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Abstract

Word sense disambiguation (WSD) is one of the core tasks in natural language
processing and its objective is to identify the sense of a content word (nouns,
verbs, adjectives, and adverbs) in context, given a predefined sense inventory.
Although WSD is a monolingual task, it has been conjectured that multilin-
gual information, e.g., translations, can be helpful. However, existing WSD
systems rarely consider multilingual information, and no effective method has
been proposed for improving WSD with machine translation. In this thesis,
we propose methods of leveraging translations from multiple languages as a
constraint to boost the accuracy of existing WSD systems. Since it is necessary
to identify word-level translations from translated sentences, we also develop
a novel knowledge-based word alignment algorithm, which outperforms an ex-
isting word alignment tool in our intrinsic and extrinsic evaluations. Since our
approach is language-independent, we perform WSD experiments on standard
benchmark datasets representing several languages. The results demonstrate
that our methods can consistently improve the performance of various WSD

systems, and obtain state-of-the-art results in both English and multilingual

WSD.
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Chapter 1

Introduction

Natural languages are ambiguous in the way that many words have multiple
word senses. Usually, word senses can be determined by context. For example,
given the noun bank in the context shown in Figure 1.1, humans do not have
difficulty with disambiguating the sense of “sloping land” and the sense of
“financial institution” in each context. However, it becomes a difficult task for

computers to disambiguate word senses.

bank}, : sloping land clay that Argiento brought from the bank of the Tiber

bank? : financial institution appointed by the bank administering the estate

Figure 1.1: Examples of different senses for bank in different contexts. The
examples are from SemCor (Miller et al., 1994), a manually sense-annotated
corpus in English.

... appointed by the bank administering the estate ...

/— Sense Inventory ﬁ\

bank} : sloping land
[ bank?2 : financial institution
@ bank; : arrangement of objects

predict

bank?

Figure 1.2: Simplified illustration of the WSD task.



Word sense disambiguation (WSD) is the task of identifying the sense of
a content word (nouns, verbs, adjectives, and adverbs) in context, given a
predefined sense inventory, which enumerates possible word senses for each
content word. Thus, WSD can be viewed as a classification task in which the
input is a content word in context and the label is a predefined sense, as shown
in Figure 1.2. WSD is one of the core tasks in natural language processing with

various applications as described in the following examples (Navigli, 2009).

e Machine Translation: Machine translation is the task of automatically
identifying the target translation for a given source text. Ambiguous
words can affect the translation quality because the same source word
can have completely different target translations depending on their word
senses. For example, when the English noun bank is translated into
French, the sense of “sloping land” will be translated to rive, but the
sense of “financial institution” will be translated to banque. Thus, dis-

ambiguating the word sense beforehand will be beneficial.

o Information Retrieval: Information retrieval is the task of obtaining rel-
evant information resources from a given query. Existing search engines
usually do not rule out irrelevant web documents containing the query
words used in different senses. It becomes possible to prune unrelated
documents and increase the search precision by disambiguating the query

words and the queried documents.

Also, WSD itself is a meaningful task. For example, it can be used as the
assistance for dictionary look-up to help language learners. When language
learners look up an ambiguous word in a dictionary, they will find a list of
possible senses. However, it is sometimes challenging to identify the correct
sense from the context in an unfamiliar language. By applying WSD, we can
automate the sense identification and facilitate the language learning process.

A predefined sense inventory is necessary to perform WSD. WordNet (Miller,
1995) is the most widely used sense inventory for English WSD, and it cur-
rently covers over 150k English words with over 200k senses. WordNet can also

be used as a semantic network showing semantic relations among synsets, the
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sets of words sharing the same sense (sets of synonyms). Synsets are linked to
each other based on semantic relations such as hypernym-hyponym relations.
Such information is useful for WSD and many WSD systems take advantage
of it (Moro et al., 2014; Agirre et al., 2018).

Although WSD is a monolingual task, it has been conjectured that multi-
lingual information could be helpful (Dagan et al., 1991; Resnik and Yarowsky,
1999; Carpuat, 2009). Attempts have been made to develop methods leverag-
ing parallel corpora for sense tagging (Diab and Resnik, 2002), but no effective
method for improving WSD with translations has been proposed to date.

Much of the history of WSD has been determined by the availability of
manually created lexical resources in English, including SemCor, a manually
sense-annotated corpus, and WordNet, a semantic network. The situation
changed with the introduction of BabelNet (Navigli and Ponzetto, 2012a), a
massive multilingual semantic network, created by automatically integrating
WordNet, Wikipedia, and other resources. BabelNet covers over 250 lan-
guages, and in particular, BabelNet synsets contain sets of translations in
multiple languages for each individual word sense. Thus, we can view Babel-
Net synsets as mappings between senses and translations (sense-translation
mappings). In Figure 1.3, we show two BabelNet synsets corresponding to
the sense of “sloping land” and the sense of “financial institution” respectively
for the word bank. Methods have been proposed to use multilingual infor-
mation in BabelNet for WSD (Navigli and Ponzetto, 2012b; Apidianaki and
Gong, 2015), but they do not directly exploit the mapping between senses and
translations in multiple languages.

While there have been many attempts to apply WSD to machine transla-
tion (MT), (Liu et al., 2018; Pu et al., 2018), our goal instead is to harness
advances in MT to improve WSD. Rather than develop a new WSD system,
we propose general methods that can make existing and future systems more
accurate by leveraging translations. We evaluate our methods with several
supervised and knowledge-based WSD systems.

Our principal method constrains sense predictions of a given base WSD

system using sense-translation mappings from BabelNet. The approach is
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bank} (Synset Id: bn:00008363n)

Definitions (Gloss)
*  WordNet: Sloping land (especially the slope beside a body of water)
»  Wikipedia: In geography, the word bank generally refers to the land alongside a body of water.

Examples
*  WordNet: They pulled the canoe up on the bank
*  WordNet: He sat on the bank of the river and watched the currents

Translations

* EN: bank, beach, coast, riverbank, riverside, shore, ...
* FR: berge, rive, Berges, Chemin de berge, ...

* IT: riva, argine, sponda, banchina, ripa, ...

o JAFE, N )IE £F, L

bank? (Synset Id: bn:00008364n)

Definitions (Gloss)
»  WordNet: A financial institution that accepts deposits and channels the money into lending activities
* Wikipedia: A bank is a financial institution that accepts deposits from the public and creates credit.

Examples
» WordNet: He cashed a check at the bank
»  WordNet: That bank holds the mortgage on my home

Translations

» EN: bank, depository financial institution, banking company, ...
* FR: banque, Etablissement bancaire, Société bancaire, ...

+ IT: banca, istituto di credito, banco, cassa, ...

« JASRIT, EFRARG @A, A F 2T L

Figure 1.3: BabelNet synsets of two different senses for the noun bank. (For
simplicity, not all information is shown.)

robust enough to take advantage of translations in multiple languages, which
are produced manually or by MT models. It is also able to leverage sense
frequency information, which can be obtained in either a supervised or an
unsupervised manner. To incorporate a more recent technique, we test another
method that integrates translations as contextual word embeddings into a
WSD system to bias its sense predictions. To obtain word-level translations
from the translated contexts, we also introduce a novel alignment algorithm
guided by BabelNet synsets.

Our experimental results demonstrate that translations can significantly
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improve existing WSD systems. We perform several experiments on English
and multilingual WSD with both manual and MT translations. In the En-
glish WSD experiments with manual translations and word-level alignments,
we determine the potential of our methods in an ideal situation. In the multi-
lingual WSD experiments, we demonstrate the language-independence of our
methods. Finally, in the English WSD experiments with MT translations, we
validate its robustness and effectiveness by showing improvements over existing
WSD systems.

The main statement of this thesis is the following: although WSD is a
monolingual task, the performance of existing English and multilingual WSD
systems can be improved by leveraging translations from multiple languages as
a constraint.

The main contributions of this thesis are as follows: (1) we propose the
first effective method to improve WSD with automatically generated trans-
lations; (2) we achieve state-of-the-art results with our language-independent
knowledge-based method in both English all-words and multilingual WSD;
(3) we introduce an effective bitext alignment algorithm that leverages infor-
mation from BabelNet.

This thesis is organized as follows. In Chapter 2, we first review various
existing WSD systems, and then, introduce prior attempts to improve WSD
systems by integrating translations. In Chapter 3, we propose our baseline
method HARDCONSTRAINT and our principal method SOFTCONSTRAINT,
followed by a novel knowledge-based bitext alignment algorithm. Chapter 4
shows intrinsic and extrinsic evaluations to compare our alignment algorithm
with an existing alignment tool. In Chapter 5, we test our methods of improv-
ing WSD systems with translations in several experimental settings. Finally,
Chapter 6 concludes this thesis and discusses future work. We also provide

the detailed hyperparameter settings in Appendix A.



Chapter 2

Related Work

This chapter provides a general overview of WSD and translations in prior
work. First, we review existing WSD systems. Then, after introducing how
WSD is used to improve MT systems, we describe the prior attempts to inte-

grate translations into WSD.

2.1 WSD Systems

There are two main approaches to WSD: supervised and knowledge-based. Su-
pervised systems are trained on sense-annotated corpora and generally outper-
form knowledge-based systems. On the other hand, knowledge-based systems
usually rely only on a semantic network by utilizing graph-based algorithms.
Since it is expensive to manually obtain sense-annotated corpora and such cor-
pora exist mainly in English, it is often impractical to apply supervised systems
to the multilingual setting. Therefore, for multilingual WSD, knowledge-based
approaches are typically employed.

Many effective WSD systems have been proposed. To perform WSD in En-
glish, supervised systems are usually trained on SemCor (Miller et al., 1994),
a manually sense-annotated corpus in English. IMS (Zhong and Ng, 2010)
is a canonical supervised WSD system that trains support vector machines
on SemCor to produce word expert models, which provide different models
for each word type, with various lexical features such as surrounding words,
part-of-speech (POS) tags of surrounding words, and local collocations. Ia-

cobacci et al. (2016) extend IMS by introducing static word embeddings as an
6



additional feature.

Neural approaches are also employed to build supervised systems. Ra-
ganato et al. (2017b) propose a bidirectional LSTM model that can produce
a unified model to disambiguate all test words to show improvements over
classical word expert models. Kumar et al. (2019) propose an extended WSD
framework incorporating sense embeddings (EWISE) to address insufficient
sense coverage in the training data, i.e., SemCor. Instead of training a model
to produce discrete sense labels, EWISE uses a bidirectional LSTM model
with self-attention to predict sense embeddings from the test context. EWISE
makes sense predictions by comparing the similarity among obtained sense
embeddings and the gold sense embeddings, which are derived as knowledge-
graph embeddings computed from WordNet.

Nowadays, pre-trained deep models and contextualized word embeddings
are shown to be effective for various NLP tasks (Peters et al., 2018; Devlin
et al., 2019). LMMS (Loureiro and Jorge, 2019) leverages contextual word
embeddings computed by the BERT pre-trained model (Devlin et al., 2019),
surpassing the long-standing 70% F-score ceiling for supervised WSD. It learns
supervised sense embeddings by applying BERT to SemCor, with additional
semantic knowledge from WordNet. LMMS can perform WSD by a 1-nearest
neighbor (1-NN) approach. For a given target word, its contextual embedding
is also computed through BERT, and it is compared against LMMS embed-
dings of the possible sense candidates for the target word. Accordingly, the
sense of the LMMS embedding that is closest to the target contextual embed-
ding is used as a prediction.

Instead of using contextual embeddings from BERT, Huang et al. (2019)
finetune the BERT pre-trained model by adding a classification layer on top of
it. To obtain better WSD performance, they concatenate test sentences and
WordNet glosses of the possible senses as inputs.

Vial et al. (2019) propose an ensemble of transformer models taking BERT
embeddings as inputs. Their sense vocabulary compression (SVC) system
achieves state-of-the-art results on English all-words WSD by complementing

the sense coverage in the training data, i.e., SemCor, with hypernym-hyponym
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relations in WordNet.

Among the knowledge-based systems, the Lesk algorithm (Lesk, 1986) is a
classic system that determines word senses based on the word overlaps among
sense glosses and the context in which the test word appears. Banerjee and
Pedersen (2003) extended the Lesk algorithm by additionally considering the
related sense glosses based on hierarchical relations in WordNet. More re-
cent knowledge-based systems usually apply graph-based algorithms. Babelfy
(Moro et al., 2014) applies random walks with restarts to BabelNet to per-
form WSD and entity linking, the task of linking entity mentions in context
to proper entries in a semantic network. Even though Babelfy is based on
BabelNet, it does not utilize the translation information in BabelNet. Simi-
larly, UKB (Agirre et al., 2014, 2018) uses personalized PageRank on WordNet
and achieves state-of-the-art performance on English all-words WSD among
knowledge-based systems.

Multilingual WSD can be achieved either by automatically developing
sense-annotated corpora in multiple languages for training supervised systems
or by applying a knowledge-based system. Scarlini et al. (2019) map Wikipedia
categories to senses to automatically create sense-annotated corpora OneSeC
in multiple languages. When used to train an existing supervised WSD sys-
tem, it even outperforms the same system trained on SemCor, a manually
sense-annotated corpus, in terms of F-score evaluated on English all-words
WSD. It also outperforms existing automatic corpora when tested on other
languages.

As a multilingual knowledge-based system, SENSEMBERT (Scarlini et al.,
2020) learns knowledge-based multilingual sense embeddings obtained by com-
bining contextual representations learned using BERT with knowledge ob-
tained from BabelNet. SENSEMBERT also employs a 1-NN approach to per-
form WSD, and it yields state-of-the-art results on English nouns WSD and
multilingual WSD.



2.2 WSD for MT

There is some work studying the potential of WSD when integrated into
MT systems. Even for recent NMT systems, WSD is also beneficial be-
cause existing NMT systems sometimes have difficulties with properly trans-
lating ambiguous words despite their ability to encode global sentential context
(Rios Gonzales et al., 2017).

Liu et al. (2018) provide empirical evidence showing that translating highly
ambiguous words (homonyms) is still challenging for strong NMT systems by
showing the translation accuracy on English words with 15 senses (defined by
Cambridge English dictionary) is on average 30% lower than the accuracy on
monosemous English words, which have only one sense. Also, they propose an
NMT system that incorporates context-aware word embeddings to differentiate
word senses, and their system improves the quality of translations in terms of
both the BLEU score and translation accuracy on ambiguous words.

Pu et al. (2018) also address the issues with translating ambiguous words
by proposing a sense-aware NMT system. They employ clustering-based WSD
algorithms to induce sense embeddings, which represent probable senses for
each source word. By concatenating the learned sense embeddings with the
source word embeddings as inputs, they bias the NMT system to properly
translate ambiguous words. Their sense-aware NMT system shows consistent
improvement over the base NMT system on 5 language pairs.

In this work, we proceed in the reverse direction: we leverage advances in

NMT systems to improve the performance of WSD systems.

2.3 Translations for WSD

The integration of multilingual information to improve WSD has been con-
sidered in prior work. Through analyzing a multilingual dictionary on small
word samples, Resnik and Yarowsky (1999) observe that highly distinct senses
can translate differently, and thus can restrict possible sense candidates. How-

ever, they do not propose an actual method to perform WSD with translations



based on their observation.

Diab and Resnik (2002) propose a WSD system based on translation infor-
mation extracted from a bitext. They perform WSD based on sense similarities
among English words sharing the same translation. Thus, translations are only
used to cluster similar English words. In their experiments, they attempt to
obtain translations using commercial MT systems, but they did not address
the noise introduced by the MT systems. Also, their method fails to out-
perform systems that rely on monolingual information only. The underlying
assumption of their method is that words sharing the same translation are
synonymous. However, there is another possibility: such a translation is pol-
ysemous. As shown by Yao et al. (2012), these two contradicting assumptions
can be both true with almost the same probability. Thus, it is questionable to
always assume one of them is correct, and actually, Diab and Resnik (2002)
find highly polysemous or homonymous translations hurt the performance of
their method.

Cross-lingual WSD (Lefever et al., 2010) is a related task that aims to
predict a set of translations for a given ambiguous English word in context.
In this task, instead of using a predefined sense inventory, word senses are
described by a set of translations in different languages. Apidianaki (2009) use
bitexts to create bilingual sense inventory on word samples for cross-lingual
WSD. Also, there are some attempts to integrate translations as bag-of-words
feature vectors to enhance cross-lingual WSD (Lefever et al., 2011; Lefever
and Hoste, 2014). Since the goal of cross-lingual WSD differs from standard
WSD, our approach is not directly comparable.

There is also some work leveraging translations available in BabelNet.
Navigli and Ponzetto (2012b) make use of translations in BabelNet synsets
as a feature in a graph-based WSD system. They follow the recurring idea
that translations can restrict possible senses (Dagan et al., 1991; Resnik and
Yarowsky, 1999). However, instead of translating the context of the test word,
they take into account all the translations of each sense of the test word in
BabelNet. Through their English WSD experiment, they show introducing

the information from multiple languages yields better performance than the
10



same graph-based system with monolingual information only. Although they
use translations to enhance the sense distinctions, they do not explicitly apply
translations as a constraint.

Apidianaki and Gong (2015) directly apply sense-translation mappings in
BabelNet as a hard constraint on sense predictions using translations from
sense-annotated parallel datasets. Unlike this thesis, their approach is applied
to the BabelNet First Sense (BFS) baseline, derived from the degree of Ba-
belNet synsets, rather than to an actual WSD system. Also, they only use
translations from a single language and do not develop a method that is able
to simultaneously integrate translations from multiple languages. In addition,
they apply an off-the-shelf word alignment tool only to the test data, which
comprises less than 500 sentences, to obtain translations for the test words.
Since the accuracy of cooccurrence-based alignment algorithms will be seri-
ously degenerated by the limited size of data, their approach contains many
alignment errors. Due to these issues, their results on English WSD fail to
show improvement over the simple baseline. Also, when tested in other lan-
guages, their method fails to outperform other systems that are dependent on
monolingual information only. Furthermore, since their method is proposed for
SemEval-2015 task 13 multilingual WSD (Moro and Navigli, 2015), the evalu-
ation on the standard WSD datasets is not performed, as manual translations

do not exist.
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Chapter 3

Methodology

source sentence S w

HardConstraint
SoftConstraint sense

NMT BabAlign translations

target sentence —

BabelNet

Figure 3.1: The entire architecture of our model.

In our WSD formulation, the input is a sentence, with a word, e, designated
as the focus word. We are also provided with the set of possible senses of the
focus word S(e) from the sense inventory. The task is to determine which sense
s € S(e) is the sense of e in this sentence. We assume that a WSD system
assigns some numerical value or score (e.g. probabilities) to each sense, with
the output being the sense with the maximum score.

In this chapter, we propose two methods, called HARDCONSTRAINT and
SOFTCONSTRAINT, which can be used to augment a WSD system that meets
our WSD formulation (referred to as a “base” system). Both methods lever-
age translations for WSD in order to constrain sense predictions made by a
base WSD system. In addition, we introduce t_emb, a method of leveraging
contextual word embeddings to enhance the integration of translations in com-

bination with those constraints. Finally, since our methods crucially depend
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upon identifying the translation of the focus word in the translated sentence,
we also introduce BABALIGN, a new knowledge-based word alignment algo-
rithm to further improve the WSD performance. Figure 3.1 shows the entire

architecture of our model based on those components.

3.1 HardConstraint

s': an immature childish person s*: a human offspring of any age
s*i a young person s*: a member of a clan or tribe

Puwsd
... no more risk than other children of developing ...

st [o.60] base
gy ;
15| |o.02 ~ >
r s*] [0.01]
Intersection

s! {FR: bébé, enfant, DE: - , RU: -}
52 {FR: enfant, mineur, DE: Minderjahrige, Kind, RU: pe6erok} K—> {s> 53
53 {FR: enfant, bambin, DE: Kind, Kinder, RU: ditya, aetn}
s*{FR: enfance, enfant, DE: - , RU: -}

word align

FR: enfant ——» —> FR: {s}, &, &, 5%} Union
DE: Kind — N —> DE: {s? s’} ——L—> {s!, s?, %, s} L_) sl

RU: ditya ——3= — RU: {5°}
BabelNet

Figure 3.2: The application of HARDCONSTRAINT with intersection (red) and
union (blue) strategies when disambiguating the word children in the given
context (actual example from Senseval2 data where the correct sense is s?).

Our first method HARDCONSTRAINT extends the idea of Apidianaki and
Gong (2015) to constrain the set of possible senses of the focus word, i.e., S(e),
based on sense-translation mappings in BabelNet. However, instead of relying
on a single translation, we incorporate multiple languages through intersection
and union strategies.

In the intersection strategy, we take the intersection of the individual sets
of senses; that is, we rule out senses if their corresponding BabelNet synsets do
not contain translations from all target languages. The intersection strategy
is simple but inflexible: the correct sense can be accidentally ruled out if
the provided translation of the focus word is not found in the corresponding
BabelNet synset. The procedure for making the final sense prediction with
HARDCONSTRAINT (intersection) is shown in Algorithm 1.

On the other hand, in the union strategy, we take the union of the individ-

13



Algorithm 1 HARDCONSTRAINT (intersection)

Input:
Set of sense candidates for the source focus word e, S(e) = {s1,...,s,}
Set of target translations of e in different languages, T'(e) = {tr1,...,tm}

(> indicates a comment)

1: > get a list of sense candidates ranked by assigned probabilities
2: Syankea < TunWSD(S(e))
> take the intersection of the individual sets of senses corresponding to
BabelNet synsets containing e and ¢, € T'(e)
St S(e)
for t;, € T(e) do

St « SN BabelSynsets(e, tr)
if S! # () then

for s in S,4ukeq dO

if s € S! then

10: return s
11: else
12: return S, ,keql0]

@«

Subroutines:

13: runWSD(S(e)) returns the list of sense candidates ranked by assigned
probabilities derived from a base WSD system.

14: BabelSynsets(e,tr,) returns the set of senses corresponding to BabelNet
synsets containing both the source word e and the target translation #,.

ual sets of senses; that is, we rule out senses if their corresponding BabelNet
synsets do not contain any target translations. This baseline method can some-
what address the inflexibility of the intersection strategy, but it is not as good
as the intersection at reducing the number of sense candidates. The procedure
for making the final sense prediction with HARDCONSTRAINT (union) can be
shown by changing lines 4 and 6 in Algorithm 1. Instead of getting the whole
sense candidates S(e), St gets () as an initial state. Also, instead of taking the
intersection of the individual sets of senses, S? is updated by taking the union:
St « St U BabelSynsets(e, tr,).

Our implementations of HARDCONSTRAINT consider the intersection or

14



union of the sets of senses corresponding to syvnsets that contain translations
from each language. lIdeally, the resulting intersection or union contains ex-
actly one sense, which we take as the final prediction. Otherwise, if they
contain multiple senses, we choose the one with the highest score from the
base WSD system. If they happen to be empty, we also back-off to the predic-
tion of the base WSD system. In Figure 3.2, we exemplify the entire procedure

of HARDCONSTRAINT with both strategies.

3.2 SoftConstraint

s!: an immature childish person s*: a human offspring of any age
s?: a young person s': a member of a clan or tribe

Puwsad
.. no more risk than other children of developing ...

s 0.60 base
l ‘ s?|_|0.37 a 1
e @—’ s3| | 0.02 >S
r s*| [o.01

s! {FR: bébé, enfant, DE: - , RU: -}
5?2 {FR: enfant, mineur, DE: Minderjahrige, Kind, RU: pe6eHok}

s? {FR: enfant, bambin, DE: Kind, Kinder, RU: ditya, aetu} st 0.09 soft

c
%’ s?{FR: enfance, enfant, DE: - , RU: -} sz =[032| 5 g2
B . Pirens ® s'| oo
2 FR: enfant — > FR: {s', &, 5%, 5} s2 0.16 s 0.03
DE: Kind — —> DE: {s%, 5} —— > 53 —|0.25
RU: ditya —3= —> RU: {s%} s 0.43
BabelNet Ptreq 0.16
K st| |o.01
> W > |57 [=| 060
s’ [o.30
WordNet 5* 0.00

Figure 3.3: The application of SOFTCONSTRAINT (red) when disambiguating
the word children in the given context (actual example from Senseval2 data
where the correct sense is s2).

HARDCONSTRAINT is effective at ruling out sense candidates, but also
quite sensitive to M'T errors and BabelNet deficiencies. BabelNet contains
translations for only 79% of the nominal senses in WordNet, and its mul-
tilingual lexicalizations have an average precision of only 72% (Navigli and
Ponzetto, 2012a).

Our principal method, SOFTCONSTRAINT, is more robust in handling
noisy MT translations and BabelNet gaps. It integrates information from

three sources: the base WSD system, translations, and sense frequencies (Fig-
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ure 3.3). From each of these sources, we derive a probability distribution over
S(e). We employ the product of experts (PoE) approach (Hinton, 2002) to

combine the probabilities as follows:

p(8> - pwsd(s)a . ptmns(s)ﬂ . pf'req(s)7

The resulting score p is an unnormalized measure of probability with tunable
weights a, 4, and v, which sum up to one. We tune those weights through grid-
search on held-out development sets. The sense that maximizes this measure
is taken as the prediction. Below, we provide the details on each of the three
distributions.

Probability p.sq¢ is obtained by simply normalizing the numerical scores
from the base WSD system.

Probability pirns is calculated on the basis of the set of translations for
each source focus word e in BabelNet. Given a source focus word e and a
word f in another language, we obtain its sense coverage c(e, f) representing
the number of possible senses of e that are mapped to f, i.e., the number of
BabelNet synsets containing both e and f. Based on the sense coverage, the
word pair e and f is assigned a weight w(e, f) that reflects its discrimination

power:
— ifcle, f) £ 0

— ] @ep "AE
wle, f) {O otherwise

Now, we consider f to be a translation ¢ (e) for e in a target language L € L,
where £ stands for the set of target languages. The score of a candidate sense
s € S(e) is then the sum of weights of the translations that are found in the

corresponding BabelNet synset BN(s):

score(s) = Z{]]-BN(S)(tL<€)> ~w(e,tr(e))}

LeL

where 1 gn(s)(tL(e)) is an indicator function that becomes 1 if t;(e) € BN(s)
and 0 otherwise. As with p,s, we normalize the scores into a proper proba-
bility distribution p;.ns over the set of senses. Also, to avoid zero values, we
perform smoothing by adding a small positive value (a tunable parameter).

For example, pyans 0of each sense for children in Figure 3.3 can be computed
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as follows:!

1 1
w(FR: enfant) = (L 5% 5% 517 =1= 0.25
‘ 1 1
‘ 1 1
w(RU: ditya) = ey =7= 1.0

score(s') = w(enfant) = 0.25
score(s®) = w(enfant) + w(Kind) = 0.75
score(s®) = w(enfant) + w(Kind) + w(ditya) = 1.75
score(s*) = 0.0

1 score(s') 0.25

rans = = ~ (.14
Pirans(5') Y seg score(s)  1.75
) score(s?) 0.5

rans = = ~ (.29
Pirans(5”) Y segscore(s) 175
5 score(s?) 1.0

rans - = ~ (.57
Pirans (5°) Y seg score(s)  1.75

score(s*)

= 0.0

ptmns(s ) == Z

seg score(s)

Probability pge, represents the sense frequency information for a given

lemma and POS. This information is also used by most WSD systems. For

English, we obtain sense frequencies from WordNet, which derives such infor-

mation from SemCor, a sense-annotated corpus. To handle senses with zero

frequency in SemCor, we also apply additive smoothing. To obtain pj., for

languages other than English, which lack large, high-quality sense-annotated
corpora, we use CluBERT (Pasini et al., 2020), the state-of-the-art system

for unsupervised sense distribution learning, which applies a clustering algo-

rithm to contextual embeddings from BERT (Devlin et al., 2019) to infer the

'Resulting scores are slightly different from scores in Figure 3.3 because smoothing weight

is omitted for simplicity.
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frequency distribution of the senses of a given word from an un-annotated cor-
pus. Like our methods, CluBERT is language-independent, has no additional
training data requirements, and has been successfully integrated into WSD
systems to improve their performance.

Figure 3.3 illustrates how SOFTCONSTRAINT combines the three proba-
bility distributions to repair an incorrect sense prediction produced by a base

system.

3.3 Contextual Word Embeddings

Recent work has demonstrated the utility of contextual word embeddings for
NLP tasks (Peters et al., 2018; Devlin et al., 2019). Accordingly, WSD systems
such as SENSEMBERT (Scarlini et al., 2020) take a contextual embedding of
the focus word as input, in order to leverage its dense encoding of relevant
local information, which may be used to determine the correct sense.

In this section, we propose a method of adding translation information
to the input of a WSD system by modifying the contextual embedding of
the focus word to reflect its translation. We refer to this method as t_emb.
Note that this method can be combined with either the HARDCONSTRAINT
or SOFTCONSTRAINT methods. Unlike those methods, which use translations
of the focus word to post-process the output of a WSD system, t_emb provides
the translation information in the form of a contextual embedding directly
as input to the WSD system. Thus, translation information is used as an
additional feature to bias sense predictions of the base WSD system.

As before, our approach is to translate the context of the focus word,
and use word alignment to identify the translation of the focus word. We
compute a contextual embedding of this translation, just as we did for the
focus word itself, and then concatenate the two embeddings. This produces
a new embedding that can be provided to a base WSD system in place of
the focus word embedding alone. However, since not all WSD systems use
contextual embeddings, this method is less general, and we only apply it in

some of our models and evaluation experiments.
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3.4 Translation Alignment

The effectiveness of our approach to improving WSD depends on the correct
identification of the word-level translations in each language. Even when the
sentential context of the focus word is correctly rendered in another language,
both HARDCONSTRAINT and SOFTCONSTRAINT rely on the proper alignment
between the source focus word and its translation, which may be composed
of multiple word tokens. Although attention weights in some NMT systems
may be used to derive word alignment, such an approach is not necessarily
more accurate than off-the-shelf alignment tools (Li et al., 2019). Therefore,
our approach is to instead identify the word-level translations by performing a
bitext-based alignment between the source focus words and their translations.

During development, we found that the accuracy of alignment tools such
as FASTALIGN (Dyer et al., 2013) is limited by the size of the aligned bitext,
as well as the lack of access to the translation information that is present
in BabelNet. To mitigate these issues, we introduce a knowledge-based word
alignment algorithm BABALIGN? that leverages translation information in Ba-
belNet by post-processing the output of an off-the-shelf word aligner. Starting
from the test sentences in our WSD data and their translations, we first ap-
pend the translated WSD data to a large lemmatized bitext to ensure enough
amount of the input data for the aligner. We further augment the input data
with the BabelNet translations for all WSD focus words to bias the aligner
to predict the alignment links to valid translations, sharing BabelNet synsets
with the source focus words. We then run the base aligner in both translation
directions, and take the intersection of the two sets of alignment links.

In its final stage, BABALIGN leverages the BabelNet translation pairs
again, to post-process the generated alignment. We accept without further
correction all alignment links that align a focus word to a content word, which
appears in BabelNet as one of valid translations for the focus word. Otherwise,
we attempt to find a correct alignment for the focus word by searching for one

of its BabelNet translations within the target sentence (babelex_search). If

2Implementation is available at https://github.com/YixingLuan/BabAlign
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a possible translation is composed of multiple words (e.g., French translation
salle d’audience for English source word courtroom), we attempt to expand a
partial alignment to a complete alignment by searching the adjacent word to-
kens until we reach a token aligned to another source token or a function word
token (compound_search). Thus, our alignment algorithm is strongly guided
by its objective of identifying all BabelNet synsets that contain the focus word
and its translation. Algorithm 2 shows the entire procedure in BABALIGN.
Note that BABALIGN assumes one-to-one alignment from the base aligner.
If the base aligner produces many-to-many alignment, BABALIGN takes the
leftmost alignment link as the prediction of the base aligner. Even though
BABALIGN restricts one-to-one alignment as its input, it can restore many-
to-many alignment through its functionality to search surrounding words to

detect tokenized compounds.
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Algorithm 2 BABALIGN

Input:
list of all source tokens in a given sentence, o3 = (wsy, . .., Wy)
list of all target tokens in the translated sentence, oy = (wy, . .., Win)
BabelNet translations for a source word, Babelex(wy) = {lexy, ..., lex,}

(> indicates a comment)

1: > assume perfect tokenization in the source side and treat source com-
pounds in g as one token

. A < BaseAligner(og, oy)

: > A is a set of alignment pairs (ws, w;) produced by the base aligner;

> if w, is not aligned, wy = None

B W N

5: for each (wg,w;) € A do

6 if w; € Babelex(w;) then

7: > search the surrounding words to recover the compound

8 wy < compound_search(ws, wy)

9 else
10: > search the sentence to find a possible BabelNet translation
11: lex < babelex_search(wy)
12: if lex # None then
13: wy < lex

14: > return a set of (source focus word, aligned translation) pairs
15: return A

Subroutines:

16: compound_search(ws, w;) returns the longest sequence of tokens lex € oy

17: such that lex € Babelex(wy)

18: and lex contains wy

19: and lex does not contain any target tokens (except w;) that are aligned
by the base aligner

20: babelex_search(ws) returns the longest sequence of tokens lex € o,
21: such that lex € Babelex(ws)

22: and lex does not contain any tokens that are already aligned

23: babelex_search(ws) returns None if no such lex can be found
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Chapter 4

Word Alignment Evaluation

To show the effectiveness of BABALIGN, which combines an existing word
aligner with translations from BabelNet, we evaluate the alignment perfor-

mance through both intrinsic and extrinsic evaluation.

4.1 Intrinsic Evaluation

To perform an intrinsic evaluation, we use parallel datasets with gold align-
ment to directly evaluate the alignment performance. After describing the

experimental setup, we provide the results and error analysis.

4.1.1 Experimental setup

We employ FASTALIGN as the base aligner. As the evaluation datasets, we
use SemCor 3.0 and its translations, Multi SemCor (MSC) (Bentivogli and
Pianta, 2005) and Japanese SemCor (JSC) (Bond et al., 2012), to evaluate
English-Italian and English-Japanese alignment respectively. Both MSC and
JSC contain manually annotated gold alignment for a subset of the sense-
annotated content words in SemCor. We extract all English, Italian, and
Japanese sentence triples where an English token has gold alignments in both
the Italian and Japanese sides. We get 639 sentence triples with 2,602 aligned
tokens. We only evaluate the alignment performance for those 2602 sense-

annotated tokens, and do not consider the alignment for other tokens, because

'We use SemCor 3.0 in the Natural Language Toolkit (NLTK) to keep the compatible
file format with MSC and JSC.
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our purpose here is to obtain proper translations for test words in the WSD
setting.

We experiment in two evaluation settings. For the source side, i.e., SemCor,
we continue to use the annotated tokenization, lemma, and POS information
in both settings. For the target side, i.e., MSC or JSC, in one setting, we do
not use the tokenization, lemma, and POS information provided in the data,
and instead, we employ morphological taggers to perform pre-processing: Tree-
Tagger (Schmid, 1994) for Italian, and MeCab (Kudo, 2005) for Japanese. In
the other setting, we also use annotated tokenization, lemma, and POS in-
formation for MSC and JSC. The former (un-annotated) emulates the setting
where we generate translations for monolingual WSD datasets, and the latter
(annotated) shows the alignment performance in the ideal situation. The addi-
tional bitexts we append to the data are the OpenSubtitles2018 English-Italian
(37.8M sentences) and English-Japanese (2.2M sentences) bitexts (Lison and
Tiedemann, 2016). Those bitexts are also pre-processed by morphological tag-
gers in both settings (We also use TreeTagger for the English side of bitexts.)
We compute F-score to evaluate alignment performance in terms of whether
the lemma of the aligned translation corresponds to the lemma of the manually

aligned translation in MSC or JSC.

4.1.2 Results

Table 4.1 compares the alignment approaches. As expected, the concatenation
of a large bitext to the test data (+OpenSub) dramatically reduces the num-
ber of errors. The addition of translation pairs from BabelNet (+pairs) yields
further gains. This shows that our idea of biasing the aligner with BabelNet
translations is effective to improve alignment quality. BABALIGN substantially
improves the quality of the alignment on English-Japanese by nearly 10 points.
The improvement on English-Italian is smaller, as the alignment between sim-
ilar languages is easier, and the additional bitext is much larger. Japanese
is particularly challenging, not only because it is typologically different, but
also due to the frequency of multi-character compounds. In addition, in the

annotated setting where morphological information exists in both source and
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En-It En-Ja

Method Data un-annotated annotated un-annotated annotated
test data only 80.4 85.5 36.0 39.9

FAsTALIGN +OpenSub 93.3 96.4 75.6 79.8
+0OpenSub +pairs 93.6 97.2 81.9 90.9

BABALIGN +OpenSub +pairs 94.0 97.9 91.6 95.7

Table 4.1: Alignment F-score (%) on English-Italian and English-Japanese
bitexts.

target sides, alignment quality increases, and BABALIGN shows very accurate
alignment.

The back-off strategy used by BABALIGN effectively leverages possible
translations in BabelNet to recover tokenized compounds and missing align-
ment links. This mitigates the effect of alignment errors on our WSD results,

which we describe in the next chapter.

4.1.3 Error Analysis

EN: we get some clue from childhood and from the circumstance that we be probably ...

1
1
1
I
1,
X
1
I
1
1

IT: ricavare qualche indicazione da infanzia e da fatto che probabilmente non essere molto piu ...

Figure 4.1: The alignment error caused by BabelNet deficiency.

EN: dip toe and heel in smooth black, navy and taffy tan ...

IT: immergersi in colore nero, blu scuro, e marroncino chiaro ...

Figure 4.2: The alignment error caused by a tokenization error in MSC.
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As shown in Table 4.1, BABALIGN is very accurate. For example, in the
annotated setting of English-Italian, BABALIGN gets alignment links for 2,557
instances with 33 errors out of 2,602 instances in total. Most of those 33
errors are originally from FASTALIGN and could not be fixed by BABALIGN
either because the translation is not covered by BabelNet or because a proper
translation happens to be aligned to another source token sharing the BabelNet
synset with it.

There are only six instances where BABALIGN hurts the correct alignment
link made by FASTALIGN, and they are caused by two types of errors: one
is due to the deficiency in BabelNet (typel), and the other is due to the
tokenization errors in the dataset (type2).

Figure 4.1 shows an example of the typel error. Although FASTALIGN
properly aligns the source word get to the target translation ricavare, BA-
BALIGN denies this alignment link because get and ricavare never occur in
the same BabelNet synset. Also, a similar Italian word essere, which shares
BabelNet synsets with get, happens to appear in the same sentence. Since
essere is not aligned to any source word by FASTALIGN, BABALIGN wrongly
takes it as a new alignment link.

An example of the type2 error is shown in Figure 4.2. Although FASTAL-
IGN aligns navy to blu (“blue”), BABALIGN properly expands the alignment
link to blu scuro (“dark blue”) to get a more accurate translation. However, in
MSC, blu scuro is tokenized into two separate tokens, and only blu is aligned
to navy. Thus, the new alignment link made by BABALIGN is improperly
determined as a wrong alignment link.

The type2 error indicates the potential use of BABALIGN for tokenization
error correction in a given data. In our English-Italian test set with given to-
kenization, BABALIGN expands alignment links for three instances to obtain
compounds through compound_search function, and two of them are correct
translations, showing wrong tokenizations in MSC dataset. Thus, it could be
possible to develop a tokenization error correction algorithm based on com-

pound_search function in BABALIGN.
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4.2 Extrinsic Evaluation

To perform an extrinsic evaluation, we apply BABALIGN to cross-lingual lex-
ical entailment (LE). Closs-lingual LE is the task introduced by Vyas and
Carpuat (2016), and they define this task as “the task of detecting whether
the meaning of a word in one language can be inferred from the meaning of a
word in another language”.

In the following evaluation, we perform cross-lingual binary LE, which
treats cross-lingual LE as a binary classification task. Thus, given a pair of
words in different languages, it aims to detect if one word entails the other.
For example, if the given word pair is (EN: plant, IT: rosa), the answer will be
either the word pair holds the entailment relation (positive) or does not hold
the entailment relation (negative). In this example, the answer is positive

because the Italian word rosa (“rose”) entails the English word plant.

4.2.1 Experimental setup

We again employ FASTALIGN as the base aligner. To perform cross-lingual LE,
we perform word alignment on bitexts to extract lexical translation pairs, based
on the assumption that a word and its aligned translation either represents the
same concept or one entails the other (Hauer et al., 2020b). Thus, if the test
word pair exists in the extracted translation pairs, we determine the test word
pair holds the entailment relation. In the example of (EN: plant, IT: rosa), we
determine this word pair holds the entailment relation if plant and rosa are
aligned in the English-Italian bitext.

As the test datasets, we use German-English, German-Croatian, German-
Italian, and English-Italian test sets from SemEval-2020 Task 2: Predicting
Multilingual and Cross-Lingual Lexical Entailment (Glavas et al., 2020). Each
test set contains around 2,000 to 3,000 word pairs. We use OpenSubtitles
bitexts for all language pairs, and the statistics of each bitext are shown in
Table 4.2. To perform lemmatization and POS tagging, we employ Reldi-
Tagger (Ljubesic et al., 2016) for Croatian and TreeTagger for other languages.
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Languages de-en de-hr de-it  en-it
lines 22.0M 13.8M 13.6M 35.2M
bytes 279G 1.0G 1.1G  2.6G

Table 4.2: The bitext size for each language pair.

4.2.2 Results

Method data de-en de-hr de-it en-it Average
FASTALIGN OpenSub 31.2 326 263 602 37.6
BABALIGN  OpenSub +pairs 52.4 41.5 40.9 61.5 49.1

Table 4.3: F-score (%) on cross-lingual binary lexical entailment test sets.

As can be seen in Table 4.3, BABALIGN yields substantial improvements
over the base aligner FASTALIGN in all language pairs. These results can be
interpreted as clear evidence that the accurate word alignment produced by
BABALIGN is highly beneficial for downstream tasks.

BABALIGN contributes to the cross-lingual LE performance by detecting
more alignment links that hold entailment relations. Since word pairs often
show hypernym-hyponym relations when one entails the other, such word pairs
do not always share synsets in BabelNet. However, there are still some word
pairs sharing BabelNet synsets even though they hold entailment relations.
For example, the Italian word lavoro (“labor”) entails the English word em-
ployment, and these two words share a BabelNet synset. Thus, for such word
pairs, BABALIGN can leverage translations in BabelNet to detect the align-
ment links. Also, even though many BabelNet translation pairs added to the
bitexts do not hold entailment relations, they are still useful to improve the
alignment accuracy on other content words, which are not in question. This
results in narrowing down the choice of alignment links for the test words and
improving the overall alignment accuracy.

In addition, BABALIGN also improves the cross-lingual LE performance
by denying false positives produced by FASTALIGN. Sometimes, FASTALIGN
happens to align test word pairs that do not show entailments. Since such

word pairs barely share BabelNet synsets, BABALIGN can avoid those false
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positives based on BabelNet translations. For example, the English word river
and the Italian word signore (“man”) are unrelated to each other. However,
in our English-Italian bitext, FASTALIGN improperly aligns those two words,
and thus, produces a false positive. On the other hand, since river and signore
obviously do not share a BabelNet synset, BABALIGN can deny the alignment

link produced by FASTALIGN and avoid such a false positive.
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Chapter 5

WSD evaluation

In this section, after describing how we replicate the base WSD systems that
we use in our experiments, we show how our methods can improve existing
WSD systems in the oracle setting for English all-words WSD. Then, we report
the results of the experiments on multilingual WSD with both manual and
automatic translations. In the end, we evaluate our methods on English all-

words WSD with automatic translations.

5.1 WSD System Replication

In the following experiments, we employ various knowledge-based and super-
vised WSD systems to test how our methods can improve the base systems.
Before applying our methods to base systems, we compute probability distri-
butions p,s¢ from base systems and ensure we can replicate reported results
from obtained p,sq by choosing the sense assigned the highest probability. We
show replication results for all base systems in Tables 5.1 and 5.2.

Among knowledge-based systems, Babelfy (Moro et al., 2014) is provided
as an API' with the functionality of outputting p.sq instead of just showing
the resulting sense predictions. Babelfy has a variant that take advantage of
WordNet first sense (WN1st sense), the sense ranked first in WordNet based
on its sense frequency. Moro et al. (2014) set a fixed confidence threshold as
0.8 for WN1st sense back-off. Our replication results are very close (-0.6%

F-score on the concatenation of all test datasets) to the reported results in

thttp://babelfy.org/
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System SE-2 SE-3 SE-07 SE-13 SE-15 | ALL
reported | 67.0 635  51.6 664  70.3 | 65.5

Babelfy + WNI1st ours | 66.6 655 53.0 630 685 | 64.9
reported | 68.8 66.1  53.0 688  70.3 | 67.3
ours | 68.8 66.1 530 688 703 | 67.3

reported | 70.9 69.3  61.3 65.3 69.5 | 68.4

UKB + dict_weight

TMS ours 71.3 69.1 61.5 65.1 68.3 | 68.3

reported | 76.3 75.6  68.1 75.1 77.0 | 754
LMMS ours 76.3 754  67.9 75.0 76.9 | 75.3
gVC reported | 79.7 77.8 734 78.7 82.6 | 79.0

ours 79.7 778 73.4 78.7 82.6 79.0

Table 5.1: Replication results on English all-words WSD datasets.

SE-13 SE-15
DE ES FR IT ES IT
reported 78.0 74.6 78.0 69.6 64.1 66.0
ours 77.3 748 785 70.4 64.7 67.7

Table 5.2: Replication results of SENSEMBERT on multilingual datasets.

Raganato et al. (2017a), which shows the performance of several WSD systems
on standard benchmark datasets. The difference is perhaps due to the absence
of the information about the detailed parameter settings.

Agirre et al. (2014, 2018) provide a UKB package? with the best-performing
parameter settings reported in Agirre et al. (2018), which shows state-of-the-
art results on English all-words WSD among knowledge-based systems. UKB
has a variant that uses complete sense frequency distributions in WordNet,
which are referred to as the dictionary weight (dict_weight). Using the provided
package, we can obtain p,s; and get the same F-score as Agirre et al. (2018).

As a state-of-the-art multilingual knowledge-based system, Scarlini et al.
(2020) provide SENSEMBERT sense embeddings in 5 languages.® Therefore,
following Scarlini et al. (2020), we employ the multilingual BERT cased pre-
trained model (768 embedding dimension)* made available by Devlin et al.

(2019) to compute test word embeddings for WSD based on a 1-nearest neigh-

Zhttps://ixa2.si.ehu.es/ukb/
3http:/ /sensembert.org/
4https://github.com/google-research /bert
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bor (1-NN) approach. We take the sum of embeddings from the top 4 layers.
Also, when WordPiece tokenization in BERT splits one token into several sub-
tokens, we take the average of embeddings for all sub-tokens. We observe our
replication results are very close (+0.4% F-score on average) to Scarlini et al.
(2020).

We use IMS (Zhong and Ng, 2010) for both English and multilingual WSD
experiments. Zhong and Ng (2010) provide a Java package for IMS with built-
in English-specific lemmatizer and POS-tagger.> In the multilingual WSD
experiments, those built-in pre-processors are disabled. Since IMS requires
XML files with a particular structure as inputs, we convert training and test
datasets before running IMS. We use default parameters defined in the given
package. For English WSD, we replicate the results on the standard benchmark
datasets reported in Raganato et al. (2017a), and we obtain almost the same
results (-0.1% F-score on the concatenation of all test datasets). Note that
the original probability distributions produced by IMS do not cover all senses
because SemCor does not contain training instances for all WordNet senses.
Thus, when computing p.,sq¢, we add small smoothing to the missing senses,
which originally get zero probabilities, to fully take advantage of available
sense-translation relations. This does not change the results of the base system
because we ensure the added probabilities are much smaller than probabilities
of other senses that appear during the training.

As a recent supervised system, we use LMMS (Loureiro and Jorge, 2019)
for English WSD. Loureiro and Jorge (2019) provide both the pre-trained
LMMS sense embeddings and the source code to train LMMS embeddings.
We take the pre-trained sense embeddings to replicate the reported results. To
obtain test word embeddings for 1-NN based WSD, we employ BERT large
cased pre-trained model (1024 embedding dimension). Following Loureiro and
Jorge (2019), we also take the sum of the top 4 layers and take the average of
all sub-tokens. As a result, we obtain almost the same results (-0.1% F-score

on the concatenation of all test datasets) with Loureiro and Jorge (2019).

Shttps://www.comp.nus.edu.sg/ nlp/software.html
Shttps://github.com/danlou/LMMS
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As a state-of-the-art supervised system, Vial et al. (2019) provide the
source code of their SVC system for replication.” They also provide the model
checkpoints for their best-performing ensemble models, and thus, we can ob-
tain exactly the same numbers reported in Vial et al. (2019). However, their
source code does not store its sense predictions but only shows the resulting
F-score. Therefore, we modify the source code to store p,q and ensure we can

also obtain the same F-score by the sense predictions derived from the stored

Pwsd-

5.2 Oracle WSD Experiments

Our first set of experiments aims at estimating the upper limits of our approach
in an oracle setting of annotated and aligned bitexts with high-quality human

translations.

5.2.1 Experimental Setup

As described in Section 4.1, our sense-annotated bitexts are MSC and JSC,
which contain manual translations of texts from SemCor. As in Section 4.1, we
use 639 sentences with 2602 sense-annotated instances, which have manually
aligned translations in both MSC and JSC. We randomly sample 10% of the
instances as the development set. We tune all parameters on the development
set, and use the same hyperparameters throughout the experiment.

We employ two knowledge-based WSD systems: Babelfy and UKB. Since
existing supervised systems are usually trained on SemCor, our test set, we
do not employ supervised systems in this set of experiments. As mentioned
in Section 5.1, both systems have variants that take advantage of sense fre-
quency information in WordNet. Babelfy backs off to WN1st sense using a
fixed confidence threshold, which we set to 0.8 following Moro et al. (2014).
UKB uses complete sense frequency distributions (dict_weight). We use the
same hyperparameter settings as Agirre et al. (2018). For a fair comparison,

when applying SOFTCONSTRAINT to a system variant without sense frequency

Thttps://github.com/getalp/disambiguate
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System base hard(intersect) hard(union) soft

Babelfy 50.7 66.7 60.1 68.6
UKB 58.0 72.2 64.4 73.3
Babelfy + WN1st 72.6 73.4 73.0 73.6
UKB + dict_weight 71.2 77.8 74.4 80.1

Table 5.3: WSD F-score (%) on SemCor test set with Italian and Japanese
translations.

System Translation base hard soft
Babelfy ?A 207 gg:g 22:2
UKD I Y
Babelfy + WNIst 26 07 T
UKB + dict_weight 3£ 71.2 ;2? ;(5)3

Table 5.4: WSD F-score (%) on SemCor test set with translations from only
a single language.

information, we set our v to 0 to turn off the ps., component.

5.2.2 Results

The results in Table 5.3 demonstrate the effectiveness of leveraging translations
for WSD. The systems without sense frequency information are boosted by 15-
18%, while the systems with full features get up to 9% absolute improvement.
Also, SOFTCONSTRAINT consistently outperforms HARDCONSTRAINT. The
modest improvement on Babelfy with WN1st sense is due to the base system
falling back on WN1st sense in about 77% of test instances, precluding the
use of translations.

In additional ablation experiments shown in Table 5.4, we observe that our
approach is effective in combining translations from multiple languages. For
instance, the F-score of 73.3% for plain UKB with SOFTCONSTRAINT (shown
in Table 5.3) drops to 72.1% with only Japanese translations, and to 64.2%

with only Italian translations, vs. 58.0% with no translations. These results
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also indicate that translations from a more distant language, i.e., Japanese,
work better at discriminating senses. We hypothesize the reason is that they
share fewer senses with the source words than translations from a close lan-

guage, i.e., Italian. The verification of this hypothesis is left for future work.

5.3 Multilingual WSD Experiments

Since our methods are language-independent, we test our methods on standard

multilingual WSD datasets.

5.3.1 Experimental Setup

We perform our multilingual WSD evaluation on benchmark parallel datasets
in English, Spanish, Italian, French, and German from SemEval-2013 task 12
(Navigli et al., 2013) and SemEval-2015 task 13 (Moro and Navigli, 2015).%
The datasets contain manual reference translations, but are not word-aligned.
In our experiments, we only test on languages other than English, and English
is always the target side used to obtain translations. We perform experi-
ments in two settings, with either machine or human translations. To obtain
automatic translations, we translate the test sets into English using Google
Translate (GT)? because the pre-trained NMT models for test languages are
not always available. For manual translations, we use the provided parallel
datasets in all languages. For instance, when we test on the Italian test set in
SemEval2013, we use the English, French, Spanish, and German test sets to
obtain target translations. For each individual language, we use BABALIGN to
obtain translations of the focus word in other languages. We randomly sample
10% of test instances in each dataset to obtain development sets for parameter
tuning.

We use two multilingual base WSD systems: IMS (Zhong and Ng, 2010)
and SENSEMBERT (Scarlini et al., 2020). We train IMS on OneSeC (Scar-

lini et al., 2019), an automatically sense-annotated set of corpora in multiple

8French and German are in SemEval-2013 only.
https://translate.google.com/
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languages.! For SENSEMBERT embeddings, when we integrate the trans-
lation embedding (t_emb), we concatenate the focus word embedding and its
corresponding t_emb, as described in Section 3.3. To compute these contextual

1 we use the 768-dimensional mul-

tilingual BERT cased pre-trained model (mBERT'). Since both OneSeC and
SENSEMBERT are limited to nouns, we follow Scarlini et al. (2019, 2020) in

word embeddings for English translations!

performing the evaluation on nominal instances only.

Since languages other than English lack large sense-annotated corpora,
we employ two evaluation settings. In the default setting, sense frequency
information is not used, with the parameter v set to 0 in SOFTCONSTRAINT.
In the other setting, we approximate sense distributions with CluBERT (Pasini

et al., 2020).

5.3.2 Results

In Tables 5.5 and 5.6, we report the WSD results on SemEval-2013 and
SemEval-2015 datasets when applying our methods to IMS and SENSEM-
BERT. Our methods show up to 10% improvement over the state-of-the-art
system SENSEMBERT, and such a substantial gain can be seen with IMS
as well. Surprisingly, the results with English translations from GT are only
slightly lower on average than with manual translations from multiple lan-
guages, which shows that our methods work well with both types of transla-
tions. HARDCONSTRAINT performs well in this set of experiments, as nouns
are very well represented in BabelNet.!? Hence, HARDCONSTRAINT barely
rules out gold senses and is able to reduce the number of sense candidates
without hurting them. For similar reasons, SOFTCONSTRAINT often gets

t13

the zero smoothing weight'> when computing pg..s and results in the same

WTacobacci et al. (2016) propose an extended version of IMS that incorporates static
English word embeddings; however, we are not aware of any IMS version with contextual
word embeddings.

"Even when human translations for multiple languages are available, we only use English
translations for ¢_emb to avoid noise when combining multiple embeddings.

120ver 99% of the words in BabelNet are nouns (Navigli and Ponzetto, 2012a). On
average, we found 92% of the SemEval translations are in the BabelNet synsets of the
correct senses.

BDetailed parameter settings are shown in Appendix A.
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SE-13 SE-15

Method DE ES FR IT ES IT Average
base system 72.7 67.8 69.6 68.1 63.0 64.1 67.6
hard 73.8 70.6 71.2 747 64.6 71.3 71.0
(ES soft(y = 0) 73.7 714 733 749 650 70.8 71.5
soft(CluBERT) 724 76.8 739 75.5 682 75.7 73.8
—. hard(intersect) 72.0 71.2 743 734 65.5 70.0 71.1
§ hard(union) 734 68.8 70.8 732 63.5 69.8 69.9
§ soft(y = 0) 73.5 75.0 74.6 76.2 655 T1.1 2.7

soft(CluBERT) 73.8 77.0 745 749 69.1 76.5 74.3

Table 5.5: WSD F-score (%) of IMS (OneSeC) with translations on the nom-
inal instances of the SemEval-2013 and SemEval-2015 datasets.

SE-13 SE-15

Method DE ES FR IT ES IT Average

base system 76.7 747 T7.6 70.7 644 68.7 72.1

hard 777 80.8 79.4 76.8 642 74.1 75.5
e soft(y =0) 777 80.8 794 76.8 65.0 T74.1 75.6
O soft(CluBERT) 78.1 80.4 80.7 78.9  65.7 78.7 77.1

soft(CluBERT+t_emb) 78.2 80.8 80.9 79.4 659 78.7 77.3

hard(intersect) 771 80.1 79.3 76.6 63.5 72.8 74.9
§ hard(union) 76.5 78.1 789 748 64.6 72.5 74.2
s soft(y =0) 76.8 81.9 80.8 78.3 64.6 73.6 76.0
= soft(CluBERT) 76.8 79.2 81.5 79.8 66.4 78.7 77.1

soft(CluBERT+t_emb) 79.6 81.4 81.5 789 66.6 78.7 77.8

Table 5.6: WSD F-score (%) of SENSEMBERT with translations on the nom-
inal instances of the SemFEval-2013 and SemEval-2015 datasets.

performance with HARDCONSTRAINT when using translations from a single
language.

SOFTCONSTRAINT achieves an average improvement of several F1 points
on both systems, even without sense frequency information. The best results
are obtained with SOFTCONSTRAINT using sense frequencies from CluBERT,
especially when they can be combined with mBERT-based contextual transla-
tion embeddings (t_emb), neither of which requires manually sense-annotated
corpora. We observe that using t_emb is beneficial especially when the trans-
lation constraints can only show a small improvement, e.g., SemEval-2013
German. When much noise appears in translations and BabelNet, the efficacy
of the translation constraints will degenerate, but t_emb can effectively capture
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IMS (OneSec) SENSEMBERT

Method Manual GT NMT  Manual GT NMT
base system 2.7 76.7

hard 73.3 73.8 T3.7 772 777 T7.6
soft(y = 0) 73.5 73.7 74.0 772 777 T7.6
soft(CluBERT) 73.0 724 728 77.5 781 78.1
soft(CluBERT+t_emb) - - - 789 782 79.2

Table 5.7: WSD F-score (%) of IMS (OneSeC) and SENSEMBERT on the
nominal instances of the SemFEval-2013 German dataset when using manual

English translations and automatic English translations from Google Translate
and the NMT model. (CluBERT+t_emb is not applicable with IMS.)

translated contextual information.

We consider our comparison is fair because we do not employ any additional
resources that require manual efforts. Since both OneSec and SENSEMBER'T
are based on BabelNet, the only resource we additionally leverage is translation
information either from the provided test data or from a publicly available
MT model. Thus, we interpret these results as the new state of the art in
multilingual WSD based on the consistent improvement over the current state-
of-the-art knowledge-based system SENSEMBERT.

To evaluate the potential of using translations from a replicable NMT
model, we perform an additional experiment. We obtain English translations
for test words in the SemEval-2013 German dataset with a pre-trained trans-
former model for German-English (Ng et al., 2019) available in the fairseq
toolkit!? (Ott et al., 2019). In this setting, as with Google Translate, we only
use English as the target language to obtain translations for both constraints
and t_emb. Table 5.7 shows that the results on both WSD systems with the
pre-trained NMT model are almost the same as with Google Translate, and
slightly better than with English-only manual translations. According to our
preliminary analysis, MT translations may sometimes work better because
they tend to be more literal, and easier to correctly align with the source fo-
cus words. This suggests that our methods can effectively leverage translations

from different kinds of sources.

Yhttps://github.com/pytorch /fairseq
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5.4 English WSD Experiments with NMT

In the final set of experiments, we evaluate our methods on standard mono-

lingual benchmark datasets using NMT translations from multiple languages.

5.4.1 Experimental Setup

We evaluate on five English all-words datasets: Senseval2, Senseval3, SemEval-
2007, SemEval-2013, and SemEval-2015 from the unified framework made
available by Raganato et al. (2017a). We test our methods with five base
WSD systems. As knowledge-based systems, we employ Babelfy (Moro et al.,
2014) and UKB (Agirre et al., 2014, 2018). As supervised systems, we employ
IMS (Zhong and Ng, 2010), LMMS (Loureiro and Jorge, 2019), and SVC (Vial
et al., 2019), trained on SemCor 3.0 provided in Raganato et al. (2017a). We
tune parameters on Senseval2, and apply the same parameter settings in all
datasets. We compare plain Babelfy and UKB to SOFTCONSTRAINT with-
out ppe,. For other systems, we derive pj, from sense frequency information
available in WordNet 3.0.

Since those test datasets are not accompanied by translations, we auto-
matically obtain the translations from pre-trained transformer-based NMT
models available in the fairseq toolkit: English-French and English-German
models from Ott et al. (2018), and an English-Russian model from Ng et al.
(2019). Note that unlike multilingual WSD experiments (Section 5.3), we do
not use Google Translate in the following experiments.

As with the previous experiments, we apply BABALIGN to obtain word-
level alignment among source focus words in the test dataset and target trans-

lations produced by NMT models.

5.4.2 Results

Table 5.8 shows the results on the standard English all-words WSD datasets.
While HARDCONSTRAINT with both strategies is not sufficiently robust to
improve complex WSD systems with automatically generated translations,

SOFTCONSTRAINT shows statistically significant improvements over the orig-
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inal performance for all base systems except for SVC. Since SVC is very accu-
rate, it correctly predicts over 75% of the instances, for which we could find
at least one BabelNet translation, limiting the benefit from translations.
Also, Table 5.9 shows substantial gains occur on nominal instances because
nouns are the major components in BabelNet as mentioned in Section 5.3.2.
In summary, these results again demonstrate that our knowledge-based
method can effectively integrate information from the WSD system itself,
translations, and sense frequency even with noisy translations generated by
NMT models and with noise in BabelNet.!> While translations are shown
to help even strong supervised WSD systems, the improvements are particu-
larly impressive on knowledge-based systems. The SOFTCONSTRAINT result
on UKB with dict_weight sets a new state of the art for knowledge-based sys-

tems.

5.5 Error Analysis

Compared with HARDCONSTRAINT, SOFTCONSTRAINT is more beneficial in
two situations. The first situation is that SOFTCONSTRAINT can fully take
advantage of sense-translation mappings from BabelNet to correct the wrong
sense prediction by the base system even when HARDCONSTRAINT cannot.
For example, UKB with dict_weight cannot predict the sense of “arrangement”

114

for the focus word order in the test sentence “.. at a signal, the ringers be-
gin varying the order in which the bells sound ...”, but predicts the sense
of “command” instead. The French translation ordre shares the BabelNet
synsets with order for all 15 senses, and thus, it is not useful for ruling out
sense candidates. Also, the Russian translation porjadok does not appear in
the BabelNet synset for the sense of “arrangement”. On the other hand, the
German translation rethenfolge is only covered by the correct BabelNet synset.

Therefore, HARDCONSTRAINT with intersection cannot find proper intersec-

tion including the correct sense, and it fails to correct the prediction by the

5Due to the complexity of transforming mBERT representations into different dimen-
sionalities and vector spaces, translation embeddings are not used in these experiments.
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System | Method | SE-2 SE-3 SE-07 SE-13 SE-15] ALL

WN1st sense baseline - 66.8 66.2 552 63.0 67.8 | 65.2

base system | 50.2 46.4 38.9 55.6 54.3 | 50.3
hard(intersect) | 53.0° 49.2" 41.7° 55.6 55.9" | 52.3"

Babelfy hard(union) |52.8° 50.7° 43.5" 57.9° 56.3% | 53.3"
soft(y =0) |57.7° 54.3" 47.0" 60.1" 61.8" |57.3"
base system | 64.2 54.8 40.0 64.5 64.5 | 60.4
UKB hard(intersect) | 65.3° 57.4" 44.0° 62.6 66.2" | 61.5

hard(union) |65.9° 57.8" 422 644 66.3"|62.1"

soft(y=0) |67.6° 58.8" 48.6" 64.5 71.1"|64.0"

base system | 66.6 65.5 53.0 63.0 68.5 | 64.9
hard(intersect) | 66.7 65.5 53.4 62.7 68.5 | 64.9
hard(union) | 66.9 65.7 53.0 629 68.5 | 65.0

*

soft 67.4° 65.9 54.3° 63.4 68.3 |65.4"

Knowledge-based

Babelfy + WN1st

base system | 68.8 66.1 53.0 68.8 70.3 | 67.3
hard(intersect) | 68.5 65.5 53.6 64.5 69.7 | 66.1
hard(union) | 69.6 66.2 51.9 67.8 71.3 | 674

* * *

soft 71.3 66.8 54.1 69.0 74.2 |68.9

UKB + dict_weight

base system | 71.3 69.1 61.5 65.1 68.3 | 68.3
hard(intersect) | 71.0 68.2 60.7 62.0 67.6 | 67.1

IMS hard(union) | 71.1 67.5 585 63.7 68.8 | 67.4
soft 72.3 68.7 59.8 65.8 T1.7°|69.0"

T base system | 76.3 754 67.9 75.0 76.9 | 75.3
°§ ~ hard(intersect) | 75.9 74.1 66.2 70.9 75.7 | 73.6
g hard(union) | 76.0 723 644 724 765 | 73.6
% soft 77.2 77.1° 69.2 76.1 77.2|76.4"
base system | 79.7 77.8 73.4 78.7 82.6|79.0

VO hard(intersect) | 78.2 754 71.0 729 80.0 | 76.1

hard(union) | 77.9 741 679 754 80.6 | 76.1
soft 80.1 Tr.7 r27 78.7 82.0 | 79.0

Table 5.8: English all-words WSD F-score (%) on standard evaluation datasets
with translations from 3 languages (French, German, and Russian). The
results show statistically significant improvement over the base system are
marked with * (McNemar’s Test, p < 0.05).
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System ‘ Method ‘Nouns Verbs Adj. Adv. ‘ All
WN1st sense base 67.6 50.3 T74.3 80.9 | 65.2

base 57.6 32.3 51.2 38.0 | 50.3
hard(intersect) | 59.3° 35.4° 524" 40.9" | 52.3"

Babelty hard(union) | 60.2° 36.8° 53.2° 413 |53.3"
soft 64.1" 42.6° 54.7° 44.3"|57.3

- base 65.7 399 69.3 682 | 60.4
2 UKB hard(intersect) | 66.2 42.3° 69.7 714" | 61.5"
3 hard(union) | 67.3° 42.4° 68.6 72.3" | 62.1"
3 soft 69.1° 46.4° 66.8 76.9" | 64.0"
E base 67.3 50.2 741 80.1 | 64.9
N hard(intersect 67.3 50.2 74.2 80.1 | 64.9
= Babelfy + WNIst harfi(union)) 675 50.2 73.8 80.9 | 65.0
soft 67.9° 50.5 74.7 80.9 |65.4"

base 71.2  50.7 75.0 777 | 67.3

hard(intersect) | 69.0 50.7 74.9 79.2 | 66.1

URB + dict-welght | ©)  d(union) | 714 511 73.3 798 | 674

soft 72.6° 52.9° 75.9 80.6 |68.9

base 70.2 56.4 75.1 835 | 63.3

IMS hard(intersect) | 68.4 55.7 75.1 832 | 67.1
hard(union) | 69.7 549 73.0 83.5 | 67.4

soft 71.7° 55.6 748 84.4 |69.07

3 base 779 63.8 80.8 835 | 75.3
§ LMMS hard(inteljsect) 75.4  63.0 80.1 84.7 | 73.6
S hard(union) | 76.8 60.3 78.6 83.5 | 73.6
3 soft 79.1° 65.5° 80.2 85.3 |76.4"
base 81.4 68.7 83.7 855 | 79.0

VO hard(intersect) | 77.3  66.7 83.1 858 | 76.1

hard(union) 79.2 635 80.8 855 | 76.1
soft 81.5 68.2 83.7 86.4 | 79.0

Table 5.9: English all-words WSD F-score (%) on each POS in the concatena-
tion of all five datasets with translations from 3 languages (French, German,
and Russian). The results show statistically significant improvement over the
base system are marked with * (McNemar’s Test, p < 0.05).
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base system. Also, HARDCONSTRAINT with union fails to reduce the number
of sense candidates at all due to the French translation, and thus, it keeps
the base system’s prediction as is. Unlike HARDCONSTRAINT, SOFTCON-
STRAINT effectively takes advantage of translations (especially German) and
sense frequency information to correctly predict the sense of “arrangement”.

The second situation is that SOFTCONSTRAINT is robust to noise in MT
translations and the incompleteness of BabelNet so that it can avoid miscor-
recting the proper sense prediction by the base system. For example, UKB
with dict_weight correctly predicts the sense of “earth” for the focus word

114

world in “... world’s two dozen most influential countries ...”. However, En-
glish world and its three translations, monde, Welt, and mir, are only found in
the BabelNet synset glossed as “populace”, while the Russian translation mir
happens to be missing from the BabelNet synset glossed as “earth” (perhaps
because there is no Russian link to the English Wikipedia page for World).
Hence, while HARDCONSTRAINT miscorrects the UKB prediction to the sense
of “populace”, SOFTCONSTRAINT keeps it unchanged by leveraging sense fre-
quencies and the base system scores.

Although SOFTCONSTRAINT is more robust, there are still some instances
where translations hurt the base system. For example, UKB with dict_weight

114

correctly predicts the sense of “energy” for the focus word zip in “.. requires

zip in the way of athletic prowess ...”.

However, the NMT models wrongly
translate zip in the sense of “fastener” for all languages. Thus, all of the French
(zip), German (reiffverschluss), and Russian (molnija) translations only ap-
pear in the BabelNet synset for the sense of “fastener”. Since all translations
are wrong, none of our methods can keep the correct prediction by the base

system.
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Chapter 6

Conclusion

In this thesis, we proposed a novel approach to improving WSD by leveraging
translations from multiple languages, which incorporates a novel knowledge-
based bitext alignment. Since our methods are not designed for any particular
base WSD systems or test languages, we tested them on several systems in
both English and multilingual WSD settings. We demonstrated experimen-
tally that SOFTCONSTRAINT can consistently improve WSD performance even
when no manual translations are available, leading to state-of-the-art results
on knowledge-based English all-words and multilingual WSD. We also demon-
strated our novel alignment algorithm BABALIGN can substantially outper-
form an existing word alignment tool in both intrinsic and extrinsic evalu-
ations. In short, we empirically tested our statement: the performance of
existing English and multilingual WSD systems can be improved by leverag-
ing translations. Also, we established our contributions to formulating the
methods of leveraging automatic translations and showing the effectiveness of
our methods throughout our WSD experiments.

Although our method achieved state-of-the-art results for knowledge-based
English all-words and multilingual WSD, there are several directions for fur-
ther research. Regarding our method of integrating contextual translation
embeddings (t_emb), we only applied ¢t_emb to multilingual WSD experiments
due to the complexity of mapping translation embeddings to different em-
bedding spaces. We plan to investigate a more general method to integrate

t_emb so that we can validate the advantage of ¢_emb in the English all-words
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WSD setting as well. Since not all supervised systems are significantly im-
proved by our post-processing constraint methods in English all-words WSD
experiments, we expect integrating t_emb will be helpful by introducing more
abundant information about translations and senses.

Also, it will be interesting to test our methods in other types of tasks
related to WSD. For example, Pilehvar and Camacho-Collados (2019) propose
word in context (WiC) challenge, a binary classification task of detecting if
the same word appearing in the pair of sentences share the same meaning. We
plan to apply our methods to this task to validate our methods of leveraging
translations can be helpful for not only the standard WSD task but also a
more general task that requires disambiguating word meanings.

In addition, we would like to test BABALIGN as a tokenization error cor-
rection method as described in our intrinsic evaluation. Even in manually
constructed corpora such as Multi SemCor, we found a few tokenization errors
that are detected and fixed by BABALIGN. Thus, applying BABALIGN for
tokenization error correction will be more beneficial for automatic corpora,

which are very important to WSD especially in languages other than English.
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Appendix A

Parameters
System Translations Ouygns Opreq o« B 7
IT 0.04 - 0.3 0.7 -
Babelfy JA 0.01 - 0.1 09 -
IT+JA 0.06 - 0.1 09 -
IT 0.01 - 0.1 09 -
UKB JA 0.01 - 0.1 09 -
IT+JA 0.04 - 0.2 08 -
IT 0.01 0.01 01 0.1 038
Babelfy + WN1st JA 0.01 0.01 01 0.1 038
IT+JA 0.06 0.01 0.1 01 038
IT 0.01 0.01 02 03 0.5
UKB + dict_weight JA 0.01 0.01 02 04 04

IT+JA 0.01 0.01 01 0.7 0.2

Table A.1: Tuned parameters used to obtain English all-words WSD results
reported in Section 5.2.2.

System Otrans  Ofreq O 15} v
Babelfy 0.01 - 0.1 09 -
UKB 0.01 0.3 0.7 -

Babelfy + WN1st 0.01 001 01 04 0.5
UKB + dict_-weight 1.00 0.02 0.1 0.8 0.1

IMS 048 0.01 05 04 0.1
LMMS 0.87 0.01 0.8 0.1 0.1
SVC 0.01 0.01 03 05 0.2

Table A.2: Tuned parameters used to obtain English all-words WSD results
reported in Section 5.4.2.

o1



Table

(SOFTCONSTRAINT with CluBERT) applied to IMS

A.3:

Test Language yans « B 7
SE-13 DE 0.00 0.1 0.1 0.8
SE-13 ES 0.00 0.1 0.1 0.8

e SE-13 FR 0.00 0.8 0.1 0.1

O SE-I3IT 0.00 0.1 0.5 04

SE-15 ES 0.00 0.1 0.1 0.8

SE-15 IT 0.00 0.1 08 0.1

SE-13 DE 0.01 0.1 03 0.6

_ SE-13 ES 0.00 0.1 05 04

S SE-I3FR 000 05 04 0.1

§ SE-13 IT 0.00 0.1 08 0.1

SE-15 ES 0.01 0.2 03 0.5

SE-15 IT 0.00 0.1 08 0.1
Tuned parameters for the best performing method

multilingual WSD results reported in Section 5.3.2.

Table

A 4:

(OneSeC) to obtain

Test Language Opans o« B 7
SE-13 DE 0.00 0.8 0.1 0.1
SE-13 ES 0.00 0.8 0.1 0.1

= SE-13 FR 0.00 0.2 03 0.5

O SE-131IT 0.00 0.1 0.1 038

SE-15 ES 0.01 0.6 0.1 0.3

SE-15 IT 0.00 0.1 0.1 038

SE-13 DE 0.00 0.1 0.1 038

_ SE-13 ES 0.00 0.1 0.2 0.7

S SE-I3FR 000 0.1 07 0.2

§ SE-13 IT 0.00 04 05 0.1

SE-15 ES 0.02 0.7 01 0.2

SE-15 IT 0.00 0.1 0.1 038
Tuned parameters for the best performing method

(SOFTCONSTRAINT with CluBERT and ¢_emb) applied to SENSEMBERT to
obtain multilingual WSD results reported in Section 5.3.2.
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