2STQT = QD1/2SQT .

Proof. The proof is similar to that of Lemma A. We just need to consider that the multiplication of

diagonal matrices has the commutative property (i.e., SD = DS).

(QSDSTQT )1/2 =(QSDSQT )1/2

=(QSD1/2D1/2SQT )1/2

Adding QTQ⇒

=(QSD1/2QTQD1/2SQT )1/2

=((QSD1/2QT )(QD1/2SQT ))1/2

=((QSD1/2QT )(QSD1/2QT )T )1/2

=((QSD1/2QT )2)1/2

=QSD1/2QT

commutativity of D1/2S ⇒

=QD1/2SQT

=QD1/2STQT .
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D.1 Lemma 1 Detailed Proof

Lemma 1. Transformation H maps XT
LMLXL = 0 into a new ellipse, the eigenvectors of which

are the same as the old ellipse but the eigenvalues are scaled by the (s1)2 and (s2)2 factors.

Proof. If the ellipse XT
LMLXL = 0 undergoes the H transformation, the new ellipse is defined as

X ′TL M
′
LX
′
L = 0, (D.8)

where X ′L and M ′L are

X ′L = HXL, and (D.9)

M ′L = H−TMLH
−1, (D.10)

respectively (refer to [133] for more information). We substitute ML (Eq. D.4), and H (Eq. D.6) in

Eq. (D.10):

M ′L =(ΣLS
−1ΣTL)−TΣLΛLΣTL(ΣLS

−1ΣTL)−1

=(Σ−TL SΣ−1
L )ΣLΛLΣTL(Σ−TL SΣ−1

L )

=Σ−TL S(Σ−1
L ΣL)ΛL(ΣTLΣ−TL )SΣ−1

L

=Σ−TL SΛLSΣ−1
L . (D.11)

ΣL is orthogonal and S is diagonal; therefore,

Σ−1
L = ΣTL (D.12)

S = ST . (D.13)

As a result, Eq. D.11 can be written as

M ′L =(Σ−1
L )TSΛLS

TΣ−1
L

=(ΣTL)TSΛLS
TΣTL

=ΣLSΛLS
TΣTL. (D.14)

Hence, the eigenvectors of the transformed ellipse are the same as one before transformation and

the eigenvalues are scaled by s2
1, and s2

2, respectively, which are claimed in Lemma 1.

D.2 Theorem 1 Detailed Proof

Theorem 1. Assume that the original ellipses defined by ML and MR undergo the HL and HR

transformations:

HL = RΣLS
−1ΣTL, (D.15)
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HR = RΣRS
−1ΣTR, (D.16)

where R is an arbitrary rotation matrix. Then, the ellipses are:

X ′TL M
′
LX
′
L = 0, (D.17)

X ′TR M
′
RX
′
R = 0, (D.18)

where X ′L, X ′R, M ′L, and M ′R are

X ′L = HLXL, and (D.19)

M ′L = H−TL MLH
−1
L , (D.20)

X ′R = HRXR, and (D.21)

M ′R = H−TR MRH
−1
R , (D.22)

respectively. The canonical regions of X ′L and X ′R (i.e., X ′Lc and X ′Rc) are related by a rotation.

Proof. We need to show that Eq. D.3 holds for X ′L and X ′R under the new elliptical regions defined

by M ′L and M ′R. To perform the proof, we may recall that R, ΣL, and ΣR are orthogonal and S,

ΛL, and ΛR are diagonal matrices. We also use Lemma C, presented after this theorem, to shorten
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the proof. We start by multiplying Eq. D.3 with HR

HRXR = HRM
−1/2
R R(α)M

1/2
L XL

Adding H−1
L HL ⇒

= HRM
−1/2
R R(α)M

1/2
L H−1

L HLXL

Substituting ML, MR, HL, and HR, using Eqs. (D.4),(D.5),(D.15),(D.16)⇒

= (RΣRS
−1ΣTR)(ΣRΛRΣTR)−1/2R(α)(ΣLΛLΣTL)1/2(Σ−TL SΣ−1

L R−1)HLXL

Lemma A⇒

= (RΣRS
−1ΣTR)(ΣRΛ

−1/2
R ΣTR)R(α)(ΣLΛ

1/2
L ΣTL)(Σ−TL SΣ−1

L R−1)HLXL

= RΣRS
−1(ΣTRΣR)Λ

−1/2
R ΣTRR(α)ΣLΛ

1/2
L (ΣTLΣ−TL )SΣ−1

L R−1HLXL

= RΣRS
−1Λ

−1/2
R ΣTRR(α)ΣLΛ

1/2
L SΣ−1

L R−1HLXL

Adding R−1R⇒

= RΣRS
−1Λ

−1/2
R ΣTR(R−1R)R(α)(R−1R)ΣLΛ

1/2
L SΣ−1

L R−1HLXL

= (RΣRS
−1Λ

−1/2
R ΣTRR

−1)RR(α)R−1(RΣLΛ
1/2
L SΣ−1

L R−1)HLXL

Lemma C (see below)⇒

= (H−TR MRH
−1
R )−1/2RR(α)R−1(H−TL MLH

−1
L )1/2HLXL

R and R(α) are both rotation matrices, therefore, substitute RR(α)R−1 with R(γ)⇒

= (H−TR MRH
−1
R )−1/2R(γ)(H−TL MLH

−1
L )1/2HLXL

Substituting X ′R, M
′
R,M

′
L, and X ′L, using Eqs. (D.21),(D.22),(D.20),(D.19)⇒

X ′R = M
′−1/2
R R(γ)M

′1/2
L X ′L.

(D.23)

Lemma C. The followings hold in the proof of Theorem 1:

RΣRS
−1Λ

−1/2
R ΣTRR

−1 = (H−TR MRH
−1
R )−1/2, (D.24)

RΣLΛ
1/2
L SΣ−1

L R−1 = (H−TL MLH
−1
L )1/2. (D.25)

Proof. We give the proof for Eq. (D.25). Eq. (D.24) can be proven using similar steps with an

aditional power of −1. We start from the right hand side of Eq. (D.25) and show that it is equal to
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the left hand side. First, let’s find H−1
L and H−TL .

H−1
L =(RΣLS

−1ΣTL)−1

=Σ−TL SΣ−1
L R−1

Eq. (D.12)⇒

=(ΣTL)TSΣTLR
−1

=ΣLSΣTLR
−1

=ΣLSΣTLR
T

(D.26)

H−TL =(H−1
L )T

Substituting H−1
L using Eq. (D.26)⇒

=(ΣLSΣTLR
T )T

=RΣLS
TΣTL

Eq. (D.13)⇒

=RΣLSΣTL (D.27)

Now, we begin from the right hand side of Eq. (D.25) and substitute H−TL , H−1
L , and ML using

Eqs. (D.27),(D.26),(D.4), respectively:

(H−TL MLH
−1
L )1/2 =[(RΣLSΣTL)(ΣLΛLΣTL)(ΣLSΣTLR

T )]1/2

=[(RΣLS)(ΣTLΣL)ΛL(ΣTLΣL)SΣTLR
T )]1/2

=(RΣLSΛLSΣTLR
T )1/2

Eq. (D.13): S = ST ⇒

=(RΣLSΛLS
TΣTLR

T )1/2

RΣL is orthogonal, (R and ΣL are both orthogonal), therefore, Lemma B⇒

=RΣLΛ
1/2
L SΣTLR

T

=RΣLΛ
1/2
L SΣ−1

L R−1. (D.28)
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