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Abstract

Word sense disambiguation (WSD) is one of the core tasks in natural language

processing and its objective is to identify the sense of a content word (nouns,

verbs, adjectives, and adverbs) in context, given a predefined sense inventory.

Although WSD is a monolingual task, it has been conjectured that multilin-

gual information, e.g., translations, can be helpful. However, existing WSD

systems rarely consider multilingual information, and no effective method has

been proposed for improving WSD with machine translation. In this thesis,

we propose methods of leveraging translations from multiple languages as a

constraint to boost the accuracy of existing WSD systems. Since it is necessary

to identify word-level translations from translated sentences, we also develop

a novel knowledge-based word alignment algorithm, which outperforms an ex-

isting word alignment tool in our intrinsic and extrinsic evaluations. Since our

approach is language-independent, we perform WSD experiments on standard

benchmark datasets representing several languages. The results demonstrate

that our methods can consistently improve the performance of various WSD

systems, and obtain state-of-the-art results in both English and multilingual

WSD.
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The work presented in this thesis is an extended version of a research article

(Luan et al., 2020), which is currently under review. The author of this thesis

is the main contributor, who implemented the methods and conducted the
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Word sense disambiguation (WSD) is the task of identifying the sense of

a content word (nouns, verbs, adjectives, and adverbs) in context, given a

predefined sense inventory, which enumerates possible word senses for each

content word. Thus, WSD can be viewed as a classification task in which the

input is a content word in context and the label is a predefined sense, as shown

in Figure 1.2. WSD is one of the core tasks in natural language processing with

various applications as described in the following examples (Navigli, 2009).

• Machine Translation: Machine translation is the task of automatically

identifying the target translation for a given source text. Ambiguous

words can affect the translation quality because the same source word

can have completely different target translations depending on their word

senses. For example, when the English noun bank is translated into

French, the sense of “sloping land” will be translated to rive, but the

sense of “financial institution” will be translated to banque. Thus, dis-

ambiguating the word sense beforehand will be beneficial.

• Information Retrieval : Information retrieval is the task of obtaining rel-

evant information resources from a given query. Existing search engines

usually do not rule out irrelevant web documents containing the query

words used in different senses. It becomes possible to prune unrelated

documents and increase the search precision by disambiguating the query

words and the queried documents.

Also, WSD itself is a meaningful task. For example, it can be used as the

assistance for dictionary look-up to help language learners. When language

learners look up an ambiguous word in a dictionary, they will find a list of

possible senses. However, it is sometimes challenging to identify the correct

sense from the context in an unfamiliar language. By applying WSD, we can

automate the sense identification and facilitate the language learning process.

A predefined sense inventory is necessary to performWSD.WordNet (Miller,

1995) is the most widely used sense inventory for English WSD, and it cur-

rently covers over 150k English words with over 200k senses. WordNet can also

be used as a semantic network showing semantic relations among synsets, the
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sets of words sharing the same sense (sets of synonyms). Synsets are linked to

each other based on semantic relations such as hypernym-hyponym relations.

Such information is useful for WSD and many WSD systems take advantage

of it (Moro et al., 2014; Agirre et al., 2018).

Although WSD is a monolingual task, it has been conjectured that multi-

lingual information could be helpful (Dagan et al., 1991; Resnik and Yarowsky,

1999; Carpuat, 2009). Attempts have been made to develop methods leverag-

ing parallel corpora for sense tagging (Diab and Resnik, 2002), but no effective

method for improving WSD with translations has been proposed to date.

Much of the history of WSD has been determined by the availability of

manually created lexical resources in English, including SemCor, a manually

sense-annotated corpus, and WordNet, a semantic network. The situation

changed with the introduction of BabelNet (Navigli and Ponzetto, 2012a), a

massive multilingual semantic network, created by automatically integrating

WordNet, Wikipedia, and other resources. BabelNet covers over 250 lan-

guages, and in particular, BabelNet synsets contain sets of translations in

multiple languages for each individual word sense. Thus, we can view Babel-

Net synsets as mappings between senses and translations (sense-translation

mappings). In Figure 1.3, we show two BabelNet synsets corresponding to

the sense of “sloping land” and the sense of “financial institution” respectively

for the word bank. Methods have been proposed to use multilingual infor-

mation in BabelNet for WSD (Navigli and Ponzetto, 2012b; Apidianaki and

Gong, 2015), but they do not directly exploit the mapping between senses and

translations in multiple languages.

While there have been many attempts to apply WSD to machine transla-

tion (MT), (Liu et al., 2018; Pu et al., 2018), our goal instead is to harness

advances in MT to improve WSD. Rather than develop a new WSD system,

we propose general methods that can make existing and future systems more

accurate by leveraging translations. We evaluate our methods with several

supervised and knowledge-based WSD systems.

Our principal method constrains sense predictions of a given base WSD

system using sense-translation mappings from BabelNet. The approach is
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improve existing WSD systems. We perform several experiments on English

and multilingual WSD with both manual and MT translations. In the En-

glish WSD experiments with manual translations and word-level alignments,

we determine the potential of our methods in an ideal situation. In the multi-

lingual WSD experiments, we demonstrate the language-independence of our

methods. Finally, in the English WSD experiments with MT translations, we

validate its robustness and effectiveness by showing improvements over existing

WSD systems.

The main statement of this thesis is the following: although WSD is a

monolingual task, the performance of existing English and multilingual WSD

systems can be improved by leveraging translations from multiple languages as

a constraint.

The main contributions of this thesis are as follows: (1) we propose the

first effective method to improve WSD with automatically generated trans-

lations; (2) we achieve state-of-the-art results with our language-independent

knowledge-based method in both English all-words and multilingual WSD;

(3) we introduce an effective bitext alignment algorithm that leverages infor-

mation from BabelNet.

This thesis is organized as follows. In Chapter 2, we first review various

existing WSD systems, and then, introduce prior attempts to improve WSD

systems by integrating translations. In Chapter 3, we propose our baseline

method HardConstraint and our principal method SoftConstraint,

followed by a novel knowledge-based bitext alignment algorithm. Chapter 4

shows intrinsic and extrinsic evaluations to compare our alignment algorithm

with an existing alignment tool. In Chapter 5, we test our methods of improv-

ing WSD systems with translations in several experimental settings. Finally,

Chapter 6 concludes this thesis and discusses future work. We also provide

the detailed hyperparameter settings in Appendix A.
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Chapter 2

Related Work

This chapter provides a general overview of WSD and translations in prior

work. First, we review existing WSD systems. Then, after introducing how

WSD is used to improve MT systems, we describe the prior attempts to inte-

grate translations into WSD.

2.1 WSD Systems

There are two main approaches to WSD: supervised and knowledge-based. Su-

pervised systems are trained on sense-annotated corpora and generally outper-

form knowledge-based systems. On the other hand, knowledge-based systems

usually rely only on a semantic network by utilizing graph-based algorithms.

Since it is expensive to manually obtain sense-annotated corpora and such cor-

pora exist mainly in English, it is often impractical to apply supervised systems

to the multilingual setting. Therefore, for multilingual WSD, knowledge-based

approaches are typically employed.

Many effective WSD systems have been proposed. To perform WSD in En-

glish, supervised systems are usually trained on SemCor (Miller et al., 1994),

a manually sense-annotated corpus in English. IMS (Zhong and Ng, 2010)

is a canonical supervised WSD system that trains support vector machines

on SemCor to produce word expert models, which provide different models

for each word type, with various lexical features such as surrounding words,

part-of-speech (POS) tags of surrounding words, and local collocations. Ia-

cobacci et al. (2016) extend IMS by introducing static word embeddings as an
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additional feature.

Neural approaches are also employed to build supervised systems. Ra-

ganato et al. (2017b) propose a bidirectional LSTM model that can produce

a unified model to disambiguate all test words to show improvements over

classical word expert models. Kumar et al. (2019) propose an extended WSD

framework incorporating sense embeddings (EWISE) to address insufficient

sense coverage in the training data, i.e., SemCor. Instead of training a model

to produce discrete sense labels, EWISE uses a bidirectional LSTM model

with self-attention to predict sense embeddings from the test context. EWISE

makes sense predictions by comparing the similarity among obtained sense

embeddings and the gold sense embeddings, which are derived as knowledge-

graph embeddings computed from WordNet.

Nowadays, pre-trained deep models and contextualized word embeddings

are shown to be effective for various NLP tasks (Peters et al., 2018; Devlin

et al., 2019). LMMS (Loureiro and Jorge, 2019) leverages contextual word

embeddings computed by the BERT pre-trained model (Devlin et al., 2019),

surpassing the long-standing 70% F-score ceiling for supervised WSD. It learns

supervised sense embeddings by applying BERT to SemCor, with additional

semantic knowledge from WordNet. LMMS can perform WSD by a 1-nearest

neighbor (1-NN) approach. For a given target word, its contextual embedding

is also computed through BERT, and it is compared against LMMS embed-

dings of the possible sense candidates for the target word. Accordingly, the

sense of the LMMS embedding that is closest to the target contextual embed-

ding is used as a prediction.

Instead of using contextual embeddings from BERT, Huang et al. (2019)

finetune the BERT pre-trained model by adding a classification layer on top of

it. To obtain better WSD performance, they concatenate test sentences and

WordNet glosses of the possible senses as inputs.

Vial et al. (2019) propose an ensemble of transformer models taking BERT

embeddings as inputs. Their sense vocabulary compression (SVC) system

achieves state-of-the-art results on English all-words WSD by complementing

the sense coverage in the training data, i.e., SemCor, with hypernym-hyponym
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relations in WordNet.

Among the knowledge-based systems, the Lesk algorithm (Lesk, 1986) is a

classic system that determines word senses based on the word overlaps among

sense glosses and the context in which the test word appears. Banerjee and

Pedersen (2003) extended the Lesk algorithm by additionally considering the

related sense glosses based on hierarchical relations in WordNet. More re-

cent knowledge-based systems usually apply graph-based algorithms. Babelfy

(Moro et al., 2014) applies random walks with restarts to BabelNet to per-

form WSD and entity linking, the task of linking entity mentions in context

to proper entries in a semantic network. Even though Babelfy is based on

BabelNet, it does not utilize the translation information in BabelNet. Simi-

larly, UKB (Agirre et al., 2014, 2018) uses personalized PageRank on WordNet

and achieves state-of-the-art performance on English all-words WSD among

knowledge-based systems.

Multilingual WSD can be achieved either by automatically developing

sense-annotated corpora in multiple languages for training supervised systems

or by applying a knowledge-based system. Scarlini et al. (2019) mapWikipedia

categories to senses to automatically create sense-annotated corpora OneSeC

in multiple languages. When used to train an existing supervised WSD sys-

tem, it even outperforms the same system trained on SemCor, a manually

sense-annotated corpus, in terms of F-score evaluated on English all-words

WSD. It also outperforms existing automatic corpora when tested on other

languages.

As a multilingual knowledge-based system, SensEmBERT (Scarlini et al.,

2020) learns knowledge-based multilingual sense embeddings obtained by com-

bining contextual representations learned using BERT with knowledge ob-

tained from BabelNet. SensEmBERT also employs a 1-NN approach to per-

form WSD, and it yields state-of-the-art results on English nouns WSD and

multilingual WSD.
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2.2 WSD for MT

There is some work studying the potential of WSD when integrated into

MT systems. Even for recent NMT systems, WSD is also beneficial be-

cause existing NMT systems sometimes have difficulties with properly trans-

lating ambiguous words despite their ability to encode global sentential context

(Rios Gonzales et al., 2017).

Liu et al. (2018) provide empirical evidence showing that translating highly

ambiguous words (homonyms) is still challenging for strong NMT systems by

showing the translation accuracy on English words with 15 senses (defined by

Cambridge English dictionary) is on average 30% lower than the accuracy on

monosemous English words, which have only one sense. Also, they propose an

NMT system that incorporates context-aware word embeddings to differentiate

word senses, and their system improves the quality of translations in terms of

both the BLEU score and translation accuracy on ambiguous words.

Pu et al. (2018) also address the issues with translating ambiguous words

by proposing a sense-aware NMT system. They employ clustering-based WSD

algorithms to induce sense embeddings, which represent probable senses for

each source word. By concatenating the learned sense embeddings with the

source word embeddings as inputs, they bias the NMT system to properly

translate ambiguous words. Their sense-aware NMT system shows consistent

improvement over the base NMT system on 5 language pairs.

In this work, we proceed in the reverse direction: we leverage advances in

NMT systems to improve the performance of WSD systems.

2.3 Translations for WSD

The integration of multilingual information to improve WSD has been con-

sidered in prior work. Through analyzing a multilingual dictionary on small

word samples, Resnik and Yarowsky (1999) observe that highly distinct senses

can translate differently, and thus can restrict possible sense candidates. How-

ever, they do not propose an actual method to perform WSD with translations
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based on their observation.

Diab and Resnik (2002) propose a WSD system based on translation infor-

mation extracted from a bitext. They performWSD based on sense similarities

among English words sharing the same translation. Thus, translations are only

used to cluster similar English words. In their experiments, they attempt to

obtain translations using commercial MT systems, but they did not address

the noise introduced by the MT systems. Also, their method fails to out-

perform systems that rely on monolingual information only. The underlying

assumption of their method is that words sharing the same translation are

synonymous. However, there is another possibility: such a translation is pol-

ysemous. As shown by Yao et al. (2012), these two contradicting assumptions

can be both true with almost the same probability. Thus, it is questionable to

always assume one of them is correct, and actually, Diab and Resnik (2002)

find highly polysemous or homonymous translations hurt the performance of

their method.

Cross-lingual WSD (Lefever et al., 2010) is a related task that aims to

predict a set of translations for a given ambiguous English word in context.

In this task, instead of using a predefined sense inventory, word senses are

described by a set of translations in different languages. Apidianaki (2009) use

bitexts to create bilingual sense inventory on word samples for cross-lingual

WSD. Also, there are some attempts to integrate translations as bag-of-words

feature vectors to enhance cross-lingual WSD (Lefever et al., 2011; Lefever

and Hoste, 2014). Since the goal of cross-lingual WSD differs from standard

WSD, our approach is not directly comparable.

There is also some work leveraging translations available in BabelNet.

Navigli and Ponzetto (2012b) make use of translations in BabelNet synsets

as a feature in a graph-based WSD system. They follow the recurring idea

that translations can restrict possible senses (Dagan et al., 1991; Resnik and

Yarowsky, 1999). However, instead of translating the context of the test word,

they take into account all the translations of each sense of the test word in

BabelNet. Through their English WSD experiment, they show introducing

the information from multiple languages yields better performance than the
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same graph-based system with monolingual information only. Although they

use translations to enhance the sense distinctions, they do not explicitly apply

translations as a constraint.

Apidianaki and Gong (2015) directly apply sense-translation mappings in

BabelNet as a hard constraint on sense predictions using translations from

sense-annotated parallel datasets. Unlike this thesis, their approach is applied

to the BabelNet First Sense (BFS) baseline, derived from the degree of Ba-

belNet synsets, rather than to an actual WSD system. Also, they only use

translations from a single language and do not develop a method that is able

to simultaneously integrate translations from multiple languages. In addition,

they apply an off-the-shelf word alignment tool only to the test data, which

comprises less than 500 sentences, to obtain translations for the test words.

Since the accuracy of cooccurrence-based alignment algorithms will be seri-

ously degenerated by the limited size of data, their approach contains many

alignment errors. Due to these issues, their results on English WSD fail to

show improvement over the simple baseline. Also, when tested in other lan-

guages, their method fails to outperform other systems that are dependent on

monolingual information only. Furthermore, since their method is proposed for

SemEval-2015 task 13 multilingual WSD (Moro and Navigli, 2015), the evalu-

ation on the standard WSD datasets is not performed, as manual translations

do not exist.
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our purpose here is to obtain proper translations for test words in the WSD

setting.

We experiment in two evaluation settings. For the source side, i.e., SemCor,

we continue to use the annotated tokenization, lemma, and POS information

in both settings. For the target side, i.e., MSC or JSC, in one setting, we do

not use the tokenization, lemma, and POS information provided in the data,

and instead, we employ morphological taggers to perform pre-processing: Tree-

Tagger (Schmid, 1994) for Italian, and MeCab (Kudo, 2005) for Japanese. In

the other setting, we also use annotated tokenization, lemma, and POS in-

formation for MSC and JSC. The former (un-annotated) emulates the setting

where we generate translations for monolingual WSD datasets, and the latter

(annotated) shows the alignment performance in the ideal situation. The addi-

tional bitexts we append to the data are the OpenSubtitles2018 English-Italian

(37.8M sentences) and English-Japanese (2.2M sentences) bitexts (Lison and

Tiedemann, 2016). Those bitexts are also pre-processed by morphological tag-

gers in both settings (We also use TreeTagger for the English side of bitexts.)

We compute F-score to evaluate alignment performance in terms of whether

the lemma of the aligned translation corresponds to the lemma of the manually

aligned translation in MSC or JSC.

4.1.2 Results

Table 4.1 compares the alignment approaches. As expected, the concatenation

of a large bitext to the test data (+OpenSub) dramatically reduces the num-

ber of errors. The addition of translation pairs from BabelNet (+pairs) yields

further gains. This shows that our idea of biasing the aligner with BabelNet

translations is effective to improve alignment quality. BabAlign substantially

improves the quality of the alignment on English-Japanese by nearly 10 points.

The improvement on English-Italian is smaller, as the alignment between sim-

ilar languages is easier, and the additional bitext is much larger. Japanese

is particularly challenging, not only because it is typologically different, but

also due to the frequency of multi-character compounds. In addition, in the

annotated setting where morphological information exists in both source and
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As shown in Table 4.1, BabAlign is very accurate. For example, in the

annotated setting of English-Italian, BabAlign gets alignment links for 2,557

instances with 33 errors out of 2,602 instances in total. Most of those 33

errors are originally from FastAlign and could not be fixed by BabAlign

either because the translation is not covered by BabelNet or because a proper

translation happens to be aligned to another source token sharing the BabelNet

synset with it.

There are only six instances where BabAlign hurts the correct alignment

link made by FastAlign, and they are caused by two types of errors: one

is due to the deficiency in BabelNet (type1 ), and the other is due to the

tokenization errors in the dataset (type2 ).

Figure 4.1 shows an example of the type1 error. Although FastAlign

properly aligns the source word get to the target translation ricavare, Ba-

bAlign denies this alignment link because get and ricavare never occur in

the same BabelNet synset. Also, a similar Italian word essere, which shares

BabelNet synsets with get, happens to appear in the same sentence. Since

essere is not aligned to any source word by FastAlign, BabAlign wrongly

takes it as a new alignment link.

An example of the type2 error is shown in Figure 4.2. Although FastAl-

ign aligns navy to blu (“blue”), BabAlign properly expands the alignment

link to blu scuro (“dark blue”) to get a more accurate translation. However, in

MSC, blu scuro is tokenized into two separate tokens, and only blu is aligned

to navy. Thus, the new alignment link made by BabAlign is improperly

determined as a wrong alignment link.

The type2 error indicates the potential use of BabAlign for tokenization

error correction in a given data. In our English-Italian test set with given to-

kenization, BabAlign expands alignment links for three instances to obtain

compounds through compound search function, and two of them are correct

translations, showing wrong tokenizations in MSC dataset. Thus, it could be

possible to develop a tokenization error correction algorithm based on com-

pound search function in BabAlign.
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4.2 Extrinsic Evaluation

To perform an extrinsic evaluation, we apply BabAlign to cross-lingual lex-

ical entailment (LE). Closs-lingual LE is the task introduced by Vyas and

Carpuat (2016), and they define this task as “the task of detecting whether

the meaning of a word in one language can be inferred from the meaning of a

word in another language”.

In the following evaluation, we perform cross-lingual binary LE, which

treats cross-lingual LE as a binary classification task. Thus, given a pair of

words in different languages, it aims to detect if one word entails the other.

For example, if the given word pair is (EN: plant, IT: rosa), the answer will be

either the word pair holds the entailment relation (positive) or does not hold

the entailment relation (negative). In this example, the answer is positive

because the Italian word rosa (“rose”) entails the English word plant.

4.2.1 Experimental setup

We again employ FastAlign as the base aligner. To perform cross-lingual LE,

we perform word alignment on bitexts to extract lexical translation pairs, based

on the assumption that a word and its aligned translation either represents the

same concept or one entails the other (Hauer et al., 2020b). Thus, if the test

word pair exists in the extracted translation pairs, we determine the test word

pair holds the entailment relation. In the example of (EN: plant, IT: rosa), we

determine this word pair holds the entailment relation if plant and rosa are

aligned in the English-Italian bitext.

As the test datasets, we use German-English, German-Croatian, German-

Italian, and English-Italian test sets from SemEval-2020 Task 2: Predicting

Multilingual and Cross-Lingual Lexical Entailment (Glavaš et al., 2020). Each

test set contains around 2,000 to 3,000 word pairs. We use OpenSubtitles

bitexts for all language pairs, and the statistics of each bitext are shown in

Table 4.2. To perform lemmatization and POS tagging, we employ Reldi-

Tagger (Ljubesic et al., 2016) for Croatian and TreeTagger for other languages.
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Languages de-en de-hr de-it en-it
lines 22.5M 13.8M 13.6M 35.2M
bytes 2.7G 1.0G 1.1G 2.6G

Table 4.2: The bitext size for each language pair.

4.2.2 Results

Method data de-en de-hr de-it en-it Average
FastAlign OpenSub 31.2 32.6 26.3 60.2 37.6
BabAlign OpenSub +pairs 52.4 41.5 40.9 61.5 49.1

Table 4.3: F-score (%) on cross-lingual binary lexical entailment test sets.

As can be seen in Table 4.3, BabAlign yields substantial improvements

over the base aligner FastAlign in all language pairs. These results can be

interpreted as clear evidence that the accurate word alignment produced by

BabAlign is highly beneficial for downstream tasks.

BabAlign contributes to the cross-lingual LE performance by detecting

more alignment links that hold entailment relations. Since word pairs often

show hypernym-hyponym relations when one entails the other, such word pairs

do not always share synsets in BabelNet. However, there are still some word

pairs sharing BabelNet synsets even though they hold entailment relations.

For example, the Italian word lavoro (“labor”) entails the English word em-

ployment, and these two words share a BabelNet synset. Thus, for such word

pairs, BabAlign can leverage translations in BabelNet to detect the align-

ment links. Also, even though many BabelNet translation pairs added to the

bitexts do not hold entailment relations, they are still useful to improve the

alignment accuracy on other content words, which are not in question. This

results in narrowing down the choice of alignment links for the test words and

improving the overall alignment accuracy.

In addition, BabAlign also improves the cross-lingual LE performance

by denying false positives produced by FastAlign. Sometimes, FastAlign

happens to align test word pairs that do not show entailments. Since such

word pairs barely share BabelNet synsets, BabAlign can avoid those false
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positives based on BabelNet translations. For example, the English word river

and the Italian word signore (“man”) are unrelated to each other. However,

in our English-Italian bitext, FastAlign improperly aligns those two words,

and thus, produces a false positive. On the other hand, since river and signore

obviously do not share a BabelNet synset, BabAlign can deny the alignment

link produced by FastAlign and avoid such a false positive.
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Chapter 6

Conclusion

In this thesis, we proposed a novel approach to improving WSD by leveraging

translations from multiple languages, which incorporates a novel knowledge-

based bitext alignment. Since our methods are not designed for any particular

base WSD systems or test languages, we tested them on several systems in

both English and multilingual WSD settings. We demonstrated experimen-

tally that SoftConstraint can consistently improve WSD performance even

when no manual translations are available, leading to state-of-the-art results

on knowledge-based English all-words and multilingual WSD. We also demon-

strated our novel alignment algorithm BabAlign can substantially outper-

form an existing word alignment tool in both intrinsic and extrinsic evalu-

ations. In short, we empirically tested our statement: the performance of

existing English and multilingual WSD systems can be improved by leverag-

ing translations. Also, we established our contributions to formulating the

methods of leveraging automatic translations and showing the effectiveness of

our methods throughout our WSD experiments.

Although our method achieved state-of-the-art results for knowledge-based

English all-words and multilingual WSD, there are several directions for fur-

ther research. Regarding our method of integrating contextual translation

embeddings (t emb), we only applied t emb to multilingual WSD experiments

due to the complexity of mapping translation embeddings to different em-

bedding spaces. We plan to investigate a more general method to integrate

t emb so that we can validate the advantage of t emb in the English all-words

43



WSD setting as well. Since not all supervised systems are significantly im-

proved by our post-processing constraint methods in English all-words WSD

experiments, we expect integrating t emb will be helpful by introducing more

abundant information about translations and senses.

Also, it will be interesting to test our methods in other types of tasks

related to WSD. For example, Pilehvar and Camacho-Collados (2019) propose

word in context (WiC) challenge, a binary classification task of detecting if

the same word appearing in the pair of sentences share the same meaning. We

plan to apply our methods to this task to validate our methods of leveraging

translations can be helpful for not only the standard WSD task but also a

more general task that requires disambiguating word meanings.

In addition, we would like to test BabAlign as a tokenization error cor-

rection method as described in our intrinsic evaluation. Even in manually

constructed corpora such as Multi SemCor, we found a few tokenization errors

that are detected and fixed by BabAlign. Thus, applying BabAlign for

tokenization error correction will be more beneficial for automatic corpora,

which are very important to WSD especially in languages other than English.
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