.
't,
y

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/7614700 800/521-0600

el

University of Alberta

A THEORETICAL AND EMPIRICAL ANALYSIS OF @-ARY LANDSCAPES FOR
GENETIC ALGORITHMS

by

Jonathan Lichtner @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 1997

L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rélérence
Our file Notra réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette theése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

1+4

Canadi

0-612-22626-3

University of Alberta

Library Release Form

Name of Author: Jonathan Lichtner

Title of Thesis: A Theoretical and Empirical Analysis of a-ary Landscapes for
Genetic Algorithms

Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

O.Io.nath.an L.ichtner o)

206-10770 Winterburn Road N.W.
Edmonton, Alberta
Canada, T5S 1T5

Date: Ma':j gﬂ\? Iqq }

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled A Theoretical and Em-
pirical Analysis of a-ary Landscapes for Genetic Algorithms submitted by
Jonathan Lichtner in partial fulfillment of the requirements for the degree of Master
of Science.

Lorna Stewart

Date: A/’“ A 7/%7

Abstract

In this thesis we analyze genetic algorithms (GAs) using a landscape paradigm that
can rigorously model the search of GAs, including the common GA crossover oper-
ator. Such landscapes have only recently been introduced, and so far much of this
work analyzes crossover landscapes only for populations of two binary strings; this
thesis extends the work of others by studying crossover landscapes for non-trivial
populations consisting of a-ary strings.

We study the landscapes induced by several variants of a-ary mutation and a-
ary crossover, and develop an algebra of operators, and use this to relate crossover
to mutation. For example, we prove an isomorphism between simple mutation and
simple crossover landscapes and use this to show that crossover can simulate mutation.
This algebra can be used to develop landscapes with certain features for mutation

and crossover.

A cknowledgements

There are several people who made a direct contribution to this thesis, all deserving
thanks. First, and foremost, is my supervisor, Joseph Culberson, for time spent
deciphering and editing earlier versions of this thesis, and for helping to focus my
research in the right direction and for giving me some of his research problems. I
thank the members of my examining committee, Maziar Shirvani and Lorna Stewart.
for time spent reading my thesis and their helpful suggestions. I'd also like to thank
Jim Hoover for chairing my examining committee.

Several chapters of this thesis were based on papers, either published or submitted.
and the comments of the anonymous referees helped me to polish these portions of
my thesis. [also thank Kevin Charter, Kurt Lichtner, and Basil Vandegriend for
reading my thesis and giving helpful advice.

Contents

Introduction

I.1 Motivation o i i e
1.2 Landscape Background L.
1.3 Overviewofthis Thesis
Landscapes Induced by Mutation and Crossover

2.1 Search Space Structures and Some Notation
2.2 Landscape Graphs for a-ary Mutation
2.3 Landscape Graphs for a-ary Crossover
2.4 Hypercubes and Some Properties of Hypercubes

Generalized Crossover-Mutation Isomorphism

3.1 The Binary Crossover-Mutation [somorphism
3.2 An a-ary Crossover-Mutation Isomorphism

On the Power of Crossover and Mutation

4.1 Introduction
4.2 Simulating Mutation Using Crossover
4.3 Including Other Operators in Our Simulation . .
4.4 Hyper-Order Simulation

4.5 Conclusion e e e e e e e e e e

Iterating an a-ary Gray Code

51 GrayCodes
5.2 Iterating the Gray Code G(a,¢)
5.3 [Iterating Strings Using X!
54 Conclusion L. L.

Long Paths for a-ary Mutation and Crossover
6.1 Long Paths for a-ary Mutation
6.2 Long Paths for Crossover
6.2.1 Binary Crossover
6.2.2 Some Possible Future Research Directions
6.3 Conclusion.

...........

...........

17
17
18

21
21
23
24
26
29

30
30
31
32
37

38
39
40
42
44
50

R T L o R N L A TY

7 Schizophrenic Functions 52

7.1 The Binary Schizophrenic Function 52

7.1.1 Function Transformations Using Isomorphisms 53

7.1.2 Definition of the Binary Schizophrenic Function 53

7.1.3 Testing the Binary Schizophrenic Function 55

7.2 A Generalized Schizophrenic Function. 60

7.2.1 The Summation Function 60

7.2.2 A Generalized Schizophrenic Function 62

7.2.3 Testing the Generalized Schizophrenic Function 62

7.3 Conclusion o o o i i e e e e e e 64

731 FutureWork L Lo oo 64

8 Related Work 66

8.1 Landscapes Definitions That Include Crossover 66

8.2 Various Methods Used in Analyzing Landscapes 67

8.3 Discriminating Functions, and Interesting Landscape Constructions . 68

9 Conclusion 70

Bibliography 71
A Proof of Gray Code, and an Efficient Algorithm to Generate it in

Sequence 76

A.l Proofof Gray Code 76

A.2 The Transition Sequence T(a,f) 78

A.3 An Extension to G(a,£) and Another Generation Algorithm 31

B Description Of Search Algorithms Used in This Thesis 83

List of Figures

NN
N

Al

Outline of a simple genetic algorithm

Example one-point crossover search space structure.
The one, two, and three dimensional Hamming hypercubes
Some a-ary hypercubes: the (3,1)-cube, and the (3,2)-cube

One-point crossover can simulate two-point crossover

Fitness function for a-ary mutation long path.
Testing the a-ary mutation long path landscape.
Testing the binary crossover long path landscape (minimal populations)
Testing the “naive” long path crossover landscape (n =4 and n = 8).
Testing the the “naive” long path crossover landscape (n = 20), and
number of times optimal point reached (for n = 4,8, and 20).
Example run on “naive” crossover long path landscape.
Another example run on “naive” crossover long path landscape.

Yet another example run on “naive” crossover long path landscape.

GIGA on the binary schizophrenic function: varying family size and
string length oL L.
GAC on the binary schizophrenic function: varying mutation and
crossoverrates. L . L Lo e e e e e
NQ-GIGA on the binary schizophrenic function: varying mutation and
crossover rates. L. e e e e e e e e e e .
NQ-GIGA on schizophrenic function (o = 4): varying mutation and
Crossover rates. et e e e e e e e

An algorithm for generating G(a, £) code words in ©(a?) time

38

59

61

List of Tables

7.2
7.3
7.4

B.1
B.2
B.3

Outline of a generic hill climbing algorithm.
Product table for the Klein 4-group
Two example Gray codes

GIGA and MHC on the binary schizophrenic function: minimal pop-
ulations L oL e e
GIGA on the binary schizophrenic function: non-minimal populations
MHC and GIGA on a-ary schizophrenic function: minimal populations
GIGA on the a-ary schizophrenic function: non-minimal populations

Default GIGA parametersettings
Outlineof GIGA
Outlineof MHCo .o oo o

-

35
56
63
63

Chapter 1

Introduction

We divide our introduction into three sections. In the first, we provide some motiva-
tion for studying a-ary landscapes and landscapes in general. This is done by showing
that many search algorithms, including genetic algorithms (GAs) and hill climbers,
can be modelled using the landscape paradigm. In the second, we give some necessary
background material on landscapes. Finally, we provide an overview of this thesis.

1.1 Motivation

Genetic algorithms [22, 27, 39] (GAs) are a diverse class of probabilistic algorithms
that are loosely based on biological evolution. In this thesis we consider, for the most
part, using GAs to optimize functions. That is, we have a function f : S — R.
where § = {0,1,---,a~1} and R is the set of real numbers, and we want to find an
optimal or near-optimal string z € S°.

Since there is no precise definition of what does or does not constitute a GA, we
instead list four distinguishing features that encompass most GAs: the domain of the
function to be optimized is represented by strings, which are akin to chromosomes
in biological genetics; the GA maintains a population of these strings, a multiset of
the representation space; each string has a fitness, a measure of the worth of the
solution represented by the string; the populations are changed, or evolved, using
genetic operators such as mutation or crossover, biased by the fitness of the strings.

Mutation, in its most general form, takes a single string, picks certain characters
of that string, and randomly replaces those characters with new characters. For
example, the string 00000 can be mutated to 00230. Crossover takes two strings
I =1zI1z2---z¢ and y = y1y2 - - - ye and produces the strings =’ and y’ where (z! = z;
and y; = y;) or (&} = y; and y; = z;). Crossover is sometimes called recombination.

These common features can be combined to form a generic “template” GA:

1. Create an (initial) population of strings. This initial subset is often chosen
randomly, but this need not be the case.

2. Assign each string a fitness value using a fitness function. f().

Create an initial random, n-string population.
While (not done) {
Repeat { /™ create new population */

- Stochastically select two parent strings from the old
population (with replacement). The probability a string
is selected is an increasing function of its fitness.

- With some crossover probability, p., cross this
pair to make a pair of children. With some mutation
probability, p.., mutate each character of each child.

- Add the children to the new population.

} until (> n children strings have been produced);
Replace old population with children.
Drop one string from population if n is odd.

Figure 1.1: OQutline of a simple genetic algorithm, based on Mitchell [39, pp. 10-11].

3. Create a new population by applying various genetic operators, such as mutation
and crossover, to the old population, biased by the fitness of the strings.

By iterating steps 2 and 3, the population will evolve over time.

An infinite number of algorithms will fit into the generic template just given, but
most GAs can be represented by a simple genetic algorithm (see Figure 1.1). While
many GAs are based on this simple GA, some are not. Some non-traditional genetic
algorithms include CHC {13] and GENITOR [50]. The CHC algorithm merges the
old population with the new, keeping the n most fit strings in the merged population.
GENITOR replaces the least fit string of the population with a newly generated
string iff the new string has a higher fitness than the old. GIGA and NQ-GIGA, two
of the GAs used in this thesis, are also not based on simple GAs. See Appendix B
for descriptions of GIGA, NQ-GIGA, and some other related search algorithms.

Analyzing genetic algorithms has proven difficult. This is amply demonstrated
by the controversy over whether crossover is more powerful than mutation, or vice
versa [46]. There are two main camps in the GA community: those who believe that
crossover is the power behind GAs while mutation is just a secondary operator, used
only to introduce variation into the population; and those who believe that crossover
is not needed or is intrinsically less powerful than mutation. (In addition to these two
traditional opinions about crossover and mutation, there is a view that holds that both
mutation and crossover are useful search operators [41].) This crossover-mutation de-
bate is important because, as some have noted [34, 14], GAs are usually distinguished
from other evolutionary algorithms by using populations with crossover. If crossover
is not useful, then GAs themselves may not be useful as function optimizers.

Part of the difficulty with this mutation-crossover debate is that it is hard to
define precisely what it means for one operator to be more powerful than another. One
possible approach is to try both mutation and crossover on a suite of test functions. If

one does better than another, then that can be taken as evidence that that operator is
more powerful on those functions. In this way, classes of problems may be discovered
that seem easier for one operator than for another. For instance, Fogel and Atmar [17]
find that mutation is more useful than crossover on a particular class of functions,
and further make the claim that crossover “cannot be the hallmark of a broadly useful
algorithm.” There is a danger in extrapolating from one class of functions to the
general case: tests on a suite of functions say little about functions or problems not
modelled in that suite. However, experiments can help determine where crossover
seems to be useful. Eshelman and Schaffer [14] suggest that crossover is useful, but
only in a small niche of problems. Jones [34] suggests that even when the addition
of crossover seems to help the search, it may just be doing a macro-mutation, and so
crossover’s niche may be even smaller than it appears.

While useful, experiments alone cannot answer the mutation-crossover debate.
because there are many possible crossover operators, mutation operators, and imple-
mentations that the researcher has to choose from, and each choice may affect the
results dramatically. [t may be that mutation is better than one type of crossover op-
erator yet worse than another. Or crossover may be potentially better than mutation,
but an algorithm may not use that potential.

For these reasons, this debate has also been addressed theoretically: Spears [46]
analyzes crossover and mutation in terms of their ability to construct and disrupt
useful information, and Culberson [8] uses an isomorphism between mutation and
crossover to compare their relative search capabilities. Part of this thesis extends the
work of Culberson to further address the mutation-crossover debate.

Another example of the difficulty in analyzing GAs can be seen in the analysis of
GAs on Royal Road functions [18, 19, 40]. The Royal Road functions are, intuitively,
better suited to crossover than mutation. However, when tested, a mutation hill
climber outperformed a traditional GA [19], even though an “idealized” GA has been
theoretically shown to be faster than the mutation hill climber (by a linear factor).
Thus, crossover has the potential to do better than mutation, but an algorithm may
not use this potential even though it uses crossover. Interestingly, GIGA performs
very well on the Royal Road functions [7].

There are many other examples of analysis gone wrong in the GA literature. For
example, Davis [11] notes that a simple mutation hill climber often outperformed
GAs on a suite of test functions designed to demonstrate the power of GAs. Grefen-
stette [25] observes that certain classes of problems that are supposed to be easy for
GAs are actually hard, and some classes that are supposed to be hard are actually
easy.

One of the reasons analyzing GAs can be difficult is that there are many different
genetic algorithms and an analysis of one may not apply to another. It is tempting to
think that because different GAs may share much in common (e.g., use of populations
and similar operators) an analysis will carry over from one to the other. However,
an analysis of a particular GA may become irrelevant if the algorithm is modified,

'They use mutation and crossover on real-valued strings. and so their results say little about
discrete forms of mutation and crossover, just as our analysis says little about real-valued operators.

even slightly. For example, we have shown [10] that small changes in search strateg
(elitism vs. non-elitism, full-neighbourhood sampling vs. partial-neighbourhood sam-
pling) can make a problem go from being easy to exponentially difficult. An analysis
may often be robust, but extrapolation must be done with caution.

Even if we restrict our focus to one genetic algorithm, further difficulties result
because GAs are applied to many problems, and it is often expected that any analysis
should apply to all possible problems. This “black box” mind-set—i.e., treat the
fitness function as a black box module separate from the GA—is an analytical dead-
end since an analysis on one problem may not carry over to another. It is impossible
using the “black box” or “blind” model of search to do better on average than a
random enumerative search over all problems. This is noted as early as 1991 by
Rawlins [42], and is proven formally by Wolpert and Macready [52]. Culberson [9]
gives a more intuitive perspective on the limitations of blind search. This means we
cannot separate the problem from the algorithm; the two are intertwined, and any
analysis must take both into account.

GAs are also very complex, which adds further difficulty. For instance, we may be
forced to make several abstractions in order to simplify the analysis. It is possible that
the assumptions may be incorrect, and while our analysis on the simplified problem
may be correct, it may not apply to the more general instance.

Landscapes [8, 33] are one possible approach to analyzing genetic algorithms. In
the landscape paradigm, all probabilistic searches can be seen as wandering through
some space of possible solutions, or search space. A search can be represented by a
graph where each node in the graph represents some point in the search space. For
GAs, for instance, each possible population is a point in the search space. The search
algorithm moves through this landscape by applying various operators, and these
operators define edges in the graph. That is, they define how the landscape can be
traversed. Each node is labelled with its fitness value. Thus we can speak of various
landscape features such as paths, peaks, and slopes, etc.?

The landscape paradigm does not solve the problem of GA analysis, but it does
give a precise model to work with which is important since it is easy to prove theorems
that are not tied to any algorithm. It is also relatively easy to simplify the model.
Some other advantages of using landscapes are:

e Landscapes are very general and can be used for almost any search problem.
Techniques developed for GAs and hill climbers may also apply to other algo-
rithms. For instance, Jones notes that the fields of Al and Operations Research
have views of search that are related to landscapes [33].

e Landscapes allow us to divide the analysis of most search algorithms into two
main components [33]: the landscape, and the navigation strategy (how the
algorithm traverses the landscape graph).

o Landscapes fall into classes, and analysis can be applied to those classes.

2\Ve leave the definitions for the next section.

The second point is useful, since there are often “natural” operations that define
a landscape. The features of this landscape may affect which navigation strategy
should be used. For example, different navigation strategies—working on the same
landscape—can result in either linear or exponential performance [10].

The last point is especially important. Being able to lump landscapes into classes
instead of having to consider all landscapes at once or only a single landscape at a
time allows us to get an analysis of GAs that is general but that is not so general as
to be useless.

Most landscape analysis so far has only examined landscapes based on binary
string representations. If we change our representation to a-ary strings, then different
landscapes result, and these landscapes may be more suitable for searching than their
binary counterparts. At the very least, studying a-ary landscapes and landscapes in
general should lead to a better understanding of GAs.

Finally, much of our analysis is closely connected to graph theory since landscapes
are graphs with a fitness measure on the vertices (and, possibly, probabilities on the
edges). Some of our results may be of interest to non-GA researchers. For example,
we explore the problem of generalizing distance-preserving paths, known in the GA
community as the long path problem, to a-ary hypercubes. In Chapter 5 we prove
a theorem on the number of unique codes produced when an a-ary Gray code is
iterated, and in Appendix A, we prove that this a-ary code really is a Gray code and
develop an algorithm to generate it efficiently in sequence (constant amortized time
per code word). We further generalize this code and code generation algorithm to
include a class of “multary” Gray codes.

1.2 Landscape Background

A landscape is an abstract way of viewing many search algorithms. Because land-
scapes are commonly misused it is prudent to define what we mean by a landscape.
We will also define several measures and features of landscapes. The reader may also
wish to see Jones’s thesis [33] or Culberson (8] for similar definitions. We base some
of our definitions on the two former works and also use some of the definitions from
the paper, “On Searching a-ary Hypercubes and Related Graphs™ [10].

For simplicity we restrict our discussion of landscapes to algorithms that work on
length ¢, a-ary strings. For example, if z = z,z,-- -z, is an a-ary string, then each
character of z (the z;s) can take one of a characters. We use the character set {0, 1.
.-+, a-1}. The search space is the set of all possible populations, where each member
of a population is an a-ary, length ¢ string. Each population in this search space is
represented by a vertex v in the landscape.

Each vertex is labelled with the fitness of the population represented by this vertex.
g(v). The fitness function on strings, f(), and the fitness function on the population.
g(), are equivalent only when the population is of size one, although g() is usually
based on f(). For example, the fitness of a population could be the maximum fitness
of all strings within the population. In effect, g() assigns a “height” to each vertex:
the goal of a search algorithm (when maximizing) is to find the highest such point.

5

Two vertices v and w are connected by an edge iff the population represented by
w is a result of applying a genetic operator to v. Thus the operators induce edges in
the graph. It is possible to model algorithms that apply more than one operator at a
step by treating these operators as a single compositive “population” operator.

We illustrate what we mean by population operators inducing edges in the land-
scape graph using a simple example on binary strings. Consider an algorithm that
maintains a population of three strings, and generates a new population by uni-
formly applying one-point mutation, one-point crossover®, or both to the old popula-
tion. Then the populations v; = {01101,00010, 11011}, v, = {01101,00110, 11011},
v3 = {01011,00010,11101} and vs = {01011,00110,11101} are four points in the
search space. Further, v; and v, are connected by the one-point mutation operator
(mutate the second string), v; and vz are connected by the one-point crossover oper-
ator (cross the first and third strings), and v, is connected to v1, vz, and v3 (mutation
and crossover on v;, Crossover on vz, mutation on v3). However, if our algorithm only
applied one-point crossover or one-point mutation to the population (not both at the
same time) then there would be no edge between v; and vy.

Each edge (v, w) is labelled with the probability that an operator produces w from
v; this is different than the probability that a specific search algorithm will move from
v to w. For example, if g(v) > g(w), then an elitist algorithm will never move from
v to w, but a non-elitist algorithm might.

Thus a landscape can be represented as a graph G = (V, E') with population fitness
function g() on the vertices in V and probabilities on the edges. There are directed
and undirected landscapes, but in this thesis we only consider operators that define
undirected landscapes, since we use symmetric operators and populations of constant
size. (Crossover between two strings to produce one child will not produce symmetric
landscapes; Jones’s landscapes [33] is more general than Culberson’s [§] in that such
crossover types and the resulting directed landscapes are modelled.) Further, if the
operators used generate all the neighbours of a vertex v with equal probability, then
we do not need to label edges with probabilities. This will frequently be the case. We
call the graph underlying a landscape the landscape graph.

Given two vertices in the landscape, say vg and v;, there is a path between them iff
there is a sequence of vertices vy, v,,- -, v;—; such that V3,0 < 7 < ¢, (v;,v41) € E.
The length of a path is the number of edges contained within the path. Let N(v) be
the set of neighbours of v. The degree of a landscape graph is max,ev |[N(v)|. The
distance, dist(v,w), between two points v and w is the length of the shortest path
between them. The diameter is max, wev dist(v,w). Two points are connected iff
there is a path between them. A region in the landscape graph is a set of points that
induce a connected subgraph. Let X be a region. Then N(X) ={v:we€ X,(v,w) €
E.v ¢ X}; that is, we overload N() to work on points and regions.

Recall that g() gives the fitness of the vertices in the landscape. A region X is a
peak iff Vv € X ,Vw € N(X), g(v) = c and g(w) < ¢ where ¢ is a constant. A peak is

3These are defined formally in Chapter 2. One-point mutation takes a string and mutates a
single character. One-point crossover takes two strings, picks a crossover point, and exchanges the
tail-ends of the strings to produce two children; the two children then replace their parents.

Generate initial population v

While (not done) {
- generate some subset S of N(v)Uv
- let v = maxyes g(vi)

Table 1.1: Outline of a generic hill climbing algorithm.

optimal iff it has at least as high a fitness value as any point not in the peak. A peak
is a false optimum iff it is not optimal. A path p = v;, viy1,---,v; (with start v;) is
strictly increasing iff g(vi) < g(ve+1)Vk, i1 < k < 7.

In summary, a landscape is a graph, where each vertex represents a population.
Edges in the graph are induced by genetic or “population” operators, and g() takes
the vertices of a landscape graph and assigns a “height” to them, which gives us the
landscape paradigm. As well, an edge (v,w) may be labelled with the probability
that the operator produces w from v.

Almost any probabilistic search algorithm can be analyzed using landscapes, where
the algorithm walks along the landscape graph, an edge at a time. This means that
even GAs can be seen as doing a local search. Further, this landscape view has no
“magic” operators: the landscape of a GA is not the binary hypercube and crossover
does not “warp” or “jump” through this space. Instead, both mutation and crossover
are modelled together.

The landscape for a GA can be very complex, and so we usually reduce its com-
plexity by making abstractions or simplifications. This will usually be done by study-
ing the graphs induced by a single genetic operator on minimal populations, and
conducting experiments with search algorithms on these simplified landscapes (e.g..
using simple hill climbers). See Table 1.1 for an outline of a generic hill climber. If v
is included in S, then the hill climber is elitist, otherwise it is non-elitist. An elitist
hill climber that only moves uphill is strictly elitist. This definition allows even some
population-based search algorithms to be viewed as hill climbers.

1.3 Overview of this Thesis

[n this thesis we conduct a theoretical and empirical analysis of a-ary landscapes
for genetic algorithms. We do this from an algorithmic point of view, in which the
search of GAs is modelled as searching graphs. We use the term landscape for this
combination of graph and fitness of the graph vertices.

Having decided to use a-ary strings to represent members of our population, in
Chapter 2 we examine the landscape graphs induced by several variants of a-ary
crossover and a-ary mutation. We also show that a-ary mutation searches an a-ary
hypercube, and because of this, we discuss some properties of the hypercube. We then
show in Chapter 3 that a-ary mutation is isomorphic to a form of a-ary crossover.
This is a generalization of a binary crossover-mutation isomorphism [8].

This generalized isomorphism can be used (Chapter 4) to show that a GA or hill

frivab gy /. TR TN

climber that uses mutation and crossover can be simulated by one that uses only
crossover. Additional operators can be included in this simulation. This shows that
crossover is at least as powerful as mutation in the sense of computational power,
and suggests that the old question, “Which is better, crossover or mutation?” should
be replaced with two new questions: “Are the various operators being used to their
potential?” and “Which operator is better suited to a particular problem?” The
technique underlying this simulation can be extended to hyper-orders (hyper-order
simulation), and this analysis illustrates the complexity of crossover.

A special case of this hyper-order simulation leads to the notion of iterating an
a-ary Gray code. That is, we start with the code representing the natural numbers
of base a, length ¢, and repeatedly apply a Gray code mapping until the code cycles.
We iterate this Gray code in Chapter 5 and prove a theorem on the number of unique
codes produced when this Gray code is iterated. Alternatively, we can view iterating
strings under this Gray code mapping as iterating the representation or, equivalently.
the landscape of a GA or hill climber. This theorem gives the maximum number of
landscapes produced when iterated under the Gray code.

In Chapter 6 we discuss the long path problem for a-ary mutation and show how
to construct these paths. Qur construction gives a new lower bound on the maximum
length of distance-preserving paths in a-ary hypercubes. We also develop long paths
for a-ary crossover. We create an exponentially long distance-preserving path for
crossover between a complementary pair of binary strings. We then try extending
these long paths to bigger populations and do some tests on the resulting landscapes.
The results are interesting in that crossover appears to follow exponentially long
paths. However, these results are preliminary.

Having developed some theory about a-ary mutation and a-ary crossover—in
particular, having shown that crossover is potentially as powerful as mutation—we
develop the schizophrenic function in Chapter 7. This function has two optima classes.
and is constructed in such a way that mutation should find one optimum, crossover
the other; our goal is to construct a function able to discriminate between searches
that use crossover well, and those that do not use crossover at all or do not use it
well. Empirical tests for @« = 2 and a = 4 show that the schizophrenic function is a
useful but imperfect tool.

In Chapter 8 we give a quick survey of some previous landscape analysis in GAs.
We conclude our thesis in Chapter 9. We prove in Appendix A that the code of
Sharma and Khanna [43] really is a Gray code, and give an algorithm that generates
each code word of it in sequence in constant amortized time. We generalize this a-
ary Gray code to a “multary” Gray code, and generalize our constant amortized time
code generation algorithm for this multary code.

In Appendix B, we describe some of the algorithms used throughout this thesis
to test our various conjectures. This includes descriptions of GIGA, a crossover-only
GA; NQ-GIGA, a modification of GIGA; GAC [47], a traditional genetic algorithm:
and a mutation hill climber.

Chapter 2

Landscapes Induced by Mutation
and Crossover

2.1 Search Space Structures and Some Notation

In this chapter we describe the landscapes induced by a single genetic operator on
minimal populations. A population is considered minimal if, when an operator is
applied, all the strings in the population must be used (i.e., there is no selection of
strings from within the population). For example, a minimal population for one-point
mutation consists of a single string. For one-point crossover, a minimal population
consists of two strings. We discuss the landscapes of a-ary mutation and several
variants of a-ary crossover. We call these landscape graphs on minimal populations
search space structures (SSSs), as done by Culberson [8].

There are several reasons for focusing on minimal population sizes in this initial
analysis:

L.

[

N

The landscapes generated by operators on minimal populations are much sim-
pler than those with larger populations. Thus, any analysis of “simplified”
landscapes can be seen as a first step towards an analysis of more complex
landscapes.

These landscapes, in certain cases, may relate to more general landscapes.

There may be graph-theoretic properties of these landscapes that are worthy of
individual study.

The landscapes examined in this section correspond to the landscapes of some
simple hill climbers, and so our analysis will at least apply to hill climbers, even
if it does not always extend to GAs.

. Comparing test results from minimal populations and non-minimal populations

can offer insight into how population and crossover interact in GAs.

These search space structures require some additional notation. Throughout this
thesis. most of the mathematical derivations and equations are carried out under a

9

finite abelian! group with o elements and identity 0. If z is an element in the group.
then z7! is the inverse of z. The group operator is *.

At certain points in this thesis we will restrict our discussion to the group “addition
mod a,” or Z,. Rather than writing (z + y) mod a or (z — y) mod «, we will write
9y and zSy, respectively. The value of a will be implicit.

We will also sometimes write z *y as < z >, or < y >,. For example, z *y %z~
could be written as < >,..-1. We will also apply this notation to strings, when
convenient. Consider

1

< TiTit1Ti42 - " Tj=1Tj >n , Where 1 < g
as a substitute for
LI < Tip) 2K Tigz Op o ° < Tjo1 2n< Tj >p
or
(zi * n)(ig1 * n)(Tig2 ¥) -+ - (zjo1 * n)(z; % n)

This shorthand notation is used later to define several types of a-ary crossover.

We first discuss mutation-based search space structures, followed by crossover-
based search space structures. In the last section we discuss a-ary hypercube graphs
and some of their properties, and relate hypercubes to both mutation and crossover
search space structures.

2.2 Landscape Graphs for a-ary Mutation

One-point binary mutation can be specified by denoting which bit gets mutated, i.e.,
the position k of that bit. On a string £ = z,z5---z¢, a one-point binary mutation
at k is equivalent to complementing z;, and leaving all other bits in £ unchanged.
More rigorously, one-point binary mutation at £ on z creates a new string z’ such
that z} # zi, and Vi, such that : # k, z! = z;. As an example of one-point binary
mutation, the string 000010 can be mutated at k£ = 3 to get the string 001010.
One-point binary mutation can be generalized to a-ary strings by specifying both
the position of mutation and the new value at that position. When a = 2, one-
point mutation reduces to one-point binary mutation. Rather than speaking of what
the mutated character changes to, we introduce the symbol A, which refers to what
the mutated character changes by (e.g., A = z\xz;'). For example, if @ = 5 and
z = 00300 and we mutate z to z’ at k = 3 for A = 4, then z' = 00(364)00 = 00200.
We focus on one-point mutation in this thesis, even though there are an infinite
number of different mutation types. Two common mutation types are k-point muta-
tion where up to k points are mutated and uniform mutation where each character is
mutated with probability p,,0 < pm, < 1. We choose one-point mutation because it
is simple and can be used to implement most common mutation types. Its landscapes

'The group operator is commutative.

10

can also be similar to those of other mutation types: for example, uniform mutation
with p,, = 1/¢ will mutate one character on average. Thus there may be some sim-
ilarity between searches that use uniform mutation with low probabilities and those
that use one-point mutation.

The one-point mutation SSS is defined on a population of size one. Two strings are
adjacent in the search space structure iff they differ in exactly one character. In this
thesis we make the assumption that the character to be mutated is chosen uniformly;
this means we do not need probabilities on edges. This is the usual implementation
of one-point mutation. We will refer to the SSS for mutation on a-ary, ¢-character
strings by the notation Har(¢, a, *).

2.3 Landscape Graphs for a-ary Crossover

[n this section we will define two types of crossover:
I. one-point crossover (normal crossover between two strings), and
2. one-point (a,*) crossover (crossover between « strings, driven by *),

and discuss their search spaces structures.

One-point Crossover SSS

One-point crossover on two strings £ = z1z,---z, and y = y1y---y¢ at crossover
point k,1 < k < ¢, produces the strings ' = <z, ---ZiYgs1---y¢ and
Y = Y1+ YeZTi41 - - T¢- It is possible to define other crossover operators in terms
of one-point crossover; for example, two-point crossover at ki, k2 on z and y is equiv-
alent to doing a one-point crossover on z and y at k;, followed by a crossover at
k-z.

For an example, consider crossing the pair of strings:

01101
10001

at crossover point k& = 1, which yields the strings:

00001
11101

Not all crossovers in this SSS produce a change. For instance, crossing the strings
above at positions k = 3 or k = 4 produces no change.

The one-point crossover SSS is defined by two strings z and y. The vertices consist
of all the pairs (z’,y’) such that z = z; and y; = y;, or 2} = y; and y! = z;,Vi,1 <
¢ < {. In this SSS, any point (z,y) in the search space, is connected by an edge to
another point (z'.y") iff (z.y) can be crossed (once) to get (z’,y’). This search space

tl

T el A -

01101
10001

00001 01001
11101 10101

O\ U

11001
00101

CJ

Figure 2.1: Example one-point crossover SSS. The loops have probability 1/2, all
other edges have probability 1/4 (assuming crossover point is chosen uniformly).

is connected, and is equivalent to the search space resulting from taking an initial
pair of strings (z,y) and repeatedly applying one-point crossover to them.

Jones [33] gives an alternative simplified crossover landscape: the vertices consist
of all possible pairs of strings, with edges defined by one-point crossover. This land-
scape is not connected but consists of many connected components, where each com-
ponent is a one-point crossover SSS. The number of one-point SSSs in Jones’s land-

scape is given by Y5 _, (i) (‘;)h which is approximately (1+ (;))¢ since o (Z) (‘;) b
(1+ (‘;))¢. For the binary case, there are roughly 2¢ one-point crossover SSSs in Jones’s
landscape.

See Figure 2.1 for an example one-point crossover SSS. The probabilities on the
edges of a one-point crossover SSS are not equal unless the strings are identical or
have equally spaced differing characters separated by equal-sized blocks of identical
characters. A one-point crossover SSS will have self-loops only if the first or last
character in each string are the same.

One-point (a,*) Crossover SSS

[n this section we use the shorthand notation described previously to define one-point
(a,*) crossover. These crossover types are used in the next two chapters to show that
one-point crossover can simulate discrete mutation. That is, we will show that one-
point (a,*) crossover can simulate a-ary mutation and that one-point crossover can
simulate (a,*) crossover, implying (by transitivity) that one-point crossover simulates
a-ary mutation.

Recall that * is a finite abelian group operator. Then one-point (c,*) crossover
acts on a set of « strings:

< Z1Z2" - TkZk41 """ T >0
< I1ZT2" " ThTht1 - Te >1

< T1Z2° " TkTk41 """ Tt >a-1

Given this set of strings, one-point (a,*) crossover with A and crossover point k gives
the set of strings:

< Ti1ZTg- T 20< Tkt Tt >A
< T1Ty T 21< Tkt " T¢ >A*1

<TIT2 T Pa-1< Tkl Tt >A*(a—l)

In other words, one-point (e,*) crossover picks a crossover point &, and permutes the
tail ends of the strings by applying A to each character in the tail.

One-point (a,®) crossover is one-point rotational crossover (so named because the
tail ends of the strings rotate upwards by A rows). For the binary case, rotational
crossover is just crossover between complementary strings. In the following examples,
the vertical bars mark the crossover point. The complementary binary pair

001101/1001
110010/0110

becomes the following pair after one-point rotational crossover at k£ = 6:

001101[0110
110010|1001

Consider the following set of strings, for a= 4:

0132102]1223
1203213(2330
2310320|3001
3021031|0112

Rotational crossover at £k = 7 with A = 1 gives the following strings:

0132102/2330
12032133001
2310320(0112
3021031/1223

13

=10 1 2 3
0(j0 1 2 3
1j1 0 3 2
212 3 0 1
313 2 1 0

Table 2.1: Product table for the Klein 4-group.

Using a group other than Z, will generate other types of multi-string crossovers.
For example, consider the Klein 4-group (its group product is given in Table 2.1).
Then, letting * be the Klein 4-group operator, one-point (4,*) crossover on the strings

01302|130
10213]021
23120312
32031/203

at k = 5 with A= 2 produces the strings

01302|312
10213(203
23120130
32031|021

The one-point (a,x) crossover SSS is defined on populations of « strings, where
each string has length £+ 1. The vertices consist of the sets {z,< z >0, -+, < T >4}
for all strings z such that £ = O0zpz3---z¢1. Two sets of a strings are adjacent in
the search space structure iff one can be derived from the other by a single one-point
(a,*) crossover operation. We use the notation Hx (¢, a, *) to refer to the graph of
the one-point crossover SSS for (¢ + 1)-character strings.

2.4 Hypercubes and Some Properties of Hyper-
cubes

The Hamming distance between two a-ary strings z = ,z2---z¢ and y = y1y2- - - ye
is

l T . .
hod(z,y) = Z{ Lif z; #

~ | 0, otherwise

For example, the strings 01234 and 11234 have a Hamming distance of one, while the
strings 1001 and 0010 have a Hamming distance of three.

14

011 — 111

L A
T el

00 — 10 000 — 100

Figure 2.2: The one (1), two (c), and three (r) dimensional Hamming hypercubes.

01— 02

Figure 2.3: Some a-ary hypercubes: the (3,1)-cube (1), and the (3,2)-cube (r).

The Hamming (binary) hypercube of dimension ¢ is a graph that consists of all
the binary numbers of length £ as vertices. Given any two vertices = and y, there is
an edge (z,y) iff A_d(z,y) = 1. For example, the string 000 is connected to the strings
001, 010, and 100 in the three-dimensional Hamming hypercube. The hypercube is
an undirected graph. See Figure 2.2 for some example Hamming hypercubes. See
Harary, et al. [26] for an alternative set definition of the binary hypercube and a
survey on hypercube theory.

The hypercube can be generalized for strings that have a-ary characters. The
hypercube of dimension ¢, base « is a graph that has o’ vertices (all the a-ary strings
of length ¢). Two vertices = and y are connected by an edge (z,y) iff A_d(z,y) = 1. For
example, the vertices 3456 and 3156 would be connected in a hypercube of length 4.
As with the Hamming hypercube, base a hypercubes are undirected. When referring
to hypercubes, we will sometimes use the notation (o,f)-cube for the hypercube of
dimension £, base « as a shorthand. See Figure 2.3 for two example a-ary hypercubes.
For more on (a,f)-hypercubes, the reader may wish to read the paper by Barasch, et
al. [1].

The search space structures discussed in the previous two sections are isomorphic
to hypercubes or closely related to them. One-point mutation can be defined in terms
of the Hamming distance between a string z and the mutated string z’, since one-
point mutation on z to get z’ always gives h_d(z,z') = 1. Therefore, the one-point
mutation SSS, Has (¢, a, *), is isomorphic to the (a,f)-cube.

The crossover search space structures are also related to hypercubes. For the one-

-

15

point crossover SSS, when two length ¢ strings have a Hamming distance of A, their
SSS is equivalent to searching on the £ — A — 1 Hamming hypercube (8] if the first and
last character in each string are different, and the { — A — 1 Hamming hypercube with
self-loops, otherwise. The one-point (a,*) crossover SSS for strings of length £+ 1 is
isomorphic to the (a,f)-cube. This isomorphism is proven in the next chapter.

Given that (a,f)-cubes occur often in GA and hill climber landscape analysis,
it should prove beneficial to note some measures of these graphs that may affect
the performance (or limit the performance) of our various search algorith.ns. Some
example measures include:

e maximum number of false optima
e longest distance-preserving paths
o degree vs. diameter trade-off in landscape graphs

Several of these measures have been discussed in the literature. For example, the
maximum number of false optima on a hypercube landscape is a*~! [10]. The longest
possible distance-preserving path is exponential (in £) for the Hamming hypercube [45,
26], and exponentially long paths for one-point mutation have been implemented [29.
30, 31, 10]. Exponentially long paths can still occur in hypercubes, for a > 2, but the
maximum length of these paths is reduced [10]. We discuss this “longest distance-
preserving path” problem in Chapter 6.

The (a,€)-cube’s diameter, the maximum distance between any two vertices, is /.
[ts degree, the maximum number of neighbours of any vertex, is (e — 1). Notice that
n = af and so £ = log, n. This can also be written as £ = 2. In general, we want a
diameter and degree that are not too small and not too large [8, 10], and in certain
situations it may be useful to minimize degree*diameter {10] for a given number of
vertices n. For example, the degree*diameter of a complete graph is n — 1 and that of
a cycle graph is n, much worse than the degree*diameter product for the hypercube:
(a — 1) log? n. A hypercube of £ = 1 is a complete graph and so not all hypercubes
have desirable degree-diameter trade-offs. The degree*diameter product is minimized
for « =5 [10].

16

Chapter 3

Generalized Crossover-Mutation
Isomorphism

In this chapter we prove that the one-point («a, *) crossover SSS, Hx(¢,a,*), is
isomorphic to the one-point a-ary mutation SSS, Hay(¢, a,*). That is, the search
space structures of both operators are (a,f)-cubes.

This isomorphism has several uses:

e [t can illustrate key points about crossover’s landscapes.
o [t can be used to show that crossover can simulate mutation (next chapter).

e [t can be used to create long paths for crossover (Chapter 6), and in the con-
struction of discriminating functions (Chapter 7).

3.1 The Binary Crossover-Mutation Isomorphism

Define the mapping I to be:

I(z) = (a,a)
o 0 ifi:=1
@ = ;19a,-; 1< 1 < {+1

[t can be shown [8] that Z is an isomorphism between the search spaces induced by
one-point binary mutation on a string of length ¢ and one-point binary crossover on
two complementary strings of length ¢ + 1.

Culberson (8] uses this isomorphism to transform functions that are hard (or
easy) for one-point binary mutation to functions that are hard (or easy) for one-point
crossover on a complementary pair of strings. He also uses it to illustrate key points
about the one-point binary crossover SSS by allowing a complex operator, crossover.
to be expressed in terms of a simpler operator, mutation.

17

3.2 An a-ary Crossover-Mutation Isomorphism

We can generalize the binary crossover-mutation isomorphism to an a-ary crossover-
mutation isomorphism; that is, we show that one-point (a,*) crossover is isomorphic
to one-point a-ary mutation.

The changes in Z are that the @ symbol becomes the * symbol, and that the
isomorphism maps a string z of length £ to « strings of length € + 1. The new
generalized Z and Z~! mappings are

J(z) (a,<a>y,...,<a>q-1)
{o ifi=1
a; =

Ti1*a;; <1< ¢+ 1
and

T Y a,<a>,...,<a>q-1)) = z
(aig1*all), 1 <1< ¢

i

T

When a = 2, these mappings reduce to Z~! and Z. Note that z; also equals < a;4; >n,
(< a;>n),1<1<¢,0<m < a~—1,since the “m”s cancel. This mapping is also
one-one and onto.

As an example of J for higher alphabets, let £ = 24103 for a= 5, and let * = 5.
Then J(z) is equal to

0212(20
1323131
243442
304003
4101|14

If £ is mutated to z’, where '’ = 24113 (k = 4,A = 1), then J(z') is

021231
132342
2434(03
3040|14
4101]20

This mutation is equivalent to a rotational crossover, and indeed, a-ary mutation is
isomorphic to an (a,*)-crossover. The following theorem and proof were presented in
the paper, “On Searching a-ary Hypercubes and Related Graphs™ [10].

THEOREM 3.2.1 The mapping J is an isomorphism from Has (¢, a, *) to Hx(l. a, *).
That is, a mutation of A at k on an a-ary string is equivalent to one-point (c .}
crossover at k with tail permutation A on the a strings generated by J .

Proof:
(Theorem 3.2.1):
Assume (z,y) is an edge in Hp (¢, a,*). Then zx # yi for some k,1 < k < € and
z; = y; for all 7 # k. Let
J(z) = (a,<a>1,...,<a>q)
Jy) = (by1,...,a)

Simple induction shows that
b;=a;, for1 <1<k
We will now show through induction that

bewi =< Qi >y ppmts for k+1<k+i< 41

Basis:

bey1 = ar*yk
yr*zy *(ar*zy)
Y*Ty ¥ Ak

< Qg1 >

I

]

Vi =l=:x:;_'l

Induction Step (IS):
Induction Hypothesis (IH): assume biyi =< ars: >
Then

Yk

et for k1 Sk+i<l+1

bk+i+1 = bk+i*$k+i
-1
Yk*Tp *Qpyi*Tiyi by TH

-1 -1
yk*xk *ak+,~*ak+‘-*ak+.~+1

-1
Ye*Tp *Akgiyl

i

< Qktit1 >

yk*.‘r:l
Therefore (by Basis and IS)
b = a1 -ap < Qggr- Qg >yk*,;l
 = <a--ar>1<apyqr- gLy Dykasia
aut = <@t @k >oa< kit G >y ks (an)

19

B I L

YRR o R A L

Since A = yp*z;', one-point mutation of A at position k is isomorphic to one-
point (a.*) crossover at k on strings of length £ 4+ 1 with permutation of A. (Recall
that J is one-one and onto.)

This isomorphism generalizes for k-point mutation (up to k-mutations), which is
isomorphic to k-point (c, *) crossover. As well, a-ary uniform mutation is isomorphic
to uniform (,*) crossover. It is noted [8] that two adjacent one-point binary crossover
operations on complementary strings mimics mutation in that both strings seem to
undergo a mutation between the adjacent crossover points; this also applies to J
except that the adjacent crossovers must have a A permutation followed by a A™!
permutation.

For another example of one-point (a,*) crossover, let * be the Klein-4 group
operator (see Table 2.1). In this case, the isomorphism maps a single string to four
pseudo-complementary strings. For example:

02|230

13|321
2013 —

20{012

31]103

As with the previous isomorphism, a mutation on a string z appears to be a
crossover under J(z). If we mutate the 0 to a 3 in the above example we get:

02(103

13]012
2313 —

20{321

31|230

[f we think of 0 and 1 as being complementary and 2 and 3 as being complementary.
then we can think of J(z) as a mapping from a single string = to two pairs of strings,
the pair that starts with 0 and 1 and the pair that starts with 2 and 3. A pair is
always complementary. It is noted [10] that this crossover type is similar to the DNA
code (in a very limited way). It may be possible that this may be the first step
towards an algebra for DNAL

'We warn the reader that this last paragraph is speculation.

20

Chapter 4

On the Power of Crossover and
Mutation

In this chapter we discuss the question of which is more powerful, discrete crossover
or discrete mutation. To help answer this question we use the generalized crossover-
mutation isomorphism of the previous chapter to show that crossover can simulate
discrete mutation, and further show that crossover can simulate crossover and muta-
tion in combination. This means that crossover is at least as powerful as mutation, in
the sense of computability. This simulation can be achieved in linear space and time.

We also discuss generalizations of this simulation, and this leads to the notion of
hyper-order crossovers and hyper-order mutations. These hyper-order operators can
help demonstrate the complexity of regular crossover.

Finally, our work suggests that the question of which operator is more powerful
should be rephrased into at least two questions: “Are the various operators being
used to their potential?” and, if so, “Which operator, crossover or mutation, is better
suited to a particular problem?”

4.1 Introduction

There has been much debate in the GA community on whether the crossover oper-
ator is inherently more powerful than the mutation operator or vice versa [46]. In
this chapter, we consider the relative “power” of one-point crossover and one-point
mutation. We attack this problem by showing that one-point crossover can simulate
one-point mutation, and thus is at least as computationally powerful as one-point
mutation. By saying crossover can simulate mutation, we mean that a GA that uses
mutation and crossover can be replaced with a computationally equivalent one that
uses only crossover and no mutation; that is, crossover can be used to implement an
operator isomorphic to mutation.

While our simulation will focus on one-point crossover and one-point mutation,
it will be much more general in that we will be able to show that discrete mutation
can be simulated by one-point crossover. By discrete mutation, we mean a mutation
operator that can be expressed as some number of one-point mutations on strings

21

C— ! I—
I +—
C—
i
Comm— -]
. -

Figure 4.1: One-point crossover can simulate two-point crossover. [is the identity
mapping.

made up of discrete (a-ary) characters. Discrete mutation includes k-point mutation
and uniform mutation. Our results, however, will not apply to all mutation types,
e.g., mutation on real numbers.

We can demonstrate what we mean by one operator simulating another by showing
schematically how one-point crossover can simulate two-point crossover in Figure 4.1.
There are two ways one-point crossover can simulate two-point crossover:

1. one-point crossover can be used in the implementation of a two-point crossover
operator (simulation), and

2. two strings may be crossed, evaluated, then crossed again (mimicry).

For this chapter our focus will be on simulation, but we will also discuss mimicry,
which can occur in GAs and hill climbers.

To show one operator simulates another, we must show that the states of the
objects being acted on (in our case, strings) remain in correspondence. That is, there
must be a 1-1 and onto mapping between the objects’ initial and end states; in our
example we used the identity mapping [, but in a more complex simulation, the
objects can be different or even of different types, as long as there is a mapping that
makes the initial and end states correspond. This will be the case in our simulation:
strings will correspond to sets of strings.

We can also convert any algorithm that uses both mutation and crossover to an
equivalent one, a hyper GA (HGA), that uses only crossover. If we use more general
crossover types on the set representations, where the general crossovers include the
highly restricted crossovers used in our simulation, then HGAs will still include GAs
but the converse will not be true: HGAs will have actions that cannot be simulated
by a GA. That is, crossover can do whatever mutation can do and more, even when
both mutation and crossover are used. This will help demonstrate the complexity
(and power) of crossover with respect to mutation. The cost to using these “relaxed”
HGAs is an increase in the size of the neighbourhood in the landscape.

To show that one-point crossover can simulate discrete mutation, we will show
that (a,*) crossover can simulate one-point mutation. Since one-point crossover can
simulate one-point (a,*) crossover and one-point mutation can simulate discrete mu-

|]
(8]

tation, this will imply (by transitivity) that one-point crossover simulates discrete
mutation.

4.2 Simulating Mutation Using Crossover

To show that one-point crossover can simulate discrete mutation, we first show that
one-point {a,*) crossover can simulate one-point mutation. In this section we only
consider search algorithms that use mutation on a-ary strings (e.g., mutation hill
climbers); in the next section, we show how algorithms that use mutation and other
operators (e.g., GAs) can be simulated.

The first step in creating a modified algorithm is to change the basic search objects.
We convert each individual string z into the set of strings given by the generalized
crossover-mutation isomorphism of Chapter 3:

J(z) = (a,<a>1,...,<a >a-1)

o 0 ifi=1
@ = Ti1*ai_ l<i1<€+1

Each set of strings directly corresponds to the string that generated it; this means
each set of strings, for simulation purposes, is atomic. Thus our population of strings
has been replaced with a population of sets of strings.

The second step in the simulation is then to replace all calls to the mutation
operator with calls to the (a,*) crossover operator. This must be the same group
operator as the one used to generate the sets of strings. For example, if a = 4, it
would be incorrect to generate the sets of strings using the Klein 4-group operator,
and then use rotational crossover (*=@).

The third and final step is to alter the fitness function f to a new fitness function
f', where f'() = f(J~Y()). If S is the set of strings representing the string z, or
S = J(z), then f'(5) = f(z).

Doing these three steps will convert a search algorithm that uses mutation on
strings to a computationally equivalent one that uses no mutation whatsoever. One-
point crossover can simulate one-point (o,*) crossover in at most a — | crossover
operations, which implies crossover can simulate one-point (e,*) crossover. (The
sequence of one-point crossover operations that simulates one-point (a,*) crossover
does not depend on the particular strings in the population.) By transitivity, crossover
can simulate mutation. This simulation is computationally efficient since the required
(extra) space is ©(anf), where n is the population size.

[t is also easy to see that discrete mutation can be simulated by one-point crossover.
since one-point mutation can simulate discrete mutation. Some common examples of
discrete mutation are uniform mutation and k-point mutation.

Instead of using a strict sequence of one-point crossover operations to simulate a
one-point (a,*) crossover, we can use a more general crossover type that includes (i.e..
can mimic) rotational crossover. For example, using one-point crossover, for a > 2.
on a rotational crossover population can mimic one-point (a.*) crossover and thus

23

can mimic mutation, but also includes operations that cannot be directly mimicked
by mutation. The structure of this “relaxed” crossover SSS is related to the mutation
SSS. For instance, if there is a monotonic path in the mutation SSS, then there is
also a monotonic path in the “relaxed” crossover SSS.

Although it is trivially true that mutation can simulate crossover (if crossover on z
and y gives =’ and y’, just mutate z to ¢’ and y to y’), this simulation is weaker in that
the character values of z and y must be used in the simulation and that it is a non-
obvious form of mutation. Crossover appears to be more powerful than mutation,
in some sense, as there appears to be no “natural” method for using mutation to
simulate one-point crossover.

4.3 Including Other Operators in Our Simulation

In the previous section, we showed how to construct a crossover-only algorithm that
is computationally equivalent to an algorithm that uses mutation. If the original
algorithm uses other operators, it is easy enough to simulate these operators with a
few minor alterations. For example, imagine the original algorithm is a GA that uses
both mutation and crossover. One-point crossover is easily simulated. To do this,
convert the sets of strings to their single-string representations, do the crossover, and
then convert them back into their corresponding sets of strings. This can be done for
any operator, and can be seen as an indirect approach.

Another, more direct, approach would be to find a new operator that acted on
the set representation that was isomorphic to the old operator on the single string
representation. We will do this for one-point crossover; in fact, it will be shown
that one-point crossover on two sets of strings can simulate crossover between single
strings. To do this we define another crossover type: first-order crossover. First-

order crossover is a crossover operation applied on the (a, < a >;,...,< a >,-1) and
(b,< b >,...,< b >,_1) strings at k, 2 < k < [, to give two new ordered sets of
strings (@', < @’ >1,...,< @ >4-1) and (b/,< b >y1,...,< ¥ >4_1), where

!
a =ay--- ak+l < bk+2 e bl'*'l >a,‘+1-bk—_:_l

and

/ -_ ... e —
b' = by bryr < @pyz - e Zbipimag),

and < @’ >; and < b >;,0 <17 < a~—1 can be determined from a’ and &, respectively.

Lemma 4.3.1 One-point crossover at k between x and y ts isomorphic to first-order
crossover at k + 1 between J(z) and J(y)-

The following proof takes two arbritrary a-ary strings of length ¢, crosses them at

some k to get two new strings z’ and y’, and then notes how J(z) is different from
J(z'). Any such observations will apply to y and y’ under J by symmetry.

24

Proof:
(Lemma 4.3.1)

Let J(z) = (a,< @ >1,...,< a >a_1) and J(y) = (6,< b >1,...,< b >am1).
One-point crossover between z and y at £k where 1 < k < ¢ yields

7
I = Ty TklYk+1 Yt

!
y = yl"'yk$k+1"'1'l

Then let o’ = J(z’) and & = J(¥').
Inductive use (omitted) of J gives b} ---by,; = b1+ - brys1-
We now show that b, ; =< ax4; > by qrmapl, fork+2<k4+i<{+1.

Basis:

!
kr2 = bry1 * Tea

-1
= bk+1 * ak_H * Qpy2

= S Ok42 e,

Induction Step (IS):
Induction Hypothesis (IH): assume b, ; =< ar4; >hyprmagl, fork+2<k+i1<l+1.
Then

’ Y .
kpitl = DOpyi * Tk
-1
bey1 * apyy * Gryi * Tiqo by IH

-1 -1

b1 * Qppq * Gryi * Gy * Qpyipy
~1

bk+l *¥Apyy ¥ Qqitl

< Gktitl Zp,,,

-1
At

And therefore b,y - bl =< kg2~ Geygs > by prmarl, by Basis and IS. Thus,

b =by--brpr < Gpgz - Qg1 >

brt1=aiyy
which is first-order one-point crossover between (a,< a >,...,< a >4-1) and (b. <
b>,....,a).
[|

This means first-order crossover between J(z) and J(y) is isomorphic to crossover
between zr and y, and that first-order crossover can simulate crossover. As in the
previous section, we must use the same group operator, *, in each stage of the simu-
lation. One-point crossover can in turn simulate first-order crossover in at most 2a ~ |
crossover operations. Thus any GA that uses both mutation and crossover can be
simulated by one that only uses crossover.

[N
N1

For an example of first-order crossover between complementary binary strings.
consider crossing

0110[010
1001{101

with

1001|110
0110J001

at k = 4. We can immediately determine that the two new sets are

0110]001
1001110

and

1001|101
0110{010

4.4 Hyper-Order Simulation

One-point (a,*) crossover and first-order crossover are useful in showing that crossover
can simulate discrete mutation, and are also useful in that they can help illustrate
key ideas about crossover’s landscapes. For example, the isomorphism between mu-
tation and crossover on binary strings can be used [8] to show that crossover between
complementary binary strings searches a hypercube [26] of dimension ¢ — 1. If the
two strings are not complementary, but have a Hamming distance of £, then crossover
searches a hypercube (possibly with self-loops) of dimension £ — A — 1.

New insights into crossover’s landscapes can be gained by iterating J. By iterating
J . we mean mapping a string z under J to get a set of a strings, and then mapping
each of these a strings under J to get « sets of a strings and so on. We can express
this by the following notation: J%(z) = { z }, and J'(z) = {J(a) for each a €
J"Yz),for it > 1 }. When * = &, iterating J turns out to be highly similar
to iterating the a-ary Gray code of Sharma and Khanna [43], an unsurprising fact
considering that a slight change in J~! will generate this Gray code: if J(z) = (a,<
a>y,...,< a >qg-1), where z = z1z2---z¢, then azasz---aey; (dropping a;) is the
inverse Gray code element for z.

We can now define i-order mutation and i-order crossover. i-order mutation is the
change in J¥(z) when z is mutated, and i-order crossover is the change in J*(z) and
J*(y) when z and y are crossed. Thus one-point (a,*) crossover is first-order muta-
tion, and a one-point mutation is 0-order mutation. Zero-order crossover is crossover
between two arbitrary strings z and y. For the binary case. 0-order crossover is a
generalization of a l-order mutation, since 1-order mutation is a crossover between

26

complementary strings, and i-order crossover is a generalization of (i + 1)-order mu-
tation.

For an example of i-order mutation, consider the string z = 1001 mapped twice
under J

0010j11
011(10 /' 1101400
1001 — 100[01
N\, 1000[01
0111]10

[f a mutation is done on z, say at k = 3, then this is equivalent to crossing (01110, 10001)
at k = 3, but we know from the previous subsection that crossing two strings (0-order
crossover) is equivalent to first-order crossover at £+ 1. With the mutation the levels
become

0010|01

) orjor 7 1101110
1001 = 1011 — 4411

N\, 1000]11

0111|00

[t turns out that i-order mutation, 7 > 1, can be simulated by crossover, and that
i-order crossover, ¢ 2> 0, can also be simulated by crossover.

Lemma 4.4.1 :-order mutation for 1 > 1 can be simulated by crossover.

The proof uses induction on z. The induction hypothesis says that for all strings
a € J*Y(z) there is a string b also in J*~'(z) such that mutating = at k to get =’ will
cause a to be crossed with b, generating the string @’ = a1as - - - @kgi=2bk4i~1 - - begi=1
in J*"!(z’). From this we will show that J(a’) can be simulated by one-point
crossover between J(a) and J(b), which will prove the lemma. The case : = 1
is covered by the isomorphism J ().

Proof:

(Lemma 4.4.1)

Basis (: = 1): by the isomorphism J(). That is, a mutation on any string z at & of
A to get z' is isomorphic to a one-point (a,*) crossover on J(z) at k, which in turn
can be simulated by one-point crossover. Thus for any string a € J(z) there is also
a string b € J(z) such that there is a string @’ = a1ay - - - akbgs1 - - - beg1 in T(Z).

Induction Step (z > 1):

Induction Hypothesis (IH): assume (:—1)-order mutation can be simulated by crossover.
Let a = ajaz---aeri— be a string in J*~'(z), and by the IH we know that a

mutation on z at k of A causes a to be crossed with the tail-end of another string, say

b = b1by-- - beyi—1 to generate a new “crossed” string @’ = ay - - - @ppic2bkpiot - Okgpio1-
We must now show that any string in J(a) can be crossed with some string from

J(b) to get a string in J(a’). Showing this will prove the lemma.

27

Let J(a) generate the following set of strings:

< q192° " Gevi >0
< G192 Geti >

< 192" " Gt4i Za-1

Simple induction shows that g; = a;*---*a;j,7 2 2, and g; = 0. Induction also shows
that 7 (a’) generates the set of strings

< G192 Gkgimt Pkgi - Regi >0
< 9192 Grpimt Pegi = - hegi >1

< G192 GrpimtPkgi - - Pegi Damt

where h; = grqio1 *bgpi*---*bj,k+1 < 7 £ €+1. Since gryi—y is a factor in each Aj,
the tail ends of J(a’) (the h;’s) will be a permutation of the tail ends of J(b). This
can be seen by noting that if J(b) generates the strings

<didy--dpgirdigic - dei >o
< dldz s dk+i-1dk+i Tt d(-{»-i >1

< dydy - - digicidigi - degi >am

where dj = dk+,'_1 *bk+i E IR *bj, k+l S] S Z-{-i. That iS, hj = (d;_*l_i_l * Jkti-1) *dj.
Thus any string generated by J(a’) can be seen as a crossover between a string

in J(a) and J(b).

This proof shows that crossover can simulate i-order mutation. Moreover, since
z-order mutation on strings of length ¢ + ¢ is isomorphic to mutation on ¢ length
strings, this shows that large populations of strings with crossover can interact to
search a hypercube.

It can also be easily shown that crossover can simulate i-order crossover. The
proof is virtually the same, except that zero-order crossover is the basis. As with
i-order mutation, i-order crossover can be used to show that large populations under
crossover can search a hypercube.

Our results only show that crossover, in large and small populations, can search
a hypercube; we do not think it likely that these restricted quasi-crossovers occur
often (if ever) in GAs. However, they show crossover is much harder to analyze
than mutation, and also help demonstrate the complexity of regular crossover (i.e..
to simplify crossover to the level of mutation, we need highly constrained crossovers).
It is also possible that hyper-order mimicry can be used in the construction of long
path landscapes for crossover and to create other interesting functions.

28

4.5 Conclusion

In this chapter we showed that one-point crossover is at least as computationally
powerful as discrete mutation, since one-point crossover can simulate discrete muta-
tion. One-point crossover can also simulate both mutation and crossover. Further.
this simulation generalizes to hyper-order crossovers and hyper-order mutations. By
showing that one-point crossover can simulate ¢-order crossover (¢ > 0) and i-order
mutation (¢ > 0), we showed that crossover in large populations can potentially search
a hypercube.

Since these crossover types are so restrictive, they also help demonstrate the com-
plexity and power of crossover. That is, if we use a more general type of crossover
(e.g., one-point crossover) that includes one-point (a,*) crossover, then this “relaxed”
HGA will be able to mimic a GA but the GA will be unable to simulate the “relaxed”
HGA. That is, crossover can do everything crossover and mutation can do and more.
(This may seem paradoxical, but we are using larger populations in the HGA). We
can iterate this process: i.e., make HGAs of HGAs and so on, which demonstrates the
additional power and complexity of using larger populations. These relaxed HGAs
are not without cost: they have larger neighbourhoods to search.

This chapter addressed the crossover-mutation debates by showing that crossover
is at least as powerful as mutation because crossover can simulate mutation. This
does not mean that all implementations of crossover will use the potential of crossover.
and though the relaxed-crossover neighbourhoods are less restrictive and thus broader
in scope, a more focussed search may be better. Although crossover and mutation
both are powerful search operators, which operator is better may also depend on the
specific problem. The old question, “Which is better, crossover or mutation?” should
be replaced with two new questions: “Are the various operators being used to their
potential?” and “Which operator is better suited to a particular problem?”

Chapter 5

Iterating an a-ary Gray Code

In this chapter we prove a theorem on the number of unique codes produced when
the a-ary Gray code mapping of Sharma and Khanna [43] is iteratively applied to an
a-ary, dimension ¢ code; that is, starting with an a-ary, dimension £ code, repeatedly
apply the permutation given by Sharma and Khanna’s mapping. From this theorem.
it is easy to show there are ©(¢?) unique codes generated from this mapping, where
q is the number of unique primes in . To prove this theorem we show that any base
«, dimension ¢ code word will cycle in O(£?) iterations of this Gray code mapping,
and that this upper bound is attained. This theorem is a generalization of a theorem
proven by Culberson (8] for the binary case.

The work of this chapter is a special case of hyper-order mimicry dealt with in
the previous chapter. [t can also be recast into GA theory, if we think of iterating a
search space using this Gray code (i.e., iterating the representation, but keeping the
same genetic operators). Our work will also show that iterating a search space (and
thus iterating a landscape) with the Gray code of Sharma and Khanna will generate
O(¢€%) unique landscapes.

5.1 Gray Codes

An a-ary Gray [23] code of dimension ¢ is a sequence of o unique a-ary, length ¢
strings such that any two adjacent code words have 2 Hamming distance of one. Gray
codes can be used to reduce errors when an analog signal is converted to a digital
signal, they can be used in distributed memory architectures that are based on the
a-ary hypercubes [1}], and can be used in various combinatorial applications [2]. Gray
codes also prove the existence of Hamiltonian paths on the hypercube graphs, and
demonstrate the existence of Hamiltonian circuits if the Gray code is cyclic [20]. (For
any Gray code on an a-ary hypercube of length ¢, there are (a!)!¢! equivalent Gray
codes that can be obtained by permuting the characters 0,1,---,a in each column.
and permuting each column.)

The Gray code discussed in this section will be represented by G(a,). We will
sometimes use subscripts to refer to specific words in G(a, £). For example, Go(2,3) =
000, G1(2.3) =001, and G2(2.3) = OL1.

30

A cyclic Gray code has the additional property that the Hamming distance of the
first and last numbers in the Gray code is also one. G(,{) is a cyclic Gray code. and
has the special property that if g = Gi(a,¢) and h = G(;41) mod ot(a, £) differ in their
kth character, then hy = gi®1.

We can define G(,?) in terms of a function that maps the base «, dimension ¢
integers, MV (a, ¢), to G(a,). For example, if z is the base a, dimension £ represen-
tation of the nonnegative integer z, then this function will map = to Gi(«a,¢). This
mapping was given in [43], and we give the same mapping in a slightly altered form.

The mapping is denoted by K and its inverse by X~!. Let an element in G(a, £)
be represented by the string g = ¢192... g¢ and its corresponding base «a integer be
represented by the string £ = z,z,...z,. The mappings are then defined as

K(z) = (9)
R 1 lfl‘-=1
g = 20z l<i1<!?
and
K= g) = (2)

r; =

gi®Pziey 1< <Y

G(2,2) is the binary reflected Gray code. Both K and K~! can be computed in
parallel. That is, g; can be written in terms of z, and z; can be written in terms of g.
For instance, ; = 1P g2® - - - ®gi. See Figure 5.1 for two examples of this Gray code.
Sharma and Khanna [43] discussed the structure of this Gray code, and described
several other methods for generating it, including a direct method. They did further
work [44] on this Gray code, as well. For another a-ary Gray code, the reader may
wish to see Barasch, et al. [1]. A good discussion of the binary reflected Gray code
and some of its uses is given by Bitner, et al. [2].

5.2 Iterating the Gray Code G(a,¥)

In this section we prove a theorem on the number of unique codes produced when
N(a,¥) is iteratively mapped using K~'. That is, we start with AM(a,£) and re-
peatedly apply the permutation given by K™'. Let Ni(a,) = K™Y N (e, €)) and
./V?(a,f) = Nj(a,?). Iteratively applying K" to each code word can be seen as
iterating G(a, ¢), since V' (e, £) = G(a, ¢). (This can also be seen as iterating a land-
scape; that is, the representation of a GA or hill climber is a code, and by iterating
this code/representation, we iterate the landscape.)

We want to know the number of unique codes that can be generated by iterating
N(a,¥), or more formally , for what ¢ > 0 does N'*(a, £) = N(a, ¢) such that V7,0 <
j<iN(a.t) # N(a,?).

The following theorem follows easily from Theorem 5.3.1 (proven in Section 5.3):

31

N@3,3) K G(3,3)[NM(3,3) K G(3,3)
000 — 000 112 — 101
001 — 001 120 — 111
N(2,3) K G(2,3) 002 — 002 || 121 — 112
000 — 000 010 — 012 122 — 110
001 — 001 011 — 010 200 — 210
010 — 011 012 — 011 201 — 211
011 — 010 020 — 021 202 — 212
100 — 110 021 — 022 210 — 222
101 — 111 022 — 020 211 — 220
110 — 101 100 — 120 212 — 221
111 — 100 101 — 121 220 — 201
102 — 122 221 — 202
110 — 102 222 — 200

111 — 100

Table 5.1: Two example Gray codes: @« =2 and £ =3 (1), and a =3 and £ =3 (r).

THEOREM 5.2.1 Let £ > | and a = py'py®---py7 where p; is prime, p; # p; for
i # j, (prime decomposition) and for each p;, set h; such that pi*~' < € < pM. Then

K=" will generate m = p{t¥™ ~!phatn2l. .. phatna=l ynigue codes.

Proof:

We know, from Theorem 5.3.1, that for any string z, 2™ = z. We also know that
this upper bound is attained for any string such that z; # 0, GCD(z,,a) = 1, and
£ > 1. Since this is true for some strings (e.g., any string whose first character is 1),
we know that iterating M (a, ¢) gives m unique codes.

.

[f¢=1thenm=1;for £ > 1, 7 <m < af?, where q is the number of unique
prime factors in @. This implies that the maximum number of codes generated is
©(£?),V¢, and also implies that using X ~! to iterate a search space will produce O(¢7)
unique search spaces.

5.3 Iterating Strings Using K~}

In this section we will prove a theorem on the cycles induced when an a-ary, dimension
{ string is iterated. We will use the notation z* = K™% (z) = K~Y(K~¢"Y(z)) and
z° = K%z) = z. We use subscripts to refer to a particular character in z. For
example, if £ = z° = 12356, then z§ = 3.

A cycle on string = consists of the sequence z° z!,---,z'~!, where z' = z° and
Vj such that 0 < j < i,z7 # z° Since there are a finite number of strings with base
a, length ¢. we know that the length of any cycle must be finite. The following cycle

1

32

theorem gives an upper bound on the cycle length of any string z, and gives the
actual cycle length when GCD(z,,a)=1 and z; # 0.

THEOREM 5.3.1 Let £ > 1 and o = p{'py® ---py* where p; is prime, p; # p; for
t # 7, (prime decomposition) and for each p;, set h; such that p?"l <l< pf‘ If
m = pht¥mi=lghatna-l --.phatna=l then 2™ = z, and if £, # 0 and GCD(z,,a)= 1
then for any 0 < m' < m,z™ # z.

Given any a-ary string and a number m as described in Theorem 5.3.1, mapping
the string with the inverse Gray code mapping m times will cause the iterated string
to return to its original value. If z; # 0 and GCD(z,,a)= 1 then m is the smallest
integer for which the code word will cycle. For example, if z = 1000 and a= 2, then
z! = 1111, 2 = 1010, z3 = 1100, z* = 1000, which implies that m = 4. The special
case of this theorem for a = 2 is proven by Culberson [8].

Before proving this theorem, we will prove a number of lemmas. Also note that
all summations in this chapter are taken mod c.

Lemma 5.3.1
Ti=xi @z ,i>0,1 <5<

Proof:
From the definition of K~!.
n

Lemma 5.3.2

z; = 0BT - Dz, 1 < j <L

and
.'L'i = .’L'l,i 2 1
Proof:
Both statements follow from Lemma 5.3.1.
n
Lemma 5.3.3

G figi—ke
I§=Z(’+’. l)zk,lsjsaim

33

et

Proof:

Basis:
Lemma 5.3.2 is the Basis, and it can be seen that both of the statements in
Lemma 5.3.2 are special cases of Lemma 5.3.3.

Induction Step: _
I.H: assume Lemma 5.3.3 is true for zi_, and z%7".
We know from Lemma 5.3.1 that

:1:; = zj_leaz;'l
and applying the induction hypothesis yields

. i i-k-2 I fi+j—k—2
4-E (TR E ()

=1 =1

We now add the kth terms, 1 < k < j — | which gives us

it —k—2 itj—k—2
(j—k-l)”@(ik)x"

i+j—k—1
(i—k)""

which satisfies Lemma 5.3.3. The z; term occurs only once, and also satisfies Lemma 5.3.3.

which is equal to

We now introduce the notation c;‘k, where | <k < j. c§,k refers to the coeflicient
of the kth term of the equation given in Lemma 5.3.3 for z}. That is

cj,k= J—-k

Lemma 5.3.4 Let z = z\22---z¢ be any a-ary string. [f V5,2 < j < {,¢, =
0(moda), then z* = z.

Proof:

To show z* = z we must show that V5,1 < j < E,.rj- = z,. Note that z} = z;:
thus we need only consider an arbitrary j, 2 < j < ¢.

34

Assume Vj',2 < j' < ¢, c§,'1 = 0(modca). Then

I
T; = Y itk
k=1
=1 _
= (D ciuze)®C jz;
k

1-1
— ‘ -
= () C; kT)DT;
k=1
since cj-‘j = 1. But since

i _
Cik = Cjoky1q =0

the summation is equal to 0(moda), and z¥ = z;.
-

Lemma 5.3.5 Letz = z,z3- -z, be any a-ary string such that z; # 0 and GCD(z,,a)=
1. If 35,2 £ j < € such that c; # 0(moda), then z* # z.

Proof:

Assume z; # 0, GCD(z;,a)= 1, and cj-'l # 0(moda), for some 5,2 < j < €.

If ¢;, # O(moda), then zi = iz ®z; # z, and we are done. Otherwise, ¢y #

0(mode), for some j, 2 < 7 < £ and that cj-,‘1 = 0(moda), for j',2 < j' < j. Then
i
£ = (T dazn)z;
k=1
but note that

R
Cik = Ciokt11

= 0,Vk,2<k<y
which means that
xj- = cj-'lzlész
since all the other terms are congruent to zero. Since ¢}, # 0(moda), .L‘; # z;.

Lemma 5.3.4 shows that finding an m that sets ¢7; = O(moda) for 2 < j < ¢
implies that £™ = z. Lemma 5.3.5 shows that if we choose the smallest such m that
sets ¢y = 0(moda) for 2 < j < £ and z; # 0 and GCD(z,, @)= 1, then z™ # z, for
0 <m' < m. Our goal then will be to set the 7 terms to zero (moda). picking the
smallest such m that does so.

35

We now prove Theorem 5.3.1. To do this we use induction on j, and within the
inductive proof, we will use the fact that e = 1"7*.';"1’—24?‘_1,1. Since m increases with ¢
we will use the notation m;, which refers to the cycle upper bound length on strings
of length j. If j > 7, then m; will be a multiple of m;. Let p; be a prime divisor of a.

Since h; also varies with ¢, we use the notation h;; within the proof.

Proof:
(Theorem 5.3.1)
Basis (j=2):

Cg:f =my,Vmy > 1

We pick the minimum m, that will set m; = 0(moda), or my = a = pi'py* - - - p7.
[t is easy to see that Theorem 5.3.1 is satisfied for j = 2, and that ¢j'; has n;
factors of p;,1 <t < q. In this case h;5 = 1.

Induction Step (57 > 2):

For the induction step we need only consider an arbritrary prime p;,1 <1 < g:
[LH.1: Assume setting m;_; as in Theorem 5.3.1 will set c?y’f‘ = 0(moda),Vj’.2 <
7' <7
[.LH.2: Assume j—1 = Cipf+1 (where p; does not divide Cy,d < h; ;1) implies ¢, 77|
has n; 4+ h; j—1 — 1 — d factors of p;.

[.LH.2 is needed because we must know how many factors of p; are in c;n_’l‘ 1 if
we know this, then using the fact that c;™" = 21;‘—'”——26;"_5{'1‘ we can determine the

J-1

number of p; factors that are in c}t‘{"‘ . If there are n; or more such factors, for each :.
™My

then ¢;;~" = 0(mode) and it is sufficient to set m; = m;_y; otherwise, m; must be

increased (while still being a multiple of m;_;). This leads to two cases:
L j=Cop¥ +1,0 < d' < hij,y
2. j=p¥ +1,d = hij,
where C, contains no factors of p; For each case we must now show that I.H.l and

[.H.2 hold for j.

Case 1 (] = Czp:-i’ +1,0<d < h,'_j__l):

Recall that cj; ™' = 2,_.71_3—_11_—__2_0?:1-11 In this case m;_; + j — 2 will have d factors

of p; and j — 1 will have d' factors of p;, and the total number of factors of p; will be
n; + h;_j__l —1l—d+d—d =n; + h,"j_l -1-d. Setting m; = m;_ (a.nd h,"j = hi.j-—l)
corresponds to Theorem 5.3.1; [.H.1 holds for j since we need at least n; factors of p;
in c;;"‘ . and this is the case. I.H.2 also holds.

Case 2 (j =p¢ + 1,d' = hij):
In this case it can be easily seen that c;'fl’“ has n; — 1 factors of p;, but n; factors
are needed. We must show that setting m; = p;m;_; (as in Theorem 5.3.1. i.e..

36

hi; = hij—1 + 1) will make c}j have exactly one more factor of p; than cj;™". while

leaving the number of all other prime factors unchanged. Then,

o o (miti=2)(mi+35—3)---(my)

i G-1)

and

my _ (Mym1+7 = 2)(mjor +5 —3)--- (mj1)

G~

The denominator of c;; is equal to that of ¢;; ', and so the denominators have the

same number of factors of p;. Thus we need only consider the numerator. Consider an
arbritrary factor of the numerator of c;;, m; + k, where 0 < k < j—2. In the k =0
case, c;n{ has an extra factor of p;. When k is non-zero, there are no extra factors of
ps, 1 < s < q. There are two cases to consider, p, # p; and p, = p;. For the first case,
J —2 < ps™’ which means that m; + k = (p; £ + F)p’ and m;_, + k = (p; E' + F")p.,
where F' and F’ have no factors of p,, which means that the number of p, factors is
unchanged when k # 0. For the latter case a similar argument suffices, but uses the
fact that 7 — 2 < p?""" (since 3 = pf"’“‘ +1).

When z, # 0 or GCD(z,,a@)# 1, the m of Theorem 5.3.1 may be larger than the
cycle length of z (though m will be a multiple of z’s cycle length). For an example
z where Theorem 5.3.1 describes the cycle length consider z = 123456 for o = 10.
In this case m = 200, as the theorem states. The strings 421 and 4211 for @ = 8 are

two examples of strings whose minimum cycle lengths are 2 which is less than the m
of Theorem 5.3.1.

5.4 Conclusion

I[n this chapter we discussed the problem of iteratively applying the inverse Gray
code mapping to strings, and showed that a cycle on any string z will have length
in O(¢%) where ¢ is the length of z and ¢ is the number of unique primes in a. If
GCD(z;,0) = 1 and z; # 0, then z has a cycle length in ©(¢?). This implies that
the number of unique codes generated by iterating M (e, ?) (or any a-ary, dimension
¢ code) using K~! is ©(¢7). This implies that using K~! to iterate a search space will
vield O(€?) unique search spaces.

37

Chapter 6

Long Paths for a-ary Mutation and
Crossover

In this chapter we discuss distance-preserving paths for a-ary crossover and a-ary
mutation. A path P = vo,vy,---,v, is simple iff Vv;,v;,0 < 2 < J < n,u; £ vj. A
simple path P = vq,v1,---,vn in a graph G is k-distance-preserving, DP(k), iff for
any two vertices ¢,j € P that are t steps apart on the path, dist(z,7) > min(¢,k + 1)
For the binary hypercube, both simple paths and D P(k) paths can be exponential in
length [45, 26].

Since landscapes are graphs, it may be worthwhile trying to find these “long paths™
or bounds on them for a particular landscape graph. This is done for the binary one-
point mutation landscape (the Hamming hypercube) by Horn, et al. [29, 30, 31]. They
construct a unimodal (no false optima and a single optimum) landscape that is hard
for mutation by sloping the fitness of all points not in the path towards the start of
the path and then making the DP(1) path strictly increasing. This makes any elitist
algorithm on this landscape follow the slope towards the start of the path, eventually
falling onto the path (not necessarily at the start), followed by constant progress to
the optimum (the end of the path).

[n the worst case, such a hill climber does an exponential amount of work: start
the hill climber on the first vertex on the path; it is then forced to follow the path
to the end, and since this DP(1) path is exponential in ¢, the hill climber will take
an exponential amount of time. Horn, et al., also show empirically that an elitist
hill climber that starts on a random vertex (chosen uniformly) takes an exponential
amount of time on average to find the optimum. Long paths have also been used to
discriminate between different types of elitist hill climbers [10].

The results of Horn, et al., are interesting because they show how bad a suppos-
edly easy (e.g., unimodal) landscape can be. In this chapter we extend the DP(1)
path construction to a-ary hypercubes, and explore the problem of creating distance-
preserving paths for crossover. We present the counter-intuitive result that crossover

can have DP(k) paths.

38

6.1 Long Paths for a-ary Mutation

Long paths have previously been considered for the a-ary hypercubes [10]. While
these paths are exponential in length, a better construction is possible. Let P be a
path, which can be represented by the list of strings in P. Let the first string in P
be FIRST(P) and the last be LAST(P). Let the reversal of P be denoted by P;
for example, if P = {00,01,11}, then P = {11,01,00}. The concatenation of two or
more lists py, p2, - - -, pn Will be given by {p1,p2, - -,pn}. Finally, given a path P, the
notation cP, where c is a character, means that c is prepended to every string in P.

Using the above notation, we can now define our a-ary D P(1) paths for the a-ary
hypercube. The construction given is a generalization of the construction of Horn, et
al. [29], and when a = 2, our construction reduces to theirs. Let P, be a path on the

(a, €)-cube (where ¢ is odd). Then

P2 = {00F,
0ILAST(P,),
11P,,
12FIRST(P,),
22P,,

.(a —9)(a — 1)FIRST(P,),
(a=1)(a—1)F}

if a is odd; otherwise,

Pz = {00F,
01LAST(P,),
11P,,
12FIRST(P,),
22F,,

&a —2)(a — 1)LAST(P,),
(a —1)(a —1)Py}

The basis for this path is P, = {0,1}. Thus a DP(1) path on strings of length ¢ + 2
consists of a sub-paths connected by a — 1 “bridge” points. A DP(k) construction is
also easy to derive. Given a length ¢, k-distance-preserving path P, an £+ k + 1 path
can be constructed by making a copies of P, say P., where ¢ =0,1,---,a — 1, and
appending ccc:---c (k+ 1 ¢'s) to P.. Then connect each sub-path P. to the sub-path
P.;1 using a bridge point. The base path is { 0,1 }.

Let | P,| be the length of a path on /-character strings. Then |Pryo| = a|Py|+a—1.
with basis | P| = 2 and | P3| = 3a—1. Solving this recurrence yields | P;| = 3a T —1if

39

¢is odd.! Thus these DP(1) paths are exponential in ¢, and are longer than a previous
a-ary D P(1) path construction [10]. This construction also lends credence to the view
that the fraction of the search space (for this construction, O(a~%?)) contained in
a DP(1) path will decrease with a [10]. This seems a reasonable conjecture, since
increasing a increases the degree of each vertex; for each vertex used in the path,
more must be excluded.

We can use this DP(1) path to construct a landscape that is unimodal but ex-
pounentially hard for an elitist hill climbing algorithm that uses only one-point a-ary
mutation. The landscape construction is similar to that done by Horn, et al. [29]. Let
the summation function, fg(z) = £, z;. Since the first point on the path is always
the all-zeroes string, giving any point = not on the path the value (a — 1)¢ — fx(z)
will lead a hill climber towards the start of the path. If a point is on the path P, then
that point’s fitness value is (a — 1)£ + z’s position in P. We give the pseudo-code for
the fitness function that generates the landscape of Figure 6.1. The last string in the
path will be 1 for the base path; otherwise, it will be (a — 1){(a — 1)00--- 0 for even
aand (a-1)(a—-1)---(a— 1)1 for odd a.

In the worst case, an elitist hill climber will be forced to do an exponential amount
of work to reach the optimum (e.g., start on the first vertex of the path). We show
empirically that an elitist hill climber on this landscape will be expected to take ex-
ponential time on average to find the optimum, where the initial vertex is chosen
uniformly. See Figure 6.2 for the results of running our mutation hill climbing algo-
rithm, MHC (see Appendix B), on this landscape for @ = 2,3,4,5. Clearly, MHC
takes exponential time on average (the estimated standard deviations were small). It
seems reasonable that any elitist hill climber on this landscape will take exponential
time on average, since the overall fraction of the search space contained in the path
decreases exponentially in ¢; this means that a hill climber should be less likely to
skip the first vertex in the path and take “large” short-cuts.

6.2 Long Paths for Crossover

In this section we discuss constructing distance-preserving paths for crossover land-
scapes. We first discuss long paths for binary one-point crossover. We create a
DP(1) path for one-point crossover on a complementary pair of strings, and sug-
gest how DP(1) paths can be constructed for the one-point crossover SSS. We then
try extending these long paths to bigger populations by creating a “naive” long path
landscape for crossover and do some tests on this landscape. These results are prelim-
inary but interesting in that, even with non-minimal populations, crossover appears
to follow exponentially long paths. We then discuss long paths for a-ary crossover
and possible future research directions.

'We can construct a DP(1) path for even £ > 0 by ignoring the first character in a string, and
constructing an £ — 1 path on the remaining characters.

40

GLOBAL boolean onpath;

/* If z in path, return z’s position, else set onpath to false. */
int path-position(z, ¢, a) {

char ¢ = zy;

/* basis */
if (z == “0") return 0;
if (z == “1") return 1;

/* possibly in path */

if (z == cezzzy---z4) {
if (even(c)) return (c(|Pe-2| + 1)+path-position(zz - - - z¢, € — 2, a));
else return (¢(|Pp—2|+1) +|Pe—2| — l—path-position(zs - - - ¢, £~ 2, a)):

}

/* must be a bridge point, or not in path*/
if (even(c)) {
if (z == *c(c+1)1" or
(even(a) and z == “c(c+ 1)(@ — 1)(a —1)00---0") or
(odd(ea) and £ == “c(c+ 1)(a ~ 1)(a —1)---(a — 1)1"))
return ((¢ + 1)(|Pe—2| + 1) — 1);
} else {
if (z == “c(c+ 1)0"” or z == “c(c+ 1)00---0")
return ((c + 1)(|Pe—z2| + 1) — 1);
}

onpath=false;
return -1;

}

/* Compute fitness of string r (a-ary mutation long path). */
int string-fitness(z, ¢, a) {

int temp;

onpath=true;

temp=path-position(z, a, ¢);

if (onpath) return ((a — 1)£ + temp);
else return ((a — 1)¢ — fg(z));

Figure 6.1: Fitness function for a-ary mutation long path.

41

Long path for a-ary one-point mutation: mean # evaluations vs. ¢

450000 T r 1 T

400000 x= % S“_?‘ .

350000 a=4 e 1

300000 a=5 e
eva2120000

200000
150000
100000
50000
0

Figure 6.2: Testing the a-ary mutation long path landscape using MHC(n =
1,50 trials/point, F = 5, elitism). The maximum number of evaluations was 500000,
and the MHC always found the end of path except for the £ = 13 point for a = 4 (in
this case it found the path 28 out of 50 times). Standard deviations were relatively
low with respect to the mean.

6.2.1 Binary Crossover

As a first step to constructing distance-preserving paths for one-point crossover land-
scapes, we can use the fact that one-point crossover between two complementary
strings is isomorphic to the Hamming hypercube, and thus isomorphic to one-point
mutation. This means we can construct a DP(1) path in the one-point (a = 2,&)
crossover SSS for even ¢ > 0. The fitness function that generates a unimodal long
path landscape can be based on the a-ary mutation long path fitness function; e.g.,
if z is a string in the one-point (a = 2, @) crossover SSS, then the fitness of z is given
by string-fitness(Z~'(z,T),¢ ~ 1,a). We used GIGA on a pair of complementary
strings as our crossover hill climber. Test results are shown in Figure 6.3 and are
clearly exponential.

[t is also possible to construct DP(1) paths for the binary one-point crossover
SSS, the landscape for a (possibly) non-complementary pair of binary strings under
crossover. This can be done by recalling that two strings with Hamming distance A
search a hypercube (possibly with self-loops) of dimension £ —h —~ 1, and constructing
a path for the £—h — 1 hypercube. This construction, however, would depend on the
strings used; that is, two pairs of strings may both have Hamming distance A, but
if the pairs are complementary in different locations, then they require different long
path constructions.

Thus. for trivial crossover populations (n = 2), constructing DP(1) paths for one-
point crossover are easy. This is a nice result. but crossover is rarely used on trivial

12

Crossover hill dimber (GIGA) and a crossover DP(1) path: mean # of evals vs. string length

60000 T —T T T T T T Y
‘mean® -o—
50000
2 40000
2
®
3
®
>
L]
2 30000 [
=
w
£ 3
S
Q
£ 20000 |-
10000 |
0 Jv y - . L — L AL
2 4 6 8 10 12 14 16 18 20
string length

Figure 6.3: Testing the binary crossover long path landscape on minimal populations
(i.e., complementary pair of strings). GIGA was used as our crossover hill climber
(n =2, =2, 50 trials, F = 5, elitism).

populations. [s it possible to construct a non-trivial population, crossover landscape
that forces an elitist search algorithm (on this landscape) to follow a long path? Our
first attempt to construct such a landscape
is to use GIGA with bigger populations, and using the fitness function
string-fitness(Z~!(z,Z),f — 1,a) as in the DP(1) path for the one-point (@ = 2, %)
SSS. We term this the “naive” crossover long path landscape. This landscape poten-
tially has exponentially long paths: e.g., on a complementary pair.

This landscape may or may not have a DP(1) path, and we do not attempt to find
one. It is also not unimodal. In this section we concern ourselves with the average
number of fitness evaluations used by GIGA to find an optimal string, as this should
reflect on the length of the path GIGA followed to get to the optimal point in the
landscape®. Rather than worrying whether this landscape is unimodal, we instead
measure the probability that GIGA does not find the optimal point (e.g., hits a false
optimum). We want paths that are long on average and a landscape with few (or an
insignificant number) of false optima.

GIGA’s parameter’s were F = 5,a = 2, elitism, 100 trials/point, and max
evals=100000. Default GIGA parameters are listed in Appendix B, Table B.1. This
“naive” long path crossover landscape was tested for n = 4,8, and 20. We only in-
clude trials that ended in a successful run (where an optimal population was found).

2There are actually many optimal points, e.g., any population with an optimal member string.

43

The results are in Figures 6.4 and 6.5. The results are interesting, and may or may
not be exponential. For n = 20, the plot appears exponential but levels off after
¢ = 44, which is not shown. This levelling is likely because GIGA needed more
evaluations to find the longer paths; that is, the paths were so long that more than
100000 evaluations were required to reach the end of the path. This is supported by
the fact that GIGA was finding paths that used 99000+ evaluations. A solution to
this would be to run GIGA until the maximum string is found or a false optimum
is hit (to check this GIGA would first have to be converted into a strictly elitist hill
climber; otherwise, GIGA might follow cycles). Also, the bottom plot in Figure 6.5
suggests that the probability of hitting a false optimum increases with increasing ¢
and decreases with increasing n.

We include some results from the n = 4,¢ = 10 tests that may help the reader get
a picture of how GIGA is searching on this landscape. In the first (see Figure 6.6),
GIGA (almost certainly) gets stuck on a false optimum (maximum fitness is 33).
The next set of results (Figure 6.7) shows an experiment where GIGA quickly found
the maximum and made large improvements (jumps) in the value of the best string
found. Here is an example of population helping the search. The last set of results
(Figure 6.8) is interesting because it shows GIGA making small improvements (where
the fitness increases by 1), followed by a leap in fitness value, followed by yet more
small improvements to an optimal point.

While these experiments are interesting, there is a potential problem that should
be noted. Because GIGA is not a strict hill climber, it can wander in plateaus and
thus can follow cycles. This means the average number of evaluations may not be a
true reflection of the path length. However, this did not seem to be a problem in our
tests.

The problem of hitting false optima may (possibly) be reduced by using a more
general mating strategy in GIGA; for instance, GIGA could be altered to select non-
adjacent as well as adjacent pairs to mate. This could possibly eliminate many of the
false optima.

6.2.2 Some Possible Future Research Directions

Because “general” crossover hill climbers can be very complex, finding exponentially
long DP(1) paths appears to be very difficult. It may be possible, for some specific
class of populations, to give an inductive DP(1) construction that is exponentially
long; however, it would be much harder finding a construction for general populations,
of the sort that are likely to appear initially in a GA. Different hill climbers would
also require different constructions.

DP(1) paths for “general” hill climbers can be generated using a brute force
method: e.g., start with some initial population, and follow a DP(1) path. This is
not a practical algorithm for large £, and the D P(1) paths that are generated need not
be exponential in length. Indeed, some algorithms may not even have exponentially
long DP(1) paths on larger populations.

Because of this apparent difficulty, we focus on possible research directions for

14

GIGA on ‘naive’ crossover long path landscape,n=4.
m L] T L T T

mean # slring evaluations
T
1

500 g
0 O L] j - L,
[} -1 10 15 20 25 30
string length
GIGA on ‘naive’ crossover long path iandscape, n=8.
12000 i T L ~T ™ !
10000
2
s 8000 -
«
2
o
>
Qo
[=:]
§ 6000 [
0n
5
*x
g 4000
2000 |
0 - e L. 1 L - 3
0 5 10 15 20 25 30

string length

Figure 6.4: Testing the “naive” long path crossover landscape using GIGA w/ elitism.
n =4 (top), n = 8 (bottom). Standard deviations were high, generally close to the
mean in size.

GIGA on 'nalve’ crossover long path landscape, n=20.

70000 B v v T T T T T
‘mean” -e—
60000 - b
50000 - E
a
2
35
= 40000 |- b
>
L)
2
%
x 30000 | .
3
-]
E
20000 E
10000 |- 4
4] ———L% o L L L [l 1 1
0 5 10 15 20 25 30 35 40 45
string length

Number of times end of ‘naive’ crossover iong path reached.

J L) T] L
n=d® -
B oDl oD e Do e e o en Gee N=8° 4+~ |
100 3 : GG GGG -B.,G_’_a._ﬂ n=20" -@--
'b.

80 | 4
3 .
S "
-3 E.
e
= L
3 60 | : 4
s B
= B
[~4 .
s |
] o..
§ w0k 8 4
G
*® s

u.
o
20 4
0 o S 1 1 1 A
0 10 40 50

30
string length

Figure 6.5: Testing the the “naive” long path crossover landscape (top), and number
of times optimal point reached for n = 4,8, and 20 (bottom).

46

Experiment Number 11:

Matings Evaluations Maximum
0 4 5.000000
1 14 39.000000
2 24 40.000000
6 64 40.000000
9 94 41.000000
13 134 54.000000

100000 100004 54.000000 (Final Results)

Figure 6.6: Example run on “naive” crossover long path landscape. n = 4,¢ = 10.
This experiment demonstrates GIGA probably getting stuck on a false optimum.
(Optimum is 55.)

Experiment Number 2:

Matings Evaluations Maximum
0 4 7.000000
2 24 7.000000
4 44 11.000000
5 54 27.000000
6 64 30.000000
17 174 31.000000
18 184 32.000000
20 204 48.000000
23 234 55.000000
100000 234 55.000000 (Final Results)
Figure 6.7: Example run on “naive” crossover long path landscape (n = 4,¢ =

10). This experiment is an example where GIGA quickly finds the maximum string
(Optimum is 35).

otk den §

Experiment Number 13:

Matings Evaluations Maximum

0 4 4.000000

1 14 24.000000

2 24 25.000000
15 154 26.000000
22 224 27.000000
25 254 28.000000
40 404 29.000000
41 414 30.000000
42 424 31.000000
43 434 32.000000
44 444 44.000000
45 454 45.000000
47 474 46.000000
49 494 47.000000
52 524 48.000000
56 564 49.000000
57 574 50.000000
64 644 51.000000
76 764 52.000000
83 834 53.000000
85 854 §4.000000
88 884 55.000000

100000 884 5§5.000000 (Final Results)

Figure 6.8: Example run on “naive” crossover long path landscape (n = 4,¢ = 10).
This experiment shows a longer path; i.e., GIGA makes small improvements.

D e

further exploring the long path problem.

Binary Crossover Long Paths

While it seems difficult to construct DP(1) paths for general populations, it may be
possible to construct landscapes that are virtually D P(1) paths; that is, a hill climber
on one of the landscapes may be forced to follow an exponentially long path most or
all of the time for most populations. This was the goal taken when constructing the
“naive” crossover landscape.

On the “naive” crossover landscape we wanted to demonstrate exponential be-
haviour in the average case, but we can probably get better long path landscapes if
we only consider a worst case analysis. That is, we generate a long path landscape
for each initial population.

There are many ways this could be done. One obvious method is to pick the first
two strings of the population and construct a long path on their complementary bits.
The path is created so that these strings are initially on the path. The value of a
string is 0 if it is not in the path and not in the initial population, 1 if it is in the
initial population and not on the path, and 2 plus its position in the path, otherwise.
For large enough ¢, it seems unlikely that crossover between any strings but the first
two will produce a fitness greater than zero. There will be populations in which this
is not true, even populations in which two strings not on the path can be crossed
(once) to reach the optimal point; however, for most reasonably-sized populations.
this sort of behaviour should be rare, because the path is exponentially small with
respect to the size of the representation space (2¢). A similar method could also be
used for a-ary one-point crossover.

a-ary Crossover Long Paths

In this subsubsection we consider using a crossover hill climber similar to GIGA,
except that there is no sorting of any kind, implicit or explicit; that is, the first
character of each string is “rooted” in place.

Exponential DP(1) paths are easy to derive for one-point (a,*) crossover. To do
this just use J~! and the a-ary mutation long path fitness function, as was done for
the binary case in the previous subsection. An example DP(1) path for £ =4.a =3
under one-point (a,*) crossover (rotational crossover) is:

0000 000t 0012 0120 0122 0100 0211 0212
1111 1112 1120 1201 1200 1211 1022 1020
2222 2220 2201 2012 2011 2022 2100 2101

DP(1) paths can also be constructed for the a-ary one-point crossover SSS by
constructing a DP(1) path on the Hamming hypercube of dimension ¢ — h — 1.
where h is the Hamming distance between the two a-ary strings in this search space
structure.

49

There are several ways long path landscapes could be constructed for a-ary one-
point crossover, and we give two possible methods. In the first, we could use pop-
ulations of size a generated by random rotation, and let the fitness of a string be
the position of the string in the one-point (a,*) crossover SSS long path. Any string
not in this path would have fitness of 0. For example, the strings 0000, 1111, and
2222 would all have fitness 1. The optimal strings 0212, 1020, and 2101 would have
a fitness of 8.

Using one-point crossover on this population may force an elitist crossover hill
climber to follow a long path (there are definitely exponentially long paths since one-
point crossover can simulate one-point (a,*) crossover). However, a crossover search
mating only adjacent pairs may get stuck on a false optima. The following is an
example of this. (The number above each population is the maximum value of any
string in the population.)

1 2 2 3
0000 0001 0001 0001
1111 1110 1112 1120
2222 2222 2220 2212

If the first and last strings could be mated, then this would not be a false optima.
Choosing non-adjacent pairs as well as adjacent pairs would also eliminate this prob-
lem.

If a crossover search algorithm would have to simulate one-point (a,*) crossover
in lock-step, then this would be a DP(1) path. However, this is not the case. To see
this consider the following example:

1 2 3 6 6 6 6 7 8
0000 0001 0022 0201 0110 0111 0100 0022 0022
1111 1110 1110 1110 1201 1200 1211 1211 1210
2222 2222 2201 2022 2022 2022 2022 2100 2101

Since crossover can take short-cuts, this is not a DP(1) path and there may be false
optima. However, it may also be that, while there are many paths to the optimal
point, each path is exponential in length, or exponential in length on average.

The other type of long path landscape parallels the “naive” crossover landscape
for binary strings. That is, we could use 7 ~!() and the fitness function for the a-ary
long path mutation landscape on population sizes greater than a.

6.3 Conclusion

In this chapter we discussed the long path problem for a-ary mutation and a-ary
crossover. We constructed exponentially long D P(1) paths for one-point a-ary mu-
tation, and created a strictly increasing landscape for one-point a-ary mutation such
that the fitness of points not on the DP(1) path are sloped towards the start of the
path. Test results show that a mutation hill climber starting at a random vertex

50

(chosen uniformly) takes exponential time on average to reach the end of the path.
Thus this landscape is exponentially hard in both the worst and average cases.

We then created an exponentially long D P(1) path for crossover between a com-
plementary pair of binary strings, and constructed a long path landscape for crossover.
A crossover hill climber took exponential time on average to reach the end of the path.

The fitness function for the crossover long path between complementary strings
was used to create a “naive” crossover long path class of landscapes for crossover
on non-minimal populations. The results are interesting—GIGA appears to follow
exponentially long paths on average—but non-conclusive.

Methods for making long paths for a-ary one-point crossover were also discussed,
but most of this is left for future work. Hyper-order crossovers and hyper-order
mutations may also be used to construct interesting, potential long path landscapes.

Chapter 7

Schizophrenic Functions

In this chapter we create the schizophrenic function. This function has two classes of
optima, and is constructed in such a way that searches using mutation are expected to
find one optima class, searches using crossover the other. That is, it is a function that
should be able to discriminate between searches that use mutation or crossover. There
is a long history of discriminating functions in the GA literature. Some examples
include the Royal Road functions [18], the long path problems [29, 30, 31, 10], and
others [8].

We expect that the schizophrenic function will have several uses. Researchers can
use it to compare how well their genetic algorithms use crossover and mutation and to
study what factors affect crossover and mutation. We use the schizophrenic function
for both purposes.

There are two main sections to this chapter. In the first, we define the schizophrenic
function in the binary case. The work here is related to the work by Culberson [3, §].
In the next section, we define an a-ary schizophrenic function. For both sections, we
run various test cases to offer support for (and, it turns out, some evidence contrary
to) our original expectations. All in all, we feel that the schizophrenic function is a
useful but imperfect tool.

7.1 The Binary Schizophrenic Function

Culberson [8] argues that traditional genetic algorithms are more heavily reliant upon
mutation than crossover and do not use crossover well (e.g., converged populations
make crossover ineffective as a search operator), and several papers in the literature
support this view [46]. We use the schizophrenic function to provide additional evi-
dence for this. Analyzing the test results also offers insight into how population and
crossover can interact in GIGA.

We test the schizophrenic function on four different probabilistic search algorithms
(see Appendix B): a one-point mutation hill climber (MHC), a traditional genetic
algorithm (TGA), the gene invariant genetic algorithm (GIGA), and an extension
to GIGA (NQ-GIGA); thus testing the notion that the schizophrenic function can
discriminate between searches that use crossover well (GIGA.NQ-GIGA) and those

o)
(8}

that do not use crossover (MHC) or do not use it well (TGA). Our tests will focus
on GIGA and its extension, NQ-GIGA, and by doing so we analyze how population
and crossover interact in GIGA.

Although we only define and test one schizophrenic function, there are many
classes of schizophrenic functions, and many functions can become the basis of a
schizophrenic class. Schizophrenic functions could also be designed to discriminate
between genetic operators other than crossover and mutation, or to discriminate more
than two operators, say mutation, crossover, and inversion. They can also be used to
explore the effects of multiple levels (or iterations) of Gray coding.

7.1.1 Function Transformations Using Isomorphisms

Recall that 7 is given by:

I(z) = (a,a)

_fo ifi=1
4% = Yz @ai, l<i<l+1

and is an isomorphism between the landscapes induced by one-point binary mutation
on a string of length £ and one-point binary crossover on two complementary strings
of length ¢ + 1 [8].

This isomorphism can be used to transform functions that have certain properties
with respect to a mutation-based search to functions that have those same properties
with respect to a crossover-based search on a complementary pair of strings. If,
for instance, a mutation-based search finds a function f hard, we can construct an
equally hard function f’ for crossover using Z. We can go the other direction using
its inverse. Culberson [8] uses this isomorphism to create functions that discriminate
between mutation- and crossover-based searches.

We stress that this isomorphism is between mutation on a single string and
crossover on a pair of complementary strings; when the population size is not mini-
mal (>2 for crossover, >1 for mutation) the isomorphism can “break.” For example,
a hard function for mutation transformed into a hard function for crossover on a
complementary pair may not be hard for crossover on populations greater than two.

7.1.2 Definition of the Binary Schizophrenic Function
The ones-counting (or ones-max, or unitation) function is
¢
fu(z) = Z Ti
=1
and the transitions-counting function is

¢
fe(y) = Zyi@yi-l

=2

53

where z and y are both binary strings of length £.

The ones-counting function is easy for one-point mutation hill climbers, because
the landscape is strictly increasing, and the longest (increasing) path is of length .
For similar reasons, k-point mutation for small & and uniform mutation for small
Pm,Pm = 1/¢, should also find the ones-counting function easy. Note that fi(z) =
fi(z) = fu(TYz,%)),¢ > 2, which means that one-point crossover on a pair of
complementary strings will find the transitions-counting function as easy as one-point
mutation finds the ones-counting function [8].

The ones-counting function is easy for one-point mutation but difficult for one-
point crossover [8], as crossover has exponential in h false optima on the one-point
crossover SSS landscape given by the ones-counting function, where A is the Hamming
distance of the two strings being crossed. These false optima appear to make the prob-
lem hard for crossover. (Two-point crossover does not have these false optima, since
two adjacent crossovers can mimic a mutation.) The transitions-counting function
is easy for crossover but hard for mutation, because there are large plateaus in the
one-point mutation SSS landscape for the transitions function, and doing mutation
at a higher rate makes the problem even harder.

When the populations are non-minimal, crossover can find the ones-counting func-
tion relatively easy. For example, in GIGA [6] high-fit ones-substrings became concen-
trated at the bottom of the population, the average Hamming distance of these strings
was reduced, and the search became easy. In this case bigger population searches did
not echo the minimal population searches. However, the transitions-counting function
is still easy for bigger populations [8].

Using the transitions- and ones-counting functions we can construct a binary
schizophrenic function:

¢ .
bSchizo(z) = { Limg ZiDTi-t, if 21 =0
Y i=3 Ti, otherwise

It takes a binary string z of length ¢, £ > 3. There are two possible optima when
z; = 1,1011---1 and 111---1, and two when z; = 0,0010101--- and 0101010---.
The four optima each have the value of £ — 2, and both halves of the domain have
the same quantity of functional values. In effect, the domain has been split between
two different functions; one that is easy for crossover and hard for mutation, and
one that is easy for mutation and hard for crossover (on minimal populations). We
expect that a crossover-based search will have a difficult time finding a mutation
optima even on non-minimal populations, because the search algorithm will have a
hard time concentrating ones-strings since there will be equally fit transitions-strings
interspersed between them.

We conjecture that searches using crossover will find the crossover half of the
landscape easier than the mutation half, and so will usually find one of the crossover
optima (the optima where z; = 0) before they find the mutation optima. In the same
way, mutation-based searches will find the mutation half of the landscape easier to
climb, and will usually find one of the mutation optima before a crossover optima.

GIGA: (n =2,a = 2, 1000 trials, 7 =4, non-elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
8000 | 20 6 994 0
80000 | 40 0 998 2
MHC: (n = 1,a = 2, 1000 trials, =4, non-elitism)
MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
8000 |20 665 335 0
40000 | 40 511 21 468
80000 | 40 595 31 374

Table 7.1: Testing the binary schizophrenic function: minimal populations, GIGA
(top) and MHC (bottom).

7.1.3 Testing the Binary Schizophrenic Function

When testing the binary schizophrenic function we split the tests into those that use
minimal and non-minimal populations. We do this for two reasons:

1. Non-minimal populations “break” the mutation-crossover isomorphism—results
on minimal populations may not apply to larger populations.

2. Differences between the minimal and non-minimal population test results can
offer insight into how population and crossover interact in GAs.

Minimal Populations

To test the conjecture that a search using mutation will find a mutation optimum and
a search using crossover will find a crossover optimum, we tested GIGA on the binary
schizophrenic function on a population of two complementary binary strings. Since
the strings are complementary, it is possible for crossover to find any length ¢ string.
For these experiments we modified GIGA to record whether the first optimum found
was a mutation or crossover optimum. Our definition of best pair was the maximum
fitness value of either of the strings in the pair. GIGA also has an option for ezplicit
sorting, which we did not use. For testing the mutation half of the conjecture, we
used our mutation hill climber, MHC, with one-point mutation on a population of
one string.

The results for GIGA and the MHC are summarized in Table 7.1. These results
support our conjecture, at least for the minimal populations that we used. However.
the results are clearly not symmetric. There are at least two reasonable explanations
for this.

The first explanation is that the mutation string could be in either the mutation-
or crossover-half of the landscape but not both, while crossover always had a string in

35

GIGA (n = 20,a = 2, 500 trials, F=4, elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
50000 | 20 122 378 0
60000 | 40 15 485 0
70000 | 60 1 496 3

GIGA (n = 20,a = 2, 500 trials, 7 =4, non-elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
50000 | 20 171 329 0
60000 | 40 317 27 156
70000 | 60 14 0 486

Table 7.2: GIGA on the binary schizophrenic function: non-minimal populations.
elitism (top) and non-elitism (bottom).

each of the mutation- and crossover-halves of the landscape (non-symmetric switch).
A symmetric switch could be designed by using the first two bits of the string, rather
than the single bit currently used as the switch. If the bits were a transition (e.g., 01
or 10) the string would be in the crossover-half of the landscape; otherwise, it would
be in the mutation-half of the landscape. This means crossover would be able to
activate the switch. This switch is not perfectly symmetric, however, since crossover
only has one crossover point that activates the switch, while mutation can mutate
either the first or second bits.

The second explanation is that, while crossover finds the crossover-half of the
landscape as easy as mutation finds the mutation-half of the landscape, crossover
may find the mutation-half of the landscape harder than mutation finds its crossover-
half of the landscape. (The functions are not symmetric.)

Non-minimal Populations: GIGA

For non-minimal populations we first used GIGA with elitism. Both types of optima
can now occur in the population, but we only kept track of the first occurrence. The
results are in Table 7.2 (top) and seem to support our conjecture that crossover has
a harder time finding optimal mutation strings than optimal crossover strings. This
seems to be because the mutation strings cannot be concentrated together since there
are both highly fit crossover- and mutation-strings interspersed in the bottom of the
array. Thus a crossover search is forced to work at the level of the one-point crossover
SSS.

However, if elitism is not used, then the results are very different. See Table 7.2
(bottom). For string lengths of 20, crossover finds the crossover half of the domain
easier, while for strings of length 40 crossover finds the mutation half easier.

56

We offer a possible explanation for these results. With both elitism and non-
elitism. highly fit strings tend to be shuffled towards the bottom of the array. These
high-fit strings include strings containing mostly ones (mutation strings) and strings
where the number of ones and zeroes are roughly equal (crossover strings). This
means there will be fewer zeroes in the bottom of the array. Generally, crossing
highly fit mutation and crossover strings together will tend to produce strings with
lower fitness, and so elitism ensures that there is little exchange between these strings.
With non-elitism, however, these strings can be crossed, and this is what can make a
non-elitist search better on a mutation string. To see this, consider a sub-string of a
high-fit mutation string, say 111101111. If it is crossed just before the zero and just
after, then there is a probability of about 3/4 that those two crossovers will appear as
a mutation (if we assume that fit mutation and crossover strings are equally likely).
With a highly fit crossover string requiring a zero in a certain position, there is only
a probability of about 1/4 that two adjacent crossovers will produce a zero at that
position. There can also be a shortage of zeroes in certain character positions near
the bottom of the array, which can add further difficulty for finding crossover optima.

This explanation also seems to be supported by tests with GIGA where we varied
family size and string length (see Figure 7.1). Notice that GIGA finds the most
mutation optima when F is small relative to ¢. Increasing the family size tends to
make GIGA find the crossover optima more frequently, because increasing the family
size mimics elitism, and the larger the family, the better elitism is mimicked. This
mimicry is imperfect: if no improvement can be made, e.g., a false optimum, then a
pair of children with value lower than their parents must be chosen. This is important
when two highly-fit crossover and mutation strings are being crossed, since the larger
the family, the higher the probability that a child pair will have been crossed at
a crossover point near £. This happens because crossing two such strings near the
middle or front will produce strings with much lower fitness than strings crossed near
the end.

Non-Minimal Populations: TGA and NQ-GIGA

We use GAC [47] as our representative TGA. It uses proportional fitness to select
which individuals reproduce. We used one-point crossover at varying crossover rates
and uniform mutation at varying mutation rates. We modified GAC to record which
optima type was found first as well as the average number of evaluations to find
the first optima. Each experiment ran for a2 maximum of 10,000 evaluations. See
Figure 7.2. The results clearly show that GAC finds the mutation optima much more
frequently than the crossover optima, regardless of the crossover and mutation rate.

Consider the plot of the number of mutation optima found. Mutation dominates
the search, since as the mutation rate increases, the number of mutation optima found
decreases. Changing crossover rates has little consistent effect on this plot other than
making the search slightly easier for high mutation rates. Thus mutation dominates
the search of the optima that are, by far, found most frequently.

Finally, we wanted to see if GIGA could be modified to use both crossover and

N
-1

Number of Mutation Optima Found by GIGA

‘mutation_optima® ——

100
90
80
70
60
50
40
30
20
10

45

30 string length

family size

Number of Crossover Optima Found by GIGA

“crossover_optima’ ——

30 Siring tength

family size

Figure 7.1: GIGA on bSchizo(z): varying F & ¢ (n = 20, = 2, 100 trials. non-
elitism).

ol
o

Number of Mutation Optima Found by TGA

‘mutation_optima® ——

Number of Crossover Optima Found by TGA

crossover_optima® —

1
\
s,

.
AY

g

I

/
4
/
/
N\,
\

.
\

\

A Y

.
v
-
;

T T
.,
N
A
S,
.
o
~
\
!\
]
/ /
/
Y
/
N)
Y
-
¢
e
¥
/
/
!
/
5
4

ccB83888838

¥

K

AN

K

S

N

\,

.5
0.005 crossover rate

0.01
0.015
mutation rate

0.025 Y

Figure 7.2: GAC(n = 50,a = 2,¢ = 30, 500 trials) on bSchizo(z): varying mutation
and crossover rates.

mutation effectively. We did this by encoding two extra parameters into GIGA: a
mutation and a crossover rate. We refer to this modified GIGA as NQ-GIGA (Not
Quite GIGA). NQ-GIGA uses the same defaults as GIGA. The maximum number of
evaluations is 10,000, as with GAC. See Figure 7.3.

These plots show that increasing the mutation rate increases the number of mu-
tation optima found, while increasing the crossover rate increases the number of
crossover optima found. This provides further evidence that (with elitism, at least)
the schizophrenic function can discriminate between mutation and crossover, even
when used together.

7.2 A Generalized Schizophrenic Function

[n this section we use the generalized isomorphism J to construct a schizophrenic
function for one-point mutation and one-point crossover on a-ary strings, a> 2.

7.2.1 The Summation Function

We will construct our schizophrenic function based on the summation function, fs(z).
where

¢
fe(z) = Zl‘i
=1

This function is easy for one-point mutation for the same reason that ones-counting
is easy for one-point binary mutation. When a= 2, fg(z) is just the ones-counting
function.

The summation function for one-point rotational crossover will have exponential
false optima by a construction similar to that used in [8]. For example, the strings

55455

00500

11011

22122

33233
represent a false optimum, since any rotational crossover will produce a set of strings
whose maximum value is lower than before the crossover. While rotational crossover
may be of interest mathematically, there is little incentive in constructing a schizophrenic
function for it since it is never used in the GA community. [nstead, we wish to con-
struct a schizophrenic function that can discriminate between one-point mutation
and one-point crossover between two a-ary strings. This should be possible by noting
that the summation function has exponential false optima for one-point crossover.
For example, the following strings represent a false optimum

22122

11011

60

Number of Mutation Optima Found by NQ-GIGA

g88EEL8

150
100

o8

Number of Crossaover Optima Found by NQ-GIGA

“crossover_optima® ——

BREEEEE

150
100

08

05
mutation rate

Figure 7.3: NQ-GIGA(n = 30, £ = 30, a = 2, 500 trials, F = 4, elitism) on
bSchizo(z): varying mutation and crossover rates.

61

since their maximum value will decrease after a crossover.

To construct the generalized schizophrenic function, we use J to transform the
summation function into a function that is easy for rotational crossover. That is, if
the population is @, < a >1,---,< @ >as-1, then the fitness of a population is given by
fe(TYa,<a>y,---,< a >4-1)). The fitness of the population can also be given by
fi(<a>;) = ;.__2 a;j6a;_, for any i. Using f,(), the shift function, with one-point -
ary crossover will hopefully generate a landscape easy for crossover. Inspection shows
that the shift function has large plateaus on the one-point a-ary mutation SSS.

7.2.2 A Generalized Schizophrenic Function

The generalized schizophrenic function can be constructed in much the same way as
the binary schizophrenic function was created. We just split the domain into two
halves, and then apply a variant of the summation function to one of the halves
and the transformed summation function, f,(), to the other half. Our new definition
becomes:

S 2Oz, if0< 1 < 12]
Schizo(z,a) = { T sz, if (2] <z <2(g]
0, otherwise

This generalized definition is compatible with the binary definition.

When «a is odd, the domain cannot be split into two equal halves, since z; can
range from 0 to @ — 1. To get around this (when « is odd) we give any string with
z; = a — | a value of zero, and the rest of the domain can then be split evenly.

7.2.3 Testing the Generalized Schizophrenic Function

To test the generalized schizophrenic function, we chose @ = 4. We used GIGA and
our MHC to do the tests. The MHC used a single 4-ary string, and a thousand
experiments were done for each case. The results are listed in Table 7.3 (top), and
seem very comparable to the binary MHC’s results.

In our tests with GIGA, we had to ensure that every possible character could occur
in every possible string location. To do this, we used at least 4 strings in GIGA’s
population. We only did 500 experiments for each case. The results are included
in Table 7.3 (bottom). GIGA found a crossover optima much more frequently than
a mutation optima. However, the results are not similar (i.e.. found an optima less
often) to the binary schizophrenic case. This is likely because we were not using
rotational crossover, and thus we cannot expect one-point crossover to find the shift
function as easy as one-point rotational crossover would find it.

We did tests with GIGA on populations of size 20, with and without elitism. See
Table 7.4. The results are very comparable to those that we did with the binary
schizophrenic function on bigger populations.

We also tested the generalized schizophrenic function with NQ-GIGA while vary-
ing the mutation and crossover rates. The maximum number of evaluations was

62

MHC: (n = 1,a =4, 1000 trials, =4, non-elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
40000 | 12 929 71 0
60000 | 16 977 22 1
80000 | 20 951 7 42
100000 | 30 31 0 969

GIGA: (n = 4,a = 4, 500 trials, =4, non-elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
40000 | 12 35 426 39
60000 | 16 1 97 402
80000 | 20 8 492

Table 7.3: Testing the a-ary schizophrenic function on minimal populations with

a = 4: MHC (top), and GIGA (bottom).

GIGA: (n = 20, a = 4, 500 trials, F=4, elitism)

MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
40000 | 12 109 384 7
60000 | 16 65 405 30
80000 | 20 17 381 102
GIGA: (n =20, = 4, 500 trials, =4, non-elitism)
MAX # mutation | # crossover no
EVALS | ¢ optima optima optima
40000 | 12 363 137 0
60000 | 16 471 26 3
80000 | 20 459 1 40

Table 7.4: GIGA on the schizophrenic function: non-minimal populations. elitism
(top), and non-elitism (bottom).

63

10,000. See Figure 7.4 for graphs of number of mutation optima and crossover op-
tima found. Again, the results are comparable to those in the binary case.

7.3 Conclusion

The schizophrenic function appears able to discriminate between mutation and crossover
in certain situations (elitism) but not in others (non-elitism with small family size).
This is probably because the schizophrenic function is biased so that more ones than
zeroes are concentrated towards the bottom of the population array, and that non-
elitism can take advantage of this. We do not expect that this (or any) schizophrenic
function can always discriminate between mutation and crossover based searches: for
example, a crossover-based search that separated the mutation and crossover strings
into two independent population pools would easily find mutation optima if it used
a GIGA-like mating scheme. However, it may work on many different algorithms.
We have also shown that the a-ary schizophrenic function induces landscapes with
behaviours similar to its binary counterpart.

7.3.1 Future Work

It should be possible to make a better schizophrenic function, one that avoids the
problem of one-point crossover with non-elitism being able to simulate one-point
mutation, by noting that the majority function, f.(z) = |(#1s in z) — (#0s in z)|,
has many false optima in the one-point crossover SSS. It was also empirically shown
to be hard for one-point crossover with non-minimal populations [6], and is also easy
for the one-point mutation SSS. Since mutation strings now consist of strings with
either mostly zeroes or mostly ones, the bias of having a concentrated number of
ones near the bottom of the array would be eliminated if the schizophrenic function
replaced its summation function with the majority function. Whether this is in fact
an improvement needs to be tested. It should also be easy to generalize this new
schizophrenic function to a-ary strings.

64

o

e

Number of Mutation Optima Found by NQ-GIGA

rirrrrrr

0.5
crossover rate)

Number of Crossover Optima Found by NQ-GIGA

‘mutation_optima® —-

.5
mutation rate

“crossover_optima® —

0.5

mutation rate

Figure 7.4: NQ-GIGA(n = 30,¢ = 16,a = 4, 500 trials/point,

schizophrenic function: varying mutation and crossover rates.

0.5
crossover rate

F = 4, elitism) on

Chapter 8
Related Work

In this chapter we give a brief survey on landscape theory, analysis, and construction.
We do not give a review of Gray codes, but reading Section 5.1 followed by Appendix A
will suffice as one.

8.1 Landscapes Definitions That Include Crossover

Many papers in the GA literature use the concept of fitness landscape, but often these
landscapes are the one-point mutation SSS [33], and so do not represent the search
of genetic algorithms. For instance, mutation is often viewed as a local operator
that moves on this landscape, while crossover warps through this landscape. In other
words, the mutation SSS has nothing to say about crossover.

Only recently have models of landscapes been proposed that include crossover.
Culberson proposes a rigorous landscape model [6, 8] that can explicitly model the
search of GAs, where each population is a vertex in the graph and the algorithm
via its operators defines edges in the landscape. He also notes that these landscapes
will be too complex in general, and so simplifications may need to be made. For
instance, he analyzes both the binary mutation SSSs, and crossover landscapes for a
complementary pair of binary strings.

Jones [33] also introduces a model of landscapes that includes crossover. He
defines a landscape £ as the five-tuple (R, ¢, f, F, >#), where R is the representation,
¢ is an operator (possibly a composition of operators), f is the fitness function
f :multisetof(R) — F, and F is a set and > is a partial order over F. Jones also
offers a simplified view of the search of (traditional) GAs: a GA moves on several
landscapes (a mutation landscape, a crossover landscape, and a selection landscape).

Jones’s and Culberson’s landscapes are nearly equivalent in that in both can be
interpreted as representing each population as a vertex and operators induce edges
in the graph. Jones includes edge probabilities in his definition, however.

A variant landscape based on hypergraphs has been introduced by Gitchoff and
Wagner [21]. Rather than having each vertex corresponding to a population, each
vertex is a single string, and edges are generalized edges (e.g., a generalized edge
between two strings ¢ and b consists of the set of all strings that can be formed by

66

crossover between a and b). Gitchoff and Wagner show that the strings in any gener-
alized edge form a cycle when strings with a Hamming distance of one are connected,
and are “also connected in the corresponding hypercube of the point mutation space.”
and suggest that because of this recombination spaces have the same metric (Ham-
ming distance) as mutation SSSs. However, in the one-point mutation SSS, Hamming
distance defines distance between two strings, while the Hamming distance for recom-
bination spaces (as used by Gitchoff and Wagner) are just abstract quantities, with
no relation to distance in the landscape. Regardless, hypergraphs are an interesting
abstraction that may be of interest.

In this thesis we use landscapes where each population is a vertex, and operators
induce edges in the graph, because this approach seems more intuitive. It can also
be rigorous, in that the search can be modelled completely.

Simplifications are often required when studying landscapes, because GAs are
very complex algorithms that induce very complex landscapes. However, simplified
landscapes are not the landscapes searched by GAs, but only abstractions. These
landscapes may relate to the search of GAs, but any analysis of simplified landscapes
should be supported empirically. Sometimes simplified landscapes are not enough.
For example, Culberson [8] notes that ones-counting is hard (exponentially many false
optima) for crossover on the one-point crossover SSS. However, ones-counting is not
hard on larger populations (for GIGA). In this case, a population-based landscape
analysis that takes into account how GIGA works is required.

Even if the simplified landscape is adequate, it will still be beneficial to maintain
an overlying view of the complete landscape as searched by the GA. Otherwise, key
concepts may be missed or misunderstood.

8.2 Various Methods Used in Analyzing Landscapes

There are several ways a particular landscape or class of landscapes can be studied.
One is to measure statistics based on a landscape and the other is to analyze a
landscape theoretically.

Two main types of statistical measures have been used to analyze GA-induced
landscapes: 1. fitness correlation of genetic operators, and 2. random walk correla-
tions. The first attempts to measure the correlation between the fitness of parents and
their children, the assumption being that if high-fit parents produce high-fit children.
then GAs will perform well. This is explored by Manderick, et al. [37], Mathias and
Whitley [38], and Dzubera and Whitley [12] who measure the correlation between
randomly chosen parents. Grefenstette [25] calls this a static measure and notes that
high-valued parents may not be sampled, and that the sample may not reflect the
populations seen by a GA. To remedy this, he introduces a dynamic measure as well:
that is, he measures the correlation between parents and children, where the parents
have actually been created by the GA.

Another statistic is based on a random walk: do a random walk, and compute
the correlation between the fitness at time ¢t and time t + 7. This can be used to
give an estimate of how “rugged” (how many false optima are in the landscape) a

67

A L attdh s HLELL o T RS

landscape is. This approach has been taken by Manderick, et al. [37], Hordijk [28].
and Stadler [48]. Manderick, et al, however, use random mutations which means
they use the landscape of a hill climber, but apply this analysis to GAs. This is
problematic. Crossover can do random walks if two parents produce two children
rather than a single child, so random walk analysis is not limited to mutation SSSs.
However, there are smooth landscapes that are hard [29], and rugged landscapes that
are easy [31]. These statistical measures may be useful in analysis, but they should
be used cautiously. A further difficulty with these approaches is that it is possible
for the same landscape to vary in difficulty (exponentially) with different navigation
strategies [10].

Another interesting statistical approach has been taken by Jones [35], where he
measures the correlation between the fitness of a string and the distance (Hamming)
of that string to the optimal. (Jones notes that Hamming distance is not the real
distance metric of GAs, but is a first approximation.) He found that landscapes with a
strong negative correlation tend to be easy for GAs, while ones with a strong positive
correlation tend to be hard. It is interesting that Hamming distance, the distance
for mutation, proved such a good measure of problem difficulty for GAs; this further
supports the claims of Culberson [8] that traditional GAs do not use crossover well
but rely on mutation for search.

Jones [32] offers another approach to analyzing problems called “reverse hill climb-
ing.” In reverse hill climbing, the basin of attraction (hill) around a point for a strictly
elitist (in practical situations) hill climber can be traversed and measured. He gives
a procedure that computes the size of this hill and the probability that the hill is
reached from any point. This can be a powerful tool to analyze problem difficulty,
once a global (or local) optima is found.

A theoretical approach can also be used to study landscapes. That is, it may be
possible to derive bounds on a particular landscape, or prove some expected level
of performance. In “On Searching a-ary Hypercubes” [10] certain characteristics
of hypercubes are explored both theoretically and experimentally. For example, we
show that the a-ary hypercube has a maximum of n/a peaks. Stadler [48] relates
points of graph theory to landscapes. Chapters 2-5 and Appendix A of this thesis are
theoretical analyses of landscapes (Appendix A explores Gray codes, but this can be
related to Hamiltonian paths and cycles in multary-based graphs).

8.3 Discriminating Functions, and Interesting Land-
scape Constructions

Another approach to analyzing GAs is landscape construction. For instance, there are
many functions that are designed to test certain ideas about how genetic operators
work. These discriminating functions may be easy, in theory, for one genetic operator
while hard for another. A landscape construction can also be used to exhibit examples
of easy or difficult problems, or to demonstrate counter-intuitive behaviour.

Many of these discriminating functions have been discussed elsewhere in this the-

63

sis, so we keep this overview short. Culberson [8] uses a binary mutation-crossover
isomorphism to convert hard functions for mutation into hard functions (on a com-
plementary pair) for crossover, and vice versa. The schizophrenic function is related
to this work, and can be seen as an attempt at constructing a discriminating function
for mutation and crossover.

The Royal Road functions [18, 19, 40] were designed to be easy for crossover but
hard for mutation, although a mutation hill climber outperformed a traditional genetic
algorithm [19]. Interestingly, an idealized genetic algorithm was later proven to be
faster than the hill climber by a linear factor, on average. This also demonstrated the
point that an operator may have a certain potential, but that the algorithm may not
use the potential of an operator. The Royal Roads are also an example of high-level
crossover landscape analysis in GAs.

Horn, et al. [29, 30, 31] introduces the long path landscapes, unimodal but ex-
ponentially difficult landscapes for elitist mutation hill climbers. These functions
discriminate between mutation and crossover, since mutation takes exponential time
to find the optimal point, while crossover (with large populations) has much less trou-
ble. These landscapes are discussed further in Chapter 6, in which we discuss long
path landscapes for a-ary mutation and crossover. Long paths have also been used
to discriminate between different types of navigation strategy [10].

Another interesting landscape is the maximally multimodal landscapes of Horn
and Goldberg [31]. These landscapes are constructed on the mutation SSS and have
the maximum number of false optima (2¢!), but are easy for many non-elitist hill
climbers. This shows that while many false optima may make a landscape difficult,
this is not always the case.

69

Chapter 9

Conclusion

In this thesis we studied several a-ary landscapes. We used the landscape paradigm
because it can be rigorous, yet is easy to simplify to a manageable level of complexity.

We looked at several simplified landscapes (search space structures) induced by
various forms of a-ary mutation and a-ary crossover on minimal populations. These
search space structures are related to a-ary hypercubes.

Using an isomorphism between a-ary crossover and a-ary mutation, we showed
that crossover is at least as powerful as mutation, since one-point crossover can sim-
ulate mutation. This simulation also suggests that crossover is more powerful than
mutation, in some sense, in that it is more general (larger neighbourhoods). This
addresses the crossover-mutation debate. A special case of this simulation leads to
the notion of iterating an a-ary Gray code. In Chapter 5 we prove an upper bound
on the maximum number of unique landscapes produced when a landscape is iterated
using this Gray code.

We explored the long path problem in Chapter 6 for crossover and a-ary mutation.
We developed exponentially long distance-preserving paths for a-ary mutation and
crossover on a complementary pair. Some work was done on extending these long
paths to crossover on larger populations, and the results are interesting if preliminary.

We also introduced the schizophrenic function, a function that can sometimes
discriminate between mutation and crossover based searches. Analyzing the test
results on the schizophrenic function proved instructive in understanding some of the
complex ways in which population-based searches can differ from minimal population
searches.

Finally, in Appendix A, we gave an algorithm for generating the a-ary Gray code
of Sharma and Khanna [43] in constant amortized time per code word. This Gray code
is generalized to a multary Gray code, and a simple generalization of our algorithm
generates this multary code in constant amortized time per code word.

PNT M y T MR ERT LT R s

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[9]

Barasch, Linda S., S. Lakshmivarahan, and Sudarshan K. Dhall. (1989). “Gen-
eralized Gray Codes and Their Properties.” In Mathematics for Large Scale
Computing, lecture notes in Pure and Applied Mathematics, J.C. Diaz (editor),
vol. 120, pp. 203-216. New York: Marcel Dekker.

Bitner, James R., Gideon Ehrlich, and Edward M. Reingold. (1976). “Efficient
Generation of the Binary Reflected Gray Code and its Applications.” Comm.
ACM, vol. 19, no. 9, pp. 517-521.

Bloch, Norman J. (1987). “Abstract Algebra with Applications.” Englewood
Cliffs, New Jersey: Prentice-Hall.

Brassard, Gilles, and Paul Bratley. (1988). “Algorithmics: Theory & Practice.”
Englewood Cliffs, New Jersey: Prentice-Hall.

Culberson, Joseph C. (1992). “GIGA program description and operation.”
Technical Report TR 92-06, University of Alberta Department of Computing
Science. Available by anonymous ftp. Site: ftp ftp.cs.ualberta.ca. Directory:
pub/TechReports/1992/TR92-06.

Culberson, Joseph C. (1992). “Genetic invariance: a new paradigm for ge-
netic algorithm design.” Technical Report TR 92-02, University of Alberta
Department of Computing Science. Available by anonymous ftp. Site: ftp
ftp.cs.ualberta.ca. Directory: pub/TechReports/1992/TR92-02.

Culberson, Joseph C. (1993). “Holland’s Royal Road and GIGA.” In Genetic
Algorithms Digest. Volume 7 : [ssue 23

Culberson, Joseph C. (1995). *Mutation-Crossover [somorphisms and the Con-
struction of Discriminating Functions.” Fvolutionary Computation, vol. 2, no.

3, pp- 279-311.

Culberson, Joseph C. (1996). “On the futility of blind search.” Techni-
cal Report TR96-18, University of Alberta Department of Computing Sci-
ence. Available by anonymous ftp. Site: ftp ftp.cs.ualberta.ca. Directory:
pub/TechReports/1996/TR96-18.

(10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

Culberson, Joseph C., and Jonathan Lichtner. “On Searching a-ary Hyper-
cubes and Related Graphs.” In Foundations of Genetic Algorithms 4, Richard
K. Belew and Michael Vose (editors), to appear.

Davis, Lawrence. (1991). “Bit-Climbing, Representational Bias, and Test Suite
Design.” In Proceedings of the Fourth International Conference on Genetic Al-
gorithms, R.K. Belew and L.B. Booker (editors), pp. 18-23. San Mateo, CA:
Morgan Kaufmann.

Dzubera, John, and Darrell Whitley. (1994). “Advanced Correlation Analysis
of Operators for the Travelling Salesman Problem.” In Parallel Problem Solving
from Nature—-PPSN III, International Conf. on Evolutionary Computation, Pro-
ceedings. volume 866 of Lecture Notes in Computer Science, Y. Davidor, H.P.
Schwefel, and R. Manner, editors, pp. 68-77. Berlin, Germany: Springer-Verlag.

Eshelman, Larry J. (1991). “The CHC Adaptive Search Algorithm: How to
Have Safe Search When Engaging in Nontraditional Genetic Recombination.”
In Foundations of Genetic Algorithms, Gregory J.E. Rawlins, editor, pp. 265-
283. San Mateo, CA: Morgan Kaufmann.

Eshelman, Larry J., and J. David Schaffer. (1993). “Crossover’s Niche.” In Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest,
editor, pp. 9-14. San Mateo, CA: Morgan Kaufmann.

Field, Paul. (1997). “A Multary Theory for Genetic Algorithms: Unifying Bi-
nary and Nonbinary Problem Representations” Ph.D. Thesis, University of Lon-
don, London.

Floyd, Robert W., and Richard Beigel. (1994). “The Language of Machines: An
Introduction to Computability and Formal Languages.” New York: Computer
Science Press.

Fogel, D.B., and J.W. Atmar. (1990). “Comparing Genetic Operators with
Gaussian Mutations in Simulated Evolutionary Processes Using Linear Sys-
tems.” Btological Cybernetics, vol. 63, pp. 111-114.

Forrest, Stephanie, John H. Holland, and Melanie Mitchell. (1991). “The Royal
Road for Genetic Algorithms: Fitness Landscapes and GA Performance.” In
Toward a Practice of Autonomous Systems: Proceedings of the First Furopean
Conference on Artificial Life, F.J. Varela and P. Bourgine, editors, pp. 245-254.
Cambridge, MA: MIT Press.

Forrest, Stephanie, and Melanie Mitchell. (1992). “Relative Building-Block Fit-
ness and the Building Block Hypothesis.” In Foundations of Genetic Algorithms
2, L. Darrell Whitley, editor, pp. 109-126. San Mateo, CA: Morgan Kaufmann.

Gilbert, E.N. (1958). “Gray Codes and Paths on the n-Cube.” Bell Sys. Tech.

Journal, vol. 37.

=1
[SV]

[21] Gitchoff, P., and G.P. Wagner. (1996). “Recombination Induced Hyper-
graphs: A New Approach to Mutation- Recombination Isomorphism.” Com-
plezity (In Press). Center for Computational Ecology preprint 33, Yale.
http://peaplant.biology.yale.edu:8001/.

[22] Goldberg, D. E. (1989). “Genetic Algorithms in Search, Optimization and Ma-
chine Learning.” Reading, MA: Addison Wesley.

[23] Gray, Frank. (1953). Pulse code communications, U.S. Patent 2632058.

[24] Grefenstette, John J. (1992). “Deception Considered Harmful.” In Foundations
of Genetic Algorithms 2, L. Darrell Whitley, editor, pp. 75-92. San Mateo, CA:
Morgan Kaufmann.

[25] Grefenstette, John J. “Predictive Models Using Fitness Distributions of Genetic
Algorithms.” In Foundations of Genetic Algorithms 8, L. Darrell Whitley and
Michael D. Vose, editors, pp. 139-162. San Mateo, CA: Morgan Kaufmann,
1995.

[26] Harary, Frank, John P. Hayes, and Horng-Jyh Wu. (1988). “A survey of the
theory of hypercube graphs.” Computers and Mathematics with Applications,
vol. 15, no. 4, pp. 277-289.

[27] Holland, J. (1975). “Adaption in Natural and Artificial Systems.” Ann Arbor.
Michigan: University of Michigan Press.

[28] Hordijk, Wim. (1995). “A Measure of Landscapes.” Technical Report SFI-TR-
95-05-049, The Santa Fe Institute, Santa Fe, New Mexico.

[29] Horn, Jeffrey, David E. Goldberg, and Kalyanmoy Deb. (1994). “Long Path
Problems.” Parallel Problem Solving from Nature-PPSN I[II, International
Conf. on Evolutionary Computation, Proceedings. volume 866 of Lecture Notes
in Computer Science, Y. Davidor, H.P. Schwefel, and R. Manner, editors, pp.
149-158. Berlin, Germany: Springer-Verlag.

[30] Horn, Jeffrey. (1995). “Genetic algorithms, problem difficulty and the modal-
ity of the fitness landscapes.” Master’s thesis, University of I[llinois, Urbana-
Champaign.

[31] Horn, Jeffrey, and David E. Goldberg. (1995). “Genetic algorithm difficulty and
the modality of fitness landscapes.” In Foundations of Genetic Algorithms 3.
L. Darrell Whitley and Michael D. Vose, editors, pp. 243-269. San Mateo, CA:
Morgan Kaufmann.

(32] Jones. Terry, and Gregory .J.E. Rawlins. (1993). “Reverse Hillclimbing, Genetic
Algorithms and the Busy Beaver Problem.” In Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, S. Forrest, editor. pp. 70-75. San
Mateo, CA: Morgan Kaufmann.

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[43]

[44]

[43]

Jones, Terry. (1995). Fvolutionary Algorithms, Fitness Landscapes and Search.
Ph.D. thesis, University of New Mexico. Albuquerque. NM.

Jones, Terry. (1995). “Crossover, Macromutation, and Population-based
Search.” In Proceedings of the Sizth International Conference on Genetic Algo-
rithms, L.J. Eshelman, editor, pp. 73-80. San Mateo, CA: Morgan Kaufmann.

Jones, Terry, and Stephanie Forrest. (1995). “Fitness Distance Correlation as a
Measure of Problem Difficulty for Genetic Algorithms.” In Proceedings of the
Sizth International Conference on Genetic Algorithms, L.J. Eshelman, editor,
pp. 184-192. San Mateo, CA: Morgan Kaufmann.

Kernighan, Brian W., and Dennis M. Ritchie. (1988). “The C Programming
Language,” 2nd edition. Engelwood Cliffs, New Jersey: Prentice Hall.

Manderick, Bernard, Mark de Weger, and Piet Spiessens. (1991). “The Genetic
Algorithm and the Structure of the Fitness Landscape.” In Proceedings of the
Fourth International Conference on Genetic Algorithms, R.K. Belew and L.B.
Booker, editors, pp. 143-150. San Mateo, CA: Morgan Kaufmann.

Mathias, Keith, and Darrell Whitley. (1992). “Genetic operators, the fitness
landscape and the travelling salesman problem.” In Parallel Problem Solving
From Nature, 2, R. Manner and B. Manderick, editors, pp. 219-228. Elsevier
Science Publishers B.V.

Mitchell, Melanie. (1996). “An Introduction to Genetic Algorithms.” Cam-
bridge, Massachusetts: The MIT Press.

Mitchell, Melanie, and John H. Holland. “When Will a Genetic Algorithm Out-
perform Hill Climbing.” To appear in Advances in Neural Information Pro-
cessing Systems 6, J.D. Cowan, G. Tesauro, and J. Alspector, editors. Morgan
Kaufmann.

Miihlenbein, Heinz. (1992). “How genetic algorithms really work [: Mutation
and Hillclimbing.” In Parallel Problem Solving From Nature, 2, R. Manner and
B. Manderick, editors, pp. 15-25. Elsevier Science Publishers B.V.

Rawlins, G.J.E. (1991). Introduction. In Foundations of Genetic Algorithms,
Gregory J.E. Rawlins, editor, pp. 265-283. San Mateo, CA: Morgan Kaufmann.

Sharma, Bhu Dev, and Ravinder Kumar Khanna. (1978). “On m-ary Gray
codes.” Information Sciences, vol. 15, no. 1, pp. 31-43.

Sharma, Bhu Dev, and Ravinder Kumar Khanna. (1979). “Integer Characteri-
zation binary and m-ary Gray codes.” Journal of Combinatorics, Information
and System Sciences, vol. 4, no. 3, pp. 227-236.

Reingold, Edward M., Jurg Nievergelt, and Narsingh Deo. (1977). Combinato-
rial Algorithms: Theory and Practice. Prentice-Hall.

74

[46] Spears, William M. (1992). “Crossover or mutation.” In Foundations of Genetic
Algorithms 2, L. Darrell Whitley, editor, pp. 221-237. San Mateo, CA: Morgan
Kaufmann.

[47] Spears, William M. GAC. C source code is available from the “Genetic Algo-
rithms Archive” at http://www.aic.nrl.navy.mil:80/galist/

[48] Stadler, Peter F. (1995). “Towards a Theory of Landscapes.” Technical Report
SFI-TR-95-03-030, The Santa Fe Institute, Santa Fe, New Mexico.

[49] Syswerda, Gilbert. (1989). “Uniform Crossover in Genetic Algorithms.” In Pro-
ceedings of the Third International Conference on Genetic Algorithms, J.D.
Schaffer, editor, pp. 2-9. San Mateo, CA: Morgan Kaufmann.

[50] Whitley, D. (1989). “The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best.” In Proceedings of the
Third International Conference on Genetic Algorithms, J.D. Schaffer, editor,
pp- 116-121. San Mateo, CA: Morgan Kaufmann.

[51] Williamson, S. Gill. (1985). “Combinatorics for Computer Science.” Rockville.
Maryland: Computer Science Press.

[52] Wolpert, D., and W. Macready. (1996). “No free lunch theorems for search.”
Technical Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, New
Mexico. ftp://ftp.santafe.edu/pub/wgm/.

=1

1]

Appendix A

Proof of Gray Code, and an
Efficient Algorithm to (Generate it

in Sequence

In this appendix we prove that G(«,¢) really is a Gray code. This proof will form
the basis of an algorithm that can generate the Gray code in sequence in (o) time
(amortized constant time per codeword). This code and algorithm will be further
generalized in Section A.3. See Section 5.1 for a definition and overview of Gray
codes.

Bitner, et al. [2] describe several uses of being able to list a Gray code efficiently.
First, an £-bit string can represent a set. Listing all the bit strings will list all possible
sets. In certain codes (e.g., the base a, dimension ¢ integers) adjacent codewords may
differ in as many as ¢ bits. If the cost of adding or deleting elements to the set is
high, then we would prefer a listing that only changes one element at a time: a Gray
code. Changing one element may also simplify algorithms that use these sets. Other
uses they describe are in listing compositions of integers and listing all permutations
of a multiset.

A.1 Proof of Gray Code

Recall that

K(z) = (9)
o Iy fi=1
g = z;Sz;i, l<i1<?

is an isomorphism between the natural numbers of length £, base a and G(e, ¢) [43].

First, we note that K is one-one and onto (this is easily proven). Then, to prove
G(a,£) is a cyclic Gray code, we need only show that G.(a,f) and G(;41)mod at(@,)
differ in only one character.

THEOREM A.1.1 G(a,€),a > 2,¢ > 1, is a Gray code. Further, if G.(a.€) and
G (z+1) mod at(@, £) differ at character j, then G(z41) mod at.j(@,¢) = Gz j(, £)B1.

Proof Qutline: Take successive c-ary, length ¢ numbers z and z’ where z'’ = = + 1.
If K(z) = g and K(z') = ¢/, then show that g and ¢’ differ in only one character
location, i.e., there exists an ¢ such that g; # g and for all j # ¢, g; = g. Also, it
will be shown that ¢! = ¢:;®1.

Proof:
(Theorem A.1.1)

There are two cases:
l.danz, 1 <i<{ suchthat z;<a—-land Vj>:, z;=a—1
2. Vi,1<1< ¢ z; = a— 1 (Cyclic case)

CASE 1: There 33,1 < 7 < /{, such that z; < o —1and Vj > ¢, z; = a —~ 1. This
implies that '’ =z, ... z;_1(z; + 1)0...0.
Let K(z) = g = q1g2 - . - ge- Simple induction shows that g} ...g/_, =¢g1...gi~1, if
i# 1.
If: =1 then
7 4
g = I
= ;1
= ol
else
g = 0T,
(z:®1)Bzi
= (2:07i-1)B!
= gidl

i

Now show that g; = g;, fori+1 < j <L

G = s,
z;916z;161
.'Ej@l‘j_l
= g
Hence, we have shown that ¢’ only differs from g in one character location. and
hence case 1.

CASE 2 (Cyclical): We know z = (a —1)...(a — 1) and '’ = 0...0. Then
Gi=a—-1%# g =0and forany jsuchthat 2< j< L. g; =(a-1)S(a—-1)=0
and g; = 0=0 = 0. This implies that g; = ¢/, and hence case 2.

——

(N}

Since K is one-one and onto, case | shows that G(e,¢) is 2 Gray code, and case 2
shows that it is cyclic. Further, this proof also shows that K(N(e, ?)) = Gi(a, £).
n

A.2 The Transition Sequence T (a, /)

Any word of G(a,¢) can be generated by mapping N (a,£) under K, but this is less
efficient than need be (takes ©(¢) time per codeword) if we want to compute each Gray
code word in sequence. If this is the case, then a better way to generate the words
of G(a,) is to figure out the transition sequence 7 (a,£). The transition sequence
T(a,?) is just the ordered list of the positions of changing characters in G(a,?). A
subscript i will refer to the position of the character change between the G;_i(«,¥¢)
and Gi(a, £). For example, T(a, £) will be the position of the character that changes
as we go from Go(e, £) to Gi(a,). However, instead of numbering the positions from
left to right, as is done in the rest of this thesis, 7;(a, £) will refer to the position of
the changed character starting from the right and going to the left. As an example.
the transition sequence 7(2,3) is (1,2,1,3,1,2,1). See Figure 5.1 for the Gray code
given by this transition sequence (i.e., G(2,3)).

For G(2,¢) (binary reflected Gray code) an efficient ©(2¢) algorithm is given in [2]
that will generate the each Gray code word in sequence. For some Gray codes with
a > 3 it is not always enough just to have a transition sequence; it must be determined
not only which character changes, but what the character changes to. For example,
given the general Gray code number 4988 (a = 10, say) and that position 2 will
change, we do not necessarily know what the 8 will change to. With G(a,!) this is
no problem; the character will change by +1 mod «a. In our example, if 4988 was a
number in G(10,4) and the next transition was position 2, then we know that the
next character in G(10,4) will be 49(8®1)8 = 4998.

It is possible to get the transition sequence 7, from N (a,{) without fully pro-
cessing each number in A (a, ¢).

Lemma A.2.1 T;(a,¥) is the position of the first non-zero character (starting from
the right) in N(e,?).

Proof:

By looking at the proof of Theorem A.l.1, we can see that the T;(c, £) is the position
of the first non-zero character (starting from the right) in V(e €),1 <i < af - 1.
n

We can use this lemma to make an efficient algorithm that generates the code
words of G(a,¢) in sequence in O(af). See Figure A.l for this algorithm. This
algorithm is efficient, since the inner while loop iterates in constant amortized time
(although it can be as bad as O(¢) time for producing any one codeword).

Lemma A.2.2 Algorithm A.[runs in time O(at).

-—

(3

void GenerateGray(a, £) {

}

int g[1..€]; /* holds Gray code word */
int n[l..f]; /* holds a-ary representation of naturals */
int 1;

/* Initialize g[] and n[] */
for (i=1;i<&i++) {
gli]=0;
n[i]=0;

/*
* Generate Gray code: to do this add one to nf]; the
* number of carries plus one will be the next transition

* position.
*/
while (1) {
1= 1;
while (++n[f i+ l]==a) {
n[l —i+ 1]=0;
1++;

if (¢ > ¢) goto finished;

}
gl —i+ 1} = (g[€ — i+ 1]+1) mode;

&

finished:

Figure A.l: An algorithm for generating G(a,?) code words in ©(a?) time. Notice
that the index £ — 1+ | can be replaced with just 7, if z; becomes the least significant
character rather than the most significant.

Proof:
(Lemma A.2.2)

To show this, we need only show that the while loop takes constant time, on
average. Let the integer :,0 < i < a’ — 1 represent the ith string in G(a,?). Then
the average time spent in the while loop is

Taet
al

where ¢; is the number of carries plus one, when one is added to Ni(a,£). It can be
shown inductively that this is equivalent to

-1
—! (A1)

(D)t

=1

which is less than
—)-ly A2
2 ()7 (A.2)

We now want to show that the series given by Equation A.2 is bounded by a
. . ; k 1
constant. To do this, we will use the fact that ¢ o' = &5 ¢——=L Let r=1/a. Then

[4 4 [4
Z()x~12 — in ll = ZI'—I’L
=1 =1 =0

d [4

:Zz

l—O
d zl+1_l
T odzV -1 }
lyao— € —1 1

H(a =12 T [Tfa=1)y
Because —f%ll—l), is always negative, the inner while loop does a constant amount
of work on average.

Thus the while loop will do an amortized upper bound of (-%5)? iterations. This
upper bound is high since we dropped a factor of 2= from ¢~ | terms of Equation A.l
to get Equation A.2. A closer approximation to the true number of iterations, amor-
tized. for large £ is 2<1(-2;)? = —2-. Both the upper bound and the approximation
decrease with a. This algorithm seems quite comparable to the one presented by
Bitner. et al. [2] in terms of overall speed and simplicity, although their algorithm

80

is constant time per codeword while ours is only constant time amortized. However.
our algorithm easily generalizes to the a-ary Gray code of Sharma and Khanna [43].

Further, it is easy generalized to work on multary codes (next section).
[t is also possible to define the transition sequence T, for G(a,¥¢) recursively.
a—1 times

et N
in terms of «a, ¢, and T,;. The transition sequence is given by 7; = L,1,...,1,
a-1 times
and T¢ = [Te—1€][Terl)- -~ [Te-1£] Te-y. This is also done by Sharma and Khanna,
although our work is done independently. Further, Sharma and Khanna's definition
is slightly different and is inconsistent: in the base case (¢ = 1), their transition
sequence consists of a — | ones, and thus their transition sequence carries the first
element of the Gray code to the last; however, when £ > 1, their transition sequence is
cyclic, i.e., it carries the first Gray code element cyclically through the code to itself.
As a final note, K and K~! can be modified to work on a-ary numbers with
positions starting at the right and going to the left. Such a definition is given by
Sharma and Khanna [43].

A.3 An Extension to G(a,¢) and Another Genera-
tion Algorithm

Let N puie(a1, @a, - - -, @) represent the code where the first character (from the left)
can have one of a; characters, the second can have one of ay characters, and so
on. The order of this code is defined by z is before y (r and y are two code-
words) iff before(z,y), where before(z;---zs,y: - -ye)=z: < yi or (z; = y; and
before(zriy1 - ¢, Yiv1---ye)). The basis is before(z;,y;) = z; < y;. This is just
the natural ordering. We call a code where each character can have a different o a
multary code, as done by Field [15]. Multary codes can represent multisets: there are
¢ element types 7,71 = 1,2,---,¢, and each z; in the codeword = denotes the number
of times element 7 is represented in the multiset, for a maximum of o; — 1. Listing
N mut(ar, @z, - - -, a¢) gives all the possible multisets where each element 7 can be rep-
resented up to o; — 1 times. However, as with a binary or a-ary natural ordering, two
consecutive codewords can have a Hamming distance greater than one.

It is possible to get a generalized Gray code, Gmui (1, @2, - - -,) for these multary
codes. One such possible code is a generalization of the a-ary Gray code of Sharma
and Khanna [43]. To see this, modify K to be

K(z) = (g)

o I lfl=l
g = (zi—zimy)modo; 1 <1<

and £! to be
K-Yg) = (z)
b (i + zici) moda; 1 <i< ¥t

81

We assume the generalized definition throughout the rest of this chapter. X is an
isomorphism between N ui(cr, aa, - -, a¢) and Grun(ay, az,- - -, ae).

To show K is one-one, pick two strings £ and z’ such that z # z’. Then z and =
must differ in some first character, say z; # zi. Let ¢ = K(z) and ¢’ = K(z'), and
assume g’ = g. It is easy to prove that g; # ¢/, a contradiction. To show K is onto
pick an arbritrary g. We must show that there is a (legal) z such that g = K(z).
This is can be done by setting g1 = z; and progressing inductively.

The proof that G,uu(ai, a2, -,ae) is a Gray code is virtually identical to the
proof of Theorem A.1.1, except that the cyclic case does not hold in general. However.
if g and g’ are two adjacent words in G (i, a2, -, @) such that g is before ¢’ and
gi ¥ g/, then ¢! = (g; + 1) mod a;.

We can even generalize Algoritbm A.l to produce these Gray code words in con-
stant amortized time per code word. The generalizations are quite simple (e.g.. the
procedure takes an array of a[l ---¢]). The code generation algorithm will be espe-
cially efficient if &; < a; for ¢ < j.

A “loop-free” algorithm is given by Williamson [51, p. 111-112] that also generates
a (different) multary Gray code. However, our algorithm seems simpler, both in
implementation and documentation, and our algorithm also seems comparable in
terms of efficiency.

!

AJ
(S

Appendix B

Description Of Search Algorithms
Used in This Thesis

Gene Invariant Genetic Algorithm (GIGA)

GIGA is a genetic algorithm that uses only crossover. [t works by maintaining a pop-
ulation of n strings in an array, and iteratively picking two adjacent strings to mate. A
mating involves generating F (family size) children pairs by applying crossover to the
parents, and then replacing the parents with the best pair of children (non-elitism).
or the best pair including the children and the parents (elitism).

When a pair is chosen to replace the parents, the lower valued string is inserted
above the higher valued string; over time, the population becomes roughly sorted,
high value strings near the bottom of the array, low value strings near the top. We
call this implicit sorting. GIGA also has an option to ezplicitly sort the population
by fitness value after each mating, but this was never used.

Using only crossover ensures that the set of characters in any column of the matrix
remains invariant, preventing convergence in the usual sense. Since mutation is not
used, search can only be achieved through propagation of sub-strings through the
population.

GIGA has several parameters, and we used several default parameter settings
throughout this thesis (see Table B.1). Unbiased adjacent selection means that, for
each mating, the (adjacent) parents are chosen uniformly from the n —1 possible pairs

Unbiased adjacent selection.
Random rotation.
Maximum of pair.

One-point crossover.
No explicit sorting of population.
No gray encoding.
Epsilon = 0.0 (e.g., not used).

Table B.1: Default GIGA parameter settings used throughout this thesis.

83

Create initial population

While (current # evals < some maximum number of evals) {
Select a pair of parents to mate.
Produce a family of offspring pairs using crossover.
Select the best offspring pair.
Replace parents with best pair.

Table B.2: Outline of GIGA

of parents.

Random rotation generates the first string of the population randomly. [t then
produces the next a — 1 strings by adding i mod « to each character of the original
string, for the next i strings, i = 1,---,a — 1. This process is then repeated as long
as strings still need to be generated. For ¢« = 4 and n = 6, if our initial string is
10023, then we would get the strings 21130, 32201, and 03312. At this point the fifth
string would be created randomly, say 30121, and the sixth and final string would be
01232. When n = 2 and a = 2, random rotation generates a complementary pair of
strings. [f n > «, then random rotation ensures that, for a given character position.
every possible character occurs at that position.

Mazimum of pair means that the fitness of a pair of strings is the maximum fitness
of the strings in the pair. While GIGA can be seen as sifting sub-strings through the
population, this definition of best pair means it can also be viewed as a hill climber.
even for population sizes greater than two, because the family actually represents
F different populations. Here the fitness of a population is not always equal to the
maximal fitness of the strings within the population, but depends on all the strings
within the population.

For a more in-depth explanation of GIGA, the reader may wish to see GIGA’s
documentation [6]. Our version of GIGA only differs from this version in that it halts
after a maximum number of fitness evaluations, rather than a maximum number of
matings. See Table B.2 for an outline of the GIGA program. This table is based on
a table given by Culberson [6].

Mutation Hill Climber (MHC)

Our mutation hill climber uses one-point mutation on a single a-ary string. The
population initially consists of a single randomly generated string. See Table B.3 for
an outline of MHC.

MHC copies the parent string to F children strings, and then applies one-point
mutation to each child. With non-elitism, the fittest child replaces the parent string;
with elitism, the fittest child replaces the parent string only if its fitness is greater
than or equal to its parent’s fitness. As with GIGA, each such generation is referred
to as a mating.

There are other types of mutation hill climbers; MHC was used because its search

84

Randomly initialize parent string.

While (current # evals < some maximum number of evals) {
Produce a family of offspring strings using one-point mutation.
Select the best offspring string.
Replace parent string with best string.

Table B.3: Outline of MHC
is isomorphic to GIGA’s when GIGA uses random rotation, a =2, and n = 2.

Not Quite-GIGA (NQ-GIGA)

NQ-GIGA (Not Quite GIGA) is the same as GIGA, except that one-point mutation
has been added to the algorithm. This was done by encoding two extra parameters
into GIGA: a mutation and a crossover rate. Given a pair that had been selected, the
crossover rate is the probability that the pair will be crossed. The mutation rate is
the probability that each string in the pair undergoes one-point mutation. NQ-GIGA
uses the same defaults (see Table B.1) as GIGA.

Traditional Genetic Algorithm (TGA)

A traditional genetic algorithm (like the simple GA, but slightly less general) gener-
ates an initial n» member population, where each string is generated randomly. This
population is evolved by creating a new population from the old, by selecting pairs of
strings from the old population and applying uniform mutation (where each character
is mutated with probability p,,) and crossing these two strings with some probability
p. to produce one or two children strings which are then added to the new popula-
tion. This step is repeated until the new population is generated. The new population
replaces the old. Going from an old population to a new population is called a gener-
ation. Strings are chosen stochastically for mating; the higher the fitness of a string,
the greater its chance of being chosen for mating.

There are many possible “traditional genetic algorithms,” and we use GAC [47]
as our representative TGA. It uses proportional fitness to select which individuals
reproduce. Proportional fitness means that an individual z is expected to be mated
f(z)/p times, where u is the average fitness of the old population. The crossover rate
is the probability that a selected pair will be crossed. One-point crossover is used.

Because populations are small (small sample size) and high-fit strings can be
involved in several matings in the next generation’s production while low-fit strings
may not be mated at all (loss of diversity), populations tend to rapidly become
converged when proportional fitness is used. If a population converges too quickly
(premature convergence), so that the average Hamming distance between each string
is very small (i.e., all strings are highly similar), then crossover can become ineffective.
This problem is well-known in the GA community, and there is evidence [8, 46] that

35

mutation is the driving force behind traditional GAs for this very reason.

86

