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Abstract 
 

Geostatistical modeling used to focus on the grade of the main commodity or metal being mined 

and sold for profit. As mining has developed, the metallurgical characteristics of the rock have 

become important. Geometallurgy tests are developed to understand the processing characteristics 

of the mined rock. Yet, geometallurgy tests are expensive and takes longer than geology grade 

assays. Multivariate geostatistical techniques are used to model the geometallurgy variables. Yet, 

many of the geometallurgy variables do not average linearly and are compositional, that is, they 

sum to unity. These complexities make modeling geometallurgy variables challenging. 

Missing geometallurgical data may degrade the quality of prediction. There are two evident 

modeling frameworks that can be used. The first framework is an imputation framework which 

calculates the spatial continuity and relationships to grade variables to predict the missing data. 

The second framework is a response surface methodology (RSM) framework that accounts for the 

relationship to grade variables. There are different RSM techniques including (1) linear regression, 

(2) Alternating Conditional Expectations (ACE), and (3) random forest; that are compared to 

understand their advantages and disadvantages. The two frameworks perform differently in 

different circumstances. Considerations for the best framework are developed in this thesis. 

Two new imputation techniques that account for data spatial continuity and complex multivariate 

relationships are developed. The first proposed technique, called RF-enhanced, alters the 

imputation likelihood mean calculation with random forest prediction without changing the 

variance while the second proposed technique, called RF-moment, alters both likelihood mean and 

variance. Both frameworks consider the prior spatial distribution in the same way as parametric 
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imputation. The proposed techniques improve the imputation accuracy in certain circumstances. 

Numerous examples are presented to provide guidance on technique selection. 

Random forest regression does not always perform better in predicting missing values. Yet, 

both proposed imputation techniques still perform quite well and have a promising result for 

imputation development. 
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Chapter 1 

Introduction 

 

Geostatistics is a statistical methodology that has been used to help people understand the 

resources and reserves of a mineral deposit. Geostatistics uses all the available information to 

predict rock properties at unsampled locations and assess uncertainty in the predictions. In general, 

mining practitioners should carefully manage the risks. The feasibility of exploitation over an area 

must be well studied before deciding to develop a mine. Resources are estimated and calculated 

with different exploration methods. 

The accuracy of the predicted model is usually measured by the closeness of the exploration 

model block value to the value at the time of production. The output from the processing plant will 

likely be different from what is predicted; in some cases, metallurgists face difficulties to process 

the ore. Understanding geology, quantifying the spatial distribution of rock properties and 

managing metallurgical performance are collectively referred to as “geometallurgy”. 

 

1.1. Background and Motivation 

Geometallurgy is a scientific practice designed to integrate all relevant disciplines to maximize 

the economic value of a mining operation considering metallurgical responses like recovery, 

throughput and reagent/power consumption. This is motivated by many global factors such as 

tighter environmental regulation and commodity price fluctuations. Geometallurgy has evolved 

from its early simplicity of ‘geology + metallurgy’ conception. It is also recognized as an approach 

that can predict the risks related to resource development.  
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The main difference between geostatistical modeling of geology and geometallurgy variables 

is that the latter is a multivariate problem often with complex relationships between variables. 

Mineral resources in general are multivariate systems with many factors required to characterize 

their overall complexity. Yet, ore is typically described by using grade only, despite the fact that 

many geology factors such as grain sizes, mineralogy and rock texture may lead to different 

processing results.  

Geometallurgy domains are qualitative attributes amenable to spatial block modeling (Dominy 

& O'Connor, 2016). Yet, geometallurgy does not replace the importance of geology and grade 

modeling and process design. Conventional geology or ore type/domains may not necessarily be 

appropriate for the various metallurgical processes being considered. 

Mining engineers would plan and forecast with specific expectations, and metallurgists would 

know the type of ore being received at the plant. An integrated system would have geometallurgical 

data as part of the database. There are additional requirements to support a successful 

geometallurgy application: (1) in situ ore characterization from exploration drill data; (2) 

determination of ore types relative to specific applications; (3) setting up processing strategies 

based on ore characterization. 

Underestimating the variation of ore properties is a prevalent problem (Dominy & O'Connor, 

2016). It happens because specific ore types that need special treatment are not adequately sampled 

from core sampling in exploration. For instances, clay material occurrence in heap leaching may 

create some ponds on a heap leach cell that will prevent chemical percolation that extracts the 

mineral from the rock. To make mine projects viable in uncertain times, it is crucial to anticipate 

and manage surprises throughout the life of mine. Geometallurgy contributes to the sustainable 

extraction of the resource by informing optimal allocation of resources before production starts. 
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Optimization in geometallurgy may involve finding the optimal processing choice based on 

available information. Modern geometallurgy aims to understand grade, metallurgical and mining 

variability based on factors such as geochemistry, mineralogy, lithology, and alteration collected 

from spatially distributed samples. Other goals of geometallurgy include integrated mine planning, 

better modeling based on more information, improved understanding of the mineral deposit and 

enhanced management of the mining process leading to greater value. 

There are four different perspectives on how to define domains and ore types: geology, mining, 

metallurgy, and geometallurgy (Jackson & Young, 2016). (1) Geology: Domains are defined to 

explain the geology domains that affect the resource definition such as rock types, lithology, and 

mineralogy; (2) Mining: Domains are used to optimize the resource that can be obtained by mine 

design and mine operation, and most of the times the domains will be simplified for operation 

efficiency; (3) Metallurgy: Domains are described by the ore behavior in a specific processing 

treatment; (4) Geometallurgy: Domains are derived from the fundamental geology domains with 

the intention to enable metallurgical workflow. Therefore, a hierarchy of domains is implied from 

geology to geometallurgy with each level having a different purpose. 

Geometallurgy testing is often performed separately from geology grade testing. The 

differences are based on: (1) geometallurgy tests often require a larger mass to minimize sampling 

error and improve test reproducibility (Bax, et al., 2016) as compared to geological grade testing. 

The amount of sample needed is different and unique for different types of tests. Geometallurgy 

testing in exploration stage may be quite challenging as small diameter core drilling may not be 

sufficient. (2) Some geometallurgy tests will take more time to be complete than geological grade 

samples. For these reasons, geometallurgy samples are more expensive. This partially explains 

why geometallurgy tests are rare early in project appraisal. (3) Geometallurgy tests may also need 
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the mixing of ore that is considered representative to understand the treatment of ore at the time of 

mining. For instance, when the ore mixing behavior is 80% rocky ore and 20% clayey ore then the 

sample also has to have this composition. This may be unknown at the exploration drilling stage. 

Coward and Dowd (2015) summarize the current general approach to geometallurgy modeling 

as: (1) identify the geology variables expected to explain crucial metallurgical performance 

variables; (2) sample and test these variables; (3) analyze the result and understand the relationship 

between geology variables and geometallurgy variables; and (4) develop techniques to calculate 

the value of these variables and incorporate them into geological block models. A detailed 

mineralogical description may help the geologist and metallurgist define a geometallurgy model 

in the deposit. 

Estimating metal recovery and other plant performance variables is difficult because they are 

influenced by many multivariate factors, as mentioned above. This multivariate problem may be 

simplified by using constant recovery factors and plant efficiencies based on past experiences. 

These simplifications may be suitable for the prefeasibility stage of mineral exploration, but when 

it comes to reserve estimation stage, multivariate modeling should be utilized to improve plant 

performance predictions. A high resolution model of geometallurgical variables would allow more 

accurate mine planning and economic forecasting. 

Managing multiple variables is sometimes troublesome because some of them are non-additive. 

Non-additive variables can be kriged (Deutsch, 2013) to understand the spatial features of the 

variable. Kriging generates a smoothed model that underestimates the variation of properties. 

Kriging may cause a bias for variables that do not average linearly. Non-additive variables should 

be simulated and combined using a relevant mixture rule calibrated from real data. 
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Machine learning has been well recognized as a merged idea from many disciplines to make 

computer learn, modify, and adapt so that it gets more accurate with the amount of data it uses. 

There are several ways to understand whether or not the machine is learning and they will lead to 

the classification of different machine algorithm types (Marsland, 2015): (1) supervised learning: 

a training set with response values is provided and algorithm is generalized based on this training 

set, (2) unsupervised learning: response values are not provided and algorithm tries to identify the 

similarities between the predictor values, (3) reinforcement training: when the algorithm is told 

when the response is incorrect but is not told how to correct it therefore the algorithm will try out 

many possibilities until it works out, and (4) evolutionary learning: biological adaptation is seen 

as a learning process. The most common type is the supervised learning where it includes 

regression and classification technique such as artificial neural network and random forest 

regression. 

Neural networks are a wide class of flexible nonlinear regression and discriminant models, 

data reduction models, and nonlinear dynamical systems. (Sarle, 1994). Neural networks are 

modeled after biological neurons and are commonly used in predicting values. They work by 

working on a multilayer system where input layer consists of several nodes that work by using 

binary system that is controlled by hidden layer consists of several controlling nodes that control 

the combination of nodes in the input layer (Odom & Sharda, 1990). Then these combinations use 

binary system of 0 and 1 to predict a response neuron in the output layer. Random forest regression 

will be discussed in Chapter 2.  
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1.2. Variables Denotation 

Geometallurgy variables are sometimes referred to as process variables, processing variables, 

and metallurgy variables, but in this thesis, the term geometallurgy variables will be used. Geology 

variables are more conventional rock properties. Some examples of geology variables are grade, 

mineralogy, lithology, and alteration. On the other hand, geometallurgy variables are rock 

properties that describe the performance in processing operations. Some examples of 

geometallurgy variables are throughput, metal recoveries, reagent process consumption, and 

tailings properties.  

A geometallurgy variable is denoted with y and will be considered as a response variable that 

is dependent on predictor variables. Geology variables are denoted with x and will be considered 

as predictor variables that are also considered independent variables. 

 

1.3. Problem Statement and Limitations 

There are several techniques for building multivariate models and dealing with missing data. 

This thesis will help to establish the more appropriate of two evident workflows: (1) imputing the 

missing geometallurgy variables at the locations of the geology data then proceed with multivariate 

modeling or; (2) model the geologic variables, then apply response surface modeling to predict the 

geometallurgical response. A better way to predict missing values will also be proposed for the 

first workflow. 

Machine learning techniques such as random forests may help with the response surface 

modeling workflow. The variogram in the imputation workflow can help explain the spatial 

features of the geometallurgy variable. An integrated workflow that builds multivariate aspects of 
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prediction using random forest and spatial aspects from variogram model will be proposed and 

tested. 

The data in this thesis will be used under several assumptions: (1) there is no error in data 

measurements, and (2) all the data belong to one stationary domain. Access to the full sampling 

protocol is not available from an academic setting. Multiple domains would be treated one at a 

time. 

 

1.4. Thesis Outline 

Chapter 2 will review concepts and techniques related to geometallurgy modeling and discuss 

the research challenge. Workflows for model building techniques will be represented in Chapter 

3. Comparisons between techniques and observed advantages and disadvantages will be discussed. 

Chapter 4 will show the proposed technique for improved modeling. Chapter 5 focuses on the 

practical application and implementation of the techniques to data. Validation and checking will 

be addressed. The main contributions and future work are discussed in Chapter 6. 
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Chapter 2 

Background 

 

Direct estimation of geometallurgy variables would not consider the more sampled grade 

variables. Also, the smoothing of estimation will cause the estimates to converge to the mean 

values that are non-informative. Estimated grade models give a unique result and are based on the 

data only as compared to simulation that will give non-unique results and show stochastic high 

and low areas that may be partly the result of a random number generator and not local 

measurements. 

Geology grade variables average linearly and are easier to predict than geometallurgy variables. 

One approach is to model the geology variables then forecast the geometallurgy variables with a 

transfer function. Uncertainty of the prediction results is affected by geology uncertainty and this 

brings simulation with multiple realizations as a way to understand the uncertainty of 

geometallurgy variables. 

 

2.1. Geometallurgy and Geometallurgy Models 

Having all ore types predicted will help to calculate the output from mine process with less 

uncertainty. A geometallurgy model built in the early stages of mining, will improve predictions 

of revenue and capital expenditure. A geometallurgy model could help the mine planner optimize 

the sequence of extraction to maximize value and minimize cost. Lulea University of Technology 

in Sweden has demonstrated that a geometallurgy program can give up to 25% shorter payback 

time compared to cases when no geometallurgy information is available (Lishchuk, 2016). 
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Two methodologies to build a geometallurgy model are considered. The first approach is to 

impute all the missing values using existing imputation methods such as parametric or Gaussian 

Mixture Model (GMM) and then proceed with multivariate modeling. The second approach is to 

model all geologic variables in the area of interest and apply response surface modeling to predict 

the response geometallurgy variable based on the geology block model. 

 

2.2. Multivariate Geostatistical Modeling 

Geostatistics considers multiple variables to be modeled. The data must be multivariate 

Gaussian for most simulation techniques. Therefore transformation such as stepwise conditional 

transform (SCT) (Leuangthong & Deutsch, 2003; Rosenblatt, 1952), projection pursuit 

multivariate transform (PPMT) (Barnett, et al., 2014; Friedman, 1987), minimum maximum 

autocorrelation factors (MAF) (Desbarats & Dimitrakopoulos, 2000; Switzer & Green, 1984), 

1984), and principal component analysis (PCA) (Davis & Greenes, 1983; Hotelling, 1933) are 

considered. Most of these transformation methods require all variables to be available at all data 

locations. 

There are usually missing values due to technical issues such as missing core or a decision to 

save cost and time. The percentage of missing values in a database is varied. Predicting missing 

values before block modeling may help the geostatistical modeling process.  

Multiple realizations of data are generated when imputing missing multivariate data. Each 

realization is then used through the multivariate transformation workflow to generate a 

geostatistical realization. The result of imputing missing values leads to greater accuracy and less 

uncertainty than removing incomplete data (Barnett & Deutsch, 2013). 
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Imputation considers spatial correlation and whatever information is available from collocated 

variables. An unbiased available information and a representative variance should increase the 

accuracy of imputation. An early imputation application to geologic data sampled conditional 

distributions with probability field simulation to generate realizations (Barnett & Deutsch, 2012). 

Simulating missing data requires the data to be preprocessed and transformed to have a Gaussian 

distribution. This step is important because conditional distributions are fully defined by a mean 

and variance; multivariate relationships are fully parameterized by correlation coefficients. 

At each location for each variable, the original parametric imputation starts by calculating a 

prior mean (ȳP) and prior variance (σ2
P) using geometallurgy variable data and the spatial 

correlation between data locations and the location data being predicted. The next step is 

calculating a likelihood mean (ȳL) and likelihood variance (σ2
L) using collocated geology variables 

with weights calculated based on the multivariate correlation between geometallurgy and geology 

variable and also correlation between geology variables. 

The next step is calculating updated mean (ȳU) and updated distribution (σ2
U) using the result 

from second and third step with following equations (Ren, 2007): 

 
ȳ𝑢 =

ȳ𝐿 σ𝑃
2 + ȳ𝑃 σ𝐿

2

σ𝑃
2 − σ𝑃

2  σ𝐿
2 + σ𝐿

2 (1) 

 
σ𝑈

2 =
σ𝐿

2 σ𝑃
2

σ𝑃
2 − σ𝑃

2  σ𝐿
2 +  σ𝐿

2 (2) 

Monte Carlo Simulation is the final step of imputation and it uses a random probability value 

p and the standard normal CDF, G. Both of them are used to calculate simulated realization of the 

missing value, ys with the following equation: 

 𝑦𝑠 =  𝜎𝑈 . 𝐺−1(𝑝) + ȳ𝑢 (3) 
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There are other imputation methods such as non-parametric imputation which was established 

for the imputation of complex multivariate variables by Barnett and Deutsch (2012) and the other 

method is based on Gaussian Mixture Model (GMM) that was proposed by Silva and Deutsch 

(2015). An alternative to predict missing values is to use a response surface. 

 

2.3. Response Surface Methodology (RSM) 

Response Surface Methodology (RSM) is a method to predict a missing geometallurgy 

variable values using its relationship to geology variables. RSM does not normally consider the 

spatial location of the data. This might be appropriate when dealing with a variable that has poor 

continuity or a high nugget effect. RSM considers some form of regression model. An important 

step is to determine the optimum combination of independent variables for optimal prediction. 

The modern approach to RSM is to split the dataset into a training dataset and test dataset. The 

training dataset is a dataset where the geometallurgy variable and geology variables values are 

both known. The test dataset is a dataset where the geology variables values are known but 

geometallurgy variable values are kept back for testing. The RSM will build a function based on 

the relation of the geometallurgy variable to its collocated geology variables from the training data. 

This function would then be applied to predict missing values in the test dataset. 

It is important to select variables that improve predictions of the response variable. This can 

be detected by analyzing the sensitivity of each variable and the coefficient of each variable when 

predicting the geometallurgy variable. Geology variables that have better correlation to the 

geometallurgy variable will give more impact to the result. This analysis is important because in 

most response surface problems, there are several geology variables that can be left out to improve 

the result. 
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There are many RSM techniques with different properties. Guidance on the appropriate 

technique to be used for different circumstances will be discussed in this thesis. 

 

2.3.1. Linear Least Squares 

The simplest RSM technique is based on a linear function. The geometallurgy variable is fit to 

a first order equation (Watson, 1967): 

 

𝑦∗ = 𝑎0 + ∑ 𝑎𝑛𝑥𝑛

𝑁

𝑛=1

 (4) 

Where y* is the geometallurgy variable prediction result, n is the number of geology variables, 

a0 is a constant term, an represents the coefficients of the linear parameters, xn represents the 

geology variables. The equation does not have a residual value because the result is an estimated 

value of the geometallurgy variable. 

For more complex relationships the polynomial function could be expanded to include 

quadratic terms according to the following equation: 

 

𝑦∗ = 𝑎0 + ∑ 𝑎𝑛𝑥𝑛 +

𝑁

𝑛=1

∑ 𝑏𝑛𝑥𝑛
2 +

𝑁

𝑛=1

∑ ∑ 𝑐𝑛𝑚

𝑀

𝑚=1

𝑥𝑛𝑥𝑚

𝑁

𝑛=1

 ∀ 𝑛 ≠ 𝑚 (5) 

Where y* is the response, xn are the independent geology variables, the second part of the 

equation with the b coefficients are the second-order quadratic model for evaluating curvature, the 

third part describes the interaction between the different independent variables. The a coefficient 

in the linear model and the a, b, and c coefficients in the quadratic model are fitted to minimize 

the squared difference between the predicted and actual y values using the training data.  

Linear least-squares cannot straightforwardly be used for categorical variables. Yet another 

limitation is its sensitivity to outliers. Nevertheless, linear least squares regression is widely used 
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because of its simplicity. There are types of data that are better described by non-linear functions. 

Real data often show non-linear relationships. 

 

2.3.2. Alternating Conditional Expectations (ACE) 

ACE is a non-parametric regression technique that can be very effective to understand and 

predict with complex multivariate data. The ACE algorithm is implemented by considering 

conditional expectations (Breiman & Friedman, 1985). The ACE algorithm determines optimal 

transformation functions between the geology variables and geometallurgy variable. ACE 

functions can be stable and reliable or overfit and unreliable. Barnett & Deutsch (2013) propose a 

modified algorithm that provides insight into the uncertainty of the ACE functions 

ACE allows variables with any distribution to be considered. ACE models a function of the 

geometallurgy variable as the summation of smoothed functions for the geology variables: 

 
𝜃(𝑦) =  ∑ 𝜙𝑖(𝑥𝑖)

𝑛

𝑖=1

 (6) 

Where θ(y) is a function of the geometallurgy variable and ϕi are functions of the geology 

variables. No linear, quadratic, or logarithmic form needs to be assumed for these functions. 

The order of the geology variables could change the fit. ACE can be sensitive to outliers for 

both response and geology variables. ACE functions can provide a substantial improvement over 

parametric regression models, particularly in the presence of non-linear features. 

 

2.3.3. Random Forest 

Ensemble learning starts with bagging of classification trees as described by Breiman (1996) 

where each tree is independently constructed using a bootstrap sample of the dataset. Breiman 

(2001) proposed random forests which add an additional layer of randomness to bagging. 
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Random Forest is a machine learning models for predictive analytics, widely used in practice. 

The random forest can be thought of as a bootstrap version of regression tree analysis where many 

trees are built based on subsets of the data (Breiman, 2001). They are a type of additive model that 

makes predictions by combining decisions from a sequence of base models.  

Random Forest works by investigating different thresholds in different geology variables to 

find out which split leads to the greatest difference in the geometallurgy variable.  Then it will 

investigate a second split and so on until there is no significant difference to be explained with 

further splits. 

 

2.4. Research Challenge 

Defining the proper technique for imputing missing values is challenging due to many 

possibilities of missing data categories: (1) missing completely at random (MCAR) when the 

probability of being missing is the same for all cases, (2) missing at random (MAR) when the 

probability of being missing is the same only within the same predictor variable group, and (3) 

missing not at random (MNAR) where the probability of being missing varies for unknown reason 

(Rubin, 1976).  

Non-linear variables such as geometallurgical variables will have a different behavior from 

linear variables while defining the relation to the geological variables is also challenging. The 

research in this thesis will consider using mixture model to capture non-linearity in the data. 

Random forests may capture the relationship with collocated variables better than parametric 

imputation. Altering prior distribution or imputation technique with random forest result may 

improve the quality of imputation result. Calculating a suitable variance so that the distribution 
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can be merged with the spatial information will be another challenge. Exploring random-forest-

imputation techniques will be presented in this thesis. 
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Chapter 3 

Model Building Framework 

 

Understanding the spatial and multivariate characteristics of the geometallurgy variable is 

required. If the geometallurgy variable has clear spatial continuity, spatial modeling would be a 

reasonable way to build the model. On the other hand, when the spatial continuity is low relative 

to the data spacing, directly predicting the geometallurgy variable from the available geology 

variables may be more viable.  

The fraction of missing data also affects the suitability of each prediction method. Imputation 

needs a variogram model for the geometallurgy variable; a lack of data will make variogram fitting 

very uncertain. RSM techniques requires understanding the relationships between variables that 

may be unstable with limited data. 

All prediction methods are affected by the conditions mentioned above. The recommended 

approach in different circumstances will be based on the accuracy of the predictions and 

reproduction of spatial features. The two different frameworks are pictured in Figure 3.1 and are 

discussed below.  

 

3.1. Imputation Framework 

Imputation in recent geostatistical application is based on Bayesian Updating (BU) to build 

conditional distributions to simulate realizations of data (Ren, 2007). Conventional BU assumes 

the data all have normal distributions. Therefore, normal score transformation of all variables is a 

mandatory first step. Normal score transform is independently applied to each variable. 
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Calculating experimental variograms and fitting variogram models is done to describe the 

spatial characteristics of variables. Missing values are sampled using Monte Carlo simulation from 

an appropriate conditional distribution. Missing value imputation generates multiple realizations. 

These realizations reflect geometallurgy variable uncertainty. 

After all missing values have been imputed, y (geometallurgical) and x (geological grade) 

variables are simulated at the same time where x data values are static and the y values are changed 

for each realization. This will generate multiple geometallurgy models that reproduce all available 

data. 

Imputation does not necessarily capture complex multivariate relationships between variables. 

Another concern about imputation is when there are too few data values available for stable 

variogram inference. These conditions should be considered before applying imputation. 

 

3.2. Response Surface Methodology (RSM) Framework 

RSM determines the transformation functions that will optimize the prediction of a dependent 

variable. RSM is based on known values from a training dataset where the relationship can be 

fitted. RSM is useful to estimate variables without consideration for spatial continuity. Yet, the 

relationship to the geology variables should be reasonable. Moreover, outliers must be managed 

since they can have a large impact on the estimated values by affecting the relationship between 

variables. When RSM function is built from a training dataset with outlier, there will be a tendency 

to reproduce the outlier but the function that does not consider spatial characteristic may reproduce 

it at a wrong location that has similar independent variable value. RSM does not, in general, 

capture uncertainty. 
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Figure 3.1: Geometallurgical modeling workflow diagram 

 

3.3. Methodology for Comparison 

Establishing the framework that performs the best is important. Performance can be measured 

by the coefficient of determination or R2 defined as: 

 
𝑅2 = 1 −

𝐸[[𝑦∗ − 𝑦]2]

𝐸[[𝑦 − 𝑚]2]
 (7) 

Where the top part on the right is the mean squared error between the predicted value (y*) and the 

real value (y) also called the residual sum of squares. And the bottom part on the right is the 

variance of the real values. 

R2 should fall between 0 and 1. If R2 is 1, it means all predicted values fall precisely on the 

regression line and are equal to the real data. When it goes lower, it means the prediction 

correlation is getting lower and when R2 equals to 0 means that the prediction is not related to the 

real data. 
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3.4. Geometallurgy Modeling Framework Application 

The two different frameworks will be applied to synthetic data where all the samples are 

equally sampled, no error, and having Gaussian distribution. The two methods will be compared. 

The synthetic dataset has two variables with a variogram range of 15 and correlation between 

them equal to 0.6. One geometallurgy variable (y) and one geology variable (x) are generated on a 

50x50 2D grid with square spacing of 1 unit yielding 2500 data values. The data are then randomly 

split into 3 datasets which are: (1) Dataset 1 which has 100 locations with known x and y; (2) 

Dataset 2 which has 200 locations that are different from dataset 1 with known x but unknown y; 

(3) Dataset 3 which has the remaining 2200 locations to validate the prediction result. Details of 

the data are shown in Figure 3.2. 

 

 

Figure 3.2. Characteristic of dataset used in this chapter: histograms of the two variables (top); 

and location maps of dataset 1, 2, and 3 (bottom) 
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RSM is only done using linear least squares method with following steps: (1) Regression 

formula is calculated using dataset 1 of y given x; (2) 100 realizations of x on the full grid are 

simulated using all 300 x values from dataset 1 and dataset 2; (3) RSM function is applied to the 

100 realizations at 2200 locations to estimate y values at each location in each data files. 

Regarding the imputation workflow, the steps include: (1) Missing y values at 200 locations 

in dataset 2 are imputed yielding 100 realizations of y data; (2) 100 realizations of y data are 

concatenated with dataset 1 resulting in 100 data files where 100 values are fixed and 200 values 

are changed for each data file; and (3) 100 realizations of y at 2200 locations are simulated using 

all 300 values in each dataset.  

The results show that imputation performs better than regression. The average of 100 R2 

values for linear regression is 0.133 while it is 0.203 for imputation. The results are not very good 

due to lack of training data values but still can be used to compare the two methods. The 

comparison between methods is shown in Figure 3.3. The imputation result has more variance than 

linear regression; 0.932 and 0.498 respectively. That happens because the imputation result is 

simulated instead of being regressed. 
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(a) (b) 

Figure 3.3: Realization of one dataset cross-plot validation of (a) linear regression and (b) 

imputation method 

 

Multiple realizations would have different results. Using the average of 100 realizations may 

show the result more clearly because it averages some random variations as shown in Figure 3.4. 

The average of 100 realizations gives the R2 of 0.210 for linear regression and 0.263 for imputation. 
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(a) (b) 

Figure 3.4: Realizations average cross-plot validation of (a) linear regression and (b) imputation 

method 

Two cross-plots on Figure 3.4 show that the imputation framework is somewhat better than 

the linear regression framework. The conclusion is not definitive because the result may change 

for different datasets. As expected, the averages from both frameworks are closely related, see 

Figure 3.5.  
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Figure 3.5: Cross-plot of simulation average between linear regression and imputation 

 

3.5. Discussion 

Linear regression and imputation frameworks perform almost at the same level. This happens 

because the synthetic dataset has reasonably good spatial features and correlation between 

variables. It shows that the two modeling frameworks are valid to build geometallurgical models. 

The advantage of the imputation framework is that the simulated realizations of the geometallurgy 

variable reproduce the specified variogram for the variable. The RSM method provides a too-

smooth result. 

There are some advantages and disadvantages of each framework and using the less 

appropriate framework on a certain dataset may lead to increased error. A new framework that can 

be used in most situations will be discussed in the next chapter. 
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Chapter 4 

Proposed Random Forest Imputation 

 

Variables with known clear spatial correlation may be better predicted using imputation. 

Response surface modeling may outperform imputation when the spatial structure is not well 

understood and there is a reasonable relationship to measured geological variables. The proposed 

prediction technique is believed to provide robust predictions for a wide variety of dataset 

characteristics. 

 

4.1. Proposed Framework 

The random forest response surface regression technique performs well to capture 

multivariate relationships between variables, but response surface techniques fail to capture spatial 

characteristics of the variable being predicted. On the other hand, imputation can capture both 

multivariate and spatial features, but multivariate relations are not captured as well as the random 

forest. Injecting aspects of the random forest technique in the imputation method will be developed 

here. 

There are two aspects of imputation discussed in Chapter 2 that are (1) the prior distribution 

that accounts the spatial information, and (2) the likelihood distribution that accounts for 

information from the collocated variables. Note that reference to "prior" and "likelihood" 

distributions is consistent with published papers on the subject, but not consistent with 

conventional statistical notation. The idea developed here is to alter the likelihood distribution with 

values calculated from the random forest method. After normal score transform of the original 
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variable, the likelihood distribution is often considered to be Gaussian defined by a mean and 

variance. 

Parametric imputation calculates the parameters of the likelihood distribution using linear 

regression that has the same equation for every location as shown on the left side of Figure 4.1. 

The black dots show the linear correlation of two different variables and the green line shows how 

Gaussian the variables are. The red lines on the left figure show the variance and mean calculation 

of the data at different conditioning values. This is correct for Gaussian linear data, but may not 

be suited to geometallurgy variables with complex non-linear behavior. The likelihood distribution 

is supposed to be different at each location due to its non-linearity. On the other hand, the random 

forest technique can adapt to complex features in the data, as shown with blue line in Figure 4.1. 

This flexibility could be used to adapt the distribution calculation to every data location. 

 

(a)        (b) 

Figure 4.1: Comparison between calculating likelihood distribution using (a) linear regression 

and (b) random forest 
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The first two steps of the proposed framework are the same as the parametric imputation 

method described as parametric Bayesian Updating (BU) in Barnett & Deutsch (2013) which are 

(1) normal score transformation of all variables, and (2) calculating the prior distribution of each 

variables. The normal score transformation is required for the assumption of the multivariate 

Gaussian distribution where the conditional distributions Gaussian and are fully defined by a mean 

and variance. The mean and variance are calculated using simple kriging with the spatial 

correlation between the unsampled location and the data locations. 

The third step is different. The proposed framework calculates the likelihood mean and 

variance using the random forest regression technique. The updated distribution will be calculated 

as before with Equations (1) and (2) shown in the Chapter 2. Monte Carlo Simulation samples the 

updated distribution to simulate realizations of the missing value.  

 

4.2. Altering Likelihood Mean 

The likelihood mean, ȳL(u), at location u will be substituted with the expected result of random 

forest regression given the collocated geology variables. The random forest technique randomly 

splits training dataset with one geology variables criteria at a time until a minimum number of data 

fall in each branch. The number of splitting (called trees) affects the accuracy of the regression. 

The likelihood mean of this proposed framework is calculated in normal score units. This is 

done to facilitate merging with the normal score prior distribution. Different random seed values 

can be used to draw multiple realizations. The random forest can adapt to complex relationship 

with geology variables, which can be an improvement to the current imputation method. 
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4.3. Altering Likelihood Variance 

The variance is the expected value of the squared deviation from the mean. From the definition, 

variance, σ2
L(u), at location u can be expressed as: 

 𝜎𝐿
2(𝒖) = 𝐸[𝑦2(𝒖)] − 𝐸[𝑦(𝒖)]2 (8) 

E[y(u)] is the likelihood mean. The expected squared value E[y2(u)], could also be calculated using 

random forest as follows: 

 

E[𝑦2(𝐮)] =  𝐸𝑥,𝑦 (𝑦2 − (
1

𝑛
∑ ℎ(𝑥2

𝑛

𝑁

𝑛=1

))

2

 (9) 

Considering squared values of xn with n=1,2,3,…,N that have been normal score transformed 

is proposed to calculate the variance value and h(x2
n) is the number of trees defined by numerous 

predictors. The difference of the proposed likelihood variance and the one from parametric 

imputation is that the former has variance values that depend on the data values. This can be an 

advantage for complex non-linear data.  

Numerical experiments show that the likelihood variance is unstable when calculated this way. 

In fact, the likelihood variance calculated from x2 may even be negative. A global likelihood 

variance calculation will be considered with the mean coming from the random forest imputation 

framework. The global likelihood variance is calculated using the mean of the random forest 

regression result. The proposed likelihood variance is as follows: 

 𝜎𝐿
2(𝒖) = 𝐸[ 𝑦2(𝒖) ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐸[[ 𝑦(𝒖) ]2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (10) 

Where 𝐸[ 𝑦2(𝒖)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the global statistical mean of random forest squared prediction and 

𝐸[[ 𝑦(𝒖) ]2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the squared value of the global statistical mean of normal random forest. The 

equation will only yield one value for every data location, which is the likelihood variance that is 

data value independent. 
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4.4. Performance of Proposed Workflow 

The likelihood mean calculated using linear least squares regression and the random forest 

are highly correlated to each other because they are both valid techniques to predict missing values. 

Their correlation is close to 0.75 on the synthetic Gaussian dataset as shown in Figure 4.2. This 

difference is significant and the results of the two approaches would be different. The performance 

of random forest compared with linear regression will be discussed in the next chapter. 

 

   (a)         (b)            (c) 

Figure 4.2: Cross-plots between likelihood mean of parametric imputation and random forest 

imputation on three different datasets of missing (a) 30 percent; (b) 50 percent; and (c) 70 

percent 

 

Likelihood variance from proposed workflow tends to be 35% lower due to random forest 

incapability to reproduce data variation and tend to be more stable than parametric imputation as 

seen in Table 4.1. Therefore, result from proposed frameworks will be more narrow and cannot 

cover a wide spread data. The difference may be higher when it is applied to non-linear variable. 
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Table 4.1. Comparison of likelihood variance between parametric imputation and random forest 

imputation 

 
 

In this thesis, there are two frameworks to understand how well the proposed likelihood mean 

calculation and likelihood variance calculation work. The first framework called RF-enhanced 

uses the proposed likelihood mean with the variance from linear regression. The second called RF-

moment uses both proposed likelihood mean and likelihood variance from the random forest. 

These two frameworks are applied to Gaussian dataset of 1 geology variable and 1 geometallurgy 

variable with known variograms and relationships. The dataset contains 2500 equally sampled data 

locations and some values that will be randomly left out from 10% to 90% of the data yields 9 

datasets and each of them is simulated 100 times. Then, the prediction result is compared to the 

real data values and the R2 calculated for every missing data percentage.  

The result from the two frameworks are shown in Figure 4.3. The comparison uses one out of 

100 realizations and shows how the proposed frameworks perform at the same level as parametric 

imputation. Among the two proposed frameworks, RF-moment consistently performs better than 

RF-enhanced. From this example, the proposed frameworks could lead to an improvement in 

imputation. 

30% 0.712 0.412 42%

50% 0.680 0.440 35%

70% 0.728 0.473 35%

Missing 

Percentage

Likelihood Variance 

Parametric Imputation

Likelihood Variance 

Random Forest Imputation
Difference
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Figure 4.3: Accuracy level comparison between two proposed frameworks and parametric 

imputation 

 

Only using one realization may lead to randomness influencing the results. Averaging will 

capture all the realizations uncertainty but will only give final result. The averaging of the results 

are shown in Figure 4.4. Parametric imputation performs better than two proposed frameworks. 

This happened because when the variability of random number given to linear regression is 

averaged, the result will be a kriging result whereas kriging is proven to be the best linear unbiased 

prediction method (Cressie, 1989). On the other hand, with less variability of random forest and 

its tendency to not overestimate the prediction result, averaging the simulation results does not 

help to increase the accuracy. 
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Figure 4.4: R2 comparison between realizations average result of two proposed frameworks and 

parametric imputation 

 

As mentioned above, random forest is more stable than linear regression therefore likelihood 

mean calculation result from many realizations is not as varied as the one that is calculated using 

linear regression in the imputation method. That leads to stable result of 100 realizations as seen 

in Figure 4.3 and Figure 4.4 where there is no significant difference between one realization and 

the average of realizations.  

 

4.5. Discussion 

The likelihood mean may be calculated by a random forest in the imputation method. The 

Gaussian synthetic dataset gives reasonable results with the proposed frameworks. The 

preliminary conclusion of the proposed frameworks from the simulation is that they are valid to 

predict missing values where there is only one estimated result needed. Validation is important to 

evaluate whether the proposed frameworks are overfit.  
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These methods will be tested on the other datasets to establish their place. More geological 

variables and non-linear variables should perform better. The next chapter compares the proposed 

frameworks to other prediction method including RSM. Defining the best out of three different 

RSM techniques mentioned in Chapter Two will also be discussed in the next chapter.  
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Chapter 5 

Implementation and Case Study 

 

Comparing RSM and imputation may seem unfair as the former does not consider spatial 

characteristics; however, the spatial characteristic comparison can also be a disadvantage to the 

prediction particularly if the spatial characteristics are poorly known. The comparison with 

different datasets will help define the most suitable technique for given cases. There are three 

techniques discussed in this thesis; choosing the best technique for different situations is important.  

The RSM techniques discussed in this thesis are Linear Least Squares (Watson, 1967), ACE 

(Breiman and Friedman, 1985), and Random Forest (Breiman, 2001). The timeline indicates how 

the techniques evolved and perhaps improved over the years. Yet, each technique may have its 

advantages and disadvantages in different situations. All of them could be used to predict missing 

values on datasets where a certain percentage of values are left out for testing. 

 

5.1. Comparison of RSM Techniques 

5.1.1. Synthetic Dataset 

There are three different synthetic datasets used with one geometallurgy variable and a 

different number of geological variables. Additional collocated geological variables could increase 

the accuracy of prediction depending on the dataset characteristics. 

The comparison focuses on the missing value prediction and the steps of prediction are: (1) 

Generate data with y as the geometallurgy variable name and xn as the geological variables where 

n = 1, 2,…,N. (2) 10% of data values are randomly left out 100 times yielding 100 new datasets 

with 10% missing data. (3) 100 new datasets are split into a training dataset with known xn and 
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known y and a test dataset with known xn and unknown y. (4) Step (2) and (3) are repeated with 

increasing missing values for 10% intervals, yielding 900 training datasets and 900 test datasets in 

total. (5) The training datasets are used to generate RSM function for the three techniques. (6) 

RSM function is applied to predict missing y in each test dataset. (7) Estimated and original y 

values are compared. (8) Prediction accuracy of each technique are calculated using the coefficient 

of determination (R2) and the average R2 of 100 datasets is compared. 

 

5.1.1.1. Synthetic Gaussian Dataset with One Geology Variable 

The first dataset is the same dataset used in Chapter 3 and the characteristics are shown in 

Figure 3.2. The cross-plot between prediction result and original y value of one dataset with 50% 

missing data percentage is shown in Figure 5.1. Prediction accuracy of least squares, ACE, and 

Random forest for this dataset is 0.355, 0.354, and 0.207 respectively. Least squares and ACE 

perform at almost the same level while random forest is worse. Nonetheless, random forest can 

reproduce the mean and variance better 

 

(a) (b) (c) 

Figure 5.1. Cross-plots of original and prediction result on synthetic Gaussian dataset with one 

geology variable using (a) least squares; (b) ACE; and (c) random forest 

 



C h a p t e r  5 .  I m p l e m e n t a t i o n  a n d  C a s e  S t u d y  | 35 

35 

 

Least squares and ACE perform well on all 100 datasets with one geology variable as shown 

in Figure 5.2. From the missing data values percentage, all three techniques seem stable with 

increased missing percentage. It can be said that for predicting missing values on a dataset that has 

one geology and one geometallurgy variable with 0.6 correlation coefficient regardless the 

percentage of missing values, least square and ACE are suitable techniques to use with no 

significant difference between them two. This is likely due to the simplicity and Gaussian 

distribution of the data where a linear prediction is theoretically correct. Also, the R2 does not 

decrease because there are enough training data in all cases to provide a reasonable response 

surface fit. 

Random forest does not perform well in this case. This can be caused by the number of 

geology variables since more geology variables will make random forest able to sample more 

variables as candidates at each split. In this thesis, number of times the out of bag data are permuted 

per tree for assessing variable importance is set to 1. Larger than 1 will give slightly more stable 

estimation even though will not be very effective time-wise. 

 

Figure 5.2. Average R2 from 100 simulations comparison between the three techniques on 

synthetic Gaussian dataset with one geology variable 
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5.1.1.2. Synthetic Gaussian Dataset with Three Geology Variables 

The second Gaussian dataset has three geology variables and one geometallurgy variable with 

correlation matrix shown in Figure 5.3. The correlation coefficient between the geology variables 

is relatively low to show that the two different predictor variables increases the prediction accuracy. 

 

Figure 5.3. Correlation matrix of variables in the second synthetic Gaussian dataset 

 

Figure 5.4 shows the cross-plot between prediction result and original y value of one dataset 

with 50% missing data percentage. R2 of least squares, ACE, and random forest technique for this 

dataset is 0.658, 0.664, and 0.614 respectively. Adding a geology variable improves the prediction 

R2. Random forest still performs the worst between the three techniques but the gap is smaller. 

ACE and least squares perform at the same level with no significant difference between them. 
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(a) (b) (c) 

Figure 5.4. Cross-plots of original and prediction result on synthetic Gaussian dataset with three 

geology variables using (a) least squares; (b) ACE; and (c) random forest 

 

The results with different missing data value percentage is summarized in Figure 5.5. As 

before, the missing value percentage does not affect the accuracy of prediction because there is 

enough training data in all cases. All calculations show that least squares and ACE perform better 

than random forest. A linear approach is a suitable technique for a Gaussian dataset. 
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Figure 5.5. Average R2 from 100 simulations comparison between the three techniques on 

synthetic Gaussian dataset with three geology variables 

 

5.1.1.3. Synthetic Gaussian Dataset with Five Geology Variables 

The third Gaussian dataset has five geology variables and one geometallurgy variable with 

correlation matrix shown in Figure 5.6. Five geology variables are used to understand what 

happens when more redundant data are considered. The geometallurgy variable is reasonably 

correlated with all geology variables with the minimum correlation of 0.334 and maximum of 

0.623. The geology variables have various correlations ranging from 0.236 to 0.905. 
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Figure 5.6. Correlation matrix of variables in the third synthetic Gaussian dataset 

 

Cross-plots in Figure 5.7 show how the prediction result of least squares, ACE, and Random 

forest technique on 50% missing values dataset getting improve with more geology variables to 

R2 values of 0.776, 0.768, and 0.705 respectively. As above, the true underlying linear Gaussian 

nature of the data leads to the simpler techniques performing better. 

 

(a) (b) (c) 

Figure 5.7. Cross-plots of original and prediction result on synthetic Gaussian dataset with five 

geology variables using (a) least squares; (b) ACE; and (c) random forest 
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The results for different missing values percentage is shown in Figure 5.8. Random forest 

appears to perform worse with less training data. The R2 of existing techniques is pretty high even 

for 90% missing data, which implies there are sufficient training data to fit the response surface. 

 

Figure 5.8. Average R2 from 100 simulations comparison between the three techniques on 

synthetic Gaussian dataset with five geology variables 

 

All three examples support the same conclusions. The result of least squares technique is 

appropriate for predicting linear Gaussian datasets. 

 

5.1.2. Non-Linear Dataset 

A non-linear dataset is generated from synthetic dataset used above by randomly removing 

some values away so the variables no longer have a linear Gaussian distribution. This dataset 

represents non-linearity that would be expected in most geometallurgy datasets and utilized to 

understand how well prediction techniques perform for such situation.  
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Non-linear data with a single geology variable is shown in Figure 5.9. A threshold following 

the red line in the figure is considered. The threshold reduces the number of values from 2500 to 

799 and changed the histogram of x and y to have skewed distribution as seen in Figure 5.10. Yet, 

the correlation coefficient between two variables remains unchanged, at around 0.6.  

 

Figure 5.9. Non-linear synthetic Gaussian dataset 

 

 

Figure 5.10. Histograms of variables in non-linear dataset 
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The three RSM techniques are applied to the modified data following the same steps. Cross-

plots in Figure 5.11 display how the prediction result of least squares, ACE, and Random Forest 

with R2 of 0.378, 0.413, and 0.360 respectively. Random forest comes as the worst technique to 

predict the missing values on this dataset, because even though the variables have non-linear 

relationship, each of them is still averaged linearly. Therefore, other RSM techniques that also can 

predict linear variable can outperform random forest. Nonetheless, random forest R2 has the 

highest jump as compared to the same dataset in section 5.1.1. 

 

(a) (b) (c) 

Figure 5.11. Cross-plots of original and prediction result on non-linear synthetic Gaussian dataset 

using (a) least squares; (b) ACE; and (c) random forest 

 

The percentage of missing data affects the ACE result as seen in Figure 5.12. ACE is the best 

method when missing 10% values but the performance degrades above 40% missing. Random 

forest does not work well as implemented. ACE result drops significantly as compared to the result 

from other techniques because lack of data makes ACE algorithm, which maximizes variables 

correlation, misinterprets the correlation between variables that leads to the bad prediction 

accuracy. The experiments show that for all Gaussian data, linear or non-linear, least squares is a 

suitable prediction technique to use. Real data will be used to compare all the techniques below. 
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Figure 5.12. Average R2 from 100 simulations comparison between the three techniques on non-

linear synthetic Gaussian dataset 

 

5.1.3. Real Dataset 

The three RSM techniques will now be demonstrated with real datasets. There will be two 

different datasets used for this section. Both have one geometallurgy variable whereas one dataset 

has six geology variables and the other one has one geology variable. Both datasets are complete 

so the accuracy level can be judged by data left out. A different percentage will be left out ranging 

from 10% to 90% with the interval of 10%. The prediction steps are similar to the steps for 

predicting missing values in the synthetic datasets discussed above. 

Sensitivity analysis was done on the dataset with 6 geology variables to understand the 

importance of the predictor variables. When one particular geology variable has a very low 

sensitivity coefficient, not using it may not change the prediction accuracy and the variable could 

be considered for removal (Kumara & Deutsch, 2018). 
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5.1.3.1. Heavy Metal Composite (HMC) Data 

This dataset was used by Prades & Deutsch (2017) and followed by Pinto & Deutsch (2018). 

The dataset consists of 1308 samples with irregular sample spacing as shown in Figure 5.13 on the 

left. There are 63 unique metal variables in this dataset but only 7 variables with various correlation 

between each other as shown in Figure 5.13 on the right will be used in this thesis. Nickel (Ni) 

will be treated as the geometallurgy variable and 6 other variables including Silver (Ag), Arsenic 

(As), Cobalt (Co), Copper (Cu), Molybdenum (Mo), and Uranium (U) are considered as the 

geology variables. These six geology variables have linear bivariate relationship with the 

geometallurgy variable as shown in Figure 5.13 on the bottom. 
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Figure 5.13. Location map, correlation matrix, and bivariate relationships between geology 

variables and geometallurgy variable of HMC dataset 

 

All variables have positively-skewed distributions with some extreme values and different 

scales. The geology variables are ordered alphabetically. The three RSM techniques are applied to 

900 different data without normal score transformation. 

The cross-plots from 50% missing values are shown in Figure 5.14. All predictions have less 

variance than the original values. The coefficient of determination for the results are 0.607, 0.392, 

and 0.694 respectively from left to right. ACE is the technique that reproduces some outliers but 

most of the time they are not at the right location and this makes ACE look the worst. On the other 

hand, random forest and least squares are overly smooth with almost no outlier reproduced. 

Random forest has the least variance prediction result, but appears the best. 
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(a) (b) (c) 

Figure 5.14. Cross-plots of original and prediction result on hmc dataset using (a) least squares; 

(b) ACE; and (c) random forest 

 

The average of multiple realizations for each technique is presented in Figure 5.15. Missing 

data affects all three RSM techniques where the R2 values go down as the missing percentage 

increases. Random forest is the best at predicting missing values in this dataset by about 10% better 

R2. Least squares comes in second place with the least affected accuracy level among the three 

techniques while ACE performs the worst. ACE predicting extreme values comes as a 

disadvantage for mean squared error and R2. Random forest is the most suitable technique for this 

dataset. 
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Figure 5.15. Average R2 from 100 simulations comparison between the three techniques on hmc 

dataset 

 

5.1.3.2. Porphyry Data 

The second dataset was used by Deutsch (2018) and has 2 variables which are Copper (Cu) 

and Gold (Au) at 2634 locations as shown in Figure 5.16 on the top left. The samples spread out 

from south-west to north-east with the high grade located near the south-west end. The sample 

spacing is very regular. Both variables are related with correlation coefficient of 0.692 with linear 

bivariate correlation as shown in Figure 5.16 on the top right. The histograms of the two variables 

are shown in Figure 5.16 on the bottom. Both of them have some extreme values. 
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Figure 5.16. Location map, bivariate relationship between variables and histograms of all 

variables for porphyry dataset 

 

Figure 5.17 shows the cross-plots with 20% missing values of the three techniques. The result 

seems different from previous real dataset where random forest and least squares reproduce more 

outliers than ACE. The coefficient of determination for the results are 0.487, 0.543, and 0.495 

respectively from left to right. Without producing excessive outliers and a decent variables 

relationship, ACE comes out having the best accuracy among the three techniques for this dataset. 

Random forest result has the highest variance that means random forest prediction on this dataset 

is not overly smooth like the previous dataset. 
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(a) (b) (c) 

Figure 5.17. Cross-plots of original and prediction result on porphyry dataset using (a) least 

squares; (b) ACE; and (c) random forest 

 

Simulation averages are shown in Figure 5.18. From all simulations, ACE always has the best 

accuracy while random forest and least square come in the second and third place. It can be said 

that ACE is the most suitable RSM technique with this dataset. When there is less geology 

variables to predict the geometallurgy variable, the missing values percentage has less influence 

on the result. ACE has artificial limitation of prediction result whereas all the prediction results do 

not exceed the third quartile of the original data which is efficient in controlling the overestimation 

due to data outliers. 
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Figure 5.18. Average R2 from 100 simulations comparison between the three techniques on 

porphyry dataset 

 

Determining the best RSM technique result appears very specific for each dataset 

characteristic. The study has not considered the spatial information of the dataset yet. In the next 

section, the best RSM technique for each dataset is compared with prediction techniques that 

consider the spatial information of the data which are parametric imputation, random forest 

enhanced, and random forest moment.  

 

5.2. Parametric Imputation and Case Study 

The same five datasets as used above plus a sixth non-linear case will be considered. The 

imputation has the advantage of capturing data uncertainty by doing many simulations for each 

data realization while RSM only gives one prediction result. To make all of them comparable, the 

result of 100 imputation realizations are averaged so there is only one result of each case. The total 
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cases will be the same 900 as the previous section for each dataset resulting from 9 different 

missing values percentages and 100 realizations for each missing values percentage. 

All imputation methods will consider normal score transformation for non-Gaussian variables. 

Back transform to the original value is performed before calculating the coefficient of 

determination of the result. Variogram calculation and variogram modeling consider Gaussian 

transformed data.  

 

5.2.1. Synthetic Gaussian Dataset with One Geology Variable 

Variograms of two variables in the first dataset are shown in Figure 5.19. Both variables have 

well defined spatial continuity with one spherical variogram structure and a small nugget effect. 

These variograms are modeled using the complete dataset. The variogram model will be different 

for each missing x case and they are modeled using autofit feature of varmodel software (Deutsch, 

2015). 

 
(a) (b) 

Figure 5.19. Variograms of (a) response variable, and (b) predictor variable from complete 

dataset on synthetic Gaussian dataset with one geology variable 
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The cross-plots from one of the result with 50% missing values are shown in Figure 5.20. The 

coefficient of determination for the results are 0.728, 0.701, and 0.704 respectively from left to 

right. The synthetic dataset has a variable with decent spatial continuity that makes the accuracy 

significantly higher than the RSM techniques. Both proposed frameworks perform at the same 

level as parametric imputation. 

 

(a) (b) (c) 

Figure 5.20. Cross-plots of original and prediction result on synthetic Gaussian dataset with one 

geology variable from (a) parametric imputation; (b) RF-enhanced; and (c) RF-moment 

 

Figure 5.21 shows the average from 100 realizations of 100 different datasets for each missing 

values percentage. Parametric imputation performs better than two proposed frameworks. This 

happens because least squares technique that is used in parametric imputation performs better than 

random forest that is used in the proposed techniques as seen in Figure 5.2. Substituting likelihood 

distribution with less accurate result will degrade the quality of prediction. 
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Figure 5.21. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on synthetic Gaussian dataset with one geology variable 

 

For this dataset, using spatial characteristics for prediction improves the result. The three 

imputation techniques have almost the same accuracy. The accuracy may be further improved if 

the variogram is manually modeled. 

 

5.2.2. Synthetic Gaussian Dataset with Three Geology Variables 

The variograms from all four variables in the second dataset are shown in Figure 5.22. All of 

them appear to have the same variogram range of around 10. They have nugget effects ranging 

from 0.05 for x2 to 0.3 for x3 as the highest. The four variogram models consider one spherical 

structure.  
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Figure 5.22. Variograms of all variables from complete dataset on synthetic Gaussian dataset 

with one response variable and three predictor variables 

 

The cross-plots between original values and predicted values with 50% missing values using 

parametric imputation, RF-enhanced, and RF-moment are shown in Figure 5.23 with R2 values of 

0.838, 0.820, and 0.817, respectively. Although parametric imputation has slightly better R2, the 

proposed frameworks can reproduce the mean closer to the original value. Care should be taken in 

practice since unbiasedness is an important property of geostatistical models. 
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(a) (b) (c) 

Figure 5.23. Cross-plots of original and prediction result on synthetic Gaussian dataset with three 

geology variables using (a) parametric imputation; (b) RF-enhanced; and (c) RF-moment 

 

All simulations and realizations are summarized in Figure 5.24. Increasing the number of 

geology variables makes the gap between RSM and imputation closer. Parametric imputation 

comes as the best imputation technique for 90% missing values as compared to the proposed 

frameworks. RF-moment performs at almost the same level as RF-enhanced. Yet, at 90% missing 

values, the gap between them becomes bigger and RF-moments comes as the worst parametric 

imputation technique. 
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Figure 5.24. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on synthetic Gaussian dataset with three geology variables 

 

5.2.3. Synthetic Gaussian Dataset with Five Geology Variables 

Figure 5.25 represents the variograms of all variables in the third dataset. They are correlated 

to each other on some extent, which is why they have similar variograms. The variogram range is 

around 10 meters with a single spherical structure variogram model. All the variograms are omni-

directional. 
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Figure 5.25. Variograms of all variables from complete dataset on synthetic Gaussian dataset 

with five geology variables 

 

Figure 5.26 shows the cross-plots between the predicted and the original values from the three 

imputation techniques on missing 50% of the values. The R2 of them are 0.801, 0.783, and 0.774, 

respectively from left to right. Proposed frameworks tend to be better at reproducing the mean of 

missing values despite has slightly lower R2 due to random forest out-of-bagging algorithm works 

better with more prediction variables. Moreover, they have lower variances as compared to 

parametric imputation. 

 
(a) (b) (c) 

Figure 5.26. Cross-plots of original and prediction result on synthetic Gaussian dataset with five 

geology variables using (a) parametric imputation; (b) RF-enhanced; and (c) RF-moment 
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The R2 of all prediction results are shown in Figure 5.27. With five collocated variables, the 

least square technique from RSM method performs better than the proposed frameworks starting 

from 50% missing values. And least squares is the most stable technique without any noticeable 

drop as the missing proportion increases. Random forest does not perform better than imputation 

despite having five geology variables and this is the reason behind proposed frameworks failure 

to outperform parametric imputation. Overall, both proposed frameworks perform quite well and 

RF-enhanced always outperforms RF-moment. Parametric imputation still becomes the most 

recommended technique because of how stable the prediction results are as compared to other 

techniques as the missing percentage increases. 

 

Figure 5.27. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on synthetic Gaussian dataset with five geology variables 
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5.2.4. Non-linear Dataset  

Throwing away some values to make the variables non-linear makes some changes to their 

variograms. The x1 nugget effect drops down from 0.10 to 0.05 and the variogram range also 

decreases from 10 to 8.5. On the other hand, the y nugget effect increases from 0.15 to 0.20 and 

the variogram range decreases from 8 to 7. The variograms shown in Figure 5.28 are omni-

directional. 

 

 

(a) (b) 

Figure 5.28. Variograms of (a) predictor variable, and (b) response variable from complete 

dataset on non-linear dataset 

 

The proposed frameworks can reproduce the data distribution really well including the high 

values. Their mean values are too high while parametric imputation results have a slightly lower 

mean than the original. R2 values of each cross-plot in Figure 5.29 from left to right are 0.649, 

0.610, and 0.617, respectively. The proposed frameworks predict the extreme values fairly well. 

The result from both proposed frameworks also have almost the same mean as compared to the 

original value while parametric imputation slightly underestimates the missing values 
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(a) (b) (c) 

Figure 5.29. Cross-plots of original and prediction result on non-linear dataset using (a) 

parametric imputation; (b) RF-enhanced; and (c) RF-moment 

 

The comparison is shown in Figure 5.30. The two proposed frameworks perform at almost 

the same level for the entire simulation. Parametric imputation comes out better at reproducing R2 

values while proposed techniques are better at reproducing mean. These results are better than the 

result predicted using RSM technique. Parametric imputation is less stable as the missing values 

percentage increases. Parametric imputation is the most recommended technique to predict 

missing non-linear variable values. 
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Figure 5.30. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on non-linear dataset 

 

5.2.5. Heavy Metal Composite (HMC) Data 

The variograms of normal score transformed variables of HMC dataset are shown in Figure 

5.31. The real dataset have various variogram features such as different number of variogram 

structures, nugget effect, and variogram type. But, they have almost similar variogram range which 

is around 1.20. They are all omni-directional variograms. 

 

Figure 5.31. Variograms of all normal score transformed variables from complete hmc dataset 
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On this dataset, the results from the proposed frameworks have a slightly lower mean. The 

cross-plots shown in Figure 5.32 are from the dataset with 50% missing values. R2 values of each 

cross-plot from left to right are 0.504, 0.515, and 0.512, respectively. Both proposed frameworks 

have higher R2 than the parametric imputation result. 

 

(a) (b) (c) 

Figure 5.32. Cross-plots of original and prediction result on hmc dataset from (a) parametric 

imputation; (b) RF-enhanced; and (c) RF-moment 

 

The comparison of all techniques for this dataset is shown in Figure 5.33. Random forest 

performs better than parametric imputation. For this dataset, RF-enhanced is the most 

recommended technique. Not only because it has the highest accuracy, but it can capture 

uncertainty using realizations.  
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Figure 5.33. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on hmc dataset 

 

5.2.6. Porphyry Data 

The dataset has two variables with variograms as shown in Figure 5.34. The two variables 

have different variogram range where the geometallurgy variable (Cu) is more continuous than the 

geology variable (Au) with variogram range of 400 and 500, respectively. They also have different 

number of variogram structures where Cu can be modeled with only one spherical structure and 

Au needs two structures to be modeled. 
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Figure 5.34. Variograms of all normal score transformed variables from complete porphyry 

dataset 

 

The cross-plots between original and predicted values from 50% missing data values dataset 

are shown in Figure 5.35. The R2 of them are 0.656 for parametric imputation, 0.646 for RF-

enhanced, and 0.647 for RF-moment. The results are similar.  

 

(a) (b) (c) 

Figure 5.35. Cross-plots of original and prediction result on porphyry dataset from (a) parametric 

imputation; (b) RF-enhanced; and (c) RF-moment 

 

Figure 5.36 shows the R2 comparison from all prediction results. Parametric imputation and 

proposed frameworks perform at comparable level. Random forest itself cannot outperform 
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parametric imputation so that the proposed frameworks cannot perform better than parametric 

imputation. Using spatial features for predicting missing values for this dataset gives more 

accuracy.  

 

Figure 5.36. Average R2 from 100 simulations comparison between the three imputation 

techniques and one RSM technique on porphyry dataset 

 

5.3. Discussion 

Each prediction technique has a place to predict missing values with certain characteristics. 

When the geometallurgy variable has decent spatial continuity, imputation will have better R2 than 

RSM technique. On the other side, RSM technique R2 will get better when the number of geology 

variables increases. Imputation techniques perform as well as RSM techniques when predicting 

geometallurgy variables with decent spatial continuity and many collocated variables. Least 

squares regression is the best RSM technique to predict synthetic Gaussian linear dataset. 

The random forest is the best to explain real dataset with multivariate relationship and ACE 

is the best when the dataset only has one collocated variable. That happened because random forest 
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is the best to utilize all the collocated variables even with low correlation coefficient and ACE 

performs the best because it can find a good transformation. 

Furthermore, ACE will find a non-linear transformation that makes it a candidate RSM 

technique. ACE can stabilize the error variance and normalization of error distribution. But, it has 

the limitation when the data becomes too sparse and least square prediction outperforms ACE at 

that point. Random forest cannot perform well on a dataset with very few collocated variable even 

though it can well capture non-linearity of the variable. Spatial features help imputation techniques 

to perform adequately even with non-linear variable. 

Both proposed frameworks perform at almost the same level for all case studies in this thesis 

while RF-enhanced performs generally better than RF-moment. To narrow it down, RF-enhanced 

will be the only framework proposed in this thesis and will be called as Random Forest Imputation. 

Altering likelihood variance following formula (10) can be unstable. When the dataset becomes 

bigger, this problem will get worse, which explains why RF-moment performs slightly worse on 

a dataset with many collocated variables. 
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Chapter 6 

Conclusions and Future Work 

 

This thesis focuses on common challenges encountered when working with multivariate 

geometallurgical data. The main goal is to provide guidance and additional methods to improve 

the accuracy of geometallurgical modeling. A problem with geometallurgical data is its non-

linearity and missing data values. The influence of various dataset characteristics and percentage 

of missing values are investigated. A novel prediction technique is proposed. 

 

6.1. Contributions 

The imputation and RSM frameworks for model building are comparable with as shown in 

Chapter 3. The difference in accuracy depends on the dataset characteristics. 

The least squares technique is the best method to predict missing variable values in a linear 

dataset with no noise. Yet, when the variable has decent spatial continuity, imputation techniques 

will perform better than RSM techniques. Least squares prediction accuracy can be quite good as 

the number of geology variables increases. 

The least squares technique works well with a single non-linear variable. The random forest 

can theoretically explain the non-linearity better; however the synthetic non-linear dataset in this 

thesis did not confirm this. The existence of additional geology variables is the key feature for 

random forest to perform better. Nonetheless, all imputation techniques outperform the RSM 

approach and parametric imputation comes out as the best technique. 
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For real dataset, the number of collocated variables determines the best RSM technique to 

predict missing values. Random forest can perform well when the dataset has many geology 

variables while ACE is a well-established at a certain accuracy level disregarding the number of 

geology variables. When the real dataset spatial characteristics can be well defined, all imputation 

technique outperform all RSM techniques. As the number of collocated variable increases, random 

forest outperforms parametric imputation. 

The proposed RF-enhanced imputation technique appears to have promise for imputation. 

Development of random forest regression technique will improve the RF-enhanced result. This 

could be addressed in future research. 

 

6.2. Future Work 

This thesis does not consider categorical variables. The other limitation is not having non-

linear dataset with more than one geology variable. Future work could overcome these limitations. 

There are several prediction techniques that are not brought up to this thesis such as Gradient 

Boosted Model (GBM) by Hastie et al. (2009) and GMM imputation by Silva and Deutsch (2016). 

They should be compared to the existing method and also to random forest imputation. 

Considering the GBM method to alter the likelihood distribution in imputation could be another 

step. 

A research in random forest regression technique will help improving the result of RF-

enhanced. In this thesis, rpy2 Python library was used. Changing some parameters or using other 

random forest program such as scipy Python library may give different result. 

Developing software related to random forest imputation will be a good contribution to 

establishing these novel imputation techniques. Random forest imputations in this thesis are done 
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manually using python software. Writing random forest imputation code as a standalone software 

will be a convenience for some people to use random forest imputation on predicting missing 

values. 
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