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Abstract 

Shape memory polymers (SMPs) can be used in many critical applications, including biomedical 

and aerospace fields, due to their ability to recover their original/permanent shape from a 

deformed/temporary shape upon application of a stimulus. SMPs are subjected to bending in a 

large number of these applications, e.g. morphing aircraft components or biomedical stents; 

however, predictive models used for bending are very limited in the literature. Consequently, 

there is a need to build a bending model for SMPs, and this thesis addresses this gap in the 

literature. A rheological model previously developed by Tobushi for uniaxial loading was 

extended to bending and implemented numerically to calculate the time-dependent deflection of 

a thin beam. Corresponding experiments for a polyurethane based shape memory polymer were 

conducted to verify the model. Creep tests were conducted to extract the values of parameters 

required for the rheological model. Extrusion based additive manufacturing (EBAM) technique 

was used to produce the specimens used in experimental tests. Results indicate that the 

rheological model is able to describe the material behavior well over a certain range of 

temperature while the discrepancy between experiment and model becomes significant if the 

temperature deviates from this range. Through this study, the manufacturing, modeling and 

related mechanical characterization of the shape memory polyurethane were investigated and 

these findings can be used for further studies and design of SMPs. 
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Chapter 1 : Introduction  

Shape memory materials (SMMs) are materials that have the ability to recover to its original 

(permanent) shape from a deformed (temporary) shape. The shape change can be achieved using 

different stimuli, such as heat and UV light [1], depending on the specific material. Most 

commonly utilized SMMs are shape memory alloys (SMAs), gels (SMGs) and polymers (SMPs). 

SMPs offer significant advantages over other types of SMMs, such as low density, low cost, and 

easier manufacturability [2]. Generally, SMPs can be categorized under two main types [2], 

namely thermoset and thermoplastic SMPs. Thermoset SMPs have chemical crosslinks which 

connect adjacent molecular chains covalently. These chemical crosslinks are formed during the 

curing of the polymer [3] [4], which is an irreversible process. Thermoplastic SMPs, on the other 

hand, do not have the chemical crosslinks. Consequently, they can be melted and 

reprocessed/reshaped by various techniques such as injection molding, extrusion or additive 

manufacturing [5]. These SMPs are easier and less costly to process, and more affordable; 

therefore, a vast majority of the SMP work presented in the open literature is currently 

concentrated on thermoplastic SMPs. The SMP used in this thesis is also a polyurethane based 

thermoplastic SMP (SMP Technologies Inc., Japan) which is thermo-responsive.  

The focus of this thesis is on the mechanical behavior of shape memory polyurethane at different 

temperatures via a viscoelastic model and experimental study. The study is part of a larger 

program that investigates multifunctional shape memory polymer composites (SMPCs).  

 

1.1 Network structure in shape memory polyurethanes 

The shape memory polyurethane investigated in this thesis is a semi-crystalline thermoplastic 

polymer [2] which consists of crystalline regions and amorphous regions. The crystalline regions 

have orderly arranged structures where the chains are folded and aligned in a periodic form with 

strong intermolecular forces [3]. Such regions have relatively high melting temperatures, 𝑇𝑚, 

below which the crystalline regions are in solid state and have hard and brittle mechanical 

properties. In contrast, the amorphous regions have entangled chain molecules that are randomly 

oriented [6]. They can gradually transform from hard and glassy state into viscous and rubbery 

state over a certain range of temperature [7] which is characterized as glass transition. Even 
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though glass transition occurs over a temperature range, a single value is typically specified as 

the glass transition temperature (𝑇𝑔). Many techniques such as differential scanning calorimetry 

(DSC) and dynamic mechanical analysis (DMA) can be used to obtain 𝑇𝑔, but it should be noted 

that different methods may generate slightly different values of 𝑇𝑔 [3]. For a semi-crystalline 

polymer, the glass transition temperature of the amorphous regions is always lower than the 

melting point of the crystalline regions [3]. 𝑇𝑔 of a semi-crystalline polymer therefore refers to 𝑇𝑔 

of its amorphous regions while its 𝑇𝑚  refers to 𝑇𝑚  of its crystalline regions [8]. During the 

solidification of the semi-crystalline polymer, the chain-end segments from many adjacent chains 

aggregate together to form the crystalline regions through hydrogen bonding due to the high 

polarity of the chain-end segments [4] [8]. As a result, the crystalline regions act as physical 

crosslinks that connect the amorphous regions together [4]. This specific network structure leads 

to the shape memory effect which will be discussed below.  

 

1.2 Shape memory effect 

The shape memory effect of polyurethane is due to the existence of coiled chains and physical 

crosslinks in the network structure [8]. Since the crystalline regions always have higher stiffness 

than the amorphous regions, they are regarded as hard segments while the amorphous regions are 

regarded as soft segments [2]. The soft segments have randomly coiled chain molecules with 

high flexibility [5]. The hard segments act as physical crosslinks which restrict the motion of the 

soft segments [5]. As a result, the chains in the amorphous regions between those physical 

crosslinks can only move locally instead of globally [9].   

In semi-crystalline thermoplastic polymers, each chain molecule in the amorphous regions can 

be regarded as a collection of skeletal bonds covalently connected in sequence to form a coiled 

configuration. External energy (from applied force or thermal loading) can cause the torsion, 

bending, and/or stretching of the bonds [10]. As can be seen from Figure 1.1 (a), rotation of a 

bond (also referred as torsion) with respect to its neighbor corresponds to the change of angle 𝜃, 

bending of two bonds corresponds to the change of angle 𝛽 and stretching of a bond corresponds 

to the change of a bond length. Among the three modes of deformation, torsion is typically much 

easier than bending and stretching. Different torsional angles 𝜃  can lead to different chain 
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conformations. For example, Figure 1.1 (b) and (c) shows two possible conformations of a 

segment on the chain due to the different torsional angles.  

The potential energy associated with torsion is dependent on 𝜃, as demonstrated in Figure 1.2. 

The transition between different torsional angles therefore requires the application of external 

loading (mechanical or thermal) to overcome certain energy barriers. For example, in Figure 1.2, 

A, B and C represent three different torsional angles. In order to change the torsional angle from 

A to C, the external loading has to surmount the energy barrier Δ𝑒. This energy barrier could 

explain the shape fixity and shape recovery in SMPs as detailed below. 

 

 

(b) 

 

(a) (c) 

Figure 1.1 Schematic representations of how torsional angle affect the conformation of a chain 

molecule. (a) Rotation of a bond with respect to its neighbor, (b) and (c) Two possible conformations of 

a segment of a chain molecule due to different torsional angles.  (adopted from [4]) 

 



 

4 
 

 

Figure 1.2 Potential energy landscape as a function of torsional angles (adopted from [3]) 

 

A schematic representation of the shape memory mechanism for a thermoplastic SMP is given in 

Figure 1.3. The permanent shape is determined by heating up the polymer above the melting 

point 𝑇𝑚 , shaping via a manufacturing technique, and then cooling down below the glass 

transition temperature (𝑇𝑔) [1]. The chain molecules in the soft segments maintain their random 

coiled state in the permanent shape [8].  

The shape memory effect starts by heating the material above 𝑇𝑔 at which the flexibility and 

mobility of the soft segments increase dramatically [8]. Then, external force/constraint is applied 

to change the permanent shape to a temporary shape at this temperature. If the material is cooled 

below the 𝑇𝑔 , while maintaining the force/constraint, the temporary shape is obtained. This 

temporary shape can be maintained at this temperature, even when the constraint is removed, 

because the thermal energy below 𝑇𝑔 is insufficient to surmount the energy barriers for bond 

rotation. In addition, intermolecular forces such as hydrogen bonding and van der Waals forces 

can also prevent the extended chains from going back to their most random coiled state [3]. Once 

the SMP with the temporary shape is heated above 𝑇𝑔, the thermal energy surmounts the energy 

barrier allowing the chains in the soft segments to return to their most coiled state [8]; as a result 

the permanent shape is recovered.  
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Figure 1.3 Shape memory mechanism of thermally induced SMPs (adopted from [5]). 

 

1.3 Application of shape memory polymers 

SMPs have the potential to be used in a variety of areas. Their biomedical and aerospace 

applications have drawn special attention and were investigated by a number of researchers [2] 

[11]. SMPs can offer excellent chemical stability, and some SMPs can even offer 

biocompatibility and biodegradability for use in biomedical field [2]. Yakacki et al. [12] 

proposed the potential application of SMP cardiovascular stents which can be implanted into 

body through minimally invasive surgery. The transition temperature of this SMP was tailored to 

be around the human body temperature. The stent was heated up and then deformed into a 

compact temporary shape. This compact temporary stent was implanted into blood vessels. 

Stimulated by the body temperature, the stent was expanded into its original shape which can 

support blood-carrying vessels. Lendlein et al. [13] explored the application of SMPs to a 

surgical suture. A shape memory fiber was stretched at high temperature to form a thinner fiber 

and was subsequently cooled down to fix a temporary shape. A knot was tied using the thinner 
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fiber to suture the wound lips of the tissue or muscle. Once the suture reached human body 

temperature, it was contracted and therefore tightened the knot. It was mentioned by the authors 

that the shape recovery force could be tailored to provide the suitable force for the suture of the 

wound. Additionally, since the SMP used was biodegradable, it was able to gradually degrade 

with time eliminating the need for a secondary operation for removal. 

Another promising application was demonstrated in SMP reflectors developed for satellite 

structures [14]. They can be compacted and stored in the launch vehicle with minimal volume. 

Once it is sent into the orbit of a planet, the reflector can be deployed and recover its original 

shape by the application of a stimulus. Compared with traditional deployable structures which 

involve mechanical parts and motors, and the like, shape memory deployable structures 

significantly reduces the weight of the structure [11]. One strategically important example of 

aerospace applications is the potential use of SMP in the morphing wings of Unmanned Air 

Vehicles, and military planes [11]. By using SMPs, the wing is able to deform to different shape 

via shape memory effect upon appropriate stimulation. This shape can be tailored to meet the 

flight mission of the airplane, thus improving the performance and efficiency of the flight vehicle. 

In addition, SMPs are also promising to be used in Microelectromechanical system (MEMS) [11] 

and smart textiles [8]. 

 

1.4 Investigations on mechanical properties of SMPs 

Based on the various aforementioned applications of SMPs, it is clear that SMPs are used in 

strategically critical structural and biomedical applications. As such, it is necessary to investigate 

their mechanical properties through fundamental research. This can be done by development of 

predictive models and verification of these models via methodological experimental studies.  

Many researchers have investigated the mechanical properties of SMPs. In 1996, Tobushi et al. 

[15] conducted a variety of experiments such as dynamic mechanical analysis, thermomechanical, 

creep and stress relaxation tests to investigate the mechanical properties of shape memory 

polyurethane (MS5510) produced by Misubishi Heavy Industries Ltd. They then [16] developed 

a rheological model to capture the irrecoverable strain of SMPs by modifying the standard linear 

solid model. This is a 1D model that contains springs, dashpots and other elements to describe 
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the viscoelastic properties of SMPs. The rheological model was verified by thermomechanical 

tests, which showed good agreement. Later, Bhattacharyya and Tobushi [17] used the 

rheological model to solve, analytically, the response of the SMP in creep, stress relaxation, 

tensile and dynamic mechanical tests. However, no corresponding experiments were conducted 

to verify the model or the analytical solutions. Huang et al. [2] conducted tensile test for the 

SMP MM3520 (SMP Technologies Inc.) at different strain rates and different temperatures. 

Specifically, they did tensile tests at room temperature (around 22 ℃) with three different strain 

rates (0.01/s, 0.001/s and 0.0001/s) and at 50 ℃ with four different strain rates (0.1/s, 0.01/s, 

0.001/s and 0.0005/s). The influence of strain rate and temperature on its mechanical properties 

are specified. It is found that the stress-strain response were highly strain rate dependent 

especially at high temperature and higher strain rate resulted in higher ultimate stress. Liu et al. 

[18] developed a “3D small-strain internal state variable constitutive model”, where the polymer 

was considered as a mixture of two extreme phases (frozen phase and active phase). The volume 

fraction of two phases was assumed to vary when the temperature was changed. Although the 

model was intended to model general 3D deformation, it was only applied to 1D 

thermomechanical tests with uniaxial deformation. Corresponding thermomechanical 

experiments were conducted for a commercial thermoset epoxy produced by Composite 

Technology Development, Inc. It was reported that the model was able to describe the 

experimental results well. The modeling or experiments discussed above only focused on 

uniaxial tests, and little research has been conducted so far for more complicated loading 

conditions for SMPs.  

Considering the loading conditions of a stent or the wing of a morphing aircraft, bending is one 

of the important loading types. Tobushi et al. [19] conducted 3-point bending thermomechanical 

test for the SMP MM6520 produced by Mitsubishi Heavy Industries, Ltd., but there was no 

corresponding model to describe the response of deformation of the beam. Ghosh et al. [20] 

implemented a small strain continuum model for the bending of a beam based on finite element 

method but it lacked the experiments to validate the accuracy of the model. 
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1.5 Overview of this research 

Based on the knowledge gap described above, there is a need to develop a model for the bending 

of SMP and verify its accuracy via experiments. Consequently, the objectives of this thesis are: 

1. Building a model, as an extension of the rheological model, which is capable of 

describing deformation of a thin beam under bending.  

2. Developing numerical algorithm to implement the model and calculate time-dependent 

deflection of the beam at different temperatures.  

3. Conducting creep experiments on a polyurethane based thermoplastic SMP (MM7520) to 

extract materials parameters and bending tests to verify the accuracy of the model. 

4. By comparing the modeling and experimental results, addressing the applicability of the 

model to MM7520 and limitation of the model. 

The organization of this thesis is as follows: In Chapter 2, the rheological model is introduced in 

detail and its numerical implementation to 1D uniaxial deformation is developed and validated. 

In Chapter 3, the model is extended to the bending of a thin beam and numerically implemented. 

In Chapter 4, the experimental methodology is introduced which includes specimen preparation 

via extrusion based additive manufacturing and experimental testing (creep, 3-point bending). In 

Chapter 5, experimental and modeling results are compared and discussed. In Chapter 6, 

conclusion and possible future work built upon this work is discussed. 
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Chapter 2 : Rheological viscoelastic model and its numerical 

implementation 

In this chapter, several classical viscoelastic models are presented. Then, the rheological 

viscoelastic model developed by Tobushi is described in detail. Finally, a numerical scheme is 

implemented to solve for stress-strain relationship from the rheological model and the accuracy 

is validated against analytical solution.  

 

2.1 Introduction to linear viscoelastic models 

2.1.1 Basic element 

The mechanical behavior of linearly elastic materials can be simply represented by a Hookean 

spring. However, polymers exhibit viscoelastic behavior that resembles a combination of elastic 

solid and viscous liquid [4]. Therefore, the mechanical behaviors of polymers are usually 

represented by the so-called “mechanical analogs” [7]. A mechanical analog system is usually a 

combination of several elements, such as springs and dashpots, which can represent the 

viscoelastic behavior of real polymers both qualitatively and quantitatively.  

A Hookean spring can be used to represent the linearly elastic behavior of materials as shown in 

Figure 2.1. The mechanical response of Hookean spring follows Hook’s law [7] as shown in 

Eqn. (2.1). 

𝜎 = 𝐸𝜖 (2. 1) 

where 𝜎 is the applied stress, 𝜖 is corresponding strain and 𝐸 is elastic modulus. 

 

Figure 2.1 Schematic of Hookean spring 
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A dashpot can be used to represent the viscous behavior of Newtonian liquid as shown in Figure 

2.2. The Newtonian liquid moves at a strain rate proportional to the applied stress and there is no 

strain recovery when the stress is removed. The mechanical response of a dashpot follows 

Newton’s law [7] as shown in Eqn. (2.2). 

𝜎 = 𝜂
𝑑𝜖

𝑑𝑡
(2. 2) 

where 𝜂 represents the viscosity of the dashpot. 

 

Figure 2.2 Schematic of Dashpot 

 

2.1.2 Maxwell model 

The Maxwell model [7] is a series combination of the spring and dashpot elements as shown in 

Figure 2.3. 𝜖1 represents the strain of the dashpot and 𝜖2 represents that of the spring. Therefore, 

the overall strain of Maxwell element is 𝜖 = 𝜖1 + 𝜖2. Based on the mechanical properties of 

spring and dashpot given by Eqns. (2.1) and (2.2), the total strain rate 𝜖̇ = 𝜖1̇ + 𝜖2̇ is therefore 

𝜖̇ =
𝜎

𝜂
+
�̇�

𝐸
(2. 3) 

where the dot above the symbols (eg. 𝜖̇) represent the derivative with respect to time. Stress-

strain relationships can be obtained by solving the ordinary differential equation, Eqn. (2.3). 

 

Figure 2.3 Schematic of Maxwell model 
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Consider the special case of stress relaxation where the model is subjected to an instantaneous 

constant strain 𝜖0. Initially, the dashpot cannot sustain a sudden deformation so the initial strain 

is all undertaken by the spring which gives the initial condition as 𝜎(0) = 𝐸𝜖0 . The stress 

response can hence be calculated as 𝜎(𝑡) = 𝐸𝜖0𝑒
−
𝐸

𝜂
𝑡  by solving Eqn. (2.3) with the initial 

condition. This response is reasonable when compared to the result observed experimentally 

[15]. 

For a creep test where the model is subjected to an instantaneous constant stress 𝜎0, the spring 

responds to the stress instantaneously but the dashpot remains undeformed at beginning so that 

the initial condition is 𝜖(0) = 𝜎0

𝐸
. The strain response is obtained as 𝜖(𝑡) = 𝜎0

𝐸
+
𝜎0

𝜂
𝑡 by solving 

Eqn. (2.3) with the initial condition. The strain versus time is a straight line which is unrealistic 

when compared with the creep response observed experimentally [15]. Therefore, the Maxwell 

model cannot properly capture creep behavior. 

 

2.1.3 Kelvin-Voigt model  

The Kelvin-Voigt model [7] is a parallel combination of spring and dashpot (schematic shown in 

Figure 2.4) so the strain of the spring is equal to the strain of the dashpot. Based on the 

mechanical properties of spring and dashpot (Eqns. (2.1) and (2.2)), the total stress of the 

element 𝜎 = 𝜎1 + 𝜎2 is given by 

𝜎 = 𝐸𝜖 + 𝜂𝜖̇ (2. 4) 

 

Figure 2.4 Schematic of Kelvin-Voigt model 
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Strain response during a creep test can be obtained by solving Eqn. (2.4) with appropriate initial 

condition. In this case, when the initial stress is suddenly applied the dashpot prevents the 

element from sudden deformation which lead to 𝜖(0) = 0. Thus, the strain response is 𝜖(𝑡) =

𝜎0

𝐸
(1 − 𝑒

−
𝐸

𝜂
𝑡
). It can describe the overall trend of creep response but the initial elastic strain 

response cannot be captured [15]. As for stress relaxation, the dashpot would develop an 

infinitely high value of stress when an initial strain is suddenly applied. Therefore, the Kelvin-

Voigt model is not able to describe the stress relaxation response. 

 

2.1.4 Standard linear solid model  

Due to the limitation of Maxwell and Kelvin-Voigt models, standard linear solid model was 

introduced [21]. It is able to describe both creep and stress relaxation behavior of a typical 

viscoelastic material. The standard linear solid model contains three elements by paralleling a 

Maxwell model with a spring as shown in Figure 2.5. 

 

Figure 2.5 Schematic of Standard linear solid model 

 

The strain on the upper side is equal to the strain on the lower side. The upper side of the model 

is a Maxwell model for which 𝜖̇ = 𝜎1

𝜂
+
𝜎1̇

𝐸1
. For the lower side of the model, 𝜎2 = 𝐸2𝜖 so 𝜖̇ = 𝜎2̇

𝐸2
. 

The total stress is the sum of the stresses on the upper and the lower sides. Substituting 𝜎 = 𝜎1 +

𝜎2 and 𝜖̇ = 𝜎2̇

𝐸2
 into 𝜖̇ = 𝜎1

𝜂
+
𝜎1̇

𝐸1
 results in 𝜖̇ = 𝜎−𝐸2𝜖

𝜂
+
�̇�−𝐸2�̇�

𝐸1
  which can be rearranged into  
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𝜖̇ =
�̇�

𝐸1 + 𝐸2
+

𝜎

𝜂(𝐸1 + 𝐸2)
𝐸1

−
𝜖

𝜂(𝐸1 + 𝐸2)
𝐸1𝐸2

(2. 5) 

Define 𝐸, µ and 𝜆  as 

𝐸 = 𝐸1 + 𝐸2 (2. 6) 

𝜇 =
𝜂(𝐸1 + 𝐸2)

𝐸1
(2. 7) 

𝜆 =
𝜂(𝐸1 + 𝐸2)

𝐸1𝐸2
(2. 8) 

The equation that represents the standard linear solid model can be written as  

𝜖̇ =
�̇�

𝐸
+
𝜎

𝜇
−
𝜖

𝜆
(2. 9) 

While able to describe the mechanical response of many viscoelastic polymers, it was found by 

Tobushi that the standard linear solid model cannot capture the so-called “irrecoverable strain” 

during creep tests for SMP [16] [15]. It was observed experimentally that a residual strain 

usually exists in the polymer even if it is unloaded for a long time. This residual strain is called 

irrecoverable strain. For the standard linear solid system in Figure 2.5, immediately after 

unloading, the strain of the spring on the upper side will vanish instantaneously but there is 

remaining strain on the spring on the lower side due to the resistance of the dashpot. However, 

after a long time, the overall strain of the system will tend to zero as the dashpot is completely 

relaxed. Therefore, there is a need to add a new element to capture the long term irrecoverable 

strain. 

 

2.2 Rheological viscoelastic model 

The rheological viscoelastic model, or simply called rheological model, was proposed by 

Tobushi et al. [16] and was explained in detail later by Bhattacharyya and Tobushi [17]. It is a 

modified standard linear solid model in order to capture the irrecoverable strain, as shown in 

Figure 2.6. It is believed [16] that the irrecoverable strain is caused by the irreversible slip and 
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realignment of the chain molecules. Thus, the slip mechanism of polymer [16] due to internal 

friction of molecule was considered by adding the friction element (𝜖𝑠). Also, thermal expansion 

[16] due to temperature change was considered in the rheological model. The relationship 

between stress and strain is shown in Eqn. (2.10).  

𝜖̇ =
�̇�

𝐸
+
𝜎

𝜇
−
𝜖 − 𝜖𝑠
𝜆

+ 𝛼�̇� (2. 10) 

where 𝐸 , µ, 𝜆 and 𝜖𝑠  are called elastic modulus, viscosity, retardation time and irrecoverable 

strain respectively and they are all functions of temperature (𝑇). 𝛼  represents coefficient of 

thermal expansion and �̇� is the rate of temperature change. 𝐸 , µ, 𝜆 are related to 𝐸1 , 𝐸2 , η in 

Figure 2.6 and their relations will be explained later. In this thesis, only isothermal conditions 

were considered so that �̇� is zero. Therefore, the equation is reduced into the format below: 

𝜖̇ =
�̇�

𝐸
+
𝜎

𝜇
−
𝜖

𝜆
+
𝜖𝑠
𝜆

(2. 11) 

 

Figure 2.6 Schematic of rheological viscoelastic model 

 

The term 𝜖𝑠 is expressed as Eqn. (2.12) and is divided into three different regimes based on the 

loading condition. 

𝜖𝑠(𝑡 > 𝜏) = {

0                                                                  𝑖𝑓  𝜖𝑐(𝜏) < 𝜖𝐿
𝐶[𝜖𝑐(𝑡) − 𝜖𝐿]               𝑖𝑓  𝜖𝑐(𝜏) ≥ 𝜖𝐿 𝑎𝑛𝑑 𝜖�̇�(𝜏) > 0

𝜖𝑠(𝜏)                             𝑖𝑓  𝜖𝑐(𝜏) ≥ 𝜖𝐿 𝑎𝑛𝑑  𝜖�̇�(𝜏) ≤ 0

(2. 12) 

𝜖𝑐 in Eqn. (2.12) is called creep strain which is the difference between total strain and elastic 

strain as shown in Eqn. (2.13). 



 

15 
 

𝜖𝑐(𝑡) = 𝜖(𝑡) −
𝜎(𝑡)

𝐸
(2. 13) 

The irrecoverable strain 𝜖𝑠 (Eqn. (2.12)) is proposed based on the experimental observation by 

Tobushi [16]. It only appears when the creep strain 𝜖𝑐  during loading is beyond a certain 

threshold value 𝜖𝐿; otherwise, 𝜖𝑠 = 0 [17]. Thus, regimes 1 is defined as the situation where the 

𝜖𝑐  does not exceed 𝜖𝐿  and 𝜖𝑠 = 0 . Once 𝜖𝑐  exceeds the threshold value, 𝜖𝑠  increases 

proportionally to 𝜖𝑐 which is defined as regimes 2. Also, it is proposed that 𝜖𝑠 will “stay” in the 

material and remain a constant value once the creep strain rate becomes zero or negative and this 

is defined as regime 3. It should be noted that Eqn. (2.12) is not restricted to creep test but can be 

used under any one dimensional loading conditions. If the strains are negative (e.g. during a 

compression test), all the quantities in Eqn. (2.12) refer to their absolute value. Because 𝜖𝑠 has 

different expressions in the 3 difference regimes, Eqn. (2.11) will have 3 different expressions 

and these are presented below. 

In the first regime, 𝜖𝑠(𝑡) = 0 so Eqn. (2.11) reduces into Eqn. (2.14) which is simply a standard 

linear solid model. Therefore, the relationships between 𝐸, µ, 𝜆 and 𝐸1, 𝐸2, 𝜂 in the schematic of 

Figure 2.6 are identical to Eqns. (2.6), (2.7) and (2.8). 

𝜖̇(𝑡 > 𝜏) =
�̇�(𝑡)

𝐸
+
𝜎(𝑡)

𝜇
−
𝜖(𝑡)

𝜆
          𝑖𝑓  𝜖𝑐(𝜏) < 𝜖𝐿 (2. 14) 

In the second regime, 𝜖𝑠  can be expressed as 𝜖𝑠(𝑡) = 𝐶 [𝜖(𝑡) −
𝜎(𝑡)

𝐸
− 𝜖𝐿].  Substituting this 

expression into Eqn. (2.11) results in  

𝜖̇(𝑡 > 𝜏) =
�̇�(𝑡)

𝐸
+ (

1

𝜇
−
𝐶

𝜆𝐸
)𝜎(𝑡) − (

1 − 𝐶

𝜆
) 𝜖(𝑡) + (−

𝐶

𝜆
) 𝜖𝐿 (2. 15) 

Introducing 𝜇𝑒𝑓𝑓, 𝜆𝑒𝑓𝑓 and 𝜖𝑠,𝑒𝑓𝑓 as effective viscosity, effective retardation time and effective 

irrecoverable strain defined as follows 

𝜇𝑒𝑓𝑓 = 𝜇 (1 −
𝜇𝐶

𝜆𝐸
)
−1

(2. 16) 

𝜆𝑒𝑓𝑓 = 𝜆(1 − 𝐶)−1 (2. 17) 
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𝜖𝑠,𝑒𝑓𝑓 = −
𝐶𝜖𝐿
1 − 𝐶

(2. 18) 

Eqn. (2.15) can be expressed as: 

𝜖̇(𝑡 > 𝜏) =
�̇�(𝑡)

𝐸
+
𝜎(𝑡)

𝜇𝑒𝑓𝑓
−
𝜖(𝑡)

𝜆𝑒𝑓𝑓
+
𝜖𝑠,𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
         𝑖𝑓  𝜖𝑐(𝜏) ≥ 𝜖𝐿 𝑎𝑛𝑑 𝜖�̇�(𝜏) > 0 (2. 19) 

In the third regime, the irrecoverable strain 𝜖𝑠 will maintain its value at τ once the strain rate 

become non-positive 𝜖𝑠(𝑡) = 𝜖𝑠(𝜏). Substituting this into Eqn. (2.11) results in 

𝜖̇(𝑡 > 𝜏) =
�̇�(𝑡)

𝐸
+
𝜎(𝑡)

𝜇
−
𝜖(𝑡)

𝜆
+
𝜖𝑠(𝜏)

𝜆
         𝑖𝑓  𝜖𝑐(𝜏) ≥ 𝜖𝐿 𝑎𝑛𝑑  𝜖�̇�(𝜏) ≤ 0 (2. 20) 

In summary, stress-strain relationship for the rheological model is given by Eqns. (2.14), (2.19) 

and (2.20), respectively for the three regimes. 

 

2.3 Selected analytical solutions to the rheological model 

The analytical solution to the rheological model is only possible for simple loading histories such 

as creep, stress relaxation and uniaxial tension at constant stress or strain rate. These analytical 

solutions are provided in this section. 

In general, if an ordinary differential equation has the form below: 

𝑑𝑦

𝑑𝑡
+ 𝑃(𝑡)𝑦 = 𝑄(𝑡), (2. 21) 

the general solution can be expressed as: 

𝑦 = 𝑒−∫𝑃(𝑡)𝑑𝑡 {∫[𝑄(𝑡)𝑒∫𝑃(𝑡)𝑑𝑡]𝑑𝑡 + 𝑐} (2. 22) 

where 𝑐  is an integration constant which depends on the initial condition. If 𝑃  and 𝑄  are 

constants independent of 𝑡, then Eqn. (2.22) is simplified to 

𝑦 =
𝑄

𝑃
+ 𝑐𝑒−𝑃𝑡 (2. 23) 
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This result will be used in the calculations below. 

 

2.3.1 Creep  

Eqn. (2.24) shows the loading history for a typical creep test and an illustration is given in Figure 

2.7. Denote 𝑡𝑎  as the time when creep strain exceeds the threshold strain 𝜖𝐿  and 𝑡𝑏  as the 

unloading time. Therefore, the time from 0 to 𝑡𝑎 corresponds to regime 1, the time between 𝑡𝑎 

and 𝑡𝑏 is regime 2 and the time after 𝑡𝑏 is regime 3.  

𝜎(𝑡) = {
𝜎0    0 ≤ 𝑡 ≤ 𝑡𝑏
0               𝑡 > 𝑡𝑏

(2. 24) 

 

Figure 2.7 Stress history for creep test 

In regime 1 (𝑡 < 𝑡𝑎), Eqn. (2.14) becomes 𝜖̇(𝑡) + 𝜖(𝑡)

𝜆
=

𝜎0

µ
, which is in the same form as Eqn. 

(2.21). By using Eqn. (2.23), we obtain the following solution for the strain 

𝜖(𝑡) = 𝜎0
𝜆

𝜇
+ 𝑐1𝑒

−
𝑡
𝜆 (2. 25) 

where 𝑐1  is a constant to be determined by the initial condition. When the stress is applied 

initially as shown in Figure 2.6, the element 𝜖𝑠 has not yet been triggered and the dashpot cannot 

produce an instantaneous strain so the whole system acts as two parallel springs. Therefore, the 

initial condition is 𝜖(0) = 𝜎0

𝐸
. Substituting this condition into Eqn. (2.25), 𝑐1 can be obtained as 

𝑐1 = 𝜎0 (
1

𝐸
−

𝜆

𝜇
), which leads to 
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𝜖(𝑡) = 𝜎0 (
𝜆

𝜇
−
1

𝐸
) (1 − 𝑒−

𝑡
𝜆) +

𝜎0
𝐸
        (0 ≤ 𝑡 ≤ 𝑡𝑎) (2. 26) 

In regime 2 (𝑡𝑎 < 𝑡 ≤ 𝑡𝑏), Eqn. (2.19) becomes 𝜖̇(𝑡) + 𝜖(𝑡)

𝜆𝑒𝑓𝑓
=

𝜎0

𝜇𝑒𝑓𝑓
+
𝜖𝑠,𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
, which is also in the 

same form as Eqn. (2.21). Using the Eqn. (2.23), we get: 

𝜖(𝑡) = (𝜎0
𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
+ 𝜖𝑠,𝑒𝑓𝑓) + 𝑐2𝑒

−
𝑡

𝜆𝑒𝑓𝑓 (2. 27) 

where 𝑐2 is a constant and it can be obtained by using continuity condition at 𝑡𝑎 when the strain 

at the end of regime 1 is equal to the strain at the beginning of regime 2. Since the creep strain at 

𝑡𝑎  is 𝜖𝐿 , the strain at this time is 𝜖𝐿 +
𝜎0

𝐸
. Using Eqn. (2.27), 𝑐2  can be solved and the final 

expression for strain is  

𝜖(𝑡) = (𝜖𝐿 +
𝜎0
𝐸
) 𝑒

− 
𝑡−𝑡𝑎
𝜆𝑒𝑓𝑓 + 𝜎0 (

𝜖𝑠,𝑒𝑓𝑓

𝜎0
+
𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
)(1 − 𝑒

−
𝑡−𝑡𝑎
𝜆𝑒𝑓𝑓)      (𝑡𝑎 < 𝑡 ≤ 𝑡𝑏) (2. 28) 

In regime 3 (𝑡 > 𝑡𝑏), when unloading happens, Eqn. (2.21) becomes 𝜖̇(𝑡) + 𝜖(𝑡)

𝜆
=

𝜖𝑠(𝑡𝑏)

𝜆
. By 

using Eqn. (2.23), we get: 

𝜖(𝑡) = 𝜖𝑠(𝑡𝑏) + 𝑐3𝑒
−
𝑡
𝜆 (2. 29) 

When unloading just happens at 𝑡𝑏, only the two parallel springs can react to this loading change 

instantaneously because 𝜖𝑠  maintains its value and the dashpot cannot react instantaneously. 

Thus, the overall strain drops 𝜎0
𝐸

 from 𝜖(𝑡𝑏−) to 𝜖(𝑡𝑏+). Using Eqn. (2.29) for the moment when 

unloading just happens, 𝜖(𝑡𝑏+) = 𝜖𝑠(𝑡𝑏) + 𝑐3𝑒
−
𝑡𝑏
𝜆 . Therefore, 𝑐3  is solved and the final 

expression is given as 

𝜖(𝑡) = 𝜖𝑠(𝑡𝑏) + [𝜖(𝑡𝑏
+) − 𝜖𝑠(𝑡𝑏)]𝑒

−
𝑡−𝑡𝑏
𝜆        (𝑡 > 𝑡𝑏) (2. 30) 

After 𝑡𝑏, the stress goes to zero so the creep strain is equal to the total strain. Thus, 𝜖𝑠(𝑡𝑏) =

𝐶(𝜖(𝑡𝑏
+) − 𝜖𝐿). In summary, the strain response for creep test is given by Eqns. (2.26), (2.28) 

and (2.30). Figure 2.8 shows a typical plot of strain response with respect to time for creep test. 
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Figure 2.8 Strain response for creep test 

 

2.3.2 Stress Relaxation  

Eqn. (2.31) shows the strain history for stress relaxation test and a typical plot is illustrated in 

Figure 2.9. Denoting 𝑡𝑎 as the time when the creep strain exceeds the threshold strain 𝜖𝐿, the 

time from 0 to 𝑡𝑎 corresponds to regime 1 and the time after 𝑡𝑎 is regime 2. 

ϵ(t) = 𝜖0 (2. 31) 

 

Figure 2.9 Strain history for stress relaxation test 

In regime 1 (𝑡 < 𝑡𝑎), Eqn. (2.14) becomes �̇�(𝑡) + 𝐸

𝜇
𝜎(𝑡) =

𝐸

𝜆
𝜖0. By using Eqn. (2.23), we obtain 

the following solution for the stress 

𝜎(𝑡) =
𝜇

𝜆
𝜖0 + 𝑐4𝑒

−
𝐸
𝜇
𝑡

(2. 32) 

where 𝑐4 is a constant which depends on the initial condition. When the strain is applied initially, 

the element 𝜖𝑠  in Figure 2.6 has not yet been triggered and the dashpot cannot produce an 
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instantaneous strain so the two parallel springs undertakes the initial strain. Therefore, the initial 

condition is 𝜎(0) = 𝐸𝜖0 . Substituting this condition into Eqn. (2.32), 𝑐4  is obtained as 𝑐4 =

𝜖0 (𝐸 −
𝜇

𝜆
), and the expression of stress response is given as 

𝜎(𝑡) =
𝜇

𝜆
𝜖0 + 𝜖0 (𝐸 −

𝜇

𝜆
) 𝑒

−
𝐸
𝜇
𝑡
           (0 ≤ 𝑡 ≤ 𝑡𝑎) (2. 33) 

In regime 2 (𝑡 > 𝑡𝑎), Eqn (2.19) becomes �̇�(𝑡) + 𝐸

𝜇𝑒𝑓𝑓
𝜎(𝑡) =

𝐸

𝜆𝑒𝑓𝑓
𝜖0 −

𝐸

𝜆𝑒𝑓𝑓
𝜖𝑠,𝑒𝑓𝑓, which can be 

solved using Eqn. (2.23) 

𝜎(𝑡) =
𝜇𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
(𝜖0 − 𝜖𝑠,𝑒𝑓𝑓) + 𝑐5𝑒

−
𝐸

𝜇𝑒𝑓𝑓
𝑡

(2. 34) 

where 𝑐5 is a constant and can be obtained by using continuity condition at time 𝑡𝑎 when the 

stress at the end of regime 1 is equal to the stress at the beginning of regime 2. At 𝑡𝑎, 𝜖𝑐(𝑡𝑎) =

𝜖0 −
𝜎(𝑡𝑎)

𝐸
= 𝜖𝐿 so that 𝜎(𝑡𝑎) = 𝐸(𝜖0 − 𝜖𝐿). Using Eqn. (2.34), 𝑐5 can be solved and the final 

expression for the stress is 

𝜎(𝑡) =
𝜇𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
(𝜖0 − 𝜖𝑠,𝑒𝑓𝑓) + [𝐸(𝜖0 − 𝜖𝐿) −

𝜇𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
(𝜖0 − 𝜖𝑠,𝑒𝑓𝑓)] 𝑒

−
𝐸

𝜇𝑒𝑓𝑓
(𝑡−𝑡𝑎)

   (𝑡 > 𝑡𝑏) (2. 35) 

In summary, the stress response for stress relaxation is given by Eqns. (2.33) and (2.35). Figure 

2.10 shows a typical plot of stress with respect to time for stress relaxation. 

 

Figure 2.10 Stress response for stress relaxation test 
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2.3.3 Tensile test at fixed stress rate 

The tensile test is conducted by applying an increasing stress at a fixed stress rate 𝜎0̇. Eqn. (2.36) 

shows the loading history and a corresponding plot is shown in Figure 2.11. Denote 𝑡𝑎 as the 

time when the creep strain exceeds the threshold strain 𝜖𝐿 . Therefore, the time from 0 to 𝑡𝑎 

corresponds to regime 1 and the time after 𝑡𝑎 is regime 2. 

σ(t) = 𝜎0̇𝑡        (2. 36) 

 

Figure 2.11 Stress history for tensile test 

In regime 1 (𝑡 < 𝑡𝑎), Eqn. (2.14) becomes 𝜖̇(𝑡) + 𝜖(𝑡)

𝜆
=

𝜎0̇

𝜇
𝑡 +

𝜎0̇

𝐸
. By using Eqn. (2.22) and 

considering 𝜎0̇ being constant, this solution can be obtained as  

𝜖(𝑡) = 𝑒−
1
𝜆
𝑡 [𝜎0̇𝜆 (

1

𝐸
−
𝜆

𝜇
) 𝑒

1
𝜆
𝑡 + 𝜎0̇

𝜆

𝜇
 𝑡𝑒

1
𝜆
𝑡 + 𝑐6] (2. 37) 

Initially, the applied stress is zero so that the initial strain is also zero. Using the initial condition 

𝜖(0) = 0 in Eqn. (2.37) allows us to determine 𝑐6 and thus the expression for 𝜖(𝑡) is given as 

𝜖(𝑡) = 𝜎0̇
𝜆

𝜇
 𝑡 − 𝜎0̇𝜆 (

𝜆

𝜇
−
1

𝐸
) (1 − 𝑒−

1
𝜆
𝑡)        (0 ≤ 𝑡 ≤ 𝑡𝑎) (2. 38) 

In regime 2 ( 𝑡 > 𝑡𝑎 ), Eqn. (2.19) becomes 𝜖̇(𝑡) + 𝜖(𝑡)

𝜆𝑒𝑓𝑓
=

𝜎0̇

𝜇𝑒𝑓𝑓
𝑡 +

𝜎0̇

𝐸
+
𝜖𝑠,𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
. Similarly, the 

solution can be obtained by using Eqn. (2.22)  

𝜖(𝑡) = 𝑒
−

1
𝜆𝑒𝑓𝑓

𝑡
[𝜎0̇𝜆𝑒𝑓𝑓 (

1

𝐸
−
𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
) 𝑒

1
𝜆𝑒𝑓𝑓

𝑡
+ 𝜖𝑠,𝑒𝑓𝑓𝑒

1
𝜆𝑒𝑓𝑓

𝑡
+ 𝜎0̇

𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
 𝑡𝑒

1
𝜆𝑒𝑓𝑓

𝑡
+ 𝑐7] (2. 39) 
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Using continuity condition at time 𝑡𝑎 when the strain at the end of regime 1 is equal to the strain 

at the beginning of regime 2, 𝑐7 can be obtained and the strain response in regime 2 is obtained 

as below: 

 

𝜖(𝑡) = 𝜖(𝑡𝑎)𝑒
−
(𝑡−𝑡𝑎)

𝜆𝑒𝑓𝑓 + [𝜎0̇𝜆𝑒𝑓𝑓 (
1

𝐸
−

𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
) + 𝜖𝑠,𝑒𝑓𝑓] (1 − 𝑒

−
(𝑡−𝑡𝑎)

𝜆𝑒𝑓𝑓 ) +

        𝜎0̇
𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
 𝑡 − 𝜎0̇

𝜆𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
 𝑡𝑎𝑒

−
(𝑡−𝑡𝑎)

𝜆𝑒𝑓𝑓                                                                  (𝑡 > 𝑡𝑎)                

(2.40) 

In summary, the strain response for tensile test is given by Eqns. (2.38) and (2.40). Figure 2.12 

shows a typical plot of stress-strain curve for the tensile test at fixed stress rate. 

 

Figure 2.12 Stress-strain curve for tensile test at fixed stress rate 

 

2.4 General numerical scheme to implement the model 

Analytical solution to the rheological model might not exist for more complicated loading 

conditions. Therefore, numerical method is necessary to solve stress-strain relationships under 

general loading conditions. The Euler method [22] is a first order explicit numerical method for 

solving ordinary differential equations that can be readily implemented.  

 

2.4.1 Implementation with Euler explicit method 

Eqns. (2.14), (2.19) and (2.20) represent the stress-strain relationship for the rheological model in 

the three different regimes. Rewrite these expressions in a unified format as Eqn. (2.41) 
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𝜖̇ =
�̇�

𝐸
+

𝜎

𝜇𝐸𝐹𝐹
−

𝜖

𝜆𝐸𝐹𝐹
+
𝜖𝑠,𝐸𝐹𝐹
𝜆𝐸𝐹𝐹

(2. 41) 

where 𝜇𝐸𝐹𝐹, 𝜆𝐸𝐹𝐹 and 𝜖𝑠,𝐸𝐹𝐹 are defined as  

𝜇𝐸𝐹𝐹 =

{
 

 
𝜇                                                                     𝑖𝑓  𝜖𝑐 < 𝜖𝐿 

𝜇𝑒𝑓𝑓 = 𝜇 (1 −
𝜇𝐶

𝜆𝐸
)
−1

         𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑 𝜖�̇� > 0  

𝜇                                              𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑  𝜖�̇� ≤ 0 

(2. 42) 

𝜆𝐸𝐹𝐹 = {

𝜆                                                                    𝑖𝑓  𝜖𝑐 < 𝜖𝐿 

𝜆𝑒𝑓𝑓 = 𝜆(1 − 𝐶)−1            𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑 𝜖�̇� > 0 

𝜆                                            𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑  𝜖�̇� ≤ 0 

(2. 43) 

𝜖𝑠,𝐸𝐹𝐹 = {

0                                                                   𝑖𝑓  𝜖𝑐 < 𝜖𝐿 

𝜖𝑠,𝑒𝑓𝑓 = −
𝐶𝜖𝐿
1 − 𝐶

                𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑 𝜖�̇� > 0 

𝜖𝑠(𝜏) = 𝐶[𝜖𝑐(𝜏) − 𝜖𝐿]     𝑖𝑓  𝜖𝑐 ≥ 𝜖𝐿 𝑎𝑛𝑑  𝜖�̇� ≤ 0 

(2. 44) 

To numerically integrate (2.41), we discretize time (𝑡)  into 𝑁  equal intervals 𝑡0 (=

0), 𝑡1, 𝑡2, … 𝑡𝑛, 𝑡𝑛+1, … 𝑡𝑁. The corresponding stress and strain are 𝜎𝑛 = 𝜎(𝑡𝑛) and 𝜖𝑛 = 𝜖(𝑡𝑛). 

Denote Δ𝑡 as the time step, i.e.,  Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. Based on the Euler method, strain rate 𝜖̇ and 

stress rate �̇� can be approximate by 𝜖𝑛+1−𝜖𝑛
Δ𝑡

 and 𝜎𝑛+1−𝜎𝑛
Δ𝑡

 respectively. Thus, Eqn. (2.41) can be 

discretized as  

𝜖𝑛+1 − 𝜖𝑛
∆𝑡

=
𝜎𝑛+1 − 𝜎𝑛
𝐸∆𝑡

+
𝜎𝑛
𝜇𝐸𝐹𝐹

−
𝜖𝑛
𝜆𝐸𝐹𝐹

+
𝜖𝑠,𝐸𝐹𝐹
𝜆𝐸𝐹𝐹

(2. 45) 

If the stress history is given, i.e. we know 𝜎𝑛(𝑛 = 0,1,2, …𝑁), Eqn. (2.45) can be rewritten as 

𝜖𝑛+1 =
1

𝐸
𝜎𝑛+1 + 𝜖𝑛 (1 −

𝛥𝑡

𝜆𝐸𝐹𝐹
) + 𝜎𝑛 (

𝛥𝑡

𝜇𝐸𝐹𝐹
−
1

𝐸
) +

𝜖𝑠,𝐸𝐹𝐹𝛥𝑡

𝜆𝐸𝐹𝐹
(2. 46) 

With an given initial condition for strain 𝜖0, Eqn. (2.46) can be used to obtain the complete strain 

history. Specifically at each step, the values of 𝜎𝑛, 𝜎𝑛+1, 𝜖𝑛 are known. Next, the relationship 

between 𝜖𝑐(𝑡𝑛) = 𝜖𝑛 −
𝜎𝑛

𝐸
 and 𝜖𝐿 is checked to see which expression among Eqns. (2.42)-(2.44) 

should be used for 𝜇𝐸𝐹𝐹, 𝜆𝐸𝐹𝐹 and 𝜖𝑠,𝐸𝐹𝐹. Then, 𝜖𝑛+1 can be calculated from Eqn. (2.46). The 

same procedure is followed to obtain the complete strain history 𝜖𝑛(𝑛 = 1,2, …𝑁). 
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Similarly, if the strain history is given, i.e. we know 𝜖𝑛(𝑛 = 0,1,2, …𝑁), Eqn. (2.45) can be 

rewritten as Eqn. (2.47). The same procedure can be applied to solve for stress history 𝜎(𝑡). 

𝜎𝑛+1 = 𝐸𝜖𝑛+1 + 𝜎𝑛 (1 −
𝐸𝛥𝑡

𝜇𝐸𝐹𝐹
) + 𝜖𝑛 (

𝐸𝛥𝑡

𝜆𝐸𝐹𝐹
− 𝐸) −

𝜖𝑠,𝐸𝐹𝐹𝐸𝛥𝑡

𝜆𝐸𝐹𝐹
(2. 47) 

 

2.4.2 Validation against analytical solution 

Euler method is an approximate method so its accuracy should be validated. Now that the 

analytical solutions exist for simple loading conditions, the results of analytical solutions and 

Euler solutions can be compared. In this section, the analytical solutions and Euler solutions for 

creep test, stress relaxation test and tensile test at fixed stress rate are compared.  

To solve Eqn. (2.41) analytically or Eqn. (2.45) numerically, the values of 𝐸, 𝜇 ,𝜆 ,𝐶 and 𝜖𝐿 need 

to be known. In this section, the values of these parameters are selected based on [16] at glass 

transition temperature 𝑇𝑔  which are shown in Table 2.1. Also, the accuracy of Euler method 

depends on the time step (Δ𝑡). In this section, 1 second, 0.1 second, 0.01 second and 0.001 

second will be used for Δ𝑡 to test its effect on the results. The accuracy of Euler solutions are 

tested quantitatively by using the coefficient of determination 𝑅2 [23] defined as 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)

2
𝑖

∑ (𝑦𝑖 − �̅�)2𝑖

(2. 48) 

where 𝑦𝑖 represents analytical solution at time 𝑡𝑖, 𝑓𝑖  represents Euler solution at 𝑡𝑖 and �̅� is the 

average value of the analytical solution. 𝑅2 ranges from 0 to 1. The better the two group of data 

fit, the closer the value of 𝑅2 is to 1. 

Table 2.1 Values of parameters used for validation 

Parameters 𝐸(MPa) 𝜇(GPa∙s) 𝜆(s) 𝐶 𝜖𝐿(%) 

Value 146 14 521 0.112 0.3 

 

Figure 2.13 compares the creep results between analytical solution and Euler solution with 

different time steps. The 𝑅2 value is equal to 0.99999967, 0.9999999967, 0.999999999967 and 
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0.99999999999967 respectively with the decrease of time step. Therefore, for creep the Euler 

solution is accurate as long as the time step is no more than 1 second. 

  

(a) (b) 

  

(c) (d) 

Figure 2.13 Creep results compare between analytical and Euler numerical solution with different times 

step. (a) Δ𝑡 = 1 s, (b) Δ𝑡 = 0.1 s, (c) Δ𝑡 = 0.01 s, (d) Δ𝑡 = 0.001 s. 

 

Figure 2.14 compares the stress relaxation results between analytical solution and Euler solution 

with different time steps. The 𝑅2 value is equal to 0.999985, 0.99999985, 0.9999999985 and 

0.999999999985 respectively with the decrease of time step. Therefore, for stress relaxation the 

Euler solution is again accurate if the time step is no more than 1 second. 
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(a) (b) 

  

(c) (d) 

Figure 2.14 Stress relaxation compare between analytical and Euler solution with different time steps. 

(a) Δ𝑡 = 1 s, (b) Δ𝑡 = 0.1 s, (c) Δ𝑡 = 0.01 s, (d) Δ𝑡 = 0.001 s. 

 

Figure 2.15 compares the results of uniaxial tension at constant loading rate (0.05 MPa/s) 

between analytical solution and Euler solution with different time steps. The 𝑅2 value is equal to 

0.999976, 0.99999976, 0.9999999976 and 0.999999999976 respectively with the decrease of 

time step. Again the Euler solution is accurate if the time step is no more than 1 second in this 

case. 
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(a) (b) 

  

(c) (d) 

Figure 2.15 Tensile test compare between analytical and Euler solution with different time step. (a) Δ𝑡 =

1 s, (b) Δ𝑡 = 0.1 s, (c) Δ𝑡 = 0.01 s, (d) Δ𝑡 = 0.001 s. 

 

In summary, when the time step is no more than 1 second, no obvious improvement was 

observed with finer discretization; therefore, any time step no more than 1 second can be used 

when numerically implementing the rheological model. Based on the investigation here, 0.1 

second is chosen for numerical integration later in this thesis. 
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Chapter 3 : Application of the model to bending 

Shape memory polymers have the potential to be used in different applications to achieve desired 

shape memory functions. For many of the applications, e.g., when they are used for polymeric 

cardiovascular stents [12] or morphing wings of aircrafts [11], they are inevitable subjected to 

bending load. For example, when the morphing wings of an airplane is unfolded, the two wings 

are hanged in their fuselage and can be regarded as two cantilever beams. In order to evaluate the 

bending response of structures made of SMP, there is a need to develop a model that can be used 

to predict the bending behavior of SMPs.  

In the past, several researchers investigated the bending behavior of SMPs. Tobushi et al. [19] 

conducted thermomechanical bending tests consisting of the following steps. First, a 

displacement was applied on the beam at a high temperature above 𝑇𝑔. With the constant holding 

deformation, the specimen was cooled down to a low temperature below 𝑇𝑔. Then it was heated 

to a prescribed holding temperature and the deformation was maintained for a prescribed holding 

time. Finally, the specimen was unloaded and heated up to the same high temperature. The 

influence of different factors (e.g. holding temperature and holding time) on the shape recovery 

ratio (defined as the ratio of the difference between maximum strain in the beam and final 

residual strain in the beam to the maximum strain in the beam) was investigated. However, no 

corresponding predictive model was developed to compare with the experiments. Wang et al. [24] 

applied the Maxwell-Weichert model (two Maxwell models and one spring in parallel) to the 3-

point bending of SMP. The relationship between stress and deformation on thermomechanical 

test is obtained. Baghani et al. integrated a viscoelastic model with Euler-Bernoulli beam theory 

to model the thermomechanical behavior of 3-point bending beam and cantilever beam 

respectively [25]. This viscoelastic model [26] regards the polymer as two phases, the active 

phase and frozen phase, which can be transformed into each other through heat stimuli. The 

curvature and deflection is obtained at some steps of the thermomechanical test. Ghosh et al. 

applied a thermodynamically based state evolution model to 3-point bending in a finite element 

framework [20]. The relationship between displacement and force at the middle of the beam in a 

thermomechanical cycle is obtained. However, in these works no corresponding experiments 

were performed to validate the feasibility and limitation of those models.  
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Since the rheological model discussed in Chapter 2 has not been applied under bending condition, 

this chapter will extend the rheological model to 3-point bending of a thin beam and 

corresponding experiments will be conducted to validate the model in the later chapters. 

Analytical solution based on the rheological model is not feasible for bending problems, so 

numerical implementation is necessary. Euler method is validated for uniaxial loading conditions 

in the last chapter and given that bending of a thin beam is also one dimensional loading, it will 

be used for the numerical implementation.  

 

3.1 Assumptions 

A schematic of 3-point bending is shown in Figure 3.1. A force 𝑃 is applied at the mid span of 

the beam and there are two supports on the two end of the beam with hinge joints. The goal is to 

calculate the time-dependent deflection of the beam given a loading history 𝑃(𝑡).  

 

Figure 3.1 Schematic for 3-point bending of a thin beam 

 

The beam considered in this analysis is a thin beam with rectangular constant cross sections. 

Figure 3.2 shows the side view of the beam with the establishment of the coordinate system. 𝐿, ℎ 

and 𝑏 represent the distance between the two supports, height and width of the beam respectively. 

The longitudinal axis 𝑥 lies along the neutral axis of the beam while the vertical axis 𝑦 passes 

through the left support of the beam. The applied load is symmetric about 𝑥 = 𝐿/2 so the stress 

and strain distribution is symmetric about 𝑥 = 𝐿/2. Therefore, for the calculations hereafter, 

only the left half of the beam will be investigated. 
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Figure 3.2 Front view of the beam 

 

Since the beam is thin and only small deformation is considered in this thesis, the assumptions in 

the classical Euler-Bernoulli beam theory for elastic material [27] will be adopted. First, the 

length of the neutral axis is assumed to be constant during deformation. Second, all cross 

sections of the beam remain plane and perpendicular to the longitudinal axis 𝑥 when the beam is 

deformed. Third, the deformation of the cross section within its own plane will not be 

considered. Based on these assumptions, the strain and curvature have the relation below 

𝜖(𝑡, 𝑥, 𝑦) = 𝜅(𝑡, 𝑥)𝑦 (3. 1) 

where 𝜅 represents curvature. In addition, all the quantities (𝐸, 𝜇, 𝜆, 𝐶 and 𝜖𝐿) in Eqn. (2.41)-

(2.44) are assumed to be the same for both tension and compression so that 𝜎(𝑡, 𝑥, −𝑦) =

−𝜎(𝑡, 𝑥, 𝑦) and 𝜖(𝑡, 𝑥, −𝑦) = −𝜖(𝑡, 𝑥, 𝑦). The moment 𝑀(𝑡, 𝑥) at any cross section can be then 

calculated as  

𝑀(𝑡, 𝑥) = ∫𝜎(𝑡, 𝑥, 𝑦)𝑦𝑑𝐴 = ∫ 𝜎(𝑡, 𝑥, 𝑦)𝑏𝑦𝑑𝑦
ℎ/2

−ℎ/2
= 2∫ 𝜎(𝑡, 𝑥, 𝑦)𝑏𝑦𝑑𝑦

ℎ/2

0
(3. 2)

where 𝑑𝐴 represents an area element in the cross section and 𝑑𝑦 represents a length element 

along 𝑦 direction so that 𝑑𝐴 = 𝑏𝑑𝑦 . 

 

3.2 Formulation and numerical scheme 

The numerical scheme developed in Chapter 2 for the rheological model is used in this chapter. 

For uniaxial loading, the stress and strain are uniformly distributed so each of them is only a 

function of time. For the bending of a beam, however, the stress and strain also depend on 

location besides their time dependence. As a result, moment 𝑀(𝑡, 𝑥) is a function of 𝑡 and 𝑥; 
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curvature 𝜅(𝑡, 𝑥) is a function of 𝑡 and 𝑥; stress 𝜎(𝑡, 𝑥, 𝑦) is a function of 𝑡, 𝑥 and 𝑦; and strain 

𝜖(𝑡, 𝑥, 𝑦) is a function of 𝑡,  𝑥 and 𝑦. In order to solve for the deformation history of the entire 

beam, stress and strain need to be evaluated at any time and at any point of the beam. This 

requires the discretization along 𝑥 and 𝑦 axis besides the discretization of time.  

First of all, as in Chapter 2, time (𝑡) is discretized into 𝑁  equal intervals which results in 

𝑡0(= 0), 𝑡1, 𝑡2, … 𝑡𝑛, 𝑡𝑛+1, … 𝑡𝑁. At any cross section (i.e., given 𝑥), the bottom half of the cross 

section (from 𝑦 = 0 to 𝑦 = ℎ/2) is discretized into 𝑅  equal intervals with size Δ𝑦 leading to 

𝑦0(= 0), 𝑦1, 𝑦2, … 𝑦𝑟 , 𝑦𝑟+1, … 𝑦𝑅(= ℎ/2). In addition, the left half of the beam (from 𝑥 = 0 to 

𝑥 = 𝐿/2 ) is discretized into 𝑄  equal intervals with size Δ𝑥  which results in 𝑥0(=

0), 𝑥1, 𝑥2, … 𝑥𝑞 , 𝑥𝑞+1, … 𝑥𝑄(= 𝐿/2). 𝜎𝑛 and 𝜖𝑛 in Eqn. (2.47) will be written as 𝜎(𝑡𝑛) and 𝜖(𝑡𝑛), 

for any given 𝑥 and 𝑦, to indicate their time dependence. 

At one particular cross section (given 𝑥) if the moment history 𝑀(𝑡𝑛) (𝑛 = 0,1,2, …𝑁) is known 

(considering that the loading history at mid-span is given), the curvature history 𝜅(𝑡𝑛) (𝑛 =

0,1,2, …𝑁) can be obtained as follows. Eqn. (2.47) gives the relation between stress and strain at 

one particular point. Eqn. (3.1) gives the relation between strain and curvature. Substituting 

Eqns. (2.47) and (3.1) into Eqn. (3.2), the relation between moment and curvature can be 

obtained as 

 

𝑀(𝑡𝑛+1) = 2∫ 𝜎(𝑡𝑛+1, 𝑦)𝑏𝑦𝑑𝑦
ℎ/2

0

= 2∫ 𝐸𝜅(𝑡𝑛+1)𝑏𝑦
2𝑑𝑦

ℎ/2

0

+ 2∫ (1 −
𝐸𝛥𝑡

𝜇𝐸𝐹𝐹
) 𝜎(𝑡𝑛, 𝑦)𝑏𝑦𝑑𝑦

ℎ/2

0

+ 2∫ (
𝐸𝛥𝑡

𝜆𝐸𝐹𝐹
− 𝐸)𝜅(𝑡𝑛)𝑏𝑦

2𝑑𝑦
ℎ/2

0

− 2∫
𝜖𝑠,𝐸𝐹𝐹𝐸𝛥𝑡

𝜆𝐸𝐹𝐹
𝑏𝑦𝑑𝑦

ℎ/2

0

 

(3.3) 

Using the definition of moment of inertia 𝐼 = ∫𝑦2𝑑𝐴 = 2∫ 𝑏𝑦2𝑑𝑦
ℎ/2

0
 and rearranging Eqn. 

(3.3) result in  

𝜅(𝑡𝑛+1) = 𝜅(𝑡𝑛) +
1

𝐸𝐼
[𝑀(𝑡𝑛+1) −𝑀(𝑡𝑛)] +

𝑏Δ𝑡

𝐼
(Φ − Ψ+ Ω) (3. 4) 
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where Φ , Ψ  and Ω  are defined as 2∫ 𝜖𝑠,𝐸𝐹𝐹

𝜆𝐸𝐹𝐹
𝑦𝑑𝑦

ℎ/2

0
, 2∫ 1

𝜆𝐸𝐹𝐹

ℎ/2

0
𝜅𝑛𝑦

2𝑑𝑦  and 2∫ 1

𝜇𝐸𝐹𝐹

ℎ/2

0
𝜎𝑛𝑦𝑑𝑦 

respectively. 

In Section 2.2, it was described that the constitutive relation of the material can lie in 3 different 

regimes depending on the loading conditions as shown in Eqn. (2.12). Without unloading, the 

constitutive relation at any point of the beam is either in regime 1 or regime 2. Before any point 

reaches regime 2, there is a linear relationship between the creep strain 𝜖𝑐 and 𝑦 so that 𝜖𝑐 will 

be greater at larger 𝑦. With the increase of external loading, beyond certain 𝑦 at one particular 

cross section, creep strain might reach the threshold strain 𝜖𝐿 where the irrecoverable strain will 

be triggered. As a result, materials beyond that point will be in regime 2 while the rest still 

remain in regime 1. The value of 𝜇𝐸𝐹𝐹, 𝜆𝐸𝐹𝐹 and 𝜖𝑠,𝐸𝐹𝐹 in regimes 1 and the 2 have different 

expressions as shown in Eqns. (2.42)-(2.44) so in order to evaluate Φ, Ψ and Ω in Eqn. (3.4) 

there is a need to introduce a critical point 𝑦 = 𝑎 where 𝜖𝑐 = 𝜖𝐿. Regime 1 lies within 𝑦 < 𝑎 

where 𝜖𝑐 < 𝜖𝐿  and 𝜇𝐸𝐹𝐹 , 𝜆𝐸𝐹𝐹  and 𝜖𝑠,𝐸𝐹𝐹  are equal to 𝜇 , 𝜆  and 0 respectively. Regime 2 lies 

within 𝑎 < 𝑦 ≤ ℎ/2 where 𝜖𝑐 > 𝜖𝐿 and 𝜇𝐸𝐹𝐹, 𝜆𝐸𝐹𝐹 and 𝜖𝑠,𝐸𝐹𝐹 are equal to 𝜇𝑒𝑓𝑓, 𝜆𝑒𝑓𝑓 and  𝜖𝑠,𝑒𝑓𝑓 

respectively. Φ, Ψ and Ω can then be calculated as 

Φ =
𝜖𝑠,𝑒𝑓𝑓

𝜆𝑒𝑓𝑓
(
1

4
ℎ2 − 𝑎2) (3. 5) 

Ψ = 𝜅(𝑡𝑛) [
1

𝜆

2

3
𝑎3 +

1

𝜆𝑒𝑓𝑓
(
1

12
ℎ3 −

2

3
𝑎3)] (3. 6) 

Ω =
2

𝜇
∫ 𝜎𝑛𝑦𝑑𝑦
𝑎

0

+
2

𝜇𝑒𝑓𝑓
∫ 𝜎𝑛𝑦𝑑𝑦

ℎ
2

𝑎

(3. 7) 

In summary, if the loading history is given, the curvature history at one particular cross section 

can be calculated by using Eqns. (2.47), (3.1) and (3.4)-(3.7) with given initial conditions. 

Specifically, at each time step 𝑡𝑛+1, the values of 𝑀(𝑡𝑛) 𝑀(𝑡𝑛+1), 𝜅(𝑡𝑛), 𝜖(𝑡𝑛, 𝑦) and 𝜎(𝑡𝑛, 𝑦) 

are known. Since 𝑦  has been discretized, 𝜎(𝑡𝑛, 𝑦)  and 𝜖(𝑡𝑛, 𝑦)  are also discretized along 𝑦 

direction. 𝑎 can be obtained by using the condition 𝜖𝑐(𝑡𝑛, 𝑦) = 𝜖(𝑡𝑛, 𝑦) −
𝜎(𝑡𝑛,𝑦)

𝐸
= 𝜖𝐿. Now that 

𝑎 is known, Φ can be calculated directly by using Eqn. (3.5). Given 𝑎 and 𝜅(𝑡𝑛), Ψ is obtained 

by using Eqn. (3.6). Given 𝑎 and 𝜎(𝑡𝑛, 𝑦), Ω is obtained by using Eqn. (3.7). Next, 𝜅(𝑡𝑛+1) can 
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be calculated by using Eqn. (3.4), followed by the calculation of  𝜖(𝑡𝑛+1, 𝑦) from Eqn. (3.1). 

Finally, 𝜎(𝑡𝑛+1, 𝑦) is obtained by using Eqn (2.47). The same procedure is followed to obtain the 

complete curvature history 𝜅(𝑡𝑛)(𝑛 = 1,2, …𝑁) . These procedures can be illustrated by a 

flowchart as shown in Figure 3.3.  

 

Figure 3.3 Flowchart of the calculation for curvature at one particular cross section 

 

Since 𝑥 axis (from 𝑥 = 0 to 𝑥 = 𝐿/2) is discretized as 𝑥0(= 0), 𝑥1, 𝑥2, … 𝑥𝑞 , 𝑥𝑞+1, … 𝑥𝑄(= 𝐿/2), 

the curvature at any time and any cross section can be obtained as 𝜅(𝑡𝑛, 𝑥𝑞). Denote 𝜅(𝑡𝑛, 𝑥𝑞) as 

𝜅𝑛𝑞 and the discretization of the curvature with respect to time and location of cross section is 

shown in Figure 3.4. At each time 𝑡𝑛, the expression for 𝜅(𝑡𝑛, 𝑥) can be obtained by polynomial 

fitting of discretized values of 𝜅𝑛0, 𝜅𝑛1, … 𝜅𝑛2, 𝜅𝑛𝑞 , 𝜅𝑛(𝑞+1), … 𝜅𝑛𝑄. The order of polynomial that 

provides good fit will depend on the material parameters and dimension of the beam. Details 

about fitting of 𝜅(𝑡, 𝑥) for the materials studied in this work will be discussed in Section 5.3.1. 
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Once the expression for curvature is known, the deflection can be obtained by integrating 

curvature in Eqn. (3.8) 

𝜕2𝑤(𝑡, 𝑥)

𝜕𝑥2
= −𝜅(𝑡, 𝑥) (3. 8) 

where 𝑤 represents the deflection of the beam. For the 3-point bending, the deflection at 𝑥 = 0 is 

zero due to the restriction of the support. Also, the rotation angle at 𝑥 = 𝐿/2 is zero because of 

the symmetric condition. Thus, the boundary conditions (B.C.) can be specified as  

𝑤(𝑥 = 0) = 0,
𝜕𝑤

𝜕𝑥
(𝑥 = 𝐿/2) = 0 (3. 9) 

𝑤(𝑡, 𝑥) can be determined by integrating Eqn. (3.8) with Eqn. (3.9) which is illustrated in Figure 

3.4.  

 

Figure 3.4 Illustration for discretization of curvature and the calculation of beam deflection 

 

3.3 Accuracy of discretization along 𝒚 axis 

Since 𝑦  is discretized and is a multiple of Δ𝑦 , 𝜎(𝑡𝑛, 𝑦)  and 𝜖(𝑡𝑛, 𝑦)  along 𝑦 axis are also 

discretized. Theoretically, 𝑎 is determined from solving 𝜖𝑐(𝑡𝑛, 𝑦) = 𝜖𝐿 . However, it is almost 

impossible to find a 𝜖𝑐(𝑡𝑛, 𝑎) which is exactly equal to 𝜖𝐿 considering that 𝑎 is a multiple of Δ𝑦. 

Numerically, 𝑎 is obtained by finding the minimum value of |𝜖𝑐(𝑡𝑛, 𝑦) − 𝜖𝐿| along the 𝑦 axis. 𝑎 
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obtained this way is an approximation with an error ≤ Δ𝑦/2. This error can be reduced by finer 

discretization of 𝑦. In addition to 𝑎, numerical integration is used to calculate Ω as shown in Eqn. 

(3.7) because 𝜎(𝑡𝑛, 𝑦) is discretized along 𝑦 axis. Again, more accurate evaluation of Ω can be 

obtained by finer discretization of 𝑦 . In this section, the effect of ∆𝑦  on the 𝑎  value and 

deformation of the beam is examined. The values of material parameters are selected from Table 

2.1, and the dimension of the beam is given in Table 3.1. The loading history is taken to be 

𝑃(𝑡) = 0.1𝑡 𝑁 which leads to the initial conditions 𝑀(𝑡0) = 0, 𝜖(𝑡0, 𝑦) = 0 and 𝜎(𝑡0, 𝑦) = 0. 𝑦 

from 0 to ℎ/2 is discretized into 100, 1000 and 10000 intervals respectively and the resulting 

curvature and 𝑎 histories at 𝑥 = 𝐿/2 are compared in Figure 3.5 and Figure 3.6 respectively. As 

can be seen, both curvature and 𝑎 histories tend to be convergent with the increase of intervals 

along 𝑦 axis. Therefore, the accuracy of the numerical results can be guaranteed as long as 𝑦 is 

discretized sufficiently. 

Table 3.1 Dimension of beam 

Beam dimension Width(mm) Height(mm) 
Distance between two 

support(mm) 

Value 12 3 40 
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Figure 3.5 Curvature history at 𝑥 = 𝐿/2 with different numbers of intervals along 𝑦 axis 

 

 

Figure 3.6 𝑎 history at 𝑥 = 𝐿/2 with different number of intervals along 𝑦 axis 
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Chapter 4 Experimental methodology 

This chapter details the experiments conducted to compare with the model presented in Chapter 

3. In the model, the mechanical behavior of SMP is described by five parameters, 𝐸, 𝜇, 𝜆, 𝐶 and 

𝜖𝐿. These parameters for MM7520 were extracted from creep tests using results from Chapter 2. 

The material behaves differently at different temperatures; therefore, both creep and bending 

tests were performed at different temperatures.  

 

4.1 Raw materials and filament production 

The various manufacturing techniques of SMPs are used by researchers to produce the 

component. For the work of Tobushi et al. [16] [15] [19], the SMP specimens used for 

experiments were manufactured by Mitsubishi Heavy Industries, Ltd. through injection modeling. 

In recent years, extrusion based additive manufacturing (EBAM or also known as Fused 

deposition modeling (FDM)) technique have drawn increasing attention due to its low cost and 

high efficiency for small scale production. Parts with complex shapes can be produced by adding 

molten material layer-by-layer which is of particular interest to manufacturers. Raasch et al. [28] 

conducted research on extrusion and 3D printing of SMP (Type MM4520, SMP Technologies 

Inc.). The extrusion and 3D printing settings that can produce good quality filaments for printing 

and printed specimens were determined. Mechanical and shape recovery properties of the printed 

SMPs were outlined. Yang et al [29] investigated the influence of different extrusion and 3D 

printing parameters on the density, tensile strength, dimensional accuracy and surface roughness 

of the produced specimens (Type MM4520, SMP Technologies Inc.). The design of experiment 

method was used to investigate the influence of parameters and the specimens with good quality 

was successfully built.  

As mentioned in Chapter 1, this thesis is part of a larger program on the formation and 

characterization of multifunctional materials based on shape memory composites. As such, use 

of EBAM is of interest due to its low cost and manufacturing flexibility. The SMP used in this 

study was purchased from SMP Technologies Inc. (Japan) in pellet form. The manufacturer 

specified glass transition temperature ( 𝑇𝑔 ) is 75 ℃  (Type MM7520). This SMP is a 
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polyurethane-based thermoplastic co-polymer. The overall manufacturing process for preparing 

the filament and specimen used in this work is depicted in Figure 4.1.  

 

4.1.1 Filament preparation 

Garces et al. [30] studied the extrusion of MM7520, and determined optimal operating 

parameters. The same procedure and parameters were used in this work for extruding the 

MM7520 filament. Before extrusion, the pellets were dehumidified in a vacuum oven 

(Lindberg/Blue M from Thermo Fisher Scientific Inc.) at 80 ℃ for 48 hours.  

A single screw extruder (C.W. Brabender Instruments, Inc.) attached to an ATR Plasti-Corder 

drive system was used to extrude filaments (Figure 4.2 (a)). Figure 4.2 (b) shows the extrusion 

production line while the corresponding schematic of the extrusion process is illustrated in 

Figure 4.1 (b). As can be seen from Figure 4.1 (b), the extruder has four continuous heating 

zones. When the pellets are added into the hopper, they are preheated in zone 1. With the rotation 

of the screw, the material starts to melt as it is pushed towards the subsequent zones (from zone 1 

to zone 3) in the barrel. The screw speed was tuned to 20 rpm to extrude filament with diameter 

of 2.85 mm that is compatible with the Ultimaker 2 printer. The zone 4 is located in the die of the 

extruder which molds the shape of the filament. As the extrudate comes out of the extruder, it 

was collected by a conveyor belt at a constant rate of 28 mm/s. Water spray was used to cool 

down the filament at the beginning of the conveyer which prevents adhesion of the filament to 

the conveyor. Then, the filament is cooled down gradually using two fans. As the filament passes 

through the water bath, it was fully cooled down and its physical properties were fixed. Finally, a 

take-up mechanism was used to collect the filament. The final product is shown in Figure 4.2 (c). 

The parameters used are tabulated in Table 4.1. The produced filament was measured every 5 

mm. The filaments outside the diameter range from 2.75 mm to 2.95 mm were rejected and not 

used in the EBAM.  
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(a) 

 

(b) 

 

(c) 

Figure 4.1 Manufacturing process of SMP specimen. (a) Manufacturing flowchart, (b) Schematic of 

extrusion process, (c) Schematic of 3D printing (adopted from [29]). 
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(a) 

 

(c) (b) 

Figure 4.2 Actual set-up for the extrusion of SMP filament. (a) Extruder and its drive system, (b) 

Extrusion production line, (c) extruded SMP filament. 
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Table 4.1 Extrusion parameters 

Parameters Values 

Temperature at zone 1(℃) 175 

Temperature at zone 2 (℃) 185 

Temperature at zone 3 (℃) 195 

Temperature at zone 4 (℃)  205 

Screw speed (rpm) 20 

Conveyor speed (mm/s) 28 

 

4.1.2 Specimen preparation 

Specimens used in this study were prepared using Ultimaker 2 (Netherlands). This EBAM 

machine was chosen because it is an open source machine that provides users more control 

compared to some other manufacturers machines. The machine is equipped with a single nozzle, 

compared to some new dual nozzle machines used for multi-material printing. The machine’s 

working mechanism is shown in the schematic presented in Figure 4.1(c) [29]. The feeder 

contains one saw-toothed roller and another rounded roller which squeeze the filament slightly 

and push the filament into the nozzle at a constant feeding rate. As the material passes through 

the heating zone, the filament is heated up and melted. When the liquid material comes out of the 

nozzle, it is deposited prior to solidification due to the cooling from the surrounding air. Also, 

the two fans at the sides of the nozzle can accelerate the cooling speed of the deposited material. 

With the moving of the nozzle, the material is deposited on the build plate layer by layer until the 

desired specimen is formed. The printing parameters used in this study is shown in Table 4.2. 

230 ℃ was selected as the nozzle temperature because the DSC test indicated that the start of 

melting point for the material is around 160 ℃ [30]. The reason for the nozzle temperature being 

higher than the indicated melting point was to ensure complete melting of the filaments prior to 

being deposited during the print process. The print speed used was 19.5 mm/s for the first layer 

and 21 mm/s for the rest of layers which was shown to produce high print quality and print 

efficiency at the same time. Fans were turned off during the printing process to allow the molten 

material leaving the nozzle more time to fuse and bond, which reduces voids and residual 

stresses between layers. 
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The build plate temperature was set at 80 ℃, slightly higher than the glass transition temperature, 

to minimize the temperature gradient and consequent material property changes in the thickness 

direction of the specimens. As the build plate temperature is above 𝑇𝑔, soft segment is activated 

and the thermal motion of molecules increases dramatically [2]. As a result, the molecules in the 

interface between the layers have more chance to bond with each other which can increase the 

adhesion between layers. Also, the residual stress between layers can be relieved due to the 

movement and realignment of molecules [28]. Smaller layer height generates smoother specimen 

surface morphology but meanwhile takes more time. It was found that 0.2 mm layer height can 

guarantee the print quality and print efficiency at the same time, which can be generated using 

0.4 mm nozzle diameter. Infill density was set to 100% in order to get a solid specimen. The 

print direction of the machine was set to be ±45°, alternating at every layer of the print. A 

previous study [31] suggested that this print angle minimized the differences between 

longitudinal and transverse direction properties of the printed specimens.  

Table 4.2 3D printing parameter settings 

Parameter settings for 3D printing Value 

Layer height (mm) 0.2 

Nozzle temperature ( ℃ ) 230 

Build plate temperature ( ℃ ) 80 

Infill density (%) 100 

Print pattern ±45° 

Print speed of first layer (mm/s) 19.5 

Print speed of other layers (mm/s) 21 

Nozzle diameter (mm) 0.4 

Fan speed 0 

 

4.2 Experimental testing 

4.2.1 Testing machine 

The Dynamic Mechanical Analysis (DMA) was conducted using a DMA Q800 (TA Instruments, 

USA).  Remaining tests, creep and bending, were done using a Bose ElectroForce 3200 Series ІІІ 

test instrument (Figure 4.3) equipped with a temperature chamber. Two load cells were used; one 



 

43 
 

has a maximum load capacity of 450 N with a resolution of 0.01 N and with the other has a 

maximum load capacity of 10 N with a resolution of 0.001 N. The temperature chamber (Figure 

4.3) can control the temperature within ± 1℃ of the target temperature. Figure 4.4 details the 

elements inside the chamber. Heater elements is put at the back of the chamber and the blower 

fan blows the hot air through the honeycomb pore in front of the heater elements. A temperature 

sensor probe is used to record the temperature inside the chamber.  

 
Figure 4.3 Testing machine 

 

 

Figure 4.4 Uniaxial test components 
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4.2.2 Dynamic mechanical analysis test 

Dynamic mechanical analysis (DMA) was conducted to investigate the dynamical properties of 

MM7520. The specimen for DMA test had constant rectangular cross-sections with 12.75 in 

width, 3.15 mm in thickness and 17.14 mm in length. The sample was clamped at one end as a 

cantilever beam. A displacement was applied to the free end of the beam in a sinusoidal manner 

with 30 µm amplitude and 1 Hz frequency. The temperature of the chamber was heated up 

gradually from -50 ℃  to 150 ℃  at a constant rate of 2 ℃/𝑚𝑖𝑛 . The loading response was 

collected and the storage modulus 𝐸′, loss modulus 𝐸′′ and tangent delta 𝑡𝑎𝑛𝛿 were obtained 

with respect to temperature.  

 

4.2.3 Creep test  

Creep tests were conducted at 55 ℃, 60 ℃, 65 ℃, 70 ℃ and 75 ℃. The rheological model is 

originally developed with small strain assumption [16]; therefore, the strains for all the creep 

tests conducted here were limited to 10%.  

At each temperature, three independent creep tests were performed, at different stress levels. The 

reason for performing these tests is as follows. Since the rheological model contains the term 𝜖𝑠 

as shown in Eqn. (2.11), it is nonlinear in the sense that if the input stress increases from 𝜎 to 𝛼𝜎, 

the output strain does not necessarily increase proportionally. This can also be seen from the 

expressions in Eqns. (2.26), (2.28) and (2.30) where the strain response 𝜖(𝑡) is not proportional 

to the applied stress 𝜎0. Therefore, in order to capture the creep behavior for a range of stress 

levels, three different magnitudes of stress were applied on the specimens at each temperature.  

The specimens for creep tests have constant rectangular cross-sections. The designed dimensions 

at 55 ℃, 60 ℃, 65 ℃ and 70 ℃ are 10 mm in width, 1 mm in thickness and 50 mm in length. At 

75 ℃, the material is changing into the rubbery state so the thickness of dimension is doubled in 

order to apply smaller stresses on the specimens due to the limited load level the machine can 

apply. The real dimensions of the specimens together with their applied loads and resulting 

stresses are shown in Table 4.3. The standard dog-bone specimens (eg. ASTM D638 V) for creep 

tests were not used because the gauge length of the specimens changes constantly during the test, 
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and the strain levels experienced were beyond the capability of the optical extensometer if the 

gauge length of a dog-bone specimen was to be monitored.  

The setup of creep test can be seen in Figure 4.4, where the SMP strip was mounted between two 

grips. The lower one was fixed and the upper one was attached to a controllable load cell. 15 

in∙lb (1.7 N∙m) torque was applied with a torque wrench to fix the specimen in the grips. The 

initial length between the two grips was set as 25 mm (the length of specimens is around 50 mm 

and the length of two grips together is around 25 mm). The temperature sensor probe was placed 

next to the specimen during the tests. The load, displacement and temperature were recorded at 

every 0.1 second. The specimens were loaded for 30 minutes and then unloaded for another 30 

minutes.  

Table 4.3 Dimension of specimens used for creep tests, corresponding load and stress 

Temperature 
(℃) 

Specimen 
number 

Applied 
load (N) 

Width 
(mm) 

Thickness 
(mm) 

Length 
(mm) 

Stress 
(MPa) 

55 1 30 10.07 1.06 49.80 2.81 

 
2 50 10.06 1.11 49.77 4.48 

 
3 70 10.10 1.08 49.85 6.42 

60 1 30 10.02 1.07 49.75 2.80 

 
2 50 10.07 1.10 49.81 4.51 

 
3 70 10.07 1.05 49.87 6.62 

65 1 10 10.01 1.05 49.77 0.95 

 
2 15 10.06 1.09 49.76 1.37 

 
3 20 10.03 1.06 49.77 1.88 

70 1 2 10.12 1.29 49.80 0.15 

 
2 3 10.08 1.20 49.79 0.25 

 
3 4 10.05 1.20 49.78 0.33 

75 1 2 10.20 2.42 50.16 0.08 

 
2 3 10.17 2.21 50.12 0.13 

 
3 4 10.22 2.40 50.16 0.16 
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4.2.4 Bending test 

3-point bending test were performed as shown in Figure 4.5 using a 3-point test jig. A force 𝑃 

was applied at the mid-span of the upper side of the beam and there were two roller supports on 

the lower side of the beam. 𝑃 was applied at a constant loading rate (Table 4.4). The temperature 

sensor probe was put next to the specimen. The load, displacement and temperature were 

recorded every 0.1 second. Like in the creep tests, bending tests were conducted at 55 ℃, 60 ℃, 

65 ℃, 70 ℃ and 75 ℃. At different temperatures, the material behaves differently so different 

loading rates and loading time were used which are shown in Table 4.4.  

 

(a) 

  

(b) (c) 

Figure 4.5. (a) Schematic of 3-point bending, (b) Specimen before loading, (c) Specimen after loading 
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The specimens for bending tests also have rectangular cross-section. The dimension were 12 mm 

in width, 3 mm in thickness and 60 mm in length. At each temperature, the bending tests were 

repeated under the same loading conditions for 3 times, each time with a fresh specimen. The 

measured dimensions of specimens are shown in Table 4.5. The span between two lower 

supports were fixed at 40 mm for all bending tests. The deflection at mid span of the beam 𝛿 and 

load 𝑃 can be obtained from the testing machine.  

Table 4.4 Loading rate and loading time at different temperatures 

Temperature (℃) 55 60 65 70 75 

Loading rate (N/s) 1 1 0.5 0.2 0.185 

Loading time (s) 100 100 100 50 15 

 

Table 4.5 Dimension of specimens used for bending tests 

Temperature (℃) Specimen number Width(mm) Thickness(mm) Length(mm) 

55 1 12.25 3.32 60.12 

 2 12.20 3.34 60.04 

 3 12.27 3.41 60.26 

60 1 12.25 3.38 60.02 

 2 12.18 3.35 60.01 

 3 12.18 3.32 60.21 

65 1 12.28 3.22 59.97 

 2 12.20 3.23 60.01 

 3 12.27 3.19 59.73 

70 1 12.02 3.19 59.78 

 2 11.97 3.16 59.72 

 3 11.96 3.20 59.79 

75 1 11.99 3.18 59.77 

 2 11.98 3.18 59.74 

 3 12.07 3.20 59.85 
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Chapter 5 : Results and Discussion 

5.1 Results of dynamic mechanical analysis 

In Figure 5.1, the storage modulus, 𝐸′, loss modulus, 𝐸′′ and tangent delta, 𝑡𝑎𝑛𝛿, are shown with 

respect to temperature. These three parameters are often used to describe the viscoelastic 

properties/response of a material that exhibit the characteristics of both elastic solid and viscous 

fluid [4]. 𝐸′ is related to the elastic component of the material while 𝐸′′ is related to the viscous 

component [2]. 𝑡𝑎𝑛𝛿 is the ratio between the loss modulus and the storage modulus [2].  

 
Figure 5.1 Storage modulus E', loss modulus E" and tangent delta 𝑡𝑎𝑛𝛿 of MM7520, measured from 

dynamic mechanical analysis  

 

It can be seen from Figure 5.1 that the storage modulus maintains a high value (above 1500 MPa) 

at low temperature and start to decrease quickly at around 60℃. The sharpest drop happens 

between 70℃ and 80℃. The loss modulus stays at a small value (around 400 MPa) at low 

temperature but starts to increase drastically from 60℃  to 75℃  at which the loss modulus 

reaches its peak. After 75℃, the loss modulus drops again. The tangent delta follows the similar 

pattern as the loss modulus but it peaks at a higher temperature (around 85℃). Overall the most 

significant change of 𝐸′ and 𝐸′′ occurs around 75 ℃ which is consistent with the manufacturer 
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specified glass transition temperature. It also suggests that the re-process of the SMP (via 

extrusion based additive manufacturing) did not cause significant changes to its mechanical 

properties compared with the received material in pellet form.  

 

5.2 Creep test and parameter extraction 

5.2.1 Creep test results 

At each temperature, three creep tests at different stress levels were performed. Strain history 

recorded from the creep tests are shown in Figure 5.2 as dashed curves. Ideally, for each creep 

test, a sudden load should be applied to the specimen. Practically, however, it takes some time 

(usually less than 0.5 second) for the test machine to increase the load from 0 to the target load. 

To consistently define the initial strain, the time 𝑡 =  0 is set to be the moment at which the 

difference between the actual load and the target load is less than 0.1 N. The strain at that time is 

considered as the initial strain. Qualitatively, the curves in Figure 5.2, across different 

temperatures, exhibit some similarities. First of all, when the load is first applied at 𝑡 =  0, the 

material deforms instantaneously. This instantaneous elastic strain is mainly caused by the 

elongating of the coiled/entangled chain molecules in the amorphous regions in the direction of 

the applied stress [4]. As discuss in Chapter 1, the chain elongation is enabled by the change of 

torsional angle of each bond relative to its neighbor. As the specimen is held under the constant 

load, the chain molecules continue to extend. However, because they are restrained by crosslinks 

and entanglement with other chains, the flexibility and mobility of the chains has decreased 

which results in reduced deformation rate, evidenced by the decreasing slope in the strain history 

(Figure 5.2). Once the load is removed, the material experiences an immediate elastic recovery 

due to the resilience of the material [4]. The recovery continues but the strain cannot be fully 

recovered even for a long period of time. Since the extension of the chains during loading can 

cause slipping and realignment of the chain molecules in the amorphous regions, this result 

implies that some of the chain slipping and realignment is irreversible.  
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 5.2 Creep test results and fitting with the rheological model at different temperatures. (a) T=55℃, 

(b) T=60℃, (c) T=65℃, (d) T=70℃, (e) T=75℃. 
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Despite the above similarities, the experimental curves also show differences at different 

temperatures. When the temperature is well below 𝑇𝑔  (55 and 60℃ ), the initial elastic 

deformation 𝜖(0)  is significant compared with the maximum deformation 𝜖(1800−𝑠)  during 

loading. For example, at 55℃, the ratio between 𝜖(0) and 𝜖(1800−𝑠) ranges from 0.32 to 0.39 

for the three applied stress values. The corresponding ratio at 60℃ ranges from 0.17 to 0.21. In 

contrast, this ratio drops to 0.044-0.053 at 65℃, 0.013-0.016 at 70℃, and 0.010-0.011 at 75℃. 

The reason for such a difference is that at relatively low temperatures the thermal motion of 

molecules in the soft segments is hindered and the material is in the glassy state [7]. The 

intermolecular forces between the chains and the entangled chain structure inhibit the decoiling 

of the chain molecules so the material behaves less viscous and more elastic. As the temperature 

approaches 𝑇𝑔, the thermal motion of molecules in the soft segments is gradually unimpeded and 

the material begins to enter its rubbery state [7]. At high temperature (around 𝑇𝑔), the higher 

thermal motion of the molecules in the soft segments makes it easier to overcome the 

intermolecular forces and the barrier for bond rotation [3]. Therefore, the material behaves more 

viscous which causes the initial elastic deformation to be less significant. The change of material 

properties at different temperatures can be illustrated as Figure 5.3. The elastic solid and viscous 

liquid shows two extremes and the polymer lies between these two extremes. As the temperature 

increases, the elastic component decreases and the viscous component increases. 

 

Figure 5.3 Schematic of polymer behavior at different temperature 

 

Another difference among the results at different temperatures is the recoverable strain ratio (𝑅𝑟). 

For the creep tests conducted here, 𝑅𝑟 is defined as [𝜖(1800+) − 𝜖(3600)]/𝜖(1800+) which is 

the ratio of recovered strain (maximum creep strain minus the final residual strain upon 

unloading) to the maximum creep strain. The recoverable strain ratios are calculated at each 

temperature and for different stress levels (small, medium and large), shown in Figure 5.4. It is 

clear that the recovery ratio increases significantly when the temperature is near the 𝑇𝑔. When the 
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temperature is below 𝑇𝑔 (55, 60 and 65℃), larger than 60% of the maximum creep strain cannot 

be recovered upon unloading. To explain, consider when the material is loaded, the extension of 

coiled chains is enabled by overcoming the potential energy barrier for bond rotation (Figure 1.2) 

and the intermolecular forces between the chains. Once the material is unloaded, the elastic 

restoring force immediately recovers some deformation, driving the chains to partially extended 

states. However, the partially extended chains can still be separated by energy barriers which 

need to be surpassed in order for the deformation to be completely recovered. When the material 

is unloaded at relatively low temperatures, there is insufficient amount of thermal energy to 

overcome the energy barriers and intermolecular force, [3] which prevents the chains from going 

back to their original coiled conformation. As the temperature is approaching 𝑇𝑔, the increased 

thermal energy is able to surpass those energy barriers, leading to more likelihood of returning to 

the original coiled conformation, and hence higher recovery ratio. 

 

Figure 5.4 Recovery ratio at different temperature and different stress levels for creep tests 
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5.2.2 Model fitting and parameter extraction 

In the rheological model, the material parameters, 𝐸, 𝜇, 𝜆, 𝐶 and 𝜖𝐿 are used together to describe 

the viscoelastic behavior of SMP. For the specific material studied in this work, MM7520, values 

for these parameters are extracted by performing creep tests and comparing the results with the 

predictions from the model. At each temperature, three independent creep tests were conducted, 

as explained in Section 5.2.1, and results from those tests were used together to extract the 

material parameters. As can be seen from Section 2.3.1, under the rheological model the 

relationship between the applied constant stress and the initial strain in a creep test can be 

expressed as 𝜎0 = 𝐸𝜖(0). Therefore, the value of 𝐸 can be determined by linearly fitting the data 

𝜎0 vs. 𝜖(0) from the three independent creep tests. The fitting details are shown in Appendix A 

and the values of 𝐸 are given in Table 5.1.  

As for the other four parameters, 𝜇, 𝜆, 𝐶 and 𝜖𝐿, they are fully coupled (see Eqns. (2.26), (2.28) 

and (2.30)) and cannot be extracted individually from the creep tests. Therefore, at each 

temperature, 𝜇, 𝜆, 𝐶 and 𝜖𝐿 are varied together until they provide reasonable fit to all 3 creep 

tests with different applied stresses. Some guidelines do exist for the initial selection of 𝐶 and 𝜖𝐿 

values. Specifically, Eqn. (2.12) predicts the irrecoverable strain at the time of unloading (𝑡𝑏) as 

𝜖𝑠(𝑡𝑏) = 𝐶(𝜖𝑐(𝑡𝑏) − 𝜖𝐿). Here, 𝜖𝑐(𝑡𝑏) is the creep strain at 𝑡𝑏, which is equal to 𝜖(𝑡𝑏+) and can 

be obtained from experiments. On the other hand, based on Eqn. (2.30), 𝜖𝑠(𝑡𝑏) = 𝜖(∞) . 

Although the experiments were only performed up to one hour (3600𝑠), in Figure 5.2 the strains 

in most cases have reached plateau after one hour. Therefore we approximate 𝜖(∞) by 𝜖(3600s), 

which allows us to establish the following relation: 𝜖(3600𝑠) = 𝐶(𝜖(𝑡𝑏+) − 𝜖𝐿) . At each 

temperature, there are three sets of 𝜖(3600𝑠) and 𝜖(𝑡𝑏+)  from the three independent creep tests. 

By linearly fitting the data of 𝜖(3600𝑠) vs. 𝜖(𝑡𝑏+), 𝐶 is obtained from the slope and 𝜖𝐿 from the 

intercept. These initial estimates of 𝐶 and 𝜖𝐿 are then tuned, together with 𝜇 and 𝜆, to achieve 

good fitting for all test results. The final fitting values for 𝜇, 𝜆, 𝐶 and 𝜖𝐿 are shown in Table 5.1.  
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Table 5.1 Parameters values at different temperature 

Parameters 𝐸 (MPa) 𝜇 (GPa∙s) 𝜆 (s) 𝐶 𝜖𝐿 

55 ℃ 1088.2 148 226 0.76 0.00065 

60 ℃ 1038.5 112 253 0.83 0.00149 

65 ℃ 1028.7 50 352 0.83 0.00076 

70 ℃ 392.5 5.43 840 0.3 0.00027 

75 ℃ 218.35 0.79 239 0.37 0.018 

 

Figure 5.2 also shows the predictions from the model (solid curves) in comparison with 

experiments. The red circle in each curve marks the critical point at which the irrecoverable 

strain is triggered and the stress-strain relation transitions from regime 1 to regime 2 (definition 

of different regimes are explained in detail in Section 2.2). 𝑅2 (Table 5.2) is used to examine the 

quality of fitting and it is calculated separately for different stress levels (small, medium and 

large). Among the five temperatures 𝑅2 is closest to 1 at 65 ℃ and 70 ℃, while the quality of 

fitting reduces at lower (55 ℃ and 60 ℃) or higher (75 ℃) temperatures. The worst fitting is 

found in 75 ℃, which also corresponds to 𝑇𝑔 of this polymer. 

Table 5.2 Values of R2 at different temperatures and different stress levels 

𝑅2 Small load Medium load Large load 

55 ℃ 0.9734 0.9242 0.9787 

60 ℃ 0.9666 0.9723 0.9748 

65 ℃ 0.9818 0.9951 0.9972 

70 ℃ 0.9834 0.9932 0.9936 

75 ℃ 0.9093 0.9692 0.9441 

 

To take a closer look at the comparison, Figure 5.2 (a) shows the fitting at 55 ℃. Comparing the 

three modelling results with their corresponding experimental data, it can be seen that during 

loading, the strain measured from experiments increases more sharply at the beginning while 

grows more slowly than the model prediction after a few hundred seconds. After unloading and 

during recovery, the strains from experiments decrease faster than the model predicts. In other 
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words, compared with the model prediction, the actual material is less viscous during short-term 

loading and unloading, while it is more viscous in long-term loading. Revisiting the schematic of 

the model shown in Figure 2.6, the dashpot and irrecoverable strain element represent two 

dissipation mechanisms which contribute to the viscous behavior of the material. The difference 

between model and experiments seems to indicate that the dashpot is highly viscous, which leads 

to the underestimation of deformation in short-term loading and slower recovery rate in 

unloading. The triggering of the irrecoverable strain element introduces another dissipation 

mechanism and softens the material. Although its triggering occurs quite early in all cases (red 

circles on the solid curves), its effect is only felt after a certain period of time.   

The comparisons between experimental and modeling results at 60 ℃ (Figure 5.2 (b)) are quite 

similar to what is observed in Figure 5.2 (a). When the temperature is near 𝑇𝑔, at 65 ℃ (Figure 

5.2 (c)) and 70 ℃ (Figure 5.2 (d)), the model fits the experimental results very well and the 

discrepancies between them are insignificant. However, when the temperature increases further 

to 𝑇𝑔, it was very challenging to find a reasonable fit to the experiments. One of the better fittings 

is shown in Figure 5.2 (e) which still shows considerable discrepancy. With the present model, it 

is difficult to capture both the rapid ramping up of the strain during loading and its fast decaying 

during unloading. One may attempt to increase the strain rate during loading by reducing the 

stiffness of the two springs (𝐸1 and 𝐸2), but this would lead to even slower recovery during 

unloading.   

The final values for 𝐸, 𝜇, 𝜆, 𝐶 and 𝜖𝐿 are shown in Table 5.1 and plotted in Figure 5.5 against 

temperature. It can be seen from Figure 5.5 (a) that 𝐸 is around 1000 MPa from 55 to 65 ℃ and 

only experiences mild decrease as the temperature increases. When the temperature approaches 

the glass transition region, 𝐸 drops sharply from 1028.7 MPa at 65 ℃ to 218.35 MPa at 75 ℃. 

The trend for 𝐸 in the temperature range studied here is similar to that of storage modulus 𝐸′ 

(Figure 5.1), although their numerical values are quite different. The viscosity 𝜇 as shown in 

Figure 5.5 (b) undergoes continuous decrease from 148 GPa∙s at 55℃ to 0.79 GPa∙s at 75℃ As 

for the retardation time 𝜆 shown in Figure 5.5 (c), it increases gradually from 226 s at 55 ℃ to 

352 s at 65 ℃ and then increases sharply to 840s at 70 ℃. When the temperature reaches 𝑇𝑔, 𝜆 

decreases drastically to 239 s.  
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The irrecoverable strain 𝜖𝑠  is expressed in Eqn (2.12) in terms of 𝐶  and 𝜖𝐿 . 𝜖𝐿  represents the 

threshold strain above which the irrecoverable strain will appear. 𝐶  is correlated with the 

recoverable strain ratio (𝑅𝑟) which is explained as follows. As mentioned earlier, the final 

irrecoverable strain can be expressed as  𝜖(∞) = 𝐶(𝜖(𝑡𝑏+) − 𝜖𝐿), and is approximately equal to 

𝜖(3600). Given the small value of 𝜖𝐿 compared with the overall creep strain value (see Figure 

5.5 (e)), a further approximation can be made by neglecting 𝜖𝐿 in the equation, i.e., 𝜖(3600) =

𝐶𝜖(1800+)  or 𝐶 = 𝜖(3600)

𝜖(1800+)
= 1 − 𝑅𝑟 . Therefore, higher value of 𝐶  corresponds to lower 

recoverable strain ratio. In Figure 5.5 (d), the values of 𝐶 remain stable around 0.8 from 55 to 65 

℃ and then goes down to 0.3 at 70 ℃ and 0.37 at 75 ℃. It suggests that a greater portion of the 

strain is recovered during unloading at 70 and 75 ℃. This observation is consistent with the 

calculation of recoverable strain ratio (Figure 5.4). In Figure 5.5 (e) 𝜖𝐿 stays at a very small value 

until the temperature reaches 𝑇𝑔 at which 𝜖𝐿 reaches 1.8%. Such small values of 𝜖𝐿 imply that for 

temperatures below 𝑇𝑔, even very small deformation (< 0.2%) can trigger the irrecoverable strain 

in the material. At 𝑇𝑔 , the thermal energy is high enough to overcome the energy barriers 

associated with bond rotation; as such the threshold to trigger irrecoverable strain is raised to 

1.8%. 

Tobushi et al. [16] hypothesized, for the MS5510 SMP, that each parameter (𝐸, 𝜇, 𝜆, 𝐶 and 𝜖𝐿) 

can be expressed into a function of normalized temperature (𝑇𝑔/𝑇) in the exponential form (e.g. 

𝐸 = 𝐸𝑔𝑒𝑥𝑝 [𝑎𝐸 (
𝑇𝑔

𝑇
− 1)]). For the parameters we obtained for MM7520, numerical fitting was 

performed, which showed that 𝜆, 𝐶 and 𝜖𝐿 could not be expressed by the exponential functions 

while 𝐸 and 𝜇 can be approximated by the exponential functions from 65 ℃ to 75 ℃. 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 5.5 Values of material parameters extracted from fitting creep test data, plotted against 

temperature. (a) 𝐸 (b) 𝜇 (c) 𝜆 (d) 𝐶 (e) ϵL 
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5.3 Results for three-point bending  

At each temperature, 3-point bending tests were repeated 3 times to ensure the repeatability of 

the experiments. Because of the occurrence of irrecoverable strain, each test used a fresh sample, 

which did not have exactly the same dimension due to manufacturing tolerances of the machine 

(Table 4.3). However, the variation is small so the average dimensions at each temperature were 

used in the model, which are shown in Table 5.3. Values of the material parameters (𝐸, 𝜇, 𝜆, 𝐶 

and 𝜖𝐿) used in model are extracted from the creep tests and given in Table 5.1. 

Table 5.3  Average dimension of bending specimens at each temperature used in modeling 

Temperature (℃) Average width (mm) Average thickness (mm) Average length (mm) 

55 12.24 3.36 60.14 

60 12.20 3.35 60.08 

65 12.25 3.21 59.90 

70 11.98 3.18 59.76 

75 12.01 3.19 59.79 

 

5.3.1 Deflection calculation from the model 

As discussed in Chapter 3, in order to determine the deflection of the beam from the model, the 

expression of curvature with respect to 𝑥 is required. Now that the material parameters and beam 

dimensions are known at each temperature, the curvature values can be obtained at any time and 

any cross section given the loading conditions. Technically, once the numerical solution for 

𝜅(𝑡, 𝑥) is known, the deflection at any time and any cross section, 𝑤(𝑡, 𝑥), can be obtained by 

numerically integration. When analyzing the results on curvature, 𝜅(𝑡, 𝑥) is found to be almost 

linear with respect to 𝑥 at any time, such that it can be approximated by the following expression  

 𝜅(𝑡, 𝑥) = 𝑈(𝑡)𝑥 (5. 1) 

Details on the linear relation between 𝜅 and x is given in Appendix B, and a possible explanation 

for this linear dependence can be found in Appendix C. Integrating Eqn. (3.8) using Eqns. (3.9) 

and (5.1), the expression of deflection 𝑤(𝑡, 𝑥) can be obtained as 
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𝑤(𝑡, 𝑥) =
1

8
𝐿2𝑈(𝑡)𝑥 −

1

6
𝑈(𝑡)𝑥3      (0 ≤ 𝑥 ≤

𝐿

2
) (5. 2) 

Finally, the deflection 𝛿 at midspan of the beam is given by 

𝛿(𝑡) = 𝑤 (𝑡, 𝑥 =
𝐿

2
) =

1

24
𝑈(𝑡)𝐿3 (5. 3) 

Figure 5.6 shows the calculated deflection along 𝑥  (from 0 to 𝐿/2) for several time points 

separated by equal time intervals. As expected, at any given temperature (i.e. for each subplot) 

the deflection is increasing with time. However, the increase is progressively faster as 𝑡 increases, 

evidenced by the greater distance between neighboring curves at larger 𝑡. Since the applied load 

is a linear function of 𝑡 (the load was applied at a constant loading rate), the growing deflection 

rate is caused by the viscoelastic behavior of the material which leads to nonlinear dependence of 

the deflection on the external force. The increase of deflection rate with respect to time is more 

significant at higher temperatures as the material exhibits more viscous behaviors.  
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 5.6 Deflection of the beam at different temperature, predicted from the model. (a) T=55℃, (b) 

T=60℃, (c) T=65℃, (d) T=70℃, (e) T=75℃. 
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5.3.2 Comparison with experiments 

The deflection history, 𝛿(𝑡), at the mid span of the beam were obtained experimentally. The 

same quantity can be calculated from the model by Eqn. (5.3). At each temperature independent 

experiments were conducted for three times, all of which are presented in Figure 5.7 (dashed 

curves), along with the prediction from the model using the average beam dimension (the single 

solid curve in each subplot).  

Despite some qualitative similarity (e.g., increasing trend in all cases), the discrepancy between 

the model and experimental results is quite evident. At 55 ℃ , the model over-predicts the 

deformation, by as much as 30%. With the temperature going up to 60 ℃, the modeling result is 

still larger than experiment, but the discrepancy reduces (largest relative difference = 25%). As 

the temperature increases further to 65 ℃, the model fits well with the experimental data in the 

first 50 seconds and only shows discrepancy afterwards. Interestingly, in this case, the model 

predicts deflections that are smaller than the measured values, different from what is observed at 

55 and 60 ℃. At 70 ℃ where the experiments last for a shorter time (50 seconds) due to larger 

deformation, the model fits very well with the experiment during the entire bending process. 

However, when the temperature reaches 𝑇𝑔 , a large discrepancy is observed again, with the 

experimental data being almost twice the model prediction.  

The SMP exhibits viscoelastic behavior which can be regarded as a combination of elastic solid 

and viscous liquid [4]. When the temperature is well below 𝑇𝑔, i.e. at 55 or 60 ℃, the material is 

in its glassy state so the elastic component can play a more important role than the viscous 

component. The considerable over-prediction of deformation seen in Figure 5.7 (a) and (b) 

seems to suggest that the material behaves more elastically than the model predicts. In order to 

verify this speculation, deflections of Euler-Bernoulli elastic beam (using the same 𝐸 as in Table 

5.1) are calculated and added to the comparison with the experimental data at 55 and 60 ℃ 

(Figure 5.8). The elastic model in fact predicts results closer to the experiments than the 

viscoelastic rheological model, confirming that that rheological model over-predict the viscous 

component at low temperature.  
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(e)  

Figure 5.7 Mid span deflection measured from experiments and compared with model predictions. (a) 

T=55℃, (b) T=60℃, (c) T=65℃, (d) T=70℃, (e) T=75℃. 
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(a) (b) 

Figure 5.8 Comparison of experimental results with predictions from both elastic beam model and the 

rheological model. (a) T=55℃, (b) T=60℃. 

 

It is of interest to revisit the creep data in Figure 5.2, where it was found that at low temperatures 

(55 and 60 ℃) the model underestimate the deformation at the beginning while overestimate the 

deformation after 15 minutes upon loading. At the same temperatures, the bending deflection is 

consistently overestimated by the model (Figure 5.7 (a) and (b)), although the maximum strain is 

only around 5%. While this may appear to be contradictory, several key differences should be 

noted between creep and bending. First, the behavior of the viscoelastic SMP is history-

dependent, and the loading history is different in creep (a sudden application of force) compared 

with in three-point bending (gradual). Second, the stress and strain in creep are uniform 

everywhere, while in bending, the materials at different cross sections and at different locations 

on the same cross section are subjected to different stress and strain (in fact some under tension 

and some under compression). The mid-span deflection shown in Figure 5.7 is a result of 

material deformation (non-uniform) of the entire beam, and thus cannot be directly correlated 

with the uniform deformation in creep.    

When the temperature is near 𝑇𝑔, i.e. 65 and 70 ℃, the bending behavior can be described very 

well by the rheological model. These are also the two temperatures at which best fitting between 

the model and creep tests was found (Figure 5.2). As the temperature reaches 𝑇𝑔 (75 ℃), the 

material goes into the rubbery state and the viscous component dominates the material behavior. 

In this case, the model is too “stiff” and significantly underestimates the deformation. This is 
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also evidenced by the creep fitting at 75 ℃ where the model prediction is stiffer than the actual 

material for loading under small strain.  

The observed discrepancy between the model and bending data could be caused by several 

reasons. First, the boundary condition used in modeling 3-point bending (simply supported at 

both end) is slightly different from that in experiment. With the roller boundary condition 

(Figure 4.5) in the experiments, the contact area between the beam and the rollers are finite, 

instead of the idealized point contacts in the model. In addition, the beam may slide relative to 

the rollers, causing the length of the beam between the supports to become longer. Second, one 

assumption made in the modeling of bending is small deflection so that the geometry of the beam 

during loading can be always approximated as a cuboid, which may have been violated in the 

experiments as the deflection increases. Third, in the model, the beam is assumed to be 

sufficiently thin so that the shear deformation in the cross section can be neglected. In the 

experiments, the ratio of length between two lower supports to the beam thickness is in the range 

of 11.73-12.66, which may have violated this assumption. Use of thinner sample was not 

possible because the test machine had limited resolution which did not permit the application of 

small load the thinner sample would have required.  
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Chapter 6 : Conclusions and future work 

6.1 Conclusion 

In this thesis, a rheological model was introduced and its analytical solutions for several uniaxial 

loading conditions (creep, stress relaxation and tension) were derived. The model was 

numerically implemented and the numerical solutions for the uniaxial loading conditions were 

compared with their corresponding analytical solutions to validate the accuracy of the numerical 

algorithm. The model was then extended to the bending of a thin beam and numerically 

implemented to calculate the deflection. Meanwhile, experiments were conducted using a 

polyurethane based SMP (MM7520), under both creep and three-point bending. Specimens 

required for the tests were manufactured using an extrusion based additive manufacturing 

(EBAM) technique. It has the advantage over traditional manufacturing techniques, such as 

injection modeling, due to its low cost and manufacturing flexibility so it provides an alternative 

for the production of SMP components. 

Creep tests were first conducted at five different temperatures and three different stress levels for 

each temperature. The values of parameters required for the rheological model were extracted 

from the creep tests and subsequently applied to model bending. Corresponding bending 

experiments were conducted and compared with their modeling results at five different 

temperatures. Results indicate that for simple loading such as creep, the rheological model is able 

to describe the material behavior well between 55 and 70 ℃ at small deformations (strain less 

than 10%). However, for the more complex loading condition of bending, the model is only able 

to properly capture the material behavior for a narrow range of temperatures (from 65 to 70 ℃). 

The discrepancy between experiment and model becomes significant if the temperature deviates 

from this range, even if the maximum strain is small (around 5%).  

Even though the model is only implemented numerically for 3-point bending in this thesis, it can 

be extended to other loading conditions. For example, a wing of an airplane is subjected to the 

distributed aerodynamic forces. The moment history at any cross sections can be calculated if the 

history of the distributed aerodynamic forces can be estimated. Therefore, the curvature history 

at any cross sections can be calculated numerically by using the algorithm shown in Figure 3.3. 

Subsequently, stress, strain and deflection histories can be obtained which is necessary for the 

design of the wing as a morphing aircraft component. 
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6.2 Future work 

Several future directions can be identified to extend the work presented in this thesis. First, the 

rheological model here is only implemented to bending at isothermal conditions. It can be 

extended to loading cycles involving temperature change, for instance, during the 

thermomechanical bending tests [19] (the process is explained in detail in Chapter 3). As the 

temperature changes with respect to time, the parameters (𝐸, 𝜇, 𝜆, 𝐶 and 𝜖𝐿) also changes (see 

Figure 5.5) and can be expressed as the function of time. This can be implemented numerically 

to calculate the deformation history of the beam during shape fixity and recovery process, 

allowing the study of shape memory effect. 

Secondly, it has been observed that the model is only able to describe the material behavior well 

for a limited range of temperatures. It is desirable to modify the components as shown in Figure 

2.6 in order to extend the validity of the model to a wider temperature range. For example, as 

seen in Figure 5.2 (e), the model is not able to capture the fast decay during unloading part of the 

creep test at 75 ℃. To address this deficiency, a new element may be added in series with the 

components in Figure 2.6. Upon loading, the new element behaves in the same way as the 

dashpot so that 𝜎 = 𝜂𝜖̇. Upon unloading, the element could be recovered to its original state as 

according to 𝜖 = −𝛾𝜖̇ where 𝛾 is a coefficient signifying the rate of recovery. By reducing the 

value of 𝛾, this modified model has the potential to capture the fast decaying during recovery at 

75 ℃. 

Due to the low strength and low stiffness of shape memory polymers, shape memory polymer 

composites (SMPCs) with higher strength and stiffness are developed in order to broaden their 

application. Since SMPCs exhibit anisotropic material behavior, the anisotropic model could be 

developed further. Specifically, micromechanical composite mechanics could be used which 

considers the SMP matrix and fiber as two separate phases. It is reasonable to assume that the 

matrix and fiber are bonded firmly without slipping so the strain of the matrix and the strain of 

the fiber are the same along the same direction. Once a force is applied, the matrix and the fiber 

are undertaking the force together. Considering the volume fraction of the matrix and the fiber in 

the composite, the stress relation between the matrix and the fiber can be expressed. For the SMP 

matrix, the stress-strain relation can be expressed by rheological model developed in this thesis. 

In addition, the stress-strain relation of fiber can be obtained by testing its mechanical behavior. 
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Therefore, the composite model could be developed. However, it should be noted that due the 

nature of the rheological model (1D), the proposed composite model is also only applicable to 

1D loading conditions.  

Finally, the nature of the rheological model is 1D so it is only applicable to one dimensional 

loading conditions. While it has the advantages of being simple to use and applicable to some 

common situations (e.g. uniaxial loading and bending), if the multiaxial loading must be taken 

into consideration, a model that is able to describe 2D or 3D stress-strain relationship must be 

developed.  
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Appendices 

Appendix A Extracting E from fitting initial response in creep test 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure A.1 Fitting results of 𝐸. (a) T=55℃, (b) T=60℃, (c) T=65℃, (d) T=70℃, (e) T=75℃. 
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Appendix B Verification for the linear fitting of curvature  

The domain 𝑥  from 0 to 𝐿/2  is discretized into 10 and 100 intervals respectively and the 

calculated discretized 𝜅 values are plotted in Figure B.1 for each temperature. As can be seen, 

results from the two discretizations almost overlap at all temperatures. 

In addition, the discretized 𝜅(𝑡, 𝑥) values show a linear relation with 𝑥 at each time. Therefore, 

𝜅(𝑡, 𝑥) can be approximated by a linear function of 𝑥 at any time and any temperature. The linear 

fitting is shown in Figure B.2, which proves the accuracy of the approximation.  

In the work performed in this thesis at each temperature, the beam (from 𝑥 = 0 to 𝑥 = 𝐿/2) was 

discretized by 100 intervals to evaluate 𝜅(𝑡, 𝑥). A linear fitting was then performed at each given 

𝑡 (Eqn. 5.1), from which the deflection was determined (Eqn. 5.2). 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure B.1 𝜅(𝑡, 𝑥) obtained by discretizing 𝑥 with different number (Q) of intervals. (a) T=55℃, (b) 

T=60℃, (c) T=65℃, (d) T=70℃, (e) T=75℃. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure B.2 𝜅(𝑡, 𝑥) fitted by linear lines, 𝑥 is discretized with 10 intervals. (a) T=55℃, (b) T=60℃, (c) 

T=65℃, (d) T=70℃, (e) T=75℃. 
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Appendix C Explanation on the observed linear relation between curvature 

and x 

In the 3-point bending studied in this work, a force 𝑃(𝑡) is applied at the mid span of the beam 

so that the moment can be expression as 𝑀(𝑡) = 𝑃(𝑡)

2
𝑥, (0 ≤ 𝑥 ≤

𝐿

2
). If the beam were linearly 

elastic, then under the assumptions of Euler-Bernoulli beam, 𝜎 = 𝐸𝜖 = 𝐸𝜅𝑦  leads to 𝑀 =

∫𝑦𝜎𝑑𝐴 = 𝐸𝜅 ∫ 𝑦2𝑑𝐴 = 𝐸𝐼𝜅, where I is the moment of inertia about the neutral axis. Thus, the 

relation between 𝜅 and 𝑥 is 𝜅(𝑡) = 𝑃(𝑡)

2𝐸𝐼
𝑥, that is, for a linearly elastic beam 𝜅 is proportional to 𝑥 

at any time. 

The viscoelastic model differs from elastic model in terms of the stress-strain relation, i.e. the 

current value of strain (or stress) is determined not only by the current value of stress (or strain) 

but also by the history of loading [32]. A viscoelastic model can be further categorized as being 

either linear, for which Eqn. C.1 holds, or nonlinear. For example, the standard linear solid (SLS) 

model is linear while the rheological model investigated in this thesis is nonlinear. For a linearly 

viscoelastic material, the Boltzmann superposition principle is applicable (Eqn. C.2) [33]. 

𝜖[𝑐𝜎(𝑡)] = 𝑐𝜖[𝜎(𝑡)] (𝐶. 1) 

𝜖[𝜎1(𝑡) + 𝜎2(𝑡 − 𝑡1)] = 𝜖[𝜎1(𝑡)] + 𝜖[𝜎2(𝑡 − 𝑡1)] (𝐶. 2) 

Applying the two equations to stress relaxation where a constant strain 𝜖0  is applied and its 

corresponding stress history is obtained as 𝜎(𝑡), the relaxation modulus can be determined as 

𝐸𝑟(𝑡) = 𝜎(𝑡)/𝜖0  [7]. Similarly, for creep test where a constant stress 𝜎0  is applied and its 

corresponding strain history is obtained as 𝜖(𝑡), the compliance modulus is defined as 𝐽(𝑡) =

𝜖(𝑡)/𝜎0  [7]. Since the material is linearly viscoelastic, the relaxation modulus is strain 

independent which means 𝑐 ∙ 𝜎(𝑡) = 𝐸𝑟(𝑡)(𝑐 ∙ 𝜖0). Similarly, the compliance modulus is stress 

independent in that 𝑐 ∙ 𝜖(𝑡) = 𝐽(𝑡)(𝑐 ∙ 𝜎0).  

Based on the discussed above, the correspondence principle [32] can be used to derive the 

response of a linearly viscoelastic beam under bending. Stress can be expressed as Eqn. (C.3) 

based on Boltzmann superposition principle and the relation can be written in a simple form 

through Laplace transform as shown in Eqn. (C.4). 
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𝜎(𝑡) = ∫ 𝐸𝑟(𝑡 − 𝜏)
𝑑𝜖

𝑑𝜏
𝑑𝜏

𝑡

0

= 𝑦∫ 𝐸𝑟(𝑡 − 𝜏)
𝑑𝜅

𝑑𝜏
𝑑𝜏

∞

0

(𝐶. 3) 

𝜎 = 𝑦𝐸𝑟̅̅ ̅𝑠�̅� (𝐶. 4)  

Substituting Eqn. (C.3) and 𝜖 = 𝜅𝑦 into 𝑀 = ∫𝑦𝜎𝑑𝐴, the moment at any cross section can be 

expressed as Eqn. (C.5), and Eqn. (C.6) can be obtained through Laplace transform. 

𝑀(𝑡) = ∫𝑦2 [∫ 𝐸𝑟(𝑡 − 𝜏)
𝑑𝜅

𝑑𝜏
𝑑𝜏

𝑡

0

] 𝑑𝐴 = 𝐼 ∫ 𝐸𝑟(𝑡 − 𝜏)
𝑑𝜅

𝑑𝜏
𝑑𝜏

𝑡

0

(𝐶. 5) 

�̅� = 𝐼𝐸𝑟̅̅ ̅𝑠�̅� (𝐶. 6) 

Combining Eqns. (C.4) and (C.6) together arrives in 𝜎 = �̅�

𝐼
𝑦 . Through inverse Laplace 

transform, stress can be expressed as  

𝜎(𝑡) =
𝑀(𝑡)

𝐼
𝑦 =

𝑃(𝑡)

2𝐼
𝑦𝑥 (𝐶. 7) 

As can be seen from Eqn. (C.7), 𝜎 is proportional to 𝑥 at any time. Again, based on Boltzmann 

superposition principle, strain can be expressed as 𝜖(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝜎

𝑑𝜏
𝑑𝜏

𝑡

0
=

𝑦𝑥

2𝐼
∫ 𝐽(𝑡 −
𝑡

0

𝜏)
𝑑𝑃

𝑑𝜏
𝑑𝜏 so that curvature can be expressed as Eqn. (C.8), which is proportional to 𝑥  at any 

specific time for a linearly viscoelastic beam.  

𝜅(𝑡) =
𝜖(𝑡)

𝑦
=
𝑥

2𝐼
∫ 𝐽(𝑡 − 𝜏)

𝑑𝑃

𝑑𝜏
𝑑𝜏

𝑡

0

(𝐶. 8) 

The rheological model investigated in this thesis is a modified SLS model where the term 𝜖𝑠 

(expressed with respect to 𝐶 and 𝜖𝐿) is added ( Eqn. (2.12) ) in order to capture the irrecoverable 

strain [16]. Only when 𝐶 = 0 or 𝜖𝑙 is large (difficult to trigger the irrecoverable strain) will this 

model reduce to the SLS model. Therefore, the relaxation modulus is strain dependent and the 

compliance modulus is stress dependent; as a result in principle the above derivations does not 

apply to the rheological model. However, it can be seen from Table 5.1 that 𝐶 ranges from [0.3, 

0.83] and 𝜖𝑙 ranges from [0.00027, 0.018]. By changing 𝐶 and 𝜖𝑙 in the range of [0, 0.9] and [0, 

0.1] respectively at each temperature, it was found that the curvature and deflection of the beam 
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were not sensitive to the variation of 𝐶 and 𝜖𝐿. The influence of C on the mid span deflection is 

shown in Figure C.1 where 𝐶 varies and other four parameters maintain their original values at 

each temperature shown in Table 5.1. The influence of 𝜖𝐿 is investigated in Figure C.2 where 𝜖𝐿 

varies and other four parameters maintain their original values at each temperature shown in 

Table 5.1. Both figures clearly shows the insensitively of results to 𝐶 and 𝜖𝐿, which explains why 

the curvature is approximately proportional to 𝑥.  
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure C.1 Mid span deflection with the variation of 𝐶. (a) T=55℃, (b) T=60℃, (c) T=65℃, (d) T=70℃, (e) 

T=75℃. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure C.2 Mid span deflection with the variation of 𝜖𝐿. (a) T=55℃, (b) T=60℃, (c) T=65℃, (d) T=70℃, (e) 

T=75℃. 
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Appendix D Matlab Code 

Creep comparation between Analytical solution and Euler solution 

One example when time step = 0.1 for the Euler solution 

Input values of parameters which are seleted form Tobushi's paper 

clear; 

E = 146e+6;     % elastic modulus(Pa) 

mu = 14e+9;     % viscosity(Pa*s) 

lambda = 521;   % retardation time(s) 

C = 0.112;      % ratio between epsilons and epsilonc 

epsilonl = 0.3/100;   % threshold strain for triggering irrecoverable strain 

mu_eff = mu*((1-(mu*C)/(lambda*E))^(-1)); % effective viscosity (Pa*s) 

lambda_eff = lambda*((1-C)^(-1));         % effective retardation time(s) 

epsilons_eff = -1*(C*epsilonl)/(1-C);     % effective epsilons 

% critical stress for creep test that trigger shape memory strain 

sigma_critical = epsilonl*((lambda/mu-1/E)^(-1)); 

 

Euler solution 

dt = 0.1;   % time step for Euler method 

sigma_0 = 2e+6;     % applied stress 

tb = 1800;          % loading time 

ta_E = 0;       % define the time when the irrecoverable strain is triggered 

t_E_1 = 0:dt:tb;     % discretize loading time 

num_1 = length(t_E_1); 

epsilon_E = zeros(size(t_E_1));  % define strain for Euler solution 

epsilon_E(1) = sigma_0/E;        % initial condition 

for n = 1:(num_1-1); 

    if (epsilon_E(n)-sigma_0/E) <= epsilonl   % regime 1 

        mu_EFF = mu; 

        lambda_EFF = lambda; 

        epsilons_EFF = 0; 

        ta_E = ta_E+dt; 

    else                                      % regime 2 

        mu_EFF = mu_eff; 

        lambda_EFF = lambda_eff; 

        epsilons_EFF = epsilons_eff; 

    end 

    epsilon_E(n+1) = (sigma_0/mu_EFF+epsilons_EFF/lambda_EFF)*dt+... 
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        epsilon_E(n)*(1-dt/lambda_EFF); 

end 

 

epsilonc_E = epsilon_E-sigma_0/E;   % calculate creep strain 

epsilons_E_tb = C*(epsilonc_E(num_1)-epsilonl); % the irrecoverable strain at tb 

 

t_E = 0:dt:3600;   % overall time 

num = length(t_E); 

epsilon_E = [epsilon_E zeros(1,num-num_1)];   % define strain including recovery stage 

epsilonc_E = [epsilonc_E zeros(1,num-num_1)]; % define creep strain including  

% recovery stage 

 

% calculate strain and creep strain during recovery stage 

for n = num_1:(num-1); 

    epsilonc_E(n+1) = (epsilons_E_tb/lambda)*dt+epsilonc_E(n)*(1-dt/lambda); 

    epsilon_E(n+1) = epsilonc_E(n+1); 

end 

 

Analytical solution 

t_A = 0:dt:3600;    % overall time 

epsilon_A = zeros(size(t_A)); % define strain for analytical solution 

epsilonc_A = zeros(size(t_A)); % define creep strain for analytical solution 

 

% calculate the creep strain first 

if  sigma_0 <= sigma_critical;     % if the irrecoverable strain cannot be 

    % triggered forever 

    regime1 = (0 <= t_A) & (t_A <= tb); 

    epsilonc_A(regime1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t_A(regime1)/lambda)); 

    regime3 = (tb <= t_A) & (t_A <= 3600); 

    epsilonc_A(regime3) = epsilonc_A(t_A==tb)*exp(-1*(t_A(regime3)-tb)/lambda); 

elseif sigma_0 > sigma_critical;   % if the irrecoverable strain can be triggered 

    syms x;    % calculate ta when the irrecoverable strain is triggered 

    ta_A = solve(sigma_0*(lambda/mu-1/E)*(1-exp(-1*x/lambda)) == epsilonl,x); 

    ta_A = double(ta_A); 

    if  ta_A >= tb;      % if the irrecoverable strain is not yet triggered before tb 

        regime1 = (0 <= t_A) & (t_A <= tb); 

        epsilonc_A(regime1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t_A(regime1)/lambda)); 

        regime3 = (tb <= t_A) & (t_A <= 3600); 

        epsilonc_A(regime3) = epsilonc_A(t_A==tb)*exp(-1*(t_A(regime3)-tb)/lambda); 

    elseif ta_A < tb;        % if the irrecoverable strain is triggered before tb 

        regime1 = (0 <= t_A) & (t_A <= ta_A); 

        epsilonc_A(regime1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t_A(regime1)/lambda)); 
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        regime2 = (ta_A <= t_A) & (t_A <= tb); 

        epsilonc_A(regime2) = epsilonl*exp(-1*(t_A(regime2)-ta_A)/lambda_eff)+... 

            sigma_0*(epsilons_eff/sigma_0+lambda_eff/mu_eff-1/E)*... 

            (1-exp(-1*(t_A(regime2)-ta_A)/lambda_eff)); 

        epsilons__A_tb = C*(epsilonc_A(t_A==tb)-epsilonl); 

        regime3 = (tb <= t_A) & (t_A <= 3600); 

        epsilonc_A(regime3) = epsilons__A_tb+(epsilonc_A(t_A==tb)-epsilons__A_tb)*... 

            exp(-1*(t_A(regime3)-tb)/lambda); 

end 

end 

% calculate strain based on creep strain 

epsilon_A(1:(tb/dt+1)) = epsilonc_A(1:(tb/dt+1))+sigma_0/E; 

epsilon_A((tb/dt+2):(3600/dt+1)) = epsilonc_A((tb/dt+2):(3600/dt+1)); 

 

R square between Analytical solution and Euler solution 

Rsq = 1-sum((epsilon_E-epsilon_A).^2)/sum((epsilon_A-mean(epsilon_A)).^2); 

format long  % display R square in a long digit 

Rsq 

 

Plot figure 

hold on 

plot(t_A,epsilon_A,'b','LineWidth',2)   % plot Analytical solution 

plot(t_E,epsilon_E,'--r','LineWidth',2) % plot Euler solution 

legend({'\bf Anatical solution','\bf Euler solution'},'FontSize',13) 

xlabel('\bf t(second)','FontSize',13) 

ylabel('\bf Strain','FontSize',13) 

axis([0,3600,0,0.08]) 

set(gca,'xtick',0:600:3600,'ytick',0:0.01:0.08) 

 
Published with MATLAB® R2016a 

 

 

 

 

http://www.mathworks.com/products/matlab/


 

83 
 

Stress relaxation comparation between Analytical solution and Euler solution 

One example when time step = 0.1 for the Euler solution 

Input values of parameters which are seleted form Tobushi's paper 

clear; 

E = 146e+6;     % elastic modulus(Pa) 

mu = 14e+9;     % viscosity(Pa*s) 

lambda = 521;   % retardation time(s) 

C = 0.112;      % ratio between epsilons and epsilonc 

epsilonl = 0.3/100;   % threshold strain for triggering irrecoverable strain 

mu_eff = mu*((1-(mu*C)/(lambda*E))^(-1)); % effective viscosity (Pa*s) 

lambda_eff = lambda*((1-C)^(-1));         % effective retardation time(s) 

epsilons_eff = -1*(C*epsilonl)/(1-C);     % effective epsilons 

% critical strain for stress relaxation that trigger shape memory strain 

epsilon_critical = (epsilonl*lambda/mu)*((lambda/mu-1/E)^(-1)); 

 

Euler solution 

dt = 0.1;    % time step for Euler method 

epsilon_0 = 0.06;   % applied strain 

tb = 1800;          % loading time 

ta_E = 0;    % define the time when the irrecoverable strain is triggered 

t_E = 0:dt:tb;         % discretize loading time 

num_E = length(t_E); 

sigma_E = zeros(1,num_E);   % define stress for Euler solution 

sigma_E(1) = epsilon_0*E;   % initial condition 

for n = 1:(num_E-1); 

    if (epsilon_0-sigma_E(n)/E) <= epsilonl    % regime1 

        mu_EFF = mu; 

        lambda_EFF = lambda; 

        epsilons_EFF = 0; 

        ta_E = ta_E+dt; 

    else                                       % regime2 

        mu_EFF = mu_eff; 

        lambda_EFF = lambda_eff; 

        epsilons_EFF = epsilons_eff; 

    end 

    sigma_E(n+1) = (epsilon_0-epsilons_EFF)*E*dt/lambda_EFF+sigma_E(n)*... 

        (1-E*dt/mu_EFF); 

end 
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Analytical solution 

t_A = 0:dt:tb;     % overall time 

sigma_A = zeros(size(t_A));  % define stress for analytical solution 

if epsilon_0 <= epsilon_critical;   % if the irrecoverable strain cannot be 

    % triggered forever 

    regime1 = (0 <= t_A) & (t_A <= tb); 

    sigma_A(regime1) = epsilon_0*mu/lambda+epsilon_0*(E-mu/lambda)*... 

        exp(-1*E/mu*t_A(regime1)); 

elseif epsilon_0 > epsilon_critical;    % if the irrecoverable strain can be triggered 

    syms x;    % calculate ta when the irrecoverable strain is triggered 

    ta_A = solve(epsilon_0-(epsilon_0*mu/lambda+epsilon_0*(E-mu/lambda)*... 

        exp(-1*E/mu*x))/E == epsilonl,x); 

    ta_A = double(ta_A); 

    if ta_A >= tb;   % if the irrecoverable strain is not yet triggered before tb 

        regime1 = (0 <= t_A) & (t_A <= tb); 

        sigma_A(regime1) = epsilon_0*mu/lambda+epsilon_0*(E-mu/lambda)*... 

            exp(-1*E/mu*t_A(regime1)); 

    elseif ta_A < tb;   % if the irrecoverable strain is triggered before tb 

        sigma_A = zeros(size(t_A)); 

        regime1 = (0 <= t_A) & (t_A <= ta_A); 

        sigma_A(regime1) = epsilon_0*mu/lambda+epsilon_0*(E-mu/lambda)*... 

            exp(-1*E/mu*t_A(regime1)); 

        regime2 = (ta_A <= t_A) & (t_A <= tb); 

        sigma_A(regime2) = mu_eff/lambda_eff*(epsilon_0-epsilons_eff)+... 

            (E*(epsilon_0-epsilonl)-mu_eff/lambda_eff*(epsilon_0-epsilons_eff))*... 

            exp(-1*E/mu_eff*(t_A(regime2)-ta_A)); 

    end 

end 

 

R square between Analytical solution and Euler solution 

Rsq = 1-sum((sigma_E-sigma_A).^2)/sum((sigma_A-mean(sigma_A)).^2); 

format long  % display R square in a long digit 

Rsq 

 

Plot figure 

hold on 

plot(t_A,sigma_A,'b','LineWidth',2)    % plot Analytical solution 

plot(t_E,sigma_E,'--r','LineWidth',2)  % plot Euler solution 
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legend({'\bf Anatical solution','\bf Euler solution'},'FontSize',13) 

xlabel('\bf t(second)','FontSize',13) 

ylabel('\bf Stress(Pa)','FontSize',13) 

axis([0,1800,0,9e+6]) 

set(gca,'xtick',0:300:1800,'ytick',0:1e6:9e6) 

 
Published with MATLAB® R2016a 

 

 

 

Tensile comparation between Analytical solution and Euler solution 

One example when time step = 0.1 for the Euler solution Tensile test is conducted at a constant stress rate 

Input values of parameters which are seleted form Tobushi's paper 

clear; 

E = 146e+6;     % elastic modulus(Pa) 

mu = 14e+9;     % viscosity(Pa*s) 

lambda = 521;   % retardation time(s) 

C = 0.112;      % ratio between epsilons and epsilonc 

epsilonl = 0.3/100;   % threshold strain for triggering irrecoverable strain 

mu_eff = mu*((1-(mu*C)/(lambda*E))^(-1)); % effective viscosity (Pa*s) 

lambda_eff = lambda*((1-C)^(-1));         % effective retardation time(s) 

epsilons_eff = -1*(C*epsilonl)/(1-C);     % effective epsilons 

 

Euler solution 

dt = 0.1;  % time step for Euler method 

stress_rate = 5e+4;     % stress rate of tensile test 

tb = 120;     % overall time 

ta_E = 0; % define the time when the irrecoverable strain is triggered 

t_E = 0:dt:tb;  % discretize the overall time for Euler method 

sigma_E = stress_rate*t_E;  % stress history 

num_E = length(t_E); 

epsilon_E = zeros(1,num_E);   % define stress for Euler method 

epsilon_E(1) = 0;             % Initial condition 

for n = 1:(num_E-1); 

http://www.mathworks.com/products/matlab/
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    if (epsilon_E(n)-sigma_E(n)/E) <= epsilonl   % regime 1 

        mu_EFF = mu; 

        lambda_EFF = lambda; 

        epsilons_EFF = 0; 

        ta_E = ta_E+dt; 

    else                                         % regime 2 

        mu_EFF = mu_eff; 

        lambda_EFF = lambda_eff; 

        epsilons_EFF = epsilons_eff; 

    end 

    epsilon_E(n+1) = (sigma_E(n)/mu_EFF+epsilons_EFF/lambda_EFF+stress_rate/E)*... 

        dt+epsilon_E(n)*(1-dt/lambda_EFF); 

end 

 

Analytical solution 

t_A = 0:dt:tb;   % discretize the overall time for analytical solution 

sigma_A = stress_rate*t_A;  % stress history 

syms x;   % calculate ta when the irrecoverable strain is triggered 

ta_A = solve(stress_rate*(lambda/mu-1/E)*(x-lambda*(1-exp(-1*x/lambda)))... 

    == epsilonl,x); 

ta_A = double(ta_A); 

epsilon_A = zeros(size(t_A));  % define stress for analytical solution 

if ta_A >= tb;   % if the irrecoverable strain is not yet triggered before tb 

    regime1 = (0 <= tb) & (t_A <= tb); 

epsilon_A(regime1) = stress_rate*lambda/mu*t_A(regime1)-... 

        stress_rate*lambda*(lambda/mu-1/E)*(1-exp(-1*t_A(regime1)/lambda)); 

elseif ta_A < tb;   % if the irrecoverable strain is triggered before tb 

    regime1 = (0 <= t_A) & (t_A <= ta_A); 

    epsilon_A(regime1) = stress_rate*lambda/mu*t_A(regime1)-... 

        stress_rate*lambda*(lambda/mu-1/E)*(1-exp(-1*t_A(regime1)/lambda)); 

    regime2 = (ta_A <= t_A) & (t_A <= tb); 

    epsilon_A(regime2) = (epsilonl+stress_rate*ta_A/E)*exp(-1*(t_A(regime2)-ta_A)/... 

        lambda_eff)+(stress_rate*lambda_eff*(1/E-lambda_eff/mu_eff)+epsilons_eff)*... 

        (1-exp(-1*(t_A(regime2)-ta_A)/lambda_eff))+stress_rate*lambda_eff/mu_eff*... 

        t_A(regime2)-stress_rate*lambda_eff/mu_eff*ta_A*... 

        exp(-1*(t_A(regime2)-ta_A)/lambda_eff); 

end 
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R square between Analytical solution and Euler solution 

Rsq = 1-sum((epsilon_E-epsilon_A).^2)/sum((epsilon_A-mean(epsilon_A)).^2); 

format long  % display R square in a long digit 

Rsq 

 

Plot figure 

hold on 

plot(epsilon_A,sigma_A,'b','LineWidth',2)    % plot Analytical solution 

plot(epsilon_E,sigma_E,'--r','LineWidth',2)  % plot Euler solution 

legend({'\bf Anatical solution','\bf Euler solution'},'FontSize',13,'Location','best') 

xlabel('\bf Strain','FontSize',13) 

ylabel('\bf Stress(Pa)','FontSize',13) 

axis([0,0.07,0,6e+6]) 

set(gca,'xtick',0:0.01:0.07,'ytick',0:1e6:6e6) 

 
Published with MATLAB® R2016a 

 

 

 

Creep test results and fitting with the rheological model 

One example when temperauter is 55 C (T = 55 C) 

Values of parameters selected for the fitting of experimental results 

clear; 

E = 1088.2e6;   % elastic modulus(Pa) 

mu = 148e9;     % viscosity(Pa*s) 

lambda = 226;   % retardation time(s) 

C = 0.76;       % ratio between epsilons and epsilon 

epsilonl = 0.00065;   % threshold strain for triggering irrecoverable strain 

mu_eff = mu*((1-(mu*C)/(lambda*E))^(-1));    % effective viscosity (Pa*s) 

lambda_eff = lambda*((1-C)^(-1));            % effective retardation time(s) 

epsilons_eff = -1*(C*epsilonl)/(1-C);        % effective epsilons 

% critical stress for creep test that trigger shape memory strain 

http://www.mathworks.com/products/matlab/
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sigma_critical = epsilonl*((lambda/mu-1/E)^(-1)); 

 

Load experimental data 

load('Creep_55_different_load.mat') 

t_experiment = (0:0.1:3600)'; 

% plot three experimental results at different stress levels 

hold on 

plot(t_experiment,strain_55_30,'--','LineWidth',1.5); 

plot(t_experiment,strain_55_50,'--','LineWidth',1.5); 

plot(t_experiment,strain_55_70,'--','LineWidth',1.5); 

strain_experiment = [strain_55_30, strain_55_50, strain_55_70]; 

 

Analytical solution for three creep tests 

tb = 1800;     % loading time 

t = 0:0.1:3600;  % discretize overall time 

% input three different stress level for three different creep test 

sigma_real = [2.810515074e+6,4.477638672e+6,6.417308398e+6]; 

ta_round = [0,0,0];    % define ta when the irrecoverable strain is triggered 

epsilon_ta = [0,0,0];  % define the strain at ta 

for q = 1:3;  % calculate the strains history at different stress levels respectively 

    sigma_0 = sigma_real(q);         % applied stress 

    epsilonc = zeros(size(t));       % define creep strain 

    epsilon = zeros(size(t));        % define strain 

    if  sigma_0 <= sigma_critical;   % if the irrecoverable strain cannot be 

        % triggered forever 

        case1 = (0 <= t) & (t <= tb); 

        epsilonc(case1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t(case1)/lambda)); 

        case3 = (tb <= t) & (t <= 3600); 

        epsilonc(case3) = epsilonc(t==tb)*exp(-1*(t(case3)-tb)/lambda); 

    elseif sigma_0 > sigma_critical;   % if the irrecoverable strain can be triggered 

        syms x;     % calculate ta when the irrecoverable strain is triggered 

        ta = solve(sigma_0*(lambda/mu-1/E)*(1-exp(-1*x/lambda)) == epsilonl,x); 

        ta = double(ta); 

        if  ta >= tb;  % if the irrecoverable strain is not yet triggered before tb 

            case1 = (0 <= t) & (t <= tb); 

            epsilonc(case1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t(case1)/lambda)); 

            case3 = (tb <= t) & (t <= 3600); 

            epsilonc(case3) = epsilonc(t==tb)*exp(-1*(t(case3)-tb)/lambda); 

        elseif ta < tb;       % if the irrecoverable strain is triggered before tb 

            case1 = (0 <= t) & (t <= ta); 
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            epsilonc(case1) = sigma_0*(lambda/mu-1/E)*(1-exp(-1*t(case1)/lambda)); 

            case2 = (ta <= t) & (t <= tb); 

            epsilonc(case2) = epsilonl*exp(-1*(t(case2)-ta)/lambda_eff)+... 

                sigma_0*(epsilons_eff/sigma_0+lambda_eff/mu_eff-1/E)*... 

                (1-exp(-1*(t(case2)-ta)/lambda_eff)); 

            epsilons_tb = C*(epsilonc(t==tb)-epsilonl); 

            case3 = (tb <= t) & (t <= 3600); 

            epsilonc(case3) = epsilons_tb+(epsilonc(t==tb)-epsilons_tb)*... 

                exp(-1*(t(case3)-tb)/lambda); 

        end 

end 

 

    % calculate strain based on creep strain 

    epsilon(1:(tb/0.1)) = epsilonc(1:(tb/0.1))+sigma_0/E; 

    epsilon((tb/0.1+1):36001) = epsilonc((tb/0.1+1):36001); 

 

    % obtain time ta and the corresponding strain 

    ta_round(q) = round(ta*10)/10; 

    epsilon_ta(q) = epsilon(ta_round(q)*10+1); 

 

    % plot strain versus time 

    plot(t,epsilon,'LineWidth',1.5) 

    xlabel('\bf t(second)','FontSize',13) 

    ylabel('\bf Strain','FontSize',13) 

    axis([0,3600,0,0.02]) 

    set(gca,'xtick',0:600:3600,'ytick',0:0.002:0.02) 

    strain = (strain_experiment(:,q)'); 

    % R square between experimental result and modeling result 

    Rsq(q) = 1-sum((strain-epsilon).^2)/sum((strain-mean(strain)).^2); 

end 

 

% Add legend 

legend({'\bf \sigma=2.81MPa,experiment','\bf \sigma=4.48MPa,experiment',... 

    '\bf \sigma=6.42MPa,experiment','\bf \sigma=2.81MPa,model',... 

    '\bf \sigma=4.48MPa,model','\bf \sigma=6.42MPa,model'},'FontSize',10,... 

    'Location','best') 

% Plot triggered point at three different stress levels 

plot(ta_round,epsilon_ta,'o','LineWidth',1) 

 

 
Published with MATLAB® R2016a 
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Modeling of bending and experimental comparision 

One example when temperature is 55 C (T = 55 C) 

Input values of parameters extracted from creep test 

clear; 

E = 1088.2e6;   % elastic modulus(Pa) 

mu = 148e9;     % viscosity(Pa*s) 

lambda = 226;   % retardation time(s) 

C = 0.76;       % ratio between epsilons and epsilonc 

epsilonl = 0.00065;   % threshold strain for triggering irrecoverable strain 

mu_eff = mu*((1-(mu*C)/(lambda*E))^(-1));    % effective viscosity (Pa*s) 

lambda_eff = lambda*((1-C)^(-1));            % effective retardation time(s) 

epsilons_eff = -1*(C*epsilonl)/(1-C);        % effective epsilons 

 

Defination and discretization 

%dimension of the beam 40*12*3 mm 

L = 40e-3;   % distance between two supports 

b = 12.24e-3;    % width of the beam 

h = 3.3567e-3;   % height of the beam 

I = b*(h^3)/12;  % inertia moment 

 

dx = L/2/100;     % x step 

x = 0:dx:(L/2);   % discrete x along beam span direction 

x = x';           % for the purpose to calculate moment 

num_x = length(x); 

 

dt = 0.1;     % time step 

t = 0:dt:100; % discrete time 

num_t = length(t); 

 

dy = h/2/1000;   % y step 

y = 0:dy:(h/2);  % discrete y along the height of the beam 

num_y = length(y); 

 

P_rate = 1;      % loading rate (N/second) 

P = P_rate*t;    % load history 

M = x*P/2;       % moment (N*m) (x*t dimension) 

kappa = zeros(num_x,num_t);  % define curvature, initial condition is zero 

sigma = zeros(num_x,num_t,num_y);   % define stress, initial condition is zero 

epsilon = zeros(num_x,num_t,num_y); % define strain, initial condition is zero 

% define the history of a which shows critical point between regime 1 and regime 2 
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a_history = zeros(num_x,num_t); 

 

3 dimensional loops for calculating stress, strain, curvature and "a" 

for q = 1:num_x        % loop for each specific x (cross section) 

 

    for n = 1:(num_t-1)   % loop for each time point 

 

        epsilon_c = epsilon(q,n,:)-sigma(q,n,:)/E;  % calculate creep strain along  

% y direction 

 

        if epsilon_c(end) <= epsilonl      % obtain the value of "a" 

            a = h/2; 

            num_a = num_y; 

        else 

            [Min_value,num_a] = min(abs(epsilon_c-epsilonl)); 

            a = (num_a-1)*dy; 

        end 

        a_history(q,n) = a;     % obtain the history of "a" 

 

        if  a == h/2     % if all creep strains along y direction do not 

            % exceed threhold strain 

            A_integral = 0; 

            B_integral = I*kappa(q,n)*dt/lambda; 

            C_integral = M(q,n)*dt/mu; 

        elseif a == 0    % if all creep strains along y direction exceed 

            % threhold strain 

            A_integral = b*dt*epsilons_eff/lambda_eff*(h^2/4); 

            B_integral = b*kappa(q,n)*dt*(h^3/12/lambda_eff); 

            C_integral = M(q,n)*dt/mu_eff; 

        else   % if creep strain exceeds threhold strain at some point of y direction 

            A_integral = b*dt*epsilons_eff/lambda_eff*(h^2/4-a^2); 

            B_integral = b*kappa(q,n)*dt*(2*a^3/3/lambda+(h^3/12-2*a^3/3)/lambda_eff); 

            % below is how to calculate C integral 

            sigma_case1_subset = sigma(q,n,1:num_a); 

            % remove the singleton dimension 

            sigma_case1_subset = squeeze(sigma_case1_subset); 

            sigma_case2_subset = sigma(q,n,num_a:num_y); 

            % remove the singleton dimension 

            sigma_case2_subset = squeeze(sigma_case2_subset); 

            y_case1_subset = y(1:num_a); 

            % make y_case1_subset a column which is consistent with sigma_case1_subset 

            y_case1_subset = y_case1_subset'; 
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            y_case2_subset = y(num_a:num_y); 

            % make y_case2_subset a column which is consistent with sigma_case2_subset 

            y_case2_subset = y_case2_subset'; 

            C_integral = 2*dt*b/mu*trapz... 

                (y_case1_subset,sigma_case1_subset.*y_case1_subset)+2*dt*b/mu_eff*... 

                trapz(y_case2_subset,sigma_case2_subset.*y_case2_subset); 

        end 

 

        kappa(q,n+1) = kappa(q,n)+ M(q,n+1)/E/I-M(q,n)/E/I+A_integral/I-... 

            B_integral/I+C_integral/I; 

 

        for m = 1:num_y         %discrete y direction 

            % obtain strains along y direction 

            epsilon(q,n+1,m) = kappa(q,n+1)*((m-1)*dy); 

            if  m <=num_a; 

                mu_EFF = mu; 

                lambda_EFF = lambda; 

                epsilons_EFF = 0; 

            else 

                mu_EFF = mu_eff; 

                lambda_EFF = lambda_eff; 

                epsilons_EFF = epsilons_eff; 

            end 

            % obtain stress along y direction 

            sigma(q,n+1,m) = E*epsilon(q,n+1,m)+sigma(q,n,m)*(1-E*dt/mu_EFF)+... 

                epsilon(q,n,m)*(E*dt/lambda_EFF-E)-epsilons_EFF*dt*E/lambda_EFF; 

        end 

 

    end 

 

    %calculate value of "a" at the last time point 

    epsilon_c = epsilon(q,num_t,:)-sigma(q,num_t,:)/E; 

    if epsilon_c(end) <= epsilonl      % obtain "a" 

        a = h/2; 

        num_a = num_y; 

    else 

        [Min_value,num_a] = min(abs(epsilon_c-epsilonl)); 

        a = (num_a-1)*dy; 

    end 

    a_history(q,num_t) = a; 

end 
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Plot curvature versus t 

% extract curvature at each L/2/10 along x direction 

kappa_extract_x = zeros(11,num_t); 

for i = 1:11 

    kappa_extract_x(i,:)= kappa((10*i-9),:); 

end 

figure(1) 

plot(t,kappa_extract_x) 

legend('x=0','x=0.05L','x=0.1L','x=0.15L','x=0.2L','x=0.25L','x=0.3L',... 

    'x=0.35L','x=0.4L','x=0.45L','x=0.5L') 

xlabel('time (s)') 

ylabel('curvature (1/m)') 

title('curvature versus time') 

grid on 

 

Plot “a” versus t 

% extract history of “a” at each L/2/10 along x direction 

a_history_x = zeros(11,num_t); 

for i = 1:11 

    a_history_x(i,:)= a_history((10*i-9),:); 

end 

figure(2) 

plot(t,a_history_x) 

axis([0,max(t),0,h/2]) 

legend('x=0','x=0.05L','x=0.1L','x=0.15L','x=0.2L','x=0.25L','x=0.3L',... 

    'x=0.35L','x=0.4L','x=0.45L','x=0.5L') 

title('a with respect time') 

xlabel('time (s)') 

ylabel('value of a (m)') 

grid on 

 

 

Plot curvature versus x 

% extract curvature at each 10 seconds 

kappa_extract_time = zeros(num_x,11); 

for j = 1:11 

    kappa_extract_time(:,j)= kappa(:,(100*j-99)); 
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end 

figure(3) 

plot(x,kappa_extract_time,'.') 

legend('t=0s','t=10s','t=20s','t=30s','t=40s','t=50s','t=60s','t=70s',... 

    't=80s','t=90s','t=100s') 

xlabel('x along beam span direction (m)') 

ylabel('curvature (1/m)') 

title('curvature versus x') 

 

Obtain deflection 

% least square fitting of kappa = c1*x 

c1 = zeros(1,num_t); 

for u = 1:num_t 

    c1(u) = x\kappa(:,u); 

end 

% get deflection w along x and deflection at mid-span delta 

w = zeros(num_x,num_t); 

delta = zeros(1,num_t); 

% obtain delta 

for v = 1:num_t 

    w(:,v) = L^2*c1(v)*x/8-c1(v)*x.^3/6; 

    delta(1,v) = c1(v)*L^3/24; 

end 

% obtain w at each 10 seconds 

w_extract = zeros(num_x,11); 

for j = 1:11 

    w_extract(:,j)= w(:,(100*j-99)); 

    delta_extract(j) = delta(100*j-99); % do not plot this 

end 

 

Plot deflection with respect to x 

figure(4) 

plot(x,w_extract,'-','LineWidth',1.5) 

set(gca,'Ydir','reverse') 

xlabel('\bf x(m)','FontSize',13) 

ylabel('\bf deflection along x(m)','FontSize',13) 

legend({'t=0s','t=10s','t=20s','t=30s','t=40s','t=50s','t=60s','t=70s',... 

    't=80s','t=90s','t=100s'},... 

    'FontSize',11,'Location','best') 
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Plot deflection at mid span of the beam and experimental results 

figure(5) 

hold on 

plot(t,delta,'-','LineWidth',1.5) 

% load experimental data 

load('bending_55.mat') 

plot(t_bending,bending_55_1,'--','LineWidth',1.5) 

plot(t_bending,bending_55_2,'--','LineWidth',1.5) 

plot(t_bending,bending_55_3,'--','LineWidth',1.5) 

xlabel('\bf t(second)','FontSize',13) 

ylabel('\bf deflection at mid span(m)','FontSize',13) 

legend({'model','experiment1','experiment2','experiment3'},'FontSize',12,... 

    'Location','northwest'); 
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