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ABSTRACT

The infinite dimensional Witt algebra and the Virasoro algebra have been ex
tensively studied by many authors in last two decades because of their importance
in both mathematics and physics. In this thesis, the differential operator Lic alge-
bras on C[t,t ], the ring of Laurent polynomials, are studied. They are the natural
generalizations of the Witt algebra and the Virasoro algebra and are known in the
physics literature as higher spin algebras Wi 400 and We.

In the Witt algebra, only the first order differentia. operators are involved. In
this work, the Lie algebra consisting of all differential operators of arbitrary orders,
namely, C[t,t7!, %] is introduced. After careful choice of a basis, it turns out that
Clt,t1, zd;] possesses a Z-grading and a shift map that shifts the graded spaces. We
call a Lie subalgebra of C[t,t~", &] which is shift invariant under the shift map a
shift invariant Lie subalgebra and a Lie subalgebra which is shift invariant and pre-
serves the Z-grading a homogeneous Lie subalgebra. We give classifications of the
homogeneous Lie subalgebras of C[t,t™", 41 and the shift invariant Lic subalgebras
of the Witt algebra and study the algebraic structure and the central extensions of
these Lie algebras. Many results of the Witt algebra and the Virasoro algebra. are
generalized. On the representation theory side, we investigate the highest weight
modules and the admissible modules. Some classes of admissible modules with
1-dimensional weight spaces are completely classified.
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INTRODUCTION

The Virasoro algebra arises as the Lie algebra of the conformal group in two
dimensions and plays a fundamental role in the two dimensional conformal field
theories. From a mathematical point of view, it is a central extension of the com-
plexification of the Lie algebra VecS' of real vector fields on the unit circle S?.
Any clement of VecS! is of the form f(G)E‘%, where f{6) is a smooth real valued
function on S', with @ a real parameter and f( + 27) = f(6). The Lie bracket of
the vector fields is

1059035 = 77 - )O3
where prime stands for the derivative. A basis over R for VecS! is provided by the
vector fields
TR cos(mO);l—a—, sin(mO)dio, (m=1,2,..).

To avoid convergence questions we consider this as a vector space basis, so that
f(0), g(6) are arbitrary trigonometric polynomials, and take its linear span over C.
This permits us to introduce ¢™? instead of cos(m#) and sin(m#). We thus obtain
a complex Lie algebra with basis

. od
iml
e ] m € Z,
and Lie bracket p d d
imf inf — iy — i(m+n) =
[c prii i(n —m)e rk

Let us denote €% by ¢. Then e™? L = jt™+1 4 The elements t™ = ™%, m ¢ Z
span the Laurent polynomial ring C[t,t™]. Setting dm = t™*1 4 the Lie bracket
becomes

[dm,dn] = (n — m)dmin, Vm,n € Z.

So we sce that this complex Lie algebra is exactly the well known infinite dimensional
Witt algebra. We denote this Lie algebra by W. Note that each d,, can be viewed
as a first order differential operator om Cjt,t!]. The Virasoro algebra Vir is the
universal central extension of W aud is explicitly given by

Vir = Z CL,, + C¢7
mezZ
m3 —m
[Lms Ln] = (‘Il - 7")Lm+n + 12 6m+n,0¢a

[Lm,¢] = 0.

Typeset by AsS-TEX



Vir has been extensively studied by many authors in the last two decades  The
earliest mathematical reference on the Virasoro algebra that is known to us is by
Gelfand and Fuchs [GF). See also Block [Bl]. They proved that the second coho-
mology of W is one dimensional. The Virasoro algebra was latter realized as an
algebra of operators on the representation space of a Kac-Moody algebra (see for
evample [FK], [KP]). In fact, an untwisted affine Kac-Moody algebra is given by

g=0®Cft,t"'] 0 C¢

with Lie brackets

[z@t™,y®t"] =[z,y]® ™" + mbmyn 06

and
[z®t™,¢] =0,

where g is a finite dimensional simple Lie algebra. T4+ Lie brackets
Ly @™ =ny @™, [Lm,¢] =0
join Vir and g together as a bigger Lie algebra

Y CLn@gaCltt™'|oC,
meZ

the so called Virasoro-affine Lie algebra. A key point is that integrable highest
weight representations of g are automatically representations of the Virasoro-affiie
Lie algebras. This is one of the reasons that affine Lie algebras play an important,
part in conformal field theories. Among the significant results on the representa-
tion theory of the Virasoro algebra are Kac’s formula for the determinant of the
contravariant form and the determination of the characters of the irreducible high-
est weight modules (see for example [K2], [RW]); the completely description of the
submodules of a Verma module ([FF}); the unitary conditions ([FQS}, [L], [GKO]);
and the proof of Kac’s conjecture ([K3], [Kap], [KS], [CP], [Ma], [MP]).

In recent years, some generalizations of the Witt algebra, the so called higher
spin algebras Wy, which contain generators with conformal spins k in the interval
2 < k < N, have been introduced and studied from a variety of viewpoints (see
for example [FZ)], [Bal], [Ba2), [Bi], [Mat]). However, the Wy algebras are not Lie
elgebras since they display an essential non-linear structure. C.N.Pope and X.Shen
{PS], C.N.Pope, L.J. Romans and X.Shen {PRS1] investigated the algebras W, and
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Wiy obtained from Wy by letting N — oc. They found that W;4 is a Lie
algebra and W, is a Lie subalgebra of Wy yo. Moreover, they showed in [PRS3]
that Wiy is in fact the algebra of all polynomial differential operators on the
unit circle, including differential operatots of arbitrary order, namely, C [t, t71, Edi] .
Clearly, it contains the Witt algebra as a Lie subalgebra.

C[t,t7", &] and its Lie subalgebras are the objects of this thesis.

Nate that two significant properties of the Witt algebra W are the following:

(1) Z-grading:

[dm,dn] € Cdmtn Vm,n € Z.

(2) Shife invariance:

The linear map o such that
O’(dm) = dm+1 VmeZ

is bijective from W to itself.

After careful choice of a basis of C [t,t'l, %], we can extend the Z-grading
and the shift map o to the whoie of C [t,t“‘, a‘i‘] (see the Introduction of Chapter
1). We call a Lie subalgebra of C [t,¢7?, %] with the Z-grading property a graded
Lic subalgebra; a Lie subalgebra with shift invariance property a shift-invariant Lie
subalgebra; a Lie subalgebra with both properties a homogenous Lie subalgebra.
For example, C[t,t7", &] itself is a homogenous Lie subalgebra.

This thesis consists of two chapters. In Chapter 1, we investigate the homoge-
nous Lie subalgebras of C [t,t‘l, %] . The first result is the classification of all the
homogenous Lie subalgebras. Next, we determine the graded automorphism grour
of C [t,f"‘ , %] , which consists of all automorphisms preserving the Z-grading of
C [t, t=!, %] . Then we discuss the structure of the homogenous Lie subalgebras and
their central extensions. On the representation theory side, we consider the high-
est weight modules and the bounded admissible modules of the homogenous Lie
subalgebras. They are analogues of the highest weight modules and the admissible
modules of the Virasoro algebra.

In Chapter 2, we investigate the shift-invariant Lie subalgebras of the Witt
algebra. We find that a shift-invariant Lie subalgebra of the Witt algebra is com-
pletely determined by a one-variable polynomial. For this reason we also call a
shift-invariant Lie subalgebra of W a polynomial Lie subalgebra. The correspond-
ing central extension of a polynomial Lie subalgebra of W is called a polynomial Lie
subalgebra of the Virasoro algebra. As in the case of the Virasoro algebra itself, we
give the Segal-Sugawara construction for its polynomial Lie subalgebras. We then

3



introduce a quasi-triangular decomposition for a polynomial Lie subalgebra of the
Virasoro algebra and discuss the highest weight modules, the quasi-admissible and
the admissible modules (see Sections 2.4 and 2.5 for the definitions) of these Lice
subalgebras. In particular, we investigate a class of finite dimensional admissible
modules in detail (see Sections 2.7 and 2.8).



CHAPTER 1

DIFFERENTIAL OPERATOR LIE ALGEBRAS ON C[t,t~']

1.0 Introduction of Chapter 1

In this chapter we study the homogeneous Lie subalgebras of C [t 1, ;t-] and
their representations. We have seen in the Introduction that the Witt algebra W
is the complex Lie algebra of polynomial vector fields on the umit circle S 1 An
element of W is a linear combination of the elements of the form e"’w%, where 0
is a real parameter, and the Lie bracket of W is given by

[ mO:o,exmoa%] = z'(n _ m)e"'(m+n)03‘%.
If we define ¢ = ¢, then the elements t™ = '™ m € Z, span the Laurent
polynomial ring C[t,t™!], and ™ & = it™+' 4 may be viewed as a first order
differential operator on Cft,t™!]. Let dpp = t™*'&. Then W = ¥,z Cdm, and
[dm,dn] = (n — m)dm4n. The Virasoro algebra is Vzr =3 ez CLm + C¢ with

mé—m

[Lma Ln] = (n - m)Lm+n + 12 -6m+n,0¢7
[Lm, ¢] =0
Recently, C.N.Pope and X.Shen [PS], C.N.Pope, L.J.Itoman and X.Shen
[PRS1], [PRS2] studied the higher spin algebras Wo, and Witoo, the generaliza-
tions of W. The Lie algebra W) has basis V;}, where m € Z, i € Zx, and Lie
bracket

[V, V] =08, i)V, + 4% (m,ms VST 4 .
+ @ g (my s ) V2P 4 g ei(m; 1)6 6 g 0,
where Vi corresponds to the m*® Fourier mode of a conformal spin i +2 field, ¢ is

a parameter, ci(m; ) are the central terms. The structure constants are given by

gsh(m,m; p) = 5(or Sfi),Né’r( n),

2r+1
N,l(m.n) Z( DF B4 [i 41+ mlarsi—k

[z, +1—-ml[j + 1+ nfilf + 1 = nl2rs1-k,
al

la]n = Ao



If we parameterize g in terms of a variable s by = s(s +1) = — 1, then (p;’,.(/t)
can be expressed as
i 1 3 1 11 )
¢ (1) =4 F3 -5 —28,5 +2s,—1 — U At A 1L +j-2r+ 5;1 ,
where 4F; is a generalized hypergeometric function ( sec {[PRS3] for details). We
note that W, is a Lie subalgebra of Wi co.

Later, [PRS4] proved that Wj4e is nothing but the algebra of all polynomial
differential operators on the unit circle, including differential operators of arbitrary

d d\’
-1 — m
C[t,t ’—dt} E Ct (dt) .

meZ,r€Zlyo

order, namely

This brought a connection between the higher spin algebras and the algebra of all
smooth differential operators on the unit circle.

Note that the Lie bracket of Wy4oo = C[t, 17}, 4] given above is very complex.
We rechoose a basis for C[t,t~!, 4] as follows: For all m € Z, r € Zyo, define

d T
UETW AL I e .
dr =t (tdt>

Then {d", | m € Z,r € Zxo} is a basis of C[t,t™", £1. The Lic bracket is

r+s

ldr,di] = Y () n* = () m*) drfi™.

k=0
From this we see that C [t,t™7, %] has Z-grading
Clt,t7, 41 =) 8m, [9m:8n) C Gt
d mez ’ 7 9

where the graded subspace gm := 3. ioq Cdp,. Further, the C-linear map o such
that
o(dy) =dnyy YmeZ,r €y

is bijective from C [t t!, :t] to itself and shifts a graded subspace to another. We
call o a shift operator of C [t t!, dt] (see Section 1.1 for more details). A Lie
subalgebra b of C [¢t,t7, dt] is called a homogeneous Lie subalgebra if

h= me



where by, = § N g, and a(h) =

We organize this chapter as follows: In Section 1.1, we introduce the differential
operator Lic algebra C[t, 171, dt] and classify all of the homogeneous Lie subalgebras
of it. We find that, except for a few examples, the homogeneous Lie subalgebras
of C[t,t71, 4:1 are determined by polynomials. In Section 1.2, we determine the
automorphims of C[t, 1~ 14 4] which preserve the Z-grading. These automorphisms
constitute an abelian group isomorphic to (C,+) x (C*,). In Section 1.3, we discuss
some algebraic properties of the homogeneous Lie subalgebras. In Section 1.4, we
consider the central extensions of the homogeneous Lie subalgebras. In particular,
we determine the universal central extension of g{0,1} := ¥ ,.cz Cdb + Y mez Cdo
The admissible modules of the Witt algebra with 1-dimensional weight spaces have
been classified by Kaplansky and Santharoubane [Kap],[KS]. In Section 1.5, we give
a classification of the admissible Cft,t™?, & £]-modules with 1-dimensional weight
spaces. Finally, in Section 1.6, we define the highest weight Clt,t71, % -modules
and a contravariant hermitian form on Verma modules. A necesary condition for
the hermitian form to be non-negative is also obtained.

We denote the complex number field by C, the real number field by R, and the
integer ring by Z. All Lie algebras considered are complex Lie Algebras.

1.1 Differential Operator Lie Algebras on C[t,t7]

In this section, we consider the algebra of differential operators on the Laurent
polynomial ring C[t,t™}], namely C[t,t™!, 4] , and give it a Lie algebra structure.
We have seen in the Introduction of this chapter that by suitable choice of basis,
we obtain a Z-grading on C[t,t™!, dt] and hence we have the shift map o on it.
We call a Lic subalgebra of C[t,t~?, dt] which is Z-graded and invariant under the
shift map a homogencous Lie subalgebra. The main result in this section is the
classification of homogeneous Lie subalgebras of C[t, ™", &£].

As a vector space over C, Ct,t™*, &] has a basis {d}, | m € Z,r € Z3o}, where

dr, :=t™(t4)", and the action of dj, on C[t,t™"] is given by

m
dr - t* = gremth
for all k € Z. Let p(z) = ¥, air* € Clz] be a polynomial and define

dm(p(z)) = ) _ aidy-

-1



Then
dm(p(lf)) . tk = Z a,‘din .tk

1
i

= p(k)t™tk.
Moreover,
(dm(p(2))dn(g(2)) — dn(g(z))dm(p(2))) - t*
= g(k)dm(p(z))t"* — p(k)dn(g(z))t™**
= (p(n + k)q(k) — p(k)g(k + m))t™*m+*
=dm4n (P(z +n)g(z) — p(z)g(z + m))tk
for all k € Z.

So, if we define

[dm(p(2)), dn(g(2))] = dm+n (p(z + n)a(z) — p(z)q(= + m)),

then C[t,t7, %] is a Lie algebra. Note that if p(z) = z",¢(z) = z*, then the Lic
tracket we obtained here is exactly that we have seen in the Introduction of this
chapter. We note for future reference that dm = dj, = dm(z) and d;, = du(s").
We denote C[t,t71, %] by ¢ in the rest of this chapter.

Definition. A Lie subalgebra of g is called a differential operator Lie algebra on
Clt,t!]-

Setting

fm = Z Cd:n
r>0

where m € Z, then g = ¥ ,,cz0m, a0d [9m,9n] € Bm4n. So g is a Z-graded
Lie algebra. In particular, [go,go] = 0, and [d},d;] = ndj},. We see that gy is an
abelian Lie subalgebra of g and g is the eigenspace of ad(d}), the adjoint map, of
eigenvalue m.

The linear map o from g to itself such that o(df,) = d},,, forallm € Z,r € Zy
is called the (canonical) shift of g. Clearly ¢ is one to one and onto.

8



Definition. Let § C g be a Lie subalgebra. b is called a homogeneous Lie subal-
gebra of g if

The following are examples of homogeneous Lie subalgebras of g:
(1)  9{0} := ¥ ,nez Cdb, is an abelian Lie subalgebra of g.
(2)  Forany a € C, define g{z + a} := }_ ¢z Cdm(z + a). Then

[dm(z + @),da(z + @)] = (n — m)dm4n(z + ).

So g{z + a} is isomorphic to the infinite dimensional Witt algebra.

(3) 8{0,1} 1= T ez Cdm + Limez Cm-
V.Kac and A.Raina [KR] defined the following infinite matrix Lie algebra:

G = {A = (aij)ijez | aij €Coa;j =0 V|i—j[>0},

where | i — j |>> 0 means that | i — j | is sufficiently large. The Lie bracket of G
is given by [A,B] = AB — BA, for all A,B € 0, where AB is the usual matrix
multiplication. A matrix in o is a linear combination of matrices of the form

Y AiEitm,i,

i€Z

where m € Z and E;; is the matrix with 1 in i-row and j-column, with 0 elsewhere.
We have the following.

Proposition 1. For any 3 € C, define
1 g9 — Ao
to be the linear map such that

ig(dy) =Y (i +B8) Ejtm,;-

i€z
Then iy is an injective Lie algebra homomorphism.

9



Proof.
lia(dr)ia(do)] = D_ 3 (G +B) (i + BY [Estm Bitn
75
= Z Z(j +B8) (i + B) (8 i+nEjtm,i — i jamEitn,;)
= i(z' +n+B) (i +8) Eixmin,
—IZ:(J' +B) (1 +m+ B Ejtmin,;

2
= E ((] +n + ﬂ)r(1 + ﬂ)s - (] + ﬂ)r(J + ﬂ + ”l)s)Ej-Q-m-i-n,j
j

= Z (Z ((Z)nk - (i)mk) (.7 + ﬂ)r-{-s—k) Ej+m+u,j
J k
=3 ((In* = GIm*)ig(drhin®)
k
= ig[dy,, dy}.
The injectivity of g is clear. O
Proposition 2. h C g is a homogeneous Lie subalgebra iff there exists a subspace

VCClz| satisfying

p(z +n)g(z) — p(z)g(z +m)eV  Vp(z),q(z) €V, Vm,n€Z,

such that
b= Y, Cdm(p(x))

p(z)€V,meZ

Proof. Clearly, if V C C[z] is a subspace satisfying above condition, then
Y p(z)ev,mez Cdm(p(z)) is a homogeneous Lie subalgebra of g. Conversely, assume
that f C g is a homogeneous Lie subalgebra. Then

h= Z bm,  where bm =hNgmn.

meZ

Note that if dm(p(z)) € him, then da(p(z)) € by for all n € Z since o* (du(plx))) =
dm+k(l)(1'))- Let

V = {p(z) € Clz] | dm(p(z)) €l V€ Z}.

10



Then for polynomials p(z),q(x) € V,m,n € Z,
[dm(p(z)),dn(g(2))] = dmtn (p(z + n)q(z) — p(z)g(z + m)) € b.

Hence
p(z +n)g(z) —p(z)g(z +m) €V, Vm,neZ.

V satisfies the required condition. ]

Remark. By Proposition 2, classifying the homogeneous Lie subalgebras of g is
equivalent to classifying the subspaces of C[z] which satisfy the condition given in

the proposition.

Proposition 3 (Classification of homogeneous Lie subalgebras). The fol-
lowing are all of the homogeneous Lie subalgebras of g:

(1) {0}, 9{0,1}, g{z + a} where a€C.

(2) Bep(a)) i= Lg(s)elp(e)ymez Cdm(a(x)), where (p(z)) is the ideal of Clz]
generated by p(z).

Proof. We have seen that g{0}, g{i),1}, g{z + a} are all homogenous Lie sub-
algebras. Now for any p(z) € Clz], if q(z),r(z) € (p(z)), then clearly

g(z + n)r(z) — g(2)r(z +m) € (p(z)),

for all 7n,n € Z. So g(p(z)) is a homogeneous Lie subalgebra of g by Proposition 2.
Conversely, let VCC|z] be a subspace such that

pz +n)g(z) - p(z)g(z + m) €V Vp(z),q(z) €V, Vm,nel.

Define gy := 3,z p(r)ev Cdm(p(z)).

(a) Suppaese for all p(z) € V, deg(p(z)) =0. Then V = C and gv = g{0}.

(b) Suppose for all p(z) € V,deg(p(z)) < 1, but there exists p(z) € V with
degree 1. Assume that p(z) = z + a € V. If there exists § € C such that § # a
and r + 8 € V, then V = Cr + C and gy = g{0,1}. Otherwise, V = C(z + a) and
ov =g{z +a}.

(c) Suppose there exists g(z) € V such that deg(g(z)) > 2.

Let
pr)=1"+arm1z" T+ ta €V

be the choice with minimal degree and let
@) =2 +byz® '+ .+ BV

11



where s > 2.

Case 1: r =0. By the Taylor formula,

@ (8)
gz +m) = glz) + ¢'(a)m + T ( 2 448 f) n'.
Since g(z +m) —q(z) = ¢'(z)m + ¢ (’)m tot L (’)m €V, for all m € Z, and
the determinant of

1 1 1
2 22 29
s s2 s?

(2) ()
is non-zero, ¢'(z), 1 i (’),..., 1 ’!(’) € V. It follows that 1,z,z%,...,z°"! € V. But
g(z) € V, so also z* € V. Assume that 1,z,...,2¥ € V, k>s>2. Then

(z + n)*zF - z%z* = 2*(2nz + n?) = onzFt! 4 nlzf e v

for all n € Z. Thus zF*! € V. By induction, V = C[z] and gv = g1y = @
Case 2: r =1, p(z) = = + a. Since

@ g
Pla)@) — elata + m) = —5(e) (e + T 4t o) v

for all m € Z, we have

(e + @)z + T €.

Thus
z+a,(z +a)z,..(z+ a)z*~' eV,

where s > 2. Assume that (z+a),(z +a)z, vy (z+a)z* € V for some k > 1. Then

(z+a+n)z+n)z+ a)z* - (z + a)z(x + a)z*
=(z+a)z*(2nz +n(a+n)) €V

for all n. Hence (z + a)z*t! € V. By induction, (z +a) C V. Note that (r + a)
has codimension 1 in C[z], so (z+a) =V and gv = 8(z+a)-

Case 3: r > 2. For any n € Z, since
p(z +n)p(z) — p(z)p(z)

(2) (r) '
—p(z)(p(rc)n+ () +..4+’—’-;,£ﬂn')eV,

12



we have
p(z),zp(z),....,z" ' p(z) € V,

where r > 2. Assume that

p(z),zp(z), ..., z°p(2) €V for some k>r—-121.

Since
1<k-r+2<k
we have
r(z) := F""2p(z) € V,
and
deg(r(z)) =k +2.
But

r(z + n)p(z) — r(z)p(z)

(g (k4+2) (2
= p(:r)( '(z)n + 2f - ﬁ%n"“) 2%

for all n € Z, so
p(z),3p(z), -, 2" p(z) € V.
By induction, (p(z)) C V. If there exists h(z) € V' \ (p(z)), then by the choice ct
p(z),
deg(h(z)) 2 deg(p(z)) 2 .

Assume that deg(h{z)) = ! and define h;(z) := h(z) — z'""p(z). Then hy(z) €
V\(p(z)) and deg(hi(z)) < deg(h(z)). Inductively, there exists a h*(z) € V'\ (p(z))
such that deg(h*(z)) < deg(p(z)). This is a contradiction. So we have V = (p(z )
and complete the proof.

1.2 Graded Automorphism Group of Ct,t™1, & o

We had seen in Section 1.1 that g = C[t,t™!, ;,-;] is Z-graded as g = Y .7 Bm,
Bm = ZrEZ;. , Cdy,. Let ¢ € Aut(g), the automorphism group of g. If #(9m) = 9m
for all m € Z, we say ¢ is a graded automorphism of g. Let

Autg(p) = {¢ € Aut(g) | ¢ is graded}.

Then Autg(g) is a subgroup of Aut(g). In this section, we determine Autg(g).
First we prove the following.
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Proposition 1. As a Lie algebra, g is generated by d°,,d},d3: that is g =
(d")‘]’d(l)’ dg)'

Proof. Let g' := (d°,,d},d2). Since [d3,d}] = 2d} + d} € g, we have
dy€g’.

Similarly, we have
d. eg'.
Thus 1
= i dileg

Now [d2,d}] = 2d? + d} € ¢' implies that d} € g'. Then [d},d}] = d} € ¢’ and
[}, d3) = 2d} + d} € g' imply that

d;€eg'.

Similarly,
d,eqg.

Since g{z} is generated by {d',,d",,d},d},d}},
g{z} Co'.

Then
d?:+1 = [df.,d?] €g

for all n € Z. Finally from [d2,d}] = 2nd% + n%d}, € g' for all n € Z, we obtain
deg
for all n € Z. In summary, we proved that
dm (z¥) €9 VmeZ k=12
Now assume that dp, (z*) €g' Vm € Z,0 < k <1 Then
[, dn (2')] = dman ((z +n)’e’ —2*(z +m)') € ¢

implies that dn, (z'*?) € ¢’ for all m € Z. By induction, we get ¢’ = g. 0

14



Definition. Let 8 € C and define ¢g : g — g to be the unique linear map such
that ¥g(dm(p(z))) = dm(p(z + B)) for all m € Z and p(z) € Clz].

Let @ € C* and define ¢, : g — g to be the unique linear map such that
$a(dm(p(z))) = a™dm(p(z)) for all m € Z and p(z) € C[z].

Let 7 : g — g be the linear map such that

r(dm(p(2))) = (~1)" dou (p(—z — m))

for all m € Z and p(z) € Clz].

Proposition 2. Let ¥ = {1[)5 l ﬂ c C} and let & = {¢a | a € C.} Then
Autg(g) = (1) x ¥) x @ = (Z x (C,+)) x (C*,-), where 72 = 1.

Proof. Since

[¥s(dm(p(z))), ¥5(dn(p(z)))]

= [dm(p(z + §)), dn(g(z + B))]

= dp4n(p(z + 1+ B)g(z + B) — pl(z + Bla(z + m + B))
= Pp([dm(p(2)), dn(9(2))]),

Py € Autg(g) for all B € C. It is easy to see from the definition that ¢, € Autg(g)
for all @ € C*, Yo = Yatg, Pabd = das, and daPg = Pgps. It is also easy
to verify that 7 € Autg(g), 72 = 1, and 7¢, = ¢a7, TYs7~! = ¢_g. Hence
((r) x ¥) x & = (Z; x (C,+4)) x (C*,-) is a subgroup of Autg(g).

Now supposc ¥ € Autg(g). We show that ¢ € ((r) x ¥) x . Assume that
¥ (d%) = Yoim am,idiy, Where m € Z, and am,,, # 0. Fix m € Z. For any n € Z,

0= [dy,d)]
= [t () ¥ (d7)]
= aml,, dn,l, [d’"‘ dl"] + ...

m?*’n

= @m,l,,an 1, dm+n ((:c + n)"" zh - :vl"‘(x + m)l") +

If I, > 0, then for n > 0, dpp4n ((a: + n)lmgls z'"'(a: .+ m)"') # 0. So we
must have l,, = 0, i.e. ¥(d%) = amd?, for some am € C*.
Assume that ¢ (d!,) = dpm(pm(z)). Comparing

v[dnndo] = t,/’(‘ll m+n) = nam-i-nd?n-i-n
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with

[w(dL), ¥(d%)] = [dm(Pm(z)), and)]
= andmin (Pm(z + 1) = Pu())

(2)
m \I) -
= apdm+n (p'm(:c)n + 2—35—)-112 + ) .

we obtain
deg (pr(z)) = 0,
and
pm(z) =bpt + Cm

for some by, ¢y € C. Thus

P(dL) = bndl, + cmdy,.
Moreover, from %[d},,d2] = [¥(dL,), ¥(d)], we have
(1) NGmtn = Napbm Vm,n € Z.

Assume that 4 (d2) = ds(g(x)). Then

[daa ‘*n] =9 (d“ (2n$ + n2))
= 2ngp (d2) + ny (d°)
= 2nbyd}, + (2ncn +nlay) dY,

and

[ (d3) ,% (d7)] = [do(a(2)), andy]
= andn(g(z + n) — ¢(z))

(z)
= tpdy (q(z\n+ 2( )z +)

for all n € Z. These imply that deg(¢'(z)) = 1, and ¢(z) = fyz? + frz + By for
some B2, B1, Bo € C, where B3 # 0. From ¥[d2,d%] = [o(d%), p(dY)], we get

{ 2nb, = 2npra,

2 .
@) 2ncn +nla, = an(fin + fan?)
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for all n € Z.
With rn = 0 and n =1 in (1), and by (2), we get

bp=1
@) { bn = f2an n # 0,

and "
= -2-n'(ﬁ1 +(B2-1)n) if n#0.
Hence
{ $(dh) = an (Body + 2GR if n o,
¥(dy) = dj + cody.

Then from

Pld,dL, ] = —2np(d}) = —2n(d} + cod))
and

[¥(dr), $(dL,)]

— [an (ﬁzd:. + At (ﬂ; — l)nd?z) Y (ﬂzdl_,, + A - ([iz ~ l)ndo_

= —2nﬂ§ana_nd(]) - nana—nﬁlﬂ2dga
we get apa—nf7 =1, and ¢o = 22572 8, for all n # 0. Hence

B
Ce = 282

4
“ { tn = 2By + (B2 - 1)n).

From (1) and (3), we have

Am41 = G1Gm P2 Vm e Z.
By induction on m, we get
(5) am = A7 1a™  VYmelZ,

where a = a;. Then from (3) and (4),

b = a™
(6) { 2 ﬂZ

Cm = ﬂ;" lam ﬂl+(ﬂ;—1)m
forall me Z.

17
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In summary, we have proved that
¥(dp) = 8; " 'a"d,
Y(d2) = B a%dy oz + Brtifamiin)

for all n € Z. Assume that

o) = g~ avdn ((por + 2= IY)

(7)

for all n # 0. From 9[d, d3] = [$(dR), ¥(d2)], we get

r+1
() = B e d, ((ﬂn + Bt (322 - 1)") )
for all n # 0. So by induction on r, we obtain

Y(dy) = 7 'a"dn ((ﬁza: + bt (ﬂ; ~ 1)n)'>

for all n # 0,r € Zx,.

Since

$ldy, d2,] = ~3n(dg) + 3n*(dg) — n*9(dg),

and

[W(d3), ¥(d%,)]

3
[ﬂ,._l - (( o B +(ﬂ22 —l)n) ) ﬂz_,,_,a-nd_n(l)]
3
=ﬁ;2d0 ((ﬂzx_*_ﬂl""(ﬁz? ) [}n) \ﬁ +l’l *'(ﬂ22'—1)n) )
2
= ﬂ{zdo (3 (ﬂzm + At (ﬁ; — 1)n> (=pan)
+3 (e + BB g 4 (-pony’),

and

¥ [dr, d2.] = [9(dn), 9(dZ,)]

for arbitrary n # 0, using (7) and comparing the coefficients of n® and n, we get
fz =1

1%



and )
Bo = B;! (%’) .

2
If A2 =1, then (7) and S = (&) give us

2

[ () = ad? = ¢a¢%x(d(1))
P(d2,) =a”ld, = ¢°¢%L(d0_])

\ Y(d3) = do ((-’r + %)2) = $atpgy (df).

2
If B3 = —1, then (7) and fo = - (%) give us

( () = ad} = guribay (&)
) %b(do—l) = a_ld[-)-l = ¢a"'¢£ix(d0—1)

P(d3) = —do ((—-’E + %)2) = ¢a7'¢£21.(d(2))

\

Since by Proposition 1, d3,d? and d°; generate g, so in both cases above

¥ € (r,¥p,6a | € C,a €C).

Hence

Autg(g) = ({7) x ¥) x .

1.3 Structure of Homogeneous Lie Subalgebras of C[t,t™!, %

It is obvious that g{0} is abelian, g{z+a} is simple, and g{0,1} = g{z} x g{0}.
In this section, we discuss the structure of g(,(;)y further.

Proposition 1. Let p(z),q(z) € Clz]. Then
(i)  @e(z)y 18 2 Lie subalgebra of gy(o)y iff p(z) | g(x)-
(1)  (g(e)y I8 an ideal of gp(zyy iff (p(z)) = (g(z))-

Proof. (i) is clear.
(1) Suppose that gy(r)) is an ideal of g(p(z)y- Then

[dm(P(z))ﬂ d"(Q(l’))] = dm+n(p(:r' + 71)Q(l‘) - p(z)q(:r + m)) € 9(4(3))
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Hence
g(z) | p(z)g(x +m) Vme€Z.

Assume that ¢(z) = p(z)r(z). Then

r(z) | g(z +m) VmeZ.

So r(z) must be a constant and (p(z)) = (g(z)). 0
Proposition 2. Let

p(z).q(z) € Clz], where g.c.d(p(z),q(z)) =1,

and let
r(z) = p(z)g(z).
Then
8(r(=) = H(p(=)) N B(a(=))-
In particular, if )
r(z) = [J(= + e},
i=1

where aj,...,a, are distinct, then

Yr(z)) = n B((z+ai)*i)-

=1
Proof. Let X € g(p(z)) N Bg(2))- Then

X= Zd P(@)hm(2)) = Y dm(4(2)km(2)),

m

where hm(z),km(z) € Clz]. So p(z)hm(z) = ¢(z)km(z) for all m € Z. But
g.c.d(p(z),q(z)) = 1, so p(z) | km(z) for all m € Z. Assume that k.(r) =
p(z)k* (z), for some ki, (z) € Clz]. Then X = 3°_ di(q(z)p(z)k;,(2)) € Birr)y-
O

Proposition 3. CdJ is the centre of g, which is the only proper ideal of g, and
g/Cdj is simple. '

Proof. Clearly Cd) C centre of g. Now if u = 3. d;(p;(z)) € centre of g, since
[d},u] = E jdj(pj(z)) = 0, we see that u = do(po(z)) € go. From

[dm(2). do(po(2))] = dum (zpo(z) = zpo(z +m)) =
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for all m € Z, we get po(z) € C and u € Cdy. Hence Cdy =centre of g.

Let 0 # I ag be an ideal. From [dj,I] C I, we see that I = ) 5 In, where
Im = INgpm. Suppose that I\ Cd} is not empty and 0 # dm(p(z)) € I\ Cd such
that deg(p(z)) is minimal. If deg(p(z)) > 0, then

[dm(P(m)), d?u] = dm+n(P(x +n)— P(z)) €l

and
deg(p(z + n) — p(z)) < deg(p(x)).

This is a contradiction. So p(z) € C, and d?, € I'\ Cdj. This inplies that

[d,d%] =md’,,, €] VneLZ.

Hence g{0} C I. Note that [dm(z"),ds] = dmia((z +n)" —2") € I forall m,n €
Z,r € Zy. By induction on r, we see that dn(z") € I, Vm € Z,r € Zxo. So
I=g O

Proposition 4. For any a € C, g(z4) is simple.

Proof. By Section 1.2, Proposition 2, we need only to show that g, is simple.
Let 0 # I ag(,) be an ideal. Then I = ) 7 Im, where I, = INgm. Let
d.(zp(z)) € I and deg(p(z)) be minimal. Since

[dm(2), dn(zp(2))] = dm4n((z +n)zp(z) — 2(z + m)p(z + m)) €
for all m € Z, we have
deg((z + n)p(z) — (z + m)p(z + m)) 2 deg(p(z))
for all m € Z. On the other hand,
deg((z +n)p(z) — (¢ + m)p(z + m)) < deg(p(z)).
So they must be equal. Thus for any m € Z, there exists pm(z) with deg(pm(z)) =

deg(p(x)) and dn(zpm()) € I. We may assume that the coefficient of the highest
term of py,(r) is 1. Then

[dm(2), du(@pn(1))] = dmsn((z + n)zpa(z) — (z + Mm)pa(z + m)) € I
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for all m,n € Z. Fix m # 0 and choose n = m(1 + deg(p(r))). Then

(z + n)pn(z) — (T + Mm)pu(z +m)

= (2 + MPale) — (2 + M) (pal2) + P + ..

= (n — m)pa(r) — zpa(z)' m + lower  terms.
So

deg({z + n)pn(z) — (z + m)pa(x + m)) < deg(p(r))
unless deg(p(z)) = 0. So d(z) € I forall m € Z.
Now from [dm(:c),d,,(:z:"*'l)] € I Vr € Zyo, and by induction on r, we get

I =g. O
Proposition 5. For any p(z) € Cz], g(p(z)) is indecomposable.

Proof. If deg(p(z)) < 1, this follows from Proposition 3 and 4. Now assume that
deg(p(z)) > 2. Suppose g(p(z)) = Ur ® Uz, where Uy, Uz are ideals of gp(s)y and
U, NU,; =0 and both U; and U, are non-zero. Let

04y = di (&) + dis (02()) + . + iy (au(2)) € Vs

where j; < ja < ... < jk and qi(2),q2(z),...,qk(z) are non-zero. Then for all
m € Z,

Ym : = [dm(p(2)), ]
= [dm(p(z)), djy (01 ()] + -
= dmyj, (p(z + j1)@a(z) — p(z)qi(z + m)) + ... € U1

Note that
¢™ := plz + j1)as(z) — p(z)q(z + m) # 0
if m> 0, and
deg (4™ (2)) < deg(p(c)) + deg(g(2))
for all m € Z.
Let

0# z =d;, (ry{z}}+ ... + di,(ro(z)) € Uy,

where i; < ... < iz, and r(z),...,7s{z) are non-zero. Then [y, 2] = 0 for all
m € Z. This implies

[dmﬂ-1 (qgm)(x)) ,di,(rl(z))]

= dm+jy+iy (‘lgm)(m + 1)y (z) - qgm)(:c)rl(z + m))
=0
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for all 1n € Z. But
de ( (m) d
eg lgy (z)) < deg(p(z)) + deg(g:(z))
for all m € Z, so
¢™(z +ir)ri(z) — €™ (@) (z +m) #0
if m > 0. Hence
dtivi (€™ +in)ra(z) - @ (z +m)) #0

if 7n > 0. This is a contradiction. a

1.4 Central Extensions

In this section we consider the 1-dimensional central extensions of homogeneous
differential operator Lie algebras and determine the universal central extension of

g{0,1}.
Recall that gl,,(C) = X; ;ez CEi,; with Lie bracket

[Ei j» Exa) = 85k Eit — 81,i By, j
is a Lic algebra. Define
a: gl (C) x gl o(C) — C

to be bilinear and

{ o Eij, Eji) = —a(Eji, Eyj) =1  i<0,j21
a(Eij,Ex) =0 otherwise.

Then a is a 2-cocycle of the Lie algebra gl (C). Following Kac and Raina [KR],
we extend a to be a 2-cocycle of the Lie algebra @5 as follows:

a (Z AiEitm,i, Z ﬂjEj+n.j) = Z Z Aitja(Eitm,is Ejtn,j)-
¢ J t )

It is casy to check that this is a well defined Lie algebra 2-cocycle on @c.

23



Define 6o := G + C¢ and

[2,4] := 2y ~ yz + (2, y)¢,
[£e¢] = 03 V:v,y ea—o_;-
Then o is a Lie algebra which is a 1-dimensional central extension of a. Let

T & 80— 800

be the canonical homomorphism given by #(z) = z, for all z € @, and n(¢) = 0.
For any Lie subalgebra § of @, 7#~!(h) is a Lie subalgebra of ae. In general,
it is a 1-dimensional central extension of ). By Section 1.1, Proposition 1, g is
a Lie subalgebra of 8. Thus if § C g is a homogeneous Lie subalgebra, then
b := #~1(h) is a 1-dimensional central extension of fj. Precisely, if we identify d},
with Zj j"Ej+m,; (see Section 1.1, Proposition 1), then for polynomials p(x), ¢(z},

a (Z P(j)Ej+m,j’ Z Q(i)Ei+n,i)
=Y " p(3)a(i)(Ejtm,js Eisn,i)
PR

1<j<n 1<j<m

= ( Y plidei —n)- > p —m)q(j)) m+n,0-

Soin §, the Lie brackets are

[dm(p(2)), da(g(2))] = dmn(p(z + n)g(z) — p(z)g(z + m))

+ ( Z p(])Q(] - n) - Z I)(j - "l)q(j)) 6m+u,0¢-

1<)8n 1£j<m

[dm(p(x))a‘ﬂ =0.

Example 1:

a(0} = 5 b, + G4,

meZ
[doma d?;] = "'2m'6m+u,0¢a

[d?ns'ﬂ =0.
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Example 2:

olz} = Y Cd, +Ct,

meZ
m3—m
[d:tnd:z] = (n - m)din-{-n + 6 6‘m+n,0¢,
[ ¢] = 0.

We sce that g/{\/z} is the Virasoro algebra, which is the universal central extension
of g{z}.

Wanglai Li [Li] proved the following result: The 1-dimensional central extension
of g is unique up to a scalar multiple. In the rest of this section we determine the
universal central extension of g{0,1}. Since g{0,1} is perfect, its universal central
extension exists.

Generally, if a Lie algebra § is perfect, its universal central extension can be
obtained as follows:

Consider A%l, the second exterior power of . Let I C A%h be the subspace
spanned by all of the elements

Ay, 2l +yAlz 2] +2A[z,9)]

where z,y,z € h. Let \
A:hxh— —AI—h

be the canonical map
(z,y)— zAy:=zAy+ 1.

Then A is the "universal” 2-cocycle for §, and b & (A%h/I) acquires a Lie algebra
structure through

2
[z+u,y+v]=[z,y]+2Ay  where z,y€M, u,veA—I-ll,
Now 2 2
~ A A
h:= [b@'I_,b@—j—]

together with the restriction to § of the natural projection of h ® (A%h/I) onto §
is the required universal central extension (see [G] or [MoPi)).

8{0,1} = ) Cd, + ) Cdy..

meZ meZ

In our case,
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A%a{0,1}
is spanned by
Rdd), A(dd), R(d.&L) Vmne.
The 2-cocycle condition gives us

(1) A(dh,, [d2,d}]) + A (b, [dR,dr)) + R (R, [drar d2))
—kA (dp, i) + A (0, dingn)
=0

for all m,n,k € Z. Let k= -m —n in (1). Then
n7\- (d?n+n7 do—m—n) = (m + n)/\ ( do )

Thus
A(dS,d%,)

4= —

is independent of n, n # 0. Let k=0 in (1). Then
A(d5,d8)=0 VnelZ
From this, setting m +n = 0 in (1), we have
R(dd)=0  VEAO.
Combining these results, we get
(2) A (dm, d3) = mbmn,0s.
Again by 2-cocycle condition,

®) L[ ) + R (dh [, b)) + 7 (2, [, dh])
= k/\ (dm, d?,.{.k) kA (dnad(i:-{-m) + (Tl - ) (d(iidm-{-n)
= 0.

If m =0 in (3), then
R (a8 ) = (k + )R (dh ).
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With k = —m — n in (3), we get
(4) (- n)A (d:n-i-ﬂad?-m—n) =(m+ n) (K (dlm d(-)-m) - T\{’; & n}} .
Replacing m by 2m in (4), we obtain

(5) (2m - n)-/_\- (d;m+m do—2m—n)
= (2m + n) (7\— (d%m’do 2m} -A (d:h do—n))

Replacing n by m + n in (4), we obtain

— 1R (g @ 2m—n)
=(2m + n) (K (d:n,-do ) A \dm+“ &lm-n))

Multiplying this by m — n and replacing the A (d 4,,d%,,_,,) term using (4), we
obtain

(6) - n(m - n)7\- (d;m+n) d?-2m-n)
= ~2n(2m +n)A (d},,d% ) + 2m +n)(m + n)A (d},d°,) -

From (5) and (6), we get

— n(m - n)(2m + n)A (dyn, @ 3rm) + 2n(2m + n)(2m — n)A (dL,, d,)
= (2m +n)2m*A (d},d%,) .
f2m+n#0,m—n#0,m#0,n#0, then
K (1) = () _ 2R () | 2Rl 8

2m»

m? " m(m-n) n(n—m) ~

Thus
A (d%m’ do—2m) - 2A (dsn’ dgm)

m2

¢y =

is independent of m, m # 0.
Finally, since

iy [dns di]) + A (dr, [d), dL]) + A (dhs [dh, dh]) =0,
similar calculation as above shows that
(*) (k+n)A (d},,d}‘) =(k—-n)A (d d,,+k)
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for all n,k € Z, and
) 2(A (A3 diom) — 2R (dh,dLy,))  12A(dL,dL,,)  12A(d}L.dL,)
m3 m(m? — n?) n(n? —m?)
for all m,n # 0,m? # n?. Thus
2 (A (& @ o) — 2R (d,,dL))

—m

1=

m3
is independent of m, m # 0.
Now we define

dl=dl + %K (dg,ds,)  where m#0,
& = dy — SR (dhdly),

~ 1_

&L =& + ;/\ (dg,d?,) where m #0,

1_
Fmdi- A2,

and

B/{.ﬁ} = Z Cdl, + ZCJ?n+C¢] + C¢y + Ces.
meZ meZ

N

Proposition 1. g{0,1} is the universal central extension of g{0,1} and the Lie
brackets of g{0,1} are

Lazg,,,az;,] = (n—m)dh 4 + 5 bminots,

- —~ P mim — 1
.dm,dg] =Napyn + '_(—E“‘—)“Sm+n,0¢2v

9,1, d?;] = "lém-l-n,0¢3a
L

where ¢,, ¢, ¢; are in the centre.

L

Proof. Clearly, _
50,1 € 90,1} 5 2001}
and we have
2.2)
= [dm, dn] + A (dm, )

n—m._.

=(n- m)d3n+,, + mA (d:,,d:n_,_n) (using (*))

— 1 \ n—-m_
= (0= m) (T = R ) + T (0
=(n-— m)7\'d3n+n, (provided that m+mn#0)
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@]

_ —omdl + K (d,dl,)
- —om (Jg, + 1R (d;,dl_,)) FR(d,d,)

= —2md) — mA (d!,d",) + m(m? -5 ¢,+m/\(d},d )

(using (*#*) with n=1)
~ mP-m
= —2md(l, + '_12'—6m+n,0¢1-

I g™

We can verify the other two commutators similarly. So g{0,1} is a Lie subalgebra
of g{0,1} & (A%g{0,1}/I) . Moreover,

A29{0 1}

[{0 1o MUY 1 1) o N0l01

I
= [gﬁiT},sTmT}]

N

= 9{0,1},

$0 gTO\,-l/} is the universal central extension of g{0,1}. O

1.5 Admissible Modules

Let § C g be a homogeneous Lie subalgebra and § = 3,2 hx. Then bho is an
abelian Lie subalgebra of §. A §-module V is called admissible if
) V= Z.\en; Va, where b is the dual space of o, and

Vi={weV|X v=XMX) VX €hl.

(ii) d&im(Vy) < oo for all A € byg.
For g{z}, L.Kaplansky [Kap] and I.Kaplansky and L.J.Santharoubane [KS]
proved the following result:

fV =3,z Cux is a g{z}-module such that
d' -vi € Comyr Vm,k€Z,
di v #0, d',-vi #C0 Vke€Z,
then there exists a, 8 € C such that
d:n cop =(k+am+ B)omsr VYm,k € Z.

In this section we prove similar results for g and g{0,1}.
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Proposition 1. Let V =3, ; Cvx be a g{0,1}-module such that
dy, - vk € Comik, do - vk € Comyi,

and
dy-vp #0, d, - v #0

for all k € Z. Then there exists a. 8,7 € C such that
(2) d, - ve =(k+am+ f)vomsk-
(21) I a#0,1, then d2 - vk = Yom4x for all m,k € Z.

I a =0, then
d?n Uk = YVUm4k VM, kEZL,
or
d‘,’n SV = %vm“ Vm,k € Z.
i o =1, then
d?n c Uk = YUm4+k VM,k € Z,
or

_(k+m+ B

dn 0= "7
Proof. (i) follows from the result of Kaplansky and Santharoubane’s quoted above.
(ii). First we note that by assumption,

Umt+k Vm,k € Z.

d}vk =(k+ a+ Bve+1 #0, d'_lvk =(k—a+ B #0,
for all k € Z. So 8+ o € Z. Assume that d2, - v = f(mn, k)vmsr. Then from
dndgvx = dydy vy

and
[ d2) vi = (dpdy -~ dndp) vi,

we obtain

1) {ﬂm@ﬂmm+k%=ﬂm$VMmH*)
nf(m +n,k)= f(n,k)(n+k+am+ fB) - f(n,m+ k)(k+ am+f3)

for all m,n,k € Z.
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Let k=01in(1). Then

(2) { f(n,0)f(m,n) = f(m,0)f(n,m)
nf(m +7,0) = f(n,0)(n + om +) ~ f(n, m)(am + B),
(3) { f(n,0)f(m,n) = f(m,0)f(n,m)
f(n,m)(am + B) = f(n,0)(n + am + B) — nf(m + n,0).

Multiplying both sides of the second identity of (1) by (ak + 8)(a(m + k) + B) and
using the second identity of (3), we obtain

(4)
n(a(m + k) + B)(f(m +n,0)(m + n + ak + ) — (m + n)f(m + n +k,0))

=(a(m+k)+p)n+k+am+ ﬂ)(f(n,O)(n +ka+B)—-nf(n+ k,O))
— (ak + B)(k + am + B)(f(n,0)(n + a(m + k) + B) — nf(m +n + k,0)).

Let m = -1, n=1in(4). Then

(5) (a(k —1) + B)(k +1—-a + B)f(k +1,0)
= (ak + B)k — a + B)f(k,0)
+ ((aik - 1) + B)(ak + B) + (1 — a)(B - @)) £(1,0)
~ (a(k - 1) + B)(ak + B)£(0,0).

With k = =1 & (5), we get
(6) (B -a-3)f(-1,0) ~ 2(8 - 2a)£(0,0) + (8 - 3a +1)£(1,0) = 0.
Let m=k=1, n=-1in(4). Then
(7 (8 +3a —1)f(-1,0) — 2(8 + 2a)£(0,0) + (B + & + 1)£(1,0) = 0.
Combining (6) and (7) we get

a(1 - a)£(0,0) = a(1 - a)£(1,0).

We consider the following threc different cases:

(a). a#0,1
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In this case, f(0,0) = f(1,0) and (5) becomes

(8) (a(k = 1)+ B)(k +1—a+ B)f(k +1,0)
= (ak + B)(k — a + B)f(k,0) + (1 - a)(8 — a)f(0,0).

If 0 ¢ aZ + B, then by induction on k and the fact fta ¢ Z, we get f(k,0) =
£(0,0) for all k¥ € Z. Then by (3), we get

f(m,n) = £(0,0) Vm,n € Z.

Now suppose al + 8 =0, for some l € Z. Since fta g Z,l=0,0r ! > 2, or
1<-2
If | =0, then 8 = 0 and (8) becomes

(9) (k—=1)(k +1-a)f(k +1,0) = k(k — a)f(k,0) — (1 - a)(0,0).

With k = -1 in (9), we get

2af(0a0) = (1 + a)f(—l,O) L ¥ e Ol)f(0,0)

Hence
f(-1,0) = £(0,0).
By induction on k& we have
f(k,0) = £(0,0)
for all k¥ < 1. With k=2 in (9) we get
(3-a)f(3,0) =2(2 - a)f(?%,0) - (1 — a)f(0,0).

By induction on & we have
(10) (k — a)f(k,0) = (k- 1)(2 — a)f(2,0) - (k - 2)(1 - «)f(0,0)
for all £ > 2. With n = -1, m =2 in the second identity of (3), we obtain

2af(-1,2) = (2a - 1)f(-1,0) + f(1,0)
= 2af(0,0).

or

f(—132) = f(0°0)
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With 7. = —1,n = 2 iu the second identity of (3), we obtain
~af(2,-1) = (~a +2)f(2,0) - 2/(1,0).
With these and by the first identity of (3), we get

—af(2a O)f(O, O) = (2 - a)f(za O)f(oa 0) - 2f(0a O)f(ov 0)7
If £(0,0) #0, then f(2,0) = f(0.0). Then by (10), f(k,0) = £(0,0) for all k € Z.
If £(0,0) = 0, then (10) becomes

(11) (k — a)f(k,0) = (k - 1)(2 - a) f(2,0)

for all k > 2. Using this and letting n = 1,m = 2 in the second identity of (3), we
get

2af(1a2) = _f(310)

With this and the fact f(1,0) = 0, and with m = 1,n = 2 in the first identity of
(3), we get f(2,0)£(3,0) = 0. Hence by (11), f(2,0) = £(3,0) = 0. These imply
f(k,0) =0 = £(0,0) for all k € Z. Now by the second identity of (3),

f(n,m) = £(0,0)

for all m,:. € Z.
If > 2, then
ak+ B #0

for all k < [, and by (8),
f(1,0) = ... = f(1,0) = £(0,0) = ...

From this and with m = [ and n = 1 in the second identity of (3), we obtain
f(I +1.0) = f(I,0). Then by (8),

£(1,0) = (1 +1,0) = ...

So f(k,0) = f(0,0) Vk € Z. Now by the secon# identity of (3) we obtain f(n,m) =
£(0.0) for all m #1.



I £(0,0) # 0, multiplying both side of the first identity of (3} by f(0.0)"' =
f(n,0)"! = f(m,0)7!, we get f(m,n) = f(n,m) Vm,n € Z. Hence

f(m,n) = f(0,0) Vm,ne€Z.

If £(0,0) =0, then f(n,m) =0 for all m # l. From this and with m # 0,k =1
in the second identity of (1), we get

(12) nf(m+n,l) = f(n,l)(n + 1+ am + B).

With n =0 and ! + am + 8 # 0 in (12), we obtain f(0,!) =0. With m+n =01n
(12), we obtain f(n,!) = 0 for all n > 0. Now (12) gives us nf(m +n,1) = 0 for all
n >0 and all m € Z. So f(n,l) =0 = f(0,0) for all n € Z. We have proved that

f(m,n)=0= f(0,0) VmEeZ.
The case of | < —2 can be proved similarly. So for a # 0,1, we have
f(m,n) = £(0,0) Vm,n€Z.

(b). a=0.
In this case 8 ¢ Z, and (3) becomes

{ f(n,0)f(m,n) = f(m,0)f(n,m)

(13) Bf(n,m) = (n + B)f(n,0) - nf(m +n,0),

and (5) becomes

(14)  (k+14B)f(k+1,0)=(k+B)f(k,0) + (1+ B)f(1,0) - A£(0,0).

By induction on k, we obtain from (14) that

k _
(13 g0 = LB s11,0) - E=2L 10,0,
Thus
51,00 = =52 50,0+ 200

With n = 1,m = -1 in (13), we get

f(]-ao)f(_l 1) = f("l, O)f(ls _1)
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and

1 +
s0,-1 = 250,00 - 550,0)
With n = —1,m =1 in the second 1dent1ty of (13), we get

1 1)_-1—“;—@,«1 0)+}iﬂ—2£f(0 0).

Combining above results, we get

(1+ B)f*(1,0) - (1 + 2B)(1,0)£(0,0) + Bf*(0,0) =0,
(£(1,0) - £(0,0))((1 + B)f(1,0) — B£(0,0)) = 0.

Hence

f(1,0) = £(0,0)
or

$0,0) = T2510,0)
If f(1,0) = £(0,0), by (15), f(k,0) = £(0,0) Vk € Z. Then by (13),
f(n,m) = £(0,0) Vm,n € Z.
If £(1,0) = $25£(0,0), by (15), f(k,0) = 55 £-£(0,0) VEk € Z. Then by (13), we

obtain

m+
n+m+f

f(n,m) = f(0,0) Vm,n€Z.

(). a=1
In this case # ¢ Z and (3) becomes

{ f(na O)f(ma n) = f(ma O)f(na m)

6
(16) fnym)m + B) = f(n,0)(n 4+ m + §) — nf(m +n,0),

and (5) becomes

(17) f(k+1,0) = f(,0) + £(1,0) — £(0,0).
With k = —1 in (17), we get

(18) f(=1,0) = 2£(0,0) - £(1,0).
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With n = —-1,m =1 in (16), we get

f(=1,0)f(1,-1) = £(1,0)f(-1.1),

and

f(-1,1) = ——f(-1,0) + ——=f(0,0).

1+B 1+ﬂ
Again, with n = 1,m = —1 in the second identity of (16), we get

__F __1
f(la—l)—ﬁ_lf(l,o) ﬂ—lf(O’O)

Combining above results, we have

(8 - 1)(f(1,0))? = 28£(1,0)f(—1,0) + (1 + B)(f(-1,0))* = 0,

((8 - 1)f(1,0) — (B + 1)f(-1,0)) (f(1,0) - f(-1,0)) =
Kence
f(~1,0) = £(1,0)

#-1,0) = §737(1,0)

Then from (18),
£(1,0) = £(0,0)

or

£(1,0) = 1i£ﬂom

If £(1,0) = £(0,0), by (17), f(k,0) = f(0,0) Vk € Z. Then by the second
identity of (16),
f(n,m) = f(0,0) Vm,n€Z.

I £(1,0) = 32£(0,0), by (17), f(k,0) = ELE§(r 0). Then by the second
identity of (16),

f(n,m) = m*i*”

f(0,0) Vm,ne€Z.
B
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Remark. It is easy to check that the action of g{8,1} on V given by (z), (%) in
Proposition 1 indeed make V into a g{0, 1}-module. Moreover, if v # 0, then V is
an irreducible g{0, 1}-module.

Now we suppose that V =, 5 Cv; is a g-module and satisfies the following
conditions:

dr. - v € Copyx for all m,k € Z,r € Zyo, and d} -vx #0, dL; -vp #0 for
al k € Z.

Since V is a g{0,1}-module by restriction, by Proposition 1, there exists
a, 3,7 € C such that one of the following occurs:

(@) db-ve=(k+am+B)vmsr, dp, vk = V0msk,
where ftadZ.

(b) db vk =(k+B)vmik, dpp-vk= %vmﬂ,
where a=0, B¢Z.
_ (k+m+B)y

(c) d, -vi = (k+m+ B)omtr, &, v
where a=1, BEZ.

k + ﬂ vm+k,

Claim 1. 7 # 9.

Proof. If v =0, then d® vy =0 Vm,k € Z. Comparing

[d%,,d0) - vi = 2nd}, ,, - vk = 20(k + a(m + 1) + B)omintk

mn

with

(d%dS — dod?,) - vk = —dodZ, - v = 0,

we get
2n(k+a(m+n)+B) - vmintk =0 Vm,n,k € Z.

This 1s a contradiction. O

Assume that d, vk = fr(m, k)omyr, Vm,k €Z, Vr € Zxo. Since
[d7,,d}] = —2mdiH! — md),,

[d,rn,dg]vk = ( ~2mfry1(m, k) - m2fr(m, k))”m-{-k-

On the other hand
(d:,,dg — d?,d,',,) vk = (f2(0, k) fr(m, k) = fr(m, k) fo(0,m + k))vm+k.
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So we have

(19) =2mfrpi(m, k) = f,-(m,k)(m2 + £2(0,k) ~ f2(0,m + £)).
Since
[dr,do) = (Dndryn + GORPdn 2 + o+ (D0 d) s
[d., dolos
= ((Dnfr-1(m+n,k)+ G froa(m + 0, k) + oo + (D07 fo(m + 7, 5)) vmgpn-

On the other hand,

(d:nd?u - d?ldrm)vk = (fo(:‘n, k)fr(m,n + k) = fe(mn, k) fo(n,m + k))vle+n+k°

So we have

(20)
Cnfeor(m+ n, k) + (0 fra(m + k) + ... + ()" fo(m + 0, k)
= fo(n, k) fr(m,n + k) — fo(m, k) fo(n,m + k).

In particular, if r =2 and m = 0, we get
fo(n, k) (£200,n + k) — £2(0,k)) = 2nfi(n,k) + n® fo(n, k).

By Claim 1, fo(n,k) #0. So

_ fl(n, k) 3
(21) f2(0,n 4 k) = f2(0,k) = 2n———f0 ) +n®  VnkeZ.
Then from (19),
_ fl (ma k) .
(22) fre1(m, k) = fr(m, k) T F) if m#0.

(@) fo(mk)=7, filn,k)=k+an+p.

Claim 2. 7= %1.
If y =1, then fr(m,k) =(k+ )" for all m,k € Z,r € Zy,,.
If v = —1, then fi(m,k) = (=1)""Yk+m+ f)" for all m,k € Z,r € Zyy,.

Proof. In this case, (21) becomes

2n(k 3 ,
n( +A{an+[) bk,

(23) f2(0,n + k) = f2(0,k) =
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With k£ =0 in (23), we get

£2(0,m) — £,(0,0) = 2MantB) | e

With n + k = 0 in (23) and replacing n by —n, we get

f2(01 n) - f2(03 0) = 2n(n —ont ﬂ) - n2.

These imply that ¥ =1 - 2a.
Now (22) becomes

k+am+ 8

f,_,.](m,k) = fr(ma k) 1- 20

if m#0.
By induction on r, we get

With m + n =0 in (20), we have

(24) (Drfe-1(0,k) + (3)n* fr=2(0, ) + ... + (7)n" fo(0, k)
= (1 - 20)(fr(_n,n + k) - fr(_n’ k))
=(1-2a)*""((k+B+(1—-a)n) - (k+B - an)").

In particular, if r = 3 and k£ = 0, then

3nf2(0,0) + 3n2£,(0,0) + n2 £,(0,0)
= —1—:1—2;(3ﬂ2n +36(1 -2a)n® + (1 -3a+ 3a?)nd).

Since n is arbitrary,
1-2a = f3(0,0) = —1—(1 — 3a + 3a?).
1-2a«a

Soa=0orl,andy=1-2a=1or -1.
If y =1, then a = 0. With n =1 in (24), we have

(;)fr—l(o, k) + (;)fr—l{.,o’ k) + ...t (:)fO(O’ k)
=(DE+8)T+OE+B) T 4+ ()
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By induction on r, we get
fe(0,k) = (k + 8"

Hence

fr(m, k) =(k+8)" Vm,k€Z, 7€ L.

If v = ~1, then a = 1. With n =1 in (24), we have

(D fr=1(0,k) + ) fr=1(0,E) + ... + (7) fo(0, k)
=(-1*"((k+B)" —(k+8-1))

= (DD R+ B +EN-1)T R BT+ (1),

By indaction on r, we get

Fo(0,k) = (1" (k + B

Hence
fr(m, k) = (-—1)'""(1: +m+ B) Vm,k€Z, 1€ ZLy.

We complete the proof of Claim 2.

(b). fo(m,k) = LT fi(m, k) =k + 5.
Claim 3. f.(m,k)=(-1)"1k+m+ )" (k+5).
Proof. In this case, (21) becomes

(25) O+ ) - f2(0,k) = 2n2—t§+—ﬂ- +nl,

With k£ =0 in (25), we get

£2(0,m) = £2(0,0) = ﬂf-@ .

With n 4 k = 0 in (25) and replacing n by —n, we get

f2(0,n) — £2(0,0) = — - n?.

~

These imply that v = —1. Hence (22) becomes

fre1(mk) = =(m+k+B)fo(m, k)  where m#0.
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By induction on r, we get
felm, k) = (1) Yk +m + B) " (k + B)

forall kkmeZ, m#0, and all r € Z¢. Using this and with m = —-1,n=11in
(20), we get

(D) fr-1(0,k) + (3) fr—2(0,k) + ... + (1) fo(0, k)

= fo(L,E)fr(-1,k +1) - fr(-1,k)fo(1,k — 1)
=(-1)"((k+B) - (E+B-1))

=—((DEDT R+ +HEOED)TEEF BT+ + ()

By induction on r, we obtain

£(0,k) = (1) (k + B)".
Hence we complete the proof of the Claim 3. O

(). fo(m, k)= (BN fi(m,k)=m+k+B.
An argument similar to the one in (b) shows us that ¥ = 1 and gives us the
following claim.

Clair 4. f.(m,k)=(k+m+B)(k+p)"L.

Using the fact that g is generated by d2,d},d? ,, it is easy to see that if f,(m, k)
is defined as in Claim 2, Claim 3, and Claim 4, df, - vk = fr(m, k)vm+ indeed gives
V a g-module structure. In summary, we proved the following proposition.

Proposition 2. Let V =3, Cvi. Define dj, vy := fr(m, k)vm+r, forall m,k €
Z,r € Z>p, where f,(m,k) are given by the following:

(7))  fr(m, k)= (k+B)",

(i) fe(m, k)= (-1)""(k+m +B)",

(tid)  fe(m, k) = (=1)""H(k+m+ B) ' (k + B),

(iv)  fe(m,k)=(k+ 8" Yk +m+B), where § ¢ Z.

Then V' is a g-module and d',vx # 0,d]jvg # 0. Conversely, if V =3, Cvy is
a g-module such that d,vx € Com4r and d! vi # 0,divg # 0, then the g-module
structure of V' is given by one of (2),(i7), (#i2) and (iv).
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Remark. Let p(z) =Y, air' € C[z]. Then any g-module becomes, by restriction
to 9(p(z))s @ B(p(z))-module. In particular, the g-module V of Proposition 2 gives
rise, by restriction, to a g(p(r))-module. Precisely, we have g(,(,))-modules

W= 2 Cox,
ez

dm(g(z))vx = q(k + B)omys,

V=) Cuy,
keZ

dm(g(z))vk = —q(—k —m — Bvmyr,

V3,p = Z Cvk,
keZ
k4
dn(a(a ok = =a(~k = m = B)— L,
and
I/'i,ﬁ = chka
keZ
_ m+k+p
(a0 = 1k + B) Lo,

where ¢(z) € {p(z)) m,k € Z, and § ¢ Z.

Proposition 3.

Let B € C\ Z. Assume that k; + 3, ..., k. + f are all the distinet roots of p()
which liein Z + 8. Then

U:= Cvk, + ...+ C'Uk'

is the unique maximal proper g(,(;)y-submodule in V; g, ¢ = 1,2,3,4. And V, 4/U,
i=1,2,3,4 are all irreducible.

Proof. We prove only the case of V; g. The proof of the cases of V; 5 ¢ = 2,3,4
are similar. First note that g¢,(;),)U =0, so U is a trivial g(p(;)y-submodule of V; 4.
Now let K # 0 be a proper g(p(;)y-submodulein V; g andlet 0 # X = Z:; i Vi €
K, where a; # 0,7 = 1),...,1,. If there exists k such that p(it + f#) # 0, then

0 #do (z7p(z)) X = z ai(i +BYp(i + B, € K

=1
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for all j € Zyg. Since

1 . 1 . 1
a| UTO P WAL,
(4B G+ BY™ o (G kB
v, € K. Then

dm(p(z))i, = p(ik + B)om4i, €K VYme€Z,

and K = V; g. Thisis a contradiction. So we must have p(i+8) = 0 for ¢ = 11, ...,2,.
Hence X € U. O

1.6 Highest Weight Modules

In this section, we discuss the highest weight modules of g and g/{b\,T} We also
define contravariant forms on Verma modules and give some necessary conditions
for these forms to be non-negative.

Recall that we have an imbedding of § into a., by identifying d], with
>;"Ejtm,. If we define L7, = Yico()(B)d:,, then LY, is identified as
;6 + $)Ejam,j in 6. Cleatly, § = 3. cz,ez,, CLn, + C¢. By straight
calculation, we see that the commutators of g are

L= ( S oo G) (3) (- (—1)‘)) Lo

1=0 \i+k=l
D o - P
1<j<n 1<j<m
[L:md'] =0.

Define anti-linear map

w:aoo_')aw

such that
W (Z /\.‘Ei+m.i) = Z/\—iEi,i+m, w(¢) =¢.
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It is easy to check that w is an anti-involution of ac. Particularly, w |5 is an
anti-involution of g and

w(Ly, )—Z( 7) J,J+m—Z(J—_) Ej-m;j=1L,

j

Let
gc=gr for k#0,
go = g0 + C¢,

and
=Y g g-=) gk

k>0 k<0
Then

8 = 9-OgoDG+-
Definition. Let U(g) be the u.iversal enveloping algebra of § and A € g,", the
dual space of go. Let J(A) be the left ideal of U(g) generated by g3 and
{X - AX) | X €do},

where we identify 1 with the identity of U(g). M(A) := U(g)/J(A) is called a Verma
module. Any quotient of M(A) is called a highest welght module of g of highest
weight A.

By the Poincare-Birkhoff-Witt theorem, M(A) has basis

k k k ki,
Lrna  Lhnen Ll [Fey,

-n

where
kjy 2 kja2 ... 2kjs, 1<j<n, nely,

and v4 is the image of 1 in M(A).

Note that [L},L3] = nL%, for all n € Z and s € Z3. We decompose M(A) as
a sum of eigenspaces of L} in the following,

For any u € C, define

M* = {u € M(A) | Liu = pu}.
i.e. M* is the eigenspace of L} of eigenvalue p.
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Since

ku kn on k » k '8
L(’, LML ....L__lll...L__ll I‘D_*.

—_n **_n

= (A= (150 + (1 = 1)sng) + o+ 51)) L5t LEmen LR [Rung,

for any basis element of M(A), where A = A(L}), it is easy to see that M(A) =
Y i>o M*F and M* = Cvy. If N C M(A) is a proper g-module, then NnM?> =0.
Hence M (A) is indecomposable and contains a unique maximal proper submodule
N(A). Let V(A) := M(A)/N(A). Then V(A) is the unique irredurible highest
weight module of highest weight A. Hence we proved the following proposition.

Proposition 1. (i) M(A) =Y ez, MX-k M?* = Cuv,, and M(A) is inde-
composable.

(i) M(A) has a unique proper maximal submodule N(A) and V(A) =
M(A)/N(A) is the unique irreducible highest weight module of highest weight A.

Definc a total order < on {L}, | m € Z,r € Z>p} | J{¢} as follows:

L, <L
iff
m<n
or
m=n, r<s
And

LE<¢<Ld Vkel.

Then an element of U(g) is a linear combination of elements of the form

(1) R=1LY%, L% L% (L§)y°..(L§)¢'Lh.. L},
where Lf‘jl <..< L‘;‘j‘ <L, ¢< Lf: <..< Lf: For u € M(A), define (u)
to be the coefficient of the highest weight vector v, in the expansion of u with
respect to M(A) = Y eq. M A=k If we extend the anti-involution w of § to U(§)
by w(XY) = w(Y )w(X), then we have (w(R)v4+) = (Rvy) provided that A(LY) € R
for k = 0,1,2... and A(¢) € R.
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Proposition 2.

(i) Assume that A(L) € R for all k € Z>¢ and A(¢) € R. Then M(A) carries
a unique contravariant hermitian form {(...) such that (v;, v}) = 1;

(i) (MMEMMY=0 ifk#]

(i) ker(.,.) = N(A). Hence V(A) carries a unique contravariant hermitian
form such that (v,v) = 1 and this form is non-degenerate, where v = v + N(A).

Proof. (i),(ii). For any morn-mials P(vy) = L‘;‘j,...Lﬁ‘j.v+ and Q(v4) =
LY, .Y, vy, define (P(v1),Q(v4)) = (W(P)Q(v4)). This is a well defined
contravariant hermitian form on M(A). (see [S}, [KR] or [MoPi]). Moreover,
(P(v+),Q(v+)) = 0, if j] +]2 + ... +j, 75 i] + ig + ...+ i(.

(ii1). By definition,

ker(.,.) = {u e M(A)| (u,w) =0 Vwe M(A)}.

Clearly ker{.,.) is a proper submodule of M()). Moreover, if V C M(A) is a
submodule and P(v;) € V, Q(v;) € M(A), then w(Q)P(v4+) € V. So if V is
a proper submodule of M(A), then (w(Q)P(v4)) = 0, i.e. (P(v4),Q(vy)) = 0.
Hence P(v4) € ker(.,.) and V C ker(.,.). So we proved that

ker{.,.) = N(A).

O

An important question is when (.,.) is non-ncgative on M(A), hence positive
definite on V(A). For Virasoro algebra g/{?t/}, D.Friedan, Z.Qiu, and S.Shenker
[FQS], and R.Langlands [L] gave a necessary condition for the corresponding form
{.,.) on Verma module to be non-negative. P.Goddard,A.Kent and D.Olive [GKO]
proved thai the condition is also sufficient. For g, even though we still don’t know
exzmnies for which (.,.) are non-negative on M(A), we can prove the following
necessary condition. First, for ¢ € R, h = (ho,ly,hs,...) € R™, e define an
infinite real matrix A(h,c) as follows:

A(h’ C) = (Aij(hs C))i,]:l,'z,... )

where o
Aij(.}_'wc) = z (.' ) (5) (("1) - 1) hl+j—l -~ (E) C.
=0
Clearly,

Aij(h,c) = Aji(h, c).
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Proposition 3. Let A € go” be such that h; = A(L}) € R Vi € Zy and
¢ = A(¢) € R. Then a necessary condition for (.,.) to be non-negative on M(A) is
that A(k,c) is positive semidefinite.

Proof. For (ag,a;,...ar) € R™1,if {,,.) is non-negative, then

(G (e

<v+,22a.a,[L1, '1]v+> 2 0.

1.c.

=] j=1
Since
i+j i+ . 1 i+j
=3 () () - - (3) e
1=0
i+ l i+J
( 1 1
ZZa,aJ (Z i+j (§> (-1 1) h,—+,-_,—(§) c) >0.
This is
Z Zaiainj(h, c) >0,
LR |
or
ag
(20
(do a ... 4ar 0 )A(_}L,C) a 20
0
So A(h,c) is positive semidefinite. O

P

Finally, we consider the highest weight modules of g{0,1}. Take
{Lins Lo | Vm € Z} U {8}

as a basis. Then

g{0.1} = Y ezt + Y cIl + ¢,

mezZ mezZ
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and

1
[L}n, LL] =(n- m)L}n_*_n — 1-6(1123 + 2m)dmtn 08,

m
[LimL(v)z] = nL?n+n - _.5'6m+n,0¢1

(L3, Ly] = —mbmin 0.

Let
1
Ly =-L) — 56,,,,0¢,
1
Am = "'L?n - §6m,0¢’
¢ = —¢.
Then
3 _
[Lm,Ln) = (n ~ m)Lmtn + T‘n'—l'z_m5m+n,0¢h
[Lm,Aﬂ] = "nAm'i"n,
[AmaAn] = Mbm+n,0¢1,
and
W(p)=Lom, w(Am)=A_m, w(¢;)=4¢,.
Let o
8{0,1}, = ) CLn + ) CAn,
m>0 m>0
{01} =Y CLn+ Y CAn,
m<0 m<0
and N e
g{0,1}o = CLo + CA + C¢,.
Then

9{0, 1} = 9{07 1}+€BQ{0, 1}0 @ 9{0, 1}-‘

For A € g{0,1}, , as in the case of §, we have Verma module M(A), the unique
maximal proper submodule N(A) and V(A) := M(A)/N(A). Moreover, if

h:=A(Ly), a:=A(Ag), c:=A(¢)€ER,

there exists a contravariant hermitian form {(.,.) on M(A) such tha: ker(,.) =
N(A).
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Proposition 4. Let

8{0,1} = 3 CLn+ 3 CAn +Cy,

meZ meZ
A € (CLy + CAg + C¢,)",

be such that
h = A(Ly), a=A(A¢), c=A(4;)€eR.

Then a necessary condition for {.,.) to be non-negative on M(A) is

(i) (h,c) 2 (0,1),
or
(i) (hyc) = (k3 ym) m >0,
where

reo_ (M A3~ (m 42~

m 4(m +2)(m + 3) ’
6
=1~ <sg<r< .

Cm =1 m 1 2)(m +3) 1<s<r<m+1

And for any given (h, c) satisfying (2) or (it),

~v2he < a < V2he.
Proof. The conditions (i) and (iz) on (k,c) are given by [FQS] and [L]. For any
given pair (h,c) satisfying (z) and (), since Va € R,

(L1 +adoi)og | (D1 + @A_q)vy) 20,

we have

2h + 2aa + oc > 0,
or

2aa > —2h — a’c.

Thus

Define fa):= —% — 2¢ and let

We get a = :i:\/gcﬁ and
[2h
—\/2h.=f( —C-) Sagf(—- %) = v2he.
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CHAPTER 2

POLYNOMIAL LIE SUBALGEBRAS
OF THE VIRASORO ALGEBRA

2.0 Introduction of Chapter 2

In this chapter we study the polynomial Lie subalgebras of the Witt algebra and
the Virasoro algebra, and their representaticns. We have seen in the Introduction
that the Witt algebra is an infinite dimensional simple Lie algebra given by W =
Y- mez Cdm with Lie bracket [dm,dn) = (n ~ m)dm4n- The Virasoro algebra is the
universal central extension of W, aud given by Vir = 3, CL,, + C¢ with Lic
brackets

mé—-m

[Lm, Ln] = (n - m)Lm+n + —1‘2""‘6m+n.0¢,
[Lm,¢] = 0.
Both of them have been extensively studied by many authors. However, the sub-
algebras of W and Vir have still not been considered seriously. Some obvious
subalgebras of W are the following:
(a) Finite dimensional subalgebras
Cz, zeW.
Cd() + Cdm, m E Z.
Cd_. + Cdy + Cdp, m € Z.

(b)

Y Cdmi k € Zo.
meZ
(c)
Y Cdn k€Zy,
m2>k
) Cdn k€ Zg.
m<k

(d) Intersections of subalgebras of type (b) and (c) above.
Before we ir troduce the polynomial Lie subalgebras of W and Vir, let us recall
the shift map from W to itself such that

O'(dm) = dm+) Vm € Z.
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Even though o is not a Lie algebra homomorphism, it is invertible and possesses
the following two properties:

lo(2),0(¥)] = 0°[z,3]

and

[o(2),y] + [z,0(y)] = 20]z,y]

forall z,y e W.

We call a linear map from a Lie algebra to itself with these two properties a
shift operator. We'll see in Section 2.1 that the shift operators of W constitute a
commutative algebra Clo, 0 ™!] which is isomorphic to the Laurent polynomial ring
C [t,t“] . We say a Lie subalgebra V' of W is shift invariant if (V) = V. It turns
out that V C W is a shift invariant Lie subalgebra if and only if

V =p(o)W = {p(o)z | z € W}

for some polynomial p(t) € C[t]. We call p(¢)W the polynomial Lie subalgebra of
W associated with p(t).
Next, we consider the canonical Lie homomorphism

w:Vir— W
with

t(Lp) =dm, VmeZ,
n(¢) = 0.

If V is a Lie subalgebra of W, then #~!(V') is a Lie subalgebra of Vir. In particular,
if V = p(o)W, then 7~1(V) = 7} (p(d)W) is a Lie subalgebra of Vir. We call it
the polynomial Lie subalgebra of Vir associated with p(t).

This chapter is organized as follows: In Section 2.1, we introduce the shift
operators for an arbitrary Lie algebra, determine all of the shift operators of the
Witt algebra, and show that a Lie subalgebra of W is shift invariant if and only if
it is a polynomial Lie subalgebra. In Section 2.2, we discuss the structure of the
polynomial Lie subalgebras of W and in Section 2.3, following the method of the
Segal-Sugawara construction for the Virasoro algebra, we realize the elements of the
polynomial Lie subalgebras of the Virasoro algebra as the Segal-Sugawara operators
on certain Fock spaces. In section 2.4. we define category @, of Vir(p)-modules,
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where Vir(p) is the polynomial subalgebra of Vir associated with the polynomial
p = p(z). This is an analogue of category Q@ of the Virasoro algebra modules.We
go on to discuss the highest weight modules, in particular the Verma modules of
Vir(p). In Sertion 2.5, quasi-admissible modules and admissible modules of Vir(p)
are introduced. They are the natural generalizations of admissible modules of the
Virasoro algebra. The irreducible admissible modules of the Virasoro algebra have
been classified by Mathieu [Ma] and Martin and Piard [MP}. In Section 2.6, we
give a family of irreducible quasi-admissible modules of the Virasoro algebra. We
discuss a class of admissible modules of Vir(1 —t) in detail in Section 2.7, where
in particular, a class of finite dimensional modules is determined and the necessary
and sufficient conditions for their indecomposibility is obtained. Finally, we give a
brief comment on the admissible modules of the general polynomial Lie subalgebras
in Section 2.8.

We always assume that the base field is the complex field C in our discussion.

2.1 Shift Operators of the Witt Algebra

In this section, we introduce shift operators for an arbitrary Lie algebra and
determine all of the shift operators of the Witt algebra. The gencral concept of
shift operators is motivated by the following observation. The Witt algebra is a
Z-graded Lie algebra, W = ) .., Cdm, [dm,dn] = (n — m)dm4n. Consider the
linear map

oW —W
defined by o(d;) = dit1. Straight calculation shows that
M { [0(d:), o(d;)] = o*([di, dj]),
[o(di), dj] + [di, o(d;)] = 20([ds, d5]).

We give the following definition.
Definition.
Let g be a Lie algebra and let S C End(g) be a commutative (associative)
subalgebra. S is called a shift operator algebra on g if for any o,7 € S, we have
[o(z), 7(y)] + [7(z),0(y)] = 207([z,y]) Vz,yeg.
An element of S is called a shift operator on g (relative to S).
Remark. If o = 7, then
lo(2),0(y)] = o°[z,y].
If =1, then
[0(2), 4} + [z, 0(y)] = 20]z,y].
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Proposition 1. Let o € End(g). If
[o(2),0(y)] = o*([z,3])

and

[o(2), 4] + [z, 0(y)} = 29([z, y])

for all 7,y € g, then Clo] is a shift operator algebra on g. Hence o is a shift operator
(relative to Clo]). Moreover, if 0~! exists, then Clo,0™"] is a shift operator algebra

on g.

Proof. Assume that m > n > 0.
If n > 0, then

[o™(2),0" ()] + [0"(z), 0™ (v)]

= a?[o™ ! (z), 0" ()] + 0*0" 7 (=), 0™ (W)]
=o? ([o™ (), " (W) + [0" 7 (), 0™ ()])
=0g%.-20™ 11" z,y]  (by induction)

= 20™""[z,y] Vz,y € 9.
If n=0,m > 2, then

o™ (), 9] + [z, 0™ ()]
= [o™(2), 4] + [0™ 7 (2), 0(¥)] + [o(2), 0™ ()] + [z, 0™ (V)]
= ([e™ (=), 0(¥)] + [o(z), ™' (¥)])
= 20[0™ Y (z),y] + 20(z, 0™ (y)] (by hypothesis)
= ® ([o™ (), y) + [2,0™ 2 ()])
=20 -20™ z,y] — 20™[z, Y]
(by induction)
= 20™ [z, 9] Vz,y € g.

S()
o™ (2). 0" (¥)] + [o™(2), 6™ (¥)] = 20™ " [z, 3]

for all m,n € Z, and =,y € g. This implies that for all polynomials p(t), g(t),

[io)x, g(o)y] + lg(0)z, p(0)y] = 2p(0)q(0)[z,y]  Vz,y €.
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If 7! exists, then

[z,y] = [oo7 (z).007 (y)] = o*[o ™ (x),0 7 ().
So
[071(2), 07 (¥)] = o7z, y),
and

[e7(2),y] + [z,07'@)] = 072z, 0(y)] + 07 *[o(2), 4]
=072 20(z,y) = 207 [z, ).

Then we obtain
[o™™(2),0™™(y)] = 07" "(z,4]
and
[07™(z),07"(y)] + [o7"(z), 07" ()] = o7 ", 4,

for all m,n > 0. Finally,

[o™(2),0™"(w)] + o), 0™ (W]
=072 ([o™t"(z),y) + [z,6™ " (y)])
— U—Zn (2am+"[m,y])

= 20" ""[z,y]
for all m,n € Z. Hence for any Laurent polynomials p(t), q(t),

[p(o)(z), (o) ()] + la(a)(z), p(a)(¥)] = 2p(a)g(a)|=, y].

We have proved the proposition. 0
More generally, we have the following:

Proposition 2. Let S C End(g) be a commutative subalgebra with generators
{oi |4 € I}. Then S is a shift operator algebra on g iff

(03,00, 7,0, ...05, 9] + l0j, -0, 2,04, ...04,,y] = 204, ...04,, 7}, ey

for all 0y, ,0;, and all z,y € g.

Proof. Obvious. [
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Example 1 Let g = Cz + Cy be the 2-dimensional Lie algebra with Lie bracket
[z,y] = y. If o € End(g) is a shift operator, then

(3)=(28)()

for some a,b,¢,d € €. Since

[az + by, 1] + [z, cz + dy] == 2cz + dy),

()= 2)6)
(3 3)

Then o = al + br. It is thus clear that CI + Cr is the only shift operator algebra

on g of dimension greater than 1.
Example 2 For sly(C) = Ce+Ch+Cf, where [e, f] = h,[h, €] = 2¢, [k, f] = =2f,

if o is a shift operator, then

€ ay aq as €
ol h = b] bz b3 h
f a ¢ caf \f

for some a;,b;,¢; €C, 1=1,2,3.
From

we have ¢ = 0,a =d. i.e.

Let

[o(h), €] + [k, o(€)] = 20]h, €] = 40(€),

we obtain

az = 0, bz = a, b3 = —4(12.

From

[o(R), f] + (B, o(f)] = 20[h, f] = —40{,

we obtain

) = 0, C3 = b2, bl = —-462.

Finally, from
[o(e), £] + [e,0(f)] = 20[e, /] = 20(h),
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we obtain

So we have
ag=b=c
and
(12=(13=b1 =b3 = =62=0.
Thus {al | a € C} are the only shift operators of sl3(C). Example 3 Let g be a Lie
algebra and § := g ® C[t,17!] be the loop algebra. Define a linear map

o:g—9g

by o(z®t™) = z®t™*! for all = € g and m € Z. Then Clo,07'] is a shift operator
algebra on g.
We now consider the shift operators of the Witt algebra.

Proposition 3. Let
oW —W

be the linear map defined by o(d;) = di+1. Then Clo,07!] is a shift operator algebra
of W. Moreover, if T € End(W) is a shift operator on W, then 7 € Clo,a71).

Proof. Clearly o is invertible. Using (1) and Proposition 1, Cla,07!] is a shift
operator algebra on W.
Conversely, suppose that 7 € End(W) is a shift operator, and

(di) =Y aijdi =Y aijo’di=pio)d;  VieZ,
3 j

where p;(t) := ) i a;jt’~* is a Laurent polynomial. Comparing
27[do, dj] = 257(d;) = 2jpj(o)d;
with
[7(do), d;] + [do, 7(d;)]
= [po(0)do, d;] + [do, pj(a)d;]
= [po(e)do, dj} + [do, po(0)d;] + [pj()do, d;] + do, p;(7)d;]

— ([dos po(@)d;] + [pj(0)do, d;])
= 2jpo(0)d; + 2jpj(a)d; — ([do, po(7)d;] + [pj(a)de, d;]),
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we get,
(*) [do, po(2)d;] + [pi(0)do, dj] = 2jpo(o)d;.
Hence

[do, (po(a) — pi{0))d]

= [do, po(0)d;] - [do, pj(o)d;]

= [do, po(0)d;] + [pj(e)do, ;] — ([pj(o)do, d;] + [do, pi(0)d;))
= 2jpo(0)d; - 2jpi(o)d;  (by (%))

= 2j(po(0) — pi(9))d;-

i.e. (po(a) — pj(o))d; is an eigenvector of dy of eigenvalue 2;. So
(po(0) - pi(0))d; = ajo’d;,

and
pi(a) = po(0) — ajo”
for some aj € C. Now from
[7(d;), d-;] + {dj, 7(d-;)]
= [(po(0) — ajo’) dj,d_;] + [d;, (po(0) — a~jo™7) d_;]
= [po(0)d;, d-;] + [dj, po(0)d—;]
— ajldzj,dj] - a-j[dj, d—s;]
= 2po(0)ld;, -] + 3jejd; + 3ja—jd—;
= —4jp0(0’)do 4+ 3j0’jdj + 3j01_jd_j,

and

27(d;j,d- ;] = ~4j7(do) = —4jpo(0)do,

we obtain «; = 0. Hence
pj(o) = po(o), VjE€Z,

and 7 = py(0) € Clo,071].
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Remark.

(1) Clo,07] 2= C[t,t7') as commutative algebras over C, where t is an inde-
terminate.

(2) For any p(c) € Clo,07'], p(6)W is a Lie subalgebra of W, and
o™p(c)W = p(o)W for all m € Z.

Proposition 4. Let o be defined as in Proposition 1 and let g < W be a Lic
subalgebra. Then g is o-invariant iff g = p(o)W for some p(o) € Clo].

Proof. If g = p(oc)W for some p(0) € Clo], then clearly g is a o-invariant Lic
subalgebra of W. Conversely, suppose that 0 # g < W and o(g) = g. Then there

exists
,.

0#z= Za,-d,- = p(0)dp € g.

=0

Assume that z is an element of g such that p,(t) has minimal degree. For any
y € g, y # 0, we may write

y =0""py(o)do
for some py(t) € C[t], py(0) # 0, and my € Z. Then

o~ ™y = py(o)dy.
Moreover, if we write
py(t) = q(t)pz(t) + r(t),
with some q(t),7(¢) € C[t] and deg(r(t)) < deg(pz(t)), then r(t) = 0 by the mini-
mality of p(t). Thus

o~ ™vy = py(0)de = pz(a)g(o)dy € pz(a)W.

So y = o™ g(0)pz(c)do € p-(7)W, and hence g C 3y 0™ pr(a)W = p(a)W.
On the other hand, an elemment of p;(0)W can be written as o™ p;{a)g(a)d, for
some m € Z and some ¢(t) € Clt]. Since p;(a)dy € g and o(g) = g, we have
p:(0)W =g, and hence g = p;(o)W. [

2.2 Polynomial Lie Subalgebras of the Witt Algebra

In Section 2.1, we proved that if ¢ € End(W) is defined by a(d;) = dyyy for all
i, then a Lie subalgebra g of W is o-invariant iff g = p(a)W for some p(t) € C[¢].
We give the following definition.

58



Definition. A Lie subalgebra V of W is called a polynomial Lie subalgebra if
V = p(a)W for some polynomial p(t) € C[t]. We use W(p(t)) to denote p(o)W
and use &Y to denote p(o)dm.

In this section, we discuss the structure of such algebras and give a condition
for p(t) such that W(p(t)) admits an anti-linear anti-involution.

Proposition 1. Let p(t),q(t) € Citl, p(0) # 0,¢(0) # 0. Then
G) Wi(g(t)) < W(p(t)) iff p(¢) | g(t);
(i) If g.c.d(p(t),q(t)) =1, then

W(p(t)g(t)) = W(p(t)) 0 W(q(t))-

Consequently, if

p(t) = [J(1 +eit)™,

=1

where aj, ...a, are distinct , then

W(p(t)) = [ W (1 +et)¥).

=1

Proof. (i) If p{t) | q(t), then
g(t) = p(t)r(t)
for some r(t) € C{t] and
W(q(t)) = g(0)W = p(o)r(a)W C p(a)W = W(p(t)).

So
W(q(t)) < W(p(t))

Conversely, if W(q(t)) < W(p(t)), then

(1) _ gp(t)r(t)
419 = gp

for some 7(t) € C[t]. Hence
p(t) [ q(t).

(i) By (i),
W(p(tig(t)) < W(p()) 0 W(q(t)-
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Conversely, if
0# z € W(p(t)) N Wi(g(t)).

we may write

T = d,‘,ft)
for some m € Z, z(t) € C[t] and z(0) # 0. Since £ € W(p(t)), we have

= dfn(t) = df’,f‘)’“)

for some r(t) € C[t] and hence
p(t) | =(t).
Similarly, we have
q(t) | =(2)-
But g.c.d(p(t),q(t)) = 1. So
p(t)q(t) | =(2)

and

z € W(p(t)a(t))-
Hence W(p(t)q(t)) = ¥ (p(t)) N W(q(2))- 0
Lemma 1. If ¢(t) € C[t], and ¢(0) # 0, then

[dma q(O‘)dn] = Q(a)[dma dn] + q'(a)ddm+u

for all m,n € Z.

Proof. We prove the lemma by induction on deg(q(t)). Assume that the lemma is
true for ¢(¢). Then

[dm,a(0)(1 + @o)dy]
= [dm,9(0)dn] + &{dm, q(0)dn+1]
= g(0)(n — m)dm+n + ag(a)(n +1 - m)dmint
+4'(0)0dmin + aq'(0)0dmn+1
= (n —m)g(o)(dm+n + a0dmin) + aq(o)odmsn + (1’(0')(1 + a0 ) n i
= g(0)(1 + a0)[dm, dn] + (q(0)(1 + @0)) odm4n.

The lemma follows. 0
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Proposition 2. Let p(t),q(t) € C[t],p(0) # 0,¢(0) # 0. Then W(q(t)) < W(p(t))
iff
p(t) 1 4(t)
and
) p(?) _ o)
g.c.d(p(t),p'(t))  g.c.d(q(t),¢'(t))
Proof. Note that the condition (*) is equivalent to the following condition:

For any 1 + at,
(1+at) | g(t)
iff
(1+ at) | p(2).
Suppose that p(t) | ¢(t) and (*) holds. Write g(t) = p(t)r(t). By Lemma 1,

(**) [p(0')dm,q(0)dn] = [p(0)dm, p(0)r(0)dn]
= (p(0))*[dm, 7(0)dn]
= (p(0))%((0)dm. dn] + 7' (0)T im0
= p(0)q(0)dm, da] + ((0))*r' (0)odmetn-

Siuce by the condition, g(t) | (p(t))?r'(t), we have
{p(a)dma‘I(U)dn] € W(q(t)).
So
W(q(t)) « W (p(t)).

Conversely, suppose that W(g(t)) « W(p(t)) and there exists 1 + at such that
q(1) is divisible by 1+ at but p(t) is not divisible by 1+ at. Assume that s € Z>,
is the maximal integer such that (1 + at)® | g(t) and ¢(t) = p(t)r(t) for some
r(t) € Clt]. Using (**),

1’(0)(1(0)[(1111,(111] + (p(o))ZT’(U)O’dm+n = [p(d)dm,q(d)dn] € W(Q(t))
So
(p(0))*r' (0)odm+n € W(q(1)),
and hence
a(t) | (p(t))*'(2).
But p(t) is not divisible by 1 + at, so (1 +at)* | () and then (1 + at)*t1 | q(t).
This is a contradiction. 0
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Proposition 3. Let p(t) € Cft]. Then
(i) W(p(t)) has a trivial centre.
(ii) W(p(t)) is indecomposable.
(iii) W(p(t)) is simple iff W(p(t)) = W.

Proof. (i) is clear.
(i) Suppose that
W(p(t)) = W1 & Wy,

where 0 # Wy «W(p(t)), 0# Wa aW(p(2)). Let
0 £z = d?*() = p(5)z(0)dm € Wi,
where z(t) € C[t]. Then
[2,2295] = (0(0)2(@))? dm dr-m]
= (n — 2m)(p(0)z(0))*dn € W,

for all n € Z. So
(p(0)z(c))*du € W)

for all n # 2m. Similar argument as above implies that

W ((p(t)z(t))") € W1

Similarly, there is y(t) € C[t] such that

W ((p(t)y(t))") C Wo.
Hence
e # w ((P(t)‘”(t)y(t))4) CwWinWw,.

This is a contradiction.
(iii) If deg(p(t)) > 0, then W (p(t)?) # 0 is a proper ideal of W(p(t)). if
deg(p(t)) = 0, then W(p(t)) = W. [l

Proposition 4. Let p(t),q(t) € Clt]. If there exists a # 0 such that ¢(t) = plat),
then W(p(t)) & W(qg(t)).

Proof. Let
¢ : W(p(t)) — Wiq(1))
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be the linear map such that

$(p(o)dm) = a™ (0.
Assume that p(t) = 3, ait'. Then
$([p(0)dm,p(0)dn] = ¢ (p(0))*(n — m)dmn)
= (n—m)¢ (Z asp(a)dm+n+i)
= (n —m) Z (;iq(a)am+n+idm+n+i

=(n- m)q(a)am+"q(a)dm+,,
= (g(0))*a™ " [dm, dn]

= [a™g(0)dm,a"q(0)dn]

= [¢(p(o)dm ), (p(o)dx)]-

The proposition follows. O

Recall that the anti-linear map
w:W—W
such that

is an anti-involution of W. For a polynomial p(t) € C[t], w |w(p(y) is in general
not an anti-involution of W(p(t)). However, we have the following proposition.

Proposition 5. Let p(t) = Y.i_;ait'. Then w |w(pr) is an anti-involution of

W(p(t)) iff p(t) satisfies
1
ep(3) =ttt

for some b € S!, the unit circle in C. Here B(t) = )i, @;tt, and @; is the complex
conjugate of a;. In this case w’(d’,’ét)) = bd® (*)

—-m-r°

Proof. If w is an anti-involution of W(p(t)), then for any m € Z,

w(dh") = w (i a,-dm+,-> =) TGd-m-i € W(p(t)).

1=0 =0
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So

r

Z a_td— m—i = b d}l(,t,z_,-

1=
for some b,, € C. This implies that

bna; =7ir— 1=0,1,....,r VYmeZ.

Hence by, is independent of m. Assume that b, = b. Then from w? =1 we get
bb =1, i.e. be S So p(t) satisfies

1
t'5(3) = bp(t).
Conversely, if (1) = bp(t) for some b€ S 1 it is easy to see that

w (d50) = 0"

-m-r

and
w [df,f‘),dﬁ(‘)] = [w (59 w (a9)] -

i.e. w is an anti-involution of W(p(t)). (]

2.3 Segal-Sugawara Construction

In this section we define the polynomial subalgebras of the Virasoro algebra and
realize the elements of these polynomial subalgebras as Segal-Sugawara operators
on certain Fock spaces. Recall that the Virasoro algebra is the universal central
extension of the Witt algebra.

Vir = Z CL. + Ct,
meZ

'ITI," —1m

[Lma Ln] = (TI. - "L)L1n+n + "_lz_—b]n—i-n,()(l'a
[Lm,¢] =0.

Let
m:Vir—W

be the canonical homomorphism. i.e.
(Ly) =dm, w(¢)=0.
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For any p = p(t) = i, ait' € C[t], we denote 7~ (W(p(t))) by Vir(p). Clearly
Vir(pj is a Lic subalgebra of Vir and

r

{Lfn = Za;Lm.H | Vm € Z} U {¢}

1=0
is a basis of Vir(p). The Lie brackets of Vir(p) are given by

) /] . m + i 3 - m + i
(L8] = (1) S il it i BT gt

=1 ik

[LP ¢ =0.

Definition. Vir(p) is called the polynomial Lie subalgebra of Vir associated with

p(t).
Now we give the Segal-Sugawara construction of Vir(p). In the case of p(t) = 1,
this is the usual Segal-Sugawara construction of the Virasoro algebra.

Fix a polynomial
p=p(t)=) ait' € C[t).
=0

Let {a?, | m € Z} be a set of symbols and define

m

Ap:= ) Cab +C

meZ

to be the abstract vector space with basis {af, | m € Z} U {1}. A, may be made
into a Li~ algebra with ccunmutators

r B
1
[a,:n"afl] = Zai (m + _2'> 6m+n+i.0,

=0
[afn )

1] = 0.

Clearly,
[[Avap],Ap] =0.
We call A, the Heisenberg algebra associated with p(t). If we define
Ap():= ) Cd,
m>0
and

hp := Ca} + C,
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then A,(+) and b, are abelian Lie subalgebras of A, and
A, = Ap(_) Dhy ® Av('*')-

Let U(A,) be the universal enveloping algebra of Ay, let h € C, and let Jy(h) be
the left ideal of U(A,) generated by Ay(+) and af — h. Define

Mp(h) = U(AP}/']I’(h)'

Then M,(h) is a left Ap-module. Moreover, if v € My(h), then af, - v = 0 for

m

m > 0. We call M,(h) a Fock space. The Segal-Sugawara operators on My{h) are

defined to be 1
- I S IS
dh, = 5 Z T S
JEZ
where
P ab,ab m<n
rahah =9 o
anan, m>n.

By similar calculation as that in the Segal-Sugawara construction of the Virasoro
algebra (see for example [KR]), we get

. 2
AR (k + §> Uik

i=0
[P, ) = (n = m) ) aidp s
i=0
(m+iP¥-(m+i) 1 , Ny
<+ 'Zk:aiak ( ) 12 + 'i'é(k - 7')(7”4 + 7')2 bm+n+i t k0

Define

gp:= »_ Cdb, +C.
mez

Then g, with Lie brackets as above is a Lic algebra.
Proposition 1. For any p = p(t) € C[t], with p(0) # 0, Vir(p) = g,.

Proof. We are going to show that there exist {b,, € C|m € Z} such that
¢ : Vir(p) — g,

$(Lh) = di + bm,  9(¢) =1,
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is a Lie algebra isomorphism. Comparing the commutators of Vir(p) with those of

gy, We see that ¢[Lb,, L] = [¢LF,, ¢ LE] iff

r

. g
*) (n- 7n)zaibm+n+i = Zaiak(k i)(m + ) Omtntitk,0

=0 i,k 16
2r . . .
kE—3)(2mi + 2
= Z ( Z aiak( )(16 )) Smtn+1,0-
1=0 \s+k=l
Since
s . e
5 a‘_ak(k t)(f;m +14°)
i+k=l
(k —2)(2me + %) (k —)(2m: + i2)
= ), aw 16 t o) wa 16
i<k, it+k=l i>k,it+k=l
(= k)(I—2)
=(2m+1) ,~<k§,-;k=, 6 a;ak,
(i —k)?
= - l ik,
(Gt )i<kiz+k=l 16

(*) becomes

r 2r .
_ kY
(n— m)Za,-bm+n+,~ = -—Z ((2m +1) Z (¢ T ) aiak) Omtn+1,0-
=0

1=0 i<k,i+k=l
If bmtnt1,0 =1, we have

T s I 2
(277‘L+I)Za,'bm+n+,- =(2m +1) Z (@ 16L)

1=0 i<k, i+k=!

a;ag,

or

Zaibm+n+i = Z (2 ;6k)2 a;af.
=0

i<k i+k=—m—n
If &pntt0is 0, for all 1 =0,1....,r, we have

r

Z a:1b1n+1l+i =0.

i=0
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Consider the linear system

r

Zaia'g_z = ¢y, where ;€ C, 1€ Z.

=0
Since ag # 0 and a, # 0, this linear system has infinitely many solutions. Henee
there exist a set {by | m € Z} which satisfies (*). This completes the proof. 0

Let p = p(t) € C[t], Vir(p) be the polynomial subalgebra of Vir associated
with p(¢). Let
Vir(p)y = »_ CLE,

m>0
h = CL} + C¢,
Vir(p)- = Z CL?,.
m<0

Then
Vir(p) = Vir(p)- @ b @ Vir(p}s.
Further, Vir(p)4 is a Lie subalgebra of Vir(p), b is an abelian Lic subalgebra, and
[6, Vir(p)+] € Vir(p)+.
We call
Vir(p) = Vir(p)- @ b @ Vir(p)+

the quasi-triangular decomposition of Vir(p).

2.4 Highest Weight Modules of Vir(p)

We have seen in last section that for p = p(t) € C[t] with p(0) # 0, Var(p) has
quasi-triangular decomposition

Vir(p) = Vir(p)- @ h & Vir(p)4

In this section, we define the category O, of Vir(p)-modules, which is an analogue
of the category Q of the Virasorc algebra modules, and discuss highest weight
Vir(p)-modules.

First, we introduce a partial order < on h*, the dual space of b, as follows: For
any A, p € b7,

S
Y
=

iff
M(LE) - W(LE) € Ty,

Now we give the following definition.
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Definition. Let V be a Vir(p)-module. It is a h-module if we restrict to b.
V is called b-triangular if

where [Vy | A € *} are h-submodules and satisfy the following conditions:
(z) If A <p, then V, is a h-submodule of V).

() V= {v €V h-v=Ahw (mod I Vu) Vhe b}.
Va/ L 452 Vu is called a quasi-weight space. A is called a quasi-weight if

VAl Va #0.

u>A

A non-zero element v € Va/ 3 5 Vy is called a quasi-weight vector. The multi-
plicity of A is defined to be

dim (V,\/Z V,‘)

p>A

and denoted by mult(}). For a h-triangular module V', we define
P(V):={ eh*| X is a quasi— weight}
and for A € bh*, we define
D) = {n € b* | u <A,

V is called h-diagonalizable if

where

Ni={veV]|hv=Ahw Vheh}.

VY is called a weight space. A is called a weight if Vy # 0. A non-zero element of
¥y is called a weight vector.

Note that if V = 3, V) is h-diagonalizable, then V' is h-triangular. In fact,

for any A € h*, define
= V.
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Then

V= Z 1A

AEH*

and

Vi=W/ Y Vi,

u>A

is a quasi-weight space. Moreover, a weight is a quasi-weight, and a weight vector
is quasi-weight vector.

The category O, of Vir(p)-modules is defined as follows:
Objects: Vir(p)-modules

V=ZV,\,

A€h*

where V is h-triangular and mult()\) < oo for all A € *, and there exist Ayony Ay €
h* such that

P € [J DO

Morphisms: Vir(p)-module homomorphisms.
Let

0, :={Vel, |V s bh- diagonalizable} .
Then @), is a subcategory of @p.
The following facts are clear:

Vi, Vo €0, (or O),then ViV, ViV €0, (or ©)).

P

Ifv € O (or O;,), Vo < Vi, then Vo € O, (or O’,,) and V[V, ¢
0y (or G).

Important examples of modules from @, are the highest weight modules. Let V
be a Vir(p)-module. Let U(Vir(p)) be the universal enveloping algebra of Vir(p).
If there exists A € h* and v € V such that

V”‘(P)-{- ‘U= 01

h-v=A(h)w, VhEH,

and

V = U(Vir(p)) - v,
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then V is called a highest weight module. A is called the highest weight and v
is called a highest weight vector. If V is a highest weight module of Vir(p) with

highest weight A, then
V= Z Va,

where

VA = C’U,

V,\:={ueV|h-u— (h)u (mod ZV) Vheb}.
u>A

Clearly, mult(\) < oo for all weight A. So V € Q.

and

Definition. A highest weight Vir(p)-module Mp,(A) with highest weight A is
called a Verma module if every highest weight Vir(p)- module with highest weight
A is a quotient of Mp(A).

Proposition 1. For any A € h*, there exists a unique Verma module M,(A) with
highest weight A up to isomorphism.

Proof. Let U(Vir(p)) be the universal enveloping algebra of Vir(p), J,(A) be the
left ideal of U(Vir(p)) generated by Vir(p)+ and {h — A(R)|Vh € b}, and set

Mpy(A) = U(Vir(p))/Jp(A).

The left multiplication on U(Vir(p)) induces a structure of U(Vir(p))-module on
M,(A). Hence My(A) is a Vir(p)- module. Moreover, M,(A) is a highest weight
Vir(p)-module with highest weight A and highest weight vector 1+ Jp(A). Let V
be a Vir(p)-module with highest weight A and highest weight vector vs. The set
of the annihilators of vy is a left ideal Jy of U(Vir(p)) and Jp(A) C Ji. So we have
an epimorphism of Vir(p)-module from Mp(A) to V. The uniqueness of Mp(A)
follows from the universal property of Mp(A). QO

Remark. By the Poincare-Birkhoff-Witt theorem, Mp(A) has a basis

L. ..L?.
—t,. '—11
where 0 < ¢ <4y < ... <4y and v, = 1 4 J,(A). Note that if p =1, then O is
the usual category O of Vir-modules. If V € Oy, then V € O, for any p(¢) € C[t].
In particular, if A, € (CLo + C¢)*, then M;(A,) is the Verma module of Vir of
highest weight A;, and M;(A;) € O,.



Proposition 2. Let

r

p)=> ait' €Clt], ap=1.

1=0
Let
A, € (CLE +Cg)'

and

A; € (CLo + C¢)*
be such that Ap(L§) = A1(Lo) and Ap(¢) = Ai(¢). Then
M(A) = My(A,)

as Vir(p)-modules.

Proof. Let
P Mp(Ap) — Mi(Ay)

be the linear map such that

P P p P
L'—in "'L—i1 Up — L—i" ...L_"l vy,

where v, is the image of 1 in M,(Ap), and v; is the image of 1in M;(A,). Clearly,

UVir(p)) = UVir) = Mi(A1) = 5

is a Vir(p)-module homomorphism.
Next we show % is onto. Since

L_,vy=0 V=-n>0

and
L_n_1v1 = Lp_n_l‘l)l - (alL_n + ...+ arL—u—H-r)'Ul ,

so for any n € Z, L_,v; lies in the linear span of
{LP vy |m € Z}.
Assume that all L_; ...L_;, v lic in the lincar span of
{Lf_kj...L’iklvl | k1yenkj €2,5 =1,2,...,1§
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for some n > 0. For =m >0, L_,L_;_ ..L_;,v; =0. Also

L-—m——l L—i,.-'-L—il L]
= L,.’.m_lL—i,.---L-—i,vl - (a1 Lom+..4+ arL-m-l+r)L-i,.~-L—i1'Ul-

We may assume, by induction, that all L_p4;L_i,...L_;;v1, § =0,...,r lie in the
lincar span of

{L}:k,- ...Lp_klvl l k],...,kj €Z,3=1,..,n+4 1}
Then
LomotLoiy Loy € {L2p L% vy | Fyyo sk €Z,5 = 1,.n+ 1}

Hence ¥ is onto.
Finally, we show ¢ is 1-1. Define a linear order on monomials

L—in '"L—il 'U], 0 < i] S .o S in

as follows:
L_,'"...L_,'l n < L—jm---L—jlvl
iff
n<m
or
n=m, in=Jny - Uk =Jky k-1 < Jk-1.
For any r € M;(A;), we can write = 77 + ... + 5 where {z; | 1 = 1,...,s} are

monomials, and r; > ... > z,. We call z; the leading term of z. For example, the
leading term of

P P
L__ .’. .-..L_kl '01
18
L._k’. ...L_k,vl.

Now suppose that

Z ai,,...ilL.’L,'"---L{.'lvl =0,

il....,ln

where a;,. i, # 0. If we write the left hand side of above as u; + ... + u, with
up > us > ... > Uy, then

w =uy=..=u,=0.
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On the other hand, the leading term u; has the form
Qi,..iyL—iy . Loiy
which is non-zero. This is a contradiction. So

{L’ii"...LP- n|0<; <...<%,,n€ ZZO}

—i
is linearly independent and hence ¢ is 1-1. (1

Proposition 3. Let M(A) be the Verma module of Vir of highest weight A and
N C M(A). Then N is a Vir(p)-submodule iff N is a Vir-submodule.

Proof. If N isa Vir(p)-submoduleand z € N, then L,z =0, for m > 0. Assume
that p(t) = Y i ait' with ag = 1. Since for all n € Z,

Ln—lm - Lﬁ_lz - (al L" + ...aan.i.r_])x,

we see by induction on n that L,z € N for all n € Z. Hence N is a Vir-submodule.
W]
The following results foi!~w« - - Proposition 2 and 3 above, Section 2.2 Propo-
sition 5 and the results of the . i~ i v+ ht modules of Vir (see for example [FQS],
[L], [GKO] or [KR)).
Proposition 4. Let p=p_ , - . i_oait', A€ (CL}+C¢)*. Then
(i) The Verma module My(A) of Vir(p) of highest weight A is indecompos-
able. There exists a unique maximal proper submodule N,. And

Ly(A) := Mp(A)/ N,
is the unique irreducible highest weight module of highest weight A. Morcover, if
A(¢)>1, AL >0,
then
My(A) = Ly(A).
i.e. Mp(A) is irreducible.

(ii) If p(t) satisfies t"(5) = bp(t) for some b€ S, then Ly(A) is unitarizable
iff A(¢) > 1,A(L2) >0, or
6
(m+2)(m+3)
(m+3)r—(m+2)° -1
4(m +2)(m +3) ’

A(¢)=1- m=10,1,2,...

A(L}) =

rseN, 1<s<r<m+l.
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2.5 Quasi-admissible Modules

A Vir-module V is called admissible if CLy + C¢ acts semisimply on V and
all weight spaces are finite dimensional {MP]. In this section we give the definition
of a quasi-admissible module of Vir(p) and discuss a class of such modules which

are called polynomial modules.

Definition. Let V bea Vir(p)-module. f V =3, ,. V is h-triangular and each
quasi-weight space is finite dimensional, then V' is called a quasi-admissible module
of Vir(p(t)). I in addition, the dimensions of the quasi-weight spaces are uniformly
bounded, then V is called a bounded quasi-admissible module. A quasi-admissible
module V of Vir(p) is called admissible if it is §-diagonalizable.

The highest weight modules of Vir(p) we discussed in Section 2.4 are examples
of quasi-admissible modules. But they are not bounded in general. We introduce a
class of bounded quasi-admissible modules as follows:

Let

p=pt)=) ait' € Clt],
i=0

and let Vir(p) be the polynomial Lie subalgebra of Vir associated with p(t). Fix
o € C and fix a polynomial

g=q(t) = Z bjtj € Clt].
7=0

Let
V=Vpa=)Y Cu
kez
be the C-space with basis {vi | & € Z}. We define the actions of Vir(p) on V as

follows:

r

8
Lt v = (k4 am) Z aAiVmtk+i + Z b Vm+k+js
=0 j=0

¢-vr=0.

Proposition 1. Let p = p(t), ¢ = g(t). a be as above. "hen V4 is a Vir(p)-

module.



Proof. Since

LPLP vy

=LP ((k + am) Z QiVm+k+i + Z ijm+k+i)

J

= (k + am) Za; (m +k+24 an) Z AVt ktitn4l T Z I’;"’m+k+]+n+i)
1 l )

J

1 s

+ Z b; ((m +k+j+an) Z QiVm+k+j+nti t Z bsvm+k+j+ﬂ+s)
- -
- z aiai(k + am)(m + 1+ k + an)ompntkti+l
i
+ Z aibj(k + am)vmintktisj
t,j
+ Z aibj(m+k+j + an)vmintk+it;
i,J
+ z b;jbsVm4ntk+j+ss
7,8

and similarly

L? LPy = Z aiai(k +an)(n+ i+ k + amn)vmgngictitt
1!
+ Z aibi(k + on)vmpntktit;
4]
+ Z aibj(n + k4 J + amn)omint ko4
i,
+ Z bibsVmt ntk+j+ 9

5
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we have

(L):"Lﬁ - Lz;L{'n) Uk

= Z aiaf(n —m)(k + a(m + 1+ 9))Vmtnt kit
il
+ Z(n — m)a;bjVmtntktitj
1,j

=(n-m)) a Y a(k + a(m + 1+ ) vminthsis + ) bivmtntktiti

1 { J

=(n—m) (Z aiLf,..q.n.;.,-Uk)

= [L},, LE] v

m?

So Vg, is a Vir(p)-module. O
Remark. From

r 8
Lgvk =k Z aiVk+i t+ Z bjvksj

=0 j=0

= (kag + bo)vx + k Z aiVk+i + Z bjvitj

=1 j=1

€ (kag + bo)vx + Z‘Cvl,
>k

we see that
212  Cut
—_—
Ezzk+1 Co;

is the quasi-weight space of quasi-weight Ag, where
Ak(LE) = kag + by
and
Ak(¢) = 0.
Henee Vo is a bounded quasi-admissible Vir(p)-module.

Definition. 154 = Y, Cvy is called the polynomial module of Vir(p) associated
with the polynomial ¢(t) and a.

-1
-1



Remark. Since ¢ always acts as 0 on a polynomial module, we will ignore ¢ when
we consider the polynomial modules.

Proposition 2. If g1 = q1(t) € Clt], g2 = g2(t) = qu(t) + mp(t), and a € C, then
Voo £ Vy,,0 as Vir(p)-modules.

Proof. Assume that

Vora = ZCUL-, Vizo = Z(Cv'k,

keZ ke
and
s .
q(t) = Z bjtJ.
j=0
Then , ]
2= q(t) =) bt +m) ait'.
Jj=0 1=0
Define

¢: Voo — Vg

to be linesr an:l
$(vk) = Vi

Then
8 (Lhvr) = ¢ | (+am))_aivmkr+ ) bivwekss
1 ]

=(k+ am)Zaivi_{_i + Z bivky;
i ]

=(k-m+ am)z aivg; +m Z a0y 4 L by,
t 3

i
—IP .4
- Lm "Vk-m
= LP é(v).
Ciearly, ¢ is 1-1 and onto. So ¢ is a module isomorphism. [}

Proposition 3. Let
p=plt),q = g(t),r(t) € Clt],
with p(0) # 0,7(0) # 0, and
p(t) | r(t).
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If V =V, is a polynomial module of Vir(p(t)), then V is a polynomial module
of Vir(r(t)) as well.
Proof. We need only prove the case r(t) = p(t)(1 + at). Assume that

r

g(t) = ijtj, p(t) = Zaiti.
J=0

1=0
Then

LZE()”L' = (L}, + aLan )k
= (k + am) Z AiVm+k+i + Z bjVmtk+j

t J

+ a(k + am + a) z iVt k+1+i T @ Z biVmtk+j+1
i J

= (k + am) (aovm+k + Z(a.' + a8i—) JUmtk+i + aarvm+k+r+1)

=1

Tr 9 8
+ aa Z AVt k+1+i T Z bjvmik+j +a Z bjVm4k+j+1
' i=0 j=0 j+0
r+1

= (k + am) Z CiVimtk+i

1=0

T ] 8
+ aa Z AiVm+k+1+i Z bivmyksj +a Z by omtktjt1s

i=0 =0 Jj+0
where
r+1 '
Zc]'tJ = (1 + at)p(t) = r(t).
=0
So V' ia a polynonial module of Vir(r(t)). O

Remark. In general, if p(t) | 7(t), a polynomial module of Vir(r(t)) may not be
obtained from a polynomial module of Vir(p(t)) by restriction.

Proposition 4. Let p(t) = Yi_, ait’ be such that t"p(1) = bp(t) for some b e S*.
Let a & C and ¢(t) = Y1, b;t7 satisfy ‘

a+@=1 bj=aj—ar)+bb_; j=01,..,r

If we define a hermitian form (.,.) on Vi) q such that (v, vi) = 8k, then V4 is
a unitary module of Vir(p).



Proof. By Section 2.2, Proposition 5, w(L},) = bL? is an anti-involution of

—m-r

Vir{p). To prove the above proposition, w nced only show
(L2 vk, v1) = (v, w(LE )w) Vk,l € Z.

Since
,

(LPok,v) = Y _(ailk + am) + b)omth+ids
1=0

on the other hand

T U(Lfn)vl) = ('Uka bL}—’-m—rvl)

= 525;‘(1 —a@(m + 7))k g-m—r+i + 525i5k,1-,,1—r+.'

=0 1=0
= Z ar——i(l - -&("‘ + T))ak,l—mur%f + Ezzi5k,l~rrz—r+i
1=0 1=0
T P _
= Z a;(l —a@(m+r))ok,t~m—i + 0 Z br—iOk 1—m—~i
1=0 1=0
T r
= Z ai(k + (1 — @)m)br4m+it + Z (ai(i — @r) + bbr—i) bkt
1=0 1=0
=) (ai(k +am)+b)bmtr+it, (by conditions)
1=0
we get (L2 vk, v) = (vi,w(LE, ur). ()

2.6 Quasi-admissible Modules of the Virasoro Algebra

Irreducible admissible modules of the Virasoro algebra have been classified by
O.Mathieu [M], C.Martin and A.Piard [MP]. In this section we discuss a class of
irreducible quasi-admissible modules of the Virasoro algebra.

Proposition 1. Let a # 0 and let

Vat,() = Z (C"k

keZ

be the polynomial Vir-module associated with at and 0. Then Vigg is an irre
ducible Vir-module.
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Proof. Let 0 # U C Vg0 be a Vir-submodule, and let
8
0#:1:=chvj eU.

j=r

If » # 0, then
L_,z=rc;oo+v €U

for some v' € 3,5, Coi. So without loss of generality, we may assume that
z=v9+c1v; + ... + vy € U,

and z is chosen with minimal n. Since Lpvk = kVmtk + QUm+k+1, We have

(1)
Lo.’II = Z c,‘Lov,'

= (a+¢))v; + (ac; +2c3)va + ... 4+ (@n—1 + nCq )V + acnVat1 €U,

(2) LoLyr = (a+c1)v; + (a(a +¢1)+2(ac + 2c2))v2 + ...
+ (a(acn—-2 + (7 - 1)en-1) + n(ata—y +ncs))va
+ (a(acn_l +nep) + (n+ 1)acn)vn+1 + azcnv,,“ eU,

and

(3) Ll.’l' = ((I. + C])'UQ + ((1(71 + 2(32)’03 + ...

+ (acp—2 + (n = 1)cn—1)vn + (@Cn-1 + Ncp)ni1 + aCaVnt2 € U.
From (2) and (3) we get

(4) LoLor —aLyx = (a+ ¢;)vy + 2(acy + 2e2)vz + ...
+ n(acy-1 + nep vy + a{n + 1)cavpgr € UL

Suppose n > 0.
In the case of @ + ¢; # 0. by (1) and (4), we obtain

(:)‘ 0 #L()L().T —alix —~ (n + I)LQ.’L‘
=—n(a+ )y +...+ (=2)(acy-1 + ney)vn € U.
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Note that by the minimality of n,
acp—1 + ne, # 0.
In the case of a + ¢; = 0, again by (1) and (4), we obtain
0 #LyLoz —aLl x — 2Lox
=(acy + 3c3)vz + ... + a(n — 1)epvny € U
Applying L_», we get
(6) 0 #L_y(LoLox — aLlyz — 2Lox)
=3(acz + 3c3)v1 + ... + a(n — 1)cyv, € U,
where
a(n - 1)cp #0.
Now we see that in any case, there exists some
0#£ 21 =bivy + ..+ bnyVn-1 + buvn €U,
with b, # 0. Assume that b, = 1. Then
T—cpzy) =ve +div; + .. +dy_yvp-y € UL
This is a contradiction. So n =0 and vy € U. Then from
Lpvo = avpp41 €U Vm € Z,

we see that all v,, € U. So U = V0. (]
Proposition 2. Vo = Vo only if a = a.
Proof. Let

@ : Varp — Varrp
be a Vir-module isomorphism and

!
Vao = Cok, Vi = ) Cje
kEZ kEZ

Assume that

mn

d(vy) = Z (:Jv;,

=k
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where ¢y, ¢, are non-zero.
Since L_ vy = avy, we have

n

HL_1v) = ad(vg) = Zacjv;.

i=k

On the other hand,
L_y¢(ve) = L- ZCJ” = ZCJ(]U 1 tdv
=k i=k

These imply that a'c,v], = acpv),. But ¢, #0, So a=a'. O

2.7 Admissible Modules of Vir(1 —t)

Let p(t) = Yi_, ait'. From now on we will concern ourselves mainly with the
polynomial modules V() o, where ¢(t) = 2;=0 a;B;tl.
In this section, we consider the case p = p(t) = 1+ «¢. By Section 2.2, Propo-
sition 4, it suffices to consider the case p = p(t) =1 —1¢.
Let ¢(t) = fo — Bit,a € C. For any r € Z, we have ti:» jolynomial Vir(l — t)-
module associated with fy — (81 + r)t and « which is gii- by
Ve o? = Voo (r+Bi)t,0 ch(r)
keZ
with
L?n”(kr) =(k4am+ ﬂO)vm+L —(k+am+r+p5 )vr('r:?i-k+l‘
Proposition 1. Let u(rﬂ) = vfer) - ”;:31 Then U =3 cq Cuirﬂ) C Vg isa
Vir(1 — t)-submodule and U = V(:,H).
Proof. Since
Loy = Lh” - Lho)?,
= (k+am+ ﬁo)va (k+am+r+ 5 )'U(L:!qu
~(k+14+am+ ,30)vf€"+)m+1 +(k+1+am+r+p6; )v;c2m+2
= (k+am+ fo) ("&)m U(k?m+l)
a8 (s~ o)
=(k+am+ Fo )viﬂi,’l) —(k+am+r+1+5 )vf,:ﬂl_l

The proposition follows. a
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(r+1)
k

Remark. By Proposition 1, If we identif: - v, (1 _ 0

with v "~ then we identify
1 . e oo .

Vq(,:" ) as a submodule of V(,:,). Under this identification, we have a sequence of

Vir(1l — t)-modules

(-1) 0 1 2)
WS VED SV SV S vE s
Definition. We define the following Vir(1 — t)-modules.

Vi,a{—00,+00) := U v

q.°
r€Z

Vq,a(l, +00) = U Vq(:) — Vq(,lg,

>l

Vq,a(~00,400)
V al—00, N} = VA ? ’

pa(—00,1) Vo)
. —_— qua(l') w)

Vo,e(lyn) = T o 7o0)” (I < n).

All of them are bounded quasi-admissible Vir(1—t)-modules and each quasi-weight
space is 1-dimensional. In particular, Vg a(l,n) is finite dimensional. In the rest of
this section, we discuss Vj o(l,n) and Vg o(—00,n) in detail. We'll see that Vi (1, n)
and V, o(—00,n) are admissible V(1 — t)-modules.

1. Finite dimensional modules V, 4(I,n), where | < n.
Since
Vq(,’g = Cv((,l) + Vq(,l;rl)
=Col" + Gl 4+ oY 4V

.

we have

Vq,a(l,n) = Cﬁ()(l) 4.+ Cﬁu(n-—l),

— (i (i — — (n- . .
where 5! = v(‘,') +Vq(,':,). Moreover, 5!, ..., B! ) are lincar independent. Henee
dimVyo(lin) =n 1L

For further discussion, we need the following functions.

Definition.
0 k<0

<f> =< 1 k=10

+1)...(B+k~1
B(A+1) k§ﬁ+ ) k>0,

where € C,k € Z.
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Remark. If # € Zyo, then <Iz> = (ﬁ+,::—1) .
Lemma 1. Forall € C and k€ Z,

(&) - () = (&)
Proof. Thisis clear for £ < 1. Assume that k > 1. Then

«>_<ﬂ > ﬂW+&)(ﬂ+k_D B(B+1).(B+E-2)

K[k (k—1)!
- ﬂ (ﬂ+k"1 )
- k 1

= <f—1 E'k""

Lemma 2. Foranymé€Z,j=12,..,n-1I,
j=1
5m(n—1) — Z <:—m>60(n—1+:),
=0
where 3,,%) = (L) + Vq',;), k=1,..

Proof. First suppose that m > 0 and the lemma is true for m. Since

i}'m("“j) — i—)‘m-}-l("—j) — :(')'m("‘j‘*'l),
we have
_H("*f) — D’m("-j) — 5m(n"i+1)
j-1 Jj=2
_ -m\— (n—j+i —m\= (n—j+i+1
= <i >vo i )_Z<i )vo( j )
=0 1=0

__—(" J)+Z -m _ —m (n—1+1)

-1
= go(n—J) + Z ~";—1>;,-c\ﬂ—1+t)

=1

j-1
— Z (—n;-—l > 60('l—j+i).

1=0
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By induction on m we see that the lemma is true for all m > 0.
Next we have
B_m(n-—l) — 60("-1)

for all m > 0. Assume that

Jj-1

=0

for all m > 0. Since

T, ("I gy nim) g (mmd)
T (i) = gpln=i=D L5 _ (n=d)

j—1
G S Jz: (1Y gpn=itD)

1=0

J
= E (:) 7)'0("—1'—1'“).
1=0
Assume that
5
ﬁ_m("_j—l) — Z (:n) Uo('l_j_l+i).
=0

Then

7] m—l(n_j—l) =5—m(n_j—l)+7—7—m—](n_j)

J j-1
(?z);,o(n—r-w:) + Z <m-{;l ) 5O(n—j+.’)
=0 1=0

J
= 50(""1"1) + L ((:n) + <i—-i]-l));'~)-"(n»-v1»{ 1--1)
=1

- i <m-i;l ) 'T_).()(n_j+i_”.

t=0
By induction on m we get

7~1
ﬁ_m(n—J—-l) — Z (;")77()("_1'1'1—1),

=0
for all m € Zsg. Then by induction on j, the lemma is true for all 1 < (. We have
completed the proof. [
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Proposition 2. Let
¢g.all,n) : Vir(1 — t) — gl (Vg,a(l, n))
be the representation given by
$o.a(ly,n)(Lh) 0" = LEm "), j=12, n-L

Then
Vir(1 -1t)

ker¢?sa(l’ n)

is a n — | dimensional solvable Lie algebra. Moreover, if we take {i)’o('), vy 50("‘1)}
as a. basis of Vg q(l,n), then

bg,a(l,n)(LE, )50("_j)
71-1
= Z (7™ n=j+B1—Bo)+ ((INam+n—j+ ﬂl)) TonIHD),
1=0

Proof.

AR
= (am + f0)0m ™ = (am + (n - 3)+ B)om ("
= —(n—j+ p — Bo)om "7

+(am+(n—-73)+pH) (5m("-j) - 5m+l(n—j))

=—(n =374+~ Bo)om ™ + (am + (n - §) + By )OI

11
= —(n=j+ B = Bo) Y _{7™)T"IH
=0
J=2
+(am (0 =)+ B1) Y (TT I
1=0

= ~(n = j+ B = do)wo"™?

-1
+ z (— (i—m> (n—j74 06— Bo) + (;__"11 (am+n-j+ ﬂl)) 'i)'o("—j+i),
=1
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Lemma 3. Forany B€C, keZs,,

() (1) .

Hence
(1) () - (BT
0 1 <l+11+ﬂ1 > . <?—€—tl >
) n—ls+ﬂ
R )
[ _<I+f131> <l+g,> (_1),.-:-1<£l+ﬁl l)\
o 1 (") L
S
\o 0 0 < | ) )
Proof.

St 2 (2)

k

Z 1)k iBB+1)..(B+i-1)-(B+2).(f+k--1)

il-(k—i)!

=0

_ B(B+1). (ﬂ-i-k 1) Z

(-1

1(k t)!
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Lemma 4. For any a € C, r,s € Z>o,

(*) > () = oG,

i+j=r

Proof. Clearly, the lemma is true if @ = 0. Assume that the lemma is true for

a=—k, k € Z>o. Then

S Y ()

i+j=r

= Z (=1)i (++1) <s—§;—l—j>

i+j=r

=1y Y ()

i+j_r
- 5 () ()
t+j=r
= < —k—’> (by Lemma 1)
1+]"‘1’
= Y (Y
t+j=r
=(=1)"(¢""). (by induction)
So we proved that the lemma is true for all @ = —% € Z¢o. Note that if we view @

as a variable, then the left hand side of (*) is a polynomial of degree r. So it is

constant and must be (—1)" ({77).

Proposition 3.
space is 1-dimensional. Precisely, let

w
Uit

Up—1 |
Un -1

Then

o)

0 1
0 0
\o o0

<l+11+ﬁn>

Vg,o(l,1)

89

I+ A,
‘n+l-l

1
1

Z‘Cu,

<n—2.+ﬂ|>

A

/

]

V,.o(lyn) is an admissible Vir(1 — t)-module and cach weight

50“)

“0(1+l)

(n ~2)
{n-1)

'Uu



Morcover,

(**)
L{’nuk
n—k-1 ]
= (Z(—l‘)’“"‘ (™) ((k + B1 = o) (§=r) + om (Z‘il-l))) Uksts
3=() r=0

~(k+ By = o) (g ™) ur
+(=(k+ 5 —ﬂo)<1_m> +am (g™) Jur4

+( (k+ B — o) ((7) = (T™) +om ({7 ™ -G >))uk+2
b(= Gk p-B) (G -2G™) + ()
+“m(<2_> <—m> ( >))uk+3

In particular,

Lhug=~(k+ 5 - Bo)ur, k=1...,n—1
i.c. the uy are weight vectors.

Proof. By definition

n--k-1

k = (k41
up = Z <i+ﬁ1>vo(k+t),

=0

where k = [....,n — 1. By Lemma 3,

n—k-1

= ) (-1 <§+ﬂ'>w+i,

j=0
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where k =1,...,n — 1. Then by Proposition 2,

Lpug = (f*‘“) L2 gtk
1=0
n-k—1 ‘ n—~k-1~1
= ‘ <f+,ﬂl> Z ( <-m> (L +i4 Hl _ ﬁ(,)
1=0 r=0
+ (:f;) (am+k+1+4 3 ))50(k+t+,.)
n—k-1 n—k-1-i
=2 <f+ﬂ'> > (—(F'")(k+1‘.+ﬂ, - Bo)
=0 r=0
n—k—i—r—1 . .
+ (:ﬂ) (am+k+1+ 0 )) Z (-1) <k+;+r+ﬁx> Wkpidrts
1=0
n—-k—1

CE (R e )
s=0  rtitj=s

(= (7™ (k+i+B—Bo)+ () om +k+1+ B )))uH_,.

Let us denote the coefficient of ug4s by ar4s. Then

Qkts = i ( Z (__1)i+l <f+ﬂ1> <k+§h+s—i> (;"‘)(k + 4 — fo + l))

r=0 \it+j=s-r

ol o e Y
r=1 \i+j=s-r

S g et
= ij=s—r

S g o)

i+j=s-r

8 _qyi (ks [kt i\ ey
£ e >)

b
r=1 \i+j=s-r
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Note that, replacing r by r + 1, the last summand can be written as
— k+B1 1k
j (k+Bry (k+Br+a—gy p—my
Y S e ema ) |
r=3) \i1+j=3s-r—1|

Replacing 7 + 1 by ¢, we see that the last two summand cancel. The first two

summand are simplified using Lemma 4. Then we have

ks = (k+ B = fo) Z(—l)”""‘ Gy (7™ +am Y (=177 () (75)
r=0 r=1

n—k—1 3
= Z (Z(—l)"’"‘ (:"‘> ((k+ By — Bo) <:_,> +am (:’fl_1>)) Ukts-

r=0

a

Proposition 4. Suppose n —1 > 2. Vg o(l,n) is decomposable iff
(¢) n—-Il=2andn—2+p —fo+a=0. In this case,

Vg,a(lyn) = Cuy & Cupg.
() n—1>3, a=1and n—1+p — f=0. In this case,
n-2
Vq,a(lvn) = Z Cu; ® Tun-1.
=]
(¢) n=1>3,a=0and !+ B — B =0. In this case,

n-1

Voallin) =Cuy @ Z Cu;.

=41

Proof. Suppose

Vao(lyn) =Up @ U,

where U;, U, are two non-trivial submodules. We see from Proposition 3 that
ug, k=1.,n-1

are weight vectors of L} of different weights. So if ), aruy € U;, ¢ = 1,2, then
up € U; whenever ag # 0. Assume that

Uy s Un—jy € U1,
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and

Un—jot1 € Us,

where jp > 2.
With k = n — jo in Proposition 3 (**), we get

L2 up—j, = —(n~ jo + Br — Bo)un-j,
+m(n — jo + B1 — Bo + o )un-jo41
+u' e U

for all m € Z, where u' € 3,5, Cn_jo+i- So we have
n—joth —fo+a=0
for some jo € {2,...,n—j}. And then
n—jot+i+p—Pot+ta#0
for all 7 > 1. Since up—jo+1 € Uz, and again by Proposition 3 (**),

L’,’nun—jo-i-i = —(n -Jot+i+ B — ﬂo)uu—jo-h'
+m(n—jo+i+ B — o+ @ un—jotit1
+u

for all m € Z, where u € 3,5y Ctin—jo4i+s- We see that

and

(a) n-1=2,then jo=2 and n — 24 B = Bo + a = 0. By Propasition 3,
LP o = auy

and

LPupy = (1 —ajup-y.
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S()

Vgally1e) = Cuy & Cupy.

(b) Hn-1>3andl<n-—j—1, With k =n—jo—1 in Proposition 3 (**)

and using

n—jo+ b —Po+a=0,

we get

LA un—jo—1 = (a+ 1)“"-10—1

+ mu,—j,
1~
i 5 %) (m? +m) un—jot1
b (1= 2a)((5™) — st
+uel,

for all m € Z, where u € ;53 Citn_jo4i. From this we get o = 1 and jo = 2.
Henee

n-2

U = Z Cu;,

1=l
and

Uy = Cup—;.

For k > 0, using Proposition 3, we get

Lz," u""”-"“k

k41 s
= Z (Z(“l)s—r—l (r_m) ((_k - 1) <:—-r> +m (:ﬂ-ﬁ)) Un—2—k+s-

=0 \r=0
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The coefficient of u,—3 1s

k+1

Z L r( m)( (k+1)(k+1 r>+"l<1+l )

r=0
k41

_s( 1)L r+1( m) "+1)<k+1 ., +Z )k T f-m m(r+l
k
= (-1" '(r+1)(k+1)('“)+L( T G
r=0

=S () (R DR ™)
r=0
k

=Y (T EE) (G- ERY )
r=0
k-1

=Y (DT (k=) () +Z( DR
r=0

—Z( —DF () (k=0 GE) -+ DT
_0.

So LP up_g—x € U; forall k2 0. U, is indeed a submodule and
Via(lin) =U1 @ U,.

(¢)n—1>3and I =n-- jo.
In this case

U, = Cu; = Cuy—jy,

and
n-1

Up= Y, Cus

1={+1
Since jo 2> 3,
0 # Un—jot1, 0% un—jo+2 € Vs
By Proposition 3,

L up_jo = —QUp—j, + @ (G™) - n?) tn—j,+2 + u
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for all 1 € Z, where u € ) 5 s Cun_jo4i- This forces that
a=0,

and hence

48— Bo=0.

Then
LPuu_j,=Lbu =0

for all m € Z. Again we proved that

Vq,a =U, & U,.

We have completed the proof.

Proposition &. Let

q(t) = Bo — Bt,
q(t) = By - Bit, a,a' eC,l,n,l''n' €2,

be such that n —1 = n' — ' > 0. We have the following:
(1) In-l=n'-1l'=1, then

Vq'a(l, n) = Vql,a'(l’, n')

iff

I+ 8 —Bo=1'+p5] - By

(i7) Ifn—-I=n'"-1'2>2, then
Vq'a(l,n) = Vq:,a:(l',n')
if
a=a,

and

I+ 61 —Bo=1+8 - 5.
Proof.

(z) By Proposition 3,
L?n“n—l = —(n -146 - .BO)un—l’

96



and

for all m € Z. So (i) is clear.
(22) Again by Proposition 3,

P (un—Z) — (—(n -2+ 81 —-B) mr-2+a+p - Bo) Un—2
™\ Up-1 L —(n—-1+ By — ﬁ()) Up—y )’

and

I (u:.._z) - (—(n"—2+ﬂi - By) min' —2+a' + 5 —ﬂé)) (“:x'—-z)
™ \ Uy 0 ~(' =148 -6\ )

n' —1
So if
Veallin) = Vo oo(l',0')

then
and
Conversely, if

and
I+ 61— Po=1'+ B — P,

we see from Proposition 3 (**) that

Vyol(l,n) & Vg o (I',7').

2. Vjof—00,n)= Vg,a(—00,400)/V4,a(n, +00).
For j =1,2,..., let

50(""” = v((,n—” + Vyal(n,+o0),

and let .
-1

Unj = Z <n—ij+m > T (It
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Then
m .
Vi4,a(—0c,n) = E C’Eo(n_”

J=1
00

= _->_ Cun—ja
Jj=1

and L} acts on ua—j, j = 1,2,... diagonally.
Since for any 1 < n, Vg q(l,+00) is a submodule of Vj a(—00,+00), Vyo(l,n)
is a submodule of Vg o(—00,n). Moreover,

(n—-1)
Vyall,n) = Zc—.,(" D =Y Cun-j,
Jj=1 J=1

and

Via(—00,n) = | ] Vgallim).

>n
Proposition 6. V, o(—00,n) is an admissible Vir(1—t)-module, and each weight
space is 1-dimensional. Moreover, V, o(—00,n) is decomposable only if

a=1

and
n—1+p—F=0.
In this case,
Vq.ﬂ(—oovn) = Vq,a(—oo,n - 1)@ Cuy;.

Proof. Follows from Proposition 4 by letting | — —o0. O

2.8 Admissible Modules of Vir(p(t))

In this section, we assume that p = p(t) = Y1, a;t', where ap = a, = 1, and
consider the admissible Vir(p)-modules. Let ¢ = q(t) = Y i_, aifit’, a € C. For
cach j € Z, we have the polynomial Vir(p)-modules associated with Y_I_, a;(8; +
ji)t' and «a, which is given by

Vu) = Z Cv(])
keZ

with
,

Lf’,,vi’) = Z ai(k+am+ B; + ji)vglk“.
=0
Analogously to Section 2.7 Proposition 1, we have
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Proposition 1. Let

,
I+ )]
up = Za,vH‘-.

1=0
Then
U:= ZCu(kJH) C V;(‘Q
k€Z
N o U+
is a Vir(p)-module and U = V3" .
By Proposition 1, if we identify vi’ ) with Z:‘.-_-o a,-v{_‘:: ; in l.,(‘:,) , then we iden-

tify Vq(;’.;,+l) as a submodule of Vq('{.) and obtain the following Vir(p)-module sequence

LSV SVQ S v S vE s

Define
Via(—00,+00) := | J V42,
FET
Vaallboo) = Vi = U4,
il

Vool oom):= Vi,a(n, +00)’

and s
Vq, ( an) Vq,u(n, m) l< n

Then all of these are bounded quasi-admissible modules of Vir(p). Morcover,
Vg,a(—00,n) and V, o(l,n) are admissible modules. The proof of these statens s
are similar to that in the case of Vir(1 ~t) in last section but tedions. We will ouly
prove the following:

Proposition 2.
(1) Viallyn) is an admissible Vir(p)- module and dimV, o{I,n) = (1 - l)r.
(22) Let
¢q.a(lyn) : Vir(p) — gl(V,.a(l, n))
be the representation given by
bq,0(lyn)(L2, )5, = L85,
where 7)) = v{.j) + Vq(,z),j =1,...,n-1. Then

Vir(p)
kergga(l,n)
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is a solvable Lic algebra.

Proof. Since | .
Vq('{,) = Cv:,’) +...+ Cvi’_’1 + V;,J:”,

for all j € Z, we have

Vyllin) = Cog® 4 .4+ Cory D + 4+ Co™ ) + L+ o, 70,

where

N i
v(k" == v;:” + V4,a(n, +00),

and they are lincar independent. So
dimVy o(l,n) = (n - 1)r.

Now for j =1,...,n -1,

Li’.."ij) — Za‘(k + am + f; +J'i)v$r{)+k+i

1=0
1=0 =0

;
: o (G j+1
= ﬂovf,{lk + Z ai(Bi +J’)vfi)+k+i +(k+ am)vf,{_l_k)
i=1

r

= oY aiwld, i+ 3 ailBi 4 iYl i + (Bo + b+ am)olHY

=1 =1

r
= Zai(ji + B — ﬂo)vfﬂ_kﬁ (mod Vq(,{:ﬂ)) .
=1
So . .
L{’,Lfnvi_’) = Lfan’,vi,J ) (mod Vq('{,“))
, e ot gntd) () (4) (4) (4) s (m)*
for all m,n € Z. There exist wy'',...,w;”, € Vg and Ay, ..., A2, € Vir(p)*, the
restricted dual space of Vir(p), such that

Ll = (Lol (mod VEHY),

where

k=0,1,..,r—1,
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j=L..,n-1.
m,k € Z.
Let
‘l_v-k(j) = wij) + v k= wo.o,r=1, 3=L.n-1

¢, ?

Then
{Ek(j) |k=0,...,r=1, j=1l..n-1}

is a basis of Vj o(1,n). Under this basis, dq,4(l,n)(LE,) is an upper triangular matrix
for every m € Z. Moreover, we may choose a basis

{u(kj) |k=0,..,r=1,j=1..,n-1}

for V, o(l,n) such that under this basis L§ acts diagonally. We have completed the
proof. [l
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