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Abstract

Retrofitting buildings and optimizing their operation have been at the fore-

front of global efforts to reduce carbon emissions over the past few decades.

Intelligent control of building systems, such as Heating, Ventilation, and Air

Conditioning (HVAC), presents two clear benefits: it improves human comfort

and reduces energy consumption and carbon emissions. However, the complex

interplay between various building systems, coupled with the high costs associ-

ated with data collection, poses a significant challenge for developing accurate

models and control schemes that rely on data or building models. To address

these challenges, this thesis explores the use of readily available data to (a)

train control agents capable of striking an acceptable balance between energy

consumption, and thermal and visual comfort of the occupants; (b) evaluate a

diverse population of control agents to find the most suitable one for transfer

to a new building; (c) establish accurate personal thermal comfort models;

(d) learn complex building dynamics; (e) assign space to occupants such that

a better trade-off between energy consumption and thermal comfort can be

achieved.

To facilitate training and evaluation of learning-based controllers, we im-

plement an open-source simulation platform in Python. This platform, called

COBS, enables modeling occupant behavior and learning a control policy on-

line by interacting with building systems in simulation. The first contribu-

tion of this thesis is learning a near-optimal policy for controlling a subset

of actuators and setpoints that are part of multiple building systems, namely
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HVAC, shading, and lighting systems, using a model-free Reinforcement Learn-

ing (RL) algorithm. We show that this controller achieves a better trade-off

between energy consumption and human comfort than controllers that are

widely used in commercial buildings today. A notable extension is the in-

troduction of a Multi-Agent Reinforcement Learning (MARL)-based HVAC

control policy training and offline evaluation framework. This framework en-

ables creating a library of policies from the source building(s), where training

is inexpensive, using policy and environmental diversity in RL, ensuring robust

performance in various target buildings, even without retraining.

The next key contribution of this thesis is the introduction of personal com-

fort models and proposing a data-efficient approach for training these models.

Specifically, the models are trained using weak labels derived from occupants’

interactions with a Personal Comfort System (PCS), reducing both the need

for direct occupant engagement and potential subjective biases. To reduce the

training cost for individuals who lack prior data, several group comfort models

are trained and combined using an ensemble method.

Lastly, the thesis presents novel and efficient algorithms that can be adopted

in a workspace reservation system that assigns desks to long-term and short-

term occupants in shared workspaces. These algorithms assign occupants with

similar thermal preferences to a zone that fulfills their thermal comfort re-

quirements in the most energy-efficient manner. This leads to a more energy-

efficient HVAC operation, while ensuring the satisfaction of thermal comfort

constraints.

Collectively, the above contributions could greatly enhance building opera-

tions and reduce the carbon footprint of the building sector without requiring

expensive retrofits.
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Preface

This thesis is an original work by Tianyu Zhang. Some of the chapters are

based on conference and journal publications co-authored by the author of this

thesis. We list these publications below:

• A part of Chapter 3, in particular Section 3.3, is based on the following

poster presentation:

T. Zhang, O. Ardakanian, “Poster Abstract: COBS: COmprehensive

Building Simulator”, In Proceedings of the 7th ACM Conference on Sys-

tems for Built Environments, BuildSys, ACM, November 2020.

T.Z. designed and implemented the toolkit. T.Z. and O.A. edited the

manuscript.

• Chapter 4 is based on this conference paper:

T. Zhang∗, G. Baasch∗, O. Ardakanian, R. Evins, “On the Joint Control

of Multiple Building Systems with Reinforcement Learning”, In Pro-

ceedings of the 12th ACM International Conference on Future Energy

Systems, eEnergy, pp.60–72, ACM, June 2021.
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control agents, conducted the experiments, and produced the results.

G.B. undertook the literature review, implemented the control agents,

and conducted the experiments. O.A. offered technical advice and ideas

and advised on T.Z.’s research. R.E. advised on G.B.’s research. All

authors participated in drafting and revising the manuscript.

• Chapter 5 is mostly based on the following two papers:

∗Equal contribution.
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T. Zhang, AK GS, M. Afshari, P. Musilek, M. E. Taylor, O. Ardakanian,
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AK GS∗, T. Zhang∗, O. Ardakanian, M. E. Taylor, “Mitigating an

Adoption Barrier of Reinforcement Learning-Based Control Strategies

in Buildings”, Energy and Buildings, vol.285, 112878, Elsevier, April

2023.

AK.GS. designed and implemented the policy ranking methods and con-

ducted the literature review. T.Z. proposed the framework, assisted

with the literature review, designed the experiments, and produced the

results. O.A. contributed to the experiment, design and provided proof

verification and intuitions. M.T. offered technical advice. All authors

edited the manuscript.

• Chapter 6 is based on this journal presentation:

T. Zhang, J. Gu, O. Ardakanian, J. Kim, “Addressing Data Inadequacy

Challenges in Personal Comfort Models by Combining Pretrained Com-

fort Models”, Energy and Buildings, vol.264, 112068, Elsevier, June 2022.

T.Z. conducted the literature review, developed the methodology, con-

ducted the experiments, and produced the results. J.G. assisted in visu-

alizing the results. O.A. proposed the research idea and advised T.Z.’s

research. J.K. provided the data set and offered intuitions and technical

advice. All authors participated in editing the manuscript.

• Chapter 7 is mostly taken from this conference paper:

T. Zhang, O. Ardakanian, “Comfort-aware Optimal Space Planning in
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Shared Workspaces”, In Proceedings of the 15th ACM International Con-

ference on Future Energy Systems, eEnergy, ACM, June 2024.

T.Z. undertook the literature review, designed and implemented the

methodology, conducted the experiments, generated the results, and

edited the manuscript. O.A. contributed to the conceptualization of

the work, advised on the project, and edited the manuscript.

Additional publications: Below is a brief overview of papers that were

published or submitted during the PhD but have not been included in this

thesis:

• T. Zhang, O. Ardakanian, “Investigating the Impact of Space Allocation

Strategy on Energy-Comfort Trade-off in Office Buildings”, In Compan-

ion Proceedings of the 14th ACM International Conference on Future

Energy Systems, eEnergy, pp.145–149, ACM, June 2023.

This paper investigates the impact of the space assignment strategy on

the energy-comfort trade-off in office buildings and whether it depends

on specific building characteristics. Our simulation shows that varying

the space assignment strategy in a medium office building can lead to

over 3.5%/15.1% change in annual/monthly energy consumption, and

over 15% change in average thermal comfort when using the personal

comfort model. This finding motivates the joint optimization of HVAC

operation and space planning, possibly at different timescales.

• A. Zhumabekov, D. May, T. Zhang, AK GS, O. Ardakanian, M. E. Tay-

lor, “Ensembling Diverse Policies Improves Generalizability of Reinforce-

ment Learning Algorithms in Continuous Control Tasks”, In Proceedings

of the Adaptive and Learning Agents Workshop, ALA, 9 pages, ACM,

May 2023.

This paper introduces a simple ensembling technique for DRL policies

with a continuous action space. It aggregates actions by performing

weighted averaging based on the uncertainty levels of the policies. We in-

vestigate its zero-shot generalization properties in a complex continuous
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control domain: the optimal control of home batteries in the CityLearn

environment — the subject of a 2022 international AI competition. Our

results indicate that the proposed ensemble has better generalization ca-

pacity than a single policy. Further, we show that promoting diversity

among policies during training can reliably improve the zero-shot per-

formance of the ensemble in the test phase. Finally, we examine the

merits of the uncertainty-based weighted averaging in an ensemble by

comparing it to two alternative approaches: unweighted averaging and

selecting the action of the least uncertain policy.

• T. Zhang, A. Banitalebi-Dehkordi, Y. Zhang, “Deep Reinforcement Learn-

ing for Exact Combinatorial Optimization: Learning to Branch”, In Pro-

ceedings of the 26th International Conference on Pattern Recognition,

ICPR, pp.3105–3111, IEEE, August 2022.

This paper proposes a new approach for solving the data labeling and

improving solving time in combinatorial optimization based on the use of

the RL paradigm. We use imitation learning to bootstrap an RL agent

and then PPO to further explore global optimal actions. Then, a value

network is used to run Monte-Carlo tree search (MCTS) to enhance the

policy network. We evaluate the performance of our method on four

different categories of combinatorial optimization problems and show

that our approach performs strongly compared to the state-of-the-art

machine learning and heuristics-based methods.

• MM. Hossain∗, T. Zhang∗, O. Ardakanian, “Identifying grey-box thermal

models with Bayesian neural networks”, Energy and Buildings, vol.238,

pp.1–11, Elsevier, 2021.

This paper explores various techniques for establishing a suitable thermal

model using time-series data generated by smart thermostats. We show

that Bayesian neural networks can be used to estimate parameters of a

grey-box thermal model if sufficient training data is available, and this

model outperforms several black-box models in terms of the temperature
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prediction accuracy. Leveraging real data from 8,884 homes equipped

with smart thermostats, we discuss how the prior knowledge about the

model parameters can be utilized to quickly build an accurate thermal

model for another home with similar floor area and age in the same

climate zone. Moreover, we investigate how to adapt the model originally

built for the same home in another season using a small amount of data

collected in this season. Our results confirm that maintaining only a

small number of pre-trained thermal models will suffice to quickly build

accurate thermal models for many other homes, and that 1 day of smart

thermostat data could significantly improve the accuracy of the models

transferred to another season.
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Amidst life’s many turns,

a guiding light did appear,

both a teacher and friend,

holding me dear.
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The journey of a thousand miles begins with one step.

– Lao Tzu, Tao-te Ching.
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Chapter 1

Introduction

In North America, people spend approximately 87% of their time indoors [90].

This emphasizes the importance of providing a safe and comfortable indoor

environment by investing in advanced sensing and control technologies and

installing them in buildings. Building systems, including Heating, Ventilation,

and Air Conditioning (HVAC), lighting, and shading systems, play a crucial

role in satisfying individual comfort requirements, but they also consume a

significant amount of energy. Remarkably, building operations contribute to

one-third of the world’s final energy usage and 26% of global energy-related

emissions – with 8% directly from buildings and 18% indirectly from electricity

production and heat used in buildings [73]. The ongoing trend of urbanization

further increases the need for buildings, growing energy demand and associated

carbon emissions.

Enhancing control mechanisms has been recognized for its significant po-

tential for improving building energy efficiency and cutting carbon emissions

related to building operations. Reports from industry indicate that the im-

plementation of advanced control systems can lead to energy or cost savings

of up to 30% [16]. Furthermore, previous studies suggest that inadequately

controlled building systems might be responsible for energy waste amount-

ing to 30% to 50% in commercial buildings [82], [108]. In traditional build-

ing control systems, building managers define high-level setpoint schedules

and control rules for feedback controllers, such as Proportional-controllers or

Proportional–Integral–Derivative (PID) controllers, in various building sys-

tems [170]. For this reason, they are commonly called Rule-based Controllers
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(RBCs). These schedules are often defined based on the subjective judgment

of the building managers and might be adjusted according to feedback from

building occupants. However, such controllers generally struggle to maintain

thermal comfort of the occupants or lead to higher energy consumption [45].

Therefore, there is an urgent need for energy-efficient, occupant-centric build-

ing control strategies that save energy, reduce carbon emissions, and maintain

thermal and visual comfort of the occupants.

This thesis is dedicated to exploring the potential benefits of developing and

integrating data-driven space management and building control systems. The

primary objective is to devise methods that are both scalable and applicable to

the many different kinds of buildings in the building stock, located in different

climates, with the aim of autonomously changing indoor conditions accord-

ing to the characteristics of every thermal zone, HVAC system, occupancy

patterns, and comfort needs of the building occupants.

1.1 Potential for improving building operations

The HVAC system accounts for the highest energy consumption in commercial

buildings [130]. By employing advanced control algorithms, the HVAC opera-

tion can be optimized to better align with the occupancy schedule and opera-

tional requirements of the building, thus minimizing energy wastage. Modern

buildings can also be integrated with the power grid, enabling them to mod-

ulate their energy consumption in response to real-time electricity prices or

demand response signals. This not only leads to financial savings but also

promotes energy efficiency [51]. Furthermore, proactive controls, enabled by

predicting occupant activities and temperature dynamics, ensure that build-

ing systems operate at peak efficiency, further reducing energy costs. Lighting

systems that can autonomously dim lights based on occupancy and ambient

light conditions can also lead to substantial energy savings.

On the topic of thermal comfort, the future of building control lies in per-

sonalization. Systems that adapt to the time-varying occupants’ preferences

can provide an environment that meets each person’s comfort needs and al-

low more efficient energy use. Incorporating personal comfort models into the
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control loop not only ensures higher thermal comfort, but also reduces HVAC

operating costs by eliminating the need for the system to overcompensate for

generalized settings. In terms of visual comfort, automated shading and adap-

tive lighting systems allow buildings to maintain optimal illumination levels,

balancing natural and artificial light sources to reduce glare and improve visual

comfort of the occupants.

Energy efficiency and human comfort can be improved simultaneously with

control systems that incorporate occupancy information at multiple spatial

and temporal resolutions, ensuring building spaces are conditioned according

to their function and use. Moreover, in co-working spaces and Activity-Based

Workplaces (ABWs), it might be possible to relocate occupants to the building

spaces that have lower marginal energy consumption and closer temperature

setpoint to the preferred temperature of the occupants. By harnessing these

opportunities, it is possible to pave the way for the adoption of building con-

trols that are not only energy efficient, but also prioritize and enhance the

comfort and well-being of the occupants.

1.2 Challenges

Challenge 1: Difficulty of model identification. Optimizing energy con-

sumption and occupant comfort is a difficult task. This is partly due to the

fact that buildings are complex systems with numerous interconnected sys-

tems that operate at different timescales. Developing accurate models and

incorporating them into Model Predictive Control (MPC) for optimal build-

ing operation is a challenge for several reasons. Specifically, understanding the

temperature dynamics within a building requires knowledge of specific phys-

ical attributes, such as its size, design, and construction materials. Many of

these parameters are elusive for most buildings today. Although energy audits

can provide these data, they are labor-intensive and costly. This underscores

the importance of leveraging data-driven and learning-based approaches, such

as Reinforcement Learning (RL), for building controls. RL offers a way to

determine optimal control strategies by directly interacting with the physical

or simulated building without needing a detailed understanding of its complex
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dynamics. Modern buildings are equipped with sensing infrastructure that

monitors various physical quantities. Utilizing this data, control strategies

can be developed through learning-based methods, even in the absence of a

complete building model.

Challenge 2: High data needs and safety issues. The critical challenge

in the deployment of RL controllers is the lack or insufficiency of training

data. Typically, training these controllers requires extensive training data

collected over a long duration. An RL controller is trained through a trial-

and-error approach, essentially taking control actions (according to a policy),

assessing their performance, and refining the control policy based on these

evaluations. This trial-and-error approach requires the building systems to

execute the actions proposed by the controller. Such a learning paradigm is

called “on-policy learning,” where the controller’s proposed action is directly

executed in the environment. Yet, the application of on-policy learning in real

buildings presents practical challenges. Building managers are often hesitant to

permit an RL controller to try out actions on the actual building environment

post commissioning, given the damage that these arbitrary (and sub-optimal)

actions might inflict on electrical and mechanical components of a building

system, and discomfort and health issues they might cause for occupants.

A potential solution to address this challenge is to allow RL controllers

to learn without direct interaction with the actual building environment until

their behavior is considered safe. Training data can be sourced from histor-

ical operational logs (known as offline learning) or from data produced by

another controller that is currently used in the building system (known as off-

policy learning). Value-based RL algorithms excel at learning a value function

from log data, which estimates the effectiveness of actions based on previous

observations and received rewards. Although offline and off-policy learning al-

gorithms are more data efficient because training data can be gathered under

different policies and generally safer because they do not require implementing

the action suggested by the policy being learned in the real system, they of-

ten do not have the stable performance of on-policy learning algorithms [158].
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This is primarily because the action space cannot be fully explored, and the

dynamic nature of buildings means that the reward distribution evolves over

time. Empirical evidence from previous research suggests that even with care-

ful design of the RL algorithm and optimized features and hyperparameters,

on-policy RL controllers would need approximately three years of training data

to surpass the performance of RBCs [165].

Challenge 3: Sim-to-real transfer. Using a simulation environment alle-

viates the data requirement for training RL controllers. Nevertheless, discrep-

ancies arise between the training (simulation) and test (real) environments

in two primary aspects. First, the simulated building often does not mirror

the actual building. If a precise digital twin were available, MPC could be

employed for optimal control. Instead, researchers frequently use a simplified

digital twin model or utilize a prototypical model with characteristics akin to

the actual building. Second, real-world data tends to be noisier than the data

used in simulation. Various unforeseen events, such as equipment malfunction

or sensor faults and drifts, can degrade the quality of the data. Third, distribu-

tion shifts may happen in the real environment due to factors such as changes

in occupancy schedule, seasonal variations, etc. These challenges would reduce

the performance of RL controllers when deployed on actual buildings.

Challenge 4: Competing objectives. In addition to optimizing HVAC

control strategies alone, it is important to manage shading and lighting systems

in addition to the HVAC system. The primary aim is to reduce the overall

energy use while optimizing both thermal and visual comfort for occupants.

As the action space expands with the inclusion of more building systems,

the complexity of finding a near-optimal control policy increases. Another

notable challenge arises from conflicting or competing objectives that must

be optimized at the same time. Specifically, achieving the highest comfort

often results in increased energy use, which runs counter to the goal of energy

conservation. Additionally, the complex interplay between various actions

and control systems and their respective objectives presents unique challenges.

For example, opening blinds during the summer can diminish lighting energy
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demands but can also increase solar heat gain, requiring more cooling from

the HVAC system.

Challenge 5: Lack of sufficient labeled data from each occupant.

Modeling personal thermal comfort is also challenged by data inadequacy,

which can be attributed to three primary factors [86]. First, individual dif-

ferences in thermal comfort and satisfaction necessitate the customization of

the comfort models for each occupant. Second, while these customized models

should be trained using supervised learning, the collected labels often exhibit

biases. The concept of ‘comfort’ is naturally ambiguous, and individuals typ-

ically struggle to discern minor fluctuations in temperature or humidity. The

phenomenon of ‘creeping normalcy’ – gradual changes are difficult to separate

from noise [40] – further complicates matters, as it hinders individuals from

making time-independent judgments. Lastly, data acquisition is often costly,

either through surveys or the installation of intrusive sensors on the body of

occupants. The first challenge increases the training cost of personal thermal

comfort models, while the subsequent issues reduce the volume of data that

can be used for training.

Challenge 6: Overhead of space planning. Finally, in co-working spaces,

ensuring optimal space assignment to long-term occupants and performing

real-time space assignment to short-term occupants is quite challenging. Given

individuals’ preference for staying in the same building space and not being

frequently relocated to other spaces, it is essential to differentiate between

long-term occupants and short-term visitors. Since short-term occupants make

a space reservation on short notice and use that space for a short period of

time, the space assignment algorithms must be capable of finding near-optimal

solutions in less than a few seconds, attaining the desired quality of service.

1.3 Objectives and contributions

To address the challenges mentioned above and realize the potentials identified,

we pursue the following objectives:

1. Building a platform that provides an interface akin to OpenAI Gym,
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facilitating the real-time interaction between the EnergyPlus building

energy simulator and control algorithms written in Python. This plat-

form should enable seamless data exchange between several models and

allow benchmarking of various control algorithms on multiple buildings.

2. Empirically evaluating the performance of RL algorithms in comparison

to RBCs during both heating and cooling seasons, considering varying

resolutions of the occupancy data. This evaluation focuses on joint con-

trol of the HVAC system’s supply air temperature, blind angle setpoints,

and lighting systems for each zone in a test building. The control policy

is learned and evaluated through interaction with the digital twin of the

test building using COBS. This helps address the challenges of model

identification and competing objectives in RL.

3. Investigating the performance of control agents trained in a specific

building – where policy execution and evaluation is inexpensive and can

be done safely – and deployed onto a novel building differing from the

original training environment. Control agents are selected for deploy-

ment based on their performance estimated using only two weeks of the

HVAC log data collected from the target building. This helps address the

high data needs and safety issues of RL and enable sim-to-real transfer.

4. Constructing personalized thermal comfort models to establish base mod-

els for a given population. These base models, forming the ensemble, are

trained using real-world data gathered from 38 participants over the span

of 6 months. The ensemble model can then be trained for specific in-

dividuals with 6 hours of training data collected from the PCS. This

helps address the lack of sufficient labeled data from each occupant for

personalizing thermal comfort models.

5. Developing a space allocation system that strategically puts long-term

occupants in specific zones to optimize HVAC energy consumption while

satisfying thermal comfort requirements. The system learns how to es-

timate energy consumption of each zone using a small amount of the
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HVAC log data collected from the building, and uses this estimation

model to solve an optimization problem. This helps reduce the overhead

of space planning for long-term occupants.

6. Formulating heuristic algorithms that can quickly assign available desks

to short-term occupants, delivering performance comparable to the Mixed

Integer Programming (MIP) solution in terms of HVAC energy consump-

tion, space utilization rate, and thermal comfort. This helps reduce the

overhead of space planning for short-term occupants.

By working towards these objectives, we make several contributions to the

areas of sensor networks and building automation. First, we develop COBS

to support real-time interactions between EnergyPlus and Python-based con-

trollers. Second, we examine the complicated balance between three competing

objectives: building energy consumption, thermal comfort, and visual comfort

scores. This exploration is carried out in the context of the joint control of

HVAC, lighting, and shading systems using different RL algorithms. Third,

we introduce a training framework that allows us to learn a library of opti-

mal and near-optimal HVAC control policies in a single training environment

using a diversity-induced RL algorithm. We further explore how to select

the most fitting policies from this library for deployment in other buildings

that could differ from the training building. Fourth, we conceptualize and

implement a personal comfort model that leverages weak labels for training,

ensuring a non-intrusive and scalable label collection process. We elucidate

the process for utilizing these weak labels to train a meta-model and sub-

sequently refine the meta-model to align with individual preferences. Fifth,

we cast workspace allocation to long-term occupants as an MIP problem, and

show that, in practice, it can be quickly solved to optimality using the Branch-

and-Bound (B&B) method. Furthermore, we propose two heuristic algorithms

that quickly assign the available space to short-term occupants, achieving per-

formance comparable to the space assignments derived from solving the MIP

problem. A pictorial description of these contributions and their connection

to each other is provided in Figure 1.1.
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Figure 1.1: A high-level overview of the ideas presented in the thesis

1.4 Outline of the thesis

Chapter 2 offers a comprehensive review of the literature, highlighting existing

gaps that will be addressed in the subsequent chapters. Chapter 3 describes the

standard design of the HVAC systems, introduces fundamental RL concepts,

and presents the proposed EnergyPlus wrapper. Chapter 4 investigates the

joint control of multiple building systems using RL. Chapter 5 elucidates the

methodology for training a library of building control policies through interac-

tion with a single training environment (called the source building), evaluating

each policy in that library on a small amount of log data obtained from a novel

building, and transfer the most suitable policy among these policies to that

building. A data-efficient methodology for training personal thermal com-

fort models is detailed in Chapter 6. Chapter 7 introduces space assignment

strategies for both long-term and short-term occupants. The thesis is con-

cluded in Chapter 8, where the limitations of the presented work are outlined,

and potential avenues for future research are discussed.
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Chapter 2

Literature Review

This chapter reviews the recent studies on heat transfer in the building, estab-

lishing personal comfort models, estimating building occupancy at different

spatial and temporal resolutions, and space planning in institutional build-

ings. It also summarizes recent efforts on developing energy-efficient building

control strategies. The rest of this chapter is outlined as follows: Section 2.1

provides a detailed overview of three different approaches that have been used

for modeling building thermodynamics. Section 2.2 reviews the literature on

how thermal comfort has been modeled historically as well as recent work on

personal comfort models, followed by the review of building occupancy esti-

mation and space planning practices in Section 2.3. Section 2.4 surveys the

related work on local and supervisory level building control methods.

2.1 Modeling heat transfer in building

The optimal control of the building HVAC system is of great importance as

it accounts for a large fraction of the building energy use, and is responsi-

ble for maintaining the temperature inside the building within a comfortable

range. To optimally control this system, most related work adopts receding

horizon control which relies on a model that explains how the room temper-

ature changes as a result of implementing a certain control policy [110] (e.g.,

increasing the setpoint temperature by 1 degree Celsius or closing the damper

for an hour). This has given rise to a large number of studies aiming to solve

a system identification problem to establish this thermal model through a

white-box, black-box, or grey-box approach [38].
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The black-box approach requires extensive data to learn the relationship

between the current state (e.g., room temperature) and HVAC control input,

and the next state [25], [105]. A variety of data-driven techniques have been

used in the literature to establish the thermal model. This includes Artificial

Neural Network (ANN) [17], [116], [132], ANN with Levenberg-Marquardt

(LM) [71], [87], [111], [114], [115], Radial Basis Function (RBF) [49], [139],

AutoRegressive model with exogenous variables (ARX) [104], [119], and Au-

toRegressive Moving Average model with exogenous variables (ARMAX) [118],

[128]. These black-box models map a set of features (e.g., previous readings of

room temperature and humidity, and its occupancy state) to the room tem-

perature, and their accuracy highly depends on the selected features [44].

Alternatively, the indoor temperature can be estimated by directly apply-

ing the laws of thermodynamics. This requires a detailed description of the

building, construction materials, and the HVAC system [60]. Such a ther-

mal model can be useful in identifying insulation problems and estimating the

whole building energy use. Computational Fluid Dynamics (CFD) is a pure

physics-based modeling approach which has been quite successful in predict-

ing environmental quantities such as temperature and humidity [150]. This

model has many parameters to tune, such as the wall construction material,

thicknesses, and the number of layers. Therefore, the model customized for

one building cannot be used in another building as these parameters vary

significantly across buildings.

Another type of thermal models is the Resistor-Capacitor model (RC)

model which is commonly used for heat transfer analysis in buildings. This

grey-box model turns building spaces and multi-layered walls into a number

of latent thermal resistances and capacitances. Compared to detailed physics-

based models (e.g., models used in EnergyPlus [32]), a low dimensional RC

model is less complex, making it easier to identify its parameters from sen-

sor data. Despite its simplicity, it achieves a high accuracy in predicting the

indoor temperature. Zhou et al. [179] compare a low dimensional RC model

with a physics-based model, and conclude that the RC model can substitute

the physics-based model with a negligible loss of accuracy. In this thesis, given
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our emphasis on developing model-free RL controllers, we do not need to train

thermal models for every zone of the building.

In Chapter 7, we study the relationship between the heating and cooling

demand of a zone on a given day and the number of occupants assigned to

that zone, the temperature setpoint of that zone, and outdoor air temperature.

The goal is to capture this relationship using only limited information about

the building, in particular its layout and the capacity of its zones. Although

a physics-based or grey-box model can be used to estimate the amount of

heat injected or extracted from a zone in one time step, and consequently the

total heating/cooling demand of that zone in one day, these models require

access to additional metadata and suffer from the accumulation of error over

time. For this reason, we take a black-box modeling approach in that chapter.

Uniquely, instead of training black-box models that are commonly adopted in

the literature [105], we learn a model that is convex in its inputs so it can be

incorporated into an optimization problem.

2.2 Modeling human comfort

Thermal comfort reflects an individual’s satisfaction with their local thermal

environment. The human body needs to emit heat to keep itself functional.

This heat transfer is mainly caused by the temperature difference between the

human body and ambient environment. If the ambient environment is too

hot or too cold, the body cannot release the desired amount of heat, causing

discomfort. It is assessed by subjective evaluation using metrics such as ther-

mal sensation, acceptability, and preference. To quantify human perception

of thermal comfort, several models have been proposed by researchers. One

of the most recognized models is Fanger’s Predicted Mean Vote (PMV) [47],

which is adopted as the basis of the international standards ISO 7730 [74]

and American Society of Heating, Refrigerating, and Air-Conditioning Engi-

neers (ASHRAE) 55 [4]. The PMV model uses two personal (i.e., clothing

insulation, metabolic rate) and four environmental (i.e., air and mean radi-

ant temperatures, air velocity, and relative humidity) variables, to calculate a

thermal sensation score in the range of -3 to +3. In this scale, +3 indicates
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that the environment is ‘hot’, -3 indicates that the environment is ‘cold’, and

0 means the environment is ‘neutral’ which is regarded as thermally comfort-

able. The ASHRAE defines a comfort range based on the PMV model, which

is from -0.5 to 0.5. This range is used to specify conditions for acceptable

thermal environments in building design and operation. Another well-known

thermal comfort model is adaptive comfort models that are adopted into stan-

dards ASHRAE 55 and EN 15251. Compared to the PMV model that ignores

the effects of outdoor climate on thermal perception, the adaptive model takes

prevailing outdoor air temperature into account to express acceptable indoor

temperature [37]. Therefore, the adaptive comfort model is used for naturally-

ventilated buildings with operable windows, whereas PMV is typically applied

to mechanically-conditioned buildings. In Chapter 6, we use PMV and adap-

tive model for comparative analysis.

Unfortunately, conventional comfort models, including the PMV and adap-

tive comfort models, do not accurately represent the individual thermal com-

fort due to individual differences in thermal perception and requirements [86].

Moreover, they use a fixed set of input variables and do not include additional

variables that show relevance to the thermal comfort such as sex and body

mass index. They also incorporate many input features that are hard to ob-

tain. Therefore, there is a need for a personal thermal comfort model that can

accurately reflect individuals’ thermal preferences and can be easily trained

even when training data is scant.

2.2.1 Personal comfort models

Developing personal comfort models has become increasingly popular in recent

years [106]. According to a literature review [163], a sharp increase can be

witnessed in the number of papers in this area in the past five years. Prior

work has focused on correlating thermal comfort to various sensor data using

numerous approaches, such as Support Vector Machine (SVM) [137], Linear

Regression (LR) [61], logistic regression [35], Random Forest (RF) [9], [77],

ANN [54], [102], Gaussian process [30], fuzzy rules [78], and adaptive stochastic

modeling [63]. They reported significant improvement in thermal comfort
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prediction accuracy (84% median accuracy [163]) compared to the conventional

comfort models (34% overall accuracy [29]) that are not personalized, such as

the PMV and adaptive models. Nevertheless, they require a large amount

of survey data to train the model, which is costly to acquire in a reliable

fashion in the real world. Without this explicit feedback, personal thermal

preferences cannot be learned. Some studies investigate the development of

personal comfort models following rudimentary laws of metabolism [93]. This

approach requires the knowledge of the building environment and occupants,

making it difficult to scale to a large building with a diverse set of occupants.

In Chapter 6, we adopt a data-driven modeling approach.

2.2.2 Important features for thermal comfort modeling

Two types of sensor data, which can be related to environmental and personal

factors, are commonly used as input features to predict an individual’s ther-

mal comfort. The environmental factors include indoor temperature, relative

humidity, air velocity, etc. They are typically gathered by sensors deployed

in the building to monitor the indoor environment. The personal data can

be collected by wearable sensors measuring quantities such as the skin tem-

perature and heart rate [22], [77], or thermal arrays and cameras installed in

the room, capturing the body temperature and clothing level [8]. While the

use of personal data for thermal comfort modeling offers clear advantages in

estimation accuracy [163], the data collection process is expensive, intrusive,

and can lead to privacy concerns. For these reasons, we do not utilize personal

data in this thesis.

To develop data-driven thermal comfort models, the sensor data must be

accompanied with reliable information about human thermal comfort, which

will be treated as a label in the model training process. In general, the more

trainable parameters a model has, the more training data would be needed to

develop a sufficiently accurate model. In fact, all of the 105 papers reviewed

in [163] collect subjective feedback from occupants via mobile applications,

web applications, or paper questionnaires. However, a huge amount of survey

data must be collected to build a complex model (e.g., a neural network)
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Figure 2.1: This image from [86] shows heating and cooling elements of the
personal comfort system (left side) and the controller with wireless connectivity
(right side).

that can relate various input features to each individual’s thermal comfort.

A possible solution is to group individuals with similar thermal preferences

to increase the amount of labeled data for each model, thereby improving

the thermal comfort prediction accuracy [77], [98]. Moreover, surveys must

be completed at frequent intervals, otherwise the gap in label data makes

it impossible to capture temporal dependencies between input features and

thermal comfort. In practice, it is cumbersome to acquire frequent and reliable

feedback from building occupants. This has hampered the development of

time-series models and recurrent neural networks for thermal comfort modeling

as it can be deduced from the literature review in [163].

To tackle this issue, in Chapter 4, we create artificial labels from how an

individual uses the heating and cooling functions of their Personal Comfort

System (PCS), depicted in Figure 2.1. This personal comfort system contains

two sets of thermal control devices, one is placed under the chair seat and the

other one is installed behind the back of the chair. Each set contains a fan

and a heat strip to perform heating and cooling operations. These two sets

of devices can be controlled independently, and their operations along with

chair occupancy, ambient temperature and humidity, and zonal temperature

and humidity are logged at 5-minute intervals. Kim et al . [86] shows that

an individual’s behavior with this PCS is a strong predictor of their thermal

comfort needs and can be used as a proxy for thermal preference. Thus, we
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replace the direct feedback obtained via surveys with individuals’ heating and

cooling behavior measured at the same rate as other sensor data. This helps

to preserve the temporal dependencies in the input data, and also reduces the

label data collection cost by eliminating the need for survey data.

Note that PCS comes in many different forms, including desktop fans,

heated and cooled chairs, and foot and leg warmers. With recent inclusion of

PCS in ASHRAE 55, PCS is expected to play an increasing role in building de-

sign and operation. Hence, the findings of this thesis can be extended to other

types of PCS devices to better understand individuals’ thermal preferences in

the built environment.

2.2.3 Transfer learning and ensemble methods

A common assumption for thermal comfort modeling is that sufficient training

data is available [33], [86]. However, this assumption is not valid for individ-

uals who are new to the building or we do not have enough labeled thermal

comfort data for them for various reasons. Transfer learning is an effective

approach to address the inadequacy of labeled thermal comfort data. There

are two common kinds of transfer learning: inductive learning and transduc-

tive learning. The inductive transfer learning approach utilizes training data

from different but related tasks in the current learning step. For example, the

authors in [122] cast thermal comfort prediction as a regression problem and

combine active learning with transfer learning to transfer a population thermal

comfort distribution and personalize it using a small number of queries asked

from the target individual. In follow-on work [92], a general thermal comfort

input space is defined and used to generate enough training data. This model

is then personalized as more label data becomes available. This approach still

requires a lot of data to personalize the model.

In transductive transfer learning, the thermal model trained in one environ-

ment (or for one individual) is transferred to another environment (respectively

to another individual) usually after some adaptation, i.e., retraining using a

small amount of data. In [143], the authors develop the Convolutional Neural

Network (CNN)-Long Short Term Memory (LSTM) model to extract high-
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level features from input features and learn feature relations. The authors

have shown that this model can be transferred to a different data set after

retraining with even higher classification accuracy than the model built from

scratch in the test data set. This work has a few shortcomings: the model relies

on features that are difficult to measure or obtain, such as the metabolic rate

and clothing factor, and that the LSTM model is not used for understanding

the temporal relations between input data and thermal comfort.

To leverage the knowledge gained from the source domain to the greatest

extent, a common solution is to break down the model into multiple sub-

models and only retrain the sub-models that need further training. This idea

is adopted in [70], which is the closest line of work to the work presented in

Chapter 6 of this thesis. The authors built a base classification model for each

data set, which is then used as the feature extractor in a deep neural network to

predict the thermal comfort. Hence, the base models are directly transferred to

the target domain without retraining and only the fusion network is trained in

the target domain. They achieved on average 64.1% estimation accuracy in a

data set in which the PMV model’s accuracy was 30.4%. However, both [143]

and [70] train one general comfort model for all individuals in the data set

instead of personalizing comfort models. Moreover, they do not study the

sensitivity of the result to the amount of data used to retrain the model.

In Chapter 6, we borrow the idea of combining base models to predict the

thermal comfort of new individuals. However, we construct several group

comfort models and use them instead of the personal comfort models as our

base models. This improves the thermal comfort prediction accuracy because

it reduces the amount of trainable weights and increases training data for each

base model as suggested in [77], [98]. Additionally, we evaluate the impact of

having different amounts of training data available for incrementally training

the models.

2.3 Estimating the building’s occupancy state

Building occupancy is one of the main factors that determine its energy con-

sumption. According to the 2012 Commercial Buildings Energy Consumption
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Survey (CBECS) [154], a building that was occupied for all 168 hours in a

week consumed 46% more energy per square foot than a building that was

occupied for only 80 hours in a week. Incorporating more occupancy infor-

mation can help to optimize control policies. According to a study, HVAC

energy consumption can be reduced by around 25% compared to when it is

controlled using a fixed setpoint during the occupancy period without violat-

ing thermal comfort requirements [48]. Turley et al. [153] evaluate the energy

efficiency and human comfort with different occupancy patterns using MPC,

and shows that incorporating the number of occupants in every room is essen-

tial for higher energy savings. Unfortunately, such occupancy data is hard to

collect from every zone (as it requires special sensors), so most previous stud-

ies incorporate binary occupancy information (occupied/vacant) at building

or floor-level, assuming that it can be obtained in a reliable fashion.

Many previous studies proposed monitoring and estimating the occupancy

state using wired and wireless sensor networks. The vision-based method is

one of the most popular approaches to estimate number of occupants thanks

to the high accuracy [152]. However, the vision-based approach typically has

high computational complexity, illumination and occlusion problems, high in-

stallation costs, and privacy issues. Some studies utilized existing surveillance

cameras for occupancy estimation [27], [58], but because of the improper angle

and low resolution, the accuracy does not meet expectations. Passive Infrared

Sensor (PIR) sensors have been utilized in less intrusive solutions [138], [142].

However, they still require the installation of extra sensors. Some studies used

WiFi signals to estimate the number of occupants [113], because the WiFi ac-

cess points are typically installed in buildings. The drawbacks of using WiFi

signals include the cases where people carry multiple WiFi-enabled devices,

no device, or prefer not to use WiFi because of the rapid development of the

fourth and fifth-generation mobile networks. It is also hard to accurately de-

termine the occupants’ location given the coverage of a WiFi access point.

The carbon dioxide concentration sensor has also been used in previous stud-

ies [180], but it suffers from the long delay due to the slow gas mixture rate.

Besides, it is necessary to install this sensor in the best location, otherwise
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there is no strong correlation between carbon dioxide concentration in a space

and its occupancy state.

While many studies use approximate or ground-truth occupancy informa-

tion in the control loop [175], or predict the building occupancy state [129] for

optimal control, changing the spatial distribution of occupants for improved

energy efficiency is an underexplored problem. The COVID-19 pandemic

caused a sudden shift in workspace utilization strategies. Many workplaces

have moved away from the fixed seating arrangement, giving their employees

the flexibility to choose their seating either through online reservation or on a

first-come, first-served basis. Research indicates that when implemented with

careful planning, such adaptable work environments can enhance space uti-

lization, curtail operational expenses as a result of reduced energy usage, and

improve teamwork and productivity [14], [21], [144]. The co-working spaces,

or the so-called ABW, offer a unique opportunity to decide on the occupancy

state of each zone in the building rather than passively estimating the num-

ber of occupants in each zone. In Chapter 7, we delve into strategies for

space assignment that minimize the whole-building energy use while ensuring

a comfortable environment for the occupants of each zone.

The closet work considers objectives that differ from ours. For example,

Yip et al . [168] investigate how to allocate staff in a hospital to improve service

efficiency, and Yang et al . [166] focus on occupant assignment to reduce con-

nectivity costs associated with interpersonal communication. In recent work,

Deng et al . [39] proposed clustering occupants based on their thermal pref-

erences to reduce building energy use. However, they jointly optimize the

average thermal comfort of occupants and HVAC energy consumption using

an iterative method, assuming a fixed number of occupants in the experi-

ment. We address a more general problem, combining energy consumption

with individual thermal comfort in a building that houses a certain number of

long-term occupants and a variable number of short-term occupants that may

arrive every day, which better represents the occupancy pattern of co-working

spaces.
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2.4 Control strategies for building systems

Numerous attempts have been made to date to optimally control HVAC, light-

ing, shading, and other building systems. But, designing an optimal controller

is complicated due to the complex building design and structure [69], high

variability of energy demand [158], and inaccurate estimation of human com-

fort [35], [176]. The control strategies can be broadly divided into three cat-

egories: rule-based, model-based, and model-free. Table 2.1 shows example

control strategies from each category. Regardless of which control strategy is

adopted, occupancy information can be incorporated in the control loop to

achieve an acceptable trade-off between energy savings and occupant comfort.

In the rule-based approach, control rules and schedules are defined by the

facilities manager based on their intuition or knowledge about how the build-

ing occupancy varies over time. It is shown in [7] that using static per-zone

schedules can considerably reduce the energy consumption of HVAC. In an-

other study [141], it is shown that a rule-based lighting controller can lower

the building energy use by up to 12% without negatively affecting the visual

comfort of occupants. Rule-based controllers are easy to implement and do not

require training complex models, but their performance is highly dependent

on the quality of the rules. In practice, the control performance degrades over

time with changes in the zone occupancy schedule and outside air temperature.

In the model-based approach, models for heat transfer, occupancy, and

different components of building systems are utilized in the control loop to

minimize the energy use over a time horizon subject to a set of constraints.

While a high-order heat transfer model can accurately determine the tempera-

ture of every zone in the building, proper identification of this model is difficult.

Estimating these parameters requires collecting a large amount of data under

different operating conditions or running expensive energy audits. Alterna-

tively, low-order thermal models can be built using a data-driven approach if

enough training data is available [65], [179]. These models have proven to be

useful for MPC, lowering the energy consumption of the HVAC system while

maintaining thermal comfort [134], [161]. Model-based reinforcement learning
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Table 2.1: A representative subset of related work for different occupancy
levels, control points and methods. For similar control scenarios, more recent
studies were chosen.

Thermal
Zones

Occupancy
Control
Variables

Control
Method

[71] 4 Zones
Building-level

(Binary)
Temp. setpoint Rule-based

[141] 20 Zones
Room-level

(Count)
Lights (on/off)
Blinds (angle)

Rule-based

[134] 1 Zone N/A Temp. setpoint MPC

[156] 3 Zones
Building-level

(Estimated Count)
Temp. setpoint Model-based

[50] 4 Zones
Building-level

(Binary)
Temp. setpoint MPC

[26] 1 Zone
Building-level

(Binary)
HVAC (on/off)

Window (open/closed)
Q-learning

[28] 1 Zone
Building-level

(Binary)
Lights (on/off)

Blinds (step changes in angle)
Q-learning

[121] 1 Zone Not mentioned
HVAC (heating/cooling power)

Window (open/closed)
Door (open/closed)

Deep Q-learning

[41] 1 Zone
Building-level

(Count)

HVAC setpoint
Light (dimming level)

Blinds (angle)
Windows (open pct.)

BDQN

[136] 1 Zone N/A HVAC on/off DDPG

[59] 1 Zone N/A
Temp. setpoint

Humidity setpoint
DDPG

[24] 5 Zones
Room-level

(Binary)
SAT setpoint PPO

techniques have been used to optimize HVAC operation too [42], [171]. While

model-based HVAC control strategies have great performance, explaining in-

teractions between multiple building systems requires more complex models

which cannot be easily trained, especially in a building with heterogeneous

spaces.

In recent years, model-free RL algorithms have been applied to address the

optimal control of the HVAC system [158], lighting system [125], and other

systems. Instead of relying on a built-in thermal model, they provide the op-

portunity for trial-and-error learning through direct interactions with building
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systems or an external simulated environment. There are three main types

of model-free RL algorithms, namely Q-learning (value-based), actor-critic,

and policy gradient methods. Value-based RL algorithms are used in many

papers such as Q-learning [26], [28] and Deep Q-learning [41], [121], which

The Q-learning algorithm updates action values (i.e., Q-values) for each state

based on the observation. It is generally more sample-efficient than other

model-free RL algorithms. Actor-critic methods are also adopted to control

the building system. They learn the control policy as well as the Q-values to

update the control policy. Policy gradient algorithms are considered the least

sample-efficient model-free RL algorithms, yet there are usually more stable

than the other RL algorithms. Of the 77 papers that applied RL to build-

ing controls and were reviewed in [158], three-quarters (59) used value-based

methods, some (12) used actor-critic methods, and a few (3) used policy gradi-

ent approaches. (The remaining 3 were model-based approaches.) Despite the

large number of reinforcement learning algorithms that are used in the build-

ing control domain, they are seldom compared in terms of their performance,

stability, and convergence speed.

HVAC control strategies: In the context of HVAC control, these strate-

gies minimize the building energy use while maintaining a comfortable indoor

environment for occupants. Control strategies are typically implemented at

two levels. Local control strategies directly control the operation of specific

HVAC components, such as the supply air temperature [175] and water tem-

perature [25], bypassing conventional feedback controllers. Supervisory control

strategies, on the other hand, tweak specific setpoints, e.g., room temperature

setpoints, and leave the control task to conventional feedback controllers [41],

[103].

From a different perspective, control strategies can be classified based on

the control approaches they used, which can be broadly classified into rule-

based, model-based, and model-free control algorithms. Rule-based HVAC

controllers are relatively easy to implement and can considerably reduce the

building energy consumption [7], [141]. But their performance heavily relies
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on the quality of the control rules and setpoints.

In model-based HVAC control, models are used to predict the heat load

and energy demand of the building. These models are built using physics-

based or data-driven approaches. In MPC, these models are used to minimize

energy use and occupant discomfort over a finite time horizon. Such controllers

can significantly reduce the energy consumption [134], [153], [161]. Turley et

al . [153] evaluates the energy efficiency and human comfort under MPC and

shows that occupancy-based MPC can achieve up to 50% energy savings over

a constant temperature setpoint control method. Indeed, the performance of

MPC depends on the quality of the predictive model(s).

Developing physics-based thermal models is challenging in a large multi-

zone building, requiring manual effort or a substantial amount of training

data [10]. Even if accurate models are developed and incorporated in the

control loop of one building, these models would not work on another building’s

HVAC system without having to re-define the physics-based models or re-learn

the models from new data.

Learning-based control algorithms, such as model-based and model-free

reinforcement learning, has immense potential for energy savings and improved

indoor environment quality. In recent years, various types of model-free RL

have been applied to the HVAC control problem with the goal of finding a near-

optimal control policy that minimizes energy consumption while maintaining

thermal comfort without modeling the complex building dynamics [24], [79],

[158], [175]. An RL agent learns the mapping between the state of the building

and an action via trial-and-error. It is shown in [175] that a single RL agent

that observes the state of the whole building and controls all setpoints can

reduce the total HVAC energy consumption by around 22% compared to a

rule-based controller in a small multi-zone building.

Unfortunately, training these RL agents requires a substantial amount of

data to sufficiently explore a large or continuous state-action space. As more

features are added to the state, the complexity and the number of parame-

ters used to represent the agent grows exponentially. Moreover, a single agent

that controls multiple actuators cannot be easily transferred to another build-
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ing that has a different state and/or action space. Chen et al . [24] reduce

the training cost of an RL agent that controls the HVAC system through a

differentiable MPC policy that encodes system dynamics and offline imita-

tion learning, using the operational data collected under a default controller.

However, learning an accurate model can be challenging in a given building

and more historical data would be needed to fully capture the system dynam-

ics. Similarly, offline RL techniques generally require a substantial amount of

historical data before they can learn a high-quality policy.

In a recent survey paper, Pinto et al . [131] have reviewed the applications

of transfer learning to buildings, including papers that use transfer learning to

address the data inadequacy challenge in developing learning-based controllers

for building systems. This literature review reveals that there is no paper that

takes advantage of diversity for transfer learning in this domain. Xu et al . [164]

address the problem of transferring previously learned HVAC control policies

to an unseen building. Their methodology involves decomposing the policy

neural network into a transferable front-end network and a trainable back-end

network. The front-end network captures building-agnostic behavior, whereas

the back-end network needs to be trained on the target building. The back-

end network can be trained in an offline fashion through supervised learning

by using the log data collected by a default controller on the new building. It

can also be trained in an online fashion by deploying a randomly initialized

back-end network. Although this approach reduces the training cost of RL to

some extent, control performance can still be poor while the back-end network

is being trained in the target building. In another line of work, Fazel et al . [83]

propose augmenting the training data collected from the target building. The

authors use generative adversarial networks to learn the building performance

profile from the actual data, and generate synthetic data that reflect climate

and operation variations, while keeping the building profile the same. However,

1 year data is required to train the generative model, which may not be readily

available in all buildings. The temporal dependency between the synthetic

data is also not considered, and the synthetic data is generated only according

to the learned distribution, so the performance would still be low on out-of-
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distribution samples, which downgrade the performance of control policies on

certain buildings.

Joint control of building systems: The whole building energy consump-

tion can be further reduced when building systems are jointly controlled com-

pared to when only HVAC is controlled using a learning-based algorithm [41].

Still, the joint control of multiple building systems is challenging because it

increases dimensions of state space and action space, and makes it harder to

learn a near-optimal policy due to complex interactions between systems. Pre-

vious work focuses on zone-level energy optimization through the joint control

of lights and blinds [28], HVAC and windows [26], [34], and all these four sys-

tems [41], [91]. The state and action space becomes increasingly large as more

zones are included; none of these studies address the joint control of building

systems in a multi-zone building, and no previous work quantifies additional

energy savings compared to the case where these systems are controlled sepa-

rately.

In Chapter 4, we quantify additional energy savings by adopting RL-based

control algorithms to manage the operation of HVAC, shading, and lighting

systems, while thermal and visual comfort of occupants in the building are

maintained.

Multi-agent building control: MARL-based controllers are proven to be

useful in energy-efficient control of building systems [57], [155], and are amenable

to transfer learning [120], addressing scalability issues in large buildings. De-

centralized control strategies have been used in previous work for specific build-

ing components, such as using room/zone agents to control the thermostat

setpoint based on the presence of occupants for energy use optimization [36].

Some studies divide the HVAC system into multiple subsystems, then develop

a control strategy for each subsystem. For example, Zhao et al. [177] manage

the electrical power flow using an electricity agent, and the heating and cooling

components are controlled by a heating agent and a cooling agent, respectively.

Similarly, Klein et al. [89] use multiple agents to control the HVAC, lighting,

appliance, and human separately. Other studies address the scalability issue
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by investigating the distributed decision making where the HVAC system is

oversimplified [20]. Decomposing the building control task into multiple sub-

tasks will help to reduce the training cost. However, there is no discussion

about whether the agent trained in one building can be used to control the

systems in other buildings.

Unlike the previous work that control multiple building systems using

MARL, in Chapter 5, we decompose the optimal control of the HVAC sys-

tem into the problem of controlling the environment of individual thermal

zones in the building, which can be solved using MARL. In this setting, each

agent is responsible for controlling the HVAC components (e.g., control points

in the variable air volume system) in one zone of the building. This reduces

the size of an agent’s state-action space and enables the transfer of policies

to other buildings, regardless of the number of zones they have or their floor

plan. This is because, at the zone level, most buildings have the same set

of sensors and actuators, so the corresponding agents will have an identical

state-action space. Control of other building systems can also be broken down

into zone-level controls, which we will address in future work.

Diversity in reinforcement learning: In most cases, multi-agent RL al-

gorithms focus on optimizing a single solution for a given training environ-

ment. Although this single solution works well in the environment it has been

trained in, RL algorithms typically aim to find a single (near-)optimal policy.

Although this control policy works well in the environment it has been trained

for, it might perform poorly in a new environment or even when the original

environment changes. This problem is exacerbated in MARL as agents tend

to overfit to their co-players [94]. A interesting approach to address this prob-

lem is to incorporate diversity when learning a control policy [109]. Diversity

approaches can be broadly classified into two categories: environmental diver-

sity [76], [109] and policy diversity [46], [100], [107]. In environmental diversity,

variants of the given environment are used to train the agents. The goal is

to obtain policies that capture main features of the environment, hence gen-

eralize to a broader class of environments [76], [109]. Policy diversity focuses
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on finding distinct sub-optimal policies in the training environment. Masood

and Doshi-Velez [107] use a maximum mean discrepancy approach to obtain

a set of diverse policies. Information theoretic approaches are used in [46],

[100] to address the same problem. Furthermore, there is a vast literature on

quality diversity for both single and multi-agent approaches (see [53], [135],

[167] and the references therein). The goal of quality diversity, is to find a

diverse collection of behaviors in which each member is as well performing as

possible. Novelty search, with local competition [99] and MAP-Elites [117] are

among the quality diversity algorithms that discover different behaviors, while

simultaneously improving behaviors that have been discovered already.

Transfer learning: Although policy gradient and actor-critic RL algorithms

can solve the continuous control problem of building systems efficiently by in-

teracting with the building, many episodes are generally needed to find a

reasonable, near-optimal policy. To reduce the training time in the target

environment, one common approach is to transfer and reuse the RL knowl-

edge learned in similar environments, thereby achieving better performance

in a smaller number of episodes [149]. Transfer learning has been used in

both MPC-based building control [153] and RL-based building control [164],

focusing on the knowledge transfer across different seasons in the same build-

ing [172], or across various thermal zones of the same building [120]. However,

transferring control policies to other buildings has not been adequately ex-

plored in previous work (see this survey [158]). Unlike these papers, we train

multiple control agents in parallel, each controlling a particular zone of the

building. These agents are trained in a controlled built environment, referred

to as the training building, before they are transferred to the target building.

The obtained policies are then assigned to different zones in the target build-

ing. If this assignment is done properly and these policies are diverse, they

will perform better than policies that are trained from scratch in the target

building.

In Chapter 5, we employ diversity training in HVAC control which is cast

as a multi-agent reinforcement learning problem. By accounting for diversity,
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we argue that the policies that are trained in a controlled built environment

can perform better when transferred to the target building.
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Chapter 3

Background

This chapter provides an overview of building systems and functional rela-

tionships between them, fundamental concepts in reinforcement learning, and

the simulation environment developed and used in this thesis. In Section 3.1,

we briefly introduce the major components of the building systems, offering

insights into their design and functionality. In Section 3.2, the focus shifts to

the fundamentals of reinforcement learning, including core principles, and al-

gorithms. Finally, in Section 3.3, we present a simulation platform designed to

facilitate the application of RL-based controls to building systems. This plat-

form enables seamless integration of the reinforcement learning agents with

the state-of-the-art building energy simulation program.

3.1 Building systems

Commercial buildings are controlled by mechanical and electrical systems, such

as HVAC, lighting, and shading. The HVAC system consumes a considerable

amount of energy to provide heated, cooled, and conditioned air to occupants,

thereby maintaining comfortable and healthy indoor conditions. In Canada,

63% of the energy in commercial and residential buildings is used for space

heating and cooling [123]. This number increases to 75% if we include the en-

ergy used for lighting. This along with the fact that buildings can store heat

due to their thermal mass and exhibit different spatio-temporal occupancy

patterns makes the HVAC control problem important and nontrivial. Lights,

on the other hand, are often controlled using a reactive strategy because illu-

minance will change immediately after a control policy is implemented.

29



Zone 1

Thermostat Occupants

Zone 2

Thermostat Occupants

Zone 

Thermostat Occupants

Cooling Coil Heating Coil

Supply
Air

Fan

Mixed
Air

Return AirExhaust Air

Outdoor Air

VAV Box

Air Handling Unit

Damper

Reheat
Coil

Figure 3.1: A diagram of an AHU feeding a number of VAV systems at terminal
zones. The components depicted here match the components of the HVAC
system that we consider in this thesis.

Figure 3.1 illustrates a typical HVAC system for a medium size office build-

ing. It consists of a centralized Air Handling Unit (AHU) that moves condi-

tioned air through the building via a duct system. In the AHU, the outside

air and the return air from zones are mixed together. The mixed air is then

heated or cooled to a specified temperature before it is pushed through the

duct system by a fan. In larger office buildings, multiple AHUs may be re-

quired. To account for losses in the duct system, this temperature is set to be

below the desired temperature range of each zone. Variable Air Volume (VAV)

systems are often used in office buildings because they allow for zone-specific

control with a single AHU. A terminal VAV box exists in each zone, which

might be a single room or span multiple rooms. It is responsible for control-

ling the amount of supply air by opening and closing a damper. A reheat

coil may be present in the VAV box to heat the supply air in the zone to the

desired temperature. This allows each zone to have its own thermostat with a

unique temperature preference, which is often expressed by a thermal comfort

range in which no corrective action needs to be taken by the VAV controller.

The HVAC can be controlled at the building level, e.g., using the Supply Air

Temperature (SAT) setpoint [24], or at the zone level using the thermostat

temperature setpoints [41], mass flow rate setpoint, or the actuators in the
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respective VAV system. The HVAC energy consumption is the total energy

consumed by VAV systems, AHU heating and cooling coils, and the fan.

Auxiliary building systems, such as lighting and blinds, also have a large

effect on occupant comfort and whole-building energy use [28]. The lighting

system affects the building energy use, the visual comfort of occupants, and

to a lesser extend, the thermal comfort of occupants, as lights produce heat

when they are on. It may consist of dimmable or non-dimmable lights located

in different building spaces. Dimmable lights are normally controlled using a

reactive strategy. They can be dimmed linearly between the maximum and

minimum light outputs according to the available daylight measured at some

point in the zone. In simulation, the daylight illuminance is calculated based

on cloud coverage. Blinds are usually mounted on the inside of windows and

consist of a series of equally-spaced slats that are oriented horizontally. The

blind controller can change the slat angle from 0 to 180 degrees. By controlling

the blind angle, it is possible to change the ratio of direct and diffuse solar

radiation passing through the blind. Opening or closing blinds thus changes

the amount of heat gain and the illuminance level, thereby affecting both visual

and thermal comfort conditions.

Lights, blinds, and HVAC systems have complex interactions. As ex-

plained, opening blinds during the day will influence the interior daylight

illuminance, providing natural lighting and heating up the zone due to the

solar radiation. If the zone temperature goes above the desired zone temper-

ature, the HVAC system will supply more cool air to the zone, affecting the

total energy consumption of the HVAC system. On the other hand, switching

on the lights in a zone will increase illuminance and energy use at the same

time. Thus, there are many ways to navigate the three-way trade-off between

the energy use, thermal comfort, and visual comfort. While thermal and vi-

sual comfort requirements can be satisfied when these systems are controlled

independently, this comes at the price of increased energy consumption. The

joint control of building systems enables finding a better trade-off between the

energy use, and thermal and visual comfort.
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3.2 Reinforcement learning

RL focuses on how an agent takes actions in an environment to maximize its

cumulative reward. By taking an action and receiving feedback in the form of

reward or penalty, the agent gradually learns a decision-making policy. This

adaptive learning process makes RL particularly powerful for complex tasks

where the best course of action is not immediately evident.

Markov Decision Processs (MDPs) offer a classical framework for sequential

decision-making, wherein actions influence not only the immediate reward but

also future outcomes. MDPs represent a mathematically refined version of

the RL problem, that is essential for theoretical assertions. We use a tuple

M = ⟨S,A,P ,R, γ⟩ to describe an MDP, where S defines the states the agent

could be in, A are the actions an agent could execute, P : S × A 7→ S is the

(stochastic) transition function, R : S × A × S 7→ R is the reward function,

and γ ∈ [0, 1] is the discount factor which is set to 0 at the terminal state. The

problem can be described as follows: the observation of the environment at

time t is called st ∈ S, which is sent to the agent so that it can take an action

at ∈ A. Subsequently, the environment responds with a numerical reward

signal rt+1 = R(st, at), the next state’s observation st+1 (also denoted as s′),

and a termination signal flagging the end state.

An agent interacts with an environment to learn a (stochastic) policy, π :

S × A 7→ [0, 1], describing how to select actions to maximize the expected

long-term discounted reward Gt =
∑T

k=t+1 γ
k−t−1rk, where T is the final time

step and can be∞ for non-episodic problems. In general, the agent learns the

state value function vπ(s) and/or action value function qπ(s, a) to estimate the

expected reward for the given state and state-action pair through interactions

with the environment. The value functions are defined as follows:

vπ(s) = Eπ [Gt|st = s] =
∑
a

π (a|s)
∑
s′,r

P (s′, r|s, a) [r + γvπ (s′)] ,

qπ(s, a) =
∑
s′,r

P (s′, r|s, a)

[
r + γ

∑
a′∈A

π (a′|s′) qπ (s′, a′)

]
.
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The optimal policy π∗ is defined as the policy that has better than or equal

to all other policies’ expected return on all s ∈ S. Such a value functions is

called optimal value function, denoted respectively v∗(s) and q∗(s, a), which

are given by:

π∗ = argmax
π

vπ(s)

= argmax
π

∑
a

π(a|s)qπ(s, a),

v∗(s) = max
a

∑
s′,r

P (s′, r|s, a) [r + γv∗ (s′)]

= max
a
q∗(s, a),

q∗(s, a) =
∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
q∗ (s′, a′)

]
=
∑
s′,r

P (s′, r|s, a) [r + γv∗ (s′)] .

If the MDP is fully known, planning or dynamic programming methods

may be used. A model-based RL method learns to estimate P and R, also it

can do planning. A model-free RL method simply learns how to act through

a sequence of interactions with the environment in order to maximize reward

without building such a model. When the state space is not discrete or is

very large, function approximation can be used (e.g., a neural network that

approximates the value function or the policy, and is parameterized by θ). The

MDP can be augmented to account for multiple agents in the environment,

whether they are communicating or not. The three main types of RL are value-

based RL, policy-based RL, and actor-critic RL. We explain the differences

between them in Section 3.2.3.

3.2.1 Function approximation

Value functions are commonly stored as tables. However, an alternative ap-

proach involves approximating this mapping table using a function defined by

certain parameters. The function could range from linear functions based on

state features to complex multi-layer deep neural networks or even decision

trees. This approximation eliminates the need for the agent to traverse every

state and action to learn values. Furthermore, when one state experiences
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an update, this modification can influence the values of multiple other states.

While this method of generalization can enhance the learning process, it may

also introduce complexities [145].

Deep Q-Network (DQN): DQN represents the combination of traditional

action value function learning (Q learning) and deep neural networks, offering a

solution to challenges faced in high-dimensional state and action spaces [112].

DQN incorporates techniques like experience replay that will be introduced

next to stabilize and enhance the learning process.

3.2.2 Experience replay

Experience replay captures the agent’s interactions over time, storing them

in a replay buffer. This buffer collects experiences from numerous episodes

within the same environment. For policy updates, the agent periodically draws

a subset of experiences, or a mini-batch, from this buffer. While experiences

can be sampled uniformly at random, they can also be prioritized, with higher-

priority experiences being sampled more frequently. The primary advantage

of this replay buffer is improving sample efficiency as it allows repeated use

of past experiences. In contrast, without such a buffer, each experience would

only be used at most once.

3.2.3 Actor-critic methods

Value-based methods learn the values of actions and/or states to guide action

selection. Instead, policy gradient methods focus on learning a parameterized

policy that allows autonomously choosing an action given the state, eliminating

the need for a value function during this decision-making process. While a

value function might still play a role in refining the policy parameter, it is

not involved in the action selection process. The policy undergoes updates

based on the gradient of some scalar performance measure with respect to the

policy parameter. An actor-critic method simultaneously approximates both

the policy (referred to as the ‘actor’) and the value function (the ‘critic’), with

the latter typically representing a state value function which is used to assess

actions.
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Soft Actor-Critic (SAC): SAC is an actor-critic off-policy maximum en-

tropy RL algorithm with a stochastic actor [67]. It maximizes both the ex-

pected reward and the entropy, allowing the agent to explore more widely and

simultaneously consider multiple near-optimal policies. It is shown to have

stable performance, and be robust to noise and the choice of hyperparameters.

The state value function, soft Q-function, and policy are trained by optimizing:

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πϕ [Qθ(st, at)− log πϕ(at|st)]

)2]

JQ (θ) = E(st,at)∼D

[
1

2

(
Qθ (st, at)−Rt + γEst+1∼p [V (st+1)]

)2]
Jπ (ϕ) = Est∼D,ϵt∼N [log πϕ (fϕ (ϵt; st) |st)−Qθ (st, fϕ (ϵt; st))]

where π is the policy, ψ, θ, and ϕ are the parameters for state value function,

soft Q-function, and policy, Rt is the reward for the (st, at) pair, γ is the

discount factor, p is the state transition probability, D is the replay buffer, V

is the state value, Q is the state-action value, ϵt is an input noise vector, and

fϕ is the unbiased gradient estimator.

Proximal Policy Optimization (PPO): PPO is another state-of-the-art

policy-gradient algorithm based on the actor-critic framework [140]. It differs

from standard policy gradient algorithms in that it performs multiple epochs

of minibatch updates per data sample. PPO has shown strong performance in

nearly all reinforcement learning tasks [169] thanks to a clipping method that

constrains the update of the behavior policy within a trust region, meaning

that the behavior policy remains close to the target policy. This accelerates

learning, but the agent might be trapped into a sub-optimal policy. PPO

optimizes the clipped surrogate objective given by:

L (ϕ) = Êt
[
min

(
ρt(ϕ, ϕold)Ât, clip

(
ρt(ϕ, ϕold), 1− ϵt, 1 + ϵt

)
Ât

)]
with ρt (ϕ, ϕold) =

πϕ(at|st)
πϕold (at|st)

, where Ât
.
= G

′
t − Vπϕold (st) is an estimator of

the advantage function at t. Here G
′
t is the discounted reward of the mini-

batch, Ê denotes the empirical average over a batch of samples, Vπϕold (st) is

the predicted value of the state st under policy πϕold , ϵ is a hyperparameter
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that discourages making updates that are far from the current policy, and

clip
(
ρt(ϕ, ϕold), 1 − ϵt, 1 + ϵt

)
clips the probability ratio between old and new

policies within [1− ϵt, 1 + ϵt].

3.2.4 Off-policy Policy Evaluation (OPE)

Off-policy policy evaluation concerns estimating the performance of a given

decision-making policy, known as the evaluation policy, using historical data

that may have been generated by a different behavior policy. We denote the

historical data as D = {(st, at, rt)nt=1}. The most popular OPE methods in the

literature are based on importance sampling, examples of which are Inverse

Probability Weighting (IPW) [133] and Self-Normalized Inverse Probability

Weighting (SNIPW) [146]. In general, SNIPW is shown to be more stable in

certain tasks as its value is bounded by the support of the rewards, and its

variance is smaller than IPW [80]. Given the evaluation policy πe and the

behavior policy πb that was used to generate the historical data, the value of

πe (i.e., the expected cumulative reward available from each state–action pair)

under IPW and SNIPW is defined as follows:

V̂IPW(πe;D)
.
=

1

n

n∑
t=1

ρ(e, b)rt,

V̂SNIPW(πe;D)
.
=

∑n
t=1 ρ(e, b)rt∑n
t=1 ρ(e, b)

,

where ρ(e, b) is the importance sample ratio, D denotes the offline dataset from

which the trajectory was sampled, and st, at and rt respectively represent the

state, action taken, and reward received at time step t. The above-mentioned

OPE methods assume that actions are discrete, and use rejection sampling

to filter the dataset. However, this approach cannot be extended to work

with continuous actions as rejection sampling does not work in the continuous

setting [81]. To overcome this limitation, Kallus et al . [81] employ kernel

density estimation to calculate the value of a policy, which is given by:

V̂Kernel(πe;D)
.
= E

[
1

h
K

(
argmaxa′tπe(a

′
t|st)− at

h

)
rt

πb(at|st)

]
.

Here K is the kernel function, such as the Gaussian kernel, and h is the

bandwidth, which is a hyperparameter. When a Gaussian kernel is adopted,
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we refer to this method as GK.

Fitted-Q Evaluation (FQE) [95] is another policy evaluation method that

is shown to perform relatively better than other OPE methods [56]. However,

a drawback of FQE is that a neural network needs to be trained for each policy

to estimate its value, increasing the computational cost significantly.

3.2.5 Policy evaluation via a proxy

The performance of a neural network can be estimated using a low-cost or Zero-

cost Proxy (ZCP), a concept stemming from the field of Neural Architecture

Search (NAS) [1], [97]. The underlying principle involves utilizing a mini-batch

of data to determine the gradient of loss for each layer. Subsequently, these

gradients are consolidated and the result is used as a heuristic measure to

evaluate the performance of the neural networks.

Lee et al . [97] introduce a saliency metric, called SNIP, that approximates

the change in loss when a connection is removed. This helps identify connec-

tions in the network that are important to the given task before training the

network, using a mini-batch of data. While SNIP was originally proposed for

network pruning, it can be used as a proxy for NAS, based on the observation

that a neural network that attains a higher SNIP will perform better in the

given task [1]. SNIP is defined as

SSNIP
.
=

∣∣∣∣∂L∂θ ⊙ θ
∣∣∣∣ ,

where L is the loss function of the neural network with parameters θ, and ⊙

denotes the Hadamard product operation. Abdelfattah et al . [1] empirically

evaluate various ZCP metrics to compare their efficiency in ranking neural

networks. They also propose a new metric, called gradnorm (GN), which can

be used for NAS, and is defined as the sum of the Euclidean norm of the

gradients after back-propagating the loss computed from a mini-batch of data.

However, in RL, the parameterized policy needs to run on the target envi-

ronment to calculate the loss value for the use of ZCPs, which is prohibitive.

GS et al . [66] modify the ZCPs by borrowing importance sampling from OPE,

making possible the use of ZCP methods to rank RL policies.
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3.3 Simulation environment for RL-based con-

trol of buildings

Executing control policies in a simulated environment can help overcome the

barriers to real-world deployment of a new control policy by enabling compre-

hensive evaluation of this policy in buildings with various sizes and occupancy

schedules, possibly located in different climates. Furthermore, policy evalu-

ation in a simulated environment is useful for the design of RL controllers

that improve a policy in an iterative fashion and benefit from offline training.

Existing building energy simulators, such as EnergyPlus [32], can provide an

accurate building energy analysis over multiple days within seconds, but they

suffer from two fundamental problems. First, they require the full control pol-

icy before running a simulation. This prevents users from writing code that

interfaces with other simulators and incorporating external models in their

control algorithm. Second, they only focus on the number of people present

in each zone, neglecting their movements and effects of their actions on the

environment. To simulate occupants’ actions, it is necessary to track each oc-

cupant inside the building and simulate actions (e.g., turning lights on, opening

blinds, adjusting temperature setpoints) conditioned on their location. This

is crucial as in most cases occupants must be in the proximity of an actuator

or a control panel in order to operate it. Due to these shortcomings, recent

studies [24] build standalone simulators using BCVTB [160] to generate data

for offline learning.

In this thesis, we introduce COBS1, an open-source and modular simula-

tion platform in Python which is designed to support fine-grained control over

the states of multiple building systems (which can be modeled separately)

in each step of simulation. It provides the ability to include and exchange

data between multiple models, e.g., for state prediction or estimation, allows

benchmarking control algorithms across many buildings, and facilitates online

learning. Additionally, COBS utilizes an occupancy simulator that generates

1COBS can be downloaded from https://github.com/sustainable-computing/

COBS/. The documentation is available at https://cobs-platform.github.io.
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realistic individual trajectories and samples interactions between occupants

and building systems from conditional probability distributions. These proba-

bilities can be learned from datasets that capture how occupants interact with

building interfaces.

COBS is a simulation platform for occupant-centric control of buildings.

The objectives of COBS are to improve reproducibility of building control

policies, make possible real-time interactions between the control agent and

building environment, and enable benchmarking multiple control algorithms

under different occupancy conditions. To this end, COBS includes an occu-

pancy schedule generator that utilizes a queueing network to generate realistic

occupancy movements and actions in a given building.

3.3.1 Architecture

COBS has been developed with three design goals. First, it must return the

observed building state at each time step, and execute user-specified actions to

update this state for the next time slot. This is imperative for implementing

learning-based control algorithms. Second, it must provide a simple interface

for the inclusion of state estimators and predictive models (for room temper-

ature, occupancy, solar radiation). Adding predictions to the state is essential

for proactive control of building systems. Third, it needs to interface with data

synthesizers and brokers to obtain traces, e.g., for occupant movements and

actions. This is in contrast to existing building simulation packages, such as

EnergyPlus, which take as input pre-defined schedules for occupants, windows,

lights, etc.

Figure 3.2 shows the overall architecture of COBS. It takes the building

IDF file created by modeling software, such as SketchUp, OpenStudio, and

EnergyPlus, and combines it with the output of an occupancy simulator which

determines the location of each occupant and any actions they may perform

in that location. The resulting model is used to implement actions in the

event queue and simulate the building state using EnergyPlus. The platform

takes advantage of a priority scheduling algorithm to schedule various time-

stamped events. The simulated building state is then modified and augmented
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Figure 3.2: COBS’s architecture

by several estimation and prediction models. This updated state is then used

for reward calculation (given a user-defined function) and sent to the control

agent. All actions, rewards, and modified state variables for each time slot are

stored in a replay buffer for ease of access in the future.

COBS enables the agent to learn an optimal control policy through direct

interaction with the simulated building environment. This is particularly use-

ful for implementing RL algorithms to optimally control HVAC and lighting

systems or window blinds, an area that has received increasing attention in

recent years [34]. Unlike the environment used in RL, COBS provides the

agent with not only historical and real-time data but also future predictions.

This improvement makes the design of RL algorithms easier and opens the

door to the integration of several models with the building control agent. The

platform consists of three main components which are described below.

• Model Class consists of a replay buffer, a building model in IDF format,

and several models for estimating, predicting, and modifying the state

returned by EnergyPlus. The platform provides methods like reset and

step following the same structure as in OpenAI Gym [15]. Thus, RL

agents written based on Gym can be ported to our platform with minimal

changes. The platform uses multiprocessing and locking mechanisms to

support real-time interaction between agents and EnergyPlus, thereby

ensuring the action is implemented before simulating the next state.
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• EventQueue Class uses a priority queue to store and schedule all ac-

tions at specified times. The queue determines the order of execution of

different actions in each time slot according to their priority and insertion

time in the queue. Agents and predictive models can access the queue

to retrieve future events and make decisions based on them if needed.

• OccupancyGenerator Class exploits a queueing network simulator

to produce realistic occupancy schedules. The queueing network is con-

structed according to the floorplan of the building, probabilities of visit-

ing different spaces upon leaving a space, and the average time spent in

each space (terminal zone). We elaborate on this process in Section 3.3.2.

3.3.2 Simulating occupants’ movements and actions

Several studies suggest that occupants’ presence and actions can greatly affect

the energy use and number of thermal comfort violations [6]. For instance, oc-

cupants can open/close windows and doors, resulting in a considerable change

in the carbon-dioxide concentration, air flow, and room temperature. Control

systems respond to this change in different ways to maintain the temperature

around the setpoint and meet comfort requirements. This implies that using

a fixed occupancy schedule and neglecting actions to evaluate control policies

may lead to different conclusions.

To address the challenge of collecting occupancy data, including occupant

presence and actions, we propose an occupancy trace generator that draws on

queueing theory to generate movement trajectories for occupants. Further-

more, we use the synthesized trajectories to simulate the occupant actions

based on the control knobs that exist in the room where the occupant is and

the conditional probability provided in the form of a JSON file.

We treat each occupant as a job in the queueing network and each zone as

a First-Come First-Served (FCFS) queueing system with infinite servers and

exponentially distributed service times. Therefore, each zone is an M/M/∞

queue, and the whole building can be modeled as an open queueing network

comprised of N queues which are connected according to the floor plan of the

building. Occupants arrive to the building following a Poisson process with a
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rate that depends on time of the day. Concretely, the arrival rate is relatively

higher in the morning when people are expected to go to work than it is in

the afternoon.

The stay time in each zone depends on its function for each occupant.

Occupants stay longer in their designated office space and shorter in other

spaces in the building. Movements inside the building are governed by a

probability which is higher for returning to their office and lower for visiting

other spaces upon leaving a space. The time spent moving between spaces

is also considered. We assume the service in this queueing network can be

interrupted by a number of events, including the lunchtime and start of a

meeting.

After simulating the rooms visited by each occupant for a given simulation

period, we calculate the total number of occupants in each zone and store it

in the building model. The occupant location is then used to simulate their

actions; they must be sampled separately for each time slot because their oc-

currence may depend on the current state of the building. Hence, in each time

step, we filter out infeasible actions in all occupied zones and decide whether

to simulate an occupant’s action by sampling from a conditional probability

distribution.
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Chapter 4

Controlling multiple building sys-
tems via reinforcement learning

Commercial buildings are comprised of mechanical and electrical systems that

work in tandem to provide a healthy, safe, and comfortable environment for

occupants. These systems have complex interactions with each other, and

consume a large amount of energy. In this chapter, we apply three model-

free deep reinforcement learning algorithms to jointly control HVAC and blind

systems in a multi-zone test building, in scenarios with and without automatic

dimming of the lights in response to daylight levels. The control agents are

trained through interactions with a building simulator that generates traces for

the movement of occupants. We investigate the three-way trade-off between

energy use, thermal comfort, and visual comfort, and discuss how the joint

control of the building systems could provide a better trade-off compared to

when they are controlled separately. We compare the performance of the

proposed control algorithms assuming the availability of occupancy data with

two spatial resolutions, and confirm through experiments that a better trade-

off can be achieved should zone-level occupancy information become available.

By incorporating zone-level occupancy information, we show that 11.0% and

31.8% more energy can be saved respectively in heating and cooling seasons

over existing rule-based baselines that control the same building systems.

4.1 Introduction

Commercial buildings consume a significant amount of energy worldwide.

Driven by the global threat of climate change, extensive research has been
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done in the past few decades to explore how to save on the energy used by

building systems, while maintaining thermal and visual comfort of occupants.

In particular, various rule-based, model-based, and model-free control tech-

niques have been employed to obtain energy-efficient operation policies for

HVAC, lighting, and blind systems. Rule-based techniques are based on a

set of control rules defined by the facilities manager. Model-based techniques

take advantage of a physics-based or data-driven dynamic model that explains

the state evolution (e.g., heat transfer, air flow, occupant movement), whereas

model-free techniques aim to learn a control policy through interactions with

building systems or a simulated environment. Model-free techniques are more

promising when the goal is to control multiple building systems with complex

interactions that cannot be precisely modeled [41].

Despite the tremendous progress toward energy-efficient control of building

systems, there are several important questions that are yet to be addressed.

We outline these research questions below:

1. How does the joint control of building systems affect the whole-

building energy use? Due to the complex interactions between build-

ing systems, the control decisions made in one system could affect the

performance of the other ones. For example, closing blinds in an over-

heated zone may reduce the energy use of the HVAC system during

the day, but this comes at the price of increasing the energy use of the

lighting system because lights must be turned on to satisfy the visual

comfort requirement. Dimming lights, on the other hand, reduces the

amount of energy used for lighting but it may also change the HVAC

energy consumption as it influences the internal heat gain. Modeling

interactions between building systems in addition to the uncertainty of

the environment is indeed a difficult task. To contain complexity, related

work either controls a single building system [24], [120], [178], neglecting

the interplay between this system and the other systems, or considers

the interactions between two or more systems in a single zone [26], [28],

[41]. To our knowledge, there is no work that quantifies the amount of
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energy that can be saved in a multi-zone building when building systems

are controlled jointly.

2. What are the best trade-offs between energy use, thermal com-

fort, and visual comfort? The trade-off between energy use and ther-

mal comfort has been widely studied in the context of optimal HVAC

control. However, there is little work that navigates the three-way trade-

off between energy saving, thermal comfort, and visual comfort. This is

a barrier to the deployment of the control techniques in real buildings as

the facilities manager cannot easily trade energy savings for extra com-

fort (and vice versa). Ideally, they should be able to tweak some weight

parameters to make trade-offs within Pareto-efficient choices.

3. Will incorporating zone-level occupancy information noticeably

change the performance of a control policy? To make possible

higher energy and cost savings without compromising comfort, most

control techniques incorporate occupant presence or count information

at the building level. This makes sense because estimating the num-

ber of occupants in each zone is difficult without having a number of

sensors installed there. Should this information become available, the

thermal and visual discomfort can be calculated for each individual oc-

cupant that is present in a given zone. However, it is unclear whether

incorporating high spatial resolution occupancy data could help achieve

a better trade-off between energy consumption, thermal comfort, and

visual comfort.

4. How does the performance of a given control policy vary across

seasons? The outside air temperature can affect the performance of

optimal HVAC control algorithms, so studies often train agents for more

than one season. For the joint control of building systems, the difference

between seasons can become even more prominent. For example, to

improve thermal comfort and reduce energy use, blinds should be open

during the day in winter to heat up the building, and vice versa in
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the summer. Understanding how the control performance varies across

seasons and whether there is a specific model-free control algorithm that

outperforms others in all cases requires a comprehensive evaluation of

building controls in both heating and cooling seasons. This has not been

explored in previous work and will provide insight into control strategy

selection.

To address these questions, this chapter studies the joint control of HVAC,

lighting, and blind systems in a five-zone test building modeled in Energy-

Plus [32]. We use state-of-the-art deep RL algorithms to determine the optimal

control policies for HVAC and blinds, while a daylight auto-dimming strategy

is used for lighting control. These algorithms are suitable for this problem

because they can handle large state and action spaces, and learn the com-

plex interactions between multiple building systems1. We make three specific

contributions:

• We utilize three model-free RL algorithms to train agents that can jointly

control the supply air temperature and blind angle setpoints for every

zone in our test building. These include two actor-critic algorithms,

namely PPO and SAC, and a Q-learning algorithm, called Branching

Dueling Q-Network (BDQN). We evaluate these algorithms in different

scenarios in terms of the achieved reward, convergence speed, and sta-

bility, following the guidelines provided in [162].

• We investigate the three-way trade-off between energy consumption,

thermal comfort, and visual comfort. We discuss the best weight fac-

tors for the terms in the reward function; these weights will allow for

maximizing energy savings while keeping thermal and visual discomfort

below specified thresholds.

• We compare the performance of these algorithms with existing base-

lines in heating and cooling seasons with building-level and zone-level

1Code is available at https://github.com/sustainable-computing/

COBS-joint-control.
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occupancy information. We show that the energy use would be further

reduced if we knew the occupancy state of all zones in a building. This

highlights the importance of monitoring or estimating the occupancy

state of every zone through multimodal sensor fusion. Incorporating

zone-level occupancy information, we show that 11.0% and 31.8% more

energy can be saved, in heating and cooling seasons respectively, over

existing rule-based baselines that control the same building systems.

4.2 Methodology

We explore rule-based and RL-based joint control of the building systems for a

5-zone office building in Pittsburgh, Pennsylvania in January (heating season)

and July (cooling season). The floor area of this building is 5,000 square feet

and it has been used in previous work [24], [141]. The control setpoints that we

adjust using different algorithms are supply air temperature setpoint and blind

angle setpoint. The building is simulated in the EnergyPlus [32] environment

and is controlled via the COBS described in Section 3.3 which interacts with

EnergyPlus. COBS is used to programmatically execute rule-based control

scenarios and to train the RL agents. The office building we control is depicted

in Figure 4.1, and the relevant design details are described in the following

sections. We now present our control scenarios, problem formulation, and

model-free RL algorithms.

4.2.1 Simulation environment

HVAC design: As explained in Section 3.1, the HVAC system is a packaged

VAV system with one heating coil and one cooling coil in addition to VAV

reheat coils. Similar to [24], we use the SAT setpoint as the HVAC control

point. Other VAV setpoints are controlled using a feedback control strategy.

The VAV reheat coils are turned off in the cooling season.

Occupancy: Two occupancy conditions are considered, namely building-

level and zone-level occupancy schedules. The building-level occupancy sched-

ule assumes that all zones are occupied from 8:00 and 18:00. The zone-level

occupancy schedule determines the number of occupants that are present in
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Figure 4.1: The layout of the medium office building studied in this chapter,
including the daylighting reference points.

Figure 4.2: The number of occupants in each zone during working hours.

each zone at any given point in time. This helps model the amount of heat

emitted by occupants and better assess thermal and visual comfort of the occu-

pants in each zone. We use the COBS platform to generate several zone-level

occupancy schedules. Figure 4.2 illustrates the number of occupants in each

zone throughout a day.

Window blinds: White painted metal blinds are present on the windows in

all four perimeter zones. Each slat is 2.5 cm wide and the separation between

slats is 1.875 cm. We assume that windows are not motor-operated, hence the

blind angle and position can be adjusted without any constraints.
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Table 4.1: Control scenarios and corresponding baselines.

HVAC Blinds Lighting Baseline

SAT setpoint Always open Not controlled (1)
SAT setpoint Always open Auto dimming (3)
SAT setpoint Using the same setpoint Not controlled (2)
SAT setpoint Using the same setpoint Auto dimming (4)
SAT setpoint Using different setpoints Not controlled (2)
SAT setpoint Using different setpoints Auto dimming (4)

Daylighting: Zonal illuminance values are used for rule-based lighting con-

trol and to evaluate the visual comfort of the occupants. They are measured

at desk height (76.2cm) using daylighting reference points in EnergyPlus, the

positions of which are specified in Figure 4.1. Zone 5 does not have any day-

lighting reference points because auto dimming does not occur in zones without

windows. We turn on the lights when Zone 5 is occupied and turn them off

when occupancy is zero.

4.2.2 RL problem formulation

In this section we describe the MDP framework, including state and action

spaces, and the reward function. At each time step, the building and its sur-

rounding environment are in some state st. The agent exerts a control action

at to control building systems. This action causes a random state transition

to st+1. The RL agents are trained in six specific scenarios for controlling

HVAC, blind and lighting, as outlined in Table 4.1. Through interactions with

the simulated environment, each agent learns an optimal policy π, that is a

sequence of control actions starting from state s. When blinds are controlled,

the agent either learns a policy that adjusts all the blind setpoints in the same

way, or a policy that adjusts them independently. Note that lighting is not

controlled by the RL agent. Hence, there is either no lighting control or the

auto dimming strategy is adopted.

State: The state at time t, denoted by st, consists of the following observa-

tions: the temperature in each zone including the plenum (◦C), the number of

occupants in each zone (for building-level occupancy schedule, all zones share
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the same value of 0 or 1, indicating whether the building is occupied), the hour

of the day (0-24), the slat angle of the blinds (degrees) in each of the four zones

that have windows, the ambient temperature (◦C), and the site solar radiation

(W ). In addition to these observations, it contains the ambient temperature

and site solar radiation for the next twelve 15-minute time steps. These fore-

cast are assumed to be perfect. Thus, each state consists of 18 observations

and 24 predicted values.

Action: The action at time t, denoted by at, determines the control decision

made in each building system. The action space differs depending on the

control scenario and the agent type. The control scenario determines the

number of control points while the agent type affects the range of possible

actions pertaining to a control point. We always control the SAT setpoint for

each control scenario in a range of [−20, 20◦C] + TMA, where the TMA is the

mixed air temperature. The blinds can be controlled with different setpoints,

jointly according to the same setpoint, or not controlled at all; in the latter

case it is assumed that blinds are not available in the building. The action for

each blind is between 0 and 180.

The SAC agent (described in Section 3.2.3) considers a continuous action

space for each control point, while other RL agents consider discrete actions2.

In particular, we discretize the action for SAT setpoint to 20 and blinds to

18 evenly spaced values. Therefore, in the most complex control scenarios,

where we control the blinds using different setpoints, the action space is 5-

dimensional for the SAC agent and there are 2,099,520 (184 × 20) possible

actions for other agents. This large action space makes it difficult to find the

optimal policy.

To effectively find the optimal policy with this large action space, we deploy

a feature sharing neural network for each agent. That is, instead of having

a large number of cells for all possible actions, after a few hidden layers we

create multiple branches in the neural network. The number of branches is the

same as the number of control points we have in each scenario. For example,

2We got better results when we discretized the action space for the other two agents.
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we have 5 distinct branches when we have different setpoints for blinds (4

branches for blind setpoints and one for the SAT setpoint). The same idea

was used in [41] to reduce the size of neural networks.

Reward: The reward function balances three competing objectives: the to-

tal facility energy consumption including both the HVAC system and lights

(denoted by E), the occupant thermal comfort (denoted by Tc), and the oc-

cupant visual comfort (denoted by Vc). It can be written as follows:

R = −ρENorm(E)− ρTNorm(Tc)− ρVNorm(Vc) (4.1)

where ρE, ρT and ρV are weight factors (reward parameters) that represent the

relative importance of different terms in the reward function. These parame-

ters can take values from {0.1, 0.4, 0.7, 1.0}. We consider all reward functions

that are obtained by assigning these values to the parameters in a combinato-

rial fashion. The Norm() function is defined as:

Norm(x) = (x− xmin)/(xmax − xmin). (4.2)

It is used to scale each term in the reward function. The process used to

calculate E, Tc and Vc is described next.

Energy consumption: Since both HVAC and lighting systems run on

electricity only in our test building, we use the total electricity consumed by

HVAC and lighting systems as a measure of the total facility energy use:

E = EHV AC + EL (4.3)

where EHV AC is the electricity consumed by the HVAC system and EL is the

electricity consumed by the lights located in zones that have windows3 (both

are expressed in Wh). Note that we do not take into account the energy

consumed to operate the blinds since it is negligible compared to the other

components.

Thermal comfort: The occupant thermal comfort is calculated according

to the PMV specified by Fanger’s model [47], which has been used in building

3We ignore the electricity consumption of lights in Zone 5, which does not have a window,
since we cannot affect this energy consumption.
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control since the 1960s. The PMV predicts the average vote of a group of

people on a 7-point index ranging from +3 = hot to −3 = cold. Both the ISO

7730 standard [74] and ASHRAE [4] recommend maintaining |PMV | below

0.5. Thus, we calculate Tc at a given time step as follows:

Tc =

∑
iOi · Tci∑

iOi

(4.4)

where Tci represents the thermal comfort in zone i given by:

Tci =

{
0, |PMVi| ≤ 0.5

|PMVi| − 0.5, otherwise.
(4.5)

PMVi and Oi indicate respectively the PMV value and occupancy state of

zone i. Oi is 1 when zone i is occupied and 0 otherwise.

Visual comfort: In this study, visual comfort is determined using the il-

luminance rates at the daylighting reference points (see Figure 4.1). A penalty

is applied when the illuminance rates either do not meet or exceed engineering

standards for visual comfort. According to the Illuminating Engineering Soci-

ety of North America, the comfort range for office lighting is between 300 lux

and 750 lux [72]. Thus, the visual comfort reward for zone i is given by

Vci =


0 300 ≤ E [Ii] ≤ 750

300− E [Ii] , E [Ii] < 300

E [Ii]− 750, E [Ii] > 750,

(4.6)

where E [Ii] is the expected illuminance rate in zone i. The illuminance values,

Ii, are obtained from the daylighting reference points labeled in Figure 4.1. We

take the average of the illuminance values of the reference points in each zone

and denote it by E [Ii]. Notice that the illuminance value will never fall below

300 lux during the occupancy time as the indoor artificial light can always

provide enough illuminance when they are on. Then, the total visual reward

Vc is calculated as follows:

Vc =

∑
iOi · Vci∑

iOi

. (4.7)

4.2.3 Deep reinforcement learning algorithms

We use three model-free RL algorithms and one model-based RL algorithm

to control building systems. These algorithms are SAC, PPO, BDQN, and

model-based BDQN.
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SAC (described in Section 3.2.3): In this study, we use Adam optimizer

with a learning rate of 0.0003. We set the discount factor to 0.99 and consider

a batch size of 256. We use a squashed Gaussian policy with two hidden layers

and 256 cells in each layer for the actor network. For the critic network, we use

a network with two 256-cell hidden layers with the leaky rectified linear unit

(ReLU) as the activation function. We use automatic entropy tuning which

allows the agent to automatically balance exploitation and exploration.

PPO (described in Section 3.2.3): We use two hidden layers with 100

units each layer, utilizing the leaky ReLU activation function for both actor

and critic networks. After two hidden layers, the actor network has multiple

branches, one for each actuator type. We set the learning rate to 0.0005 and

the discount factor to 0.99.

Branching Dueling Q-Network (BDQN): BDQN is a branching variant

of the dueling double deep Q-network [159]. It is an off-policy algorithm

which is shown to outperform various algorithms such as Deep Deterministic

Policy Gradient (DDPG) in high dimensional action spaces tasks [148]. For

comparison with previous work, we use exactly the same settings that are used

in [41]. The Q-value for each branch d and the maximum accumulated reward

can be written as:

Qd (s, ad) = V (s) +

(
Ad (s, ad)−

1

n

∑
a′d∈Ad

Ad (s, a′d)

)

Rd = R + γ
1

N

∑
d
Qd

(
s′, arg max

a′d⊆Ad

Qd (s′, a′d)

)
where Ad is the set of actions that can be taken on branch d, and Ad represents

the advantage function.

Model-based BDQN: We have also considered a model-based version of

BDQN for comparative analysis. This design mirrors the structure of the

model-free BDQN, but it uses an additional DNN that consists of four hidden

layers, each with 300 cells. This network, which uses the rectified linear unit

(ReLU) as its activation function, is designed to model the building dynamics.

It takes the current state and action as the input and predicts the next state
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and anticipated reward. The model continuously learns the building’s dynam-

ics from the historical trajectories collected over time. The BDQN updates its

policy parameters based on the interactions with the building model; this is

called planning in the RL literature. In this study, the planning step is set to

12. We label this model-based BDQN as ‘Planning’.

4.2.4 Training RL agents

We split the task into two seasons: winter and summer. The winter season

model only uses January data to train and test, and the summer season model

only uses July data to train and test. We assume that each episode is one

month long and is comprised of 2,976 15-minute time steps. We use 400

episodes to train the RL agents in each season. EnergyPlus is used to simulate

the building environment after each epoch. We use the historical weather

data in Pittsburgh to get the outdoor temperature and solar radiation for the

current time step and future predictions.

4.3 Evaluation metrics and baselines

We evaluate the RL agents in six different control scenarios and compare their

performance with four existing baselines. Four metrics are used for perfor-

mance evaluation: the total electricity consumption of the month, average

thermal comfort over the month, thermal comfort violation rate of the month,

and visual comfort violation rate of the month. The thermal comfort violation

rate is defined as the percentage of time that the absolute value of PMV aver-

aged over all occupied zones is greater than 0.5 when the building is occupied.

We define the visual comfort violation rate similarly.

We consider four rule-based baselines that are implemented in EnergyPlus

for each season: (1) HVAC only, (2) HVAC & blinds, (3) HVAC with auto-

dimming, and (4) HVAC & blinds with auto-dimming. The performance of

the RL agents is compared to the respective rule-based baselines based on the

control scenario (see the last column of Table 4.1).

HVAC: For all baselines, the supply air temperature is controlled by Ener-

gyPlus using the SetpointManager:Warmest/Coldest object that at-
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tempts to meet the heating load for multiple zones at a time. Details of the

control strategy can be found in the EnergyPlus documentation4. In short,

the setpoint manager calculates the average SAT that is required to meet

the zones’ heating/cooling loads based on the supply air mass flow rates, and

adjusts the SAT setpoint accordingly.

Blinds: When blind control is included, predefined EnergyPlus programs

that are designed to reduce heating and cooling load are used. Specifically,

the blinds are closed in the heating season if it is nighttime and the outdoor

temperature is below a setpoint. In the cooling season, the blinds are kept open

at night, and closed during the day only if the solar radiation on the window

exceeds a setpoint. The setpoints were chosen by trying a wide range of values

to find the ones that performed the best in terms of the whole-building energy

use, and thermal and visual comfort.

Daylighting: When lighting control is included, the Daylighting:Controls

object is used so that the overhead lights dim continuously as the daylight il-

luminance increases5. The lights are always turned off during the night with

and without auto-dimming.

4.4 Results

In this section we first evaluate the performance of the four baselines and four

RL-based control strategies. We present the trade-offs between whole-building

energy consumption, thermal comfort, and visual comfort, and discuss which

agent yields better trade-offs for each control scenario. We discuss the best

trade-off that can be achieved using each RL algorithm and compare them

with rule-based baselines. Finally, for a fixed set of the reward parameters, we

explain how incorporating zone-level occupancy information would impact the

trade-off curves in both heating and cooling seasons, and compare the control

agents in terms of the reward they eventually achieve, their convergence speed,

and stability across several random runs.

4Refer to https://bigladdersoftware.com/epx/docs/9-3/

input-output-reference/group-setpoint-managers.html#setpointmanagerwarmest
5The overhead lights dim linearly when the illuminance increases and stay on with the

minimum input power if illuminance surpasses a certain threshold.
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4.4.1 A closer look at baseline strategies

We analyze the performance of the four baselines presented earlier; they are

rule-based control strategies that incorporate occupancy information. The

black stars in Figure 4.4 show the performance of these baselines in respective

control scenarios in both heating and cooling seasons with different occupancy

schedules. To save space, we only discuss the results obtained when zone-

level occupancy information is incorporated. Numerical values are provided in

Table A.1 in the appendix. In the cooling season, using rule-based controllers

for HVAC and blinds (Baseline 2) or using auto-dimming in addition to rule-

based HVAC control (Baseline 3) reduces the total energy consumption by

12% and 28% compared to Baseline 1 which controls HVAC only. Controlling

HVAC and blinds with auto-dimming (Baseline 4) yields 32% more savings

than controlling HVAC alone (Baseline 1) and around 5% more savings than

controlling HVAC with auto-dimming (Baseline 3). This is because blinds can

reduce the solar heat gain during the daytime and provide sufficient natural

lighting, thereby lowering the energy use.

Controlling blinds and HVAC with a rule-based strategy (Baseline 2) in the

heating season also helps reduce the total energy use by 15% over Baseline 1.

Yet, unlike the cooling season, adding auto-dimming to Baseline 1 does not

reduce the energy use. This is likely because lighting gives off excess energy as

heat, hence turning off the lights results in higher heating requirements from

the HVAC system. Controlling HVAC and blinds together with auto-dimming

(Baseline 4) enables the highest energy savings in the heating season, i.e., 18%

reduction in energy use over Baseline 1.

In conclusion, our results show an average energy savings of 26% across

both seasons when all three systems are controlled (Baseline 4) compared to

when only HVAC is controlled (Baseline 1). This observation motivates the

joint control of building systems using more advanced control strategies. In

terms of thermal comfort, all baselines were able to meet the ASHRAE PMV

requirement. However, their performance is rather poor in terms of visual

comfort because the default blind control strategy only closes the blinds at
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Figure 4.3: Performance comparison of four RL algorithms on the building
control domain. The mean and 95% confidence interval of the episode reward
are computed based on 10 independent runs in the cooling season.

night. As a result, illumination is always high in the perimeter zones.

4.4.2 Performance, convergence rate and stability

Figure 4.3 illustrates the total reward accumulated in each episode when RL

agents control the SAT setpoint and 4 blind setpoints, and lights are auto-

dimmed. The episode reward is averaged across 10 runs with different random

seeds. The shaded region around the average episode reward depicts the 95%

confidence interval. The four RL agents are trained for 400 months and then

tested over a period of 200 months in our simulated building. As it can be

seen the agents have stable performance in the testing period.

We first compare the performance of the model-free BDQN and the model-

based BDQN. As illustrated in Figure 4.3, planning shows faster convergence.

This can be attributed to the data efficiency of the model-based BDQN algo-

rithm, which learns from simulated experiences. However, while BDQN takes

longer to converge, it achieves a higher reward and has a tighter confidence

interval. BDQN learns directly from real experiences, which mitigates the es-

timation bias often introduced by model-based RL during planning. Since the

model-free approach eventually outperforms the model-based algorithm, our

subsequent discussions in this thesis will exclusively focus on model-free RL
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algorithms.

Focusing on model-free RL algorithms, it is evident that BDQN converges

to the highest reward, followed by SAC. Looking at the convergence speed,

PPO, SAC, and BDQN agents converge at around 30, 100, and 200 episodes,

respectively. SAC and BDQN agents show more stable performance (narrower

confidence interval) compared to the PPO agent. They have better sample

complexity and can effectively use experiences from previous episodes to up-

date the policy. Unfortunately this means that their running time is higher

than PPO and they use more memory. In particular, SAC and BDQN agents

finish a run in 38 and 31 hours respectively on a server with Intel Xeon E5-

2650 v4 (2.2GHz CPU) and NVIDIA Tesla P100 GPUs, and need around 8GB

of memory. For PPO, on the other hand, it takes only 7 hours to run on the

same server using 4GB of memory.

While Figure 4.3 only shows the average reward per episode in the cooling

season with zone-level occupancy information and a specific reward parameter

setting (ρE = 1, ρT = 1 and ρV = 0.4), we witnessed similar convergence be-

havior for other reward parameter settings, months, and occupancy schedules.

4.4.3 Identifying three-way trade-offs

As described in Section 4.2.2, we assess the control performance of RL agents

for various combinations of reward parameters ρE, ρT , ρV ∈ {0.1, 0.4, 0.7, 1.0}.

Figure 4.4 shows the trade-offs between energy use and thermal comfort offered

by the three RL agents in six different scenarios with two types of occupancy

schedules. The visual comfort is the third dimension which is not shown in

this figure. Each reward parameter setting yields a specific trade-off between

the competing objectives, which is depicted by a circle in this figure. The

Pareto optimal values are painted in red, and the baseline strategy for each

scenario is marked with a black star. Notice that in the cooling season, the

result for PPO spreads widely. Therefore, the axis limits for PPO are different

from SAC and BDQN. Hatch-filled orange rectangles indicate the axis limits

of SAC and BDQN plots on PPO plots. Among the three RL algorithms

we considered, PPO seems to be the most sensitive to reward parameters.

58



0 10 20 30

BDQN

                      Blinds Alw
ays O

pen
N

o D
im

W
ith D

im
                         Single Blind Stpt.

N
o D

im
W

ith D
im

                       M
ultiple Blind Stpts.

N
o D

im
W

ith D
im

2
3

4
0 10 20 30

SAC

2
3

4
2

3
4

2
3

4
2

3
4

2
3

4

2
4

0 50

PPO

2
4

2
4

2
4

2
4

2
4

BD
Q

N
 &

 SAC plot region
Baseline

(a
)
C
o
o
lin

g
sea

so
n
w
ith

b
u
ild

in
g
-level

o
ccu

p
an

cy
sch

ed
u
le

0 10 20 30

BDQN

                      Blinds Alw
ays O

pen
N

o D
im

W
ith D

im
                         Single Blind Stpt.

N
o D

im
W

ith D
im

                       M
ultiple Blind Stpts.

N
o D

im
W

ith D
im

2
3

4
0 10 20 30

SAC

2
3

4
2

3
4

2
3

4
2

3
4

2
3

4

2
4

0 50

PPO

2
4

2
4

2
4

2
4

2
4

BD
Q

N
 &

 SAC plot region
Baseline

(b
)
C
o
olin

g
season

w
ith

zon
e-level

o
ccu

p
an

cy
sch

ed
u
le

0 5 10

BDQN

                      Blinds Alw
ays O

pen
N

o D
im

W
ith D

im
                         Single Blind Stpt.

N
o D

im
W

ith D
im

                       M
ultiple Blind Stpts.

N
o D

im
W

ith D
im

0 5 10

SAC

6
8

0 5 10

PPO

6
8

6
8

6
8

6
8

6
8

Baseline

(c)
H
ea
tin

g
sea

so
n
w
ith

b
u
ild

in
g
-level

o
ccu

p
an

cy
sch

ed
u
le

0 5 10

BDQN

                      Blinds Alw
ays O

pen
N

o D
im

W
ith D

im
                         Single Blind Stpt.

N
o D

im
W

ith D
im

                       M
ultiple Blind Stpts.

N
o D

im
W

ith D
im

0 5 10

SAC
6

8
0 5 10

PPO
6

8
6

8
6

8
6

8
6

8

Baseline

(d
)
H
eatin

g
season

w
ith

zon
e-level

o
ccu

p
an

cy
sch

ed
u
le

F
igu

re
4.4:

T
h

e
P

M
V

v
iolation

rate
(y

-ax
is)

versu
s

th
e

m
on

th
ly

electricity
con

su
m

p
tion

in
M

W
h

(x
-ax

is)
for

d
iff

eren
t

rew
ard

p
aram

eters.
P

oin
ts

on
th

e
P

areto
fron

tier
are

colored
red

an
d

b
aselin

es
are

m
arked

w
ith

b
lack

stars.
T

h
e

h
orizon

tal
lin

e
sh

ow
s

A
S

H
R

A
E

’s
th

resh
old

(10%
)

for
th

erm
al

com
fort

v
iolation

[4].

59



6.0
6.5

7.0
7.5

8.0
8.5

Blinds Alw
ays O

pen
N

o Autodim
m

ing

Blinds Alw
ays O

pen
W

ith Autodim
m

ing

Single Blind Stpt.
N

o Autodim
m

ing

Single Blind Stpt.
W

ith Autodim
m

ing

M
ultiple Blind Stpts.

N
o Autodim

m
ing

M
ultiple Blind Stpts.
W

ith Autodim
m

ing

January

2.0
2.5

3.0
3.5

4.0
4.5

July

Baseline
BD

Q
N

SAC
PPO

(a
)
E
n
erg

y
C
o
n
su
m
p
tio

n
(M

W
h
)

0.26
0.28

0.30
0.32

0.34
0.36

0.38

Blinds Alw
ays O

pen
N

o Autodim
m

ing

Blinds Alw
ays O

pen
W

ith Autodim
m

ing

Single Blind Stpt.
N

o Autodim
m

ing

Single Blind Stpt.
W

ith Autodim
m

ing

M
ultiple Blind Stpts.

N
o Autodim

m
ing

M
ultiple Blind Stpts.
W

ith Autodim
m

ing

January

0.2
0.3

0.4
0.5

0.6

July

Baseline
BD

Q
N

SAC
PPO

(b
)
T
h
erm

al
C
om

fort
(|P

M
V
|)

2
4

6
8

10

Blinds Alw
ays O

pen
N

o Autodim
m

ing

Blinds Alw
ays O

pen
W

ith Autodim
m

ing

Single Blind Stpt.
N

o Autodim
m

ing

Single Blind Stpt.
W

ith Autodim
m

ing

M
ultiple Blind Stpts.

N
o Autodim

m
ing

M
ultiple Blind Stpts.
W

ith Autodim
m

ing

January

0.0
2.5

5.0
7.5

10.0
12.5

15.0

July

Baseline
BD

Q
N

SAC
PPO

(c)
T
h
erm

a
l
C
o
m
fo
rt

V
io
la
tion

(%
)

0
20

40
60

80

Blinds Alw
ays O

pen
N

o Autodim
m

ing

Blinds Alw
ays O

pen
W

ith Autodim
m

ing

Single Blind Stpt.
N

o Autodim
m

ing

Single Blind Stpt.
W

ith Autodim
m

ing

M
ultiple Blind Stpts.

N
o Autodim

m
ing

M
ultiple Blind Stpts.
W

ith Autodim
m

ing

January

0
20

40
60

80
100

July

Baseline
BD

Q
N

SAC
PPO

(d
)
V
isu

al
C
om

fort
V
iolation

(%
)

F
igu

re
4.5:

C
om

p
arison

of
d

iff
eren

t
R

L
agen

ts
in

d
iff

eren
t

con
trol

scen
arios

u
sin

g
a

zon
e-level

o
ccu

p
an

cy
sch

ed
u

le.
T

h
e

resu
lts

are
ob

tain
ed

u
sin

g
th

e
b

est
set

of
rew

ard
p

aram
eters

for
each

R
L

agen
t.

T
h

e
x
-ax

is
is

ex
aggerated

.

60



Nevertheless, we observe that for all three agents it is possible to navigate the

three-way trade-offs by tweaking the reward parameters.

Best trade-offs: To determine the reward parameter setting that yields

the ‘best’ trade-off, we first filter out the parameter settings that result in

a PMV violation rate higher than 10% (ASHRAE’s threshold [4]). We then

choose the parameter setting that minimizes the whole-building energy use

among the remaining choices. If the PMV violation rate exceeds 10% for

all parameter settings, we choose the parameter setting that minimizes the

product of the whole-building energy use and excess discomfort (i.e., the PMV

violation rate minus 10%). The trade-off that corresponds to this parameter

setting is called the best trade-off. For simplicity, the illumination violation

rate is not considered in the process of finding the best trade-off as it is typically

in the acceptable range.

Figure 4.5 provides a comparison between the best trade-offs achieved by

each RL agent in different scenarios. Numerical values are provided in Ta-

bles A.1 and A.3 in the appendix. Compared to the baselines, the RL agents

can save a significant amount of energy while meeting both thermal and vi-

sual comfort requirements in most cases. In scenarios where the blind setpoint

is controlled, all agents achieve a significant improvement in visual comfort

compared to the baselines in both seasons. This implies that the RL agents

are able to learn how to use blinds to limit the amount of glare from sunlight.

SAC has the lowest visual comfort violation rate in all scenarios. It is worth

mentioning that in the scenario where the SAT setpoint and multiple blind

setpoints are controlled with auto-dimming, the best RL agent can reduce the

whole-building energy use by 11% in heating season and 31.8% in the cooling

season over Baseline 4.

4.4.4 Incorporating occupancy information

We evaluate the control performance using both building-level and zone-level

occupancy information. Figures 4.4a and 4.4c show the whole-building energy

use in cooling and heating seasons along with the thermal comfort violation

rate when the RL agents incorporate building-level occupancy information.
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Figures 4.4b and 4.4d show the same result this time assuming that the agents

incorporate the zone-level occupancy information. It can be readily seen that

better trade-offs can be achieved in the heating season when the control agents

incorporate zone-level occupancy information. Specifically, BDQN, SAC, and

PPO agents can save respectively 3.3%, 18%, and 14% more energy when they

take into account zone-level occupancy information rather than building-level

occupancy information. The zone-level occupancy information allows the con-

trol agents to meet thermal and visual comfort requirements by conditioning

only a subset of zones that are occupied. This reduces the energy consumption

in HVAC and lighting systems. Interestingly, incorporating zone-level occu-

pancy information does not appear to offer much in terms of energy savings

in the cooling season. We attribute this to the fact that in Pittsburgh less

energy is consumed to keep the room temperature within the comfort range

in the cooling season than in the heating season. Hence, a smaller amount of

energy can be saved by not conditioning the unoccupied zones.

Another important observation is that the RL agents cannot always beat

the rule-based baselines when they rely on building-level occupancy informa-

tion. For this reason, we only present the results when a zone-level occupancy

schedule is used in the remainder of this section. The performance results for

both cases can be found in the appendix (Tables A.1-A.4).

4.5 Discussion

We now return to the four research questions raised in the introduction, fol-

lowed by a discussion of the key differences between the three model-free con-

trol strategies. Many of our findings are novel and provide valuable insight for

future research.

How does the joint control of building systems affect the whole-

building energy use? The paper that came closest to addressing this ques-

tion is [41], where the BDQN agent achieved savings compared to rule-based

methods, showing the potential of applying model-free RL to the joint control

of building systems. However, their baselines included only rule-based HVAC

control, even though rule-based blind and lighting strategies have been proven
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to offer significant savings. For example, in our building the rule-based control

of all systems (Baseline 4) reduced the whole-building energy use by 26% on

average across both seasons compared to the control of HVAC only (Base-

line 1). Our work shows for the first time that RL-based control saves even

more energy than rule-based HVAC and blind control, and that incorporating

autodimming increases savings even further. Furthermore, we show that this

is true even when generalized to the multi-zone scenario.

We provide numerical evidence in Table A.1 that motivates the installation

of dimmable lights and motorized blinds to conserve energy. Dimmable light

can always lower the total energy consumption, especially during the summer,

and blinds can slightly reduce the energy use as well. Figure 4.4 shows a minor

improvement in controlling the blinds with a single setpoint over separate

setpoints. This can be used to reduce the action space dimension, simplifying

the problem.

What are the best trade-offs between energy use, thermal com-

fort, and visual comfort? The tradeoffs between energy use and thermal

comfort are plotted directly in Figure 4.4. With regards to tuning these two ob-

jectives, BDQN and SAC are less sensitive to the reward parameters, whereas

PPO is highly sensitive to the reward parameters. Interestingly, Figure 4.5

shows that all of the RL agents (including PPO) easily improved visual com-

fort over the rule-based baselines. One way to interpret this is that there is a

lot of room for improvement in rule-based blind control strategies, with respect

to visual comfort. Overall, visual comfort is relatively easy to optimize with-

out much tuning, but the trade-off between energy use and thermal comfort

is more complicated to navigate.

Will incorporating zone-level occupancy information noticeably

change the performance of a control policy? As highlighted in Sec-

tion 4.4.4, the inclusion of zone-level occupancy offered noticeable energy sav-

ings over building-level occupancy in all cases except for SAC in the cooling

season. Figure 4.4 shows that when blinds are included in the heating season,

zone-level occupancy is actually required to achieve lower energy use than the

rule-based baseline which takes occupancy into account. Based on this result
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(and the simplicity in aggregating zone-level data up to the building-level) we

argue that incorporating zone-level occupancy information to train RL agents

is a viable energy reduction strategy.

Our back-of-the-envelope calculation shows that we can save approximately

1.04 MWh in two months (January and July) by incorporating zone-level

rather than building-level occupancy information. With extrapolation, the

annual energy and cost savings will be respectively 6.24 MWh and $437, as-

suming a flat rate of 7¢/kWh. This can offset the cost of buying and installing

occupancy sensors in the 5 zones.

How does performance vary across seasons? A trend in RL pa-

pers for building control is to present results for two seasons and conclude

that the agent can find an optimal control policy for both. Our results show

that the reality is more complicated. Not only do the energy savings vary

across the seasons, but so does the contribution of the building systems to

the savings, the potential benefit from fine-grained occupancy data, and the

relative performance of different model-free approaches. This is a conundrum

for the practitioner who aims to implement RL in real buildings: if the perfor-

mance varies drastically between seasons, how can one select a generalizable

approach? This question warrants attention in future work.

Which RL algorithm works best? We designed a custom control sys-

tem for multiple building systems using three popular deep reinforcement

learning algorithms that can tackle problems with large state and action

spaces. BDQN was adopted from previous work [41], where it was shown

to have outstanding performance controlling multiple building systems of a

single-zone building. To our knowledge, SAC and PPO were not previously

applied to control multiple building systems.

We show here that SAC outperforms BDQN in the heating season (in all

scenarios except one) with regard to energy savings. Considering thermal com-

fort, PPO is not able to satisfy the thermal comfort in the cooling season for

most cases with average thermal comfort violation rate of 10.8%; SAC exceeds

the threshold once and BDQN can always maintain the thermal violation rate

under the threshold. Turning our attention to the effort needed to tune re-
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ward parameters, PPO is highly sensitive to these parameters, whereas BDQN

and SAC are less sensitive to the reward parameters. Also, PPO converges

remarkably faster than SAC, and SAC is slightly faster than BDQN. As the

requirements might differ from case to case, there is no clear winner among

these three RL agents. SAC and BDQN seem to offer more promising results

if one can afford the one-time computation cost of training the agents.

4.6 Summary

This chapter benchmarked multiple model-free reinforcement learning agents

and baseline control strategies in a simulated multi-zone building with both

zone and building-level occupancy schedules in winter and summer months.

We evaluated the effect of controlling different building systems on whole-

building energy consumption using different reward parameters, and provided

useful insight for practitioners regarding how to make trade-offs within Pareto-

efficient choices. Specifically, we showed better trade-offs can be achieved when

RL agents rely on zone-level occupancy information rather than building-level

occupancy information. We made two important observations when zone-level

occupancy information was used by the agents. First, we found that 11.0%

and 31.8% more energy can be saved respectively in heating and cooling sea-

sons over existing rule-based baselines that control the same building systems.

Second, we found that when lights are dimmed automatically and the RL

agent jointly controls HVAC and blinds, the whole-building energy use can be

reduced by up to 5.9% and 38.7% respectively in heating and cooling seasons

over the case that the RL agent only controls the HVAC system.
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Chapter 5

Diversity for transfer in learning-
based control of buildings

The application of reinforcement learning to the optimal control of building

systems has gained traction in recent years as it can cut the building energy

consumption and improve human comfort. Despite using sample-efficient re-

inforcement learning algorithms, most related work requires several months

of sensor data and operational parameters of the building to train an agent

that outperforms existing rule-based controllers in a large multi-zone building.

Moreover, exploring the large state and action spaces can result in poor indoor

environmental quality for occupants. In this chapter, we propose to reduce the

training cost of a policy gradient reinforcement learning algorithm by learning

a library of control policies on a training building and taking advantage of

both environmental and policy diversity. To transfer these policies to a tar-

get building, which can be different from the training building, we develop a

simple method to assign the best pretrained policy in the library to each zone

of the target building. We show that even without retraining the transferred

policies on the target building, they can reduce the HVAC energy consumption

by 40.4% compared to a fixed-schedule baseline and by 48.97% compared to

agents trained on the target building for 5,000 months, since these agents fail

to find a high-quality control policy within the training budget. The plausi-

bility of our results underscores the importance of using diversity and transfer

learning in multi-agent reinforcement learning settings and could pave the way

for the adoption of reinforcement-learning based controllers in real buildings.
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5.1 Introduction

Extensive research has been done in the past few decades to enable optimal

and adaptive control of the HVAC system by applying MPC techniques and

more recently RL algorithms [24], [43], [158]. The common goal is to reduce the

building energy use and improve the overall occupant comfort and satisfaction.

However, both MPC and RL-based control techniques have major drawbacks

that have limited their adoption in real buildings. In particular, MPC relies on

an accurate model that captures complex dynamics of the building. Identifying

this model is nontrivial in large multi-zone buildings due to limited observ-

ability and lack of sufficient excitation [10]. Model-free RL techniques, on the

other hand, require many interaction episodes in large multi-zone buildings to

train an optimal policy. This post-deployment exploration is not affordable in

practice as it might cause discomfort or health problems for occupants.

One approach to reduce the training cost is to transfer control policies

learned over a sufficient number of episodes in a controlled environment, which

can be a real or simulated building, to the target building. Since the train-

ing and target buildings might differ with respect to their structure, floor

plan, HVAC system, and occupancy pattern, the near-optimal policy found

in the training building can perform poorly on the target building. Previous

work that studies the relationship between generalization and diversity in RL

(as shown in Section 2.4) suggests that agents trained with diversity exhibit

stronger generalization to novel environments [109]. Inspired by this, in this

study we cast HVAC control as a multi-agent reinforcement learning problem

where diversity is incorporated in the training process of each agent. Specifi-

cally, each agent is responsible for controlling a thermal zone and the agents

compete with each other to reduce the total HVAC energy consumption. These

agents, which are trained on a controlled building, are then transferred to the

target building and assigned to the zones in that building. The assigned poli-

cies can be retrained on the target building to adapt them to the environmental

condition and occupancy pattern of the respective zones. We show that this

post-deployment adaption is not essential when we incorporate diversity.
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This chapter also investigates how to evaluate policies in the policy library

when transferred to a novel environment, i.e., a thermal zone in a new building.

We borrow ideas from NAS and OPE to evaluate policies, using a small batch

of log data (e.g., just a few weeks worth of data) from the new building.

The log data is collected when the new building is controlled using a default

controller, e.g., a rule-based or reactive controller. We show that the proposed

policy evaluation approach gives us a reliable estimate of how these policies

might perform on the new building, thereby enabling us to assign a subset of

them to zones in that building. Our approach entails policy clustering, policy

evaluation and ranking based on different scores, sampling, and transferring

to respective zones in the target building.

Our contribution is threefold:

• We design a new loss function for policy diversity (defined in Section 5.3),

and obtain a collection of sub-optimal policies by incorporating environ-

mental and policy diversity in the training process of RL agents using a

model-free policy gradient algorithm.

• We propose a novel two-stage algorithm that combines policy clustering

and evaluation, and uses policy ranking methods to efficiently identify

high-quality policies among policies in the policy library. Our algorithm

requires just two weeks of log data collected from the novel target build-

ing.

• We show through simulation that agents pretrained with diversity per-

form well when they are transferred to a novel environment, even without

adaptation. They outperform the agents that are originally trained in

the target building in more than 5,000 episodes (months). This suggests

that utilizing diversity in transfer learning can substantially reduce the

training cost in the target building.

5.2 MARL-based control of HVAC

We consider an HVAC system that consists of one or multiple AHUs and VAV

systems as explained in Section 3.1. The HVAC control can be viewed as a
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sequential decision-making problem where the control agent interacts with the

building and its occupants by performing a sequence of actions, e.g., changing

the zone setpoint(s), and receiving a reward to help improve the agent’s policy.

While a single agent can control the entire building (all actuators in AHUs and

VAV systems), it prevents the policy from being transferred to a new building

that has a different state-action space, e.g., contains more VAV systems. As

a result, we study the HVAC control problem in a MARL setting where each

agent is responsible for controlling a single zone; the building is controlled by

several independent agents, each making decisions about their respective zone.

We define our implementation of the Multi-agent Markov Decision Process

(MMDP) as a tuple (N,S,Ai,i∈{1,...,N},Ri,i∈{1,...,N},P ,H) where:

• N is the number of agents.

• State space S is a set of all possible states s representing the observation

at a given time. We include the readings of six sensors in the state of

each zone: the controlled zone mean temperature (◦C), mean humidity

(%), outdoor temperature (◦C), solar radiation (W ), binary occupancy

state of the controlled zone, and hour of the day (0 − 23).

• Agent i’s action space Ai contains all possible actions ai that can be

taken by agent i in state s at a given time. We define the action as the

minimum damper position of the VAV system in each zone. The min-

imum damper position is a value in [0.1, 1], where 0 indicates that the

damper is closed and 1 indicates that the damper is fully opened. For

example, if the agent assigns 0.2 to the minimum damper position, the

damper can be opened between 20% and 100%. Each agent only con-

trols the damper position for their respective zone, and the AHU control

points and all other VAV control points are adjusted by the controller

in EnergyPlus, using the predictive system energy balance method [32].

The existence of the reheat coil can help to fulfill the zone temperature

requirement. We denote A = A1 × · · · × AN .

• Agent i’s reward function Ri is a mapping from states and actions to
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Table 5.1: Description of the states and action of each agent.

State

Zone mean temperature ◦C
Zone mean humidity %
Zone occupancy Binary
Outdoor temperature ◦C
Solar radiation W
Hour of the day Integer

Action VAV damper position %

real numbers, i.e. Ri : S ×Ai → Ri. The reward is designed to evaluate

how the action chosen in the given state improves or degrades the control

system performance. To minimize the total energy consumption of the

building, we define the reward of each agent as the energy use of the

respective VAV system with a negative sign.

• Transition function P governs transition dynamics from the previous

state to the next state given the selected action. This transition function

is provided by EnergyPlus [32].

• Control horizon H defines the length of each episode. Although the

HVAC system is always controlled by the agent, we consider a fixed

time interval to evaluate a policy. Specifically, we use one month in the

heating season, with 15-minute increments, to define one episode.

Table 5.1 summarizes all state variables and the action for each agent. Given

the MMDP, RL algorithms aim to find a policy πi that maximizes the agent’s

expected cumulative reward Gi over some time horizon H:

Gi = E

[
H∑
t=0

γRi(st, argmax
at∈Ai

πi(at|st))

]
. (5.1)

We set the γ = 1 in this task because the control horizon is fixed and finite, and

the goal is to minimize the total monthly energy use rather than an arbitrary

energy cost function. We use competitive agents where each agent receives and

maximizes their own reward. Although it might be hard to get convergence,

the agents are independent which is suitable for transfer learning as only a
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Figure 5.1: Schematic overview of the proposed methodology where circled
numbers show different steps of the policy evaluation and assignment method.

subset of agents can be transferred to a new environment. An alternative

approach is using cooperative agents that maximize a shared reward, which

can be the whole-building energy consumption [19]. However, training these

agents is more challenging because all agents simultaneously affect the shared

reward, and assigning credit to individual agents is nontrivial.

5.3 Methodology

In this section, we present our methodology for MARL-based HVAC control

that involves transfer learning and diversity training.1 We first describe our

implementation of PPO to train each RL agent, followed by our approach for

constructing a library of diverse policies. Lastly, we describe an algorithm for

transferring policies in the policy library to an unseen target building, and

selecting the best policy for each zone in that building. We use a clustering

algorithm and various policy evaluation methods to efficiently identify the

most suitable policies for controlling the target building using the historical

data. Once these policies are assigned to the respective zones in the target

building to control VAV systems, we retrain them on the target building in an

online fashion. The overall proposed methodology is shown in Figure 5.1.

5.3.1 PPO-based control agent

As described in Section 3.2.3, we use PPO to train control agents, with ϵ = 0.2.

For both actor and critic networks, we use two hidden layers with 64 units in

each layer and the hyperbolic tangent activation function. We use Gaussian

1Code is available at https://github.com/sustainable-computing/building-MARL
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Algorithm 1 Building a policy library

Require:
B: set of zones in the training multi-zone building;
W : set of diversity weights;
EPISODES: number of episodes;
EPOCHS: number of time steps per episode;
env: target building environment wrapper

Ensure:
Π: Policy library

1: Π = ∅ ▷ initialize the policy library
2: B′ = B.get variants() ▷ Change B
3: for w in W do
4: for z in B∗ do
5: Initialize policy πz,w
6: for ep in 1, . . . , EPISODES do
7: S0 ← env.reset() ▷ Reset environment
8: for t in 0, . . . , EPOCHS do
9: At ← ∅
10: for z in B∗ do
11: At,z ∼ πz,w(St,z) ▷ Sample action
12: At ← At ∪ {At,z}
13: end for
14: St+1, Rt+1 ← env.step(At) ▷ Take step
15: Store (St, At, St+1, Rt+1) in replay buffer
16: end for
17: for z in B∗ do
18: Optimize πz,w with loss LPPO + wLdiversity

19: using the replay buffer
20: end for
21: end for
22: Π← Π ∪ {πz,w}
23: end for
24: end for

distribution for the actor network policy parameterization, and set the learning

rate to 0.0003 and the batch size to 2,976. Although both real and simulated

buildings can be used for training, in this work we train RL agents on a building

simulated using EnergyPlus [32], with COBS (introduced in Section 3.3) as

the environment interface. In our setup, each agent observes and controls one

thermal zone by changing the damper position of the respective VAV system.

72



Algorithm 2 Naive policy evaluation and assignment

Require:
Btarget: set of zones in the target building;
Πrule: set of rule-based policies for all z ∈ Btarget;
Π: policy library generated from Algorithm 1;
env: target building environment wrapper

Ensure:
Π∗: mapping of optimized policies for each zone

1: for z in Btarget do
2: Πevaluate,· ← Πrule

3: for π in Π do
4: Πevaluate,z ← π
5: Gπ,z ← env.evaluate(Πevaluate) ▷ Calculate energy consumption
6: Score(π, z) ← Gπ,z

7: end for
8: π∗

z ← argmaxπScore(π, z) ▷ Best policy for the zone
9: Π∗ ← Π∗ ∪ {π∗

z}
10: end for

5.3.2 Policy library

To build our policy library, we use a one-story building that contains 5 thermal

zones as our training building. In addition to learning the optimal control

policy for each zone, we use two kinds of diversity to construct a policy library.

The process is defined below.

Optimal policies: We first learn a (near-)optimal policy for each zone of

the training building using the PPO algorithm. This results in 5 policies as

the training building contains 5 zones. These 5 policies are trained in parallel

and competitively for each zone in the multi-agent framework.

Diverse policies: The policy found by the standard reinforcement learning

algorithms is optimized for the given training environment. But they may

not perform well in novel environments. The ability to identify a set of near-

optimal policies that are different from one another enables us to explore the

space of reasonable control policies, increasing the chance of learning a policy

that better generalizes to new environments [107].

To find such near-optimal policies, we propose augmenting the loss function

of the policy gradient algorithm with an additional term, denoted Ldiversity.
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This term forces the current policy to behave differently from the previously

learned policies on the given state, while maximizing the cumulative reward.

In other words, while the policy that is trained with the modified loss function

is different from the optimal policy and other learned policies, its performance

is as close as possible to the performance of the optimal policy. This method

can be used to produce multiple diverse policies to expand the policy library

Π. This loss term, Ldiversity, can be written as:

Ldiversity = −

∑
π′∈Πlearned

∑
(s,a)∈exp

max

(
max(π(a|s),π′(a|s))
min(π(a|s),π′(a|s))

,ρ̄

)
|Gexp(s)−Vπ′ (s)|

|Πlearned|
, (5.2)

where π is the behavior policy we are updating, ρ̄ is the upper bound on the

probability ratio, exp is the state–action trajectory generated by the behavior

policy and stored in the replay buffer, i.e., state-action tuples considered in the

current episode, Gexp(s) is the cumulative reward of this trajectory starting

from the state s, Vπ′(s) is the estimated state value for state s from a learned

policy, and Πlearned is a set of learned policies from which the behavior policy

must differ. Note that max
(
π(a|s)
π′(a|s) ,

π′(a|s)
π(a|s)

)
captures the differences between

the behavior policy (π) and a previously learned policy (π′) by calculating the

probability ratio of taking a certain action a given that we are in state s under

the two policies. The term |Gexp(s)− Vπ′(s)| measures the estimation bias

of a learned policy given the current trajectory. A large value implies that

the learned policy disagrees with the experience under the behavior policy.

Learning from such experiences naturally distinguishes the behavior policy

from the learned policy. Therefore, we lower the diversity loss to encourage

learning. In general, Ldiversity is small when the behavior policy estimates

the action probabilities differently from the learned policies, or the learned

policies disagree with the trajectory taken under the behavior policy. This

loss is averaged over all policies that have been learned so far.

We modify the loss function of the PPO algorithm to include the diversity

loss:

L′ = LPPO + wLdiversity, (5.3)
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where w is a hyperparameter that yields a trade-off between optimality and

diversity. It plays the same role as the population diversity factor that was

introduced in [126]. It is worth noting that the above equation is a generaliza-

tion over the standard PPO loss function, as L′ = LPPO when w = 0. In our

implementation, Πlearned contains only the policy trained for the same zone

with w = 0, hence the policies trained with a non-zero diversity loss are not

forced to be different from each other. When w is large, the algorithm gives

more importance to diversity and may sacrifice optimality of the policy. Con-

versely, a small w causes the algorithm to find a policy that is nearly optimal,

even if it is not adequately different from the optimal policy.

Policies for diverse environments: To introduce environmental diversity,

small changes are typically made to the training environment such that the

general learning task is unchanged, but a more diverse set of environments are

considered for training [109]. In this study, we add blinds to cover windows

in the zones of the training building to reduce the solar heat gain. We also

update the occupancy pattern of each zone to remove the time intervals when

a zone becomes unoccupied (e.g., lunchtime) during core business hours. As

the building environment has changed, the policies learned (with and without

the diversity term) in this new environment are expected to be different from

the ones learned in the original environment. These policies are also added to

the policy library.

Algorithm 1 describes the steps to generate a library of diverse policies

when given a building with B being the original thermal zones, B′ being the

zones that are created using environmental diversity, and the set of diversity

weights denoted W . As mentioned in Section 5.3.2, we introduce environmen-

tal diversity by adding blinds and changing occupancy patterns to each zone.

In Line 11 and 12, the action of each agent at time t, denoted At,z, is sampled

from its policy πz,w, and gets appended to the overall set of actions, At. As-

suming that one policy is generated per diversity weight, Algorithm 1 adds a

total of |W | · (|B|+ |B′|) different policies to the policy library.
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5.3.3 Policy selection

After building the policy library for the training building, we assign these

policies to each zone of the target building and evaluate them. Algorithm 2

describes the steps to choose the best policies from the policy library. Specif-

ically, we evaluate each policy in each zone of the target building to find its

cumulative reward, assuming dampers in all other zones are controlled using

a fixed schedule. We then select the policy that yields the highest cumulative

reward as the best policy for that zone. After identifying the best initial pol-

icy for all zones, it is possible to retrain the selected policies in a competitive

MARL setting by interacting directly with the target building. This retraining

step is useful to adapt the transferred policies from the policy library to the

training building.

Evaluating all policies in each zone of the target building is indeed compu-

tationally expensive. To address this problem, we propose a policy clustering

method that groups similar policies in the library. We can then sample a

few policies from each cluster and evaluate their performance using the policy

evaluation methods discussed in Section 3.2.4 and 3.2.5. This allows us to

understand the performance of other policies that belong to the same cluster.

We describe these steps below.

Policy clustering: The goal of this clustering is to identify policies that

might have similar performance in the given task. Since we do not know

the performance of each policy in the target environment, we cluster policies

according to their behavior in the training environment(s).

We represent each policy in the policy library using a feature vector of

length m. This vector is constructed by sampling m − 1 states from the

distribution of states visited when the policy was being learned in the training

environment, and appending the initial state of the target environment. We

then use the actions that would be taken from these m states under this policy

to obtain the feature vector of length m. We set m to 10 in this study. Given

the policy representation in an m dimensional space, we use K-Means to cluster

all policies in the policy library. The elbow method is used to determine the
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number of clusters. Specifically, we keep increasing the number of clusters

starting from one cluster and calculate the inertia of the current clustering

result. The inertia is defined as the sum of the squared differences of all

samples from the respective cluster center. We stop when the inertia starts

decreasing linearly.

After the clusters are formed, we select n representative policies from each

cluster. This includes the policy that is closest to the cluster center and n− 1

randomly selected policies from that cluster. The closet policy to the cluster

center is picked as it may represent the average performance of the cluster in

the training environment(s), and the other randomly picked policies increase

our confidence in the evaluation result. We set n to 5 in this study.

Ranking policies using historical data from the target building As-

suming that the historical data D is collected from the target building under

the behavior policy πb which can be the existing rule-based controller. We

adopt the OPE method GK introduced in Section 3.2.4, and the ZCP method

SNIP introduced in Section 3.2.5. To distinguish the SNIP under ZCP from

the SNIP under OPE, we called the modified ZCP version that is adopted in

this study SNIP*.

Selecting policies In Figure 5.1, there are two places where policy evalua-

tion is performed, namely Step 3 and Step 5. In Step 3, we rank the represen-

tative policies from each cluster to obtain the ranking of clusters, whereas in

Step 5, we only rank the policies from the top cluster. The best-performing

policy from the top cluster is then transferred over to the novel target environ-

ment. All steps shown in Figure 5.1 are repeated for each zone in the target

building to identify the policy that should be transferred and used for that

particular zone.

5.3.4 Policy transfer and retraining

After assigning the best policy to each zone in the target building, we retrain all

policies using the multi-agent reinforcement learning framework in an online

fashion. Updating the policies through interaction with the target building

allows the transferred policies to adapt to the target building environment
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even further.

5.4 Training and target buildings

To study the efficacy of the proposed methodology, we evaluate it using the

EnergyPlus model of three buildings, including a real campus building. Each

building has a unique occupancy schedule which is encoded in the EnergyPlus

model. We assume that if a control policy outcompetes other policies with re-

spect to the HVAC energy use reported by EnergyPlus [32] without degrading

thermal comfort, it also outcompetes them in the real building, should it be

controlled using this policy.2

• Building A is a small office prototype building as defined by ASHRAE

Standard 90.1 [2]. Figure 5.2a shows the floor plan and 3D model of this

building. It contains five thermal zones (4 perimeter zones and 1 core

zone) and is located in Denver, Colorado. Each zone is conditioned using

a dedicated AHU and contains a VAV system. The total floor area of

this building is 511.16 m2.

• Building BDenver is a medium office prototype building as defined by

ASHRAE Standard 90.1 [2]. It contains 15 thermal zones across three

floors and is located in Denver, Colorado. Figure 5.2b depicts the floor

plan of this building. There are 4 perimeter zones and 1 core zone on

each floor. Each floor is conditioned using an AHU and all zones are

equipped with a VAV system. Its total floor area is 4,982.19 m2.

• Building BSanFrancisco is the same building as BDenver with two main

differences: 1) it is located in San Francisco, California and 2) its ori-

entation is rotated by 45 degrees (clockwise). We make these changes

so as to investigate whether any of the learned policies works well after

transfer to a building with a different orientation in a different climate.

2We could not possibly deploy the many control policies we considered in this chapter on
real buildings to run the microbenchmarks. As a result we evaluated them using EnergyPlus.
In practice, the training building might be an EnergyPlus model, but the target buildings
are physical buildings.
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(a) Building A (b) Building BDenver

(c) Building C

Figure 5.2: The 3D view and floor plan of the buildings considered in this
chapter where north is marked on each floor plan

• Building C is a medium campus building representing the model of the

building that houses the Department of Energy Engineering at Sharif

University of Technology in Tehran, Iran.3 It contains 26 thermal zones

spread across five floors, 11 of which are equipped with a VAV sys-

tem. The HVAC, lighting, and blind systems are modeled such that they

match the design of these systems in the physical building. We assume

the building is located in San Francisco, California, because weather data

is lacking for its actual location. The total floor area of this building is

5,051 m2.

Note that the 3D views are scaled in Figure 5.2 to demonstrate the relative

size of these buildings. Building A and Building B have similar floor plans,

yet their HVAC systems are different and their core zones have different sizes.

5.5 Experiment results

In this section we describe the experiment setup, validate different parts of

our methodology using microbenchmarks, and finally make a comparison with

3Model is downloaded from https://github.com/DOEE-BMS/EnergyPlus-Model
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baseline control methods in terms of the total HVAC energy use. We start

off by evaluating the efficacy of diversity training using naive policy transfer

algorithm described in Algorithm 2, then evaluating the proposed transfer

learning approach on building BDenver, and then run experiments on building

BSanFrancisco and the model of a real building (Building C).

5.5.1 Implementation details

We simulate the building operation using EnergyPlus 9.3 [32] with the actual

weather data, and use COBS [173] to interface with the simulation environ-

ment. The control policies are trained using PyTorch [127]. The EnergyPlus

model uses a 15-minute simulation time step, and each episode is one month.

This is equivalent to 2,976-time steps. We fix the training and test periods to

January to eliminate the seasonal effect in our simulation.4 For each experi-

ment, we consider 15 independent runs to calculate the average performance.

Building A is used to build the policy library considering both policy and

environment diversity as outlined in the previous section. All policies are

trained using PPO under the MARL framework for 1,000 episodes to ensure

convergence. The training cost on the training building is not important be-

cause it is a presumably a simulated building or a controlled environment

designed for this purpose. Note that we ignore the occupants’ thermal com-

fort in the reward function because the power consumption of the VAV sys-

tem’s reheat coil and the supply air temperature are constantly adjusted by

EnergyPlus according to the damper position to satisfy the thermal comfort

requirement. The temperature setpoints, however, remain the same for all

control scenarios for fair comparison.

We consider three policy diversity weights w ∈ {0.1, 1, 10} to identify near-

optimal policies. These policies are forced to be different from the optimal

policy π∗ (w = 0) that is learned for the given zone (hence Πlearned = {π∗}).

This results in 800 policies in the policy library — 10 random seeds for training

× 4 training environments × 5 zones per environment × 4 diversity weights.

We set the upper bound on the probability ratio ρ̄ to 100.

4Studying seasonal effects is deferred to future work.
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Figure 5.3: Performance of the top 100 policies selected from the whole policy
library, Πboth, in each zone of the target building BDenver. The total energy
consumption for each policy on each zone in the target building BDenver is
evaluated for one month, where all other zones are controlled using a fixed
schedule baseline. Policies trained with the diversity weight of zero are marked
by stars.

Baselines We consider four baselines: 1) the default controller implemented

in the building model, 2) zone-level control policies learned via interaction with

the target building (without transfer learning) using the MARL framework,

3) a control policy that decides on the minimum damper position of all zones

and is learned through interaction with the target building (without transfer

learning) in the Single-agent Reinforcement Learning (SARL) framework, and

4) zone-level control policies learned on the training building and transferred

to the target building assuming an oracle produced the optimal assignment of

policies to zones in the target building. The last baseline is unrealistic and

gives a lower bound on the building energy consumption using the proposed

methodology. We could not implement this baseline because identifying the

best policy for each zone requires exhaustive search and expensive evaluation.

The first baseline is a controller that can be readily used (or is actually being

used in case of Building C) — if we beat this baseline, it means that our

policies can reduce the HVAC energy use without sacrificing thermal comfort.
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5.5.2 Energy saving potentials using diversity training

To better understand the best possible effect of training with different types of

diversity, we use 3 strategies to assign pre-trained policies to the zones in the

target building BDenver using: (1) selecting from Πenvironment which is the set of

policies trained on Building A and variations with the diversity weight of zero

(environmental diversity only); (2) selecting from Πpolicy which is the set of

policies trained on original Building A with different diversity weights (policy

diversity only); (3) selecting from Πboth which is the whole policy library and

includes policies trained on Building A and variations with different diversity

weights (incorporating both environmental and policy diversity). We compare

these policies with the policies that are learned from scratch (i.e., starting

with no prior knowledge) for every zone of the target building. The set of

these policies is denoted by Πscratch.

To find the best possible pre-trained policy for each zone, we need to assign

each policy in Πenvironment, Πpolicy, or Πboth, to all zones of the target building

BDenver and calculate the HVAC energy consumption. This results in 80015

possible combinations, making it impossible to perform exhaustive search. To

address this problem, we use a best-response approach that finds the best pre-

trained policy for every zone in the target building BDenver assuming that the

other zones are controlled using a fixed schedule, which is defined by ASHRAE

90.1 [64]. Specifically, we calculate the total HVAC energy consumption over

1 month and choose the policy that results in the minimum energy use as the

best policy for that zone. This approach is described in Algorithm 2. While

it is not guaranteed to identify the best set of policies for the entire building,

it provides a good indication of the expected performance.

Figure 5.3 shows the distribution of the monthly energy consumption when

we use different policies from the whole policy library to control every zone

in the target building BDenver. Due to the large spread in energy consumption

when considering all policies, we only present the top 100 best-performing

policies. We can make two observations based on Figure 5.3. First, the spread

in core zones is larger than that of the perimeter zones, implying that there
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is a higher potential for energy savings in the core zones. Moreover, some

agents can realize significant energy savings over the baseline in the core zones.

We attribute this to the more complex heat dynamics in the core zones as

they are adjacent to multiple perimeter zones. The RL agents that learn

such complex dynamics can greatly reduce the energy consumption. Second,

training with diversity helps to identify policies that are sub-optimal in the

training building but perform well in the target building BDenver. The stars in

Figure 5.3 represent the performance of policies that are trained considering

environmental diversity only. These stars are dispersed over the right tail of

each distribution, indicating a higher energy consumption than the policies

that are obtained using non-zero diversity weights. Comparing with the fixed-

schedule baseline (the red dashed line), we find that all stars are located on

the right side of the baseline, which means that the (near-)optimal policies

(w = 0) found in the training building always perform worse than the fixed-

schedule baseline in the BDenver. However, policies trained with diversity in the

training building can perform better than the baseline as the left whisker is

generally on the left side of the vertical line. The second observation supports

our argument about incorporating diversity in transfer learning.

Comparing different types of diversity: Figure 5.4 shows the BDenver’s

HVAC energy consumption per episode. The policies are selected from Πscratch,

Πenvironment, Πpolicy, and Πboth. They are then trained or retrained in BDenver

for 5,000 months. The energy consumption is averaged over ten runs with dif-

ferent random seeds and the shaded region around the average shows the 95%

confidence interval. The (black) dashed line indicates the baseline performance

using a fixed-schedule, defined by ASHRAE 90.1, for all zones.

It can be readily seen that selecting and transferring policies from Πenvironment,

Πpolicy, and Πboth to building BDenver results in a lower monthly energy con-

sumption than learning policies from scratch (Πscratch). Selecting policies from

Πboth is better than Πpolicy, but the curves cannot be easily distinguished in

this figure as the difference is small. Moreover, the transferred policies con-

verge faster than the policies learned from scratch on the building BDenver, i.e.,
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Figure 5.4: Performance comparison of four initial policy selection methods on
building BDenver. The mean and 95% confidence interval of the total monthly
energy consumption are computed based on 10 independent runs. Note that
the y-axis is aggregated.

Πscratch. Specifically, Πenvironment, Πpolicy, and Πboth converge at around 3,500,

1,500, and 1,500 episodes, respectively. Πscratch does not seem to converge

even after 5,000 episodes. The policies learned from scratch might be stuck in

local optima due to the complexity of the multi-agent environment and control

task. Incorporating diversity can help the transferred policies get closer to the

global optimum by starting from a better point.

Figure 5.4 also demonstrates the need for policy diversity. Without pol-

icy diversity, Πscratch and Πenvironment performs worse than the fixed-schedule

baseline. Πpolicy, and Πboth, on the other hand, saving 40.11% and 40.40% more

energy than the baseline, respectively. Interestingly, even without retraining

on BDenver, the performance of Πpolicy (4.22 MWh) and Πboth (4.22 MWh) is

much better than the performance of Πenvironment (10.09 MWh) and the fixed-

schedule baseline (6.98 MWh).

Moreover, compared to the MARL agents trained only on BDenver for 5,000

episodes, 48.97% more energy savings can be achieved by incorporating di-

versity in the policy library and assigning suitable policies to BDenver without
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Figure 5.5: Changes in inertia for different cluster sizes.

retraining.

We conclude that the proposed transfer learning framework helps to find

better control policies at a lower cost in a novel environment. We observe that

introducing environmental diversity is less advantageous than policy diversity,

and including both yields almost the same result as incorporating policy di-

versity only. It is worth noting that the performance of Πpolicy and Πboth does

not improve as much as the other two sets of polices over time. This might

be because they contain policies that are near optimal for the zones in the

target building, leaving little room for improvement when they are retrained.

This implies that policies from Πpolicy and Πboth can be used with minimum

adaptation, bringing the training cost on the target building to nearly zero.

5.5.3 Policy clustering analysis

Next we examine our policy clustering result to see whether policies that were

in the same cluster had similar performance in the target building. Ideally the

top cluster should contain the majority of well-performing policies. We again

consider BDenver for this microbenchmark. Figure 5.5 shows the result used by

the elbow method to choose the optimal number of clusters for a randomly
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Figure 5.6: The cumulative density plot for the distribution of policies’ per-
formance when we form six clusters on a select zone in building BDenver. Each
line represents the distribution of one cluster. A similar result can be obtained
from other zones in the building as well.

picked zone in BDenver. It can be seen that increasing the cluster size from six

to seven would reduce the inertia by the same amount as increasing it from

five to six. Thus, the elbow method returns six clusters.

Clustering all policies into six clusters allows to eliminate 83% of the poli-

cies after the first round of policy evaluation. We assess the risk of incorrectly

removing well-performing policies by plotting the energy performance distri-

bution for all clusters in Figure 5.6. The x-axis represents the total monthly

energy consumption if the policy is selected as the behavior policy for the

given zone, and all other zones are controlled using the default controller. The

left-most curve in Figure 5.6 shows the empirical Cumulative Distribution

Function (CDF) of policies that belong to the top cluster. Interestingly, more

than 50% of these policies keep the total monthly energy consumption below

9.5MWh. This is while the other clusters barely include a policy that keeps

the total monthly energy consumption below 9.5MWh. This implies that the

left-most curve represents the best performing cluster and neglecting policies

in other clusters should not affect the HVAC energy consumption. Although

there is a small overlap between the top three clusters, for every zone, there

is at least one policy in the top cluster that is better than all the policies in

these two clusters.
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Figure 5.7: Learning curve of different controllers on Building BDenver. Each
solid line shows the average performance of 15 runs and the shaded area shows
one standard error from the mean. The y-axis is exaggerated.

Recall that we sample n = 5 policies from each cluster to estimate the

performance of each cluster. From Figure 5.6, we conclude that even if we

sample only 1 policy from each cluster, the chance of incorrectly identifying

the best performing cluster is slim. Sampling 5 policies would further reduce

the probability of misidentifying the top cluster.

5.5.4 Policy transfer to BDenver

GS [66] suggests that combining GK for cluster ranking with SNIP* for policy

ranking within the top cluster can provide the best result. We refer to this set-

ting as GK-SNIP* and compare with four baselines introduced in Section 5.5.1

to evaluate the efficacy of the proposed methodology.

Figure 5.7 shows the performance of our proposed method with other base-

lines on the target building BDenver, which is different from the training build-

ing, Building A, in terms of the floor area and HVAC design. However, both

buildings are located in the same city and they have relatively similar floor

plans. All policies are either selected from the policy library or initialized ran-

domly (SARL and MARL). Regardless, they are (re)trained for 500 episodes

(months). Policies that need extensive training are not suitable for deployment

on real buildings. For instance, the SARL controller trained on the target
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building (without transfer learning) reaches the same level of performance as

the optimal policies assigned from the policy library only after 15,000 episodes,

i.e., 1,250 years after the deployment!

It can be readily seen that the proposed methodology provides a reason-

able assignment for all zones in BDenver. The performance of the proposed GK-

SNIP* policy ranking method at episode 0 (5.41 MWh) is 22.5% better than

the default controller that is presumably designed by HVAC engineers (6.98

MWh). It is also significantly better than SARL (13.74 MWh) and MARL

(13.77 MWh). This implies that GK-SNIP* can be applied to select policies

that have reasonable performance on the target building. The optimal assign-

ment has an initial total energy cost of 3.99 MWh. The difference between the

proposed policy selection method and the optimal selection is partly due to

how we sample policies from the top cluster. Note that the policies assigned to

the target building under the optimal assignment do not benefit significantly

from retraining. Specifically, the total HVAC energy consumption reduces by

3.8% (from 3.99 MWh to 3.84 MWh) after 500 episodes. We believe this is

because there is not much room for improvement as we are already close to the

minimum HVAC energy consumption that could be realized by a controller in

this building given its occupancy schedule.

The proposed policy selection method, GK-SNIP*, can improve by 10.2%,

reaching the total monthly energy consumption of 4.86 MWh after 500 episodes

of training on BDenver. This is 30.4% less than the energy consumption of

the default controller. Policies trained only on BDenver (not transferred from

Building A) fail to reach a level of performance that is comparable with the

default controller at the end of the 500 episodes. SARL reaches 12.23 MWh

and MARL reaches 13.17 MWh of monthly energy consumption. We also

witness an increase in the energy consumption under MARL after around 200

episodes. This might be because agents are not collaborating with each other.

As a result, they start to cancel out each other’s action (aka fighting zones),

increasing the total HVAC energy use.
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Figure 5.8: Learning curve of different controllers on Building BSanFrancisco.
Each solid line shows the average performance of 15 runs and the shaded area
shows one standard error from the mean.

5.5.5 Policy transfer to other buildings

To further validate our proposed methodology, we consider two target build-

ings (BSanFrancisco and C) that have some major differences with the training

building (Building A). Building BSanFrancisco is located in a warmer climate com-

pared to the training building. Moreover, it differs from the training building

in terms of the floor area and HVAC design. Building C is a real building and

has several differences with the training building, including its size, occupancy,

floor plan, HVAC design, and weather conditions.

Figure 5.8 shows the performance result in Building BSanFrancisco. The total

energy consumption in all cases is lower than Figure 5.7 because we are looking

at a winter month with a higher average outside temperature in San Francisco,

reducing the heating demand of the building. Most of the observations made

in Section 5.5.4 are true in this case. Before retraining, the proposed policy

selection method, i.e., GK-SNIP*, yields 16.4% lower monthly energy con-

sumption (3.31 MWh) than the default controller (3.96 MWh). The optimal

assignment yields the lowest monthly energy consumption at episode 0 (2.01

MWh), which is 49.2% lower than the default controller. After 500 episodes

of training, the policies assigned by GK-SNIP* reduce the total HVAC en-
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Figure 5.9: Learning curve of different controllers on Building C. Each solid
line shows the average performance of 15 runs and the shaded area shows one
standard error from the mean. The y-axis is exaggerated.

ergy consumption by 10.3%, reaching 2.97 MWh. This is 25.0% lower than

the energy consumption of the default controller and 50.8% higher than the

optimal.

Figure 5.9 compares the performance of the proposed method with the four

baselines in Building C. We see the same trend here too. GK-SNIP* performs

better than the default controller, SARL, and MARL, and is slightly worse

than the optimal assignment. The default controller consumes 4.83 MWh

of energy in one month, whereas the proposed GK-SNIP* reduces it to 4.71

MWh before retraining and to 4.64 MWh after 500 episodes. These numbers

are 4.413 MWh and 4.411 MWh for the optimal assignment.

Our experiment on all buildings supports the claim that diversity-induced

RL offers clear benefits for transferring policies to a novel target building, and

that the proposed GK-SNIP* policy selection method can efficiently identify

policies, among the policies in the policy library, that perform well in the novel

target building using only 2 weeks of historical data. The transferred policies

consistently outperform the default controller in terms of the HVAC energy

use without sacrificing thermal comfort. This is the case even before these

policies are retrained to adapt to the new environment.
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5.6 Discussion and Summary

We presented a MARL-based HVAC control strategy that incorporates envi-

ronmental and policy diversity to better explore the space of reasonable control

policies in a controlled built environment, which can be a real building used

for training or a simulator. We showed that the policies learned by accounting

for diversity can generalize better to novel environments, for example build-

ings that have a different structure, floor plan, HVAC system, and occupancy

pattern from the training building. We ran experiments on COBS and Ener-

gyPlus to quantify energy savings that can be realized in a large multi-zone

target building using environmental diversity, policy diversity, and both, and

to investigate whether the policies should be retrained in each case.

Our result indicates that by transferring and deliberately assigning diverse

policies to the zones in the target building, the monthly energy use of the

HVAC system can be reduced by up to 40% over the default fixed-schedule

controller in EnergyPlus, if the policy can be evaluated using Algorithm 2, and

that retraining may not be needed when we incorporate policy diversity. We

then proposed an offline policy selection algorithm that effectively identifies

high-quality policies to transfer into a novel building, even using as little as two

weeks of operational log data, to deal with the impractical issue of Algorithm 2.

The proposed policy selection algorithm resulted in 4.0-30.4% energy saving

than the default controller.

Note that although we used simulated buildings in our experiment to rep-

resent the training and target buildings, the proposed methodology can be

applied to real buildings.
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Chapter 6

Data-efficient personal comfort mod-
eling

Occupant thermal-comfort complaints are the biggest operational headache

of facilities managers. Many of the complaints can be attributed to the di-

verse nature of individuals’ thermal comfort needs which are not accounted

for in the de facto standard for thermal comfort. This has motivated research

on developing data-driven personal comfort models and incorporating them

in control loops. But the progress on this front has been hampered by the

lack of sufficient ground-truth thermal comfort data to train accurate ther-

mal comfort models. To address this problem, in this chapter we explore how

artificial labels, indicating individuals’ true thermal preference, can be gener-

ated from their heating and cooling behavior with a personal comfort system.

Furthermore, we use clustering to identify individuals with similar comfort re-

quirements in a rich dataset collected from 37 individuals in an office building,

and develop a small number of group comfort models, each achieving a high

accuracy in predicting the thermal comfort of individuals within the respec-

tive cluster. The pretrained group comfort models are then combined using

an ensemble method to create a general thermal comfort model that can ac-

curately predict the thermal comfort of any individual without knowing their

thermal preferences or group membership a priori. We evaluate the efficacy

of two ensemble methods as more training data becomes available and show

that they outperform two conventional comfort models (PMV, Adaptive) and

the personal comfort model that is developed from scratch for a particular

individual. Specifically, the best ensemble comfort model yields on average
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71% accuracy in predicting individuals’ thermal preference using only 6 hours

of training data, excluding no occupancy periods.

6.1 Introduction

Providing thermal comfort is one of the primary goals in the design and oper-

ation of a building’s HVAC system. There is strong evidence that occupants

that are more satisfied with their surrounding thermal environment have im-

proved health and productivity [52], [96].

There has been several attempts in recent years to address these shortcom-

ings by developing models that better reflect the thermal comfort of a specific

individual [85]. The so-called personal comfort models are often developed

using additional features, including measurements of the central HVAC sys-

tem [92] and the data collected by sensors embedded in wearable devices [70],

[101] and PCS, e.g., a heated and cooled chair [86] or a desk fan [61]. These

measurements are then related to occupants’ feedback acquired via surveys,

indicating their satisfaction with or preference for their local thermal environ-

ment (e.g., comfortable, want cooler, want warmer). Unfortunately, conduct-

ing surveys at regular intervals is costly and can be deemed intrusive too. It

is also hard to secure consistent occupant feedback in the long run as the par-

ticipation rate tends to decay over time. Consequently, only a small amount

of labels indicating an individual’s true thermal comfort is typically available,

posing a significant challenge for the development of personal comfort models

with many trainable parameters, e.g., neural networks. A related problem is

training an accurate personal comfort model when sufficient training data is

unavailable, for example, because the occupant is new to the building (also

known as the “cold start” problem).

This chapter aims to address (a) the inadequacy of training data by gen-

erating artificial labels from individuals’ heating and cooling behavior with a

PCS, and (b) the cold start problem in the development of personal comfort

models by combining a number of pretrained group comfort models through an

ensemble method. Each group comfort model is an expert neural network that

is trained on data from a group of individuals who have similar thermal com-
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fort requirements. It outputs a probability distribution over thermal comfort

labels for any individual that could be a member of this group. By creating an

ensemble of these experts, it is possible to build an accurate thermal comfort

model for a given individual after observing their behavior for a short period

of time.

To show the feasibility of these ideas and validate the proposed methodol-

ogy, we use the PCS chair dataset from a field study described in [84], which

is the largest PCS study to date. We postulate that the 37 occupants in this

dataset are a representative sample of the office building occupants with regard

to their thermal comfort requirements1 and that this dataset can be divided

into groups of occupants with similar thermal comfort requirements (although

the division into these groups is not known in advance).

Our contribution is fourfold:

• We propose a new method of generating artificial labels from occupants’

heating and cooling behavior to increase the size of training data for

personal comfort models.

• To facilitate the training of data-driven comfort models, we identify rel-

evant features for explaining an individual’s thermal comfort among the

data gathered by PCS, HVAC, and HOBO2 sensors. We develop a re-

current neural network, specifically a LSTM model, to predict thermal

preference of each individual using the identified features.

• We explore the possibility of grouping individuals based on the perfor-

mance of their personal comfort model when applied to predict thermal

preference of other individuals. Specifically, we apply a hierarchical clus-

tering algorithm to obtain clusters using the proposed distance measure.

Once clusters are formed, we train a new LSTM model on the data

that belongs to all individuals within the same cluster and refer to it as

1Should there be occupants with unique comfort needs that are not included in that
dataset, it is possible to extend our ensemble model by adding a new group thermal comfort
model.

2HOBO is an independent environmental data logger installed at each occupant’s work-
station as described in [84].
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the group comfort model. We evaluate the efficacy of these models in

predicting an individual’s thermal preference by comparing them with

various baselines.

• We apply two ensemble methods, namely stacked ensemble and mixture

of local experts [75], to combine the output of the pretrained group

comfort models. These methods discover the relevance of the group

comfort models for predicting thermal preference of a person even if

they are new to the building, thereby improving accuracy and robustness

in a classification task where labeled data is limited. We compare the

predictive power of the ensemble comfort models with PMV and adaptive

comfort models along with personal comfort models that are trained from

scratch for this person. We show that the mixture of experts ensemble

comfort model outperforms the other models and achieves an accuracy of

around 71% after observing an individual’s heating and cooling behavior

for up to 6 hours, excluding the time that the chair is unoccupied, and

without relying on survey data.

6.2 Data set

We use the data set from a field study described in [84], which is the largest

PCS study to date. This data set was also used in [86] to develop personal

comfort models and compare them with PMV and adaptive comfort models.

It consists of three types of data, namely survey data denoted Dsurvey, sensor

data denoted Dsensor, and metadata denoted Dmeta. The data was collected

between April and October 2016 in an office building located in Northern

California in three overlapping phases. Each phase was about 4 months long

with respectively 10, 17, and 10 participants. Therefore, the data set consists

of a total of 37 people participated in the case study: 17 male and 20 female

participants, out of which 30 were in an open workspace and 7 had private

offices. We ignore the metadata Dmeta as it is not used in this study.

The survey data Dsurvey is collected three times per day for a period of

twelve weeks following a one-week adjustment period. All subjects were asked

to select their current thermal comfort preference from one of the following
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Table 6.1: Modeling Feature list

Sensor Feature Unit

HVAC

① Room air flow ft3/min
② Room damper position %
③ Room discharge air temp. °F
④ Room heating output %
⑤ Room maximum airflow ft3/min
⑥ Room minimum airflow ft3/min
⑦ Room heating setpoint °F
⑧ Room cooling setpoint °F
⑨ Room temp. °F

Weather
Station (WS)

① Outdoor air temp. °C
② Prevailing mean outdoor

air temp.
°C

HOBO
at each

workstation

① Air temp. °C
② Operative temp. °C
③ Slope in air temp. °C/h
④ Relative humidity %
⑤ Slope in relative humidity %/h

three options: ‘want warmer’; ‘want cooler’; ‘no change’. The survey comple-

tion time is also recorded in the data set. We omit the description of other

features as they are not used in this chapter.

The sensor data Dsensor includes data from four sources: the PCS chair; the

central HVAC system; the HOBO sensor located at an occupant’s workstation;

and a nearby weather station. The PCS data is collected at 20-second intervals.

The HOBO and HVAC data are logged at 5-minute intervals. The weather

station data is recorded hourly. We resample the data from different sources

at 1-minute rate and align them by selecting data points that are nearest to

regular intervals of 1 minute.

We use the forward filling method to fill all missing values. If |xt+1/xt−1| >

τ , then xt+1 is considered an outlier. For temperature and humidity readings,

τ is set to 10% and 20% respectively. Outliers are treated in the same way as

missing values. Table 6.1 lists all features that we used in this chapter.
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6.2.1 Generating artificial labels

After data cleaning, there are 4743 survey responses available in the Dsurvey for

the 37 occupants. This gives us, on average, fewer than 130 thermal comfort

labels per individual, which is not enough to train an accurate personal comfort

model. What exacerbates the problem is that some individuals infrequently

participated in the surveys and the number of labels available from them is

less than 50. This presents a significant barrier to the development of complex

data-driven models, for example neural networks.

To address this problem, we consider individuals’ heating and cooling be-

havior with the PCS chair as a proxy for their thermal comfort preference (i.e.,

the label). Specifically, it is easy to determine when individuals use the heat-

ing or cooling function because the control intensity of chair fans and heaters

is continuously recorded in Dsensor (in a scale from 0% to 100%). Figure 6.1

illustrates the amount of labels collected over time from one individual. It

can be readily seen that there is a 97 fold increase in the amount of labels

available for an individual if we use their heating and cooling behavior as a

proxy for their thermal preference instead of using survey responses. The total

amount of artificial labels generated per individual is about 10k. Given that

each label represents a 1-min interval, 10k labels amount to 7 days of PCS

data, excluding the instances where the PCS chairs are unoccupied by the

occupants.

Kim et al . [84], [86] examined the correlation between occupants’ true

thermal preference and PCS operation, and have corroborated that individu-

als’ heating and cooling behavior with the PCS chair can be treated as indirect

feedback in a vast majority of cases. Thus, it can be used to generate thermal

comfort labels with an acceptable loss of accuracy. Notice that we do not

use occupant behavior with the PCS as an input feature for thermal comfort

prediction (as the authors did in [86]) since it is used to generate labels for

training models.
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Figure 6.1: The total amount of labeled thermal comfort data that becomes
available from a sample individual over time. Note that the y-axis is logarith-
mic scale.

6.2.2 Dealing with imbalanced data

One crucial step in the preprocessing of thermal comfort data is to ensure

that class labels are evenly distributed in the training set. This is because the

abundance of samples from one class (e.g., ‘no change’) can swamp samples

from the other classes (‘want warmer/cooler’) as they have the same weight in

the loss function. To give an example, in a multi-class classification problem

where the ratio of samples in the majority class to all samples is α%, a naive

classifier that always predicts the majority label will attain α% classification

accuracy. The data set we use in this chapter, like other real-world thermal

comfort data sets [70], is prone to the imbalanced data problem. For example,

even after generating artificial labels, thermal comfort labels are not evenly

distributed in our data set and for some individuals the value of α is greater

than 85%.

There are a few different ways to address the data imbalance issue. One

approach is to tweak the loss function such that mispredicting minority classes

is worse than mispredicting the majority class. Since this has to be done for

each individual differently, it creates problems when we group some individuals

together. The other two common solutions are reducing the number of samples

in the majority class (undersampling), or synthesizing samples for minority

classes (oversampling). In this chapter, we use a combination of undersampling
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Figure 6.2: The proposed methodology.

and oversampling techniques to balance the comfort data such that the size

of the data set remains the same. For undersampling, we ignore a sequence

of samples (i.e., a segment of time-series) with the same label in a way that

it does not affect temporal correlations in the data. For oversampling, we use

the Synthetic Minority Oversampling Technique (SMOTE) [23], which selects

a random sample from a minority class, identifies its k-nearest minority-class

neighbours, then generates new samples using a convex combination of the

selected sample and a randomly picked sample among its neighbours. There

are two individuals (ID 13 and 19) who do not have the ‘want warmer’ label

at all. We only balance the other two labels for them.

6.3 Methodology

In this section, we describe our methodology for building base learners (i.e.,

group comfort models) and combining them to predict an individual’s thermal

preference using only a small amount of labeled data (i.e., artificial labels

created from PCS heating/cooling behavior). We assume artificial labels are

added in the preprocessing step and class labels are now equally distributed

in the data set. Figure 6.2 shows an overview of our approach which entails
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(1) finding relevant features to predict thermal preference of each individual;

(2) training the personal comfort model using these features; (3) measuring

similarity between individuals by applying the personal comfort model of each

individual to predict thermal preference of the other individuals; (4) clustering

similar individuals into a group according to this distance measure; (5) training

a group comfort model for all individuals within the same cluster; and (6)

finally combining these pretrained group models to predict thermal preference

of a new person using an ensemble method. We describe each of these tasks

below.

6.3.1 Finding relevant features

We consider two different sets of features to train and evaluate the performance

of personal comfort models. The first set consists of all features included in

Dsensor. The second set consists of the relevant features for predicting thermal

comfort of each individual. To select these features we use the Benjamini-

Hochberg procedure [13]. This procedure selects the relevant features so as to

keep the False Discovery Rate (FDR) below a certain threshold, where FDR

is defined as the expected proportion of type I errors in hypothesis testing.

In other words, it ensures the percentage of irrelevant features that are called

relevant out of all hypothesis tests (e.g., univariate statistical tests) is less than

the given threshold.

The rationale for selecting only a subset of features for each individual is

that reducing the number of features should reduce the amount of trainable

weights, lower inference time, and improve robustness of the learning algo-

rithm. The rationale for selecting all features is that the first few layers of the

trained neural network could automatically perform feature selection. Thus,

manually selecting a subset of feature may not be necessary given that we

use a neural network model. For the cases where feature selection is done

prior to model development, we select the relevant features for each individual

following the Benjamini-Hochberg procedure; this leads to possibly different

feature sets to predict an individual’s thermal preference. Thermal comfort

is influenced by individual differences [157], and therefore individuals would
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have a different set of most important features since their comfort perception is

influenced by the unique combinations of personal factors and environmental

conditions at their local workstation. For example, mean radiant tempera-

ture might be a more important feature for an individual who seats next to a

window.

To select the relevant features, we first run the Analysis of Variance (ANOVA)

test to obtain the f-statistic and p-value associated with each feature. We then

rank all features by sorting them in ascending order of p-value. The Benjamini-

Hochberg procedure finds the largest rank that controls FDR at level τFDR.

Hence, the relevant features are the features that satisfy the following con-

straint:
Feature rank× τFDR

Total number of features
> Feature p-value.

Figure 6.3 illustrates this procedure for a sample individual. The x-axis shows

the rank of each feature according to its p-value and the slope of the red

dotted line is τFDR

# features
. The features that fall below this line are the relevant

features that are selected. For example, there are six relevant features for this

individual. We summarize the identified relevant features for each individuals

in Figure 6.4.

6.3.2 Developing personal comfort models

We use the LSTM model to predict an individual’s thermal preference. LSTM

is a powerful model for univariate time-series forecasting due to its ability

to capture temporal dependencies in time-series data. Our comparison with

Deep Neural Network (DNN) and RF models in Section 6.4 shows that it is

important to take into account these temporal dependencies. We use DNN

as a baseline to show the significance of capturing temporal dependencies in

thermal comfort data. Similarly, we use RF as a baseline because it is a

suitable model for classification when the data set is small, and that it had the

best performance in the same data set among the models developed in [86].

Each LSTM model has two LSTM layers with 10 cells in each layer. The

input is a subset of features in Dsensor that are selected as discussed in the next

section, and the output layer is a fully-connected dense layer that consists
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Figure 6.3: The Benjamini-Hochberg procedure for selecting the relevant fea-
tures for an individual using τFDR = 0.5.

of three neurons with softmax activation. Hence, it outputs a probability

distribution over the three possible thermal preference labels (i.e., no change,

want cooler, want warmer). Note that there is a cell state in LSTM that

stores information from previous time steps. We use the Adam optimizer [88]

to optimize the weights during the training time.

We denote the LSTM model trained for each individual i by Mi, and the

sensor data collected from this individual by Di. We have:

∪i∈{1···k}Di = Dsensor, ∩i∈{1···k}Di = ∅,

where k is the total number of individuals in our data set. We select the

relevant features in Di, as discussed earlier, for personal comfort modeling by

applying a feature mask to the data set of each individual.

The structure of the DNN model, which is used as a baseline, is similar

to the LSTM model. We simply replace all LSTM layers with dense layers

containing the same number of cells.
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Figure 6.4: Relevant features used as input to each personal comfort model.
Colored cells represent the selected features. Circled numbers refer to the
order in which features are listed in Table 6.1.

6.3.3 Measuring similarity between individuals

We use the LSTM model described in the previous section as the personal

comfort model. To determine the number of training epochs, we monitor the

training accuracy and terminate the training process when the accuracy does

not improve for 5 consecutive epochs. The batch size is set to 60, which is

equivalent to 1 hour of data.

Once the personal comfort model is trained for each individual, we transfer

their personal comfort model to other individuals and calculate the prediction

accuracy of the transferred model. Specifically, suppose Mi is the model
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trained on Di; we evaluate its performance when it is applied to predict ther-

mal preference of another individual j (j ̸= i) using the respective thermal

preference labels in Dj. This prediction accuracy is denoted by Acci,j which

is the element in row i column j of the accuracy matrix Acc. Note that la-

bels in Di and Dj are balanced, as described in Section 6.2.2, to avoid biased

estimation.

6.3.4 Clustering individuals

After identifyingMi’s, we group together similar individuals. Here the dissim-

ilarity between two individuals is defined in terms of the prediction error when

the personal comfort model of one individual is applied to predict thermal

preference of the other individual. By grouping individuals, we are essentially

expanding the data set used for training each of the group comfort models. The

individuals with inadequate training data will benefit most from this grouping

because the group comfort model can achieve a much higher accuracy than

the respective personal comfort model.

We define the distance between two individuals as the maximum prediction

error of the transferred personal comfort models. That is

Di,j = Dj,i = 1−min(Acci,j,Accj,i), (6.1)

where i, j ∈ {1 · · · k} and i ̸= j. This way we can construct a symmetric

distance matrix denoted by D from the matrix Acc which is asymmetric. Note

thatMi might have different input features thanMj when we use the relevant

features for each individual.

To complete the distance matrix D, we set diagonal elements to 0, intu-

itively because each individual is identical to themselves. Then, the symmetric

distance matrix D is used to form the clusters using complete-linkage clus-

tering. Complete-linkage clustering is an agglomerative clustering technique

where each individual is initially in its own cluster. Clusters are sequentially

combined into larger clusters, starting from the two clusters that have the

minimum distance from one another, and the distance matrix is updated ev-

ery time two clusters are merged into one. Specifically, the distance between

two clusters is defined as the distance between those two individuals (one in
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Figure 6.5: Sample agglomerative clustering result based on 37 occupants. The
lower triangular portion of D is shown here together with the upper triangular
portion of D of three specific clusters (out of the 15 resulting clusters).
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each cluster) that are farthest away from each other. We stop merging clusters

when all the pairwise distances (between clusters) are greater than a certain

threshold. We set this threshold to 0.4 and treat the clusters that are not

merged as our final clusters. The threshold is set based on the average esti-

mation accuracy over all personal comfort models. When we use the relevant

features only to train personal comfort models, this clustering results in 16

clusters, 8 of which contain only one individual. However, when we use all

features to train personal comfort models, we obtain 15 clusters, 6 of which

contain only one individual.

Figure 6.5 depicts the lower triangular portion of the symmetric distance

matrix constructed for all 37 individuals before clustering them and three

example distance matrices corresponding to three clusters of size 7, 2, and 7

individuals, respectively. Observe that individuals that are grouped together

will have smaller pairwise distances if the corresponding group comfort model

(introduced next) is used to predict their thermal preference. This implies that

group comfort models work quite well for individuals within the respective

clusters.

6.3.5 Developing group comfort models

To build the group comfort model Mg,c for each cluster c, we adopt the same

neural network architecture and training procedure as the LSTM-based per-

sonal comfort models (i.e., Mi’s). We first create the data set Dg,c for each

cluster c, where Dg,c = ∪i∈cDi. In the next step, we re-evaluate the impor-

tance of input features for each group comfort model. To this end, we run the

Benjamini-Hochberg procedure again, this time considering Dg,c, to obtain the

relevant features for the group model. Figure 6.6 shows the set of features that

emerged as relevant features for each cluster. While the set of relevant fea-

tures typically differs from one cluster to another, most clusters consistently

include the following features: room air flow, discharge air temperature, and

setpoints (measured by HVAC sensors), mean outdoor air temperature (from

the weather station), and all measurements by the HOBO sensor installed at

the workstation. This explains that individual’s thermal perception is influ-
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Figure 6.6: Relevant features used as input to each group comfort model.
Colored cells represent the selected features. Circled numbers refer to the
order in which features are listed in Table 6.1.
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enced by a combination of local, room, and outdoor environmental conditions.

Lastly, we train the group comfort model Mg,c for every cluster c using all

labeled thermal comfort data in Dg,c.

6.3.6 Combining group comfort models

Although each group comfort model can predict thermal preference of individ-

uals within that group with high accuracy, they cannot be used for individuals

that are new to the building because their group membership is not known

a priori. Additionally, since enough labeled data (i.e., artificial labels) is not

available from an individual who is new to the building, an accurate personal

comfort model cannot be built from scratch. To address this problem, after

training a group comfort model for every cluster (i.e., the base learner), we

ensemble them to predict thermal preference of a person that is new to the

building.

We note that it is possible to ensemble personal comfort models rather than

group comfort models. However, this would increase the number of parameters

in the ensemble model that must be trained, lowering the accuracy of our

method when training data is limited and undermining its ability to address

the cold start problem.

Next we introduce two different methods to ensemble the LSTM models

that pertain to different groups.

Stacked ensemble Figure 6.7 shows the architecture of the ensemble model

that uses a neural network to combine multiple base models, each being a pre-

trained LSTM model. The model takes all sensor data available in Dsensor
as input, including the HVAC sensor data and the HOBO sensor data. The

feature masks are used to filter out the features that are not among the rele-

vant features for each group so that Mg,c receives only the appropriate input

features. The output of each group comfort model Mg,c is the probability

distribution over the three thermal preference labels. These probabilities are

then fused using a dense layer with 10 neurons (referred to as the meta-model).

Fusing these probabilities before producing the final output enables the model

to learn the latent relationship between the outputs of different group com-
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Figure 6.7: Architecture of a stacked ensemble. The input to the meta-model
(the last layer before output) is the stacked output of group thermal comfort
models.

fort models, which is not considered in other ensemble methods that will be

presented next.

In the training stage, all the weights in group comfort models are marked

immutable. Therefore, the model only needs to update the weights for the last

two layers. We use the same optimizer that is used to train Mg,c to update

the meta-model’s weights.

Mixture of experts The mixture of experts [75] is an ensemble learning

method in which a gating network learns how to assign responsibilities to

the experts (i.e., base learners). Concretely, the gating network computes

the probability of assigning an input data point to each expert, which is an

element of w, based on the relative performance of the experts for that data

point. The architecture of the gating network is shown in Figure 6.8. Similar

to the stacked ensemble, we only update weights for the gating network during

training and do not modify weights of the base models. The loss of this gating

network is defined as:

ℓ = −log
∑
c

wce
− 1

2
∥Mg,c(fc(X))−ȳ∥2 ,

where X is a batch of input data, fc is the feature mask, and ȳ is the associated

label. The main difference between the mixture of experts and stacked ensem-
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Figure 6.8: Architecture of a mixture of experts consisting of a gating network
that assigns responsibilities to local experts.

ble is that the base models compete with each other in the former whereas

they collaborate with each other in the latter to produce the final output.

This competitiveness is because of the loss function we use to train the gating

network.

6.4 Results

In this section we study the efficacy of different comfort models in a classifica-

tion task, i.e., thermal comfort prediction, using the methodology laid out in

Section 6.3. We adopt accuracy, which is defined as the percentage of correct

predictions over all predictions, as our evaluation metric. We also present the

confusion matrix to provide insight into which classes are confused more often.

We split the data collected from each individual i into training and test sets

which are denoted by Dtraini and Dtesti , respectively. Specifically, the first half

of Di is used for training and the rest for testing. We balance class labels in

Dtraini using the technique described in Section 6.2.2. However, for fair com-

parison with related work, we do not balance class labels in Dtesti and only use

artificial and true labels for the evaluation of each comfort model.

Consider an individual i that belongs to cluster c. We evaluate the personal,

group, and ensemble comfort models on Dtesti . Note that while their personal

comfort model, Mi, is trained on Dtraini , their group comfort model, Mg,c, is
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trained on Dg,c \ Dtesti . This guarantees that the training set does not overlap

with the test set. Finally, the ensemble comfort model is built by combining all

the group comfort models. We assume that each group comfort model Mg,c′

is trained on Dg,c′ , except for the group comfort modelMg,c that is trained on

Dg,c \Di. This is necessary as we intend to evaluate the ensemble model for an

individual that is new to the building, so neither their training data nor their

test data can be used to train the group models that will serve as base models

in the ensemble model. Finally, if individual i is the sole member of cluster c,

we neglect Mg,c when we build the ensemble model because Dg,c \ Di would

be an empty set in this case.

For the sake of comparison, we calculate and report the prediction accu-

racy of the PMV and adaptive models for each individual too. We use the

pythermalcomfort Python package [147] to calculate the PMV value and

acceptable operative temperature under ISO 7730 [74] and ASHRAE 55 [4]

standards. To compare the results of conventional and personal comfort mod-

els on the same scale, we convert PMV into thermal preference classes based

on the following assumptions: |PMV | ≤ τ is ‘no change’; PMV > τ is

‘want cooler’; and PMV < −τ is ‘want warmer’. Because both the ISO 7730

standard [74] and ASHRAE 55 [4] recommend maintaining |PMV | below 0.5,

we set τ = 0.5 in this study. To convert the output of the adaptive model

into thermal preference classes, we assume acceptable operative temperature

within 80% acceptability limits to be ‘no change’; and greater/less than the

upper/lower 80% acceptability limits to be ‘want cooler/warmer’, respectively.

6.4.1 Evaluating personal comfort models

Figure 6.9 depicts the accuracy distribution of three personal comfort models,

namely LSTM, DNN, and RF, and two conventional comfort models, namely

PMV and Adaptive, when they are applied to predict the thermal comfort of

every individual in our data set. It also depicts the accuracy distribution of

a group comfort model which we discuss in the next section. Each personal

comfort model is trained twice on Dtraini , first with the relevant features of in-

dividual i then using all features. The width of the box shows the Interquartile
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Figure 6.9: Thermal comfort prediction accuracy of different individuals using
group, personal, and conventional comfort models.

Range (IQR), the vertical line in the middle is the median of the distribution,

and the whiskers extend to show the rest of the distribution excluding outliers.

Each dot represents the prediction accuracy of a thermal comfort model for

one individual.

Compared to conventional comfort models, personal comfort models give

more accurate predictions for most individuals as it is evident from this figure.

In fact, the median accuracy of both conventional comfort models is worse than

random guess (i.e., 33.3%), which confirms the finding from [29]. Turning our

attention to the personal comfort models that are trained using the relevant

features for each individual and all features, we witness that performing feature

selection is helpful as the median shifts to the right in all cases. We conclude

that removing irrelevant features allows for training a more accurate model,

especially when training data is limited and the neural network models cannot

easily weed out such features.

It can also be seen that the LSTM model, when trained using the relevant
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features, yields a higher median accuracy than DNN and RF. This implies that

capturing temporal dependency enhances the performance of personal comfort

models. It also has higher precision and recall than DNN and RF on average.

Specifically, using the relevant features only, the average precision of LSTM,

DNN, and RF is respectively 70.41%, 63.53%, and 63.70%, and the average

recall of these models is respectively 69.43%, 63.43%, and 63.82%. Note that

the two RF models have superior performance for a number of individuals, but

in general they do not outperform the LSTM model that takes the relevant

features as input for each individual; this is also evident from a comparison

of their median values. Moreover, the thermal comfort prediction accuracy

has a wider spread (IQR) under the RF models. Although the RF models

predict the thermal comfort of some individuals with over 90% accuracy, their

accuracy is even lower than random guess for some other individuals. This

justifies the use of the LSTM model to build group comfort models which we

discuss next.

Figure 6.13b shows the confusion matrix for the LSTM model. The value

written inside each cell indicates the percentage of data with a given true

label that is predicted to have a label that might be the same or different

from the true label. Notice that the share of ‘no change’, ‘want warmer’,

and ‘want cooler’ labels in the test set is respectively 28.24%, 29.82%, and

41.94% (written below each column), suggesting that the test set is not heavily

imbalanced.

6.4.2 Evaluating group comfort models

We evaluate the performance of group comfort models when they are used

to predict the thermal comfort of an individual. Assigning a group comfort

model to an individual is carried out based on the assumption that the group

membership is known a priori. The first two box plots in Figure 6.9 show the

distribution of accuracy when the group comfort model is used to predict an

individual’s thermal preference. It can be readily seen that it outperforms all

personal comfort models in terms of the median of the accuracy distribution

using either one of the feature sets. The only exception is the LSTM model
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that takes relevant features as input, even in that case the performance of this

model is on par with the group comfort model. The superior performance

of the group comfort model can be due to a few reasons. A group comfort

model is trained on labeled thermal comfort data from all individuals within

the same group, increasing the total amount of training data compared to

what is available for training each personal comfort model. The increased size

of training data can also help to alleviate the class imbalance problem which

is common in thermal comfort data sets. The only drawback is generalization,

i.e., the group comfort model is not custom-made for each individual. This

implies that the personal comfort model can potentially outperform the group

comfort model when training data is sufficient, which is not the case here as

we are tackling the cold start problem.

Despite the higher accuracy of group comfort models, they cannot be used

to predict the thermal preference of an individual that is new to the building

since we do not know their group membership yet. We address this problem

by combining pretrained group comfort models using different ensemble meth-

ods. In essence, the learning algorithm utilizes Dtraini to incrementally teach

the ensemble model which base model(s) should be used to predict the ther-

mal preference of this particular individual. We create ensemble models by

combining group comfort models rather than personal comfort models for two

main reasons. First, the LSTM-based group comfort model proves to have sim-

ilar performance compared to the LSTM-based personal comfort model (see

Figure 6.9). Second, by combining multiple individuals into one group, we

can effectively reduce the number of models to consider and consequently the

amount of parameters in the meta-model (or gating network) to train using

Dtraini . This can enable the ensemble model to converge to a high accuracy

level using less training data as we discuss in the next section.

6.4.3 Addressing the cold start problem

We now show the benefit of using ensemble comfort models when it comes to

predicting thermal preference of an individual who has provided no feedback

about their local thermal environment.
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Figure 6.10: The learning curves of different comfort models trained using
the relevant features for each individual. Each curve represents the thermal
comfort prediction accuracy of a specific model averaged over individuals who
had enough data.
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Figure 6.10 shows the prediction accuracy of different kinds of comfort

models (averaged over all individuals who had enough data for this experi-

ment) as we increase the amount of training data that is available for each

individual from 1 hour to 3 days (in chair occupancy time). It can be readily

seen that the accuracy of the two ensemble models converges to a relatively

high value when the amount of training data surpasses 1.5 days. Another

observation is that the learning curve of the mixture of experts has a steeper

slope in the first few hours than other models, indicating that it can achieve

a sufficiently high accuracy using only 6 hours of training data. This suggests

that the mixture of experts ensemble model is more capable of addressing the

cold start problem than the stacked ensemble. We also find that all ensem-

ble comfort models converge to above 71% average accuracy, whereas LSTM

and DNN-based personal comfort models that are trained from scratch reach

respectively the average accuracy of 68.5% and 64.9% with 3 days of training

data. Note that the accuracy of personal comfort models appears to increase

slowly after they are provided with 1.5 days of training data. The LSTM-based

personal comfort model initially has comparable performance with the stacked

ensemble, but the stacked ensemble improves quickly as the amount of training

data surpasses 6 hours. The stacked ensemble eventually reaches a prediction

accuracy that is even slightly higher than the other ensemble model, precisely

72.3% with 3 days of training data.

The ensemble models are expected to eventually reach the same level of

accuracy as the group comfort model when the group membership is known

by learning how to assign responsibilities to the base models or fuse their

outputs. Our experiment shows that with 3 days of training data the mixture

of experts and stacked ensemble models converge to the average accuracy of

71.7% and 72.3%, respectively. This is just about 1.5% and 0.8% lower than

the average accuracy of the group comfort model (73.1%) assuming that the

group membership is known a priori. We anticipate that the gap will shrink

further as more training data becomes available beyond the 3 days used in this

experiment.

Figure 6.11 depicts changes in the accuracy of the LSTM-based personal
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Figure 6.11: The performance comparison of different kinds of comfort models
as more training data becomes available. The purple and pink areas show
respectively the thermal comfort prediction accuracy when only 6 hours and
1.5 days of training data is available. The accuracy of the LSTM-based per-
sonal comfort model improves 20% on average when 1.5 days of training data
becomes available. This accuracy improvement is only 0.65% for the mixture
of experts ensemble comfort model. The results are grouped by the group each
individual belongs to.

comfort model averaged over individuals in the same group, and the mixture of

experts ensemble model when we increase the amount of training data from 6

hours (when the best ensemble model converges) to 1.5 days (when all models

start to converge). We only show the results for the groups that have more

than one member (7 groups in this category). For most groups, the mixture

of experts ensemble3 has already converged using 6 hours of training data and

providing more training data does not lead to a significant performance boost.

The only exceptions are individuals in Group 1, 2 and 5 who experience a

modest performance boost when 1.5 days of training data becomes available.

On the contrary, the LSTM-based personal comfort models that are trained

from scratch do not reach their highest potential when only 6 hours of training

data is available. However, there is a performance boost when 1.5 days is

used to train the personal comfort model. In Group 8, we even observed an

increase of more than 30%, bringing the average accuracy closer to the accuracy

3For brevity, we only plot the results of one ensemble comfort model, i.e., the mixture
of experts, in this figure.
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attained by the ensemble comfort model. This warrants further investigation

into why training a personal comfort model from scratch for a certain group

of individuals could be a better idea than the other groups. We defer this to

future work.

Figure 6.12 compares the performance of different comfort models as more

training data becomes available. We consider 37 individuals that had more

than 1.5 days of data in our dataset. There are three bars for each individual

depicting the accuracy of the following thermal comfort models: the LSTM-

based personal comfort model, the mixture of experts ensemble model, and

the group comfort model (assuming we knew the group membership a priori).

The lower segment of each bar shows the accuracy when the respective model

is trained using 6 hours of data. The upper segment (stacked on top of the

other segment) shows the accuracy improvement when the model is trained

using 1.5 days worth of data. This figure shows how much the accuracy of

the LSTM-based personal comfort model and the mixture of experts ensemble

model will increase for each individual as more training data becomes available.

We find that the accuracy of the mixture of experts ensemble model does not

noticeably increase for most individuals when more that 6 hours of training

data becomes available. Overall, the mixture of experts and stacked ensemble

attain respectively the average accuracy of 71.0% and 49.1%, when 6 hours

of training data is available, while the LSTM-based personal comfort model

yields 42.5% accuracy on average for the same amount of training data.

To better understand the performance of personal and ensemble comfort

models, it is useful to look at the confusion matrix together with the clas-

sification accuracy that we presented in the chapter. Figure 6.13 shows the

confusion matrix for the LSTM-based personal comfort model and the mixture

of experts model. Each confusion matrix shown here is created by averaging

over individuals who had enough data. We note that the percentage written

next to each row/column label shows the share of the respective true/predicted

label. Figure 6.13a and 6.13c show the confusion matrices for the LSTM-based

personal comfort model and the mixture of experts ensemble model when 6

hours of training data is available. It can be readily seen that the ensemble
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Figure 6.13: The confusion matrix obtained on the test set for (a, b) the LSTM-
based personal comfort model and (c, d) the mixture of experts ensemble model
trained using the relevant features for each individual with different amounts
of training data.
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model has better performance than the personal comfort model for all three

class labels. Moreover, it significantly reduces the possibility of confusing

‘want warmer’ and ‘want cooler’ labels (the entries in Row 3 Column 2 and

Row 2 Column 3), which has more serious consequences as it can affect HVAC

operation. This result alludes to the potential of ensemble comfort models

to address cold start as they can predict thermal preferences with over 71%

accuracy using 6 hours of training data, excluding no occupancy periods.

6.5 Discussion

6.5.1 Revisiting relevant features for predicting thermal
preferences

Understanding which features are relevant to a prediction model is important

because it can help to (1) improve the computational overhead and accuracy of

the predictive model especially when labeled data is scarce, and (2) optimize

data collection efforts. At individual levels (Figure 6.4), features from the

HOBO sensors and weather station are more frequently identified as relevant

compared to those from the HVAC sensors. A similar observation is made at

group levels (Figure 6.6) where relevant features are frequently selected from

the HOBO sensors and weather station. However, certain features from the

HVAC sensors are considered important to many individuals/groups, such as

room air flow, room damper position, room heating setpoint, and room cooling

setpoint. This may be due to the narrow deadbands in this building that

drive the frequency of air exchange and the volume of air flow. Practically

speaking, selecting important features for model development is not always

based on their contribution to accuracy but rather on the data collection cost.

Although HOBO sensors can better capture what individuals experience in

their workstation, they require separate installations since they are not part

of the building’s existing sensor network.

For those whose workstation is closely located to their zonal thermostat,

thermostat readings may reasonably describe individuals’ thermal conditions.

To verify this hypothesis, we select 10 individuals whose workstation is close

to the thermostat and evaluate the performance of different comfort models
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(b) HOBO sensor data was not available

Figure 6.14: The learning curves of different comfort models trained using the
relevant features for each individual when the HOBO sensor data is ignored
and when they are utilized. Only 10 individuals whose workstations were close
to the HVAC sensors are selected. The curves show the thermal preference
prediction accuracy of a specific model averaged over these individuals.
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for these individuals only (see Figure 6.14). The figure shows that not having

features from HOBO sensors will increase the amount of training data that

is needed for all models, especially the personal comfort models, to converge.

Nevertheless, with 12 hours of training data, the mixture of experts ensemble

reaches an accuracy of 73%. We observe that each model eventually con-

verges to nearly the same accuracy level regardless of the HOBO sensor data

availability. More precisely, upon convergence, the difference between the ac-

curacy of the model trained with the HOBO sensor data and the accuracy of

the model trained without this data is minimal (less than 1%, except for the

DNN-based personal comfort model which has an accuracy loss of 5%). Based

on this observation, we conclude that the absence of HOBO sensors will not

significantly affect the performance of comfort models we introduced in this

study for occupants that sit close to a thermostat. This can be attributed to

the fact that for these individuals the data collected by HVAC sensors is a

reasonable proxy for the data collected by HOBO sensors.

6.5.2 Using comfort proxies to generate artificial labels

Previous work [84], [86] has shown that the choice of heating vs. cooling via

PCS is a strong predictor of one’s thermal preferences. This is not surprising

since many “smart” thermostats (e.g., Nest) use this concept to train their

temperature preference model. Based on this finding, we generate artificial

labels (i.e., want warmer/want cooler/no change) by using PCS behavior data

and develop a set of thermal comfort models (personal, group, and ensemble).

We show the advantage of this approach by: (1) increasing the amount of

labeled data per person compared to survey feedback (e.g., by 97 folds as shown

in Figure 6.1), (2) avoiding the need for occupant surveys that can be intrusive,

and (3) allowing the use of complex algorithms that require large training data,

such as neural networks. We also show that capturing temporal dependency in

thermal preferences via continuous PCS data can enhance prediction accuracy

of the model (i.e., LSTM-based comfort models).

The same approach is applicable to other heating and cooling devices that

allow personal control over thermal environment, such as desk fans, radiant
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heaters, and smart thermostats with individualized accounts. With the grow-

ing adoption of IoT devices in homes and buildings, it is possible to collect

real-time data that can be traced back to individuals for continuous preference

learning and dynamic setpoint controls. Physiological conditions (e.g., heart

rate, skin temperature) can also act as proxy variables to infer individuals’

thermal comfort [31], [62], [101]. Hence, future studies should explore the fea-

sibility of generating artificial labels based on wearable sensors for the training

of personal comfort models.

6.5.3 Importance of ensembling pretrained comfort mod-
els

Lastly, we try to shed light on why it is possible to quickly build an accurate

classification model by ensembling a set of pretrained group comfort models.

We believe that there are two main reasons. First, the group comfort models

are trained using sufficient data, so by combining these models and keeping

their weights fixed we can build a powerful and complex neural network with

only a small number of trainable weights. This model can be easily trained

even when training data is limited. Second, classification models that are

trained from scratch inevitably have high variance due to the small size of the

training set. Ensemble methods can reduce this variance, leading subsequently

to higher performance in the classification task when training data is limited.

Insufficient data is an inherent problem in thermal comfort modeling, es-

pecially when we have to develop a model for a new person. Ensembling

pretrained group comfort models can help to address the cold start problem

by quickly building a comfort model with a reasonable accuracy using only 6

hours of training data. We believe that it will be a useful tool to learn in-

dividuals’ thermal preference in a new building or an existing building with

transient populations.

6.6 Summary

The emergence of occupant-centric controls in the building domain has fuelled

research on the development of thermal comfort models that are accurate,

adaptive, and customized for building occupants. In this chapter, we address
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two major challenges of developing such models, namely the lack of sufficient

labeled thermal comfort data and low prediction accuracy of thermal com-

fort models when occupants are new to the building. The proposed approach

entails generation of synthetic labels from occupants heating and cooling be-

havior and development of personal comfort models for each occupant using

the augmented data set. The personal comfort models were applied to predict

thermal preference of other occupants as a basis for measuring the pairwise

distance between them and accordingly clustering them. Using a rich data set

from a field study with 37 individuals, we were able to identify a small number

of clusters, each containing one or multiple individuals with similar thermal

preferences, and trained a group comfort model using data from individuals

in each cluster. We then combined these pretrained group comfort models

through various ensemble learning methods. Our result suggests that the best

ensemble comfort model, namely the mixture of experts ensemble, can reach

its peak performance when 6 hours worth of data (excluding no occupancy

periods) becomes available from a new occupant, while much more data would

be needed to train a personal comfort model for this occupant.
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Chapter 7

Space planning in flexible workspaces

Energy consumption in office buildings, especially in coworking spaces, can be

substantially reduced through joint optimization of space use and heating and

cooling demands. This chapter addresses this underexplored research problem

in a coworking space that offers long-term and daily plans. We train an input

convex neural network to estimate the energy consumed by the HVAC system

in a single day to condition a given zone of the building. Due to the convexity

of this model in its inputs, we can formulate a convex mixed-integer program

to optimize HVAC energy consumption by deciding how to assign desks to

occupants and adjust zone temperature setpoints. Considering a medium-sized

office building as the coworking space, we show that this optimization problem

can be solved to near-optimality relatively quickly, hence it can be used to

make decisions regarding long-term bookings. For daily bookings, we design

heuristic algorithms that take the solution of the optimization problem and

assign the remaining space, while ensuring the satisfaction of thermal comfort

constraints. By incorporating these algorithms in the workspace reservation

system, energy consumption can be reduced by up to 11.7% while maintaining

individual thermal comfort.

7.1 Introduction

Most HVAC control algorithms that have been developed to date treat the

occupancy state of the building or individual zones within the building as

an exogenous variable and use a general thermal comfort model, such as the

Fanger comfort model [47], which ignores individual differences in thermal
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comfort and satisfaction. To optimize HVAC energy consumption without

sacrificing thermal comfort, previous work has focused on dynamically adjust-

ing the room temperature setpoint using a supervisory control system, e.g. a

reinforcement learning agent [41], that works in conjunction with conventional

feedback controllers, or directly controlling a subset of actuators that exist in

the AHU and VAV boxes, from supply air temperature and flow rate to damper

and reheat valve positions [24], [66]. This results in a trade-off between energy

use and thermal comfort. As shown in [174], a better trade-off is achievable if

one can change the spatial distribution of the occupants in the building and

simultaneously adjust the temperature setpoint of every zone according to the

thermal comfort needs of the actual occupants of that zone. This calls for

joint optimization of space use, and heating and cooling energy consumption

subject to individual thermal comfort constraints.

Despite having great promise, occupants cannot be freely relocated in all

commercial buildings to increase savings and comfort for several reasons: (a)

some building spaces have a unique function or contain special equipment;

(b) organizational dependencies often dictate what spaces might be used by

a group of occupants; (c) relocating occupants could negatively affect their

performance. However, many office buildings, including coworking spaces,

consist of shared workspaces that have the same function and can be accessed

by individuals that book their desks independently. The coworking spaces,

in particular, offer a range of plans and pricing models to cater to the di-

verse needs of their customers. The most common plan offered to members,

e.g. customers who have a monthly or longer-term subscription, is the dedi-

cated desk or office plan where members will have their own desk in a shared

workspace or their own private office. Non-members can buy a day pass on

short notice (known as on-demand booking), which provides temporary access

to the workspace on a first-come, first-served basis. It is generally acceptable

to assign different desks to an individual across multiple bookings, if they buy

day passes. Table 7.1 provides a summary of the subscription plans offered by

various coworking space providers in Toronto, Canada.

The conventional perspective on space management within office buildings
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Table 7.1: Overview of subscription plans offered by major coworking space
companies in Toronto, Canada.

Huddle WeWork Regus Industrious

Shared Workspace (Hot Desk or Dedicated Desk)

Day Pass ✓ ✓ ✓ ∗

Monthly Pass ✓ ✓ ✓ ✓

Private Workspace

Daily Plan ✓ ✓ ∗

Monthly Plan ✓ ✓ ✓ ✓

∗ Monthly (or long term) membership is required.

has undergone a substantial transformation due to the impact of the COVID-

19 pandemic, extending beyond the realm of coworking spaces and including

other types of flexible workspaces, such as office buildings that offer hot de-

sking and Activity-Based Working (ABW) environments, wherein employees

have the autonomy to select their workspace based on the specific activities

they engage in throughout the day. Previous research has shown that the

implementation of a judicious space assignment strategy can exert a consid-

erable positive influence on employees’ job satisfaction [11], productivity [68],

and overall well-being [21].

Optimizing HVAC energy consumption in coworking spaces is a non-trivial

problem. This is primarily due to the difficulty of modeling the latent rela-

tionship between the energy consumed by the HVAC system to condition a

given zone, and the number of occupants and temperature setpoints of that

zone and adjacent zones. Even when an accurate model can be identified via a

data-driven approach, if the model is nonlinear and nonconvex, computational

issues will arise in solving an optimization problem that has this model as the

objective function. Apart from that, due to integer decision variables, the op-

timization problem will still be NP-Hard even if we embed a convex model in

the objective function. We make the following contributions in this chapter:

• We train an Input Convex Neural Network (ICNN) to estimate the to-

tal amount of energy that must be consumed by the HVAC system in a

128



single day to condition a zone with a specific temperature setpoint and

number of occupants. We show that this ICNN surrogate model achieves

higher accuracy than other alternatives. Using this surrogate model and

probabilistic thermal comfort profiles of the occupants, we cast optimal

HVAC operation and space allocation as a convex Mixed-Integer Nonlin-

ear Programming (MINLP) [12], where the objective function is convex

and the feasible set is convex when integrality is relaxed. This problem

is solved relatively quickly to near-optimality by a branch-and-bound

algorithm.

• We propose two efficient heuristic algorithms for assigning desks to short-

term occupants and show that their solutions are comparable with that

of the online version of MINLP, yet they run faster and can scale to

larger buildings.

• We evaluate the performance of the proposed algorithms by analyzing

the total HVAC energy consumption, average thermal comfort of build-

ing occupants, and the ratio of rejected reservation requests to received

requests. Our result indicates that these algorithms can increase the

profit of a coworking office building located in Toronto, Canada, by ac-

cepting around 100 more on-demand bookings without increasing energy

consumption and associated costs!

7.2 Problem statement

The assignment of occupants to thermal zones is anticipated to have significant

impact on the best trade-off that can be found between HVAC energy use and

occupant thermal comfort [174]. We study this impact in an office building that

offers a coworking space. The shared workspaces in this building are rented

out to long-term and short-term occupants who bought monthly subscriptions

and day passes, respectively. We seek to minimize HVAC energy consumption

while satisfying the minimum thermal comfort and space capacity constraints

by changing the assignment of spaces/desks to occupants and adjusting the

zone temperature setpoints. This approach capitalizes on three things: the
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Figure 7.1: A schematic representation of our methodology.

diversity of individual thermal preferences, the unique characteristics of each

thermal zone, and differences in marginal energy consumption of the HVAC

system in each zone caused by placing more occupants there.

7.2.1 Assumptions

We make the following assumptions which serve as the foundational basis for

subsequent analyses in the study.

1. The building is divided into multiple zones, each having its own ther-

mostat and local control system. This enables zone-level control of the

HVAC system by adjusting the temperature setpoint and other control

knobs, e.g. the damper position.

2. The HVAC system has two modes of operation. In the active mode, from

6am to 10pm, the fan is on and its speed is determined by a controller

in the AHU. In the inactive mode, from 10pm to 6am of the next day

during which the building is closed to occupants, the fan operates at

the minimum speed to save energy. Similarly, the heating and cooling
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setpoints can be defined by our algorithm in the active mode, but they

are set to 15.6°C and 26.7°C in the inactive mode to save energy.

3. The layout of the building showing the location of each room and its

adjacent rooms, the capacity of each room, and the mapping between

rooms and thermal zones are known.

4. The coworking space offers only two types of plans. We classify the

building occupants into two distinct groups according to the plan they

purchase. To minimize discomfort caused by relocation, long-term occu-

pants are offered dedicated desks in a shared workspace (zone) for the

term of their subscription. Thus, they will continue to use the same

space that is assigned to them on the first day. Short-term occupants,

however, can reserve desks in a shared workspace (zone) for a single day

by purchasing a day pass the previous day. So if an individual buys a

day pass two days in a row, they may be assigned two different desks.

Group booking, which is crucial for team collaboration, is allowed for

both types of occupants. Desks assigned to a group of occupants are

guaranteed be in the same workspace (zone).

5. Occupants will use the space that is assigned to them and will not occupy

other spaces for a considerable amount of time.

6. Occupants disclose their true thermal preference, i.e., indoor tempera-

ture that they are most comfortable with, when they purchase the plan

via the workspace reservation system.

7. The total amount of heat emitted by occupants or introduced by com-

puters and appliances that they use in the zone is almost the same for

every occupant regardless of their demographic information.

8. A small amount of log data, e.g. 14 days of data, is available from

the building. The log data collected from physical and virtual sensors

installed in the building or the surrounding environment are aggregated

and stored in the Building Management System (BMS). Weather data
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is also assumed to be available from the same geographical location in

that time period.

7.2.2 Test building

To evaluate our space assignment and supervisory control algorithms, we con-

duct a simulation study on a 3-story, 15-zone medium office building – a com-

mercial reference building model developed by the US Department of En-

ergy [2]. This building has a gross area of 4,982.19m2 and a total capacity

of 267 people. Each floor, consisting of four perimeter zones (two large and

two small) and a central core zone, has a dedicated AHU. The capacity of core

zones, large perimeter zones, and small perimeter zones is 53, 11, and 7 people,

respectively. All zones are equipped with a VAV system to facilitate zone-level

control. Except the room temperature setpoints, all HVAC control points are

controlled by the EnergyPlus default feedback controller, using the predictive

system energy balance method [32]. Building operations are simulated using

EnergyPlus 9.3 [32] and meteorological data from Denver, Colorado. We use

COBS (described in Section 3.3) to interface with the simulation environment.

We highlight the energy saving potential by performing the optimization in

July; however, the underlying concept can be applied to any office building

and in any season, as long as the same amount of recent log data is available

from that building.

7.3 Methodology

We propose efficient algorithms that can be utilized in the reservation system

of a coworking space to make decisions regarding which spaces/desks to assign

to occupants and the temperature setpoint of every individual thermal zone

in the building during the time that HVAC is in the active mode of operation.

Ideally, these decisions must be made in such a way that a good trade-off

between HVAC energy consumption and occupant comfort is attained. 1

We cast the optimal HVAC operation and space allocation problem as a

convex mixed-integer nonlinear program [12] – an optimization problem in

1Code is available at https://github.com/sustainable-computing/

COBS-space-planning.
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which the objective function is convex and the feasible set is convex when in-

tegrality is relaxed. Despite the large number of decision variables, in practice,

this combinatorial optimization problem, which is a subclass of mixed-integer

convex programming, can be solved relatively quickly using the branch-and-

bound method or its variants. To this end, the first step of our methodology

involves training an accurate surrogate model to estimate the contribution of a

given zone to HVAC energy consumption on a particular day, given the outdoor

air temperature and operational log data collected in the previous planning

period. If this model is a convex function of its inputs, it can be incorporated

into the objective function of the combinatorial optimization problem that is

solved at two different timescales to assign desks to long-term and short-term

occupants in a shared workspace.

Assuming long-term occupants buy a monthly plan, the first optimization

problem is solved once a month to assign dedicated desks to these occupants

and determine the temperature setpoint of each occupied zone. Once the so-

lution is found, we update the remaining capacity of each zone for this month

and start processing next-day reservation requests of prospective short-term

occupants. Specifically, dedicated desks in zones that have enough capacity

will be assigned to short-term occupants, and temperature setpoints are ad-

justed to meet the thermal comfort requirements of all occupants. This will

be done without relocating long-term occupants.

Figure 7.1 depicts the three main steps of our methodology. Note, opera-

tional log data collected in the current planning period can be used to fine-tune

or retrain the surrogate model for the next period.

7.4 Estimating HVAC energy use

The most crucial step in optimizing space planning practices in office build-

ings is modeling the relationship between the total heating and cooling energy

consumed by the HVAC system to condition each individual zone and the num-

ber of occupants assigned to the rooms that comprise this zone, other factors

such as the weather condition, and the temperature setpoint of the respective

zone and adjacent zones. This model can be incorporated into an optimiza-
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tion problem that is solved numerically. In the absence of a reliable model,

the optimal space assignment must be found using a black-box optimization

technique, such as Bayesian optimization [55], requiring the painstaking eval-

uation of a rather large number of assignments in the real building or through

simulation on its digital twin. For example, there will be 530 feasible space

assignments in a small 5-zone office building housing 30 occupants with diverse

thermal preferences. Considering the choices of zone temperature setpoints,

black-box optimization would be prohibitively costly, even if the evaluation

was done through simulation.

To approximate the energy used by the HVAC system to maintain the

temperature of a given zone around its setpoint, we train a surrogate model

on the available sensor data, taking into account the number of occupants

assigned to this zone and its temperature setpoint, temperature setpoints of

adjacent zones, and outside air temperature. By incorporating zone-level sur-

rogate models rather than a surrogate model built for the whole building in

the objective function of the optimization problem, we reduce the model com-

plexity, thereby cutting down on the training cost. Since the contribution of

each zone to HVAC energy consumption is not measurable, we use the total

energy delivered by the HVAC system to each zone as a proxy for the total

energy consumed by the HVAC system to condition that zone. This quantity,

which is known as the zone air system sensible heating and cooling energy, can

be calculated by multiplying the supply air mass flow rate by the difference

between supply air temperature and zone air temperature at each time step,

and summing up these quantities over one day. Since supply air mass flow rate,

supply air temperature, and zone air temperature are logged by the BMS at

regular intervals, the sensible heating and cooling energy can be easily calcu-

lated. We note that although the sensible heating and cooling energy depends

on the HVAC control strategy, it also varies with the occupant assignment and

setpoint schedule under a fixed HVAC control strategy.

Assuming the number of people that occupy each zone, including long-term

and short-term occupants, does not change drastically during work hours of

each day and the zone temperature setpoint remains stable in that period of
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time, we train a surrogate model that predicts the total daily sensible heating

and cooling energy demand. We argue that one-day resolution is the sweet

spot because some of the assumptions listed in Section 7.2.1 will be violated if

we consider a lower time resolution, and the estimation error will substantially

increase if we consider a higher time resolution (e.g. a few hours). The sur-

rogate model is trained utilizing two weeks of historical operational log data.

For each day, the training data includes the zone-specific temperature setpoint

during the active mode of operation of the HVAC system, the number of oc-

cupants in the zone, the average outdoor temperatures during the active and

inactive modes of operation of the HVAC system, and the per zone sensible

heating and cooling energy.

7.4.1 Building a surrogate model for zone sensible heat-
ing and cooling energy

As depicted in Figure 7.1, the surrogate model, which estimates the total

energy consumed by the HVAC system on a single day to condition a given zone

plays an instrumental role in determining the space assignment strategy that

minimizes the building energy use while satisfying space capacity and thermal

comfort constraints. Moreover, the convexity of this function is essential as it

will be embedded in the objective function of the optimization problem [18].

With these in mind, we choose an Input Convex Neural Network (ICNN) [5]

as our surrogate model.

To ensure the ICNN’s output y remains a convex function of its inputs x,

we impose non-negativity constraints (described below) on the network param-

eters. A passthrough layer is also integrated into the neural network, offering

a direct link from the input x to the output of every hidden layer. Adding this

layer is necessary because the non-negativity constraint restricts the use of

hidden units that mirror the identity mapping in neural networks [5]. To op-

timize efficiency, especially considering the scarcity of data in our experiment,

our ICNN architecture encompasses a single hidden layer with 100 neurons:

y = f(x; η) = ϕ
(
W

(h)
1 ϕ

(
W

(h)
0 x+ b0

)
+W (pass)x+ b1

)
, (7.1)

where ϕ denotes the nonlinear, non-decreasing, convex activation function
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(ReLU in this study), and η = {W (h)
0 ,W

(h)
1 ,W (pass), b0, b1} collects the model

parameters. Note that all elements of W
(h)
0,1 must be non-negative for the con-

vexity guarantee. The convexity of f in x is derived from two facts. First,

when convex functions are combined through non-negative summation, the

result remains convex. Second, the composition of a convex function with an-

other convex non-decreasing function results in a convex funciton. The W (pass)

parameter is incorporated to preserve the model’s representational power. Our

ICNN is trained with the Adam optimizer.

To evaluate the performance of the ICNN model, we introduce two addi-

tional models that can be trained on the same dataset. RF is a non-parametric

model that can approximate arbitrary functions and select important features.

But its nonconvexity complicates the subsequent optimization problems. In

this chapter, we set the number of estimators in RF to 100. Another model

is the Piecewise Linear convex regression (P-Linear), which reduces the com-

plexity of solving the optimization process due to its convexity. The P-Linear

model that we consider consists of two line segments, the first segment is for

the case that the number of occupants is between zero and one, and the other

segment is for the case that the number of occupants is greater than or equal

to one. When a zone is not occupied, heat transfer mostly happens through

walls, windows, and ducts; whereas when it becomes occupied, there is ad-

ditional heat gain that can be attributed to the occupants, including human

body heat dissipation and heat generated by appliances that are used by oc-

cupants. This is why we consider two line segments. A potential drawback of

this model is its low accuracy as the latent relationship may not be accurately

approximated by a piecewise linear function.

7.4.2 Model training and evaluation

We use 14 days of log data to train our surrogate model and baselines that

estimate the total zone air system sensible heating and cooling energy use in

one day. The Mean Squared Error (MSE) is used as the loss function. Each

zone-level surrogate model is trained using four features, namely the number

of occupants assigned to this zone, the zone temperature setpoint, and the
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Figure 7.2: Correlation between daily zone air system sensible heating and
cooling energy and input features for a perimeter zone and a core zone.

average outdoor temperature during the HVAC system’s active and inactive

modes of operation. Including the average outdoor temperature over two non-

overlapping intervals is inspired by the observation that the building exhibits

distinct dynamics in these intervals. Specifically, zones are not typically con-

ditioned by the HVAC system from 10pm to 6am of the next day as a result

of the deadband widening strategy so the heat exchange is mostly with the

outside environment through the building envelope. In addition to these four

features, we also include the temperature setpoints of adjacent zones to explore

if it improves the model accuracy. We append a ‘+’ sign to the name of the

surrogate models that get the additional features to differentiate them from

the models that get the main four features. Either way, the model output is

the total air system sensible heating and cooling energy of the corresponding

zone on the given day. Figure 7.2 shows the correlation between the total zone

air system sensible heating and cooling load throughout the day and various

features for a perimeter zone and a core zone in the building. For clarity, we

plot the absolute value of the correlation, since the sign does not matter here.

The core zone on the middle floor is not directly connected to the outdoor

environment. Thus, it has a weak correlation with the two average outdoor

temperatures. The perimeter zone on the top floor, which directly interfaces
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Figure 7.3: The MAPE of different surrogate models with different input fea-
tures. The results are obtained from ten independent runs.

with the outside environment, has a stronger correlation with the average out-

door temperatures. This plot suggests that all of these features are relevant for

the regression task for at least one type of zones. Thus, none of them should

be disregarded.

In Figure 7.3, different surrogate models are compared with respect to the

Mean Absolute Percentage Error (MAPE). These models were trained using

data collected between June 17 and June 30, and subsequently evaluated be-

tween July 1 and July 14, assuming that exactly 100 occupants were randomly

assigned to building spaces and the assignment changes every day. The tem-

perature setpoints are also randomly defined every day in a range of 20°C to

26°C. To mitigate the impact of randomness, experiments were carried out us-

ing 10 random seeds. Each data point represents the mean MAPE of a model

across all zones in one run. We conclude that the ICNN surrogate model,

when accounting for the temperature setpoints of adjacent zones, outperforms

the other models with a clear margin. Thus, in the remainder of this chap-

ter, we stick with ICNN+ as our surrogate model to estimate HVAC energy

consumption per day.
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7.5 Optimizing HVAC energy use

We now discuss how to assign desks to different occupants and adjust zone

temperature setpoints to optimize the total daily energy consumption of the

HVAC system in a coworking space, while satisfying zone capacity and ther-

mal comfort constraints. We decompose the optimization problem into two

problems that are solved at different timescales for long-term and short-term

occupants. The first optimization problem is solved once a month (e.g. before

the first day of the month) to assign dedicated desks to long-term occupants,

thereby avoiding dissatisfaction caused by multiple relocations. Short-term

occupants stay for one day only and submit their reservation requests one day

in advance. Consequently, the second optimization problem is solved every

time a new request arrives to determine whether short-term occupants can be

admitted (given the remaining capacity of each zone and its setpoint temper-

ature) and assign desks to them accordingly.

7.5.1 Modeling personal comfort

Given individual differences in thermal comfort perception, it is imperative to

quantify an individual’s thermal satisfaction with their environment given its
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temperature setpoint, and use this as a constraint in HVAC energy optimiza-

tion. The personal comfort model can be (a) a sophisticated model trained

for each individual using explicit feedback they provide about their thermal

satisfaction, or implicit feedback they provide through interactions with a

personal comfort system [176]; (b) a probabilistic thermal comfort profile for

each individual given their preferred temperature and tolerance of thermal

discomfort [151]. Since short-term occupants do not spend enough time in

the building to provide sufficient feedback for model training or adaptation,

we take the second approach and develop a practical thermal comfort model

with just a few parameters. Specifically, for every individual ρ, we postulate

that there is an ideal temperature µρ and an associated tolerance range σρ.

Following [151], the probability that this individual is comfortable in a zone

that has a temperature T is expressed as:

pρ(T ) = e
− 1

2

(
T−µρ
σρ

)2

. (7.2)

Hence, to keep pρ(T ) above some threshold θ, the zone temperature setpoint

must lie in the following range:

µρ +
√
−2σ2

ρ log θ ≥ T ≥ µρ −
√
−2σ2

ρ log θ. (7.3)

Figure 7.4 illustrates the thermal comfort profile of an individual with µρ =

23.8 and σρ = 1.5. For θ = 0.8, the acceptable range for the zone temperature

setpoint is [22.8, 24.8]. If a group of occupants, each with distinct µρ and

σρ values, are assigned to the same zone, the temperature setpoint of that

zone must lie in the intersection of these ranges to satisfy thermal comfort

requirements of all.

We assume that each individual reveals their preferred temperature and

tolerance when they book the space. In our experiments, we set all σj values

to 1.5 based on the observation that 1°C deviation from the preferred tem-

perature is generally deemed acceptable, and sample µρ uniformly from the

range between 20°C and 26°C. We set θ to 0.8 to find a reasonable trade-off

between HVAC energy consumption and thermal comfort; this aligns with the

threshold specified for the Predicted Percentage of Dissatisfied (PPD) index

in ASHRAE Standard 55 [3].
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7.5.2 Space assignment to long-term occupants

We formulate a convex MINLP by incorporating the ICNN+ model into the

objective function and individual thermal comfort profiles in the constraints.

The solution to this problem is the assignment of dedicated desks in specific

zones to (groups of) long-term occupants and the temperature setpoints of the

occupied zones that minimize HVAC energy consumption without sacrificing

thermal comfort of the actual zone occupants. This MINLP is defined as

follows:

minimize
X ,T

∑
i∈N

fi (·; η)

s.t. (C1)
∑
j∈M

Xi,jGj ≤ Ci, ∀i ∈ N ,

(C2)
∑
i∈N

Xi,j = 1, ∀j ∈M,

(C3) pj

(∑
i∈N

Xi,jTi

)
≥ θ, ∀j ∈M,

(C4) Xi,j ∈ {0, 1}, ∀i ∈ N , j ∈M,

(C5) Ti ∈ R ∩
[
tlb, tub

]
, ∀i ∈ N .

Here N = {1, . . . , n} denotes the set of zones in the coworking space, Ci

represents the capacity of zone i∈N ,M = {1, . . . ,m} denotes the set of long-

term occupant groups, where the occupants in each group must be placed

in the same zone (i.e., groups are indivisible), and Gj represents the size of

group j∈M. If an individual books a single desk, then the corresponding

group size will be 1. The objective function is the total energy consumed by

the HVAC system to condition all zones in the building. Thus, it is the sum

of the outputs of pretrained surrogate models fi(·; η) for all i∈N .2 The input

features of the surrogate model, which we previously introduced in Section 7.4,

are omitted for brevity. Constraint (C1) ensures that the total number of long-

term occupants assigned to a zone does not exceed its capacity. Constraint

2We do not sum daily energy consumption over one month because due to the long
optimization horizon, the same average outdoor temperature forecast obtained from a local
weather station would have to be passed to ICNN+ for every day of the month. Thus, the
monthly optimization problem would be equivalent to the presented problem.

141



(C2) ensures that each group is assigned to exactly one zone. The zone

temperature setpoint must be chosen such that the thermal comfort of every

group member is satisfied with a probability greater than θ if the group is

assigned to that zone. So with a slight abuse of notation, Constraint (C3) is

written for a group of occupants. This constraint is necessary to balance energy

savings and thermal comfort. Constraint (C4) forces X to be an n×m binary

matrix indicating the space assigned to each group of long-term occupants.

Constraint (C5) ensures that the temperature setpoint of each zone, which is

a continuous decision variable, remains within reasonable bounds.

We solve the convex MINLP problem using branch-and-bound, which in-

volves conducting a state space search to find the solution. Specifically, it

maintains an upper bound, which is the minimum feasible solution, and a

lower bound, which is the solution found through relaxation of integrality

constraints (C4). The two bounds are refined via a tree search, where each

node represents a convex MINLP problem and is branched into two nodes by

constraining a chosen integer variable based on its value in the solution of

the relaxed problem. The bounds are used to prune the search tree, thereby

reducing the number of relaxed problems (NLPs) that must be solved. We

note that each relaxed problem can be solved efficiently because of having the

sum of convex functions as the objective function. We elaborate on this in

Section 7.6.2.

Once the maximum number of iterations is reached or the gap between

the two bounds gets smaller than a predefined threshold, the solver returns

the smallest feasible solution that has been found. Although it is conceiv-

able that the global optimum may not be found within the maximum search

iterations, branch-and-bound typically solves the convex MINLP problem to

(near-)optimality when the solver is warm-started [12]. In our experiments, we

initialize the upper bound to a feasible solution found by the BestFit-Energy

algorithm, which we detail in Section 7.5.3.
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7.5.3 Space assignment to short-term occupants

After assigning dedicated desks to long-term occupants and updating the avail-

able capacity of every zone, we concentrate on solving the space assignment

problem for short-term occupants. Recall that short-term occupants can sub-

mit a space reservation request, individually or on behalf of a group, at any

time on the day before their intended visit. These requests must be processed

in quasi real-time, meaning that admission decisions must be taken immedi-

ately3 and the zone assignment must be done too if they are admitted. As

a result, we process these reservation requests sequentially, as soon as they

are submitted. Below we present two heuristic algorithms, namely BestFit-

Energy and BestFit-Space, that are suitable for real-time decision making

along with the Online-MINLP algorithm, which solves a convex MINLP to

optimize HVAC energy consumption, this time for a group of short-term oc-

cupants.

BestFit-Energy algorithm: This heuristic algorithm assigns desks to short-

term occupants trying to minimize the rise in HVAC energy consumption.

Specifically, given a group of short-term occupants of size Gk, it assigns desks

from a zone i that has enough available capacity, its current temperature set-

point satisfies the comfort requirements of the new occupants, and its fi would

increase by the smallest amount due to the increase in the number of occu-

pants (by Gk). This algorithm prioritizes assigning desks in zones that are

already occupied. If a group of occupants must be assigned to a zone i that

is currently vacant, because no occupied zone has enough available capacity

or the thermal comfort requirement of the group is satisfied in none of the

occupied zones, the algorithm sets the temperature setpoint of that zone to

the value in [tlb, tub] that minimizes fi, while satisfying the thermal comfort

requirement of the new occupants.

In the case where all assignments that satisfy the capacity constraint vio-

late the thermal comfort constraint, our algorithm considers zones that have

3This is essential for reservation requests that are declined as the user must be notified
immediately to make a booking with another coworking space.
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enough capacity and attempts to update their temperature setpoints to satisfy

the thermal comfort requirements of all occupants that are already assigned

to that zone in addition to the new occupants. If there are more than one

such zone, the setpoint adjustment will be done eventually for the zone that

its fi will increase by the smallest amount. If no zone temperature setpoint

can be adjusted to accommodate this space reservation request, the new group

of occupants will not be admitted.

BestFit-Space algorithm: This heuristic algorithm diversifies the temper-

ature setpoints across all zones and assigns desks to short-term occupants such

that there is nearly the same number of desks that can be possibly assigned

to an arbitrary short-term occupant with any preferred temperature. This

helps reduce rejections due to the violation of the thermal comfort constraint,

increasing space utilization. Let {T ∗} be the set of diverse temperature set-

points that might be assigned to a vacant zone. Refer to Algorithm 4 in the

appendix for details about how these diverse setpoints are selected. Initially,

short-term occupants are assigned desks in an already occupied zone that has

the highest effective capacity while satisfying their comfort requirements. The

effective capacity, denoted C ′
k for zone k, is calculated using the group mean

tolerance σ̄ as follows:

C ′
k =

∑
i∈N

(
Ci −

∑
j∈M

X ∗
i,jGj

)
max

(
0, 1− |Tk − Ti|

2
√
−2σ̄2 log θ

)

Note that X ∗ is a part of the solution to the MINLP solved for long-term

occupants. The first term inside the summation is the remaining capacity of

the zone and the second term is a scaling factor for each zone’s capacity based

on the overlap between its temperature setpoint and the temperature setpoint

of other zones.

In the case where short-term occupants cannot be placed in any of the

zones that are currently occupied, they are assigned desks in the unoccupied

zone that will have the smallest increase in fi with its temperature setpoint

being selected from {T ∗} to satisfy the comfort requirements of the group.

Once a zone’s occupancy reaches its capacity, the setpoints in {T ∗} will be
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updated. Short-term occupants will not be admitted if their thermal comfort

requirements cannot be satisfied in any zone.

Online-MINLP algorithm: This algorithm assigns desks in one zone to a

group of short-term occupants with size Gk and adjusts the zone temperature

setpoint by solving the MINLP problem. To this end, the algorithm freezes

the elements of X and simply inserts one column X:,k at the end (k = |M|+1)

that contains the new decision variables. This resuls in the following convex

MINLP:

minimize
X:,k,T

∑
i∈N

fi

(
Ti,
∑
j∈M

Xi,jGj

)
s.t. (C1), (C3), (C5),∑

i∈N

Xi,k = 1,

Xi,k ∈ {0, 1}, ∀i ∈ N .

Discussion: Each of the three proposed algorithms has its own strengths

and weaknesses. BestFit-Energy and BestFit-Space are sorting-based algo-

rithms, so their running time complexity is lower than Online-MINLP which

invokes a MINLP solver. Yet BestFit-Energy struggles to maintain a good

thermal comfort level as it prioritizes energy saving over thermal comfort sat-

isfaction. On the other hand, BestFit-Space tends to focus on satisfying the

thermal comfort requirements of current and future short-term occupants at

the cost of wasting energy. The Online-MINLP algorithm optimally updates

the temperature setpoints for each zone, resulting in an energy-efficient so-

lution. We evaluate these algorithms in terms of occupant thermal comfort,

energy efficiency, and running time in the next section.

7.6 Experimental results

To thoroughly evaluate the efficacy of our proposed methodology, we carry

out a series of experiments on the test building described in Section 7.2.2.

The primary goal is to quantify the energy-saving potential of the proposed

space assignment strategies compared to the baselines that might be used in

practice. Additionally, variations in the daily number of short-term occupants
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were taken into account to assess its effect on reservation rejection rate, ther-

mal comfort probabilities, and energy consumption under different short-term

occupant assignment strategies.

Considering the capacity of the test building (267 people), we assume there

is a total of 100 occupants with a monthly subscription which are split into

several groups, and the remaining space (desks) can be assigned to short-term

occupants, the total number of which may not exceed 250 people per day, again

split into several groups. For both types of occupants, the size of each group

is uniformly sampled between 1 and 4. We set the thermal comfort threshold

θ to 0.8, and tlb and tub to 20°C and 26°C, respectively. We run our simulation

10 times using different random seeds, each producing a unique pattern of

space reservation requests, allowing us to draw a conclusion regardless of the

order in which the reservation requests are submitted by prospective short-

term occupants.

7.6.1 Space assignment baselines

Three baselines, namely Uniform-Number, Uniform-Ratio, and Random, are

considered to better understand the performance of the proposed algorithms.

These baselines process space reservation requests sequentially, assigning dedi-

cated desks to either type of occupants. The Uniform-Number strategy tries to

evenly distribute occupants across all zones, without exceeding the capacity of

each zone. The Uniform-Ratio strategy puts occupants in zones proportional

to their capacity, for example all zones will be 20% full. Notably, these two

baselines do not factor in thermal comfort, and define the zone temperature

setpoint to be the average of preferred temperatures of the occupants in the

respective zone. The Random strategy, however, randomly assigns occupants

to one of the zones that satisfy their thermal preference without changing the

zone temperature setpoint. So it always finds a feasible solution if it admits

a group of occupants. When the first occupant (or group of occupants) is

assigned to a zone, the zone temperature setpoint is set to their preferred

temperature (the average of preferred temperatures, resp.).
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Figure 7.5: Comparing the execution time of the MINLP solver when different
surrogate models are used as the objective function. We break the x-axis to
show when the gap shrinks for both models. Each curve represents the average
execution time, with the shaded region indicating the difference between the
75th and 25th percentiles of the execution time in 10 independent runs.

7.6.2 Space assignment to long-term occupants

Figure 7.5 compares the time that it takes to solve the MINLP for long-term

occupants to near-optimality, i.e., shrinking the relative gap to 0.01%, using

two different surrogate models, namely ICNN+ and RF+ described in Sec-

tion 7.4. To solve MINLP, we use Gurobi installed on a server with an AMD

EPYC 7313 16-core processor. The y-axis shows the relative gap which is

defined as the difference between the upper and lower bounds divided by the

value of the upper bound in each iteration. It can be readily seen that utilizing

a convex surrogate model (ICNN+) reduces the execution time by about 88%

over the non-convex model (RF+). We believe that the speedup is significant

and without using a convex objective function the MINLP cannot be solved

in reasonable time for a larger office building with more zones and a higher

capacity.

Figure 7.6a shows the cumulative HVAC energy consumption of the build-

ing during the simulation period (14 days) under different space allocation and

setpoint adjustment strategies, in the absence of short-term occupants. The

first row is our proposed algorithm that solves the convex MINLP for groups

of long-term occupants, incorporating the ICNN+ surrogate model. The last
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Figure 7.6: Performance of long-term occupant allocation strategies without
short-term occupants. Note that the x-axis is exaggerated.
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three rows are our baselines. Each dot represents the result of an independent

run.

Upon examining the baselines, it is evident that Random is the most ef-

fective one. This suggests that utilizing variable temperature setpoints across

the zones can increase energy savings; whereas the setpoints in the other two

baselines are usually around 23°C. When comparing MINLP-ICNN+ with the

baselines, it becomes evident that the purposed algorithm outperforms the best

baseline in terms of energy consumption by more than 6%. Specifically, the

average total energy consumption stands at 6.16 MWh (std=0.11) for MINLP-

ICNN+ and 6.58 MWh (std=0.34) for Random. These results underscore the

efficacy of the proposed algorithm for long-term occupant assignment.

Figure 7.6b compares the average thermal comfort probability of these

algorithms.4 The Uniform-Number and Uniform-Ratio baselines failed to meet

the thermal requirement, unlike the other two. The Random baseline achieves

the highest thermal comfort probability at the expense of increased energy

consumption. This is while MINLP-ICNN+ finds a better trade-off.

7.6.3 Space assignment to short-term occupants

We turn our attention to space assignment to short-term occupants. The ex-

periments are conducted as follows. First, dedicated desks are assigned to 100

long-term occupants using MINLP-ICNN+ and considering 10 random seeds.

Next, for each day, space reservation requests from short-term occupants are

processed sequentially. Specifically, for every space assignment to long-term

occupants, the remaining capacity of each zone is updated and desks are as-

signed to short-term occupants. We also consider 10 random seeds to generate

reservation requests of short-term occupants. Hence, results are reported for

100 runs in total.

Thermal comfort: Figure 7.7a demonstrates how the average thermal com-

fort probability changes as the number of daily space reservation requests

4We plot the average thermal comfort probability rather than the distribution of in-
dividual thermal comfort because every experiment is repeated multiple times, making it
difficult to plot all results. That said, we verified that the thermal comfort probability is
indeed above 0.8 for every individual under MINLP-ICNN+ and Random.
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increases. When requests are processed using Uniform-Number and Uniform-

Ratio, the average thermal comfort falls rapidly below the threshold (0.8).

We attribute this to the fact that these baselines do not account for thermal

comfort when assigning desks to (groups of) short-term occupants. However,

the other algorithms keep the average thermal comfort probability above the

threshold. One notable observation is that BestFit-Space and Random achieve

better thermal comfort than BestFit-Energy and Online-MINLP. We attribute

this to their intrinsic prioritization of thermal comfort over other objectives.

Rejection rate of reservations: Figure 7.7b shows the rejection rate (pct.

of short-term occupant groups that were not admitted) as the number of

daily space reservation requests increases. Uniform-Number and Uniform-

Ratio reject less requests since they perform space assignment regardless of

thermal comfort requirements. In contrast, the Random baseline consistently

yields the highest rejection rate, followed by BestFit-Space after processing ap-

proximately 150 reservation requests. BestFit-Energy and Online-MINLP ex-

hibit comparable performance, although the rejection rate is slightly lower for

Online-MINLP. With fewer than 150 short-term occupants, BestFit-Space re-

jects fewer requests than BestFit-Energy and Online-MINLP, suggesting that

diversifying zone temperature setpoints is a good strategy when space utiliza-

tion is relatively low. This advantage diminishes as the building occupancy

approaches its capacity, i.e., admitting 167 short-term occupants.

Energy consumption: For this particular analysis, we assume exactly 100

reservation requests are received every day over the course of simulation, span-

ning 14 days. Figure 7.8 is a raincloud plot that shows HVAC energy consump-

tion of different algorithms during the 14 days. It can be seen that BestFit-

Energy and Online-MINLP perform better than the other algorithms. BestFit-

Space takes the next position. An interesting observation can be made when

comparing energy consumption under BestFit-Energy (6.52 MWh, std=0.16)

and Online-MINLP (6.52 MWh, std=0.14) for the 200 occupants scenario (100

occupants of each type) demonstrated in Figure 7.8 to the best baseline for

space assignment to 100 long-term occupants demonstrated in Figure 7.6a,
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Figure 7.8: Total energy consumption of different algorithms that assign
space to short-term occupants over a 14-day planning horizon, assuming 100
workspace reservation requests per day. The boxplot demonstrates the median
and interquartile range of the data below the histogram of that data. The x-
axis is exaggerated.

which is Random (6.58 MWh, std=0.34). Concretely, we find that for the

same amount of energy consumption, the coworking space can accommodate

up to 100 more occupants using our algorithms.

We also examine a scenario in which the number of reservation requests is

much higher than the building capacity so all zones will be full. Expectedly,

HVAC energy consumption increases compared to the previous scenario due to

the increase in building occupancy. We witness the smallest increase in HVAC

energy consumption compared to when there are 100 short-term occupants

under BestFit-Space which is 0.05 MWh (0.76%), while the increase is 0.15

MWh (2.39%) for BestFit-Energy, 0.15 MWh (2.38%) for Online-MINLP, 0.11

MWh (1.64%) for Uniform-Number, 0.12 MWh (1.74%) for Uniform-Ratio,

and 0.07 MWh (1.03%) for Random.
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Table 7.2: Profit analysis for different space assignment algorithms.

Long-term
Occupant

Assignment

Short-term
Occupant

Assignment

HVAC
Energy Use
(kWh/day)

Admitted
Short-term
Occupants

Average
Comfort

(%)

On-demand
Booking Profit

(CA$/day)

(1) (1) 671.32 100 8.81 2430.85

(2) (2) 672.45 100 8.81 2430.73

(3) (3) 619.1 82.44 94.90 1997.23

(5) 593.37 96.1 91.1 2341.39

(4) (6) 612.44 97.75 91.85 2380.67

(7) 592.79 96.12 91.08 2341.95

Algorithms: (1) Uniform-Number (2) Uniform-Ratio (3) Random

(4) MINLP-ICNN+ (5) BestFit-Energy (6) BestFit-Space (7) Online-MINLP

Profit analysis: To analyze the profitability of the coworking space, we

must take into account the rejection rate and HVAC energy consumption at

the same time as both of them will reduce the profit of the coworking space.

To understand the confluence of these factors, we take Huddle, a Toronto-

based coworking space company, as our case study. Huddle offers a day pass

at CA$25.5 We do our analysis assuming it operates an office building that

is identical to our test building, has 100 occupants who purchased a monthly

subscription, and receives 100 on-demand reservation requests per day. We

calculate the energy cost using the tiered pricing scheme – one of the three

pricing schemes that are in effect in Ontario, Canada [124]. As shown in Ta-

ble 7.2, we compare 6 different algorithms for space assignment to both types

of occupants in terms of the energy consumed by HVAC per day, the average

number of admitted occupants that hold day passes, the average thermal com-

fort probability, and the average profit made per day. All algorithms manage

to assign desks to all long-term occupants so we only report the average num-

ber of admitted short-term occupants and the profit made from day passes.

The algorithms shown in the first two rows fail to meet thermal comfort re-

quirements. Leaving them aside, we find that BestFit-Space consumes more

energy than the other algorithms, but admits the highest number of short-

5The price is retrieved from https://www.huddlesharespace.com/ in September 2023.
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term occupants, resulting the highest daily profit. Comparing the last three

rows with the third row, where the Random baseline is used to assign desks

to short-term occupants, we witness a CA$344.16–CA$383.44 increase in the

profit made per day using the proposed algorithms.

Computation overhead: Finally, we analyze the running time of the pro-

posed space assignment algorithms for short-term occupants. BestFit-Energy

and BestFit-Space run fast, processing a request within milliseconds on our

server. In contrast, the running time of Online-MINLP depends on the solver’s

termination condition and efficiency. In our setup, using a non-commercial

MINLP solver, namely SCIP, we observe that a (near-)optimal solution is

typically found in about 5 minutes for 100 requests (roughly 3 seconds per re-

quest). However, when we take advantage of Gurobi with an academic license,

this time is reduced to 30 seconds (roughly 0.3 seconds per request). Notice

that Online-MINLP processes reservation requests of prospective short-term

occupants sequentially, whereas MINLP-ICNN+ assigns desks to 100 long-

term occupants at once by solving the optimization problem. This explains

why it takes about 23 minutes to find a near-optimal solution in that case.

In summary, BestFit-Energy and Online-MINLP have comparable perfor-

mance in terms of different metrics. But, unlike Online-MINLP, the heuristic

algorithms scale well for large office buildings. If the space utilization is gen-

erally low, BestFit-Space is capable of admitting more occupants, thereby

increasing the profit of the coworking space company. Otherwise, Online-

MINLP and BestFit-Energy manage to admit a greater number of short-term

occupants and reduce HVAC energy consumption. Nevertheless, all the pro-

posed algorithms outperform the three baselines in terms of HVAC energy

consumption and thermal comfort.

7.7 Summary

We proposed efficient algorithms for joint optimization of space use and zone

temperature setpoints in office buildings, especially coworking spaces, to re-

duce heating and cooling demands, satisfy occupants’ thermal comfort, and

increase the building owner’s profit. Our approach capitalized on three things:
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the diversity of individual thermal preferences, the unique characteristics of

each thermal zone in the building, and differences in marginal energy con-

sumption of the HVAC system in each zone due to placing more occupants

there. We developed practical thermal comfort profiles for building occupants

using information that they enter in the online system when they book the

space, i.e., their preferred indoor temperature and discomfort tolerance. We

trained an input convex neural network to predict the daily HVAC energy

consumption in a thermal zone and embedded it in the objective function of a

convex MINLP. This neural network, which is trained on a dataset that con-

tains two weeks of historical log data, enables solving the optimization problem

in a relatively short amount of time to assign desks to long-term occupants.

We also proposed two efficient heuristic algorithms for processing on-demand

reservation requests in a sequential fashion, and showed that they achieve a

reasonable trade-off between energy consumption and thermal comfort with-

out solving an optimization problem. The BestFit-Energy and BestFit-Space

methods proposed in this paper result in energy savings of 4.2% and 1.1%, and

a profit increase of 17.2% and 19.2%, respectively, compared to a baseline as-

signment strategy that accounts for individual thermal preferences. Compared

to baselines that do not satisfy individual thermal preferences, BestFit-Energy

and BestFit-Space realize even greater energy savings of 11.7% and 8.9%, re-

spectively, but with a slight decrease in profitability (by 3.7% and 2.1%) due

to the lower number of reservation requests that can be accommodated when

accounting for individual thermal preferences.
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Chapter 8

Conclusion and future work

Intelligent control of building systems has the potential to enhance occupants’

comfort while simultaneously decreasing the overall energy consumption of the

building and the associated carbon emissions. In this thesis, model-free RL-

based controllers were designed to collaboratively manage the operation of one

or multiple building systems. The aim is to curtail total energy consumption

while optimizing both thermal and visual comfort. We formulated a personal

comfort model that measures individual thermal comfort based on the readings

of the HVAC sensors and the sensors embedded in a PCS. Additionally, we

introduced a space allocation system designed to assign desks to both long-

term and short-term occupants. By grouping individuals with similar thermal

preferences together, it enables choosing better temperature setpoints, leading

to enhanced energy efficiency and thermal comfort of all occupants.

The contributions of this thesis are as follows:

• We presented the design and implementation of COBS and discussed

how it can be used to benchmark control algorithms across a range of

buildings, including the prototypical building models released by the US

Department of Energy.

• We investigated the three-way trade-offs between energy consumption,

visual comfort, and thermal comfort of occupants when using RL agents

to jointly control the building HVAC, shading, and lighting system, and

evaluated the efficacy of different model-free RL algorithms in compari-

son to a widely-used RBC and a model-based RL algorithm.
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• We adopted the notion of policy and environment diversity to learn a

library of control policies from training environments, and employed

transfer learning to assign suitable policies from the policy library to

each zone of the target building to improve its initial performance, i.e.,

before retraining on the target environment.

• We used individuals’ interaction with a PCS to generate weak labels for

training personal comfort models. This data, collected non-intrusively,

resulted in a 97-fold increase in the amount of available labels for each

individual.

• We proposed a method that groups individuals based on similar ther-

mal preferences and applied two ensemble techniques to combine group

thermal comfort models. The ensemble model aids in predicting the

thermal preferences of any occupants, especially when limited labeled

data is available. We demonstrated that an accurate personal comfort

model can be developed using data collected from the PCS over a span

of six hours.

• We utilized the zone sensible HVAC heating and cooling load as a proxy

to train a model that estimates the HVAC system’s energy consumption

that is attributable to a given zone based on its temperature setpoint,

the number of occupants in the zone, and other relevant features.

• We formulated the space planning problem for long-term occupants as

an MINLP problem, and introduced two heuristic algorithms to process-

ing on-demand reservation requests sequentially. We showed that these

approaches can reduce building heating and cooling demands, satisfy

occupants’ thermal comfort, and increase the building owner’s profit.

8.1 Future work

With the global interest in decarbonizing all sectors of the economy and the

mandate of Canada (and many other countries) to adhere to the Paris climate

agreement and achieve net-zero emissions by the year 2050, energy-efficient
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operation of buildings is expected to gain more traction in the future. While

this thesis makes key contributions that could facilitate the transition toward

net-zero buildings, there remain several open problems that must be addressed

in future work. Below we list some of the most promising avenues for future

work, building on the foundations laid out in this thesis:

1. Transfer learning for building control: There exists an opportunity

to devise better policy selection methods for identifying the most suitable

policy for transfer to a novel building. Seasonal variations can be ac-

commodated through online policy selection and adaptation techniques.

Research into training policies for systems with dissimilar action scales is

essential. Additionally, the cooperative dynamics between independent

decision-making agents presents a promising area for exploration.

2. Personal comfort modeling: Determining the number of base comfort

models for an ensemble remains an unresolved issue. Constructing the

ensemble model demands more data, and the methodology for utilizing

only zone-level sensor data to refine individual thermal models warrants

further investigation.

3. Space allocation: There are three specific problems that warrant fur-

ther investigation:

(a) The algorithm for space assignment to short-term occupants war-

rants additional attention given its online nature and uncertainty

about future reservation requests. A thorough analysis of the com-

petitive ratios of the proposed online algorithms, as well as design-

ing new ones, is essential.

(b) While space assignments are currently done daily, there exists po-

tential for refining the time scale to hourly for greater savings. In

addition, examining the duration of occupant stays could also yield

significant insights.

(c) Certain occupants might be open to relocating within the building

during their sojourn, should they be provided enough incentive.
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The mechanisms for providing such incentives and sharing a portion

of the profit made by the building owner, and their subsequent

effects on productivity merit a comprehensive study.

In our future work, we also plan to explore the safety and robustness of the

controllers developed for different building systems. The next step would be

to integrate all the solutions we have proposed and deploy them onto actual

building environments. By transitioning from simulation results to real-world

applications, we seek to empirically validate our findings, ensuring that not

only are our results theoretically sound but also are practically effective in

enhancing building efficiency and occupant comfort. This approach would

provide invaluable insights and potentially pave the way for a broader adoption

of the proposed strategies across the building stock.
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[11] M. Babapour Chafi and L. Rolfö, “Policies in activity-based flexible
offices-‘i am sloppy with clean-desking. we don’t really know the rules.’,”
Ergonomics, vol. 62, no. 1, pp. 1–20, 2019. 128

[12] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Ma-
hajan, “Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22,
pp. 1–131, 2013. 129, 132, 142

[13] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of
the Royal statistical society: series B (Methodological), vol. 57, no. 1,
pp. 289–300, 1995. 100

[14] K. Berelson, F. Simini, T. Tryfonas, and P. Cooper, “Sensor-based
smart hot-desking for improvement of office well-being,” in Proceedings
of the 1st International Conference on Digital Tools & Uses Congress,
ser. DTUC, Paris, France: ACM, 2018, pp. 1–9. 19

[15] G. Brockman, V. Cheung, L. Pettersson, et al., Openai gym, 2016.
eprint: 1606.01540. 40

[16] Building Technologies Division, “Energy efficiency in building automa-
tion and control,” Siemens Switzerland Ltd, Tech. Rep., 2011. 1

[17] C. Buratti, E. Lascaro, D. Palladino, and M. Vergoni, “Building behav-
ior simulation by means of artificial neural network in summer condi-
tions,” Sustainability, vol. 6, no. 8, pp. 5339–5353, 2014. 11

[18] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear
programming: A survey,” Surveys in Operations Research and Manage-
ment Science, vol. 17, no. 2, pp. 97–106, 2012. 135
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Appendix A

Appendix

A.1 Performance of RL control agents

A.1.1 With the zone-level occupancy schedule

The data corresponding to Figure 4.4 can be found in Table A.1, which includes

details when zone-level occupancy information is factored in. For a compara-

tive analysis of the optimal trade-offs realized by each RL agent across various

scenarios, refer to Tables A.2 that present data incorporating zone-level occu-

pancy details.

A.1.2 With the building-level occupancy schedule

The data corresponding to Figure 4.4 can be found in Table A.1, which in-

cludes details when building-level occupancy information is factored in. For

a comparative analysis of the optimal trade-offs realized by each RL agent

across various scenarios, refer to Tables A.2 that present data incorporating

zone-level occupancy details.
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A.2 Space allocation

A.2.1 BestFit-Energy algorithm

Algorithm 3 BestFit-Energy Algorithm

Require: T ,X ∗, G, C, θ, f(·), Gk, pk(·), θ
Ensure: i′, ti′ ▷ Assigned zone and temperature setpoint
1: S ← ∅
2: for i in 1, . . . , |T | do
3: occupancy ←

∑
j∈MX ∗

i,jGj

4: if Ci − occupancy ≥ Gk then ▷ If there is enough capacity
5: ∆e← fi(Ti, Gk + occupancy)− fi(Ti, occupancy)
6: entry.zone← i
7: entry.occupied← 0 if occupancy = 0 else 1
8: entry.energy ← ∆e
9: S ← S ∪ entry
10: end if
11: end for
12:

13: if S = ∅ then ▷ If S is empty, then no feasible solution
14: reject k
15: end if
16:

17: sort S by value.occupied, value.energy ascending
18:

19: for entry in S do
20: i← entry.zone
21: if

∑
j∈MX ∗

i,jGj = 0 then ▷ If the zone is vacant

22: i′ ← i
23: ti′ ← argminti∈[tlb,tub]fi(ti, Gk)

24: else if pk(Ti) ≥ θ then
25: i′ ← i
26: ti′ ← Ti
27: end if
28: terminate if i′ exists
29: end for
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30: for entry in S do
31: i← entry.zone

32: T← µk ±
√
−2σ2

k log θ ▷ Range of feasible setpoints

33: for j in 1, . . . , |G| do
34: if X ∗

i,j = 1 then

35: T← T ∩
[
µj −

√
−2σ2

j log θ, µj +
√
−2σ2

j log θ
]

36: end if
37: end for
38:

39: if T ̸= ∅ then
40: i′ ← i
41: ti′ ← argminti∈Tfi(ti, Gk)

42: terminate
43: end if
44: end for
45: reject k

A.2.2 BestFit-Space algorithm

Algorithm 4 Diversifying Temperature Setpoints

Require: T ,X ∗, G, C, tlb, θ, σ̄
Ensure: T ∗

1: ∆←
√
−2σ̄2 log θ ▷ Acceptable deviation from setpoint

2: T ∗ ← ∅, T existing ← {26}, t← tlb

3: for i in 1, . . . , |T | do
4: occupancy ←

∑
j∈MX ∗

i,jGj

5: if 0 ≤ occupancy ≤ Ci then
6: T existing ← T existing ∪ {Ti −∆}
7: ▷ Get lower limit of acceptable temperature range
8: end if
9: end for
10: sort T existing ascending
11: for ti in T existing do
12: if t < ti then
13: num← ⌈(ti − t)/(2×∆)⌉
14: δ ← (ti − t)/(num+ 1)
15: for i in 1, . . . , num do
16: T ∗ ← T ∗ ∪ {t+ i× δ}
17: end for
18: end if
19: t← ti + 2×∆
20: end for
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Algorithm 5 BestFit-Space Algorithm

Require: T ,X ∗, G, C, θ, f(·), Gk, pk(·), θ
Ensure: i′, ti′
1: S,Svacant ← ∅
2: ∆←

√
−2σ̄2 log θ

3:

4: for i in 1, . . . , |T | do
5: occupancy ←

∑
j∈MX ∗

i,jGj

6: if 0 < occupancy ≤ Ci −Gk then
7: c← Ci −Gk ▷ Find effective capacity
8: for j in 1, . . . , |T | do
9: occupancy′ ←

∑
k∈MX ∗

j,kGk

10: if occupancy′ = 0 or 2×∆ ≤ |Ti − Tj| then
11: continue
12: end if
13: c← c+ (1− |Ti − Tj| /(2×∆)) ∗ (Cj − occupancy′)
14: end for
15:

16: ∆e← fi(Ti, Gk + occupancy)− fi(Ti, occupancy)
17: entry ← {capacity : c, zone : i, energy : ∆e}
18: S ← S ∪ {entry}
19:

20: else if occupancy = 0 then
21: Svacant ← Svacant ∪ {i}
22: end if
23:

24: end for
25: if S ̸= ∅ then ▷ Occupied zones can accommodate Gk

26: sort S by value.capacity, value.energy ascending
27: i′ ← S0.zone
28: ti′ ← Ti′
29: terminate
30: end if
31:

32: T ∗ = diversitySetpoints(T ,X , G, C,∆) ▷ Algorithm 4
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33: for i in 1, . . . , |T | do
34: if t ∈ µk ±

√
−2σ2

k log θ then

35: c← 0 ▷ Find effective capacity
36: for j in 1, . . . , |T | do
37: occupancy′ ←

∑
k∈MX ∗

j,kGk

38: if occupancy′ = 0 or 2×∆ ≤ |Ti − Tj| then
39: continue
40: end if
41: c← c+ (1− |t− Tj| /(2×∆)) ∗ (Cj − occupancy′)
42: end for
43:

44: entry.capacity ← c
45: entry.setpoint← t
46: entry.zone← argmini∈Svacant (fi(t, Gk)− fi(t, 0))
47: S ← S ∪ {entry}
48:

49: end if
50: end for
51: sort S by value.capacity ascending
52:

53: if S = ∅ then ▷ If S is empty, then no feasible solution
54: reject k
55: end if
56:

57: i′ ← S0.zone
58: ti′ ← S0.setpoint
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