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Abstract

We present a Boosted Decision Tree (BDT) based algorithm, with promising potential, that

can be used at the level-2 stage of the ATLAS Hadronic Tau Trigger for the selection of a

single hadronically decaying tau lepton. The results indicate that our algorithm outperforms

the current algorithm on a wide variety of measures. The BDT trigger adds (8.242±0.068±

0.321)% to the Z → ττ signal RoI-wise acceptance rate of the reference trigger and adds

(10.628± 0.069± 0.276)% to the Z → ττ signal event-wise acceptance rate of the reference

trigger. Not only does the BDT trigger outperform the current trigger for Standard Model

signal channels, but it also dominates the current trigger for yet undiscovered high mass

resonances that will be more accessible in the upcoming (higher energy) running period.
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Nomenclature

0.1 Mathematics

We define N = {0, 1, 2, 3, . . . }, Z+ = {1, 2, 3, . . . }, Z+n = {1, 2, 3, . . . , n}, R as the set of

real numbers, and C as the set of complex numbers.

The cartesian product of sets A1, . . . , An is denoted by A1 × · · · × An. If, for some set

A, Ai = A ∀i ∈ Z+n, then the product may be simply written as An.

A Schwartz class function on Rn is an element of{
f ∈ C∞(Rn) : sup

x∈Rn

∣∣∣xα∂βf(x)
∣∣∣ <∞ ∀α, β ∈ Nm ∀m ∈ Z+

}
,

where we use the multi-index notation: xα := xα1
1 . . . xαnn and ∂β := ∂β11 . . . ∂βnn .

For each n ∈ Z+, we define the unitary group U(n) as the set of unitary n× n matrices

with entries from C, the special unitary group SU(n) as the subset of U(n) consisting of the

matrices with determinant 1, and O(n) as the subset of U(n) consisting of the orthogonal

matrices.

The symbol := denotes an equality that is also a definition, i.e. it doesn’t follow as

a consequence of our assumptions. It is only used when we believe that it would not be

clearly implicit from the context.

0.2 Particle Physics

Unless otherwise stated, we work in units where ~ = c = 1. This means that the unit for

energy is the electron volt (eV), the unit for momentum is eV/c, and the unit for mass is



eV/c2. For some figures taken from outside sources, the unit for momentum or mass may

simply be written as eV without the c, and thus, the inclusion of c or c2 is implicit.

If we regard R4 as spacetime, then its members consist of four-tuples (x0, x1, x2, x3),

where x0 is the time coordinate and x1, x2, x3 are the spatial coordinates. We typically de-

note such a four-tuple as x, and x denotes the three-tuple of spatial coordinates (x1, x2, x3).

The four spacetime coordinates are indexed with lowercase greek letters such as µ, ν, ρ. A

term containing two such indentical indices, with both either lower or upper indices, is

implicitly implied to be a summation over the indices. If one of the (identical) indices, µ,

is a lower index and the other one is an upper index, then this again implies a summation

over the indices, but with each term in the summation multiplied by gµµ, with g00 := −1

and gµµ := 1 otherwise. If x is a member of spactime, then, x2 is an abbreviation for xµx
µ.

Similarly, if p is the four-momentum of a particle, then p denotes its three-momentum, and

p2 is an abbreviation for pµp
µ. For any spacetime coordinate index µ, the partial derivative

with respect to the µth component of spacetime is written as ∂µ or ∂µ.

The Fock Space F(H) for a separable Hilbert Space H is defined in Section A.1.

Feynman Diagrams (or the Feynman calculus) are explained in Section A.5.

When decribing an elementary particle process, a pair of brackets may be placed to the

right of the symbol for a given particle A, and within the brackets, a number denotes the

mass of A in GeV/c2, and a symbol of another particle B denotes that B is one of the

decay products of A. The generic symbol l stands for lepton, and h stands for hadron. For

example,

H(125)→ τ(h)τ(µ) (1)

describes a Higgs boson with a mass of 125 GeV/c2 decaying into two taus, with one tau

decaying hadronically, and the other tau decaying into a muon and neutrinos.

0.3 The ATLAS Detector

The z-axis points along the direction of the beamline, in the counter-clockwise direction

if seen from above. The angle φ is measured around the z-axis. θ is the angle from



the z-axis. The pseudorapidity η is defined as − ln tan(θ/2). The transverse plane is the

plane transverse to the beam axis. ET and pT denote the transverse energy and momen-

tum, respectively. ∆R, a measure of the distance between regions of interest, is given as√
(∆η)2 + (∆φ)2. The longitudinal impact parameter z0 of a track is defined as the z co-

ordinate of the point on the track that is closest to the beamline. The pile-up or average

number of interactions per bunch crossing for a specified period of time is denoted by µ.

Cross sections are typically measured in barns, denoted with the symbol b, and defined by

1 b = 10−28 m2. [1][2]



Chapter 1

Introduction

In order to probe smaller distance scales and learn more about the substructure of the

universe, it is commonly accepted (via the uncertainty principle) that we must probe higher

levels of energy. This may lead to the discovery of new interactions that occur at the smaller

distance scales or simply the creation of new particles that were previously undetected due to

their large mass. For example, protons, previously believed to be elementary particles that

interact via the so-called nuclear force, were discovered, through high energy collisions, to be

composed of more elementary constituent particles called up and down quarks that interact

via a new force known as the strong force. And it was not until higher energy collisions

were studied that we discovered the existence of new quarks that behave in essentially the

same way as the other quarks, but are more massive.

The Large Hadron Collider (LHC) is currently at the leading edge of the energy frontier,

with a maximum proton-proton collision energy of 14 TeV and an average design rate of one

billion collisions per second. After two years of running at about half of its design energy,

it has produced enough experimental data to confirm the discovery of a new particle, most

likely believed to be the Higgs boson, one of the most significant missing pieces of the

Standard Model (SM) that unifies two of the elementary forces and explains how the SM

particles obtain mass. On the horizon, we have supersymmetry, a relatively standard theory

requiring the existence of new particles that are expected to be within the reach of the LHC

1
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in 2015, when the collision energy is to be increased to its design level. Other theories

beyond the SM are being tested as well, including extra dimensions, mini black holes,

and dark matter. One of the main goals of this thesis is to efficiently make sense of the

tremendous amount of information afforded to us by this machine.

We begin, in Chapter 2, by reviewing the theoretical foundations of particle physics. A

high-level overview of the Standard Model is presented, with more details given in Appendix

A. Next, an entire section is devoted to deriving the Higgs Mechanism. Lastly, we give an

introduction to supersymmetry and explain why it is an important extension to the Standard

Model that should be included in experimental searches. We believe that these sections

should be completely accessible for those who are comfortable with quantum mechanics

and mathematics at the upper-undergraduate level.

In the next two chapters we describe the experimental framework used for our research.

This includes the LHC, the ATLAS detector, and the tau trigger. We introduce the tau

lepton and motivate the desire to understand elementary interactions with taus. We give

a short performance report of the tau trigger in 2011, including a summary of a study we

performed on dijet events selected with the tau trigger. Next, we explain the challenges

that were faced for the tau trigger in 2012, and describe the improvements done to meet

those challenges. We end Chapter 4 with a short outlook for the future of the tau trigger,

including potential improvements to the level-2 selection process.

In Chapter 5 we introduce the problem we wish to solve and present our procedure.

Our goal is to design an algorithm for single tau selection at the level-2 tau trigger. We

begin by describing boosted decision trees and the specific tools that we use to create them.

Our procedure is then described in the steps: data preparation, training, testing. Next, we

mention the currently implemented algorithm that we intend to replace, and show how it

compares with ours. The final three sections describe some of the additional steps that were

added to our procedure in order to improve the performance of our algorithm as well as the

confidence in our results; namely: error codes, systematic uncertainties, and optimization

of variable selection.
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Chapter 6 shows the results. We begin by listing the specific datasets that were used for

training, and provide a motivation for their inclusion. Then, we state our cut parameters

for the initial stage of the selection algorithm, and show the energy dependent acceptance

rates for the samples used for training. Next, we state the variables used together with

their motivation, and compare the signal and background distributions for these variables.

We also show the respective correlation matrices. The next section describes the error

code classes that were used, and gives an indication of the fraction of collision data events

that belong to each error code class. The next two sections show some of the results

used to validate the training procedure; namely the overtraining check and the sequence

of decision trees that define the classifier. Next, we have the results for the calorimeter

stage of the algorithm, when applied to the training samples. This includes both the overall

rates and the pile-up dependent ones. For the remaining sections, we focus on the overall

algorithm, rather than just the calorimeter stage. We show results for signal acceptance

versus overall rejection, for various classes of error codes. For each training sample, we

examine the acceptance rates as functions of transverse energy and pile-up. Finally, we end

the chapter by showing the energy and pile-up dependent rates for a variety of other signal

and background samples, none of which were used in the training procedure.

The final chapter is the conclusion. Here we summarize the content of this thesis and

restate the essential aspects of our results. We also provide suggestions for future extensions

of our study.

The nomenclature used is shown before this chapter. The references are listed after the

final chapter. We attempt to provide publicly available sources whenever possible, but may

provide some sources that are restricted to ATLAS members, as they may be valuable to

those engaged in similar studies.



Chapter 2

Theoretical Foundations

2.1 The Standard Model

Elementary particle physics, the study of the fundamental interactions between the funda-

mental constituents of matter, arose in 1897 with J. J. Thompson’s discovery of a negatively

charged particle called the electron. By 1911, (due to E. Rutherford) the atomic nucleus

was known to be a particle with positive charge with a relatively large separation distance

from its corresponding electrons. The model was further refined by the discovery (by J.

Chadwick), in 1932, of the neutron, so that the nucleus was viewed as consisting of both

positively charged particles called protons and neutral particles called neutrons. In parallel

with these discoveries, A. Einstein argued in 1905 that electromagnetic radiation is com-

posed of tiny particles contributing indivisible amounts of energy, and this was confirmed in

1923 by an experminent conducted by A. H. Compton, which is now known as the discovery

of the photon. In the years that followed, more elementary particles were discovered, the in-

teractions were revised, and what once were called elementary particles became known to be

composites of more elementary constituent particles. Currently, the SM of particle physics

consists of three fundamental interactions between 61 species of elementary particles. The

two main categories for these particles are fermions and bosons. The fermions obey the

Pauli exclusion principle stating that no two such particles of the same species (quantum

4
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numbers) can occupy the same state at the same time, and are commonly known as the

matter forming particles. By the Spin-Statistics Theorem, any particle with half integer

spin is a fermion. However, experimentally, the only observed elementary fermions have

spin 1/2, and there are 48 of them. The bosons, on the other hand, are the particles that

are not restricted by the Pauli exclusion principle and an arbitrary number of such particles

of the same species can occupy the same state simultaneously. They are commonly known

as the force carrying particles, and by the Spin-Statistics Theorem, must have integer spin.

Experimentally, there are 13 known elementary bosons, and they all have spin 1, except

for the recently experimentally confirmed Higgs boson, which has spin 0 [3]. The fermions

can be further divided into two groups: leptons and quarks. The leptons consist of the

electron, the muon, and the tau, together with their corresponding antiparticles, neutrinos,

and antineutrinos. While the electron, muon, and tau are electrically charged, the neutri-

nos are electrically neutral and only participate in the weak interaction, and the difference

between a neutrino and an antineutrino is that the former has positive lepton number while

the latter has negative lepton number. The quarks are the strongly interacting particles of

types: up, down, charm, strange, top, bottom, where each type consists of three particles

of different colour charge and their corresponding antiparticles with opposite electric and

colour charge. A particle composed of quarks is called a hadron, and can be either a meson

(a quark-antiquark pair), a baryon (three quarks), or an antibaryon (three antiquarks).

Finally, the bosons are: the photon, the eight gluons, the Z boson, the two W bosons, and

the Higgs boson. The photon mediates the electromagnetic interaction, the gluon mediates

the strong interaction, the Z boson and the W bosons mediate the weak interaction, and

the Higgs boson provides mass to all of the particles. Of course, gravity is missing from this

picture, and that is because we currently do not have any viable theory of gravity that is

able to function on the small distance scales present in elementary particle physics. Figure

2.1 shows a table of the elementary particles contained within the SM.

The precise description of the SM is formalized through the language of quantum field

theory. In the canonical approach, we start with the classical notion of a field, i.e. a differ-
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Figure 2.1: The elementary particles in the SM of Particle Physics [4]. Recent experimental
evidence suggests a SM Higgs boson in the mass range of 125-127 GeV/c2 [5].

entiable Cn-valued function ϕ defined at each point in spacetime R4, and depending on the

particle we wish to describe, we choose an appropriate value of n and free field equation

describing the time dependent evolution of the field given an initial value for the field at

time t = 0. We then expand ϕ(x) as a Fourier integral and replace the Fourier coefficients

with linear combinations of annihilation and creation operators indexed by p ∈ R3 that

act on the Fock state space F(H) of the field’s quanta, for a separable infinite-dimensional

Hilbert Space H, with the motivation being that each coefficient represents the time depen-

dent displacement of a harmonic oscillator with angular frequency ωp =
√
m2 + p2, which

corresponds to the quantum mechanical position operator Xp = 1√
2ωp

(Ap+A†p), where Ap

can be identified as an operator that annihilates a particle with momentum p and A†p as
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an operator that creates a particle with momentum p. Since the integral may now be di-

vergent, we instead regard ϕ as an operator-valued distribution that maps each real-valued

Schwartz class function f on R4 to the operator∫
R4

f(x)ϕ(x)d4x . (2.1)

The details of the construction of the quantum field are shown in Appendix A. Each free

field equation has a corresponding free Lagrangian density L0, a polynomial of arbitrary

degree in terms of the field ϕ and ∂µϕ, that generates the free field equation when one

applies the generalized Euler-Lagrange equation,

∂µ
(

∂L

∂(∂µϕ)

)
=
∂L

∂ϕ
, (2.2)

for L = L0. This equation is interpreted by regarding ϕ and ∂µϕ as real-valued variables

of L when taking a partial derivative with respect to L, regarding the values of the partial

derivatives as the µth components of spacetime R4, and finally regarding ϕ as an operator

after summing over the indices. If we add interaction terms (functions of ϕ, other fields

ϕ1, . . . , ϕn, and their derivatives) to L0, describing the interaction between the fields, we

obtain the complete Lagrangian density L for the system. By definition, the Lagrangian

L(t) is the spatial integral
∫
L(ϕ)(t,x)d3x. The terms of the Lagrangian involving time

derivatives of fields are referred to as the kinetic energy T , while the rest is referred to as

the negative of the potential energy V , so that L = T − V . The Hamiltonian is defined

as H = T + V and is typically decomposed into its free part H0 and its interaction part

HI , so that H = H0 + HI . From quantum mechanics, we know that the probability

amplitude for a system to begin in state |a〉, and after time t, be observed in state |b〉 is

〈b| e−itH |a〉, where H is the quantum mechanical Hamiltonian. The same principle is used in

quantum field theory, but the states are now members of the multi-field Fock space, and the

Hamiltonian is the one for quantum fields described above. Typically, in a particle physics

experiment, we have particles with localised momenta that begin sufficiently far apart from

each other where their interactions are negligible, approach each other, interact, and then

the resulting particles move away from each other so that they are again sufficiently far
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apart to have negligible interactions. The probability amplitude for such an experiment is

written as 〈b|S |a〉, where |a〉 is the incoming state, |b〉 is the outgoing state, and S, called

the scattering operator, is given by

S = lim
t0→−∞
t1→+∞

eit1H0e−i(t1−t0)He−it0H0 . (2.3)

It can be shown that

S = I +

∞∑
n=1

1

inn!

∫ ∞
−∞

. . .

∫ ∞
−∞

T[HI(τ1) . . . HI(τn)]dτ1 . . . dτn . (2.4)

where

T[HI(τ1) . . . HI(τn)] := HI(τi1) . . . HI(τin) for τi1 > τi2 > · · · > τin . (2.5)

Typically, the assumption is that the first few terms of the series for S is a good approxima-

tion to the value of S, and the calculation of probability amplitudes in quantum field theory

reduces to calculating these terms through the aid of Feynman diagrams, which encapsulate

the needed information in a simpler format. Other quantities such as the differential cross

section or lifetime of an elementary particle process can be obtained from the corresponding

probability amplitudes using straighforward formulas. More details regarding the scattering

operator are shown in Section A.4.

Quantum electrodynamics (QED) is the theory that describes the electromagnetic in-

teraction between the elementary particles predicted by the SM. It is the small scale gener-

alisation of the more familiar theory of classical electrodynamics, which consists of charged

masses interacting via the electric and magnetic forces. The Lagrangian density for the

theory is

L(ψ,Aµ) =

N∑
j=1

ψ†jγ
0(iγµ∂µ −m)ψj −

1

4
FµνF

µν − qjgeAµψ†jγ
0γµψj , (2.6)

where Fµν := ∂µAν − ∂νAµ, γµ are P. Dirac’s gamma matrices, ge is the electromagnetic

coupling constant, the charged masses now correspond to N = 21 types of elementary

charged spin-1/2 particles with bispinor fields ψj and charges qj ∈ ±1
3{1, 2, 3}, and the

electromagnetic force corresponds to the photon’s vector field Aµ. The corresponding free
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field equation is called the Dirac Equation. The states of the quanta of each ψj consist of

bispinors, commonly referred to as simply spinors or Dirac spinors, which are four compo-

nent objects where two of the components represent the state of a particle, and the other

two represent the state of the corresponding antiparticle. Figure 2.2 shows a Feynman

diagram for a typical QED interaction.

γ

e

µ

e

µ

Figure 2.2: A Feynman diagram of an electron interacting with a muon via the photon.

On the other hand, quantum chromodynamics (QCD) is the theory that describes the

strong interaction between the elementary particles, which is the force that is well known

for holding together atomic nuclei. It is mediated by eight types of gluons, and since gluons,

like photons, are massless spin 1 particles, their Feynman propagator is equivalent to that

of the photons (modulo the color factor). Gluons are exchanged by each of the 36 quarks,

and peculiarly, by gluons themselves. In addition to charge, quarks contain a conserved

quantity called colour, which can be one of red, green, blue, anti-red, anti-green, or anti-

blue. Gluons may also contain colour, but in colour-anticolour pairs. This allows for colour

to be conserved when a quark changes colour at an elementary QCD vertex, as shown in

Figure 2.3.

g(b, r̄)

u(b)

u(r)

Figure 2.3: A blue up quark converting into a red up quark and emitting a blue-antired
gluon.

Unlike QED, where the effective electromagnetic coupling constant decreases as the

spatial separation of the particles participating in the interaction increases, the effective
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strong coupling constant increases as the spatial separation of the particles participating in

the interaction increases. Since the vacuum produces electron-positron pairs, we can view

the vacuum as a dielectric material with some dielectric constant ε, which tends to give a

particle an effective electromagnetic charge of

qeff = q/ε , (2.7)

where ε approaches one as the separation distance approaches zero. Similarly for QCD, the

vacuum produces quark-antiquark pairs with opposite colour charge, which has the effect of

decreasing the effective strong coupling constant between quarks as the separation distance

increases. But since gluons interact with each other, the vacuum produces gluon loops,

which have the opposite and dominant effect. What is troubling is that for long enough

distances, the coupling constant is greater than one, and so in the QCD Feynman calcu-

lus, as the complexity of the Feynman diagram increases, its contribution to the amplitude

increases as well, which makes calculating accurate interaction amplitudes much more dif-

ficult as compared with QED. Another interesting property of QCD is colour confinement,

which states that individual quarks/antiquarks cannot be isolated and are only observed

as groups of quarks/antiquarks bound together and forming a colour singlet, which is a

colourless state consisting of two or more quarks/antiquarks with the same probability for

each colour state combination. It has yet to be analytically proven that colour confinement

follows as a consequence of QCD, but the explanation is widely believed to be that as two

quarks of unlike colour charge separate, the gluons between them form narrow tubes of

colour charge, which tend to bring the quarks together, until some point where it is more

energetically favourable for a new quark-antiquark pair to spontaneously appear rather than

to allow the tube to extend further. The process of hadron formation from quark and gluon

interactions is called hadronisation. It occurs after high energy particle collisions create

free quarks that may exist for a short time, and by colour confinement, combine to form

hadrons. The hadrons tend to travel in narrow cones called jets. Note that a single quark

can be indirectly observed as is the case with the top quark. Due to its short lifetime, it typ-

ically decays before it has time to form a hadron with other quarks. Also note that a gluon
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cannot exist in a colour singlet state, and this can be seen as a result of the experimentally

proved SU(3) symmetry of QCD. This implies that colour singlets cannot exchange gluons

to interact strongly between each other, but rather must interact through the exchange of

other colour-singlets, and this interaction is called the residual strong force, which is typi-

cally seen as the force between atomic nuclei. Since the residual strong force is mediated by

a massive particle, it has a very short range unlike, for example, the electromagnetic force

mediated by the (massless) photon.

Thirdly, we have the weak interaction. It is the fundamental force that is responsible

for the radioactive beta decay of atomic nuclei. It is mediated by the W+,W− and Z bosons

with free field equation

∂µF
µν +m2Aν = 0 , (2.8)

which is equivalent to the photon’s free field equation if we set the mass of the boson, m = 0.

These bosons are exchanged by each of the 48 fermions as well as amongst themselves. While

the vertex factor for the electromagnetic force between charged leptons ua, ub is u†aigeγ
0γµub,

the vertex factor for the weak interaction between a charged lepton ua and a neutrino ub

is u†a
(
−igw
2
√

2

)
γ0γµ(1 − γ5)ub where gw is the weak coupling constant. One interesting fact

about the weak interaction is that it is not parity invariant. By definition, an interaction is

parity invariant if the probability of a certain process occuring is the same as the probability

of the same process occuring with the spatial coordinates of the particles inverted (take the

negative of the spatial coordinates). For if we take

xi 7→ −xi , (2.9)

then by the Dirac Equation, the leptonic state transforms as

u(x) 7→ γ0u(x) , (2.10)

so that for leptons with states ua and ub,

u†aγ
0γµub 7→ −u†aγ0γµub (2.11)
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and

− u†aγ0γµγ5ub 7→ −u†aγ0γµγ5ub , (2.12)

which shows that the electromagnetic vertex factor is parity invariant, while the leptonic

weak vertex factor is not since when you add (2.11) to (2.12), you do not get a factor of

unit modulus multiplied by the original interaction amplitude as you do with (2.11), and

therefore the probability amplitude is not invariant. Another important concept related to

the weak force is handedness. A particle is said to be right handed if the component of its

spin along its direction of motion is parallel to its direction of motion, and left handed if it

is antiparallel to its direction of motion. Experiments in the past have consistently shown

neutrinos to be left handed and (actually implied by the Dirac Equation) antineutrinos to

be right handed. Note that for massive particles, handedness is not Lorentz invariant, thus

if we assume neutrinos keep the same handedness, we must assume that they are massless.

It turns out that this assumption is not entirely correct (neutrino oscillations), but it works

to a good approximation, and unless otherwise stated, it is the assumption we will make.

Fortunately, the electromagnetic and weak interactions can be unified. The results in

Section A.6 show that for a massless particle, it must be left handed in order to participate

in weak interactions, and for a massless antiparticle, it must be right handed in order

to participate in weak interactions. Thus, according to this model, even if right handed

neutrinos existed, they would not interact, so we can assume that a right handed neutrino

field does not exist. Further, for L = 1−γ5
2 , R = 1+γ5

2 , L̄ = 1+γ5

2 , R̄ = 1−γ5
2 , we can

decompose u as

u = Lu+Ru (2.13)

and call uL := Lu the left part of u and uR := Ru the right part of u. We can view uL and

uR as distinct particles and say that uL participates in weak interactions while uR does not.

Similarly, for an antiparticle ū, call ūL̄ := L̄ū the left part of ū, ūR̄ := R̄ū the right part

of ū, and say that ūR participates in weak interactions while ūL does not. For any leptons

with spinors a, b, this allows us to replace our weak vertex factor

a†gwγ
0γµ(1− γ5)b (2.14)
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with

2a†Lgwγ
0γµbL , (2.15)

and replace our electromagnetic vertex factor

a†geγ
0γµb (2.16)

with

a†Lgeγ
0γµbL + a†Rgeγ

0γµbR . (2.17)

This is nice because we can now look at the weak and electromagnetic interactions as having

the same vertex factors modulo a coupling constant, except that the weak interaction only

acts on the “left” particles. The next section completes the unification through the use of

the Higgs Mechanism. [6][7]

2.2 The Higgs Mechanism

The current standard model that unifies QED with weak interactions is the one developed

by A. Salam and S. Weinberg in 1967. Assuming for simplicity that the only fermions are

electrons with fields denoted by e and electron neutrinos with fields denoted by ν, the model

builds upon our previous discussion by introducing a Lagrangian density for free massless

left electrons, right electrons and neutrinos:

L0(ν, eL, eR) = iν†γ0γµ∂µν + ie†Lγ
0γµ∂µeL + ie†Rγ

0γµ∂µeR . (2.18)

This Lagrangian density is invariant under the global symmetry group U(3) of unitary 3×3

matrices U acting on (the transpose of) a triple (eL, ν, eR). By global we mean that the

matrices have no spatial or temporal dependence. Next, a subgroup of U(3) is carefully

chosen such that the Lagrangian density is invariant under this subgroup, and if we promote

this global symmetry group to a local (spacetime dependent) one, the interaction terms

between electrons and neutrinos are obtained.
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It turns out that the subgroup used is SU(2)× U(1), which consists of matrices of the

form 
e−iθa e−iθb 0

e−iθc e−iθd 0

0 0 e−2iθ

 . (2.19)

The details of the motivation for this group are ommited, but the main idea is that SU(2)

exploits the symmetry between left electrons and neutrinos under the weak interaction,

while U(1) exploits the so called weak hypercharge. The behaviour of strong interactions

plays a large role in motivating this construction.

Now, we promote the global symmetry group SU(2)×U(1) to a local symmetry group.

This requires introducing a gauge field

1

2i
(Wµ · σ, Xµ) , (2.20)

where Wµ = (Wµ1,Wµ2,Wµ3), σ is the triple of Pauli spin matrices (σ1, σ2, σ3), and each

Wjµ and Xµ is real valued. This gauge field generates the covariant derivatives:

Dµ

 ν

eL

 =

(
∂µ +

1

2i
gWµ · σ −

1

2i
g′Xµ

) ν

eL

 (2.21)

and

DµeR =

(
∂µ −

1

i
g′Xµ

)
eR , (2.22)

where g, g′ are coupling constants, Wµ · σ acts on the column vector by matrix multipli-

cation, and ∂µ and Xµ act componentwise. If we replace the ordinary derivatives in our

Lagrangian density (2.18) with the covariant ones, we get the Lagrangian density

Leν =
(
ν† e†L

)
γ0γµ

(
i∂µ +

1

2
gWµ · σ −

1

2
g′Xµ

) ν

eL

+ e†Rγ
0γµ(i∂µ− g′Xµ)eR . (2.23)

Since we introduced a new field, we must add its free Lagrangian density

LF = −1

4
〈Fµν |Fµν〉 , (2.24)
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where Fµν is the C3 × C valued function

Fµν = (∂µWν − ∂νWµ + gWµ ×Wν , ∂µXν − ∂νXµ) , (2.25)

and the inner product is the standard inner product on C4. Note that the requirement of

local invariance, used here and elsewhere, is a fundamental statement about the uniformity

of spacetime. The elementary laws of physics should not depend upon the specific time and

location.

The Lagrangian density Leν + LF now consists of interacting electrons, neutrinos, and

gauge fields, but the problem is that they are all massless. To resolve this issue, we add

another field to the Lagrangian density that enables mass to be generated by a process

known as spontaneous symmetry breaking.

To understand how symmetry breaking works, suppose Φ = (φ1, ..., φn) is an n-tuple of

real scalar fields with a Lagrangian density given by

L(Φ) =
1

2
(∂µΦ) · (∂µΦ)− V(Φ) , (2.26)

where 1
2(∂µΦ)·(∂µΦ) is called the kinetic energy density at Φ and V(Φ) is called the potential

energy density at Φ. If, instead, we view (in the natural way) the domain of V as the set

of all x ∈ Rn (not to be confused with position), then V is the real valued function given

by V(x). From now on, the precise choice of V will be implicit from the context. Typically,

as in our previous analysis, L is such that V(x) is minimized at a unique point x0 ∈ Rn.

From the Lagrangian density we deduce the vertex and propagator factors that are used to

calculate transition rates. To derive these factors, we perform a small perturbation about

the vacuum state |0〉 of the system. But, it can be shown that the vacuum expectation

value 〈0|Φ(0) |0〉 = x0, since we need a stable point for the perturbation series to converge.

If there is more than one point that minimizes V(x), then there is no unique choice for our

vacuum state, and the interactions we observe between the fields included in the Lagrangian

density can change drastically depending on our choice of vacuum state. In principle, even

if our system is at a specific vacuum state, given enough energy, we should be able to

surpass whatever potential is keeping us from reaching other vacuum states. However, due
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to energy limitations in the laboratory, it may be quite difficult for us to observe transitons

from one vacuum state to another and see the full picture. Also, our perturbation theory

relies on the assumption that the perturbation is small enough that it does not take us to

a new vacuum state.

Now suppose that the system has vacuum state |01〉 such that 〈01|Φ(0) |01〉 = x1, where

x1 is not necessarily a minimizer of V (x), and L(Φ) is invariant under a certain set of

transformations T acting on the deviations Φ − x1I. If x2 is a minimizer of V (x), it is

not guaranteed that L(Φ) is invariant under T acting on the deviations Φ − x2I. These

transformations are commonly referred to as symmetries of the system with vacuum state

|01〉. If the system transitions to having a different vacuum state |02〉 where these symmetries

are lost, we say that the original symmetries were broken. As mentioned above, it may be

possible to regain these symmetries by transitioning back to having vacuum state |01〉, but

the cost in energy may be too high to perform in a laboratory, and in our perturbation

theory, once we know the system to have vacuum state |02〉, we must assume that the

perturbation is small enough that it does not take our system to or past a local maximum

of the potential energy.

For example, consider the Lagrangian density given by

L(Φ) =
1

2
(∂µΦ) · (∂µΦ) + 10|Φ|2 − |Φ|4 , (2.27)

where Φ = (φ1, φ2). For x = (x1, x2) ∈ R2, the potential (energy) is given by

V(x) = −10|x|2 + |x|4 . (2.28)

Figure 2.4 shows an illustration of V.

This potential has a continuous set of minimizers given by the circle:

(
√

5, θ) for θ ∈ [0, 2π) in polar coordinates . (2.29)

The potential also has an unstable maximizer at x1 := 0. Let T be the set of transformations

Tθ that map φ1

φ2

 7→
cos θ − sin θ

sin θ cos θ

φ1

φ2

 . (2.30)
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Figure 2.4: An illustration of the Mexican Hat Potential [8].

T simply consists of the rotation operators, and it is clear from the figure that L is invariant

under such transformations. In other words, the transformation

(Φ− x1I) 7→ Tθ(Φ− x1I) (2.31)

leaves L(Φ) invariant. Thus if the vacuum state of the system is |01〉 and 〈01|Φ(0) |01〉 = x1,

we say that it posseses rotational symmetry. Physically this means that it is equally likely

to transition into any direction. Since it is an unstable point, any perturbation of the system

will result in a transition to a vacuum state expectation value being one of the minimizers

of V(x), and each θ is equally likely. Assume that the system transitioned to having its

vacuum expectation value equal to one of these minimizers, x2. Then clearly, the system

no longer posseses rotational symmetry, or more formally,

(Φ− x2I) 7→ Tθ(Φ− x2I) (2.32)

does not leave L(Φ) invariant. This example illustrates the idea of spontaneous symmetry

breaking, where a symmetry is broken in a nondeterministic fashion by simply perturbing

it in the slightest possible way. Note that in order to measure the state of a system, we
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must perturb it, thus we can think of spontaneous symmetry breaking as the collapsing

of a wavefunction into a ground state that does not posses the symmetries of the inital

wavefunction.

Now, the question is: What does spontaneous symmetry breaking have to do with

generating mass? To answer this question, we use the example Lagrangian density (2.27),

choose the minimizer x0 = (
√

5, 0), and let Φ̃ = Φ− x0I. Then,

L(Φ) = L(x0I + Φ̃)

=
1

2
(∂µΦ̃) · (∂µΦ̃) + 10((

√
5 + φ̃1)2 + φ̃2

2
)− ((

√
5 + φ̃1)2 + φ̃2

2
)2

=
1

2
(∂µΦ̃) · (∂µΦ̃) + 25− 30φ̃1

2 − 4
√

5φ̃1
3 − φ̃1

4 − φ̃2
4 − 4

√
5φ̃1φ̃2

2 − 2φ̃1φ̃2
2

− 2φ̃1
2
φ̃2

2

= (
1

2
(∂µφ̃1)(∂µφ̃1)− 30φ̃1

2
) + (

1

2
(∂µφ̃2)(∂µφ̃2))

+ interactions between φ̃1 and φ̃2 . (2.33)

In general, if mi is the mass of a real-valued field φi, then the φ2
i term of the corresponding

Lagrangian density must be −1
2m

2
i . Thus, we read from above that φ̃1 has mass m1 =

√
10,

and φ̃2 = φ2 has mass m2 = 0.

Moreover, it can be shown that for any Lagrangian density of the form (2.26), if it is

invariant under a global symmetry group G ⊂ O(n), (continuous) sponataneous symmetry

breaking leads to massless scalar particles called Goldstone bosons [7].

But, we want to generate mass, not massless particles. This is where local symmetry

invariance comes in. We will illustrate the concept with the example, but the results are

easily generalizable. First, reinterpret the Lagrangian density (2.27) so that its argument

is one complex field rather than two real fields:

L(Φ) =
1

2
(∂µΦ)∗(∂µΦ) + 10Φ∗Φ− (Φ∗Φ)2 . (2.34)

The rotational symmetry under the matrices given by (2.30) now becomes invariance under

the transformation

Φ 7→ eiθΦ . (2.35)
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We promote this transformation to a local one by allowing θ to have a spacetime dependence:

Φ(x) 7→ eiθ(x)Φ(x) . (2.36)

To make the Lagrangian density invariant under such a transformation we introduce a

massless gauge field Aµ and replace the derivatives in the Lagrangian density with covariant

ones. This results in the modified Lagrangian density:

L(Φ) =
1

2
((∂µ − iAµ)Φ)∗((∂µ + iAµ)Φ) + 10Φ∗Φ− (Φ∗Φ)2 − 1

4
〈Fµν |Fµν〉 . (2.37)

As before we let Φ̃ = Φ − x0I for x0 =
√

5. Then the only difference comes from the first

term:

1

2
[(∂µ − iAµ)Φ]∗ [(∂µ + iAµ)Φ]

=
1

2

[
(∂µ − iAµ)(x0I + Φ̃)

]∗ [
(∂µ + iAµ)(x0I + Φ̃)

]
, (2.38)

which includes a term

1

2
(x2

0)AµA
µ (2.39)

that implies that the spin-1 field Aµ is massive with mass x0 =
√

5. There is also a term

− 2ix0(∂µφ2)Aµ (2.40)

for which it does not make sense to interpret φ2 as a fundamental particle of the theory.

Actually, it is possible to exploit our local symmetry to remove φ2. Rewrite (2.36) as

[φ1(x) + iφ2(x)] 7→ [cos θ(x) + i sin θ(x)] [φ1(x) + iφ2(x)] . (2.41)

By choosing θ(x) = − tan−1(φ2(x)/φ1(x)), we see that the transformed Φ(x) becomes real

and φ2(x) = 0.

Let us summarize the results of symmetry breaking. If the Lagrangian density is glob-

ally, but not locally, invariant under a symmetry group G ⊂ O(n), spontaneous symmetry

breaking creates massless spin 0 particles called Goldstone bosons. If we add massless vec-

tor fields to the Lagrangian density to make it locally invariant under the symmetry group,
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spontaneous symmetry breaking creates massive spin 1 particles instead of the Goldstone

bosons. We say that “the gauge fields eat the Goldstone bosons and become massive”, and

since the massive vector fields have three degrees of freedom compared to the massless ones

that have two, spontaneous symmetry breaking in effect conserves the degrees of freedom

of the Goldstone bosons by passing them to the gauge fields.

Now that we understand spontaneous symmetry breaking and how it can generate mass,

we will add a field Φ to our electroweak Lagrangian density that acts to break the symmetry.

Let

Φ =

φ+

φ0

 =

φ+
1 + iφ+

2

φ0
1 + iφ0

2

 . (2.42)

Note that Φ is a doublet of complex-valued scalar fields. It is commonly known as the Higgs

doublet. The (locally invariant) Lagragian density for Φ is

LΦ =
1

2
(DµΦ)†(DµΦ) + κΦ†Φ− λ(Φ†Φ)2 , (2.43)

where κ, λ are positive constants and

Dµ = ∂µ +
1

2i
gWµ · σ +

1

2i
g′Xµ . (2.44)

Finally, we add an interaction between Φ and the leptons:

LeνΦ = −G
(
ν†γ0 e†Lγ

0
)φ+

φ0

 eR −Ge†Rγ
0
(
φ+∗ φ0∗

) ν

eL

 , (2.45)

where G is a coupling constant. The full Lagrangian density for the Salam-Weinberg Elec-

troweak model (including only electrons and neutrinos as the leptons) is:

L = Leν + LF + LΦ + LeνΦ . (2.46)

We will now interpret the effect of this addition to the Lagrangian density. First note

that for x ∈ C2, the potential of LΦ,

V(x) = −κx†x+ λ(x†x)2 , (2.47)

is minimized when

|x+|2 + |x0|2 = κ/2λ . (2.48)
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Among the x satisfying this condition, we take

x+ = 0, x0 = a , (2.49)

where a =
√

κ
2λ . As explained in [7], we can perform a gauge transformation g(x) that puts

any field with values near
(

0
aI

)
into the form

Φ =

 0

aI + φ

 , (2.50)

where φ is a real scalar field. Further, there is a unique g(x) such that g(x) ∈ SU(2) ∀x and

this determines the field φ known as the Higgs field. Its quanta are (spin-0) particles known

as Higgs bosons. Henceforth, we assume this choice of gauge. The covariant derivative

DµΦ =

 0

∂µφ

+ (
g

2i

 Wµ3 Wµ1 − iWµ2

Wµ1 + iWµ2 −Wµ3

+
g′

2i
Xµ)

 0

a+ φ

 (2.51)

gives

(DµΦ)†DµΦ (2.52)

= ∂µφ∂
µφ− a2g2

4
(Wµ1 + iWµ2)(Wµ1 − iWµ2)− a2

4
(gWµ3 − g′Xµ)(gWµ

3 − g
′Xµ) + . . . ,

where the dots denote terms containing products of three or four fields. Also,

κΦ†Φ− λ(Φ†Φ)2 =
κ2

4λ
− 2κφ2 + . . . . (2.53)

Thus, after removing constant terms,

LΦ =
1

2
∂µφ∂

µφ− a2g2

4
W †µW

µ − a2

8
(g2 + g′2)ZµZ

µ + . . . , (2.54)

where

W =
W1 + iW2√

2
, Z =

gW3 − g′X√
g2 + g′2

, A =
g′W3 + gX√
g2 + g′2

(2.55)

are deduced to be distinct particles by the way they combine in the Lagrangian density.

The complex value of the W field implies that the W particle is charged. The masses of the

particles are read to be

mW =
ag

2
,mZ =

a
√
g2 + g′2

2
,mφ = 4κ . (2.56)
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The A field remains massless. We now examine the interaction between Φ and the leptons.

Applying our gauge condition, we get

LeνΦ = −Ga(e†Lγ
0eR + e†Rγ

0eL)−G(φe†Lγ
0eR + φe†Rγ

0eL) . (2.57)

The first pair of terms is a mass term for electrons. The mass me of an electron should

appear in the Lagrangian density as −mψ†eγ0ψe where ψe = eL + eR. Using the fact that

(eL + eR)†γ0(eL + eR) = e†Lγ
0eR + e†Rγ

0eL, we get that the mass of an electron is

me = aG . (2.58)

Thus, all of the masses in the electroweak theory are generated by the field Φ. We can

continue to analyze the electroweak Lagrangian density and deduce the various coupling

constants and other properties between the particles involved; however, we will not go into

these details here. Also recall that we included only electrons and neutrinos as the leptons

of the theory. Adding the other leptons is straightforward. Simply add the analogous Lab+

LabΦ for the muon and tau, where a is a muon or tau and b is the corresponding neutrino.

It is also possible to add quarks into the picture by adding extra terms to the Lagrangian

density. Finally, we should answer the basic question of how the electromagnetic and weak

interactions can be viewed as a single unified force. The answer is that at high enough

temperatures (energy density) when electroweak symmetry is no longer broken, all the

fundamental particles remain massless and there is no distinction between these interactions.

If temperatures drop, the symmetry is spontaneously broken, and the interactions are as we

commonly see them. In particular, the fields for the gauge bosons for the electromagnetic

and weak interactions are each mixtures of the Wi and X fields. [6][7]

2.3 Supersymmetry

Supersymmetry (SUSY) is a quantum field theory that postulates that there is a transfor-

mation linking fermions with bosons, such that the physical laws (action) for the theory

is invariant under this transformation. This kind of transformation is called a symmetry
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for the theory, and in particular it implies that every fermion has a corresponding bosonic

partner and every boson has a corresponding fermionic partner, and when the symmetry

is unbroken, the masses of the corresponding fermion-boson pairs coincide. The theory has

the potential to solve several important problems in particle physics. [6]

One of them is the problem of renormalizing the mass of the Higgs Boson. While the

SM particles gain mass by coupling to the Higgs field, the Higgs field gains a correction

to its mass by coupling to the SM particles. Figure 2.5 shows the first three diagrams of

an infinite sequence of fermion loop Feynman diagrams that contribute to the mass of the

Higgs boson.

H
M0 = PH

H H
M1 = PHLfPH

H H H
M2 = PHLfPHLfPH

Figure 2.5: The first three fermion loop diagrams for the Higgs boson, along with their
corresponding amplitudes. PH is the propagator factor and Lf is the fermion loop factor.

The net amplitude of the entire sequence is the sum

PH

∞∑
j=0

(LfPH)j , (2.59)

and it can be shown that

PH =
i

p2 −m2
H

, Lf ∝ −m2
fGFΛ2 , (2.60)
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such that mf is the mass of the fermion, GF is a factor of the coupling constant between

the fermion and the Higgs boson, and Λ is the maximum energy threshold. The infinite

sum (2.59) is just

PH
1− LfPH

=
i

(p2 −m2
H)(1− LfPH)

(2.61)

=
i

p2 − (m2
H + iLf )

. (2.62)

The correction to the (squared) mass of the Higgs boson due to the fermions is thus

∆m2
H ∝ −m2

fGFΛ2 . (2.63)

On its own, this correction would be troublesome, since it is a negative correction to the

mass that grows with the energy threshold. However, we also have the bosons. It turns out

that their loop diagrams lead to a correction of

∆m2
H ∝ +m2

bGFΛ2 , (2.64)

where mB is the mass of the boson. Under SUSY, the pairing between the fermions and

bosons would cause the net correction due to all fermions and bosons to converge to a value

of the order of the SUSY breaking energy scale (∼ 1 TeV). [9]

Another application of SUSY includes the modification of the energy dependence of the

three fundamental coupling constants so that they perfectly agree at the Grand Unified

Theory (GUT) scale. Figure 2.6 shows a comparison between the convergence of the cou-

pling constants at the GUT scale for (a) The Minimal SM (MSM), and (b) The Minimal

SM with SUSY (MSSM). [6]

A significant number of theories beyond the SM assume the existence of SUSY. In

particular, String Theory, a quantum theory of gravity, is one of them. Also, in most

models of SUSY, the lightest supersymmetric particle is a good candidate for dark matter,

since it is colourless, neutral, and stable. The stability follows from the concept of R-parity.

Supersymmetric particles are given a different value of R-parity than SM particles, and

R-parity is assumed to be conserved. [6] [10]
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Figure 2.6: Convergence of the coupling constants at the GUT scale for (a) The MSM, and
(b) The MSSM. The horizontal axis is energy in GeV. [6]

If SUSY exists, then it must be broken such that the masses of the supersymmetric parti-

cles are greater than the masses of the corresponding SM particles. However, most minimal

supersymmetric models of SUSY breaking require at least 124 independent parameters,

which makes experimental searches for SUSY extremely challenging. [6]



Chapter 3

Experimental Framework

3.1 The Collider

The LHC is a particle accelerator built in 2008 by the European Organization for Nuclear

Research (CERN) with the aim of helping scientists to answer key unresolved questions in

physics, such as: the origin of mass, SUSY, dark energy, dark matter, the matter-antimatter

imbalance, the nature of the early universe, and the existence of extra dimensions. It consists

of a 27 km long circular tunnel more than 100 m underground that accelerates protons to

a maximum proton-proton collision energy of 14 TeV, making it the world’s largest and

most energetic particle accelerator. Before entering the main tunnel, protons, isolated from

hydrogen gas by stripping the atoms’ electrons, are injected into the Proton Synchroton

(PS) booster at an energy of 50 MeV per proton. The booster accelerates them to 1.4 GeV

at which point they are injected into the PS where they are accelerated to 25 GeV. Next,

they travel to the Super Proton Synchroton (SPS) where they are accelerated to 450 GeV.

They are then ready to enter the LHC where they are accelerated, both in a clockwise and

anticlockwise direction, until they reach the desired energy level. In order to guide the

protons along the circular paths defined by the tunnels, they are acted upon by magnetic

fields generated by superconducting magnets, which are kept in operation by cooling them

to a temperature of about −271◦C. The strength of the fields vary with the speed of the

26
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protons. When the protons are first injected into the LHC, the field strength is 0.535 T,

and as the protons accelerate, this increases to a maximum of 8.33 T. The beam pipes

within the tunnels are kept at an ultrahigh vacuum state (10−13 atm) so that additional

particles within the tunnel do not add a significant amount of background noise to the decay

products of the proton collisions. When travelling along the main beam pipe, the protons

are spaced out into groups called bunches. Each bunch may contain as many as 115 billion

protons and the bunches may be separated by as little as 25 ns. When two opposing bunches

cross, at most 40 significant proton-proton interactions (or collisions) should be expected

to occur, with an average of about 23 at the design luminosity (defined below). If we

count only the interactions between protons that originated from the same bunch crossing,

then this number is called in-time pile-up, while out-of-time pile-up refers to the number of

interactions per bunch crossing between protons originating from different bunch-crossings.

Pile-up refers to the sum of in-time and out-of-time pile-up. Each bunch crossing is called

an event, and during a time interval (t1, t2), the number of collisions of a certain type is

given by

Ncol = σcol

∫ t2

t1

L(t)dt , (3.1)

where σcol is the cross section for the given type of collision, and L (not to be confused with

the Lagrangian density) is the instantaneous luminosity of the incoming protons, i.e. the

number of protons per unit area per unit time passing the interaction point. The design

luminosity is 10 nb−1s−1. For 7 TeV collisions, the total cross section, that is, the cross

section for any kind of collision, has been measured to be 98.0± 2.5 mb [11]. At a constant

instantaneous luminosity of 1 nb−1s−1 (typical for 2011 7 TeV collisions), this translates

into (approximately)

(98× 106) nb× 1 nb−1s−1 = 98 million collisions per second . (3.2)

[12][13]

The main LHC tunnel contains four interaction points where proton-proton collisions oc-

cur. At each point, there is a detector absorbing the particles emanating from the collision
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and taking measurements on their energies and trajectories. Currently, the seven detec-

tors placed along the LHC tunnel are: ATLAS, CMS, ALICE, LHCb, TOTEM, LHCf,

and MoEDAL. ATLAS and CMS are both general purpose detectors with the same goals

but with different technical solutions and design methods for achieving them. ALICE is

specifically designed to detect a state of matter known as quark-gluon plasma, which is

hypothesized to have existed shortly after the occurence of the Big Bang. LHCb is a for-

ward region detector designed to investigate the matter-antimatter imbalance problem, by

focusing on the detection of the b quarks. TOTEM is a forward region detector sharing

the same interaction point as CMS with goals such as measuring the size of the proton and

accurately monitoring the LHC’s luminosity. LHCf is a forward region detector sharing

the same interaction point as ATLAS with the goal of simulating cosmic rays in laboratory

conditions. MoEDAL, a relatively new addition, is designed to search for the magnetic

monopole and other highly ionizing stable massive particles [14]. This thesis will focus on

the ATLAS detector. Figure 3.1 shows a diagram of the accelerating tunnels and interaction

points for the LHC. [12]

Figure 3.1: A diagram of the accelerating tunnels and interaction points for the Large
Hadron Collider [15].
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The first beams began circulating in the LHC on September 10, 2008 [16], but 9 days

later, operations were halted due to a faulty electrical connection between two of the ac-

celerator’s magnets, which resulted in mechanical damage to the superconducting magnets,

the release of helium from the magnet cold mass into the tunnel, and contamination of the

vacuum beam pipe [17]. The beams resumed circulation on November 20, 2009 [18], and

on March 30, 2010 data taking began at a 7 TeV collision energy [19]. This continued until

April 2012 (with breaks in the winter), when the energy was increased to 8 TeV [20], and

then continued with that level of energy until February 2013, the beginning of the long term

shut down period [21].

3.2 The Detector

The ATLAS detector is a cylindrically shaped structure enclosing the LHC beam pipe

with a 46 m length and a 13 m radius and consisting of four main components: the inner

detector, the calorimeter, the muon spectrometer, and the magnet system. The inner

detector measures the momenta of charged particles, the calorimeter measures the energies

of charged particles and hadrons, the muon spectrometer focuses on measuring the momenta

of muons, and the magnet system curves the trajectories of the particles so that their

momenta can be measured based on the radius of the curvature.

The inner detector lies in the innermost 1.15 m radius surrounding the interaction point.

It is subdivided into three parts (in order of innermost to outermost): the pixel detector,

the semiconductor tracker (SCT), and the transition radiation tracker (TRT). The pixel

detector, crucial for vertex reconstruction, consists of three silicon based layers at radii

r = 50.5 mm, r = 88.5 mm, and r = 122.5 mm, which provide a three-hit system with 8×107

pixels of resolution for particles with |η| < 2.5 [22]. The SCT consists of 8 layers of silicon

microstrip detectors with pairs of layers at radii r = 30.0 cm, r = 37.3 cm, r = 44.7 cm, and

r = 52.0 cm, providing 6.2 million pixels of resolution. The TRT consists of hundreds of

layers of straw detectors with a diameter of 4 mm, each containing a gold-plated wire with

a diameter of 30µm. The barrel part of the TRT contains about 50000 axially oriented
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straws, each divided in two at the centre, and covering the radial range from 56 to 107 cm.

The end caps contain 320000 radially oriented straws, and they cover the radial range from

64 to 103 cm for the 14 layers nearest the interaction point and a radial range from 48 to

103 cm for the other 4 layers. The spatial resolution of this part of the tracker, 170µm

per straw, is significantly worse than the others, but the construction is much more cost

effective given the larger volume, and as a unique feature, Xenon gas within the straws

provides an accurate measurement of transition radiation, which is primarily used to detect

the presence of electrons. The inner detector detects the track of any charged particle;

neutral particles do not bend under the presence of the magnetic field.

The calorimeter encloses the inner detector and is subdivided into an electromagnetic

(EM) calorimeter and a hadronic (HAD) calorimeter. The EM calorimeter measures the

energies of charged particles. It uses lead as the material that absorbs the energies of the

particles and liquid argon (LAr) as the material that samples their energies. Its granularity

varies between 0.003 to 0.1 for ∆η and 0.025 to 0.1 for ∆φ, depending on the location.

The HAD calorimeter measures the energies of particles that pass the EM calorimeter

and interact via the strong force. Its main section, the tile calorimeter uses iron as the

absorbing material and scintillating tiles to sample the energies. Its end cap and forward

sections use liquid argon as the sampling material and copper and tungsten as the absorbing

materials. These regions tend to have a higher energy density of colliding particles and

hence need more conductive materials to dissipate the resulting heat. Its granularity in

∆η ×∆φ varies between 0.1× 0.1 and 0.2× 0.1, and is thus coarser than that for the EM

calorimeter. All charged particles interact in the EM calorimeter and all hadrons interact

in the HAD calorimeter. Particles that are both charged and hadrons, such as the proton,

interact in both calorimeters, but primarily in the HAD calorimeter. The lower density

of the absorbing material for the EM calorimeter ensures that hadrons pass through it

without significantly interacting with its nuclei, due to the short range of the residual strong

force. Electrons typically end their journey at the EM calorimeter through the process of

bremsstrahlung radiation, while the more massive muons easily pass through both the EM
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and HAD calorimeters, since their mass heavily suppresses any possible bremsstrahlung

radiation.

The muon spectrometer surrounds the calorimeter and works like the inner detector to

track the displacement of particles through it, where in this case the trackable particles that

make it past the calorimeters are mostly muons. It has a lower spatial precision than the

inner detector trackers and more than one million readout channels.

Finally, the magnet system, crucial for the proper functioning of the tracking system,

consists of an inner solenoid magnet surrounding the inner detector and providing a nearly

uniform magnetic field of 2 T, and an outer superconducting toroid magnet within the muon

spectrometer providing a magnetic field of up to 4 T. Figure 3.3 shows a computer generated

image of the ATLAS detector. [1]

Figure 3.2: A computer generated image of the ATLAS detector [23].
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3.3 The Trigger

The LHC proton bunches are designed to cross at a frequency of 40 MHz for more than 10

hours per day. This means that each day, more than 14.4 trillion events are expected to

occur at the ATLAS interaction point. The information for each event has a size of about

1.5 MB, so storing all these events would require more than 21.6 million TB of storage space

per day, which is far beyond the reasonable limit. In order to select and analyze interesting

events in a timely manner, while considering storage constraints, ATLAS uses a system

called a trigger to decide which events to accept and which to reject. The trigger is divided

into three parts: Level-1 (L1), Level-2 (L2), and Event Filter (EF). L1 is the first part of

the trigger to obtain information about an event. It is mostly hardware based, takes less

than 2.5µs to make a decision, has an event output frequency of about 75 kHz, and has

the most primitive selection process. It determines regions of interest (RoI), that is regions

in the (η, φ) space of the detector where it has found interesting features, based on simple

energy readouts from the calorimeter, and passes on the information associated with the

RoIs to the next level. L2 takes as input the RoIs selected by L1, analyzes them in a more

complex manner, and decides, in about 40 ms on average, whether to accept or reject them.

This may involve performing some basic track reconstruction in order to determine more

information on the dynamics of the particles involved instead of simply considering the

energy deposited. The L2 event output frequency is about 3 kHz. The RoIs accepted by L2

are then passed to the EF, which performs an even more complex analysis, in about 4 s on

average, to determine whether to accept or reject the event. The event output frequency

of the EF is about 200 Hz. If the event is accepted, then all information about the event is

put into long term storage for offline analysis. This results in a data storage rate of about

300 MB/s, which yields a reasonable limit for data storage consumption. [24][25]

Since different physics searches have different demands on the properties of an event

that are interesting enough to keep, each physics trigger group in ATLAS uses its own

trigger criteria. This is done by allowing each group to design their own L1, L2, and EF

criteria based on measurable properties (variables) for the physics objects of interest. The
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Figure 3.3: A diagram of the ATLAS trigger system [25].

variables are generally more precise the higher the trigger level, and are typically based

upon properties of one or more RoIs that represent the candidate particles of interest. Each

group may have multiple sets of criteria for each level, resulting in different types of triggers

for each level and for each group. Overall trigger resources are divided amongst the different

types of triggers by assigning to each type a number s called the prescale associated with

it, which is defined such that it considers for acceptance only one out of s eligible events.

Naturally, the L1 triggers are prefixed with L1, the L2 triggers are prefixed with L2, and the

EF triggers are prefixed with EF. The underscore character is used to divide various types

of criteria. For example, L1_TAU8 is the label for the L1 tau trigger (explained in Chapter 4)

with a requirement that the input RoI have L1 ET > 8 GeV, L2_TAU16_LOOSE is the label

for the L2 tau trigger with loose cut requirements whose output is the input for the EF

tau trigger EF_TAU16_LOOSE, which has loose cut requirements and an EF ET > 16 GeV

requirement. L1_TAU11 is just like L1_TAU8, except that the energy threshold is 11 GeV

rather than 8 GeV; L2_TAU16_MEDIUM is just like L2_TAU16_LOOSE, except that the cuts are
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tighter; and similarly for EF_TAU29_MEDIUM. Note: By tighter we mean that the set of RoIs

that result from those cuts are a subset of the set of RoIs that result from the looser cuts.

Generally, loose cuts have a higher prescale than tight cuts, in order to keep the overall

physics trigger frequency below the preassigned limit. For reference, a trigger chain is a

triple consisting of an L1, L2, and EF trigger such that the L2 trigger operates on the L1

trigger’s output and the EF trigger operates on the L2 trigger’s output. [25][26]

3.4 The Event Data Model

The digital representation of events detected by ATLAS is commonly called the Event

Data Model. After an event has been accepted, it is stored in a format called the Raw

Data Format, which uses about 1.5 MB per event. This format is mainly used for backup

and testing purposes. Events in the Raw Data Format are then converted into the Event

Summary Data (ESD) format or the Analysis Object Data (AOD) format. The ESD format

contains the detailed output of the detector reconstruction and uses about 500 kB per event.

It contains sufficient information to allow for particle identification, track-refitting, and jet

calibration. The AOD format contains a less detailed summary of the reconstructed events

and uses about 100 kB per event. It contains sufficient information for common analyses,

and is typically divided into various streams that are each tailored for a different type of

physics analysis. Events in the AOD format can be created from events in the ESD format,

and thus it is generally unnecessary to process the raw data in order to create events in the

AOD format. Another commonly used format is the Derived Physics Data (DPD) format.

It comes in various forms, but is generally derived from raw, ESD, or AOD data by removing

certain unneccessary information. The D3PD format is a type of DPD format that uses the

ROOT format to encapsulate the data rather than the POOL format that is used for the

other formats. [27] The ROOT format allows for convenient access to the event information

using the ROOT software [28]. [29]



Chapter 4

The Tau Trigger

4.1 The Tau Lepton

The tau lepton, with a mass of 1.8 GeV/c2, is the heaviest of all known leptons, and the

only lepton that can decay hadronically. It decays into two neutrinos and a lepton 35% of

the time, while 65% of its decays involve a neutrino and hadrons, where the hadrons are

mostly pions. The principal modes of tau production at the LHC are W± → τ±ν∓τ and

Z → τ+τ−. At a collision energy of 8 TeV, the cross section for the former is 9.1081 nb and

the cross section for the latter is 8.7804 × 10−1 nb [30][31]. While the former does have a

greater cross section, the presence of a neutrino causes a greater uncertainty on the mass

of the W boson, which negatively affects the certainty of the resulting tau reconstruction.

[32]

Understanding events with taus will not only help in understanding SM processes, but

will also contribute greatly to the discovery potential of the ATLAS detector. For exam-

ple, recent experimental evidence suggests a SM Higgs boson in the mass range of 125-

127 GeV/c2 [5], which would decay into tau lepton pairs with a branching fraction of about

6% [33]. Figure 4.1 shows a Feynman diagram for a typical Higgs boson production and

decay of this type, and Figure 4.2 shows the branching ratios for several common Higgs

boson decays as functions of the Higgs boson mass.

35
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Figure 4.1: A Higgs boson created through gluon-gluon fusion and decaying into two taus.
[34]
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Furthermore, the MSSM requires the existence of two Higgs doublets rather than one.

With this requirement, electroweak symmetry breaking leads to the existence of five spin-

0 Higgs bosons: h0, H0, A0, H+, H−. The first three are neutral, the H+ is positively

charged, and the H− is negatively charged. The parameter tanβ, defined as the ratio of the

vacuum expectation values of the doublets, has a large effect on the phenomenology of the

model. For tanβ & 2, charged Higgs bosons decay dominantly to tau leptons through the

H± → τ±ν channel, making the identification of taus important for searching for charged

Higgs bosons. The coupling of neutral MSSM higgs bosons to taus is quite significant as

well [35]. [36][10]

4.2 2011 Tau Trigger

Due to its short lifetime (2.9×10−13 s) [32], the tau lepton decays inside the beam pipe of the

LHC, and hence the identification of taus is done through their decay products. The events

where taus decay into charged leptons can be triggered by low ET threshold electron triggers

and low pT threshold muon triggers. Taus that decay into hadrons are called hadronic taus,

and for events containing them, we use a dedicated hadronic tau trigger, which as the only

trigger dedicated to taus, is referred to as the tau trigger. [26]

By the nature of the collisions involved, jets of hadrons created through QCD interac-

tions are an overwhelmingly large background to hadronic taus passing through the ATLAS

detector. Discriminating between a hadronic tau decay and a QCD (gluon-produced) jet

can be very challenging. In general, hadronic taus are identified by selecting jets that are

narrow, well collimated, have low track multiplicity, and small energy in their outer region.

The source of QCD jets tends to have a greater invariant mass than the mass of the tau

lepton, and this gives them more room in phase space for a wider and more complex shower

of hadrons. Figure 4.3 shows a visual comparison between QCD jets and tau-produced jets.

[26]

The three stages of the 2011 tau trigger can be summarized as follows.

At L1, the tau trigger defines RoIs using EM and HAD calorimeter trigger towers with
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Figure 4.3: Comparison between QCD jets and tau-produced jets. Notice that the tau jets
lie in a narrower cone and have a lower number of tracks. [34]

granularity ∆η × ∆φ = 0.1 × 0.1. The hadronic tau decay modes are identified by: the

energy in 2× 1 pairs of EM towers, the energy in 2× 2 HAD towers behind the EM cluster,

and the energy in a 4×4 (isolation) ring around the 2×2 core. The L1 rate can be tuned by

adjusting the threshold on the transverse energy of the 2× 2 core, or the maximum allowed

energy in the isolation ring. Figure 4.4 shows the calorimeter towers used at L1. [37][26]

At L2, a calorimeter-based algorithm refines the position of the RoI and obtains total

transverse energy and cluster shape variables using full detector granularity within a region

containing the L2 RoI. The computing time required to reconstruct the tracks is significantly

greater than that required to reconstruct the calorimeter-based variables. Therefore, a

transverse energy cut is performed before track reconstruction. Once the tracking variables

have been calculated, the cuts are split into the cases: single-prong and multi-prong. [26]

Finally, the EF stage selects taus based on track multiplicity and both cluster and track

shape variables with high discrimination power, calculated using track and calorimeter based

algorithms similar to those used offline. [26]
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Figure 4.4: The calorimeter towers used at the L1 stage of the tau trigger. [37]
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4.3 Offline Reconstruction

Recall that the events that pass the EF of the ATLAS trigger are put into long-term storage

for offline analysis. This analysis typically includes the application of a reconstruction

algorithm for the objects of interest to the events. For each event, the reconstruction

algorithm finds RoIs that contain the object(s) of interest and calculates variables for the

RoIs that may be used when later performing selection cuts. For tau-based analyses, the

most common objects of interest are jets (for background) and taus (for signal). [24]

A jet reconstruction algorithm typically starts with the formation of topological clusters

of calorimeter cells, which are 3-dimensional connected sets of cells in the calorimeter. The

formation of each cluster begins with a seed cell, and neighbours of cells already in the

cluster are iteratively added to the cluster provided that the energy in the new cell is above

a threshold defined as a function of the expected noise. The clusters are then separated such

that they may only share cells with other clusters at their borders. [38] Once the clusters

are formed, they are passed on to a jet-finding algorithm, which can be classified as either

a cone algorithm or a clustering algorithm. Cone algorithms define jets as sets of clusters

within a ∆R < r cone, where r is typically 0.4 or 0.7. The jets are then separated with a

split-merge procedure. Clustering algorithms construct jets via a clustering procedure which

depends on the relative transverse momenta of the topological clusters, and ensure a unique

association of these clusters to the jets without requiring a split-merge procedure. The jets

resulting from a jet-finding algorithm are stored as digital objects containing properties

such as energy and direction, and these objects are commonly referred to as offline jets.

[39][40]

The tau reconstruction algorithm, tauRec, reconstructs hadronically decaying taus (can-

didates) from two possible objects (seeds): a calorimeter jet or a good quality track. The

calorimeter jet must be an offline jet reconstructed using a cone algorithm that is run over

topological clusters, and must have ET > 10 GeV and |η| < 2.5. Tracks with pT > 1 GeV/c

are associated to the calorimeter seed if they are within a ∆R < 0.3 cone and satisfy cer-

tain quality criteria. The track seed must have pT > 6 GeV/c and pass the same quality
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criteria. Tracks with pT > 1 GeV/c that are within a ∆R < 0.2 cone are associated to the

track seed as well provided they satisfy a different set of quality criteria. If exactly three

tracks are found, their net charge must have absolute value 1. If more than 8 tracks are

found, the track seed is not considered. Calorimeter seeds and track seeds are matched

in a ∆R < 0.2 cone, and if they overlap, only one tau candidate is built for them. The

digital representation of a tau candidate is called an offline tau. This object contains the

information for both the tracks associated to the track seed and the tracks associated to

the calorimeter seed. It also contains calorimeter-based information and discrimination

variables that use both the calorimeter and tracking information. For offline taus with a

calorimeter seed, their energies are calculated by iterating over the cells associated with the

offline jet and summing up their energies with cell weights calibrated with a standard jet

calibration technique, and later corrected to more accurately model taus. For offline taus

with a track seed, an algorithm calculates the so-called e-flow energy of the candidate. The

algorithm is based on the momenta of the tracks as measured in the inner detector and the

energy of the clusters measured in the EM calorimeter, and is optimized for calculating the

energies of taus, while slightly underestimating the energies of QCD jets. If the offline tau

has no calorimeter seed, then the e-flow energy is the baseline definition of its energy. It

should be made clear that offline taus are merely offline jets with a loose bias towards taus

and with energy variables calibrated to more accurately model taus rather than QCD jets.

The creation of offline taus is the main purpose of the reconstruction stage. The offline

identification stage selects taus by performing cuts on the discrimination variables that are

stored inside the offline taus. [41][42]

Related to reconstruction is the concept of simulation. Physical processes are often

simulated in order to compare theoretical predictions with experimental measurements. In

ATLAS, various Monte-Carlo (MC) based algorithms are used to produce simulated events

that can be compared with the real events detected by ATLAS. The data representing

the simulated events is commonly referred to as MC, while the data representing the real

events is commonly referred to as simply data. Just like data, MC contains complete
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trigger information that includes what triggers fired, the discrimination variables for each

RoI at each trigger level, the detailed calorimeter and tracking information, and the offline

reconstructions. [43]

4.4 Performance

The study of the performance of the tau trigger generally follows the steps: (1) measure L1

cross section, (2) measure EF frequencies, (3) validate variables, and (4) measure efficiencies.

[44]

The L1 cross section is calculated as the ratio of the frequency of L1 accepted events

to the instantaneous luminosity of the LHC. Figure 4.5 shows the L1 cross section as a

function of pile-up for a variety of tau triggers, with events collected in 2011. [45]
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Figure 4.5: L1 cross section as a function of pile-up for a variety of tau triggers, with events
collected in 2011 [45].

As desired, the cross section is relatively constant with changing pile-up conditions.

The EF frequency as a function of instantaneous luminosity for a variety of tau triggers,

with a portion of the events collected in 2011, is shown in Figure 4.6.
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Some of the triggers shown in the figure are combinations of a single-tau trigger with

another single-object trigger. In this case, the trigger requires both of the single-object

triggers to accept the event in order for the event to be accepted. For example, e15_medium

represents the trigger that requires electrons with ET > 15 GeV and medium-type cuts.

Similarly, mu15 requires a muon with ET > 15 GeV. [45] Overall, the results show that the

EF frequency scales linearly with instantaneous luminosity; as desired.

Next, for each level of the trigger, we show in Figures 4.7, 4.8, and 4.9, one (of several)

validation plots used to demonstrate the consistency of MC with data for the variables

used for tau selection. Offline candidates were selected using a tag-and-probe analysis

with Z → ττ events collected by ATLAS during Summer 2011, where one of the taus

decayed leptonically [46]. The offline candidates were then matched to the candidates for

the corresponding level of the trigger chain containing EF_TAU20_MEDIUM1. This chain

requires ET > 20 GeV, medium cuts, and at most 3 tracks at the EF. [45]

The efficiency of a tau trigger is generally defined as the probability that an offline

identified tau passes the corresponding trigger requirements. Physics analyses using data
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[45]

collected with a tau trigger need to understand the trigger efficiency in order to properly

correct the estimations from the simulation samples. Figure 4.10 shows the efficiency of the

same EF trigger as a function of offline pT for the same offline selections as above.

The data-to-MC ratio together with its uncertainty can be used to scale MC histograms

by pT bin in order to accurately model the data. The close agreement of data with MC in

Figure 4.10 demonstrates the consistency of MC with data, and the relatively high efficiency

shows that the tau trigger has indeed performed well in the year 2011. [26] [34]
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4.5 Dijet Study

Understanding how QCD jets (dijets) pass the tau trigger is an important input to control-

ling the trigger frequency as a function of luminosity. In this study, dijet events are selected

by requiring at least two offline taus, each with pT > 15 GeV/c, |η| < 2.5, and |∆φ| > 2.7

between the leading (pT ) and subleading offline taus (back-to-back). For reference, we also

select Z → ττ events by requiring at least one ∆R < 0.2 truth-matched offline tau with

pT > 15 GeV/c. No offline identification is performed in either case.

For the dijet events, we use collision data from periods F to K of the 2011 runs, as well

as a representative set of dijet MC data. For the Z → ττ events, we use Z → ττ MC data.

The datasets were skimmed to only include events that passed the EF_tauNoCut trigger.

This implies that L1_TAU6 and L2_tauNoCut were also fired. The reason for choosing this

trigger chain is to obtain a minimally biased set of events. Essentially, the only selection

performed is the L1_TAU6 requirement, which only requires an L1 RoI with L1 ET > 6 GeV.

L2_tauNoCut accepts any L2 RoI and EF_tauNoCut accepts any EF RoI. Of course, these

triggers are heavily prescaled, so after skimming, the luminosity of the collision data is only

about 15 nb−1.

For each event passing the requirements, we determine whether the leading offline tau

passed L1_TAU11 by matching it to an L1 tau through ∆R < 0.2 and checking whether this

L1 tau passes L1 ET > 11 GeV. If that passes, we then determine whether it also passed

L2_TAU29_MEDIUM by matching it to an L2 tau through ∆R < 0.2 and checking whether

the emulation of L2_TAU29_MEDIUM accepts the L2 tau. If that passes, we then determine

whether it also passed EF_TAU29_MEDIUM by matching it to an EF tau through ∆R < 0.2

and checking whether the emulation of EF_TAU29_MEDIUM accepts the EF tau. For each

stage, we also fill histograms for offline pT in order to be able to calculate the corresponding

efficiencies.

Figure 4.11 shows the efficiency for L1_TAU11, Figure 4.12 shows the efficiency for

L2_TAU29_MEDIUM, and Figure 4.13 shows the efficiency for EF_TAU29_MEDIUM. We found

a reasonable agreement between the dijet events selected from collision data and those
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selected from MC data.
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4.6 2012 Improvements

As the energy of the bunch crossings increases or the number of protons per bunch crossing

increases or the bunch spacing decreases, the number of significant proton interactions

per bunch crossing increases as well. This number is also strongly correlated with the

number of primitive vertices in the corresponding event, which are the starting points of

the offline reconstructed tracks that each correspond to a single proton-proton collision.

The dependence of the trigger efficiencies on pile-up was apparent near the end of the 2011

running period. The number of protons per bunch crossing was increasing, which led to an

increase in in-time pile-up; a situation that was negatively impacting the efficiencies of the

tau trigger in its then current form, as seen in Figures 4.14 and 4.15. [26]
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Figure 4.14: 2011 dependence of tau trigger efficiency on the number of (primitive) vertices
in an event, a measure of pile-up. Z→ ττ → µh events collected in 2011 were selected using
a tag-and-probe technique. A medium offline identification was used. [45]

The preparation for the even higher energies and luminosities of 2012 was hence focused

on modifying the tau trigger to account for the expected increased in-time pile-up. For

L1, the main modification, not entirely pile-up motivated, was the addition of EM isolation

cuts in order to reduce the rates as needed. For L2, a narrower region of (η, φ) space was

used to calculate the L2 ET variable which is used for the calorimeter cut stage (∆R < 0.2
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Figure 4.15: EF rate as a function of instantaneous luminosity for a variety of tau triggers,
with events collected from September to October 2011. Notice that the EF rate for the 2011
ditau trigger EF_tau29T_medium1_tau20T_medium1 does not scale linearly with instanta-
neous luminosity. This demonstrates the effect of pileup in widening the shower shape, and
making it more difficult to resolve between two taus in the same event. [45]

instead of 0.4), a constraint of ∆z0 < 2 mm w.r.t. the leading pT track was used for the

tracks in the tracking stage, and the energy threshold for tracks was lowered to 1 GeV

(from 1.5 GeV). In addition to the ET cut, a cut on another calorimeter-based variable

(CoreFrac) is performed before the L2 track reconstruction, in order to keep within timing

constraints. The EF also obtained pile-up robust modifications such as a smaller ∆z0, and

now uses two multivariate methods to perform its selection: boosted decision trees (BDT),

and log likelihood (LLH) (explained in Chapter 5). The expected efficiency with respect to

the number of vertices in an event for a 2012 tau trigger is shown in Figure 4.16 and can

be compared with Figure 4.14 in order to see the improvement. Similarly, the EF rate as

a function of instantaneous luminosity for a variety of tau triggers, with a portion of the

events collected in 2012 is shown in Figure 4.17 and can be compared with Figure 4.15 in

order to see the improvement. [44][47]
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Figure 4.16: Expected 2012 dependence of tau trigger efficiency on the number of (primitive)
vertices in an event, a measure of pile-up. Z → τ(µ)τ(h) events collected in 2011 were
selected using a tag-and-probe technique, and the 2012 version of the trigger was emulated.
The BDT medium offline identification was used. [45]
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4.7 Looking Forward

In order to reduce rates and improve the sensitivity of taus to new physics, hadronic tau

triggers will continue to be combined with other signature triggers (e.g. electron, muon,

missing ET , a second hadronic tau), depending on the physics analysis. The benefits of

such a strategy have already been shown: a tau + missing ET trigger was used in tau

polarization measurements in W → τν decays [48] as well as in the search for a charged

Higgs boson [49]; a ditau trigger with asymmetric energy thresholds of 29 GeV and 20 GeV

and medium ID was used in the search for the SM Higgs boson in the double hadronic decay

channel [50]; a tau + lepton trigger was used in the Z → ττ cross section measurement [51]

as well as in the search for the SM Higgs boson in the single hadronic decay channels [50].

Furthermore, multivariate techniques, such as the one presented in the next chapter, will

continue to be exploited in order to effectively maximize the discrimination power of single

tau triggers.

At L2, there is the possibility of eliminating the two step (calorimeter + tracking)

selection, assuming the currently developed ATLAS FastTracker (FTK) is built. The FTK

is a hardware based track finder that can reconstruct all tracks with a transverse momentum

greater than 1 GeV/c up to luminosities of 3 × 1034 cm−1s−1 at an event input frequency

of 100 kHz and a latency of a few hundred microseconds. The plan is to have this system

ready to use for the 2015 running period. [52]



Chapter 5

Procedure

5.1 Introduction

While the tau trigger has performed remarkably well in all respects, the success of multi-

variate techniques at the offline level has sparked an interest in attempting to apply these

techniques to the trigger level. Not only would this raise the possibility of increasing the

efficiency of the selection of taus, but it would also help to synchronize the work done offline

with the work done at the three stages of the trigger. For the tau trigger, the currently im-

plemented multivariate techniques for the offline identification of taus are BDTs and LLH.

Both of these techniques have recently been added to the EF stage of the tau trigger for

operation during the 2012 8 TeV running period. The LLH technique defines a likelihood

function, for both signal and background, that maps the values of a set of discrimination

variables into a probability density for the occurance of an event with those values given the

signal or background hypothesis. The conditional probability density functions are based

on the empirical distributions of the data, and the value of the LLH classifier is the loga-

rithm of the ratio of the likelihood for signal to the likelihood for background. [46] Here

we describe a BDT-based algorithm designed to be implemented at the L2 stage of the

tau trigger. The software used for creating the BDTs is the Toolkit for Multivariate Data

Analysis with ROOT (TMVA) [53].

54
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5.2 Boosted Decision Trees

5.2.1 Decision Trees

BDTs build upon the concept of a decision tree. A decision tree is a binary tree structured

classifier that performs a “yes” or “no” decision at each node depending on the value of a

single variable, until a leaf node is reached. The events that end up in a “yes” leaf node

are classified as “signal”, while the others are classified as “background”. The number of

variables to look at is a parameter n for the decision tree and each event that passes through

the classifier has the values for these n variables precomputed. At each node, one of the

n variables is read and compared to a cutoff value, and depending on whether or not the

variable is less than the cutoff value, the decision “yes” or “no” is made, and the event

is passed to the corresponding next node, which performs this decision based on another

variable. Figure 5.1 shows a schematic diagram of a decision tree.

Figure 5.1: A schematic diagram of a decision tree. The case where a variable’s value equals
the cutoff is not shown, but can be chosen arbitrarily without loss of generality. [54]

A decision tree can be created by training it with samples of events that are each already
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known to be of type signal or background. In TMVA, the training program takes as input

a sample of events, with each event prelabeled as either signal or background, places the

sample into the root node, and calculates a quantity known as the separation of the node.

It then scans over each of the n variables, and for each variable, it scans over all cut values

for the variable (within some limit of precision), splits the node into two temporary nodes

according to the cut criteria, and calculates the event-weighted average separation of the

temporary nodes. It compares this quantity with the separation of the root node, and for

each variable, it chooses the cut that maximizes the difference between the separation of

the root node and the average separation of the temporary nodes. Then, it compares the

maximum separation difference of each variable, and chooses the variable that provides the

greatest separation difference. This variable together with the chosen cut on the variable

define the splitting decision at the root node of the decision tree. The nodes below the root

node are split recursively in the same manner, until some halting condition is met. This

may be that the total number of nodes has reached a certain value, or that the depth of the

tree has reached a certain value, or that the number of events in a given node falls below a

certain value. The purity of a node is defined as S/N where S is the number of signal events

in the node and N is the total number of events in the node. The leaf nodes with purity

greater than the NodePurityLimit parameter are classified as signal, while the others are

classified as background. Each event may be weighted according to a custom formula, so

that events with a higher weight are more likely to be properly classified.

In TMVA, there are five different options for how to define the separation:

• Gini index, defined by p(1− p),

• Gini index with Laplace’s correction, defined by (SB + S +B + 1)/(S +B + 2)2,

• Cross entropy, defined by −p log2(p)− (1− p) log2(1− p),

• Misclassification error, defined by 1−max(p, 1− p),

• Statistical significance, defined by S/
√
S +B,
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where S is the number of signal events in the node, B is the number of background events

in the node, and p is the node’s purity.

5.2.2 Pruning

After a decision tree has been created, it may be pruned in order to remove statistically

insignificant nodes. The two methods used in TMVA for pruning a decision tree are expected

error pruning and cost complexity pruning.

The expected error method removes all subtree pairs for which the error-adjusted mis-

classification rate of their parent node is smaller than their combined error-adjusted misclas-

sification rate. If p is the node’s purity, the misclassification rate of a node is defined as 1−p

if p is greater than NodePurityLimit, and p otherwise. The error-adjusted misclassification

rate of a node is defined by

µa = min(1, µ+ s
√
p(1− p)/N) , (5.1)

where µ is the node’s misclassification rate, p is its purity, N is the number of events it

contains, and s is the pruneStrength parameter. If the subtrees are leaves, the combined

error-adjusted misclassification rate of the left and right subtrees of a node is defined as

NL ∗ rL +NR ∗ rR
NL +NR

, (5.2)

where NL is the number of nodes in the left subtree, rL is the error-adjusted misclassification

rate of the left subtree, NR is the number of nodes in the right subtree, and rR is the

error-adjusted misclassification rate of the right subtree. For more general subtrees, this

combined rate is calculated in the same way, except that rL and rR are obtained through

recursion. Note: In TMVA, with this pruning method, when a node is marked for pruning,

it still counts as an existing node when later determining whether ancestors of the node

should be pruned. We modified this behavior so that nodes that are marked for pruning are

not counted when calculating the combined error-adjusted misclassification rate of subtrees

rooted at their ancestors.
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The cost complexity method removes all subtree pairs for which the cost-complexity

index of its parent node is below a certain threshold. The cost-complexity of a node is

defined by

α =
R(node)−R(subtree below that node)

#leaves(below that node)− 1
, (5.3)

where R(node) := Nδ such that N is the number of events in the node and δ is the separa-

tion of the node, and R(subtree) is defined recursively as R(left subtree) +R(right subtree)

such that the subtree of a leaf is the leaf itself. The algorithm first computes α for each

node, and then temporarily prunes each node by order of increasing α. Each time a sub-

tree pair is temporarily pruned, α is recalculated for the nodes above it. The algorithm

continues the temporary pruning until there are no more internal nodes remaining. If

pruneStrength is set to a nonnegative value, and n is the number of subtree pairs that

were temporarily pruned, the first k − 1 of these subtree pairs actually get pruned, where

k = int(PruneStrength/100.0*n). If pruneStrength is negative, the algorithm addition-

ally calculates a measure of quality for the temporarily pruned tree each time a subtree pair

is temporarily pruned. The quality is defined recursively as the sum of the qualities of the

left and right subtrees, where the quality of a leaf node is defined as

q =
p ∗B + (1− p) ∗ S

N
, (5.4)

where p is the node’s purity, B is the weighted total number of background events in the

node, S is the weighted total number of signal events in the node, and N is the weighted

total number of events in the tree. After the algorithm finishes temporarily pruning the

tree, it finds the index k of the ordered subtree pairs that were temporarily pruned that

corresponds to the minimum tree quality, and prunes the first k − 1 subtree pairs.

5.2.3 Boosting

Boosting is a process that greatly enhances the performance of typically weak multivariate

methods, by sequentially applying a multivariate algorithm to weighted (boosted) versions

of the training sample. The two different methods for boosting a decision tree in TMVA

are the adaptive boost algorithm and the gradient boost algorithm.
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In the adaptive boost algorithm, events that were used to train the decision tree and

were misclassified are given a higher event weight in the training of the following tree. The

weight given is

ω :=

(
1− µ
µ

)β
, (5.5)

where µ is the misclassification rate of the tree, defined as the weighted sum of the mis-

classified events in the tree divided by the total number of events in the tree, and β is the

AdaBoostBeta parameter. The weights of the entire training sample are then renormalized

so that their sum remains the same. The number of trees that are created by this process

can be set by defining the variable NTrees. The classifier for a decision tree is a function h

that maps an n-tuple of values for each of the variables, x, into {−1, 1} or [0, 1], depending

on the setting of UseYesNoLeaf. If UseYesNoLeaf is true, then the function maps into

{−1, 1} such that the value −1 means that the event is classfied as background and the

value 1 means that it is classified as signal. Otherwise, the function maps into [0, 1] where

its value is equal to the purity of the resulting leaf node. If M is the number of trees that

were created in the boosting process, and for each tree indexed by m, ωm is the boost weight

given to the tree and hm is the tree’s classifier, then the classifier for the forest of trees is

the weighted average

H(x) =
1

M

M∑
m=1

ln(ωm)hm(x) . (5.6)

As explained in Section 5.5, we only consider the adaptive boost algorithm as our boosting

method, and hence, we omit the details of the other method.

A decision tree that has been trained on a boosted sample of events (and possibly pruned)

is called a boosted decision tree. In TMVA, the variable PruneBeforeBoost controls whether

it is pruned before boosting or not. Typically when we speak of BDTs, we mean a boosted

sequence of BDTs, such that the corresponding BDT classifier is a weighted average of

the classifiers for each BDT in the sequence. The value of a BDT classifier applied to a

considered event is called the BDT score of the event. In order to use a BDT classifier, one

typically chooses a cutoff for the BDT score, so that events with a BDT score greater than

the cutoff are accepted, while otherwise, they are rejected.
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5.2.4 Variable Importance

During the (TMVA) training of a BDT classifier, a useful measure of variable importance is

calculated for each discriminating variable. For any discriminating variable x, the absolute

importance of x for a decision tree is defined as

Ix =

n∑
i=1

δiNi , (5.7)

where the sum is over each node that splits with variable x, δi is the separation gain of

the split, and Ni is the number of events in the node. The absolute importance of x for a

BDT-classifier is defined as
M∑
m=1

ln(ωm)Im,x , (5.8)

where the sum is over each tree in the classifier, ωm is the tree’s boost weight, and Im,x is

the importance of variable x in the tree. The importance is the absolute importance divided

by the sum of the importances for each variable. In order to simplify a BDT classifier, one

may remove variables of low importance (and retrain), since they should not significantly

affect the classifier’s performance as compared with the other variables. [54]

5.3 Overview of the Algorithm

The algorithm to be described is one that takes as input an L2 tau RoI and determines

whether or not it contains a tau. Those RoIs which L2 thinks contain a tau are passed to the

EF for further analysis. Since the current L2 tau trigger is divided into both calorimeter and

tracking stages, the algorithm for tau selection must be constrained by this requirement as

well. Instead of using simply one BDT classifier for the L2 RoIs, it uses two, where one uses

only variables that were derived from the calorimeter, and the other uses both calorimeter

and tracking derived variables. The four stages of the algorithm, in sequential order, are

thus: Pre-BDT-1, BDT-1, Pre-BDT-2, and BDT-2. Each stage determines whether to

accept or reject an RoI, and if it is accepted, it is passed (as input) to the next stage. The

Pre-BDT-1 stage is a non BDT-based algorithm that performs simple cuts on calorimeter
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variables in preparation for input to the BDT-1 stage. BDT-1 is the application of the BDT

classifier that only uses calorimeter variables to make its decision. Pre-BDT-2 performs

simple cuts on both tracking and calorimeter variables in preparation for input to the BDT-

2 stage. Finally, BDT-2 is the application of the BDT classifier that uses both calorimeter

and tracking variables to make its decision. We refer to the combination of Pre-BDT-1

and BDT-1 as the calorimeter stage and the combination of Pre-BDT-2 and BDT-2 as the

tracking stage. The reason we have non-BDT stages is that we do not want our BDTs to

be dependent on certain variables, such as ET and η, that are not theoretically dependent

on the presence of taus. Instead, we would like to control the cuts on these variables more

directly, depending on the beam conditions.

The Pre-BDT-1 stage is currently set to require |η| < 2.2 and ET,med > etCut, where η

is the pseudorapidity of the centre of the RoI, ET,med is defined as∑
i∈C0.2

Ei/cosh(η) , (5.9)

where C0.2 is the set of cells in the calorimeter inside the ∆R < 0.2 cone about the centre

of the RoI, and Ei is the energy measured by i. etCut is optimized for the collision energy

of the training sample, with higher energy collisions generally requiring higher values in

order to keep the trigger rates low. The η requirement provides some assurance that the

RoI is in a region of the detector that has a sufficiently high level of measurement accuracy.

Pre-BDT-1 also calculates some calorimeter based variables for use in the BDT-1 stage. Pre-

BDT-2 currently makes no cuts at all and simply calculates some tracking based variables

for use in the BDT-2 stage. The currently active L2 tau trigger that we use to compare our

trigger with follows L1_TAU8 and has an overall calorimeter-stage acceptance rate (fraction

of considered events that are accepted) of (2.9368 ± 0.0057) × 10−1 (by testing on the

representative sample described later). L1_TAU8 is currently the lowest energy threshold L1

tau trigger, and outputs L2 tau RoIs with the most flexibility and the least bias (loosest

cuts). For this reason, we focus on L1_TAU8 derived RoIs and set the cutoff score for BDT-1

to be such that BDT-1 accepts as many events as possible with the limitation that the

event-wise acceptance rate of the calorimeter stage is less than 0.29, with 3σ certainty. We
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require a 3σ significance level because it is traditionally used as the threshold for publishing

a preliminary scientific discovery. Note: We may use the terms efficiency and acceptance

rate interchangeably, even when testing a non-signal sample.

The procedure detailed below was mostly implemented with the C++ and Python pro-

gramming languages. The C++ code is written at a relatively low level and is used for

most of the CPU intensive processes. Python is only used for the high level or non CPU

intensive processes.

5.4 Data Preparation

Data is prepared in various stages starting from samples of ATLAS events in the D3PD

format. Each D3PD sample is slimmed by selecting only ROOT branches that are needed

for the analysis and skimmed to only include events that pass L1_TAU8, L2_tauNoCut and

EF_tauNoCut (the tauNoCut trigger chain). The tauNoCut criterion simply allows all RoIs

to pass the respective level. This ensures that the events are unbiased with respect to an

L2 or EF tau selection algorithm, and essentially, the only requirement is that the events

each pass L1_TAU8.

The resulting sample then passes through a selection process that begins by assigning

a number called the event type to each event. Events numbered as multiples of 4 are given

an event type of 2; otherwise if they are multiples of 2, they are given an event type of 1.

The other events are given an event type of 0. Events of type 1 are to be used for training

BDT-1, events of type 2 are to be used for TMVA testing BDT-1, and events of type 0

are to be used for other purposes. By TMVA testing we mean passing RoIs for TMVA to

test alongside the training RoIs. Events for TMVA testing are also used for more general

testing, as described later. Events of type 0 or type 2 are possible candidates for training

BDT-2. Thus, for all events of type 0, for every 4th such event, we change its type to 4,

and for every 2nd such event, we change its type to 3, and for all events of type 2, every 4th

becomes of type 6 and every 2nd becomes of type 5. Later, when training BDT-1, events of

type 1 will be used for TMVA training, and events of type 2, 5 or 6 will be used for TMVA
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testing. When training BDT-2, events of type 3 or 5 will be used for TMVA training, and

events of type 4 or 6 will be used for TMVA testing. Note: By the design of the ATLAS

data acquisition system, adjacent events are assumed to be uncorellated between each other.

Also, if the sample is not intended for training, then the event types will have no effect.

Table 5.1 gives a summary of the event types with their respective proportions and uses.

Event type % of events Use

0 25 testing BDT-1

1 25 training BDT-1

2 12.5 TMVA testing BDT-1

3 12.5 testing BDT-1 & training BDT-2

4 12.5 testing BDT-1 & TMVA testing BDT-2

5 6.25 TMVA testing BDT-1 & training BDT-2

6 6.25 TMVA testing BDT-1 & TMVA testing BDT-2

Table 5.1: The event types and their respective proportions and uses.

The rest of the selection process depends on whether the sample is to be used as a

signal sample or as a background sample, and whether it consists of real collision data

or MC simulated data. For signal MC, we require the event to contain at least one good

primitive vertex with at least four tracks. Further, we look for all L1 RoIs with ET > 8 GeV,

match them to the corresponding L2 and EF RoIs for the tauNoCut chain, perform an EF-

Offline ∆R < 0.2 match, require the offline object to have ET > 15 GeV, |η| < 2.2, at least

one track, and medium offline BDT identification, and finally, require an EF-Truth match

such that the true tau object has visible ET > 10 GeV and visible |η| < 2.5. The L2 RoIs

with matched offline objects that passed the stated requirements, referred to as clean RoIs,

are stored as leaves of vectors of floats in a ROOT TTree structure, with each event in the

tree containing only RoIs that came from the same event. The other RoIs, referred to as

dirty RoIs, are also stored as long as the event contains at least one clean RoI. The dirty

RoIs are stored in a separate tree that has the same number of events as the tree for the

clean RoIs, and is constructed so that if some dirty RoI belongs to event i of its tree, then

the corresponding clean RoIs belong to event i of their tree. The selection for signal data is

the same except that no truth matching is involved. For background MC, we simply select
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all L2 RoIs for the tauNoCut chain that are matched with an L1 RoI with ET > 8 GeV.

For background data, we perform the additional steps of matching the L2 RoIs to EF RoIs

for the tauNoCut chain, requiring an EF-Offline jet ∆R < 0.2 match, such that the jet has

pT > 15 GeV/c, |η| < 2.2, and there must be another offline jet separated from the offline

jet by |∆φ| > 2.7 and satisfying the same pT and η requirements. In this case the clean

RoIs are defined as the offline jet matched RoIs whose corresponding offline jets passed

the stated requirements, while the others are the dirty RoIs. Back-to-back jets is a key

characteristic of the hadronization process resulting from the proton-proton hard scattering

process, and so it is highly unlikely that we would select tau jets with this criteria. These

requirements are not necessary for background MC, since this data is created exclusively

from QCD dijet processes. A summary of the selection criteria is given in Table 5.2, with

the technical details shown in Appendix B.

The result of this selection process becomes the input to the Pre-BDT-1 stage. After

performing its selection, the Pre-BDT-1 stage divides the sample into three parts: RoIs

for TMVA training (TRN), events for testing (TST), and RoIs for TMVA testing (TRT).

The TRN RoIs must be clean and each of their variables are simply stored as TTree leaves

of floats. In order to prevent biasing our results by testing on events that were used for

training, the TRN RoIs must come from separate events than those used for TST. The TST

events remain in the leaves-of-vectors format so that the event-wise acceptance rates can be

calculated. The TRT RoIs come from a subset of the TST events, must be clean, and are

stored in the same format as the TRN RoIs. They are used as the members of the testing

sample of the TMVA training program, which is used by TMVA to automatically perform

various tests of the trained classifier that we may later use for analyzing our results. If the

sample is to be used for training, the splitting is generally determined by sending the events

of type 0, 3 or 4 into the TST sample, sending the events of type 2, 5 or 6 to both the

TRT sample and the TST sample, and sending the remaining events (type 1) to the TRN

sample. Otherwise, all of the events are passed into the TST sample. The TST sample is

the input to the BDT-1 stage, which stores its output in the same data format as that for
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TST, but only includes RoIs that passed the stage’s requirements. The resulting sample

becomes the input to the Pre-BDT-2 stage, which splits the events as does Pre-BDT-1,

except that now events of type 0 or 2 are sent to the TST sample, events of type 4 or 6

are sent to both the TRT sample and the TST sample, and events of type 3 or 5 are sent

to the TRN sample. BDT-2 then takes as input the TST output of Pre-BDT-2, and stores

the resulting sample in the same format as does BDT-1. During each stage, histograms for

various trigger variables and overall acceptance rates are put into storage for later analysis.

Figure 5.2 shows a diagram of the data preparation procedure.
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Sample type Selection criteria

Signal MC

• one good primitive vertex with
at least four tracks

• offline tau ET > 15 GeV, |η| <
2.2

• at least one track, medium of-
fline BDT ID

• truth match with visible ET >
10 GeV and visible |η| < 2.5.

Signal data

• one good primitive vertex with
at least four tracks,

• offline tau ET > 15 GeV, |η| <
2.2,

• at least one track, medium of-
fline BDT ID.

Background MC None

Background data

• back-to-back jets with offline
jet pT > 15 GeV/c, |η| < 2.2.

Table 5.2: The signal/background selection criteria. By default, the events come from the
tauNoCut chain and the L2 RoIs must be matched to an L1 RoI with ET > 8 GeV and
an EF RoI from the same chain. Offline matching is performed with the EF RoIs and
∆R < 0.2. More details are shown in Appendix B
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D3PD events

Slimmed/Skimmed
D3PD events

Events with
selected RoIs

Events that pass
Pre-BDT-1 cuts

Events for use
in next stages

RoIs for TMVA
training of BDT-1

RoIs for TMVA
testing of BDT-1

Events that
pass BDT-1

Events that pass
Pre-BDT-2 cuts

Events for use
in next stages

RoIs for TMVA
training of BDT-2

RoIs for TMVA
testing of BDT-2

Events that
pass BDT-2

Figure 5.2: A diagram of the data preparation procedure. Note: By “events with selected
RoIs” we mean a signal or background sample selected according to the criteria in Table
5.2, with the clean RoIs as the selected RoIs.
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5.5 Training

The training of the BDT classifiers is performed by executing the TMVA training program

for BDT-based classification. By virtue of the data selection procedure, the training sample

for BDT-1 is the TRN output of Pre-BDT-1, and the training sample for BDT-2 is the TRN

output of Pre-BDT-2. The weight for each RoI is set as the ratio of the cross section of the

dataset it is a member of to the number of entries in the sample. The cross section of a

dataset is typically taken from the ATLAS Metadata Interface (AMI) database [30]. Rather

than allowing the TMVA Factory to normalize the events so that each event has an average

weight of 1 (the default), no normalization is performed at all (NormMode=None). This

results in a tree that is trained with a realistic proportion of signal to background events.

One general principle used is that we do not add complexity where simplicity provides an

insignificantly worse level of performance. For this reason we use the Gini index, the simplest

measure of separation (a 2nd-order polynomial function of a real-valued variable), as the

separation index. We set nCuts=-1, so that the maximum level of precision is used optimize

the cuts. The maximum depth of the tree is set to 6. This allows us to constrain the time

complexity of the classifier to a reasonable amount, while not sacrificing any significant gain

in discrimination power. We set UseYesNoLeaf to false, so that the classifier for each tree

outputs the purity of the terminal node, which is more meaningful than simply a binary

value. We prune each tree before it is boosted, so that statistically insignificant nodes are

not counted in the misclassification rate. Using the simplicity principle, we use the expected

error algorithm for pruning, and set PruneStrength to 1.0. Likewise, we use the adaptive

boost algorithm for boosting and set AdaBoostBeta to 0.5. For similar reasons as for our

choice of tree depth, the number of trees is set to 50. Depending on the specific conditions

of our training sample, both the maximum tree depth and the number of trees may be

lowered, as shown in the next chapter.

For the training of BDT-1, we consider 8 different calorimeter variables: HADRadius,

CaloRadius, CoreFrac, IsoFrac, EMFrac, stripWidth, HADtoEMenergy, and EnergyTonCells.

All of these variables are available in the Tau Working Group (WG) D3PDs, except for
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HADtoEMenergy and EnergyTonCells, which are custom calculated for the purpose of train-

ing BDT-1. They were selected from the set of all calorimeter-derived L2 tau variables

available in the Tau WG D3PDs [55] by removing those that are highly correlated with one

of the others. Table 5.3 gives the definitions of each of these variables.

We consider 5 different tracking variables: nCoreTracks, trkAvgDist, etOverPtLeadTrk,

scalarPtSumIsoToCore, and chargeTrans. All of these variables are available in the Tau

WG D3PDs, except for scalarPtSumIsoToCore and chargeTrans, which are custom cal-

culated for the purpose of training BDT-2. As before, they were selected from the set of all

tracking-derived L2 tau variables available in the Tau WG D3PDs by removing those that

are highly correlated with one of the others. Table 5.4 gives the definitions of each of these

variables.
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Variable Definition Description

HADRadius ∑
i∈L4−6∪T E0.2,iRi∑
i∈L4−6∪T E0.2,i

Energy-weighted hadronic radius
[∆R]

CaloRadius ∑
i∈L∪T E0.2,iRi∑
i∈E∪T E0.2,i

Energy-weighted calorimeter radius
[∆R]

CoreFrac ∑
i∈L∪T E0.1,i∑
i∈L∪T E0.2,i

Fraction of energy that is in the core
region

IsoFrac

1−
∑

i∈L2
E0.1,i∑

i∈L2
E0.2,i

Fraction of energy in the 3rd layer
of the EM calorimeter that is in the
isolation region

EMFrac ∑
i∈L0−3

E0.2,i∑
i∈L∪T E0.2,i

Fraction of energy that is in the EM
calorimeter

stripWidth √√√√∑i∈L2,6
η2

0.2,iE0.2,i∑
i∈L2,6

E0.2,i
−

[∑
i∈L2,6

η0.2,iE0.2,i∑
i∈L2,6

E0.2,i

]2

Energy weighted standard deviation
of cell η

HADtoEMenergy ∑
i∈L4−6∪T E0.2,i∑
i∈L0−3

E0.2,i

HAD to EM energy *

EnergyTonCells ∑
i∈L∪T E0.2,i∑
i∈L∪T 1

Energy to number of cells [MeV] *

Table 5.3: The definitions of the variables used for the training of BDT-1. For j ∈ 0, 1, 2, 3,
Lj is the set of all activated cells in the j + 1th layer of the (LAr) EM Calorimeter. For
j ∈ 4, 5, 6, Lj is the set of all activated cells in j−3th layer of the LAr hadronic calorimeter.
For j ∈ 0, 1, 2, Tj is the set of all activated cells in the j + 1th layer of the tile (hadronic)
calorimeter. L := ∪6

l=0Lj and T := ∪2
l=0Tj . For each α ∈ R+ and i ∈ C ⊂ L ∪ T , if i is

in the ∆R < α cone about the centre of the RoI, then Eα,i is the energy measured by i
and ηα,i is the pseudorapity of i; otherwise, Eα,i = 0 and ηα,i = 0. Ri is the ∆R distance
between i and the centre of the RoI. (continued on next page)
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Table 5.3: (continued) A division by 0 typically results in an error code, as described in
Section 5.8. The units for the variables are shown in square brackets. [56]
* The precise definitions of these variables are shown in Section C.1.

Variable Definition Description

nCoreTracks ∑
i∈R0.1

1
Number of core tracks

trkAvgDist ∑
i∈R̄0.3

pT,iR̄i∑
i∈R̄0.3

pT,i

Transverse-momentum-weighted
track radius [∆R]

etOverPtLeadTrk
ET,med

pT,lead

Medium transverse energy to mo-
mentum of leading track [c]

scalarPtSumIsoToCore ∑
i∈R0.3

pT,i∑
i∈R0.1

pT,i

Sum of isolated transverse momenta
to sum of core transverse momenta *

chargeTrans

||q| − 1|
Transformed charge [e]

Table 5.4: The definitions of the tracking-derived variables used for the training of BDT-2.
Due to the 2012 improvements, all tracks used for these measurements must have pT >
1 GeV/c and |∆z0| < 2 mm between themselves and the leading (pT ) track for the RoI. L,
T , and ET,α,i are as defined in the caption of Table 5.3. For each α ∈ R+, Rα is the set of
tracks contained in the ∆R < α cone about the centre of the leading track, and for each
i ∈ Rα, pT,i is the transverse momentum of i and Ri is the ∆R distance between the centre
of i and the centre of the leading track; pT,lead is the transverse momentum of the leading
track. For each α ∈ R+, R̄α is the set of tracks contained in the ∆R < α cone about the
centre of the RoI, and for each i ∈ Rα, pT,i is the transverse momentum of i and R̄i is the
∆R distance between the centre of i and the centre of the RoI. q is the net electromagnetic
charge of the tracks. The units for the variables are shown in square brackets. [57][58]
* The precise definition of this variable is shown in Section C.2
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5.6 Testing

The main purpose of the algorithm is to select as much signal as possible while keeping

within the trigger rate limitations. By rate we mean the average acceptance rate for all

types of events that our trigger may see. To determine whether our algorithm is worthy

of implementation, we compare its signal acceptance rates with those of the currently im-

plemented simple cut-based L2 tau trigger that follows the same L1 output as our trigger,

and that we use to compare with our trigger. We call this the reference trigger. As already

mentioned, the event-wise rate limitation for the calorimeter stage, based on the reference

trigger, is set to 0.29, with a 3σ certainty threshold. We want the rate for this stage to

be as close as possible to its limit, since it is not until after this stage that we can make

use of the discrimination power of both the calorimeter and tracking variables, instead of

simply the calorimeter variables. For the combined calorimeter and tracking stages, the

reference trigger has an event-wise acceptance rate of (8.673 ± 0.035) × 10−2. Therefore,

we set the event-wise rate limitation for the overall algorithm to 0.085, again with a 3σ

certainty threshold. We also examine other values for the tracking-stage rate limitation in

order to see the relationship between signal acceptance and overall rejection.

At each of the four stages, we record various types of acceptance rates for each sample of

events that is used for testing (rather than training). The acceptance rates can be divided

into two types: event-wise acceptance rates and RoI-wise acceptance rates. An event is

accepted if at least one RoI (clean or dirty) is accepted. The event-wise acceptance rate is

defined as the ratio of the number of accepted events to the number of events considered.

For the RoI-wise acceptance rate we consider only the clean RoIs, so that the RoI-wise

acceptance rate is defined as the ratio of the number of accepted clean RoIs to the number

of clean RoIs considered. For each of these types of acceptance rates, we analyze their

dependence with respect to pile-up by filling a histogram with a measure of pile-up (average

number of interactions per bunch crossing during the event) each time an event is accepted

or a clean RoI is accepted. We also want to determine the ET dependence of our acceptance

rates. For RoI-wise rates, we fill the histograms with the RoI’s value of the L2 ET variable,
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while for the event-wise rates, we fill the histograms with the sum over the L2 ET values

of each RoI (clean or dirty), and note that this sum is precalculated before any part of

the algorithm has the chance to eliminate some RoIs from an event. We also fill the same

kind of histograms when selecting a signal or background sample that becomes an input to

Pre-BDT-1, so that we can later calculate efficiencies for these variables.

In addition to acceptance rates, we must also keep track of the statistical errors of those

acceptance rates. In general, our assumption is that the number of events or RoIs, N ,

passing a certain condition is poisson distributed so that the standard deviation of N is
√
N . When taking the ratio, we use the Bayesian-based approach described in [59], so that

if N1 is the number of considered events or RoIs with standard deviation σ1 =
√
N1 and

N2 is the number of selected events or RoIs with standard deviation σ2 =
√
N2, then the

acceptance rate, ρ = N2/N1 has standard deviation

σ =

√
(N2 + 1)(N1 −N2 + 1)

(N1 + 2)2(N1 + 3)
, (5.10)

and the estimator for the mean is

ρ = (N2 + 1)/(N1 + 2) . (5.11)

For histograms, we use ROOT’s TGraphAsymmErrors->Divide() method to divide the

histograms with the option parameters "cl=0.683 b(1,1) mode". This uses standard

Bayesian techniques to calculate the error bars corresponding to a confidence level of 0.683

(1σ). If we wish to calculate the overall acceptance rate, ρ, for a sequence of two stages of

the algorithm, we may need to multiply the acceptance rate for one stage, ρ1± σ1 with the

acceptance rate for the other stage, ρ2 ± σ2, to obtain ρ = ρ1ρ2 with standard deviation

calculated as

σ = ρ
√
σ2

1/ρ
2
1 + σ2

2/ρ
2
2 . (5.12)

(standard error propagation). If the error bars are asymmetric, then we apply the above

equation to the upper and lower error bars separately. The multiplication of acceptance

rates is frequently used when generating µ or ET dependent efficiency plots from the µ



74

or ET dependent histograms for samples that are used for training a BDT classifier. This

is because some of the events that appear in the histogram for one stage may be used as

events for training a BDT at a later stage, and when testing that BDT, those events will not

be considered as input. We also use standard error propagation when calculating averages

of acceptance rates. For each signal or background sample, an effective cross section is

calculated by multiplying the sample’s cross section with an estimator for the fraction of

events that are accepted during the signal/background selection process. The estimator

and its uncertainty are simply given by (5.10) and (5.11). The cross section is taken as a

parameter with no uncertainty, so the standard deviation for the effective cross section is

simply the standard deviation of the estimator multiplied by the cross section. The effective

cross sections are used as the weights for the average acceptance rates.

When plotting the pile-up dependence of an acceptance rate, we also perform a linear fit

to the data using TGraph’s Fit method with the "pol1" parameter. This will automatically

find a best linear fit to the data using the default χ2-based fitting algorithm, and return

the numerical value of the slope and error bar for the slope of the fitted line.

Before we can test the acceptance rate of a BDT classifier (BDT-1 or BDT-2), we must

choose a cutoff score. If we want a rate that is less than but as close as possible to the value

ρ0, then we scan a discrete set of cutoff scores, and for each cutoff score, test the acceptance

rate ρ± σ of the classifier on a representative sample of events. If ρ is sufficiently close to

ρ0 and ρ+ 3σ < ρ0, then we record the cutoff score for later use.

Finally, it is important to ensure that the selection algorithm can be performed within

the timing constraints of the L2 tau trigger system. Due to our choice of a maximum tree

depth of 6 and a maximum number of trees of 50, each execution of the algorithm will

require at most 6 × 50 = 300 variable comparisons, 50 floating point multiplications (by

boost weights), and the addition of 50 floating point numbers (contribution from each tree).

We believe that, compared to the calorimeter and track reconstruction performed at L2,

the time require to perform these steps is quite insignificant.
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5.7 Reference Trigger

The reference trigger that we use is L2_TAU20_MEDIUM1. It is one of the two main triggers

that are used in conjunction with L1_TAU8; the other being L2_TAU20_MEDIUM. The only dif-

ference between the MEDIUM trigger and the MEDIUM1 trigger is that MEDIUM requires less than

eight core tracks while MEDIUM1 requires less than five [60]. We choose L2_TAU20_MEDIUM1

because the MEDIUM1 requirement is currently being used for the search for the SM Higgs

boson. [61] The reference trigger is applied to our signal and background samples in order

to compare its performance with the performance of our BDT-based trigger. The result is

a set of analogous rates, histograms, and efficiency graphs as described above.

The calorimeter stage for the reference trigger uses only two variables: etMedium (ET,med)

and CoreFrac. The requirement is that etMedium must be greater than 15.199 GeV and

CoreFrac must be greater than 0.7485. At the tracking stage, the trigger uses the variables

nCoreTracks, scalarPtSumIso, scalarPtSumCore, etOverPtLeadTrk, and trkAvgDist to

make the final selection. The precise algorithm for this trigger, for any input RoI, is shown

in Section C.3.

5.8 Error Codes

Some of the variables used for splitting the decision trees contain so-called error code values.

These are values that are, in a sense, unphysical, discontinuous from the rest of the dis-

tribution, and typically occur in exceptional cases where the variable cannot be calculated

from the information in the RoI. For example, if a variable is the ratio of two variables, it

cannot be calculated when the variable in the denominator is 0; so in this case, we may

set its value to an error code. To deal with error codes, we train events (RoIs) with error

codes separately from those without error codes. Further, we divide the events with error

codes into different classes depending on which variables in the event have an error code,

and train each of these seperately as well. For some error code classes of events, there may

be an insufficient amount of statistics to properly train a BDT or say anything significant
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about its acceptance rate during the testing phase, and for such cases, we automatically

reject the events. The goal is to be robust with respect to different error code classes. We

want each class to have acceptance rates that are below the maximum limits, and we want

to maximize the signal acceptance for each class given that limitation. The acceptance rates

are tuned by choosing an appropriate cutoff score for each error code class (for both BDT-1

and BDT-2), and possibly adjusting the cutoff scores to ensure an appropriate acceptance

rate for the overall algorithm applied to all of the events. The BDT classifier for each class

is trained by restricting its training sample to only events of that class and removing the

variables with error codes from the list of variables used. An alternative way to train such a

BDT classifier would be to only restrict the training samples to the events that do not con-

tain error codes for the variables in this shortened list, and this would have the advantage

of introducing more statistics into the training program. We decided to proceed with the

former method, since a BDT classifier typically performs better on continuous distributions

of variables, and when events of different error code classes were mixed together, we ob-

served the presence of significant discontinuities. For example, for a few of the samples we

used, whenever the variable etOverPtLeadTrk has an error code, all of the other tracking

variables are 0-valued.

After examining the training samples, we determined that there are 8 variables that are

prone to error codes, and at most one error code class per variable was found. The variables

with error codes are: HADRadius (-99), CoreFrac (-99), IsoFrac (-99), stripWidth (-99),

CaloRadius (-99), EMFrac (-99), trkAvgDist (-111), and etOverPtLeadTrk (-111).

When calculating an RoI-wise acceptance rate for an error code class, we consider only

RoIs from that class as input. When calculating an event-wise acceptance rate for an error

code class, we consider only events with at least one RoI being a member of that class as

input, and events with at least one such RoI being accepted as output for acceptance. The∑
ET variable for the event-wise ET dependent histograms and efficiencies for an error code

class is calulated by only adding the ET of RoIs from that class. Also, when creating a

signal or background sample with a specific error code class, the event type is determined
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before selecting events containing RoIs from the error code class.

5.9 Systematic Uncertainties

The specific algorithm that a BDT-classifier uses depends on the training sample it is

given. Changing the training sample can have an effect on performance measures such as

the acceptance rates for our algorithm. This effect results in a systematic uncertainty due

to our training procedure. To measure this effect, we apply our training procedure for three

different cases for the training conditions: (1) the entire training sample for both BDT-1

and BDT-2, as determined from the event types, is used for training; (2) only the even

numbered halves of the training samples of BDT-1 and BDT-2 are used for training; and

(3) only the odd numbered halves of the training samples of BDT-1 and BDT-2 are used

for training. Note: If a part of a training sample is not used for training, then it is not even

used for testing. This is to ensure that there is no correlation between cases (2) and (3).

When showing the results, BDT trigger will refer to our trigger trained under case 1, BDT

even trigger will refer to our trigger trained under case 2, and BDT odd trigger will refer

to our trigger trained under case 3. We define the systematic uncertainty of an acceptance

rate as the absolute difference between the acceptance rates for the even and odd triggers.

We write the measured value of an acceptance rate as

ρ± σstat ± σsys , (5.13)

where ρ is the estimator for the mean of the acceptance rate, σstat is the statistical uncer-

tainty of ρ, and σsys is the systematic uncertainty of ρ. Evidently, there are more sources of

systematic uncertainty than the one we use, but in order to simplify the analysis, we solely

measure the systematic uncertainty due to this source.

5.10 Optimization

Typically, adding more variables to a BDT classifier causes it to perform better, at the

cost of more training time and a need for more training statistics. But if BDT-1 output
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is an input to BDT-2, adding more variables to BDT-1 does not necessarily increase the

performance of the combined algorithm. Since BDT-2 has more information, it may be

more effective overall to leave out some calorimeter variables from BDT-1.

For this reason, we scan over the combinations of variables for BDT-1, and for each

tested combination, we compare the results with other combinations to determine whether

there is any statistically significant gain in using the given combination. In order to make

this computationally feasible, we perform the testing of each combination in parallel, using

Python’s multiprocessing library to manage the concurrent subprocesses (we also use

concurrency for training and testing different error code classes at once). In addition, we

set conditions in the algorithm that make it so that the algorithm does not necessarily scan

over all possible combinations of the variables. If A and B are subsets of the set of all

possible variables for BDT-1, such that A ⊂ B, and if B leads to significantly worse results

than A, then we do not test any combinations that are supersets of B; otherwise, we test

all combinations of the form B ∪ {x} where x /∈ B.



Chapter 6

Results

6.1 Introduction

Here we show the results of applying the procedure described in the previous chapter. We

begin with a specification of the training samples. Then, we specify the cutoff parameter for

the Pre-BDT-1 stage and show the performance of this stage for these samples by plotting

the ET dependent efficiencies. Next, we list the variables used for the BDT stages. We

compare their distributions for signal and background and show the relevant correlation

matrices. The error code classes that each correspond to a trained BDT classifier are

subsequently listed, together with an indication of the fraction of events that each class

consists of. Next, we explain the concept of overtraining, and show the relevant overtraining

plots for each error code class. We then look at the main result of the BDT training

procedure: a set of boosted decision trees. We show a diagram of one representative example

tree from each BDT stage, and list the importance indices for the classifiers that contain

those trees. Next, we examine the efficiencies of the calorimeter stage of the algorithm by

showing the pile-up dependent acceptance rate plots for each of the training samples. We

also list the corresponding overall acceptance rates for the calorimeter stage. The overall

algorithm is examined next by plotting the main signal acceptance versus overall rejection,

for each of the principal error code classes. Next, we study the energy dependence of

79
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the acceptance rates by showing the ET dependent plots for each of the training samples.

Similarly, the pile-up dependence is analyzed next by showing the pile-up dependent plots

for the same samples, together with linear fits to the data shown. Finally, we iterate through

the rest of the samples tested and show for each the relevant energy and pile-up dependent

plots. These samples were not used for training and include both signal and background

from real collision data, and signal from W → τν, Z → ττ . H → ττ , and Z ′ → ττ

MC. Finally, the numerical values for the overall acceptance rates for all samples tested

are summarized in a table. Note: Each time we show results for acceptance rates, we

show both the RoI-wise and event-wise acceptance rates, and where possible, we show the

corresponding acceptance rates for the reference trigger.

6.2 Training Samples

For the following results, we use the ATLAS datasets

• mc12_8TeV.147818.Pythia8_AU2CTEQ6L1_Ztautau

.merge.NTUP_TAU.e1176_s1479_s1470_r3553_r3549_p1130/

• mc12_8TeV.170204.Pythia8_AU2CTEQ6L1_Zprime1000tautau

.merge.NTUP_TAU.e1176_s1479_s1470_r3553_r3549_p1130/

to create the signal training samples, and the ATLAS datasets

• data12_8TeV.period*.physics_JetTauEtmiss

.PhysCont.NTUP_TAU.grp13_v01_p1130/

to create the background training samples. The * character indicates a wildcard that ranges

in {B, C, D}. Recall that the samples are created by applying the selections described in Table

5.2 to the (skimmed) datasets. By training sample we mean a set of events with a subset

that is used for training a BDT classifier; other subsets of the sample are used for testing.

The first signal dataset is 2012 MC data consisting of Z → ττ events (with a cross

section of 8.7804 × 10−1 nb), and the second one is 2012 MC data consisting of Z′ → ττ
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events (with a cross section of 1.4845 × 10−4 nb) with the mass of the Z′ set to 1000 GeV

[30]. The Z′ is a hypothetical particle with properties that are similar to those of the Z, but

with a much greater mass [62]. Using both of these signals allows us to take into account a

wide mass spectrum for the resonances that decay into the tau leptons, including the masses

of particles that are yet to be discovered with higher collision energies. The background

datasets consist of real collision data from the 2012 ATLAS data taking periods B-D. We do

not include Period A because it was found to contain some anomalies as compared with the

other periods, and since the other periods that we use contain a sufficient number of events,

we decided not to investigate this further. We reserve Period E exclusively for testing. This

allows us, in a way, to demonstrate the ability of our algorithm to perform well on the future

beam conditions after training on past data. The rest of the periods are not included since

they were not available for the particular version of D3PDs that we are using. Both the

signal and background datasets correspond to 8 TeV p − p collisions. Recall that we need

the cross sections of the datasets in order to properly weigh the training samples. We use

8.7804 × 10−1 nb as the cross section for the Z → ττ dataset and 1.4845 × 10−4 nb as the

cross section for the Z′ → ττ dataset. Both of these values have been obtained by looking

up the cross sections for the particular samples in the AMI database. A study performed by

the TOTEM Collaboration determined that the luminosity-independent 8 TeV LHC total

cross section is 101.7± 2.9 mb [63]. Thus, we use 1.017× 108 nb as the cross section for the

background datasets.

For choosing the cutoff scores, we use as the representative sample the sample resulting

from the union of the background datasets when all L2 RoIs seeded by L1_TAU8 (and

match L2_tauNoCut and EF_tauNoCut) are considered without restriction. This effectively

simulates the average acceptance rate during real data taking, without making assumptions

on the cross sections of various event classes. The representative sample does not include

events that were used for training. This is done by performing the same event type selection

that would be performed if the sample were used for training.
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Table 6.1 shows, for each type of training sample, the number of events in its dataset

(after skimming) and the number of events it consists of.

Sample No. of events in dataset No. of events in sample

Z → ττ Signal 1744013 818242

Z ′ → ττ Signal 386380 252425

Dijet Background 1304789 425431

Representative 1304789 1304555

Table 6.1: A summary, for each type training sample, of the number of events in its dataset
and the number of events it consists of. Periods B-D are used for both the dijet background
and representative samples. The number of events in a dataset is counted after skimming
the dataset to only include events that pass the tauNoCut chain.
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6.3 Pre-BDT-1

For Pre-BDT-1, we use 15.199 GeV as our etCut. This is the same value that the reference

trigger uses for cutting on ET,med, which makes for a fair comparison between the triggers.

Now we show the Pre-BDT-1 acceptance rates for the training samples. Figure 6.1 shows

the ET dependent rates for the Z → ττ sample, Figure 6.2 shows the ET dependent rates

for the Z ′ → ττ sample, Figure 6.3 shows the ET dependent rates for the dijet background

sample, and Figure 6.4 shows the ET dependent rates for the representative sample.

The curve used to fit to the data is the graph of the function

f(x) = C0 arctan

(
x− C1

C2

)
+ C3 , (6.1)

where x is ET,med or
∑
ET,med, and C0, C1, C2, C3 are real-valued parameters. This is the

fitting function used for the official tau trigger efficiency measurements (where x is offline

pT ) [26]. We use it because it models our data well and it allows us to be consistent with

the methodology used by the tau trigger group. This type of curve is typically called a

turn-on curve, a name derived from its shape [34].

The close agreement of the data with the turn-on curves shows that the rates follow the

expected distributions, and in general, increase with increasing values of ET . Recall that

the background training sample is the subset of the representative sample that requires the

RoIs to be matched to offline jet RoIs with pT > 15 GeV/c and |η| < 2.2; hence, it is not

surprising that it has a noticeably higher acceptance rate at this stage.
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Figure 6.1: The Pre-BDT-1 acceptance rate for Z → ττ signal for two different cases. (a)
shows the RoI-wise acceptance rate w.r.t. L2 ET,med, (b) shows the event-wise acceptance
rate w.r.t. Σ L2 ET,med.
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Figure 6.2: The Pre-BDT-1 acceptance rate for Z ′ → ττ signal for two different cases. (a)
shows the RoI-wise acceptance rate w.r.t. L2 ET,med, (b) shows the event-wise acceptance
rate w.r.t. Σ L2 ET,med.
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Figure 6.3: The Pre-BDT-1 acceptance rate for dijet background for two different cases. (a)
shows the RoI-wise acceptance rate w.r.t. L2 ET,med, (b) shows the event-wise acceptance
rate w.r.t . Σ L2 ET,med.
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Figure 6.4: The Pre-BDT-1 acceptance rate for the representative sample for two different
cases. (a) shows the RoI-wise acceptance rate w.r.t. L2 ET,med, (b) shows the event-wise
acceptance rate w.r.t . Σ L2 ET,med.
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6.4 BDT Variables

For BDT-1, we use the variables: CoreFrac, CaloRadius, EnergyTonCells, and HADtoEMenergy.

CoreFrac was included by default since it is currently the primary discriminating variable

for the calorimeter stage of the L2 tau trigger, and it provides a clean and clear separation.

After scanning over all combinations of variables for this stage (that contain CoreFrac),

it was found that for all combinations that are statistically equivalent (within 3σ) to the

combination with the highest signal acceptance (RoI-wise, class of events with no error

codes from the Z → ττ training sample), they contain the CaloRadius variable. We elim-

inated combinations that contain the HADRadius variable, since this variable presents a

significantly large fraction of error codes. This left us only with combinations that contain

the EnergyTonCells variable. From these combinations, all but two of them contain the

HADtoEMenergy variable, but these two contain EMFrac, which is similar to HADtoEMenergy,

but possibly has error code values. For simplicity, we choose the combination that contains

these four mentioned variables and no others.

BDT-2 uses all of the calorimeter and tracking variables, as listed in Section 5.5.

Figure 6.5 shows the distributions of the values of the variables used for BDT-1 for the

sample of events that are passed to its training procedure, when none of the values are error

codes.

Moreover, Figure 6.6 shows the correlation matrices for these same variables.

Clearly, all variables are significantly uncorrelated, except for the correlation between

CoreFrac and CaloRadius. It may still be acceptable to include both of these variables,

since there still may be a significant amount of uncorrelation between these variables that

provides a significant amount of additional separation power to the classifier, and the ev-

idence of this comes from our previous mention of how CaloRadius was required on top

of CoreFrac in order to have a high level of signal acceptance in comparison to the other

combinations of variables.

Figures 6.7, 6.8, and 6.9 show the distributions of the values of the variables used for

BDT-2 for the sample of events that are passed to its training procedure, when none of the
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Figure 6.5: TMVA generated histograms of the values of the variables used for BDT-1 for
the sample of events that are passed to its training procedure, when none of the values are
error codes.

values are error codes.

Figure 6.10 shows the corresponding correlation matrix.

Again, we can see that the variables have acceptable levels of correlation between each

other, which justifies using all of them.
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Figure 6.6: The TMVA generated correlation matrices for the variables used for BDT-1 for
the sample of events that are passed to its training procedure. Each entry is the sample
correlation coefficient (scaled by 100) for the variables associated with the corresponding
row and column. Implicitly, the columns correspond to the same ordered set of variables as
the rows. An entry without a shown value means that the value is 0. (a) shows the signal
correlation matrix and (b) shows the background correlation matrix.
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Figure 6.7: TMVA generated histograms of the values of the first six variables used for
BDT-2 for the sample of events that are passed to its training procedure, when none of the
values are error codes.



92

EMFrac

0 0.2 0.4 0.6 0.8 1

0.
02

9
 /  

(1
/N

) 
dN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: EMFrac

EnergyTonCells  [MeV]

20 40 60 80 100 120 140

3.
46

 M
eV

 /  
(1

/N
) 

dN

-510

-410

-310

-210

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.1

, 0
.1

)%

Input variable: EnergyTonCells

scalarPtSumIsoToCore

0 0.5 1 1.5 2 2.5 3 3.5 4

0.
10

1 
M

eV
 /  

(1
/N

) 
dN

-710

-610

-510

-410

-310

-210

-110

1

10

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: scalarPtSumIsoToCore

nCoreTracks

2 4 6 8 10 12

1 /  
(1

/N
) 

dN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: nCoreTracks

chargeTrans  [e]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.
12

1 
e

 /  
(1

/N
) 

dN

0

1

2

3

4

5

6

7

8

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: chargeTrans

]R∆trkAvgDist  [

0.05 0.1 0.15 0.2 0.25 0.3

R
∆

0.
00

76
8 

 /  
(1

/N
) 

dN

0

2
4
6
8

10
12

14
16
18
20
22

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: trkAvgDist

Figure 6.8: TMVA generated histograms of the values of the second six variables used for
BDT-2 for the sample of events that are passed to its training procedure, when none of the
values are error codes.
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Figure 6.9: A TMVA generated histogram of the values of the last variable used for BDT-2
for the sample of events that are passed to its training procedure, when none of the values
are error codes.
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Figure 6.10: The TMVA generated correlation matrices for the variables used for BDT-2
for the sample of events that are passed to its training procedure. Each entry is the sample
correlation coefficient (scaled by 100) for the variables associated with the corresponding
row and column. Implicitly, the columns correspond to the same ordered set of variables as
the rows. An entry without a shown value means that the value is 0. (a) shows the signal
correlation matrix and (b) shows the background correlation matrix.
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6.5 Error Codes

For BDT-1, the variables with defined error codes are CoreFrac and CaloRadius. The

representative sample contains 53 RoIs with an error code for CoreFrac and 40 RoIs with

an error code for CaloRadius. However, after Pre-BDT-1, this sample contains no RoIs

with an error code for both CoreFrac and CaloRadius. Therefore, BDT-1 consists of only

one error code case: the class with no error codes.

For BDT-2, the situation is less trivial. Table 6.2 shows the number of events per error

code class for the representative sample after Pre-BDT-2 has been applied, where we only

show the error code classes that are not automatically rejected by the algorithm.

Error code class Number of events

None 173950

HADRadius 23387

trkAvgDist 7290

HADRadius & trkAvgDist 3691

etOverPtLeadTrk 3396

HADRadius & etOverPtLeadTrk 2194

trkAvgDist & etOverPtLeadTrk 482

stripWidth 110

Total 211280

Table 6.2: Number of events per error code class for the representative sample after Pre-
BDT-2 has been applied. The classes are labeled by the variables with error code values.
We only show the error code classes that are not automatically rejected by the algorithm.

For all cases, the reason a class was rejected was that TMVA was not able to train a

BDT for the class due to a low number of statistics.

Note: For the error code classes with error codes for etOverPtLeadTrk, we removed all

tracking based variables from the BDT training program. This is because they are all 0 or

error code valued in this case, and hence, cannot be used for training.
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6.6 Overtraining Check

In general, a machine learning algorithm is said to be overtrained if too many model pa-

rameters are adjusted to too few data points. This can be detected by comparing the

performance of the algorithm on independent training and testing samples. If the perfor-

mance is significantly greater for the training sample, then overtraining has occured. [54]

Our training procedure was first applied with the maximum tree depth and number

of trees fixed to the same value for each BDT classifier (for each stage and each error

code class). In order to ensure reasonable overtraining conditions, without significantly

sacrificing discrimination power, we manually reoptimized these parameters for each trained

BDT classifier. Table 6.3 shows the optimized values of these parameters for each case.

Error code class Max. tree depth No. of trees

BDT-1 None 6 50

BDT-2 None 6 50

BDT-2 HADRadius 6 20

BDT-2 trkAvgDist 6 15

BDT-2 HADRadius & trkAvgDist 4 15

BDT-2 etOverPtLeadTrk 3 35

BDT-2 HADRadius & etOverPtLeadTrk 3 20

BDT-2 trkAvgDist & etOverPtLeadTrk 3 15

BDT-2 stripWidth 2 25

Table 6.3: The maximum tree depth and number of trees for each stage and each error code
class. These values were manually optimized in order to ensure reasonable overtraining
conditions, without significantly sacrificing discrimination power. The classes are labeled
by the variables with error code values.

Figure 6.11 shows the overtraining check for BDT-1 and Figures 6.12 to 6.19 show the

overtraining check for each of the error code classes of BDT-2.

The Kolmogorov-Smirnov (KS) probability is calculated using ROOT’s TH1->KolmogorovTest()

method, which gives a value for the amount of compatibility between two histograms; in

this case, the training and testing samples. In theory, if we reject all pairs of histograms

with KS probability less then α, then the probability of rejecting a pair of truly compatible

histogram is bounded above by α. When optimizing the above training parameters, we
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Figure 6.11: TMVA generated overtraining check for BDT-1, with no error codes for all the
variables used for selection at this stage.

aimed for a KS probability of at least 0.01 for both signal and background. This results in

reasonably looking distributions, and is the greatest value, up to order of magnitude, that

we were able to attain for some of the error code cases.
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Figure 6.12: TMVA generated overtraining check for BDT-2, with no error codes for all
variables.
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Figure 6.13: TMVA generated overtraining check for BDT-2, with error codes for
HADRadius.
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Figure 6.14: TMVA generated overtraining check for BDT-2, with error codes for
trkAvgDist.
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Figure 6.15: TMVA generated overtraining check for BDT-2, with error codes for HADRadius
and trkAvgDist.
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Figure 6.16: TMVA generated overtraining check for BDT-2, with error codes for
etOverPtLeadTrk.
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Figure 6.17: TMVA generated overtraining check for BDT-2, with error codes for HADRadius
and etOverPtLeadTrk.
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Figure 6.18: TMVA generated overtraining check for BDT-2, with error codes for
trkAvgDist and etOverPtLeadTrk.
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Figure 6.19: TMVA generated overtraining check for BDT-2, with error codes for
stripWidth.
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6.7 Decision Trees

The output of the training procedure is a set of boosted decision trees. Figure 6.20 shows a

diagram of one of the trees for BDT-1, and Figure 6.21 shows a diagram of one of the trees

for BDT-2.

Figure 6.20: A TMVA generated diagram of decision tree no. 20 for BDT-1, with no error
codes for all the variables used for selection at this stage.

For BDT-1, the importance index of each variable is listed in Table 6.4, and for BDT-2,

the importance indices are listed in Table 6.5.

Variable Importance

CoreFrac 4.271× 10−1

CaloRadius 4.140× 10−1

HADtoEMenergy 1.065× 10−1

EnergyTonCells 5.235× 10−2

Table 6.4: The TMVA generated importance indices of the variables for BDT-1, with no
error codes for all the variables used for selection at this stage.

We can see from Table 6.5 that HADRadius and HADtoEMenergy are good potential

candidates for removal from BDT-2.
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Figure 6.21: A TMVA generated diagram of decision tree no. 30 for BDT-2, with no error
codes for all variables.

Variable Importance

scalarPtSumIsoToCore 2.485× 10−1

EMFrac 1.626× 10−1

CaloRadius 1.341× 10−1

CoreFrac 1.115× 10−1

etOverPtLeadTrk 8.980× 10−2

trkAvgDist 7.095× 10−2

nCoreTracks 7.008× 10−2

IsoFrac 2.846× 10−2

chargeTrans 2.191× 10−2

EnergyTonCells 2.084× 10−2

stripWidth 1.852× 10−2

HADRadius 1.320× 10−2

HADtoEMenergy 9.475× 10−3

Table 6.5: The TMVA generated importance indices of the variables for BDT-2, with no
error codes for all variables.
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6.8 Calorimeter Stage

It is important to measure the acceptance rates exclusively for the calorimeter stage of the

trigger, to ensure that they are below the predetermined limits. In order to satisfy the

requirements stated in Section 5.6, the cutoff scores for BDT-1 have been set so that the

event-wise calorimeter-stage acceptance rate for the representative sample is below 0.29,

with a 3σ certainty threshold. Figure 6.22 shows the calorimeter-stage acceptance rate as

a function of pile-up for the representative sample, with no error codes for all the variables

used for selection at this stage, and Figure 6.23 shows these rates for the data taking period

E. The overall event-wise rates are listed in Table 6.6.

Sample L2 TAU20 MEDIUM1 BDT Trigger

Representative (2.9369± 0.0057)× 10−1 (2.88136± 0.00603± 0.00064)× 10−1

Period E (2.9164± 0.0080)× 10−1 (2.8685± 0.0080± 0.0012)× 10−1

Table 6.6: The calorimeter stage event-wise acceptance rates, with no error codes for all
the variables used for selection at this stage.

We only show the error code class with no error codes, since this is the only error code

class that gets accepted by BDT-1, and thus the acceptance rates for this class give us

upper bounds on the overall acceptance rates. As we can see, for each case presented and

for each value of µ (with the exception of a few outlier values of µ where statistics are low),

the rate of the BDT trigger generally falls below the rate of the reference trigger. Moreover,

the overall event-wise rates of the BDT trigger are each confidently less than the required

limit and less than the corresponding rates for the reference trigger.

As for the amount of pile-up dependence, we apply standard error propagation to obtain

the difference between the absolute value of the slope of the linear fit for the BDT trigger

with that for the reference trigger, for each of the four cases presented. The results are

summarized in Table 6.7.

As we can see, the BDT trigger slopes are each greater than the corresponding slopes for

the reference trigger, with 1σ certainty. However, they are not greater with 2σ certainty, and

for the representative sample, they are each less than 3.32 % efficiency per 50 interactions
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Sample RoI-wise Event-wise

Representative (1.27± 1.02± 0.15)× 10−4 (1.85± 1.10± 0.10)× 10−4

Period E (2.8± 1.7± 0.2)× 10−4 (2.7± 1.8± 0.0)× 10−4

Table 6.7: The difference between the absolute value of the slope of the linear fit for the
BDT trigger with that for the reference trigger, for each of the four cases presented in this
section. Each case has no error codes for all the variables used for selection at this stage.

per bunch crossing (an approximate upper bound on pile-up), with 3σ certainty. Also,

visually, all of the slopes look indistinguishably flat, and it is possible that the outlier

values of µ may be misrepresenting the results. It is therefore reasonable to conclude that

pile-up dependence is not a problem for the BDT trigger, and its pile-up dependence is not

significantly worse than that of the reference trigger.
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Figure 6.22: The calorimeter stage acceptance rate as a function of pile-up for the repre-
sentative sample, with no error codes for all the variables used for selection at this stage.
(a) shows the RoI-wise rate and (b) shows the event-wise rate. m is the slope of a linear fit
for the corresponding graph.
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Figure 6.23: The calorimeter stage acceptance rate as a function of pile-up for the data
taking period E, with no error codes for all the variables used for selection at this stage.
(a) shows the RoI-wise rate and (b) shows the event-wise rate. m is the slope of a linear fit
for the corresponding graph.
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6.9 Signal Acceptance versus Overall Rejection

To show the performance of the overall algorithm (calorimeter stage followed by tracking

stage), we apply it to the Z → ττ signal training sample and the representative sample

for seven different cutoff scores for BDT-2, including the cutoff score used to optimize the

overall event-wise acceptance rate to make it is as close as possible to the stated limit

(0.085). Each cutoff score is determined by a target event-wise acceptance rate, with 0.085

as the central rate, surrounded by the three evenly spaced out rates between 0 and 0.085

(0.02125, 0.0425, 0.06375) and the three evenly spaced out rates between 0 and 2 × 0.085

(0.10625, 0.1275, 0.14875). Figures 6.24 to 6.30 show the Z → ττ signal acceptance rate

plotted against the overall (representative) rejection rate (1 minus acceptance rate) for each

of the principal error code classes.

The acceptance rates for the full sample of events (no restriction to an error code class)

are shown in Figure 6.32.

Note: For the class with error codes for trkAvgDist and etOverPtLeadTrk, both the

even and odd BDT triggers contain the trivial (reject everything) BDT classifier for this

class. This is due to the low number of statistics, which resulted in maximally pruned trees

for these classifiers. Futhermore, for the class with error codes for stripWidth, both the

even and odd BDT triggers have no corresponding BDT classifier for this class, due again

to the insufficient number of statistics needed to train the classifiers. Hence, all events from

this class are automatically rejected by these triggers as well.

For each case, except the one shown in Figure 6.31, it is clear that the BDT trigger

performs better than the reference trigger in the sense that it has a cutoff score that results

in both a significantly higher overall rejection rate and signal acceptance rate. For the class

with error codes for HADRadius (Figure 6.25), a point showing better performance is not

visible, but generally, the curve for signal acceptance versus overall rejection is concave to the

origin, due to the typically diminishing returns of signal acceptance as background rejection

is decreased, which can be visualized by looking at the overtraining plots. Therefore, any

point between the 6th point and the 7th point in Figure 6.25 should lie outside a straight
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line drawn between the two points. For the classes with error codes for etOverPtLeadTrk

and possibly other variables (Figures 6.28 to 6.30), the acceptance rate for the reference

trigger is exactly 0 (see the definition of the reference trigger). Hence, the question of

whether the BDT trigger performs better for these classes is not well defined. But in terms

of signal acceptance, we can say that some signal is better than no signal (as long as the

background acceptance is sufficiently limited) and conclude that the BDT trigger performs

better for these classes. Finally, for the class with error codes for stripWidth, the reference

trigger seems to perform slightly better than the BDT trigger. However, if we ignore the

systematic uncertainty and take 0.085 as our event-wise rate limitation, then we can attain

a slightly greater signal acceptance rate with the BDT trigger while still remaining below

the rate limitation with 3σ certainty. Due to the low number of statistics in this class, a

more conservative solution for improving the BDT trigger’s performance for this class can

be to set the trigger to use the reference trigger’s criteria when considering events from this

class.

Henceforth, in this and the following sections, the results will be implicitly assumed to

be for the overall algorithm, with a target rate of 0.085 and with no restriction to an error

code class. Tables 6.8 and 6.9 summarize the results for the RoI-wise and event-wise cases,

respectively.

Sample L2 TAU20 MEDIUM1 BDT Trigger

Signal (6.8349± 0.0049)× 10−1 (7.6591± 0.0047± 0.0321)× 10−1

Representative (7.791± 0.032)× 10−2 (7.47239± 0.03996± 0.00047)× 10−2

Table 6.8: The RoI-wise acceptance rates for both signal and the representative sample,
with the Z → ττ training sample as the signal sample.

Sample L2 TAU20 MEDIUM1 BDT Trigger

Signal (7.0698± 0.0050)× 10−1 (8.1326± 0.0047± 0.0276)× 10−1

Representative (8.673± 0.035)× 10−2 (8.3661± 0.0442± 0.0017)× 10−2

Table 6.9: The event-wise acceptance rates for both signal and the representative sample,
with the Z → ττ training sample as the signal sample.

By applying standard error propagation to the results listed in the tables above, we can
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obtain the rate differences between the BDT trigger and the reference trigger. The BDT

trigger adds (0.319± 0.051± 0.000)× 10−2 (nearly 0) to the RoI-wise overall rejection rate

of the reference trigger and adds (0.8242± 0.0068± 0.0321)× 10−1 to the RoI-wise Z → ττ

signal acceptance rate of the reference trigger. The BDT trigger also adds (0.307± 0.056±

0.002)× 10−2 (nearly 0) to the event-wise overall rejection rate of the reference trigger and

adds (1.0628± 0.0069± 0.0276)× 10−1 to the event-wise Z → ττ signal acceptance rate of

the reference trigger. For both the RoI-wise and event-wise cases, the addition to the overall

rejection rate is greater than 0 with more than 3σ certainty. For the RoI-wise case, the

addition to the signal acceptance rate is more than 7.075% to 68.349%, with 3σ certainty.

For the event-wise case, the addition to the signal acceptance rate is more than 9.593% to

70.698%, with 3σ certainty.



111

Overall RoI rejection
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

S
ig

na
l R

oI
 a

cc
ep

ta
nc

e

0.4

0.5

0.6

0.7

0.8

0.9

1

 Signal RoI-wise Efficiencyτ,τ→Z

L2_TAU20_MEDIUM1

BDT trigger

BDT even trigger

BDT odd trigger

 Signal RoI-wise Efficiencyτ,τ→Z

(a)

Overall event rejection
0.86 0.88 0.9 0.92 0.94 0.96 0.98

S
ig

na
l e

ve
nt

 a
cc

ep
ta

nc
e

0.4

0.5

0.6

0.7

0.8

0.9

1

 Signal Event-wise Efficiencyτ,τ→Z

L2_TAU20_MEDIUM1

BDT trigger

BDT even trigger

BDT odd trigger

 Signal Event-wise Efficiencyτ,τ→Z

(b)

Figure 6.24: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with no error codes for all the variables. (a) shows the RoI-wise rate and (b) shows
the event-wise rate.
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Figure 6.25: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for HADRadius. (a) shows the RoI-wise rate and (b) shows the
event-wise rate.
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Figure 6.26: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for trkAvgDist. (a) shows the RoI-wise rate and (b) shows the
event-wise rate.
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Figure 6.27: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for HADRadius and trkAvgDist. (a) shows the RoI-wise rate and
(b) shows the event-wise rate.
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Figure 6.28: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for etOverPtLeadTrk. (a) shows the RoI-wise rate and (b) shows
the event-wise rate.



116

Overall RoI rejection
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

S
ig

na
l R

oI
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Signal RoI-wise Efficiencyτ,τ→Z

L2_TAU20_MEDIUM1

BDT trigger

BDT even trigger

BDT odd trigger

 Signal RoI-wise Efficiencyτ,τ→Z

(a)

Overall event rejection
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

S
ig

na
l e

ve
nt

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Signal Event-wise Efficiencyτ,τ→Z

L2_TAU20_MEDIUM1

BDT trigger

BDT even trigger

BDT odd trigger

 Signal Event-wise Efficiencyτ,τ→Z

(b)

Figure 6.29: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for HADRadius and etOverPtLeadTrk. (a) shows the RoI-wise rate
and (b) shows the event-wise rate.
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Figure 6.30: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for trkAvgDist and etOverPtLeadTrk. (a) shows the RoI-wise rate
and (b) shows the event-wise rate.
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Figure 6.31: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal, with error codes for stripWidth. (a) shows the RoI-wise rate and (b) shows the
event-wise rate.
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Figure 6.32: The acceptance rate as a function of the overall acceptance rate for Z → ττ
signal. (a) shows the RoI-wise rate and (b) shows the event-wise rate.
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6.10 Energy Dependence

Our next results focus on the energy dependence of the acceptance rates. It is important

to ensure that the algorithm performs well on a wide range of energy levels. In particular,

the higher levels of energy are expected to be more accessible, and hence, more important

in the future. Figures 6.33 to 6.36 show the ET dependent rates for the training samples.

For the representative sample, we can see that, for each level of energy, the BDT trigger’s

acceptance rate is clearly lower or about equal to that of the reference trigger. As the

energy level increases, the difference between the rates becomes greater, but eventually

becomes less clear due to the low number of statistics. However, this is not the case for

dijet background. While the BDT trigger’s rate for this sample eventually crosses and falls

below the reference trigger’s rate, the BDT trigger has a clearly higher acceptance rate for

low energy levels than that for the reference trigger. Also, the difference for the higher

energy levels quickly becomes unclear due again to the lower number of statistics. This

underperformance may be a problem depending on how important the rejection of dijet

background is. By design, we used the representative sample to measure the acceptance

rate limit, and optimized our algorithm to accept only slightly less than the reference trigger

for this sample. One modification to fix this problem may be to add to the optimization

procedure an additional constraint for the acceptance rate of dijet background. For the

signal samples, the dominance of the BDT trigger over the entire spectrum of energy is

very clear. Interestingly, for high levels of energy, the reference trigger RoI-wise rate for

Z ′ → ττ signal slopes down steeply with ET . An analysis of the ET dependence of the

discriminating variables for the reference trigger suggests that this is largely due to the

trigger’s cuts on etOverPtLeadTrk, a variable that is found to have a significant amount of

positive correlatation with ET,med, especially for the single-prong case. This highlights the

unique ability of multivariate triggers to perform well on a wide variety of energy levels,

and to scale appropriately when energy levels increase in the future. This can have a

significant impact for searches for particles such as the supersymmetric Higgs bosons, that

are hypothesized to have a large tau lepton branching fraction, but a greater mass than the
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SM Higgs boson. Also notice that the higher energy levels of the Z ′ as compared to the Z

are due to its much greater mass. As mentioned before, a greater mass results in taus that

are more collimated, and thus easier to identify, as is apparent by the trend of an increasing

acceptance rate of signal with increasing energy.
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Figure 6.33: The acceptance rate as a function of transverse energy for the representative
sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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Figure 6.34: The acceptance rate as a function of transverse energy for the dijet background
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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Figure 6.35: The acceptance rate as a function of transverse energy for the Z → ττ signal
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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Figure 6.36: The acceptance rate as a function of transverse energy for the Z ′ → ττ signal
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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6.11 Pile-up Dependence

We also want to study the pile-up dependence of the efficiencies. Not only do we wish to

have our trigger perform better than the reference trigger for each level of pile-up, but we

also want to ensure that the dependence of our trigger’s efficiency on pile-up is below a

reasonable limit. As in Section 6.8, we measure this dependence by using the linear fits to

each efficiency versus pile-up graph, and comparing the slopes of these fits. Figures 6.37

to 6.40 show the pile-up dependent efficiencies for the training samples, and Table 6.10

summarizes the pile-up dependence difference for each case shown in the figures.

Sample RoI-wise Event-wise

Representative (−3.21± 0.66± 0.64)× 10−4 (−3.64± 0.74± 0.68)× 10−4

Dijet Background (−1.52± 1.23± 0.84)× 10−4 (−0.96± 1.49± 1.00)× 10−4

Z → ττ Signal (7.82± 0.89± 1.02)× 10−4 (5.21± 0.92± 1.04)× 10−4

Z ′ → ττ Signal (−6.74± 0.88± 0.15)× 10−4 (−6.14± 0.83± 0.01)× 10−4

Table 6.10: The difference between the absolute value of the slope of the linear fit for the
BDT trigger with that for the reference trigger, for each of the 8 cases presented in this
section.

From the graphs we see that the BDT trigger, applied to the representative sample,

generally has a slightly greater or equal performance for each value of µ. As for the energy

dependence, the situation is not the same for dijet background. The BDT trigger generally

has a slightly worse performance for each value of µ, when applied to the dijet background

sample. As expected, the pile-up dependent performance of the BDT trigger on the signal

samples is consistently much greater than that for the reference trigger.

As for the amount of pile-up dependence, we see that, for the representative sample,

the slopes for the BDT trigger are less than the corresponding slopes for reference trigger,

with 2σ certainty. For dijet background, the slopes are equivalent within 1σ deviation. For

Z → ττ signal, the BDT trigger’s slopes are greater than the corresponding slopes for the

reference trigger, with 4σ certainty for the RoI-wise case and 2σ certainty for the event-wise

case. The RoI-wise slope for the BDT trigger for this sample is below 8.6250% efficiency

per 50 interactions per bunch crossing, with 3σ certainty. For the reference trigger, this
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number is 3.1550%. For the event-wise rates, this number is 7.6450% for the BDT trigger

and 3.4800% for the reference trigger. For Z ′ → ττ signal, the BDT trigger’s slopes are less

than the corresponding slopes for the reference trigger, with 6σ certainty for the RoI-wise

case and 7σ certainty for the event-wise case. Whether the BDT trigger’s greater pile-up

dependence for the Z → ττ sample is acceptable depends on the specific requirements of

the tau trigger group. An upward sloping dependence for signal, such as the one we have,

may be more favourable than one that is negatively sloped, and a greater measured upward

sloping dependence provides more assurance that the dependence is not really downward

sloping. Also, we found that removing some variables, such as CaloRadius, from the BDT

training program does have the effect of lowering the pile-up dependence, with only a small

effect on the signal acceptance rate.



128

µ
0 5 10 15 20 25 30 35

R
oI

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Representative RoI-wise Efficiency

L2_TAU20_MEDIUM1 (m= 4.04e-04 +/- 4.2e-05)

BDT trigger (m= 8.3e-05 +/- 5.1e-05)

BDT even trigger (m= 7.8e-05 +/- 5.1e-05)

BDT odd trigger (m= 1.4e-05 +/- 5.1e-05)

Representative RoI-wise Efficiency

(a)

µ
0 5 10 15 20 25 30 35

E
ve

nt
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Representative Event-wise Efficiency

L2_TAU20_MEDIUM1 (m= 5.00e-04 +/- 4.7e-05)

BDT trigger (m= 1.36e-04 +/- 5.7e-05)

BDT even trigger (m= 1.30e-04 +/- 5.7e-05)

BDT odd trigger (m= 6.2e-05 +/- 5.7e-05)

Representative Event-wise Efficiency

(b)

Figure 6.37: The acceptance rate as a function of pile-up for the representative sample. (a)
shows the RoI-wise case and (b) shows the event-wise case.



129

µ
0 5 10 15 20 25 30 35

R
oI

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dijet Background RoI-wise Efficiency

L2_TAU20_MEDIUM1 (m= 1.64e-04 +/- 7.4e-05)

BDT trigger (m= 1.2e-05 +/- 9.8e-05)

BDT even trigger (m= -1.9e-05 +/- 9.8e-05)

BDT odd trigger (m= -1.03e-04 +/- 9.8e-05)

Dijet Background RoI-wise Efficiency

(a)

µ
0 5 10 15 20 25 30 35

E
ve

nt
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dijet Background Event-wise Efficiency

L2_TAU20_MEDIUM1 (m= 1.46e-04 +/- 8.9e-05)

BDT trigger (m= -5e-05 +/- 1.2e-04)

BDT even trigger (m= -7e-05 +/- 1.2e-04)

BDT odd trigger (m= -1.7e-04 +/- 1.2e-04)

Dijet Background Event-wise Efficiency

(b)

Figure 6.38: The acceptance rate as a function of transverse energy for the dijet background
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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Figure 6.39: The acceptance rate as a function of transverse energy for the Z → ττ signal
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.



131

µ
0 5 10 15 20 25 30 35 40

R
oI

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 RoI-wise Efficiencyττ →Z' 

L2_TAU20_MEDIUM1 (m= -7.54e-04 +/- 7.9e-05)

BDT trigger (m= -8.0e-05 +/- 3.8e-05)

BDT even trigger (m= -1.74e-04 +/- 4.2e-05)

BDT odd trigger (m= -1.89e-04 +/- 4.1e-05)

 RoI-wise Efficiencyττ →Z' 

(a)

µ
0 5 10 15 20 25 30 35 40

E
ve

nt
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Event-wise Efficiencyττ →Z' 

L2_TAU20_MEDIUM1 (m= -6.15e-04 +/- 7.9e-05)

BDT trigger (m= 8e-07 +/- 2.69e-05)

BDT even trigger (m= -4.1e-05 +/- 3.0e-05)

BDT odd trigger (m= -4.2e-05 +/- 2.8e-05)

 Event-wise Efficiencyττ →Z' 

(b)

Figure 6.40: The acceptance rate as a function of transverse energy for the Z ′ → ττ signal
training sample. (a) shows the RoI-wise case and (b) shows the event-wise case.
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6.12 Other Samples

We now show an overview of the results for a variety of samples that were not used for

training. The goal is to show that our algorithm is robust in finding taus from a wide

variety of decay channels and run conditions, without having to explicitly train it for all

such cases. The results for Period E, overall and dijet background, are shown in Figures

6.41 and 6.42, respectively.
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Figure 6.41: The acceptance rate for the data taking period E. (a) shows the RoI-wise
acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c) shows
the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise acceptance

rate w.r.t. µ.

For the overall period E, the graphs are similar to those shown for the representative

sample in Sections 6.10 and 6.11. The energy dependent rates of the BDT trigger are

generally less than or equal to the corresponding rates of the reference trigger for each level
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Figure 6.42: The acceptance rate for dijet background from the data taking period E. (a)
shows the RoI-wise acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate
w.r.t. µ, (c) shows the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the

event-wise acceptance rate w.r.t. µ.

of energy, and the separation becomes wider with increasing levels of energy, until some point

where the difference is unclear due to the lower amount of statistics. The pile-up dependent

rates of the BDT trigger are slightly less than or equal to the corresponding rates of the

reference trigger, and the slopes of the BDT trigger are less than the corresponding slopes

of the reference trigger, with 1σ certainty. For the dijet background from this period, the

results are similar to those shown for the dijet background from the representative sample

(same sections). For low levels of energy, the energy dependent rates of the BDT trigger

are generally slightly greater than the corresponding rates of the reference trigger. They

eventually cross at some point, with the separation becoming wider with increasing levels
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of energy, until another point where the difference is unclear due to the lower amount of

statistics. The pile-up dependent rates of the BDT trigger are slightly greater than or equal

to the corresponding rates of the reference trigger, and the slopes of the BDT trigger are

equivalent to the corresponding slopes of the reference trigger, within 1σ deviation.

The results for the signal MC samples are shown in Figures 6.43 to 6.48.
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Figure 6.43: The acceptance rate for W → τν signal from the ATLAS dataset tagged as
147812.e1176_s1479_s1470_r3553_r3549_p1130. (a) shows the RoI-wise acceptance rate
w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c) shows the event-wise
acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise acceptance rate w.r.t. µ.

The first two samples consist of W → τν signal events, which represent an important

channel for tau detection at the LHC. Again, the performance of the BDT trigger generally

exceeds the performance of the reference trigger for these types of events. However, the

slopes of the pile-up dependence for the BDT trigger are significantly greater than the
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Figure 6.44: The acceptance rate for W → τν signal from the ATLAS dataset tagged as
147812.e1176_s1486_s1473_r3553_r3549_p1130. (a) shows the RoI-wise acceptance rate
w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c) shows the event-wise
acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise acceptance rate w.r.t. µ.

corresponding slopes for the reference trigger. They have the same order of magnitude as

the corresponding slopes of the pile-up dependence for the Z → ττ signal training sample,

shown in Section 6.11, but the level of certainty is lower due to the lower number of statistics.

Next, we have a Z → ττ signal sample. The results are similar as for the Z → ττ signal

training sample: the BDT trigger’s performance exceeds that of the reference trigger, except

for the pile-up dependence; and by a similar amount as for the training sample. The next two

samples consist of H → ττ events where both taus are hadronic, with the first sample using

a Higgs mass of 125 GeV/c2 and the other using a Higgs mass of 130 GeV/c2. Similar to

the Z ′ boson, the Higgs boson has a higher mass than the Z boson, and hence the resulting
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Figure 6.45: The acceptance rate for Z → ττ signal from the ATLAS dataset tagged as
147818.e1176_s1486_s1473_r3553_r3549_p1130. (a) shows the RoI-wise acceptance rate
w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c) shows the event-wise
acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise acceptance rate w.r.t. µ.

taus tend to be more energetic and easier to identify. We can see that the performance

results for both Higgs boson samples are similar to those for the Z ′ → ττ training sample:

the BDT trigger’s performance exceeds that of the reference trigger, except for the amount

of pile-up dependence where the two triggers are equivalent for all but one case (H(125)

event-wise) where the BDT trigger has a smaller slope with 2σ certainty. The next sample

is a Z ′ → ττ sample with 1250 GeV/c2 as the mass of the Z ′ boson. Again, the performance

results for this sample are similar to those for the Z ′ → ττ training sample.

Lastly, Figures 6.49 to 6.50 show the results for collision data signal taken from the

representative sample and the data taking period E, respectively.
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Figure 6.46: The acceptance rate for gg → H(125) → τ(h)τ(h) signal from the ATLAS
dataset tagged as 161577.e1217_s1469_s1470_r3542_r3549_p1130. (a) shows the RoI-
wise acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c)
shows the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise accep-

tance rate w.r.t. µ.

For both cases, the BDT trigger generally outperforms the reference trigger, except for

the amount of pile-up dependence, where the performance is equivalent, within 1σ deviation,

for all but one case (representative event-wise), where the BDT trigger has a greater slope

with 1σ certainty.
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Figure 6.47: The acceptance rate for gg → H(130) → τ(h)τ(h) signal from the ATLAS
dataset tagged as 161578.e1217_s1469_s1470_r3542_r3549_p1130. (a) shows the RoI-
wise acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c)
shows the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise accep-

tance rate w.r.t. µ.
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Figure 6.48: The acceptance rate for Z ′(1250)→ ττ signal from the ATLAS dataset tagged
as 170205.e1176_s1479_s1470_r3553_r3549_p1130. (a) shows the RoI-wise acceptance
rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ, (c) shows the event-wise
acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise acceptance rate w.r.t. µ.

Sample RoI-wise Event-wise

Period E (−3.83± 1.04± 1.08)× 10−4 (−4.10± 1.17± 1.19)× 10−4

Period E Dijet Bkg (−2.7± 1.8± 2.0)× 10−4 (−2.6± 2.3± 2.5)× 10−4

W → τν Sig 1 (5.9± 1.8± 0.4)× 10−4 (6.3± 1.8± 0.3)× 10−4

W → τν Sig 2 (6.7± 3.7± 0.3)× 10−4 (6.6± 3.7± 0.4)× 10−4

Z → ττ Sig 2 (8.7± 2.1± 1.2)× 10−4 (7.0± 2.1± 0.9)× 10−4

gg → H(125) Sig (−1.28± 0.82± 0.69)× 10−4 (−2.86± 1.01± 0.25)× 10−4

gg → H(130) Sig (0.84± 1.01± 0.74)× 10−4 (−0.24± 0.97± 0.40)× 10−4

Z ′(1250)→ ττ Sig (−6.88± 0.86± 0.56)× 10−4 (−5.37± 0.83± 0.03)× 10−4

Representative Sig (3.7± 3.0± 1.3)× 10−4 (4.4± 3.1± 0.9)× 10−4

Period E Sig (4.2± 5.0± 0.0)× 10−4 (3.5± 5.1± 0.1)× 10−4

Table 6.11: The difference between the absolute value of the slope of the linear fit for the
BDT trigger with that for the reference trigger, for each of the 20 cases presented in this
section.
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Figure 6.49: The acceptance rate for signal from the representative sample. (a) shows the
RoI-wise acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ,
(c) shows the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise

acceptance rate w.r.t. µ.



141

 [GeV]T,medE
0 20 40 60 80 100 120

R
oI

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period E Signal RoI-wise Efficiency

L2_TAU20_MEDIUM1

BDT trigger

BDT even trigger

BDT odd trigger

Period E Signal RoI-wise Efficiency

(a)

µ
0 5 10 15 20 25 30 35 40

R
oI

 a
cc

ep
ta

nc
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period E Signal RoI-wise Efficiency

L2_TAU20_MEDIUM1 (m= 1.51e-03 +/- 3.4e-04)

BDT trigger (m= 1.93e-03 +/- 3.7e-04)

BDT even trigger (m= 1.87e-03 +/- 3.7e-04)

BDT odd trigger (m= 1.87e-03 +/- 3.7e-04)

Period E Signal RoI-wise Efficiency

(b)

 [GeV]T,med EΣ
0 20 40 60 80 100 120 140 160 180 200 220

E
ve

nt
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period E Signal Event-wise EfficiencyPeriod E Signal Event-wise Efficiency

(c)

µ
0 5 10 15 20 25 30 35 40

E
ve

nt
 a

cc
ep

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period E Signal Event-wise Efficiency

L2_TAU20_MEDIUM1 (m= 1.52e-03 +/- 3.4e-04)

BDT trigger (m= 1.87e-03 +/- 3.8e-04)

BDT even trigger (m= 1.82e-03 +/- 3.8e-04)

BDT odd trigger (m= 1.81e-03 +/- 3.8e-04)

Period E Signal Event-wise Efficiency

(d)

Figure 6.50: The acceptance rate for signal from the data taking period E. (a) shows the
RoI-wise acceptance rate w.r.t. L2 ET , (b) shows the RoI-wise acceptance rate w.r.t. µ,
(c) shows the event-wise acceptance rate w.r.t.

∑
L2 ET , and (d) shows the event-wise

acceptance rate w.r.t. µ.
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6.13 Summary of Overall Rates

Here we list the overall acceptance rates (BDT trigger versus reference trigger) for each

sample that was shown in the previous sections. Table 6.12 contains the RoI-wise rates and

Table 6.13 contains the event-wise rates.

Sample L2 TAU20 MEDIUM1 BDT Trigger

Representative (7.791± 0.032)× 10−2 (7.47239± 0.03996± 0.00047)× 10−2

Dijet Bkg (8.947± 0.058)× 10−2 (9.750± 0.079± 0.057)× 10−2

Period E (7.827± 0.045)× 10−2 (7.564± 0.044± 0.051)× 10−2

Period E Dijet Bkg (8.986± 0.079)× 10−2 (9.714± 0.082± 0.094)× 10−2

Z → ττ Sig (6.8349± 0.0049)× 10−1 (7.6591± 0.0047± 0.0321)× 10−1

Z ′ → ττ Sig (8.5623± 0.0062)× 10−1 (9.8498± 0.0026± 0.0062)× 10−1

W → τν Sig 1 (6.367± 0.010)× 10−1 (6.9995± 0.0097± 0.0301)× 10−1

W → τν Sig 2 (6.335± 0.021)× 10−1 (6.973± 0.020± 0.043)× 10−1

Z → ττ Sig 2 (6.809± 0.012)× 10−1 (7.636± 0.011± 0.030)× 10−1

gg → H(125) Sig (7.8623± 0.0063)× 10−1 (8.7650± 0.0051± 0.0280)× 10−1

gg → H(130) Sig (7.9377± 0.0062)× 10−1 (8.8418± 0.0049± 0.0246)× 10−1

Z ′(1250)→ ττ Sig (8.4433± 0.0064)× 10−1 (9.8622± 0.0021± 0.0035)× 10−1

Representative Sig (1.621± 0.015)× 10−1 (1.9634± 0.0197± 0.0064)× 10−1

Period E Sig (1.623± 0.020)× 10−1 (2.00491± 0.02193± 0.00060)× 10−1

Table 6.12: The RoI-wise acceptance rates for all the tested samples. The Representative,
Dijet Background, Z → ττ Signal, Z ′ → ττ Signal samples were used for training the BDT
trigger. Bkg stands for Background, and Sig stands for Signal.
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Sample L2 TAU20 MEDIUM1 BDT Trigger

Representative (8.673± 0.035)× 10−2 (8.3661± 0.0442± 0.0017)× 10−2

Dijet Bkg (1.0770± 0.0070)× 10−1 (1.2100± 0.0097± 0.0077)× 10−1

Period E (8.709± 0.050)× 10−2 (8.471± 0.049± 0.055)× 10−2

Period E Dijet Bkg (1.0799± 0.0095)× 10−1 (1.2042± 0.0100± 0.0121)× 10−1

Z → ττ Sig (7.0698± 0.0050)× 10−1 (8.1326± 0.0047± 0.0276)× 10−1

Z ′ → ττ Sig (8.9065± 0.0062)× 10−1 (9.9523± 0.0017± 0.0026)× 10−1

W → τν Sig 1 (6.369± 0.010)× 10−1 (7.0550± 0.0096± 0.0317)× 10−1

W → τν Sig 2 (6.337± 0.021)× 10−1 (7.026± 0.020± 0.046)× 10−1

Z → ττ Sig 2 (7.042± 0.012)× 10−1 (8.113± 0.011± 0.026)× 10−1

gg → H(125) Sig (8.3380± 0.0065)× 10−1 (9.3428± 0.0043± 0.0197)× 10−1

gg → H(130) Sig (8.4181± 0.0063)× 10−1 (9.3947± 0.0041± 0.0146)× 10−1

Z ′(1250)→ ττ Sig (8.8165± 0.0064)× 10−1 (9.9619± 0.0012± 0.0015)× 10−1

Representative Sig (1.626± 0.016)× 10−1 (2.0193± 0.0203± 0.0053)× 10−1

Period E Sig (1.627± 0.020)× 10−1 (2.0665± 0.0222± 0.0021)× 10−1

Table 6.13: The Event-wise acceptance rates for all the tested samples. The Representative,
Dijet Background, Z → ττ Signal, Z ′ → ττ Signal samples were used for training the BDT
trigger. Bkg stands for Background, and Sig stands for Signal.



Chapter 7

Conclusion

Studying ATLAS events with taus will contribute greatly to both the understanding of SM

processes as well as the discovery potential of the ATLAS detector. In particular, both

the SM and supersymmetric Higgs bosons are expected to have large branching ratios for

tau decays. [Section 4.1] The ATLAS tau trigger has performed remarkably well in 2011

[Section 4.4] and a performance report on 2012 is likewise expected to be positive [Section

4.6]. Increasing luminosities required adjustments to account for the more challenging pile-

up conditions. Multivariate techniques for tau selection, first used at the offline level, were

largely successful at discriminating signal from background. This led to the adoption of

multivariate techniques at the EF, namely BDTs and LLH. We presented a BDT-based

single tau selection algorithm for use at the L2 tau trigger. [Chapter 5]

The results indicate that our algorithm outperforms the current algorithm on a wide

variety of measures, for both the event-wise and the RoI-wise cases. With 3σ certainty, the

calorimeter-stage acceptance rate of our trigger (the BDT trigger) for the representative

sample (2012 data taking periods B-D) is less than that of the currently implemented trigger

(the reference trigger). More precisely, it is 29.369%± 0.057% for the reference trigger, and

28.8136%± 0.0603%± 0.0064% for the BDT trigger. The pile-up dependence (slope) of the

calorimeter stage of the BDT trigger for the representative sample, is equivalent to that of

the reference trigger, within 2σ deviation. Furthermore, both the RoI-wise and event-wise
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calorimeter-stage slopes for the reference trigger and the BDT trigger are less than 3.32 %

efficiency per 50 interactions per bunch crossing, with 3σ certainty. [Section 6.8] For the

overall algorithm (calorimeter stage followed by tracking stage), the reference trigger has an

RoI-wise acceptance rate of (7.791 ± 0.032)% for the representative sample and (68.349 ±

0.049)% for Z → ττ signal. In comparison, the BDT trigger has an RoI-wise acceptance rate

of (7.47239±0.03996±0.00047)% for the representative sample and (76.591±0.047±0.321)%

for Z → ττ signal. Furthermore, the reference trigger has an event-wise acceptance rate of

(8.673 ± 0.035)% for the representative sample and (70.698 ± 0.050)% for Z → ττ signal,

while the BDT trigger has an event-wise acceptance rate of (8.3661 ± 0.0442 ± 0.0017)%

for the representative sample and (81.326 ± 0.047 ± 0.276)% for Z → ττ signal. Using

standard error propagation, this means that the BDT trigger adds (0.319±0.051±0.000)%

to the representative RoI-wise rejection rate of the reference trigger and adds (8.242 ±

0.068 ± 0.321)% to the Z → ττ signal RoI-wise acceptance rate of the reference trigger.

Futhermore, the BDT trigger adds (0.307±0.056±0.002)% to the representative event-wise

rejection rate of the reference trigger and adds (10.628 ± 0.069 ± 0.276)% to the Z → ττ

signal event-wise acceptance rate of the reference trigger. By design, the additions to the

rejection rates are nearly zero, and are greater than 0 with 3σ certainty. The addition to

the RoI-wise Z → ττ signal acceptance rate is greater than 7.075% with 3σ certainty, and

the addition to the event-wise Z → ττ signal acceptance rate is greater than 9.593% with

3σ certainty. The BDT trigger has also been shown to outperform the reference trigger for

each of the principal error code classes that each correspond to a separately trained BDT

classifier. [Section 6.9] As for energy dependence, the BDT trigger generally has a greater

or equal rejection rate for the representative sample than that for the reference trigger, for

each level of energy, with the difference widening with increasing levels of energy. The BDT

trigger also has a greater acceptance rate for Z → ττ signal than that for the reference

trigger, for each level of energy, with the difference also widening with increasing levels of

energy. In particular, the reference trigger’s energy dependent RoI-wise acceptance rate for

all the tested signal samples slopes down steeply for high levels of energy. This effect is not
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so significant for SM signals such as Z → ττ , but becomes more important when searching

for more massive particles such as the supersymmetric Higgs bosons. The BDT trigger’s

rate continues to slope upwards for the highest levels of energy, and is therefore much more

effective at contributing towards the discovery of these types of high mass resonances that

will likely be searched for after the focus shifts away from the SM Higgs boson. [Section

6.10] As for pile-up dependence, the BDT trigger generally has a greater or equal rejection

rate for the representative sample than that for the reference trigger, for each value of µ.

The BDT trigger also has a greater acceptance rate for Z → ττ signal than that for the

reference trigger, for each value of µ. In terms of the amount of pile-up dependence, the

(absolute) slope of the BDT trigger for the representative sample is less than that for the

reference trigger, with 2σ certainty. For Z ′ → ττ signal (high mass resonance) the slope of

the BDT trigger is less than that for the reference reference trigger, with 6σ certainty for

the RoI-wise case and 7σ certainty for the event-wise case. However, for Z → ττ signal,

the BDT trigger’s slope is greater than the reference trigger’s slope, with 4σ certainty

for the RoI-wise case and 2σ certainty for the event-wise case. Depending on the specific

requirements for the tau trigger, some variables may need to be removed from the BDT

training program in order to reduce this dependence. However, the underperformance in

pile-up dependence is still within reasonable limits, and the dependence actually slopes

upwards, which means that the efficiencies are not expected to drop with the expected

higher luminosities in the future. [Section 6.11] In order to demonstrate the robustness of

our algorithm with respect to changing run conditions, we measured both the energy and

pile-up dependent rates for the 2012 data taking period E (overall and dijet background).

We also measured the robustness of our algorithm with respect to different channels of

tau production: W → τν, H(125) → ττ , H(130) → ττ , and Z ′(1250) → ττ . Finally, we

measured the performance of our algorithm on signal taken from real data. In all cases,

our algorithm generally outperforms the current algorithm with respect to both energy

dependence and pile-up dependence. [Section 6.12]

The main systematic uncertainty included in the study was the dependence of our train-
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ing procedure on the training sample. We split our training sample into two independent

(even and odd) samples, and obtained the results for training on both cases: just even and

just odd. A more rigourous study should include more sources of systematic uncertainty for

the training procedure. Some suggestions include: the dependence on the cross sections for

weighting the training samples, the dependence on the physics channels used for the train-

ing samples, the dependence on the parameters for the MC simulation of a given physics

channel. Furthermore, one should also study the systematic uncertainty of the testing pro-

cedure. In a sense, the dependence with respect to changing run conditions and different

signal channels measures this. However, a more detailed and quantitative analysis of these

effects should be implemented in the future.

We believe that we have shown strong evidence for implementing our algorithm to the

tau trigger. Not only does the BDT trigger outperform the current trigger for SM signal

channels, but it also dominates the current trigger for yet undiscovered high mass resonances

(e.g. supersymmetric Higgs bosons) that will be more accessible in the upcoming (higher

energy) running period. We also believe that a more detailed study, including peer review,

is needed before the implementation can occur. It is possible that if the current cut-based

trigger is reoptimized for the samples we used for training, then its performance may be

much more comparable to ours. It is also possible that while our trigger results in a more

efficient L2 stage, the overall L2+EF stage of the trigger is worse with our trigger at L2;

hence, a study of the effect our trigger has on the EF is necessary. Moreover, the possibility

of a one-step L2 trigger in the future demands a performance analysis of our algorithm

when there is no restriction to a calorimeter stage. It is expected that such a study will be

completed before the next running period, and if implemented, we hope that our algorithm

can significantly contribute towards the discovery of new physics.



Appendix A

Quantum Field Theory

A.1 State Space

In quantum mechanics, the state space for a particle is the projective Hilbert space PH of

a separable (complex) Hilbert space H, commonly denoted as simply H. The state space

for a system of k particles with state spaces H1, . . . ,Hk, is a subspace of (the metric space

completion of) the algebraic tensor product H1⊗· · ·⊗Hk. If {ejn : n ∈ Z+} is an orthonormal

basis for Hj , then {e1
n1
⊗· · ·⊗eknk : n1, . . . , nk ∈ Z+} is an orthonormal basis for H1⊗· · ·⊗Hk.

If Sk is the permutation group of k letters, σ ∈ Sk, and u1 ⊗ · · · ⊗ uk ∈ H1 ⊗ · · · ⊗Hk, we

define

σ(u1 ⊗ · · · ⊗ uk) = uσ(1) ⊗ · · · ⊗ uσ(k) . (A.1)

If the particles are each bosons of the same species with state space H, then the subspace

is

S
kH := {v ∈ ⊗kH : σ(v) = v ∀σ ∈ Sk} . (A.2)

For the case of identical fermions, the subspace is

∧k H := {v ∈ ⊗kH : σ(v) = sgn(σ)v ∀σ ∈ Sk} . (A.3)

Let Ps : ⊗kH→ S
kH such that

Ps(u1 ⊗ · · · ⊗ uk) =
1

k!

∑
σ∈Sk

uσ(1) ⊗ · · · ⊗ uσ(k) . (A.4)
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For any sequence {nj} ∈ N with
∑∞

j=1 nj = k, let

|n1, n2, . . .〉 =

√
n1!n2! · · ·

k!
Ps((⊗n1e1)⊗ (⊗n2e2)⊗ · · · ) , (A.5)

where {ej}j∈Z+ is an orthonormal basis for H. It can be shown that

{|n1, n2, . . .〉 :
∑

nj = k} (A.6)

is an orthonormal basis for S
kH [7]. For fermions, let Pa : ⊗kH→ ∧kH such that

Pa(u1 ⊗ · · · ⊗ uk) =
1

k!

∑
σ∈Sk

sgn(σ)uσ(1) ⊗ · · · ⊗ uσ(k) . (A.7)

For any sequence i1, . . . , ik ∈ Z+ with i1 < · · · < ik, let

ei1 ∧ · · · ∧ eik = Pa(ei1 ⊗ · · · ⊗ eik) , (A.8)

where {ej}j∈Z+ is an orthonormal basis for H. It can be shown that

{ei1 ∧ · · · ∧ eik : i1, . . . , ik ∈ Z+ and i1 < · · · < ik} (A.9)

is an orthogonal basis for ∧kH [7].

In order to form a state space that can accomodate any number of identical bosons, we

combine all the spaces S
kH to form the Boson Fock Space over H, defined as the orthogonal

direct sum

Fs(H) =

∞⊕
k=0

S
kH , (A.10)

where S
0H := C. The set

{|n1, n2, . . .〉 : nj ∈ N and
∑

nj <∞} , (A.11)

with |0, 0, . . .〉 := 1 ∈ S
0H, is an orthonormal basis for Fs(H). For any sequence {nj} ∈ N

with
∑
nj <∞, the basis vector |n1, n2, . . .〉 is the state for the set of all bosons of a given

species, where, for each j ∈ Z+, there are nj particles in the eigenstate ej . The annihilation

and creation operators on Fs(H), Aj and A†j , respectively, are defined as:

Aj |n1, . . . , nj , . . .〉 =
√
nj |n1, . . . , nj − 1, . . .〉 , (A.12)

A†j |n1, . . . , nj , . . .〉 =
√
nj + 1 |n1, . . . , nj + 1, . . .〉 . (A.13)
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Similarly, for fermions, the Fermion Fock Space is defined as

Fa(H) =
∞⊕
k=0

∧kH , (A.14)

where ∧0H = C. For any sequence {nj} ∈ {0, 1} and i1 < · · · < ik the indices i for which

ni = 1, let

|n1, n2, . . .〉 :
√
k!ei1 ∧ · · · ∧ eik . (A.15)

Then it follows that

{|n1, n2, . . .〉 : nj ∈ {0, 1} and
∑

nj <∞} , (A.16)

with |0, 0, . . .〉 := 1 ∈ ∧0H, is an orthonormal basis for Fa(H) [7]. For any sequence

{nj} ∈ {0, 1} with
∑
nj < ∞, the basis vector |n1, n2, . . .〉 is the state for the set of all

fermions of a given species, where, for each j ∈ Z+, there are nj particles in the eigenstate

ej . The restriction to {0, 1} is a precise statement of the Pauli Exclusion Principle. The

annihilation and creation operators on Fa(H), Aj and A†j , respectively, are defined as:

Aj |n1, . . . , nj , . . .〉 =


(−1)m

√
nj |n1, . . . , nj − 1, . . .〉 if nj = 1

0 if nj = 0

, (A.17)

A†j |n1, . . . , nj , . . .〉 =


(−1)m

√
nj |n1, . . . , nj + 1, . . .〉 if nj = 0

0 if nj = 1

, (A.18)

where ni = 1 for m values of i with i < j.

More generally, we want a state space that can accomodate any number of particles,

where each particle is a member of one of k different species. If species i has single particle

state space Hi, let Fi = Fs(Hi) if the species is bosonic and let Fi = Fa(Hi) otherwise.

Then the state space we want is the Fock space

F := F1 ⊗ · · · ⊗ Fk . (A.19)

Now, let Ni = N if species i is bosonic, and let Ni = {0, 1} otherwise. If {|ni1, ni2, . . .〉 : nij ∈
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Ni,
∑∞

j=1 n
i
j <∞} is an orthonormal basis for Fi, then

{|n1
1, n

1
2, . . .〉 ⊗ · · · ⊗ |nk1, nk2, . . .〉 : n1

j ∈ N1, . . . , n
k
j ∈ Nk, and

∞∑
j=1

n1
j , . . . ,

∞∑
j=1

nkj <∞}

(A.20)

is an orthonormal basis for F.

A.2 Harmonic Oscillator Correspondence

The Hamiltonian for a system of K one-dimensional quantum harmonic oscillators of equal

mass is

H =
K∑
j=1

1

2m
P 2
j +

1

2
mω2

jX
2
j , (A.21)

where m is the mass of each oscillator, and, Pj , Xj , and wj is the jth oscillator’s momentum

operator, position operator, and angular frequency, respectively. This is just the sum over

the K Hamiltonians {Hj : j ∈ Z+K} for each one-dimensional oscillator indexed by j. For

each j ∈ Z+K , if we let

Aj =

√
mω

2

(
Xj +

i

mω
Pj

)
(A.22)

and

A†j =

√
mω

2

(
Xj −

i

mω
Pj

)
, (A.23)

then the eigenfunctions of Hj are given by:

ψj0(xj) =
(mωj

π

)1/4
e−

m
2
ωjx

2
j , (A.24)

ψjn(xj) =
(A†j)

n

√
n!

ψ0(xj) , (A.25)

and the eigenfunctions of H are simply given by the products:

ψ00...0(x) =
(m
π

)K/4 K∏
j=1

ω
1/4
j e−

m
2

∑K
j=1 ωjx

2
j , (A.26)

ψn1...nK (x) =
(A†1)n1 . . . (A†K)nK√

n1! . . . nK !
ψ00...0(x) . (A.27)
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Now, for each j ∈ Z+K ,

Ajψn1...nK =
√
njψn1...nj−1...nK for n ≥ 1 , (A.28)

A†jψn1...nK =
√
nj + 1ψn1...nj+1...nK for n ≥ 0 , (A.29)

and clearly, the correspondence

ψn1...nK 7→ |n1, . . . , nK〉 (A.30)

defines a unitary map from L2(RK) to Fs(CK), with each Aj , A
†
j corresponding to the an-

nihilation and creation operations on Fs(CK). In the limit that K →∞, Fs(CK) becomes

Fs(H) for a separable infinite-dimensional Hilbert space H and Aj , A
†
j become the annihi-

lation and creation operations on Fs(H). By (A.22) and (A.23), the position operator for

each oscillator can be expressed in terms of Aj and A†j as follows:

Xj =
1√

2mωj

(
Aj +A†j

)
. (A.31)

By scaling our units for length by 1√
m

, we can simply write this as

Xj =
1√
2ωj

(
Aj +A†j

)
. (A.32)

Moreover, the Hamiltonian for each oscillator is

Hj = ωj

(
A†jAj +

1

2

)
. (A.33)

But,
∑∞

j=1 ωj may be divergent, so to fix this, we subtract ωj/2 from each Hj . This can be

done since adding a constant to the energy of a system does not affect its dynamics. We

thus obtain the renormalized Hamiltonians, given by

Hj = ωjA
†
jAj (A.34)

for each j ∈ Z+K .
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A.3 Free Neutral Scalar Field

We will now construct the free quantum neutral scalar field for particles of mass m > 0.

The relevant free field equation is the Klein-Gordon Equation:

(
∂2
t −∇2 +m2

)
φ(t,x) = 0 , (A.35)

where φ is a classical real-valued field, x is initially restricted to the cube B := [−1
2L,

1
2L]3 ⊂

R3, t ∈ R, and the equation is initially subject to real boundary conditions that make −∇2

positive and self-adjoint. The boundedness of B guarantees that −∇2 has only a discrete

spectrum (as an operator on L2(B)), so that there is an orthonormal eigenbasis of real -

valued functions {fj}∞j=1 for −∇2 with real eigenvalues {λ2
j}∞j=1. Thus, we can expand φ

as

φ(t,x) =
∞∑
j=1

qj(t)fj(x) , (A.36)

where each qj(t) is a real-valued function of t. By applying the Klein-Gordon equation to

the expansion, we see that

q′′j + ω2
j qj = 0 (A.37)

for each j ∈ Z+, where ω2
j = λ2

j + m2. But this is the equation for a classical harmonic

oscillator with displacement qj and angular frequency ωj . We turn the classical field into

a quantum field by replacing each classical displacement qj with the displacement operator

for the quantum harmonic oscillator with angular frequency ωj . By (A.32), qj(t) is replaced

with 1√
2ωj

(Aj(t) + A†j(t)), where (viewed in the Heisenberg picture) Aj(t) = eitHAje
−itH

and A†j(t) = eitHA†je
−itH , for H =

∑
j∈Λ ωjA

†
jAj (by (A.34)). It can be shown that Aj(t) =

e−iωjtAj and A†j(t) = eiωjtA†j [7]. We regard each Aj and A†j as operators on Fs(H), for a

separable infinite-dimensional Hilbert space H, as per the correspondence shown in Section

A.2. The field is now

φ(x) =
∞∑
j=1

1√
2ωj

fj(x)
(
Aj(t) +A†j(t)

)
. (A.38)

In this form, for each point x in spacetime, the value of the field at x is an operator on

Fs(H). But when we apply this operator to some vector in Fs(H), the resulting vector may
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have a divergent norm, so to fix this we instead regard φ as an operator-valued distribution

that maps each real-valued Schwartz class function f on R and g on B to the operator∫
R

∫
B

f(t)g(x)φ(t,x)d3xdt . (A.39)

Now, let us simply require −∇2 to be Hermitian with an orthonormal eigenbasis of

complex -valued functions {gj}∞j=1. As shown in [7], if we replace the real-valued functions

{fj}∞j=1 in (A.38) with appropriately chosen expansions of {gj}∞j=1, we get

φ(x) =
∞∑
j=1

1√
2ωj

(
gj(x)Aj(t) + gj(x)∗A†j(t)

)
, (A.40)

where each Aj and A†j is now defined in terms of a new basis of H. In particular, for

Λ :=
[

2π
L Z
]3 ⊂ R3, let {gj}∞j=1 = {gp : gp(x) = L−3/2eipx,p ∈ Λ}, so that the eigenvalues

are {λ2
p : λ2

p = p2,p ∈ Λ}, and

φ(x) =
∑
p∈Λ

1√
2ωpL3

(
eipxAp(t) + e−ipxA†p(t)

)
(A.41)

=
∑
p∈Λ

1√
2ωpL3

(
eipxe−iωptAp + e−ipxeiωptA†p

)
(A.42)

=
∑
p∈Λ

1√
2ωpL3

(
eipxAp + e−ipxA†p

)
. (A.43)

Interestingly, Lorentz invariance is a natural consequence of the theory. Now, let ∆V =

(2π/L)3. Then

φ(x) =
∑
p∈Λ

1√
2ωp

L3/2
(
eipxAp + e−ipxA†p

) ∆V

(2π)3
. (A.44)

As L→∞, ∆V → 0, and the sum becomes the integral

φ(x) =

∫
R3

1√
2ωp

(
eipxa(p) + e−ipxa(p)†

) d3p

(2π)3
, (A.45)

where a(p) is the (natural) distribution corresponding to L3/2Ap and a(p)† is the distribu-

tion corresponding to L3/2A†p.

The generalization to charged scalar fields, spinor fields, and vector fields is straightfor-

ward and follows the same general principles. [7]
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A.4 The Scattering Operator

Definition 1. For a system with Hamiltonian H, the scattering operator is given by

S = lim
t0→−∞
t1→+∞

eiH0t1e−iH(t1−t0)e−iH0t0 .[7] (A.46)

Theorem 1. For a system with Hamiltonian H and scattering operator S,

S = I +

∞∑
n=1

1

inn!

∫ ∞
−∞

. . .

∫ ∞
−∞

T[HI(τ1) . . . HI(τn)]dτ1 . . . dτn , (A.47)

where

T[HI(τ1) . . . HI(τn)] := HI(τi1) . . . HI(τin) for τi1 > τi2 > · · · > τin . (A.48)

Proof. Let U(t) = e−itH , U0(t) = e−itH0 , V (t) = U0(−t)U(t), HI(t) = U0(−t)HIU0(t).

Then,

V ′(t) = iU0(−t)H0U(t)− iU0(−t)HU(t)

=
1

i
U0(−t)HIU(t)

=
1

i
HI(t)V (t) .

Now, let V (t, t0) = U0(−t)U(t− t0)U0(t0) = V (t)V (t0)−1. Then,

d

dt
V (t, t0) =

1

i
HI(t)V (t)V (t0)−1

=
1

i
HI(t)V (t, t0) .

The above differential equation is equivalent to the integral equation

V (t, t0) = V (t0, t0) +

∫ t

t0

d

dτ1
V (τ1, t0)dτ1

= I +
1

i

∫ t

t0

HI(τ1)V (τ1, t0)dτ1 .
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By iterating the same equation,

V (t, t0) = I +
1

i

∫ t

t0

HI(τ1)

(
I +

1

i

∫ τ1

t0

HI(τ2)V (τ2, t0)dτ2

)
dτ1

= I +
1

i

∫ t

t0

HI(τ1)dτ1 +
1

i2

∫ t

t0

∫ τ1

t0

HI(τ1)HI(τ2)V (τ2, t0)dτ2dτ1

...

= I +
∞∑
1

1

in

∫ t

t0

∫ τ1

t0

. . .

∫ τn−1

t0

HI(τ1) . . . HI(τn)dτn . . . dτ1

= I +

∞∑
1

1

inn!

∫ t

t0

∫ t

t0

. . .

∫ t

t0

T[HI(τ1) . . . HI(τn)]dτn . . . dτ1 .

But,

S = lim
t0→−∞
t1→+∞

V (t1, t0) ,

so we have our result. [7]

A.5 Feynman Diagrams

The terms in the perturbative expansion of the scattering operator are typically calculated

using Feynman diagrams. For example, Figure A.1 is the leading-order Feynman diagram

for the electromagnetic interaction between an electron and a muon.

γ

e

µ

e

µ

Figure A.1: A Feynman diagram showing an electron interacting with a muon via the
photon.

Each line in the diagram represents a particle and each vertex represents an interaction

between the particles corresponding to the lines touching the vertex. Time flows to the right

so that the incoming state is an electron with momentum p1 and a muon with momentum

p2, and the outgoing state is an electron with momentum p′1 and a muon with momentum

p′2. Let q denote the momentum of the photon that mediates the interaction. The incom-

ing electron external line contributes a spinor u1, the incoming muon line contributes a
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spinor u2, the outgoing electron line contributes a spinor ū1, and the outgoing muon line

contributes a spinor ū2. Each vertex contributes a factor igeγ
0γµ that goes in between the

corresponding spinors. The electron-photon vertex additionally contributes its momentum

conserving factor (2π)4δ4(p1−p′1 +q), and the muon-photon vertex additionally contributes

its momentum conserving factor (2π)4δ4(p2 − p′2 − q). The internal photon line contributes

a propagator
−igµν
q2

that goes in between the electron and muon factors, and additionally,

contributes an integration factor d4q
(2π)4

. Putting this all together, we get∫ [
u1igeγ

0γµū1

] [−igµν
q2

] [
u2igeγ

0γν ū2

]
(2π)4δ4(p1 − p′1 + q)(2π)4δ4(p2 − p′2 − q)

d4q

(2π)4

= ig2
e(2π)4

∫ [
u1γ

0γµū1

] [gµν
q2

]
[u2γ

0γν ū2]δ4(p1 − p′1 + q)δ4(p2 − p′2 − q)d4q

= (2π)4δ4(p2 − p′2 + p1 − p′1)

[
ig2
e

(p′1 − p1)2

] [
u1γ

0γµū1

]
[u2γ0γµū2] . (A.49)

Finally, we remove the overall conservation of momentum factor (2π)4δ4(p2 − p′2 + p1 − p′1)

and replace it with i to obtain the leading-order probability amplitude:

M = − g2
e

(p′1 − p1)2

[
u1γ

0γµū1

]
[u2γ0γµū2] . (A.50)

The internal lines of a Feynman diagram are commonly thought of as virtual particles.

While the external lines represent particles that are highly localized in four-momentum,

the internal lines are quite the opposite. As particles, they are likely to violate energy-

momentum conservation. However, the invariant mass of their decay products may follow

a distribution that is peaked at their rest mass; a key characteristic of particles. [6][7]

A.6 Left and Right Particles

If up is a bispinor in the Dirac basis representing a spin-1/2 particle in a definite four-

momentum state p, then it can be shown that

γ5up =

 p·σ
E+m 0

0 p·σ
E−m

up , (A.51)
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where σi is the ith Pauli Matrix for i = 1, 2, 3. If the particle is massless, the above equation

reduces to

γ5up = (p̂ ·Σ)up , (A.52)

where

Σ =

σ 0

0 σ

 .[6] (A.53)

Note that if the particle is left handed, p̂ · σup = −up, and if the particle is right handed,

p̂ · σup = +up. Thus, if we let L = 1−γ5
2 and R = 1+γ5

2 , we get (for a massless particle)

Lup =


up if up is left handed

0 if up is right handed

(A.54)

and

Rup =


up if up is right handed

0 if up is left handed .

(A.55)

Similarly, for a spinor ūp in the Dirac basis representing a spin-1/2 antiparticle in a definite

four-momentum state p,

γ5ūp = −

 p·σ
E+m 0

0 p·σ
E−m

 ūp , (A.56)

where only the bottom two components of ūp are shown. In the massless case, this reduces

to

γ5ūp = − (p̂ ·Σ) ūp . (A.57)

If we let L̄ = 1+γ5

2 and R̄ = 1−γ5
2 , we get (for a massless antiparticle)

L̄ūp =


ūp if ūp is left handed

0 if ūp is right handed

(A.58)

and

R̄ūp =


ūp if ūp is right handed

0 if ūp is left handed .

(A.59)
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These results show a few interesting facts. For a massless particle, it must be left handed

in order to participate in weak interactions, and for a massless antiparticle, it must be right

handed in order to participate in weak interactions. Thus, according to this model, even

if right handed neutrinos existed, they would not interact, so we can assume that they do

not exist. Note that for a massive particle u, Lu is not a spinor representing a left handed

particle (Similarly for R,L̄,R̄). However, L+R = I, so we can decompose u as

u = Lu+Ru , (A.60)

and call uL := Lu the left part of u and uR := Ru the right part of u. Since

L(Lu) = Lu and L(Ru) = 0 , (A.61)

we can view uL and uR as distinct particles and say that uL participates in weak interactions

while uR does not. Similarly, for an antiparticle ū, call ūL̄ := L̄ū the left part of ū, ūR̄ := R̄ū

the right part of ū, and say that ūR participates in weak interactions while ūL does not.

For any leptons with spinors a, b, this allows us to replace our weak vertex factor

a†gwγ
0γµ(1− γ5)b , (A.62)

with

2a†gwγ
0γµLb = 2a†gwγ

0γµL2b = 2a†Lgwγ
0γµLb = 2a†Lgwγ

0γµbL , (A.63)

and replace our electromagnetic vertex factor

a†geγ
0γµb (A.64)

with

(aL + aR)†geγ
0γµ(bL + bR)

= a†Lgeγ
0γµLb+(((((((

a†Lgeγ
0γµRb

+(((((((
a†Rgeγ

0γµLb+ a†Rgeγ
0γµRb

= a†Lgeγ
0γµbL + a†Rgeγ

0γµbR .
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This is nice because we can now look at the weak and electromagnetic interactions as having

the same vertex factors modulo a coupling constant, except that the weak interaction only

acts on the “left” particles. [6]



Appendix B

Data Selection

Here we show the details of the signal/background selection criteria, for four different cases:

signal taken from MC, signal taken from data, background taken from MC, and background

taken from data.

Signal - MC Data:

• L2_tauNoCut && EF_tauNoCut,

• (((vxp_type->at(vx)== 1)|| (vxp_type->at(vx)== 3))&& (vxp_nTracks->at(vx)>

3)) for at least one vx ∈ {0, . . . ,vxp_n},

• L1 RoI must have ET > 8 GeV,

• Match L1 RoI to L2 and EF RoIs for the tauNoCut chain,

• EF-Offline ∆R < 0.2 match,

• (tau_author == 1)|| (tau_author == 3),

• tau_Et > 15 GeV,

• fabs(tau_eta)< 2.2,

• tau_numTrack > 0,

• tau_JetBDTSigMedium,
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• Offline-Truth match with tau_trueTauAssoc_index,

• trueTau_vis_Et > 10 GeV,

• fabs(trueTau_vis_eta)< 2.5.

Signal - Collision Data:

• L2_tauNoCut && EF_tauNoCut,

• (((vxp_type->at(vx)== 1)|| (vxp_type->at(vx)== 3))&& (vxp_nTracks->at(vx)>

3)) for at least one vx ∈ {0, . . . ,vxp_n},

• L1 RoI must have ET > 8 GeV,

• Match L1 RoI to L2 and EF RoIs for the tauNoCut chain,

• EF-Offline ∆R < 0.2 match,

• (tau_author == 1)|| (tau_author == 3),

• tau_Et > 15 GeV,

• fabs(tau_eta)< 2.2,

• tau_numTrack > 0,

• tau_JetBDTSigMedium.

Background - MC Data:

• L2_tauNoCut && EF_tauNoCut,

• L1 RoI must have ET > 8 GeV,

• Match L1 RoI to L2 RoI for the tauNoCut chain.

Background - Collision Data:

• L2_tauNoCut && EF_tauNoCut,
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• L1 RoI must have ET > 8 GeV,

• Match L1 RoI to L2 and EF RoIs for the tauNoCut chain,

• EF tau - Offline jet ∆R < 0.2 match,

• jet_AntiKt4TopoEM_pt > 15 GeV/c,

• fabs(jet_AntiKt4TopoEM_eta)< 2.2,

• There must be another offline jet separated from the offline jet by |∆φ| > 2.7 and

satisfying the same pT and η requirements.

vxp_type refers to the type of the given primitive vertex. It can either be of type 1

(primary) or type 3 (pile-up). vxp_nTracks refers to the number of tracks for the primitive

vertex. [64] We use standard selections for these variables [65][66]. tau_author determines

how the offline tau is seeded. If it is 1, then it is only calorimeter seeded; 2 implies that it

is only track seeded; and 3 implies that it is both calorimeter and track seeded. Currently,

all offline taus are calorimeter seeded, so the requirement on tau_author for the 2012

samples is unnecessary, but harmless [67]. Naturally, tau_Et is the transverse energy of

the offline tau, tau_eta is its pseudorapidity, and tau_numTrack is the number of tracks

it contains. tau_JetBDTSigMedium is a boolean-valued variable that determines whether

or not the offline tau passes the medium BDT identification criteria. For the D3PDs with

the p1130 tag, a manual calculation needs to be performed in order to determine the true

value of this variable. This is detailed in [67]. A true tau is the digital representation

of a tau that was generated by the MC simulation, and is thus known to be a tau with

absolute certainty. tau_trueTauAssoc_index maps an offline tau index to a true tau index

by finding the closest match in terms of ∆R. If the resulting index is non-negative, then it is

used to obtain the variables for the corresponding true tau. trueTau_vis_Et is the visible

transverse energy of the true tau and trueTau_vis_eta is the visible pseudorapidity of the

true tau. By visible, we mean that we only include the decay products that can be detected

by the detector; in particular, we ignore neutrinos. Finally, jet_AntiKt4TopoEM_pt is the
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transverse momentum of the offline jet and jet_AntiKt4TopoEM_eta is its pseudorapidity.

[68][69]



Appendix C

Source Code

Here we show the source code for a few calculations that our algorithm performs. Section

C.1 shows how the variables HADtoEMenergy and EnergyTonCells are calculated, Section

C.2 shows how the variable scalarPtSumIsoToCore is calculated, and Section C.3 shows

the selection criteria, for any input RoI, of the reference trigger L2_TAU20_MEDIUM1. More

of the source code will be made available at the author’s web site: https://akrmn.org.

C.1 HADtoEMenergy and EnergyTonCells

float const energy_grn = 0.1;

float const energy_max = 1000000000.;

float const nCells_grn = 0.1;

if ((fabs(EMenergy) <= energy_grn)) {

if (fabs(HADenergy) <= energy_grn) {

if ((( EMenergy >= 0.) && (HADenergy >= 0.)) ||

(( EMenergy < 0.) && (HADenergy < 0.))) {

HADtoEMenergy = 1.;

}
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else {

HADtoEMenergy = -1.;

}

}

else if (fabs(HADenergy) < energy_max) {

if (EMenergy >= 0.) {

HADtoEMenergy = HADenergy/energy_grn;

}

else {

HADtoEMenergy = -HADenergy/energy_grn;

}

}

else {

if ((( EMenergy >= 0.) && (HADenergy >= 0.)) ||

(( EMenergy < 0.) && (HADenergy < 0.))) {

HADtoEMenergy = energy_max/energy_grn;

}

else {

HADtoEMenergy = -energy_max/energy_grn;

}

}

}

else if (HADenergy >= energy_max) {

HADtoEMenergy = energy_max/EMenergy;

}

else if (HADenergy <= -energy_max) {

HADtoEMenergy = -energy_max/EMenergy;

}
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else {

HADtoEMenergy = HADenergy/EMenergy;

}

float EMHADenergy = EMenergy + HADenergy;

if (numTotCells == 0) {

if (fabs(EMHADenergy) <= energy_grn) {

if (EMHADenergy >= 0.){

EnergyTonCells = 1.;

}

else {

EnergyTonCells = -1.;

}

}

else if (fabs(EMHADenergy) <= energy_max) {

EnergyTonCells = EMHADenergy/nCells_grn;

}

else {

if (EMHADenergy >= 0.) {

EnergyTonCells = energy_max/nCells_grn;

}

else {

EnergyTonCells = -energy_max/nCells_grn;

}

}

}

else if (EMHADenergy >= energy_max) {
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EnergyTonCells = energy_max /(( float)numTotCells);

}

else if (EMHADenergy <= -energy_max) {

EnergyTonCells = -energy_max /(( float)numTotCells);

}

else {

EnergyTonCells = EMHADenergy /(( float)numTotCells);

}

C.2 scalarPtSumIsoToCore

float const energy_grn = 0.1;

float const energy_max = 1000000000.;

if ((fabs(scalarPtSumCore) <= energy_grn)) {

if (fabs(scalarPtSumIso) <= energy_grn) {

if ((( scalarPtSumCore >= 0.) && (scalarPtSumIso >= 0.))

|| (( scalarPtSumCore < 0.) && (scalarPtSumIso <

0.))) {

scalarPtSumIsoToCore = 1.;

}

else {

scalarPtSumIsoToCore = -1.;

}

}

else if (fabs(scalarPtSumIso) < energy_max) {

if (scalarPtSumCore >= 0.) {

scalarPtSumIsoToCore = scalarPtSumIso/energy_grn;

}
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else {

scalarPtSumIsoToCore = -scalarPtSumIso/energy_grn;

}

}

else {

if ((( scalarPtSumCore >= 0.) && (scalarPtSumIso >= 0.))

|| (( scalarPtSumCore < 0.) && (scalarPtSumIso <

0.))) {

scalarPtSumIsoToCore = energy_max/energy_grn;

}

else {

scalarPtSumIsoToCore = -energy_max/energy_grn;

}

}

}

else if (scalarPtSumIso >= energy_max) {

scalarPtSumIsoToCore = energy_max/scalarPtSumCore;

}

else if (scalarPtSumIso <= -energy_max) {

scalarPtSumIsoToCore = -energy_max/scalarPtSumCore;

}

else {

scalarPtSumIsoToCore = scalarPtSumIso/scalarPtSumCore;

}

C.3 Reference Trigger: L2_TAU20_MEDIUM1

if (etMedium <= 15199.) {

return (-1);
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}

if(CoreFrac <= 0.7485) {

return (-2);

}

if (( nCoreTracks < 1) || (nCoreTracks > 4)) {

return (-3);

}

if (scalarPtSumIso < 0. || scalarPtSumCore <= 0.) {

return (-4);

}

float scalarPtSumIsoToCore = scalarPtSumIso/scalarPtSumCore;

if (nCoreTracks == 1) {

if (scalarPtSumIsoToCore >= 0.001) {

return (-5);

}

if (( etOverPtLeadTrk < 0.) || (etOverPtLeadTrk >= 8.84)) {

return (-6);

}

if (trkAvgDist >= 0.105) {

return (-7);

}

}

else {

if (scalarPtSumIsoToCore >= 0.099) {

return (-8);

}

if (( etOverPtLeadTrk < 0.) || (etOverPtLeadTrk >= 2.84)) {

return (-9);
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}

if (trkAvgDist >= 0.073) {

return (-10);

}

}

return (0);

Note: A return value of 0 means that the RoI is accepted; otherwise, it is rejected. [60]
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