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A numerical study of the transitions that occur with increasing Reynolds number
in a curved channe!l with radius ratio n = 0.875 is performed using spectral simulations
of the three-dimensional, incompressible, time-dependent Navier-Stokes equations.
Periodic boundary conditions are used in the spanwise and streamwise directions. At
RcymHsnumberRe-6.3lRe,wnporaﬂypaiodicmvy(twisﬁn;)Danmﬁcuoeun
(Re, is the Reynolds number for the transition from laminar curved channel Poiseuille
flow to steady, streamwise oriented Dean vortices). At Re = 8.84Re, a three frequency
flow is discovered in which two new incommensurate frequencies modulate the wavy
vortices. At Re = 10.10Re, the two modulation frequencies are phase locked producing
amﬁequencymoduhwdmvyvmﬂowdmisdmihrinmmyswhtm
in Taylor - Couette flow. The spatial and temporal characteristics of the modulation
fmquenduuedimsnd.&ndmdnbdnvianofodudymmialsym.m
chaos should ensue once the phase locking at Re = 10.10Re, is broken at a higher
Reynoids number. Judging from current experimentation with curved channel flow,
verification of the flows discovered here may be difficult.
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Greek Symbols

] Streamwise wavenumber.

r h/d, aspect ratio of channel.

Ap Pressure gradient parameter.

0 Streamwise spatial coordinate.

n r/r,, radius ratio.

A Spenwise wavelength of vortices.
T Streamwise wavelength.

v Kinematic viscosity.

(") Fundamental frequency of wavy and modulated wavy Dean vortex flow.

Other Symbols
CCPF Curved channe! Poiseuille flow.



INTRODUCTION

The purpose of this work is to numerically study the transition to turbulence of
flow through an infinite aspect ratio curved channel.

Until now, four distinct la-ninar flows were knowa to exist prior to the onset of
turbulence in the curved channel. At low Reynolds numbers the most basic flow exists.
This is curved channel Poiseuille flow. As the Reynolds number is increased, curved
channel Poiseuille flow becomes centrifugally unstable and axisymmetric streamwise
oriented roil cells, known as Dean vortices, develop'. Increasing Re further causes the
Dean vortices to become unstable to periodic streamwise travelling waves producing
either undulating or twisting vortices’. In this work the method of Moser and Moin® is

equations for curved channel flow with Re above that for stable wavy vortices.

In chapter II, the paper format is used to present the results of this study. An
explanation of the curved channel geometry and the parameter range explored appears in
section I1.1. In I1.2 the code used in performing the simulations is described. A flow
containing two new incommensurate frequencies, in addition to that due to the original
locked at higher Re, giving a flow that is similar to two frequency modulated wavy
Taylor vortex flow*. A vortex doubling is encountered at higher Re, limiting the extent
discussed in I1.4.



The work concludes with chapter ITI. The transition route outlined thus far for
curved channel flow is viewed from a dynamical system perspective. Speculation is made
as to what further transitions curved channe! flow will undergo before becoming
turbulent. As well, difficulties that may be encountered in physically verifying the flows

discovered here are briefly discussed.
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CHAPTER 11

The channel geometry used in this investigation is shown in Fig. 2.1. The

streamwise, spmmgandﬁdmlcmrdxmtﬂmdeﬁnedbyﬂ,zmdrwmym

inner and outer walls have radii r, and r,. The channel spacing is d = r, - r;, and the

radius ratio is defined as n = r/r,. Channels of finite spanwise extent h, will have an

aspect ratio T' = h/d. All velocities are non-dime by the bulk streamwise
velocity U, distances are non-dimensionalized by d/2, and time by d/2U. The Reynolds
number Re is defined as Re = Ud/2v. Wavy vortices are characterized by spanwise and
streamwise wavenumbers & = xd/A and p = 2x/p, where A and y are the spanwise and

The following regimes have been observed for curved channel flow with infinite,
the ends of a finite aspect ratio channel where single Ekman vortices occur'. At the

streamwise oriented roll cells?. Finite aspect ratio effects on this transition are discussed
by Finlay and Nandakumar'. Much of the previous literature on curved channel flow
deals with the neutral stability of the azimuthal flow in infinite aspect ratio channels of
arbitrary n. A review of this literature is given by Finlay, Keller, and Ferziger’. Finlay

!, A version of this chapter has been accepted for publication. Bland & Finlay 1990.
Physics of Fluids A.




et al.’ examined the stability of axisymmetric Dean vortices to wavy disturbances and
They found that for Re 2 1.2Re, Dean vortex flow is unstable to relatively long
vortex flow becomes unstable to short wavelength or "twisting” travelling waves. At
to be greater than that for long wavelength undulating modes. Experimental evidence for
the existence of twisting vortex flow at n = 0.979 is given by Ligrani and Niver*, In
recent experiments, twisting and undulating vortex flows have been observed for n =
0.979 that compare well with numerical computations for the same curvature’. When
increasing Re from 8.2Re, to 10.9Re, at n = 0.975, & = 2.5, § = 200, Finlay et al.?

found vortex doubling where two vortices split to become four. This prevented {ucther
investigation of possible transition routes for the chosen  and a. No transitions beyond

In this investigation, n = 0.875, « = 2.5, § = 30 are considered. By lowering
n, the spanwise wavenumber a, is found to be stable against vortex doubling through a

transition to twisting vortex flow occurs at Re ~ 2.6Re,’. We use a spanwise wavenumber
« = 2.5 because experimentally & ~ 2.55 for n = 0.979 and 2.14Re, < Re < 3.07Re.*,
« ~2.17at n = 0.99 and Re = 125Re, for turbulent channel flow’, and 2.6 < « < 3.0
for n = 0.979 and 2.03Re, s Re < 4.53Re,*. We use a streamwise wavenumber of p =

30 because infinitesimal ic streamwise disturbances to Dean vortex flow




have highest linear growth rates near this f when n = 0.875 and « = 2.5,

The transitions beyond twisting Dean vortex flow that occur with increasing Re
are described in section I1.3 and the spatial and temporal characteristics of the new modes
are discussed in I1.4. In section II.2, the numerical method used to simulate the flow is
briefly discussed. Spanwise and streamwise periodicity is imposed; thus, phenomena
associated with the end walls of finite aspect ratio channels are not considered. The flow
is fully developed with no entrance effects studied.

I1.2 Code Implementation

The code employs the method of Moser, Moin and Leonard® to obtain three
dimensional, time-dependent, incompressible solutions of the Navier-Stokes equations for
satisfy the continuity equation and boundary conditions is used. Time advancement is

mothamudutuymm“awm@tmtheplﬂmﬁ

incommensurate frequencies leading to chaos’. The compu
spanwise wavelength (one counter-rotating vortex pair) A, and one streamwise wavelength
. Spatial resolution is monitored by ensuring that the logarithm of the encrgy decreases
Myﬁmmmmmumwgm;upﬁﬂgﬁghammm.
Constant mass flux is imposed.

The code is a modification of the one used to study wavy Dean vortex flow by



Finlay et al.?, Taylor vortex flow by Moser et al.® and turbulent curved channel flow by
Moser and Moin'®. The numerical method was also used by Finlay to study rotating
channel flow'!, to test perturbation expansions for curved and rotating channel flows'2,
and to study the transition to turbulence in rotating channel flow",
I1.3 Temporal Spectra

In this section flow simulations performed at Re = 6.31Re,, 8.84Re,, 10.10Re,,

10.35Re, and 11.36Re, are discussed. During the simulations, the velocity is sampled
over time for use in both a stationary and a streamwise travelling reference frame. Power
spectra of these time records provide a means of distinguishing flow regimes. Unless
otherwise stated, the initial condition for each run is the fully developed flow at the
previous, lower Re. Simulations at Re = 8.84Re, and 10.10Re, using initial conditions
containing low amplitude (10°U) random noise superimposed on a first order
approximation to Dean vortices with a strong (10% U) nonaxisymmetric perturbation
yielded the same equilibrium flows, after long transients. Spatial resolution for each run
is as follows: for Re = 6.31Re, and 8.84Re,, 24 X 33 X 36 modes are used in the 6,
r and z directions respectively; for Re = 10.10Re, and 10.35Re,, 32 X 33 X 40
resolution is used, and for Re = 11.36Re,, 40 X 33 X 40 is used. The random noise
initial condition runs at 8.84Re, and 10.10Re, both use resolutions of 32 X 49 x 40. To
remove aliasing esrors, the resolution in physical space is 3/2 times the number of modes
in transform space in each direction.

All the flows described in this section satisfy shift and reflect symmetry as defined
by Marcus'‘:



v (r.8,2.0)=v (r0+x/B,-1.0)

v4(,0,20=v(r,0+%/B,-21) .1

U;(fia-t-f)"*“;(fne*ilﬂ;!zsl‘);
Msymnwyumﬁedtammmmnﬂoﬁmunughmmh;ymﬁmuafm@d

A portion of the velocity records and power spectra at Re = 6.31Re,, 8.84Re,,

and 10.10Re, are shown in Fig. 2.2, 2.3, and 2.4 respectively. Only the low frequency
portion of the power spectrum is shown in Fig. 2.3 and 2.4. No fundamental frequency
wmmmummmﬂnﬁqummahxghﬁmmmmmman

obtained atr ~ r, - d/4 and z ~ A/4, where z = () is the average location of the outflow

other components of velocity are qualitatively no different.
At Re = 6.31Re,, the flow is temporally periodic with frequency @, =209 £+

.04, where @ = 2x/T, and T is the n
Re = 6.31Re, was obtained using fully developed wavy vortices at Re = 3.16Re, as
initial conditions.) When the velocity is sampled in a frame of reference travelling in the
streamwise direction at a constant angular velocity, the fundamental, @, is shifted by an
amount proportional to the angular velocity. The peria
wave travelling down the channel at constant angular velocity Q = «,/p. Formally, the

icity of the flow is thus due to a

wave satisfics the definition of a travelling wave given by Rand':

Wr,(0+0A0mod2x/p 2.0+ A0)-Wr,0,2,0). (1.2)



The flow is a twisting vortex flow as defined by Finlay'' and is qualitatively similar to
the twisting vortices observed by Finlay et al.’ at n = 0.975.

At Re = 8.84Re, the flow becomes quasi-peric
frequencies. The original travelling wave is still present, w, = 2.097 4 .005, but there
are two new modes, w, = 0.275 1+ .005 and w, = 0.138 + .005. The two new
frequencies remain unchanged in a travelling reference frame. They are also
incommensurate; this is most easily seen in the time record of Ap, defined as

P _oP
apeR_B Mm.3)

8%

averaged over the computational box and (-1/rNdP/d8) is the streamwise pressure
gradient for laminar (unstable) curved channel Poiseuille flow at the same Re. Due to its
travelling wave nature, @, is absent from Ap records. The time records and power spectra
of Ap for Re = 8.84Re, and 10.10Re, are given in Fig. 2.5 and 2.6 respectively. Afier
an initial transient, the beating of w, and , against each other can be seen in the
amplitude oscillation of the time record of Ap for Re = 8.84Re,. The power spectrum
8. It is expected that w, and «, first

of Ap shows w, and w, and their linear combinatic
amounts of CPU time required for such runs.
The flow at Re = 10.10Re, is the same as that at 8.84Re, except the two low

9



shown in Fig. 2.4, gives w, = 2.098 + .007, w, = 0.258 + .007, and w, = 0.129 +
.007. Within the resolution of the spectra obtained, w,/w; = 1.99 for Re = 8.84Re,,
while for Re = 10.10Re, w,/w; = 2.00. The phase locking is most clearly illustrated in
whﬂenkeslo_lcg,ﬂgmgkpmﬁglym,pmﬂmf g a periodic signal for A

power spectrum of Ap for Re = 10.10Re, shows w, as the fundamental frequency, all

u&epahmmmmﬂﬁmmnﬂaofﬂ,mmmﬁqmm(a -

dmmmwmmmﬁaﬁﬁﬂqm" In many
M.mmﬁqmlmhﬂmnmwﬁﬂdfmnﬁnﬁemofhm
the same as at 10.10Re, with &, and @, still entrained with ratio 2 to 1.

earlier resulted in a long transient (22 peric

ofu,)mmmmﬂmmm

alternate initial condition run at Re = 10.10Re, quickly gave the same results as the run
An exploratory run at Re = 11.36Re, performed early in the investigation tc
The solution at 6.31Re, was used as initial condition. Early in the run, a vortex splitting

10



and subsequent merging occurred. This is evidenced by the shifting of the dominant
energy in the first mode of the spanwise velocity Fourier expansion to the second mode,
and then back again. The splitting and merging occurred in about one period of w,, which
is about equal t0 w, for Re = 10.10Re, The amplitude of Ap never settles down and
another doubling and merging occurs about 90 periods of w, later (or 17 hours of Cray
X-MP CPU time later). Experimentally, Ligrani and Miver observed splitting and
merging*. This phenomenon is related to a generalized Eckhaus instability's.

I1.4 Spatial and Temporal Characteristics of Modulated Flow

In this section, the modulated fiows at Re = 8.84Re, and 10.10Re, are discussed
in detail. Both flows are frequency and amplitude modulated. Variation of the flow due
to modulation is weak at Re = 8.84Re,, but stronger at 10.10Re,.

Inspection of the spanwise velocity time record at Re = 8.84Re, reveals that the
period between arrivals of the travelling wave oscillates at both @, and @,. A record of
v, at Re = 8.84Re, over 1.5 periods of w, is shown in Fig. 2.7 (a). The velocity has
been sampied at every time step, giving a resolution of 0.0143 nondimensional time units
d/2U. From this record the period T of the travelling wave is estimated by taking the
difference between the times at which consecutive minimums of v, occur. The time
variation of T is shown in Fig. 2.7 (b). The period of the travelling wave is modulated
at w,; by about + 5% of the average T = 2.996; @, modulates T by approximately an
additional 2%. Because periodic streamwise boundary conditions fix the streamwise
wavelength, the variaiion of period implies frequency modulation of the travelling wave.

The companion Ap record to the v, record at Re = 8.84Re, is shown in Fig. 2.7

11



(c). Comparing Figs. 2.7 (b) and (c) show that several maxima/minima of Ap occur
mmmywhmuﬂeuammjmmgomeoughthﬂeum:nm
correlation between the two. The minima in the Ap record at t = 1207 and t = 1253

occur between one to two periods of , ahead of the co

and maxima in T.

plots through sections of the channel. In Fig. 2.8 contours of the streamwise perturbation

velocity Ug in a r - 2 plane averaged over one streamwise w velength p are given (uy =
ve - V(r) where v, is the total streamwise velocity and V(r) is the curved channel
Poiseuille flow profile®). The plots in Fig. 2.8 (a) and (b) correspond to the times t =
1193 and t = 1203 in Fig. 2.7 (a separation of roughly one half the period of ). The
pbuu!llﬁ@mamwﬁnmﬁﬁmv&ﬁgnz-lﬂmﬂrirf
d/3 than at t = 1203. This is due to the increased strength of the vortices sweeping more
low velocity fluid from near the outer wall into the centre of the channel. The stronger
vortices also cause the larger positive perturbation at z = A/2 and r = 1, + d/4.
Spmﬂylvmgedmmmtymmmdzr-zphngmmmm
Fﬁ;i.?.mmmmﬁtillﬁmnnt:lm@ﬁshﬁiﬂtﬁe
mmwn@mmﬂ@mgmmw&mm
in Fig. 2.9 (a).
The&ﬂaaufa;mmsmofﬂgmﬂﬂwhﬁmﬁqofﬁgvah

seci in the contours of the streamwise tion velocity inaz -Oplaneatr = r,

given in Fig. 2.10. Att = 1193 (when the travelling wave has its slowest local phase

12



velocity), the inflow boundary (approximated by the "s" shaped valley running across the
contour piots), is flatter than at t = 1203. The maximum spanwise excursion of the
inflow boundary from its average location is 10% greater when the waviness is maximally

Because the power intensity of w, is 30 weak, temporal variation of the spatial
structure of the flow at Re = 8.84Re, could not be detected at the frequency w, from
The time records of v,, T, and Ap over 1.5 periods of w, for Re = 10.10Re, are
given in Fig. 2.11 (a), (b) and (c) respectively. Again the data has been sampled every
average period of the travelling wave is modulated at w, by about +15%. The large
extrema in the period of the travelling wave coincide with the minima in the Ap record.

The spatial effect of the modulation at Re = 10.10Re, is seen in channel section

ion velocity uginar -

z plane averaged over one streamwise wavelength p are given. The velocity field has
been sampled at the times t = 1057 and t = 1081 in Fig. 2.11 (a separation in time of
onc half a period of w,). Extrema in T, Ap, and v, occur at these times. The piot sampled
ntSIMIMAp)MImwmwmmaz!m
andr = 1, -d/3 than at t = 1057 (low Ap). Again this is due to the increased strength
of the channel. For t = 1057, the region near the inner wall has a nearly uniform

13



positive perturbation, while at t = 1081, the stronger vortices push high velocity fluid
from the centre of the channel inward, causing a large positive perturbation island at z
= A2and r = 1, + d/4.

Spatially averaged streamwise vorticity contours in the r - 2 plane are shown in
Fig. 2.13. For t = 1081, the vortices are stronger. This causes higher vorticity at the
vortex centres and larger vorticity gradients close to the outer and inner walls, and within

the inflow region.

can be seen in the contours of the streamwise perturbation velocity ina z - @ plane at r
~ 1, given in Fig. 2.14. At t = 1057 (when the travelling wave has its slowest phase
velocity), the inflow boundary (apy ed by the “s” shaped valley running across the
contour plots), is more s-shaped than at t = 1081. Observations of the flow at other times

show the inflotv boundary waviness is maximally flattened when Ap is a maximum and
mmﬂymhmeﬁwbmépuammmﬁmmmmmmofm
inflow boundary from its average location is 16% greater when the waviness is maximally
discovered here is similar in nature to modulated wavy Taylor vortex flow. Each state in
mdulmdwwyﬁylmvamﬂwmbedmbedbyimbmefﬂgmms
m and k: m is the number of azimuthal waves (f in the curved channel), and k is used
to define the phase angle aé = 2xk/m between the modulation of successive waves,

14



study, the periodic flattening of the travelling wave implies that all waves in the
streamwise direction simultaneously flatten. This behaviour is similar to the m/k states
in modulated wavy Taylor vortex flow described by Gorman and Swinney'® for k = 0,
However, for the k = 0 state of modulated wavy Taylor vortex flow the s-shaped waves

have a faster phase velocity than the flattened waves, which is opposite to what is

observed here. To
that more than one streamwise wavelength be resolved. This is beyond the scope of this

In Taylor Couette flow, only one frequency has been found that causes pure
modulation of the travelling waves. However, two other flow frequencies have been
observed™. The first corresponds to a transient mode that appears at higher Re than that
for the onset of the first travelling wave, but disappears before the appearance of the
wds to a broadband component, which marks

the onset of chaos, coexisting with the two frequencies of modulated wavy Taylor vortex
flow. It is unlikely that either of the two new frequencies found at Re = 8.84Re, in the
curved channel are slowly decaying transients, and clearly none of the spikes in any of
the power spectra correspond to broad band components. The alternate initial condition
runs, besides supporting the argument that the two new frequencies are not transients,

also demonstrate that the states obtained in the simulations have basins of attraction that

are not points but are of finite size.

I1.S Summary



dimensional, incompressible, time dependent, Navier - Stokes equations. At Re =
6.31Re, twisting vortices (wavy Dean vortices) as discussed by Finlay et al.’ are
obtained. At Re = 8.84Re, a three frequency flow is discovered in which two
nonpropagating oscillations modulate the travelling wave associated with the wavy
vortices. At Re = 10.10Re, the two, new nonpropagating frequencies become phase
locked, producing a modulated wavy vortex flow like that observed in Taylor - Couette
flow. The two modulation frequencies cause both amplitude and frequency variation of
the flow. At Re = 8.84Re, “hey enhance and flatten the s-shape of the travelling wave
and cause it to travel slower when flattened, faster when enhanced. At Re = 10.10Re,
however, the wave travels faster when flattened, slower when enhanced. In both cases
mevorﬁoaaresumgerwhmmewaveisﬂmmed,waketwhmmores-dnped. At Re

= 11.36Re,, a vortex doubling was encountered, limiting the extent of the present study.

16
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Figure 2.1. A schematic of the curved channel gcometry and coordinate system is showr

including one pair of axisymmetric Dean vortices.
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Figure 2.8. Contours of streamwise
averaged over one streamwise wavelength i is shown for Re = 8.84Re,; v, is the total
velocity, and V(r) is the curved channel Poiseuille flow profile. In (a) u, is shown at t

= 1193 from Fig. 7, and in (b) at t = 1203,
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26



spanwise distance, z
T
i ["
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Figure 2.12. Oontoursofsuumwisepamrbaﬁonvelocityu.inar-zphneavmed
over one streamwise wavelength y is shown for Re = 10.10Re,. In (a) uq is shown at

t = 1057 (low Ap in Fig. 11) andin () att = 1081 (high Ap).



radius, r

Figure 2.13. Contours of streamwise vorticity in a r - z plane averaged over one
streamwise wavelength i are shown for Re = 10.10Re at t = 1057 in (a), and at t =

t = 1081 in (b).
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for Re = 10.10Re, at t = 1057 in (a) and at t = 1081 in (b).
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CHAPTER III
CONCLUSIONS: FURTHER BIFURCATIONS AND EXPERIMENTAL
VERIFICATION OF MODULATED FLOWS

In closing, a dynamical systems view of the work is adopted in predicting what
further bifurcations may occur in curved channel flow prior to becoming turbulent. As
well, difficulties that may be encountered in experimentally verifying the flows
discovered here are briefly discussed.
1.1 Further Bifurcations

There is current interest in the possibility that, in some cases, simple dynamical
systems displaying chaotic behaviour may be useful in shedding light upon the transition
to turbulence of fluid flows. Of particular interest are Taylor Couette flow and Rayleigh
strange attractors of low dimension' 2. It is possible that curved channel flow may be

Curved channel and Taylor Couette flows are similar in that in both cases the
a similar sense that Taylor Couette flow is because of the periodic boundary conditions
used in the streamwise direction. It is generally accepted that Taylor vortex flow

undugoaamanmmchaosﬁomatwoﬁequm:ymﬂuhmdvmﬂow Although

according to the theory of Ruelle, Takens and Newhouse, three incommensu



and become strange®. For these reasons it is surprising that three incommensurate

frequencies are observed in the curved channel without any chaotic behaviour. From a

dynamical systems point of view of curved channel flow, it is likely that temporal chaos

will ensue once the two new modes found here break out of entrainment somewhere

above Re = 10.35Re,.

I11.2 Possible Difficuities With Experiments
Experimental verification of the modulated flows discussed in chapter II will be

difficult. First, it is possible that development lengths in an experimental channel may be
too short for the instabilities responsible for modulated flows to develop. Secondly, if
modulated vortices exist, local splitting and merging of vortex pairs, and the convective
nature of instabilities in the curved channel will complicate their identification.

streamwise direction allow unstable perturbations to develop fully, and transieats to die
away completely. In the random noise initial condition run made at Re = 8.84Re,, 334
periods of w,, or a time long enough for the flow to circle a closed loop over 11 times,
was required for the flow to become fully developed. In the run at Re = 8.84Re, using
the fully developed flow at 6.31Re, as initial condition, 1
of w, were required for full development. Experimentally, a channel

(30 periods of @, in this investigation).
If modulated wavy vortex flows exist, their identification may be made difficult
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by spanwise instabilities. Even at low Reynolds numbers, splitting and merging of vortex
pairs has been observed by Finlay et al.* to be a common event in experimental curved
channel flow. The splitting and merging makes it difficult to sample velocity oscillations
due to one vortex pair. This will broaden the peaks in frequency spectra and complicate
the determination of fundamental frequencies. The occurrence of vortex splitting and
merging increases with Re. At higher Re, it may be rare that a vortex pair will be stable
long enough to observe a modulation of the travelling wave.

It is possible that streamwise instabilities are intimately related to spanwise
instabilities. Thus vortex splitting and merging may be an integral part of further
investigation of the transition process. If this is the case, then future numerical studies
would have to include several spanwise and streamwise wavelengths in order to
realistically model the flow. The runs for the results presented in here required up to 40

hours of Cray XMP CPU time. To resolve several wavelengths in the spanwise and

streamwise directions for Reynolds numbers studied here is at present prohibitively

incompressible, time dependent, Navier - Stokes equations for flow through a curved

channel were presented. At Re = 6.31Re, wavy Dean vortices were obtained. At Re =
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vortex flow like that observed in Taylor - Couette flow. At Re = 11.36Re,, a vortex

The flows described here may or may not be experimentally observable, since
channel inlet initia) conditions will strongly affect the downstream flow. In this
investigation, two strong constraints were imposed on the system: periodic boundary

conditions in the spanwise and streamwise directions. Also, the flow was given a long
time to develop. These conditions restrict the possible wavelengths observable and
provide ample time for the flow to settle into an equilibrium state dictated by the

iodicity will not be

develop (for a channel with constant curvature and no helix) and
;fewofmmyphyscalmbﬂnﬂamdueﬂmusﬁ;lmmngwﬂphyuaﬂy
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