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Abstract

Microtubules are tubular polymers that, along with actin filaments and intermedi-
ate filaments, comprise the eukaryotic cytoskeleton. They are constructed of tubulin
dimers which attach end-to-end to form protofilaments, with 13 protofilaments bind-
ing together to form the tubular structure. Microtubules are not only involved, but
instrumental in many cell functions such as mitosis and transportation of materi-
als within the cell. Despite being relatively rigid polymers, microtubules are very
dynamic and are constantly rearranging themselves. Perhaps the most interesting
experimental observation is what has been termed dynamic instability where growing
and shrinking microtubules may co-exist. The transition from the growing to the
shrinking phase is not a smooth or even predictable process. In vitro experiments
conducted by Horio and Hotani were some of the first to show the seemingly erratic
behavior of a single microtubule. In stark contrast, the Mandelkow group in Hamburg
then demonstrated how an ensemble of microtubules loses this irregularity and the
ensemble as a whole undergoes smooth oscillations.

My modelling begins with that of a single microtubule. The stochastic equations
governing the behavior depend on the available free tubulin, the amount of assembled
tubulin as well as the interactions between neighboring microtubules. This modelling
is very successful, but cannot explain the transition to coherent oscillations. The next

step is treating the problem as a first-order phase transition. The Landau-Ginzburg



free energy expansion gives rise to two phases: free tubulin and microtubules. This
treatment can reproduce the oscillations that are seen experimentally. A natural
extension of this model is to treat the free tubulin and assembled microtubules as
interacting entities. The result is a set of reaction equations, and with a further
extension to include spatial distribution, reaction-diffusion equations. This system
can not only reproduce the temporal dynamics, but the spatial patterns that are

observed in experiments.
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Glossary of Terms

catastrophe A switch from growth to shrinkage in the assembly of a microtubule.
eukaryote An organism composed of cells that contain a nucleus and a cytoplasm.

GDP Guanosine 5’-diphosphate - an important nucleotide in the microtubule assem-

bly cycle.

GTP Guanosine 5'-triphosphate - an important nucleotide in the microtubule as-

sembly cycle.

MAP Microtubule Associated Protein - a protein which can bind to a microtubule
and thus affect its properties.

MTOC Microtubule Organizing Centre - a region where microtubules tend to nu-

cleate and grow (eg. centrosome).

rescue A switch from shrinkage to growth in the assembly of a microtubule.



Chapter 1

Introduction

Microtubules are key components of the eukaryotic cytoskeleton. They possess a
number of remarkable properties which have made them one of the most active re-
search fields of recent decades. A vast amount of work has been done and is still
being done, to try and elucidate information about the structure of microtubules and
their constituent dimers. The interactions between microtubules and other proteins
within the cell have also been intensely studied. What is most interesting, however.
is the dynamic properties of the assembly and disassembly of these polymers.

Microtubules exhibit two distinct types of behaviour in their assembly. The first
has been termed ‘dynamic instability’ and refers to the erratic growth of a single
microtubule. This growth is not a smooth process, but the microtubule constantly
switches, seemingly at random, between growth and rapid shrinkage. The reason
(or reasons) behind this phenomenon is not known and this remains one of the key
open questions. What is perhaps more interesting is the second type of behaviour.
When microtubules are grouped together, this stochastic growth pattern gives way
to smooth oscillations. These oscillations exist in many forms just as there are many
manifestations of dynamic instability.

From a physics standpoint, microtubule assembly is simply an example of a sys-



tem undergoing a phase transition. Pattern formation and instabilities are common
in systems, including many examples in biology. Monographs such as Haken’s Syner-
getics [1] are replete with examples from all areas of science showing how interactions
in many-body systems give rise to phenomena such as chaos, oscillations, turbulence
and the formation of patterns. In this thesis, we will employ many of the methods
put forward by Haken.

After a brief introduction to the molecular biology of the cell and of microtubules,
we will model dynamic instability using recursive maps. In order to model a micro-
tubule ensemble, we will couple many of these maps together in an attempt to see
the transition to oscillatory growth. Since microtubule assembly is an example of a
phase transition, we will next use a Landau free energy expansion to examine the
phase dynamics during such a phase change. This formulation will prove to provide
us with oscillations in terms of our chosen order parameter, but the interpretation
of these results is limited. To alleviate this problem, we will move to a model based
on chemical reaction kinetics. Here we have a more complicated but more success-
ful model which will produce many results observed by experimentalists. The last
chapter will be an extension of the chemical kinetics approach to a set of coupled
reaction-diffusion equations. Here we attempt to produce the spatial patterns that
are observed in addition to the temporal dynamics. Aside from trying to answer
a number of open questions associated with microtubule dynamics, the hope is to

present new questions and ideas which may lead to more research in this field.



Chapter 2

The Cell, the Cytoskeleton and

Microtubules

Cells are the basic units of life. They comprise all living organisms from the simplest
amoeba to multicellular plants to complicated beings such as ourselves. Obviously,
cells are very diverse in their type and the roles and functions that they play. There
exist several different methods for classifying cell types [2]. One such classification
is based on whether or not the cell contains a nucleus. Prokaryotes (literally ‘be-
fore nucleus’) are cells that lack a definite membrane bound nucleus. On the other
had, eukaryotes (meaning ‘true nucleus’) are cells that have a nucleus with chromo-

somes. It is this second class of cells that we will be interested in since they contain

microtubules.

2.1 Eukaryotes

Even with our differentiation between these two classes of cells, we have not really
restricted the vast number of cells types by selecting cells that have a nucleus. Some

examples or eukaryotes are yeast cells, amoeba, plant and of course animal cells.



Within the human body, there also exists a plethora of eukaryotic cell types: neural,
epithelial and muscle cells to name but a few. Eukaryotic cells are also quite variant
in size. There are many cells that are on the order of um while the ostrich egg yolk
may be as large as 3 cm in diameter [3]. Despite all these differences, eukaryotic cells
have many things in common. The components of these cells are largely the same
from one cell to the next. Specific components that we will be interested in are the
cytoplasm, the cytoskeleton and the nucleus. The functions that cells perform are
also very similar. The three basic functions are self maintenance, cell motility and cell
growth and reproduction [4]. Eukaryotic cells contain thousands of different protein
types which constitute about 60% of their dry mass [2]. Many of these proteins

polymerize to form organized structures within the cell, the most important of which

is the cytoskeleton.

2.2 The Cytoskeleton

2.2.1 Organization and function

The cytoskeleton is a complex mixture of proteins that form one of the largest struc-
tures in the cell. It is the most rigid formation within the cell, but is also very dynamic
and is thus sometimes referred to as the cytomusculature.

Many functions within the cell are served by the cytoskeleton. Most importantly
it provides structure, strength and shape to the cell. It is also instrumental in posi-
tioning organelles and the transport of materials. Cilia and flagella are two examples
of how the cytoskeleton can provide cell motility. Along with these very important
but somewhat mundane functions, the cytoskeleton is speculated to be involved with
signalling within the cell and possibly information processing, which would make it
the ‘nervous system’ of the cell [5, 6, 7]. One thing we shall see is that microtubules

play an important role in all the above processes.
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The interaction of cytoskeletal components with one another and with other or-
ganelles and vesicles is via molecular interactions [8]. This is often through nucleotide
hydrolysis (such as ATP or GTP), calcium signalling or some other process such as
phosphorylation. What is clear is that we have a great deal of information about the
cytoskeleton, but only a small amount of understanding. We must first attempt to
understand the basic components before we examine the entire complex structure.
With this is mind, let us examine the individual components of the cytoskeleton.

2.2.2 Constituent filaments

Actin filaments

Actin filaments (also called microfilaments) are a 2-stranded helix comprised of actin

monomers (see Figure 2.1). Actin has a molecular weight of 43 kDa and is one of

Figure 2.1: The 2-stranded helix of an actin filament. The different shading is only
for viewing purposes.

the most abundant proteins within the cell, making up about 5% of the total protein
mass [2]. Actin filaments are more prolific than microtubules, tend to be shorter
and, due to their structure, they are thinner and more flexible [2]. As we will see
with microtubules, the polymerization of actin into filaments requires two things:
the presence of ATP as well as potassium and magnesium ions. If the concentration
of actin monomers is below a critical level, the monomers will remain in solution.
Above a critical concentration, actin polymerization is possible. ATP binds to the
monomers which enables them to attach themselves to the growing filament. Shortly

after attachment, the ATP hydrolyzes leaving a small ‘ATP cap’ on the growing end



of a microfilament. If this cap shrinks away, the binding rate of new monomers is
reduced and the filament becomes unstable. A similar idea of a ‘GTP cap’ has been
proposed for microtubules, but to date there is no evidence supporting or disproving
such a claim.

Filamentous actin is a polar object and the assembly rate constant at the plus end
is 5-10 times that of the minus end. This gives rise to an effect called ‘treadmilling’
where the plus end extends forward while the minus end disassembles. Such a process
is common in the leading edge of motile cells. New actin filaments are nucleated,
they extend with the leading edge of the cell and are dissolved as new filaments are
formed in their place [8]. Rarely do microfilaments exist by themselves, but often
in a network where the individual filaments are linked together by actin-associated
proteins. These formations provide more strength and stability and may be in the
form of sheets of loose bundles, such as lamellipodia, or thin protrusions such as

microspikes [2]. There are three basic types of filament arrangements (see Figure

%,

Figure 2.2: The three basic types of microfilament arrangement: (a) parallel bundles,
(b) contractile bundles and (c) gel or lattice-like arrangement.

2.2): parallel bundles where the polar filaments are oriented in the same direction,
contractile bundles where neighboring filaments are oriented opposite to one another
and a gel or lattice-like arrangement where the filaments are orthogonal to one another

[2). Parallel bundles are seen in microspikes while the contractile bundles are what

6



allows muscle to extend and contract. The gel or lattice arrangement largely performs
a structural role, usually at the leading edge of a cell [2].

The role played by actin filaments is a multi-faceted one. They first play a struc-
tural role as part of the cytoskeleton. In epithelial cells, the microfilaments give
structure to the microvilli. In other cells, they act as ‘railroad tracks’ for cytoplasmic
streaming [8]. The second role is the contractile role. Actin filaments are an intrinsic
part of how muscle works, both striated and smooth muscle. In association with
myosin, contractile bundles of actin are able to produce muscle movement [8]. They
also form the contractile ring in dividing cells [2]. Lastly, actin filaments play an
important role in cell motility. There are three basic steps in animal cell movement
where microfilaments are involved [2]. These are: protrusion, the formation of lamel-
lipodia and microspikes on the leading edge of a cell; attachment, where the actin
cytoskeleton actually attaches itself to the underlying substrate; and traction, where
the cell moves forward with the actin filaments pushing the leading edge and pulling

the cell body [8].

Intermediate filaments

Intermediate filaments are a general class of filaments associated with the cytoskele-
ton. They are found in most multicellular animals, but not all [2]. In terms of
structure, they are about 10 nm in diameter and have a rod-like structure that is
common to all types of intermediate filaments. They represent a large and diverse
family of proteins, but there are 3 basic classes within this group. Keratins are a
type of intermediate filament typically found in epithelial cells and related cells such
as hair, nails, etc. [2]. Vimentin and vimentin-like proteins are the major struc-
tural protein found in muscle and glial cells as well as neurons [8]. The last type are
neurofilaments which are a unique type of filament found in nerve cells.

Despite the many different varieties of intermediate filaments, their role is largely

~1



Bt oann bd . ool

the same in providing structure and stability to the cell. Due to their structure and
the way in which they bind with one another, they are able to withstand much larger
stretching forces than either actin filaments of microtubules.

Microtubules are the third filament type associated with the cytoskeleton and the
central theme of this thesis. They are the most complicated of the three types in
terms of their structure and behaviour as will be discussed in the next section.

2.3 Microtubules

2.3.1 Tubulin

The basic building block of microtubules is the tubulin dimer. Tubulin is a protein
that occurs within the cell in two homologous forms - the a and S-monomer. A
third form v-tubulin will be discussed later in this chapter. Undenatured tubulin is
usually found in the form of a heterodimer of a — 8 tubulin. Within mammals, there
exist numerous « and @ types [2] but very little is known about their exact structure.
The primary structure is fairly well known for many different monomer forms, each
with around 450 amino acids. The secondary structure is environmentally dependent
and contains both a-helices and (-sheets. The tertiary structure is currently being
investigated by a large number of experimental groups, but no detailed results are
available. It is thought that the folding and assembly of tubulin is largely governed
by entropy and the hydrophobic part of the protein. It is also conjectured that
the tertiary structure may change because of the hydrolysis of GTP into GDP. In
terms of physical parameters, each tubulin monomer has a mass of about 50 kDa,
giving the tubulin dimer a mass of 100 kDa. Electron microscopy studies reveal that
each monomer subunit divides into two main globular domains and a smaller rod-
like extension [8]. It also appears that the connection between the two monomers is

hinge-like in nature which would allow for movement due to hydrophobic interactions
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or conformational changes due to GTP hydrolysis [8]. Hopefully with more in-depth
study, these details can be determined.

There is between 40% and 55% homology rate between a and 8 tubulin for various
species, and a higher degree of homology between the same subunits for different
species (comparing o to a, etc.) [8]. This similarity is enough that co-assembly of
different tubulin types is possible, even types as different as those found in yeast and
humans. For assembly to occur, GTP must be bound to the tubulin dimer. There
exist two binding sites for guanine nucleotides within each dimer, a nonexchangable
site (N-site) within the a-monomer and an exchangeable site (E-site) within the (-
monomer. The names of these sites refer to the fact that free tubulin dimers can
exchange GDP for GTP from the E-site, but not from the N-site. There has been
debate over which site is required to have GTP in order for the tubulin to assemble.
There are also questions as to whether or not it is possible for transphosphorylation
to take place, where a bound GTP molecule can exchange a P; with a GDP molecule

[9, 10]. To this point, this ideas are only speculation.

2.3.2 Assembly of microtubules

The self-assembly of tubulin into microtubules requires several factors: the presence
of GTP and Mg?* and a suitable temperature (ideally 37°C but certainly above 7°C).
The magnesium ions bind to the tubulin dimers at the E-site and promote assembly
[8]. The binding of GTP changes the conformation of the dimer making it suitable
for attachment onto a microtubule. This conformational change has several possible
effects. First, it allows for the hydrophobic regions of the protein to be driven together
(entropy promoting assembly) and second, it may alter the very acidic C-terminus of
tubulin making the dimer able to attach itself to a microtubule. If this C-terminus is
removed via proteolysis, the tubulin assembles without any problems [8]. All forms

of assembled tubulin involve dimers bonded longitudinally into long protofilaments.
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Figure 2.3: Illustration of the structure of a microtubule (B lattice) with its relative
dimensions.
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These protofilaments are polar and feature alternating tubulin monomers o — § ~
a - 3, and so on. The lateral bonds between these protofilaments give rise to several
different configurations. The first and most prolific form is that of microtubules.
There structure basically consists of protofilaments which are oriented in the same
direction and bonded together to form a cylinder (see Figure 2.3). In vivo, the
number of protofilaments is usually 13 or 14, but in vitro experiments can produce
microtubules with 12 to 17 protofilaments. The dimers around the microtubule are
not arranged in rings but rather along a helix. When one follows the 3-helix around
the microtubule, two distinct lattice types are seen. The first is the A lattice where
the monomers on the helix alternate a — 8 — a — 3. The 3-helix on the B lattice has
only one monomer type a — a — a or § — 3 — 5. What is different with the B lattice
is that there is a discontinuity or ‘seam’ in the microtubule (see Figure 2.4).

Apart from microtubules, with the addition of zinc ions, large Zn sheets may be
formed where the protofilaments are bonded together, but the polarization alternates
such that neighboring protofilaments point in opposite directions. The last commonly
seen form of assembled tubulin is that of tubulin rings and oligomers. These are
protofilaments of GDP rich tubulin which are coiled up. This is again evidence of the
conformational change induced by GTP hydrolysis.

The first step in the formation of a microtubule #n vivo is nucleation on a mi-
crotubule organizing centre (MTOC). The main site of nucleation within a cell is
the centrosome which utilizes another isoform of tubulin called 4-tubulin in order to
initiate a microtubule assembly process[2]. Nucleation is a very slow process since
it requires several tubulin dimers to interact with one another at the same time. If
there are other proteins present, this process can be sped up considerably. After
nucleation, the microtubule begins to grow. There is an outstanding question as to
the exact form of the nucleus and how a stable microtubule is formed. Two different

experimental pictures have emerged. One is where the tube is formed and elongation
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Microtubule Lattices

Figure 2.4: The A and B lattice types for a microtubule with 13 protofilaments.

occurs simply by adding dimers to the end of the tube. The second is where a sheet
of protofilaments is formed. Once this sheet is wide enough, it can close to form the
tube. In the first scenario, it is believed that hydrolysis occurs immediately after the
dimer attaches itself to the microtubule. In the second picture, the closing of the
sheet to form a tube causes hydrolysis to occur [11].

Microtubules are polar objects because of the way the dimers are organized into
protofilaments. The end with the exposed 5 monomer is conventionally assigned as
the (+) end and the a end is called the (-) end. The (+) end is the fast growing
end and proves to be much more dynamic than the (-) end. The cell makes use of

this fact and requires the (-) end to do very little. The (-) end is attached to the
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MTOC and the (+) end always extends away. Thus assembly almost always takes
place at the end which is able to grow the fastest. This growth is not monotonic,
but dimers can be added on or taken off. The rate of growth is dependent on the
tubulin concentration, but close examination of individual microtubules shows that
while some are growing, other are shrinking. Even in a cell where the amount of
assembled tubulin has reached a steady-state value, this is not a static state and
there are still microtubules growing and shrinking. This behaviour has been termed
dynamic instability [12, 13] and will be discussed more fully in the next chapter.

Objects interacting with microtubules

There are many factors which affect the assembly of microtubules. Aside from condi-
tions within the buffer such as pH, temperature, etc. both drugs and other proteins
can alter microtubule assembly. Several drugs prohibit the assembly of microtubules
such as colchicine and nocadozole. These drugs bind to the dimers and prevent assem-
bly [2]. Vinblastine causes assembled microtubules to fall apart into helically coiled
protofilaments [8]. Other drugs such as taxol stabilize microtubules by binding to
their ends, almost as a cap. Drugs such as vinblastine and taxol are used in the fight
against cancer. If a cancerous cell would have one of these drugs added to it, it would
be unable to divide and multiply since microtubules are required for mitosis.

A large group of proteins interact with microtubules and hence are given the name
Microtubule Associated Proteins (MAPs). These types of proteins are very common
and when one goes through the process of refining microtubules from solution, many
MAPs co-purify with the tubulin. There is a wide variety of MAPs playing many
different roles, but the general effect is to promote assembly [8]. The exact method
in which MAPs could promote assembly is not known, but several possibilities exist.
Some MAPs may bind and neutralize the acidic C-terminus of the tubulin dimer,
thus reducing the repulsion between dimers. They may also reduce the electrostatic
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repulsion at the interface between dimers [8]. Another possibility could be as simple
as keeping the protofilaments straight to maintain the lateral bonds.

There are two basic classes of MAPs, lighter MAPs like tau with masses in the 50
kDa range and heavier MAPs such as MAP2 with masses closer to 300 kDa. Many
MAPs are thought to have two main parts, one which binds to the microtubule and
one which extends away from it [8]. Some of the heavier MAPs have binding domains
of about 100 nm which means they are able to bind to about 12 dimers. This would
correspond well with the periodic patterns that are observed in the binding of MAPs
to microtubules.

Similar to the interaction between actin filaments and myosin, there are motor
proteins associated with microtubules. These proteins, like MAPs, have a region
which binds to the microtubule and a part which remains free to interact with other
objects in the cytoplasm. There are two classes of microtubule motors: kinesins and
dyneins. Both motors use ATP as their energy source, and they are able to move
along microtubules or cause sliding between adjacent microtubules. There is polarity
in the movement of each motor. Kinesin moves from the (-) end to the (+) end, ie.
away from the centrosome. Dynein, on the other hand, has the opposite polarity and
moves from the (+) to the (-) end [2]. Both motors are utilized in moving organelles
and transporting materials within the cell. Apart from this linear movement, flagellar
dynein can produce rotation [14] which is useful in cell motility.

Functions and arrangement of microtubules

As is implied by the name of the cytoskeleton, the main function of microtubules is to
provide structure within the cell and give cell shape. In some cells, microtubules are
the first structures to form. Materials are transported along them to the various parts
of the cell, the other structures are assembled from these materials and the micro-

tubules are dissolved [8]. Transport using molecular motors is obviously important,
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but associated with transport is the microtubule involvement in mitosis. Here motors
attach themselves to the end of a microtubule and a chromosome. The opposite end
of the microtubule is embedded in one of the centrosomes. When the chromosomes
align themselves along the mitotic spindle, the microtubules begin to disassemble at
each end and the chromosomes are pulled to the two poles of the cell. Other types
of movement include the rotary motion of flagella and the beating movement of cilia.
Each process represents an important role played by these polymers.

It has been speculated that microtubules may play a role in signalling within the
cell [6, 15]. To this point we have seen speeds from zm per minute to um per second
in both growth of microtubules and movement of motors. Signalling would require
speeds much greater than this and must therefore be mediated by some other means.
Sending signals along microtubules by using their dipole properties is a possibility

[16, 17], but experiments are far from detecting such phenomena.

© (@)

Figure 2.5: Illustration of different cell types with their microtubule arrangement: (a)
interphase cell, (b) nerve cell, (c) ciliated cell and (d) a dividing cell.

The manrer in which microtubules arrange themselves within the cell is dependent
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on their function. Figure 2.5 shows several different types of cells and the microtubules
within them. It goes without saying that these structures are vital to the function of
the cell and indeed of the organism composed of such cells.
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Chapter 3

Experimental Results and Previous

Modelling

Although microtubules have been studied for the last half of this century, it is only
within the past 15 years that the technology has really allowed scientists to view and
manipulate individual microtubules. This chapter will summarize the experimental
findings of researchers investigating the assembly of microtubules as well as theories

that have been developed to attempt to explain these observations.

3.1 Experimental Results

As mentioned earlier, experimental groups were using the birefringence properties
of microtubules to obtain images from within living cells [18]. Microtubules were
able to be seen only when they occurred in large groups or bundles, such as the
mitotic spindle of a dividing cell. In the 1970’s, methods were developed whereby
microtubules could be assembled in vitro from purified tubulin. During the next
decade, microscopy was advanced enough that individual microtubules could be seen.

Although the basic properties of these structures were known, a closer inspection of
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microtubule assembly yielded quite a different picture than what was expected.

3.1.1 Dynamic instability

Mitchison and Kirschner [12, 13] were the first to use the term dynamic instability.
They noticed that within a buffer containing microtubules, even though conditions
were the same for all the polymers, some microtubules would be growing while other
were shrinking. Shortly after this, Horio and Hotani [19] provided the plots of a
single microtubule and its length as a function of time. These sharp, sawtooth-like
plots (see Figure 3.1) were thought to be the result of the microtubule maintaining
or losing a terminal GTP cap. When hydrolysis occurred faster than assembly did,
the cap would be lost and the microtubule would become unstable and collapse.
These ideas were expanded in later work by Kirschner and Mitchison [20] where they
investigated the relationship between the physiochemical properties of microtubules
and their dynamics. However, Walker et al. [21] showed how, if there was a GTP cap,
it would have to be very small and its size would not depend on the growth rate of
the microtubule. The one key finding which seems to dismiss the concept of a GTP
cap is the fact that when microtubules are severed at their midpoint, the new (+)
end rapidly disassembles, but the (-) end behaves as normal [8]. This would perhaps
indicate that the a — a and a — § bonds are not affected. Since the GTP bound
at the N-site in the o monomer does not hydrolyze, the (-) end may remain stable.
Because the (+) end is unstable, this would indicate that the 5 — a and 8 — 8 bonds
have been weakened, perhaps due to the hydrolysis at the E-site and the resulting
conformational change. This interesting behaviour is not restricted to the laboratory.
In vivo experiments have also shown that dynamic instability occurs within living
cells [22].

Just as the reason for catastrophes is not known, the mechanism behind rescue

events is also a mystery. It was originally thought that due to the large number of
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Microtubule Associated Proteins (MAPs) that co-purify with tubulin, these proteins
were able to stabilize shrinking microtubules and instigate a rescue. Recent work by
Billger et al. [23] showed that with virtually MAP-free tubulin, rescues still occurred
with normal frequency indicating that some other mechanism is the cause. In fact, this
group found that assembly using MAP-free tubulin changed very few characteristics.

Microtubule Length
= -
(@ (§))

(4}

10 20 30 40 0 60

Time (s)

Figure 3.1: Experimental data of the growth of a single microtubule. Data courtesy
of E. Mandelkow.

Many experiments are still being performed on this well researched subject. Re-
cent reviews [24, 25] indicate that this problem is far from being well understood.
There have also been investigations on whether there exists a GDP-P; cap instead
of a GTP cap [26, 27, 28, 29]. Perhaps the phosphorylation process may produce a

conformational change that would make a microtubule unstable.

19



3.1.2 Microtubule Oscillations

Several years after the discovery of dynamic instability, a new type of behaviour was
found by several groups at roughly the same time. When the buffer and temperature
conditions were correct, it was found that the total amount of assembled protein
would not simply grow to saturation as had been seen previously, but would instead
oscillate around a steady-state value (see Figure 3.2). Depending on the experimental
conditions, the oscillations would eventually be damped out and the system would
assume its steady-state value.

Pirollet et al [30] discovered they could produce oscillations in a system with a
mechanism that would regenerate GTP from the GDP given off in a microtubule
collapse. As the oscillations would proceed, the average length of the individual
microtubules would increase while the number would decrease. The key to this system
seemed to be the amount and the production rate of GTP. If additional GTP was
added to the system, the oscillations would decrease in size and eventually disappear.
In the same respect. increasing the speed of GDP to GTP conversion decreased the
amplitude of oscillations. If the acetate kinase responsible for the GTP production
was decreased in concentration, oscillations would increase in size. Even if the tubulin
concentration was dropped to a point where oscillations were not present, decreasing
the amount of acetate kinase would cause them to reappear. This conclusion was
supported by Melki et al. [31] who found that the rate of GDP/GTP exchange
regulated the period of the oscillations. They stated that oligomers were not necessary
for oscillations to occur, but the data supported either slow nucleotide exchange or
slow oligomer breakup. They did consider it a possibility, however, that assembly
competent tubulin may be blocked from the end of the microtubule by an excess of
tubulin bound with GDP.

Carlier and her group [32] found that at tubulin concentrations of 25 - 30 uM,

there was simply growth to saturation. At concentrations greater that 50 uM how-
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ever, oscillations would arise following spontaneous nucleation. The amplitude and
amount of damping varied, depending on the rate of nucleation. Also, by shearing
microtubules they were able to determine that this behaviour was not simply due to
large numbers of microtubules. Independent of the tubulin concentration (above the
critical concentration), 35-40% of the available tubulin would be polymerized when
oscillations ceased.

Wade et al. [33] had similar results to those of Carlier’s group in that by increasing
the free GTP concentration, they found that the system would shift from oscillations
to monotonic polymerization. In contrast to previous authors, they postulated that
the slow step in the process was the breakup of oligomers and not the regeneration of
GTP. To support this they claimed that as they increased the concentration of GTP,
the number of rings visible decreased and the oscillations were gradually removed.

This scenario involving the slow breakup of oligomers was also put forward by
Caplow et al [34]. However, there was also the suggestion that the oligomers were
formed in a side reaction not directly associated with microtubule assembly. They
found the formation of oligomers increased sharply with GDP concentration and that
the half-time for dissociation of GDP from an oligomer was about 6 times longer than
from a single tubulin dimer.

Engelborghs [35] demonstrated how one slow step in the assembly process would
not be enough to explain oscillations. According to Oosawa’s theory of polymerization
[36], the steady-state properties are purely determined by the rate constants. In
this system however, constant turbidity is not a static situation but instead GTP is
constantly being consumed and GDP produced.

A tremendous amount of work has been performed by the Mandelkow group in
Hamburg. They have produced several papers in recent years dealing with micro-
tubule oscillations [37, 38]. They distinguish between two different types of oscilla-
tions: ‘high-GTP’ and ‘low-GTP’ oscillations. The ‘low-GTP’ case is where GTP
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is regenerated enzymatically so it is not in overabundance. The period of oscilla-
tion here tends to be about 10 minutes, much longer than in the ‘high-GTP’ case
where the period tends to be in the 70-80 second range. With high GTP concen-
tration, however, some type of destabilizing agent is required (Na*, K+ or Ca?*). In
either case, there is a minimum number of polymers required for oscillations and the
concentration of both polymers and free subunits determines the mode of assembly.
Generating this minimum polymer concentration can be done through the addition
of seeds or by self-nucleation.

There is one interesting aspect of microtubule oscillations that it seems has only
been reported by the Mandelkow group [39]. Homogeneous oscillations do occur,
but inhomogeneous oscillations are also common. These inhomogeneous oscillations
often are adapted to the geometry of the vessel in which the experiment is taking
place. In rectangular ‘cells’ one sees linear waves of assembly and disassembly passing
through the medium and in circular vessels concentric waves form on the outside and
move towards the center and disappear. These waves are not started by a jump
in temperature, but it seems as if the nucleation barrier is lower at the periphery.
The reaction is started at a nucleation site and then proceeds autocatalytically via
diffusion coupling.

All of the above mentioned experiments took place in vitro. Just as there was
evidence for dynamic instability within living cells, oscillations have also been seen.
During metaphase in a dividing cell, chromosomes attached to microtubules have been
seen to oscillate with oscillation periods in the 60 second range [40]. It is difficult to
determine the mechanism behind these oscillations and whether it corresponds to the

experiments done in vitro.
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3.2 Previous modelling

As more and more experimental data became available, models have been developed
to try to explain these two types of assembly within microtubules. Obviously some
methods have been more successful than others. This section will briefly outline some

previous attempts.

3.2.1 Dynamic instability

Immediately following Mitchison and Kirschner’s discovery of dynamic instability,
models were produced by Hill and Chen in a series of papers [41, 42, 43]. Their method
was a Monte Carlo simulation on a 5-start helix where they assumed the presence
of a GTP cap and a 13 protofilament A lattice. They had specific binding rules for
new dimers on the end of a microtubule and a total of 24 hydrolysis rate constants.
Similar methods were employed by Bayley and co-workers [44, 45, 46]. They also used
a Monte Carlo approach, but considered two states for the microtubule: growing and
shrinking. They again assumed the presence of a GTP cap and a coupled hydrolysis
mechanism where the binding of an additional dimer would cause the hydrolysis
of the dimer beneath it. If this terminal layer of GTP rich tubulin was lost, the
microtubule would switch from growing to shrinking. This Monte Carlo technique
was furthered by Gliksman et al. [47]. They again only considered assembly of
the ‘4+’-end. The predictions from this model were consistent with Bayley’s group,
including the population distributions that resulted from the simulations.

Much more recently, Flyvbjerg et al. [48] proposed a model involving stochastic
GTP hydrolysis as opposed to the coupled hydrolysis mechanism. This model pro-
duces small GTP caps, but they are small enough to be consistent with experimental
findings. Unfortunately, no plots of the growth profile of an individual microtubule

were provided.
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3.2.2 Microtubule oscillations

Just as in the case of dynamic instability, Chen and Hill were the first to attempt
to produce a model for microtubule oscillations {49]. They only considered a single
end of a polymer and assumed a growing and a shrinking phase. The transition rates
between these two phases were dependent on the tubulin concentration. Their model
did not allow for the disappearance of polymers and there was a very limited range
of rate constants that produced “semi-satisfactory” results.

Marx and Mandelkow [50] produced a model for oscillations in the ‘high-GTP’
case. They considered growing and shrinking microtubules as separate entities and
had a very complicated set of equations governing the transitions between free tubulin
and microtubules and the binding of nucleotides. The rate constants in their model
had a complicated exponential dependence and there was a total of 15 free parameters.
They could produce reasonable oscillations, but only if they did not include the
dependence of the catastrophe and nucleation rate on the concentration of GTP.
They also stated that they required some additional effect of oligomers and tubulin
on microtubule nucleation or catastrophe. They went on to perform Monte Carlo
calculations with over 2000 coupled equations. They concluded that the nonlinear
dependence of nucleation, catastrophes and rescues on the concentration of GTP rich
tubulin was not enough to produce oscillations. They also stated that it seemed likely
that the presence of GDP rich tubulin could significantly increase the catastrophe rate.

A recent paper by Houchmanzadeh [51] considered growing and shrinking micro-
tubules. With these two species, they set up two coupled reaction equations in (1+1)
dimensions. Very high concentrations were required to produce oscillations and they
would disappear if the GDP to GTP conversion rate was increased or decreased. As
written in a paper by Mandelkow et al. [38], ‘All models are unsatisfactory in some
respect, either in curve shape, amplitude or damping factor’. This is the problem

which we will attempt to address.
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Figure 3.2: Experimental data showing the oscillations of an ensemble of micro-
tubules. The amount of oscillation varies with the tubulin concentration (given in
the inset). Data courtesy of E. Mandelkow.

25



Chapter 4

Modelling Single Microtubule
Growth

As described in the previous section, several authors have modelled dynamic insta-
bility in microtubules, mostly by Monte Carlo methods. In these simulations, sets
of rules are set up and the system simply evolves according to these rules. The fac-
tors controlling microtubule assembly are many and their effect is not always well
understood. The obvious controlling factors are temperature, tubulin concentration
and the supply of GTP, but there are also large effects from pH, assembly promoting
elements such as DMSO or Mg?** and assembly inhibiting factors like Na*, K+ or
drugs such as taxol. The basic elements of growth are known, the process of shrinkage
and the reason for collapse, however, are not well understood. Originally, it was spec-
ulated that a microtubule collapsed due to the loss of a GTP cap, a feature known
to exist in actin filaments. No evidence has been found for this cap and the actual

destabilizing mechanism is not known.
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4.1 Statistical Analysis

The irregularity of the growth and shrinkage patterns observed in experiments suggest
a complicated behaviour. In most of the biophysical and biological literature, two
main modes of behaviour have been identified and termed: (a) catastrophes, a sudden
change from growth to shrinkage, and (b) rescues, a sudden change from shrinkage to
growth. The implication is that these are two distinct phases that the system must
choose between. These phases are very different from each other and it seems likely
that they are in fact independent. The overall tendency is for microtubules to grow.
It is perhaps more plausible that there is one stable phase (growth) that provides
the dynamical background. The smooth and largely linear behaviour of this growth
phase is occasionally interrupted by stochastic, unpredictable events (catastrophes).

The question of the degree of randomness in terms of frequency and size of catas-
trophes has not been answered. Several authors have examined the statistical prop-
erties of these events [52, 53] and have found limited results. It appears as if the
power spectrum of microtubule length life histories has an exponent of 1.1-1.2. but
conclusions are difficult to draw from this. We will examine the growth profiles using
a different method. First for interest’s sake, using standard Fourier analysis, we can
find the Fourier transforms for the different assembly plots. No dominant frequency
can be distinguished. Also, no characteristic features of period doubling or transitions
to chaos can be detected in these plots (see Figure 4.1(b)).

Another method of looking for order within a seemingly random system is to
calculate the Hurst exponent [54]. Hurst developed a statistical method for dealing
with series of observations which he called ‘rescaled range analysis’. To perform this
analysis we require several definitions. Following Feder [54], we assume that we are

measuring a variable £ as a function of time. The average value of £ at a given time
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Figure 4.1: Three sets of experimental data for single microtubule growth and their
Fourier transforms. Top two set of data courtesy of E. Mandelkow and the bottom
data courtesy of S. Pedigo.
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The accumulated departure of £(t) from the mean value (€), is defined as

X(r,t) = g (€)= (6).)- 4.2)

The range R is the difference between the maximum and minimum values of X(r,¢),

namely
R(r) = max X(r,t) — min X(r,¢). (4.3)

The range R will be rescaled by the standard deviation S defined by

1.7 1/2
s=(txem-©r) - (@)
t=1
So for a time series of recorded observations, the rescaled range should the relationship
R _(m\¥
5= (4.3)

where H is the Hurst exponent which is bounded between 0 and 1. A Hurst exponent
of 0.5 indicated a purely random process or ‘white noise’. A process with H > 0.5
indicates persistence or a correlation between the past trend and future behaviour.
This means if a variable was increasing in the past, it should continue to increase.
H < 0.5 implies antipersistence or anticorrelated behaviour. Most natural phenomena
follow Hurst statistics, usually displaying persistence. This is not surprising since
most naturally occurring events depend to some extent on past history (eg. rainfall,
temperature, etc.).

We have three different data sets to work with, each one for a microtubule under-
going a series of catastrophes and rescues (as shown in Figure 4.1(a)). These data
look similar to one another to a certain extent, but they differ with respect to growth

velocity, frequency of catastrophes and rescues, and the general smoothness of the
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Figure 4.2: Recursive maps and Hurst analysis for the three sets of experimental data
given in Figure 4.1.
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plots is different. Instead of the usual time series representation of the experimental
data, let us represent it as a recursive map where we plot the length of a microtubule
at time t, versus the length at time t,,;. These plots show a predominantly lin-
ear nature with another branch near the x-axis (Figure 4.2(a)). This again supports
our postulate of a steady growth phase interrupted by catastrophes. If we perform
rescaled range analysis and plot log(R/S) versus log(T/2) we get the plots shown
in Figure 4.2(b). Despite the differences in the data, the Hurst exponents are 0.96,
0.96 and 0.97, respectively, for the three plots above. This indicates a process that
is highly persistent and strongly supports the idea that this dynamic behaviour is
the result of a growth phase being stochastically interrupted by catastrophes. This
may also demonstrate that the mechanism causing this instability is the same in all
three systems. This rescaled range analysis will prove useful in differentiating between

various models that we will develop next.

4.2 Recursive Maps

With these statistical aspects in mind, we can try to develop our own system for

modelling dynamic instability. We can model this using a very simple stochastic
map:

Tns1 =T1(Tp +a) (4.6)
where a is the amount of growth, z; the length of the microtubule at time ¢; and r is
a random number chosen as

r = 0 with probability P
r = 1 with probability 1-P.

(4.7)

1 — P is the probability that the microtubule will grow by an amount a and thus P is
the probability that the microtubule will collapse to length zero. We can get a value
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for a from experiments since it simply represents the growth velocity multiplied by
the time interval between ¢, and t,;.

What is obvious from looking at the experimental plots is that quite often the
collapse of a microtubule is not complete. To represent this, we can modify our linear

map to a more general form
T4l =T(Tq +b)c+ (1 — r)(za + d)e. (4.8)

If we choose b = 1 (ie. one unit of addition), c=1, d = 0 and e = 0.3 (microtubule
collapses to 30% of original length), we can produce more realistic maps. The param-
eter e can easily be found be taking the slope of the branch near the x-axis on the
recursive map plots. A plot of the growth profiles in Figure 4.3(a) and the accompa-
nying recursive maps in Figure 4.4(b) agree well with the experimental picture. They
were done for two choices of the probability P = 0.10 and P = 0.05. The plots in
Figure 4.3(a) and (b) look very similar to each other. Note that by changing the value
for e we can move the lower branch of the recursive map closer to the x-axis or closer
to the diagonal line in the center of the graph. If we calculate the Hurst exponents,
we find that H = 0.69 for the choice of P = 0.10 and H = 0.96 for P = 0.05. The
rescaled range plots along with the linear fits are given in Figure 4.3(c). This added
analysis gives us a method of selecting one choice of P over another.

To this point, we have assumed the probability of collapse to be constant. Exper-
iments show that with rising tubulin concentration, the probability of a microtubule
collapsing goes down. As well, we would expect that as the amount of assembly com-
petent tubulin is decreased (simply because it is assembly into a microtubule) the
catastrophe probability should increase. Thus we can make the adjustment as

L]

P=h+h units

(4.9)

where P is still the probability of collapse, s is the length of the microtubule and units
is the total number of tubulin subunits available for assembly. The base probability
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Figure 4.3: Growth profiles, recursive maps and Hurst analysis for two simulations
with: (a) P =0.10 and (b) P = 0.05. The resulting Hurst exponents are given in the

inset.
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is P, = 0.05 as was determined in our initial analysis. Figure 4.4 shows the plots,
recursive maps and Hurst analysis for two cases: P, = 0.5 and 0.9. The Hurst
exponents for these two case were 0.73 and 0.65, respectively. Other cases have been
investigated, but the transition behaviour is smooth down to the point P, = 0 where
once again H = 0.96.

This increase in collapse probability due to the tubulin concentration is not the
only effect we need to consider. Figure 4.5(a) shows a schematic presentation of the
growth of an individual microtubule from nucleation to a steady state as adapted
from Alberts et al. [2]. The time derivative of such a plot would give the rate of
microtubule growth. We can fit the plot quite well with the function

L = 0.4(1 + tanh(z — t,)). (4.10)

L is the length of the microtubule which goes from 0 to 0.8 and the time ¢ is in

arbitrary units. If we take the derivative we get

ab _ 0.4sech®(t — t;). (4.11)
dt
If we invert eq.(4.10) we can write
L
. — -1 —— —
t —t; =tanh (0.4 1) (4.12)

which substituted into eq.(4.11) gives us

dL <, L L
TF = Odsech’(tanh™! (5% — 1) =041 - (g5 -1 (419

Thus the rate of growth varies with the length as shown in Figure 4.5(b), reaching
a maximum rate when the microtubule is roughly half of its steady-state value. It
is logical to assume that as the probability of binding a dimer goes up, the rate of
growth would be higher. Thus we assume an additional component to the collapse
probability

s

- P, (0.4(1 = (———— — 1)?)). (4.14)

P =P+ P
o+ 5 0.4 units

units
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Figure 4.5: (a) Schematic representation of the growth of a microtubule (adapted
from Alberts et al. [2]) and (b) the derivative of this plot showing rate of growth.

Once again we fix Py = 0.05, but P; must not be chosen too large to avoid our
probability P becoming negative. A reasonable choice proves to be P, = 0.7 and
P; = 0.2. Figure 4.6 shows all the plots for these choices of parameters.

We have included two pieces of information as to how the collapse probability
is affected by the tubulin concentration and the length of the microtubule. With
this, we have managed to reproduce plots that reasonably agree with the picture
from experiments. As well, our simulations produce similar recursive maps and Hurst
exponents. The ultimate goal, however, is to explain the transition from the stochastic
behaviour of a single microtubule to the smooth oscillations of an ensemble. By

coupling many of these recursive maps together, we hope to achieve that end.
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4.3 Coupled Recursive Maps

The transition from the stochastic growth of a single microtubule to the coherent
oscillations of an ensemble of microtubules is as of yet not well understood. It is
postulated that the microtubules begin in a synchronized state and evolve, eventually
losing this synchrony due to dynamic instability. This seems plausible in experiments
where the onset of nucleation and oscillations comes from a fast temperature jump. In
this situation, the entire microtubule ensemble begins in the same state. In other cases
where oscillations are seen, there is no known mechanism that starts the ensemble
out under such controlled conditions.

There is a need for microtubules within an ensemble to be able to communicate
with one another. This may occur via dipolar interactions, but what we will consider
will be communication via some biochemical means. The microtubules are growing
within the same buffer and this may be their point of interaction. All of the models
derived here have given realistic results in terms of the growth profiles for single
microtubules, even of different types. By coupling several of these recursive maps
together, we can gain some idea of the ensemble behaviour. The coupling in this case
is simply due to the fact that all the microtubules are growing from a common pool
of tubulin.

A note is in order here on the computational methods employed. Each microtubule
obeys a recursive map as given by eq.(4.14). We must choose a reasonable number of
microtubules for the amount of available tubulin dimers. For 500 dimers, any number
of microtubules between 1 and 50 gives good results. If the number of subunits were
increased, the number of microtubules would also need to be increased to gain the
same results. It is easily demonstrated that for 500 dimers and 30 microtubules, the
results are identical to a choice of 5000 dimers and 300 microtubules in terms of the

fraction of tubulin that assembles. In each case, roughly 50% of the tubulin forms
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microtubules, which in consistent with experimental data. The results for the larger
simulations are smoother since the collapses constitute a smaller percentage of the
overall ensemble, however the number of coupled equations and hence the required
computational time increases. A further refinement of this model must be made. We
cannot permit all microtubules to evolve at each time step in the simulation. This
effectively allows all the polymers to access the same individual tubulin dimers at the
same time. By taking smaller time steps and allowing only one microtubule (chosen
randomly) to grow or shrink, the process would more resemble an actual experiment.
When this modification is done, the changes in the total amount of assembled tubulin

are not so drastic.
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Figure 4.7: Plot of total assembled tubulin for 5 coupled microtubules (top curve)
and a single microtubule.

We begin with 500 subunits available and 5 microtubules. Figure 4.7 shows the

total amount of assembled tubulin as the simulation progresses. For comparison, the
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plot of a single microtubule following the same recursive map is included. The curve
that emerges is still very choppy and erratic. We know from Obermann et al. [37]
that a minimum number density of microtubules is required for oscillations. Figure
4.8 shows the same simulations for both 30 and 50 microtubules. In this case, as
the number of microtubules is increased, the system simply evolves towards a steady-
state value. Increasing the number beyond 50 has very little effect and too high a

number causes the situation of many short microtubules, none of which are able to

grow effectively.

Total Assembied Length

Figure 4.8: Plot of total assembled tubulin for 30 coupled microtubules (bottom
curve) and 50 coupled microtubules.

One factor we have ignored is that the dimers freed in a microtubule collapse are
GDP rich, not GTP rich. In order for them to be able to reassemble they must be
able to exchange their bound nucleotide. If there is no mechanism for regenerating

GTP from the GDP that is released, eventually all the GTP will be consumed and
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Figure 4.9: Plots of the fraction of assembled tubulin for 300 microtubules. The rate
of GDP to GTP conversion at each time step is: 0.3% (top curve), 0.1% (middle
curve) and 0.05% (bottom curve).

all of the microtubules will disassemble. If instead we include a process for regener-
ating GTP from GDP, there will always be the possibility of assembly. A small rate
of GDP—-GTP conversion (1-2%) at each time step in the simulation proves to be
sufficient to generate an overshoot in the amount of assembled tubulin. If the rate
is increased, the system behaves as before and grows to saturation (see Figure 4.9).
This is consistent with the experimental findings presented in Chapter 2. There it was
found by several authors that increasing the concentration of the enzyme responsible
for this conversion removed oscillations from the system or conversely decreasing the
concentration introduced oscillations into the system [31]. We do not see the oscilla-
tions here, but the behaviour does change with different conversion rates. Figure 4.10
shows three different simulations for 200, 300 and 500 microtubules. The number of
tubulin dimers was 5000 and at each step in the simulation 0.3% of the GDP in solu-
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tion was converted to GTP. The result was once again saturation with the possibility
of a small overshoot. Despite trying many combinations of parameters and constants,

oscillations could not be produced using such a methodology.
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Figure 4.10: Plots of the fraction of assembled tubulin for 200 (bottom), 300 and 500
(top) microtubules. The rate of GTP to GDP conversion at each time step is: 0.3%.

What seems to be the limiting factor in the effectiveness of these simulations is
that the number of microtubules, while able to be changed, is fixed for the duration of
each simulation. We know from experiment [37, 30] that the number of microtubules
change from the start to finish of oscillations with fewer and longer microtubules
being the result. It has also been determined that self-nucleation of microtubules is
required for oscillations [37]. The next chapter deals with the case of microtubule

nucleation in a different formalism.
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Chapter 5

Modelling using a
Landau-Ginzburg Approach

It seems plausible for us to view the process of microtubule formation as a liquid-solid
phase transition. The parallels between inhomogeneous nucleation in a first order
phase transition and that of microtubule nucleation and growth are sufficient for us
to follow this line of reasoning. We can directly equate the liquid phase with that of
free tubulin. This is the regime where the solid phase, ie. microtubules, are unstable.
Similarly the solid phase would correspond to free tubulin being the unstable solution
and microtubules being stable. In this regime, we would see self-nucleation of mi-
crotubules just as in standard nucleation phenomena. In experimental situations, we
can find ourselves in any three of these regions. When the buffer conditions are not
correct, the temperature too low or perhaps the tubulin concentration insufficient,
microtubules are unstable. This would correspond to the liquid phase. As conditions
are altered so that microtubules can form, the system would enter the coexistence
region. Once the tubulin concentration is raised beyond a certain level, microtubules
would begin to self-nucleate within the solution. This is the solid phase. Figure 5.1
shows a phase diagram constructed using data points from Fygenson et al. [55] which
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depicts these three regions of the phase diagram..
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Figure 5.1: A phase diagram for microtubules. Data points taken from Fygenson et
al, 1994.

5.1 Landau-Ginzburg Free energy expansion

One preferred method of dealing with such a phase transition is using a Landau-
Ginzburg approach. In this case we would expand the free energy in terms of some
order parameter. Temperature is a natural choice for a control parameter in our
system, but the concentration of tubulin will also control the phase dynamics. This
parallels once again liquid-solid transitions where temperature and pressure (density)
control the phase of the system. From the phase diagram, we see that upon raising
the temperature and/or the concentration of tubulin, we move from the state of free
tubulin to the coexistence region. As for the order parameter, experiments tend to
measure the turbidity which is basically the amount of assembled tubulin. This will
also be our choice of an order parameter since it is zero in the disordered state (free

tubulin) and non-zero in the ordered state (assembled tubulin). Since we have no
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symmetry requirements for the order parameter, we choose the expansion for the free

energy as:
F(¢) = A¢* + B¢* + D¢* (5.1)
where
A = A(C,T)
B <0 (5.2)
D >0

A physical interpretation of these expansion coefficients in terms of the underlying
processes will be given in Chapter 7. For the control parameter in our expansion, 4,
we choose it to be a function of the concentration C and the temperature T. The
requirement that B < 0 is simply so that the ordered phase appears at ¢ > 0. What
makes this formulation different from standard Landau phenomenology is that instead
of approaching the ordered phase as we lower the control parameter (T for example),
in our case we approach the ordered phase by raising either the temperature or the
tubulin concentration. This point must be kept in mind when we choose a particular
form for A. Taking the form of the free energy expansion given in eq.(5.1), we want

to solve the equilibrium condition

— =0 (5.3)

which gives us the non-zero solutions:

-3B + 9B% = 32AD
Pz = 3D . (5.4)

In order for ¢4 to be real roots, we require that

9B% ~ 324D > 0. (5.5)

The point at which this is equal to zero is exactly the point at which the solid phase

(ie. a microtubule) begins to appear. If we continue to raise the control parameter(s)
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(which in our formulation causes A to become smaller), we eventually reach the point
A = 0 which defines the solid transition point. Beyond this point, the liquid (free
tubulin) state is unstable (see Figure 5.2 for clarification).

Liquid Coexistence
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Figure 5.2: Plots of the free energy potential showing the three phase regions in our
theory.

We have several unknowns in our free energy expansion. We can gain some infor-
mation about the value of the expansion coefficient by looking at the experimental
phase diagram Figure 5.1. We can perform a fit to the data for the top curve (solid
transition line). This line has the basic characteristic

(T -T.) « (C — C.)~°5 (5.6)

where roughly T, = 4°C and C. = 1.5 pM. This curve corresponds to the point where
A = 0, therefore we postulate that

Ao (T - 4)(C -15)*-105 (5.7)

46



or adding in a constant of proportionality
A = a[105 — (T — 4)(C - 1.5)%9) a>0. (5.8)

Recall the requirement that we approach the ordered phase as we raise the control
parameter(s). Thus we must choose the particular form given above for A. For small
temperatures and/or concentrations, A > 0. As we raise one or both of the control
parameters, A approaches zero which is what we required. The bottom curve in Fig.
5.1 is the point where the coexistence region begins. As shown before, at this point

9B? .
A= 527)' (0.9)
which directly leads to
105 — 282
(T-4)= C =155 (5.10)
If we assume a, B and D to be constants, we can best fit the data by choosing
9B2
392D = 48. (5.11)

Plots of both eq. (5.8) and eq. (5.10) are shown in Figure 5.3. It is possible that a
better fit may be obtained by assuming that one or more of the coefficients depend
on one or both of the control parameters, but this would needlessly complicate our
calculations. Our model certainly fits the data points from experiment very well.
Aside from the phase diagram, Landau-Ginzburg theory can make predictions for

order parameter solutions which is our next step.

5.2 Mean Field Dynamics

5.2.1 Adding surface energy

We want to extend our model to include the so-called Ginzburg term. This in turn

brings in surface energy, due to the interface between the two phases, and kinetic
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Figure 5.3: Plots of egs. (5.8) and (5.10) along with the experimental data points.

energy of the floating microtubules’ interface motion. This last addition corresponds
to the kinetics of growth and shrinkage of the microtubules. We will treat our system

as one-dimensional and thus our free energy expansion is now a functional of the form

2
F= / dz [g(wf + 1'2’- (%t?) + Ad? + B¢® + Dot . (5.12)

This gives rise to the equation of motion for the solid-liquid boundary
mé —do’ +v¢ + 2A¢ +3B¢* +4D¢* =0 (5.13)

where a ‘friction’ term ¢ has been added in by hand. This equation represents the
motion of the phase front, ie. the leading edge of the microtubule. The friction term
is representative of the fact that the microtubule can only grow when there is tubulin
around. The less tubulin that there is, the slower the microtubule grows. Also, as the
tubulin becomes used up, the rate of growth will slow. Therefore, it seems natural
that v will depend on the tubulin concentration. This follows the ideas suggested
in papers by Melki et al. [31] and Mandelkow et al. [38] where they put forward
the concept that tubulin bound with GDP may block the ends of microtubules for
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tubulin bound with GTP. Although we are not considering GDP and GTP in this
formulation, as the assembly competent tubulin becomes used up, there will be more
GDP-tubulin in the solution and hence more friction.

If we assume a traveling wave type solution so that our order parameter has the
functional dependence ¢ = ¢(£) where § = z — vt is our moving coordinate, our

equation of motion can be written
(mv? -~ d)¢’ — yvd +2A¢+3B¢* +4D¢* =0 (5.14)

where ' = 8/0€. The solutions to this nonlinear ordinary differential equation will

give us our order parameter patterns in terms of the moving coordinate £.

5.2.2 Solving the equation of motion

Solving the equation of motion (5.15) is quite straightforward. The choice of initial
conditions is really the key to the behaviour. We know that the critical parameters
are the concentration of seeds and the concentration of GTP [37]. Our order pa-
rameter represents the amount of assembled tubulin. The concentration of seeds for
microtubule growth is essentially an amount of pre-assembled tubulin, therefore it
is natural to choose ¢(0) according to this criterion. The amount of available GTP
is indicative of the potential growth and hence could be thought of as defining the
initial derivative ¢ (0). These choices are certainly open to question and revision, but
as we shall see, they produce acceptable results.

The coefficient of the ‘friction’ term should depend on the tubulin concentration C.
This is because the more tubulin there is, the higher the number of tubulin molecules
that may encounter the end of the microtubule. With this in mind, we will assume
that v depends on C as v oxc C~! so that low concentration means high ‘friction’ and

vice versa.

In order to compare our results to those from experiments, we need to have similar
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conditions. Thus we are basically required to fix our temperature T at 37°C and only
work with one control parameter, C' the tubulin concentration. From looking at
the phase diagram, we see that this gives us a critical concentration for microtubule
growth of C = 4.7uM and a critical concentration of C = 13 uM for microtubule
self-nucleation. Using the initial conditions stated above, the equation of motion was

solved using Mathematica. The results are shown in Figure 5.4 and 5.5.
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Figure 5.4: The amount of assembled tubulin versus time for (a) 3 uM and (b) 6 uM
tubulin concentration. Both solutions performed at 37°C.
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Figure 5.5: The amount of assembled tubulin versus time for for (a) 15 uM and (b)
25 uM tubulin concentration. Both solutions performed at 37°C.
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The solutions that we acquire show a transition that occurs as we raise the tubu-
lin concentration. First we see that at low concentrations microtubules form, become
unstable and collapse. At slightly higher concentrations, the system grows to satura-
tion, perhaps with a small overshoot. Then, at even higher tubulin concentrations,
oscillations enter in, increasing in size as we raise C. In comparing these solutions
with the oscillations seen in experiments we find several similarities. First, the tubulin
concentrations at which growth begins and oscillations occur are in agreement with
experiment. In this sense we can only look at the order of magnitude since there are
many additional factors that we have not included in this theory. Second, as we raise
the tubulin concentration, the steady-state value that the system works towards in-
creases. Unfortunately, we cannot estimate what fraction of the tubulin is assembled.
Lastly, the form of the oscillations looks very much like the experimental patterns.
Aside from these points, the oscillations were produced using the parameter fits from
the phase diagram in Figure 5.1. The phase diagram and the experimental data were
acquired separate from one another and it is nice to see that this simple theory can

explain them both.

5.3 Other predictions from the model

Because we have a simple expression for the free energy of our system, we can deter-
mine other properties of the system such as specific heat. The specific heat is found
using

OF (¢)

C= —T‘—aT- (5.15)

where F is the free energy expression given in eq.(5.1). We would initially expect
to see a change in the specific heat when the new solid phase is introduced into the
system. This is in fact the case as seen in Figure 5.6. What is different in this system
is that the ordered phase is the high-temperature phase and thus the plots of specific
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Figure 5.6: Specific heat predicted by our model as a function of temperature and
tubulin concentration.

there is thermal hysteresis present. As the tubulin concentration is increased, the
transition lines between the three regions become closer together and the hysteresis
region becomes smaller. It is conceivable that at high enough tubulin concentrations
these two lines would meet at a triple point. Beyond this point, the monotonic growth
region would not exist and we would simply have a second order transition from no
growth to oscillations. It would be interesting to test this experimentally. Using a
method such as Differential Scanning Calorimetry we could find the contribution to
the specific heat from the phase transition without any of the background effects.
This would also be a prime method for determining the order of the transition. The
effect on the specific heat due to the phase transition may also be observable via

other means. Since the dimers and the microtubules are polar objects, there may be
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a change in the dielectric constant or the polarization of the system. To detect this,
the phase transition would perhaps need to be carried out with an applied electric
field.

53



Chapter 6

Reaction Kinetics Model

In the preceding chapter, it was demonstrated how a Landau-Ginzburg phenomenol-
ogy could give rise to oscillations in a system undergoing a phase transition. This
treatment considered tubulin and microtubules as two different phases of the same
substance. Although at high tubulin concentrations this assumption is quite adequate,
this is only partially correct. The actual phase dynamics are more complicated, and
we need to treat free dimers and microtubules as interacting entities. The method
now will be that of chemical kinetics and it is expected to offer a more accurate
formalism.

6.1 Chemical Kinetics
Imagine that we have a simple chemical reaction
A+B-5C (6.1)

where the reactants A and B are consumed to form the product C. The rate at which

the reactants are consumed must be the same as the rate at which the product C is
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produced. This means
diC] _ _d[4] _ _d[B]
d ~ dt  dt
where we have denoted the concentration of each species by [A], etc.. The rate

(6.2)

at which such a reaction proceeds is often proportional to the concentration of the
reactants to some power. [56]. If our reaction were first order in both reactants, the
rate would be k[A][B] where k is the rate constant. Thus we can write down the rate
laws for each component in the reaction as

d[4] d(B]

- —k[A][B] = = (6.3)
i"(%gl = k[A][B). (6.4)

By solving these differential equations with appropriate initial conditions, we can find
the concentrations as functions of time. The rate constants are usually determined

experimentally and many are found to follow the Arrhenius equation [56]

k = Ae~4F/(RD) (6.5)

where A is a constant, AF is the activation energy required for the reaction, R is the
universal gas constant and T is the temperature in degrees Kelvin. This will be the

basic methodology followed in the next sections.

6.2 Oscillations in (Bio)chemical Systems

In certain situations, reactions described using chemical kinetics do not proceed in
a simple monotonic manner, but exhibit oscillations. Oscillations are not an indi-
cation of the system moving between multiple stable states, but instead represent a
kind of dynamical instability [57] referred to in the context of nonlinear dynamics
as limit cycles. One of the first systems in which oscillations were observed was in

the Belousov-Zhabotinskii reaction [58]. Since then, many such examples have been
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found, including many in biological systems. Such examples include circadian clocks
[59], biochemical processes like the glycolytic pathway (60] and the biosynthesis of
some proteins [61].

In writing down a set of chemical kinetic equations, how can we tell whether or
not oscillations will be admitted? This can be done from a purely mathematical
approach. Suppose we have a set of reaction equations

X = #(X). (6.6)

where #(X) is a vector of the various elements and products of the components of X.
Two criteria must be met for undamped oscillations to occur within such a system

[62]-

1. The divergence of the potential V-7 = 8v;/8X; must change sign on the domain
of {X;}. This is equivalent to saying that the trace of the Jacobian matrix, Tr J,

where J is
Su By
Xy 8x;
Ovy

~
]

LEEIN
x
~
[=,)
~I
—

must change sign. This can also be interpreted as a negative condition of
Bendixson’s criterion [63].

2. The determinant of the Jacobian, Det J, evaluated at the steady state values
must be positive at the point when TrJ = 0.

The second criterion is only required for undamped oscillations. In our case, the
situation is slightly different and we can modify this requirement. To get damped

oscillations, we require that the eigenvalues of J have a negative real part. At the

56



critical point, when Tr J changes sign, at least two eigenvalues will develop an imagi-
nary part giving rise to oscillatory solutions. We will apply these criteria to our model
to check for the solutions that we require.

6.3 Models for Microtubule Oscillations

The approach using chemical kinetics treats the system as a bulk system, just as the
Landau method did. Although we are not modelling individual microtubules, we can
easily include reactions which we know are true of single microtubules. The first such
reaction is the growth of a microtubule by the simple addition of a dimer. This can

be expressed as
MT, + T =5 MToss (6.8)

where MT; is a microtubule containing ¢ dimers, T is a tubulin dimer and k. is the
reaction rate constant for this reaction. We also know that microtubules collapse,

releasing tubulin back into solution. This we can write as
MT, =5 nT (6.9)

where we have assumed that the microtubule will completely collapse releasing all of
its dimers. These two reactions represent the basis of the recursive map formulation
presented in Chapter 4 where we simply had the possibility of growth and collapse.
What was added in Chapter 5 was the nucleation of microtubules. We will include

the same idea here as the reaction
nT 22 MT,. (6.10)

For simplicity we may assume that only one tubulin dimer (n = 1) is required to start
a microtubule. This may seem simplistic, but this choice does not have a large effect

on the overall dynamics. Several different experiments have given different values
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for n. These values range from n = 12 [64] to assembly in the presence of assembly
promoters such as MAPs where as few as two dimers may be required [65)].

These three reactions represent the simplest scheme we can write down. We now
need to develop the associated reaction equations. Before we do this, however, we
must make one observation. Although it is convenient to use the notation MT; in
writing down our reactions, what we are really concerned with is the amount of
assembled tubulin and the number density of microtubules. In our reactions, MT;
represents both of these things. In the growth reaction, the amount of assembled
tubulin, T,, increases but N, the number of .microtubules, remains constant. In the
collapse reaction, both T, and N decrease and in the last reaction both increase. The

equations that we arrive at are:

T = —~k T/N+kN—-kT, (6.11)
N = —kN+kTy (6.12)
T, = kTN-kT,+kTy (6.13)

where we have denoted the free tubulin as T,. Since the total mass of tubulin is
conserved, C = T, + Ty, we can eliminate T, from the equations which leaves us with

N = —kN+k,(C—T,) (6.14)
Te = kyON+kaC — (ke + kn + k4 N)T,. (6.15)

The Jacobian for this system is

J= ( -kc -kn ) . (6-16)
k.(.C - k+T¢ -(kc + kn + k+N)

Applying Bendixson’s criterion shows us that

TrJ = —k. — (ke + kn + k4 N) (6.17)
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which is always negative. Since Tr J does not change sign, we cannot have oscillations.
Perhaps this is not that surprising since this simple system is not really an extension

over the previous models.
One addition we can make is to recognize the difference between tubulin bound

with GDP versus GTP. Our reaction scheme is now

MT, +Tu-GTP =% MT. (6.18)
MT. = nTu-GDP (6.19)
Tu-GTP % MT (6.20)

where we have now ignored the i subscript. Qur system will never be able to work
towards a non-zero steady-state value unless we provide a sufficient number of assem-
bly competent dimers. We can add a process which produces GTP-rich dimers from
the GDP-rich dimers that are released in a collapse:

Tu-GDP <2 Tu-GTP. (6.21)

With this added reaction and the inclusion of the difference in nucleotides, our equa-

tion set is
N = —kN+k,T, (6.22)
T. = k NT,— kT, + kT, (6.23)
Ta = kTo—kT4 (6.24)
Te = ~k NT, -k, Te+ kT4 (6.25)

where T4 represents Tu-GDP and T, represents Tu-GTP. The trace of our Jacobian
in this case is

T J = -2k, - k, — k4N =k, (6.26)
Since all the rate constants are positive and N > 0, once again Tr J cannot change
sign and we cannot have oscillations. Even though we have ‘completed the circle’ in

our set of reactions, we require something more.
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Instead of the mathematical criterion previously discussed, we can give physical
requirements for oscillations to occur. What is needed is that one element of the
system catalyzes its own production [62]. Recall two papers discussed in Chapter 2.
Both Melki [31] and Marx [50] suggested that microtubule collapse may be brought
on by a high concentration of GDP-rich tubulin, especially around the ends of a
microtubule. Since the collapse of a microtubule produces Tu-GDP, such a process
would qualify as an autocatalytic step. Thus we add one more reaction

MT,, + Tu-GDP - (n + 1) Tu-GDP (6.27)

where k; is the rate constant for this ‘induced collapse’. The addition of this auto-

catalytic step gives us the following set of reaction equations:

N = —kN+k,T.— kNT, (6.28)
T, = kNT, - kT, + kTt — kiToTa (6.29)
Ty = kTo~kTi+ kT, Ty (6.30)
T, = —kNT, -k, T, +kT4. (6.31)

From this set of equations, we find that
TrJ =—-2k. —kyN—kn — ky — ki(2Tq — T,). (6.32)

Now because of the last term, Tr J can change sign and oscillations should appear in
this system of equations.

6.4 Determining the Rate Constants

Since most of the reactions in our theoretical model are observed in experiments,
we can estimate many of the rate constants from analyzing data in the literature.

It should be stressed that the reaction rates are strongly dependent on numerous
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[T(°C) k+ (pM~Ts7h)
25 3
30 4
35 7
37 9

Table 1: Values for the rate constant k, at different temperatures. See text for
references.

experimental factors. Temperature is one of the major controlling elements, but
tubulin concentration, ionic concentrations etc. vary from experiment to experiment
and their effects are difficult to accurately quantify [66, 67]. For this reason, we have
assumed reactions involving one reactant are first order and reactions involving two
reactants are second order. We will also assume constant rates or include temperature
effects where warranted.

The first reaction we will consider is the growth reaction given in eq. (6.18). The
rate constant k. has been measured in many experiments, but mainly at 37° C. Table
6.1 lists four measurements at four different temperatures [68, 69, 70, 66] If we assume

an Arrhenius like behaviour such that

k ~ Ae— %

we can plot log(k,) versus (1/T) as shown in Figure 6.1. We see that AE is not
completely temperature independent, but a linear fit to the data will suffice. Thus

we arrive at an expression for k.. as

_75.7kJ /mol

=T YuM™1 s (6.33)

ki = 5.14 x 1013 exp(

where T is the temperature in degrees Kelvin and R is the universal gas constant.
The rate constant k. for microtubule collapse has also been studied by many

groups. Measurements with varying temperature indicate that collapse frequency
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Figure 6.1: Arrhenius plot of log(k) vs. (1/T) to determine the values of A and AFE.

rises with decreasing temperature [35]. Walker et al. [66] found k. = 0.001s~! at
37°C. If we estimate that this rate will grow as we lower the temperature according

to the Arrhenius equation, we can write k. as

_25.9kJ /mol

BT )s7L. (6.34)

k. = 4.32 x 1078 exp(

In determining k,, we again have more experimental data. An Arrhenius be-

haviour is again found and the rate constant has the form [71]

7837 /mol

— 7
k., = 8 x 10" exp( RT

)s~t (6.35)

such that at 37°C, k, >~ 4 x 107 s~1. We know that nucleation is one of the slower

processes in the reaction cycle and this rate is in accordance with that.
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The actual reaction for regenerating GTP and exchanging the nucleotide at the
E-site in a tubulin dimer is not as straightforward as we have presented it. The actual
process is mediated by enzymes and requires several steps. In the same sense, the
process given in eq.(6.21) is quite general and simply represents GDP-rich dimers
being turned into GTP-rich dimers. Hence, this process may or may not involve the
breakup of oligomer rings [50]. It is difficult to assign a rate constant to such a process
and we will try several possibilities when generating solutions. As a rule, &, will be
on the order of 2s~1.

The last rate constant we have to determine is k; for the autocatalytic reaction
(6.27). No experimental data for this reaction exist. We will leave this rate constant
open to try and fit the phase diagram shown previously in Chapter 5.

6.5 Phase Diagram of Microtubule Assembly

The phase diagram we presented in Chapter 5 showed three regions of microtubule
assembly. We had made the connection between the region of spontaneous nucleation
and microtubule oscillations. Like the axes on the diagram, we have temperature and
tubulin concentration as the control parameters in our system. The temperature will
affect the rate constants and the tubulin concentration will determine the dynamics
since we require total tubulin concentration: C = T, + T4 + T¢. In order to find the

transition point to oscillations, we must find the eigenvalues of our Jacobian matrix

( —k. — kT4 0 kN kno )
J= ks T, k.~ kTa —kiTa kn + k+N (6.36)
0 kc + k‘Td kiTa - kr 0
\ -k, T, 0 k., —kn — kN y

evaluated at the steady-state values for T,, Tq, T; and N. We find the steady-state
values by solving our reaction equations (6.28-31) with T, = T4 = T, = N = 0. This
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leads to the following

N=x in’lf:'r, (6:37)
T, = N(1+I—°ka) (6.38)
0 = k TN+ kT~ kTq (6.39)
C = T.+Tu+T. (6.40)

After much algebra, we find that N is a root of the quartic algebraic equation

k2 k;N* + 2k kiknN® + (~kikckn — Ckykikn + kik3 ~ kyknk,)N? (6.41)
+(—kek? — Ckik2 — kckoky — k2K, )N + Ck2k, =0

and the other solutions are then found as

k
T, = N(1+—ka) (6.42)
k. + k+N)(C — N — &N?
T, = ( +N)( =N%) (6.43)
ko + ke + kN
T - k.(C ~ N — N?) ]
© T kat+ ke + kN (6.44)

Despite the quartic equation for N, it can be determined numerically that there
is only one positive root for N that gives positive results for T,,Tq and T,. These
values are all found numerically and substituted into the Jacobian. The eigenval-
ues of the resulting matrix can easily be found using Mathematica [72]. Thus for a
given temperature (or tubulin concentration) we can find the tubulin concentration
(or temperature) at which oscillations appear. This will be the point when two of the
eigenvalues develop imaginary parts. This change always occurs in pairs of eigenval-
ues. Since the determinant must be real, if we have one complex eigenvalue, we must
have another which is its complex conjugate. We still have freedom in choosing our

rate constant k;. A choice which proves to give us the best fit to the phase diagram
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~10.75 kJ/mol
RT

which at 37°C and a Tu-GDP concentration of 0.1 uM has a value of 0.02s~!. The

k; = 13.0 exp(— )uM™1ts7t (6.45)

second curve on the phase diagram is the transition line from no assembly to mono-
tonic growth. Although we do not consider it in our reaction scheme, just as a single
dimer can be added to a microtubule, a single dimer may come off. The ratio of the
off and on rates for a single dimer determines the critical concentration for assembly
[36]. The off rate k_ has a wide range of values in the literature, between 7 s~! and
89s~! [66, 11, 73, 50]. This discrepancy is mostly due to different buffer conditions.
To best fit the data, we chose a value of k- = 28 s~! so that the critical concentration

for assembly has the form

C.= k_. _ 28 s~!

: 6.46
k+  5.14 x 1013 exp(— 21 mely M~ 5-1 (6.46)

The plots of C. and the transition line predicted for oscillations are shown in Fig-
ure 6.2. The fit between both experimental and theoretical curves is very favourable.
It is also noteworthy that most of our rate constants have an experimental basis. Now
using these same rate constants, we can find solutions to the set of egs.(6.28-31) to

see how microtubule assembly proceeds in time.

6.6 Solving the Reaction Equations

We would now like to solve the reaction equations (6.28-31). The equations are
all first order in time and we simply require initial conditions for all the variables.
The solutions are found using a fourth-order Runge-Kutta method. This method
also incorporates a variable step size which can be reduced if the fifth-order term
exceeds a user-defined threshold. In this system, the solutions were very smooth in

their evolution and the step size actually remained constant. The initial conditions
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Figure 6.2: Theoretical predictions and experimental data points for the two transi-
tion lines from no assembly to assembly and from assembly to oscillations.

proved to be quite arbitrary. The steady-state value that the system works towards
is only based on the choice of temperature and tubulin concentration. These two
values determine the rate constants which define the steady-state value. Figure 6.3
shows typical plots for T,, T4, T, and N for the initial conditions T, = 40 uM and
T, = T4 = N = 0. If we would instead begin with Tq = 40 uM and T, = 0, there is
an initial lag when there is not enough GTP for assembly to occur (see Figure 6.4).
This deficit is soon overcome and the system proceeds as in the first case. In order to
make this somewhat easier, a graphical user interface was constructed on top of the
ODE solver. This enabled immediate results for a choice of temperature and tubulin
concentration, making an exploration of all the possibilities of the set of equations

very straightforward. With all of the parameters established, we can investigate the
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Figure 6.3: Solutions for T,, T, T4 and N as functions of time. Simulations were
performed for T = 37°C and C = 40 uM.

possibilities of the system and compare the results to experiment.

6.7 Comparison with Experimental Results

The most basic of all results in microtubule oscillations is that with increasing tubulin
concentration, monotonic growth gives way to oscillations which continue to grow in
size with rising concentration. Figure 6.5 shows the simulation results from our model
for four different tubulin concentrations. The results agree well with one another
and similar experimental findings [32]. It is interesting to note the overshoot which
occurs between the stages of monotonic and oscillatory growth. This feature also
appears when measured in the laboratory.

A second similar effect is seen when assembly is performed at different temper-
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Figure 6.4: Solutions for T, as a function of time for two sets of initial conditions.
The solid line is for T, = 40 uM with all other variables initially set to zero and the
dashed line is for T4 = 40 uM and all others set to zero.

atures. Figure 6.6 shows the theoretical and experimental results. Although more
evident in experiment [37], lowering the temperature produces a slower rise time and
less pronounced oscillations with a greater period.

The temperature jump studies that are often performed involve quickly raising
the temperature from 4°C to 37°C. If the temperature is raised slowly, it has a large
effect on nucleation and the oscillations that result {37]. The same is found in this
theoretical model (Figure 6.7). The more slowly that the temperature is raised, the
more time the system has to adapt before oscillations enter in. This gives a slower
rise time and smaller oscillations.

As was seen in the last section, the amount of assembled tubulin is not the only
quantity which exhibits oscillations. It has also been observed that the free tubulin
that is GTP-rich oscillates, although out of phase with the assembled tubulin [74].

68



Turbidity

0.5-
0.4+
0.3
0.24
0.1+
0.0+

0.3-
0.2-
0.1-
0.0-

0.2-
0.1+

S

ST

25 mg/ml

12.5 mg/mi

8.5 mg/mi

0.0

T
0

1
10

T
20

Time (minutes)

(a)

69

30



14 14}

12} 40 uM 12 30 uM

10 10 —

8 8

6 6

4 4

2 2

0 50 100 150 200 0 50 100 150 200

14 14

12 20 uM 12 10

10} o 10 M

8 8

6 6

4 4

2 2

0 50 100 150 200 0 50 100 150 200
(b)

Figure 6.5: Plots of (a) experimental (previous page) and (b) theoretical results for
microtubule oscillations at various tubulin concentrations. The results are both for
37°C. Experimental data courtesy of E. Mandelkow.
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Figure 6.6: Plots of (a) experimental [37] (previous page) and (b) theoretical results
for microtubule assembly at different temperatures. Simulations are for a tubulin

concentration of 40 uM.
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Figure 6.7: Experimental [37] (top) and theoretical (bottom) results showing the effect
of slowly raising the temperature on oscillations and nucleation. For the theoretical
results, in each case the temperature was raised from 0 — 37°C with a half time of 10
(solid curve) and 80 (dashed curve). The time units are the same as the units of the

X-axis.
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The same results occur in the theoretical model and are shown in Figure 6.8.

The amount of GDP or GTP-rich tubulin is a strong determining factor in the
dynamics of the microtubule ensemble. In experiments, if GTP is added after the
system has reached its steady-state value, oscillations are started once again. Figure
6.9 shows these results in both the experimental and theoretical case.

The rate at which GTP is regenerated in the theoretical model plays an important
role in the dynamics. If the rate is elevated to a sufficiently high level, eventually all
oscillations disappear and the system returns to monotonic growth (see Figure 6.10).
Melki et al. [31] reported that the rate of GTP regeneration controlled the period of
the oscillations. Their experimental data along with the theoretical results are shown
in Figure 6.11.

One final experimental result that we can model is for an experiment performed
by Carlier et al. [32]. In order to investigate the effect of microtubule number
density on microtubule oscillations, they sheared the microtubules in the sample at
the peak of the second oscillation. This in effect gives twice as many microtubules
within the sample. Amos [8] noted how, when a stable microtubule was sheared at
its midpoint, the new ‘-’ end was stable while the new ‘+’ end tended to shrink. This
is consistent with measurements indicating that up to 75% of the assembled polymer
would disassemble upon shearing [75]. If we attempt to simulate the same situation,
we set N = 2N and T, = 0.5T, at the peak of the second oscillation. Reducing the
amount of assembled tubulin at this same point takes the collapse of the new ‘+’ end
into account. The theoretical and experimental results are shown in Figure 6.12.
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Figure 6.8: (a) Experimental findings [74] (previous page) and (b) theoretical plots
for GTP-rich tubulin (top curves in each case) and the amount of assembled tubulin
(bottom curves). Note how in each case the oscillations are in antiphase.
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Figure 6.10: Plots of the total amount of assembled tubulin for various values of k..
The values are k, = 25! (solid curve), 5 s~! (dashed curve) and 8 s~! (dotted curve).
All simulations are for a temperature of 37°C and a tubulin concentration of 40 zM.

6.8 Additional Results

Aside from trying to reproduce existing experimental results, we can make predic-
tions for potential new experiments. We have demonstrated how the rate of GTP
regeneration controls the period of oscillations and at elevated values can make os-
cillations disappear. It would be interesting to see a phase diagram similar to Figure
6.2, but with k, as a control parameter instead of temperature. Figure 6.13 shows
the predicted phase diagram from the model where tubulin concentration and k, are
the control parameters. From looking at the diagram we see that if we begin in the
oscillation region with a fixed tubulin concentration, by increasing k., we move into
the region of monotonic growth.

The temperature at which experiments are carried out had proved to be quite
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Figure 6.13: Phase diagram showing the different regions of microtubule assembly for
different values of k. and C. The temperature is fixed at 37°C.

important. It was also seen how raising the temperature had an effect on microtubule
nucleation. We can perform similar simulations, but this time we will lower the
temperature of the system after it has reached a steady-state. Figure 6.14 shows
four plots for lowering the temperature at different rates. In the cases where the
temperature is lowered more slowly, it almost appears as if oscillations would re-
emerge, but inefficient nucleation seems to prevent the system from achieving this.
All of our results in this chapter have been based on the assumption that we are
dealing with a homogeneous system. In terms of chemical kinetics, this is viewed
as a system which is continuously stirred. In the lab however, regions of higher
and lower concentration can occur which can give rise to inhomogeneous oscillations.

As mentioned in Chapter 3, these oscillations produce both temporal and spatial
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Figure 6.14: Plots showing the effect of lowering the temperature after the system
has reached a steady-state. The halftimes listed are in the same units as the time on

the x-axis.

patterns. To incorporate this possibility into our system we need to include spatial
dependence in our variables. It also is natural at this stage to extend our model
to include diffusion. Thus, the chemical reaction model will now become a set of

reaction-diffusion equations. This is the topic of the next chapter.
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Chapter 7

Reaction-Diffusion Modelling

Our system to this point has been assumed to be homogeneous. This is certainly
true in some cases, but very often the reacting species are not uniformly distributed
throughout the sample. If we take this inhomogeneity into account, it is also natural
to allow the species to diffusively move through the cell. Thus, we arrive at a set of

reaction-diffusion equations of the form
X =9(X)+ DV*X (7.1)

where D is a diagonal matrix of diffusion constants. Such a system now allows us to

investigate a much wider range of possibilities.

7.1 Connection with the Landau-Ginzburg Formu-

lation

Before we concern ourselves with solving equations such as (7.1), it is most interest-
ing to note the relationship between a reaction-diffusion approach and the Landau-
Ginzburg method from Chapter 5. Imagine that we begin with a set of egs. (7.1).
We will denote the steady-state solution of our system as X, and expand our system
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of equations in a Taylor series around this point [76]
¢ =DV?¢+ Ap+ Bop +Cobp+ ... (7.2)

where ¢ = X — X,. In this expansion, A is our Jacobian matrix given by
ov;

Ay = X, (7.3)

and the other vectors are given by
(Béd): = 5 : 6—)?623_(: ¢j¢l: (7.4)
(Cood): = Z 3% x,: 3%, ibedr. (7.5)

For a simpler notation, we have dropped the vector notation and to make the calcula-
tions more straightforward we will assume that our chemical system has only second
order and lower reactions so that C = 0. Suppose that we are dealing with a system
involving microtubules. We know that for a fixed temperature, there exists a critical

tubulin concentration C, at which oscillations appear. With this in mind, we define

C-C.
b=z (7.6)
and expand our Jacobian in powers of u as
A=Ag+pA, +... (7.7)

At criticality, we know from Chapter 6 that a pair of eigenvalues of A become complex.

We choose one of these eigenvalues A and expand it in the same manner
A=dg+pA +... (7.8)
For convenience, we define a small parameter € as [76]
b=y S=sgnu (7.9)
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and expand ¢ in terms of €

d=etr+Ed2+... (7.10)

where ¢p = 0 since at the critical point the system remains at Xo. Now our Taylor

expansion coefficients become

A = Ag+0EA +f A+ ... (7.11)
B = By+6éB,+€¢'B+... (7.12)

We also want to introduce slow time and space coordinates, namely

T =€t (7.13)

and
£ =ez. (7.14)

Thus in terms of £ and 7 we will be looking at large scale, slow moving excitations.

This choice of expansion also agrees with Landau-Ginzburg and diffusion theory in

that
T o 12
So now we replace
i N .a_ + 522.
dt at or
and
Vg — €V€
so that our equation set becomes
0 pel _avi_gy-se &
b?+ 5;- E—Ao- Ai+...) (e +€€h2+...) (7.15)
= €By161 +€*2Bodrd2 + O(e*) (7.16)
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Matching powers of € gives us:

e: (Z-4)h =0 (7.17)

é: (&~ ) =Bt (7.18)

e: (Z-4)h =- (58; — 64, - Dvg) ¢1 + 2By 6, (7.19)

€: (Z-A)¢: =A (7.20)
By examining eq.(7.20) it seems appropriate to express both ¢; and A; in a Fourier
series as
$ilt,7) = ;4,,("(1) eilbot (7.21)
Alt,r) = S AD(r) et (7.22)
l

where f; is the imaginary part of Ay = ap + i, the eigenvalue which approaches
criticality. Thus for each value of ! we get an equation

(ilfo — Ao)g{" = AL (7.23)
If we apply the left eigenvector of Ag corresponding to Ay, ie.
ULAg = AUy,
and take [ = 1 we get

(iBo — MUY = UAY
—agUp¢M = UgA{Y
UL(A +a0glM) = 0. (7.24)

We will come back to eq.(7.24) later since we first need to solve for ¢; and ¢,. From
eq.(7.17) we can easily determine that

¢, = n(T)Ure”* + 7j(1)Upe "ot (7.25)
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where 7 is a complex amplitude, Uy is a right eigenvector of Ag, again for the eigen-
value Ao and we have denoted the complex conjugate with a bar. Substituting this
solution into (7.18) gives us [76]

¢2 = FynPe?t 4 F_iffe 2%t 4 Foinl® + vé1 (7.26)

where
Fo=F_ = —(Ag—~2BI) 'BoUrUp (7.27)
Fb = —ZAEIBQURI.IR (7.28)

where 7 represents the identity matrix. These two solutions can now be substituted
into (7.19) so we can find an expression for A;. We are really interested in solving
(7.24) which requires knowing ¢§”. From (7.23) we see that

o = ~(Ag — iBI) "t AP (7.29)
so (7.24) becomes
U ([Z - ao(4o ~ iBI)™"] A) =0 (7.30)

The expression for ASY s just the right-hand side of (7.19) with the solutions (7.25)
and (7.26) substituted and taking on the terms with the factor e*t:

9 _
A{) = ~(5- = 8\ ~ DVYUpn +2Bo(UrFo + UrF)lnl’n.  (7:31)
Thus, eq. (7.30) becomes a Landau-Ginzburg equation

21 = 630~ Alnl'n+ D'Vin (7.32)

where the constants A and I are defined as
UL(Z — ao(Ao — i6eT)~")2Bo(UrFo + UrFy)

A = -
UL(Z — ag(Ag — i6eI)-1)Ur
D' = UrDUg. (7.34)

(7.33)
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If instead we write = (€, 7)e*("), eq. (7.32) separates into two equations

by — Ay + DV (7.35)

= 6~ A+ DViy (7.36)

SEEiE

where we have written \; = a1 +i0;, A = A, +i4; and D = D, +iD;. Thus we have
an amplitude which satisfies a Landau-Ginzburg equation. Similar interpretations
relating to the nonlinear diffusion equation and Landau-Ginzburg theory have shown
how the envelope of an oscillating wave satisfies an equation such as (7.32). We,

however, are not interested in simply defining the envelope of solutions, but finding

the solutions themselves.

7.2 The Reaction-Diffusion Model

Our model has been extended to include diffusion, but not all quantities will diffuse
to the same extent. Assembled microtubules are much larger than their constituent
dimers and would diffuse much more slowly. For this reason, we will only consider the

diffusion of free tubulin, T4 and T,. With these added terms, eqs. (6.28-31) become

N = —kN+k, T, —kNTqy (7.37)
T, = kiNT¢—k.Tq+knTe = kiToTy (7.38)
Ty = kTa—kTq+kTeTa+DV?T4 (7.39)
T, = —kiNT¢~k,T+kTq+ DV?T,. (7.40)

where the diffusion constant D is the same for all dimers, independent of their bound
nucleotide. Just as we had experimental data to determine our rate constants, the
diffusion of tubulin within the cytoplasm has been measured. Salmon et al. {77] found
an in vivo value of D = 5.9 x 10~% cm?/s. From this they also estimated a value of
D =56 x 10~8 ¢cm?/s for tubulin in an in vitro buffer.
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With all of the constants determined, we can solve the system of equations. How-
ever, we can no longer use the Runge-Kutta method from the last chapter. For a
solution in one spatial dimension, we discretize each quantity (T,, T4, T: and N) on
a (z,t) grid. To avoid having to invert very complicated matrices and to maintain all
of the nonlinear terms, an explicit method was selected. The second derivative was

calculated using a five-point central difference formula
@1 1 [4(7'.-11-27'.-"”1-'11) TR, -2+ T2,

dz2 3 Az (2Az)? j'] +0(Aaz'). (7.41)

In this formula, the subscript 7 and superscript n denote the grid point (z;,t,) and T

represents one of the reactant concentrations. We want to solve this system subject

to particular boundary conditions. Since we have a closed vessel, we choose no-flux

boundary conditions

or® o
y =0fori=1,N. (7.42)

This can easily be incorporated into our central difference formula by artificially
making each concentration profile symmetric around each boundary. If T} represents
one of the edges, then we assume Ty = T3, T-; = T3, and so on. Care must be taken
in doing the time discretization. Since we have a diffusion term, a standard leap-
frog method cannot be used since it is unconditionally unstable. The next highest
order explicit method is the third order Adams-Bashforth method (78]. If we have an

equation of the form

aTr
= F
the temporal difference is
23 16 1
+1 - -1 -2
T = T + At (12F" L ) (7.43)

where F™ represent the function F evaluated at time ¢,. This scheme is accurate to
(At)3. The initial conditions can be set identically into the first three time steps.

This causes the first iteration to be simply forward difference, the second to be a
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combination of leap-frog and second order Adams-Bashforth, but all subsequent iter-
ations to be third order accurate. Linear stability analysis is extremely difficult for a
coupled nonlinear system like ours. To ensure stability, we will simply choose a At
that is ‘small enough’.

We are now ready to find solutions. Once again a graphical user interface was
constructed on top of the solver so that parameters could easily be manipulated.
After selecting a temperature, tubulin concentration and diffusion constant, the user

could watch all the solutions develop in time for a given set of initial conditions.

7.3 Results of the model

The free parameters we now have to work with are the temperature, tubulin concen-
tration and the diffusion coefficient for T4 and T,. We have one additional freedom
compared to the previous modelling in that we may choose inhomogeneous initial
conditions for the concentrations. If we would choose constant profiles for T4 and T,,
the diffusion term would contribute nothing since the Laplacian would be zero. For
non-constant profiles, each part of the system will evolve based on local concentra-
tions but would be coupled to the rest of the cell by the diffusion of the free tubulin.
Systems such as this have long been known to be important in pattern formation
phenomena. Turing [79] proposed reaction-diffusion models as the basis for pattern
formation in chemical systems. Later, models involved gradients of the concentrations
to produce patterns in biological systems [80]. In any case, the basis of all pattern
formation either in chemical or biological systems is inhomogeneity in either the ini-
tial conditions, diffusion coefficients or the rate constants. For steady-state patterns
to emerge in systems with diffusion, patterns must be due to spatially inhomogeneous
rate or diffusion constants since diffusion will eventually remove patterns simply due

to initial conditions.
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In our system, the diffusion constant is very small on the scale of the other vari-
ables. Because of this, instabilities arising from diffusion are unlikely. Figure 7.1
shows the effect that diffusion has on the solutions. The initial conditions were such
that the neighbouring grid points to the point which was plotted have zero tubulin
concentration and thus diffusion was maximal. The effect is a longer period with
more damping of the oscillations. The steady-state value does not depend on D and

is the same in each case.
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Figure 7.1: Plot showing the effect of diffusion on the solutions. The dashed line is
for 40 uM without diffusion and the solid line with diffusion. See text for details.

We know that increasing the concentration of GTP rich tubulin increases the size
of the oscillations. If we introduce an initial gradient of T, across the cell, we would
expect interesting dynamics. Figure 7.2 shows the results for a linear gradient of T,
from 20 uM on one edge to 60 uM on the other. The spatial dimension was discretized

into 160 points.
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Figure 7.2: Simulation for an initial gradient of Tu-GTP as shown in the top plot.
All other variables are initially set to zero.



Apart from the effect of tubulin concentration, we know that temperature also has
a large effect. Figure 7.3 shows a simulation for a temperature gradient of 5°C across
the cell. The result is once again a higher rate of oscillation at the high temperature
end. Although these plots only run for a short time, it can easily be seen how initial
conditions cannot produce stable patterns. At the last time step, each plot is very
nearly flat. To change this result, we must assume some constant(s) to be spatially
inhomogeneous.

Recall the finding of the Mandelkow group discussed in Chapter 2. In systems
where they observed waves crossing the vessel, they concluded that the barrier for
nucleation was somehow lower at the boundaries. Since most of the experiments
were started using a temperature jump, we can safely assume that the buffer was
well mixed to begin with. They also stated that temperature gradients were virtually
absent from the experiment. To try and produce such waves in our system, we assume
a nucleation rate which is highest at the edge of the cell and decays exponentially
to the interior of the cell. Figure 7.4 shows the spatial dependence of k, along with
the plot of T,. The simulation was performed for a tubulin concentration of 40 uM.
After nucleation at the boundary, a wave of assembled tubulin propagates into the
cell center. This is in fact not a single wave, but a series of waves.

If the tubulin concentration is raised to 100 uM, the size of the waves does not
change, but they persist further into the cell. As well, if the GTP regeneration rate
is lowered from 2s~! to 0.3 57!, the height difference between the crests and troughs
is increased and the spacing between adjacent waves is greater. Both these effects are
shown in Figure 7.5.
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Figure 7.3: Simulation for a temperature gradient across the cell as shown in the top
plot. Initially, T; = 40 uM and all other variables are set to zero.

94



Rate constant for nucleation

25

1 .
IR /i
I
(AN
e

b, ///'/,;lf X
/ //// Uy //////,’///I//;I’//I’l N
/////////, o /,// //,
///// ///’ /////
B
1 /,
Ta

Figure 7.4: Simulation for an inhomogeneous nucleation rate.
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The spatial depen-

dence of k, is shown above the resulting simulation. Waves of assembled tubulin are
nucleated at the boundary and propagate towards the middle of the cell. The tubulin

concentration is 40 uM.

95



Al
A "’./'q/’/'
B

X /1//‘// 2.

S,
K

4'/1: P
i

. IR I
Wiy

e
DWAMA)
NN /
Iy

, :
4
uwh'h
Y,

Figure 7.5: Simulation for an inhomogeneous nucleation rate for 100 uM tubulin.
The spatial dependence of k, is the same as in Figure 7.4 but k&, = 2s~! (top) and
k. = 0.3 s~ ! bottom.
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Having rate constants which are spatially inhomogeneous is a prime method of pro-
ducing steady-state patterns within a system. Within the cell, the main Microtubule
Organizing Center (MTOC) is the centrosome. Here, microtubules are nucleated and
their *-’ ends are embedded while the ‘4’ end extend away from the centrosome. It
is natural to assume that the rate of nucleation is higher at a MTOC than any other
point within the cell. We can model this via the following. Suppose at the center of
our cell we have an MTOC. Around this point the nucleation rate is highest in the
center and drops off exponentially as shown in Figure 7.5. If this is the only inho-
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70 80 90 100

Figure 7.6: Spatial variation of the nucleation rate constant simulating the effect of
a MTOC.

mogeneity and we begin the simulation with 40 uM tubulin, we get the results shown
in Figure 7.6. Now we see that after the oscillations cease, we maintain a group of
microtubules nucleated at the MTOC. From comparing the plots of N and T,, we
also see that the microtubules on the outer part of the MTOC are longer compared
to the ones at the center.

This same type of effect can be realized by choosing any of our rate constants to
have some spatial dependence. If more experimental data were available, it would be
interesting to try to emulate observed patterns and formations. All in all, this chemi-
cal kinetics model, both with and without diffusion, has proven to be quite successful.
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Figure 7.7: Simulation results for an inhomogeneous nucleation rate constant as shown
in Figure 7.5 to simulate a MTOC. The profiles are the last time step for both N and
T, are steady-state profiles and indicated the the microtubules are longer on the edges

of the MTOC.
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It has a great deal of flexibility, but is also strongly based on experimental data and
rate constants. The key underlying all of these simulations is the autocatalytic step
where a collapse is induced by an excess of GTP rich tubulin. More research is needed
into the effect of this to see whether or not this could be the mechanism responsible

for producing these oscillations.
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Chapter 8

Conclusions

As presented in this thesis, microtubules are intricate and dynamic structures which
play a vital role within the cell. Aside from the many structural and organizational
aspects of microtubules, their dynamical nature is why so much research is focused
on these polymers. We have made an effort in this work to discover how the erratic
growth of an individual microtubule evolves into the smooth oscillations of a group
of microtubules.

Our first model was based on a stochastic map where at each time step the micro-
tubule could grow or collapse based on certain probabilities. By changing the growth
rate or the probability functions, we could alter the growth patterns to match any of
the many variations observed in real cells. After selecting a successful model, we at-
tempted to model a microtubule ensemble by coupling many of these maps together.
The coupling in this case was due to the fact that all the microtubules were growing
from a common pool of tubulin. By selecting different probability functions and in-
cluding factors such as GTP regeneration, we found we could produce features such as
growth to a steady-state including the possibility of an overshoot in assembled tubu-
lin. Using this approach, we could not, however, produce oscillations. As had been

determined in experiments, we found we required nucleation of new microtubules.
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One new feature arising from this stochastic map formulation was the use of
Hurst’s rescaled range analysis in examining experimental data and models developed.
Although the time series appeared very different in the three cases presented, the
recursive maps and Hurst analysis demonstrated the common characteristics and was
able to give us a measure for comparing the models developed here and by other
authors.

To incorporate the nucleation of new microtubules we moved to a model which
treated microtubule assembly as a first-order phase transition. We proceeded to
perform a Landau free energy expansion in terms of an order parameter ¢ which
corresponded to the density of our system. The control parameters we chose were
the temperature and the tubulin concentration. In the ‘liquid’ state, ¢ was zero and
no tubulin assembled. As either of the control parameters was increased, the ‘solid’
microtubule phase was introduced and ¢ became non-zero. The coefficients of the
free energy expansion could be chosen such that this model produced a phase dia-
gram for microtubule assembly which agreed with the experimental picture. We also
arrived at an equation of motion by minimizing the free energy. With appropriate
initial conditions, the solutions to this equation were damped oscillations in the order
parameter. As the tubulin concentration was increased, the size and extent of oscilla-
tions grew in agreement with experiments. This simple model also made predictions
as to the behaviour of the specific heat. If confirmed by experiment, this could verify
our assumption of a first-order phase transition.

The next model was an improvement over the Landau-Ginzburg approach in that
it directly modelled the interactions that take place in the assembly cycle. The basic
reactions formed in the first models were growth, collapse and nucleation. Through
mathematical analysis it was determined that a chemical kinetics model based on
these three processes alone could not produce oscillations. We altered this set of
reactions by first making the distinction between the two nucleotides GDP and GTP
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and adding a mechanism for GTP regeneration. This expanded set of reactions still
failed the mathematical criterion for oscillations. It had been suggested by several
researchers that an excess of tubulin bound with GDP could effectively block mi-
crotubule ends from assembly competent dimers and in turn induce a collapse. We
included such an autocatalytic reaction into our scheme. With this added reaction,
the criterion for oscillations was met. Our system involved five reactions and hence
five reaction rate constants. Most rates were determined from experimental data,
some however were not readily available and were chosen to provide the best fit to
the data. By finding the eigenvalues of the Jacobian, we could determine the tem-
peratures and tubulin concentrations which gave rise to oscillations. This once again
gave us a phase diagram which was in excellent agreement with experimental findings.

The growth patterns which this model produced were also very agreeable. The
results could be matched to experimental results for different temperatures and tubu-
lin concentrations. The oscillations in assembled tubulin and GTP-rich tubulin also
matched experiment as did the simulations for the effect of temperature on nucleation.
Other findings could also be modelled such as the addition of GTP after oscillations
have ceased or the shearing of microtubules undergoing oscillations. The rate of GTP
regeneration was found to be an extremely important factor in this model. The pe-
riod of oscillations, as found in experiments, depended on this rate and oscillations
would disappear if the rate was raised to a sufficient level. A further validation of this
model would be to experimentally investigate the effect of GTP regeneration and of
the GDP induced collapse.

Finally, we presented a reaction-diffusion model which expanded the chemical
kinetics models to include inhomogeneous reactant concentrations and the effect of
diffusion. This model displayed quite different dynamics when concentration or tem-
perature gradients were applied. To simulate the assembly waves observed by exper-

imentalists, we assumed a spatially dependent nucleation rate. This caused micro-
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tubules to be nucleated at the boundary after which they would propagate to the
interior of the cell. Such inhomogeneous rate constants could also replicate the ef-
fect of a MTOC such as the centrosome. In this case both the microtubule number
and the assembled tubulin approached steady-state values which gave rise to longer
microtubules on the edges of the MTOC.

The set of five reactions that we included can truly be regarded as the most basic
set of processes we can consider. Apart from the induced collapse, all the other
reactions are well known from experiments. Although this model can reproduce
numerous experimental results, it does not include many other effects. Aside from
the autocatalytic reaction, we assumed in our chemical reactions that the reactants
did not catalyze their own production such that a process involving one reactant was
first-order and one involving two reactants was second-order. These reactions may
in fact be any order or even of fractional order which could change the dynamics
considerably. To find the order of these reactions, we would need to find the rate
constants as functions of the reactant concentrations for all five processes. This is
possible to do, but certainly would not be a priority for many experimental groups
and it may not improve on the results of the model. The effect of ions such as Mg?*
and Ca?* could also be investigated. Within the cell, calcium waves are fairly well
understood. Since calcium acts as a destabilizer, these waves could perhaps induce
a wave of disassembly. Similarly with magnesium, since it promotes microtubule
assembly, waves of magnesium ions may produce the opposite effect.

The success of the models presented here rests on the fact that they are based
on experimental evidence, they are able to reproduce numerous experimental results
and further, they can make predictions for future experiments. These models are
also an improvement over previous modelling for several reasons. First, we have
made a minimum number of assumptions about what happens at the molecular level.

Concepts such as a GTP-cap of the conformational changes of tubulin have not been
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assumed or precluded. Second, we have a small number of free parameters in our
system since many rate constants have been determined from experimental data. We
also fixed our constants so that we only had the freedom of adjusting the tubulin
concentration and the temperature. Lastly, in both the case of the Landau-Ginzburg
model and the reaction-kinetics models, we were able to reproduce both the correct
dynamics and the proper phase diagram using exactly the same parameters. The
ability of these systems to perform this feat leads us to the conclusion that our
assumptions about the underlying dynamics must be correct. It is hoped that these
ideas lead to future experimental and theoretical investigations.
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