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ABSTRACT 

Invasive colonizers propagated through human-mediated vectors are bio-

homogenizing the world’s oceans and impacting the ecological structures and 

functions. Where do they come from, and where do they go? What bio-physical 

mechanisms drive them to do what they do? Can we control the human-mediated 

spread? In this thesis I focus on how seasonal fluctuation of habitat temperature 

impacts persistence, range expansion and distribution of invasive marine species 

by developing simple biologically meaningful metrics and producing results 

consistent with advanced mathematical methods. First, I show how the ambient 

temperature impacts the net reproductive rate of invasive marine calanoid 

copepod Pseudodiaptomous marinus, thereby, the invasibility of habitats to P. 

marinus. I extend this approach to include periodic fluctuations of habitat 

temperature by defining a new weighted net reproductive rate, which is a measure 

of the cross-periodic growth of a population. I use this and other metrics I 

developed to understand the bio-geographical structure of invasion dynamics of P. 

marinus. In general, the trend for marine invasives is to progress from ecoregions 

with high-amplitude periodic temperature (APT) to ecoregions with low APT 

within a range of optimal mean temperatures. This optimal immigration may 

increase their cross-periodic fitness suggesting an existence of a conveyor belt of 

invasive marine species generation driven by large gradients of temperature-

amplitudes across global ecoregions. For further understanding of marine 

processes, I investigate the Metabolic Theory of Ecology (MTE) models that 



 
 

describe species (taxonomic) richness, and show that such models perform better 

for marine taxa, calanoid copepods, copepods and tunicates when periodic 

fluctuations of temperature are taken into account. The major conclusion in this 

thesis is that annual temperature cycles and their amplitude-gradients across 

ecoregions may drive species invasion dynamics and diversity distribution. A 

large potential of the conveyor belt together with the escalated human-mediated 

propagule flow may suggest that there would be high-degree invasions in the 

future across the world’s ecoregions. Finally, I show how stochasticity in 

propagule flow of species introduced to variable environments can be managed 

cost-effectively through stochastic control methods to reduce the probability of 

invasions.  
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Notation Description 

 

Chapter 2 & 3 

 

 

n(t) Stage-composition of the population at time t. 

1n  Number of eggs. 

2 6...n n  Number of individuals in the five naupliar stages 

(II-VI). 

7 12...n n  Number of individuals in the six copepodid 

stages, n12 being the adult stage. 

T Temperature. 

A(T) Lefkovitch matrix given a parameter space of 

maturation rates )(Ti , mortality rates 



i(T) , and 
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nA
n

)(T
dt

d
 , where n are vectors of stage 

classes. 

( )T  Fecundity rate (rate of egg production) in adult 

females modeled as a function of temperature T:
( ) ( )( ) /[ ( 1)]w T b w T b

m l m lT f f e f f e     . 
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q Average proportion of ovigerous females in the 

adult population: assumed to be a constant at 
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( )i T  Rate of mortality in stage i as a function of 

temperature T. Average is given by 

01

2

2)(   TTT . Here,    are 

parameters.  

( )i T  Rate of maturation of individuals surviving to 

stage i as a function of temperature T: 
1.8

1( ) ( 1) /( )a a aT T       for each stage a at 
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independent constants that varies with stage a, 
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a  Temperature-independent constants that vary 

with stage a in the maturation rate function 
1.8

1( ) ( 1) /( )a a aT T      , with 0 0  , which is 
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  Spectral radius of the matrix  1
FV , that is,
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[FV
1

] max
1in

R0i , where
nRRR 00201 ..., are 
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s Last stage in matrix A. 

k Shape parameter in the Gamma distribution of 

stage-duration times (or the number of virtual 
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]1

0

 [FVR  The net reproductive rate, which yields
k

s

i ii

i

s

s

TT

T

T

Tq
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














1

1

0
)()(

)(

)(

)(
)(








, at 

constant temperature T . 

iii    Overall transition rate in stages i. Here, 



 i  0 



 
 

and 



i  0 for any stage i. 

za(t) Proportion of each stage a that remains at time t 

given by 
1 1 1

( ) 1 (1 )i

aa a
j t

i

i i j j i
j i

z t e




 



  


 
   
 
  

    

da Stage duration time random variable (of stage a). 

ad  Mean stage duration time, 
1

a

a

d


  of stage a. 

Da Stage development time distribution of stage a 

given by 
1

a

a i

i

D d


 . 

aD  Mean stage development time of stage a, also 

given by 
1.8( 1)a aD T    (Belehradek’s 

function). 

)exp( aSv   Proportion surviving from eggs to stage a. 

  Scale parameter in )exp( aSv  . 

  Shape parameter in )exp( aSv  . 

 

l=ks Total number of sub-stages in matrix A (the 

dimensions) after incorporating virtual sub-

stages for each stage).  

λ The dominant eigenvalue of the matrix A=[F-V] 

yielded by solving the condition,

0])det[(  IVF . Here, I is the identity 

matrix.  

iig /1  Mean sub-stage maturation time within stages i 

(for i=1..s) (s.t., iii   is the overall 

transition rate in a sub-stage in stage i, and 



 
 

ss   is the transition rate in the last sub-

stage of stage i=s.  

1)1(  skl  Dimensions of matrix A (after the reduction). 

g Mean sub-stage maturation time. 

di = gi-g  Deviations from the mean sub-stage maturation 

time. 

)(d  Error correction term in the non-linear 

functional relationship between R0 and λ, which 

is a function of di. 

tp Period. 

( j ,vj) Dominant eigenpair of Ai, where each 

eigenvector is normalized so that (vj,vj)=1. 

)(
1

11 
  j

m

j jj

p

tt
t

  
Time-average of the piecewise intrinsic growth 

rates over a period (year). 

0),log(
1

1

1  




m

j

jj

pt
V vv  

A measure of the time-averaged variation in 

stage-structure throughout the period (year).

 



  V  Cross-periodic intrinsic growth rate of the 

population, or a cross-periodic fitness parameter 

of the population in periodically fluctuating 

environment. 

pe


  
Geometrically averaged piecewise growth rates 

cross a period (year) (piecewise finite growth 

rates given by jejjj


 ),( 1 vv  for each time 

step j=1:m). 
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 


m

j
j

jj

g

tt
G

1

1
 

Total number of generations within the period 

(year). 

 

















 













 


m

j
j

jj

j

jj

i

g

tt

g

tt

P

1

1

1
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the interval  
1 jj tt  at temperature Tj to the 

total number of generations within the period. 

 Gtg pp /  Average generation time of the population 

within the period. 

PR  Cross-periodic (weighted net) reproductive rate 

of the population
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T  Mean of annual ecoregion temperature cycles. 
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CHAPTER 1 

General Introduction 
  

 

Every level of biological and ecological organization from cells, 

organisms, populations, and communities to ecosystems and also world’s marine 

ecoregions at large, are subjected to, or driven by external forces. These forces are 

most often periodic, trended, and stochastic. At organism level, which is 

collectively reflected at population level, the temporal and spatial transition of 

these forces affects the life-history traits (parameters) of populations, mainly 

fecundity, mortality, and maturation rates. Thus, persistence and the growth of a 

population are determined by how a population responds to these in time and 

space, and evolutionarily over generations. The spatial variability of temporal 

profiles of external forces, therefore, may determine the persistence, immigration, 

and distribution of populations in native and introduced environments. In this 

thesis, I investigate how habitat temperature profiles; the variability of 

temperature over time and space; impact population dynamics of ectothermic 

invasive marine calanoid copepod Pseudodiaptomous marinus, and taxa, calanoid 

copepods, copepods (in general), and tunicates, and also marine invasive species 

in general. I also investigate how stochastic propagule flow and the resulting 

population establishment in novel environments could be managed through 

stochastic control methods. 

 

1.1. Invasive marine species  

Among ecologists, there is much debate regarding what is an invasive 

species. It is fundamentally based upon epistemic and linguistic uncertainties 

(McGeoch et al., 2012). Ricciardi (2013) defines invasives as “non-native species 

with conspicuously high colonization rates” and “have the potential to spread over 

long distances”. He further claims that “the term invasive is also used (often by 
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policy makers) to describe colonizing species that cause undesirable ecological or 

economic impacts”.  

Heger et al. (2013) are of the view that biological invasions are a matter of 

perspective.  While some argue that only the impact factor of invasives should be 

considered regardless of their origin (Davis et al., 2011), others argue that the 

origin of invasives matters because they benefit from the functional traits that are 

brought with them (Knapp and Kühn, 2012).  Ricciardi et al. (2013) propose a 

theoretical framework for defining and predicting the impact of non-native 

species. 

However, a major practical implication of Ricciardi’s (2013) definition, or 

any other for that matter, is the ambiguity or the fuzziness surrounding the terms 

such as “conspicuously high” colonization rates, and spread over “long distance”. 

The quantitative (measures of these definitions are hard to be made, thus, mostly 

based upon the consensus among ecologists. We cannot clearly delineate a slow 

colonizer from a rapid colonizer by the degree of their colonization rate (either 

range or population expansion in a novel range). In invasion ecology, quantitative 

(mathematical) definitions are hard to find. Therefore, we stick to the definition, 

whereby, we call a species an “invasive” in conformity with the popular 

agreement amongst the ecologists based on published work. Thus, our definition 

does not necessarily involve the degree of impact of a species in a novel 

environment. In this sense, P. marinus is an invasive species, as it expands its 

range widely and rapidly around the world regardless of the measurable impacts.  

There is much ambiguity also surrounding native and non-native ranges of 

species (for e.g., Carlton, 1996; Pysek, 2003; Richardson et al., 2000). There are 

often cases where the origins (the native range) of invasives are misidentified 

(Stefaniak et al., 2012). McGeoch et al. (2012) analyse the epistemic uncertainties 

including the inadequate information on indigenous range of species. These 

uncertainties due to scarcity of evidence result in subjective interpretations. 

Correct identification of the source population of an invasive species is a 

prerequisite for testing hypotheses concerning the factors responsible for 

biological invasions. Although genetic analyses (e.g., Lombaert et al., 2011) may 
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tell, to what degree species are evolutionarily related across regions, their true 

origins are hard to be identified as ranges shift over geological times. The native 

and non-native ranges of species are, therefore, dependent upon a spatial and 

temporal framework based upon our present knowledge. 

 

1.2.  How and why do species invade? 

 

In plant invasion ecology, there are more than 29 working hypotheses that 

may describe or explain an invasion (Catford et al., 2009). Most of them are 

common to aquatic invasions as well. Yet they are context-dependent and thus, 

can not be generalized, or refuted. Some theories are based on classical interaction 

theories, bio-physical and bio-chemical characteristics, genetic, evolutionary, 

ecological niche, and stochastic theories. Some have proposed unifying theories 

and models (Barney, 2008; Blackburn et al., 2011; Gurevitch et al., 2011; 

Whitlow, 2008). However, the crux of the problem seems that no theory or model, 

as Shrader-Frechette (2001) argues, is comprehensive or is a “predictive theory of 

invasibility.”   

Ecological niche models (ENM) are generally accepted and used often in 

invasion ecology (Jiménez-Valverde et al., 2011). Their predictions are based 

upon the set of environmental variables (here onwords, we call the environmental 

set) of the native range, which is matched with the potentially invasible range. 

However, in general, there is no mechanistic basis for these models as yet. They 

are phenomenological or top-down statistical approaches. Thus, for example, the 

ENM do not usually incorporate how species functionally respond to temporal 

variability of the environmental set other than the tolerance of the species to 

extreme and constant environments. Thus, when the temporal variations of the 

environmental set of a novel range deviates from that of the native range, it is 

often hard to predict the invasibility of the novel range using ENM. Above all, 

ENM fails to differentiate a potential invasive from a non-invasive other than 

being able to calibrate the environmental set that any species can tolerate. This 
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weakness in ENM falls short of predicting which species are potentially invasive 

than others, or be the next invader in the context of invasion ecology.      

 

1.3.  Propagule pressure 

 

 The invasion process starts with a species being introduced to a novel 

habitat, where the species had not been found before or was non-native to, via a 

vector, in line with the definition of an invasive. The species first gets established 

and then may reproduce largely, either further spreading or expanding its 

population, and in some instances highly dominating or impacting the structure 

and functions of the novel range (Catford et al., 2009). The measurable quality or 

quantity of propagules (eggs or any other stage that can propagate) introduced to a 

novel habitat (per area over time) is known as the propagule pressure (Simberloff, 

2009). Simberloff (2009) states that “increasing propagule size enhances the 

establishment probability primarily by lessening the effects of demographic 

stochasticity, whereas propagule number acts primarily by diminishing the 

impacts of the environmental stochasticity.”  

The human-mediated propagule pressure, for example, via ship ballast-

water discharge, is fundamental to most marine invasions (Cordell et al., 2009; 

Lawrence and Cordell, 2010; Seebens et al., 2013). Propagule pressure has 

escalated in recent times due to increased ship-trafficking catering to the demand 

of transportation across the seas and the oceans. Ships take up ballast water from 

one port to balance their weight, and discharge the water at another port. Through 

this process they carry the propagules that can survive the journey from one port 

to another over long periods (Klein et al., 2010). Propagule pressure is a main 

driver of invasions (Lockwood et al., 2005; 2009). It has been suggested that 

propagule pressure may be considered as a null model for all invasions (Colautti 

et al., 2006).   

Recently, new regulations have been implemented to control invasions 

through ballast-water discharge. These include, chemical and temperature 

treatment of ballast-water tanks, and mid-oceanic exchange of ballast-water 
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(Tsolaki and Diamadopoulos, 2010; Simard et al., 2011). However, there is no 

guarantee that these mechanisms can reduce the invasion risk levels to a bare 

minimum, although they involve large costs. Besides, the quality and the quantity 

of propagules discharged from ships vary largely from ship to ship (Villac and 

Kaczmarska, 2011), and also depending on where the ballast-water tanks are filled 

(Lawrence and Cordell, 2010). We do not yet know how stochasticity in 

propagule pressure, together with environmental and demographic stochasticity, 

impacts the risk of population establishment, and thus, which control mechanisms 

optimize the effects (benefits) over costs.  

To study aquatic species invasions and propagule pressure via ship ballast-

water discharge, the Canadian Government has funded the Canadian Aquatic 

Species Network (CAISN, n.d.) project, networking scientists and the industry 

across Canada. We do not know the potential impact of the next invader, or which 

population will thrive in a novel environment and become a nuisance. We may 

not worry if a new species is benevolent to the existing ecological system, and 

provides positive trickle-down effects, but this obviously depends on our value 

judgement. However, the case is that nuisance species are often hard to manage 

(Connelly et al., 2007). Homans and Smith (2013) evaluate the management 

options for aquatic invasive species, and Hyytiäinen et al. (2013) address 

optimized frameworks for management. 

 

1.4.  Ecological impact of marine invasives (copepods and tunicates)  

Non-native species can change the composition of the resident species and 

impact the natural resource based industries; fisheries, agriculture; infrastructure; 

docks, piers, dams; water supply, power plants, shipping, and recreation (Ruiz et 

al., 2011). In marine and estuarine waters of North America, Ruiz et al. (2011) 

indicates that the impacts are most frequent with introduced barnacles (75% of 

species), copepods (57%), and decapods (33%). Slightly over 10% of species are 

reported to have competition, 5% of species are reported to have effects as a result 

of predation (including herbivory) providing a food/prey resource, or altering 
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habitats. Effects on host populations by parasitism is reported for 3% of species, 

while the effects on threatened or endangered species are reported for 3% of 

species. 

In further detail, Ruiz et al. (2011) indicates that in the fresh and brackish 

delta regions of the San Francisco Bay estuary, five non-native species of 

planktonic copepods, including Pseudodiaptomus marinus and P. forbesi, became 

abundant and dominant over the course of seven years (Cohen and Carlton, 1995; 

Modlin and Orsi, 1997; Orsi and Ohtsuka, 1999; Orsi and Walter, 1991). Within 

two years of its first detection, P. forbesi became the most abundant calanoid in 

fresh and oligohaline regions of the delta, while Eurytemora affinis, which was an 

early introduction to the estuary (Lee, 2000; Orsi, 2001), and had been a dominant 

mesozooplankter (Ambler et al., 1985), declined. Pseudodiaptomus forbesi partly 

replaced a previous invader, P. inopinus, in the Columbia River estuary (Cordell 

et al., 2008; Sytsma et al., 2004). At Lake Faro (Messina, Italy), P. marinus was 

the third dominant species with respect to abundance (Sabia et al., 2012). Ruiz et 

al. (2011) suggests that “crustaceans not only contribute to the overall spatial 

patterns of species distribution, but also provide an important barometer for 

invasion dynamics.” 

Invasive tunicates are introduced to novel environments as fouling 

organisms on the hulls of ships. They may be introduced also as larvae 

through ship ballast-water discharge. Some species in Europe and Americas, 

thought to be indigenous, are, in fact, invaders immigrated centuries or even 

millennia ago (for example, European periwinkle, Littorina littorea (del Mundo, 

2009). In some areas, tunicates are a major threat to aquaculture operations 

(USGS, 2013).   

 It has been estimated that invasive aquatic species costs billions of dollars 

to the US economy over a calendar year (Lovell et al., 2011; Pyšek and 

Richardson, 2010). It is an ongoing debate as to whether invasives are a major 

cause of native species extinction and biodiversity loss (Clavero et al., 2005; 

Didham et al., 2005; Gurevitch and Padilla, 2004; Molnar et al., 2008; Roberts et 

al., 2013). However, more studies are needed to investigate whether the costs of 
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invasions outweigh the benefits (McLaughlan et al., 2013) at least from an 

anthropocentric perspective. 

 The major model-species considered in this thesis is the invasive marine 

calanoid copepod Pseudodiaptomus marinus. The temperature dependencies of 

taxa, Copepoda (in general), Calanoida Copepoda, and Tunicata, and also marine 

invasive species in general, are also investigated. Details of their life-histories are 

introduced when they are modeled. However, further details are given in 

Appendix 1.1. 

  

1.5.  Fluctuating environments and persistence of small populations 

Fluctuations in an environment can have trended, periodic (seasonal), and 

stochastic effects. The study of stochastic effects in an environment on 

populations is commonly done using two methods: (i) top-down approach that 

accounts for the “environmental stochasticity” (or the temporal fluctuations in the 

probability of mortality and reproduction of all individuals of the population in 

the same or similar fashion (Lande et al., 2003)). This is also interpreted as the 

random variation in the expected fitness (the finite growth rate), which is 

independent of the population density (Lande et al., 2003)); (ii) bottom-up 

approach that directly accounts for how much stochasticity in the external 

environment (e.g., temperature, salinity) is functionally transformed to the 

stochasticity in the population. The former is commonly modeled using Ito 

stochastic differential equation (SDE) formulation in ecology (as in population 

viability analysis (PVA): Morris and Doak, 2002), and the latter, which accounts 

for how much stochasticity in the forced external environmental factor is reflected 

in the stochasticity in the population dynamics, is modeled using Ito SDE with Ito 

lemma (for parallels, see Alexandridis and Zapranis, 2013; Neftci, 2000). Ito 

lemma is the stochastic calculus counterpart of the chain rule, when one stochastic 

process is a function of one or more other stochastic processes.  



8 
 

If the noise in the SDE formulation is an approximation to continuously 

fluctuating noise in the environment, then the appropriate representation of the 

system dynamics may be the Stratonovich SDE (Ricciardi, 1986). However, the 

noise in the SDE formulation is an approximation to discrete pulses with finite 

separation to which the system responds, or the SDE is a continuous 

approximation to a discrete system, then Ito representation may be more 

appropriate (Ricciardi, 1986). Although there are different representations of the 

same thing (see for example, Braumann, 2007; 2008), the controversy over which 

SDE formula to be used has not been resolved fully. The Stratonovich and Ito 

SDE are, however, mathematically related (Gardiner, 2004).  

The SDE population models can also take the demographic stochasticity 

into account. The demographic stochasticity is due to chance events of individual 

mortality and reproduction, which are considered to be independent among 

individuals.  In other words, random variation in individual fitness produces the 

demographic stochasticity (Lande et al., 2003).  

The SDE models are commonly used to predict persistence and extinction 

probability of populations based on the models calibrated by the past population 

fluctuation data for a given environment (for e.g., in PVA). Therefore, they are 

difficult to be calibrated before a population is introduced to a novel environment, 

unless the causality of the stochasticity in the population is directly weighted and 

calibrated in relation to the stochasticity in the external forcing variables. 

Therefore, in the context of invasion ecology, the SDE models remain theoretical 

tools yielding qualitative predictions of the effects of fluctuating environments on 

introduced populations, and providing management scenario analysis using 

simulations and analytical methods.  

To quantify how seasonal or periodic fluctuations of environmental factors 

affect the population dynamics, or the life-history parameters (traits), we can 

mathematically express the population persistence metrics as functions of the 

environmental variables. For example, we can construct mechanistic population 

models describing the temperature dependencies of life-history parameters on 
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population persistence metrics. When the fluctuations are periodic, and the system 

is stage-based, the methods based on Floquet theory can be used to derive their 

stability conditions (Klausmeier, 2008).  

Two common metrics that determine population persistence in a given 

environment are, the intrinsic growth rate (λ), and the net reproductive rate (R0). 

The intrinsic growth rate, which is a life-history trait and a physiological fitness 

parameter, is defined for a population in a constant environment, or with respect 

to a constant external environmental forcing factor (as in Amarasekare and 

Savage (2012); shown with respect to temperature). It is also considered that 

intrinsic growth rate is sensitive to short-term transient states of the environment. 

The net reproductive rate is the average number of offspring produced by a female 

over her lifetime, which reflects the rate of population growth at a longer time-

scale in a constant environment. However, the threshold conditions of the two 

metrics are related: λ goes through zero as R0 goes through one; and a non-linear 

relationship exists between the two metrics derived for non-staged populations 

(Wallinga and Lipsitch, 2007).     

The demographic Allee effect is defined as the negative per capita growth 

rate of a population at low densities (Taylor and Hastings, 2005), or a virtual 

absorption of the population. The Allee effect is also categorized as component 

Allee effects, which are the positive relationships between any measurable 

components of individual fitness and the population density (Courchamp et al., 

2008). The degree of Allee effect is the key to persistence of small populations 

(Taylor and Hastings, 2005) in addition to demographic stochasticity (Lande et 

al., 2003). The demographic Allee effect may be dependent on the population 

density more than the population size, whereas, the demographic stochasticity 

may be dependent on the population size more than the population density. The 

demographic Allee effect is categorized as weak, moderate and strong (Taylor and 

Hastings, 2005). Furthermore, the growth of a population is also limited by 

density-dependence bounded by an upper population ceiling, which can be 

ignored when evaluating persistence of introduced small populations. These 
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concepts are used in the thesis when developing models for persistence of small 

populations in fluctuating environments. 

 

1.6.  Species response to ambient temperature 

Metabolism is the underlying process that governs most biological rates 

(Brown et al., 2004). Temperature is fundamental to metabolism (Allen et al., 

2001; Goolley et al., 2002), thereby affecting life-history traits; maturation, 

growth, mortality, reproductive rates of populations, and eventually reflecting on 

the population dynamics (Amarasekare and Savage, 2012; Savage et al., 2004; 

Strasser et al., 2011). Much of the variation in species diversity is also attributed 

to the kinetics of biochemical reactions, thus, the temperature. Hence, “the 

warmer the environment, the faster the evolutionary dynamics resulting higher 

rates of speciation and higher standing stocks of species (Brown et al., 2004).” 

 Based on numerous studies of species cross taxa; invertebrates, fish, and 

lizards; Amarasekare and Savage (2011) indicate that per capita fecundity 

(averaged over the reproductive life span) of a population exhibits a symmetric 

unimodal relationship with temperature. Similar relationships are also shown for 

the fecundity of ectothermic marine species (Brugnano et al., 2009; Halsband-

Lenk et al., 2002; Holste and Peck, 2005; Saiz et al., 1999; Sullivan and 

McManus, 1986; Uye, 1981; Uye and Shibuno, 1992). Per capita mortality rate of 

ectothermic species is also related to temperature, increasing with increasing 

temperature; the relationship that can be described by the Boltzmann-Arrhenius 

function (Amarasekare and Savage, 2004). 

Global syntheses on temperature dependencies of maturation, mortality, 

and fecundity rates have been shown for many species, including the copepods 

(Hirst and Kiørboe, 2002; Huntley and Lopez, 1992; Kiørboe and Hirst, 2008; 

Kiørboe and Sabatini, 1995). For tunicates, the response of generation time to 

temperature has been generalized (Deibel and Lowen, 2012), and it follows a 

pattern similar to that of the copepods (Huntley and Lopez, 1992).  These 

relationships are similar to what is predicted by Gillooly et al. (2001; 2002) 
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followed by Savage et al. (2004). These suggest that the generalized models 

proposed by Amarasekare and Savage (2012) and Savage et al. (2004) should also 

hold true for marine species in general. These indicate that the distribution of 

marine species may be regulated and limited by habitat temperatures.  

Moving to a focal study organism of the thesis, Uye et al. (1983) indicate 

that at Fukuyama harbour and Tomo, the growth rate of marine invasive calanoid 

copepod P. marinus is not regulated by the food concentration, but depends on the 

varying habitat temperature. Indeed, the geographical distribution of P. marinus 

shows that it may not thrive neither in much colder nor much warmer waters 

(Brylinski et al. (2012). The distribution of Pseudodiaptomus genus, as a whole, 

also seems limited by the cold ocean temperatures (Brylinski et al., 2012). These 

suggest that response of P. marinus to temperature may be optimal at a certain 

range of habitat temperatures similar to what is shown by Amarasekare and 

Savage (2012) for ectothermic species in general.  

In marine ecological studies, especially of copepods, ambient temperature 

is typically given by the sea surface temperature (SST). The exact meaning 

of surface, however, varies according to the measurement method being used, but 

it is commonly between 1 mm and 10m below the sea surface (GHRSST, 

n.d.). The daily fluctuations of the upper surface layers vary on average 0.3-0.5
0
C 

(Guemas et al., 2011). In temperate ecoregions, the mixed layer, where the 

temperature is approximately homogeneous, typically has depths of 150 to 250m 

by end of winter (e.g., Kara et al., 2003). In tropics, the thermocline is large 

(Ratsimandresy et al., 2001), whereas in polar region it is the lowest and less 

seasonal (SIO, n.d.). However, in near-shore and shallow-water zones, the water 

is mixed up due to turbulence from wind driven waves, currents, tides and 

upwelling destabilizing the thermocline. Huntley and Lopez (1992) suggest that 

the vertical spatial scale appropriate for temperature related surveys on marine 

copepods is probably in the order of 10-100m, the upper mixed layer, where the 

bulk of planktonic biomass resides in, and encompasses most species at all stages 

of their life-history (Huntley et al., 1987; Williams and Conway 1988a; 1988b; 

Williams and Lindley, 1980; Williams et al., 1987). Hence, the SST may be a 
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reasonable proxy for a comparative study of the effect of ambient temperatures of 

the species in the neritic zone (shallow-water depths <200m) across regions. The 

neritic zone comprises of the marine ecoregions: the coastal regions categorized 

based on the similarities in geo-morphological features, currents, temperatures 

and ecological characteristics (Spalding et al. 2007). 

The greatest variability in temperature would be expected in the near-

shore temperate zones (Huntley and Lopez, 1992). The annual temperature cycles 

in some regions in the northern temperate ecoregions (NTE) show amplitudes 

exceeding 14
0
C (NOAA-ESRL, n.d.). These fluctuations are due to mixing up of 

cold and warm water currents (Wyrtki, 1965), and also large seasonal differences 

in air-to-surface heat transfer occurring in the temperate ecoregions. These 

monthly average temperature data are commonly fit to smooth sinusoidal curves 

(for e.g. see Benyahya et al., 2007; Caissie et al., 1998).  

Marine species, especially copepods, get acclimatized to change in 

temperature quickly enough that their responses to temperature are reflected in 

their intra-annual, seasonal, monthly and even weekly abundance variations (see 

Bollens et al., 2012; Jang et al., 2013;  Liang and Uye, 1997a; Sullivan and 

McManus, 1986; Sun et al., 2011; Usov et al., 2013; Uye et al., 1983). Although 

the exact time-scale of population responses to change in temperature is unknown, 

it is said that generation time, which is in the range of days to months, is a 

reasonable scale for copepod temperature related experiments in a variable 

temperature environment (Huntley and Lopez, 1992; Landry, 1975). This has also 

been a rule of thumb for acclimatization of copepods before laboratory 

experiments.  

The diversity (taxonomic richness) of copepods (Rombouts et al., 2009) 

and other marine species (Tittensor et al., 2010) is high in the tropics and low in 

the polar regions forming a latitudinal gradient, which is slightly non-linear and 

concave (Record et al., 2012). Mean latitudinal temperatures also form a gradient 

similar to the diversity gradient. The metabolic theory of ecology suggests that the 

latitudinal distribution of diversity and the temperature are causally positively 

related (Allen et al., 2002; Rombouts et al., 2009; 2011), resulting in high 
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individual metabolic rates and high entropy, leading to high rates of speciation 

(Allen et al., 2006, Gillooly and Allen, 2007). These suggest that marine species 

diversity is also largely limited and regulated by the ocean temperatures. Hence, 

organisms respond to temperature at all levels reflecting on their populations and 

communities. 

 

1.7.  Research questions and objectives 

(A)  As life-history parameters of ectothermic marine species and taxa respond to 

temperature markedly, then the questions arise as to; 

1) How the ambient temperature in novel habitats affects the persistence 

and the invasiveness of ectothermic marine species, and the invasibility of 

habitats (from a bottom up, mechanistic approach)? Model species: marine 

calanoid copepod P. marinus. 

2) Does spatial variation of habitat-temperature temporal profiles (annual 

temperature cycles) impact geographical distribution and range-expansion of 

species? Model species: marine calanoid copepod P. marinus. 

3) Does periodic fluctuation of habitat temperatures impact marine 

invasive species diversity (taxonomic richness) distribution and invasibility of 

habitats?     

4) Is global marine species diversity (taxonomic richness) distribution 

shaped by the fluctuation of ocean temperatures? Model taxa: calanoid copepods, 

copepods, and tunicates   

(B)  How does stochastic propagule flow impacts invasive species establishment? 
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The objectives of this research are to determine,  

1) where the marine invasive species are generally originated from 

(generators) and where they go (sinks), 

2) what bio-physical mechanisms drive them, 

3) whether they impact native species distributions, 

4) clues to differentiate invasives from non-invasives,  

5) whether we could limit invasions by stochastic controlling of the human-

mediated propagule flow. 

 

1.8. Thesis organization 

This thesis contains five research chapters, which includes an extension.  

In Chapter 2, we model the net reproductive rate of populations, R0, as a 

function of temperature-dependent life-history parameters (traits) for invasive 

marine calanoid copepod Pseudodiaptomus marinus. The model is based on 

stage-structured population dynamics given by a linear system of ordinary 

differential equations.  We parameterize the model using published laboratory and 

field survey data. The criterion R0(T)>1 yields the range of  potentially invasible 

habitats for P. marinus on a global scale based on mean habitat temperatures (T). 

The model predictions match the field evidence of the species’ geographical 

distribution and range expansion.  

In Chapter 3, we derive two simple, biologically meaningful metrics: the 

cross-periodic intrinsic growth rate, which is a cross-periodic fitness parameter; 

and a weighted net reproductive rate, which is a measure of cross-periodic growth 

rate, to evaluate the stability of a stage-structured population in a habitat with 

periodically fluctuating temperatures. We test the consistency of the metrics with 

complex numerical mathematical methods. We find that, accounting for periodic 
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fluctuation of temperature narrows down the potentially invasible habitat range 

for the species compared to that predicted by the mean habitat temperature alone. 

The native range of P. marinus involves high-amplitude periodic temperatures 

(APT). Its optimal immigration from high to low APT habitats increases the 

temperature-dependent cross-periodic fitness by many folds by releasing the 

temperature-dependent stress. This may help P. marinus to become “invasive” in 

novel habitats, taking the advantage of the existing large temperature-amplitude 

gradient across the world’s marine ecoregions. Potentially invasible range 

predicted by the model is supported by recent range expansion of P. marinus in 

Europe. The theoretical results suggest, implicitly, that the effect of initial 

quantity, time of the year, and the frequency of introductions of individuals may 

only be secondary in habitats where the periodic fluctuation of temperature limits 

the population persistence. The model also explains the proliferating reproduction 

strategy shown by species live in short-summer environments, and how 

fluctuations help populations in extreme temperature environments. Furthermore, 

we show how a gradual rise in global sea surface temperature impacts the species 

range expansion, and how a simultaneous rise in the amplitude of periodic 

temperature fluctuations subdues such effect.  

The metabolic theory of ecology (MTE) suggests that high mean 

temperatures increase the rate of speciation due to high individual metabolic rates, 

and high entropy, resulting high biodiversity in marine, land, and freshwater 

environments. This is supported by strong evidence from species richness 

gradients along the latitudes. However, we do not know how fluctuations of 

temperature, some amplitudes exceeding 14
0
C, affect marine species richness in 

line with the MTE. By extending MTE models, we show in Chapter 4 that high 

APT in annual temperature cycles should cause a drop in the cross-periodic 

metabolic rates decreasing the species richness due to their non-linear 

dependencies. We find evidence to support this decrease in species richness with 

respect to diversity distribution of marine taxa, calanoid copepods, copepods, and 

tunicates, in the northern temperate ecoregions (NTE), where the amplitude 
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gradient of periodic temperatures is extremely large across the region. This 

finding solidifies the use of MTE as a strong analytical tool in ecology.  

In Chapter 5 we investigate how stochasticity in immigration (propagule 

flow), which is common in the case of marine species spreading via ship ballast-

water vectors, impacts the probability of population establishment before 

extinction (EBE probability), and also the first passage time, for small populations 

subject to environmental and demographic stochasticity. This is in order to 

investigate clues to reduce the impact of propagule pressure on population 

establishment. 

Here, we use a simple population model with an Allee effect described by 

a stochastic differential equation (SDE), and employ the Fokker-Planck diffusion 

approximation to quantify the EBE probability. We find that the effect of the 

stochasticity in immigration on the EBE probability depends on both the intrinsic 

growth rate (λ) and the mean rate of propagule flow (p). In general, if λ is large 

and positive (e.g., where species are introduced to favourable habitats), or if p is 

much greater than the rate of population decline due to demographic Allee effect 

(e.g., when very high rate of immigration is present), then generally the 

stochasticity in immigration decreases the EBE probability. If λ is large and 

negative (e.g., where species are introduced to unfavourable habitats), or if the 

rate of decline due to the demographic Allee effect is much greater than p (e.g., 

where very low rate of immigration is present), then generally the stochasticity in 

immigration increases the EBE probability. However, the mean time for 

establishment before extinction (mean time for EBE) decreases with the 

increasing stochasticity in immigration with both positive and negative large λ. 

Thus, the results suggest that ecological management of populations involves 

tradeoffs as to whether to increase or decrease the stochasticity in immigration in 

order to optimize the desired outcome. Moreover, the management of invasive 

species spread through stochastic control methods, for e.g., by stochastic 

monitoring and treatment of vectors such as ship ballast-water, may be 

appropriate and cost-effective where the environmental and demographic 

stochasticity are also present at introductions.  



17 
 

Chapter 6 gives a summary, conclusions and a further extension. Based 

on a preliminary analysis (Appendix 6.1), we show how marine invasive species, 

in general, are distributed around the world ecoregions similar to P. marinus, with 

respect to means and amplitudes of annual temperature cycles of the ecoregions. 

We find that the amplitudes of annual periodic fluctuations of temperature of the 

northern temperate ecoregions (NTE), within a 10-24
0
C mean ecoregion 

temperature range, are inversely related to invasibility of the ecoregions, which 

can be measured by the taxonomic richness of invasives. There is a possibility 

that marine invasive species in general follow the pattern of temperature-

dependent fitness similar to P. marinus or the generalized pattern shown for 

ectothermic species by Amarasekare and Savage (2012). This may suggest that 

marine invasives that originated from extremely high APT NTE, in general, may 

gain a cross-periodic fitness by optimal immigration along the temperature-

amplitude gradient to low APT ecoregions across the world ecoregions similar to 

the case of P. marinus. Theoretically, this process should help marine species to 

become “invasive” in low APT ecoregions, in general. This may question whether 

the invasives are originated from extremely high APT ecoregions in the NTE 

(invasive generators), and immigrating to low APT ecoregions (invasive sinks), in 

general, suggesting an existence of a conveyor-belt of marine invasive species 

generation. There is piecemeal evidence to support such theory based on 

documented native ranges of non-indigenous and invasive marine species 

distributions. If that is the case, then existence of extremely large APT gradients 

across the world’s ecoregions may also suggest that we should be cautious about 

high-degree invasions in the future, even at the level of biotic mixing of oceans 

and seas at the present level of human-mediated propagule pressure. 
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CHAPTER 2 

1
Identifying potentially invasible habitats for marine 

copepods using temperature-dependent R0 

 

2.1.  Introduction  

 Assessment of habitat invasibility often relies on statistical matching of 

environmental variables between native and potentially novel ranges of species 

via methods such as ecological niche modeling (ENM) (Jeschke and Strayer, 

2008; Mercado-Silva et al., 2006). However, it is often the case that invasive 

species can tolerate environmental conditions that are outside of their native range 

(Broennimann et al., 2007; Elith and Leathwick, 2009). This indicates that the 

absence of a species in a particular environment may not necessarily mean that the 

environment is unsuitable for the species. Thus, matching up environmental 

variables may not be much reliable in predicting potentially invasible range. 

As an alternative to ENM, the response of life-history parameters (traits 

for example, fecundity, maturation, and mortality rates) of a population to specific 

environmental variables can be measured under controlled laboratory 

experiments. However, these measures must be translated to a metric to determine 

if a population can persist and grow under a given set of environmental 

conditions. Here, we use the net reproductive rate R0 of a population, modeled as 

a function of environmental variables, as a metric for evaluating population 

persistence. The R0 is the average number of offspring produced by a female over 

its lifetime, which is a measure of the reproductive success of a population 

(Ackleha and de-Leenheerb, 2008). It is also used in evolutionary invasion 

analysis to predict long term evolutionary outcomes (Hurford et al., 2010). When 

                                                           
1
 A version of this chapter has been published. Rajakaruna, H., Strasser, C., Lewis, M., 2012. Identifying non-

invasible habitats for marine copepods using temperature-dependent R0. Biological Invasions 14(3),633-647. 
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R0>1, a population grows, and R0<1, a population tends to decrease to extinction 

(Boldin, 2006). Therefore, we can decide whether a species can persist in a habitat 

by evaluating R0 for given range of values of environmental variables.  

The R0 can be derived from a stage-structured population model described 

by a system of ordinary differential equations (ODE) (de-Camino-Beck et al., 

2007) incorporating the life-history parameters. These life-history parameters can 

be modeled, in turn, as functions of the environmental variables. The ODE 

transmission models in epidemiology literature are commonly evaluated using R0, 

although it is less common in stage-structured life-history dynamics of 

populations.   

The model-species Pseudodiaptomus marinus is a perennial egg-carrying 

marine calanoid copepod, reproducing year-round, and having multiple 

overlapping generations (Liang and Uye, 1997a; Uye et al., 1983). It is native to 

North West Pacific region and introduced to North East Pacific region, Southern 

Chile and many other locations around the world via ship ballast-water 

(Fleminger and Kramer, 1998; Cordell et al., 2008). Recent studies show that P. 

marinus is further expanding its range (Brylinski et al., 2012; Jiménez-Pérez and 

Castro-Longoria, 2006). Despite high propagule pressure (Cordell et al., 2009), P. 

marinus has not been reported in Oregon and Vancouver Harbour, BC (Piercey et 

al., 2000) indicating that it may be a successful invader only in selected habitats. 

Whether environmental factors limit its geographical distribution is unknown.  

The life-history parameters such as fecundity, mortality and maturation 

rates of P. marinus are functions of temperature (Liang and Uye, 1997a; Uye et 

al., 1983). Hence, R0(T) of P. marinus, derived as a function life-history 

parameters, is invariably a function of temperature (T). Thus, R0(T) can be 

parameterized using data from experiments and surveys in published literature 

(e.g., Liang and Uye, 1997a; Uye et al., 1983).  

In this study, we assume environmental conditions other than temperature 

are optimal for the populations. Liang and Uye (1997a) specifically state that the 
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trends in the growth of the populations they studied, where we get the data from, 

were temperature-dependent, but not regulated by the food concentration.  

The R0(T) allows us to predict the range of temperatures that are suitable 

for the population persistence, and thereby, to predict the range of potentially 

invasible habitats for the species given the temperatures. This method can be 

applied to model R0 for copepod species in general showing similar life-history 

dynamics.  

  

2.2.  Model and Methods 

Life-history stages of P. marinus consist of eggs, six naupliar stages, five 

copepodid stages, and one adult stage. We exclude the naupliar stage 1 from the 

model as the data corresponding to this stage are unavailable. This is because it 

lasts only few minutes, and thus taking measurements is hard (Uye et al., 1983). 

This results in 12 effective life-history stages for our model.  

We denote n(t) to be a vector representing the stage-composition of the 

population at time t, and A(T) to be a matrix of parameter space of maturation

)(Ti , and mortality



i(T)  rates that depend on the ambient temperature (T) at 

stage i for i=1..12. Here, ( )T  corresponds to the fecundity rate of the adult stage. 

Thus, we write the rate of change of stage composition as follows:  

nA
n

)(T
dt

d
                       (2.1) 
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Here, 
1n  represents the number of eggs, 

2 6...n n  represent the number of 

individuals in the five naupliar stages (excluding stage 1), and 
7 12...n n  represent 

the number of individuals in the five copepodid stages and the adult stage 12. The 

constant q is the average proportion of ovigerous females in the adult population, 

which is approximately 0.61 for P. marinus (Liang and Uye, 1997b).  

 

2.2.1.  R0 as a function of temperature  

We follow the methods in van den Driessche and Watmough (2002) to 

derive the net reproductive rate R0 based on stage-structured population dynamics 

described by first order linear ODE model Eq. (2.1) for P. marinus. First, we write 

the matrix A partitioned as A=F-V, where F is the matrix of fecundity coefficients 

(non-negative and non-zero), and V is the matrix of transition coefficients (i.e., 

maturation and mortality rates). Thus, R0 can be written as ][
1

0



 FVR , where 

 is the spectral radius of the matrix ][
1

FV  (van den Driessche and Watmough, 

2002). That is,
  



[FV
1

] max
1in

R0i , where
nRRR 00201 ..., are the eigenvalues of 

the square matrix ][
1

FV . (Note that the intrinsic growth rate λ, defined as the 

maximum real eigenvalue of the square matrix A, has a non-linear relationship 

with the net reproductive rate R0 (Wallinga and Lipsitch, 2007), and λ >0 if and 

only if 10 R .) 

We express R0 as a function of temperature, such that, 

])()([)( 1

0

 TTTR VF . Using the graph reduction method (de-Camino-Beck et 

al., 2009) (see derivation in Appendix 2.1), we can write R0 as  
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Here, s is the last stage (stage 12) for P. marinus. In order to compute R0, we 

model ( )T , )(Ti , and 



i(T)  separately. 

 

2.2.2.  Modeling fecundity rates ( )T  

Fecundity rate ( )T  can be written as ( ) ( ) /T f T t   , where f(T) is the 

number of eggs produced by an adult female over time t  at average temperature 

T. Uye et al. (1983) fitted a linear model for f(T) to parameterize ( )T . It takes 

the form 48.477.0)(  TT , with R
2
=0.84. Residual analysis of Uye’s data 

shows a non-random distribution of residuals along the fitted curve indicating a 

possible non-linear relationship. We also note a depression in fecundity rates at 

low temperatures. Therefore, we fit a sigmoidal model to the data assuming log 

normally distributed errors, and bounded fecundity at large temperatures. These 

may be biologically more valid assumptions compared to that of the linear model. 

We incorporate a lag parameter b to relax the assumption that the curve must 

otherwise intercept the y-axis at the origin. Although, it may be more appropriate 

to assume that fecundity rate is a bell-shaped curve with respect to temperature (as 

in Amarasekare and Savage, 2012), we did not have the data to estimate such 

curve where ( )T begins to decline at high temperatures.   

We write the fecundity rate as  

( ) ( )( ) /[ ( 1)]w T b w T b

m l m lT f f e f f e                       (2.3) 

where, mf  is the maximum rate of fecundity, lf  is fecundity rate at the lowest 

temperature, and w is a shape parameter that accounts for the depression in 
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fecundity at lower temperatures. We compare the regression of the linear model in 

Uye et al. (1983) with the sigmoidal model using residual sum of squares.  

 

2.2.3.  Modeling maturation rates i (T) 

2.2.3.1 General solution for 



na (t)  

We solve the system of ODE’s represented by Eq. (2.1) analytically 

corresponding to a single individual in stage 1, 1(0) 1n  , and (0) 0in   for 

i=2,..,12., starting at t=0. This allows us to follow a single cohort over time with 

no additional individuals being added to the system, and obtain the general 

solution for



na (t) , the proportion of individuals in a given stage a at time t from 

Eq. (2.1) as  



n1(t)  e
 1t1     for a=1;   
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5B , and so on.  

The general formula for Bj (j3) can be written as 
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 Note that due to the varying dimensions of the Bj matrices, the product 

 


a

j jab
1
B is a row vector. The 



v a is a column vector given by  

1

2

3

1

( 1) 1

:

a

a

a

a a
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tt

t t
a

t t

a x
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



 

 


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

 

 



 
 

 
  
 
 
  

. 

2.2.3.2 Analysis of the case with constant mortality among stages 

 

In experimental studies, the maturation rates are commonly calculated 

using median development times, or the time it takes for 50% of the cohort to 

mature from eggs past a given stage (e.g., Breteler et al., 1994; Lee et al., 2003; 

Uye et al., 1983). An assumption underlying such conventional calculation using 

the ‘proportions not yet past a given stage’ is that, daily mortality rates are the 

same across all stages of a cohort. It excludes the mortality rate parameter from 

the proportions. We make the same assumption here in the calculation of 

maturation rates of our model as P. marinus data are also available only as 

proportions of a cohort remaining in each stage over time.  

To do that, we normalize ( )an t for each time step t dividing it by the total 

remaining population of the cohort at the time step to yield the proportion at each 

stage ( )az t . Thus, this assumption makes the proportion at each stage ( )az t  to be 

independent of the mortality rates.   
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To see that, consider the case where each i is a constant   in the solution 

( )an t . We note that, 



 ij s become independent of  , and as a result ab  also 

becomes independent of  . Furthermore, ( )i at t
e e

  
 term in a  can be written 

as ( )i at tte e e
      for each element i. Thus, in the dot product ( . )a ab   in the Eq. 

(2.4), the term te   is separated out as a multiplier, and yields, 

1

1

( ) ( . )
a

t

a aa i

i

n t e b  






 
  

 
 , such that, the term 

1

1

( . )
a

a ai

i

b 




 
 
 
  becomes independent 

of , denoting, a ab b  and a a   for 



i  0 for all stages i.  Now, we write the 

proportion of each stage a at time t, ( )az t , with respect to the total population at t 

as 

11

1 11 1

( ) ( ) / ( ) ( . ) / ( . )
jas s

a a j ja a i i i

i ji i

z t n t n t b b   


  

  
    

   
    

where, s is the total number of stages. We note that this equation is independent of

  as the term 
te 
 is cancelled out. We also note that the denominator of this 

equation is 1 as the population starts with 1 and remains with 1 at any time t in the 

solution. This is because the term   is not present in the solution, ( )az t . Hence, 

the ( )az t is simplified to 

1

1

( ) .
a

a aa i

i

z t b 




 
  
 
                       (2.5) 

which is equivalent to ( ) ( )a az t n t when 0i   for all stages i at any t.  Therefore, 

( )az t can be equated with the stage sizes normalized at each time step t in the 

experimental data found in the literature, which makes the standard assumption in 

experimental data analyses that 
i   for all i=1 to s. 
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2.2.3.3 A simple model for maturation rates i (T) 

Using Eq. (2.5) we can write the proportion of individuals not yet past 

stage a, that is
1

( )
a

i

i

z t


 , as 

    
1 1 1

( ) 1 (1 )i

aa a
j t

i

i i j j i
j i

z t e




 



  


 
   
 
  

   .                  (2.6) 

As shown by Cox (1967), this equation can also be derived from assuming 

that the time that an individual stays in a stage (stage duration time) as an 

exponentially distributed random variable, da, such that, the probability density 

function of da is at

ae
 

, and the cumulative density function of da is (1 )at
e


 , 

where a is the maturation rate at stage a, with the assumption that 0a  for all 

stages a. The mean time taken to exit stage a, i.e. stage development time, Da, 

becomes a random variable defined as 
1

a

a i

i

D d


 of which the cumulative density 

function is   


a

i i tz
1

)(1 . The quantity
1

( )
a

i

i

z t


 , thus, yields the proportion of 

individuals not yet past stage a.   

We fit stage-proportion data from Uye et al. (1983) to Eq. (2.6) using non-

linear least squares regression to estimate a . The data used were collected for P. 

marinus at 20
0
C. The mean stage duration time da is given by 

1
a

a

d


  from the 

exponentially distributed da, and this is for the population at constant temperature 

20
0
C. We then use 



da  evaluated at 20
0
C to estimate the relationship between 



Da  

and temperature (T). We assume the relationship given by the Belehradek’s 

function for mean stage development times, 
1.8( 1)a aD T    (as used by Uye et 

al. (1983) for P. marinus), where T is the ambient temperature in centigrade, and 

a is a temperature-independent constant that varies with stage a. We quantify



a



38 
 

’s from the Belehradek’s function substituting the estimated ( )a T for the data 

given at 20
0
C using the relationships  

1
a

a

d


  and 
1

a

a i

i

D d


 . Thus, by 

rearranging the Belehradek’s function, substituting the above two relationships, 

yields ( )a T  for any stage a for any temperature T for known 



aas  

1.8

1( ) ( 1) /( )a a aT T      .                    (2.7) 

Here, 0 0  .   

 

2.2.3.4 An advanced model for maturation rates i (T) 

As an advancement to the model, we modify Eq. (2.1) assuming that stage 

duration times are Gamma distributed (Breteler et al., 1994; Lee et al., 2003), 

which replaces the earlier assumption of exponentially distributed stage duration 

times. That is, probability density function of da now becomes
1

( )
a

k
tkt e

k

 


 

where, 



(k)  (k 1)!, 



a  0 and k>0.  Mathematically this can be achieved by 

assuming that there exists virtual sub-stages k within each stage a in Eq. (2.1), 

given that stage duration times of sub-stages are exponentially distributed. This 

follows from the linear chain trick in ODE (see MacDonald (1978) for the full 

description). Thus, the number of sub-stages k is equivalent to assuming the shape 

parameter k in the Gamma distributed stage duration times (as in Breteler et al., 

1994; Lee et al., 2003). 

The method of fitting model Eq. (2.6) with multiple sub-stages is outlined 

in Appendix 2.2. Now, the mean stage duration times da become 
a

a

k
d


  for the 

advanced model for the Gamma distributed da. It yields 

1.8

1( ) ( 1) /( )a a aT k T                           (2.8) 
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Where, 00  .  Note that the advanced model reduces to the simpler model when 

k=1 (and also ε=0 in the estimation model in Appendix 2.2).We compare the 

model-fits for k=1, and k=2, 3 using AIC and chi-squares test to determine which 

model assumption is the best to estimate 



 a(T). We also use the estimated stage-

duration times to calculate mortality rates as shown in the next section.     

 

2.2.4  Modeling mortality rates ( )T  

Liang and Uye (1997a) estimated the percentage survival of nine 

generations of a P. marinus population in the West coast of Japan under different 

mean temperatures. We use these data to estimate the survival curves at different 

temperatures. Because of their estimation procedure, Liang and Uye (1997a) 

reported percent survival >100% in some cases; these values were reduced to 

100%.   

We fit the function )exp( aSv   for the proportion surviving from eggs 

to stage a, where  is a scale parameter and   is a shape parameter. We estimate 

 and   using non-linear least squares regression.  We refer to vS  as a modified 

Weibull function because (1- vS ) is the cumulative density function of the Weibull 

(1951) distribution. We calculate the proportion of individuals that died in each 

stage with respect to the proportion of individuals that matured into the current 

stage from the previous stage using the estimated vS .  

To calculate the mortality rates )(Ta  for each stage a, we divide the 

proportions that died in each stage by the stage duration time given by 
1

a

a

d


 on 

the assumption of exponentially distributions stage maturation times (simple 

model), and a

a

k
d


  on the assumption of Gamma distributed stage maturation 

times (advanced model) at the same temperatures.   
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We pool the mortality rates across stages so as to be consistent with our 

earlier assumption. Thus, we fit a quadratic function  

01

2

2)(   TTT                      (2.9) 

for the pooled data using non-linear least squares regression. We do not use the 

survey measurement data at 27.4
0
C in Uye et al. (1983) for above calculations as 

it yields near zero daily mortality rates at such comparatively high temperature, 

which results in a biologically unexplainable pattern that contradicts the general 

trend, suggesting that those data may be outliers.  

To test the validity behind the assumption of pooling the mortality rate 

data that, the mortality rates are the same across all stages for a given temperature 

(as in Breteler et al., 1994; Uye et al., 1983), we use the method of positioning 

means within confidence intervals (Venables and Repley, 2002). 

 

2.2.5. R0 as a function of temperature given k sub-stages within a stage (an 

advanced model) 

Now we have ( )T , ( )a T  and ( )T  modeled exclusively as functions of 

temperature, and the models parameterized using published data, to finally fit into 

R0(T) in Eq. (2.2). Here, we derive (see derivation in Appendix 2.1), R0(T) also for 

a population with any given k number of virtual sub-stages within a stage, or 

where stage duration times are Gamma distributed. It yields  

1

0

1

( )( )
( )

( ) ( ) ( )

k
s

i

is i i

Tq T
R T

T T T



  





 
  

 
 .                 (2.10) 
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2.2.6.  Application and validation 

 We use the parameterized model R0(T) in Eq. (2.2) and Eq. (2.10) to 

predict the range of habitats that are potentially invasible to P. marinus on a 

global scale based on mean sea surface temperature data with optimum 

interpolation from NOAA-ESRL (n.d.) at 1
0
x1

0
 degree latitudinal and longitudinal 

resolution. The range of habitats, where R0(T)<1 is considered to be uninvasible 

for P. marinus, whereas that for R0(T)>1 is considered to be potentially invasible. 

We compare the model predictions with the observed distribution of P. marinus 

based on the literature. 

 

2.3.  Results 

2.3.1.  Life-history parameters ( )T  )(Ti and )(T  

We found that the sigmoidal model for fecundity rates fits the data better 

than the linear model (Figure 2-1).  The residual sum of squares (RSS) for the 

sigmoidal model was 97.37 compared to 126.08 for the linear model.  Parameter 

estimates for the sigmoidal model were 0

m lf =13.89,  f =0.61, w=0.35, b=6.01 C . The 

fecundity rates reached a maximum at temperatures above 25
o
C.   

The proportion of individuals  not yet past a given stage for stage duration 

times estimated from Eq. (2.6) using the advanced model (Appendix 2-2) for the 

data from Uye et al. (1983) for a population in 20
0
C is given in Figure 2-2 The 

model with k=3 yields the lowest AIC (Table 2-1). Note that p-values for the chi-

square goodness-of-fit test for k=1 and k=2 with respect to k=3 was <0.001. This 

suggests that model with k=3 is a better predictor, which is significantly different 

from the models with k=1 and k=2. Table 2-2 gives the resulting temperature-

independent 



a  values computed based on the above estimates. 

The parameters  and   of the modified Weibull model estimated for 

different generations at different temperature regimes are given in Table 2-3 and 
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Figure 2-3. The mortality rate model Eq. (2.9) estimated based on the pooled 

mortality rates data computed based on the above at different temperature regimes 

are given in Figure 2-4. The estimates of the coefficients were κ2=0.0022 /day, 

κ1=-0.0563/
0
C day, κ0=0.4211/

0
C

2
 day.  The estimates of the coefficients for stage 

specific mortality rates modeled with respect to temperature fell within the 95% 

confidence intervals of the estimates of one another. Hence, the notion that stage 

based mortality rates are the same across all stages is a valid assumption for P. 

marinus.  

 

2.3.2.  Net reproductive rate R0(T) 

The R0(T), evaluated for a range of temperature T by incorporating the 

parameterized sub-models ( )T , ( )a T and ( )T ,  shows a concave function with 

respect to mean habitat temperatures (Figure 2-5). The R0(T) decreases at higher 

temperatures due to increasing mortality rates (Figure 2-4) that suppress the 

positive effect given by the simultaneous increase in the fecundity rates (Figure 2-

1). We plotted R0(T) for the cases where k=1 and k=3 (Figure 2-5). Relatively 

lower values of R0(T) for higher k suggest that the fitness of the population is 

reduced when k is high regardless of the temperature. The R0(T) model that fits 

the data best was the one with k=3.  

The uncertainty associated with the estimates of R0(T) cannot be 

calculated because the confidence intervals were not given for the estimates taken 

from the literature (Liang and Uye, 1997a; Uye et al., 1983).  The potentially 

invasible range of habitats, that is where R0 (T)>1, are those within 11
0
C to 23

0
C 

mean temperatures. Habitats whose mean temperatures are less than 11
0
C or 

greater than 23
0
C are uninvasible. This indicates that the species is more cold-

adapted. Field sampling evidence depicted in Figure 2-6 suggests that the 

predictability of the model is reasonable. Note that the standard errors of the 

predictions are not given. 
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2.4.  Discussion 

In this paper, we proposed a novel methodology to model the net 

reproductive rate R0, which is a metric that evaluates population persistence, as a 

function of mean habitat temperature (T) for invasive marine copepod P. marinus. 

We showed how to parameterize the model based on published data from 

experiments and surveys. This approach may be applied to model R0 for any 

marine copepod having a similar life-history stages (for example, species in 

Bonnet et al., 2009; Chen et al., 2006). Marine copepods, in general, have the 

same stage-structure. Habitats with mean temperatures forcing R0(T)>1 indicate 

those that are potentially invasible, given the other factors are also favourable to 

the species. Similarly, habitats with mean temperatures forcing R0(T) <1 indicate 

those that are uninvasible to the species regardless of the status of the other 

ecological factors (whether fixed or not). Thus, our approach conservatively 

predicts the habitats that are uninvasible, and thereby, potentially invasible to the 

species. 

Habitats that are potentially invasible to P. marinus, as predicted by our 

model, matched well with field evidence of species occurrences on a global scale. 

In particular, we note that from Figure 2-6, Elliot Bay, Puget Sound is on the 

border of uninvasible range limiting R0(T)=1. Pseudodiaptomus marinus has been 

sampled at Puget Sound by Cohen (2004) according to the U.S Geological 

Surveys (USGS, n.d.). However, there has been no indication as yet, as to whether 

it has established in that location. Further northwards, Piercey et al. (2000) found 

that there was a large propagule pressure of P. marinus on Vancouver harbour: P. 

marinus were found in 25.4% ships sampled occurring in densities 2~54m
-3

. 

Vancouver harbour is also located on the border limiting R0(T)=1. We also note 

that temperatures around Vancouver harbour and Puget Sound fluctuate at large 

amplitudes seasonally (DFO, n.d.). To predict invasibility of habitats, where the 

temperature is unsteady, we may need a model that accounts for the effect of 

seasonal fluctuation of temperature. 
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If we incorporated the survival data at 27 
0
C, as we mentioned before, then 

the upper bound of R0(T)=1 would have shifted towards higher habitat 

temperatures shifting the potentially invasible range more towards the tropics. We 

did not incorporate those survival data because they were inconsistent with the 

general trend in the mortality rates with respect to increasing temperatures. Yet 

the field observations may fit better if we did so.   

The methodological basis that we adopted, the bottom up mechanistic 

approach, in determining potentially invasible habitats, is contrasting to that of 

ENM. The ENM predicts habitat suitability based on a snapshot of environmental 

conditions and species occurrences (Herborg et al., 2007a; Peterson et al., 2003; 

2007) by matching the set of environmental variables between native and 

potentially invasible ranges (Jeschke and Strayer, 2008; Mercado-Silva et al., 

2006). For e.g. the Genetic Algorithm for Rule-set Prediction (GARP) (Stockwell 

and Peters, 1999) in ENM has been commonly used to predict habitat suitability 

for both terrestrial and aquatic invasive species (e.g., Herborg et al., 2007a; 

2007b; Peterson, 2003; Peterson et al., 2007). This methodology implicitly 

assumes that a species may survive and reproduce only in habitats having similar 

ranges of environmental sets. Often, species tolerate environmental sets beyond 

what is found in their native range (Lockwood et al., 2006).  For example, a 

species distribution may be confined to a certain native range due to natural 

barriers rather than environmental parameters (Lonhart, 2009) suggesting that 

absence is not necessarily indicative of a habitat’s unsuitability. In such case, 

ENM may not be able to fully capture the potential environmental set that a 

species can tolerate.  For this reason, ENM can overlook habitats where a species 

can potentially survive and reproduce, especially in cases where human-mediated 

transport can facilitate jump dispersals (e.g., Broennimann et al., 2007). Our 

approach avoids this particular limitation of ENM.  

The model we propose here is designed to quantify R0 for small introduced 

populations. Hence, we did not explicitly account for the density-dependence of 

the population at high population densities. Furthermore, we disregarded the Allee 
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effect (Courchamp et al., 2008; Kramer et al., 2008; Taylor and Hasting, 2005). It 

may be a factor that works against species establishment at low population 

densities (Lockwood et al., 2006; Whitmann et al., 2011). A different approach 

would be needed to analyze populations with Allee effects. Inclusion of Allee 

effect may remove another subset of uninvasible habitats from the potentially 

invasible range. Thus, our predictions made without the inclusion of Allee effect 

may be conservative.  

Sea surface temperature (SST) has been rising over the last few decades 

(Cane et al., 1997). Our model can be used as a tool to determine the effect of the 

rise in SST on species range expansion. The concave functional shape of R0(T) 

with respect to T, with bounds limiting R0(T) at warm and cold temperatures, 

suggests that the potentially invasible habitat range for P. marinus may shift 

towards the poles, or the colder waters, rather than a range expansion per se, with 

an increase in T or a rise in SST. However, the effect of climate change on 

seasonal changes, for example, the effect on the amplitude of SST, may also be 

critical in determining the long term effects. We note that, for example, the 

temperature data from Race Rocks, BC, spanning from 1921-2008, indicate that 

annual low temperatures have not increased as much as the annual high 

temperatures along with the general rise in the mean SST. The impact of such 

non-linear increases in temperature may have non-linear effects on R0. Hence, we 

may not be able to compute the expected shift in R0(T) by simply adding the 

expected increment in mean SST to the mean T of habitats in forecasting the 

effect (for e.g., in Moller et al., 2012). Although the change in mean habitat 

temperature due to rise in SST may be vey small, we note that the scale at which 

the shift in invasible geographical range would be large.  

A proxy for using mean temperature to characterize a habitat is 

appropriate in cases where the year-round temperatures force R0 to be less than 1, 

or all greater than 1 through all seasons, in general. However, in habitats where 

the temperature fluctuates seasonally forcing R0(T) >1 in one season, and R0(T) <1 

in another, the predictions made by R0(T) may not be reliable. Developing a new 
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metric that accounts for seasonal variation (see methods in Bacaeer, 2009; 

Bacaeer and Ouifki, 2007; Wesley and Allen, 2009 in epidemiology) may be 

more suitable for predicting potentially invasible habitats under such scenario.  

An extension to our model would be to incorporate the effect of other 

environmental forcing factors, such as salinity, on life-history parameters in a 

multivariate model, and also the effect of the fluctuations of those factors. It may 

inflate the uninvasible habitat range for a species. Recent work towards modeling 

the combined effect of temperature and salinity on population persistence is found 

in Strasser et al. (2011). 

 

 

Table 2-1  Model comparisons for cases k=1, 2 and 3 in Eq. (2.6) with advanced model 

(Appendix 2.2).  

 

Model 

  

RSS 

 

LL 

 

(LL/LLmax) 

 

χ
2
  

 

Deg 

 

AIC 

 

∆AIC 

 

  p-of χ
 2
 

k=3 0.57 120.56 0.00 0.00 14 -213.12 0.00  

k=2 1.04 108.83 -11.73 23.45 13 -191.67 21.45 1.28E-06 

k=1 1.88 97.29 -23.27 46.54 12 -170.58 42.54 7.83E-11 

**LL-Log likelihood, LLmax-Maximum Log likelihood, AIC-Akaike information criteria 
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Table 2-2  The temperature-independent coefficients a yielded by the Belehradek’s 

function given for stage development times at 20
0
C calculated based on stage 

maturation rates estimated by Eq. (2.6).  

 

      Stage 

 

     0(20 )a C  

Stage duration 

time 

0(20 )ad C  

(days) 

Stage 

development 

time 

0(20 )aD C  

(days) 

 

       
a  

e 3.64 0.27 - 55.01 

n2 2.53 0.40 0.67 134.21 

n3 1.05 0.96 1.63 325.81 

n4 0.87 1.16 2.78 557.40 

n5 0.65 1.53 4.31 864.01 

n6 0.81 1.23 5.54 1110.77 

c1 0.54 1.84 7.39 1479.68 

c2 0.58 1.73 9.12 1827.22 

c3 0.60 1.66 10.78 2159.64 

c4 0.40 2.48 13.26 2656.81 

c5 0.29 3.48 16.74 3353.02 

c6 - 4.84 21.57 4321.76 
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Table 2-3  Estimation of   and  in )exp( aSv  at different temperatures. 

Temp 

(
0
C) 10.60 14.30 16.70 20.20 21.50 22.30 25.60 27.40 

  0.02 0.01 0.00 0.00 0.13 0.53 0.00 0.10 

  2.69 2.26 7.87 2.93 1.43 0.94 29.24 1.56 

RSS 0.05 0.11 0.09 0.02 0.06 0.01 0.09 0.03 

**RSS-Residual sum of squares 

 

 

   

Figure 2-1  Fecundity rates of adult females at different temperatures, comparing the 

sigmoidal model Eq. (2.3) with the linear model in Uye et al. (1983).  Dashed lines 

indicate the 95% confidence intervals. 
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Figure 2-2  Proportion of individuals in the population not yet past a given stage a, for 

a=1..12, obtained by fitting Eq. (2.6) and its advanced model (in Appendix 2.2) to data 

from Uye et al. (1983). Solid lines are the fits for k=1, dashed lines are the fits for k=3.  
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Figure 2-3  Proportion survived at the end of each stage in different temperature regimes 

estimated by )exp( aSv   based on the data from Liang and Uye (1997a). 
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Figure 2-4  Quadratic model of daily mortality rates as a function of temperature, 

estimated from pooled stage-based data. Parameter estimates for mortality rate model are 

κ2=0.0022 /day, κ1=-0.0563 /
0
C day, κ0=0.4211 /

0
C

2
 day. Dashed lines are 95% 

confidence intervals. 

 

             

Figure 2-5  Net reproductive rate R0 plotted as a function of temperature (T) for the cases 

where k=1 (exponentially distributed stage duration times) and k=3 (Gamma distributed 

stage duration times). 
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Figure 2-6  Range of potentially invasible habitats for P. marinus: 11
0
C to 23

0
C, as 

predicted by the model Eq. (2.10) based on R0(T)>1 for sea surface temperature (T) data 

averaged from year 1971-2000 through NOAA interactive database. Dots are the habitats 

where P. marinus was detected or established.  

[References are from Fleminger and Kramer (1988) except *: (A) West coast of 

Hokkaido, Japan, Sato (1913), Walter (1986); (B) Qing-Chao and Shu-Zhen (1965); (C) 

Andaman Islands (Pillai 1976); (D) Mauritius (Grindley and Grice 1969); (E) Moreton 

Bay, Queensland (Greenwood 1977); (F)* Patagonian Waters, Southern Chile (Jones, 

1966; Grindley and Grice, 1969) from Hirakawa (1986); (G) Oahu, Hawaii (Jones 1966) 

(Carlton 1985)*; (H)* San Francisco Bay, California (Ruiz et al. 2000); (I) Peter the 

Great Bay (Brodsky 1948, 1950); (J) Chiba (1956), Tanaka (1966), Tanaka and Huee 

(1966), Walter (1986); (K) Brodsky (1948, 1950);  (L)* Elliot Bay, Puget Sound, 

Washington (Cohen 2004), USGS; (M) USGS; (N) Shen and Lee (1963)] 
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CHAPTER 3 
Are invasive copepods generated in habitats in high-

amplitude periodic temperatures? The case specific to 

Pseudodiaptomous marinus 

 

3.1.  Introduction 

Copepods are a major link between primary and tertiary producers in large 

marine food-webs, in which, humans are the end-receivers (Kiorboe, 2008). 

Everyday, a large number of non-native copepod species are introduced to novel 

habitats across the globe through ship ballast-water discharge (e.g., Boltovskoy et 

al., 2011; Cordell et al., 2009). There is uncertainty as to which environmental 

conditions will allow them to persist (Bollens et al., 2012; Byrnes et al., 2007; 

Ruiz et al., 2011). Thus, capturing critical environmental thresholds that govern 

the stability of these species in introduced habitats has become a major research 

focus (Fowler et al., 2011; Pineda et al., 2012). 

A wealth of knowledge and data are available on the effect of temperature 

on key life-history parameters of copepods (e.g., Almeda et al., 2010; Devreker et 

al., 2009; Lee et al., 2003; Strasser et al., 2011). Amalgamation of this knowledge 

in a global synthesis suggests that their fecundity, mortality, and stage maturation 

(transition) rate parameters are functions of ambient temperature, showing a 

general pattern across all species of copepods (Bunker and Hirst, 2004; Hirst and 

Kiørboe, 2002; Huntley and Lopwz, 1992). These rate parameters can be used to 

model that yields the net reproductive rate R0, the average number of offspring 

produced by a female over its lifetime, and also the intrinsic growth rate λ of a 

population. Using this approach, Rajakaruna et al. (2012) have modeled the R0(T) 

pertaining to marine calanoid copepod Pseudodiaptomous marinus as a function 

of temperature (T), and determined the habitats that are potentially invasible to the 

species given the mean habitat temperatures (Figure 3-1). Similarly, Amarasekare 
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and Savage (2012), and Strasser et al. (2011) have modeled the intrinsic growth 

rate λ(T) of species as a function of the mean habitat temperature.   

Global predictions made by the Rajakaruna et al. (2012) model were 

supported by three recent sampling studies by Brylinski et al. (2012) at Southern 

Bight of the North Sea along the coast of France, Olazabal and Tirelli (2011) at 

Adriatic Sea in northern Italy, and Sabia et al. (2012) at Lake Faro (Messina, 

Italy). However, this model suffices only if the habitat temperature is uniform 

year-round, and is not subject to fluctuations. Yet the field data from sub-tropical 

and temperate marine and estuary habitats indicate that temperatures fluctuate 

periodically with amplitudes as high as 14
0
C, particularly in the northern 

hemisphere (NOAA-ESRL, n.d.; Masson and Cummins, 2007). Under this 

scenario, R0(T) modeled by Rajakaruna et al., (2012) may not be a reliable 

predictor of population persistence when T is taken to be the average temperature. 

Similarly, the case of using intrinsic growth rates based on mean habitat 

temperatures as modeled by Amarasekare and Savage (2012) and Strasser et al. 

(2011) also may not be reliable.  

The copepod P. marinus is native to the seas of Japan and China (North 

West Pacific coast) (Cordell et al., 2008), where the periodic fluctuation of 

temperature is large compared to most other marine ecoregions (NOAA-ESRL, 

n.d.). Pseudodiaptomous marinus has been introduced to the West coast of North 

America via ship-ballast water discharge (Cordell et al., 2008; Fleminger and 

Kramer, 1988), and has established in localities such as San Fancisco bay (Ruiz et 

al., 2011) and San Diego Bay (USGS, n.d.). It has been detected also at Elliot 

Bay, Puget Sound, Washington (Cohen, 2004) and Todos Santos Bay (Jiménez-

Pérez and Castro-Longoria, 2006). Pseudodiaptomous marinus continues to be 

sampled in large quantities in ballast-water of ships entering Puget Sound (Cordell 

el at., 2008; Lorenze and Cordell, 2010) and Vancouver harbour (Barry and 

Levings 2002; Levings et al., 2004), but has not yet established in those locations.  

In this paper, we derive two simplified approximate metrics for population 

persistence, modeled specifically for P. marinus in periodically fluctuating habitat 
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temperatures, but broadly applicable to marine copepods in general. The metrics, 

based on the population dynamics described by a system of linear ordinary 

differential equations (ODEs), are the cross-periodic intrinsic growth rate Λp, and 

a weighted net reproductive rate Rp, which is a measure of the cross-periodic 

reproductive rate. Using Jensen’s inequality (Jensen, 1906) we demonstrate that 

the temperature-dependent Λp and Rp are reduced when periodic fluctuations of 

temperature are taken into account.  

To calibrate the model, we incorporate life-history parameters (fecundity, 

mortality, and maturation rates) estimated from the published data assuming that 

food conditions are at saturation as in Rajakaruna et al. (2012). This complies 

with Uye et al., (1983), where the data come from, indicating that the dynamics of 

these populations were temperature-dependent, but not regulated by the food 

concentration. Therefore, the persistence metrics we develop represent estimates 

under conditions that are ideal, except for the temperature. In other words, they 

are conditioned only by the temperature as they isolate the species’ physiological 

tolerance to habitat temperature. 

We test the validity and the reliability of our persistence metrics by 

comparing them to solutions given by numerically complex methods that 

determine the stability condition in periodic systems. We use them to determine 

the invasibility of specific localities to P. marinus on the West coast of North 

America, where there is a high P. marinus propagule pressure at present from ship 

ballast-water discharge (Cordell et al., 2009). Our analysis shows how the mean 

and the amplitude of yearly temperature cycles impact the invasibility of habitats 

to P. marinus. We investigate the potential range expansion of P. marinus on a 

global scale. Finally we focus on the case specific to Race Rocks in the Strait of 

Georgia, BC, and investigate the change in the invasibility of the habitat with 

respect to long term rise in the mean sea surface temperatures (SST). This gives 

insights into how a long term change in an environmental factor changes the 

habitat condition becoming favourable to an invasion of a species.  
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In this study, we do not incorporate density dependence and Allee effects 

that can suppress population growth at both high and low extreme densities. 

However, the addition of density dependence and the Allee effect could further 

reduce the chance of population establishment, decreasing an invasibility range 

already limited by the temperature. 

Our method of analysis can be applied to other species with similar 

characteristics, such as marine copepods in general, or can be tailor-made to 

species depending on their life-history dynamics. This methodology may be used 

to investigate the causal mechanisms behind the general trends in marine species 

spread on a global scale. It will compliment the environmental niche modeling 

(Peterson, 2003) and contribute to management decision support systems, but use 

a mechanistic approach to determine the impacts of temperature fluctuations on 

the invasibility. 

    

3.2.  Model 

The general form of a linear, stage-structured, continuous time model that 

depends on periodic ambient temperature T, can be written as 

nA
n

)]([ tT
dt

d
                           (3.1) 

where n is a vector of the stage-composition of the population, and A(T(t)) is the 

transition matrix with time-periodic coefficients with period tp. Although Eq. (3.1) 

is a linear system of dimension n, the temperature T is assumed to be a non-linear 

function of time t, and the entries of the transition matrix A are also non-linear 

functions of the temperature T. The system is called invasible if the n=0 

equilibrium solution is unstable, and hence the ecological invasibility condition 

translates into a mathematical stability condition for the system in Eq. (3.1). 

 Rajakaruna et al. (2012) considered a model in the form of Eq. (3.1) for P. 

marinus, where T(t) is replaced by the averaged habitat temperature T . They 
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calculated the net reproductive rate R0(T ), and used it to determine potentially 

invasible habitats based on the average temperature T , and the condition 

1)(0 TR . However, this approach makes no allowance for the magnitude of 

temperature fluctuations: high-amplitude temperature fluctuations are treated the 

same way as low-amplitude temperature fluctuations, or indeed, constant 

temperatures, as long as they possess the same mean temperature T .  

 An alternative approach to averaging replaces the transition matrix A by 

its seasonal average  



A  or the autonomous system obtained by replacing the time-

varying entries in A with their time-averaged values (Ma and Ma, 2006). When 

the entries of the transition matrix A in the system are non-linear functions of T, it 

is generally true that )()( TT AA  , suggesting that the stability condition 

evaluated based on the mean habitat temperature may deviate from that evaluated 

from the time-averaging method. Hence, we expect the magnitude of the 

fluctuations of temperature to play a role in determining the instability of the 

system, or the invasibility of habitats by a species. 

 The linear system of Eq. (3.1) cannot be solved explicitly for many forms 

of A(T(t)), including the one given in Rajakaruna et al. (2012). Although there is 

much theory on the qualitative behaviour of periodically forced linear systems, 

the explicit solution to the system cannot be derived easily. Some refer to this as 

the “great matrix exponential tragedy.” Moler and Loan (2003) give a summary of 

the various complex methods available for solving the matrix exponential 

problem and calculating the stability conditions.  

When the coefficient matrix A(T(t)) is periodic in time with period tp, 

Floquet theory (Barone and Narcowich, 1977; Lamour et al., 1998) can be used to 

show that a unique solution to the initial value problem exists with period tp. This 

solution has an associated fundamental matrix (also referred to as the monodromy 

matrix), which is unique and constant, and whose exponents can be used to 

determine the stability of the system. Thus, a model such as Eq. (3.1) can be 

understood numerically by computing the monodromy matrix (Wang and Hale, 
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2001). Floquet theory in application to periodically driven systems in biology is 

found in Malik and Smith (2008), and Charron et al. (2011), and in application to 

ecology in Hsu and Zhao (2012), and Klausmeier (2008). The use of Floquet 

theory is becoming increasingly popular in ecology. 

Alternative approaches of analyses include computing piecewise growth 

rate parameters by assuming a periodically switching system (Gokcek, 2004), 

using analytic approximations (Butcher et al., 2009; Casas et al., 2001; Moler and 

Loan, 2003), and analysing time-averaged coefficients of the system-matrix (Ma 

Ma, 2006; see also Wesley and Allen, 2009). In essence, all these methods and 

solutions agree with Floquet theory, and are efforts to transform the non-

autonomous system, that is, a system with a time-dependent matrix A(T(t)), into 

an autonomous system, that is, a system with a constant matrix independent of 

time.  

Although time-averaging and the other methods can be used to determine 

the stability of our system given by Eq. (3.1), they provide little information as to 

what temperature-dependent biological mechanisms drive stability. Besides, we 

wish to have a metric written in an explicit functional form to evaluate the cross-

periodic intrinsic growth rate, or the cross-periodic fitness of the population, 

giving biological insights, so that, we can predict the degree of invasibility of 

habitats with fluctuating temperatures. Further, we wish to simplify the metric as 

a function of easily measurable quantities. Hence, the biologically meaningful 

metrics, we develop, will evaluate both the system stability and the invasibility 

potential. In our method, we allow T(t) to vary with time, and focus on a case 

where T(t) is piecewise constant; with low constant-temperature seasons followed 

by high constant-temperature seasons within a year, which is again followed by 

the low constant-temperature seasons, and so on. 
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3.2.1.  Net reproductive rate in constant temperature environment 

The specific form of Eq. (3.1) suitable for P. marinus has the coefficients 

of matrix A(T) given as functions of the ambient temperature (T). The 

A(T) takes the form, 

 

  



A(T) 

1(T) : q(T) q(T) q(T)

1(T) 1(T) :

1(T) 1(T) :

1(T) 2(T) :

: : : : : : : : :

: s1(T)

:  s1(T) s(T)

:  s(T) s(T)

:  s(T) s(T)

































 

This is derived from the life-history diagram given by 

 

 

 

 

Here, the population size at stage i and sub-stage j is denoted by ni,j, and,

 and  are stage-dependent mortality, and maturation rates (per day), 

respectively, in each sub-stage j of stage i. The total number of stages s, and the 

number of sub-stages k in each stage of the system totals to l=sk, where lxl is the 

dimension of the square matrix. Note that this model assumes Gamma distributed 

stage maturation times with shape parameter k, and thus, is written for k number 

of virtual sub-stages within each stage, consistent with the theory of linear chain 

trick for ODE systems (see Rajakaruna et al., 2012). Note that k=3 is the 

appropriate shape parameter for marine copepods (Breteler et al., 1994), so that, 

l=3s (s=12 for P. marinus and other marine copepods in general). The quantity



nxn



i


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is the total rate of removal of individuals from each sub-stage within 

stage i. Here,  is the average number of eggs produced by a female per day at the 

adult stage s=12, and q is the average proportion of ovigerous females in the adult 

population (Liang and Uye, 1997a; 1997b), which is a constant equal to 

approximately 0.61 for P. marinus.  

The system is dynamically equivalent to a slightly simpler version, where 

the sub-stages of the last stage are lumped together, so that, the last two columns 

and rows are removed, and the remaining s  is replaced by s . This is because 

the sub-stages of the last stage are functionally indistinguishable as there is no 

further transition of the population to another stage. 

The resulting matrix A(T) gives  

  



A(T) 

1(T) : q(T)

1(T) 1(T) :

1(T) 1(T) :

1(T) 2(T) :

: : : : : : :

: s1(T)

:  s1(T) s(T)





























 

which has dimension l=k(s-1)+1.  

 Each of the coefficients in the matrix depends on the temperature (T) of 

the habitat. The temperature dependencies used by Rajakaruna et al. (2012) are as 

follows: the mortality rate (same for all stages) is given by a quadratic function of 

temperature,  

01

2

2)(   TTTi   

for each sub-stage of stage i, where 2 1 and
0 are parameters; the fecundity rate 

is given by,  

)]1(/[)( )()(   bTw

lm

bTw

lm effeffT  



i  i  i
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where,
mf  is the maximum rate of fecundity,

lf  is the fecundity rate at the lowest 

temperature, and w is a shape parameter that accounts for the depression in 

fecundity at lower temperatures; the maturation rate in each sub-stage within stage 

i is given by, 

)/()1()( 1

8.1

 iii TkT   

where 00  , and their mean sub-stage maturation times gi are given by )(/1 Ti

for each stage i. Thus, note that the mean stage maturation times are given by 

)(/ Tk i .  

Now, we consider the case where the temperature T is constant throughout 

the year. The net reproductive rate can be calculated by partitioning the matrix as 

A=F-V into two subcomponents: fecundity F, and transitions-mortality V. For the 

above system  

  



F(T) 

: q(T)

:

:

:

: : : : : : :

:

:






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

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



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1

TT

T

TT

TT

TT

T

T

ss

s













V

 

The net reproductive rate )(0 TR is given by ][
1

FV , where  is the spectral 

radius of the next generation matrix 1FV , that is, 
  



[FV
1

] max
1in

R0i , where

nRRR 00201 ..., are the eigenvalues of the square matrix 1FV . This yields 
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k
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s

TT
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Tq
TR 
















1

1

0
)()(

)(

)(

)(
)(








.                   (3.2) 

(see Rajakaruna et al., 2012). The system Eq. (3.1) is unstable, or invasible to the 

species, if R0(T)>1 in Eq. (3.2) for the habitats at constant temperatures T. 

Alternatively, if R0(T)<1, then the system is stable, or the given habitat at constant 

temperature T is uninvasible by the species. Hence, the R0 in Eq. (3.2) suffices to 

predict the persistence of copepods if the habitat temperatures remain uniform 

throughout the year without any seasonal or long-term fluctuations. When the 

temperature is in periodic fluctuation, then we need to take a further step and 

investigate the stability of the system by considering the matrix A(T(t)), and  

incorporating coefficients that are periodic in time.  

 

3.2.2. Explicit functional relationship between R0 and intrinsic growth rate λ 

As mentioned before, the system is invasible if the n=0 equilibrium 

solution is unstable, and uninvasible if the n=0 equilibrium solution is stable. 

Hence the ecological invasibility condition translates into a mathematical stability 

condition for the system in Eq. (3.1). Thus, an alternative approach to determine 

the invasibility of a habitat in a temporally constant environment for a species 

involves the spectral bound of A=F-V. The invasibility occurs when the real part 

of any one of the eigenvalues of A is positive, and uninvasibility occurs when all 

the eigenvalues of A have real parts that are negative. Thus, by evaluating the sign 

of the largest real part of the eigenvalues of A, one can simply determine the 

stability of the system: if positive, the system is invasible, and if negative, the 

system is uninvasible.     

The dominant eigenvalue, which is the intrinsic growth rate in ecology, 

can be derived for the system Eq. (3.1) in constant temperatures by deriving a 

Lotka-Euler type equation solving the condition, 0])det[(  IVF , where I is 

the identity matrix, and λ are the eigenvalues of the matrix F-V. This can be done 
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in a variety of ways.  One way is to transform F-V into a triangular matrix using 

Gaussian elimination method, and take the product of all the diagonal elements. It 

yields the following characteristic polynomial for λ 



1
qs

(s  )

 i
 i  i  











i1

s1


k

.                    (3.3) 

Here, we have dropped the explicit dependence of parameters on T for notational 

simplicity. 

However, the Eq. (3.3) cannot be solved analytically to give the general 

stability condition as it yields a polynomial of degree l=(s-1)k+1. Only numerical 

approximation methods can be used to solve it for λ. These, in turn, require the 

parameter values to be given. Hence, the dependence of λ on model parameters 

cannot be given explicitly, but requires methods such as numerical sensitivity 

analysis.  

By way of contrast, R0(T)<1 in Eq. (3.2) also gives an explicit stability 

condition in a constant temperature environment, and the dependence of R0(T) on 

model parameters is clearly given in Eq. (3.2). Yet, the dynamics of populations 

in fluctuating temperature environments can be better understood with λ than with 

R0. Hence, we are motivated to first derive the relationship between R0 and λ, and 

then employ this relationship to derive an explicit invasibility condition in terms 

of R0 for fluctuating environments. 

Because matrix A has a Lefkovitch form, we know that the spectral bound 

of A is the dominant eigenvalue (that is the one with the largest spectral radius), 

and therefore, it is a real eigenvalue. This dominant eigenvalue is one of the l 

solutions to Eq. (3.3).  However, this is the only one of our interest from an 

invasibility perspective. Thus, for notational simplicity, we use λ to denote the 

dominant eigenvalue, which is also the intrinsic growth rate in ecology. 

Dividing Eq. (3.2) by Eq. (3.3) and some manipulations yield a non-linear 

relationship between the net reproductive rate 
0R and the dominant eigenvalue λ, 
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as

k
s

i ii

ii

s

sR 






















 


1

1

0







. Recalling that iii   is the overall 

transition rate in sub-stages in stage i, and ss   is the transition rate in the last 

sub-stage k of the stage i=s, we simplify the above equation as

   





1

1

0 11
s

i

k

is ggR  . Here, iig /1  is the mean sub-stage maturation 

time in stage i after the maturation and the mortality rates are combined together.  

For P. marinus it is reasonable to assume that identical sub-stage 

maturation times based on near-isochronical development (as in Uye et al., 1983, 

and for many other copepods at food saturation condition as in Breteler et al . 

1994), that is (gi=g for i=1..s). This gives,
lgR )1(0  , where, 1)1(  skl . 

If the sub-stage maturation times are similar but distinct, a perturbation analysis 

can be employed.   

Choosing  





1

1

1 s

i is gkg
l

g  to be the mean sub-stage maturation time, 

and di = gi-g to be the deviations from the mean, such that, 





1

1
0

s

i is dkd , 

yields 



R0  (1 g) ds  (1 g) di 
k

i1

s1

 , and hence, 

)()1(0 dgR l .                             (3.4) 

Here, )(d  is the error correction term given by 

k
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


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Taking the log transformation and expanding by Taylor series yields 
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 As   0
1

1
 





s

i is dkd , this gives 1)( d to the leading order in id . 

Using the approximation 1)( d , Eq. (3.4) can be written as 

lgR )1(0  .                      (3.5) 

Eq. (3.5) can be written as  




















1
1 1

0
lR

g
 .                      (3.6) 

This simple approximate relationship between the intrinsic growth rate λ 

and net reproductive rate R0 is valid for constant habitat temperatures T with no 

fluctuations.  

There are several other simplifications that can be made to Eq. (3.5). As 

k is equivalent to the shape parameter of the Gamma distributed stage maturation 

times, an exponentially distributed stage-maturation times gives k=1, and yields

  .10

s
gR  The same scenario for a non-staged system (s=1) gives

 gR  10
. Considering only the last sub-stage of the last stage is 

reproducing, derivation of the same beginning from the fundamental equations 

yields  ksgR  10 . Finally, a non-staged (s=1) with Gamma distributed stage 

maturation times gives  kgR  10 , which can be found also in Wallinga and 

Lipsitich (2007). 

 

3.2.3.  Approximate condition for persistence in habitats with periodically 

fluctuating temperatures 

In this section, we derive an approximate condition for population 

persistence in habitats with periodically fluctuating temperatures. The first step is 

to assume a piecewise constant approximation for A(t) (in Eq. (3.1)) with respect 

to time. The next step is to assume that each time-interval (tj-1,tj), for j=1..m, over 
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which A(t) is approximated by constant Aj is sufficiently long so as to allow the 

population to achieve a stable stage distribution as characterized by the 

eigenfunction associated with the dominant eigenvalue of Aj. The end result is an 

approximate formula for the growth rate of the population over a period (single 

year). If this quantity is positive, then the habitat will be invasible, and if negative, 

then the habitat will be uninvasible.  

We denote the initial distribution in stages as n(t0). Then we can write the 

population at the end of the year of period tp as,  

  )())exp(()()( 01 10 tttttt
m

j jjjmp n Ann    ,                  (3.7)  

where exp denotes the matrix exponentiation. Here,   
m

j jijp ttt
1 1)(  

0ttm  . The Lefkovitch matrix A has a complete set of eigenvectors and a 

dominant eigenvalue with a corresponding eigenvector that has non-negative 

entries (Lefkovitch, 1965).  If the tj’s are spaced sufficiently apart, so that, many 

generations can be produced during the time period (tj-tj-1), then it is reasonable to 

assume that 

jjjjjjjjjjj ttttttt vvnnAn ))(exp()),(()())exp(()( 1111    , 

where (a,b) denotes the dot product of vectors a and b, and ( j ,vj) is the 

dominant eigenpair of Aj for  j=1..m, and each eigenvector is normalized so that 

(vj,vj)=1. Applying this recursively from t0 to tm, yields  

mmj

m

j jjmmmm NttNt vvvvvvn    )(exp),)...(,()( 111100  .            (3.8) 

Here, v0 describes the initial composition of the populations, so that, n(t0)=N0v0, 

where N0=||n(t0)||. Here, Nm=||n(tm)||, and n(tm)=Nmvm. Taking the inner product of 

Eq. (3.8) with vm yields )(exp),)...(,( 111100    j

m

j jjmmm ttNN vvvv , where 

Nm=(n(tm),vm), and N0=(n(t0),v0). Hence, we define the average growth rate over a 

period as 
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where )(
1

11 
  j

m

j jj

p

tt
t

  is the time-average of the piecewise intrinsic 

growth rates, and 0),log(
1

1

1  




m

j

jj

pt
V vv  is a measure of the time-averaged 

variation in the stage-structure throughout the year.  

 

Therefore, in general, we can write an approximate condition for 

population persistence in a periodic system as 0 p . Note that p  can be 

interpreted as the approximate cross-periodic intrinsic growth rate of the 

population, or a cross-periodic fitness parameter of the population in a 

periodically fluctuating environment, which replaces the intrinsic growth rate 

of the population in a constant environment.  

We also note that piecewise growth rates geometrically averaged from j=1 

to m over a period is given by 

pe


 , 

where   

 



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

 m

j

tt

j

tm jjp

N

N
1

)(

0

1 , and j is defined as jejjj


 ),( 1 vv   

for all j=1..m. Note that we can write the condition for population persistence also 

as 1 . The quantity  can be interpreted as a cross-periodic geometric growth 

rate of the population in a periodically fluctuating environment. 

If the eigenvectors vj-1 and vj are identical, then the time-averaged 

variation in stage structure V equals zero in Eq. (3.9). However, 0<(vj-1,vj) <1, in 

general, resulting V to be negative, thereby decreasing the cross-periodic intrinsic 

growth rate p .  The case with V=0 gives an upper bound on p  so that  p .  
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3.2.4.  The persistence condition as a function of net reproductive rate and 

generation times of populations in periodically fluctuating temperatures 

In this section, we derive a metric Rp as a piecewise function of R0(T) and 

g(T) to determine the persistence of a population introduced to a habitat in 

periodically fluctuating temperature as an alternative to p . We start by defining 

jR ,0 and jg  to be the net reproductive rate, and the mean sub-stage maturation 

time, respectively, for the time-interval ),( 1jj tt  associated with matrix Aj.   

By substituting jR ,0 and jg  in Eq. (3.6), and then using Eq. (3.9) for 

discretized states j in piece-wise constant habitat temperatures Tj yields  
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Here, note that Gt p / is the average generation time of the population within the 

period, which we denote by gp. This yields  
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Note that Eq. (3.6) is a special case of Eq. (3.10) for the case with constant 

temperature (m=1). Thus, we define a weighted net reproductive rate, 

l
m
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The persistence condition is now given by 1pR , following 0 p . Also, note 

that, 0R , which is defined for a constant-temperature environment (Eq. (3.6)) is 

replaced by PR , which is defined for a period in a fluctuating-temperature 

environment (Eq.  (3.11)), while, g is replaced by pg  and similarly,  is replaced 

by p . Hence, pR can be interpreted as an approximate measure of cross-periodic 

reproductive rate of the population.  

In general, there is no computational advantage of calculating pR  over 

evaluating p , because it still requires evaluating V by solving Eq. (3.1) for p . 

However, there is an advantage when 0V , which, we found out, is the case for 

the Lefkovitch matrix suitable for P. marinus, where the transition states of the 

system between discretized states does not affect the final outcome of the system. 

This results in  p  in Eq. (3.9), which we define as p , the cross periodic 

intrinsic growth rate in the case of V=0. This yields 
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where, the persistence is given by the condition 
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This suggests that the weighted cumulative effect of 


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,0 of the discretized states 

becomes a good approximation to the final outcome of the system.  

As 0R  and   relationship (Eq. 3.6) is nested within PR and p

relationship (Eq. 3.12), we would expect p to be left skewed compared to PR for 

fixed amplitudes of temperature. This is because 1/ pg is a positive exponential 

function of temperature similar to 1/g while PR is generally a concave function of 

temperature similar to 0R . The 0R  and the   peak at different temperatures, 

former being always on the left of the latter. This has been observed in empirical 

data of many taxa by Huey and Berrigan (2001). 

With minor modification to the form in Eq. (3.12), we write the 

persistence condition, for example, for a two state seasonal switching system 

(m=2) as 1
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where, ih  is the number of generations found in season j, that is
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lR by definition.  

This suggests that for the persistence of a population in a two season 

period, the species must have either a large reproductive rate and/or many 

generations in the good season compared to the bad season. A proliferating 

reproduction strategy, with high fecundity and short generation times in high 

temperature seasons, falls in line with this theory. Such strategy is shown by 

copepod populations in temperate waters (Bollens et al., 2012; Yamahira and 

Conover, 2002). It is clear that populations take the maximum advantage of the 

good season of the year to sustain their populations as an evolutionary optimal 

strategy, where the number of generations is commonly lesser in low 

temperatures, some generations even leading to resting eggs and other resting 

stages. As the effect of temperature on the development is the key that determines 

the number of generations per period, the mechanistic representation of 

temperature’s effect on the development is the key to obtaining accurate 

predictions on temperature-dependent fitness. 

  

3.3.  Methods 

We obtained monthly averaged sea surface temperature (SST) data of 

marine habitats on the west coast of North America: West Vancouver –Strait of 

Georgia (1979-93), and Race Rocks from DFO Canada (1940-2011), Puget 

Sound, Fort Point -San Francisco Bay, Ocean Side -San Diego Bay, and Hawaii 

Island Hilo from NODC-NOAA (averaged over the years), and Todos Santos 

Bay, Baja California from Surf-Forecast (1984-2012). 

We fitted periodic sinusoidal functions of time of the form, 

)sin()(   tTtT , which is commonly used by many for modeling yearly 
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temperature cycles in aquatic environments (e.g., Benyahya et al., 2007, Caissie et 

al., 1998), to monthly mean SST data of the above localities. Here, T  is the 

average habitat temperature of the period,  -amplitude, pt/2  , and  -

phase, for t=1..(T0/time step), with period tp (year). We used non-linear least 

squares regression (using the optimization scheme fminsearch in Matlab–

MathWorks minimizing the mean squared error). We used the parameterized 

models of T(t) to compute the matrices Aj for time-interval j=1.. 6, considering 

T(t) as piecewise constants.  

The parameter values specific to models )(),( TT   and )(T used to 

compute Aj from Rajakaruna et al. (2012) are given in Table 3-1. Note that the 

parameters κ are slightly different from that of Rajakaruna et al. (2012) as we 

incorporated all temperature-dependent mortality data from Uye et al. (1983) 

including those at 27
0
C. We used Matlab function eig(Ai) to compute ),( jj v  in 

Eq. (3.9) for each time-interval j=1..6 in order to calculate p and V , yielding 

.p  We also used Ai to compute jR ,0  (based on Eq. (3.2)) and jg for each 

discretized time-interval j=1..6 in order to compute jP , pR  and pg  in Eq. (3.12) 

and Eq. (3.13), thereby, to evaluate p . Additionally, we used a periodic step-

function, constructed from the algebraic summation of square-wave functions 

(built-in Matlab) based on Fourier series approximation, each with different 

phase-shifts and amplitudes, to model the SST data from the Race Rocks. 

We tested the reliability of outcomes predicted by p and p (for V=0), 

computed based on pR and pg , against the solutions given by the standard 

numerical methods by (i) computing the monodromy matrix for the system with 

Runge-Kutta 2 scheme by Wang and Hale (2001)  (suggested by Bacaer (2007) 

specific to solving periodic epidemiological systems), (ii) assuming a piecewise-

constant switching system in Gokcek (2004), and (iii) time-averaging matrix 

coefficients in Ma and Ma (2006) and Wesley and Allen (2009), and (iv) p
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computed directly from ),( jj v of each Aj and using Eq. (3.9). We further 

computed )(d  in Eq. (3.4) to evaluate whether our approximation 1)( d was 

reasonable. 

We define CMT-F as the critical mean temperature-fluctuations (or the 

mean temperature at the stability threshold 0p  in the non-autonomous case of 

fluctuating temperatures). Similarly, we defined CMT-S as the critical mean of 

temperature-steady (or the temperature at the stability threshold 0  in the 

autonomous case of steady temperatures). We used the cross-periodic growth rate

p , pR (for V=0), CMT-S and CMT-F, to evaluate the invasibility of the coastal 

marine habitats of the North America for P. marinus. 

We plotted p and pR  on a spectrum of mean habitat temperatures and 

with different temperature-amplitudes. We showed the habitats that P. marinus 

has invaded and is native to, based on published literature, on the same graph. 

Furthermore, we mapped out p with respect to mean and amplitude of annual 

temperature cycles of SST at 1
0
x1

0
 resolution of longitudes and latitudes on a 

global scale (data from NOAA-ESRL (n.d.)) indicating the geographic range 

potentially invasible to P. marinus, and also locating the native and the invaded 

habitats.  

We demonstrated graphically the effect of temperature-amplitude on p

with a theoretical description based on Jensen’s inequality (Jensen, 1906). 

Furthermore, we showed how the population growth progresses after an 

introduction of a single fertilized female to a habitat with a fluctuating 

temperature profile, parallel with piecewise leading eigenvalue of the system in 

transition. We also investigated how an increased fluctuation of periodic 

temperature, keeping the yearly maximum or minimum temperature the same, 

changes the potential invasibility of a habitat. Furthermore, we demonstrated the 

impact of long term change in profiles of annual temperature cycles impact the 

invasibility of habitats using a case study pertaining to Race Rocks, BC.   
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3.4.  Results   

For the range of mean SST values of the global habitats (-4
0
C to 35

0
C) , 

the error correction term yields 1)( d , with the deviation from the true value 

being in the order of 10
-4

. If )(d <1, then assuming 1)( d  will result in Rp 

being overestimated. This means that the persistence condition decisions made by 

Rp, if )(d <1, are overstated, but only slightly.  This also means that the true 

potential of the population to grow across-periods (or the cross-periodic growth 

rate) is also overestimated slightly. However, in our case, assuming 1)( d was 

reasonable. In other words, the assumption based for this; the isochronical stage 

maturation times (Uye et al., 1983), is a good approximation to the system of P. 

marinus. Many other copepods at food-saturation show similar development 

strategy (see Breteler et al ., 1994), 

 Furthermore, we noted that V= 0 for the given Lefkovitch matrix of P. 

marinus in all the profiles of the global SST fluctuations that we tested. Therefore, 

we used the condition 0p  from Eq. (3.12), calculated based on pR  from Eq. 

(3.13), and alternatively 1pR  (for V= 0) to evaluate the population persistence. 

The fact that 0V , in our case, may be due to a property of the Lefkovitch 

matrix or the range of the parameter values pertaining to P. marinus. Also, we 

noted that the dominant stage class was the reproducing adults at all times, so that, 

there was not any abrupt switching of ),( 1jj vv  to 0 at any instance, which 

otherwise collapses the system violating the assumptions in the model derivation.  

Supposing if 1pR  for a case wrongly assuming V=0, still the true pR

remains less than 1 because 0V always. This means that the persistence 

conditions made by Rp without the term V are conservative when 0V . This 

also means that the true potential for the population to grow across-periods (or the 

cross-periodic growth rate) is overestimated. Similarly, supposing if 1pR  for a 

case wrongly assuming V=0, then there is a possibility that true pR to be less than 
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1 because 0V always. Hence, V=0 is a conservative approximation from a 

perspective of invasive species management, because it may predict the 

invasibility of a habitat even if the true potential can be marginally less. 

The cross periodic growth rate p (simplified Eq. (3.12) for 0V ) for 

the  system of P. marinus for temperature profiles given for North East Pacific 

coastal habitats (the west coast for North America) (Table 3-2) yielded close 

values (differences in the order of 10
-2

) to those given by the monodromy matrix 

computation, the piecewise constant computation, and the matrix averaging 

methods.  

Table 3-2 and Figure 3-2 indicate that the higher the amplitude, the higher 

the critical mean habitat temperature (CMT-F) on the colder water front (lower 

temperature bound at Rp=1), and the lower the CMT-F on the warmer water front 

(upper temperature bound at Rp=1). That is, with the incorporation of the effect of 

temperature fluctuations, the CMT-F moves to a higher temperature level relative 

to the CMT-S on the higher latitudinal border, whereas the CMT-F moves to a 

lower temperature level relative to the CMT-S on the lower latitudinal border. 

Thus, the invasible mean temperature range given by the non-autonomous 

solutions (CMT-F) incorporating periodic fluctuations is narrower than the 

invasible mean temperature ranges given by the autonomous solutions (CMT-S 

assuming steady temperatures). Table 3-2 further indicates that the model 

predictions on population persistence support the field evidence. Habitats in BC 

coast of Canada, in particular, are on the edge of invasible mean habitat 

temperatures to P. marinus, given the amplitudes.  

Figure 3-2 indicates that increased amplitudes of temperature profiles 

decrease p  and Rp of P. marinus. Furthermore, Figure 3-2 and Figure 3-3 show 

that the direction of P. marinus spread on a global scale are pointed towards the 

low-amplitude temperature, low-stress novel habitats from high-amplitude 

temperature, high-stress native habitats.  
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The graphical demonstration in Figure 3-4 indicates the theoretical 

underpinning of the effect of temperature-amplitude on p . The basis of 

depression that occurs due to increased amplitude is explained by Jensen’s 

inequality (Jensen, 1906). That is, the concavity of the intrinsic growth rate )(T  

with respect to mean habitat temperature T results in lowering of the cross-

periodic fitness p  with an increase in the amplitude of the periodic temperature. 

This effect is universal if p is a concave function of mean temperatures, which is 

true for the case of P. marinus. However, Amarasekara and Savage (2012) show 

that p can also be a bell-shaped curve with respect to temperature for some 

ectothermic species. Under such scenarios, the amplitude can increase the cross-

periodic growth rate of the species around the convex part of the curve depending 

on the convexity of p  and the amplitude of the temperature. 

Furthermore, Figure 3-5 shows how the population size progresses with an 

introduction of a single fertilized female to a habitat with fluctuating temperature 

profiles. The piecewise leading eigenvalues λ(T) fluctuate in synchrony with the 

fluctuation of temperature, taking positive and negative values, forcing the 

populations to fluctuate with an exponential average growth with an increasing 

amplitude. For linear models, there are no solutions exist with limit cycles. The 

final outcome; the population establishment or the extinction; depends on Rp >1 (

0p ), or Rp <1 ( 0p ). 

Figure 3-6 depicts the scenario showing how increased seasonal 

fluctuations of temperature, keeping the yearly maximum or minimum 

temperature the same, increase the potential for population persistence. This 

suggests that the lowest or the highest habitat temperatures alone cannot be used 

as reliable predictors of habitat invasibility if the temperature of the habitat 

fluctuates seasonally largely. This scenario is clearly different from the effect of 

increased temperature amplitudes, keeping the same mean habitat temperature, on 

Rp and p .  
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Under the modeling section (3.2.4) we showed also that for persistence of 

a population in a two season period, the species must have either a large 

reproductive rate and/or many generations in the good season compared to the bad 

season. A proliferating reproduction strategy, with high fecundity and short 

generation times in high-temperature seasons, falls in line with this theory. The 

temperatures lethal for the organisms may crash the system unless the species 

produce resting stages under such harsh conditions, given that the condition 

changes to favourable from unfavourable seasonally. 

Furthermore, Figure 3-7 indicates that at Race Rocks, the mean SST is on 

the rise over the years, shifting from the data averaged from years 1941-80, to that 

from 1981-2006 (boundaries were decided arbitrarily). Our results show that, with 

a rise in the mean temperature about another 1
0
C, the habitat will become, on 

average, invasible to P. marinus if the trend persists. Yet, it also shows, by the 

difference in CMT-S and CMT-F, that the amplitude of the periodic temperature 

fluctuations has suppressed the effect of the rise in the mean SST on the habitat 

invasibility. This is indicated by lower positioning of the CMT-S compared to 

CMT-F. A phase-shift, that was apparent during those years, has no effect on the 

Rp, as can be expected from the theoretical assumption behind the model 

derivation.  

The system given for P. marinus is independent of initial-time, quantity,   

and frequency of species introductions. This was fundamental to the mathematical 

methods we used for model derivation.  

 

3.5.  Discussion 

The habitat invasibility metric introduced in this chapter, p , and 

alternatively, Rp determine the persistence potential of marine invasive copepod 

P. marinus introduced to habitats in periodically fluctuating temperatures 

depending on whether 0 p , Rp>1. The metric p ( p  when V=0) can be 
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interpreted as an approximate cross-periodic intrinsic growth rate (a cross-

periodic fitness parameter) of a population in periodically fluctuating habitat 

temperatures, and replaces the intrinsic growth rate λ defined for populations in 

constant-temperature environments. Similarly, the metric Rp redefines R0 when an 

autonomous system (e.g., one with steady temperatures) turns into a non-

autonomous system (e.g., one with periodically fluctuating temperatures). 

Therefore, Rp can be interpreted as a weighted net reproductive rate, which is a 

measure of the cross-periodic reproductive rate of a population.  

Here, p and Rp were derived as functions of temperature-dependent net  

reproductive rate R0(T) and maturation times g(T) at periodic piecewise constant 

temperatures T, based on the explicit functional relationship we derived between 

R0(T) and the intrinsic growth rate λ(T) of the population, of which, Wallinga and 

Lipsitch (2007) relationship is a special case. The simplified versions of p

(which is p ) and Rp that we derived assuming sum of the log dot products of the 

eigenvectors in transition matrices between discretized intervals are 

approximately zero (that is, V=0), are reliable indicators of the stability and the 

growth of the system for P. marinus. Quantifying Rp, and thereby p , using R0(T) 

and g(T) is a convenient approach compared to solving the full system using 

advanced numerical methods. This is also because, R0(T) and g(T) can be 

calibrated easily using laboratory experiments, and also are readily available in 

the literature based on statistical (phenomenological) calibrations (for e.g., R0: 

Carriere and Boivin, 1997; Dannon et al., 2010; Dreyer and Baumgartner, 1996; 

Hou and Weng, 2010; Jandricic et al., 2010, Morgan et al., 2001; and, g: Huntley 

and Lopez, 1992). As marine copepods, in general, have life-history stages similar 

to P. marinus, the assumption based for simplification of these models may be 

generalized for marine copepods at large.         

The persistence condition based on Rp can be interpreted in many other 

ways. In essence, Rp is a weighted net reproductive rate, which is a measure of 

cross-periodic reproductive rate of a population subject to a periodic forcing 



84 
 

cycle. Bacaer (2012) defined a net reproductive rate in a variable environment as 

the asymptotic ratio of the total births in two successive generations of the family 

tree. Ma and Ma (2006) and Wesley and Allen (2009), yet, showed that R0 

calculated based on the time-averaged population matrix over a period is 

sufficient to evaluate the cross-periodic persistence, which holds true in our case 

also. However, our metric Rp determines the system stability, and also the growth 

in a biologically meaningful way, capturing the system functionality and 

transitions at the level of sub-stages of a population by geometrically averaging 

the weighted R0(T)’s at piecewise T’s over an entire period. Our metric simply 

suggests that the average number of female offspring at the end of a period, 

produced by generations of females of the family tree, starting from a single 

fertilized female at the beginning of the period, must to be greater than 1 for the 

persistence of a population.  

The critical mean habitat temperature (CMT) at system stability 

thresholds, and also the cross-periodic growth rates λp for the given temperature 

profiles closely matched the solutions given by the complex computer intensive 

numerical schemes such as monodromy matrix computation (Bacear, 2007; Wang 

and Hale, 2006,), piecewise continuous system solutions (Gokcek, 2004), and 

matrix averaging by Wesley and Allen (2009) that determine the system stability 

thresholds in periodic systems. These methods are in consistent with Floquet 

theory (Yakubovich and Starzhinskii, 1975). The advantage of using our approach 

is that it requires only simple calculations, and is expressed in biologically 

meaningful terms that give insights into the underlying processes governing the 

stability and also the growth of the system. The methodology proposed here can 

be used to model invasibility metric for ectothermic species in general by deriving

p , for e.g., for the generalized cases by Amarasekare and Savage (2012), or the 

case specific to E. affinis by Strasser et al. (2011).  

The seas of Japan and China, where P. marinus is native to, the 

temperature fluctuates, on average, at amplitudes 12
0
C yearly compared to 2.5

0
C 

in the west coast of North America, 5
0
C in the North Sea and the Adriatic Seas 
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(NOAA-ESRL, n.d.), where P. marinus has recently established: Brylinski et al. 

(2012) have recently sampled P. marinus at Southern Bight of the North Sea 

along the coast of France, Olazabal and Tirelli (2011) at Adriatic Sea in northern 

Italy, and Sabia et al. (2012) at Lake Faro (Messina, Italy). Our results showed 

that the direction of spread of P. marinus was along an amplitude-gradient of SST 

from high to low-amplitude periodic temperature (APT) regions. The cross-

periodic growth rate or the cross-periodic fitness of the species increases by many 

folds when they migrate from high to low-amplitude temperature habitats, thus 

causing a multi-fold increase in their invasiveness.  

This leads to a question whether aquatic invasive species, in general, are a 

product of habitats, where the environmental forcing factors such as temperature, 

fluctuate periodically largely causing high-stress for the species. Does the 

adaptation of species to high-stressed environments invariably make them 

reproductively effective in low-stressed environments that result in an increased 

cross-periodic fitness? 

Supporting this general proposition, evidence suggests that eight invasive 

copepod species native to the coast of Japan, where the temperature fluctuates 

periodically largely, have invaded the San Francisco Bay and the adjacent west 

coast of North America (Cordell et al., 2008), where the temperature fluctuates 

less, in addition to the pattern observed for P. marinus. These species include two 

of the same genus, namely, P. inopinus and P. forbesi. In contrast, there are no 

reports to date on the establishment of invasive copepods native to the west coast 

of North America in the Sea of Japan or adjacent seas. Later, P. inopinus has 

become the dominant species at Columbia River estuary (Cordell et al., 1992), 

whilst P. forbesi has replaced some of the natives (Bollens et al., 2012).  

Furthermore, Ruiz et al. (2011) have shown that temperate West coast of 

North America, where the temperature fluctuates less, harbours a larger number of 

marine invasive and non-indigenous crustaceans than that on the East coast, 

where the temperature fluctuates largely. This observation is consistent with our 

proposition. DiBacco et al. (2011) have attributed a similar difference in marine 
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non-indigenous species between the East and the West coast of Canada to the 

apparent correlated difference in the propagule pressure by ship ballast-water 

discharge. However, the theory of differential propagule pressure falls short of 

explaining the observation as to why not many non-indigenous or invasive marine 

copepods (also marine species, in general) native to temperate southern 

hemisphere have spread into the northern hemisphere (see Doi et al., 2011; 

Goulletquer et al., 2002; Hanfling et al., 2011; IUCN, n.d.; Ruiz et al., 2011), 

while species immigrated to southern hemisphere from northern hemisphere is 

much (Ahyong and Wilens, 2011; Griffith et al., 2011; Olenin et al., 2011; 

Orensanz et al., 2002; Ruiz et al. 2011). Our proposition may explain these trends 

well as the periodic fluctuations of temperature are high in the northern 

hemisphere compared to the southern hemisphere, which decreases the fitness of 

the species moving from the southern to the northern hemisphere, especially to 

northern temperate ecoregions where the temperature amplitudes are extremely 

high.  

Metabolic theory of ecology (MTE) suggests that species taxonomic 

richness should be large in environments with high annual mean temperatures 

resulting from the capacity of high temperatures to generate high metabolic rates, 

high entropy, leading to high rates of speciation (Allen et al., 2002; Gillooly and 

Allen, 2007). Recently, Rombouts et al. (2009) have shown that marine copepod 

diversity is correlated to mean habitat temperatures, an explanation for which has 

been theorized by Record et al. (2012) and Rombouts et al. (2011) based on the 

MTE. However, in some marine regions, peak-to-peak SST fluctuations exceed 

28
0
C within a year. Thus, based on our result, we speculate that species’ 

metabolic responses to periodic temperatures may also affect the species richness, 

and the MTE may require a revisiting, incorporating the effect of fluctuating 

temperatures on biodiversity generation. Some of our preliminary results show 

that copepod diversity data fits better, functionally, to habitat temperatures when 

the effect of fluctuating temperature is incorporated.  



87 
 

When populations, adapted to native habitats in extremely high-fluctuating 

temperatures, are introduced to novel habitats surrounding the same mean but 

low-amplitude temperatures, their across-periodic fitness increases by many folds 

compared to when they are in the native habitat. We speculate, as we observed in 

our preliminary analyses, that the higher the pointedness of R0(T) of a population, 

the greater is their potential to increase fitness in low fluctuating temperatures. 

This suggests that the degree of concavity of R0(T) may distinguish the degree of 

invasiveness of a species, and separate them from non-invasive colonizers. We 

need more theoretical and applied research to test this hypothesis in greater detail 

before a generalization.  

This study and Rajakaruna et al. (2012) showed how life-history 

parameters in this model, that are functionally related to temperature, can be 

parameterized from the data from laboratory and field experiments, and predict 

potentially habitable range of a species limited by the year-round variable 

temperatures. This methodology can be extended to test the effect of salinity and 

other environmental forcing factors. Our approach is bottom-up and mechanistic 

in contrast to methods such as ecological niche modeling (ENM) methods 

(Elithand Leathwick, 2009; Peterson, 2003). Recent literature advocates 

mechanistic approaches to improve ENM as well (Kearney and Portor, 2009). 

Some studies show that, time for acclimatization for copepods takes few 

hours to days. For example, Hansen et al. (2010) show that Acartia tonsa takes 

few hours to a week for acclimatization and to reach the maximum hatching 

success for the given temperature; faster acclimatization in higher temperatures. 

Huntley and Lopez (1992) suggest that generation time is a reasonable scale for 

oceanic surveys in changing ocean temperatures. In laboratory studies of 

copepods, acclimatization is commonly done for one generation before specific 

treatments (e.g., Devreker et al., 2007). In our study we used time-intervals as 

large as 60 days when incorporating the effect of the changes in temperature on 

population life-history parameters (Note that the average generation time is 

approximately 23 days, and the average stage maturations time is approximately 2 
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days at 20
0
C for P. marinus). To answer what is biologically optimal time-interval 

to follow the change in parameter values in response to change in temperature, 

and if the temperature-time curves are more complex than a simple sinusoidal 

form, we may need further laboratory experimentations. However, we did not 

encounter complex monthly average temperature-time curves in field samples.  

In habitats on the edge of the suitable mean temperature range, large 

periodically fluctuating temperatures can limit the population persistence. This 

was shown by the relative shift of CMT-F from CMT-S. This result is consistent 

with the broad theory that increased environmental fluctuations increase the 

extinction probability of local populations in general (Lande et al., 2003).  In 

other words, our results suggest that, on a given longitude, the range of habitats 

that are tolerable to a species tends to narrow down when the periodic fluctuation 

of temperatures are taken into account compared to that predicted by the mean 

habitat temperatures alone (as in Rajakaruna et al., 2012). This effect may be 

greater towards the thresholds of colder waters, as it is apparent from the data that 

temperature fluctuations are larger in the temperate marine ecoregions than the 

tropical and the subtropical marine ecoregions, in general.  

Some studies suggest that the cessation of reproduction at lower 

temperatures is a critical driver of population growth rate, for example, in small 

fish (Raimondo, 2012). In copepods, dormancy occurs at various times of the 

year, prevailing in higher and temperate latitudes, when the temperature becomes 

harsh (Dahms, 1995). It is expressed as resting eggs and as arrested development, 

and is seen as an energy saving trait allowing the individual to bridge periods of 

environmental harshness. This suggests that the duration and the degree of 

adverse environmental condition, that dormancy depends upon, for example, the 

lower or the higher critical temperatures, may determine the species persistence. 

Partly contrastingly, and partly complimentarily, our results show that the 

duration and the degree of the favourable temperatures that compensates the effect 

of the adverse temperatures determine the persistence of a copepod population, 

rather than the effect of the adverse temperature alone, if not lethal. 
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Furthermore, if the amplitudes of seasonal SST fluctuations increase along 

with the gradual sea surface warming (see Masson and Cummins, 2007) as was 

slightly evident from the Race Rocks data then we may expect increased 

temperature fluctuations to suppress the effect of increased mean habitat 

temperatures on range expansion of the species. Furthermore, the Race Rocks data 

show a phase-shift in annual cycles of SST over the years similar to that in land 

temperatures (see Stine et al., 2009). Yet the mathematical principles, that are 

based for the stability solutions in our study, do not allow a phase-shift to impact 

population stability. Studying the change in the whole temperature profile at a 

spatial scale that applies to species populations may be crucial when calibrating 

the effect of global warming on species range expansion or contraction. This is 

because the locality specific temperature profiles at different spatial scales may 

create differential effects on the population stability by counteracting the forcing 

by the general rise in the mean SST.  

Our results also showed that in West Vancouver, higher fluctuations 

lowered the invasibility potential of the habitat for P. marinus.  Evidently, P. 

marinus has not been detected in West Vancouver area, although it has been 

heavily sampled in ballast water discharge (Barry and Levings, 2002; Levings et 

al., 2004). In Puget Sound (Lawrence and Cordell, 2010) and Hawaii Islands 

(Carlton, 1985; Jones, 1966), P. marinus has been detected, yet our metric 

indicates that those localities are only marginally uninvasible.  

 The type of parameters and the method of analyses we introduced here 

may be useful for investigating the effect of other seasonal environmental 

(external forcing) factors that limit population establishment or extinction of 

populations. In future work, we could also incorporate density-dependence and 

the Allee effect that suppress populations at high and low extreme densities. 

Further investigations could also include the effect of variable salinity that may 

affect population fitness. The hypotheses generated from this work could also be 

tested on the spread of invasive freshwater copepods and other species across lake 

systems and rivers.  
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Table 3-1  The parameter values specific to models )(),( TT   and )(T used to 

compute A(T(t)) (from Rajakaruna et al., 2012). Temperature is measured in 
0
C. 

Model  

 

Parameter values  

)]1(/[)( )()(   bTw

lm

bTw

lm effeffT  
0

m lf =13.89,  f =0.61, w=0.35, b=6.01 C  

)/()1()( 1

8.1

 aaa TkT   k=3, a  for each sub-stage within stages 

a=1..12, where, 00   [55.01, 134.21, 

325.81, 557.4, 864.01, 1110.77, 1479.68, 

1827.22, 2159.64, 2159.64, 2656.81, 3353.02, 

4321.76] 

)(/ Tkg aa   k=3 

01

2

2)(   TTT  κ2=0.0017/day, κ1=-0.0426 /
0
C day,  

κ0=0.32 /
0
C

2
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Table 3-2 Critical mean habitat temperatures (CMT-S and CMT-F) and p  (cross-periodic intrinsic growth rate) of P. marinus at localities where 

it is introduced at large densities through ship ballast-water discharge. (S-steady temperatures, F-fluctuating temperatures). CMT-S are the mean 

habitat temperatures (T) where R0(T)=1, and similarly, CMT-F where 1pR . Thus, both CMT-S and CMT-F have Upper and Lower Bounds (UB, 

LB). If a mean habitat temperature is within LB and UB for the given degree of amplitude, then the habitat is potentially invasible. The (LB, UP) 

range of CMT-F is narrower than that of CMT-S.     

 Lower critical temperature threshold CMT-S 

                                       

Upper critical temperature threshold CMT-S 
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Phase   0.61 0.82 0.48 0.36 0.57 0.36 0.34 

CMT-S 10.52 (LB) 10.52 (LB) 10.52 (LB) 10.52 (LB) 24.81 (UB) 24.81 (UB) 24.81 (UB) 

CMT-F                     10.82 (LB) 12.22 (LB) 10.94 (LB) 10.84 (LB) 24.32 (UB) 24.16 (UB) 24.70 (UB) 

λp -0.021<0 -0.007<0 -0.004<0 0.046>0 0.071>0 0.056>0 0.047>0 

Invasibility No No/Marginal No/Marginal Yes Yes Yes Yes 

Present Status No information 

(propagules are 

discharged to the 

Strait of 

Georgia, BC) 

Detected in 

propagules 

discharged (Barry 

and Levings, 

2002; Levings et 

al., 2004) 

Detected (Cohen, 

2004); High 

propagule 

pressure 

(Lawrence and 

Cordell, 2010, et 

al., 2009) 

Established (Ruiz 

et al., 2000) 

Established 

(USGS, 2004) 

Detected (Jiménez-

Pérez and Castro-

Longoria, 2006) 

Detected (Carlton, 

1985; Jones, 1966)  

**CMT-F solutions are the same from all methods: 1) Monodromy matrix solution (Bacaer, 2007; Wang and Hale, 2001); 2) Piecewise solution (Goeck, 2004); 

3) Matrix Averaging solution (Ma and Ma, 2006; Wesely and Allen, 2002); 4) 
p  ( 1)( d  and 0V ); 5) λp ( 1)( d and 0V ) (the basis of Rp); and λp 

solutions are the same to the rounded second decimal place from all methods.  
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Figure 3-1 Net reproductive rate R0 as a function of mean habitat temperature (T) 

considering autonomous (non-fluctuating) system dynamics (reconstructed following 

methods in Rajakaruna et al. (2012) after incorporating all the temperature-dependent 

mortality data from Uye et al. (1983), including the ones at 27
0
C). 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

N
et

 R
ep

ro
d

u
ct

iv
e 

ra
te

 (
R

0
) 

Mean habitat temperature (
0
C) 

R0=1 



94 
 

 

 

Figure 3-2 Cross-periodic fitness (λp) and reproductive rate (Rp) with respect to mean 

habitat temperatures with different amplitudes. An increase in the amplitude of the 

periodic temperature decreases λp and Rp, narrowing down the range of mean habitat 

temperatures that the species can persist (that is, the potentially invasible range bounded 

by the lower and the upper CMT-F). Amplitudes tending towards zero, converges the 
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solution asymptotically to the autonomous solution (the solution assuming steady year-

round temperatures). Red circles are the native habitat range of P. marinus (Walter, 

1986); the blue circles are the established or the detected habitat range (Brylinski et al., 

2012) based on field samples. Black arrows show the direction of the invasion, which is 

from high to low-amplitude habitat temperatures. Note that λp is slightly left-skewed due 

to the multiplicative terms of R0 and inverse exponential stage duration times with respect 

to temperature (Eq. 3.11). Thus, their peaks are shifted. The records of Andaman Island, 

Peter the Great Bay, and Tokyo Bay, which are deviated from the predicted range of the 

model, could be explained if we incorporated the standard errors of the Rp estimates. 

Light pink, green and yellow shades indicate native, invasive, and colonizing ranges from 

a conceptual standpoint. Here, habitats where λp >0 and Rp>1 are the potentially invasible 

range. Small black boxes: CMT-F. Small brown boxes: CMT-S.  
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Figure 3-3  Invasible costal habitat range given by the cross-periodic intrinsic growth 

rate λp. Habitats within the white band are the ones where P. marinus has the highest λp 

(>0.04) given the periodic habitat temperatures. The adjacent lighter blue band is the next 

highest (0< λp <0.04). Red circles show where P. marinus is native to (Walter, 1986), and 

originally spreading from. Blue circles show the areas where P. marinus has established 

or detected. Data: SST data from NOAA-ESRL Physical Sciences Division, Data of 

localities from Rajakaruna et al., (2012). Latest reporting at Southern Bight of the North 

Sea along the coast of France (Brylinski et al., 2012), and the other at Adriatic Sea in 

northern Italy (Olazabal and Tirelli, 2011) are also marked. Longitudinal and latitudinal 

resolution: 1
0
x1

0
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Figure 3-4  The effect of increased amplitude of temperature on cross-periodic fitness

.p  Supposing a sinusoidal temperature curve can be approximated by a square wave 

(blue) with piecewise constant two seasonal temperatures T1 and T2 within time period tp, 

and the amplitude of the wave is increased by T (red) while having the same mean 

temperature. Green curve indicates (T), the intrinsic population growth rate, with 

respect to habitat temperatures (T): 
1  and 

2 corresponds to temperature T1, T2, 

respectively. Arrows indicate the direction of the change of  following the change of T 

after the amplitude of temperature is increased. As a result of the concavity in  with 

respect to T (which follows from the function R0(T) from Figure 3-1 and Figure 3-2a), we 

show that the cross periodic growth p decreases with increased amplitude of the 
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periodic temperature.  The blue temperature profile gives )(
2

1
)( 21  bluep

. The 

higher amplitude red temperature profile gives 

  )(
2

)(
)()(

2

1
)( 21

2211 bluebluered ppp 


 


 , 

because 
12   . Thus, fluctuations give rise to lower values of

p . The higher the 

fluctuations, the lower the value of
p . That is, a population in high-amplitude 

temperatures becomes less likely to persist compared to that in low-amplitude 

temperatures, given that their mean temperatures are the same. This result remains the 

same for habitats surrounding the higher bounds of T, warmer waters, meaning that in 

general, high-amplitude temperatures decrease the persistence potential of a population. 

This is a result of Jensen’s inequality. Note that these effects can be opposite in the 

ranges of temperature where   can be a convex function of temperature. This can 

happen for some other species. 
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Figure 3-5 Piecewise temperatures, leading eigenvalues, and population density over time. This shows how a population progresses after an introduction of one 

fertilized female to a habitat with the given temperature profiles. Depending on temperature fluctuations, and the following leading eigenvalue cutting across the 

zero bounds becoming positive or negative, the population tends to increase or decrease accordingly. The population size has two peaks in some solutions, 

depending on how the profile of fluctuating temperature split the leading eigenvalue into two peaks. The P. marinus is native to Ariake, Chikugu, and Fukuyama 

Bays, and has invaded San Francisco Bay, and detected at Puget Sound, but not established, whereas, not detected in West Vancouver area as yet, although the 

propagule pressure of the species was large. Although we have not analyzed it in detail here, timing of these peaks seems to match the field observations, for 

which we may need an advanced model that can capture periodically stable systems. Temperature (mean, amplitude, phase): Ariake Bay (19, -10, 2.4); Chikugo 

estuary (18.0, -10.1, 2.4); Fukuyama (19.3, -9.7, -0.1); Fort Point (San.Fr. Bay) (13.4, -1.8; 0.4); West Vancouver (10.9, -5.2, 0.8); Puget Sound (10.6, -2.8, 0.5). 
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Figure 3-6   A demonstration of the effect of increased temperature amplitudes, keeping the maximum or minimum temperature the same, on the dynamics of P. 

marinus population introduced with one fertilized female, based on the temperature profiles of the two localities; one having high, and the other having low mean 

temperatures. The solid line indicates the true case, whereas, the dashed line indicates a simulated high-amplitude temperatures, keeping the minimum the same 

in the case of West Vancouver, and maximum the same in the case of Honolulu Oahu Island. With increased temperature amplitude, the populations tend to 

persist in both cases. Thus, this suggests that the minimum or the maximum temperature alone is not a reliable predictor of population persistence. The duration 

and the magnitude of habitat temperatures in favourable temperatures compensate the effect of harsh temperatures. Temperature (mean, amplitude, phase): West 

Vancouver [(10.9, -5.2, 0.8)~(13.9, -8.2, 0.8)] ; Honolulu Oahu Island [(25.7, 1.5, -2.8)~(22.7, 4.5, -2.8)].  
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Figure 3-7a Yearly mean SST at Race Rocks, BC, indicating how mean temperature rise 

change the habitat invasibility. Black solid lines indicate the mean and the standard 

deviations of monthly variations. Mean temperatures tend towards the CMTs of P. 

marinus having the habitat pushed towards the potentially invasible threshold. b) Black 

lines show the monthly SST fluctuations at Race Rocks (solid: 1940:80, dashed: 

1981:2006). Red lines indicate the best-fitted sinusoidal function (dashed-early period, 

solid-latter period) depicting a shift in the mean yearly temperatures over the two distinct 

periods. Blue lines indicate the best-fitted square wave functions for the same data. In 

addition to a mean shift, the graphs also indicate an increase in amplitude (1.591.97
0
C), 

and slight phase-shift towards the later years. The increase in temperature over the 

summer months is greater than that in the winter months of the year. 
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CHAPTER 4 
High-amplitude periodic temperatures cause a reduction 

in species taxonomic richness  

  

4.1.  Introduction 

The species richness gradient along the latitudes in land (Hawkins et al., 

2007), marine (Rombouts et al., 2011), and freshwater (Oberdorff et al., 1995) 

taxa has been explained by the metabolic theory of ecology (MTE) proposed by 

Allen et al. (2002). This theory is based on the biochemical kinetics and the 

energetic-equivalence rule (Damuth, 1987), which is now well-established in the 

literature. One implicit assumption in MTE by Allen et al. (2002) is that habitat 

temperatures do not vary largely through seasons within a year. However, the 

optimum interpolation (OI) sea surface temperature (SST) data at resolution 1
0
x1

0
 

of latitudes and longitudes from NOAA-ESRL (n.d.) show that ocean 

temperatures fluctuate periodically largely, amplitudes exceeding 14
0
C at some 

northern temperate marine ecoregions (NTE). (Marine ecoregions are a bio-

geographic classification of coastal regions based on similarities in biota, 

geomorphological features, currents, and temperature, which covers all coastal 

and shelf waters shallower than 200 m (Spalding et al., 2007).)  

If ambient temperature fluctuates periodically at this scale of magnitudes, 

it should affect the metabolism of populations, and thus, the assumption of 

constant temperature in MTE is violated. As the metabolic rate of organisms has 

non-linear dependencies on temperature, the computations based on yearly 

averaged temperatures may not be a reasonable representation of the bio-energetic 

mechanics of a periodic system. Thus, the question is whether the amplitude of 

temperature subsequently impacts the richness of species of taxa exposed to 

periodically fluctuating temperatures.  

In this study, we extend the MTE by incorporating the effect of annual 

variation in temperature into the model, deriving the functional relationships in 
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biologically meaningful terms, and investigating the impact of amplitude of 

temperature on species richness. Based on our model, we test the hypothesis that 

high-amplitude periodic temperatures cause a reduction in species richness of 

ectothermic marine taxa; calanoid copepods, copepods, and tunicates. We sample 

diversity of species pertaining to marine ecoregions of the world (MEOW) 

digitally from the mega-database Ocean Bio-geographic Information Systems 

(OBIS, n.d.). The NTE provides a solid testing ground for our hypothesis as the 

amplitude of temperatures varies across this region dramatically, while their mean 

temperatures are confined to a narrow range. We further use our model, calibrated 

from the data of the NTE, to predict the copepod richness across the Atlantic 

Ocean by latitudes and also by mean habitat temperatures using the data 

reconstructed from Rombouts et al. (2009).  

Our results show that high-amplitude periodic temperatures play a major 

role in the reduction of marine species (taxonomic) richness depending on the 

level of exposure of these taxa to periodically fluctuating temperatures. When the 

mean temperatures between ecoregions do not differ significantly, the ratio of 

their temperature-amplitudes, if large, determines the ratio of their species 

richness. For this reason, the temperature-amplitude may differentiate the species 

richness along the longitudes where the latitudes have the same mean 

temperatures. Furthermore, our extended MTE model explains the subtle 

variations in marine copepod diversity between the northern and the southern 

hemispheres.  

 

 

4.2.  Model 

 

Consider an area A with species S, and population density Nj of species j 

per unit area, j=1..S. The total number of individuals across all species is

 


S

j j ANJ
1

.  Based on Allen et al. (2002), the metabolic rate Bj (Jules s
-1

) of 

an average individual of species j varies with body-size Mj, and the ambient 
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temperature T, such that 
)2.273(/4/3

0




TkE

jj
beMbB . Here, 0b is a normalization 

constant independent of body size and temperature (b0~2.65x10
10

 W g
-3/4

), and the 

Boltzmann factor )2.273(/  TkE be describes the temperature dependence of t he 

metabolic rate. The quantity E is the activation energy of metabolism (~0.78 eV) 

(Allen et al., 2002), kb is the Boltzmann constant (8.62 x 10
-5

 eV K
-1

), and 

)2.273( T is Kelvin (T –centigrade), such that, the average metabolic rate of an 

average individual in the community is given by 

)2.273(/4/3

0




TkE beMbB ,          (4.1) 

where M is the average body size of an individual. Note that Eq. (4.1) is a 

convex increasing function of T. Based on the energetic-equivalence rule 

(Damuth, 1987), Allen et al. (2002) write the average energy flux of a population 

in the community as 

NBBT  .            (4.2) 

Here, TB  is considered as a temperature-independent constant, and 

 


S

j jN
S

N
1

1
is the density of the population averaged over the number of 

species. The total density of individuals across the populations, by definition 

(Allen et al., 2002), is given as  

NSAJ / .            (4.3) 

Savage et al. (2004), following Gillooly et al. (2001), show that the 

generation time jg of an ectothermic population j, having average body size of an 

individual jM , can be written in relation to temperature as 

)2.273(/4/1 exp



TkE

jj
bMg . It has been shown that generation time jg can be 

generalized, for example, for marine copepods (Huntley and Lopez, 1992) and 

tunicates (Deibel and Lowen, 2011). Therefore, by considering the individuals of 

the populations having average body size M , and the average generation time per 

species g , we rewrite the above proportionality (similar to Eq. (4.1)) as 

)2.273(/4/1

exp



TkE bMg  .          (4.4) 
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Here,  is the proportionality constant. Note that Eq. (4.4) is a concave 

decreasing function of T. Thus, the higher the temperature the lower the 

generation times suggests that population expends metabolic energy at a faster 

rate. Although these models based on the Boltzmann-Arrhenius function consider 

maturation rates to monotonically increase with temperature, in reality, they may 

start to decline with increasing temperature beyond the point of enzyme 

inactivation. 

Eq. (4.1) to Eq. (4.4) yield  
















TBA

JMb
Sg 0

.           (4.5)  

Note that the product Sg is a constant that varies with the taxa. In other 

words, a constant average energy flux for the populations means that the 

taxonomic richness is inversely proportional to the generation time  Sg /1  

once the relationship between metabolic rate Eq. (4.1) and generation time Eq. 

(4.4) is taken into account. Taking the log-transformation of Eq. (4.5) to the base 

10, which is a standard for scaling species taxonomic richness, we write the log 

linear form of the model as Model 1: 

 TBAJMbgS /logloglog 0         (4.6) 

The gradient of this equation, ideally, should equal -1. The last term is a 

temperature-independent constant as per Allen et al. (2002) that varies with the 

taxa. That is, this model implicitly assumes temperature-invariance for the 

abundance J , and for the average derived from the body size distribution M . 

Thus, Model 1 (Eq. (4.6)) suggests that the smaller the average generation time of 

a population in the community, or the faster the average lifecycle, the higher the 

species richness. In other words, because the average energy flux through a 

population, TB in Eq. (4.2), is temperature-independent, the high temperatures 

result in an increase in the average individual metabolic rate B  decreasing N . 

Therefore, this should result in an increase in S as we hold J per A to be constants 
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in Eq. (4.3). Linear model of temperature by Rombouts et al. (2011) is 

mathematically related to Model 1.  

What is crucial for our investigation is that Model 1 (Eq. (4.6)) makes an 

implicit assumption that temperature remains constant over time. Yet, we note 

that temperature fluctuates, periodically, at large amplitudes in the northern 

temperate ecoregions. Thus, this is a violation of a major assumption fundamental 

to g in Eq. (4.6), which was derived based on the MTE model proposed by Allen 

et al. (2002). If temperature changes over time in synchrony with organisms’ 

capacity to acclimatize to the changing temperature, then it should be reflected in 

the generation times of the populations. Therefore, we assume that the generation 

time varies depending on the temperatures of the seasons within a period.  

To incorporate the effect of changing temperatures into the model, we 

assume that the periodic fluctuations of temperature (e.g., yearly) occur on a much 

longer timescale 0T  (year) than the generation-time timescale. This allows us to 

define the average generation time per species over the period 0T  as 









 



dtg
T

G
oTt

t
0

1
, which is a biologically meaningful quantity. Thus, 

integrating both sides of the Eq. (4.6) over a period 0T  (year) from time t to t+ 0T , 

we fix Eq. (4.6) to be time-invariant, yielding  
















TBA

JMb
SG 0

.           (4.7) 

Here, note that SG /1 , and G is independent of time but dependent on the type 

of the temperature profile of the habitat rather than the mean habitat temperature 

over the period. This model contrasts with that by Rombouts et al. (2011) 

following Allen et al. (2002), which is, in fact, a version of Model 1, that takes 

into account only the mean habitat temperatures over the period (year). Thus, Eq. 

(4.7) yields Model 2 as 

 TBAJMbGS /logloglog 0 .        (4.8) 
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Note that Model 2 (Eq. (4.8)) is a simple linear function of log G , whose gradient, 

ideally, should equal 1 , and whose intercept is a temperature-independent 

constant that varies with the taxa. 

In essence, here we converted the oscillating time-dependent system to a 

time-independent system by time-averaging the system over the period, because 

the variations in temperature are periodic in time, thus, capturing the species’ 

taxonomic richness of the periodic-system that runs over centuries or millennia. 

As the temperature is non-linear with respect to time, and the generation time is a 

non-linear negative exponential function with respect to temperature, a value of g  

based on the average temperature of the year, should be less than the value of G  

based on the time-averaging system over a year, capturing the within year 

variations (Figure 4-1). This effect is due to Jensen’s inequality. Therefore, 

according to Model 1 and Model 2, the richness of species having shorter 

generation times should be lower in high-fluctuating habitat temperatures 

compared that in steady habitat temperatures. This is the hypothesis we test.  

In application of the models to data, we expect that the taxonomic richness 

of ectothermic marine calanoid copepods responds largely to seasonally variable 

temperatures, followed by copepods in general, and tunicates even to a lesser 

degree. This is because the calanoid copepods, mostly pelagic, and mostly live in 

the mixed layers of the ocean in the marine ecoregions, are more likely to be 

exposed to periodically variable temperatures in the upper ocean layers compared 

to copepods in general, and tunicates.     

 

4.3.  Methods 

 

To calibrate Model 1 and Model 2 with the data for marine species, we 

reconstructed a digital map at 1
0
x1

0
 spatial resolution of longitudes and latitudes 

of the northern temperate ecoregions (42 in total, indexed 20-61 in Spalding et al., 

2007. Also see Appendix 4.1) following MEOW (Marine Ecoregions of the 

World) digital maps given in OBIS (n.d.). As mentioned before, marine 

ecoregions are a bio-geographic classification of coastal regions based on 
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similarities in biota, geomorphological features, currents, and temperature, which 

covers all coastal and shelf waters shallower than 200m (Spalding et al., 2007). 

On this basis the environmental profiles within an ecoregion are assumed to be 

less deviated than across, thus, the species distributed in an ecoregion have the 

exposure to approximately the same spatial and temporal structure of the 

environmental factors (Spalding et al., 2007). Therefore, this classification 

assumes homogeneous temperature and ecological communities within these 

ecoregions than across.  

The ambient temperature of marine copepods is typically given by the sea 

surface temperature (SST). We super-imposed the monthly averaged sea surface 

temperature data (SST) on the map, spanning from 1970-2001 from NOAA-ESRL 

(n.d.) pertaining to northern temperate ecoregions (NTE). Huntley and Lopez 

(1992) suggest that the vertical spatial scale appropriate for temperature related 

surveys on marine copepods of the globe is probably in the order of 10-100m, the 

upper mixed layer, where the bulk of planktonic biomass resides in, and 

encompasses most species at all stages of their life-history. Hence, the SST may 

be a reasonable proxy for a comparative study of the effect of ambient 

temperatures of the species, especially copepods, in marine ecoregions, across the 

region.  

We modeled the time-dependent temperature by fitting a simple sinusoidal 

form )sin(
2




 tTT  to the pooled data of each 1
0
x1

0
 pixel in each 

ecoregion. The sinusoidal functional form is commonly used to model monthly 

mean temperature data in marine habitats (see Benyahya et al., 2007; Caissie et 

al., 1998). We estimated the mean (T ) and the peak-to-peak amplitude ( ) of 

yearly ecoregion temperatures using non-linear least squares method (using the 

minimization procedure fminsearch in Matlab for mean squared errors). Here, 

0/2 T   is the frequency,   is the phase, and t=1..(T0/time-interval) with 

period T0. For example, T0=366 days with the modeled time-interval given by 61 

days results in 6 steps (t=1: 6). It is commonly said that generation time is a 

reasonable scale for copepod temperature related experiments in a variable 
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temperature environment (Huntley and Lopez, 1992; Landry, 1975). For example, 

the generation time for Pseudodiaptomous marinus in 20
0
C is approximately 23 

days. 

We sampled the species taxonomic richness data of calanoid copepods, 

copepods, and tunicates digitally from the online interactive digital maps of the 

database Ocean Bio-geographic Information Systems (OBIS, n.d.) pertaining to 

the NTE. Here, we ignored the ecoregion 32 (Levantine Sea in the south-eastern 

Mediterranean ocean), and 61 (Magdalena Transition), as they were markedly 

under-sampled; the former compared to its adjacent ecoregions 31, 33, 34, and the 

latter compared to its adjacent ecoregions 59, 60, although the inclusion of which 

did not change the general pattern in the data. This left with 40 ecoregions in NTE 

as the sample size.    

We calibrated g for marine copepods from the data reconstructed from 

Huntley and Lopez (1992) simplifying the model Eq. (4.4) as 

 )]2.273/(1[exp 21  Tg   with an appropriate selection of parameters 

(Figure 4-1), 
4/1

1 M , bkE /2  , kb=8.62 eVK
-1

, and using non-linear least 

squares regression (lsqcurvefit function Matlab). Similarly, we calibrated g for 

tunicates from the data reconstructed from Deibel and Lowen (2012) (Figure 4-1). 

Ideally, we should get 9.0~1000 2 K as the activation energy E for aquatic taxa 

is ~0.78eV (Allen et al., 2002).   

We used simple linear regressions for fitting Model 1 and Model 2 fixing 

the gradients at -1 as the models described. We also used the Reduced Major Axis 

(RMA) regression method in Sokal and Rolf (1981), software developed by 

Bohonak (2004). Allen et al. (2002) also used the RMA method for the 

regression. Note that RMA assumes both the dependent and the predictor 

variables are subjected to errors. We also allowed a parameter for the gradient of 

the models, instead of fixing the value at -1, to evaluate the deviation of the 

estimated gradients from the expected value (-1). The gradient estimated by RMA 

regression method is computed as the division of the standard deviation of y 
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variable by that of x variable, which, in contrast, is multiplied by the coefficient of 

variation in the standard regression (Holland, n.d.).  

We note that, although the predictor variables in Model 1 to Model 2 are 

functionally nested, the Model 1 and Model 2 are not nested with respect to the 

estimations (as we have the x-variables; g and G, already calculated), which leads 

to the same number of estimated parameters (in terms of the degrees of freedom). 

Therefore, we used the adjusted R
2
 denoted by 

2

AdjR for model selection, given by 

)1(
)(

)1(
1 22 R

pn

n
RAdj 




  (Kadane and Lazar, 2004). Here, p is the sample size, 

and n is the number of parameters. This is an alternative to using residual sum of 

squares (RSS). Based on
2

AdjR  
of Model 1 and Model 2, we evaluated whether 

Model 2 performs better than Model 1, thus, if the amplitude of periodic (yearly) 

temperature has an effect on the species taxonomic richness. We also evaluated if 

there is a pattern in these effects due to the taxa, greatest for calanoid copepods, 

followed by copepods in general, and tunicates for the reasons that we have 

discussed in the earlier section. Furthermore, we tested if the periodic amplitude 

of temperature directly causes a reduction in the species taxonomic richness for 

all three taxa, using a simple linear regression, and also, whether the amplitudes 

correlate with the mean temperatures of the northern temperate ecoregions. 

We also used Model 2, calibrated from the copepod data of the northern 

temperate ecoregions from OBIS (n.d.), to predict the copepod diversity of the 

whole Atlantic Ocean for the data reconstructed from Rombouts et al. (2009). We 

did these predictions with respect to the mean habitat temperatures, and also the 

latitudes. As Rombouts et al. (2009) data of taxonomic richness are a collection of 

point sampling sources from the Atlantic Ocean, whereas, our data are for the 

whole ecoregions in the northern temperate ecoregions, this results in a bias (our 

estimates being on the high side). These systematic marginal differences may be 

due to the species-area relationship described by Preston (1962). To reduce the 

bias caused by the difference in the units of sampling, we added a scaling 
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parameter log(w) to the mean estimates. The rescaled Model 2 is then given by 

Model 3 as 

  wBAJMbGS T log/logloglog 0   .       (4.9) 

Except for parameter log(w), all the other parameters were estimates from 

the data from the northern temperate ecoregions, which results in a constant shift 

of the model predictions along the y-axis ( Slog ), not by shape along the x-axis 

 TGlog .  

We estimated the latitudinal averages and standard deviations of the 

means and the amplitudes of temperature profiles at 1
0
x1

0
 (longitudes and 

latitudes) spatial resolutions. We fitted Model 3 (already calibrated from NTE 

without the error term log(w)) to Rombouts et al. (2009) taxonomic richness data 

given with respect to latitudes for estimating the bias, log(w), using the latitudinal 

averages of the means and the amplitudes of temperatures we computed. We also 

plotted the calibrated Model 3 by adding and subtracting two standard deviations 

of the means and the amplitudes of the latitudinal temperatures, and 90% CI of the 

Model 2 calibrated from the NTE yielding two other curves. (Note that Rombouts 

et al. (2009) data do not provide temperature-amplitudes of the sampled habitats.)  

We also fitted the calibrated Model 3 to Rombouts et al. (2009) data of 

marine copepods given with respect to mean habitat temperatures by plugging in 

the expected amplitudes corresponding to the means of the ecoregion 

temperatures. We also plotted the deviations using the earlier method.   

 

4.4.  Results and Discussion 

Based on standard regression, Figure 4-2 indicates that temperature-

amplitude of ecoregions by itself is not a good predictor of species taxonomic 

richness unless it is accounted mechanistically into Model 2. Based on RMA, 

temperature-amplitudes show a significant negative correlations with log species 

taxonomic richness, p-values for the model (for null hypothesis: gradient=0) 
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<0.001 for all taxa; calanoid copepods, copepods, and tunicates suggesting strong 

relationships. However, R
2
 for the models are low yielding 0.05, 0.02 and 0.07, 

respectively showing weak model fits. Based on
2

AdjR , Table 4-1 suggests that 

Model 2, which accounts for the effect of the amplitude of periodic temperature 

on bio-mechanics, performs better than the Model 1, which is a linear relationship 

with respect to mean ecoregion temperatures (a modified version of the model by 

Rombouts et al. (2011) based on Allen et al., (2002)) for all three taxa. The 

improvement of
2

AdjR  , going from Model 1 to Model 2, suggests that Model 2 is a 

more reliable predictor. As both models have the same number of parameters, 

difference in 
2

AdjR  between the two models is a sufficient criterion to evaluate 

which model performs better.  

The mean and the amplitude of periodic temperatures of the ecoregions 

did not show a significant correlation at alpha-level 0.05 (F=53.53, df=39, 

p=0.56). This may suggest that any improvement to the models yielded by 

incorporating the temperature-amplitudes is independent of the effect of the mean 

ecoregion temperatures. 

Both Model 1 and Model 2 are statistically significant yielding extremely 

low p-values (<10
-04

 for all three taxa) rejecting the null hypothesis that 

gradient=0 for the case we assigned a parameter for the gradient. The lowest p-

value is yielded for calanoid copepods, followed by copepods, and tunicates. The 

gradients estimated for Model 1 yielded -0.71,-0.70, and -2.18 for calanoid 

copepods, copepods, and tunicates, respectively (Table 4-2). The gradients we 

estimated for Model 2 yielded -0.71,-0.70, and -1.94, respectively. Figure 4-2 

shows the degree of deviation of these gradients from -1, graphically. However, 

the gradients are not significantly different from -1 based on Monte Carlo 

resampling tests (p-value   0.52 for all three taxa). For Model 1, where the 

gradients were fixed at -1, 
2

AdjR  are 0.43, 0.41, and -1.90 for calanoid copepods, 

copepods, and tunicates respectively, while for Model 2 
2

AdjR  are 0.46, 0.42, and -

1.70, respectively. The values of R
2
, which suggests how well the model fits to the 
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data, decrease from calanoid copepods, copepods, to tunicates indicating that 

calanoid copepods are the most affected by the periodic fluctuations of 

temperature followed by copepods and tunicates.  

The above results are in conformity with the ecology of the three taxa. For 

example, calanoid copepods have colonized the pelagic part of the water column, 

in contrast to copepods in general (Bradford-Grieve, 2002). Some copepods (both 

individuals and some species) in pelagic environment show diurnal vertical 

migration: increase metabolism while active in the upper layers within the mixed 

layer (average 50m: e.g., Hays et al., 2001), where the temperature is close to 

homogeneous (for example, Andersen et al., 2004; Atkinson et al., 1992; Herman, 

1983;), and rest during the day at deeper layers around the edge of the mixed layer 

(average 150m: e.g., Hays et al., 2001) (Andersen et al., 2004; Kiørboe and 

Sabatini, 1994) in NTE. Some pelagic copepod species does not show diurnal 

migration, and maintain vertical zonation within the mixed layer and down to the 

thermocline (e.g., Bollens and Landry, 2000; Mackas et al., 1993). In contrast 

most tunicates are benthic. Therefore, the calanoid copepod species may be more 

exposed to seasonally fluctuating temperatures occurring largely in the mixed 

ocean layers. Because we tested these relationships for species within the coastal 

marine ecoregions (neritic: <200m depth) where large depths are subject to 

mixing and periodically fluctuating temperatures, the observed effects of all taxa 

seem substantial. Thus, it is apparent from our results that temperature-amplitude 

plays a role in species richness, where the species are exposed to seasonally 

fluctuating temperatures. 

Figure 4-3 indicates that the ratio of mean temperatures can be used as a 

predictor of the ratio of copepod taxonomic richness between two ecoregions, 

especially when the ratio of the amplitudes is large, and the mean temperatures of 

these regions are within a narrow range. Thus, if the mean temperaures are the 

same between two ecoregions, then we may look to the ratio of amplitudes 

between the ecoregions as a predictor of the ratio of their species richness.  
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Figures 4-4a and 4-4b show our model predictions of the marine copepod 

richness in the Atlantic Ocean for data reconstructed from Rombouts et al. (2009). 

The effect of the amplitude and the mean temperatures on species richness 

explains the pattern in the data well. The predictions given by the mechanistic 

Model 3 is in contrast to that given by models in Rombouts et al. (2011; 2009) and 

Record et al. (2012). Our model explains the differences in the humps in copepod 

richness near the tropics, and faster rates of drop towards the northern latitudes 

compared to southern latitudes. The difference in the shape of the species richness 

curves between the two hemispheres seems to have been caused by the double-

negative effect of the apparent faster drop in the mean temperatures (Figure 4-4c) 

and the higher amplitudes (Figure 4-4d) in the northern hemisphere compared to 

the southern hemisphere. We further note that the pattern in the data also match 

well with the predicted confidence intervals.  

There is an unresolved issue regarding the scaling of body mass with 

respect to metabolic rates of organisms. Some argue that body mass is 

proportional to metabolic rate to the power ¾, while some argue that it is 2/3 (see 

West and Brown, 2005), which is still under controversy. However this exponent 

may not change the qualitative aspect of our result, while it may affect the degree 

of impact of amplitude of temperature on species richness slightly. Furthermore, 

Record et al. (2012) investigate the case if the body mass varies with temperature, 

which yields a model that gives a non-linear fit to copepod richness data with 

respect to temperature, which may be a better fit than the linear fit by Rombouts 

et al. (2009). This suggests that the assumptions based for MTE may need further 

empirical investigation. Our model also gives a non-linear fit (see Figure 4-4a), 

which describes the variation in copepod richness data strongly. This is a result of 

spatial variations in periodic fluctuations of temperature that we incorporated into 

our model in addition to mean habitat temperatures. The fact remains that marine 

copepods and tunicates, having short generation times, show sensitivity, although 

subtle, to fluctuation of temperature regardless of the metabolic theoretical 

backing (see Figue 4-2). It makes sense therefore to describe this effect using 

MTE models that fits to data better than the case of phenomenological relations, 
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while having an advantage of describing the underlying dynamics of these 

processes mechanistically. 

 

4.5.  Conclusion 

The amplitude of periodic temperature has a non-linear effect on the bio-

energetic, thus, the global marine copepod species taxonomic richness in 

particular, and also tunicates to a certain degree. Although the mean of 

temperature cycles alone is a good predictor of marine species richness, 

incorporating the amplitude into the model improves the predictability of species 

richness depending on the exposure of the taxa to such temperature variations. 

The amplitude differences along the longitudes may explain the longitudinal 

variation in species diversity as the temperature remains the same along the 

longitudes. The evidence we show here, that supports the theoretical advancement 

we propose to MTE, capturing the effect of subtle year-round variations in 

temperature on the bio-mechanics, may solidify the use of MTE in thermotical 

ecology.  

In light of this, we may predict that an increase in the amplitude of 

periodic temperature could counteract the effect of the global warming, possibly 

balancing off its net effect on the change of species richness of those species that 

are affected by the amplitude of temperature. Our theoretical result may also be 

valid for diversity relations with temperature shown for the other marine species 

(Tittensor et al., 2010) and also terrestrial species (Allen et al., 2002; Hawkins, et 

al. 2007). Our hypothesis provides new insight into the understanding of the 

global species richness distribution. Thus, this is a novel improvement to the 

MTE.  

For further validation of these theories, we may need to investigate the 

changing diversity patterns over geological times from a paleoecological 

perspective (Louys et al., 2012), for example, cases such as “hopping hotspots” of 
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marine biodiversity (Renema et al., 2008), and historical biodiversity tracking of 

the earth’s temperature (Mayhew et al., 2012). 

Table 4-1 Regression results of Model 1 and Model 2 based on the RMA regression 

(fixed gradient =-1).  

 

Taxa 

 

Model  

 

 

No. 

para 

 

RSS 

df=39 

 

2

AdjR  

 

Model Rank  

Based on 
2

AdjR  

Calanoid 

copepods 

Model-1 1 3.75 0.43 2 

 Model-2 1 3.65 0.46 1 

Copepods Model-1 1 3.87 0.41 2 

 Model-2 1 3.85 0.42 1 

Tunicates Model-1 1 8.45 -1.9 2 

 Model-2 1 8.25 -1.7 1 

     

     

Table 4-2 Regression results of Model 1 and Model 2 based on RMA regression 

estimating an additional gradient for the linear models without fixing it at -1. This is to 

evaluate the deviations of gradients from -1.   

 

Taxa 

 

Model  

 

 

No. para 

 

Estimated 

gradient 

(should be -1 

ideally) 

 

p-value 

(Null: 

gradient=0) 

  

2

AdjR  

 

Model Rank  

Based on 
2

AdjR  

Calanoid 

copepods 

Model-1 2 -0.71 1.7E-06 0.43 2 

 Model-2 2 -0.71 9.3E-07 0.45 1 

Copepods Model-1 2 -0.70 3.3E-06 0.41 2 

 Model-2 2 -0.70 2.6E-06 0.42 1 

Tunicates Model-1 2 -2.13 0.006 0.15 2 

 Model-2 2 -1.94 0.004 0.17 1 
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Figure 4-1 (a1) Generation times of copepods modelled with respect to mean ambient 

temperature: Estimated by Eq. (4.6) ( g in Model 1): g =7.97x10
-16

exp{10871.59 

[1/(T+273.2) }, where E/1000kb=-1.26. R
2
=0.88. The data reconstructed from Huntley 

and Lopez (1992). (b1) The time-averaged generation times (G  in Model 2) of the 

northern temperate marine ecoregions (time discretized at 60 day intervals) plotted 

against the generation times of the same based on average ambient temperature ( g  in 

Model 1). Similarly, (a2) g  estimated by Eq. (4.6) for tunicates: g  =6.68x10
-

12
exp{8069.83 [1/(T+273.2) }, where E/1000kb =0.94. R

2
=0.65. The data reconstructed 

from Deibel and Lowen (2012). (b2) G  with respect to g  estimated for tunicates 

following the same method as above. 
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Figure 4-2  Species taxonomic richness (log10) of calanoid copepods, copepods, and 

tunicates for the data pertaining to the northern temperate marine eco-regions (index 20-
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61 by Saplding et al., 2007) modeled against (a) Peak-to-peak amplitude ( ) of habitat 

temperature; (b) Log10(G) (Model 2). Solid regression lines in left panels are from the 

RMA regression, and dotted lines are from the conventional regression. Note that RMA 

method gives more acute gradients for the model-fits (p<0.001), yet with lower R
2
. Solid 

regression lines in right panels are for model-fits fixing gradient at -1, and dotted lines are 

for model-fits estimating an additional parameter for the gradient (both using RMA 

method). In all three taxa, the gradients are not significantly different from -1 based on 

Monte Carlo resampling tests (p-value   0.52).  

 

 

 

 

Figure 4-3  Log ratio of copepod species richness between paired ecoregions with respect 

to log ratio of their (a) mean (p<0.001, R
2
=0.34), and (b) amplitude (p<0.001, R

2
=0.05) of 

temperatures. Regression lines are by RMA method.  The ratios of means, and also 

amplitudes, if large, are good predictors of the ratios of species richness between 

ecoregions. Therefore, where the mean temperatures are the same between two 

ecoregions, the amplitude difference, if large, will indicate the richness ratios. 
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Figure 4-4 Copepod taxonomic richness (data reconstructed from Rombouts et al., 2009) 

in the Atlantic Ocean, predicted (a) by mean habitat temperatures, (b) by latitude, using 

Model 3 (which is Model 2 parameterized from OBIS data of the NTE, and then 

estimating a scaling parameter log(w) from Rombouts et al. (2009) data, yielding 

w=5.62). The scaling constant shifts the curve along the y-axis, but should not change its 

shape. Black dashed lines are the predictions made by adding (top curve) and subtracting 

(bottom curve) (i) 90% CI of the of the estimates of Model 2, and (ii) copepod taxonomic 
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richness given by two standard deviations of the monthly mean and amplitudes of 

temperatures averaged by latitude. (c) Yearly mean SST by latitudes, and (d) yearly 

amplitudes of SST by latitudes (as per the scale 1
0
x1

0
 spatial resolution of latitudes and 

longitudes based on NOAA-ESRL SST data from 1971-2001). Here, x-axis (left 90-0): 

Northern hemisphere. x-axis [right 0-90]: Southern hemisphere. Red circles are the points 

where the mean values of the variables in y-axis crosses the latitudes  30
0
. In line with 

our theory, the double-negative effect of high amplitudes and low mean temperatures 

seems to have lowered the diversity distribution in the northern hemisphere (blue line) 

compared to that in the southern hemisphere (red line). 
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CHAPTER 5 
2
On controlling stochastic immigration of colonizing and 

declining populations 

 

5.1. Introduction  

Species colonization and extirpation have been known since the birth of 

ecology. These can occur through natural processes, but their rates have been 

accelerated recently due to human activities (Simberloff, 2009). Some colonizing 

species become invasive (Colautti and MacIsaac, 2004; Valery et al., 2008). 

Invasive species keep expanding range (Sorte et al., 2010), some threatening 

indigenous species (Sanderson et al., 2009), and becoming a major threat to 

biological diversity (Lockwood et al., 2005), imposing trickledown effects 

detrimental or beneficial to the habitat dependents (Keller et al., 2007). They are a 

cause of the endangerment of 48% of the species listed under the US Endangered 

Species Act (ESA) (Czech and Krausman, 1997; Wilcove et al., 1998), and are 

estimated to cost the US economy more than $120 billions a year (Pimentel, 

2009). Although one can argue that humans are not in a position to morally judge 

their impact on the ecology of the systems, we can all agree that some invasive 

species have become nuisance (Lovell et al., 2006), whereas the extinction of a 

species may come with a price (Wilson et al., 2011). Indeed, the next invader and 

its effects are largely unknown. Similarly, we do not know the effect of the next 

species going extinct. 

Thus, if we are to control the colonization of non-indigenous species that 

are rapidly propagated through human-mediated vectors and become invasive in 

novel habitats (Lovell et al., 2006; Simberloff, 2009), then we need to know how 

the immigration dynamics affect the colonization success. Similarly, if we are to 

                                                           
2
 A version of this chapter has been published. Rajakaruna, H., Potapov, A., Lewis, M., 2013. Impact of 

stochasticity in immigration and reintroductions on colonizing and declining populations. Theoretical 
Population Biology, 85, 38-48. 
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stock declining indigenous populations preventing them from going extinct, or if 

we are to reintroduce extirpated indigenous populations (IUCN, 2010; Snyder et 

al., 1996) that are subject to stochastic factors, then we need to know how the 

immigration dynamics affects their re-colonization success. In this paper, we 

address the aspect of how stochasticity in immigration (propagule flow) affects 

the population dynamics and their outcomes. In an empirical sense, it is the 

randomness in the fluctuation of propagules being discharged or immigrated to 

novel habitats.  

Propagule pressure is a main driver of colonization (Colautti et al., 2006; 

Simberloff, 2009). For example, non-indigenous marine species such as 

diaptomid copepods, Pseudodiaptomus inopinus, P. marinus, and P. forbesi have 

been invading the west coast of North America from their native range in the 

North West Pacific coast through human-mediated vectors such as ship ballast-

water discharge (Cordell et al., 2008). The Canadian Aquatic Invasive Species 

Network (CAISN, n.d.) has developed a research program to study propagule 

pressure and assess risks associated with aquatic invasive species establishment. 

To control unwanted colonization, efforts are made to reduce human-mediated 

immigration (Olenin et al., 2011).  

On reinforcement of populations against going extinct, science-based 

relocation (Sheean et al., 2011), translocation (Weeks et al., 2011), and assisted 

colonization programs (Seddon, 2010) are becoming increasingly popular. For 

example, indigenous species from the Superfamily Diaptomidae, 

Hesperodiaptomus shoshone, have been extirpated from their native habitats in 

alpine lakes after fish-stocking (Sarnelle and Knapp, 2004). Kramer et al. (2008) 

have carried out re-colonization experiments to investigate the constraining 

factors of H. shoshone’s population recovery. To sustain such endangered, 

threatened or declining species, efforts are made to artificially replenish 

populations by captive breeding and stocking (Paragamian and Hansen, 2011; 

Thomas et al., 2010), and to recover extirpated populations, efforts are made to 

reintroduce (IUCN, 2010; Lorenzen et al., 2010). 
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In the contexts of both the spreading of colonizing populations through 

natural or human-mediated propagule pressure, and stocking or reintroduction of 

declining populations, we observe that the dynamics of a population where the 

propagules are flowing into a habitat as immigration in general. Armstrong and 

Seddon (2007) have proposed that the knowledge gained from colonization 

dynamics of invasive species can be used to improve the success of stocking and 

reintroduction programs of declining or extirpating populations.  

Cordell et al. (2009) have sampled large densities of non-indigenous 

species in ballast-water from ships entering Puget Sound. However, most species 

found in the ballast-water discharge have not colonized yet. Numerous control 

methods such as mid oceanic exchange of ballast water (NOAA, 2007; Simard et 

al.,  2011), chemical treatments (Nanayakkara et al., 2011) and temperature 

treatments of ballast-water tanks (Quilez-Badia et al., 2008) are deployed to 

control immigration (Olenin et al., 2011), and thus to minimize colonization risks. 

Yet, not all ships carry the same densities of species at all times. They are subject 

to variation (see data in Cordell et al., 2009). Moreover, there is no guarantee that 

such control methods can reduce risks to zero. Hence, deploying costly methods 

uniformly or arbitrarily to reduce immigration may not be economically optimal 

when the immigration is variable and environmental and demographic 

stochasticity are present. If we know how stochasticity in immigration impacts the 

chances of colonization in the presence of other stochastic factors, then we can 

calibrate the manner in which these treatments should be deployed to make them 

more effective in reducing the invasion risks to acceptable levels. The optimal 

control methods to decrease the spread have been investigated from the economic 

standpoint by Finnoff et al. (2010). 

Declining populations are commonly associated with negative intrinsic 

growth rates given unfavourable environments, and some of these populations are 

stressed by stochastic factors (Morris and Doak, 2002). Few efforts of stocking 

and reintroductions have been successful in sustaining declining and endangered 

populations (Noël et al., 2011; Rasmussen et al., 2009; Schooley and Marsh, 
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2007; Wada et al., 2010). Noël et al. (2011) have indicated that failures of close to 

50% were evident in the reintroduction of 50 populations of 7 wetland species. 

Godefroid et al. (2011) have shown that the causes for 34% of the failures in 

reintroductions were not known, while 8% were due to known unexpected 

changes in the habitats. Some failures have been attributed to the environmental 

stochasticity (Vincenzi et al., 2012). Schaub et al. (2009) has suggested 

incorporating demographic stochasticity in making decisions when to end release 

programs so as to guarantee success.  

Often there is unaccounted stochasticity apparent in the population 

densities and in the timing of stocking and reintroductions (e.g., see data in Shute 

et al., 2005). However, in the presence of environmental and demographic 

variations, we do not yet know how the variation in stocking or reintroduction 

rates will impact the subsequent colonization or re-colonization success. If we 

were to know this, then we could strategize stocking and reintroduction schemes 

to optimize their positive effects. To our knowledge, there have been no analyses 

to date on the effects of variability in stocking, translocations, or reintroductions 

in determining establishment success of declining populations. 

The probabilities associated with colonization and extirpation of 

populations are commonly quantified using stochastic differential equations 

(SDE) and diffusion approximations through Fokker-Planck equations (FPE) 

(Dennis, 2002; Morris and Doak, 2002; Ovaskainen and Meerson, 2010). Dennis 

(2002) has used the Fokker-Planck diffusion method (as in Gardiner, 2004) to 

quantify the probability of a population size first hitting one arbitrary threshold 

before another. Drake and Lodge (2006) have used the same mathematical 

method of first passage probability to quantify the probability of a population first 

becoming a nuisance species before going extinct using a model that accounts for 

continuous immigration, and shown that an increase in the rate of immigration 

increases the probability under stochastic demographic conditions. We call this 

probability the EBE probability, or the probability of population establishment 
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before extinction. However, the impact of stochasticity in immigration on the EBE 

probability has not yet received enough attention.  

Here, the extinction threshold is defined on the assumption that the species 

go functionally extinct below a lower population density. Assumption of the 

existence of such quasi-extinction threshold is standard in population viability 

analyses (Dennis, 2002; Morris and Doak, 2002). However, when the immigration 

is continuous and indefinite in time, we note that any population realization that 

hits even a zero density level (or go extinct) can later replenish from extirpation. 

Of course, the imposition of ecologically meaningful population thresholds on a 

model is only an approximation to the more complex full system. It is certainly 

possible that a population that drops below the extinction threshold can recover 

through stochastic effects alone.  

Taylor and Hasting (2005) have described how a strong demographic 

Allee effect (Courchamp et al., 2008) will force the per capita population growth 

rate to become negative below a low population size threshold. This threshold, 

defined as the Allee threshold, also can be used as an extinction threshold for 

quantifying the EBE probability when the immigration is continued indefinitely. 

This is because, we note that the negative growth rate caused by the demographic 

Allee effect due to individuals being unable to replace themselves, can counteract 

the rate of immigration at low population levels and creates a functional 

extinction threshold. There is empirical evidence to support the assertion that 

populations introduced at a level below a demographic Allee threshold tend to go 

extinct (e.g. Kramer et al., 2008). Kramer et al. (2009) have found substantial 

evidence for Allee effects in animal populations; 69% of 91 studies. There was 

conclusive evidence for a component Allee effect, the demographic Allee effect, 

or both. Twenty two studies showed the presence of the demographic Allee effect, 

in which, seven showed a critical density below which the population growth rate 

was negative, that is, the presence of the strong demographic Allee effect. Yet, 

Gregory et al. (2010) have concluded that there was relatively high potential for 
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the demographic Allee effects in populations they studied, but only few cases 

were observed across many taxa.  

In the case of declining and extirpated populations, where often the 

stocking is carried out only until a population either gets established or is gone 

extinct, we can  investigate the impact of stochasticity in stocking on the EBE 

probability similar to invasive species. Thus, here we define immigration broadly 

as natural and human-mediated introductions through vectors, translocations, 

relocations, and artificial replenishment of populations through captive breeding 

and release to habitats.  

In the context of invasive species (assuming populations of high fitness, or 

having large positive intrinsic growth rates given the environment), we investigate 

how stochasticity in immigration continues to impact the EBE probability of an 

initial population impulse that exceeded the extinction threshold. In the context of 

declining populations (assuming populations of low fitness, or having large 

negative intrinsic growth rates given the environment), we investigate how the 

stochasticity in stocking or reintroduction continues to impact the EBE probability 

of an existing population. To make our model realistic we allow for the 

demographic Allee effect, demographic stochasticity and environmental 

stochasticity in the population dynamics (see Lande et al., 2004 for details) 

although our main focus is the impact of stochasticity in immigration. 

 

5.2. Model 

First, we analyze a deterministic exponential Allee model for the case 

where stochasticity is not present in the immigration. Next, we incorporate 

environmental, demographic, and immigration stochasticity into the model, 

heuristically, and solve the corresponding Fokker-Planck diffusion equation for 

the EBE probabilities for the cases with and without stochasticity in immigration 

under two scenarios: species moving into (A) favourable habitats (i.e., where the 

intrinsic growth rate is large and positive), for example, colonizing high fitness 
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populations as in the case of invasive species, and, (B) unfavourable habitats (i.e., 

where the intrinsic growth rate is large and negative), for example, stocking low 

fitness populations as in the case of endangered, threatened, or declining 

populations, or even colonizing low fitness populations.  

We solve the Fokker-Planck equation (FPE) for the cases incorporating (i) 

all three types of stochasticity (environmental, demographic and immigration) 

using a finite-difference numerical method (Grasselli and Pelinovsky, 2008), and 

the cases specific to (ii) demographic and immigration stochasticity, and (iii) 

immigration stochasticity, analytically. We also derive the equation that yields the 

moments of first passage times for the population first hitting the establishment 

threshold before the extinction threshold, or the time for EBE, which is not found 

in the literature, and analyze the impact of stochasticity in immigration on mean 

time for EBE. 

Deriving SDE heuristically from their counterpart deterministic models 

has been a major concern in theoretical ecology literature. The suitability of the 

SDE formulations, whether to use Ito (Mao, 1997) or Stratonovich (1963), has 

been thoroughly discussed by Turelli (1977) followed by Ricciardi (1986), and 

more recently by Braumann (2007; 2008).  Ricciardi (1986) following up on 

Turelli (1977) has shown that if the system is intrinsically a continuous growth 

process in a random environment, then it is more appropriate to model it using the 

Stratonovich formulation followed by appropriate calculus. Goel and Richer-Dyn 

(2004) have used this approach to investigate stochastic models in biology in the 

case when the underlying processes are continuous in time. If a process is discrete 

in time, then the Ito SDE formulation may be more appropriate (Ricciardi, 1986). 

Population viability analysis models commonly use the Ito formulation (Dennis, 

2002; Morris and Doak, 2002), so as the invasive species study by Drake and 

Lodge (2006). We also used the Ito one. For generality, the results are 

mathematically comparable regardless of which method is used, so that the 

specific method may only be relevant when fitting the model to real data to 

calibrate parameters (Braumann, 2007). 
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5.2.1. Deterministic population model 

We write the growth rate of a population having density x as

pxfdtdx  )(/ , where )(xf  is the average rate of population growth, and p is 

the mean rate of immigration into the population. Function )(xf  can take various 

linear (e.g., density-independent) and non-linear (e.g., density-dependent) forms.  

Here, we do not intend to investigate the case at x=0, or at large values 

limited by the population density. Our modeling focus is to investigate the 

dynamics of a population far below the level of density dependent regulation. 

Thus, we take the linearized form of the model near the low population 

equilibrium (the Allee threshold), where 0/ dtdx (Figure 5-1). Thus, the model 

reduces to a simple Malthusian form, such that, axxf  )( , and thus we write 

paxdtdx  / . Here, λ is the intrinsic growth rate of the population that 

depends on the individuals’ responses to environmental parameters, which was 

defined as rm in Fagan et al. (2010). The parameter a is the virtual rate of 

population loss due to individuals that cannot, on average, replace themselves 

resulting from the demographic Allee effect (the simplest Allee form described in 

Gregory, 2010). Depending on whether 0  (scenario A) demonstrating a high 

fitness, or 0  (scenario B) demonstrating a low fitness, we consider that the 

habitats the species are introduced to, or living in, are either favourable or 

unfavourable to the population on average (Sibly and Hone, 2002). Thus, we 

assume that invading species commonly show λ>0, and endangered or declining 

populations commonly show λ<0. We define the net inflow rate to be apj  . 

Thus, note that a reduces the per capita growth rate to be negative at low 

population densities, and p can counteract a as an opposing force to raise the per 

capita growth rate to be positive (Figure 5-1). 

Figure 5-2a illustrates the situation when habitats are favourable ( 0 , 

scenario A). If the demographic Allee effect is strong (a>p, scenario A1), then the 

per capita growth rate becomes negative for populations below the Allee threshold 

(x< /j ), an unstable equilibrium below which the population eventually tends to 
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zero. For initial values of x> /j , the population tends to any high arbitrary level. 

We note that when pa  the Allee threshold is removed (scenario A2). 

Therefore, for the scenario 0 , the Allee threshold exists only if pa . 

Figure 5-2b illustrates the situation when habitats are unfavourable ( 0 , 

scenario B). If the Allee effect is weak (a<p, scenario B2), then the per capita 

growth rate becomes positive for small x< /j , and negative for x> /j , with x=

/j  be a stable equilibrium. In scenario B1 (a>p), the per capita growth rate 

remains negative as x is varied.  Thus, when 0  (scenario B), the population 

may persist in a low equilibrium density or tend to zero depending on whether 

pa  (scenario B2) or pa  (scenario B1), respectively. The low equilibrium 

density occurs solely due to the forcing by propagules continuously flowing into 

the system and exceeding the negative growth rate caused by the demographic 

Allee effect. 

The two scenarios above, 0 , and 0 , suggest that if pa (scenario 

A1 and B1), we may define a functional extinction threshold that is forced by a 

strong demographic Allee effect, because the negative net per capita growth rate 

of a population near zero drives the population to extinction. By way of contrast, 

scenarios A2 and B2 have positive net per capita growth rates at small population 

levels. Hence, the idea of a functional extinction threshold does not make sense 

for scenarios A2 and B2 when the propagule flow is continuous and indefinite. 

However, in practical situations (such as the stocking of declining populations), 

assuming the existence of an extinction boundary may make sense for all 

scenarios, including A2 and B2, as human intervention can halt propagule flow 

wherever the population hits any arbitrary lower threshold.      

Hence, in the context of colonizing populations (λ>0), the probability of 

population establishing before going extinct (EBE probability) may have 

biological relevance limited to scenarios A1. In the context of endangered 

populations (λ<0), if stocking, translocation, or reintroduction is carried out only 

until the population hits either an establishment or a functional extinction 
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threshold, then EBE probability has a practical relevance in scenarios B1 and B2. 

However, all the scenarios are worth investigating if our interest is quantifying the 

probability of a population size first hitting an arbitrary upper threshold before 

first hitting an arbitrary lower threshold (as in Gardiner, 2004). 

 

5.2.2. Stochastic population model 

Based on the deterministic counterpart, we modeled the corresponding 

SDE heuristically, incorporating environmental, demographic and immigration 

stochasticity. Thus, we write the growth process characterized by the stochastic 

dynamical equation satisfied by the population x as 

dWxdtxdx )()(                                                                              (5.1)      (1) 

(as in Dennis, 2002). Here, we have the infinitesimal mean of the process, 

jxx   )( , and, 
2222)( pde xxx   , where 

2222  andx , pde x   are the 

infinitesimal variances in the population fluctuations corresponding to the 

environment (see Ricciardi, 1986), demography (see Feller, 1951), and 

immigration. Here, ),0(~ dtNdW , or is zero correlated Gaussian noise (Dennis, 

2002). The differential of the diffusion process of x is formulated in terms of Ito 

stochastic integral as in Dennis (2002) and Drake and Lodge (2006). Tire and 

Hanson (1981) studied the case where demographic and environmental 

stochasticity are incorporated together into a SDE population model, which was 

later used by Drake and Lodge (2006) to investigate invasive species populations. 

Here, we further extend the idea to incorporate the immigration stochasticity. 

We note that the processes involving propagules flowing into a system, 

either natural or human-mediated, can be Poisson (e.g., Drury et al., 2007, Jerde 

and Lewis, 2007). In our paper, we assume this processes to be Gaussian allowing 

the immigration to be overdispersed. We assume the same properties of 

stochasticity in immigration in the event of replenishment of declining 

populations by stocking, translocation or reintroduction. Such assumptions also 
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simplify the formulation of the SDE into a form that satisfies the FPE, and can be 

solved analytically for EBE probabilities.  

 

5.2.3. Diffusion approximation for EBE probabilities  

We note that the transition probability density ),( 0 txP  for a population at 

initial position )( 0x and time )( t , given that the final position and time are fixed, 

for Eq. (5.1), satisfies the backward FPE. Solving the backward FPE, we can 

calculate the probability of a population remaining between, or exiting two fixed 

population levels, such as establishment and extinction thresholds. Thus, we can 

write the backward FPE that satisfies the SDE in Eq. (5.1) as   

),()(
2

1
),()(),( 000 txPxBtxPxAtxP xxxt  ,                               (5.2)    (2) 

where the diffusion coefficient is )(2)( 2

pde xxxB   , and 



2e e
2 , 

22 dd  
 
and 

22 pp    are the spectral densities of the zero average Gaussian 

processes corresponding to environmental, demographic, and immigration 

stochasticity, and the drift coefficient is )()( xxA  .  

We define  broadly as the probability of the population first hitting 

an arbitrary upper threshold  dx  before first hitting an arbitrary lower threshold 

 ex  assuming initial position dx > 0x > ex . Here, dx and ex can be interpreted as the 

establishment and the extinction thresholds in the ecological context, and thus, 

)( 0xG can be defined as the EBE probability. The  satisfies the time-

homogeneous version of Eq. (5.2). That is, 

0)()(
2

1
)()( 0000 000

 xGxBxGxA xxx
                     (5.3) 

with boundary conditions 1)( dxG , and 0)( exG  (Gardiner, 2004). We solve 

the general case above using a finite-difference numerical method (Grasselli and 

Pelinovsky, 2008).  

)( 0xG

)( 0xG
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The analytical solution for the special case of the FPE in Eq. (5.3), with 

demographic and immigration stochasticity, yields the EBE probability 

)()(

)()(
)( 0

0

ed

e

xx

xx
xG




                                                                           (5.4)      (4)  

with initial population size at x0. Here, 










 )(;1,)()(

211 cbx
b

kkFcbxxE i

k

ii


,

2, 2 22 /σ c/σb pd   , 1
2











b

j

b

c
k


, and xi denotes x0, xe, and xd. Here, 11 F  is 

the Kummer confluent hypergeometric function of the first kind (Slater, 1960) 

given by 
2

2
1 1

2

( )( )
( , , ) 1 ......

( ) 2! ( ) !

n

n

n

a za zaz
F a b z

b b b n
      s.t., ( 1)( 2)......( )na a a a a n     

(see Appendix 5.1 for derivation). An analytical solution for the special case of 

Eq. 5.3, with immigration stochasticity alone, yields the EBE probability by Eq. 

5.4 with 












 






p

i
zi

xj
ErfxE )(  for initial population size at x0 (see Appendix 5.1 

for derivation). Here, Erfz is the error function (Abramowitz and Stegun, 1972), 

and xi takes subscript values i=0, e, d.  

 

5.2.4. The point of changing the direction of impact of immigration 

stochasticity on EBE probability 

The point at which the direction of impact of stochasticity in immigration 

on the EBE probability switches, satisfies the condition 0
)( 0 





p

xG


. Thus for the 

case where immigration stochasticity alone is present (Eq. 5.4), the equation to be 

satisfied by the parametric combination is given by 

   
   

0
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Here, 
 

2

2

p

i
i

xj
k




 , and 













 






p

i
zi

xj
ErfxE )( , with subscript values i=0, e, d. 

Here, Erfz is the error function (Abramowitz and Stegun, 1972), and xi takes 

subscript values i=0, e, d.  

 

5.2.5. First passage time 

We define ),( 0xxT dn as the n
th

 moment of the first passage time, given that 

the population size first hits an arbitrary upper threshold, dx , before an arbitrary 

lower threshold, ex . As before, dx and ex can be interpreted as establishment and 

extinction boundaries in ecology, thus ),( 0xxT dn can be defined as the n
th

 moment 

of first passage time for EBE assuming the initial position of the population size is 

at dx > 0x > ex  .  

Thus, the function ),( 0xxT dn satisfies 

),()(),()()(
2

1
),()()( 010000000 000

xxTxnGxxTxGxBxxTxGxA dndnxxdnx     (5.6) 

(see Appendix 5.2 for the derivation). The boundary condition at dxx 0  is 

determined by 1)( dxG , 0),( ddn xxT , and hence giving 0),()( ddnd xxTxG . 

The boundary condition at exx 0  is determined by 0)( exG , and hence giving 

0),()( edne xxTxG . The cases n=1,2 yield the mean and the second moment of 

first passage times, respectively. Thus, the above equation for the special case n=1 

yields the mean time for EBE, which is given in Gardiner (2004). However, the 

general equation given in Eq. (5.6) with the boundary conditions is not found in 

the literature.  
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We solve the mean time for EBE iteratively using a finite-difference 

numerical method (Grasselli and Pelinovsky, 2008) by incorporating the solutions 

given in Eq. (5.4) for )( 0xG in Eq. (5.6).  

 

5.3. Results 

Solutions to the time-homogeneous Eq. (5.3), based on the range of 

parameter values given, show that increased stochasticity in immigration 

decreases the EBE probability for populations of high fitness, or populations 

introduced to favourable habitats (λ>0) (e.g. invasive populations) (Figure 5-3). 

Increased stochasticity in immigration increases the EBE probability of 

populations in low fitness, or in unfavourable habitats (λ<0) (e.g. declining 

populations) further amplifying the effect caused by the environmental and 

demographic stochasticity on the EBE probability. The effect is generally higher 

at low-moderate environmental and demographic stochasticity, and greater when 

the initial population size is nearing the extinction threshold for λ>0, and greater 

when the initial population size is nearing the establishment threshold for λ<0 

(Figure 5-4).  

Figure 5-5a shows that the stochasticity in immigration, based on the 

range of parameter values given, decreases the EBE probability for scenario B2 

(λ<0, j>0) when j is large and positive (for e.g., resulting from large p compared 

to demographic Allee effect a), given that stocking is ceased when the population 

hits a threshold. Stochasticity in immigration increases the EBE probability when 

j is large and negative (for e.g., resulting from large a compared to p).  

However, Figure 5-5b shows that the point at which the direction of the 

impact of stochasticity in immigration on EBE probability changes sign is shifting 

towards negative λ given that j is positive and large, and shifting towards positive 

λ given that j is negative and large. This suggests that the direction of the impact 

of stochasticity in immigration on EBE probability cannot be determined by the 
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sign of the intrinsic growth rate or the net propagule flow j alone when their signs 

are opposite.  

Figure 5-6, drawn based on the cases satisfying Eq. (5.5), indicates that the 

stochasticity in immigration decreases the EBE probability when λ>0 and j>0 

(scenario A2), or, when j is positive and large enough compared to negative λ, or λ 

is positive and large enough compared to negative j. That is, in general, when the 

net population growth rate remains positive.  The stochasticity in immigration 

increases the EBE probability when λ<0 and j<0, or when λ is negative and large 

enough compared to positive j, or j is negative and large enough compared to 

positive λ. That is, in general, when the net population growth rate remains 

negative. Thus, we note that when λ and j have opposite signs, we cannot predict 

the direction of the impact of immigration stochasticity on the EBE probability by 

examining their signs alone unless we calculated the critical point at which the 

switching occurs.  

It follows that, in general, when the EBE probability becomes large, either 

due to comparatively large and positive intrinsic growth rate, or large and positive 

mean immigration rate, the stochasticity in immigration tends to decrease the EBE 

probability. When the EBE probability becomes small due to comparatively large 

and negative intrinsic growth rate or low immigration rates with large Allee 

effect, then the stochasticity in immigration tends to increase the EBE probability.  

Figure 5-7, drawn based on Eq. (5.6), indicates that the log mean time for 

EBE decreases when the immigration is stochastic, regardless of whether the 

population is introduced to, or existing in a favourable (λ>0) or an unfavourable 

(λ<0) habitat. This effect, simulated for the case with environmental stochasticity, 

is qualitatively the same had we incorporated the demographic stochasticity.  

 

5.4.  Discussion 

Our results show that, in general, the stochasticity in high immigration 

rates, exceeding the demographic Allee effect, decreases the establishment before 
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extinction (EBE) probability of populations that are of high fitness, or introduced 

to favourable habitats, or having high positive intrinsic growth rates (λ>0), such as 

the colonizing invasive populations. Thus, it counteracts the increased EBE 

probability due to high mean immigration rates shown by Drake and Lodge 

(2006). This decreased EBE probability is further decreased by the environmental 

and the demographic stochasticity. The decrement is larger when the population is 

moderately closer to the extinction threshold. However, the impact of 

stochasticity in low immigration rates, if lower than the demographic Allee effect, 

on the EBE probability depends on how favourable is the habitat to the 

population, or how large is the positive λ. 

In declining populations, where λ<0, the stochasticity in low immigration 

rates increases the EBE probability. Gonzales and Holt (2002) have shown a 

similar effect of immigration stochasticity at low immigration rates on reinforcing 

populations in ecological sinks. However, if the immigration rate is large, 

exceeding the demographic Allee effect, then the impact of the stochasticity in 

immigration depends on how unfavourable is the habitat to the population, or how 

large is the negative λ.   

However, we indicated that the EBE probability can be defined 

ecologically meaningfully when the demographic Allee effect (if exists) exceeds 

the immigration rate allowing a functional extinction threshold to exist, or 

otherwise, if the immigration can be stopped by an intervention after the 

population reached a lower threshold below which the extinction is the most 

likely scenario. If the immigration rate exceeds the demographic Allee effect 

removing the existence of a functional extinction threshold, continuation of 

immigration then results in the population to replenish from any lower threshold 

driving the population to become colonized eventually. As we have little control 

over the invasive species propagating into new habitats, especially in the cases 

such as propagules of marine invasive copepods discharged to ecologically 

favourable habitats through ship ballast water (Cordell el at., 2008; 2009), the 

above scenario of inevitable-colonization can often be a reality. Under such 
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scenario, what remains to be of any interest is the mean time for the population to 

establish (Potapov and Rajakaruna, 2013).   

The impact of stochasticity in immigration on the EBE probability is 

qualitatively and quantitatively the same as the probability of a population first 

hitting an arbitrary upper threshold before an arbitrary lower threshold 

regardless of the knowledge of the ecological nature of the boundaries. Thus, the 

results of the EBE probabilities are the same as the first passage probabilities. It 

follows that if the immigration of invasive species is made to fluctuate by human-

mediation, while keeping the average immigration rate be the same, then we 

expect the chance that the population first reaching a high population level (and 

get established) before a low level (and go extinct) would be less than the case 

had the flow of propagules been steady (or uniform, or without stochasticity). 

However, if a functional extinction threshold did not exist (at the given rate of 

immigration and the demographic Allee effect), then the population eventually 

gets colonized inevitably regardless of the fluctuations we would create in the 

flow of propagules or in the immigration. Therefore, an advantage for an invasive 

species management will be the case if an extinction threshold does exist without 

our knowledge. Thus, implementing strategies to fluctuate the expected propagule 

flow (as opposed to keeping it steady or uniform) regardless of the knowledge of 

the existence of an extinction threshold seems benevolent to the management as it 

creates a chance to reduce the probability of invasive population hitting high 

thresholds creating windows for establishment.  

Hence, the impact of stochasticity in immigration on colonization may be 

incorporated into the decision-making formula for stochastic controlling of 

invasions. For example, invasive marine species propagated through ship ballast-

water can be managed optimally through stochastic monitoring and stochastic 

treatment efforts: mid oceanic exchange of ship ballast-water (NOAA, 2007; 

Simard et al., 2011), chemical treatments (Nanayakkara et al., 2011) and 

temperature treatments of ballast-water tanks (Quilez-Badia et al., 2008). 

Although, the policies can be designed and implemented to lower the mean 
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discharge rate of propagules, as an alternative, the same result can be theoretically 

obtained by increasing the stochasticity in the propagule flow rate while keeping 

the mean discharge rate the same. This stochastic control strategy can produce 

high benefits (effects) over costs ratio by deploying the same resources, incurring 

the same costs, while increasing the effect, as an alternative to reducing the mean 

discharge rate.  

The idea of stochastic monitoring and treatment suggests random checking 

and treatment of ship-ballast water discharged by the ships with variable intensity. 

While monitoring and treatment reduce the propagule flow rate, random 

monitoring and treatment enhances the stochastic effect of propagule flow rate, 

thereby decrease the EBE probability of invasives compared to the case where 

monitoring and treatment is uniform. Therefore, if we keep the cost of the 

resources deployed for random checking and treatment as same as the case of 

uniform checking and treatment, then the random approach should be more cost 

effective. This is a hypothesis we could test based on the model prediction.             

Programs are implemented to stock or reintroduce declining populations 

through captive breeding and release, and artificially replenish populations before 

they go extinct (Bell et al., 2008; Fraser, 2007; Seddon et al., 2007). Our results 

indicate that increased stochasticity in stocking (or translocations, or 

reintroductions) increases the EBE probability in declining populations under 

stochastic environments and demographic conditions compared to the case when 

stocking is steady (or uniform), given that either the intrinsic growth rate is large 

and negative, or the stocking rate lower than the demographic Allee effect. This 

effect is stronger when the population is nearing the establishment threshold.  

However, when the mean stocking rate becomes large resulting in a high 

EBE probability, then the stochasticity, in turn, can decrease the EBE probability. 

This suggests that the direction of the impact of stochasticity in stocking on the 

EBE probability depends on the mean rate of stocking in relation to the 

demographic Allee effect and the intrinsic growth rate of the population. Thus, if 

we are to make a decision as to whether to amplify or de-amplify the stochasticity 
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in stocking in order to increase the EBE probability under practical circumstances, 

then we will need to assess the critical point at which the direction of the impact 

on EBE switches as we have shown under the results section. However, it may be 

more effective to begin reintroductions with regulated stochasticity, and later turn 

it into a steady flow with subsequent increase in population densities. Under the 

right conditions, increasing the stochasticity at a low average stocking rate may be 

a low cost strategy compared to increasing the average stocking rate, as both may 

yield the same result.  

Studies that quantified the effect of stochasticity in reintroductions, 

translocations, or stocking on population establishment success have not been 

found in the literature. Apparently, some data in reintroduction and stocking 

studies (e.g., Verspoo and Leaniz, 1997; Shute et al., 2005) show unplanned 

variations in the release of propagules. Shute et al. (2005) indicated reintroduction 

success of 4 species of fishes in Abrams Creek, Tennessee, apparently indicating 

high variations in stocking. Similarly, Verspoo and Leaniz (1997) indicated 

stocking success of Scottish Atlantic salmon in two Spanish rivers. Yet, their data 

do not seem to have enough information to be able to test the effect of 

stochasticity in immigration on the establishment success. A well-designed 

experiment can be implemented to test our hypothesis more concretely. 

We have also found that the stochasticity in immigration decreases the 

mean time for a population to establish before going extinct (mean time for EBE) 

for both high and low fitness populations. Potapov and Rajakaruna (2013) show a 

scenario where populations tunnel to establishment through otherwise impossible 

strong Alee effect by means of stochasticity in low immigration rates. If not for 

the stochasticity in immigration, environmental or demographic, they show that 

populations having strong Allee effect can never colonize at small rates of 

immigration. Stochasticity can mask the Allee effect in the measurements 

manifesting in the populations without the Allee effects. 

Thus, the management of invasive species has an interesting theoretical 

trade-off as to whether to lower the EBE probability, and thus risks, by increasing 

the immigration stochasticity, or to increase the mean time for the population to 
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establish by decreasing the immigration stochasticity after a population is detected 

in a novel habitat. In the case of stocking declining populations, we have observed 

that an increase in stochasticity in stocking decreases the mean time for the 

population to establish. Thus, such strategy is also complementing the increase in 

probability of the population establishing before going extinct when the mean 

stocking rate is low. However, care must be taken because the risks of these 

decisions are high as the mean stocking rate can become large without our 

knowledge far exceeding the demographic Allee effect, thus causing the 

stochasticity in stocking to eventually suppress the EBE probability. The 

knowledge of the critical point at which the impact on the EBE probability 

switches direction is crucial in making those decisions. However, we need to test 

our hypotheses using empirical studies before application.  

In a nutshell, the study suggests that stochasticity in immigration, together 

with environmental and the demographic stochasticity, suppresses the 

colonization success of invading populations, yet increases the reestablishment 

success of declining populations in general. Either way, it seems to serve the 

interests of the ecological management, and helps producing low cost strategies. 

Further developments may include improving the model to reflect periodic 

variation in environmental forcing factors with stochasticity in immigration, 

which may be a scenario much evident in marine habitats. It may enable us to 

analyze the stochastic impacts on the cases with time-dependent introductions.  
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Figure 5-1  Population models )(xf
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 , and, pxf
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 )( , with dashed lines for 

the cases linearized at 0
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a) Scenario A (favourable habitats where λ>0) 

     

 

 

                  

 

          

 

 

 

b) Scenario B (unfavourable habitats where λ<0) 

 

 

Figure 5-2 Dynamics of deterministic population model 
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  (a.1) x0=30,  0d       (b.1) x0=30, 0e  

     

  (a.2)   x0=90, 0d        (b.2) x0=90, 0e  

 

Figure 5-3   Probability of population establishment before extinction, G(x0), with respect 

to increasing (a) environmental stochasticity, and (b) demographic stochasticity. Initial 

population size is at x0. Net propagule flow rate j=-4 (such that p<a). (A1) favourable 

habitats (λ=0.4); (B1) unfavourable habitats (λ=-0.4). Red: propagule flow, 0p  (that 

is, without propagule flow stochasticity); green: 10p ; blue: 20p . Other 

parameters are: extinction threshold xe=10, establishment threshold xd =100. Arrows 

show the direction of the impact of stochasticity in propagule flow on the EBE 

probability. 
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Figure 5-4   Probability of population establishment before extinction, G(x0), with respect 

to increasing initial population size at x0. (A1) favourable habitats (λ=0.4), (B1) 

unfavourable habitats (λ=-0.4). Net propagule flow rate j=-4 (such that p<a). Red: 

propagule flow, 0p (that is, without propagule flow stochasticity); green: 10p ; 

blue: 20p . Other parameters are: environmental stochasticity, 0e , demographic 

stochasticity 0d , extinction threshold xe=10, establishment threshold xd =100. 

Probability converges to the diagonal dotted line for higher p . Note that for the case of 

propagule flow stochasticity alone is present, 
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line, for p  (Appendix 5.1).  Arrows show the direction of the impact of 

stochasticity in propagule flow on the EBE probability. 
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Figure 5-5  (a) Probability of population establishment before extinction, G(x0), with 

respect to increasing initial population size. Here, j=-20 (dotted lines, such that p<a: 

scenario 1), and j=20 (solid lines, such that p>a:  scenario 2), λ=-0.3. green: 10p ; 

blue: 20p . This shows the effect of stochasticity in propagule flow on the EBE 

probability when j is turning to positive (p>a) from negative (p<a), that is when p is 

increased from a small value given that the demographic Allee effect, a, is fixed. (b) 

G(x0) with respect to intrinsic growth rate for the same scenarios as above, with x0=40. 

Dashed lines depict the case for j=0 (that is, p=a). Circled are the points at which the 

direction of the impact of propagule flow stochasticity on the EBE probability changes 

sign. For both illustrations above, the other parameters are: environmental stochasticity, 

0e , demographic stochasticity 0d , extinction threshold xe=10, establishment 

threshold xd =100.  Arrows show the direction of the impact of stochasticity in propagule 

flow on the EBE probability. 
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Figure 5-6   The solid line (which is slightly non-linear) depicts the parametric 

combination of intrinsic growth rate (λ) and net propagule flow rate (j) at which the 

direction of the impact of stochasticity in propagule flow on EBE probability changes 

sign satisfying Eq. (5.5). Shaded area depicts the combinations where the stochasticity in 

propagule flow increases the EBE probability, non-shaded area depicts where it decreases 

the EBE probability. When λ and j take opposite signs, whether the EBE probability 

increases or decreases depends on their specific values. The other parameters are: 

environmental stochasticity, 0e , demographic stochasticity, 0d , propagule flow 

stochasticity, 5p , extinction threshold xe=10, establishment threshold xd=100.  

 

 

 

 

 

 

 

 

 

 

-0.5 0 0.5
-20

-10

0

10

20

Net 

propagule 

inflow rate 

(j=p-a) 

λ-intrinsic growth rate 



157 
 

     

      (a) Scenario A1       (b) Scenario B1 

 

Figure 5-7  Mean time for population establishment before extinction, ),( 0xxT dn , with 

respect to increasing environmental stochasticity. (a) In favourable habitats (λ=0.4, 

x0=30). (b) In unfavourable habitat (λ=-0.4, x0=90). Red: propagule flow stochasticity, 

5p ; blue:
 

10p ; green:
 

20p . Other parameters are: extinction threshold 

xe=10, establishment threshold xd =100, and net propagule flow rate j=-4. Arrows show 

the direction of the impact of stochasticity in propagule flow on log mean time to EBE. 

 

5.5. References 

Abramowitz, M., and Stegun, I.A., 1972. Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables. Dover, New York, p. 260. 

Armstrong, D.P., Seddon, P.J., 2007. Directions in reintroduction biology. TRENDS in 

Ecology and Evolution 23(1), 20-25. 

Bell, J., Leber, K.M., Blankenship, H.L., Loneragan, N.R., Masuda, R. 2008. A new era 

for restocking, stock enhancement and sea ranching of coastal fisheries resources. 

Reviews in Fisheries Science 16(1–3), 1–9. 

Braumann, C.A., 2007. Ito versus Stratonovich calculus in random population growth. 

Mathematical Biosciences 206, 81–107. 

Braumann, C.A., 2008. Growth and extinction of populations in randomly varying 

environments. Computers and Mathematics with Applications 56(3), 631-644. 

0.2 0.4 0.6
-1

0

1

2

3

0.2 0.4 0.6
-1

0

1

2

3

Log mean 

time to 

EBE 

e  -environmental stochasticity e  -environmental stochasticity 

http://www.sciencedirect.com/science/journal/08981221


158 
 

CAISN, 2011. Canadian Aquatic Species Network, Retrieved from: 

http://www.caisn.ca/en/research-overview.php. 

Colautti, R.I., MacIsaac, H.J., 2004. A neutral terminology to define ‘invasive’ species. 

Diversity and Distributions 10, 135–141. 

Colautti, R.I., Grigorovich, I.A., MacIsaac, H.J., 2006. Propagule pressure: a null model 

for biological invasions. Biological Invasions 8(5), 1023-1037. 

Cordell, J.R., Bollens, S.M., Draheim, R., Sytsma, M. 2008. Asian copepods on the 

move: recent invasions in the Columbia-Snake River system. ICES Journal of Marine 

Science 65(5), 753-758. 

Cordell, J.R., Lawrence, D.J., Ferm, N.C., Tear, L.M., Smith, S.S., Herwig, R.P., 

2009. Factors influencing densities of non-indigenous species in the ballast water of ships 

arriving at ports in Puget Sound, Washington, United States. Aquatic Conservation: 

Marine and Freshwater Ecosystems 19, 322–343. 

 

Courchamp, F., Berec, L., Gascoigne, J., 2008. Allee Effect in Ecology and Conservation. 

Oxford University Press, p. 272. 

Czech, B., Krausman, P., 1997. Distribution and causation of species endangerment in the 

United States. Science 277, 22. 

Dennis, B., 2002. Allee effect in stochastic populations, Oikos 96, 389-401. 

Drake, J.M., Lodge, D.M., 2006. Allee effect, propagule-flow and the probability of 

establishment: risk analysis for biological invasions, Biological Invasions 8, 365-375. 

Drury, K.L.S., Drake, J.M., Lodge, D.M., Dwyer, G., 2007. Immigration events dispersed 

in space and time: Factors affecting invasion success, Ecological Modeling 206(1-2), 63-

78. 

Fagan, W.F., Lynch, H.J., Noon, B.R., 20 10. Pitfalls and challenges of estimating 

population growth rate from empirical data: consequences for allometric scaling relations. 

Oikos 119, 455–464. 

Feller, W., 1951. Diffusion process in genetics. Proceedings of Second Berkeley 

Symposium on Mathematics, Statistics and Probability, p. 227-246. 

Finnoff, D., Potapov, A., Lewis, M.A., 2010. Control and the management of a spreading 

invader. Resource and Energy Economics 32, 534–550. 

Fraser, D.J., 2007. How well can captive breeding programs conserve biodiversity? A 

review of salmonids. Evolutionary Applications 1(4), 535-586. 

Gardiner, C.W., 2004. Handbook of Stochastic Methods: for Physics, Chemistry and the 

Natural Sciences. Springer-Verlag, NY, p. 80-143. 

Godefroid, S., Piazza, C., Rossi, G., Buord, S., Stevens, A.D., Aguraiuja, R., Cowell, C., 

Weekley, C.W., Vogg, G., Iriondo, J.M., Johnson, I., Dixonm, B., Gordon, D., 

Magnanon, S., Valentin, B., Bjureke, K., Koopman, R., Vicens, M., Virevaire, M.,  

http://ualberta.worldcat.org/title/asian-copepods-on-the-move-recent-invasions-in-the-columbia-snake-river-system-usa/oclc/356412617&referer=brief_results
http://ualberta.worldcat.org/title/asian-copepods-on-the-move-recent-invasions-in-the-columbia-snake-river-system-usa/oclc/356412617&referer=brief_results
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDrury,%2520K.L.S.%26authorID%3D9839460100%26md5%3Dae4decde42de38b5e16c63d275b3ee6b&_acct=C000051251&_version=1&_userid=1067472&md5=59840a3c260e7bd50eaa00af415a48ea
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDrake,%2520J.M.%26authorID%3D7201816666%26md5%3Db4ec223038633d0519e0feaebacfb2d9&_acct=C000051251&_version=1&_userid=1067472&md5=5d8f83f974b6661eab4b7b2405da3ba7
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLodge,%2520D.M.%26authorID%3D7101657153%26md5%3D1849e16e7b436702931249278172f427&_acct=C000051251&_version=1&_userid=1067472&md5=6252650813c5c5561757e46f32820c49
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDwyer,%2520G.%26authorID%3D7005887487%26md5%3Dd10a5a362eec085c735137d7405739f2&_acct=C000051251&_version=1&_userid=1067472&md5=f1d0991180c44d54d80c7a7d988dd399
http://www.sciencedirect.com/science/journal/03043800
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0304380007X04423&_cid=271743&_pubType=JL&view=c&_auth=y&_acct=C000051251&_version=1&_urlVersion=0&_userid=1067472&md5=bb921dde87bb104f3951cc650d47ea6b


159 
 

Goel, N.S., Richter-Dyn, N., 2004. Stochastic Models in Biology. Academic Press, NY, 

p.73-99. 

Gonzalez, A., Holt, R.D.. 2002. The inflationary effects of environmental fluctuations in 

source–sink system, Proceedings of the National Academy of Sciences 99(23), 14872-

14877. 

Grasselli, M., Pelinovsky, D., 2008. Numerical Mathematics. Johnes and Bartlett 

Publishers, Toronto, p. 511-574. 

Gregory, S.D., Bradshaw, C.J.A., Brook, B.W., Courchamp, F., 2010. Limited evidence 

for the demographic Allee effect from numerous species across taxa. Ecology 91(7), 

2151–2161. 

IUCN, 2010. Global Re-introduction Perspectives: Additional case-studies from around 

the globe, IUCN/SSC Re-introduction Specialist Group & Environment Agency-ABU 

DHABI, p. 349. 

Jerde, C.L., Lewis, M.A., 2007.Waiting for Invasions: A Framework for the Arrival of 

Nonindigenous Species. American Naturalist 170(1), 1-9. 

Keller, R.P,  Lodge, D.M., Finnoff, D.C., 2007.  Risk assessment for invasive species 

produces net bioeconomic benefits. PNAS 104(1), 203-207. 

Kramer, A., Sarnelle, O., Knapp, R.A., 2008. Allee effect limits colonization success of 

sexually reproducing zooplankton. Ecology 89, 2760–2769. 

Kramer, A.M., Dennis, B., Liebhold, A.M., Drake, J.M., 2009. The evidence for Allee 

effects. Population  Ecology 51, 341–354. 

Lande, R., Engen, S., Saether, B.H., 2004. Stochastic Population Dynamics in Ecology 

and Conservation. Oxford University Press, Oxford, p. 220. 

Lockwood, J.L., Cassey, P., Backburn, T., 2005. The role of propagule flow in explaining 

species invasions, Trends in Ecology and Evolution 20, 223-228. 

Lorenzen, K., Leber, K.M., Blankenship, H.L. 2010. Responsible approach to marine 

stock enhancement: An update.  Reviews in Fisheries Science 18(2), 189–210. 

Lovell, S.J., Stone, S.F., Fernandez, L., 2006. The economic impacts of aquatic invasive 

species: A review of the literature. Agricultural and Resource Economics Review 35(1): 

195–208. 

Mao, X., 1997. Stochastic Differential Equations and Applications. Horwood Publishing 

Limited, England, p 294. 

 

Morris, W.F., Doak, D.F., 2002.Quantitative Conservation Biology: Theory and Practice 

of Population Viability Analysis, Sinauer Associates, Inc. Publishers, p. 480. 

 

Nanayakkara, K.G.N., Zheng, Y., Alam, A.K.M.K., Zou, S., Chen, J.P., 

2011.Electrochemical disinfection for ballast water management: Technology 

development and risk assessment. Marine Pollution Bulletin 63, 119–123. 



160 
 

NOAA, 2007. Current State of Understanding about the Effectiveness of Ballast Water 

Exchange (BWE) in Reducing Aquatic Nonindigenous Species (ANS) Introductions to 

the Great Lakes Basin and Chesapeake Bay, USA: Synthesis and Analysis of Existing 

Information, Technical Memorandum GLERL-142, National Oceanic and Atmospheric 

Administration, p. 127. 

Noël, F., Prati, D., van Kleunen, M., Gygax, A., Moser, D., Fischer, M., 2011. 

Establishment success of 25 rare wetland species introduced into restored habitats is best 

predicted by ecological distance to source habitats. Biological Conservation 144, 602–

609. 

Olenin, S., Elliott, M., Bysveen, I., Culverhouse, P.F., Daunys, D., Dubelaar, G.B.J., 

Gollasch, S., Goulletquer, P., Jelmert, A., Kantor, Y., Mezeth, K.B., Minchin, D., 

Occhipinti-Ambrogi, A., Olenina, I., Vandekerkhove, J., 2011. Recommendations on 

methods for the detection and control of biological pollution in marine coastal waters. 

Marine Pollution Bulletin 62 (12), 2598–2604. 

 

Ovaskainen, O., Meerson, B., 2010. Stochastic models of population extinction. Trends in 

Ecology and Evolution 25(11), 643-652. 

Paragamian, V.L., Hansen, M.J., 2011. Stocking for rehabilitation of burbot in the 

Kootenai River, Idaho, USA and British Columbia, Canada. Journal of Applied  

Ichthyology 27 (S.1), 22–26. 

Pimentel, D., 2009. Invasive plants: Their role in species extinctions and economic losses 

to agriculture in the USA, In: Intergit (Ed.), Management of Invasive weeds. Springer, p. 

1-7.   

Polyanin, A.D., Zaitsev, V.F. 2003. Hand book of exact solutions to ordinary differential 

equations. Chapman and Hall/CRC, p. 455.    

Potapov, A., Rajakaruna, H., 2013. Allee threshold and stochasticity in biological 

invasions: Colonization time at low propagule pressure, Journal of Theoretical Biology. 

http://dx.doi.org/10.1016/j.jtbi.2013.07.031. 

 

Quilez-Badia, G., McCollin, T., Josefsen, K.D., Vourdachas, A., Gill, M.E., Mesbahi, E., 

Frid, C.L.J., 2008. On board short-time high temperature heat treatment of ballast water: 

A field trial under operational conditions. Marine Pollution Bulletin 56, 127–135. 

Rasmussen, J.E., Belk, M.C., Pec, S.L., 2009. Endangered species augmentation: a case 

study of alternative rearing methods. Endangered Species Resources 8, 225–232. 

Ricciardi, L.M., 1986. Stochastic population theory: Diffusion processes, In: Hallam, 

T.G., Levin, S.A. (Eds.), Mathematical Ecology: An Introduction. Springer-Verlag, New 

York,  p. 191-236. 

Sanderson, B.L., Barnas, K.A., Rub, A.M.W., 2009. Nonindigenous species of the pacific 

northwest: An over looked risk to endangered salmon? BioScience 59, 245–256. 

Sarnelle, O., Knapp, R.A., 2004. Zooplankton recovery after fish removal: limitations of 

the egg bank. Limnology and Oceanography 49, 1382–1392. 



161 
 

Schaub, M., Zink, R., Beissmann, H., Sarrazin, F., Arlettaz, R., 2009. When to end 

releases in reintroduction programmes: demographic rates and population viability 

analysis of bearded vultures in the Alps. Journal of Applied Ecology 46, 92–100.  

Schooley, J.D., Marsh, P.C., 2007. Stocking of endangered razorback suckers in the 

lower Colorado river basin over three decades: 1974-2004. North American Journal of 

Fisheries Management 27(1), 43-51. 

Seddon, P.J., 2010. From reintroduction to assisted colonization: Moving along the 

conservation translocation spectrum. Restoration Ecology 18(6), 796–802.  

Seddon, P.J.,  Armstrong, D.P., Maloney, R.F., 2007. Developing the science of 

reintroduction biology. Conservation Biology 21(2), 303–312. 

Sheean, V.A., Manning, A.D., Lindenmayer, D.B., 2011. An assessment of scientific 

approach towards species relocation in Australia, Austral Ecology 37, 204–215. 

Shute, J.R., Rakes, P.L., Shute, P.W., 2005. Reintroduction of Four Imperiled Fishes in 

Abrams Creek, Tennessee. South Eastern Naturalist 4(1), 93–110. 

Sibly, R.M., Hone, J., 2002. Population growth rate and its determinants: An overview. 

Philosophical Transactions of Royal Society B 357, 1153–1170. 

Simard, N., Plourde, S., Gilbert, M., Gollasc, S., 2011. Net efficacy of open ocean ballast 

water exchange on plankton communities. Journal of Plankton Research 33 (9), 1378-

1395. 

Simberloff, D., 2009. The role of propagule  pressure in biological invasions. Annual  

Review of Ecology Evolution and Systematics 40, 81–102. 

Slater, L.J., 1960. Confluent Hypergeometric Functions. Cambridge Univ. Press, p. 247. 

Snyder, N.F.R., Derrickson, S.R., Beissinger, S.R., Wiley, J.W., Smith, T.B., Toon, 

W.D., Miller, B., 1996. Limitations of captive breeding in endangered  species recovery. 

Conservation Biology 10(2), 338-348. 

Sorte, C.J.B., Williams, S.L., Carlton, J.T., 2010. Marine range shifts and species 

introductions: Comparative spread rates and community impacts. Global Ecology and 

Biogeography 19, 303–316. 

Stratonovich, R.L., 1963. Topic in Theory of random Noise, Vol I. Gordon and Breach, 

NY, p. 610. 

Taylor, C.M., Hasting, A., 2005. Allee effect in biological invasions. Ecological Letters 

8, 895-908. 

Thomas, G.R., Taylor, J., de Leaniz, C.G., 2010. Captive breeding of the endangered 

freshwater pearl mussel Margaritifera margaritifera. Endang. Species. Res. 12, 1–9. 

Tier, C., Hanson, F.B., 1981. Persistence in density dependent stochastic populations. 

Mathematical Biosicence 53, 89-117. 

Turelli, M. 1977. Random environments and stochastic calculus, Theoretical Population 

Biology 12, 140-l 78. 



162 
 

Vale´ry L., Fritz, H., Lefeuvre, J., Simberloff, D., 2008. In search of a real definition of 

the biological invasion phenomenon itself. Biological Invasions 10, 1345–1351. 

Vanderborght, T., 2011. How successful are plant species reintroductions? Biological 

Conservation 144, 672–682. 

Verspoor,  E., de Lea´niz, C.G., 1997. Stocking success of Scottish Atlantic salmon in 

two Spanish rivers. Journal of Fish Biology 51, 1265–1269. 

Vincenzi, S., Crivelli, A.J., Jesensek, D., de Leo, G.A., 2012. Translocation of stream-

dwelling salmonids in headwaters: insights from a 15-year reintroduction experience. 

Reviews of Fish Biology and Fisheries 22, 437–455. 

Wada, T., Yamada, T., Shimizu, D., Aritaki, M., Sudo, H., Yamashita, Y., Tanaka, M., 

2010. Successful stocking of a depleted species, spotted halibut Verasper variegatus, in 

Miyako Bay, Japan: evaluation from post-release surveys and landings, Marine 

Ecological Progress Series 407, 243-255.  

Weeks, A.R., Sgro, C.M., Young, A.G., Frankham, R., Mitchell, N.J., Miller, K.A., 

Byrne, M., Coates, D.J., Eldridge, M.D.B., Sunnucks, P., Breed, M.F., James, E.A., 

Hoffmann, A.A., 2011. Assessing the benefits and risks of translocations in changing 

environments: A genetic perspective. Evolutionary Applications 4 (6), 709–725. 

Wilcove, D.S., Rothstein, D., Dubow, J., Phillips, A., Losos, E., 1998. Quantifying 

threats to imperiled species in the United States. BioScience 48, 607-615. 

Wilson, H.B., Joseph, L.N., Moore, A.L., Possingham, H.P., 2011. When should we save 

the most endangered species? Ecology Letters 14 (9), 886–890. 

 

 

 

 

 

 

 

 

 

 



163 
 

CHAPTER 6 
Summary, Conclusions, and further Extensions 

 

The world’s marine ecosystems are undergoing a biotic homogenization 

(McKinney and Lockwood, 2001) with an escalated human-mediated colonization 

of species (Simberloff, 2009). In this process, invasives are recognized, arguably, 

as one of the main causes of local extinction of populations (Gurevitch and 

Padilla, 2004), and also, of ecological change leading to biodiversity loss 

(Didham et al., 2005). However, it has also been observed that the higher the 

biodiversity, the higher the number of invasives (see for e.g., Altier et al., 2010). 

Regardless, the puzzle remains as to how species that are well-adapted to, and 

long persisted in native habitats expand range and dominate novel (non-native) 

habitats (Fridley et al., 2007) that are sometimes ecologically, physically, and 

chemically different from the native ranges. In this vein, more than 29 working 

hypotheses have been postulated (Catford et al., 2009) as to how and why an 

invasion occurs in the case of plant invasions, most of which are also common to 

aquatic invasions. Due to their context dependence, none of them have been 

clearly refuted nor have they provided generalized or a unified theory of invasion 

ecology.  

In invasion ecology, the levels of analyses expand across taxa, processes, 

and characteristics (Hayes and Barry, 2008).  Comparisons are made between 

niches of native and potentially invasible ranges based upon mainly the principles 

of ecological niche modeling (Jimenez-Valverde et al, 2012), which predicts the 

environmental range that suits a species. The role of stochasticity in factors, 

internal and external to the processes, for example, the demography, environment, 

and propagule pressure, is also under scrutiny (Potapov and Rajakauna, 2013). 

There is a general agreement that propagule pressure should be treated as a null 

model for invasion success (Colautti et al., 2006). The challenge is to predict an 

invasion of a new species before an invasion occurs, especially where a new 
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invasive would originate from, and where it would go. If we are to predict which 

species will be the next potential invader generated in and moving from which 

potential habitat, given the increasing rate of human-mediated biotic-mixing of 

the world’s marine regions through propagule pressure, then we need to know the 

underlying processes that drive an invader. In this context, existing theories, 

models, hypotheses (Catford et al., 2009) are insufficient to give us a complete 

answer.  

The temperature is fundamental to all biological systems and metabolic 

processes of ectothermic species, and reflected in their population dynamics 

(Amarasekare and Savage, 2012; Savage et al., 2004) and species diversity 

distribution (Allen et al., 2002; Brown et al., 2004; Gillooly et al., 2001). In his 

thesis, I investigated how spatial variation of temporal temperature profiles across 

the global marine ecoregions impact persistence, immigration, and distribution of 

ectothermic marine taxa (calanoid copepods, copepods, tunicates), and what 

potential differences they make for some species to become “invasive” than 

others. Intense human-mediated propagule flow across oceans and seas has 

provided a “mega-laboratory” for this work.  

The marine ecoregions are a bio-geographic classification of coastal 

regions based on similarities in biota, geomorphological features, currents, and 

temperature, which covers all coastal and shelf waters shallower than 200 m 

(Spalding et al., 2007). On this basis the environmental profiles within an 

ecoregion are assumed to be less deviated than across, thus, the species distributed 

in an ecoregion have the exposure to approximately the same spatial and temporal 

structure of the environmental factors (Spalding et al., 2007). Therefore, this 

classification assumes homogeneous temperature and ecological communities 

within these ecoregions than across.  

Temperatures in some northern temperate ecoregions (NTE) are subject to 

extremely large yearly fluctuations compared to other world regions. This may be 

a result of the particular geometric shapes of the oceans, seas, and land masses of 

the NTE that drive cold and warm ocean currents in some regions to mix up 
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seasonally (Wyrtki, 1965), besides large seasonal variations in air-to-surface 

temperature transfer occurring in the temperate regions. The NTE also have 

regions with almost steady year-round temperatures. Therefore, the heterogeneity 

in temperature profiles within the NTE, in particular, provided an ideal ground to 

test the effect of large differences in temperature profiles across physically 

contiguous ecoregions on population dynamics and species distribution, given the 

intense biotic-mixing across the region due to propagule pressure.  

The two simple biologically meaningful metrics we developed are the 

temperature-dependent cross-periodic intrinsic growth rate Λp, which is a cross-

periodic fitness (CPF) parameter, and a weighted net reproductive rate Rp, which 

is a measure of the cross-periodic reproductive rate. These were used to evaluate 

species invasiveness and habitat invasibility pertaining to, first, the ectothermic 

marine calanoid copepod Pseudodiaptomus marinus in environments with steady 

and periodically fluctuating temperatures. Here, we assumed that factors other 

than temperature are ideal for the species. The results given by the new metrics 

are consistent with that is given by advanced numerical mathematical methods, 

such as, computations using the monodromy matrix (Wang and Hale, 2001), 

assuming piecewise continuous switching system (Gökçek, 2004), and the time-

averaging method (Ma and Ma, 2006; Wesley and Allen, 2009).  

The persistence criteria given by R0>1 and λ>0 for populations in constant 

environments are nested within that given by Rp >1 and Λp>0, respectively, for 

populations in fluctuating environments. The fundamental basis of relating Λp 

with Rp is given by an explicit functional relationship we derived between λ and 

R0 for a stage-structured population in a constant environment. The methodology 

we proposed here can be used to derive metrics and evaluate the persistence of 

populations for any given periodically fluctuating external environmental forcing 

factor, such as salinity, turbidity, dissolved oxygen, food concentration and so 

forth, in addition to temperature.  

For marine calanoid copepod P. marinus, high-amplitude periodic 

temperatures (APT) of habitats decrease the Λp of the species, thereby, decreasing 
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the cross-periodic fitness, and increasing the temperature-dependent stress. This 

suppression in Λp is due to the concavity of the functional relationship of λ with 

respect to the mean habitat temperatures, which can be explained by Jensen’s 

inequality. Therefore, species emigrating from extremely high APT habitats to 

low APT habitats should increase Λp by many folds, thus increasing the CPF, and 

thereby, their invasiveness. In line with this theory, field evidence show that P. 

marinus is expanding its range from extremely high APT ecoregions, where it is 

native to, to low APT ecoregions at optimal mean temperature range around the 

globe increasing the CPF by many folds. Recent evidence of P. marinus range 

expansion in Adriatic Sea, Italy (Mediterranean Sea) (Olazabal and Tirelli, 2011), 

Southern Bight of the North Sea coast of France (Brylinski et al., 2012), North 

Sea, Germany (Jha et al., 2013), and Lake Faro (Messina, Italy) (Sabia et al., 

2012) further substantiates the model predictions.  

The potentially invasible habitats for P. marinus are limited to a latitudinal 

range given by 10.52-24.81
0
C mean habitat temperatures (considering no 

fluctuations in habitat temperatures). This range narrows down depending on the 

degree of amplitude of the annual temperature cycles of habitats on the outskirts 

(where the temperature bounds are at Rp=1). The optimal temperature condition 

that suits P. marinus is found within the temperate and the subtropical low-

amplitude temperature ecoregions, for example, the West coasts of Europe, 

America, and Africa, and Southern Australia, New Zealand, and the Western 

Mediterranean Sea, which fall within the range of the mean habitat temperatures 

of its native range; the North West Pacific: the Seas of Japan and China (Walter, 

1987). The temperature-dependent fitness may be a plausible reason as to why P. 

marinus has not established yet in Vancouver harbour and Puget Sound areas, 

where the temperature fluctuates periodically largely, and thereby, marginalizing 

the persistence potential, although the propagule pressure of P. marinus is large in 

these regions (Cordell et al., 2009).   

The method of predicting the potentially invasible range of habitats based on 

Rp and Λp, modeled from a bottom-up mechanistic approach, and calibrated from 
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the data from laboratory experiments, is contrasting and complementary to the 

top-down phenomenological approach in Ecological Niche Modeling (ENM) 

(Jeschke and Strayer, 2008; Mercado-Silva et al., 2006). Our method may give an 

edge over ENM for being able to predict the potentially invasible range by taking 

into account the temporal variability of the temperature (or any other external 

environmental forcing factor for that matter), and the response of the population 

to temperature (or the factor) beyond what is observed in the native range.   

In ideal habitat conditions, where the persistence is limited only by the 

periodic temperature fluctuations, the timing, quantity and frequency of 

introductions are secondary. The duration and the degree of favourable and 

unfavourable temperature of the seasons affect the population persistence. The 

extreme temperature of a habitat (either low or high), and the mean habitat 

temperatures may not single handedly determine the population persistence, 

unless lethal, rather the degree of seasonal variability matters. A proliferating 

reproduction strategy, with high fecundity and short generation times in high- 

temperature seasons, falls in line with this theory. Such strategy is shown by 

copepod populations in temperate waters (Bollens et al., 2012; Yamahira and 

Conover, 2002). 

Furthermore, an increase in the amplitude of periodic temperature over the 

years can subdue the impact of the rise in the mean habitat temperatures in the 

light of global warming. This effect can counteract the range expansion of species 

(for e.g., as in Doney et al., 2012), and the potential increase in biodiversity in the 

long run (in line with Mayhew et al., 2012). Thus, the local level changes may 

need thorough investigation before generalizing the effects on a global scale.  

In theory, we speculate that the temperature-dependent invasiveness of a 

species may differ from one species to another depending on the peakedness of 

their Rp with respect to mean temperature at zero amplitude. The higher the 

peakedness, the greater is the degree of invasiveness for a species native to high 

APT ecoregions, whereas, the higher the peakedness, the lesser is the degree of 

species invasiveness for a species native to low APT ecoregions.  
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The above findings pertaining to P. marinus may question whether 

invasive marine species, in general, take a similar multi-fold physiological 

advantage by emigrating from high to low APT ecoregions, or whether they are 

affected by any other fluctuating stress-dependent forcing factors. In Appendix 

6.1., we present some preliminary results based on a phenomenological analysis 

supporting the above case for marine species (a total of 329 invasives) from 

Molnar et al. (2008), which include the dominant marine taxa: crustaceans (59 

species), molluscs (54), algae (46), fish (38), annelids (31), plants (19), and 

cnidarians (17), complied from 350 data sources, with at least one species being 

documented in 194/232 marine ecoregions. The invasibility of marine ecoregions 

is significantly suppressed by the degree of the APT. The invasibility of NTE, in 

particular, is inversely correlated to the APT significantly within the range of 10-

24
0
C mean ecoregion temperatures, and increasing the model-fit for even 

narrower ranges (Figure 6-1). It can be deducible from these results that a 

temperature-dependent optimal immigration path may exist for marine species 

across the global ecoregions similar to the case of P. marinus. 

We note that these marine invasives are mostly near-shore or coastal 

dwelling species belonging to the neritic zone (<200m depths). By virtue of the 

mechanism of their spread (via ships taking up ballast-water from upper layers of 

the near-shore, shallow-water ports, or via bio-fouling (Lockwood et al., 2005), or 

ocean currents), most these invasives may essentially have propagules or life-

history stages get exposed to annual periodic fluctuations of temperature of the 

ocean, which is most prominent in the upper mixed layer of the oceans extending 

to 150-250m deep in the NTE (see Kara et al., 2003). The APT of the habitats, 

therefore, seems to have a significant effect on the population dynamics of these 

invasive species in general.  

At individual level, species native to extremely high APT ecoregions may 

generate a potential to become “invasive” in low APT ecoregions if their 

temperature-dependent cross-periodic growth rates are generally concave 

functions of temperature similar to the case of P. marinus, or the generalized case 

for ectotherms in Amarasekare and Savage (2004). This is because it may help 
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them gaining a multi-fold increase in cross-periodic fitness by temperature-

dependent optimal immigration. This effect is fundamentally due to Jensen’s 

inequality. This raises the questions as to whether invasive species are generally 

originated from (or native to) mid-latitudinal, extremely high APT ecoregions of 

the world oceans, particularly in the NTE similar to P. marinus, thereby they 

increase their fitness by optimal immigration to low APT ecoregions within a 

range of optimal mean temperatures. Is their persistence and spread, hence, 

limited by extremely high and low mean temperatures of the tropical and cold 

water oceans? Are extremely high APT ecoregions in the NTE the temperature-

dependent “invasive generators”, and low APT ecoregions the “invasive sinks”? 

Should this be the same for marine non-indigenous species as well in general?  

Several studies indicate that a large proportion of marine invasive and 

non-indigenous species, those traceable and recorded (for example, crustaceans, 

molluscs, tunicates, bryozoans, starfish, jellyfishes and sponges)  are native to at 

least one or more of the world’s extremely high APT ecoregions: temperate North 

West Pacific (surrounding Sea of Japan, East China Sea, Yellow sea), North West 

Atlantic (e.g., Gulf of Maine, St. Lawrence), and Europe seas (e.g., Ponto 

Caspian, Western Mediterranean, Black, and Baltic) (yellowish areas in Figure 6-

2) (based on Cordell et al. (2009); Doi et al. (2011); Goulletquer et al. (2002); 

Hangfling et al. (2011); IUCN (2012); Noel (2011); Olenin (2005); Orensanz 

et.al. (2002); Ricciardi and Maclsaac (2001) (Table 6-1)). However, it is hard to 

track all the species down to where they were exactly originated from. Low 

amplitude ecoregions within the northern temperate ecoregions, where there are 

invasive, consist of mostly the West coasts of America, Africa, and Europe, part 

of Mediterranean Sea, southern Australia and New Zealand.  

The apparent temperature-dependent optimal immigration path from high 

to low APT ecoregions may be a potential conveyor belt of marine invasive 

species generation driven by the existing large gradient of amplitudes of periodic 

temperatures across world’s ecoregions. In a broader sense, any fluctuating, 

externally forcing, stress-inducing environmental variable can cause a similar 

effect on species invasiveness. They may include, for example, salinity in marine 



170 
 

environments. We could apply the same philosophical approach to calibrate such 

effects on invasiveness. 

It can also be true that West coasts undergo upwelling bringing nutrient rich 

waters to the surface making the habitats favourable to species in general. 

Therefore, there is a possibility that the effect of upwelling may also compliment 

to this invasion process.   

In theory, a high concentration of extremely high APT ecoregions (invasive 

generators) and low APT ecoregions (invasive sinks) within the NTE, and their 

physical proximity to each other causing large intra-propagule pressure, may 

explain why low APT ecoregions in the NTE has more invasives compared to 

other world regions in general (Appendix 6.1). This also complements the 

intermediate distance hypothesis (Seebens et al., 2013) but with the above 

condition. In contrast to NTE, the temperature-amplitude gradient within the 

southern temperate ecoregions (STE) is markedly low due to all-low APT 

ecoregions across the STE in general (Figures 6-2; 6-3). Thus in line with our 

theory, invasive species generation and retention in the STE should be low 

compared to that in the NTE. At the same time, STE is less vulnerable to 

invasives from the NTE (where the invasives are most likely generated), although 

they have the same range of mean temperatures as in the NTE. This may be due to 

the physical distance between the NTE and the STE, which results in a low 

propagule pressure in STE exerted from the NTE. Thus the generation and the 

retention of invasives in the NTE should be, in theory, far greater than that in the 

STE or any other ecoregion in the world. This is shown in the marine invasive 

species diversity distribution data by Molnar et al. (2008).  

In theory, the NTE, where the invasive marine species are most likely 

generated, the net flux of invasives should be generally directed towards the low 

APT ecoregions on the East coasts from high APT ecoregions on the West coasts 

of the oceans following the temperature-amplitude gradient (Figure 6-2). The data 

from Molnar et al. (2008) showed a high proportion of invasives species on the 

West coasts compared to the East coasts of the NTE (Appendix 6.1). (Here, the 
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East coasts of the continent do not include the Europe seas, having comparatively 

large APT.)  

Furthermore, in theory, the ideal habitats (sinks) with respect to habitat 

temperatures for marine invasives generally converge to a narrow geographical 

coastal range on the East coasts, but stretch widely on the West coasts of the 

continents due to geophysical patterns of the ocean currents. The species native to 

high-dynamic ecoregions on the East coasts, in terms of temperature, especially in 

the NTE, immigrating to comparatively steady ecoregions on the West coasts 

have a propensity to spread widely geographically.  

In support of these propositions, Ruiz et al. (2011) showed a significantly 

large proportion of invasive and non-indigenous crustaceans on the West coasts 

compared to the East coast of North America.  Furthermore, DiBacco et al. (2012) 

showed a similar quantitative difference in marine non-indigenous species 

between the West and the East coast ports in Canada, which they, however, 

attributed to the apparent differential propagule pressure between the ports. 

Furthermore, Molnar et al. (2008) showed that the distribution of Pacific Oyster in 

the world is mostly on the west coasts of the continents. Although, propagule 

pressure may be a trigger of invasions and may explain some of the variations in 

the invasive species diversity data, it may not explain the underlying bio-physical 

dynamics that suits one species over another, or what conditions suit invasive 

species in general. Propagule pressure hypothesis may not fully explain, for 

example, as to why eight invasive copepods native to high-APT, high-stress 

ecoregions in the seas surrounding Japan and China are found in low-APT coast 

of California (Cordell et al. 2008), whereas, not many native to the coast of 

California are found in the seas surrounding Japan, given the propagule pressure 

exerted between each other cannot be very much different (see in Kaluza et al., 

2010). Our theory may explain these patterns of invasive species diversity data by 

region better.  However, the high proportion of marine invasives in the South-

Eastern Australia and New Zealand compared to the West Coast of South 

America may be explained by the difference in propagule pressure exerted from 
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NTE (see in Kaluza et al., 2010), because in theory, all ecoregions in the STE are 

temperature-dependent invasive sinks, while having no apparent invasive 

generators (Appendix 6.1).       

In summary, we hypothesise that the likelihood of temperature-dependent 

invasive species generation may depend on three basic factors: (1) a large 

peakedness of the temperature-dependent cross-periodic fitness curve of a species 

at zero-amplitude; (2) a high concentration of (or physically contiguous) steady 

and extremely variable temperature ecoregions within a narrow range of mean 

habitat temperatures; and (3) biotic-mixing across ecoregions by propagule 

pressure. The baseline principles behind these processes may also be the same for 

other fluctuating external forcing factors affecting invasions. 

The Metabolic Theory of Ecology (MTE) describes the latitudinal gradient of 

biodiversity (Allen et al., 2002; Brown et al., 2004; Rombouts et al., 2011). The 

extended MTE model, we proposed, that takes into account the effect of periodic 

fluctuations of temperature of the ecoregions, improves the predictability of 

marine species (calanoid copepods, copepods, and tunicates) taxonomic richness 

of the NTE. The effect of subtle periodic variations in temperature, recurring over 

millions of years, on speciation seems substantial (complementing Allen et al., 

2006; Gillooly and Allen, 2007). This solidifies the use of MTE as a tool for 

understanding the underlying dynamics of ecological processes.  

The extended MTE model explains the global diversity distribution of marine 

copepods on a latitudinal gradient better than any other comparative model. This 

includes the explanation of the difference in the diversity gradient between the 

Northern and the Southern Hemispheres, with a hump off the tropics. The greatest 

improvement given by the extended MTE model is shown for the marine calanoid 

copepods followed by copepods (in general), and tunicates. This was expected 

because most calanoid copepods live in the upper mixed layer of the water 

column (Huntley and Lopez, 1992), where the periodic variation in temperature is 

much greater, followed by copepods (in general) and tunicates. 
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Although, MTE model fits well to the existing marine diversity distribution 

data, even better with the proposed extension that takes into account the 

temperature-amplitudes, there may be other temperature-dependent processes that 

contribute to the latitudinal gradient of the biodiversity of marine species. For 

example, we speculate that the temperature-dependent conveyor belt of invasive 

species generation that we proposed here may also be one such contributor 

driving species on temperature-dependent optimal immigration. It can generate 

biodiversity in optimal temperature ecoregions over millennia via natural vectors 

such as ocean currents (which are directed coincidently from high to low APT 

ecoregions in the NTE, e.g. Gulf Stream) that can carry possibly resting stages 

over long distances (a conceptual framework given in Gillespie et al., 2012). 

There is also a possibility that optimally immigrating species may potentially be 

subject to allopatric speciation at novel ecoregions over millennia, or local 

extinction at their native high APT ecoregions (due to high stress, as can be 

explained by our theory, and also the stochastic theories (Lande et al., 2003), 

where they may have originated from. These processes can transform the non-

indigenous species (and invasives) from the quadratic concave invasive species 

richness curve (as data from Molner et al. (2008) show) to “native” status on the 

less concave high-lying latitudinal marine biodiversity gradient curve (in Tittensor 

et al., 2010) (both drawn with respect to mean habitat temperatures) as an ongoing 

long-standing natural process over millions of years. There is so much epistemic 

uncertainty regarding the indigenous status of the species, as they are working 

definitions based on fuzzy spatio-temporal boundaries (McGeoch et al., 2012). 

Would this mean that the temperature-dependent conveyor belt of invasive 

species generation is a mean to marine biodiversity generation at optimal low 

APT ecoregions at least for the species exposed to high APT in native ecoregions? 

We need more investigation of these possibilities, both mathematically and 

empirically.  

The evidence in support of, or against this proposition may come from 

investigations based on the connections between natural propagation paths by 

oceanic currents (McGeoch et al., 2012), latitudinal biodiversity peaks occurring 
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at off-tropics (Powell et al., 2012), hopping marine biodiversity hot-spots over 

millennia  (Renema et al., 2008), historical biodiversity tracking of the earth’s 

temperature (Mayhew et al., 2012), freshwater-invading estuary copepods (Lee, 

1999), and diversity difference between the Southern and the Northern 

Hemisphere (Powell et al., 2012). Perhaps, we need more research from a 

paleoecological perspective (Louys et al., 2012) to determine the underlying 

mechanics of the processes, outcomes of invasions, and eventual diversity 

distribution over changing geometric shapes of the world’s landmasses, oceans 

and seas over millennia. We may need to examine temperature-dependent cross-

periodic fitness curves of more species individually, including native and non-

indigenous species, and test whether a generalized model and a framework may 

explain the geological history of biodiversity distribution. Above all, we may also 

need concrete, quantifiable, mathematical definitions in invasion ecology 

nomenclature.  

Human-mediated propagule pressure is fundamental to the present level of 

biotic mixing of the world’s ecoregions (Simberloff, 2009). Given the existing 

large gradient of temperature-amplitudes across the marine ecoregions, and the 

resulting potential conveyor belt in operation, especially in the NTE, it is likely 

that there will be potential for high-degree invasions in the future at the present 

level of propagule pressure. In theory, the potential for high degree invasion of 

species from the Northern to the Southern temperate ecoregions is also large, yet 

not realized, possibly due to physical separation (because of the time the 

propagules have to survive in ballast-water tanks, or any other vector, across these 

regions is longer: the intermediate distance hypothesis (Seebens et al., 2013)). 

Fast moving vessels that are likely to replace the present ones in the future may 

increase biotic-mixing across Southern and Northern oceans, potentially 

increasing the invasives in the STE.  

To control establishment of invasive populations, a thorough quantitative 

understanding of populations at the edge of extinction is needed. The rate of 

human-mediated immigration (propagule flow), such as via ship ballast-water 

discharge, is highly fluctuating in marine environments (Cordell et al., 2009). 
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Besides, species introduced to novel environments are always subject to 

environmental and demographic fluctuations.  

We showed, in theory, that invasions can be managed cost-effectively 

optimally through stochastic control methods. The impact of the degree of  

stochasticity in propagule flow on probability of populations establishment before 

extinction (EBE probability) depends on the rate of intrinsic growth and the rate 

of net flow of propagules into a habitat (or population). High EBE probability due 

to high mean rate of propagule flow into favourable habitats (Drake and Lodge, 

2006) is subdued by high stochasticity in the propagule flow (assuming that the 

mean flow rate is maintained at constant). This effect is greater in the presence of 

environmental and demographic stochasticity. When populations have negative 

intrinsic growth rates, the stochasticity in small immigration rates inflate the EBE 

probability, similar to what Gonzalez and Holt (2002) have shown in sink 

populations, 

In general, if invasive species are introduced to extremely favourable 

habitats, or/and if the propagule flow rate is greater than the rate of virtual 

population decline due to demographic Allee effect (rate at which the individuals 

are unable to replace themselves), then the stochasticity in propagule flow 

decreases the EBE probability. If invasive species are introduced to unfavourable 

habitats (or the population is on the decline in a novel location), or/and if the rate 

of population decline due to the demographic Allee effect is much greater than the 

propagule inflow rate, then the stochasticity in propagule flow increases the EBE 

probability. However, the mean time for population establishment before 

extinction decreases with the increasing stochasticity in propagule flow regardless 

of the favorability of the habitat.  

These give insights into controlling human-mediated propagule flow through 

stochastic means.  For example, to control high-degree marine invasions, one can 

increase the stochasticity in propagule flow by stochastic monitoring and 

stochastic treatment (intensity and frequency) of ship ballast-water in contrast to 

constant monitoring and treatment. While both management scenarios; one with 

and the other without incorporating the stochasticity; reduce the mean propagule 
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flow rate, the former scenario should yield a greater effect in reducing the EBE 

probability. If the resources deployed remain the same in both scenarios (zero-

sum), then the stochastic control methods should be theoretically more cost 

effective. However, if the propagule flow is continuous in time, then any type of 

control method has only limited time effect, because a population can replenish 

sooner or later from temporary extinction (see also, Potapov and Rajakaruna, 

2013).  These theoretical results give insights also into stochastic methods of 

eradicating the invasives already established in novel locations. However the 

applied quantitative measurements of the stochastic control methods may need 

field data and case specific investigations.   

We do not know if the process that we call an “invasion” in our short and 

measurable time scales has existed over millennia through natural mechanisms of 

dispersion and colonisation following the underlying temperature-dependent or 

any other bio-physical stress releasing mechanisms. The mechanics of colonizing 

species, possibly taking the advantage of releasing stress and increasing the 

temperature-dependent cross-periodic fitness by optimal immigration to low-

amplitude temperature habitats, may have also contributed to marine biodiversity 

generation around the world’s ecosystems in addition to what MTE models 

postulate. In addition to temperature dependence we tested, there may be other 

periodic and stochastic external forcing factors that may cause similar effects. 

However, there is a high potential for the marine colonizers to become high-

degree invasives in the future, given the existing large temperature-amplitude 

gradients, or the temperature-dependent stress gradients, and the level of 

propagule pressure across the world’s ecoregions.    
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Table 6-1 Percentages of exotic marine and estuary species native to at least an ecoregion 

with high-amplitude periodic temperatures based on the published data. 

Ecoregions Source Species type Traceable 

No. of spp. 

in the 

sample 

% native to high-amplitude 

temperate ecoregions: Temperate 

North West Pacific (surrounding 

Sea of Japan, East China Sea, 

Yellow sea), North West Atlantic 

(Gulf of Maine, St. Lawrence), & 

Europe Seas: Ponto Caspian, 

Western Mediterranean, Black, and 

Baltic) 

World  IUCN (n.d.) Invasive 

marine and 

estuary 

crustaceans, 

molluscs, 

tunicates, 

bryozoans, 

starfish and 

sponges 

41/62 80.49% 

0.46 Sea of Japan /China 

0.19 Europe Seas 

0.05 Gulf of Maine 

0.12 Gulf of Mexico 
 

World Hangfling et 

al. (2011) 

Invasive alien 

crustaceans 

22/22 81.81% 

SouthWestern 

Atlantic 

Orensanz et 

al. (2002) 

Exotic marine 

species 

72/72 ~77.80% 

San Francisco 

and Columbia 

River estuary 

Cordell. et 

al. (2009) 

Introduced 

copepod 

species 

12/12 ~66.67% 

Open Atlantic 

coast of 

Europe 

Goulletquer 

et al. (2002) 

Non-

indigenous 

marine species 

101/101 ~76.24% 

Baltic Sea Olenin 

(2005) 

Non-

indigenous 

aquatic 

invertebrates 

 

29/29 

 

~87.93% 

55.17 Ponto Caspian 

27.59 

N America East 

Coast 

10.34 NW Pacific 
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Chille  Non-

indigenous 

spp 

16/16 ~62.50% 

Sea of Japan Doi et al. 

(2011) 

Alien marine 

crustaceans 

23/23 ~50% 

5.56 NW Pacific 

22.22 NE Pacific 

44.44 NW Atlantic 

11.11 NE Atlantic 

16.67 IO/SP 
 

European 

Atlantic coast 

Noel (2011) Non-

indigenous 

spp 

42/42 ~64.29% 
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Figure 6-1  Invasive species taxonomic richness linearly regressed with respect to peak-

to-peak amplitude of the northern temperate ecoregion (NTE) temperatures. The 

relationship is significant within the range of mean ecoregion temperatures (10-24
0
C) 

yielding p=0.04 (F=4.66, df=1,25, R
2
=0.16) suggesting that invasibility is low in high- 

amplitude periodic temperature (APT) ecoregions. The theoretical expectation that these 

species may respond to temperature similar to P. marinus supposing that their 

temperature-dependent intrinsic growth rates follow the pattern proposed by Amarasekare 

and Savage (2012) generalized for ectotherms, may suggest that these species 

immigrating to low APT ecoregions can increases their cross-periodic fitness by many 

folds in line with our theory in Chapter 3. Thus, these may suggest that marine invasives 

are generated in extremely high APT ecoregions in the NTE. Therefore, in a conceptual 

framework, we suggest that the top-left may indicate the invasive sinks, and the bottom-

right may indicate the invasive generators in general.  
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Figure 6-2 Peak-to-peak amplitude (shade) and mean (contours) of annual sea surface 

temperature cycles modeled using a simple sine function (methods in Chapter 3) based on 

the data (1971-2001) from NOAA-ESRL (n.d.) at 1
0
x1

0
 degree resolution of latitudes and 

longitudes.  
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Figure 6-3 The means and the amplitudes of annual temperature cycles of marine 

ecoregions, and the invasive species taxonomic richness. Invasive species diversity is 

higher in the regions where the concentration of extremely high-amplitude (invasive 

generators) and low-amplitude (invasive sinks) temperature ecoregions are greater: the 

northern temperate ecoregions (NTE) followed by the southern temperate ecoregions 

(STE). The physical proximity between the potential generators and sinks, which results 

in high intra-propagule pressure, thereby the optimal immigration may reflect in the large 

diversity of invasives in the NTE.  
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APPENDICES 
 

Appendix 1.1.  Biology of species  

1.1.1. Marine copepods (Subclass Copepoda)  

Approximately, 2500 marine planktonic copepod species have been 

identified to date under the class Maxillopoda in Subphylum Crustacea (Razouls 

et al., 2013). They are typically 1 to 2 mm long. All crustaceans have an 

exoskeleton, and are ectothermic. Copepods link the primary production to higher 

trophic levels providing food for small fish, whales, seabirds and other 

crustaceans such as krill. They are dominant members of the zooplankton 

community, perhaps the largest animal biomass on earth.  

Marine copepods reproduce sexually and asexually. Their female adults 

are free spawning or egg-sac carrying. Eggs hatch into nauplius larvae. Nauplius 

consists of a head with a small tail, but no thorax or true abdomen. It moults six 

times before turning into copepodite. Copepodite has an unsegmented abdomen, 

and three pairs of thoracic limbs. There is a marked metamorphosis between the 

last nauplius and the first copepodite stage. After five moults, the copepodite 

becomes an adult. The entire process from hatching to adulthood may take a week 

to few months mostly depending on the temperature and food concentration (e.g., 

Klein-Breteler et al. 1995). The temperature dependency of life cycles of 

copepods has been studied thoroughly during the last few decades by many 

authors (for e.g., Almeda et al., 2010; Breteler et al., 1994; Breteler and Schogt, 

1994; Huntley and Lopez, 1992; Liang et al., 1996; Record et al., 2012), and so 

forth for zooplanktons also in general (for e.g., Gillooly, 2000).  

Although most copepods have single median compound eye, some are 

eyeless, they sense predators and prey through setae, distinguishing predators 

from prey through mechanoreceptors (Boxshall and Jaume, 2013). Many smaller 

copepods directly feed on phytoplankton catching cells singly, while some larger 
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species predate on smaller organisms. Herbivorous copepods, particularly those in 

higher latitudes (polar regions) and deeper waters (benthic), store up energy from 

food as oil droplets to survive winters (Lee et al., 2006 ).   

The surface layers of the oceans are the world's largest carbon sink 

(Houghton, 2007); the carbon absorption is equivalent to approximately one third 

of human carbon emission. Copepods contribute to the carbon sink largely 

(Sampei, 2012), perhaps reducing the impact of atmospheric carbon content on 

the global warming.  

 

1.1.2. Marine calanoid copepods (Order Calanoida; Subclass Copepoda) 

 

Calanoid copepods colonize all parts of the pelagic environments of 

estuaries, coastal and marine waters. They include around 43 families with about 

1800 species in both marine and freshwater. Calanoid copepods are dominant in 

the plankton communities making up to 55–95% of plankton samples. Many 

commercial fish are dependent on them for diet: baleen whales such as bowhead 

whales, sei whales, right whales and fin whales feed on calanoid copepods. 

Calanoid copepods can be distinguished from other planktonic copepods 

by having their first antennae at least half the length of the body, and biramous 

second antennae. Anatomically, their key defining feature is the joint between the 

fifth and sixth body segments. Calanoid copepods are primarily suspension 

feeders eating mainly phytoplankton and protozoan. They use their mouthparts to 

create water currents that bring food particles towards them, capturing small 

particles passively, and large particles by fling and clap movements with the 

surrounding water packet.  

Calanoid reproduction is sexual, and sperm are transferred from male to 

female in a sac-like spermatophore (Mauchline, 1998). Some calanoid are free 

spawning, while others carry eggs in one or two masses, sacs, or strings until 

hatching. Females of some species may produce tens to hundreds of eggs in a life 
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time. Development times from egg to adult typically vary from 1 to 6 weeks, but 

may also take several months depending on the ambient temperature and the food 

availability. The lifespan of adults is from one to several months in laboratory 

conditions. Some calanoid copepods have resting eggs and stages that enable 

avoidance of harsh environmental conditions and help dispersal. Resting eggs 

have a thick shell, which can survive extended periods of dormancy. 

Calanoid copepods have colonized the pelagic part of the water column, in 

contrast to copepods in general (Bradford-Grieve, 2002). Some copepods (and 

some species) in pelagic environment show diurnal vertical migration: increase 

metabolism while active in the upper layers (average 50m: e.g., Hays et al., 2001) 

within the mixed layer (where temperature is close to homogeneous) (e.g., 

Andersen et al., 2004; Atkinson et al., 1992; Herman, 1983), and rest (dormant) 

during the day at lower layers (average 150m: e.g., Hays et al., 2001) (Andersen 

et al., 2004; Kiørboe and Sabatini, 1995). Some pelagic copepod species do not 

show diurnal migration, and maintain vertical zonation in the mixed layer and 

down to thermocline (e.g., Bollens and Landry, 2000; Mackas et al., 1993). Some 

cold and boreal water copepods show arrested development, and reduced 

metabolism in late developmental stages in order to survive long periods of food 

shortages (Hirche, 1996).  

 

1.1.3. Genus Pseudodiaptomous (Family Pseudidiaptomidae; Order 

Calanoida) 

Pseudidiaptomidae is the family of the genre Pseudodiaptomous of the 

marine-estuary calanoid copepod Pseudodiaptomous marinus (Sato, 1913). 

Pseudodiaptomus occurs worldwide in tropical and temperate fresh to marine 

waters (Walter, 1986; Walter, 1987; Walter, 1989). To date, 77 species of 

Pseudodiaptomus have been identified (Walter et al., 2006) of which, four species  

are invasive: P. inopinus (Cordell et al., 1992; Cordell and Morrison, 1996; 

Biology: Cordell et al., 2007), P. forbesi (Bollens et al., 2002; Cordell et al., 2008;  
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Emerson et al., 2012), P. marinus (Brylinski et al., 2012; Deply et al., 2012; 

Fleminger and Kramer, 1988; Jha et al., 2013; Jiménez-Pérez and Castro-

Longoria, 2006;  Jones, 1966; Olazabal and Tirelli, 2011), and P. trihamatus 

(Medeiros et al., 2006), all native to Indo-Pacific region.  

 

1.1.4. Marine-estuary copepod Pseudodiaptomous marinus (Family 

Pseudidiaptomidae; Order Calanoida) 

Pseudodiaptomus marinus was first described near the coast of Hokkaido, 

Northern Japan, and subsequently considered as native to North Western Pacific 

Ocean (Walter, 1987). It has also been reported from Andaman Islands, West-

Thailand (Pillai, 1976) and Mauritius (Grindley and Grice, 1969). It was 

introduced to Hawaii (Jones, 1966) and few other localities along the West coast 

of North America: Puget Sound, Washington (Lawrence and Cordell, 2010), 

Mission and San Francisco Bays, California (Fleminger and Kramer, 1988; Orsi 

and Walter, 1991), and Baja California (Jiménez-Pérez and Longoria, 2006). 

Recently, P. marinus has been reported from Southern Europe: in Adriatic Sea-

Italy, Mediterranean Sea (Olazabal and Tirelli, 2011), Southern Bight of North 

Sea -coast of France (Brylinski et al., 2012), North Sea –Germany (Jha et al., 

2013), and Lake Faro -Messina, Italy (Sabia et al., 2012). Cordell et al. (2009) 

show that Pseudodiaptomus species are found in large densities in ballast-water of 

ships entering Puget Sound in North America indicating a potentially high rate of 

discharge of their propagules into near-shore environments in the region.  

Although P. marinus lives in shallow near-shore marine waters and 

estuaries; pelagic during the night and epibenthic during the day (Fancett and 

Kimmerer, 1985; Uye and Kasahara, 1983), it has recently shown an entirely 

planktonic behaviour at Lake Faro (Italy) (Sabia et al., 2012). Pseudodiaptomus 

marinus belongs to the Ramosus group, which is characterized by the dominance 

of marine forms (Walter et al., 2006). Pseudodiaptomus marinus has life-history 

characteristics shared by the Pseudodiaptomous species and Calanoida in general 

(Uye and Kasahara, 1982). Female reproduces sexually and is carrying an egg-
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sac. Pseudodiaptomous marinus produces year-round (Liang and Uye, 1997b; 

Uye et al., 1983).  

Life-history parameters of P. marinus such as fecundity, maturation, and 

mortality rates show strong temperature dependencies (Liang and Uye, 1997a; 

1997b; Uye et al., 1983). Its growth rates at Fukuyama Harbour and Tomo were 

temperature-dependent, but not limited by the food concentration (Liang and Uye, 

1997b). Growth rates of Acartia omorii, Centropages abdominalis, Oithona 

davisae, and Paracalanus sp. at Fukuyama Harbour also were largely 

independent of the food concentration (Liang and Uye, 1997b). 

Pseudodiaptomous marinus feeds on diatoms, flagellates, and naturally occurring 

non-living organic particles (Uye and Kasahara, 1983) and is predated by the 

ctenophores and other larger fish species (e.g., juvenile Japanese anchovy 

Engraulis japonicus). The P. marinus live in euhaline waters (30-35 0/00). 

 

1.1.5.  Marine tunicates (Subphylum Tunicata; Phylum Urochordata) 

Tunicates are marine chordates of the Subphylum Tunicata. They have 

cylindrical or round bodies that are unsegmented and having a tougher outer 

covering. Tunicate larvae are free-swimming with a notochord. Many species 

such as the sea squirts and sea pork, lose the notochord as adults, and attach to 

rocks and other hard underwater surfaces. They often form colonies and are 

usually found in shallow waters. Dense tunicate swarms, hundreds of kilometres 

wide and many meters deep, are common in the open ocean. 

Tunicates have a life cycle that alternates between sexual (fertilization of 

an egg by sperm) and asexual (through budding) reproduction. They are capable 

of breeding year-round. The functional responses of their developmental times to 

temperature and food concentration are similar to that of copepods (Deibel and 

Lowen, 2012). 
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Adult stages of some tunicates such as salps, doliolids and pyrosomes are 

free-swimming or drifters, and living in the pelagic zone. Salps can form 

aggressions of millions of individuals and are among the fastest growing 

multicellular organisms. They release sperm into the sea, but the eggs are retained 

within the body and fertilised by the sperms brought in. The eggs are brooded 

within the body until they hatch.  

Tunicates are filter feeders of tiny planktonic organisms. They are 

predated by sharks, skates, and other bottom-dwelling animals including 

periwinkles. Many tunicates have poisonous flesh to avoid predators. Using 

rhythmic contraction of circular muscles, they move by jet propulsion. Some 

tunicates are invasive (Collin et al., 2013). 

 

 Appendix 2.1. Deriving R0 from graph theoretic method 

We follow the method given in de-Camino-Beck et al. (2009). After 

decomposing matrix A from Eq. (2.1) into matrices F, fecundity, and V, 

transition, we have a real 12x12 matrix ija )( 1
VF . For this matrix )( 1 VF 

, there corresponds a labelled directed graph, )( 1
VF D , with nodes 1,2,…,12, 

and a directed edge (arc) ji.  The weight of this arc is aij, and )( 1
VF D has a 

loop at node i of weight aij if 0ija .  Thus, we can draw the diagraph, 

)( 1
VF D , as follows. 
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We create trivial nodes using graph reduction Rule 1 in de-Camino-Beck et al. 

(2009) by reducing the loops –aii<0 to -1 at node i’s, for every arc entering i 

divided by weight aii. Thus the diagraph reduces to the following.  

 

Using Rule 2 in de-Camino-Beck et al. (2009), by eliminating arcs through trivial 

nodes, here we replace two arcs at a time by j k with weights equal to the 

product of weights on arc ji and ik, for trivial nodes i on a path jik. 

Thus, it finally yields the following diagraph with a single node.    

 

 

Now we set the weight of this loop to zero giving an equation for lambda. The 

smallest positive roots of this equation yielded R0.  
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0

112

i

i i i

q
R



  

 
  

 
    

Furthermore, when there are 2 sub-stages in each stage (that is k=2), the initial 

graph is given as follows: 

n12 
11

1

112

1 i

i i i

q 


  





 
   

 
  
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Using Rule 1, this can be reduced as follows. 

          

It finally yields 

2
11

1

112

1 i

i i i

q 


  





 
   

 
  

Thus,  

2
11

0

112

i

i i i

q
R



  

 
  

 
  

Similarly, for any k sub-stages, this yields 
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0

112

k

i

i i i

q
R



  

 
  

 
  

n12 
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The same result can be easily derived from ][ 1

0

 FVR  also. 

 

Appendix 2.2. Fitting Eq. (2.6) to data using multiple sub-stages 

To derive the solution to the advanced model Eq. (2.1), assuming k 

number of virtual sub-stages within each stage, or Gamma distributed stage 

duration times, requires using the Laplace transformation.  It yields a complicated 

analytical result. Also, the solution in Eq. (2.6) cannot be simply transformed into 

a general solution because in such case the denominator of the solution becomes 

zero, as 



 ij  0 when i and j were redefined for sub-stages in each stage, such that 

ji   .  

Instead, we modify Eq. (2.6) to include sub-stages within stages by 

assuming small differences in maturation rates among sub-stages. Thus, we 

implement the sub-stages for a given stage a by adding and subtracting a small 

constant



 to and from 



 a  in Eq. (2.6) for a  . For example, splitting 



 a  into 

three sub-stages would yield maturation rates ],,[   aaa . This does not 

make 



 ij  0 in Eq. (2.6) as per the original assumption. Now, we estimate 



 a  by 

fitting the modified or the advanced Eq. (2.6) to data from Uye et al. (1983) for 

small values of  .   
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Appendix 4.1. Marine ecoregions and the global invasive species diversity 

distribution  

Northern temperate ecoregions (Spalding et al., 2007): 

 

Index 

 

Eco-region 

 

 

Province 

 

20 South and West Iceland Northern European Seas 

21 Faroe Plateau Northern European Seas 

22 Southern Norway Northern European Seas 

23 Northern Norway and Finnmark Northern European Seas 

24 Baltic Sea Northern European Seas 

25 North Sea Northern European Seas 

26 Celtic Seas Northern European Seas 

27 South European Atlantic Shelf Lusitanian 

28 Saharan Upwelling Lusitanian 

29 Azores Canaries Madeira Lusitanian 

30 Adriatic Sea Mediterranean Sea 

31 Aegean Sea Mediterranean Sea 

32 Levantine Sea Mediterranean Sea 

33 Tunisian Plateau/Gulf of Sidra Mediterranean Sea 

34 Ionian Sea Mediterranean Sea 

35 Western Mediterranean Mediterranean Sea 

36 Alboran Sea Mediterranean Sea 

37 Gulf of St. Lawrence - Eastern Scotian Shelf 

Cold Temperate Northwest 

Atlantic 

38 

Southern Grand Banks - South 

Newfoundland 

Cold Temperate Northwest 

Atlantic 

39 Scotian Shelf 

Cold Temperate Northwest 

Atlantic 

40 Gulf of Maine/Bay of Fundy 

Cold Temperate Northwest 

Atlantic 

41 Virginian 

Cold Temperate Northwest 

Atlantic 

42 Carolinian 

Warm Temperate Northwest 

Atlantic 

43 Northern Gulf of Mexico 

Warm Temperate Northwest 

Atlantic 

44 Black Sea Black Sea 

45 Sea of Okhotsk Cold Temperate Northwest Pacific 

46 Kamchatka Shelf and Coast Cold Temperate Northwest Pacific 

47 Oyashio Current Cold Temperate Northwest Pacific 

48 Northeastern Honshu Cold Temperate Northwest Pacific 

49 Sea of Japan Cold Temperate Northwest Pacific 

50 Yellow Sea Cold Temperate Northwest Pacific 

51 Central Kuroshio Current 

Warm Temperate Northwest 

Pacific 

52 East China Sea 

Warm Temperate Northwest 

Pacific 

53 Aleutian Islands Cold Temperate Northeast Pacific 

54 Gulf of Alaska Cold Temperate Northeast Pacific 

55 North American Pacific Fijordland Cold Temperate Northeast Pacific 
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56 Puget Trough/Georgia Basin Cold Temperate Northeast Pacific 

57 

Oregon, Washington, Vancouver Coast and 

Shelf Cold Temperate Northeast Pacific 

58 Northern California Cold Temperate Northeast Pacific 

59 Southern California Bight 

Warm Temperate Northeast 

Pacific 

60 Cortezian 

Warm Temperate Northeast 

Pacific 

61 Magdalena Transition 

Warm Temperate Northeast 

Pacific 

   

 

 

Appendix 5.1.  EBE Probability 

 

5.1.1. Special case: EBE probabilities of population in the presence of 

demographic and immigration stochasticity 

       Here, we solve Eq. (5.3) in the main text, 0)()(
2

1
)()(  xGxBxGxA xxx

for the case jxxA  )( , and, )(2/)( cbxxB  , where we denote

2 and, 2 22 /σc /σb pd  . We substitute x by )ln(
1

cbx
b

z  , thus, 

])[exp(
1

cbz
b

x  , dzcbxdx )(  . Thus, we can write Eq.(5.3) as  

             0)()( 















 zGb

b

c
je

b
zG z

bz

zz


 

as  )()(
)(

1
)(

2
zGbzG

cbx
xG zzzxx 


  , and, )(

)(

1
)( zG

cbx
xG zx 


 . 

Thus, it follows from Polyanin and Zaitsev (2003: 2.1.3-27) that the 

transformation of an equation of the above form with substitutions, 
ze

(Polyanin and Zaitsev, 2003: 2.1.3-27) leads to the equation of the form,   
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0)(1)(2 















 


  Gb

b

c
j

b

r
G b , in (Polyanin and Zaitsev, 

2003: 2.1.2-146). Substitutions
b   and, 

kGW   )()( , where 









 bj

b

c

b
k

1
 leads to the equation of the form  

0)()()( 22 

























 





  Wbj

b

c

b
Wbbj

b

c
bWb   

(Polyanin and Zaitsev, 2003: 2.1.2-108 ). Transforming into the Kummer’s 

equation (Polyanin and Zaitsev, 2003: 2.1.2-108 ), it yields the general solution 

following Polyanin and Zaitsev (2003: 2.1.2-70)  

             






 








 
 







21122111 ,1,0,1,)(
b

kFC
b

kkFCW k
 

where 







 bj

b

c

b
k

1
, and, 

2

2
1 1

2

( )( )
( , , ) 1 ......

( ) 2! ( ) !

n

n

n

a za zaz
F a b z

b b b n
      s.t.

( 1)( 2)......( )na a a a a n    , which is the confluent hypergeometric function of 

first kind (for more details: Slater, 1960; Abramowitz and Stegun, 1972). 

Thus, we can write, 
kC

b
kkFCW 


 22111 ,1,)( 







 
 . By reverse 

transformation, 
b   and, 

kGW   )()( , it yields,  

             22111 ;1,)( Ce
b

kkFeCzG bzbkz 






 




 

Substituting for x for z, we get  

22111 )(;1,)()( Ccbx
b

kkFcbxCxG k 













. 

Applying boundary conditions, 1)( dxG , and 0)( exG , it yields, 

            
)()(

)()(
)( 0

0

ed

e

xx

xx
xG




 , 
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where 










 )(;1,)()(

211 cbx
b

kkFcbxxE i

k

ii


 for xk denoting x0, xe, and xd . 

Here, 1
2











b

j

b

c
k


 .  

 

5.1.2. Special case: EBE probabilities of population in the presence of 

immigration stochasticity 

       Here, we solve Eq. (5.3) in the main text, 0)()(
2

1
)()(  xGxBxGxA xxx

for the case jxxA  )( , and, cxB 2/)( , where we denote 22 /σc p . 

Thus, equation, 0)()(
2

1
)()(  xGxBxGxA xxx  has a general solution,  

            




















x x

xdxd
xB

xA
CxG

)(

)(2
exp)( , 

where C is a constant. After applying boundary conditions at dxx 0  determined 

by 1)( dxG , and at exx 0  determined by 0)( exG , we obtain 

          
)()(

)()(
)( 0

0

ed

e

xExE

xExE
xG




  

where, 






 






c

xq
ErfxE i

Zi
2

)( , or can also be expressed in terms of confluent 

hypergeometric function of first kind, as 






 


c

xj
FxqxE i

ii





2

)(
,

2

3
,

2

1
)()(

2

11 . 

Here, xi for subscript i=0, e, d, and Erfz is the error function.   

Note that, 













ed

e

xx

xx
xG 0

0 )(  for cinf. 
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Appendix 5.2. Moment generating function of passage times of the 

population first hitting an upper boundary before a lower boundary 

 

Following the methods in Gardiner (2004), here, we derive the n
th

 moment 

of time for a population initially at x0 in (xd ,xe) to exit through an upper boundary 

xd before first hitting a lower boundary xe. We define the total probability that 

population initially at (x0,0) exited through xd at time t given by the time integral 

of the probability current at xd by 

 










t

ddxdd

t

dx xtxPxBxtxPxAtdxtxJtdtxq
dd

0

00

0

00 )0,|,()(
2

1
)0,|,()()0,|,(),(  

Here, )0,,( 0xtxP d
 is the transition probability density function that satisfies FPE 

corresponding to SDE Eq. (5.1). We let the time that population leaves (xd ,xe) be 

T. Thus the probability that population has exited at time t given that it exited 

through dx  be 

),(

),(
t)Pr(T

0

0

xd 


xq

txq

d

d

x

x
.     

Here, ),( 0 txq
dx  is the probability that population exited through dx  at time t. We 

note that 0( , | ,0)dP x t x  satisfies a backward Fokker-Planck equation. From here 

onwards, we ignore subscript zero that indicates the initial position as a variable. 

Thus,

),()0,|,()0,|,(),()(
2

1
),()( 0

0

0 txqxtxJxtxJtdtxqxBtxqxA
ddd xtd

t

dtxxxxx        (I) 

Note that for the time-homogeneous case (letting, t ) the above Eq. I reduces 

to Eq. (5.3) in the main text, that is, 0)()(
2

1
)()(  xGxBxGxA xxx , such that, 





0

)0,|,(),()( xtxJtdxqxG dxd
, which is the probability that population 
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establishing before going extinct (or first hitting dx before first hitting ex ) with 

boundary conditions, 1)( dxG , and 0)( exG .    

We write the mean exit time, given that population exits through dx  as 





0

1 )Pr(),( dttTtxxT
dxtd

. 

This is because, )Pr( tT
dx   is the cumulative density function that population 

exited before time t of the probability density function, )Pr( tT
dxt  , that 

population exited at time t given that it exited through dx . Thus, we write the nth 

moment of the exit time, given that population exited through dx  as 

)(

),(

),(

),(
)Pr(),( 0

00
xG

txqt

dt
xq

txq
tdttTtxxT

d

d

d

d

x

n

x

x

t

n

xt

n

dn

























 . 

After integration by part, 
)(

]),(),([

),(

1

0

xG

tttxnqtxqt

xxT

n

xx

n

dn

dd









. Here we 

find, 
0

( , ) 0
d

n

xt q x t



  , thus, it yields 




 
0

1),()(),( tttxqnxGxxT n

xdn d
.              (II) 

Multiplying Eq. I by t
n-1

it yields 

21111 ),()1(),(),(),()(
2

1
),()(   n

xx

n

txt

n

x

n

xxx

n

x ttxqntxqttxqttxqtxBtxqtxA
ddddd

. 

Integrating w.r.t  t from 0 to infinity it yields 
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
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As 
1

0

( , ) 0
d

n

xt q x t



  , it yields 


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 
0

2

0

1

0
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xx
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x ddd
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Substituting Eq. II on the above, and denoting x=x0, finally it yields 

),()(),()()(
2

1
),()()( 010000000 000

xxTxnGxxTxGxBxxTxGxA dndnxxdnx  .     (III) 

The boundary condition at dxx 0  is determined by 1)( dxG , 0),( ddn xxT , and 

hence, 0),()( ddnd xxTxG . The boundary conditions at exx 0  is determined by

0)( exG , and hence, 0),()( edne xxTxG . The cases n=1,2 yield the mean and 

the second moments of first passage times respectively. By substituting )( 0xG

from the solution to Eq. (5.3), we solve Eq. III above numerically for ),( 0xxT dn for 

the n
th

 moment of first passage time iteratively for the population first hitting an 

upper threshold xd, before a lower threshold xe. 

 

Appendix 6.1. Marine invasive species generation driven by high-amplitude 

gradients of global ocean temperature cycles 

Here, we present some preliminary statistical results as to how the 

invasibility of marine ecoregions, which can be measured by the invasive species 

taxonomic richness, is related to mean and amplitudes of annual temperature 

cycles of marine ecoregions. We use the same methods as in Chapter 4 to derive 

the data of sea surface temperatures pertaining to marine ecoregions (Indexed 1-

232 based on Spalding et al., 2007). Additionally, we include Ponto Caspian Sea 
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(Index: 300). We obtained marine species taxonomic richness data by ecoregion 

from Molnar et al. (2008).  

The invasibility of NTE is inversely correlated to the temperature-

amplitudes strongly within a range of mean temperatures (10-24
0
C) yielding 

p=0.04 (F=4.66, df=1,25,  R
2
=0.16) (Figure 6-1). The narrower the mean 

temperature range within NTE (for example, 10-20
0
C), the stronger the 

relationship (p=0.02, R
2
=0.19).  

Based on Molnar et al. (2008) data, we observe that the ratio of invasives 

per ecoregion between the Northern Hemisphere (NH) and Southern Hemisphere 

(SH) is 27.57/12.68 (NA/SA: 30.24/8.42, and, NP/ SP: 23.65/15). Here, A-

Atlantic, P-Pacific, N-North, S-South, E-East, W-West. Between the East coast 

and the West coast ecoregions of the northern temperate ecoregions, the 

proportions are: NWA/NEA: 21.71/33.56 and NWP/NEP: 7.2/42.13, and those in 

the southern temperate ecoregions are: SWP/SEP: 19.93/4.43, and SWA/SEA: 

9.86/6.4.  

Northern temperate ecoregions (NTE) have a high concentration of 

extremely high and extremely low-amplitude periodic temperature (APT) 

ecoregions at close physical proximity compared to other regions (Figure 6-3). 

High APT ecoregions, as extreme as those in the NTE, are not found anywhere 

else in the world’s marine regions.  

 

 

 

 

 

 

 

 


