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Abstract

Open-loop irrigation is a common practice in agriculture which leads to excessive consump-

tion of water resources. Closed-loop is a promising alternative to reduce water consumption

and to better maintain the health of crops, which requires soil moisture information of the

investigated fields. An agro-hydrological system describes the water movements between

soil, crop and atmosphere. Richards equation plays an important role in the study of agro-

hydrological systems. It models the water movement in soil in the vadose zone, which is

driven by capillary and gravitational forces. Its states (capillary potential) and parameters

(hydraulic conductivity, saturated and residual soil moistures, and van Genuchten-Mualem

parameters) are essential for the accuracy of mathematical modeling, yet difficult to obtain

experimentally. In this thesis, methods are developed to estimate the parameters and states

of Richards equation simultaneously.

First, the estimation problem is studied on one-dimensional Richards equation with spa-

tially and temporally homogeneous parameters. The finite difference model and augmented

model of Richards equation are constructed for simultaneous estimation. In the proposed

estimation approach, parameter identifiability is tested to determine the identifiable param-

eter sets and sensitivity analysis is used to determine the most important parameter set for

estimation purpose. The minimum number of sensors to ensure the identifiability of parame-

ters is determined by conducting maximum multiplicity method. Three common estimation

schemes (extended Kalman filter, ensemble Kalman filter and moving horizon estimation)

are investigated. The estimation performance is compared and analyzed based on extensive
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simulations.

The estimation problem is extended to estimate the parameters and states of three-

dimensional Richards equation with spatially heterogeneous and temporally homogeneous

parameters. The finite difference model and augmented model of three-dimensional Richards

equation are developed which include parameters of multiple types of soil. In the proposed

approach, decentralized or distributed estimation scheme is proposed since the increasing

number of states presented in the system. Before subsystem decomposition, observability

of the original augmented system is ensured. In other words, parameter identifiability and

sensitivity analysis are used to determine the significant parameter set for estimation pur-

pose. Then, the guidelines for subsystem decomposition are introduced, which is followed by

observability test on subsystems. A study of interaction between subsystems is conducted

which further motivates the decentralized estimation framework. The decentralized moving

horizon estimation is studied and its performance is extensively discussed.
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Chapter 1

Introduction

1.1 Motivation and Research Overview

Water and food scarcities are becoming serious issues worldwide due to population growth

and climate change. According to United Nations’ statistics [1], approximately 70% of all

available fresh water is consumed for agricultural activities, with the main consumer being

irrigation. Currently, the average water-use efficiency in irrigation worldwide is about 50%

as reported in Fischer et al. [2]. Therefore, it is of vital importance to improve irrigation

water-use efficiency, in order to address the water crisis. Currently, it is still a common

practice to use open-loop irrigation, which leads to excessive consumption of water resources.

Closed-loop irrigation is a promising alternative to reduce water consumption and to better

maintain the health of crops [3]. In the development of such a closed-loop irrigation system,

it is important to have the soil moisture information of the entire field, which is in general

very difficult to obtain. One way to overcome this challenge is to estimate the field’s soil

moisture based on limited sensor measurements. However, this depends on the accuracy of

the agro-hydrological model. In this work, we aim to develop a systematic parameter and

state estimation scheme that can provide accurate estimates of soil moisture.

Specifically, in this work, we consider simultaneous state and parameter estimation based
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on agro-hydrological systems modeled using the Richards equation, which describes soil wa-

ter dynamics. Richards equation is a partial differential equation (PDE) which falls in the

family of porous medium equation (PME). The estimation and control problems of this kind

of equation were widely studied in chemical engineering [4, 5, 6, 7] and meteorology [8, 9].

The Richards equation is essentially composed of the continuity equation and Darcys law,

which is incorporated with two algebraic equations of hydraulic conductivity and capillary

capacity (derivative of soil-water retention curve) [10]. The parameters of Richards equation

are related to soil properties. Different approaches have been developed to estimate soil

properties. Soil properties may be estimated in a soil lab by directly fitting the soil-water

retention curve and hydraulic conductivity curve using collected field data of soil moisture,

hydraulic conductivity and corresponding capillary pressure head [10]. However, soil prop-

erties may change over time and it would be expensive to take frequent soil samples for lab

analysis especially when a big field is considered. Moreover, the hydraulic conductivity is

difficult to measure. As an alternative to direct lab analysis soil parameters can be estimated

indirectly based on the Richards equation and some easily-accessible field measurements such

as soil moisture or capillary pressure head by minimizing the difference between measured

values and model predicted values. This type of indirect approaches are referred to as inverse

estimation [11]. Inverse estimation has been widely applied and its applications can be gen-

erally classified into two groups: methods based on measurements observed from one-step

or multi-step outflow experiments [12, 13, 14, 15] or methods based on time-series in-situ

measurements [16, 17, 18, 19, 20]. These inverse estimation methods can only estimate soil

parameters but not soil moisture or capillary pressure head. Moreover, they are mainly

applicable to pre-collected datasets and cannot be used for online parameter estimation.

Sequential data assimilation is another widely used approach in estimating soil parame-

ters online, which only requires the current measurement and prior knowledge of the system.

In general, it consists of two steps, which are prediction and update steps. In the first step,

a dynamical system model is initialized to describe a real process. Due to the limited knowl-
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edge about the process, the model may not predict the process accurately. Then, in the

update step, an algorithm is designed to determine how to correct the prediction, based

on field measurements and the dynamical model. Moreover, sequential data assimilation

has the ability to deal with uncertainties in the measurements and the model. Particle fil-

ters (PF) [21], extended Kalman filters (EKF) [22] and ensemble Kalman filters (EnKF)

[23, 24, 25, 26, 27] are common and widely used algorithms in sequential data assimilation

for soil parameter estimation. Li and Ren [23] studied parameter estimation by augmenting

parameters as states and used EnKF as the estimation algorithm. They also studied the pos-

sible factors that affect the performance of EnKF. In Reference [24], dual ensemble Kalman

filter (DEnKF) was used to first estimate the states using a standard KF and then to estimate

the parameters using an unscented Kalman filter. In Reference [25], two EnKFs were used

to estimate the states and parameters, separately, which neglected the complex nonlinear

interaction between states and parameters. In Reference [26], the authors compared three

ensemble-based simultaneous state and parameter estimation methods, augmented EnKF,

DEnKF and simultaneous optimization and data assimilation (SODA) to improve the soil

moisture estimation accuracy. It concluded that the augmented EnKF was the most ro-

bust method for general conditions and SODA was better at handling complex conditions.

However, it was pointed out that SODA required the highest computational resources.

However, one limitation of the above discussed methods is that they cannot handle con-

straints on the states or parameters and the estimation performance deteriorates when the

noise is not Gaussian or the initial guess is not good. Constraints on the states and parame-

ters are important information and may be used to significantly improve estimation perfor-

mance as will be demonstrated in the simulations of this work. To address the above discussed

problem, we can consider the optimization based moving horizon estimation (MHE) method,

which is widely used in state estimation of nonlinear systems with explicit constraints taken

into account [28].

MHE was mainly investigated within a centralized framework, with some representa-
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tive results reported in [28, 29, 30, 31, 32]. Since MHE converts an estimation prob-

lem into an optimization-based problem, the computational complexity is typically much

higher than that of other common estimation algorithms. Therefore, when dealing with

systems/processes of medium to large scales, centralized MHE may fail to provide online

estimates due to increasingly high computational load; this issue is especially significant for

systems with high non-linearity like the agro-hydrological systems considered in this work.

In addition to concerns about the computational load, the centralized structure that exploits

one single agent to handle plant-wide tasks is not favorable from the perspectives of fault

tolerance, organizational and maintenance flexibility [33, 34, 35, 36, 37]. The above consider-

ations have motivated the use of decentralized and distributed frameworks in advanced con-

trol [38, 39, 40, 41] as well as state estimation [42, 43, 44, 45]. In a decentralized/distributed

context, the overall system/process is typically divided into smaller units (subsystems), and

the original estimation problem which could be large and complex is typically decomposed

into smaller sub-problems, which are handled by a number of local agents instead of using

a single central agent. In this way, the computational burden for each agent is eased, and

the fault tolerance and maintenance flexibility can be much enhanced at the same time.

While the decentralized and the distributed frameworks are inherently similar, one primary

difference between them is that the local agents of a decentralized scheme are fully isolated

from each other while the local agents of a distributed scheme coordinate with each other

via communication during the process. As a result, a distributed architecture can be advan-

tageous when the sub-problems have significant connections; that is, when the subsystems

interact with each other significantly, since the interactions can be appropriately handled

by exchanging information between the local agents [35, 36]. In literature, there have been

some results on decentralized MHE (DeMHE) and distributed MHE (DMHE) designs. In

[46], a DMHE scheme was developed for nonlinear systems based on the concept of sensor

network. In [47, 48, 49], DMHE designs where local estimators are based on decomposed

subsystems were proposed. More relevant results can be found in [42, 50, 51].
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While distributed schemes can provide better overall performance as compared to their

decentralized counterpart in many cases, it is worth pointing out that DeMHE serves as

a preferable candidate for the problem considered in Chapter 3. In particular, we con-

sider multiple soil profiles in a field. And it is found that several one-dimensional (1D)

models that have negligible dynamic interactions can be used jointly to characterize the

three-dimensional (3D) soil moisture dynamics in this circumstance. Therefore, distributed

estimation is not a necessity due to the relatively weak interactions between two soil pro-

files, and decentralized estimation can be adopted so that fairly accurate estimates can be

obtained while minimal information exchange between local agents can be achieved.

1.2 Thesis Outline and Contributions

The outline and contributions of the thesis is organized as follows:

In Chapter 2, an 1D Richards equation with spatially and temporally homogeneous pa-

rameters is considered for parameter and state estimation. First, the explicit finite differ-

ence (FD) model of Richards equation is developed. This is followed by the construction

of the augmented system, which is achieved by augmenting parameters at the end of the

state vector. The observability of the augmented system is tested using Popov-Belevitch-

Hautus (PBH) observability theory, in order to identify the identifiable parameters. Then

sensitivity analysis is used to choose the most important parameter set for estimation. The

minimum number of sensors to ensure the identifiability of the parameter set is determined

using the maximum multiplicity theory. Three common estimation schemes (EKF, EnKF

and MHE) are applied on the 1D augmented model of Richards equation, in order to estimate

the parameter set determined before, using only the minimum number of measurements. The

estimation performance is compared and analyzed based on extensive simulations.

In Chapter 3, the estimation problem is extended to estimate the parameters and states

of a 3D Richards equation with spatially heterogeneous and temporally homogeneous pa-
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rameters. The steps to construct explicit 3D FD model are detailed and the effect of spatial

discretization size on the numerical solution of 3D Richards equation is examined experimen-

tally. The augmentation of the system and the determination of significant parameter set

for estimation purpose follow the same ideas in the previous chapter. Subsystem decompo-

sition scheme is discussed and the interaction between subsystems is qualitatively analyzed.

DeMHE is proposed for parameter and state estimation and its performance is assessed based

on simulations.
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Chapter 2

Simultaneous Parameter and State

Estimation of 1D Infiltration

Processes

In this chapter, we focus on simultaneous parameter and state estimation of 1D infiltration

process using MHE, EKF, and EnKF. We assume the parameters of the system are spatially

and temporally homogeneous. We first introduce the investigated system and the formulation

of the mathematical model in Section 2.1.1. The formulations of the estimation methods,

MHE, EKF, and EnKF are introduced in Section 2.2. Section 2.3 includes the methods to

determine the identifiable and significant parameters and the minimum number of sensors

required to estimate parameters. Section 2.4 shows the simulation setup, results of determi-

nation of significant parameters and minimum number of sensors, and the results of MHE

estimation compared with EKF and EnKF, followed by concluding remarks in Section 2.5.

Chapter 2 is a revised version of [52].
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2.1 Preliminaries

2.1.1 System Description and Problem Formulation

An agro-hydrological system describes the water movements between soil, crop and atmo-

sphere. Figure 2.1 shows a schematic of an agro-hydrological system, which is a modified

version from Reference [53]. The water movements usually involve water transportation

within the soil, root water extraction, transpiration and evaporation from the soil and leaves

to the air and precipitation including rain and irrigation.

Evaporation

Rain

Interception

Irrigation
(center pivot)

Root water 
extraction

Ground water

Capillary rise

Vadose zone

Transpiration

Leaching + 
groundwater 
recharge

In�ltration

Figure 2.1: A schematic diagram of an agro-hydrological system.

In this work, we focus on soil that is above the water table (i.e., soil in the vadose zone).

Within the vadose zone, the water movement is mainly driven by capillary and gravita-

tional forces and the water dynamics can be modeled using Richards equation under the
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assumptions: (1) soil properties are spatially homogeneous within the system; (2) irrigation

is uniformly applied on the surface of the system; and (3) the horizontal water dynamics are

much smaller than the vertical dynamics due to the gravity force and the horizontal water

dynamics can be neglected. Then, the 1D Richards equation modeling the vertical water

dynamics is shown below [54]:

c (h)
∂h

∂t
=

∂

∂z

[
K (h)

(
∂h

∂z
+ 1

)]
(2.1)

In Equation (2.1), h (m) is the capillary potential in the unsaturated soil, K(h) (m/s)

and c(h) (1/m) denote hydraulic conductivity and capillary capacity of the soil, respectively.

Note that in Richards equation, the value 1 on the right-hand-side denotes the impact of

gravitational force on water in the vertical (z) direction. The upward z direction is defined

as the positive direction. The van Genuchten-Mualem soil hydraulic model K(h) and c(h),

as functions of the capillary potential h, are shown as follows [10]:

K (h) = Ks

[
(1 + (−αh)n)

−(1− 1
n)
] 1

2

[
1−

[
1−

[
(1 + (−αh)n)

−(1− 1
n)
] n
n−1

]1− 1
n

]2

(2.2)

c (h) = (θs − θr)αn
(

1− 1

n

)
(−αh)n−1 [1 + (−αh)n]

−(2− 1
n) (2.3)

where Ks (m/s), θs (m3/m3) and θr (m3/m3) are saturated hydraulic conductivity, satu-

rated soil moisture and residual soil moisture, respectively. The van Genuchten-Mualem

parameters α (1/m) and n characterize the properties of the soil, which are proportional to

the inverse of the soil air entry pressure and of soil porosity, respectively. These two closed-

form expressions are derived by van Genuchten based on his expression of soil-water retention

curve and Mualem’s open-form expression of hydraulic conductivity. Since Mualem’s expres-

sion is not studied further, in this work, only van Genuchten’s soil-water retention equation
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is shown below [10]:

θ (h) = (θs − θr)
[

1

1 + (−αh)n

]1− 1
n

+ θr (2.4)

where θ (m3/m3) denotes volumetric water content in soil.

The five parameters θs, θr, α, n and Ks determine the properties of a type of soil. With

sufficient soil samples, θs, θr, α and n can be estimated by fitting the soil-water retention

curve Equation (2.4) utilizing soil moisture and capillary potential data sets. Then Ks can

be estimated by fitting hydraulic conductivity and capillary potential data sets into Equa-

tion (2.2). By using this approach, we can only get a snapshot of the soil properties at

one time instant, however, soil properties do slowly change over time due to agricultural

activities [55]. While the experiments can be repeated to get parameter estimates at differ-

ent times, it is very time consuming and expensive, especially when the investigated field is

large and has various soil types over the field. Therefore, online state and parameter estima-

tion based on ease-to-access field measurements provides a favorable approach to estimate

soil properties.

In this chapter, we study the estimation of soil properties based on real-time field mea-

surements: capillary potential h.

2.1.2 Finite Difference Model Development

Richards equation is a nonlinear PDE with respect to both the temporal and spatial variables.

Because of its complex structure, it is difficult to have a closed-form solution. Therefore a

finite difference method is implemented to find a numerical approximation of its solution.

Two-point forward difference scheme and two-point central difference scheme are used to

approximate the derivatives with respect to the temporal and spatial variables, respectively:

∂hk (t)

∂t
=
hk (t+ 1)− hk (t)

∆t
(2.5)
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∂

∂z

[
Kk (h (t))

(
∂hk (t)

∂z
+ 1

)]
=

Kk− 1
2

(h (t))
(
hk−1(t)−hk(t)
1
2

(∆zk−1+∆zk)
+ 1

)
−Kk+ 1

2
(h (t))

(
hk(t)−hk+1(t)
1
2

(∆zk+∆zk+1)
+ 1

)
∆zk

(2.6)

where t ∈ [0, Nt] ⊂ Z and k ∈ [1, Nx] ⊂ Z, representing time and position indices, re-

spectively. Nt and Nx are the total number of time instants and total number of states,

respectively. ∆t denotes the forward time step and ∆zk represents thickness of compart-

ment k. A schematic of the spatial discretization is shown in Figure 2.2. For illustration

purpose, a column is discretized into 3 compartments (k− 1, k and k+ 1). In each compart-

ment, there is a state locating at its center. The hydraulic conductivity, for example, Kk− 1
2
,

is linearized explicitly as Kk− 1
2
(h) = K(hk−1+hk

2
).

z

0.5(∆zk-1+∆zk)

∆zk-1

hk

hk+1

hk-1

∆zk

∆zk+1

0.5(∆zk+∆zk+1)

Figure 2.2: A schematic diagram of the spatial discretization.

The discrete-time finite difference model at node k and time instant t+1 can be obtained
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by substituting Equations (2.5) and (2.6) into Equation (2.1) as follows:

hk(t+ 1) = hk(t) + ∆t
Kk− 1

2
(h(t))

(
hk−1(t)−hk(t)
1
2

(∆zk−1+∆zk)
+ 1
)
−Kk+ 1

2
(h(t))

(
hk(t)−hk+1(t)
1
2

(∆zk+∆zk+1)
+ 1
)

∆zkck(h(t))

(2.7)

where ck(h(t)) is defined as c(hk(t)).

The Neumann boundary condition is utilized to characterize the top and bottom bound-

aries of the system and are shown below, respectively:

∂h (t)

∂z

∣∣∣∣
T

= −1− qT (t)

K (h (t))
(2.8)

∂ (h (t) + z)

∂z

∣∣∣∣
B

= 1 (2.9)

where the subscripts T and B represent the top and bottom boundary conditions, respec-

tively. The qT (m/s) is the irrigation rate which is considered as the input of the system and

free drainage boundary condition is applied at the bottom.

Before introducing estimation methods, for the sake of simplicity, we obtain the compact

form of the model by combining Nx Equation (2.7) for all spatial nodes and the boundary

conditions, Equations (2.8) and (2.9). It is shown below:

x (t+ 1) = F (x (t) , u (t) , p (t)) + ωx (t) (2.10)

where x(t) ∈ X ⊂ RNx represents the state vector containing Nx capillary pressure values

for corresponding spatial nodes, at the defined time instant t. p(t) ∈ P ⊂ RNp , represents

the parameter vector containing the parameters to be estimated. u(t) ∈ U ⊂ RNu , ωx(t) ∈

Wx ⊂ RNωx denote the input and the model disturbances, respectively.

The general output function, with the measurement noise taken into account, is shown

below:

y (t) = G (x (t) , p (t)) + ν (t) (2.11)
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where y(t) ∈ Y ⊂ RNy and ν(t) ∈ V ⊂ RNν denote the measurement vector and mea-

surement noise. If the volumetric soil moisture θ is measured by the soil moisture sensor,

Equation (2.11) is the general form of Equation (2.4). On the other hand, if tensiometers

are used to measure the water potential h in the soil, Equation (2.11) simply represents a

matrix indicating which states are measured by the tensiometers.

Furthermore, in order to estimate the states and parameters simultaneously, the parame-

ter vector is augmented at the end of the state vector and treated as a part of the augmented

state vector, xa = [x, p]T . An estimation of the augmented state vector xa brings the ben-

efit to estimate the states and parameters at the same time. The augmented model can be

constructed by augmenting Equation (2.10) with the following equation:

p (t+ 1) = p (t) + ωp (t) (2.12)

where ωp(t) ∈ Wp ⊂ RNωp . When the parameter vector p is assumed to be constant during

the study, ωp is equal to 0.

At last, the augmented model and output function used for simultaneous parameter and

state estimation are shown below:

xa (t+ 1) = Fa (xa (t) , u (t)) + ωa (t)

y (t) = Ga (xa (t)) + ν (t)

(2.13)

where xa(t) ∈ Xa ⊂ RNx+Np , ωa(t) ∈ Wa ⊂ RNw+Np and the subscript a of F (·) and G(·)

denotes the augmentation.

2.2 Estimation Methods

In this chapter, three common estimation schemes, MHE, EKF and EnKF are applied to

the augmented model to estimate the states and parameters. The design of these methods
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are detailed next.

2.2.1 Moving Horizon Estimation

MHE is an online optimization based estimation method [28]. The MHE optimization prob-

lem used in this work is formulated as follows:

min
x̂a(t−N),···,x̂a(t),
ω̂a(t−N),···,ω̂a(t−1)

‖x̂a(t−N)− x̄a(t−N)‖2
P−1 +

t−1∑
j=t−N

‖ω̂a(j)‖2
Q−1 +

t∑
j=t−N

‖ν̂(j)‖2
R−1 (2.14a)

s.t. x̂a(j + 1) = Fa(x̂a(j), u(j)) + ω̂a(j), j ∈ [t−N, t− 1] ⊂ Z (2.14b)

ν̂(j) = y(j)−Ga(x̂a(j)), j ∈ [t−N, t] ⊂ Z (2.14c)

x̄a(t−N) = x̂a(t−N |t−N) (2.14d)

x̂a(j) ∈ Xa, ν̂(j) ∈ V, j ∈ [t−N, t] ⊂ Z (2.14e)

ω̂a(j) ∈Wa, j ∈ [t−N, t− 1] ⊂ Z (2.14f)

In the MHE optimization, the objective is to minimize the distance between the pre-

dicted and observed measurements which is measured by the term ‖ν̂‖2
R−1 as shown in Equa-

tion (2.14a), where the term ν̂ is defined in Equation (2.14c). The caret signˆindicates that

the variable is estimated. The model uncertainty or the process disturbance is taken into

account and represented by ‖ω̂a‖2
Q−1 , where the term ω̂a is defined in Equation (2.14b). The

arrival cost, ‖x̂a − x̄a‖2
P−1 summarizes the information from the initial state of the model up

to the beginning of the estimation window of the MHE. N denotes the length of the estima-

tion window. After each optimization, only the last estimated state within the estimation

window is used. x̂a and ω̂a within the moving window are the decision variables of the opti-

mization problem. The term x̄a follows the definition of Equation (2.14d). x̂a(t−N |t−N)

represents the estimated state x̂a at time instant t −N , which is estimated at time instant

t−N . Matrices P , Q, R are positive definite matrices and they are the covariance matrices
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of state uncertainty, process noise ωa and measurement noise ν, respectively. In addition,

MHE takes into account constraints on the states, parameters and model uncertainties as

expressed in Equations (2.14e) and (2.14f).

2.2.2 Extended Kalman Filter

EKF is a common method used for state estimation of nonlinear systems based on succes-

sively linearizing the nonlinear system. It can be divided into two steps, which are prediction

and update steps. The prediction step predicts the state x˙a and the state covariance matrix

P . When a new measurement is available, the Kalman gain K is calculated first and then

x˙a and P are updated. The detailed steps are shown below:

1. Prediction step

(a) State prediction:

x̂a(t|t− 1) = Fa(x̂a(t− 1|t− 1), u(t− 1))

The model disturbance are not propagated as the states and parameters. Instead,

it is explicitly included in the state covariance prediction.

(b) State covariance prediction:

P (t|t− 1) = Aa(t)P (t− 1|t− 1)Aa(t)
T +Q

where Aa(t) = ∂Fa
∂xa

∣∣∣
x̂a(t−1|t−1)

and Q is the covariance matrix of the model distur-

bance ωa.

2. Update step
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(a) Kalman gain calculation:

K(t) = P (t|t− 1)Ca(t)
T [Ca(t)P (t|t− 1)Ca(t)

T +R]
−1

where Ca(t) = ∂Ga
∂xa

∣∣∣
x̂a(t|t−1)

and R is the covariance matrix of the measurement

noise ν.

(b) State update:

x̂a(t|t) = x̂a(t|t− 1) +K(t) (y(t)−Ga(x̂a(t|t− 1)))

The augmented state and parameter vector xa is updated when a new measure-

ments y(t) is available.

(c) State covariance update:

P (t|t) = (I −K(t)Ca(t))P (t|t− 1)

State covariance matrix P is updated. I is the identity matrix with dimension

Nx +Np.

2.2.3 Ensemble Kalman Filter

The EnKF is a method developed by Evensen [56] based on Monte Carlo method. An en-

semble of trajectories of the system is generated based on the priori probability distribution

of the case. A practical implementation scheme which estimated the probability distribution

based on the information embedded within ensembles, instead of propagation of the state

covariance matrix P , is discussed in Reference [57]. Unlike EKF, it directly utilizes the

nonlinear model Equation (2.13), which does not require frequent model linearization. In

addition, the model disturbance and measurement noise are taken into account at the same
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time as the states and parameters propagate. It starts with generating the ensembles, then

follows with the two steps as the same as in EKF.

1. Initialization step

(a) Generating ensembles:

x̂ma (0|0) ∼ N (xa(0), P (0)), m ∈ [1,M ] ⊂ Z

where an ensemble containingM initial states x̂ma (0|0), m = 1, . . . ,M , is generated

and m is the index of the ensemble. The ensemble follows the multivariate normal

distribution with mean, xa(0) and covariance matrix of the initial state, P (0).

2. Prediction step

(a) State prediction:

x̂ma (t|t− 1) = Fa(x̂
m
a (t− 1|t− 1), u(t− 1)) + ωma (t− 1), m ∈ [1,M ] ⊂ Z

where ωma (t− 1) ∼ N (0, Q). Just like generating the ensemble of x̂ma , a normally

distributed set of ωma are generated with the mean 0 and the covariance matrix Q.

Overall M trajectories propagate, with model disturbance explicitly considered.

3. Update step

(a) Kalman gain calculation:

K(t) = Pxy(t|t− 1)Pyy(t|t− 1)−1

where

Pxy(t|t− 1) = 1
M−1

∑M
m=1[(x̂ma (t|t− 1)− x̄a(t|t− 1))(ŷm(t|t− 1)− ȳ(t|t− 1))]

Pyy(t|t− 1) = 1
M−1

∑M
m=1[ŷm(t|t− 1)− ȳ(t|t− 1)]2
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x̄a(t|t− 1) = 1
M

∑M
m=1 x̂

m
a (t|t− 1) and

ȳ(t|t− 1) = 1
M

∑M
m=1 ŷ

m(t|t− 1).

Pxy is the cross-covariance matrix of the state and measurement vectors and Pyy

is the auto-covariance matrix of the measurement vector. The mean of the state

or measurement vector is calculated based on the corresponding ensembles.

(b) State update:

x̂ma (t|t) = x̂ma (t|t− 1) +K(t) [y(t) + νm(t)−Ga(x̂
m
a (t|t− 1))] , m ∈ [1,M ] ⊂ Z

where νm(t) ∼ N (0, R). All M state vectors are updated, when the new mea-

surement y(t) is available. The measurement uncertainty is taken into account by

generating a normally distributed ensemble of measurement noises νm(t), which

has mean 0 and covariance matrix R. At last, the estimated state x̂a(t|t) is ob-

tained as the mean of the corresponding ensembles x̂ma (t|t), m = 1, . . . ,m.

2.3 Proposed Procedure to Determine Significant Pa-

rameters and Number of Sensors

In reality, it is nearly impossible to measure all states and the parameters can not be de-

termined easily. First, according to Reference [58], it states that the original system of

Equation (2.10) is observable using limited number of measurements. That means the states

can be recovered. However, for this work the augmented system of Equation (2.13) is studied.

For this case, it is necessary to ensure that the parameters are also identifiable since they

are estimated with the states simultaneously. The proposed procedure to check the identifi-

ability of the parameters, to select appropriate parameters for estimation and to determine

the minimum number of sensors is shown in Figure 2.3. The key steps are explained below.
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Augmented system 
construction and candidate 

parameter sets determination

Candidate selection based on 
sensitivity analysis

Minimum number of sensors 
selection

More than 1 candidate?

Parameter and state 
estimation design

No

Yes

Figure 2.3: A flowchart of the procedure to determine the significant parameters and number
of sensors.

2.3.1 Determine Candidate Parameter Sets for Estimation

After augmenting the original nonlinear system with the parameters, the entire system may

not be observable. In order to determine which parameters can and should be estimated

online, we resort to observability analysis [59]. In this step, we assume that all the soil

moisture states are measured; that is, y = x. This ensures that the observability analysis

results depend only on the parameters. If the augmented system is not observable, then the

unobservability is caused by the augmentation of the parameters in the state vector.

When checking the observability of the augmented system, we start with the system with
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all the parameters augmented. If the augmented system is not observable, then one of the

parameters is removed from the augmented system. If there are Np parameters, then there

are Np different ways to remove the one parameter. All these Np cases are considered. If after

removing one parameter and upon finding that the new augmented system is observable, we

continue to the next step to determine which parameter set to estimate (described in the

next subsection). If we can still not find an observable augmented system after removing

one parameter, we continue to remove two parameters from the original augmented system.

Again, all the possible cases should be considered. If we can still not find an observable

system, we continue to remove three parameters from the original augmented system. This

continues until we find at least a system that is observable.

When checking the observability, we propose to use the PBH observability theory. Other

observability tests may also be used. Since the augmented system is a nonlinear system, it

should be linearized before PBH can be applied. It is recommended that instead of linearizing

the system at one point, it should be linearized at different point along typical operating

trajectories as used in Reference [60].

Note that the observability analysis described in this step may generate more than one

candidate parameter sets that can be estimated through augmentation of the original agro-

hydrological system.

2.3.2 Sensitivity Analysis

If there is only one candidate parameter set from the previous step, we can continue with the

candidate and move to the next subsection to find the minimum number of sensors. However,

if there are more than one candidates, we need to determine which parameter set to choose.

We propose to use sensitivity analysis to determine the importance of these parameters and

pick the set containing the most important parameters for further analysis.

The sensitivity analysis measures how the outputs respond when there is a change in

one parameter. The sensitivity matrix Sy(t) shown below contains the information about,
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at time instant t, how each output is affected by xa(0) which is constituted of the initial

state x(0) and the parameters p.

Sy(t) =



∂y1

∂xa,1(0)
∂y1

∂xa,2(0)
· · · ∂y1

∂xa,Nx (0)
∂y1

∂xa,Nx+1(0)
· · · ∂y1

∂xa,Nx+Np (0)

∂y2

∂xa,1(0)
∂y2

∂xa,2(0)
· · · ∂y2

∂xa,Nx (0)
∂y2

∂xa,Nx+1(0)
· · · ∂y2

∂xa,Nx+Np (0)

...
...

...
...

...
...

...

∂yNy
∂xa,1(0)

∂yNy
∂xa,2(0)

· · · ∂yNy
∂xa,Nx (0)

∂yNy
∂xa,Nx+1(0)

· · · ∂yNy
∂xa,Nx+Np (0)



∣∣∣∣∣∣∣∣∣∣∣∣∣
t

The detailed steps to derive the sensitivity matrix is explained below and is inspired by

Reference [61]. When performing this sensitivity analysis, we consider the augmented system

of Equation (2.13) without considering the disturbance ωa and ν but with xa(0) explicitly

expressed as shown below:

xa(t+ 1) = Fa(xa(t), u(t), xa(0))

y(t) = Ga(xa(t), xa(0))

(2.15)

where xa(0) is considered as an independent variable.

The objective is to check how a change in the initial state x0 and the parameters p affects

the prediction error e, which comes from the difference between the predicted y and the

observed measurements yM . We can represent this as:

∂e

∂xa(0)
=
∂ (y − yM)

∂xa(0)
=

∂y

∂xa(0)
− ∂yM
∂xa(0)

(2.16)

Because the observed measurement yM is not affected by the initial state and parameters,

the above expression is simplified as below:

∂e

∂xa(0)
=

∂y

∂xa(0)
(2.17)

Equation (2.17) can be derived by taking the partial derivative of Equation (2.15) with
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respect to the augmented state vector xa(0). And the sensitivity equations with respect to

xa(0) are shown below:

∂xa(t+ 1)

∂xa(0)
=

∂

∂xa(0)
Fa(xa(t), u(t), xa(0))

∂y(t)

∂xa(0)
=

∂

∂xa(0)
Ga(xa(t), xa(0))

(2.18)

Because the intermediate variable xa(t) depends on the independent variable xa(0) as

well, the chain rule is applied on the right hand sides of Equation (2.18) and we can further

get that
∂xa(t+ 1)

∂xa(0)
=

∂Fa
∂xa(t)

· ∂xa(t)
∂xa(0)

+
∂Fa
∂xa(0)

∂y(t)

∂xa(0)
=

∂Ga

∂xa(t)
· ∂xa(t)
∂xa(0)

+
∂Ga

∂xa(0)

(2.19)

By defining Sxa(t) = ∂xa(t)
∂xa(0)

and Sy(t) = ∂y(t)
∂xa(0)

, the above equations can be converted to

ordinary differential equations, which are shown below:

Sxa(t+ 1) =
∂Fa
∂xa(t)

· Sxa(t) +
∂Fa
∂xa(0)

Sy(t) =
∂Ga

∂xa(t)
· Sxa(t) +

∂Ga

∂xa(0)

(2.20)

Therefore, by giving the initial states of Equations (2.15) and (2.20) and solving them

at the same time, the sensitivity matrix Sy(t) can be obtained. Sy(t) may be normalized to

obtain the normalized sensitivity matrix SN :

SN(t) =
∂y(t)

∂xa(0)
· xa(0)

y(t)
(2.21)

Once the sensitivity matrix is obtained, we can use it to determine the relative importance

of different parameters. Specifically, we can exam the magnitudes of the elements in the

sensitivity matrix. Each parameter corresponds to one column in the sensitivity matrix. We

can use, for example, the summation of the absolute values of the elements of each column
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to compare the relative importance of parameters. A bigger value implies a more important

parameter in terms of its impact on the outputs. Among all the candidate parameter sets,

we keep the parameter set with the highest sensitivity values.

2.3.3 Minimum Number of Sensors

After the parameter set to be estimated is determined, the original system is augmented

with the parameters, as illustrated in Reference [58], we can use the maximum multiplicity

theory [62] to determine the minimum number of sensors required to ensure the observability

of the entire system. Then, state estimation techniques can be used to estimate the states

and parameters simultaneously.

2.4 Simulation Results and Discussion

2.4.1 System Description

In this work, a total length (L) of 67 cm loam soil column is investigated, which is shown in

Figure 2.4. The soil column is equally partitioned into 32 compartments. Correspondingly,

Richards equation is spatially discretized into 32 states (Nx) in the z direction, with each

state centered at the corresponding compartment. At the surface of the soil, the irrigation,

qT , is performed at the rate of 2.50 cm/day, from 12:00 PM to 4:00 PM daily. At the bottom,

the free drainage boundary condition is used, which means the gradient between the last state

and the state at the bottom boundary is 0. The soil column has the homogeneous initial

condition (x(0)) of −0.514 m capillary pressure head and the parameters of the soil are

shown in Table 2.1 [63]. The code is written in Python and the simulations are carried out

on a computer with Intel i5 CPU, 8.00 GB RAM.
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Table 2.1: The initial condition and parameters of the investigated loam soil column.
x(0) (m) Ks (m/s) θs (m

3/m3) θr (m
3/m3) α (1/m) n

Loam −0.514 2.89× 10−6 0.430 0.0780 3.60 1.56

L

qT = u

∆z 1

32

4

12

20

28

z

∇h = 0

Figure 2.4: A schematic diagram of the investigated loam soil column.
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2.4.2 Determination of Significant Parameters and Number of

Sensors

The augmented system (Equation (2.13)) is utilized to achieve simultaneous parameter and

state estimation. First without knowing the observability of the augmented system, all 5

parameters (Ks, θs, θr, α and n) are augmented; that is, Np = 5. In addition, all 32 states

are assumed to be measured. A 10-day state trajectory, without considering the process and

measurement noise, is used in the rest of the subsection for selecting appropriate parameters

for estimation and determining the minimum number of sensors. It is assumed that the

measurements are available every 1 h.

Following the procedure as discussed in Section 2.3.1, we apply the PBH observability test

on the augmented system to check the identifiability of the parameters. The test is conducted

every sampling time, which requires the system to be linearized accordingly. According to the

results, the augmented system is not observable. This implies that it is impossible to identify

the 5 parameters simultaneously. In order to look for an observable system, parameters are

removed from the augmented system. We start with removing only 1 of the parameters and

this results in 5 different augmented systems with each one augmented with 4 parameters.

Then, the observability of the 5 augmented systems is checked. It was found that 2 of the 5

systems are observable. In these two systems, either θs or θr is removed. Since observable

systems are found, we proceed to the next step to determine the final parameter set.

To determine which parameter set to use, the significance of θs and θr is compared

based on the sensitivity analysis described in Section 2.3.2. Sensitivity analysis is conducted

based on the original augmented system with all the parameters. The initial state of Equa-

tion (2.20) is an identity matrix of size Nx+Np. By comparing the summation of the absolute

values of the elements of each column of the normalized sensitivity matrices SN , it can be

found that the summation corresponding to the column ∂yk
∂θs

(82,674) is much bigger than the

one for ∂yk
∂θr

(14,997). Based on this, θs is considered as a more important parameter because

it has more impact on the output than θr. Therefore, the parameter set containing θr is
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Table 2.2: True values of initial states and parameters of the process and the initial guesses
used in filters and estimator.

x(0) (m) Ks (m/s) θs (m
3/m3) α (1/m) n θr (m

3/m3)

Loam (true value) −0.514 2.89× 10−6 0.430 3.60 1.56 0.0780
Initial guess −0.617 3.18× 10−6 0.387 3.24 1.72 0.0780

removed and the final parameter set will be used in the remaining analysis is {Ks, θs, α, n}.

In the above analysis, it was assumed that all the states (soil moisture) are measured

for the purpose of determining the parameters for estimation. When the set of parameters

is determined, we remove this assumption to determine the minimum number of sensors

(measurements) needed to ensure the observability of the augmented system with 4 param-

eters. Following the method described in Section 2.3.3, the maximum multiplicity method

is conducted, and it can be found that the minimum number of sensors is 4.

2.4.3 Simultaneous Parameter and State Estimation

According to the minimum number of sensors found above, it is assumed that 4 tensiometers

(Ny) are installed. Specifically, we assume that these sensors are installed at 7.30 cm, 24.1 cm,

40.8 cm and 57.6 cm below the surface, which measure the 4th, 12th, 20th and 28th states,

respectively. In the simulations, the actual parameter values used are shown in Table 2.1 and

they are assumed to be constant within the investigated temporal domain. Process noise and

measurement noise (ωx and ν) are considered in the simulations and they have zero mean

and standard deviations 3× 10−6 m and 8× 10−3 m, respectively.

In the design of the state and parameter filters (EKF, EnKF) and estimator (MHE),

the model augmented with 4 parameters (Ks, θs, α and n) is used. The initial guesses of the

initial states and parameters in the filters and estimator are listed in Table 2.2 and compared

with those used in the actual system.

For the EKF and EnKF, the weighting matrices Q and R are designed as the auto-

covariance matrices of ωx and ν with the standard deviations mentioned before. However,

the diagonal elements of Q corresponding to augmented parameters are 0, because the pa-
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Table 2.3: Lower and upper bounds used in MHE.

x̂ (m) K̂s (m/s) θ̂s (m3/m3) α̂ (1/m) n̂ ω̂x ω̂p
Lower bounds −1.00 2.31× 10−6 0.344 2.88 1.25 −∞ 0.00
Upper bounds −1.00× 10−4 3.47× 10−6 0.516 4.32 1.87 ∞ 0.00

rameters are assumed to be constant. In simulations, 10−20 is used to approximate the value

0 and to ensure the positive definiteness of the matrix. The diagonal elements of P corre-

sponding to the states are configured as the square of 3 × 10−3 and those of parameters are

configured as the square of 3× 10−2. For the designed EnKF, 100 ensembles are used.

For the design of MHE, the estimation window size is selected to be 8 h. The weight-

ing matrices P , Q, and R retain the same ratio with respect to those used in EKF and

EnKF but with a much bigger magnitude to ensure the numerical stability of the associ-

ated optimization problem. In addition, the P matrix is constant for all the optimizations.

The constraints of the states, parameters and the model uncertainty are listed in Table 2.3.

The upper and lower bounds of the term ω̂p are 0 because the parameters are constant.

In the following simulations, the root mean square error (RMSE) will be used to evaluate

the performance of the MHE, EKF and EnKF. The estimation performance in terms of the

states and parameters are evaluated separately. Their equations are shown below:

RMSEx(t) =

√∑Nx
k=1(x̂k (t)− xk (t))2

Nx

(2.22)

RMSEp(t) =

√∑Np
k=1(p̂k (t)− pk (t))2

Np

(2.23)

First, we performed simulations assuming that the parameter θr (which is not estimated)

is known and is the same as the value used in the actual system. Figures 2.5 and 2.6 show

some representative estimated states and all the parameters using MHE, EKF and EnKF,

which are also compared with their true values. Figure 2.5 shows the state trajectories of the

top node and a few middle nodes and one bottom node. From the figure, it can be seen that

the top node has more dynamics because it takes time for irrigated water to pass from the

27



0.75

0.50

0.25

h 1
 (m

)

0.65

0.50

0.35

h 6
 (m

)

0.65

0.50

0.35
h 1

2 (
m

)

0.65

0.50

0.35

h 1
8 (

m
)

0 1 2 3 4
Time, t (day)

0.65

0.50

0.35

h 3
0 (

m
)

EXP MHE EKF EnKF

Figure 2.5: Selected trajectories of the process states and estimated states using MHE, EKF
and EnKF.

upper part and to the lower part. In terms of state estimation performance, from Figure 2.5,

it can be seen that MHE and EnKF give very much more accurate state estimates than the

EKF. Note that from Figure 2.5, it can also be seen that the estimates of the 12th state (h12)

converge faster than the other estimates. This is because it is a sensor node. In terms of

parameter estimation, Figure 2.6 shows the results. From the figure, it can be seen that only

MHE is capable of estimating the parameters, whereas those estimated by EKF and EnKF

diverge from their true values. This may be because of the constraints used in MHE. These

constraints provide more useful information to MHE in addition to the measurements.

The trajectories of the performance indices RMSEx and RMSEp associated with the

MHE, EnKF and EKF are shown in Figure 2.7. These trajectories further confirm that the

MHE and EnKF have better performance than EKF in estimation of the states and the

MHE outperforms both EnKF and EKF in parameter estimation.

In the previous set of simulations, the parameter θr is assumed to be accurately known
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Figure 2.6: Trajectories of estimated parameters using MHE, EKF and EnKF, compared
with their actual values.

and is used in the MHE, EnKF and EKF. However, this assumption may not hold in practice.

In this set of simulations, we study how an inaccurate θr may affect the state and parameter

estimation performance. In this set of simulations, the value of θr used in the MHE, EnKF

and EKF is assumed to be 10% off from the actual value. The tuning parameters used in

the filters and estimator are the same as the ones used in the previous simulations. In this

case, the EnKF and EKF cannot give accurate parameter estimates as in the previous

case, either. The MHE is still the only estimation method that can give good parameter

estimates. Table 2.4 summarizes the estimated parameters using the MHE in the two sets

of simulations. The reported estimated values are the mean estimated values after the

estimates have converged. According to the results, a 10% difference of θr does not affect

the estimation results of other parameters when MHE is used. This verifies that the removal

of θr has a minor impact on the overall state and parameter estimation performance. This

further implies that the proposed method in parameter selection is applicable.
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Table 2.4: Comparison of estimated parameters using MHE with their true values, when θr
is assumed to be accurate and 10% off.

Cases θr (m3/m3) K̂s (m/s) θ̂s (m3/m3) α̂ (1/m) n̂
θr (true value) 0.0780 2.89× 10−6 0.430 3.60 1.56

θ̂r (= θr) 0.0780 2.89× 10−6 0.430 3.60 1.56

θ̂r (= 90%θr) 0.0702 2.89× 10−6 0.430 3.60 1.56

In this work, the spatial heterogeneity in soil properties is not considered. When pa-

rameter heterogeneity presents, a 3D Richards equation is needed to describe the water

dynamics. The studied MHE algorithm can be extended to handle heterogeneous parame-

ters in a straightforward manner. It is expected that the weighting matrices should be tuned

taking into account the spatial heterogeneity. Also, a system with different soil types may

be decomposed into a few subsystems with each subsystem having the same type of soil and

distributed or decentralized estimation may be used accordingly. MHE may still be used in

the design of the subsystem estimators.
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2.4.4 Effects of Simulation Parameters

In this subsection, we further study the performance of MHE in terms of number of mea-

surements and size of estimation window of MHE.

2.4.4.1 Effects of Number of Measurements

First, we study the effects of number of measurements on the estimation performance of

MHE. In addition to the case with 4 measurements, we also consider cases with 8 and 12

measurements. Figure 2.8 shows how the two performance indices RMSEx and RMSEp

evolve over time. From the top plot, it can be seen that the more sensors are used, the faster

state estimates converge. This is because the sensors are directly measuring the states.

When there are more sensors, it implies that we have more information of the states. For

the parameter, there is no obvious difference between the convergence speeds with different

number of measurements. Comparing the convergence speed between the state estimates

and parameter estimates, the state estimates converge much faster within one day while the

parameter estimates take longer time to converge (about 2 days). Overall, from this set

of simulations, it can be concluded that 4 sensors are sufficient to estimate all states and

parameters accurately.

2.4.4.2 Effects of MHE Estimation Window Size

The effects of the size of the estimation window of MHE on estimation performance are

also studied assuming that there are 4 measurements. Figure 2.9 shows how the two perfor-

mance indices RMSEx and RMSEp evolve over time with different estimation window sizes.

From the figure, it can be seen that from both plots that a window size of 8 is sufficient and

further increase of the estimation window size does not bring significant performance im-

provement.
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states and parameters of MHE using 4, 8 and 12 measurements.
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2.5 Summary

In this chapter, we have investigated simultaneous state and parameter estimation using

MHE, EKF, and EnKF applied to an infiltration system. First, a procedure was proposed to

find the appropriate parameter set for estimation based on the observability of the augmented

system and the sensitivity of the outputs to the parameters. It was found that only four

out of five parameters (hydraulic conductivity, saturated soil moisture, and van Genuchten-

Mualem parameters) can be considered in simultaneous state and parameter estimation.

The less important parameter (residual soil moistures) was not considered in parameter

estimation. After determining the parameter set for estimation, by using the maximum

multiplicity theory, the minimum number of sensors to ensure the identifiability of parameters

was four. Simulation results showed that the MHE has an overall the best parameter and

state estimation performance due to the inclusion of state and parameter constraints in the

estimation. It was also found that the uncertainty in the residual soil moisture (which was

not estimated) does not affect the overall estimation performance too much. The effects of

number of measurements and estimation window size of the MHE were also studied through

simulations. It was found that four measurements and a window size of eight for MHE are

sufficient to provide accurate parameter and state estimates.
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Chapter 3

Simultaneous Parameter and State

Estimation of 3D Infiltration

Processes

In this chapter, we study a simultaneous parameter and state estimation of 3D infiltration

processes, which have spatially heterogeneous and temporally homogeneous parameters, us-

ing DeMHE. First, the investigated 3D system, the construction of the numerical model and

augmented model are introduced in Section 3.1. The subsystem decomposition guidelines

and the formulation of DeMHE are presented in Section 3.2. The simulation results and

discussion are shown in Section 3.3 including the simulation setup, a study on spatial dis-

cretization size, observability test and DeMHE estimation results. Section 3.4 summarizes

the work covered in this chapter.
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3.1 Preliminaries

3.1.1 System Description and Problem Formulation

A piece of field may have complex terrains, such as hill, valley, etc. It may contain more

than one type of soil at different locations, for example, loam, clay, sand, etc. These facts

cause complicated horizontal water movements, which further affect the irrigation water-

use efficiency. Due to the horizontal water movements, different areas have different soil

moistures. Hence, if the movement can be captured, the closed-loop irrigation controller

could irrigate the appropriate amount of water to different areas according to their soil

moistures caused by the complicated terrains and various soil types. For example, the

controller could irrigate more water at the top of the hill than the bottom, since runoff

would happen and more water will be stored at the bottom. In another case, the sand has

less capability to store water for the crops, hence, more water can be irrigated at this area

to supply sufficient water to the crops.

In this chapter, in order to capture the dynamics of a field with multiple soil profiles, it

is essential to introduce the 3D agro-hydrological system. A simplified field with multiple

types of soil is studied under the following assumptions. First, the soil heterogeneity only

presents in horizontal direction and the interface between two types of soil is vertical and

flat. In other words, we assume that there is no mixture of different types of soil in the

system. Second, for each type of soil, the irrigation is uniformly applied on the surface. If

the surface of one type of soil is significantly large and the irrigation equipment cannot cover

the whole surface at the same time, this soil can be decomposed into sections with each

section has the uniform irrigation/input. Third, the surface of the field is assumed to be

flat, therefore, the effect of terrains is not studied. A schematic of the 3D agro-hydrological

system is shown in Figure 3.1.
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Figure 3.1: A schematic diagram of a 3D agro-hydrological system.

The governing equation, Richards equation, is extended into 3D and shown below:

c (h)
∂h

∂t
= ∇ · [K (h)∇ (h+ z)] (3.1)

where h (m) represents the capillary potential in the unsaturated soil, K(h) (m/s) and

c(h) (1/m) denote hydraulic conductivity and capillary capacity of the soil, respectively.

The van Genuchten-Mualem soil hydraulic model K(h) and c(h) are utilized and shown as

Equations (2.2) and (2.3), respectively. In van Genuchten-Mualem soil hydraulic model, the

parameter set (Ks, θs, θr, α and n) determines the properties of the type of soil. When
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Richards equation is used to describe the capillary potential of different types of soil, the

values of parameter set are different. Note that in Richards equation, the term z on the right-

hand-side denotes the impact of gravitational force on water in the vertical (z) direction.

Compared with 1D Richards equation (Equation (2.1)), the vector differential operator (∇)

in the 3D form summarizes the second derivatives of total pressure head with respect to x,

y and z directions.

3.1.2 Finite Difference Model Development

The FD method is applied, in order to find the a numerical approximation of solution of

(3.1). The procedure to construct the 3D FD model is detailed below.

First, the vector differential operation (∇) is carried out, which results in a less compact

form:

c (h)
∂h

∂t
=

∂

∂x

(
K(h)

∂h

∂x

)
+

∂

∂y

(
K(h)

∂h

∂y

)
+

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
(3.2)

Comparing to 1D Richards equation (Equation (2.1)), the right-hand side is the summation of

three terms, which are the second derivatives of total pressure head in x, y, and z directions.

The first and second terms govern the water movements in x and y directions, respectively.

Because the gravity force is only applied on the water movement in the vertical (z) direction,

+z or +1 term does not present in the first and second terms.

The FD method, strictly speaking, two-point central difference scheme and two-point

forward difference scheme are used to approximate the derivatives with respect to spatial

and temporal domains, respectively. As shown below, Equations (3.3a), (3.3b), and (3.3c)

show the approximations of the derivative terms with respect to x, y, and z directions.

37



Equation (3.3d) explains how the derivative in terms of time is approximated.

∂

∂x

(
K(h(t))

∂h(t)

∂x

)∣∣∣∣
i,j,k

=
1

∆xi

·
[
Ki− 1

2
,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2
(∆xi−1 + ∆xi)

)
−Ki+ 1

2
,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2
(∆xi + ∆xi+1)

)]
(3.3a)

∂

∂y

(
K(h(t))

∂h(t)

∂y

)∣∣∣∣
i,j,k

=
1

∆yj

·
[
Ki,j− 1

2
,k (h (t))

(
hi,j−1,k (t)− hi,j,k (t)

1
2
(∆yj−1 + ∆yj)

)
−Ki,j+ 1

2
,k (h (t))

(
hi,j,k (t)− hi,j+1,k (t)

1
2
(∆yj + ∆yj+1)

)]
(3.3b)

∂

∂z

[
K(h(t))

(
∂h(t)

∂z
+ 1

)]∣∣∣∣
i,j,k

=
1

∆zk

·
[
Ki,j,k− 1

2
(h (t))

(
hi,j,k−1 (t)− hi,j,k (t)

1
2
(∆zk−1 + ∆zk)

+ 1

)
−Ki,j,k+ 1

2
(h (t))

(
hi,j,k (t)− hi,j,k+1 (t)

1
2
(∆zk + ∆zk+1)

+ 1

)]
(3.3c)

∂h (t)

∂t

∣∣∣∣
i,j,k

=
hi,j,k (t+ 1)− hi,j,k (t)

∆t
(3.3d)

Note that in (3.3a) - (3.3d), the spatial index is represented by i, j, k and the temporal index

is denoted by t. Specifically, i ∈ [1, Nx,x] ⊂ Z, j ∈ [1, Nx,y] ⊂ Z, and k ∈ [1, Nx,z] ⊂ Z,

where Nx,x, Nx,y, and Nx,z denote the number of compartments in x, y, and z directions.

t ∈ [0, Nt] ⊂ Z where Nt denotes the number of time instants. ∆t denotes the temporal

step size. ∆xi, ∆yj, and ∆zk represent the length (Lx), width (Ly), and depth (Lz) of the

compartment, respectively. If the investigated spatial domain is discretized uniformly in

each direction, ∆x, ∆y, and ∆z are sufficient.

The hydraulic conductivity is explicitly linearized, for example,

Ki− 1
2
,j,k(h) = K

(
hi−1,j,k + hi,j,k

2

)
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Ki,j− 1
2
,k(h) = K

(
hi,j−1,k + hi,j,k

2

)

Ki,j,k+ 1
2
(h) = K

(
hi,j,k + hi,j,k+1

2

)
The FD model, which calculates the capillary pressure head at the position i, j, k and the

time instant t+ 1, is obtained by substituting Equations (3.3a) - (3.3d) into Equation (3.2).

It is shown below:

hi,j,k(t+ 1) = hi,j,k(t) +
∆t

ci,j,k(h(t))

·

{
1

∆xi

[
Ki− 1

2
,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2
(∆xi−1 + ∆xi)

)
−Ki+ 1

2
,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2
(∆xi + ∆xi+1)

)]
+

1

∆yj

[
Ki,j− 1

2
,k (h (t))

(
hi,j−1,k (t)− hi,j,k (t)

1
2
(∆yj−1 + ∆yj)

)
−Ki,j+ 1

2
,k (h (t))

(
hi,j,k (t)− hi,j+1,k (t)

1
2
(∆yj + ∆yj+1)

)]
+

1

∆zk

[
Ki,j,k− 1

2
(h (t))

(
hi,j,k−1 (t)− hi,j,k (t)

1
2
(∆zk−1 + ∆zk)

+ 1

)
−Ki,j,k+ 1

2
(h (t))

(
hi,j,k (t)− hi,j,k+1 (t)

1
2
(∆zk + ∆zk+1)

+ 1

)]}

(3.4)

where ci,j,k(h) = c(hi,j,k).

The Neumann boundary condition is used to characterize the top, bottom, left, right,
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front, and back boundaries, which are shown below respectively:

∂h (t)

∂z

∣∣∣∣
i,j,0

=− 1− qi,j,0(t)

K (h (t))
(3.5a)

∂h (t)

∂z

∣∣∣∣
i,j,(Nx,z+1)

=− 1−
qi,j,(Nx,z+1) (t)

K (h (t))
(3.5b)

∂h (t)

∂x

∣∣∣∣
0,j,k

=− q0,j,k (t)

K (h (t))
(3.5c)

∂h (t)

∂x

∣∣∣∣
(Nx,x+1),j,k

=−
q(Nx,x+1),j,k (t)

K (h (t))
(3.5d)

∂h (t)

∂y

∣∣∣∣
i,0,k

=− qi,0,k (t)

K (h (t))
(3.5e)

∂h (t)

∂y

∣∣∣∣
i,(Nx,y+1),k

=−
qi,(Nx,y+1),k (t)

K (h (t))
(3.5f)

In the above equations, if either of i, j or k equals to zero, it mean the boundary is either

of left, front or top boundary, respectively. On the other hand, if it equals to either of

Nx,x+1, Nx,y +1 or Nx,z +1, the boundary is either of right, back, or bottom boundary. The

variable q (m/s) denotes the water flow rate, in particular, qi,j,0 represents the irrigation rate

supplied at the surface point i, j. It is considered as the input of the system. By following

the standard 3D Cartesian coordinate system, when the water flows in the same direction of

one of positive axes, the flow rate is defined as a positive value. On the contrary, the flow

rate has a negative value when the water flows in the opposite direction. The incorporation

of flux based boundary conditions into Richards equation is shown below with top boundary

as an example.

By rearranging (3.5a), the irrigation rate can be represented as the following:

−qi,j,0(t) = K(h(t))

(
∂h (t)

∂z

∣∣∣∣
i,j,0

+ 1

)
(3.6)

Since only unsaturated case is considered in this work, it is not necessary to calculate

the value of the capillary pressure head at the top boundary (hi,j,0), when calculating the
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capillary pressure head at the top layer (hi,j,1). Instead, the term in (3.4), which is shown

below, can be substituted by Equation (3.6).

Ki,j, 1
2

(h (t))

(
hi,j,0 (t)− hi,j,1 (t)

∆z0

+ 1

)

Then hi,j,1 is calculated by directly using the irrigation rate, qi,j,0, instead of hi,j,0.

3.1.3 Augmented Model Development

A compact form describing a 3D Richards equation can be obtained by combining Equa-

tions (3.4), (3.5b) - (3.5f), and (3.6) of all nodes, which is represented as below:

x(t+ 1) = F (x(t), u(t), p(t)) + ωx(t)

y(t) = Cx(t) + ν(t)

(3.7)

where x(t) ⊂ RNx is the state vector, u(t) ⊂ RNu is the input vector, p(t) ⊂ RNp denotes the

parameter vector, ωx(t) ⊂ RNωx represents the system disturbance, y(t) ⊂ RNy is the system

output vector, and ν(t) ⊂ RNν denotes the measurement noise. The state is the capillary

pressure head and the total number (Nx) of the states is the product of Nx,x, Nx,y and Nx,z.

The size of the parameter vector (Np) depends on the types of soil presented in the system

considered. Because a system with more than 1 type of soil is studied in this chapter, the

value of Np is greater than that of Np in Chapter 2. The output is obtained by directly

measuring some of the states.

The augmented model is constructed by following the same idea explained in the previous

chapter, which is shown below:

xa(t+ 1) = Fa(xa(t), u(t)) + ωa(t)

y(t) = Caxa(t) + ν(t)

(3.8)
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where the subscript a denotes the augmentation, xa(t) ⊂ RNxa is the augmented state vector,

which is xa = [x, p]T . The augmented model disturbance is denoted as ωa(t) ⊂ RNwa .

3.2 Estimation Method

Based on the estimation performance of MHE, EKF and EnKF compared in Chapter 2,

MHE outperforms the other two methods in terms of handling the constraints and prevent-

ing the estimates from diverging. Therefore, in this chapter, we also choose to use MHE to

estimate the parameters and states of 3D Richards equation. In reality, a reasonable agricul-

tural field covers the area more than thousands of square meters, and more than millions of

states are required to model the system. A centralized MHE framework may fail to provide

online estimates due to increasingly high computational load included by the optimization

[33, 35]. Therefore, a decentralized or distributed estimation scheme needs to be developed

in this chapter. First, the guidelines for subsystem decomposition are introduced in Sub-

section 3.2.1. Subsection 3.2.2 discusses the method to test the observability of the original

system and subsystems. Then, an analysis to motivate the use of a decentralized framework

is carried out in Subsection 3.2.3. At last, Subsection 3.2.4 presents the design of DeMHE.

3.2.1 Guidelines for Subsystem Decomposition

In the development of a decentralized/distributed estimation scheme, the first step is to

decompose the entire process into smaller subsystems. For the 3D infiltration system, we

rely on the following guidelines:

1. it is expected that the numbers of the states in the configured subsystems can be

made similar, such that the computational and organizational complexity of the local

estimators are not significantly different;

2. it is desirable if each subsystem only accounts for one soil type;
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3. it is expected the initial values of the states involved in each subsystem are relatively

similar;

4. it is expected the areas that are subject to different irrigation schedules are assigned

to different subsystems;

5. it is expected each configured subsystem is assigned sufficient sensors such that the

decentralized estimation problem is feasible;

6. it is important that the dynamic interaction between each two subsystems is made

minimal.

By following the guidelines, each subsystem represents a relatively small 3D field, which

contains only 1 type of soil and its irrigation is uniformly applied. It is favorable, at least

from theoretical view, to use 3D Richards equation to develop state and parameter estimation

algorithm. However, 3D discretization will lead to increasing number of states, which MHE

may not be able to handle in an online fashion. It is possible to use, for example, the

states at the center column of the subsystem to approximate the capillary potentials of

different nodes within the same subsystem, because the states in the same horizontal layer

may be similar with each other under the proposed decomposition guidelines. Hence, in

each subsystem, only 1D Richards equation is utilized for modeling vertical water dynamics,

which significantly reduces the computational demand for each decentralized/distributed

estimator. The formulation of 1D decomposed subsystems is shown below:

xna(t+ 1) = F n
a (xna(t), qt(t), un(t)) + ωna (t)

yn(t) = Cn
a x

n
a(t) + νn(t)

(3.9)

where the superscript n ∈ [1, Ns] ⊂ Z denotes the index of the subsystem. xna(t) ⊂ RNxna is

the state vector for the subsystem n. The state vector contains the states and parameters

of the soil presented in the subsystem n. yn(t) ⊂ RNyn is the nth subsystem output vector,
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which is only related to the states from the same subsystem. The subsystem disturbance

and measurement noise are represented as ωna (t) ⊂ RNωna and νn(t) ⊂ RNνn .

Note that qn(t) ⊂ RNqn represents the information obtained from the neighboring sub-

system, which is required by the subsystem n.

3.2.2 Observability Test

Before conducting the subsystem decomposition, it is essential to conduct an observability

test on the original system (3.8) to ensure the system is observable [36]. In addition, after

configuring the subsystems through decomposition, it is necessary to check the observability

of subsystems (3.9). The method used to test the observability is proposed in Section 2.3.

At the same time, the significant parameter set for estimation is selected and the minimum

number of sensors required to ensure the observability of subsystems is determined. After

subsystems pass the observability test, decentralized/distributed estimation can be designed

and conducted.

3.2.3 Motivation of Decentralized Estimation

In this subsection, the significance of interaction between subsystems is studied, which further

motivates the use of a decentralized framework.

First, according to the FD model of 3D Richards equation (Equation (3.4)), the state

at the next time instant (hi,j,k(t + 1)) is dependent on itself and its adjacent states at the

current time instant (t). The physical locations of these states are shown in Figure 3.2. The

states hi,j,k, hi,j,k−1 and hi,j,k+1 belong to the same subsystem, and hi−1,j,k, hi+1,j,k, hi,j−1,k

and hi,j+1,k belong to the neighbouring subsystems. Next, let us take a detailed analysis of

the following term on the right-hand side of (3.4)

1

∆xi

[
Ki− 1

2
,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2
(∆xi−1 + ∆xi)

)
−Ki+ 1

2
,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2
(∆xi + ∆xi+1)

)]
.
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0.5(∆zk-1+∆zk)

Figure 3.2: A diagram illustrating spatial relation between center state and neighboring
states.

If the discretization in x direction is equally spaced, it can be further simplified into the

following:

Ki− 1
2
,j,k (h (t)) [hi−1,j,k (t)− hi,j,k (t)]−Ki+ 1

2
,j,k (h (t)) [hi,j,k (t)− hi+1,j,k (t)]

(∆x)2 (3.10)

This term quantitatively measures how the neighboring states in x direction (xi−1,j,k and

xi+1,j,k) contribute to the propagation of xi,j,k. In the same way, the following two terms

quantify how neighboring states in y and z directions affect the propagation of xi,j,k, respec-

tively:

Ki,j− 1
2
,k (h (t)) [hi,j−1,k (t)− hi,j,k (t)]−Ki,j+ 1

2
,k (h (t)) [hi,j,k (t)− hi,j+1,k (t)]

(∆y)2 (3.11)
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Ki,j,k− 1
2

(h (t)) [hi,j,k−1 (t)− hi,j,k (t) + 1]−Ki,j,k+ 1
2

(h (t)) [hi,j,k (t)− hi,j,k+1 (t) + 1]

(∆z)2 (3.12)

According to Equation (3.4), the summation of the above three terms contributes to the

propagation of xi,j,k. If there is a term which is significantly greater than others, it will

affect more on the propagation. As mentioned before, ∆x and ∆y represent the distance

between subsystems. They can be the value with the unit in meters and ∆z may have

the unit in centimeters, for example, ∆x and ∆y are equal to 10 m and ∆z is equal to 1

cm. Then, the denominator of (3.12) is 106 times smaller than those of (3.10) and (3.11).

Because the seven states shown in Figure 3.2 have the values in the similar magnitudes, the

numerators of the above three terms are in the relatively similar magnitudes. Hence, the

term (3.12) is around 106 times greater than terms (3.10) and (3.11), which implies that the

contribution of the states in z direction (xi,j,k−1 and xi,j,k+1) to the propagation of xi,j,k is

significantly bigger than those of states in x and y directions.

In other words, the horizontal interactions between the states are notably smaller, as

compared to the vertical interactions between the states. In this study, because the horizontal

interaction between the proposed subsystems is notably small, it can be neglected when

designing the estimation scheme, such that decentralized MHE serves a good candidate

solution.

3.2.4 Decentralized Moving Horizon Estimation Design

After the subsystem decomposition scheme is finalized, DeMHE is designed for the subsys-

tems. The schematic diagram of DeMHE is shown in Figure 3.3. At the bottom section

of the diagram, the system is decomposed into subsystems based on the type of soil. The

arrows between the subsystems mean that there is information exchange between the neigh-

boring subsystems. For example, if the subsystem 2 represents the soil column which is on

the right hand side of the soil column governed by subsystem 1, the information xa,2 denotes

the states and parameters information required by the subsystem 2. The information is
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Figure 3.3: A schematic diagram of the proposed decentralized parameter and state estima-
tion scheme.

from the right surface of the subsystem 1, which is considered as the left boundary of the

subsystem 2. Similarly, xa,1 is used by the subsystem 1 as the right boundary, which comes

from the left surface of the subsystem 2. At every sampling time, the measurements from the

subsystems are measured and sent to the corresponding estimators. The estimator will only

utilize the measurements from the corresponding subsystem and not from other subsystems.

Each estimator is isolated with each other in DeMHE. Therefore, at the top of the schematic

diagram, there is not arrows or information exchange between the estimators. The model

in each estimator, which is used to describe the corresponding subsystem, is also isolated.

However, the model does require boundary conditions information which are available in

other models. An assumption needs to be made on models’ boundary conditions, and in this

study, the left, right, front, and back boundary conditions of models used in estimators are

assumed to be zero capillary potential gradient.

The mathematical formulation of the DeMHE describing the above scheme is shown
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below:

min
x̂na (t−Nn),···,x̂na (t),
ω̂na (t−Nn),···,ω̂na (t−1)

‖x̂na(t−Nn)−x̄na(t−Nn)‖2
(Pn)−1 +

t−1∑
l=t−Nn

‖ω̂na (l)‖2
(Qn)−1 +

t∑
l=t−Nn

‖ν̂n(l)‖2
(Rn)−1

(3.13a)

s.t. x̂na(l + 1) = F n
a (x̂na(l), un(l)) + ω̂na (l), l ∈ [t−Nn, t− 1] ⊂ Z (3.13b)

ν̂n(l) = yn(l)− Cn
a x̂

n
a(l), l ∈ [t−Nn, t] ⊂ Z (3.13c)

x̂na(l) ∈ Xn
a , ν̂

n(l) ∈ Vn, l ∈ [t−Nn, t] ⊂ Z (3.13d)

ω̂na (l) ∈Wn
a , l ∈ [t−Nn, t− 1] ⊂ Z (3.13e)

where n denotes the index of the estimator. Nn is the estimation window size of the estimator

n. The variables x̂na , ω̂na , and ν̂n are the estimates of xna , ωna , and νn within the estimation

window of the subsystem n. The penalty matrices P n, Qn, and Rn in the cost function

(3.13a) are the covariance matrices of the subsystem’s state uncertainty, model disturbance,

and measurement noise. For different subsystems with different soil types, the design of

the penalty matrices for each corresponding MHE could be different while the algorithms of

MHE are the same. Overall, (3.13b) and (3.13c) are the subsystem model constraints, with

information exchange term is dropped from (3.13b). The constraints of the subsystem state,

disturbance, and measurement noise are denoted as Xn
a , Wn

a , and Vn, which are shown in

(3.13d) and (3.13e).

3.3 Simulation Results and Discussion

3.3.1 System Description

In this chapter, a field with 20 m (Lx) in x direction, 10 m (Ly) in y direction and total

depth (Lz) of 67 cm is investigated, which is shown in Figure 3.4. The soil type is loam on

the left half of the field and is sandy clay loam (SCL) on the right half. The parameters of
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Figure 3.4: A schematic diagram of the investigated field.

Table 3.1: The parameters of the investigated 3D field.
Ks (m/s) θs (m

3/m3) θr (m
3/m3) α (1/m) n

Loam 2.89× 10−6 0.430 0.0780 3.60 1.56
Sandy clay loam 3.64× 10−6 0.390 0.100 5.90 1.48

soils are shown in Table 3.1 [63]. In order to construct the FD model, the field is equally

partitioned into 500 compartments in x direction, 250 compartments in y direction, and 32

compartments in z direction. Correspondingly, Richards equation is spatially discretized

into 500 (Nx,x), 250 (Nx,y), and 32 states (Nx,z) in the x, y, and z directions, respectively.

Each state is centered at the corresponding compartment, instead of at the vertices of the

compartment. In the figure, the column of black solid dots represents the states of the

compartments which are at the center column of each soil. The code is written in Python

and the simulations are carried out on a computer with Intel i5 CPU, 8.00 GB RAM.

3.3.2 Observability Test on Original System

As described in Subsection 3.2.2, it is necessary to ensure the observability of the original

system before decomposition. The system contains two different types of soil, loam and

sandy clay loam. There will be 10 parameters in the augmented system and the result of
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determination of significant parameters obtained in Chapter 2 cannot be accepted. The

observability of the augmented system needs to be checked again to ensure the identifia-

bility of the parameters. The method proposed in Section 2.3 is carried out again on the

augmented 3D system (3.8) to check the identifiability of parameters, select the significant

identifiable parameters, and determine the minimum number of sensors required to ensure

the identifiability.

At the beginning, all 10 parameters (Ks, θs, θr, α, and n for loam and sandy clay loam) are

augmented and all states are assumed to be measured. A 4-day deterministic state trajectory

is simulated under the following setups: (1) on the surface of the soil, the irrigation (u) is

performed at the rate of 2.50 cm/day, from 12:00 PM to 4:00 PM daily; (2) at the bottom,

the free drainage boundary condition is applied, and (3) the field has the homogeneous initial

condition (x(0)) of -0.514 m capillary pressure head. The simulation result is used in the

rest of the subsection. The measurements are available every one hour.

Following the procedure discussed in Subsection 2.3.1, the PBH observability test is

applied on the augmented system to check the identifiability of the parameters. The system

needs to be linearized every time when the test is carried out, which is every sampling time. It

shows that the augmented system is not observable when all 10 parameters are augmented,

even all states are measured. In order to look for an observable system, parameters are

removed from the augmented system. It starts with removing only one of the parameters

and this results in 10 different augmented systems with each one augmented with nine

parameters. It is found that none of systems are observable. Then, two parameters are

removed from the system (3.8), which results in 45 different augmented systems. By checking

their observability, it shows that there are four systems are observable. The parameters

removed from these four candidates are listed in Table 3.2. Since observable systems are

found, the final parameter set is determined in the next step.

Sensitivity analysis described in Subsection 2.3.2 is conducted based on the original aug-

mented system with all the parameters augmented. By comparing 1-norm of each column of
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Table 3.2: Observable systems and their removed parameters.

Candidate # Parameters removed

1 θs of loam and θs of SCL
2 θr of loam and θr of SCL
3 θs of loam and θr of SCL
4 θr of loam and θs of SCL

the normalized sensitivity matrices SN , it can be found that the 1-norm of the column ∂yi
∂θs

of both loam (5050) and SCL (2.34) are bigger than 1-norm of ∂yi
∂θr

of loam (916) and SCL

(0.600), respectively. Based on this, θs of two soils are considered as the more important

parameters because they have more impacts on the output than θr. It worth mentioning that

even the 1-norm of ∂yi
∂θs

of SCL (2.34) is much smaller than 1-norm of ∂yi
∂θr

of loam (916), θr

of loam is neglected in estimation problem. The reason is that if both θs and θr of loam are

augmented in the system, the system becomes unobservable. Therefore, the parameter set

(Candidate 2) excluding both θr is selected and the final parameter set used in the remaining

analysis is {Ks, θs, α, n} for both loam and sandy clay loam.

The identifiable and significant parameter set is determined based on the assumption

that all states are measured. The minimum number of sensors (measurements) is deter-

mined, following the method described in Subsection 2.3.3. After the maximum multiplicity

method is conducted, and it shows that the minimum number of sensors is 8 to ensure the

observability of the augmented system with 8 parameters.

In conclusion, a system which is augmented with 8 parameters (Ks, θs, α, and n for

both loam and sandy clay loam) is observable and it will be used in the next subsection for

subsystem decomposition.

3.3.3 Subsystem Decomposition

By following the guidelines for subsystem decomposition in Subsection 3.2.1, it will result in

2 subsystems. Subsystem 1 contains 2 millions states representing the capillary potentials of

loam on left half of the field, 4 parameters of loam augmented at the end of the state vector,
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4 outputs measuring the loam, and 62500 inputs uniformly applied on the states in the top

layers. Similarly, Subsystem 2 contains 2 millions states, 4 parameters treated as states, 4

outputs and 62500 inputs with respect to the SCL on the right half of the field. Because the

soil property, initial state and input are uniform in each subsystem, it is reasonable to assume

the state at the center column of the subsystem is able to represent the whole subsystem.

Under this situation, each 3D subsystem is represented by an 1D model which contains 32

states, 4 augmented parameters, 4 outputs and 1 input. Figure 3.4 can be visualized as

that the 3D system is discretized into 2 compartments in x direction and 1 compartment in

y direction with a larger ∆x and ∆y; that is ∆x = 10 m and ∆y = 10 m. In addition, the

1D model is located at the center of the compartment.

In order to ensure the above assumptions are valid and reasonable, it is necessary to

compare the numerical solutions of the models under two different discretization schemes.

The first scheme is proposed in Subsection 3.3.1 and ∆x and ∆y equal to 4 cm. The second

scheme is proposed in this subsection and ∆x and ∆y equal to 10 m. The model with ∆x

and ∆y equal to 4 cm is called Model 1, and the one with 10 m is called Model 2. We

assume that the numerical solution of Model 1 is able to represent the trajectories of the

system accurately. Then this solution is compared with the solution of Model 2. If the

percentage difference of the solutions of two models are acceptable, 10 m is considered as an

acceptable discretization size in x and y directions, and the assumptions used for simplify

subsystems are valid. Three scenarios are proposed and the setups are listed in Table 3.3.

The numerical solutions of two models are compared in all three scenarios. Specifically, the

setup of Scenario 1 is that at the surface of the soil, the irrigation (u) is performed at the

rate of 2.50 cm/day, from 12:00 PM to 4:00 PM daily. At the bottom, the free drainage

boundary condition is applied. The field has the homogeneous initial condition (x(0)) of

-0.514 m capillary pressure head. Scenario 2 studies the impact of initial conditions. The

left half of the field has the homogeneous initial condition of -0.514 m capillary pressure

head and the right half has the homogeneous initial condition of -0.284 m. The top and
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Table 3.3: The setups of scenarios studying effects of sizes of both ∆x and ∆y on numerical
solution of 3D Richards equation.

x(0) (m) u (cm/day) Irrigation schedule
Loam SCL Loam SCL Loam SCL

Scenario 1 -0.514 -0.514 2.5 2.5 12PM to 4PM 12PM to 4PM
Scenario 2 -0.514 -0.284 2.5 2.5 12PM to 4PM 12PM to 4PM
Scenario 3 -0.514 -0.514 2.5 2.5 12PM to 2PM 2PM to 4PM

bottom boundary conditions of this scenario is the same as the setup of Scenario 1. Scenario

3 studies the impact of inputs on the numerical solution. It has the same initial condition

and bottom boundary condition as Scenario 1. However, the irrigation is performed at the

rate of 2.5 cm/day, from 12:00 PM to 2:00 PM daily on the left half of the field and from

2:00 PM to 4:00 PM daily on the right half.

The following three figures, Figures 3.5, 3.6, and Figure 3.7, show the selected state

trajectories comparing two models under Scenario 1, 2, and 3, respectively. Within each

figure, the subplot on the left shows the trajectories of the loam and the subplot on the right

shows the trajectories of sandy clay loam. Under each scenario, the trajectories of Model 2

is as almost the same as those of Model 1. Qualitatively speaking, the maximum percentage

difference over the investigated time domain of Scenario 1, 2, and 3 is 0.01%, 0.03%, and

0.006%, respectively. Therefore, when both ∆x and ∆y equal to 10 m, it will not introduce

numerical issues and the numerical solution of Model 2 represents the process accurately,

under three proposed scenarios.

In conclusion, for a subsystem that contains only 1 type of soil, receives uniform irrigation

and is initialized uniformly, the capillary potential at the center of the subsystem (black dots)

is able to represent the capillary potentials at other locations in the same horizontal layer.

Hence, it is reasonable to only use an 1D model to simulate the subsystem.
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Figure 3.5: Comparison of selected trajectories of Model 1 (4 cm) and Model 2 (10 m) under
Scenario 1.
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Figure 3.6: Comparison of selected trajectories of Model 1 (4 cm) and Model 2 (10 m) under
Scenario 2.
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Figure 3.7: Comparison of selected trajectories of Model 1 (4 cm) and Model 2 (10 m) under
Scenario 3.

3.3.4 Observability Test on Subsystems

The observability of each subsystem is tested using the method introduced in Subsection 2.3.

In each subsystem, the parameter set (Ks, θs, α, and n) is presented. According to the

previous observability analysis, the augmented model with such parameter set is observable.

Sensitivity analysis is not required for selecting the significant parameter set. At last, 4

sensors are the minimum number of sensors required to ensure the identifiability of selected

parameters in each subsystem.

3.3.5 Decentralized Framework Motivation

In this subsection, a quantitative result is shown to support the analysis in Subsection 3.2.3

and further motivate the decentralized framework. The trajectories of the magnitudes of

terms (3.10) and (3.12) are generated under Scenario 1. The 2nd top state in the left
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Figure 3.8: Trajectories of contributions of states in x and z directions to the system prop-
agation.

subsystem is defined as xi,j,k. The top figure of Figure 3.8 shows the trajectory of magnitude

of term (3.10) and the bottom figure shows the trajectory of magnitude of term (3.12). They

show that the magnitude of term (3.12) is around 0.5 × 106 greater than the magnitude of

term (3.10). Therefore, the horizontal interactions between the states are notably smaller,

comparing to the vertical interactions between the states. In other words, the interaction

between the proposed subsystems are notably small. Because the information exchange

between MHEs are negligible, DeMHE is justified.

3.3.6 Simultaneous Parameter and State Estimation

In this subsection, DeMHE is applied to the subsystems described in Subsection 3.3.3, to

estimate their states and parameters. The performance of DeMHE is studied under the

three scenarios mentioned in Subsection 3.3.3. According to the minimum number of sensors

found in Subsection 3.3.4, 4 sensors are sufficient for estimating the parameters and states of
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Table 3.4: True values of initial states and parameters of the process and the initial guesses
used in estimators.

Variables True value Initial guess

MHE 1

Ks (m/s) 2.89× 10−6 3.18× 10−6

θs (m
3/m3) 0.430 0.387

α (1/m) 3.60 3.24
n 1.56 1.72
θr (m

3/m3) 0.0780 0.0780

MHE 2

Ks (m/s) 3.64× 10−6 4.00× 10−6

θs (m
3/m3) 0.390 0.351

α (1/m) 5.90 5.31
n 1.48 1.62
θr (m

3/m3) 0.100 0.100

MHE 1 & 2 x0 (m) -0.514 -0.617

a subsystem. In this study, in order to ensure we can obtained enough information from the

process, we assume that 8 tensiometers (Ny) are installed in each subsystem. Specifically,

each type of soil is measured by 8 sensors and these sensors are installed at which the states

are defined. In each soil, the sensors are installed at 5.23 cm, 13.6 cm, 22.0 cm, 30.4 cm, 38.7

cm, 47.1 cm, 55.5 cm, and 63.9 cm below the surface, which measure the 2nd, 6th, 10th, 14th,

18th, 22th, 26th and 30th states, respectively. Eight parameters (Ks, θs, α, and n for both

loam and sandy clay loam) of the system are interested. The actual parameter values used

to describe the system are shown in Table 3.1 and they are assumed to be constant within

the investigated temporal domain. Process noise and measurement noise (ωx and ν) are

considered in the simulations and they have zero mean and standard deviations 3× 10−6 m

and 8× 10−3 m, respectively.

In the design of DeMHE, MHE 1 and MHE 2 are designed for Subsystem 1 and Subsystem

2, respectively. The algorithm of MHE 1 and MHE 2 are introduced in Subsection 3.2. The

initial guesses of the parameters and initial states in the estimator are listed in Table 3.4

and compared with those used in the actual system.

The designs of two MHEs are described as follows. The estimation window sizes of both

MHEs are 8 hours. The weighting matrices P n, Qn, and Rn of both MHEs are the same.

Specifically, the matrices Qn and Rn are designed as the covariance matrices of ωnx and νn
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Table 3.5: Lower and upper bounds used in DeMHE.
Variables Lower bounds Upper bounds

MHE 1

K̂s (m/s) 2.31× 10−6 3.47× 10−6

θ̂s (m
3/m3) 0.344 0.516

α̂ (1/m) 2.88 4.32
n̂ 1.25 1.87

MHE 2

K̂s (m/s) 2.91× 10−6 4.37× 10−6

θ̂s (m
3/m3) 0.312 0.468

α̂ (1/m) 4.72 7.08
n̂ 1.18 1.78

MHE 1 & 2
x̂ (m) -1.00 −1.00× 10−4

ω̂x -∞ ∞
ω̂p 0.00 0.00

with the standard deviations mentioned in Subsection 3.3.1. The diagonal elements of Qn

corresponding to augmented parameters are 0, because the parameters are assumed to be

temporally constant. In simulations, 10−20 is used to approximate the value 0 and to ensure

the positive definiteness of Qn. The diagonal elements of P n corresponding to the states

are designed as (3× 10−3)2 and those of parameters are configured as (3× 10−2)2. Then by

retaining the same ratio with respect to the matrices described before, P n, Qn, and Rn are

increased with a much bigger magnitude to ensure the numerical stability of the associated

optimization problem. The P n matrix is constant for all the optimizations. One thing worth

mentioning is that even the designed weighting matrices for two MHEs are the same, the

weighting matrices could be designed differently for different types of soil, especially when the

parameter heterogeneity is significant. The designs of constraints of the states, parameters

and the model uncertainty are listed in Table 3.5. The upper and lower bounds of the term

ω̂p are 0 because the parameters are constant.

The root mean square errors, RMSEx and RMSEp, are used to evaluate the performance

of DeMHE on state and parameter estimation, respectively. The formulas are mentioned in

Subsection 2.4.3.
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Figure 3.9: Selected trajectories of the process states and estimated states using DeMHE.

3.3.6.1 Scenario 1

The DeMHE is applied to the system under Scenario 1 and its performance is assessed as

the following. Figure 3.9 shows some representative estimated states and Figure 3.10 shows

all estimated parameters using DeMHE. The estimated values are also compared with their

true values, which are obtained using Model 1 with both ∆x and ∆y equaling to 4 cm. In

each figure, the subplot on the left side is for loam and the one the right side is for sandy

clay loam.

Figure 3.9 shows the state trajectories of the top node and a few middle nodes and one

bottom node. From the figure, it can be seen that the top node has more dynamics because it

takes time for irrigated water to pass from the upper part and to the lower part. In terms of

state estimation performance, from Figure 3.9, it can be seen that DeMHE gives very much

accurate state estimates. Note that from Figure 3.9, it can also be seen that the estimates

of the 11th state (h11) converge faster than the other estimates. This is because it is a sensor
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Figure 3.10: Trajectories of estimated parameters using DeMHE, compared with their actual
values.

node.

In terms of parameter estimation, Figure 3.10 shows the results. From the figure, it can

be seen that DeMHE is capable of estimating the parameters.

These are further confirmed by Figure 3.11 that DeMHE is able to estimate states and

parameters. The trajectories of the performance indices RMSEx and RMSEp associated

with the DeMHE are shown in Figure 3.11 and the indices for both types of soil decrease to

values less than 0.02.
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Figure 3.11: Trajectories of RMSE measuring the estimation performance of DeMHE.

3.3.6.2 Scenario 2: Impact of Initial Conditions

The performance of DeMHE is assessed under Scenario 2, which is shown below. Figures 3.12

and 3.13 show some selected estimated states and all estimated parameters using DeMHE,

which are also compared with their true values obtained using Model 1. As the same as

before, in each figure, the subplot on the left side is for loam and the one the right side is for

sandy clay loam. Figure 3.12 shows the state trajectories of the selected nodes. From the

figure, not only do the trajectories of the top node have more dynamics, but also the loam

and sandy clay loam are initialized at two different values. With regard to state estimation

performance, it shows that DeMHE gives accurate state estimates, and the estimates of

the 11th state (h11) converge faster than the other estimates, because it is a sensor node.

Figure 3.13 compares the trajectories of estimated parameters and true parameters. It can

be seen that estimated parameters converges to their true values.
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Figure 3.12: Selected trajectories of the process states and estimated states using DeMHE.
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Figure 3.13: Trajectories of estimated parameters using DeMHE, compared with their actual
values.
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Figure 3.14: Trajectories of RMSE measuring the estimation performance of DeMHE for
studying impact of initial conditions.

The trajectories of the performance indices RMSEx and RMSEp associated with the

DeMHE are shown in Figure 3.14. The trajectories confirms the conclusions drew before

by showing that indices drop to the values less than 0.02. Therefore, under Scenario 2, the

proposed initial condition has negligible effects on the performance of DeMHE.

3.3.6.3 Scenario 3: Impact of Inputs

The performance of DeMHE is examined when it is applied to the system under Scenario

3. Figures 3.15 and 3.16 show some selected estimated states and all estimated parameters

using DeMHE, which are also compared with their true values obtained using Model 1.

Figure 3.15 shows the state trajectories of the selected nodes. From the figure, two soils

are irrigated at different time. In terms of performance of state estimation, it shows that

DeMHE is able to estimate states accurately. Because h11 of two soils are a sensor node,

their estimates converge faster than others. Figure 3.16 shows that DeMHE gives very much
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accurate parameter estimates of both soils.
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Figure 3.15: Selected trajectories of the process states and estimated states using DeMHE.
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Figure 3.16: Trajectories of estimated parameters using DeMHE, compared with their actual
values.
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Figure 3.17 further confirms that DeMHE is able to estimate states and parameters. It

shows the trajectories of the performance indices RMSEx and RMSEp of both types of soil

associated with the DeMHE. All indices decrease to the values less than 0.02, which implies

that the performance of DeMHE is not affected by the inputs proposed in Scenario 3.
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Figure 3.17: Trajectories of RMSE measuring the estimation performance of DeMHE for
studying impact of inputs.

3.4 Summary

In this chapter, we have investigated simultaneous state and parameter estimation using

DeMHE applied to a 3D infiltration system with two types of soil. The augmented finite

difference model of 3D Richards equation was constructed for simultaneous state and param-

eter estimation. The appropriate parameter set which contains significant and identifiable

parameters was determined based on the observability of the augmented system and the

sensitivity of the outputs to the parameters. It was found that the augmented system was

unobservable when a pair of saturated soil moisture and residual soil moisture of the same
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type of soil presented in the system. The less important parameters (residual soil moistures

of both soils) were not considered in parameter estimation. Before applying DeMHE, the

system was decomposed into two subsystems based on the soil types presented in the system.

Each subsystem contained only one type of soil, hence, four parameters (hydraulic conduc-

tivity, saturated soil moisture, and van Genuchten-Mualem parameters). The performance

of DeMHE was evaluated under the following scenarios: (1) the initial states and the inputs

of two subsystems were the same; (2) the initial states of two subsystems were different,

however, the inputs were the same; and (3) the inputs were different, however, the initial

states were the same. The simulated results showed that DeMHE was able to estimate the

states and parameters under these scenarios.
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Chapter 4

Conclusions and Future work

4.1 Conclusions

In this thesis, simultaneous parameter and state estimation of 1D and 3D infiltration pro-

cesses was studied.

In Chapter 2, the simultaneous parameter and state estimation was investigated using

MHE, EKF and EnKF applied to an 1D infiltration system with spatially and temporally

homogeneous parameters. The simultaneous estimation was achieved based on treading

parameters as states by augmenting parameters at the end of the state vector. First, a

procedure was proposed to find the appropriate parameter set for estimation based on the

observability of the augmented system and the sensitivity of the outputs to the parameters.

It was found that only four out of five parameters (hydraulic conductivity, saturated soil

moisture, and van Genuchten-Mualem parameters) can be considered in simultaneous pa-

rameter and state estimation. The less important parameter (residual soil moistures) was

not considered in parameter estimation. After determining the parameter set for estima-

tion, the minimum number of sensors was also found based on the maximum multiplicity

theory. Simulation results showed that the MHE has an overall the best state and param-

eter estimation performance due to the inclusion of parameter and state constraints in the
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estimation. It was also found that the uncertainty in the residual soil moisture (which was

not estimated) does not affect the overall estimation performance too much. The effects of

number of measurements and estimation window size of the MHE were also studied through

simulations. It was found that four measurements and a window size of eight for MHE are

sufficient to provide accurate parameter and state estimates.

In Chapter 3, the simultaneous parameter and state estimation was examined using

DeMHE applied to a 3D infiltration system with spatially heterogeneous parameters. The

augmented finite difference model of 3D Richards equation was constructed for estimating the

parameters and states of the system simultaneously. The appropriate parameter set which

contains significant and identifiable parameters was determined based on the observability

of the augmented system and the sensitivity of the outputs to the parameters. It was

found that the augmented system was unobservable when a pair of saturated soil moisture

and residual soil moisture of the same type of soil was presented in the system. With the

sensitivity analysis showing the residual soil moisture was less important than the saturated

soil moisture which is from the same soil, residual soil moistures of all presented soils were not

considered in parameter estimation. In order to apply DeMHE, the system was decomposed

into subsystems based on the soil types presented in the system. Each subsystem contained

only one type of soil, hence, only four parameters (hydraulic conductivity, saturated soil

moisture, and van Genuchten-Mualem parameters) of the same type of soil presented in

each subsystem. The performance of DeMHE was evaluated under the following scenarios:

(1) the initial states and the inputs of subsystems were the same; (2) the initial states

of subsystems were different, however, the inputs were the same; and (3) the inputs were

different, however, the initial states were the same. The simulated results showed that

DeMHE was able to estimate the parameters and states under these scenarios.
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4.2 Future Work

• Parameter and state estimation of infiltration processes using soil moisture measure-

ments Besides the usage of the tensiometer in agriculture, the soil moisture sensor

which direct provides volumetric soil moisture readings is also widely used. When the

soil moisture is considered as the output of the system, the output function becomes a

nonlinear function of the states and parameters (saturated and residual soil moistures

and van Genuchten-Mualem parameters). This makes the estimation problem more

complicated, hence, worth being studied.

• Parameter and state estimation of agro-hydrological systems The agro-hydrological sys-

tem describes the water movements between soil, crop and atmosphere. In this thesis,

the infiltration process modeled by Richards equation only covers the water dynamics

within soil. In the future work, evapo-transpiration model and crop growth model,

which are used to calculated the evapo-transpiration value for different crops at dif-

ferent growth states, can be incorporated with Richards equation. The parameter and

state estimation problem can be studied on a completed agro-hydrological system.

69



Bibliography

[1] Aquastat main database. food and agriculture organization of the united nations (fao).

website accessed on oct. 31, 2019.

[2] G. Fischer, F. N. Tubiello, H. van Velthuizen, and D. A. Wiberg. Climate change im-

pacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technological

Forecasting and Social Change, 74(7):1083–1107, 2007.

[3] Y. Mao, S. Liu, J. Nahar, J. Liu, and F. Ding. Soil moisture regulation of agro-

hydrological systems using zone model predictive control. Computers and Electronics

in Agriculture, 154:239–247, 2018.

[4] A. Narasingam, P. Siddhamshetty, and J. S. I. Kwon. Handling spatial heterogeneity

in reservoir parameters using proper orthogonal decomposition based ensemble kalman

filter for model-based feedback control of hydraulic fracturing. Industrial & Engineering

Chemistry Research, 57(11):3977–3989, 2018.

[5] S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, B. Vallès, et al. The ensemble

kalman filter in reservoir engineering–a review. SPE Journal, 14(03):393–412, 2009.

[6] P. Siddhamshetty and J. S. I. Kwon. Model-based feedback control of oil production

in oil-rim reservoirs under gas coning conditions. Computers & Chemical Engineering,

112:112–120, 2018.

70



[7] A. Hasan, B. Foss, and S. Sagatun. Flow control of fluids through porous media. Applied

Mathematics and Computation, 219(7):3323–3335, 2012.

[8] L. Bengtsson, M. Ghil, and E. Källén. Dynamic meteorology: Data assimilation methods,

volume 36. Springer, 1981.

[9] M. Ghil and P. Malanotte-Rizzoli. Data assimilation in meteorology and oceanography.

In Advances in Geophysics, volume 33, pages 141–266. Elsevier, 1991.

[10] M. Th. van Genuchten. A closed-form equation for predicting the hydraulic conductivity

of unsaturated soils. Soil Science Society of America journal, 44(5):892–898, 1980.

[11] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[12] J. B. Kool, J. C. Parker, and M. Th. van Genuchten. Determining soil hydraulic proper-

ties from one-step outflow experiments by parameter estimation: I. theory and numerical

studies. Soil Science Society of America Journal, 49(6):1348–1354, 1985.

[13] A. F. Toorman, P. J. Wierenga, and R. G. Hills. Parameter estimation of hydraulic

properties from one-step outflow data. Water Resources Research, 28(11):3021–3028,

1992.

[14] J. C. van Dam, J. N. M. Stricker, and P. Droogers. Inverse method for determining soil

hydraulic functions from one-step outflow experiments. Soil Science Society of America

Journal, 56(4):1042, 1992.

[15] S. I. Hwang and S. E. Powers. Estimating unique soil hydraulic parameters for sandy

media from multi-step outflow experiments. Advances in Water Resources, 26(4):445–

456, 2003.

[16] D. Russo, E. Bresler, U. Shani, and J. C. Parker. Analyses of infiltration events in

71



relation to determining soil hydraulic properties by inverse problem methodology. Water

Resources Research, 27(6):1361–1373, 1991.

[17] K. C. Abbaspour, M. Th. van Genuchten, R. Schulin, and E. Schläppi. A sequen-
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