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Abstract

Due to the dramatic increase in wireless data traffic and the energy consumption

of wireless networks, spectral- and energy-efficient wireless networks are imperative.

Using multiple-input multiple-output (MIMO) transceiver structures and cell den-

sification through small cell (SC) deployment increases both spectral efficiency and

energy efficiency significantly and meets future network requirements, but also brings

new challenges. These are severe interference, limited fronthaul capacity, computa-

tional complexity, cost, and power consumption. Promisingly, radio frequency (RF)

energy harvesting, that helps technologies such as Internet of things (IoT) to fur-

ther reduce the power consumption of devices while providing the desired quality

of service (QoS), can benefit from MIMO systems in an overlaying network. This

thesis designs high spectrum and energy-efficient cellular networks via three main

objectives: 1) design and performance evaluation of an energy-efficient network by

integrating MIMO and SC deployments with well-designed interference management

and resource allocation methods; 2) design and performance evaluation of computa-

tionally efficient precoding algorithms for co-located and cell-free (CF) massive MIMO

(mMIMO) systems; 3) design and performance evaluation of energy-harvesting IoT

networks underlying and symbiotic with massive MIMO cellular networks. First, we

focus on maximizing the energy efficiency of a MIMO-enabled heterogeneous cloud

radio access network (H-CRAN) as a candidate architecture for beyond 5G cellular

systems. A joint radio resource block allocation and antenna selection algorithm is

proposed for the SCs, and a single RF chain structure is considered for the mMIMO

macro base station (BS). Moreover, while coordinating transmissions between cells

ii



subject to user-centric clustering, an energy-efficient beamforming design, and power

allocation optimization problem is formulated and its solution is proposed. Second,

we address the implementation complexity of matrix inversion associated with precod-

ing in mMIMO systems. We investigate the convergence of different iterative matrix

inversion methods in the presence of small-scale fading, large-scale fading, and spatial

correlation and compare their performance and complexity. Third, by considering the

coexistence of CF mMIMO and symbiotic backscatter communication and deriving

the upper bound for signal-to-interference-plus-noise ratios (SINRs) and also the av-

erage harvested power, we provide a novel insight toward efficient implementation of

massive machine-type communications (mMTC) use case of 5G and beyond cellular

networks.
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Chapter 1

Introduction

1.1 Future Generation of Wireless Networks

The wireless industry is transitioning to be integrated into every aspect of our daily

life. The industry forecasts (Fig. 1.1) global mobile data traffic to grow by a factor of

around 4.2 to reach from 67 Exabytes per month in 2021 to 282 Exabytes per month

in 2027, and this trend is expected to continue in the future [1]. Increasing numbers

of connected devices, which will be more than three times the global population by

2023, and expected dramatic growth of applications such as the Internet of things

(IoT), which is continuing to grow from 6.1 billion in 2018 to 14.7 billion by 2023,

are the primary contributors to global mobile data traffic growth [2]. Technologies

such as IoT are very beneficial in facilitating our lives in various areas such as health

care, safety, education, manufacturing, and transportation. Hence, next-generation

cellular systems are expected to answer mobile users’ increasing capacity demands

and quality of service (QoS) requirements.

Beside upsurge in wireless network traffic, there is a sharp increase in energy con-

sumption which necessitates the enhancement of spectral efficiency (SE) while taking

power consumption into account. To this end, fifth generation (5G) and beyond 5G

networks must increase energy efficiency (EE) commensurate with their improvements

to SE [3]. Unfortunately, resources such as spectrum, power, and fronthaul capacity

are fundamentally limited, which makes meeting the demands of 5G and beyond 5G
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Figure 1.1: Forecast of Ericsson for global mobile data traffic [1]

networks challenging.

One of the foremost ways to accomplish energy and spectrum efficient networks

using limited resources is network densification. This broadly refers to increasing the

number of antennas per site and deploying smaller cells [4]. This trend is associated

with multiple-input multiple-output (MIMO) transceiver structures, small cell (SC)

deployment, and advanced interference mitigation techniques.

Efficient deployment of technologies, such as IoT, is also essential for future net-

works. IoT devices can be powered with energy harvesting, which is of significant

research interest due to its potential to provide a ubiquitous energy source [5]. Due

to the sensitivity of energy harvesting to propagation loss, beamforming using multi-

antenna techniques is a great asset in its efficient use. Finally, while designing

spectrum- and energy-efficient future communication networks that satisfy all the re-

quirements is a challenging task, the combination of the technologies and techniques

discussed above paves the way forward.
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1.1.1 MIMO Wireless Communications

Deploying MIMO significantly improves the capacity and reliability of wireless sys-

tems without the need for additional power or spectrum in a rich scattering envi-

ronment [6]. MIMO offers two fundamental improvements compared to the single-

antenna structure - namely array gain and spatial multiplexing gain. Having multi-

ple transmit antennas enables the base station (BS) to steer the signal towards the

user via directional beamforming and improves the signal-to-interference-plus-noise

(SINR) of every user, which is the array gain. The transmitter can also simulta-

neously send multiple signals with different directional beamforming vectors, which

increases the data rate, which is the spatial multiplexing gain. MIMO can also offer

spatial diversity gain, which protects the system against outage by sending redundant

streams of information in parallel along multiple spatial paths, which is highly desir-

able, for instance, in ultra-reliable low-latency communication (URLLC). In particu-

lar, large-scale antenna arrays, also known as massive multiple-input multiple-output

(mMIMO), are of interest for 5G and beyond systems because of several beneficial fea-

tures that arise from having many antenna elements. These include increased SE and

EE for no additional transmitted power, near-optimal performance of simple linear

precoders and detectors [7], and robustness to fading and interference [8]. mMIMO

transceivers are supported in the 3rd Generation Partnership Project (3GPP) stan-

dards in Release 15 and above [9, 10], and have been commercialized and implemented

in practical cellular systems [9].

Like other digital communication systems, mMIMO systems can use two duplex

transmission modes; frequency division duplex (FDD), where the uplink (UL) and

downlink (DL) transmissions operate at the same time but on significantly separated

carrier frequencies and time division duplex (TDD). The UL and DL transmissions

use the same frequency band but operate in different time slots. In the FDD mode,

the users measure the DL channel and feed back this information to the BSs. In TDD
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mode, the BS estimates the UL channel state information (CSI) and then, relying on

the radio channel reciprocity in the same frequency band, uses it for the DL precoding

[11]. Since this limits the channel estimation overhead, almost all mMIMO systems

use TDD. In the mMIMO FDD mode relying on the DL CSI feedback from users,

the volume of UL signaling (which is proportional to the number of BS antennas)

may become overwhelming [12]. In comparison, since TDD exploits radio channel

reciprocity, channel estimation overhead is only proportional to the number of users

[13]. However, even with TDD, the number of available orthogonal pilot sequences is

limited. In a system where a set of pilot sequences is allocated among L cells having

K users per cell and a frequency reuse factor of one, orthogonal pilots need a length

of least K ×L symbols. Unfortunately, short channel coherence times because of the

mobility of users do not allow for such long pilot sequences and limit the maximum

number of mutually orthogonal pilots for large L [14]. Thus, either non-orthogonal

pilot sequences must be employed, or sequences must be reused in nearby cells (or a

combination of the two). This causes pilot contamination [15], a major performance

impairment in mMIMO systems. Numerous works such as [16–18] have studied dif-

ferent techniques to mitigate the interference caused by pilot contamination.

1.1.2 Small-Cell and Heterogeneous Networks

The traditional macrocell networks have approached their limits with ever-increasing

demands for higher data rates. While further improvement in SE is possible by

increasing the density of macro BSs, it is not viable due to its cost and the lack

of available sites [19]. SC deployment is another technique in which by splitting

large cells into smaller cells, each with its low power BS and a reduced coverage area,

capacity per coverage area increases significantly. Cell splitting increases the capacity

of a cellular system since it increases the spectrum reuse per unit area. Also, the link

to the end user becomes shorter, which results in reduced path loss and thus higher

SE and EE [20].
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Underlying macro cellular networks with low-power BSs in a more dense manner

leads to the heterogeneous cellular network (HetNet). Thus, a HetNet includes a mix

of macrocells, remote radio heads (RRHs), and low power nodes such as picocells,

femtocells, and relays, operating within the same frequency band and bringing the

access points (APs) closer to end-users. Each cell type may have different specifica-

tions, such as transmit power, coverage, backhaul, and responsibilities. For example,

macro cells are designed to provide coverage for up to a few kilometers while guar-

anteeing minimum data rate under maximum tolerable delay for thousands of users.

Their transmission power ranges from 5 W to 40 W with a dedicated backhaul, and

they can support high mobility users. Picocells serving tens of users within a radio

range of 100 m to 250 m are mainly utilized for boosting in-building cellular coverage

in environments with low macro penetration and have a typical transmit power range

from 0.2 W to 1 W [21]. In general, deploying any SCs helps offload the traffic from

macrocells.

Combining the concept of cell splitting by adding more BSs to the designated

coverage area and increasing spatial multiplexing by adding more antennas to each

BS will satisfy the area throughput requirements of next-generation cellular networks.

While macro BS can be equipped with mMIMO, only a few antenna elements are

usually sufficient at an AP within each SC covering a smaller area.

While HetNets improve the performance of SCs, their deployment entails many

challenges in terms of backhauling, power consumption, and interference manage-

ment. SC backhaul connections are used to: 1) Forward/receive the SC user data

to/from the core network, 2) Exchange mutual information among different SCs. As

deployment becomes denser, the aggregated data rate of the SCs is approaching the

same data rate level supported by the backhaul links, especially for the cooperative

scenarios. These scenarios include coordination of transmission and/or reception at

multiple BSs while serving each user, referred to as coordinated multipoint (CoMP)

transmission and reception, that enhances the QoS of the users. A comprehensive
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overview of the existing wireless backhaul solutions has been provided by [22], where

the benefits and challenges of each solution have been discussed. Amongst proposed

solutions, using sub-6 GHz spectrum has the benefit of not requiring additional spec-

trum, new hardware, or antenna alignment, but having a high licensing cost and

high vulnerability to interference. Aside from using different spectral regions such

as microwave and millimeter-wave, proposing new user association criteria based on

the backhaul capacity limitation and utilizing mMIMO for wireless backhauling are

other possible solutions that have the potential to improve the performance of wire-

less backhauling for SCs. On the other hand, while the power consumption of a single

SC is smaller than that of a macrocell, the massive deployment of SCs in the 5G cel-

lular network makes the total power consumption of SCs no longer insignificant and

even larger than that of an exclusive macrocell network. To reduce the total power

consumption of HetNets, transmission power optimization [23], dynamic change of

the operating states (SC switch on/off) [24, 25], and antenna selection for SCs have

been considered. By nature of the design of HetNet, the system performance is in-

herently interference-limited, meaning inter-cell interference is the main performance

bottleneck. The challenge of interference management and possible solutions will be

discussed in more detail next.

1.1.3 Interference Management

The combination of MIMO and SCs overlaying larger cells forms a two-tier MIMO

HetNet, which can increase both SE and EE significantly and meet 5G requirements,

but also brings new challenges. In practice, the densification of cells may cause severe

inter-cell interference, which limits the performance gains. To mitigate interference,

increase the cell-edge throughput, and enable the potential gains of HetNets, it is

crucial to utilize advanced signal processing techniques; CoMP transmission and re-

ception is a potential solution [26]. This technique has been introduced for Long

Term Evolution - Advanced (LTE-A) and standardized by the 3GPP since Release
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11 [27]. In DL CoMP, two transmission schemes mainly depend on the information

exchanged among the BSs: joint transmission and coordinated beamforming. Joint

transmission can be broadly described as the simultaneous transmission of data from

multiple coordinated BSs associated with a user. Both data and DL CSI need to be

available to all involved BSs. By contrast, coordinated beamforming designs the in-

dividual BS precoding to avoid interference to users served by other BSs. Thus, only

DL CSI needs to be available to all involved BSs, and data packets that are supposed

to be sent to a given user are only available at one BS. Another less common CoMP

transmission scheme is called transmission point selection (TPS). In this, while the

data packets are available in coordinated BSs, only one of them serves the user at each

time instance. Since sharing CSI requires much lower overhead than sharing data,

coordinated beamforming needs much lower backhaul capacity than joint transmis-

sion [28]. While the amount of shared CSI also depends on the number of antennas

in each BS, coordinated beamforming can still occupy less backhaul capacity for a

HetNet, primarily including SCs with few antennas.

Deploying CoMP in HetNets adds complexity and signaling overhead and heavily

depends on the backhaul constraints and density of SCs. A cloud radio access network

(CRAN) or heterogeneous cloud radio access network (HCRAN) design is a potential

solution to handle these issues [29]. CRAN is an innovative architecture consist-

ing of baseband units (BBUs) that are in charge of baseband processing, connected

to RRHs that act as distributed transceivers and perform radio functions, includ-

ing frequency conversion, amplification, and analog-to-digital and digital-to-analog

conversion. CRAN aggregates numerous BBUs in a central physical pool called a

central cloud, so digitalized signals collected by geographically distributed RRHs are

transmitted to the cloud via (typically) optical fiber for processing [30]. With this

promising architecture, the power consumed in BSs, which is almost 60% of the total

power consumed in a typical mobile network [31], will decrease significantly, which is

desirable in terms of EE. The more efficient centralized cooling system in the BBU
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pool, decreased number of BBUs in comparison to a traditional RAN, and the ability

to adapt to nonuniform traffic and utilize the RRHs more efficiently are among the

reasons leading to a significant reduction in the total energy consumption [32]. In

CRAN, radio resource allocation can be performed jointly for the connected RRHs at

the pool. At the same time, coordinated DL transmission in a cluster of SCs can mit-

igate inter-cell interference within the cluster. In contrast, precoding/beamforming

of signals can mitigate intra-cell interference between users.

Although CRANs are commonly envisioned under the assumption of a fiber-based

backhaul and/or fronthaul, some network operators have also considered using a wire-

less backhaul/fronthaul instead. A fiber-based fronthaul is more reliable and has a

much larger capacity, but it is impossible to deploy in some environments. The de-

ployment of fiber may also incur substantial costs for installation or leasing, which

smaller operators may be unwilling or unable to contend with. In comparison, a

wireless fronthaul is cheaper and more flexibly deployed (which also aids cell den-

sification), but has a much smaller and variable capacity. Hence, when optimizing

the performance of a network, a limited fronthaul capacity should be accounted for.

In [29] and [33], the challenges of mMIMO-enabled H-CRANs are surveyed, and the

issues of system architecture, SE and EE performance, and promising key techniques

are discussed.

1.2 Cell-Free Massive MIMO Networks

The idea behind designing a cellular network was to make efficient use of the limited

spectrum by enabling simultaneous transmissions in the area covered by the network.

However, the cell boundaries created as a result of splitting the coverage area into

small cells lead to inter-cell interference, which is one of the main causes of the poor

cell-edge throughput [34]. One innovative approach is to design a new network archi-

tecture that omits these boundaries and makes the implementation of CoMP scalable

through coherent user-centric transmission [35]. Cell-free (CF) mMIMO is a form
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Figure 1.2: Structure of traditional cell-centric CoMP (left figure) vs. user-centric
CF mMIMO (right figure)

of distributed mMIMO, in which a large number of geographically distributed low-

power access points (APs) are used to jointly serve a set of users that is substantially

smaller than the number of APs. In UL, APs transmit the received data from users

to the central processing unit (CPU) through the fronthaul link, where various re-

sources can be allocated via centralized processing to improve QoS. In DL, the CPU

use backhaul links to send the data and the power control coefficients to APs to

perform joint transmission. CF mMIMO is in some regard a “rebranding” of earlier

methods also known as distributed antenna systems [36], network MIMO [37], and

coordinated multipoint [38] (as discussed in the previous section) to the large-scale

antenna array regime. CF mMIMO is at the intersection of mMIMO, CoMP, and

ultra-dense networks and benefits from these three technologies’ gains. As shown in

Fig. 1.2, while traditional CoMP had been performed between adjacent cells and was

cell-centric, in CF mMIMO there is no cell boundaries and each user is being served

jointly by a cluster of APs that is defined based on channel state of users. Moreover,

Clusters of different users can share some APs that overlap. The most significant

benefits of cell-free mMIMO compared to conventional cellular networks are smaller

signal-to-noise-ratio (SNR) variation, better interference management, and increased

SNR due to coherent transmission [34]. Owing to its ability to exploit macro-diversity

more efficiently, this distributed architecture can offer a higher probability of coverage
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and better SE and EE compared with conventional mMIMO [39, 40]. Moreover, since

the cell boundaries are eliminated, there are no cell-edge users in the system, so the

system is fairer, and all users will receive uniformly good QoS.

1.3 Internet of Things

IoT is an important paradigm to bridge diverse technologies and enable many con-

nected, intelligent devices to share information and coordinate decisions. The revolu-

tionary applications of IoT include a wide range of domains, such as transportation,

healthcare, industrial automation, and so on [41]. Although IoT is expected to be

a key part of future 6G networks, massive deployment of IoT devices faces practi-

cal challenges caused by their high operational costs, power consumption, and the

shortage of spectrum resources [42]. Hence, designing energy- and spectrally-efficient

communication techniques for future IoT systems is critical [43].

A promising solution to overcome the hurdle of high power consumption and lim-

ited battery lifetime in an IoT device is energy harvesting. It is a simple and effective

solution to scavenge energy from sources such as light (solar or man-made), wind,

vibrational, thermal, and hydroelectric, and wireless radio frequency (RF) signals

resources. Thanks to stability and the availability of ambient wireless signals (TV

broadcasting, mobile BS, etc.) and due to uncertainty of the natural resources and

their dependence on location, climate, and time, RF powering is considered the most

reliable energy harvesting scheme for wireless networks. In RF energy harvesting/s-

cavenging, which performs on-demand gathering of energy from RF signals, energy

can be radiated from external sources such as TV towers, BS, or WiFi access points

to radio frequency identification (RFID) tags, sensors, actuators, mobile phones, etc.

The harvested energy then can be used by IoT devices to charge the battery, process

the information, and also for data transmission.

Simultaneous wireless information and power transmission (SWIPT) [44], and

backscatter communication (BC) [45] are two major approaches that have integrated
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RF-based energy harvesting into wireless communications. While the SWIPT tech-

nique is extensively investigated as a viable solution to power energy-constrained

user devices (smartphones, tablets, etc.) when transmitting data, BC is used as an

enabling solution to pave the way toward efficient deployment of IoT. BC, initially

proposed in [46] and later commercially applied in passive RFID systems [47], uses

passive reflection and modulation of an incident RF wave while harvesting energy

from it [48]. BC systems can be classified into three major types based on their

architectures: monostatic BC systems, bistatic BC systems, AmBC systems.

As seen in Fig. 1.3(a), monostatic BC systems include two main components: a

backscatter transmitter, e.g., an RFID tag, and an interrogator that consists of both

the RF source that emits the wave needed for communication and the receiver that

decodes the tag-modulated signals [49]. First, the RF source generates RF signals to

activate the tag. Once activated, the backscatter transmitter modulates and reflects

the RF signals sent from the RF source to transmit the data to the backscatter

receiver. Finally, the transmitted signal is captured by an interrogator, which acts as

a backscatter receiver. Since the RF source and the backscatter receiver are placed

on the same device, the modulated signals may suffer from a round-trip path loss [50].

Hence, monostatic BC systems coverage is limited, and they are mainly adopted for

short-range RFID applications.

Bistatic BC differs from monostatic BC in that the RF source and the backscatter

receiver are separated (Fig. 1.3(b)). As a result, in this structure, a doubly near-far

effect happens due to the signal loss from the RF source to the backscatter transmitter

and also when a backscatter transmitter is located far from the backscatter reader

which leads to lower modulated backscatter signal strength [51], can be mitigated by

placing several carrier emitters, and the coverage can be expanded [50]. Additionally,

the performance of the system can be further improved by placing carrier emitters

at optimal locations [52]. Finally, even though carrier emitters are bulky and their

deployment is expensive, the fabrication cost of the carrier emitter and backscatter

11



Figure 1.3: Paradigms for different BC configurations. (a)monostatic BC. (b) Bistatic
BC. (c) AmBC [49]

receiver in the bistatic configuration is cheaper compared to monostatic configuration

due to less complex design [49].

Both above-mentioned backscatter systems use a dedicated RF source supplying

the energy and backscattered signal while having different receiver structures. In

contrast, AmBC allows passive BDs to modulate their information symbols on top of

ambient RF carriers of so-called “legacy” systems (e.g., WiFi, TV, or cellular network

signals), while harvesting energy from the legacy signals to power the BD circuitry

[53–55]. Power consumption in AmBC is low compared to traditional BC because

of having no need for active components, e.g., oscillators, analog-to-digital/digital-

to-analog converters, etc. Furthermore, in AmBC, the BD shares the same radio

spectrum with the legacy users; thus, no dedicated spectrum is needed. As a re-

sult, AmBC offers significant energy and spectrum utilization improvements and is

a promising solution for energy-efficient Internet of things [51, 56]. Since the energy

transfer is so sensitive to propagation loss and fading, multi-antenna techniques such

as beamforming are great candidates as transmission schemes for energy harvesting

networks [57].
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1.4 Thesis Objectives and Organization

1.4.1 Motivation and Problem Statement

The focus of the thesis is to design communication networks with higher EE, char-

acterized by reduced complexity and lower cost and power consumption. To achieve

this goal, we will consider two essential classes of network optimization problems.

The first one will involve designing a network architecture that satisfies the require-

ment of energy-efficient 5G and beyond 5G networks. The second part is system-level

optimization, in which developing reduced-complexity, cost and energy-efficient in-

terference management, resource allocation, and user association techniques are of

interest.

mMIMO as a key enabler for enhanced SE and EE, is already a part of the 5G

standards. To further improve SE and EE, the combination of mMIMO and small cell

deployment leads to either a MIMO-enabled HetNet or a CF homogeneous network

that both show improved gains in SE and EE. While HetNets are commonly consid-

ered for improving the network performance and reflecting modern cellular network

layouts, the CF MIMO network may be a key architecture option for a 6G network.

The Cellular IoT concept has been introduced in the 5G standard (as the mMTC use

case) and IoT devices are currently using 5G access networks, however the advantages

offered by CF mMIMO architecture will likely make the deployment of cellular IoT

(mMTC) in 6G networks even more effective.

While the previous literature considers the EEmax problem in several scenarios,

in this thesis, we combine the factors of massive and small-scale MIMO in a two-

tier HetNet, orthogonal frequency-division multiple access (OFDMA), coordinated

beamforming, user-centric clustering, antenna selection, and resource block (RB) as-

signment, transmit power constraints and allocation, minimum data rate constraints,

and fronthaul capacity constraints, all together simultaneously. To our knowledge,

the examination of a system combining all these factors simultaneously has not been
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well investigated before. Our use of the single-RF-chain transceiver structure for the

massive MIMO macro BS is also relatively novel, especially in the EEmax context.

We formulate a power consumption model for this type of transceiver and examine

the EE both of the macro cell and the overall network compared to a traditional

transceiver structure with one RF chain per antenna element.

Utilizing the vast number of antennas increases SE and EE thanks to the beneficial

features of increased spatial diversity; however, it also creates new implementation

issues. One of which is the need for a computationally efficient precoding algorithm.

Since iterative methods require less storage and have higher computational time ef-

ficiency compared to direct inversion methods such as singular value decomposition

and Cholesky factorization, they are good candidates for use in mMIMO systems.

Nevertheless, to the best of our knowledge, no prior work has investigated iterative

matrix inversion methods for precoding in the context of CF mMIMO. As we shall

show, the distributed nature of the antennas and their effect on the channel matrices

significantly impact the convergence of some of these methods. In some cases, they

may no longer converge for CF mMIMO, despite converging in a conventional co-

located mMIMO scenario. Moreover, in contrast to most of the related papers that

have only considered small-scale fading, we also include large-scale fading and spatial

correlation for a more realistic model of the cellular environment and the channel

matrices to be inverted.

While AmBC has received rekindled interest as a cutting-edge technique to provide

spectrally- and energy-efficient communications in low-power networks, the obstacle

of severe path loss between the transmitters and receivers makes its implementation

in wireless networks challenging. The lower average distance to the nearest AP and

higher area density of APs makes CF mMIMO a good candidate to implement energy-

harvesting-based technologies. While both AmBC and CF mMIMO have the potential

to be integrated into future generation wireless standards [58–60], their compatibility

with existing technologies needs to be carefully examined. One potential solution to
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the complication arising from merging these technologies, due to having numerous

antennas and coherent beamforming in mMIMO, is symbiotic radio (SR), which has

been proposed based on cooperative AmBC systems [61–63]. In SR, the primary

transmitter (PT) of the legacy system designs its transmit beamforming to assist both

primary and backscatter device (BD) transmissions, while the primary receiver (PR)

decodes information from the BD and the PT. Hence, SR is a promising solution to

achieve spectrum-, power- and cost-efficient communications by sharing the spectrum,

energy, and infrastructure of the primary system [63]. This thus motivates our current

work to consider the amalgamation of CF mMIMO and SR systems.

1.4.2 Thesis Outline and Contributions

This section discusses the organization of the thesis and outlines the contributions of

each chapter.

• Chapter 2 reviews the necessary theoretical background for the thesis on mMIMO,

CF mMIMO, and BC.

• In Chapter 3, the energy-efficient deployment of MIMO in HCRAN has been

considered. To achieve high EE, MIMO and SC deployments need to be inte-

grated with well-designed interference mitigation and resource allocation meth-

ods. To this end, we have proposed and investigated the use of user-centric

clustering and coordinated beamforming with null-space projection and zero-

forcing (ZF) precoding to mitigate interference in a HetNet. A single-RF-chain

mMIMO transceiver design for the macrocell and antenna selection for the SCs

have been proposed to reduce hardware complexity and power consumption.

We have furthermore designed a joint antenna selection and RB allocation al-

gorithm, followed by a power optimization algorithm, to maximize the system

EE.

• In Chapter 4, we address matrix inversion associated with precoding in CF
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mMIMO systems [34] to tackle the problem of computational complexity. While

there are various generic methods for matrix inversion, e.g., Gauss-Jordan elim-

ination, via QR decomposition using Gram-Schmidt and/or Givens rotations

methods, etc., the particular Hermitian structure of the matrices inverted in

mMIMO precoding leads us to exploit iterative methods to reduce the com-

plexity and make the system more cost- and hardware-efficient. To do so, we

examine several iterative methods to calculate the precoding matrix in a CF

mMIMO system and investigate their computational complexity and conver-

gence rate in the presence of small- and large-scale fading and spatial correlation

between antennas.

• In Chapter 5, we investigate the performance of CF mMIMO in facilitating the

implementation of energy-harvesting techniques, where our focus is on symbiotic

backscatter communication [63]. To do so, by considering the effects of pilot

contamination and spatial correlation between antennas, a two-phase UL pilot

training method is proposed. Then, we derive the closed-form expressions for

the average SINR ratios for both primary and backscattering transmission under

the assumption of correlated Rayleigh fading channel, channel estimation error,

pilot contamination and channel hardening. The average power harvested in

the BDs is also derived.

• Finally, Chapter 6 summarizes the contributions of the thesis and gives direc-

tions for future research.
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Chapter 2

Background

2.1 Key Aspects of Massive MIMO Systems

Massive MIMO (mMIMO) systems with hundreds of antennas are seen as one of the

critical enablers of the next generation of cellular networks to meet the ever-increasing

QoS demands of users and potentially allow for orders of magnitude improvement in

SE and EE using relatively simple processing. While initially the focus of MIMO

systems was point-to-point communications, where two terminals with multiple an-

tennas communicate with each other (like as shown in Fig. 2.1(a)), further evolution

of MIMO systems led to multi-user MIMO (MU-MIMO) systems that are more tol-

erant of the propagation limitation such as channel rank loss, antenna correlation

and LoS propagation environment [64]. As shown in Fig. 2.1(b), a BS with multi-

ple antennas simultaneously serves a set of users in MU-MIMO. Since it offers spatial

multiplexing, the spectral efficiency of these systems is much higher than in the point-

to-point MIMO case. Finally, to achieve even more dramatic gains and simplify the

required signal processing, mMIMO systems have been proposed in [65], where each

BS is equipped with hundreds or more antenna elements. mMIMO offers advantages

such as: 1) High SE because of significant multiplexing gain and antenna array gain,

2) High reliability because of significant diversity gain, 3) High EE because of the

concentration of radiated energy on specific users in DL, and 4) Weak inter-user inter-

ference because of orthogonality of users channels and also extremely narrower beam.
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Figure 2.1: Point-to-point MIMO systems vs. MU-MIMO systems

Aside from the advantages of the mMIMO structure, some properties and challenges

arise from having many antennas that we define and explain more closely in this

chapter.

2.1.1 Favorable Propagation and Channel Hardening

Favorable propagation and channel hardening are concepts that arise from having a

large number of antennas and have the merit of simplifying signal processing in an

mMIMO network [8]. mMIMO exploits these two properties to multiplex many users

in the same time-frequency resource with little inter-user interference. Thus, it can

offer a vast spectral efficiency with simple signal processing. The channel hardening

and favorable propagation phenomena make the communication performance almost

independent of the small-scale fading realizations; it mainly depends on the first and

second-order moments of the channels, which represent the large-scale fading [66].

Both phenomena, which are consequences of the law of large numbers, make the uti-

lization of simple signal processing sufficient for the mMIMO system. First, effective

channels after combining/precoding become almost immune to small-scale fading,

which eases the burden on resource allocation and scheduling [8]. Second, since the

users’ channel vectors become almost orthogonal, there is no need to design high com-

plexity receive combining and transmit precoding for the MIMO system to manage
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the interference and simple linear techniques guarantee near-optimal performances

[67].

As the number of BS antennas grows large, the ratio between the number of BS

antennas and the number of served users becomes higher, which leads to a set of

user channels whose directions are nearly mutually orthogonal that accelerate spatial

interference cancellation [68]. Let us consider an mMIMO system with a M -antenna

BS and K single antenna receivers with M >> K. hi,hj ∈ CM are the (UL) channel

vectors between multi-antenna BS and user i and j, then we have [8]

hH
i hj√︁

E{||hi||2}E{||hj||2}
→ 0 when M → ∞ (2.1)

This property is known as favorable propagation and results in the near-optimal per-

formance of linear processing. More precisely, a simple linear detector such as matched

filter is sufficient to suppress the noise and interference on the UL. Meanwhile, on

the DL, linear beamforming techniques, such as maximum ratio or ZF, allow BS to

simultaneously beamform multiple data streams to multiple users without causing

mutual interference. In practice, the propagation channels may not offer favorable

propagation. However, it is shown in [69] that an approximate form of favorable

propagation can be achieved, like in non-line-of-sight scenarios with rich scattering

and line-of-sight scenarios with distinct user angles.

Channel hardening is attributed to the high spatial diversity provided by a having

multiple antennas [70]. With this phenomenon, the channel behaves almost determin-

istically and the instantaneous channel gain is well approximated with the average

gain. In other words, we have [8]

||hk||2

E{||hk||2}
→ 1 when M → ∞ (2.2)

As a result of this property, the need for adapting the system scheduling, power

allocation, and interference management to small-scale fading variations is alleviated.

It leaves only the large-scale fading to handle. However, each user still needs its DL
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reference signal to estimate its DL CSI if it is expected to perform coherent reception

of its data signal. Nevertheless, because of radio channel reciprocity, in propagation

environments that channel hardens, the use of pilots for channel estimation on the

DL can be avoided, and each user can approximate its instantaneous channel gain

by its mean. On the other hand, in propagation environments like a keyhole channel

without hardening, DL pilots can still be avoided by utilizing blind channel estimation

algorithms like the algorithm proposed by [11].

2.1.2 Spatial Channel Correlation

Let us consider the channel response between BS L with M antennas and user K with

one antenna is denoted by hlk ∈ CM . Then the fading channel hlk is called spatially

uncorrelated if the channel gain and the channel direction are independent random

variables and the channel direction is uniformly distributed over the unit sphere in

CM [8]. In other words, there is no correlation in the channel responses between user k

and any two different antennas at the BS. In practice, the assumption of uncorrelated

channels for mMIMO systems is unrealistic. Whether due to the lack of sufficient

scattering in the local environment around the APs, non-uniform radiation patterns

of antennas or insufficiently separated antennas, some spatial directions become more

probable to carry strong signals from the transmitter to the receiver than other di-

rections and the small-scale fading channel gain vector for any given user will exhibit

spatial correlation.

Let us assume we have a non-line-of-sight (NLoS) channel between BS l equipped

with M antennas and user k where the small-scale channel fading is modeled as

Rayleigh fading. Then, a spatially correlated Rayleigh fading channel vector is

hlk ∼ CN (0,Rlk), (2.3)

where Rlk is the correlation matrix and covariance matrix. Rlk is characterized by

its eigenstructure in which large eigenvalue variations indicate the spatial directions
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that are more likely to contain strong signal components. For the special case of

uncorrelated channels, the correlation matrix simplifies as Rlk = IM .

Modeling spatial correlation, as an important property of a mMIMO system, is

the first step in capturing its impact on the performance of the system. Here we

explain a rather simple model where the idea is to parameterize the subspaces of

the correlation matrices by the azimuth angles to the UEs to determine if two UEs

are spatially separable by comparing their respective angles. By assuming macro BS

antennas to be higher up, such that scatterers are located only near the users (i.e.,

localized scattering), we can model Rlk as proposed by [8, Eq. (2.22)]:

Rlk =
N∑︂

n=1

E{|bn|2}E{exp
[︁
2πjdH(m−1) sin(ϕ̄n)− 2πjdH(m

′−1) sin(ϕ̄n)
]︁
}

=

∫︂
exp

[︁
2πjdH(m−m′) sin(ϕ̄)

]︁
f(ϕ̄)dϕ̄

(2.4)

where bn accounts for the gain and phase rotation on path n, m and m′ are indices

of two different antenna elements at BS l, dH is the antenna spacing (in number of

wavelengths), and ϕ̄n is the angle of the nth multipath component. Since we assumed

BS antennas to be located on the top of a tall tower, it is reasonable to assume

further that all the multipath components originate from a scattering cluster around

the UE as shown in Fig. 2.2. Then ϕ̄ can be defined as ϕ̄ = φ + δ, where φ is

a deterministic nominal angle (in radians) between the user and the antenna array

and δ is a random deviation from the nominal angle with standard deviation σφ. By

assuming δ ∼ N (0, σ2
φ), (5.38) can be simplified as

Rlk =

∫︂
exp [2πjdH(m−m′) sin(φ+ δ)]

1√
2πσφ

exp

[︃
−δ2

2σ2
φ

]︃
dδ

= exp

[︃
2πjdH(m−m′) sin(φ)−

σ2
φ

2
(2πdH(m−m′) cos(φ))

2

]︃ (2.5)

that is valid when σφ is small, e.g., below π
12

radians (15°). It is worth mention-

ing that both (5.38) and (2.5) are derived by using some simplifying assumptions
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Figure 2.2: Illustration of NLoS propagation under the local scattering model, where
the scattering is localized around the UE (cf. [8])

such as uniform linear array at the BS to enable comparison between correlated and

uncorrelated cases.

2.1.3 Computational Complexity

Utilizing the vast number of antennas (or APs) mitigates many problems thanks to

increased diversity benefits; however, it also creates some new implementation issues,

one of which is a computationally efficient precoding algorithm. In the mMIMO

regime, the channel directions to any two users will typically become asymptotically

orthogonal as the antenna array size becomes large. For this reason, linear pre-

coders such as ZF and minimum mean square error (MMSE) are sufficient to achieve

near-optimal performance [71], but involve matrix inversion with high complexity.

The issue becomes especially complicated since the dimension of mMIMO systems is

large; direct inversion of an N ×N matrix generally has an order of complexity of

O(N3) [72]. Several approaches exist to reduce the computational complexity of ma-

trix inversion while indirectly obtaining an approximate solution in mMIMO systems.

These approaches can be classified as series expansion, gradient-type and iteration-

type [73]. Since iteration-type has less complexity than gradient-type methods, such

as steepest descent and offers better performance than series expansion like Neumann

series expansion (NSE), they are good candidates for use in practical mMIMO sys-

tems. Amongst the well-known iteration-type methods to find the inverse of a matrix,
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we can mention Jacobi (JC), Gauss-Seidel (GS), Newton-Schultz (NS).

The authors of [74] have proposed an NSE method to approximate ZF precoding

for an mMIMO system. In this method, inverting matrix M starts from a precon-

ditioned initial matrix; this initial matrix can be a scaled identity matrix [74] but is

more typically found by inverting a sparse matrix consisting of only a few elements

from M. Examples include the main diagonal elements [74], the tridiagonal elements

[75], and the main diagonal plus first column [76]. Nevertheless, NSE has a significant

downside of its special bit error rate (BER) performance loss. Better performance

requires using more terms in the Neumann series and/or more complicated precon-

ditioning; either would increase the complexity. A symbol detection algorithm for

the mMIMO UL based on the JC method has been proposed in [77]. It has been

demonstrated in [78] that the JC method outperforms NSE when used for precoding.

However, JC converges linearly with the number of iterations [79], which leads to slow

convergence. To speed up the convergence, several related methods, such as a joint

steepest descent and JC algorithm [80], a joint conjugate gradient and JC algorithm

[73], and a damped JC method [81] have been proposed for DL and UL of mMIMO

systems. The authors of [82] have proposed a near-optimal signal detection algorithm

for mMIMO systems based on the GS method, along with a diagonal-approximate

initialization point. Although this method offers fast convergence with low compu-

tational complexity, the GS method’s internal sequential iteration structure makes

parallel implementation difficult, if not impossible. An NS algorithm for ZF detec-

tion in mMIMO systems has been introduced for faster convergence in [83]. The

convergence time of this method is strongly dependent on the initialization point for

the matrix inversion solution, so [83] has also proposed an initialization point using a

Chebyshev polynomial. The authors of [84] have proposed a diagonal band Newton

iteration matrix inversion method for signal detection, which reduces the complexity

to O(N2). An improved Schultz-type iterative method has also been proposed in [85],

wherein its convergence and computational complexity have been investigated. Based
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on the HP method, a generalized form of the NS algorithm has been proposed in [86]

for mMIMO detection to avoid direct matrix inversion. While examining these meth-

ods’ convergence, dependency on preconditioning, sensitivity to spatial correlation,

and compatibility with parallel implementation need to be investigated. It is worth

mentioning that while most of the related works have only considered small-scale

fading, it is necessary to include large-scale fading and spatial correlation for a more

realistic model of the cellular environment and the channel matrices to be inverted.

2.1.4 Hardware Complexity

In a traditional digital transceiver structure, an RF chain is connected to each trans-

mit antenna element. Thus, dynamic circuit power, which refers to the power con-

sumed in the RF chains connected to the antenna elements, is proportional to the

number of transmit antenna elements. Our goal is to develop strategies to decrease

consumed power and potentially increase the EE of the network. For SC BSs, as

they have relatively few transmit antennas compared to the macro BS, the optimal

transmit antenna selection can decrease the number of antennas, and higher EE is

achievable. However, for mMIMO, antenna selection is not as viable of an option.

Since the mMIMO system needs to have a large number of active antenna elements

(this number is typically assumed to be around an order of magnitude larger than

the number of served users) to obtain its benefits (e.g., very narrow spatial beams,

near-orthogonal channel directions, etc. [8]), dynamic power consumption increases

drastically and affects the EE performance of the system. Hence, hybrid analog-digital

transceivers have been proposed to reduce hardware complexity, cost, and energy con-

sumption in mMIMO systems by reducing the number of RF chains [87]. However,

although hardware cost and complexity may be reduced, the analog portion of the

structure requires power for its operation. It further introduces power losses, depen-

dent on the number of transceiver antennas and RF chains, that must be considered

while calculating power consumption. Thus, the reduction in the power consumption
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Figure 2.3: Single-RF-chain load-modulated mMIMO transceiver (cf. [90],[91],[92]).

is usually much less than initially expected, and generally, the fully digital structure

outperforms the hybrid solution from both SE and EE perspectives [88]. Therefore,

a new transceiver structure with a limited number of RF chains needs to be designed

to facilitate the practical implementation of an mMIMO system. To this end, an

alternative structure called a single-RF-chain load-modulated transceiver has been

introduced in [89, 90], that has the potential for addressing the issues of hardware

complexity and EE of mMIMO transmitters.

In the load-modulated transceiver structure, as shown in Fig. 2.3, each antenna

element is connected to a single common power amplifier (PA) via a load modula-

tor. Each load modulator is a lossless, reciprocal, two-port network with adjustable

complex impedance parameters. Adjusting these parameters changes the complex-

valued current that flows to each antenna and thus determines the complex-valued

symbol sent from that antenna. Since the load modulator parameters can be set

independently for each antenna, this allows the transceiver to support any arbitrary

modulation type and achieve the array’s full spatial multiplexing gain. The PA out-

puts a constant-amplitude sinusoid. The transceiver can use a Class F PA, reaching

an efficiency of about 80% [93]. In order to protect the PA against reflected power,
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a circulator and matching network are added between the PA and load modulators.

Some slight variations in the design are presented in [91] and [92]. The authors of

[94] have compared a load-modulated transmitter with another single-RF structure

implemented using electronically steerable parasitic array radiator (ESPAR) anten-

nas. It was shown that the load-modulated design reduced the power consumption

by 50−81% and yielded 5−42% lower bit error rates than the ESPAR-based scheme.

A physical implementation of a load-modulated transmitter with four antennas was

demonstrated in [95]. The authors of [96] have proposed novel multiuser precoding

techniques for a BS equipped with load-modulated arrays, such that both distortion

and bit error performance of the system have improved. A novel multiantenna trans-

mitter architecture has been proposed in [97], in which load-modulated arrays and

channel modulation have been utilized to realize high data rates. Moreover, this work

also proposed a message-passing detector on the UL that offers the advantage of RF

hardware simplicity at the user equipment and the need for fewer receive antennas

at BSs to achieve desired BER performance. Overall, the single-RF-chain transceiver

can potentially address the issues of hardware complexity and EE of mMIMO trans-

mitters.

2.2 Cell-Free Massive MIMO System

CF mMIMO systems are an alternative topology for mMIMO deployment, wherein

many APs are distributed over the coverage area to serve users jointly. As a homo-

geneous network with its roots at the intersection of MIMO, CoMP, and ultra-dense

networks and has CRAN as its foundation, CF mMIMO has been demonstrated to be

more energy efficient than its cellular counterpart if a proper power control strategy

is employed [39]. In this architecture, the cell boundaries are omitted, so there is no

inter-cell interference in the traditional sense, and the service quality is more uniform

over the coverage area.

Let us consider a conventional CF mMIMO system in TDD operation with a large
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number (L) of geographically-distributed low-power APs having a total ofM antennas

jointly serving a set of K users, where M ≫ K. All the L APs are connected to

the CPU via fonthaul links, where necessary computations for AP cooperation, such

as synchronization, are performed. The CPUs are then interconnected directly or

connected to the core network via backhaul links.

The DL channel gain vector glk between user k and AP l can be expanded as

glk =
√︁
βlkhlk, (2.6)

where βlk is the large-scale fading channel gain that accounts for path loss and shadow

fading, and hlk ∈ C1×N is the small-scale fading channel gain vector. Since the values

of βlk, ∀(l, k) are constant over multiple coherence time intervals, we assume they are

estimated a priori and known whenever required. By writing the complete channel

gain as a matrix, we have

G = B◦1/2 ⊙H =

⎡⎢⎢⎢⎢⎢⎢⎣

√
β11 . . .

√
β1M

√
β21 . . .

√
β2M

... . . .
...

√
βK1 . . .

√
βKM

⎤⎥⎥⎥⎥⎥⎥⎦⊙

⎡⎢⎢⎢⎢⎢⎢⎣
h11 . . . h1M

h21 . . . h2M

... . . .
...

hK1 . . . hKM

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.7)

We also denote the kth row of H, i.e., the small-scale fading channel gain (row)

vector for user k from all APs, as hk ∈ C1×M . Under the assumption of correlated

Rayleigh fading, hk is distributed ∼ CN (0,Rk), where Rk = E{hH
k hk} ∈ CM×M .

In the case of completely distributed CF mMIMO (single-antenna APs), all APs

can be assumed to be far enough apart that there is no correlation between their

antennas. Hence, the correlation matrix, in this case, would be Rk = IM . For

partially-distributed CF mMIMO (multi-antenna APs), we assume that channel gains

are uncorrelated between APs, but there is a correlation between the antennas co-

located at each AP. Hence, if each AP has N antenna elements, the correlation matrix

in this scenario can be expressed as
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Rk =

⎡⎢⎢⎢⎢⎢⎢⎣
R1k 0N . . . 0N

0N R2k . . . 0N

...
...

. . .
...

0N 0N . . . RLk

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.8)

where Rlk = E{hH
lkhlk} ∈ CN×N .

2.2.1 Channel Estimation

The performance of mMIMO systems heavily depends on the acquisition of CSI, so

that the first step would be channel estimation. We assume that the CF mMIMO

system uses TDD transmission mode. Thus, it can be assumed that UL/DL radio

channel reciprocity holds, and the DL channel matrix is the Hermitian transpose of

the UL channel matrix. Accurate estimation of these channels at the APs is necessary

to benefit from mMIMO; the channels are estimated via pilot signals sent from the

users. Unfortunately, orthogonal pilot sequences may not be enough to assign a

unique one to every user in the system. This leads to errors in channel estimation,

known as pilot contamination. While exhaustive search methods usually get the best

pilot assignment, they have exponential computational complexity. There are simple

schemes in the literature, such as the one described in [34, Ch. 4.4] to assign pilots and

determine which APs serve which users. This scheme mitigates pilot contamination

by ensuring that users who share pilot sequences are distant from each other. Any

given AP only serves one of the users out of however many share that sequence.

With pilots assigned, the UL channels can be estimated. First, all users simulta-

neously and synchronously transmit their pilot sequences, which all APs receive. Let

ψk ∈ Cτ×1 be the pilot sequence sent by user k, with length τ and ||ψk||2 = τ, ∀k.

The received pilot signal Yn ∈ CN×τ at AP l is

Yl =
K∑︂
k=1

√
ρk glkψ

T
k +Nl, (2.9)
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where ρk is the pilot transmit power for user k andNl ∈ CN×τ is an additive noise ma-

trix, whose elements are independent and identically distributed (i.i.d.) ∼ CN (0, σ2
l ).

To estimate glk of user k, AP l correlates Yl with the pilot sequence ψk, which

cancels the interference from all other pilot sequences. Let Sk denote the set of all

users sharing the same pilot sequence as user k (including k). Then, the correlated

pilot signal ylk ∈ CN×1 can be written as [34]

ylk = Yl
ψ∗

k√
τ
=
∑︂
k′∈Sk

√
ρk′τ glk′ + nlk, (2.10)

where nlk ∼ CN (0, σ2
l IN).

Then, the minimum mean square error (MMSE) estimate of glk can be calculated

as [8]

ĝlk =
√
ρkτ RlkΘ

−1
lk ylk, (2.11)

where

Θlk =
∑︂
k′∈Sk

ρk′τRlk′ + σ2
l IN (2.12)

is the covariance matrix of ylk, and Rlk′ denotes the covariance matrix of glk′ . As

can be seen in (5.4) and (2.12), the coherent interference caused by users sharing the

same pilot makes the channel estimates statistically dependent, which hinders the

BS’s ability to separate them.

Let g̃lk = glk − ĝlk denote the channel estimation error. Based on a property of

MMSE estimation, ĝlk ∼ CN (0, R̂lk) and g̃lk ∼ CN (0, R̃lk) are independent random

variables, and their covariance matrices are respectively given by [8]

R̂lk = ρkτRlkΘ
−1
lk Rlk, (2.13)

R̃lk = Rlk − R̂lk. (2.14)

2.2.2 Precoding

Now that APs have obtained instantaneous CSI from UL pilot signals, the next step

would be utilizing them to construct the precoding vectors. Precoding is performed
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to direct the signal spatially toward the desired user by sending each data signal from

all antennas, but with different amplitude and phase. It is essential to the operation

of MIMO, especially for mMIMO either co-located or distributed like CF mMIMO.

By assuming the DL of a CF mMIMO system consisting of L APs, each equipped

with N antennas serving K single-antenna users, the received signal yk ∈ C at user

k is

yk =
L∑︂
l=1

glkxl + nk, (2.15)

where glk ∈ C1×N is the complex channel gain vector between user k and AP l,

xl ∈ CN×1 is the complex-valued transmitted signal from AP l, and nk ∼ CN (0, 1) is

additive white Gaussian noise. The signal transmitted by AP l is

xl =
√
pt

K∑︂
k=1

√
ηlkwlksk, (2.16)

where pt is the total normalized transmit power (normalized relative to the noise

power) of each AP, ηlk is a power coefficient, representing the fraction of its maximum

transmit power that AP l allocates to the data for user k, sk is the data symbol

intended for user k, with E{|sk|2} = 1, and wlk ∈ CN×1 is the precoding vector at

AP l for user k. While designing the precoding vectors, we must consider that in

contrast to co-located mMIMO, the power constraint is per BS; in CF mMIMO, the

power constraint is per AP. In other words,

E{||xl||2} ≤ pt l = 1, ..., L (2.17)

There are two types of precoding in CF mMIMO: centralized precoding and dis-

tributed precoding. As shown in Fig. 2.4, in the centralized precoding, the CPU has

the CSI of all APs, so it designs the precoding vectors such that the APs suppress

each other’s interference at undesired users. In a distributed precoding, the CSI is

available locally in each AP, and the only way to mitigate interference is to make

each AP’s interference on undesired users small.
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Figure 2.4: Centralized precoding vs. distributed precoding in a CF mMIMO. The
yellow beams are intended for the yellow user while causing interference to the red
user (cf. [34]).

Centralize Precoding: In the centralized operation, the CPU utilizes the channel

estimates obtained from UL pilot signals to design the precoding vectors and compute

the signals to be transmitted for all the K users in the network. In other words, the

CPU performs all the signal processing for channel estimation and precoding, while

the APs are only responsible for transmitting the signals. As a result, the signals

transmitted from multiple APs can be coherently received at each UE, and the APs

can mitigate out each others’ interference.

• ZF: ZF precoding is one of the most popular precoding methods in the context

of mMIMO systems. ZF precoding aims at preventing a signal sent to a given

user from causing interference on any of the other users simultaneously served

jointly by the APs. To implement ZF precoding, we set W as [71]:

W = G† = GH(GGH)−1. (2.18)

As can be seen, the ZF precoding matrix is proportional to the pseudo-inverse

of the estimated channel matrix. This scheme fully nullifies the multi-user

interference and is especially beneficial in a high SNR regime.

• RZF: The idea behind regularized zero-forcing (RZF) precoding is to keep a

balance between transmitting a strong signal to the desired user and limiting

the interference caused to other users by minimizing the mean-squared error
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(MSE) of the desired signals. To implement RZF precoding, we set

W = G† = GH(GGH + σ2IK)
−1. (2.19)

While the centralized precoding schemes show near-optimal performance and pre-

serve the channel hardening property in a CF mMIMO system, one of the main

obstacles in implementing these schemes is the fronthaul signaling load caused by

the CPU being responsible for all computations. As discussed above, in centralized

operation the APs compute the estimates of the channels and/or send the received

pilot signals to the CPU in the UL and, in the DL, receive the superposition of the

precoded data signals from the CPU, which leads to huge signaling load [34].

Distributed Precoding: In the distributed operation, each AP receives from

the CPU via fronthaul link encoded signals to be transmitted on the DL and utilizes

locally available channel estimates to design precoding vectors by itself. While the

signals transmitted from all APs are coherently received at each user, the inter-user

interference suppression capability is limited since using distributed precoding each

AP can only suppress the interference that it is generating itself, because it does not

know of others’ channels. Since the CPU does not have access to CSI in the UL, each

AP applies combining methods locally and sends its data estimates via the fronthaul

to the CPU to make the final decoding.

• Conjugate beamforming: The simplest distributed precoding scheme is called

conjugate beamforming/ MR precoder. This scheme maximizes the transmitted

power from AP l to user k, but ignores the interference that the AP is causing

to other serving users. MR precoding vector is proportional to the conjugate of

the estimated channel matrix, so we have

wMR
lk = gH

lk (2.20)

While this scheme is less complex compared with centralized precoding and puts
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less burden on the fronthaul link, in CF mMIMO, a conjugate/ MR precoder

is insufficient to achieve satisfactory performance [34]. It poorly contributes to

hardening the effective channel at the users [98].

• Enhanced normalized conjugate beamforming (ENCB):

As discussed earlier, because of having a large number of antennas, the channels

undergo channel hardening in an mMIMO system [8, 34], such that the fluc-

tuations in the channel gains around the mean become small. Unfortunately,

[67] shows that the degree of channel hardening in CF mMIMO systems can be

considerably smaller than in co-located mMIMO systems. To this end, the au-

thors of [98] have proposed a variant of conjugate beamforming dubbed ENCB,

in which the conjugate beamforming vector is normalized by the squared norm

of the channel as

wENCB
lk =

gH
lk

||glk||2
(2.21)

This normalization enhances the effect of channel hardening, which improves

the reliability of decoding data relying only on statistical CSI.

2.2.3 Scalable Cell-Free Massive MIMO

Up to this point, we have assumed that APs have the CSI of all the users in

the network and also CSI of all APs are available for each user, and that all

APs transmit to all users simultaneously. Even though these assumptions are

convenient for analysis, in practice, for a given user, there are many APs that

are far away and do not contribute significantly to its overall received signal.

Moreover, these assumptions lead to immense fronthaul signaling, enormous

computational complexity, and power consumption [99]. Consequently, the net-

work could not be scaled to an arbitrarily large size. For these reasons, not all

APs need to participate in serving each user, and each user can be served only

by an AP subset. It is shown in [100] that AP selection in the CF mMIMO can
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also improve the EE of the system by reducing the power consumption caused

by the backhaul links. By proposing two metrics to measure the channel qual-

ity of users and the effective channel gain between users and APs, an effective

channel gain-based AP selection algorithm has been developed in [101]. This

algorithm outperforms other algorithms when the number of users to the num-

ber of APs is high, which is the case for CF mMIMO systems deployed in a

crowded area. Authors in [102] have proposed a novel AP selection algorithm

for CF mMIMO, which aims at reducing the computation workload and pilot

contamination by introducing a machine-learning algorithm. A graph neural

network-based access AP selection algorithm has also been proposed in [103],

which has been shown to offer more accurately predicting of the potential APs

compared to the proximity-based AP selection algorithms. Here, we explain a

simple AP selection method called Largest-Large-Scale-Fading-Based (LLSFB)

selection as proposed in [104].

In the LLSFB selection method, the kth user is associated with only Lk APs

that are chosen based on
Lk∑︂
l′=1

β̂l′k ≥ δ
L∑︂
l=1

βlk, (2.22)

where
{︂
β̂1k, ..., β̂Lk

}︂
is the sorted (in descending order) set of large-scale fading

coefficients from all APs for user k , and δ is the minimum proportion of the

total received power from all APs that the chosen APs contribute to the desired

signal at each user. First denoting Lk ⊆ {1, ..., L} as the subset of APs that

serve user k, the block-diagonal binary M ×M clustering matrix Dk for user k

is then defined as

Dk = diag(D1k, . . . ,DLk), (2.23)

where

Dlk =

{︄
IN if l ∈ Lk,

0N if l /∈ Lk.
(2.24)
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In other words, the lth N × N diagonal block of Dk is IN if AP l serves user

k and 0N otherwise. By applying AP selection in CF mMIMO system for an

unlimited number of users, the complexity of precoding and signaling at each

AP would still be limited. Scalability makes implementing this method feasible

in future networks.

By applying AP selection, the full channel matrices that are used to design

precoding vectors are now replaced by effective channel matrices DkGSk
∈

C|Sk|×M . Two common partial precoding methods, that are categorized under

distributed precoding are:

• Partial zero-forcing (P-ZF):

wP-ZF
k =

[︁
DkG

H
Sk
(GSk

DkG
H
Sk
)−1
]︁
:,1

(2.25)

where Sk is the set of users served at least in part by the same APs as user k,

including user k itself.

• Partial regularized zero-forcing (P-RZF):

While P-ZF forces the interference between served users to be zero, the UEs

with similar channels will suffer from large losses in the desired signal power.

To this end, another precoding technique called P-RZF is defined as

wP-ZF
k =

[︁
DkG

H
Sk
(GSk

DkG
H
Sk

+ σ2P−1
Sk
)−1
]︁
:,1

(2.26)

where PSk
is a diagonal matrix including the transmit power for i ∈ Sk. P-

RZF provides a trade-off between interference cancellation and boosting of the

desired signal.

2.3 Symbiotic Backscatter Communication

Wirelessly powered BC [45] is a promising technology that integrates RF-based energy

harvesting into wireless communications and can facilitate a practical realization of
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sustainable IoT.

Although monostatic BC systems, bistatic BC systems, and AmBC have different

configurations, they all share the same fundamentals. Specifically, none of them have

their own RF source in the transmitter as conventional wireless systems do. However,

a backscatter transmitter can send data to a backscatter receiver by tuning its antenna

impedance to reflect the received RF signals. To do so, the backscatter transmitter

must first be activated by harvesting the energy from the received RF signal. While

Monostatic and bistatic backscatter systems use a dedicated RF source supplying

the energy and backscattered signal, AmBC shares the same spectrum resource with

the legacy users while harvesting. As a result, besides enhancing EE, significant

improvement in spectrum utilization is also achievable. Due to providing high SE

and EE, the thesis will focus on optimizing the performance of AmBC.

One of the main obstacles in implementing energy harvesting in wireless networks

such as AmBC is the severe path loss between the transmitters and receivers [105].

Because of this, CF mMIMO may be considered to improve the energy transfer ef-

ficiency and mitigate the interference to unintended communication devices. Due to

the high degree of macro-diversity, the reduced correlation of channels to different

APs, reduced effects of shadowing, and the significantly lower average distance to the

nearest AP, CF mMIMO has been shown to improve both SE and EE of the net-

work [39, 100]. Specifically, the higher area density of APs in a CF mMIMO system

makes it a good candidate to facilitate the implementation of energy-harvesting-based

wireless networks.

The main complication in merging AmBC and CF mMIMO is that the numerous

antennas and coherent beamforming in mMIMO typically lead to high directivity of

signal power towards specific locations. Therefore, there is a significant chance that

a BD transmitter would be at a location seeing low power levels from the APs, or

possibly even having a beamforming null directed towards it. Furthermore, direct-link

interference at the BD receiver from signals intended for legacy users will become even
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Figure 2.5: System model of symbiotic radio communication [62]

stronger than in conventional AmBC with a single-antenna RF source, limiting the

AmBC transmission rate even further. One potential solution to these two challenges

is SR, which has been proposed based on cooperative AmBC systems [61–63]. The BD

still transmits its information in SR by reflecting ambient legacy signals. However,

now the PT of the legacy system designs its transmit beamforming to assist both

primary and BD transmissions. In contrast, the PR decodes information from the

BD and the PT. The BD can help the primary transmission by providing additional

multipath components to the channel. At the same time, the PT offers transmission

opportunities to the BDs. Hence, SR is a promising solution to achieve spectrum-

, power- and cost-efficient communications by sharing the spectrum, energy, and

infrastructure of the primary system [63].

2.4 Summary

In this chapter, we have given an introduction to the topics of this thesis: mMIMO, CF

mMIMO and BC. First, we have reviewed some of the main properties and challenges

of mMIMO. Then, the necessary details on CF mMIMO including channel estimation,

precoding design and scalability have been provided. At last, the main concepts on
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backscatter communication have been discussed. We have also discussed some existing

works related to our contributions to provide the necessary background to follow this

thesis.
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Chapter 3

Energy-Efficient Resource
Allocation for the DL of Single-RF
Chain Load-Modulated mMIMO
HetNets

In this chapter, we focus on the design of a highly energy-efficient cellular HetNet

by taking advantage of MIMO structure. First of all, we consider a MIMO-enabled

H-CRAN, as a candidate architecture for 5G and beyond 5G systems [106]. In an H-

CRAN, we need to consider two factors to achieve an acceptable and energy-efficient

system performance. First, due to the potential capacity constraint of the fronthaul,

to manage the interference CoMP should be limited to the BSs near a given user.

Hence, we consider energy-efficient user-centric clustering and CoMP precoding per-

formed at both the macro cell and SCs. Second, radio resources (i.e., RBs and power)

should be optimally allocated to maximize EE. Therefore, a joint RB allocation and

antenna selection algorithm is proposed and power allocation optimization is per-

formed. To further reduce power consumption, in addition to antenna selection at the

SCs, a load modulated single-RF-chain structure is also considered for the mMIMO

macro BS. To our knowledge, the examination of a system combining all these factors

simultaneously has not been well investigated in the literature. For example, [107–

110] do not consider antenna selection, [110–115] consider single-carrier systems, while

[113] and [114] consider only single-tier networks. A constrained-capacity fronthaul
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Figure 3.1: System layout of coordinated HetNet with clustered MIMO transceivers

have not been considered in the context of EEmax problems; none of the above pa-

pers considers it. (While [115] does ensure sufficient data rates are allocated to the

backhaul for the SCs, it does not set an explicit maximum limit on those rates.)

3.1 System Model

We consider the DL of a HetNet where a macro cell containing a mMIMO enabled

macro BS with NM antennas is densely overlaid with S SC BSs each equipped with

NS antennas. The total number of single-antenna users served by all cells is NU . For

simplicity, we assign s = 0 to the macro BS; then, the set of all BSs can be denoted

as S = {0, ..., S}.

OFDMA is utilized in the network in order to convert frequency-selective MIMO

channels into a series of RBs on parallel frequency-flat fading subchannels. Each sub-

channel is assumed to be quasi-static in time, meaning that the channel gains stay

constant during each transmission, then change independently for the next transmis-

sion. The total bandwidth of the system is W and B RBs each with a bandwidth of

W0 = W/B are available in each scheduling interval.

To address the interference problem of our dense HetNet, a structure similar to a

CRAN is deployed, with a centralized processing structure that is inherently suited to
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mitigate interference through the use of CoMP. Specifically, we consider coordinated

beamforming, as it requires less overhead data transfer on the capacity-constrained

fronthaul. In CoMP, a set of BSs that coordinate transmissions is often called a

cluster. Clusters can be fixed or dynamically changing over time, but in both cases,

they can potentially end up shifting the interference problem from the cell edge to

the cluster edge (i.e., they cause users near the cluster edge to experience the worst

interference). To avoid this, we form user-centric clusters; that is, the set of BSs that

coordinate for each user is customized for that user. Only nearby SCs coordinate for

any given user; it is unnecessary to cluster distant ones, since they cause little inter-

ference, and doing so would contribute needlessly to the overhead on the fronthaul.

The macro BS may also be part of the cluster.

In problems like ours in which many parameters need to be optimized while sat-

isfying several constraints, the non-convex joint optimization problem will become

so complicated that the optimal solution can only be obtained by exhaustive search

with an infeasibly large computational load [116]. Thus, we instead decompose the

mixed-integer nonlinear programming problem into a series of subproblems [117].

3.2 Cell Association and User-Centric Clustering

In this work, we adopt a biased cell association policy along with user-centric cluster-

ing. Let the average received signal strength or channel quality (in dB) received from

BS s by user n be denoted by γs,n. γs,n is proportional to the maximum transmit

power available at BS s, and accounts for path loss and shadowing, but not small-scale

fading. We then define a bias Υs in dB in favor of BS s for load balancing purposes

[118]. User n then associates with and is served by cell s∗n for which

s∗n = argmax
s

{γs,n +Υs} (3.1)

For our user-centric clustering, each user will be served by one BS in its cluster,

while the remaining BSs in the cluster perform coordinated beamforming for that

user. We follow a similar approach as in [119] to select BSs for the cluster of each
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user. The cluster is based on the difference of the average received signal strength.

BSs whose signal strength is within ζc dB of the signal strength of the serving BS s∗n

for user n are selected for the cluster Sn for user n:

Sn = {l ∈ S|γs∗n,n − γl,n ≤ ζc} (3.2)

The value of the clustering threshold ζc should be chosen such that the interference

from BSs that are not included in the cluster for user n is negligible. Let Ks (with

cardinalityKs) denote the set of users that are associated with and receive information

from BS s, and let Is (with cardinality Is) denote the users that are associated with

other BSs, but that have BS s as a member of their cluster. From eq. (3.2) it is clear

that in general cell-center users will have fewer BSs in their clusters than cell-edge

users. There is some similarity between our work and [110], in which an “interference

zone” around each SC is considered when forming clusters, to determine whether

the BS should be in a given cluster. The difference is that the clusters in [110] are

therefore BS-centric, whereas we perform user-centric clustering. Both the association

bias and the clustering threshold can potentially also be used for load balancing, to

offload users to lightly-loaded cells and/or avoid overloading in other cells. However,

this aspect is outside the scope of this work.

3.3 Performance Metrics

The complex-valued baseband signal ys,n,b received by user n served by BS s in RB b

is expressed as

ys,n,b =
√︁

Γs,nhs,n,bfs,n,bxs,n,b +
∑︂

i∈Ks\{n}

√︁
Γs,nhs,n,bfs,i,bxs,i,b

+
∑︂

r∈S\{s}

∑︂
j∈Kr

√︁
Γr,nhr,n,bfr,j,bxr,j,b + ns,n,b,

(3.3)

where fs,n,b ∈ CNs×1 and xs,n,b are the complex-valued beamforming vector and data

symbol from BS s to user n in RB b, respectively (cf. [8]). We also define ts,b =∑︁
n fs,n,bxs,n,b as the transmitted signal vector from BS s on RB b. Γs,n is the large-
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scale signal power gain/attenuation between BS s and user n, which includes path

loss and log-normal shadowing. ns,n,b ∼ CN (0, σ2) is the additive white Gaussian

noise (AWGN) at user n on RB b.

hs,n,b ∈ C1×Ns denotes the small-scale fading of the MIMO channel vector between

user n and the BS s for RB b. hs,n,b is modeled as ∼ CN (0,Rs,n), which represents

frequency-flat spatially-correlated Rayleigh fading on each subchannel, where Rs,n

is the spatial correlation matrix between BS s and user n. The channel gains are

independent between users and for each RB b, though we assume each RB has the

same spatial correlation matrix for a given s and n. For SCs, the antennas are assumed

to be located closer to the ground, so that SC channels experience a rich scattering

environment. As such, there is assumed to be no spatial correlation between antennas,

so Rs,n = INs for SCs. In contrast, the macro BS antennas are assumed to be higher

up, such that scatterers are located only near the users (i.e., localized scattering). In

this case, we model R0,n by the equation given in [8, Eq. (2.24)].

In eq. (3.3), the summation in the second term is intra-cell interference between

users served by BS s, whereas the double summation in the third term represents

inter-cell interference from BSs other than the one sending data to user n. The goal

of clustering is to reduce the magnitude of the third term as much as possible, ideally

such that it becomes negligible.

The total sum data rate (in bits/s) is calculated as

C =
S∑︂

s=0

NU∑︂
n=1

B∑︂
b=1

δs,n,bW0log2(1 + σs,n,b), (3.4)

δs,n,b is a binary user-BS association and RB assignment indicator, which is equal to

1 if user n receives data from BS s on RB b, and 0 otherwise. σs,n,b is the SINR and

ps,n,b is the power allocated to the nth user from the sth BS on the bth RB. We also

denote N0 as the spectral density of the AWGN. Then, the SINR is expressed as:

σs,n,b =
Γs,nps,n,b|hs,n,bfs,n,b|2

W0N0 +
∑︁

i∈Ks\{n}
Γs,nps,i,b|hs,n,bfs,i,b|2 +

∑︁
r∈Sn\{s}

∑︁
j∈Kr

Γr,npr,j,b|hr,n,bfr,j,b|2
(3.5)
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Since our goal is to maximize EE, it is necessary to define an accurate power model.

The power consumed by each transmission node s includes (radiated) transmit power,

dynamic circuit power, and static circuit power [120]:

Ps =
1

ηs

∑︂
n∈Ks

B∑︂
b=1

δs,n,bps,n,b +NsP
dyn
s + P sta

s (3.6)

ηs is the efficiency of the PA, P dyn
s is dynamic circuit power, and P sta

s is static circuit

power. Dynamic power includes the power consumption of circuitry such as mixers,

digital-to-analog converters, filters, etc. Static circuit power is a constant term that

includes power consumption by other transceiver circuitry, e.g., baseband processing,

etc.

To decrease the number of RF-chains, in this work we utilize the load-modulated

transceiver structure. With a slight adjustment to the definition in eq. (3.6), the con-

sumed power for DL transmission of the single-RF-chain mMIMO macro BS trans-

mitter can be expressed as

P0 =
1

η0

∑︂
n∈K0

B∑︂
b=1

p0,n,b +NMP dyn
0 + P sta

0 (3.7)

It is worth mentioning that P dyn
0 is the average consumed non-radiated power per

antenna that is dependent on NM rather than a constant. By using [89, Fig. 8], a

table can be derived to determine the dynamic consumed power of the macro BS. We

assume any calculations required to adjust the load modulator impedance parameters

are included in P sta
0 . We also note again that η0 in eq. (3.7) will be better in general

than ηs in eq. (3.6) due to the use of a Class F PA. Despite having only one RF chain,

the load-modulated transceiver can support an arbitrary number of users or streams.1

All digital processing, such as channel coding and precoding, is done at baseband.

Finally, the total EE for our proposed scenario can be written as

1Restrictions on the number of supported users/streams therefore come from the number of
antennas and/or the precoding method, rather than the number of RF chains.
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ε ≜
C∑︁S
s=0 Ps

, (3.8)

where C is given in eq. (3.4) and Ps is given in eq. (3.6) and eq. (3.7) for the SC BSs

and macro BS, respectively.

3.4 Resource Block Assignment and Antenna Se-

lection for Small Cells

The optimal RB assignment and antenna selection approach is by exhaustive search,

that to reduce the computational complexity, we propose a suboptimal low-complexity

RB and antenna selection strategy. The main idea is to decouple the RB and an-

tenna selection into a two-part selection approach. First, we investigate the transmit

antenna selection strategy in our MIMO-OFDMA system. Since different antennas

may be selected for different RBs, causing all antennas to be activated, the selection

cannot be conducted in a per-subchannel manner. Moreover, if any given antenna

is selected, it should be used for all RBs as it will result in higher rates with no

additional dynamic circuit power consumption. Hence, transmit antenna selection

should be performed for all RBs together. RB assignment can then be conducted for

each user for the selected antenna set. First we define arg sort↓j {Xj} to return the

sorted arguments/indices {j} corresponding to when the values {Xj} are sorted in

descending order. Then, the antennas are sorted according to

arg sort↓
j∈{1,2,...,NS}

{︁
||gs,j||2F

}︁
, (3.9)

where gs,j is the jth column of a KsB×Ns channel matrix, which represents the chan-

nel gain (including small-scale fading, shadowing, and path loss) of the jth transmit

antenna for all users served by SC s across all RBs. A similar approach has been

used in [113], in which acceptable performance has been shown at lower complexity

in comparison to an exhaustive search.
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After sorting the antennas in descending order using the F-norm-based method, the

active transmit antenna set N sel
s for cell s is selected from the first N sel

s = ⌈LsB̂/B⌉

antennas, where B̂ is the maximum number of RBs that can be allocated to a user

and Ls is the number of users Bs s supports (either to serve data or to mitigate

interference for). The reasoning behind this value of N sel
s is that N sel

s is also the

number of degrees of freedom for spatial multiplexing per RB. Thus, the maximum

number of single-antenna users that can be supported per RB by linear precoding is

N sel
s , or at most N sel

s B users in total.

With the transmit antenna set selected for each SC, now RB allocation can be

done jointly for all BSs in light of coordinated beamfoming — if user n is allocated

an RB at its serving cell, user n must also be accounted for on that RB at the other

BSs in cluster Sn for interference mitigation. Let the subset of users from Ls that

are allocated to RB b (either to receive data from BS s or to mitigate interference for

other cells) be denoted Ls,b, with cardinality Ls,b. We can similarly define subsets of

Ks and Is as Ks,b and Is,b respectively, with cardinality Ks,b and Is,b. Similar to the

antenna selection, we use an F-norm-based approach. First, we sort the BS-user-RB

index triplets according to

arg sort↓
(s,n,b), ∀s∈S, ∀n∈Ks, ∀b∈{1,...,B}

{︄⃓⃓⃓⃓
h̃s,n,b

⃓⃓⃓⃓2
F

N sel
s

}︄
, (3.10)

where h̃s,n,b ∈ C1×Nsel
s is the small-scale fading channel vector to user n on RB b from

the selected set of antennas at its serving BS s. In the case of the macro BS, which

does not perform antenna selection, h̃0,n,b = h0,n,b and N sel
s = NM . We emphasize

that the channel vector in eq. (3.10) includes only the small-scale fading component

of the channel gains, i.e., the path loss and shadowing are normalized out. This is to

provide fairness2 to all users in an effort to meet the minimum data rate constraints,

so that users near BSs are not allocated a disproportionately large number of RBs to

2This has similarities to proportionally fair user scheduling [121],[122], in that both give highest
priority to users who have the best channel relative to their average channel.
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the detriment of cell-edge users. Each RB potentially can be selected to serve data to

any user, as long as the total number of users Ls,b sharing any given RB b at any SC s

is at most Û
alc

s = N sel
s , and the number of RBs NRB,n allocated to user n is at most B̂.

For the macro BS, however, we pose an additional constraint. Due to the abundance

of transmit antennas for mMIMO, with NM ≫ K0, there is essentially no limit to the

number of users that can be served on any one RB. However, allocating too many

users to one RB could put pressure on the resources for interference mitigation at the

SCs on that RB. Hence, at the macro BS, we shall attempt to divide users among

the RBs as evenly as possible, with no more than Û
srv

0 = ⌈(K0B̂/B)⌉ users served

on any given RB. After antenna selection, RBs are allocated in the order given by

eq. (3.10), but first ensuring that each user is given at least one RB from its serving

BS in phase 1. Then, if B̂ > 1 and sufficient resources remain, additional RBs will

be allocated to the users in phase 2, in the order given by eq. (3.10).

Occasionally, the algorithm may run into corner cases when assigning users to

RBs. Users with large clusters require the resource allocation at numerous BSs to be

sufficiently coordinated in order to avoid turning on antennas at SC BSs. Specifically,

an allocation spot must be available at all BSs in the cluster on the same RB. In other

words, each user must be a member of Ls,b for some same value of b for all BSs s

in its cluster. If these large-cluster users end up being allocated RBs near the end

of the process, there may be insufficient remaining resources at all BSs in the user’s

cluster on any one RB to allow for coordination in the cluster. To deal with such

corner cases if they occur, we restart the allocation process with these users at the

start of the allocation order. The remaining users are ordered as normal afterwards;

since they require fewer resources to be coordinated, they are easier to slot into the

remaining positions.

Obviously, there is a trade-off between the achievable sum rate and power usage.

As we have discussed, switching off antennas will affect the spatial degrees of freedom

in the users’ channels (and thus the degrees available to the precoder), as well as the
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maximum number of users that can be served simultaneously per RB, which will lead

to a reduction in the achievable sum rate of the system. However, activating fewer

antennas will lead to less power consumption, which is beneficial in terms of EE.

3.5 Precoding Vector Design

The design of the precoding scheme used for transmission in a MU-MIMO system is

an important factor in the resulting EE of the system. The objective of precoding in

general is to mitigate intra-cell interference between users of that cell. When coordi-

nated beamforming is used, it can also mitigate intra-tier and inter-tier interference

between BSs of a cluster. To begin, we look at mitigating the interference caused by

SCs. For lower computational complexity, we use linear precoding. Specifically, we

consider the same type of null-space projection precoding as is used in BD precoding

[123]. The same null-space projection technique has also been used in [110, 124] in

the context of single-antenna users, as it is with our work herein.3 We have chosen

null-space projection since it has been shown (e.g., in [110]) that, while null-space pro-

jection and the channel inversion technique used in “classical” ZF precoding perform

identically when maximizing the sum rate of a MU-MIMO HetNet, when considering

EE instead, using channel inversion for SCs results in smaller EE in various cases.

The precoding is performed on a per-RB basis. With null-space projection pre-

coding, the transmit precoding vector of each user is designed to lie in the null space

of the channels of all Ls,b − 1 other users in Ls,b. This means the precoding vectors

must satisfy [123]:

h̃s,n,bfs,i,b = 0,∀(n, i) ∈ Ls,b such that n ̸= i,∀(b, s) (3.11)

3As mentioned, BD has been defined for multiple-antenna users. The technique is still valid
for single-antenna users, although in such a case, it is not particularly “block” diagonalization
anymore, as the “block” ends up being a scalar (i.e., of size 1× 1). For the single-antenna case, we
shall therefore refer to it as null-space projection, to differentiate the technique from “classical” ZF
precoding, which instead uses channel inversion.
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Let H̃s,n,b ∈ C(Ls,b−1)×Nsel
s be a matrix that vertically concatenates the channel

vectors for RB b of all users in Ls,b except for user n:

H̃s,n,b =
[︂
h̃
T

s,1,b . . . h̃
T

s,n−1,b h̃
T

s,n+1,b . . . h̃
T

s,Ls,b,b

]︂T
(3.12)

We denote r̃s,n,b as the rank of that aggregate null space and Ṽ
0

s,n,b ∈ CNsel
s ×(Nsel

s −r̃s,n,b)

as a set of orthonormal basis vectors for that null space [123] (and thus the basis for

fs,n,b). The equivalent channel ḧs,n,b ∈ C1×(Nsel
s −r̃s,n,b) for user n is ḧs,n,b = h̃s,n,bṼ

0

s,n,b,

with λs,n,b = ||ḧs,n,b|| being its channel gain. Hence, the signal received by user n

from SC s on RB b can be expressed as

ys,n,b =
√︁
Γs,nps,n,bλs,n,bxs,n,b + ns,n,b (3.13)

To summarize, through the use of null-space projection precoding, the precoding

vectors are designed such that intra-cell and intra-cluster interference is completely

canceled, and the MU-MIMO channels are decomposed into several equivalent non-

interfering single-user MIMO channels. Under the assumption of no significant inter-

ference after precoding, the SINR in eq. (3.5) reduces to

σs,n,b =
Γs,nλ

2
s,n,b

W0N0

ps,n,b = χs,n,bps,n,b, (3.14)

where we define χs,n,b as the ratio of the equivalent subchannel power gain to its noise

power.

At the macro BS, “classical” ZF precoding is performed to mitigate interference

both between macro users and to users of SCs; the precoding is again done per RB.

The relatively simpler precoding (compared to null-space projection) is sufficient for

the mMIMO BS, since the law of large numbers makes channel vectors to different

users near-orthogonal even without precoding [8]. First, we define H̆0,b ∈ CL0,b×NM

as the channel matrix that vertically concatenates the small-scale fading portion of

the channel vectors for the users in K0,b, followed by the users in I0,b:

H̆0,b =
[︂
hT
0,K0,b(1),b

hT
0,K0,b(2),b

. . . hT
0,K0,b(K0,b),b

hT
0,I0,b(1),b . . .h

T
0,I0,b(I0,b),b

]︂T
(3.15)
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Then the ZF precoding vector can be found from [110]

F̆0,b = H̆
†
0,b = H̆

H

0,b(H̆0,bH̆
H

0,b)
−1 (3.16)

Consider the first K0,b columns of F̆0,b, and let the nth column of F̆0,b be denoted

f̆0,n,b. The precoding vector f0,n,b for user K0,b(n) (i.e., the nth user served by the

macro BS on RB b) is

f0,n,b =
f̆0,n,b

||f̆0,n,b||
(3.17)

In this way, the interference from the macro BS has been mitigated. Assuming as we

did for the SCs that all remaining interference is negligible, then the SINR for macro

users reduces to

σ0,n,b =
Γ0,n|h0,n,bf0,n,b|2

W0N0

p0,n,b = χ0,n,bp0,n,b (3.18)

3.6 Power Allocation

For compactness of notation, let p be a vector containing all the power allocation vari-

ables {ps,n,b},∀s, n, b. Then, the EEmax problem under minimum-rate constraints,

maximum fronthaul capacity limitations, and total transmit power constraints is for-

mulated as

max
p

W0

S∑︁
s=0

NU∑︁
n=1

B∑︁
b=1

δs,n,blog2(1 + χs,n,bps,n,b)

S∑︁
s=0

NU∑︁
n=1

B∑︁
b=1

1
ηs
δs,n,bps,n,b +

S∑︁
s=0

N sel
s P dyn

s +
S∑︁

s=0

P sta
s

(3.19a)

s.t.
B∑︂
b=1

cs,n,b ≥ κmin, ∀s ∈ S, ∀n ∈ Ks (3.19b)

NU∑︂
n=1

B∑︂
b=1

δs,n,bcs,n,b ≤ cs,limit, ∀s ∈ S (3.19c)

NU∑︂
n=1

B∑︂
b=1

δs,n,bps,n,b ≤ Pmax
s , ∀s ∈ S (3.19d)

ps,n,b ≥ 0 ∀s, n, b (3.19e)

where cs,n,b = W0log2(1 + σs,n,b). P
max
s is the maximum transmit power of BS s. κmin

is the minimum data rate guaranteed for users and cs,limit is the maximum data rate
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that can be transferred over the fronthaul links. Like in eq. (3.10), N sel
s = NM for

the macro BS. The constraints given by eq. (3.19b) characterize the minimum rate

guaranteed for each user and the constraints given by eq. (3.19d) and eq. (3.19e) rep-

resent the maximum transmit power available at each BS. As one of the performance

limiting factors of the network, limited fronthaul capacity has been included in our

problem as the constraints given by eq. (3.19c).

Since the optimization problem defined in eq. (3.19) is classified as nonlinear frac-

tional programming, which results in a nonconvex problem, there is no one standard

method for solving it. Our first step is to simplify the objective function using tech-

niques from nonlinear fractional programming. Following [125], we can formulate an

equivalent problem as follows:

max
p

{C (p)− ε∗ P (p)} = C (p∗)− ε∗ P (p∗) = 0 (3.20)

where ε∗ is the maximum EE of the overall network, p∗ is the optimal power allocation

vector, and p is any feasible solution of the problem in eq. (3.19) that satisfies the

constraints given by eq. (3.19b)-eq. (3.19e).

It has been proven in [119] that for any optimization problem with an objective

function in fractional form, there is an equivalent optimization problem with an ob-

jective function in subtractive form that leads to the same solution. Hence, we can

concentrate on the equivalent problem in the rest of this chapter. The equivalent

problem can be formulated as

max
p

{C (p)− ε P (p)}

s.t. eq. (3.19b)–eq. (3.19e)
(3.21)

Now we must find the optimal value of ε. Since ε∗ cannot be obtained directly, an

iterative algorithm (based on what is known as the Dinkelbach method [125], which

is commonly used for EEmax problems [126]) is proposed, in which the obtained

solution ensures eq. (3.20) is satisfied. Pseudocode for the proposed algorithm is

described in algorithm 1.
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Algorithm 1 Dinkelbach method for EE maximization

1: Initialize the convergence threshold λth;
2: Set i = 1 and ε(1) = 0;
3: For initial ε(1), obtain C(p(1)) and P (p(1)) by solving the problem in eq. (3.21) using

eq. (3.23) and eq. (3.24);
4: while [C(p(i))− ε(i)P (p(i)) < λth] do
5: i = i+ 1;
6: (Inner Loop): Solve the resource allocation problem in

eq. (3.21) using eq. (3.23) and eq. (3.24) with ε(i−1) to obtain the
optimal solution p∗(i);

7: ε(i) = C(p∗(i))
P (p∗(i))

;

8: end while

9: Output: p∗, ε∗, C, P .

The algorithm consists of an outer loop, which updates the value of ε, and an

inner loop, which updates C(p) and P (p). Convergence to the optimal solution is

guaranteed if one is able to solve the inner problem. As ε(i+1) is updated in each

iteration i in the outer loop with C(p(i)) and P (p(i)) obtained in the last iteration,

the value of ε converges towards its maximum. Meanwhile, by solving the inner loop

for a given ε(i), the optimal power policy needed for the next loop would be obtained,

with the whole algorithm iterating until all the values converge or some other stopping

criterion (e.g., a maximum number of iterations) is reached.

The transformed problem can be expressed as in eq. (3.21), with ε replaced now by

ε(i). The problem is now concave with respect to optimization variable p. We derive

the Lagrangian function [127] of the problem as follows:

L(p,α,β,µ)=
S∑︂

s=0

NU∑︂
n=1

B∑︂
b=1

δs,n,bcs,n,b−ε(i)
(︄

S∑︂
s=0

NU∑︂
n=1

B∑︂
b=1

1

ηs
δs,n,bps,n,b

S∑︂
s=0

N sel
s P dyn

s +
S∑︂

s=0

P sta
s

)︄

+
S∑︂

s=0

∑︂
n∈Ks

αs,n

(︄
B∑︂
b=1

cs,n,b −κmin

)︄
+

S∑︂
s=0

βs

(︄
cs,limit −

NU∑︂
n=1

B∑︂
b=1

W0δs,n,blog2(1 + χs,n,bps,n,b)

)︄

+
S∑︂

s=0

µs

(︄
P

max
s −

NU∑︂
n=1

B∑︂
b=1

δs,n,bps,n,b

)︄
(3.22)

The vector µ contains the Lagrangian multipliers µs corresponding to the maximum
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transmit power limit for BS s in eq. (3.19d). α contains the Lagrangian multipliers

αs,n associated with the minimum rate constraints in eq. (3.19b). Finally, β contains

the Lagrangian multipliers βs accounting for the fronthaul capacity constraint for BS

s in eq. (3.19c).

For fixed α, β, µ, and ε, the problem can be solved utilizing the Karush-Kuhn-

Tucker (KKT) conditions [127, 128]. The optimal value of ps,n,b is then obtained by

making the partial derivatives of L with respect to ps,n,b equal to zero, which yields a

“water-filling” type of solution. We derive the optimal power as:

p∗s,n,b = max

(︃
w∗

s,n −
1

χs,n,b

, 0

)︃
, (3.23)

where

w∗
s,n =

W0(1 + αs,n − βs)

ln 2 (µs + ε(i)/ηs)
, (3.24)

and χs,n,b is given in eq. (3.14) and eq. (3.18). The values of p∗s,n,b are used to update

the value of ε(i). Then, the subgradient method can be used for updating the values

of the Lagrange multipliers in the outer loop; this method is guaranteed to converge

to the optimal Lagrange multipliers, as long as the step size values are chosen to be

sufficiently small [129].

3.7 Analytical Results

In this subsection, we analytically approximate the gains in EE that are possible by

some of the methods used in our system. Due to all the various methods combined in

the system, it is unfortunately infeasible to analytically characterize the system as a

whole. We therefore focus on the effect of antenna selection at the SCs on the EE. In

this case, we assume that the macro BS is either part of the cluster for the SC users

so that it provides no interference to those users, or its interference power is below

the clustering threshold, and so its interference may be neglected when considered in

aggregate with the other interfering SC BSs.
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For the analysis, we will draw on the some of the results using stochastic geometry

modeling of cellular networks (e.g., [130–133]). For simplicity and tractability, we

assume that the SC BS layout can be modeled by a homogeneous Poisson point process

(PPP) Φs having intensity λs, wherein the BS locations are distributed uniformly

over the plane. The users are located according to an independent homogeneous

PPP Φu with intensity λu. We further assume a) that every served user at every

BS is assigned the same power p, with Ksp ≤ Pmax
s , b) that supported users are

distributed approximately evenly across the RBs, so Ks,b, Is,b, and Ls,b are the same

for every cell and RB, and c) that the system is interference-limited, so that the

noise power is negligible. This provides a lower bound on the performance; naturally,

the performance would be better by optimizing the power allocation and by better

assigning users to RBs. The inclusion of log-normal shadowing with zero mean and

standard deviation σshadow has the effect of scaling the intensity λs by a factor of

exp(2(σshadow ln(10)
10αs

)2) [131], where αs is the path loss exponent.

Under the above conditions, the SINR for one user n served on a given RB b by

BS s from (3.5), when null-space projection precoding is used at the BSs, can be

expressed as:

σs,n,b =
Γs,np|hs,n,bfs,n,b|2∑︁

r∈Sn\{s}

∑︁
j∈Kr

Γr,np|hr,n,bfr,j,b|2
(3.25)

=
d−αs
s,n gs,n∑︁

r∈Φs\{s}
d−αs
r,n gr,n

,

where ds,n (dr,n) denotes the distance between BS s (r) and user n, αs is the path

loss exponent, and gs,n = |hs,n,bfs,n,b|2 and gr,n =
∑︁
j∈Kr

|hr,n,bfr,j,b|2 represent the pre-

coded channel power gain for user n from the serving BS s and an interfering BS r,

respectively. As seen, the specific value of p cancels out.

It is known that if a BS has N sel
s active antennas, the elements of hs,n,b are indepen-

dent and distributed ∼ CN (0, 1) (i.e., Rayleigh fading), and the precoding vector fs,n,b

for user n is orthogonal to the channels of Ls,b − 1 users supported on RB b at BS s
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(such as with ZF or null-space projection precoding), then the precoded channel power

gain is a Gamma-distributed random variable such that gs,n ∼ Γ(N sel
s −Ls,b+1, 1) [132,

134]. Meanwhile, the precoding at other BSs that are not part of the cluster for user

n is independent of the interfering channel to user n. As such, a single beam from

the interfering BS r has a power gain distributed ∼ Γ(1, 1), and the sum of Kr beams

from BS r, i.e., gr,n, has a power gain distributed ∼ Γ(Kr, 1) [134].

Given the PPP model and the association scheme described by (3.1), it is straight-

forward to see that if a user associates with the SC tier, it will associate with the

closest SC BS. Furthermore, from the clustering scheme described by (3.2), if a BS

is part of a cluster for user n, its received reference signal strength will be within ζc

dB of the received reference signal strength from the serving BS s, or numerically,

P ref
r ≥ 10−ζc/10P ref

s . As previously stated, the reference signal strength is assumed

to be proportional to the maximum signal power available at the BS, which is the

same for all SC BSs. Moreover, the path loss for BS r is given by d−αs
r,n . Hence, if BS

r is part of the cluster for user n, then Pmax
s d−αs

r,n ≥ 10−ζc/10Pmax
s d−αs

s,n . Rearranging,

we find that the cluster for a given user will consist of all BSs where

dr,n ≤ ∆ds,n, where ∆ = 10ζc/(10αs) (3.26)

Lemma 1 : In the PPP model, the mean number of users supported by a BS (either

served or part of their cluster) is

E[Ls] = ∆2λu/λs (3.27)

Proof : See Appendix A.

The achievable rate of a user is given by W0 log2(1 + σs,n,b). Since the signals

precoded at a given BS do not interfere between the users served by that BS (due

to null-space projection precoding), nor do the signals interfere between RBs, the

sum rate of SC s is simply
∑︁

n,bW0 log2(1 + σs,n,b). The mean SE of a user, i.e.,

Eσs,n,b
[log(1 + σs,n,b)], can theoretically be found following the methodology found in
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Figure 3.2: Gain in energy efficiency by antenna selection, relative to when all
antennas are active, vs. normalized power allocated per user (Ksp/P

max
s ), with

Ns = 8. (a) Ks = 13, Ls = 300. (b) Ks,b = 1, Ls,b = 4. (c) Ks,b = 2, Ls,b = 3.
(d) Ks,b = Ls,b = 4.

[131] for fading that follows a κ-µ distribution. (A Gamma distribution Γ(k, θ) with

shape parameter k and scale parameter θ is a special case of the κ-µ distribution in

[131], where κ = 0, m = µ = k, and θ1 = θ2 = θ.) Unfortunately, we have found

that for our proposed system, the final integral for Ez[log(1 + z)] is non-convergent.

Therefore, we will rely instead on a simulation of the PPP model.

For the PPP simulation, we simulate 200000 realizations of a PPP, within a square

region containing on average 10000 points. In each realization, the distance of the

points to the origin (center of the square) is measured. The closest point to the

origin is set as the serving BS. Each point is assigned a Gamma-distributed value

representing the precoded channel power gain for that BS. We consider a few different

scenarios in terms of served and clustered user loads. Other relevant parameters are

the same as in Table 3.1.

In Fig. 3.2, we examine the gain in EE that is possible due to antenna selection.

The gain is the EE achieved when the specified number N sel
s of SC antennas are ac-

tivated per cell, relative to when all Ns = 8 antennas are active. As seen, significant

gains are possible; Fig. 3.2(c) in particular displays gains of over 25%. As expected,

the gain is the highest when the amount of power allocated to each user is the lowest.

In this situation, changing the dynamic potion of the consumed power has the rela-

tively largest effect on the overall reduction in the value of Ps, and thus the gain in
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EE. We also note that there is in general an optimal number of antennas to activate

to maximize the EE gain. If too few antennas are active, the loss of available spatial

multiplexing gain can cause the drop in SE to become larger relative to the drop in

consumed power. In some cases, the system can even see a loss in EE compared to

when all antennas are active, as observed in Figs. 3.2(a) and 3.2(d). However, one

cannot draw a specific conclusion on the exact optimal number of antennas to activate

from these results. To start, the allocation of users to RBs also has a significant effect

on how many antennas it is possible to turn off. Thus, the specific allocation of RBs

to users would also impact the optimal number of active antennas. The relationship

between the two factors is far from straightforward. Furthermore, these results are

for the equivalent of activating N sel
s antennas at random, whereas our scheme selects

the best N sel
s antennas out of Ns to activate.

3.8 Simulation Results

In this section, we evaluate the performance of the proposed algorithm through sim-

ulations. The default parameters are given in table 3.1 unless otherwise stated. Most

of the parameters are based on the recommendations in [135]. The total number of

users NU is 200, from which ⌊2NU

3S
⌋ are uniformly distributed over the area of each

SC, while the remainder are uniformly distributed over the entire area of the macro

cell. The path loss from the macro BS to a user is given by 128.1 + 37.6 log10(d) dB,

and the path loss from the SC BSs to a user is determined by 140.7 + 36.7 log10(d)

dB (with distance d in km) [135, Table A.2.1.1.2-3].

We show the impact of ζc on the EE and SE (normalized to the total system band-

width) of our proposed scheme in Fig. 3.3. We also modify the scheme proposed in

[136] and compare its resulting EE and SE with those of our user association method.

Fig. 3.3 shows both the estimated EE and SE (calculated by the optimization al-

gorithm assuming no interference) and the actual EE and SE (results from the true

SINR in eq. (3.5), accounting for the residual interference) for our proposed method.
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Table 3.1: Simulation Parameters

Parameter Value Parameter Value

Number of small
cells

10 Cell radius 40 m // 289 m

Position of SC BSs On circle 249 m
from macro BS,
equally spaced in
angle

Maximum transmit power 30 dBm // 46 dBm

Static power 0.1 W // 10 W Dynamic power 0.1 W

PA efficiency 0.5 // 0.8 Fronthaul capacity 150 Mbits/s // 300
Mbits/s

Number of RBs 50 Maximum RBs allocated
per user

1

Total bandwidth 10 MHz Bandwidth per RB 200 KHz

Carrier frequency 2 GHz Minimum QoS 128 kbits/s

Exclusion radius 10 m // 35 m Shadowing std. dev. 10 dB

Noise power spec-
tral density

-174 dBm/Hz Number of antennas 8 // 100

Antenna spacing
(multiple of wave-
lengths)

1
2 Macro BS spatial correla-

tion ASD

π
18 radians (10°)

Macro BS distor-
tion

10−6 Total number of users Variable, default
200

Association bias 3 dB // 0 dB (de-
faults)

Clustering threshold Determined by sim-
ulation (see Fig. 5)

Optimization loop
iterations

8 // 20 Monte Carlo 500 user drops //
1000 channel real-
izations

For the sake of brevity and legibility, only the actual EE and SE are depicted for

the modified method from [136]. From the figure it is clear that by increasing ζc, the

difference between the estimated and the actual curves decreases, since more BSs are

included in each cluster and more interference is mitigated. For ζc greater than 25

dB, the actual EE decreases, meaning including more BSs per cluster degrades the

EE. This is due to more antennas needing to be activated at the SC BSs to support

BS coordination for the larger clusters. Thus, even though the estimated EE and SE

become closer to the actual values for higher ζc, increasing ζc further has a detrimental
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Figure 3.3: EE and SE (estimated and actual) of our proposed method vs. clustering
threshold ζc, with Υs = 3 dB.

effect on the actual performance. Hence, we use ζc = 25 dB for the remainder of the

chapter. As can be seen, our proposed method outperforms the method modified from

[136] for both EE and SE. As our proposed method performs better while having less

computational complexity, it is a better solution for user association. Finally, please

note that the EE and SE values reported hereafter are the actual values.

Fig. 3.4 shows the comparison of the EE performance for the total HetNet, and for

the macro and SC tiers separately, when the association bias Υs for the SCs changes.

Υ0, the association bias for the macro BS, stays constant at 0 dB, so increasing

Υs means more emphasis is given to SCs and more users are served by SCs. As

expected, by increasing Υs up to 3 dB, the EE of the SCs increases. The cause

stems from the higher priority given to SCs that results in more users being served

by them, while activating a minimal necessary number of antennas. However, with

further increases to Υs, even more users are served by SCs, such that more antennas

need to be activated. This leads to EE degradation. On the other hand, since larger

Υs means fewer users are served by the macro BS, the macro cell EE decreases.

Interestingly, changing Υs from -3 dB to +9 dB yields little change in the total EE;

the EE changes by only about ±2% from its mean value of 38.3 Mbits/s/W over that

range. This is due to the trade-off between the need to activate more antennas at the
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Figure 3.4: Total EE of HetNet and EE of macro and small cell HetNet tiers vs.
association bias Υs for small cells for ζc = 25 dB.

SCs, which leads to higher dynamic power consumption, versus serving users with

lower total radiated transmit power, since in general the users will be closer to the

SC BSs. Although serving more users by the macro BS seems more energy-efficient

for the macro cell, using an association bias in favor of the SCs leads to transferring

the traffic load to the comparatively lightly-loaded SCs. Offloading users to the SCs

leaves more resources available for macro users, which is desirable for a scenario with

higher mobility users, who would prefer to be served by the macro BS.

The convergence of the EE of our proposed scheme is illustrated in Fig. 3.5. Since

there is no comparable scheme in the literature that combines all our considered

factors and constraints, to evaluate the EE performance of our proposed scheme, an

equal power allocation algorithm and a sequential RB assignment scheme are chosen

as baseline algorithms for comparison. Furthermore, to compare with an algorithm

similar to our own, we have also modified and combined the schemes proposed in

[107] and [110]. This combined scheme follows a similar beamforming approach as in

[110] (therein called EE ZF), while using the the power allocation and RB assignment

algorithm from [107] modified to be applicable to multiple-antenna BSs. Just as in

[107] and [110], no antenna selection is considered for the combined scheme, but for

a fair comparison, the constraints have been modified to match ours and the single-
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Figure 3.5: Comparison of convergence in (actual) EE between proposed scheme and
other reference algorithms (shown in legend) vs. number of iterations.

RF-chain structure is assumed for mMIMO.

We also compare the EE performance of our scheme with no antenna selection for

SCs and a conventional transceiver structure for the mMIMO macro BS.

As can be seen, even though the computational complexity is higher in our proposed

algorithm, it converges within 3 iterations of the outer loop, and the convergence

speed is acceptable when compared with the reference algorithms. As expected, our

proposed scheme outperforms the other algorithms: the EE is about 12% higher than

the second-best scheme of sequential RB allocation. This result shows the impact

of an effective and efficient RB allocation method on the total EE of the system.

The worst performance is for equal power allocation, in which even though antenna

selection, the single-RF-chain structure, and RB assignment are considered, power is

equally allocated between users regardless of their channel quality and minimum rate

requirements.

Based on this figure, we can conclude that even though full power transmission

increases the SE significantly, it performs the worst from the EE perspective. More-

over, our proposed scheme outperforms the combined schemes from [107] and [110],

with about 37% higher EE. Without antenna selection, even though increasing the
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Figure 3.6: Impact of fronthaul capacity on total EE, on EE of small cell and macro
tiers separately, and on SE

number of active antennas enhances the SE, since more power is consumed by each

SC BS, the EE decreases. Moreover, deploying a conventional transceiver structure

at the macro BS (with one RF chain per antenna) will lead to higher consumption of

dynamic power. Thus, the EE of our proposed scheme but with a conventional macro

BS transceiver structure and with all SC antennas active is only about twice that of

the equal power case.

In previous figures, we have assumed there was enough fronthaul capacity to serve

the users, but in Fig. 3.6 we limit fronthaul capacity to investigate the effect of the

constraints in eq. (3.19c) in our EEmax problem. For this purpose, we change the

number of users to NU = 60 and κmin to 1.28 Mbits/s.4 In Fig. 3.6, EE is depicted

vs. fronthaul capacity, where the pair of values on the x-axis indicate (c0,limit, cs,limit),

i.e., the fronthaul capacity for the macro BS and for SC BSs, respectively. First, at

the far left we assign sufficient fronthaul capacity for all BSs, such that all users can

get their minimum required rate. Next, the fronthaul capacity for the macro BS is

decreased. This leads to the macro BS becoming overloaded and it hence drops some

of its users. All EE and SE values decrease as a result. Third, we keep the sufficient

4These values are simply examples intended to ensure the constraints in eq. (3.19b) are also
active, so we can examine their interaction with the fronthaul capacity constraints.
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fronthaul capacity for the macro BS and decrease the fronthaul capacity of the SC

BSs. In this case, the total EE, SC EE, and SE all decrease even more, since the

majority of users in the network are SC users, many of whom are now not receiving

their minimum guaranteed rates. However, the EE of the macro BS remains about

the same as it was initially. Finally, we decrease cs,limit for all BSs. As expected, the

total EE and SE decreases even further with more users receiving even smaller rates.

However, the EEs of the macro cell and SCs are about the same as for the (22.5,40)

case and the (90,10) case, respectively. Hence, whether or not a tier is overloaded has

little effect on the EE of the other tier.

Imperfect CSI can have a notable impact on the performance of cellular systems.

Specifically, precoding techniques that null interference, like those we use in this

chapter, are known to be somewhat sensitive to errors in CSI. Hence, herein we

conduct a brief numerical examination of imperfect CSI and investigate the robustness

of our proposed scheme to channel estimation error. The model we have adopted for

imperfect CSI is given as [137]:

hest
s,n,b = ςhs,n,b +

√︁
1− ς2 h̄s,n,b, (3.28)

where hest
s,n,b ∈ C1×Ns is the estimated (small-scale fading) channel vector, hs,n,b ∈

C1×Ns is the actual channel vector (corresponding to perfect CSI), and h̄s,n,b ∈

C1×Ns ∼ CN (0, INs) is an independent error vector. The parameter ς, where 0 ≤

ς ≤ 1, represents the reliability of the channel estimate. When ς = 0, there is a

complete failure in the channel estimation, whereas for ς = 1 the estimation is perfect

and the error component in eq. (3.28) becomes zero.

The EE/SE performance vs. (1 − ς) is depicted in Fig. 3.7. As can be seen,

by decreasing ς both the EE and SE decrease, which is expected as the decreased

CSI reliability/ increased channel estimation error naturally leads to the degradation

of performance. The most significant decrease occurs for equal power allocation.

Since the power allocation is not optimized, there is no opportunity in that regard
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Figure 3.7: EE and SE of proposed scheme and other reference algorithms shown in
legend vs. 1− ς, where ς represents the CSI reliability.

to mitigate interference by, for example, reducing the transmitted power by only

allocating enough power to certain users such that they receive just their minimum

guaranteed rates. Thus, the primary source of interference mitigation is due to the

precoding, and as already mentioned, the precoding can be sensitive to CSI errors.

Hence, for equal power allocation, both the EE and SE drop by over half when the

CSI reliability drops from ς = 1 (perfect CSI) to ς = 0.5. The decrease in SE of our

proposed method is sharper than for the remaining two reference schemes, indicating

slightly less robustness in SE toward channel estimation error in our proposed method.

However, the relative decrease in EE of our proposed scheme is less than that of

sequential RB allocation for larger values of ς. Interestingly, the percentage drops in

EE and SE for our proposed scheme as ς decreases are nearly identical, indicating a

good trade-off between EE and SE. For sequential RB allocation, the relative drop

in EE is faster than for SE, whereas for the combined schemes of [107] and [110],

the reverse is true. Overall, if the reliability of channel estimation can be kept above

ς = 0.9, then the degradation in performance will also be fairly limited. In the case
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of our proposed algorithm, when ς ≥ 0.9, both the EE and the SE lose no more than

10% in performance compared to having perfect CSI.

3.9 Summary

In this chapter, we have considered the DL of a two-tier HetNet, in which multiple-

antenna SCs are coordinated to serve users. Even though the deployment of MIMO

together with SCs improves the communication system’s performance in terms of data

rate and reliability, circuit energy consumption in such a network is a critical issue. To

address this, an energy-efficient antenna selection and radio resource block assignment

algorithm has been proposed for the SCs, and a single RF chain structure is consid-

ered for the mMIMO macro BS. Then, while coordinating transmissions between cells

subject to user-centric clustering, an energy-efficient beamforming design and power

allocation optimization problem with respect to the QoS requirement of users, trans-

mit power budget of BSs, and fronthaul capacity has been formulated. The proposed

optimization problem then has been solved using the Dinkelbach method. Finally,

the simulation results have been provided to demonstrated the performance potential

of our proposed algorithm in terms of energy efficiency and spectral efficiency.
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Chapter 4

Iterative Matrix Inversion
Methods for Precoding in Cell-Free
Massive MIMO Systems

Linear precoding methods such as ZF are sufficient to achieve near-optimal perfor-

mance in mMIMO systems. However, a key challenge in implementing these precoders

can be a channel matrix inversion operation, which results in significant computa-

tional complexity in systems with large-scale antenna arrays. Several approaches

have been proposed with the goal of reducing the computational complexity of ma-

trix inversion associated with precoding in mMIMO systems based on the Jacobi

(JC) method [73, 77, 78, 80, 81], Gauss-Seidel (GS) method [82], Newton-Schultz

(NS) method [83, 85], and hyper-power (HP) method [86]. Nevertheless, to the best

of our knowledge, there is no prior work investigating iterative matrix inversion meth-

ods for precoding in the context of CF mMIMO. In this chapter, we examine several

iterative methods to calculate the precoding matrix in a CF mMIMO system. We

also investigate their computational complexity and convergence rate in the presence

of small- and large-scale fading and spatial correlation between antennas.

4.1 System model

We consider the downlink of a CF mMIMO system consisting of L APs each equipped

with N antennas serving K single-antenna users. The received signal yk ∈ C at user
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k is

yk =
L∑︂
l=1

glkxl + nk, (4.1)

where glk ∈ C1×N is the complex channel gain vector between user k and AP l,

xl ∈ CN×1 is the complex-valued transmitted signal from AP l, and nk ∼ CN (0, 1) is

additive white Gaussian noise. The signal transmitted by AP l is

xl =

√︃
Pt

L

K∑︂
k=1

√
υlkwlksk, (4.2)

where Pt is the total normalized transmit power (normalized relative to the noise

power) of the system. This power is divided equally among the L APs, such that

each AP has a transmit power limit of Pt/L. υlk is a power coefficient, representing

the fraction of its maximum transmit power that AP l allocates to the data for user

k. sk is the data symbol intended for user k, with E{|sk|2} = 1, and wlk ∈ CN×1 is

the precoding vector at AP l for user k.

The channel gain vectors glk and precoding vectors wlk can be collected together

into system-wide matricesG ∈ CK×M andW ∈ CM×K , respectively, whereM = LN .

We can similarly define other system-wide variables: the data vector s ∈ CK×1, the

power coefficient matrix Υ ∈ RM×K
≥0 , the transmitted signal vector x ∈ CM×1, the

noise vector n ∈ CK×1, and the received signal vector y ∈ CK×1. When considering

the precoding method, we primarily focus on ZF precoding for this chapter. However,

most of the matrix inversion techniques we examine can also be applied to matrices

used in regularized ZF (RZF) and MMSE precoding.

Rewriting (4.1) and (4.2) in matrix form, we have

y = Gx+ n = G

√︃
Pt

L
(Υ◦1/2 ⊙W)s+ n, (4.3)

We denote the Hadamard product in (4) as WM :

WM = Υ◦1/2 ⊙W. (4.4)

To implement ZF precoding, we set W as [71]:

W = G† = GH(GGH)−1. (4.5)
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By further specifying that υlk = υk, i.e. the power coefficients are only dependent

on the index k, it will guarantee that GWM is diagonal and there is no interference

between users. If we define ΥM as

ΥM =

⎡⎢⎢⎢⎢⎢⎢⎣

√
υ1 0 · · · 0

0
√
υ2 · · · 0

...
...

. . .
...

0 0 · · · √
υK

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ RK×K
≥0 , (4.6)

we have WM = WΥM = GH(GGH)−1ΥM .

Finally, the received vector becomes

y =

√︃
Pt

L
GGH(GGH)−1ΥMs+ n =

√︃
Pt

L
[
√
υ1s1,

√
υ2s2, . . . ,

√
υKsK ]

T
+ n.

(4.7)

To satisfy the average power constraint per AP, we must have

tr(E{xlx
H
l }) ≤ Pt/L (4.8a)

tr(E{GH
l (GGH)−1Υ2

M(GGH)−1Gl}) ≤ 1, (4.8b)

where Gl ∈ CK×N denotes the N columns of G which correspond to AP l (i.e.,

columns (l−1)N+1 to lN). Unfortunately, (4.8b) is extremely difficult to calculate

analytically. Since power allocation is not the focus of this chapter, we therefore have

opted to instead satisfy instantaneous power constraints for the APs with respect to

the precoding vectors. With this change, the expectation in (4.8a) becomes only over

the data symbols sk, and the expectation term in (4.8b) disappears.

For further simplicity, we follow a similar approach as in [138]. By assuming

υ1= υ2= . . .= υK , (4.8b) can be written as

υ(l) tr
(︁
(GGH)−1GlG

H
l (GGH)−1

)︁
≤ 1, (4.9)

where υ(l) is the power coefficient for AP l. The sub-optimal power coefficient becomes

υ̃ = min
l

υ(l) =
1

maxl tr(Tl)
, (4.10)
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where Tl = (GGH)−1GlG
H
l (GGH)−1. It is shown in [138] that this solution has

near-optimal performance while having smaller computational complexity. Then the

transmitted signal x becomes

x =

√︃
Ptυ̃

L
GH(GGH)−1s =

√︃
Ptυ̃

L
GH ŝ, (4.11)

where we define ŝ = (GGH)−1s. To reduce the computational complexity of ZF

precoding, we utilize iterative methods to find (GGH)−1 instead of direct methods.

In this chapter, we assume perfect channel state information (CSI) throughout,

since the CSI accuracy generally does not affect the performance of the various meth-

ods relative to each other. Moreover, we assume spatially-correlated Rayleigh small-

scale fading to make the system model more practical. We consider three different

layouts for mMIMO systems: 1) standard (co-located) mMIMO; 2) completely dis-

tributed CF mMIMO, where each AP has only one antenna; 3) a partially-distributed

CF system, in which a small number of antennas are co-located at each AP. For fair

comparison, the total number of antennas M and the total system power Pt are set

to the same value for all three cases.

4.2 Iterative Methods for Matrix Inversion

4.2.1 Jacobi and Gauss-Seidel Methods

We start with an examination of JC and GS, being two well-known methods for solving

a set of linear equations. Between the two, GS has a better rate of convergence, since

in each iteration, it sequentially updates each solution variable, using the most up-to-

date value of the ones earlier in the sequence. However, JC is well suited for parallel

and/or distributed computation which is desirable in many scenarios and useful for

this work given the distributed nature of CF mMIMO. Both methods solve Ax = b

by iteratively calculating xn+1 = Pxn + q. The specifics of P and q for the two

methods are given in Table 4.1. D contains the diagonal part of A and L and U
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Table 4.1: Update Variables for Jacobi and Gauss-Seidel Methods

Jacobi Gauss-Seidel

P = −D−1(L+U) P = −(D+ L)−1(U)

q = D−1b q = (D+ L)−1b

are the strictly lower and strictly upper triangular parts of A (i.e., not including the

diagonal).

Before using JC and GS methods for matrix inversion in a mMIMO or CF mMIMO

system, we first need to prove their convergence. We set A = GGH and b = s; the

methods will then solve for x = ŝ. It has been proven in [139] that the iterative

scheme xn+1 = Pxn + q is convergent if and only if every eigenvalue of P satisfies

|λ| < 1, that is, the spectral radius ρ(P) < 1. Furthermore, the methods converge

faster the smaller the value ρ(P) is [72].

To investigate the convergence, we examine the cumulative distribution function

(CDF) of the spectral radius of P by Monte Carlo simulation, since an analytical

determination of the eigenvalues when accounting for large-scale fading and spatial

correlation is extremely difficult. We assume a total ofM = 128 antennas andK = 16

users are present in the system. In the partially-distributed scenario, we assume that

each AP hasN = 4 antennas, so there are a total of L = 32 APs. All APs and users are

uniformly distributed in a square area of 1×1 km2. The distances measured between

the users and APs are wrapped around to avoid boundary effects. For large-scale

fading we use the propagation model suggested by [140], which is based on the 3GPP

Urban Microcell model [135, Table B.1.2.1-1]. The spatial correlation matrix Rlk of

the small-scale channel vector from multi-antenna AP l to user k is modeled based on

the local scattering model described in [71, Ch. 2], which assumes all scatterers are

near the users. More specifically, we assume a Gaussian distribution to the angles of

arrival/departure of multipath components around the nominal central angle at the

AP.
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(a) CDFs of spectral radius ρ(P) with small- and large-
scale fading, without spatial correlation

(b) CDFs of spectral radius ρ(P) when considering small-
and large-scale fading and spatial correlation

Figure 4.1: CDFs of spectral radius ρ(P) for JC and GS methods when considering
small-scale fading, large-scale fading, and spatial correlation in mMIMO and CF
mMIMO systems

The simulated CDFs of the spectral radius for the three mMIMO layouts are

presented in Fig. 4.1. In Fig. 4.1a, we have assumed no correlation between antennas

(i.e., Rk = IM) and only the effects of small- and large-scale fading on the spectral

radius for the JC and GS methods are considered. Previous work such as [78, 80–82]

has only considered small-scale fading for co-located mMIMO. As can be seen, by

including large-scale fading, ρ(P) is still always less than one for co-located mMIMO

for this set of simulation parameters, so both the JC and GS methods converge and

can be used for inverse matrix calculation. The CDF of the spectral radius of GS has

smaller values than for JC, which matches expectations given it is known that GS

converges faster than JC.

It can also be observed that the spectral radius of the JC method becomes larger
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than one for CF mMIMO for both N = 1 and N = 4, and thus this method will not

always converge for the specified simulation parameters. Hence, rather importantly,

we can conclude that the JC method cannot be reliably used for matrix inversion

in ZF precoding in CF mMIMO systems. In all scenarios the spectral radius of the

GS method remains below 1, meaning it will converge. However, ρ(P) is larger for

the CF cases than for co-located mMIMO, so the convergence rate will be slower.

In particular, we note that in the completely distributed case (N = 1), the spectral

radius for GS can become very close to 1. Consequently, while it will still converge,

it could do so very slowly, significantly hindering its use in practice. Overall, the

results demonstrate the significant effects that the large-scale fading coefficients βmk

can have on the JC and GS convergence.

In Fig. 4.1b, along with small- and large-scale fading, spatial correlation has also

been included. As noted earlier, for N =1 the APs are sufficiently separated such that

no spatial correlation exists between them. Thus, those curves are the same as in Fig.

4.1a. For co-located mMIMO, with the inclusion of spatial correlation, JC no longer

always converges and the convergence rate of GS decreases significantly. Meanwhile,

for partially- and fully-distributed CF mMIMO, the spectral radius CDFs for both

JC and GS now lie to the left of those for co-located mMIMO, though the JC method

still does not always converge. Thus, in conclusion, in our considered scenario with

spatial correlation, JC can not be reliably used for matrix inversion, and using the GS

method with CF mMIMO results in faster convergence than for co-located mMIMO.

We have demonstrated that the GS method converges for our simulation parame-

ters. However, it is actually known that if A is Hermitian and positive definite, the

GS method will converge regardless of its initialization point; [72, Thm. 10.1.2] has

a proof1 of this. Since we set A = GGH , it must be Hermitian and at least positive

semi-definite, and will be positive definite if G is full rank. (If not, and A is only

1Technically, this proof is for a real-valued symmetric positive definite matrix, but for a complex-
valued matrix, being Hermitian positive definite is the equivalent case.
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(a) N = 1

(b) N = 4

Figure 4.2: CDFs of spectral radius ρ(P) of JOR method for different values of
ω = ζ/ρ(D−1A), with ρ(P) of GS method for comparison.

positive semi-definite, it will not have an inverse anyway.) Our assumptions for the

small-scale fading and the spatial correlation matrices result in G being full rank

almost surely.

Although the JC method could converge under some other propagation model,

these results demonstrate that convergence in general cannot be guaranteed for CF

mMIMO. Therefore, the ordinary JC method should not be used in the context of

CF mMIMO. In an attempt to find a modification to guarantee the convergence of

the JC method, we investigate the impact of generalization through over-relaxation.
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Generalization through over-relaxation

A generalization of the JC method is called the Jacobi over-relaxation (JOR) method

[141, Ch. 4], in which a relaxation parameter ω is introduced such that the update

of vector xn is modified to

xn+1 = ((1− ω)IK − ωD−1(L+U))xn + ωD−1b

= (IK − ωD−1A)xn + ωD−1b.
(4.12)

This method reduces to the regular JC method for ω = 1. While the GS method

will converge if A is Hermitian positive definite, the JC method requires that both

A and 2D −A be Hermitian positive definite for convergence. Whether or not this

condition is satisfied can be difficult to prove. However, for the JOR method, the

latter requirement on 2D − A drops, and by putting a constraint on ω, proving

the convergence of the method simplifies. It is proven in [141, Ch. 4] that for the

JOR method, if A is Hermitian positive definite, then the method is convergent if

0 < ω < 2
ρ(D−1A)

.

Examination of (4.12) shows that the JOR method still follows the same update

method of xn+1 = Pxn+q, where P = IK −ωD−1A and q = ωD−1b. As such, it too

will converge provided that ρ(P) < 1. Fig. 4.2 shows the CDF of the spectral radius

of P for the JOR method for different values of ω, along with ρ(P) for the GS method

for comparison. As expected, this method is convergent for any 0 < ω < 2
ρ(D−1A)

,

however the GS method still displays a smaller spectral radius, and thus a faster

convergence rate.

As can be seen, the spectral radius of JOR has a lower bound (e.g., with ω =

1.6/ρ(D−1A), the lower bound is 0.6). To explain this, we first note from the definition

of eigenvectors and eigenvalues Mvm = λmvm, it follows that for any non-zero real

constant c, the eigenvalues of cM are cλm, and the eigenvalues of M+cI are λm+c.

Let M = D−1A. Then,

ρ(IK − ωM) = ρ(ωM− IK) = max
m

|ωλm − 1|. (4.13)
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By setting ω= ζ
ρ(D−1A)

= ζ
maxm |λm| and noting |ωλm − 1| = |1−ωλm|, the smallest

possible value of (4.13) will occur for the largest magnitude eigenvalue |λm| if λm

is positive, since the largest possible value is subtracted from 1. In this event

|ωλm − 1| = ζ − 1, and thus we can conclude that for the JOR method, ρ(P) ≥ ζ − 1.

The advantage of the JOR method is its compatibility with parallel implementa-

tion, however, the dependence of its performance on the value of ω and the extra

complexity of finding ρ(D−1A) < 1 to determine the maximum permissible value of

ω need to be taken into consideration.

4.2.2 Hyper-Power Method (including Newton-Schultz)

While the JC and GS methods are computationally efficient for matrix inversion,

as we have shown, JC is not reliably applicable to CF mMIMO, nor to co-located

mMIMO in the presence of spatial correlation. Meanwhile, although the GS method

is guaranteed to converge as long as the matrix being inverted is Hermitian positive

definite, due to its computational structure2, parallel implementation is not possible.

Amongst methods to find the inverse of a matrix by solving AX = I, the Neumann

series expansion and the NS method are fairly well-known. Due to the significant

performance deficiency of the NSE method reported in [142], the NS method and its

generalization, the HP method, are investigated in this work.

In the NS method, the inverse of A can be obtained by following the below proce-

dure:

Xn+1 = Xn +Xn(IK −AXn) = Xn(2IK −AXn), (4.14)

where n is the iteration number.

A generalized form of NS called the hyper-power method has been introduced in

[143]. It is defined as

Xn+1 = Xn pr−1(IK −AXn), (4.15)

2In the GS method, the update of the ith element of xn+1 uses the updated elements j for j < i
[72, Eq. (11.2.3)]. Consequently, the elements in xn+1 must be computed successively rather than
in parallel.
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Figure 4.3: Average 2-norm of error matrix ∥En∥2 vs. number of iterations n for
different initialization points for HP-based methods in CF mMIMO systems when
considering small- and large-scale fading and spatial correlation in channel vectors

where pj(Z) = 1 + Z+ ...+ Zj (j ∈ Z+). For r = 2, this method reduces to NS.

To prove that the HP method converges as the iterations progress, we need to

prove that the norm of the error matrix ∥E0∥ = ∥IK −AX0∥ < 1.

Proof: We start by expanding (4.15) as

Xn = Xn−1[IK + (IK −AXn−1) + (IK −AXn−1)
2 + · · ·+ (IK −AXn−1)

r−1].
(4.16)

By substituting En = IK −AXn we have

Xn = Xn−1(IK + En−1 + E2
n−1 + · · ·+ Er−1

n−1). (4.17)

Thus, the error matrix in iteration n can be calculated as

En = IK −AXn−1(IK + En−1 + E2
n−1 + · · ·+ Er−1

n−1)

= IK − (IK − En−1)(IK + En−1 + E2
n−1 + · · ·+ Er−1

n−1)

= Er
n−1 = Ern

0 , (4.18)

where the last equality follows by induction. From the property ∥YZ∥ ≤ ∥Y∥ ∥Z∥,

by induction we also have
⃦⃦
Ern

0

⃦⃦
≤ ∥E0∥r

n
. Thus if ∥E0∥ < 1, subsequently ∥El∥ → 0

as l → ∞ and convergence is guaranteed.
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Consequently, in this method the most crucial parameter to ensure convergence

and also determine the convergence rate is the initialization point X0, which will be

discussed in more detail later. The next important parameter is r; to find its optimum

value, its effect on both the convergence rate and computational complexity needs to

be considered.

As just discussed, the convergence is dependent on the error in each iteration.

Thus, for ∥E0∥ < 1, the HP method is convergent with an order of convergence of

r. Based on (4.18), to decrease the overall error we have three options: choose an

initialization point for which ∥E0∥ is feasibly small, increase the number of iterations,

and increase the value of r. Increasing the number of iterations is not practical since

it leads to higher computational complexity and convergence time. In considering r,

we note that a typical method of calculating (4.17) is by following a Horner scheme

fashion [144] as:

Xn+1 = Xn(IK + En(IK + . . .En(IK + En) . . . )), (4.19)

which performs r matrix multiplications per iteration. The computational efficiency

of this scheme, as introduced by [145], is defined as Ec = r1/θ, where r denotes the

local convergence rate and θ = r is the number of matrix multiplications per iteration.

It is shown in [144] that r = 3 leads to the optimum value for the computational

efficiency. Then, (4.19) can be simplified as

Xn+1 = Xn(IK + En(IK + En)) = Xn(IK + En + E2
n). (4.20)

Figure 4.3 shows ∥En∥2 for CF mMIMO in the presence of spatial correlation.

As expected, the channel of our CF system is no longer diagonally dominant (after

including large-scale fading and correlation), so choosing X0 = D−1 again leads to

non-convergence. Since there are several matrix inversion initialization points con-

sidered in the related literature, we investigate the performance of one of the most

well-known ones in our system. The proposed initialization point in [146], which is
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widely used, is given by

X0 = αAH (4.21)

such that the positive real coefficient α satisfies ∥E0∥ < 1.

To find a proper value for the coefficient α for CF mMIMO systems, we utilize

[146, Thm. 2], which states convergence will occur if

0 < α <
2

λ1(AAH)
, (4.22)

where λ1(AAH) is the largest eigenvalue of AAH . Knowing the convergence interval

for α, to boost the performance we need its optimal value that minimizes ∥IK−AX0∥.

By following a similar approach as in [147], the optimal α is

α =
2

λ1(AAH) + λk(AAH)
, (4.23)

where λk(AAH) is the smallest non-zero eigenvalue of AAH . Note also since A=AH ,

[λm(AAH)]vm = AAvm = A[λm(A)]vm = [λm(A)]2vm. Thus, the eigenvalues of

AAH are the squares of the eigenvalues of A.

Based on the simulation results in Fig. 4.3, even though this choice of initial-

ization point leads to convergence, the convergence rate is quite slow, and neither

increasing the number of iterations nor choosing a higher value of r leads to faster

convergence. By taking advantage of matrix A being Hermitian positive definite, a

better initialization point has been proposed in [148] to accelerate the convergence:

X0 = βIK + ϕAH , (4.24)

where

β =
8(λ1(A) + λk(A))

λ2
1(A) + λ2

k(A) + 6λ1(A)λk(A)
, (4.25)

ϕ =
−8

λ2
1(A) + λ2

k(A) + 6λ1(A)λk(A)
. (4.26)

As can be seen in Fig. 4.3, this initialization point results in faster convergence.

However, a bottleneck in terms of complexity is finding the largest and smallest non-

zero eigenvalues of matrix A.
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In practice, it is computationally complex to calculate the eigenvalues of a matrix

directly. To reduce the complexity, we instead use bounds from the literature for the

maximum and minimum eigenvalues of a matrix. Specifically, we first consider two

well-known bounds proposed in [149]:

m+ s/
√
K − 1 ≤ λ1(A) ≤ m+ s

√
K − 1 , (4.27)

m− s
√
K − 1 ≤ λk(A) ≤ m− s/

√
K − 1 , (4.28)

where

m =
tr(A)

K
, (4.29)

s =

√︃
tr(A2)

K
−m2 . (4.30)

To get the values of β and ϕ, we take the upper bounds in (4.27) and (4.28), since

they provide better eigenvalue estimates. Tighter bounds have been derived in [150],

which are given as

tr(A)

K
+
tr(C2)

K

(︄
1 + (K − 1)2a−1

(K − 1)2a−1 tr(C2a)

)︄ 1
2a

≤ λ1(A) ≤ tr(A)

K
+

(︄
1 + (K − 1)2a−1

(K − 1)2a−1 tr(C2a)

)︄− 1
2a

(4.31)

λk(A) ≤ tr(A)

K
− tr(C2)

K

(︄
1 + (K − 1)2a−1

(K − 1)2a−1 tr(C2a)

)︄ 1
2a

(4.32)

where C = A − tr(A)
K

IK and a ∈ Z+. If a is set to 1, the bounds reduce to those

given in (4.27) and (4.28).

4.2.3 The Matrix Pseudoinverse and Factorized HP Methods

Thus far, our goal has been to calculate (GGH)−1 for CF and co-located mMIMO

systems. However, by finding Moore-Penrose pseudoinverse G†, both the power coef-

ficients given in (4.10) and the precoding matrix can be obtained. The pseudoinverse

of G is given earlier in (4.5).
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The HP method for finding the pseudoinverse is given by replacing A with G in

(4.15) [144]:

X̂n+1 = X̂n pr−1(IK −GX̂n). (4.33)

Proving that the HP method for the pseudoinverse converges follows straightforwardly

by replacing A with G in (4.16)–(4.18). Consequently, convergence will occur if⃦⃦
Ê0

⃦⃦
=
⃦⃦
IK −GX̂0

⃦⃦
< 1. It is proven in [151] that the optimal initialization point

that minimizes
⃦⃦
Ê0

⃦⃦
for computing the pseudoinverse is

X̂0 = αGH , (4.34)

where

α =
2

λ1(GGH) + λk(GGH)
. (4.35)

To decrease the computational complexity of finding the initialization point, a similar

initialization point with α = 2/tr(GGH) [148] can be considered, which we will show

has acceptable performance.

Fig. 4.4a shows the normalized3 (to account for the different number of matrix

elements) 2-norm of the error matrix ∥En∥2
K

or ∥Ên∥2√
MK

vs. the number of iterations

of the HP method for both the inverse of A and the pseudoinverse of G. As can

be seen, the pseudoinverse with initialization point given by (4.35) converges much

faster than the inverse with the similar initialization point given by (4.23). However,

the pseudoinverse also has a higher computational complexity per iteration, since its

calculation of Ên involves multiplication of a K ×M matrix G by an M ×K matrix

X̂n, compared to multiplying two K ×K matrices A and Xn in En for the inverse.

By using the better initialization point for the inverse given by (4.24), it ends up

converging similarly to the pseudoinverse. We also note that the pseudoinverse using

X̂0 = 2GH/tr(GGH) performs and converges similarly to using the optimal value of

α. The slopes of the lower three curves are almost identical.

3The normalization also makes the metric similar in nature to the normalized root mean square
error (NRMSE) of the solution. The metric would equal the NRMSE if the Frobenius norm was
used instead of the 2-norm.
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Unfortunately, the convergence is still rather slow (needing numerous iterations)

even when considering better initialization points. Another parameter that has a great

impact on the convergence is r. As discussed before, increasing r above its optimal

value of 3 will normally decrease the computational efficiency of calculating the matrix

inverse4 using the HP method. However, by utilizing improved HP methods such as

those proposed in [144, 153–157], one can further increase the computational efficiency

while increasing r by decreasing the number of required matrix multiplications each

iteration. This is accomplished by proper factorization of the matrix polynomial

pr−1(Z), defined earlier as part of (4.15).

The authors of [144] have proposed a factorization method that results in only 5

matrix multiplications being required for r = 9. This was later improved upon in

[156], which has provided a method for r = 15 that requires 6 matrix multiplications.

The polynomial p14(Z) can be factored as:

p14(Z) = c u5(Z); (4.36a)

u5(Z) = u4(Z)
(︁
u4(Z)+a5,3 u3(Z)+a5,2Z

2+a5,1Z+a5,0
)︁
+ b5,3 u3(Z) + b5,2Z

2

+ b5,1Z+ b5,0; (4.36b)

u4(Z) = u3(Z)
(︁
u3(Z) + a4,2Z

2 + a4,1Z+ a4,0
)︁
+ b4,2Z

2 + b4,1Z+ b4,0; (4.36c)

u3(Z) = Z2
(︁
Z2 + a3,1Z+ a3,0

)︁
+ b3,1Z+ b3,0, (4.36d)

where ai,j, bi,j, and c are real-valued constants. There are several possible solutions

for the values of these constants; [156, Eq. (3.6)] gives one of them.

Recall that the computational efficiency is defined as Ec = r1/θ for the HP method,

where θ is the number of matrix multiplications. The factorization in [144] for r = 9

4Much the same situation also holds for the pseudoinverse; Exercise 23 in [152, Ch. 7.7] covers
the optimal r value in that case, and shows it depends on the ratio n/m for the n×m matrix being
pseudo-inverted.

81



(a) Normalized error matrix 2-norms vs. number of itera-
tions when using HP method with r = 3

0 1 2 3 4 5 6 7 8

Number of iterations (n)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) Normalized error matrix 2-norms vs. number of iter-
ations when using HP method with larger values of r

Figure 4.4: Comparison of ∥En∥2
K

for matrix inverse and ∥Ên∥2√
MK

for pseudoinverse vs.
number of iterations when using HP method different values of r in a CF mMIMO
system with N = 4

82



results in Ec = 91/5 ≈ 1.55, which is higher than for r = 3 (Ec = 31/3 ≈ 1.44). The

above factorization from [156] yields the best practical5 computational efficiency of

Ec = 151/6 ≈ 1.57.

Fig. 4.4b compares the convergence of the factorized HP methods for the inverse

and pseudoinverse for these higher values of r. For r = 9, both inverse types display

faster convergence than for r = 3. The pseudoinverse at first outperforms the inverse

with initialization point given by (4.24), however after more iterations, the error

matrix norms converge to each other. Much like in Fig. 4.4a, the convergence of the

inverse with X0 given by (4.21) is considerably worse; thus, we do not depict it in Fig.

4.4b. For r = 15, the convergence is even faster for the inverse (e.g., ∥En∥2/K < 10−4

at n = 6), while the pseudoinverse also shows desirable performance. However, with

higher values of r also comes higher computational complexity per iteration.

4.3 Scalable Cell-Free Massive MIMO

In this section, we incorporate LLSFB AP selection as proposed in [104]. By applying

AP selection, the effective channel matrix for the network becomes sparser, which

affects the convergence properties of the iterative inversion methods (see e.g. [158]).

Lets denote Lk ⊆ {1, ..., L} as the subset of APs that serve user k, the block-diagonal

binary M ×M clustering matrix Dk for user k is then defined as

Dk = diag(D1k, . . . ,DLk), (4.37)

where Dk is IN if AP l serves user k and 0N otherwise. Then, we use partial zero-

forcing (P-ZF) precoding6 to calculate the precoding vector of user k as

5Higher computational efficiencies are theoretically possible, but they would require r to be at
least 24 at minimum. This high a value of r, combined with the effects of numerical roundoff errors,
means that implementing such a scheme would likely be impractical [156].

6This is the same as partial regularized zero-forcing (P-RZF) precoding in [34] except without
the regularization term in the inverse. The power allocated to each user in the regularization term
of P-RZF must be optimized to maximize the system performance, which is outside the scope of this
work. However, the same methodology for matrix inversion can still be applied to P-RZF as we do
for P-ZF in this section.
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Figure 4.5: CDFs of spectral radius ρ(P) for JC, GS, and JOR methods for a scalable
CF mMIMO system; N = {1, 4}, JOR uses ω = 1/ρ(D−1A)

wP-ZF
k =

[︁
DkG

H
Sk
(GSk

DkG
H
Sk
)−1
]︁
:,1

(4.38)

where Sk is the set of users served at least in part by the same APs as user k, including

user k itself. GSk
∈ C|Sk|×M is obtained by including the channel (row) vectors of the

users in Sk, where it is specified that the first row of GSk
is the channel row vector

of user k. (The order of the remaining users does not matter in this case.) Thus, it

is the first column of the matrix calculated by the terms inside the square brackets

in (4.38) that serves as the precoding vector for user k.

Here, we want to examine the effect of AP selection on the convergence of se-

lected iterative methods. As seen in (4.38), the matrix being inverted is now A =

GSk
DkG

H
Sk

∈ C|Sk|×|Sk|. A new consideration is that the effective channel matrix

GSk
Dk (or equivalently GSk

D
1/2
k ) becomes much sparser with many elements (i.e.,

those corresponding to antennas not serving the user) equal to zero; this can affect

the rank and invertibility of A. Along with the selection condition in (2.22), the sys-

tem must also ensure the total number of users being served jointly by the APs does

not exceed the total number of antennas at those APs, while still assigning at least

one AP to each user. This new factor comes more into play the fewer the number

of APs that serve a given user (especially if a user is only served by one AP) and

the fewer antennas at the APs. Meeting these constraints means that A will still be
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Hermitian and positive definite and convergence will be guaranteed. Otherwise, A

can be rank-deficient and not have an inverse.

The CDFs of the spectral radius of P for the JC, GS, and JOR methods are

depicted in Fig. 4.5. The curves show a similar behaviour as those obtained earlier

for conventional CF mMIMO. Similar to Fig. 4.2, ρ(P) for JC is larger than 1, but

both the GS and JOR methods converge with ρ(P) < 1. Increasing the number of

antennas per AP from N = 1 to N = 4 causes ρ(P) for GS and JOR to reduce, thus

making those two methods converge faster. Comparing Figs. 4.2 and 4.5 indicates

that by considering user-centric AP selection to make CF mMIMO scalable, with

fewer APs serving each user, the convergence rate for both the GS and JOR methods

decreases; ρ(P) is smaller in Fig. 4.2 than in Fig. 4.5.

Fig. 4.6 depicts the normalized 2-norm of the error matrix ∥En∥2
K

or ∥Ên∥2√
MK

vs.

the number of iterations of the HP method for both the matrix inverse and the

pseudoinverse. Similar to earlier, we use the initialization point X0 = βI|Sk| + ϕAH

for the inverse, with β and ϕ given by (4.25) and (4.26), respectively; the maximum

and minimum eigenvalues are approximated with the upper bounds of (4.27)–(4.30),

replacing K with |Sk|. Likewise, for the pseudoinverse, we set X̂0 = α(GSk
Dk)

H ,

with α = 2/tr(GSk
DkG

H
Sk
). As seen, for r = 3, both types of inverse converge,
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though somewhat slowly. Increasing r to 15 leads to a more acceptable convergence

rate using fewer iterations. Much like what was seen in Fig. 4.4, the performances of

both inverses are similar and converge to each other after a few iterations. However,

the convergence for scalable CF mMIMO in Fig. 4.6 is again slower than what was

seen in Fig. 4.4. It should also be noted that for the inverse, the same additional AP

selection conditions as earlier in this section still apply, to guarantee A is positive

definite. In contrast, the pseudoinverse does not need to satisfy these conditions, as

the matrix being pseudo-inverted need not have full rank.

4.4 Computational Complexity

We calculate the computational complexity of the matrix inversion methods exam-

ined in this chapter in terms of the number of real-valued floating point operations

(flops) required, considering operations on a mixture of real and complex numbers.

We generally use [72, 159] as a guide for calculating the complexity of the various

operations. Finding the squared magnitude of a complex number requires 3 flops (2

multiplications and one addition). Multiplying two complex numbers requires 4 real

multiplications and 2 real summations (6 flops in total) and adding complex numbers

consists of 2 real summations (2 flops). However, multiplying a real number times

a complex one only requires 2 flops, and adding a real number to a complex one is

1 flop. Calculating a square root is not itself a flop, but has O(1) complexity. The

complexity of the methods is summarized in Table 4.2, where we also break down the

total flops into multiplications and additions.

We consider direct matrix inversion of A via Cholesky decomposition (i.e., A =

MMH , where M is lower triangular, as is M−1). The procedure is described in

[159], but fewer flops are required if one keeps track of when squared magnitudes

vs. general complex multiplications are calculated, and when division is by a real

number. It can be found that (a) the Cholesky decomposition A = MMH re-

quires 4
3
K3−K2+2

3
K+O(K)−1 flops (where O(K) comes from K square roots);
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(b) finding M−1 by forward substitution requires 4
3
K3−1

3
K flops; and (c) obtain-

ing A−1 = (M−1)HM−1 requires 4
3
K3+K2+2

3
K flops. Therefore, in total, direct

inversion of A requires 4K3+K+O(K)−1 flops.

The JC, GS, and JOR methods all calculate xn+1 = Pxn + q, which ordinarily

requires 8K2 flops [159]. However, for JC the diagonal elements of P are all zero, as

are the first column’s elements for GS. This reduces the complexity per iteration for

those two methods to 8K2−8K flops. JC, GS, and JOR are distinguished more in how

they initialize P and q. Initializing JC is equivalent to solvingD[P,q] = [−(L+U), s],

which requires simply 2K2 flops since D is diagonal. Initializing GS means solving

(D + L)[P,q] = [−U, s] by forward substitution. Following [159], this results in a

total of 4K3− 3K2+K flops required. For JOR, when calculating IK −ωD−1A, it

takes only 1 flop to find and set all K diagonal elements of P equal to the resulting

value of 1−ω. In total, initialization of JOR requires 2K2+K+1 flops7.

In each iteration of the HP method, from (4.19), the needed steps are: (a) Find

En = IK − AXn, which takes 8K3 − 2K2 + K flops; (b) add IK and multiply by

En a total of r− 2 times each, for (r−2)(8K3 − 2K2 + K) flops; (c) multiply by

Xn, using a final 8K3−2K2 flops. Thus, the total complexity of an HP iteration is

r(8K3 − 2K2 + K) flops. For factorized HP with r=15, steps (a) and (c) above

are the same. However, following (4.36), step (b) is replaced by calculating several

matrix polynomials using a total of 32K3 + 48K2 flops. Thus, overall, the factorized

HP method uses 48K3 + 44K2 +K flops per iteration. To initialize the HP method,

one needs either α for (4.21) or β and ϕ for (4.24); those in turn first need λ1(A)

and λk(A) from the bounds in (4.27) and (4.28) after finding m and s from (4.29)

and (4.30). Finding λ1(A) and λk(A) together requires 4K2 + K + 6 + O(1) flops.

Afterwards, calculating α and (4.21) takes K2 + 4 more flops, whereas calculating β,

ϕ, and (4.24) takes K2 +K + 9 more flops.

7This does not account for the complexity of first finding a suitable value of ω, which is roughly
the same complexity as finding α for the HP method.

87



Table 4.2: Computational Complexity for Matrix Inversion and Pseudo-inversion
Methods

Method Complexity

Direct
Inversion

4K3 +K +O(K)− 1 flops⎛⎝Multiplications (×): 2K3+2K2−K,Additions (+): 2K3−2K2+2K − 1,

K square root operations

⎞⎠
Iterative
Inversion

Initialization Per iteration

JC

2K2 flops 8K2 − 8K flops(︂
×: 2K2,+: 0

)︂ (︂
×: 4K2−4K,+: 4K2−4K

)︂

GS

4K3 − 3K2 +K flops 8K2 − 8K flops(︂
×: 2K3,+: 2K3−3K2+K

)︂ (︂
×: 4K2−4K,+: 4K2−4K

)︂

JOR

2K2 +K +1 flops 8K2 flops(︂
×: 2K2+K,+: 1

)︂ (︂
×: 4K2,+: 4K2

)︂

HP

5K2+K+10+O(1) flops

r(8K3−2K2+K) flops(︃
×: 4rK3,

+: r(4K3−2K2+K)

)︃

⎛⎜⎜⎜⎝
×: 3K2+8,

+: 2K2+K+2,

2 square roots

⎞⎟⎟⎟⎠ (4.21);

5K2+2K+15+O(1) flops⎛⎜⎜⎜⎝
×: 3K2+11,

+: 2K2+2K+4,

2 square roots

⎞⎟⎟⎟⎠ (4.24)

Factorized HP
(r=15)

Same as for HP

48K3+44K2+K flops⎛⎝ ×: 24K3+26K2,

+: 24K3+18K2+K

⎞⎠
Iterative

Pseudoinverse
Initialization Per iteration

HP
6KM flops (4.34)(︃

×: 4KM+1,
+: 2KM−1

)︃ 16K2M−2KM− 16K3+2K2+
r(8K3−2K2+K) flops⎛⎜⎜⎝

×: 8K2M−8K3+r(4K3),
+: 8K2M−2KM−

8K3+2K2+
r(4K3−2K2+K)

⎞⎟⎟⎠

Factorized HP
(r=15)

Same as for HP

16K2M−2KM+32K3+46K2+K flops⎛⎝×: 8K2M+16K3+26K2,
+: 8K2M−2KM+
16K3+20K2+K

⎞⎠
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The HP pseudoinverse method is quite similar to that for the inverse. The key

difference is in the first and last step of each iteration. In calculating the error

matrix in step (a), there is a product of a K×M matrix times an M×K matrix

(rather than two K×K matrices), which requires 8K2M − 2K2 flops. Similarly, in

step (c) to calculate X̂n+1, there is a an M×K matrix times a K×K matrix, us-

ing 8K2M − 2KM flops. The error matrix is still K×K, so the complexity of step

(b) is unaffected. Consequently, the total complexity of the HP method becomes

16K2M−2KM−16K3+2K2+r(8K3−2K2+K), and the total complexity of the fac-

torized HP method with r=15 becomes 16K2M−2KM+32K3+46K2+K. However,

it should be noted that A no longer needs to be calculated if α = 2/tr(GGH) is used.

In this case, 6KM flops are required to initialize X̂0 in (4.34).

4.5 Simulation Results

In this section, we evaluate the performance of the iterative matrix inversion methods

for ZF precoding in a CF mMIMO system by examining the uncoded BER they

achieve. We consider the partially-distributed scenario with N = 4 from before.

64-QAM modulation is used to transmit data symbols. Perfect knowledge of the

channel matrices is assumed at both the transmitters and receivers, where the latter

are assumed to use a matched filter detector.

Fig. 4.7 shows the BER vs. the total transmit SNR8 Pt for ZF precoding comparing

direct matrix inversion, the HP-based inverse with two different initialization points,

and the HP-based pseudoinverse; two different values of r are considered. The BER

achieved using direct matrix inversion serves as a lower bound and benchmark for

the performance of the other methods. As expected, for r=3 the BER of the HP-

based inverse with X0 given by (4.24) closely follows that of direct matrix inversion,

while the same method with X0 given by (4.21) displays an increasing gap at higher

8Since the total system power Pt in (4.2) is normalized to the noise power, it also equals the total
transmit SNR.

89



90 95 100 105 110 115 120 125

Total transmit SNR P
t
 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

 e
rr

o
r 

ra
te

 (
B

E
R

)

Figure 4.7: BER vs. total transmit SNR, comparing ZF precoding performed using
HP-based matrix inverse and pseudoinverse methods, for a CF mMIMO system with
32 4-antenna APs serving 16 users. BER achieved using direct matrix inversion also
shown as a lower bound benchmark.

transmit power. This demonstrates that in order for the HP method with X0 = αAH

to perform acceptably, it must execute more than 20 iterations, which emphasizes

the importance of the initialization point on both performance and reducing the

computational complexity. Furthermore, although the HP method with r = 15 yields

a similar performance, this result does not capture the effect of r on complexity; we

will examine this next. Finally, the pseudoinverse with both values of r also closely

follows ZF precoding with direct matrix inversion, which is desirable.

Fig. 4.8 shows the convergence of the HP-based matrix inverse and pseudoinverse

methods with ZF precoding in terms of the BER they provide after calculating for n

iterations. The BER achieved by direct matrix inversion again provides a lower bound

on the performance. For the HP matrix inverse, we only consider the initialization

point of (4.24) here due to its much better performance; X̂0 = αGH is used again for

the pseudoinverse. Naturally, with more iterations, the performance of all the cases

improves, approaching the best possible BER provided by direct matrix inversion.

However, for a given value of r, the inverse outperforms the pseudoinverse in terms of

convergence. The HP method with r = 15 obtains the same BER as direct inversion

in about 6–7 iterations. In comparison, the pseudoinverse with r = 15 achieves that
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Figure 4.8: Convergence comparison of HP-based matrix inverse and pseudoinverse
methods with ZF precoding in terms of BER vs. number of iterations n for two
values of r; Pt = 125 dB, L = 32, N = 4, K = 16. BER achieved using direct matrix
inversion also shown as a lower bound.
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Figure 4.9: Convergence comparison of HP-based matrix inverse and pseudoinverse
methods with ZF precoding in terms of BER vs. number of flops for two values of r;
Pt = 125 dB, L = 32, N = 4, K = 16. BER achieved using direct matrix inversion
also shown as a lower bound.
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BER in about 8–10 iterations, whereas with r = 3, the inverse requires about 16

iterations and the pseudoinverse about 20 iterations. We also have investigated these

methods at the lower SNR of 110 dB, and found that they all converge in about 2–3

iterations to a BER of about 0.12, so we do not depict those detailed results here.

Although Fig. 4.8 shows the comparative convergence of the BER of the methods,

it does not indicate the complexity required to achieve that convergence. Therefore,

in Fig. 4.9, we show BER vs. flops for the various methods9. While the inverse

with r=15 still performs the best, the figure shows the inverse with r=3 is a close

second in terms of the BER obtained for a given amount of computational effort.

The r=3 method spreads that effort over more iterations than the factorized method

with r = 15.

4.6 Summary

In this chapter, we have examined several iterative methods to calculate the pre-

coding matrix in a CF mMIMO system. We have investigated their computational

complexity and convergence rate in the presence of small- and large-scale fading and

spatial correlation between antennas. We have demonstrated that some iterative

methods previously proposed for conventional mMIMO do not always converge for

CF mMIMO. Since the performance and convergence of the HP method depends

on initialization point, we have examined lower-complexity sub-optimal initialization

points and have demonstrated that their performance is close to the optimal one.

Simulation results have shown a factorized version of the HP method achieves the

ZF performance of direct matrix inversion with few iterations, while the factorization

helps reduce its computational complexity. We have also briefly examined the iterative

methods in scalable CF mMIMO systems, and have found they converge somewhat

slower, but can operate with greater parallelization on several smaller-sized matrices.

9In principle, direct matrix inversion should be a single point plotted in Fig. 4.9, since it is not
iterative. We instead plot a “reference BER” line for direct matrix inversion to aid in visualizing its
BER relative to the other methods.

92



Chapter 5

Symbiotic Backscatter
Communication Underlying a
Cell-Free Massive MIMO System

To reap the benefits of both CF mMIMO and SR, in this chapter, we consider a

primary CF mMIMO system where the APs aid an underlaid BD layer to harvest

energy and reflect information toward the primary receivers (which receive data from

both layers). Most existing work (e.g., [61, 62, 160–163]) has considered SR in a

cellular network with a single primary transmitter. While the authors of [164] have

investigated the combination of CF mMIMO and SR, they assumed only one BD and

one user. To the best of our knowledge, there has not yet been a full consideration

of the coexistence of CF mMIMO and SR where multiple users and BDs are served.

In this work, a two-phase UL pilot training method is proposed to acquire separate

CSI of the direct and backscattered channels at the APs, with the effects of pilot

contamination and spatial correlation between each AP’s antennas accounted for. We

then derive expressions for the average SINRs of both primary and backscatter signals,

accounting for the effects of imperfect CSI, spatial correlation, pilot contamination,

and channel hardening. Furthermore, the average power harvested in the BDs is

derived.
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5.1 System and Channel Models

5.1.1 System Model

We consider the DL of a symbiotic CF mMIMO system as illustrated in Fig. 5.1. N

geographically-distributed APs, each equipped with L antennas, cooperatively serve

K pieces of single-antenna UE equipment (UE). These UEs act as receivers for both

the primary and AmBC data signals. We assume all APs are connected to a CPU via

a perfect fronthaul network. Simultaneously, the APs support the secondary commu-

nication of K single-antenna BDs, with each UE paired with a different nearby BD.

Each BD consists of a backscatter transmitter (e.g., a switched load impedance) and

signal processor, a microcontroller, memory, and a rechargeable battery replenished

by an energy harvester [61]. BD tk, where k = 1, . . . , K, aims to transmit informa-

tion to UE uk by changing its antenna impedance, thereby exploiting the ambient RF

signal from the APs as both an energy source and a signal carrier.

There are two typical schemes to realize energy harvesting in AmBC: time-splitting

(TS) and power-splitting (PS). In a TS scheme, the BD switches between harvesting

energy and backscattering information in the time domain. In contrast, in a PS

scheme, the BD splits the received RF signals into two power streams in the power

domain, one for energy harvesting and the other for backscattering. Although the PS

scheme requires a more complex transceiver in the BD than TS, since the legacy signal

is used for both harvesting energy and reflecting information, PS is more efficient in

its energy use. In addition, the PS scheme is a better candidate for delay-sensitive

applications [165] since no time needs to be spent waiting for the BD to charge

between transmissions. Because of these reasons, in this chapter, we consider a PS

scheme.

We denote the UL channel between AP n and UE k as gbnuk
∈ CL×1, between AP

n and BD tk as gbntk ∈ CL×1, and between BD tk and UE k′ as gtkuk′
. All the channels

(except gtkuk
, see below) are assumed to undergo quasi-static block fading such that
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Figure 5.1: System layout of symbiotic CF mMIMO system

they remain constant during an (AP) transmission interval and only change between

transmissions.

The block-fading channel coefficient vector gxy between node x and receiver y is

given by

gxy =
√︁

βxyhxy. (5.1)

βxy is the large-scale fading coefficient which accounts for path loss and shadowing

effects, whereas hxy denotes the small-scale fading coefficients. We assume the chan-

nels undergo spatially-correlated Rayleigh fading. For UL channels from a BD or

UE to an AP, hxy ∈ CL×1 is distributed ∼ CN (0,Rh), where Rh is the covariance

matrix. The covariance matrix of gxy would therefore be Rxy = βxyRh. For the UL

channel between BD tx and UE y, htxuy becomes a scalar htxuy ∼ CN (0, 1). The

exceptions to this are for every paired UE k and BD tk; due to their proximity, their

channel gtkuk
∈ C is assumed to consist of only a line-of-sight component with no

significant scattering, making it a constant1 [62]. One typical application example

for this scenario is a smartphone that simultaneously receives data from both a cel-

1An equivalent assumption is that although the UE and BD may move, their distance relative to
each other remains approximately the same, again making gtkuk

approximately constant over very
large intervals of time.
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lular network and a wearable sensor (e.g., a medical sensor or fitness tracker). The

large-scale fading coefficients change much slower than small-scale ones, therefore we

assume the APs know the large-scale coefficients perfectly.

5.1.2 Pilot Assignment and Channel Estimation

In this chapter, we assume that the CF mMIMO system uses TDD transmission

mode. Thus, it can be assumed that UL/DL radio channel reciprocity holds, and the

DL radio channels are the same as the UL radio channels. Accurate estimation of

these channels at the APs is necessary to fully benefit from mMIMO; the channels are

estimated via pilot signals sent from the UEs. Unfortunately, there may be insufficient

number of orthogonal pilot sequences to assign a unique one to every UE in the system.

This leads to errors in channel estimation known as pilot contamination. The topics

of pilot assignment and contamination are largely outside the scope of this work. We

employ the relatively simple scheme described in [34, Ch. 4.4] to assign pilots and

determine which APs serve which UEs. The scheme mitigates pilot contamination by

ensuring UEs that share pilot sequences are distant from each other, and any given

AP only serves one of the UEs out of however many share that sequence.

With pilots assigned, the UL channels can be estimated. However, we need to

consider that, in general, a symbiotic CF mMIMO system needs estimates of not

only the direct-link channels gbnuk
, but also of the backscatter channels gbntk and

gtkuk
. To this end, we follow a similar approach as in [62] and utilize a two-phase

channel estimation scheme for our system. In the first phase, UEs send pilot symbols

while the BDs are in mute/non-reflection mode, so the signals received by the APs

include only the effect of direct-link channels. In the second phase, UEs send more

pilot signals, but this time the BDs also reflect the pilot symbols. So, in this phase the

signals received at APs include a component from the direct-link channels together

with a component from the cascaded backscatter channels gbntkuk
from UE k to BD

tk then to AP n. Hence, pilot signals received during the first phase are used to
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estimate the direct-link channels, whereas those estimates together with the pilot

signals received in the second phase are used to estimate the cascaded2 backscatter

channels.

Direct-Link Channel Estimation

In the first phase, all UEs simultaneously and synchronously transmit their pilot

sequences, which are received by all APs. However, each AP only estimates the

channels for the UE-BD pairs it serves. Let ψk,1 ∈ Cτ1×1 be the pilot sequence sent

by UE k, with length τ1 and ||ψk,1||2 = τ1, ∀k. The received pilot signal Yn ∈ CL×τ1

at AP n is [34]

Yn =
K∑︂
k=1

√
ρk,1 gbnuk

ψT
k,1 +Nn, (5.2)

where ρk,1 is the pilot transmit power for UE k and Nn ∈ CL×τ1 is an additive

noise matrix, whose elements are independent and identically distributed (i.i.d.) ∼

CN (0, σ2
n).

To estimate the direct-link channel gbnuk
of UE k, AP n correlates Yn with the

pilot sequence ψk,1, which cancels the interference from all other pilot sequences. Let

Sk denote the set of all UEs sharing the same pilot sequence as UE k (including k).

Then, the correlated pilot signal ynk ∈ CL×1 can be written as [34]

ynk = Yn

ψ∗
k,1√
τ1

=
∑︂
k′∈Sk

√
ρk′,1τ1 gbnuk′

+ nnk, (5.3)

where nnk ∼ CN (0, σ2
nIL).

Then, the minimum mean square error (MMSE) estimate of gbnuk
can be calculated

as [34]

ĝbnuk
=

√
ρk,1τ1Rbnuk

Θ−1
nkynk, (5.4)

where

Θnk =
∑︂
k′∈Sk

ρk′,1τ1Rbnuk′
+ σ2

nIL (5.5)

2It is sufficient for our purposes to just estimate the cascaded channel gbntkuk
rather than requiring

estimates of the individual channels gbntk and gtkuk
.
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is the covariance matrix3 of ynk, and Rbnuk′
denotes the covariance matrix of gbnuk′

.

Let g̃bnuk
= gbnuk

− ĝbnuk
denote the channel estimation error. Based on a property

of MMSE estimation, ĝbnuk
∼ CN (0, R̂bnuk

) and g̃bnuk
∼ CN (0, R̃bnuk

) are indepen-

dent random variables, and their covariance matrices are respectively given by [34]

R̂bnuk
= ρk,1τ1Rbnuk

Θ−1
nkRbnuk

, (5.6)

R̃bnuk
= Rbnuk

− R̂bnuk
. (5.7)

Cascaded Backscatter Channel Estimation

In the second phase, every UE again transmits a pilot sequence; UE k transmits

ψk,2 ∈ Cτ2×1 with length τ2 and ||ψk,2||2 = τ2,∀k. (For the sake of generality, these do

not necessarily have to be the same sequences as in the first phase.) The pilot signals

propagate to the APs along both the direct-link channels and the cascaded backscatter

channels from reflections off of the BDs. The received pilot signal Y′
n ∈ CL×τ2 at AP

n therefore becomes

Y′
n =

K∑︂
k=1

√
ρk,2 gbnuk

ψT
k,2 +

K∑︂
k=1

√
ρk,2 gbntk

K∑︂
k′=1

√︁
Γ0 gtkuk′

ψT
k,2 +N′

n, (5.8)

where Γ0 represents the signal power attenuation inside the BD due to imperfect

reflections. Accounting for this attenuation, we specify the cascaded channel as

gbntku
′
k
=gbntk

√
Γ0 gtku′

k
.

Due to high penetration, diffraction, and distance-based power losses, caused by

obstacles such as buildings and trees, signals reflected from faraway BDs are always

significantly attenuated. As such, we henceforth assume for simplicity that the cas-

caded links between UE k and AP n via unassociated BDs tk′ , k
′ ̸= k, are blocked4 and

provide a negligible contribution to the received signal. In other words, gbntk′uk
≈ 0

for k′ ̸= k. Thus, under this assumption, Y′
n can be simplified as

Y′
n =

K∑︂
k=1

√
ρk,2τ2 (gbnuk

+ gbntkuk
)ψT

k,2 +N′
n. (5.9)

3Θnk can be obtained directly from measurements of ynk without needing to know all the indi-
vidual matrices Rbnuk′ .

4By extension, the channels between any two BDs are also blocked.
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Y′
n can then be correlated with ψk,2 like in (5.3) to obtain y′

nk. Furthermore, since

gbnuk
= ĝbnuk

+ g̃bnuk
, AP n can subtract the contribution of channel estimate ĝbnuk

for its served UE-BD pair k (obtained during the first phase) from y′
nk. This leaves:

z′nk = Y′
n

ψ∗
k,2√
τ2

−√
ρk,2τ2 ĝbnuk

=
√
ρk,2τ2(g̃bnuk

+ gbntkuk
) +
∑︂

ℓ∈{Sk\k}

√
ρℓ,2τ2(gbnuℓ

+ gbntℓuℓ
)

+ n′
nk

(5.10)

From z′nk, the MMSE estimate of cascaded backscatter channel gbntkuk
is

ĝbntkuk
=

√
ρk,2τ2Rbntkuk

Φ′ −1
nk z′nk, (5.11)

where Rbntkuk
= E{gbntkuk

gH
bntkuk

} = Γ0|gtkuk
|2Rbntk denotes the covariance matrix

of gbntkuk
and Φ′

nk = E{z′nkz′ Hnk } denotes the covariance matrix of z′nk. The latter is

given by

Φ′
nk = σ2

nIL + ρk,2τ2(R̃bnuk
+Rbntkuk

) +
∑︂

ℓ∈{Sk\k}

ρℓ,2τ2(Rbnuℓ
+Rbntℓuℓ

)

−
∑︂

ℓ∈{Sk\k}

τ1τ2
√
ρk,1ρk,2ρℓ,1ρℓ,2

⎛⎝Rbnuk
Θ−1

nkRbnuℓ
+

Rbnuℓ
Θ−1

nkRbnuk

⎞⎠ (5.12)

The last summation in (5.12) is a result of the (small) correlation between g̃bnuk
and

gbnuℓ
, ℓ ̸= k. For more details on the derivation, please refer to Appendix B.

Denoting g̃bntkuk
= gbntkuk

− ĝbntkuk
, it then results, similarly to (5.6) and (5.7),

that ĝbntkuk
∼ CN (0, R̂bntkuk

) and g̃bntkuk
∼ CN (0, R̃bntkuk

) are independent with

R̂bntkuk
= ρk,2τ2Rbntkuk

Φ′ −1
nk Rbntkuk

, (5.13)

R̃bntkuk
= Rbntkuk

− R̂bntkuk
. (5.14)

5.1.3 Downlink Signal Model

While we assume CSI is acquired at the APs via UL pilot signals, the same is not true

for the DL. Instead, we assume that no pilot signals are sent on the DL. As justified

in [34, Remark 6.1], it is generally sufficient to only use pilots in the UL direction
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5. This is especially true in a mMIMO system; due to its large number of antennas,

the channels tend to undergo channel hardening [8, 34], such that the fluctuations

in the channel gains around the mean become small. Unfortunately, it has been

shown in [67] that the degree of channel hardening in CF mMIMO systems can be

considerably smaller than in co-located mMIMO systems. Subsequently, the authors

of [98] have proposed a variant of conjugate beamforming dubbed ENCB, in which

the conjugate beamforming precoding vector (i.e., the conjugate of the channel gains)

is normalized by the squared norm of the channel. This normalization enhances the

effect of channel hardening, which improves the reliability of decoding data relying

only on knowledge of the statistics of the CSI (or “statistical CSI” for short). ENCB

also allows precoding calculations to easily be decentralized.

At the same time, in a symbiotic AmBC system, the achievable primary (legacy)

and secondary (BD) data rates depend on the transmit beamforming vectors. Thus,

the APs should design their beamforming vectors such that they factor in both UEs

and BDs. While several works in the literature have investigated optimal beamform-

ing designs, the authors of [62] have proven that the optimal beamforming vector lies

in the subspace spanned by the normalized form of the channel vectors ĝbnuk
and

ĝbntk
. In other words, the optimal beamforming vector wnk at AP n for UE-BD pair

k has the structure wnk = µ′
1

ĝbnuk

||ĝbnuk
|| + µ′

2

ĝbntk

||ĝbntk
|| , where the complex-valued weights

µ′
1 and µ′

2 are subject to |µ′
1|2 + |µ′

2|2 = 1.

Combining the above, in this chapter, we use a beamforming vector that enhances

channel hardening while lying in the optimal subspace. Our beamforming vector at

AP n for UE-BD pair k is given by

wnk = µ1,nk

ĝbnuk

||ĝbnuk
||2

+ µ2,nk

ĝbntkuk

||ĝbntkuk
||2

(5.15)

such that
⃓⃓⃓

µ1,nk

||ĝbnuk
||

⃓⃓⃓2
+
⃓⃓⃓

µ2,nk

||ĝbntkuk
||

⃓⃓⃓2
=1, for every pair k served by AP n. We note that

5Nevertheless, some training for DL CSI acquisition at the DL receiver can still be beneficial to
counteract partial or imperfect CSI at the APs [34, 166].
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our beamforming vector uses ĝbntkuk
rather than ĝbntk

. Since gtkuk
is assumed to be

a scalar constant, its magnitude will be normalized out. Additionally, if gtkuk
has a

complex phase, the effect of that phase will become incorporated into the value of µ2.

Thus, ĝbntkuk
and ĝbntk

are equivalent from the perspective of the BD. Meanwhile,

using ĝbntkuk
allows primary data to be properly directed to the UE via the BD and

eliminates the need to know gtkuk
separately, which simplifies the channel estimation.

Hence, the overall signal sent by AP n can be written as

xn =
K∑︂
k=1

√
ptηnk

(︃
µ1,nk

ĝbnuk

||ĝbnuk
||2

+ µ2,nk

ĝbntkuk

||ĝbntkuk
||2

)︃
sk, (5.16)

where pt is the maximum transmit power of each AP, ηnk is the power coefficient (i.e.,

the fraction of its total power) used by AP n to transmit data to legacy UE k, and

sk is the data symbol intended for legacy UE k, with E{|sk|2} = 1.

5.2 Derivation of SINRs and Harvested Power

In this section, we derive expressions for the SINR of transmissions from the APs and

BDs, based on the channel estimates ĝbnuk
and ĝbntkuk

, ∀n, k. From these, achievable

data rates of the primary transmission and BER of secondary transmissions are given.

We also derive the amount of power harvested within our SR network.

5.2.1 Achievable Data rates at the UEs

Besides the data signal transmitted from the APs, each BD tk backscatters the am-

bient RF signals to convey its information symbols stk intended for UE k. In this

work, binary phase shift keying (BPSK) has been considered for the BDs, such that

stk ∈ {−1, 1}. Although it is possible to use higher-order signal constellations for

the BD data symbols [167], we assume the simpler BPSK is used to decrease the im-

plementation cost and complexity. Furthermore, as is typical in the literature (e.g.,

[56]), we assume there is no signal processing delay in the BD circuitry. The critical

aspects of transmissions from a BD are as follows:
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• For each data symbol, a BD tunes its antenna impedance to generate a different

reflection coefficient which corresponds to the symbol. The relation between

point ci in the constellation Kc and the corresponding reflection coefficient Γi is

Γi =
√︁

Γ0
ci

max
cj∈Kc

|cj|
, (5.17)

where 0 < Γ0 < 1. In our case, with BPSK, the symbols ±1 simply map to the

reflection coefficients ±
√
Γ0.

• In practice, a BD backscatters its own information at a much lower data rate

than that of the AP. Hence, we assume the symbol duration for a BD is M times

that of an AP, with M ≫ 1 [62, 160]. For M = 1 synchronization is required be-

tween sk and stk to avoid the so-called “spectrum growth” phenomenon, which

is the increase in the signal’s bandwidth caused by overlaying the BD trans-

mission on top of the primary transmission [163, 168]. However, for large M ,

spectrum growth becomes negligible [163, 168].

If no primary signal is intended for UE k, BD tk may still have data to send to UE

k by backscattering AP signals. We assume in such cases that the UE, as part of its

control signals, continues to transmit pilot signals that can still be used for channel

estimation. Then, the APs can direct a beam towards BD tk by using only ĝbntkuk
to

find wnk and setting µ1,nk to zero. The purpose at this point is just to supply BD tk

with power and a carrier wave; as such, the symbols sent by the AP using wnk are

rather meaningless and arbitrary. To avoid causing interference on other legacy UEs

(albeit likely small, since the beam is not directed toward them), these symbols could

be some combination of the intended data symbols for those other UEs.

We denote Un as the set of UE-BD pairs served by AP n and Ak as the set of

APs serving UE-BD pair k. Furthermore, let αtk denote the PS ratio for BD tk,

with 0<αtk < 1. αtk represents the fraction of the harvested power at BD tk that is

allocated to its data transmission; the rest goes toward powering the circuitry of the
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BD. Then, the signal received by UE k during a primary symbol interval (or 1/M of

a BD symbol interval) is given by6

yk =
N∑︂

n=1

∑︂
k′∈Un

√
ptηnk′g

H
bnuk

wnk′sk′ +
N∑︂

n=1

K∑︂
k′=1

∑︂
k′′∈Un

√
ptηnk′′αtk′

gH
bntk′uk′′

wnk′′sk′′stk′ + nk

(5.18)

that can be expanded as

yk =
∑︂
n∈Ak

√
ptηnk g

H
bnuk

wnksk⏞ ⏟⏟ ⏞
S1

+
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

√
ptηnℓ g

H
bnuk

wnℓsℓ

⏞ ⏟⏟ ⏞
R1

+
∑︂
n∈Ak

√︁
ptηnkΓ0αtk g

H
bntk

wnkskgtkuk
stk⏞ ⏟⏟ ⏞

S2

+
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

√︁
ptηnℓΓ0αtk g

H
bntk

wnℓsℓgtkuk
stk

⏞ ⏟⏟ ⏞
R2

+
N∑︂

n=1

K∑︂
k′=1,
k′ ̸=k

∑︂
k′′∈Un

√︂
ptηnk′′Γ0αtk′

gH
bntk′

wnk′′sk′′gtk′uk
stk′

⏞ ⏟⏟ ⏞
X2

+nk

(5.19)

where S1 represents the signal intended for UE k from the APs received via direct-link

channels, and R1 represents multiuser interference from all APs received via direct-

link channels. S2 represents signals intended for UE k that are sent by or reflected

from BD tk; this contains a composite of data from the APs and data from tk. R2

represents multiuser interference from the APs reflected off of BD tk to its paired

UE k. Although this term represents interference for the primary transmission, it

contains useful data for the BD transmission. X2 represents signals received by UE

k that have been reflected from or sent by other BDs tk′ , k
′ ̸= k. This term contains

both useful data and interference. However, as discussed earlier, we assume that

channels from non-paired BDs are blocked. Consequently, X2 may be neglected.

Lastly, nk ∼ CN (0, σ2
n) is additive white Gaussian noise. As can be seen, due to how

6In practice, under UL/DL radio channel reciprocity, if the UL channel vector is g, the DL channel
vector would be gT instead of gH . Using gH for the DL channel is a mathematical convenience to
simplify the notation, and does not change the analysis or performance (see also [34, Ch. 2.3.4]).
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AmBC shares spectrum, there exists interference between the primary and backscatter

systems. This interference may become severe if UEs and BDs are densely distributed

in a small area.

Because both the primary data signals and the signals reflected off the BDs orig-

inate from the CF mMIMO system, we assume there is additionally some sort of

synchronization or other type of reference signal7 sent along with the data that en-

ables partially-coherent reception at the UE. That is, this reference signal is sufficient

to detect and make use of the phase of the received data signals, but is insufficient for

full instantaneous CSI at the UE. The UE instead only has statistical CSI available for

decoding data signals. More specifically, we assume UE k has separate CSI estimates

of the direct-link precoded effective channels E
{︁
ĝH
bnuk

wnk

}︁
and the cascased precoded

effective channels E
{︁
ĝH
bntkuk

wnk

}︁
from its serving APs ∀n ∈ Ak. These could be esti-

mated over multiple intervals at the UE or fed from the APs to the UE occasionally,

since they consist of only two complex-valued scalars per AP that change very slowly.

We denote q̂bnuk
=

ĝbnuk

||ĝbnuk
||2 with covariance matrix Q̂bnuk

and q̂bntkuk
=

ĝbntkuk

||ĝbntkuk
||2

with covariance matrix Q̂bntkuk
. Since the symbol duration of stk is M times larger

than that of sk, the backscatter link can be treated as a multipath component when

decoding the primary signal [61]. Hence, the average8 SINR of the primary transmis-

sion at UE k, as derived in Appendix B.2, may be calculated as given by

SINR
(1)
k =

pt
∑︁
i∈Ak

∑︁
j∈Ak

√
ηikηjk(µ1,ikµ

∗
1,jk + αtkµ2,ikµ

∗
2,jk)

IAk
+ E{|R1|2}+ E{|R2|2}+ σ2

n

, (5.20)

7Examples could include the demodulation reference signal (DM-RS) or phase tracking reference
signals (PT-RS) included in 5th generation cellular systems [169].

8This is in contrast to some of the related literature such as [160, 163, 170], which instead consider
the instantaneous SINR.
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where

IAk
=
∑︂
n∈Ak

ptηnk

[︃
|µ1,nk|2tr

[︁(︁
R̃bnuk

+αtkRbntkuk

)︁
Q̂bnuk

]︁
+ |µ2,nk|2

(︂
E{g̃H

bnuk
q̂bntkuk

q̂H
bntkuk

g̃bnuk
}+tr

[︁(︁
R̂bnuk

+αtkR̃bntkuk

)︁
Q̂bntkuk

]︁)︂]︃
+
∑︂
i∈Ak

∑︂
j∈Ak,
j ̸=i

pt
√
ηikηjk µ2,ik µ

∗
2,jk E{g̃H

biuk
q̂bitkuk

}E{q̂H
bjtkuk

g̃bjuk
} (5.21)

E{|R1|2}=
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ ̸=k

ptηnℓ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|µ1,nℓ|2tr(Rbnuk

Q̂bnuℓ
) + |µ2,nℓ|2tr(Rbnuk

Q̂bntℓuℓ
), if k ̸∈ Sℓ,

|µ1,nℓ|2 E{gH
bnuk

q̂bnuℓ
q̂H
bnuℓ

gbnuk
}

+|µ2,nℓ|2 E{gH
bnuk

q̂bntℓuℓ
q̂H
bntℓuℓ

gbnuk
}

+2Re
[︂
µ1,nℓ µ

∗
2,nℓ E{gH

bnuk
q̂bnuℓ

q̂H
bntℓuℓ

gbnuk
}
]︂
,

if k ∈ Sℓ

+
N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
ℓ∈Ui∩Uj ,

ℓ̸=k

pt
√
ηiℓηjℓ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if k ̸∈ Sℓ,

µ1,iℓ µ
∗
1,jℓ E{gH

biuk
q̂biuℓ

}E{q̂H
bjuℓ

gbjuk
}

+µ2,iℓ µ
∗
2,jℓ E{gH

biuk
q̂bitℓuℓ

}E{q̂H
bjtℓuℓ

gbjuk
}

+2Re
[︂
µ1,iℓ µ

∗
2,jℓ E{gH

biuk
q̂biuℓ

}E{q̂H
bjtℓuℓ

gbjuk
}
]︂
,

if k ∈ Sℓ

(5.22)

E{|R2|2} =
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

ptαtkηnℓ

(︄
|µ1,nℓ|2tr(Rbntkuk

Q̂bnuℓ
)

+ |µ2,nℓ|2×

{︄
tr(Rbntkuk

Q̂bntℓuℓ
), if ℓ ̸∈ Sk,

E{gH
bntkuk

q̂bntℓuℓ
q̂H
bntℓuℓ

gbntkuk
}, if ℓ ∈ Sk,

)︄

+
N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
ℓ∈Ui∩Uj ,

ℓ ̸=k

ptαtk

√
ηiℓηjℓ×

{︄
0, if ℓ ̸∈ Sk,

µ2,iℓµ
∗
2,jℓ E{gH

bitkuk
q̂bitℓuℓ

}E{q̂H
bjtℓuℓ

gbjtkuk
}, if ℓ ∈ Sk

With the assumption of partially-coherent reception, the average achievable pri-

mary data rate for UE k is

R
(1)
k = B1 log2

(︂
1 + SINR

(1)
k

)︂
, (5.23)

where B1 is the bandwidth of the primary transmission.

Due to the double-fading effect over the two channels gbntk and gtkuk
, along with

the PS ratio αtk and attenuation Γ0, in almost all cases the signal strength received

from the BD will be much lower than that from the APs. Thus, in this chapter , we

perform successive interference cancellation (SIC) at the UEs to remove the primary

signal from the received signal before decoding the BD signal [56]. However, since
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only statistical CSI is known at the UEs, they can only remove a portion of the

primary signal using average values. The remaining signal is consequently

ySICk =
N∑︂

n=1

∑︂
k′∈Un

√
ptηnk′αtk g

H
bntkuk

wnk′sk′ stk (5.24)

+
∑︂
n∈Ak

√
ptηnk

(︁
gH
bnuk

wnk − E
{︁
ĝH
bnuk

wnk

}︁)︁
sk +

N∑︂
n=1

∑︂
ℓ∈Un,
ℓ̸=k

√
ptηnℓ g

H
bnuk

wnℓsℓ + nk

⏞ ⏟⏟ ⏞
yI+N: interference + noise

SIC with statistical CSI removes most of S1 in (5.19), but still leaves some residual

direct-link interference from serving APs. R1 in (5.19) also constitutes unremoved

interference for the BD transmission. The useful signal components for the BD trans-

mission are S2 and R2 in (5.19). Unfortunately, statistical CSI is only available for S2,

but since R2 can also constitute a significant contribution to the power, the partial

statistical CSI is not as useful in this case. Without statistical CSI of the combined

S2+R2 (in particular its magnitude), under the assumption of partially-coherent re-

ception, the best the UEs can do is equal gain combining (EGC) [171, Ch. 6.4] of the

BD transmissions across M primary symbol intervals.

The effective precoded channel for the BD transmission in primary interval m

is gBD(m) =
N∑︁

n=1

∑︁
k′∈Un(m)

√︁
ptηnk′(m)αtk(m)gH

bntkuk
(m)wnk′(m)sk′(m), where we note

that multiple transmission parameters could potentially change between primary

intervals. After cancelling the phase of gBD(m), the UE has the phase-corrected

received signal |gBD(m)|stk + yI+N(m)e−j∠gBD(m). EGC then adds together the M

phase-corrected received signals. This results in an SINR for the BD transmission

from tk, as derived in Appendix B.3, of

SINR
(2)
k =

⎛⎜⎜⎜⎝
M∑︁

m=1

(︂
E{|S2(m)|2}+ E{|R2(m)|2}

)︂
+

π
4

M∑︁
i=1

M∑︁
j=1,
j ̸=i

√︂(︁
E{|S2(i)|2}+E{|R2(i)|2}

)︁(︁
E{|S2(j)|2}+E{|R2(j)|2}

)︁
⎞⎟⎟⎟⎠

Mσ2
n +

M∑︁
m=1

(︂
Ires(m) + E{|R1(m)|2}

)︂
(5.25)
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where

E{|S2(m)|2} = pt αtk(m)

(︄ ∑︂
n∈Ak(m)

ηnk(m)

[︄
|µ1,nk(m)|2tr(Rbntkuk

Q̂bnuk
) (5.26)

+ |µ2,nk(m)|2tr(R̃bntkuk
Q̂bntkuk

)

]︄
+

∑︂
i∈Ak(m)

∑︂
j∈Ak(m)

√︂
ηik(m)ηjk(m)µ2,ik(m)µ∗

2,jk(m)

)︄
,

Ires(m) =
∑︂

n∈Ak(m)

ptηnk(m)

[︄
|µ1,nk(m)|2tr(R̃bnuk

Q̂bnuk
) (5.27)

+ |µ2,nk(m)|2
(︂
tr(R̂bnuk

Q̂bntkuk
) + E{g̃H

bnuk
q̂bntkuk

q̂H
bntkuk

g̃bnuk
}
)︂]︄

+
∑︂

i∈Ak(m)

∑︂
j∈Ak(m)\i

pt

√︂
ηik(m)ηjk(m)µ2,ik(m)µ∗

2,jk(m)E{g̃H
biuk

q̂bitkuk
}E{q̂H

bjtkuk
g̃bjuk

},

and E{|R1(m)|2} and E{|R2(m)|2} are the same as in (5.22) and (5.23), respectively,

with the index m added where needed.

Since we are using a practical modulation scheme (BPSK) at the BD devices instead

of a Gaussian-distributed signal constellation, the BER gives a better insight into the

BD performance than the data rate. With BPSK, 1 minus the BER can also be

considered as the “goodput” of the BD, i.e., how many bits are received on average

without error per channel use (or per second per Hz). For BPSK, the (uncoded9)

BER for the BD transmission from tk is [172, Eq. (4.3-13)]

BER
(2)
k = Q

(︃√︂
2 · SINR(2)

k

)︃
, (5.28)

where Q(x) = 1√
2π

∫︁∞
x

exp(−u2

2
) du.

5.2.2 Harvested Power at the BDs

To calculate the power harvested at BD tk, first we formulate the received signal at

tk from the APs as

ytk =
N∑︂

n=1

∑︂
k′∈Un

√
ptηnk′ g

H
bntk

wnk′sk′ + ntk

=
N∑︂

n=1

∑︂
k′∈Un

√
ptηnk′

(︄
µ1,nk′

gH
bntk

ĝbnuk′

||ĝbnuk′
||2

+ µ2,nk′
gH
bntk

ĝbntk′uk′

||ĝbntk′uk′
||2

)︄
sk′ + ntk ,

(5.29)

9If an error correction code is used at the BD, this can be accounted for by multiplying the SINR
by a coding gain.
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where ntk ∼ CN (0, σ2
nt
). Since a BD only includes passive components, and it per-

forms few signal processing operations itself, it can be assumed that the thermal noise

at the BD is insignificant relative to the total power from the APs. Thus, we can

omit the effect of ntk when calculating the average total received power, similarly to

[56, 173, 174]. Since the data symbols to different UEs are uncorrelated, the average

total received power Ptk = E{|ytk |2} at BD tk is

Ptk=pt

(︄
N∑︂

n=1

∑︂
k′∈Un

ηnk′E
{︁
gH
bntk

wnk′w
H
nk′gbntk

}︁
+

N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
k′ ∈Ui∩Uj

√
ηik′ηjk′ E

{︁
gH
bitk

wik′w
H
jk′gbjtk

}︁)︄
(5.30)

The expectation terms in (5.30) are similar to those that appear when deriving the

SINR expressions, except for the presence of gbntk instead of gbnuk
or gbntkuk

. We may

replace gbntk by
gbntkuk√
Γ0 gtkuk

to reuse some of those earlier derivations. Three separate

cases arise for the terms: 1) when k′ = k, 2) when k′ ̸= k and UEs k and k′ share a

pilot sequence, and 3) UEs k and k′ do not share a pilot sequence. Accounting for

these cases, the received power becomes

Ptk =
pt

Γ0|gtkuk
|2

(︄
N∑︂

n=1

∑︂
k′∈Un

ηnk′
[︂
|µ1,nk′ |2tr(Rbntkuk

Q̂bnuk′
) + |µ2,nk′|2χnk′)

]︂
+

N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
k′ ∈Ui∩Uj

√
ηik′ηjk′ µ2,ik′µ

∗
2,jk′χijk′

)︄
,

(5.31)

where

χnk′ =

⎧⎪⎨⎪⎩
1 + tr(R̃bntkuk

Q̂bntkuk
), if k′ = k,

E
{︁
gH
bntkuk

q̂bntk′uk′
q̂H
bntk′uk′

gbntkuk

}︁
, if k′ ̸= k and k′ ∈ Sk,

tr(Rbntkuk
Q̂bntk′uk′

), if k′ ̸= k and k′ ̸∈ Sk,

(5.32)

and

χijk′ =

⎧⎪⎨⎪⎩
1, if k′ = k,

E
{︁
gH
bitkuk

q̂bitk′uk′

}︁
E
{︁
q̂H
bjtk′uk′

gbjtkuk

}︁
, if k′ ̸= k and k′ ∈ Sk,

0, if k′ ̸= k and k′ ̸∈ Sk.

(5.33)

Like in [175, 176], we consider a constant circuit power consumption rate in the

BDs. Since we assume the use of PS for energy harvesting, only a fraction 1−αtk of
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the received power goes toward power harvesting in BD tk. Hence, the total harvested

power in BD tk (to run its circuitry) is

P har
tk

= ζ(1− αtk)Ptk , (5.34)

where ζ is the RF-to-DC conversion efficiency.

5.3 Simulation Results

In this section, we numerically evaluate the performance of the proposed CF mMIMO

system with underlaid symbiotic backscatter communication. We assume thatN = 25

APs, each with L = 4 antennas, and K = 20. legacy UEs are uniformly distributed

at random within a square of size 0.5 km × 0.5 km. Furthermore, we assume each BD

is distributed uniformly over the area of a circle centered at its associated UEs with

a radius at of dmax
tkuk

= 0.5 m. In order to avoid boundary effects when simulating the

CF network, distances are measured wrapped around the borders of the simulation

area.

For large-scale fading, we use the 3GPP Urban Microcell non-line-of-sight hexago-

nal cell layout path loss and shadow fading model [135, Table B.1.2.1-1], also used in

[177]. The large-scale fading Λxy (in dB) is then given by

Λxy = 30.5 + 36.7 log10(dxy) + Ωxy, (5.35)

where dxy (in m) is the 3D distance between AP x and UE/BD y, which accounts for

the border wraparound and antenna heights of 10 m. Ωxy represents lognormal shadow

fading and is distributed (in dB) as ∼ N (0, 42). The shadowing values between all

nodes (i.e., an AP, UE, or BD) are assumed to be jointly correlated according to

Gudmunson’s exponential correlation model [171, Ch. 2.6.1],[135]. The shadowing

correlation parameter κ (normalized to a shadowing standard deviation of 1) between

any two given nodes is given by

κ = exp(−∆/dcorr), (5.36)
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where ∆ is the distance between the two nodes, and dcorr = 13 m [135, Table B.1.2.2.1-

4] is the shadowing correlation distance of the environment. Finally, the large-scale

fading parameter βxy = 10−Λxy/10. For gtkuk
, we instead use a slightly modified10

version of the propagation model used in [62], given (in dB) as

Λtkuk
= max

(︁
26 + 20 log10(dtkuk

), 0
)︁

(5.37)

Then, the same as before, βtkuk
= 10−Λtkuk

/10. Since (5.37) models a single-path line-

of-sight environment, the complex phase of gtkuk
is assumed to be zero (i.e., gtkuk

is

real-valued).

The spatial correlation matrix of the small-scale part of the channel vector from

multi-antenna AP x to UE/BD y is modeled based on the local scattering model

described in [8, Ch. 2]. With gxy =
√︁
βxy hxy as in (5.1), element (a, b) of the

covariance matrix of hxy is given by

exp

[︃
2πjdH(a−b) sin(ϕ)−

σ2
ϕ

2
(2πdH(a−b) cos(ϕ))2

]︃
. (5.38)

dH is the antenna spacing (in multiples of wavelengths), ϕ (in radians) is the nominal

angle between the antenna array at AP x and UE/BD y, and σϕ (in radians) is the

angular standard deviation (ASD). The approximation in (5.38) is for a uniform linear

array and a Gaussian distribution of angles of arrival of paths around the nominal

central angle. For this approximation to be valid, the ASD must be small, e.g., below

π
12

radians (15◦). Based on [8, 178], we assume σϕ = π
18

radians (10◦) herein.

Unless otherwise stated, we use the following simulation settings: primary band-

width B1 = 20 MHz, carrier frequency 2 GHz, noise figure 7 dB, τ1 = τ2 = 10,

ρk,1 = ρk,2 = 0.1 W for all k, Γ0 = 0.64 [55], ζ = 1 [179], pt = 1 W [99], αtk = 0.1

for all k, and M = 40. At the APs, the two components of their estimated precoded

channels (that is, ĝH
bnuk

q̂bnuk
and ĝH

bntkuk
q̂bntkuk

) end up as being real-valued. There-

fore, it may be assumed that the multipliers µ1,nk and µ2,nk are also real numbers.

10We include the max in (5.37) to prevent the path loss from becoming negative (i.e., a path gain)
in the event dtkuk

happens to be less than 5 cm.
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Figure 5.2: CDFs of primary transmission data rates per UE for SR CF mMIMO
with different values of ς. CDF for co-located mMIMO with ς = 0.9 also shown for
comparison.

Let us define ς such that µ1,nk = ς||ĝbnuk
||. Then, µ2,nk = ||ĝbntkuk

||
√
1− ς2, with our

default value being ς = 0.9. Lastly, we assume full power transmission at all APs and

equal power allocation to every UE at each AP, so that ηn,k = 1/|Un|.

Fig. 5.2 shows the CDFs of the data rate per UE for the primary transmission in

the SR mMIMO system. It can be observed that for CF mMIMO, when varying ς

from 0.3 to 0.9, the data rate per UE increases significantly. This can be explained

by the fact that increasing ς gives more emphasis to the portion of the precoded

beams directed toward the UEs; hence, the SINR of the primary transmission (and

thus its data rate) increases. For ς = 0.9, the median data rate is about 12 Mbits/s,

whereas for ς = 0.7, the median decreases to about 7 Mbits/s; at ς = 0.7, the UE

data rate is less than 12 Mbits/s about 90% of the time. By further decreasing ς to

0.5 and 0.3, the data rates correspondingly decrease even more. At this point, no

UE can achieve 11.4 Mbits/s anymore, whereas that previously was the median rate

for ς = 0.9. For ς = 0.3, the median rate of the primary transmission is only 1.3

Mbits/s. Therefore, the value of ς has a significant impact on the quality of service

of the primary transmissions from the CF mMIMO network. By increasing ς to 1,

the primary data rates are the highest, as expected. In this case, there are no longer

any beams intended for the BDs and all the power is directed toward the UEs.

For comparison, for ς = 0.9, we also show the CDF of the primary transmission
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data rates achieved by a co-located mMIMO system with its BS (at the center of

the simulation area) having the same total transmit power and number of antennas

as all the APs in the CF system. As expected, CF mMIMO provides considerably

more uniform data rates for the UEs (i.e., steeper CDFs) than co-located mMIMO.

Although some UEs that are closest to the co-located mMIMO BS achieve very high

data rates for their primary transmissions, the rates for UEs at the edge of the

coverage area is quite low. From Fig. 5.2(b), the 5th percentile rate for co-located

mMIMO is only about 41.4 Kbits/s/Hz. In comparison, for CF mMIMO, the 5th

percentile rates for ς = 0.3, 0.5, 0.7, and 0.9 are about 0.44, 1.28, 2.52 and 4.68

Mbits/s, respectively.

To examine the impact of the value of ς on the performance, Fig. 5.3 depicts the

average SINR and BER per BD vs. ς, while Fig. 5.4 shows the average harvested

power per BD vs. ς. Both figures compare the performance of CF mMIMO with

co-located mMIMO. Please recall from (5.19) and the numerator of (5.25), the part

of the overall signal yk reflected off of BD tk includes two components: S2, consisting

of those signals intended for UE uk from its serving APs, and R2, consisting of signals

from all APs intended for UEs other than uk. As previously noted, because S2 and R2

are both reflected off tk, they both represent and contain a useful part of the signal

sent from tk. We have observed in our simulations that for CF mMIMO, the power of

component R2 can be significant and may even surpass the power of component S2.

It is known that the degree of favorable propagation is less for CF mMIMO than it is

with co-located mMIMO [34]; that is, the channel directions between different UEs

are further from being orthogonal to each other. It is for this reason that the power

of R2 can be much more significant in CF mMIMO than in co-located MIMO, since

ENCB precoding does not actively suppress interference between UEs. Furthermore,

recall from earlier that we assume that the channels between a BD and a non-paired

UE or another BD are blocked. Thus, any power an AP directs in a beam specifically

towards a given BD will not reach any other BD. For these reasons, with CF mMIMO,
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Figure 5.3: Average performance per BD for CF mMIMO and co-located mMIMO
when varying ς; αtk = 0.1. (a) SINR vs. ς. (b) BER vs. ς.

by increasing ς the impact of R2 from non-serving APs increases, and consequently

the SINR of the transmission from a BD increases on average. Increasing ς from 0.3

to 1 results in the BD SINR increasing from about 7.6 dB to about 10.5 dB, and

decreases the uncoded BER of the BD transmission from about 3.2×10−4 to about

1.0×10−6. Due to having a higher degree of favorable propagation and only one

transmitting node, the same type of result is not observed for co-located mMIMO. In

this case, the impact of R2 is much smaller than that of S2, and hence increasing ς

leads to a decrease in the BD SINR and increase in the BER. (However, considering

the very small BERs observed for co-located mMIMO, this is not much of an issue.)

As for the harvested power, Fig. 5.4 shows that increasing ς leads to a decrease in

the amount of power harvested for both CF mMIMO and co-located mMIMO, since

less power is directed specifically toward the BDs. Although for ς = 0.3 the average

amount of power harvested by the BDs is greater for co-located mMIMO than for CF

mMIMO (about 12.6 µW vs. about 12.2 µW), by increasing ς this amount drops well

below that of CF mMIMO (e.g., about 3.0 µW vs. about 9.9 µW with ς = 1). This

result may again be expected on account of the difference in the degree of favorable

propagation between the two scenarios. It can also be seen that the amount that the

harvested power changes with ς is considerably smaller. This is also due to the fact

that a UE-BD pair is on average much closer to an AP in CF mMIMO than it would

be to the BS in co-located mMIMO. Thus, the BD can generally harvest more power

from the nearby APs in CF mMIMO, despite their amount of transmitted power per
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Figure 5.4: Average harvested power per BD vs. ς for CF mMIMO and co-located
mMIMO; αtk = 0.1.

AP being less than that of the BS in co-located MIMO.

Based on these simulation results, we can conclude that in a scenario like ours

where BDs are close to their paired UEs, using CF mMIMO with ENCB precoding

eliminates much of the need for some special consideration of the existence of BDs.

In consideration of the amount of harvested power the BDs need to operate and the

value of SINR/BER that is achieved, the best choice for the APs might be to simply

precode signals only for the primary UEs, and let the BDs scavenge off of those

signals. This appears to be the opposite of the case for co-located mMIMO. In that

case, due to a combination of the higher degree of favorable propagation and the one

BS being on average further from the BDs, it appears useful to explicitly direct some

power towards the BDs in a co-located mMIMO system.

In Fig. 5.5, we examine the impact of the value of the PS ratio αtk on average

SINR and harvested power of the BDs. (We do not depict the BER this time, since

it rapidly falls well below 10−6.) First, it can be observed that by increasing αtk from

0.1 to 0.9, the average harvested power decreases approximately linearly. For larger

values of αtk , more power is allocated to the backscattered signal transmission, and

thus less power will be harvested. On the other hand, by increasing αtk , the average

SINR of the BD transmission increases for the same reason: more power has been

allocated to it. Similarly, the BER decreases with increasing αtk as well. Hence, as

expected, there is a trade-off between the amount of power harvested by the BDs
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Figure 5.5: Average performance per BD for CF mMIMO and co-located mMIMO
when varying αtk ; ς = 0.9. (a) SINR vs. αtk . (b) Harvested power vs. αtk .

and the SINR/BER of their transmissions. The SINR and BER results must be

viewed with a caveat, however. If the harvested power drops below some threshold

needed for the BD to operate, then the SINR and BER in Fig. 5.5 are not actually

achievable, since the BD would not be able to transmit to begin with. The circuit

power consumption for backscattering is estimated to be around 8.9 µW [shyz20].

In these simulations, we have assumed that all the BDs use the same value of αtk .

However, by considering the specific channel conditions and requirements of each BD,

the value of αtk could be optimized for each of them. In such a case, the performance

of the system is expected to improve significantly.

5.4 Summary

In this chapter, we have investigated the performance of CF mMIMO in facilitating

the implementation of BC. First, an efficient two-phase channel estimation method

has been proposed to estimate the direct-link channel and cascaded backscatter chan-

nel by considering the effects of pilot contamination and spatial correlation between

antennas. However, the receivers have been assumed to only have partial CSI (statisti-

cal knowledge plus instantaneous phase information for partially-coherent reception).

Assuming UL/DL radio channel reciprocity, the CSI has been used to design DL pre-

coding vectors for the APs such that channel hardening is enhanced and both primary

receivers and BDs benefit. Then, SINRs of both primary and secondary transmission

taking into account the effect imperfect CSI, spatial correlation, pilot contamination,
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and channel hardening have been derived. Moreover, the average power harvested

in the BDs is derived. Simulation results have been provided to demonstrate the

performance of the SR CF mMIMO systems.
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Chapter 6

Conclusions, Recommendations
and Future Work

6.1 Summary of Contributions

In Chapter 3, the energy-efficient deployment of MIMO in SC HetNets has been

considered. MIMO and SC deployments need to be integrated with well-designed

interference mitigation and resource allocation methods to achieve high EE. To this

end, we have proposed and investigated user-centric clustering and coordinated beam-

forming with null-space projection and ZF precoding to mitigate interference in a

HetNet. A single-RF-chain massive MIMO transceiver design for the macro cell and

antenna selection for the SCs have been proposed to reduce hardware power con-

sumption. We have designed a joint antenna selection and RB allocation algorithm,

followed by a power optimization algorithm, to maximize the system EE under the

additional constraints of minimum guaranteed user rates and maximum fronthaul ca-

pacity limits. The power allocation problem has been solved using the Dinkelbach

method. Simulation results have demonstrated that our proposed methodology and

algorithms ensure higher EE than previously known benchmark algorithms while be-

ing significantly less complex than an exhaustive search. The effect on the system

EE and SE performance when varying the clustering threshold, the number of users,

cell association bias, fronthaul capacity, and reliability of CSI has been examined.

In Chapter 4, we have investigated several different iterative matrix inversion meth-
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ods for CF mMIMO systems to avoid direct matrix inversion for ZF precoding. Unlike

related works, both small- and large-scale fading have been considered in our channel

model, along with spatial correlation of co-located antennas at APs, when examining

these iterative methods’ performance and computational complexity. Our examina-

tion has demonstrated that, unlike co-located mMIMO, when large-scale fading is

factored in, the JC inversion method is no longer guaranteed to converge. While the

GS method does converge, its computations cannot be done in parallel. Therefore, we

have focused on regular and factorized versions of the HP inversion method. Several

initialization points for the HP method have been examined, and their effect on the

performance was studied; we found that lower-complexity initialization points per-

formed suitably well. We have also considered HP methods for the Moore-Penrose

pseudoinverse and have found that they perform similarly to the matrix inverse but at

a much higher complexity when in the typical mMIMO regime of many more antennas

than users. The factorized HP method with r=15 exhibits the fastest convergence

and best computational efficiency Ec of the iterative methods examined. However, it

also requires significant parallelization of computations to achieve the low latency of

direct inversion. We have also briefly examined the iterative inversion schemes with

scalable CF mMIMO systems. We have found that these methods converge somewhat

slower in this case. Moreover, there are also several lower-dimensional matrices to

invert instead of one large matrix.

To investigate the compatibility of AmBC and CF mMIMO, in Chapter 5, we have

examined the performance of SR underlaying a CF mMIMO network. A two-phase

pilot-based channel estimation method has been proposed to obtain separate esti-

mates for the direct-link and cascaded backscatter channels at the APs. The derived

channel estimates account for the effects of pilot contamination and spatial correlation

between the antennas at the APs. In contrast, other works in the literature tend to

neglect these factors. For DL precoding, we have modified ENCB [98], so the APs can

assist both primary and BD transmissions while enhancing channel hardening. Ex-
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pressions for the average SINRs of both primary and backscatter transmissions have

been derived, and for the average harvested energy in the BDs. Our derived expres-

sions account for the effects of channel estimation error, pilot contamination, spatial

correlation between the AP antennas, knowledge of only the statistics of the CSI

(both magnitude and phase) for the primary transmissions, and partially-coherent

reception of BD transmissions. Lastly, we have compared the performance of SR

underlaying CF mMIMO to that of SR underlaying co-located mMIMO. We demon-

strated that using CF mMIMO results in much more uniformity of data rates for the

primary transmissions across the users. Furthermore, the performance of the AmBC

layer was shown to have considerably less dependence on the amount of power the

APs specifically direct towards PRs vs. BDs than in a co-located mMIMO system.

The most notable conclusion was that excellent performance for both the primary

and AmBC layers could be obtained in a CF mMIMO system without having to ac-

count for the presence of BDs in the system specifically; the same cannot be said for

a co-located mMIMO system.

6.2 Future Work

Future direction for Chapter 3 may involve the addition of user scheduling for even

larger numbers of users requesting service, as well as the impact of user mobility on

the performance of the proposed scheme. Also, the current work has mostly assumed

perfect channel estimation. However, imperfect CSI due to pilot contamination [15,

180] is quite common in practical massive MIMO systems. Therefore, future work

should account for its effects on the system and the proposed scheme.

Scalable CF mMIMO would likely experience the most benefit from parallelization;

the matrix inversion problem can be split into parallel computations between APs,

between the matrices at each AP, and/or within each of those matrices. Furthermore,

as the scalable name implies, the system can be scaled to an arbitrarily large size, so

the parallelization per AP would be about the same, regardless of the total number of
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APs/antennas in the system. A more in-depth examination of this specific scenario

may be the subject of future work related to Chapter 4.

The closed-form expressions that have been derived in Chapter 5 for the SINRs

of both the primary and backscattered signals, as well as for the average amount of

power harvested by each BD, can be employed in future work as part of an optimal

resource allocation strategy for a symbiotic CF mMIMO system. It is expected that

joint optimization of the amount of transmitted power allocated to each primary signal

(i.e., ηnk), the PS ratio αtk for each BD, and the complex-valued weights µ1,nk and µ2,nk

of the precoding vector will significantly improve the performance of the proposed SR

CF mMIMO system and will help facilitate the implementation of energy-efficient IoT.

Moreover, a scenario in which multiple BDs may be associated with each UE is an

interesting topic that can be considered as future work. Finally, the modified ENCB

precoding used in this work does not actively cancel interference between UEs. Using

a precoding method, such as zero-forcing or otherwise, that suppresses interference

between UEs provides significantly better data rates to the UEs, especially in CF

MIMO systems [34]. However, such precoding methods also direct power away from

certain channel directions or subspaces, meaning that said power may no longer always

be available for BDs to harvest. Hence, future work should explore SR CF mMIMO

systems using different precoding schemes to investigate the effect on the underlying

AmBC layer. The BDs may then have to be explicitly supported by the APs (or at

least to a larger degree) compared to what we observed when using modified ENCB

precoding.
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Appendix A:

A.1 Proof for Lemma 1 of Chapter 3

One may consider the PPPs Φs and Φu to be uniformly distributed over the area

A of a circle centered at the origin o of the plane and having radius RA, where RA

tends to infinity. We consider the typical user u ∈ Φu, who is served by BS s ∈ Φs.

Without loss of generality, we may consider this user to be located at the origin. The

distribution of the distance ds,u from the user to its serving BS, i.e., the nearest point

in Φs, is [130]

fds,u(r) = 2πλsr exp(−πλsr
2) (A.1)

Meanwhile, the location of any other arbitrary BS r ∈ Φs\s is independent of the

location of s and uniformly distributed over A. Therefore, the distribution of the

distance dr,u between r and the origin is

fdr,u(r) =
2πr

πR2
A

=
2r

R2
A

(A.2)

Since u is served by s, dr,u must be larger than ds,u. However, to be part of the

cluster for u, from (3.26) we have that dr,u can be no larger than ∆ds,u. Therefore,

the probability that an arbitrary BS r will be part of the cluster for u (but not serve

u), conditioned on ds,u, is Psupp
u |ds,u = Edr,u [1(ds,u < dr,u ≤ ∆ds,u)|ds,u], where 1(x) is

an indicator function that equals 1 if x is true, and 0 otherwise.

Psupp
u |ds,u =

∫︂ ∞

0

1(ds,u < dr,u ≤ ∆ds,u) fdr,u(r)dr (A.3)

=

∫︂ ∆ds,u

ds,u

2r

R2
A

dr =
d2s,u(∆

2 − 1)

R2
A
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Then, deconditioning on ds,u to obtain psuppu = Eds,u [Psupp
u |ds,u]:

psuppu =

∫︂ ∞

0

Psupp
u |ds,u fds,u(r)dr (A.4)

=

∫︂ ∞

0

r2(∆2 − 1)

R2
A

2πλsr exp(−πλsr
2)dr

=
(∆2 − 1)

πλsR2
A

psuppu is the probability of supporting, but not serving, some typical user u. (This

would be a user in the set Is.) However, there are a total of NU users uniformly

distributed over A, where NU is a Poisson-distributed random variable with mean

λuπR
2
A. Each user is independently placed, meaning the statistics for any given user

are identical. (When considering some other user, without loss of generality one can

relocate the origin of the infinite plane to that user’s location and thus obtain the

same probability.) Consequently, the probability of supporting (but not serving) n

out of NU users is a binomial-distributed random variable:

P[Is = n|NU ] =

(︃
NU

n

)︃
(psuppu )n(1− psuppu )NU−n (A.5)

The mean value of Is is

E[Is] = ENU ,n{P[Is=n|NU ]} = ENU
[En{P[Is=n|NU ]}] (A.6)

= ENU
[NUp

supp
u ] = λuπR

2
Ap

supp
u

= λuπR
2
A

(∆2 − 1)

πλsR2
A

= (∆2 − 1)
λu

λs

The mean value of the number of served users per BS, E[Ks], is known to be λu/λs

[133]. Since Ks and Is are disjoint, the mean number of supported users (served and

clustered) E[Ls] in Ls is just the sum of E[Ks] and E[Is]. Therefore:

E[Ls] = E[Ks] + E[Is] (A.7)

= (∆2 − 1)
λu

λs

+
λu

λs

= ∆2λu

λs

,

which completes the proof.
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Appendix B:

B.1 Derivations for Second Phase of Channel Es-

timation of Chapter 5

To find the covariance of z′nk, we have

Φ′
nk=E{z′nkz′ Hnk }=E

{︃[︃
√
ρk,2τ2(g̃bnuk

+ gbntkuk
) +
∑︂

ℓ∈{Sk\k}

√
ρℓ,2τ2(gbnuℓ

+ gbntℓuℓ
) + n′

nk

]︃
×[︃

√
ρk,2τ2(g̃

H
bnuk

+ gH
bntkuk

) +
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ℓ∈{Sk\k}

√
ρℓ,2τ2(g

H
bnuℓ

+ gH
bntℓuℓ

) + n′ H
nk

]︃}︃
=ρk,2τ2

[︁
E{g̃bnuk

g̃H
bnuk

}+E{gbntkuk
gH
bntkuk

}
]︁
+
∑︂

ℓ∈{Sk\k}

ρℓ,2τ2
[︁
E{gbnuℓ

gH
bnuℓ

}+E{gbntℓuℓ
gH
bntℓuℓ

}
]︁

+ τ2
∑︂

ℓ∈{Sk\k}

√
ρk,2ρℓ,2

[︁
E{g̃bnuk

gH
bnuℓ

}+ E{gbnuℓ
g̃H
bnuk

}
]︁
+ E{n′

nkn
′ H
nk }

= ρk,2τ2(R̃bnuk
+Rbntkuk

) +
∑︂

ℓ∈{Sk\k}
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+Rbntℓuℓ
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+σ2

nIL. (B.1)

Due to pilot contamination, there is a correlation between the channel estimates

ĝbnuk′
for any PRs k′ ∈ Sk sharing the same pilot sequence, and consequently a

correlation between g̃bnuk
and gbnuℓ

, k ̸= ℓ. Hence, we have

E{g̃bnuk
gH
bnuℓ

}=E{(gbnuk
−ĝbnuk

)gH
bnuℓ

}=−E{ĝbnuk
gH
bnuℓ

}=−E{√ρk,1τ1Rbnuk
Θ−1

nkynkg
H
bnuℓ

}

= −√
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nk
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ρk′,1τ1 gbnuk′

+ nnk
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H
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. (B.2)
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Similarly, we have

E{gbnuℓ
g̃H
bnuk

} = −τ1
√
ρk,1ρℓ,1Rbnuℓ

Θ−1
nkRbnuk

. (B.3)

Substituting (B.2) and (B.3) into the last line of (B.1) gives the result in (5.12).

B.2 SINR Derivation of Primary Transmissions

Rearranging (5.19) to combine S1 with S2 and R1 with R2, and neglecting X2, we

have

yk=
∑︂
n∈Ak

√
ptηnk(g

H
bnuk

+
√
αtkg

H
bntkuk

stk)wnksk⏞ ⏟⏟ ⏞
A

+
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

√
ptηnℓ(g

H
bnuk

+
√
αtkg

H
bntkuk

stk)wnℓsℓ

⏞ ⏟⏟ ⏞
B: multiuser interference

+ nk (B.4)

Recall that the precoding at the APs uses estimated channel vectors, and that the

PRs have only statistical CSI. As a consequence, part A in (B.4) can be decomposed

as

A=∑︂
n∈Ak

√
ptηnk

(︁
E{ĝH

bnuk
wnk}+

√
αtk E{ĝ
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a1: useful signal

+
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n∈Ak

√
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H
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√
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H
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stk)wnksk⏞ ⏟⏟ ⏞
a2: channel estimation error

+
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a3: lack of instantaneous channel knowledge at PR

(B.5)

Meanwhile, B can be decomposed as

B =
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ ̸=k

√
ptηnℓg

H
bnuk

wnℓsℓ

⏞ ⏟⏟ ⏞
R1: interference from direct-link channels

+
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

√
ptηnℓαtkg

H
bntkuk

stkwnℓsℓ

⏞ ⏟⏟ ⏞
R2: interference from cascaded backscatter channels

(B.6)
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To find a lower bound on the achievable direct-link data rate, we consider the

fact that a2, a3, B, and nk are all uncorrelated with each other. The mean squared

magnitudes of the various terms are computed as follows. First, since ĝH
bnuk

and ĝH
bntkuk

are uncorrelated, the expectation terms in a1 and a3 can be reduced thusly:

E{ĝH
bnuk

wnk} = E
{︂
ĝH
bnuk

(︂
µ1,nk ĝbnuk

||ĝbnuk
||2 +

µ2,nk ĝbntkuk

||ĝbntkuk
||2

)︂}︂
= µ1,nk (B.7)

E{ĝH
bntkuk

wnk} = E
{︂
ĝH
bntkuk

(︂
µ1,nk ĝbnuk

||ĝbnuk
||2 +

µ2,nk ĝbntkuk

||ĝbntkuk
||2

)︂}︂
= µ2,nk (B.8)

Then,

E{|a1|2}=E
{︃⃓⃓⃓⃓∑︂

n∈Ak

√
ptηnk

(︁
µ1,nk+

√
αtk µ2,nkstk

)︁
sk

⃓⃓⃓⃓2}︃
=pt

∑︂
i∈Ak

∑︂
j∈Ak

√
ηikηjk(µ1,ikµ

∗
1,jk+αtkµ2,ikµ

∗
2,jk)

(B.9)

For the remaining terms, we define variables q̂bnuk
=

ĝbnuk

||ĝbnuk
||2 and q̂bntkuk

=

ĝbntkuk

||ĝbntkuk
||2 , and make use of the following two Lemmas:

Lemma 1 If x ∈ Cn is distributed ∼ CN (0,Rx), then y = x
||x||2 has zero mean and

a probability density function (PDF) of

fy(y) =
exp

(︂
− yH

∥y∥2R
−1
x

y
∥y∥2

)︂
πn∥y∥4n det(Rx)

(B.10)

Proof. We first convert the complex normal distribution to its equivalent real-valued

normal distribution by vertically stacking the real part of x on top of its imaginary

part to make vector z ∈ R2n, and let m = 2n. The covariance matrix of z is Rz =

1
2

[︂
Re(Rx) −Im(Rx)
Im(Rx) Re(Rx)

]︂
. The real-valued equivalent of y will therefore be v = z

∥z∥2 . The

equation transforming element zi of z to element vi of v is vi = ui(z1, z2, . . . , zm) =

zi/
∑︁

∀i z
2
i . Similarly, the reverse transformation is given by zi = wi(z1, z2, . . . , zm) =

vi/
∑︁

∀i v
2
i . Hence, in vector form, we have z = v

||v||2 (and thus x = y
||y||2 ).

The partial derivatives of the reverse equations are ∂wi

∂vi
=

v21+v22+...−v2i +...+v2m
v21+v22+...+v2m

(note

the minus sign on the v2i term in the numerator) and ∂wi

∂vj
=

−2vivj
v21+v22+...+v2m

for j ̸= i.

139



Hence, the Jacobian of the transformation is

|J | = abs det

⎡⎢⎢⎢⎢⎢⎢⎣

∂w1

∂v1

∂w1

∂v2
· · · ∂w1

∂vm

∂w2

∂v1

∂w2

∂v2
· · · ∂w2

∂vm
...

...
. . .

...

∂wm

∂v1
∂wm

∂v2
· · · ∂wm

∂vm

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

(v21 + v22 + . . .+ v2m)
m

=
1

∥v∥2m
(B.11)

The PDF of v thus is

fv(v) = |J |fz
(︁

v
∥v∥2

)︁
=

exp
(︂
−1

2
vT

∥v∥2R
−1
z

v
∥v∥2

)︂
∥v∥2m

√︁
(2π)m det(Rz)

(B.12)

Note det(Rz) =
1
2m

(det(Rx))
2. Converting the real-valued form in (B.12) back to a

complex-valued form yields (B.10).

Trivially, if x has zero mean, dividing by its squared norm will not change the

mean from being zero. More formally, y·fy(y) is an odd function for both the real

and imaginary parts of each element of y. Hence,
∫︁
Cn yfy(y) dy = 0.

Lemma 2 If x and y ∈ Cn are related by y = Ax + v, with x ∼ CN (0,Rx) and

v ∼ CN (0,Rv) being uncorrelated and A ∈ Cn×n being constant, then the joinf PDF

of x and z = y
||y||2 is

fx,z(x, z) =
exp

(︂
−
(︁

z
∥z∥2 −Ax

)︁H
R−1

v

(︁
z

∥z∥2 −Ax
)︁
− xHR−1

x x
)︂

π2n∥z∥4n det(RvRx)
(B.13)

Proof. The joint PDF of x and y is obtained by f(x,y) = f(y|x)f(x). Conditioned

on knowing x, the distribution of y|x is complex Gaussian with mean Ax and co-

variance matrix Rv. Conversion from f(x,y) to f(x, z) then proceeds in the same

fashion as in the proof of Lemma 1.

We also note the following manipulation if vectors a and b are uncorrelated with co-

variance Ra and Rb respectively; this makes use of the properties E{tr(·)} = tr(E{·})

and tr(AB) = tr(BA) for matrices A and B having compatible dimensions.

E{aHbbHa} = E{tr(aHbbHa)} = E{tr(aaHbbH)} = tr(E{aaH}E{bbH}) = tr(RaRb)

(B.14)
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Examination of (5.10) shows that z′nk is a function of g̃bnuk
. Therefore, g̃bnuk

and

ĝbntkuk
have some correlation in the calculation of (5.11), though that correlation will

be small if the estimate ĝbnuk
is good. (The quality of said estimate depends on

the amount of pilot contamination in the system.) Replacing g̃bnuk
by gbnuk

− ĝbnuk

and ĝbnuk
by (5.4), and combining the other independent vectors in (5.10) into one

equivalent vector with the same overall distribution, (5.11) can be manipulated into

the form ĝbntkuk
= Agbnuk

+ v like in Lemma 2. Hence, the joint PDF of gbnuk
and

ĝbntkuk
can be written as in (B.13), where Rx = Rbnuk

and A and Rv are given by

A = ρk,2τ2Rbntkuk
Φ′ −1

nk (IL − ρk,1τ1Rbnuk
Θ−1

nk ) (B.15)

Rv = R̂bntkuk
−ARbnuk

AH (B.16)

Let the covariance matrix of q̂bnuk
and q̂bntkuk

be denoted as Q̂bnuk
and Q̂bntkuk

,

respectively. Unfortunately, obtaining a symbolic expression for these matrices using

(B.10) is exceedingly difficult. Similar difficulty is experienced in obtaining the cross-

covariance matrix between gbnuk
and ĝbntkuk

using (B.13). Both equations are resistant

to symbolic integration. However, one can instead do the integrations numerically1

to obtain the desired covariance and cross-covariance matrices. Alternatively, esti-

mates of the matrices can be obtained by averaging numerous samples of the channel

vectors in question; this is how the system would obtain the covariance matrices of

the channels in practice.

With the above PDFs and covariance matrices, E{|a2|2} and E{|a3|2} can be cal-

1In performing a numerical integration, care must be taken near the origin of the multi-
dimensional space. Due to the singularity of the PDFs at ||y|| and ||z|| = 0, the value of the
PDF changes rapidly near that singularity. Thus, the spacing between samples taken near the origin
should be sufficiently small to capture this rapid change.
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culated as

E{|a2|2} = E
{︃∑︂

n∈Ak

ptηnk
(︁
g̃H
bnuk

+
√
αtk g̃

H
bntkuk

stk
)︁
wnksks

∗
kw

H
nk

(︁
s∗tk g̃bntkuk

√
αtk+ g̃bnuk

)︁
+
∑︂
i∈Ak

∑︂
j∈Ak,
j ̸=i

pt
√
ηikηjk

(︁
g̃H
biuk

+
√
αtk g̃

H
bitkuk

stk
)︁
wiksks

∗
kw

H
jk

(︁
s∗tk g̃bjtkuk

√
αtk+ g̃bjuk

)︁}︃

= E
{︃∑︂

n∈Ak

ptηnk
(︁
g̃H
bnuk

wnkw
H
nkg̃bnuk

+αtk |stk |2 g̃
H
bntkuk

wnkw
H
nkg̃bntkuk

)︁
+
∑︂
i∈Ak

∑︂
j∈Ak,
j ̸=i

pt
√
ηikηjk

(︁
g̃H
biuk

wikw
H
jkg̃bjuk

+αtk |stk |2 g̃
H
bitkuk

wikw
H
jkg̃bjtkuk

)︁}︃

=
∑︂
n∈Ak

ptηnk

(︃
|µ1,nk|2

[︂
tr(R̃bnuk

Q̂bnuk
)+αtktr(R̃bntkuk

Q̂bnuk
)
]︂

+ |µ2,nk|2
[︂
E{g̃H

bnuk
q̂bntkuk

q̂H
bntkuk

g̃bnuk
}+αtktr(R̃bntkuk

Q̂bntkuk
)
]︂)︃

+
∑︂
i∈Ak

∑︂
j∈Ak,
j ̸=i

pt
√
ηikηjk µ2,ik µ

∗
2,jk E{g̃H

biuk
q̂bitkuk

}E{q̂H
bjtkuk

g̃bjuk
} (B.17)

and

E{|a3|2}=
∑︂
i∈Ak

∑︂
j∈Ak

pt
√
ηikηjk

(︂
E{ĝH

biuk
wikw

H
jkĝbjuk

}+ αtkE{ĝ
H
bitkuk

wikw
H
jkĝbjtkuk

}

+ µ1,ikµ
∗
1,jk + αtkµ1,ikµ

∗
1,jk − E{ĝH

biuk
wik}µ∗

1,jk − αtkE{ĝ
H
bitkuk

wik}µ∗
2,jk

− µ1,ikE{wH
jkĝbjuk

} − αtkµ2,ikE{wjkĝ
H
bjtkuk

}
)︂

=
∑︂
n∈Ak

ptηnk

(︂
E{ĝH

bnuk
wnkw

H
nkĝbnuk

}+αtkE{ĝ
H
bntkuk

wnkw
H
nkĝbntkuk

}−|µ1,nk|2−αtk |µ2,nk|2
)︂

=
∑︂
n∈Ak

ptηnk

(︂
αtk |µ1,nk|2tr(R̂bntkuk

Q̂bnuk
) + |µ2,nk|2tr(R̂bnuk

Q̂bntkuk
)
)︂

(B.18)

To calculate E{|R1|2}, we have

E{|R1|2} =
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ ̸=k

ptηnℓE{gH
bnuk

wnℓw
H
nℓgbnuk

}

+
N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
ℓ∈Ui∩Uj ,

ℓ ̸=k

pt
√
ηiℓηjℓ E{gH

biuk
wiℓ}E{wH

jℓgbjuk
} (B.19)

To calculate the expectations in (B.19), we must consider two cases: when users ℓ

and k share a pilot sequence, and when they do not. In the latter case, the vectors in
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(B.19) are uncorrelated. Thus, the expectation in the first line of (B.19) reduces to

|µ1,nℓ|2tr(Rbnuk
Q̂bnuℓ

) + |µ2,nℓ|2tr(Rbnuk
Q̂bntℓuℓ

), and both expectations in the second

line of (B.19) reduce to 0. In contrast, with a shared pilot sequence, the vectors for

a given AP are correlated, but not between two different APs i and j.

The overall expression for E{|R1|2} is given as

E{|R1|2}=
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ ̸=k

ptηnℓ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|µ1,nℓ|2tr(Rbnuk

Q̂bnuℓ
)+|µ2,nℓ|2tr(Rbnuk

Q̂bntℓuℓ
), if k ̸∈ Sℓ,

|µ1,nℓ|2 E{gH
bnuk

q̂bnuℓ
q̂H
bnuℓ

gbnuk
}

+|µ2,nℓ|2 E{gH
bnuk

q̂bntℓuℓ
q̂H
bntℓuℓ

gbnuk
}

+2Re
[︂
µ1,nℓ µ

∗
2,nℓ E{gH

bnuk
q̂bnuℓ

q̂H
bntℓuℓ

gbnuk
}
]︂
,

if k ∈ Sℓ

+
N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
ℓ∈Ui∩Uj ,

ℓ ̸=k

pt
√
ηiℓηjℓ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if k ̸∈ Sℓ,

µ1,iℓ µ
∗
1,jℓ E{gH

biuk
q̂biuℓ

}E{q̂H
bjuℓ

gbjuk
}

+µ2,iℓ µ
∗
2,jℓ E{gH

biuk
q̂bitℓuℓ

}E{q̂H
bjtℓuℓ

gbjuk
}

+2Re
[︂
µ1,iℓ µ

∗
2,jℓ E{gH

biuk
q̂biuℓ

}E{q̂H
bjtℓuℓ

gbjuk
}
]︂
,

if k ∈ Sℓ

(B.20)

The joint PDFs f(gbnuk
, q̂bnuℓ

) and f(gbnuk
, q̂bntℓuℓ

) have the same form as in (B.13).

For f(gbnuk
, q̂bnuℓ

), Rx = Rbnuk
, and A = A1 and Rv = Rv,1 are given by

A1 =
√
ρℓ,1ρk,1 τ1Rbnuℓ

Θ−1
nℓ (B.21)

Rv,1 = R̂bnuℓ
−A1Rbnuk

AH
1 (B.22)

For f(gbnuk
, q̂bntℓuℓ

), Rx = Rbnuk
again, and A = A2 and Rv = Rv,2 are given by

A2 =
√
ρℓ,2 τ1Rbntℓuℓ

Φ−1
nℓ

(︁√
ρk,2 IL −√

ρℓ,2ρℓ,1ρk,1 τ1RnℓΘ
−1
nℓ

)︁
Rv,2 = R̂bntℓuℓ

−A2Rbnuk
AH

2 (B.23)

The joint PDF f(gbnuk
, q̂bnuℓ

, q̂bntℓuℓ
) is found from f(q̂bntℓuℓ

|gbnuk
, q̂bnuℓ

)f(gbnuk
, q̂bnuℓ

),

which equals f(q̂bntℓuℓ
|gbnuk

)f(gbnuk
, q̂bnuℓ

) since q̂bntℓuℓ
is not dependent on q̂bnuℓ

. The

joint PDF is therefore

f(gbnuk
, q̂bnuℓ

, q̂bntℓuℓ
) =

Xf

π3n∥q̂bnuℓ
∥4n∥q̂bntℓuℓ

∥4n det(Rv,1Rv,2Rbnuk
)

(B.24)

143



where

Xf = exp

[︃(︂
− q̂bnuℓ

∥q̂bnuℓ
∥2−A1gbnuk

)︂H
R−1

v,1

(︂
q̂bnuℓ

∥q̂bnuℓ
∥2−A1gbnuk

)︂
−
(︂

q̂bntℓuℓ

∥q̂bntℓuℓ
∥2−A2gbnuk

)︂H
R−1

v,2

(︂
q̂bntℓuℓ

∥q̂bntℓuℓ
∥2−A2gbnuk

)︂
−gH

bnuk
R−1

bnuk
gbnuk

]︃
(B.25)

The calculation of E{|R2|2} is similar to that of E{|R1|2}, with the inclusion of αtk

and gbntkuk
replacing gbnuk

. Importantly, since gbntkuk
is only part of the estimation of

cascaded links, it will only ever be correlated with q̂bntℓuℓ
(if k ∈Sℓ), but not q̂bnuℓ

. As

such, terms involving µ1,nℓ (the direct-link part of wnℓ) will not contain correlation.

The expression for E{|R2|2} is given as

E{|R2|2} =
N∑︂

n=1

∑︂
ℓ∈Un,
ℓ̸=k

ptαtkηnℓ

(︄
|µ1,nℓ|2tr(Rbntkuk

Q̂bnuℓ
) (B.26)

+ |µ2,nℓ|2×

{︄
tr(Rbntkuk

Q̂bntℓuℓ
), if ℓ ̸∈ Sk,

E{gH
bntkuk

q̂bntℓuℓ
q̂H
bntℓuℓ

gbntkuk
}, if ℓ ∈ Sk,

)︄

+
N∑︂
i=1

N∑︂
j=1,
j ̸=i

∑︂
ℓ∈Ui∩Uj ,

ℓ̸=k

ptαtk

√
ηiℓηjℓ×

{︄
0, if ℓ ̸∈ Sk,

µ2,iℓµ
∗
2,jℓ E{gH

bitkuk
q̂bitℓuℓ

}E{q̂H
bjtℓuℓ

gbjtkuk
}, if ℓ ∈ Sk

The joint PDF f(gbntkuk
, q̂bntℓuℓ

) once again has the same form as in (B.13), this

time with A =
√
ρℓ,2ρk,2 τ2Rbntℓuℓ

Θ−1
nℓ and Rv = R̂bntℓuℓ

−ARbntkuk
AH .

Finally, the SINR when decoding sk is E{|a1|2}
E{|a2|2}+E{|a3|2}+E{|R1|2}+E{|R2|2}+σ2

n
as pre-

sented in (5.20)(cf. [181, Eq. (19)–(23)]). In (5.20) and (5.21), when forming

IAk
= E{|a2|2} + E{|a3|2}, we combine tr(R̂bntkuk

Q̂bnuk
) + tr(R̃bntkuk

Q̂bnuk
) to make

tr(Rbntkuk
Q̂bnuk

).

B.3 SINR Derivation of BD Transmissions

The useful part of the received signal after SIC, i.e., the first double sum in (5.24),

consists of the sum of S2 and R2 from (5.19). Meanwhile, the interference plus noise

yI+N is as indicated in (5.24). We here denote the first interference term in yI+N as

yres with power E{|yres|2} = Ires, whereas the second term is the same as R1 in (5.19).
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After adding together the M phase-corrected received signals with EGC, the power

of the useful part of the combined signals is E
{︁(︁∑︁M

m=1 |gBD(m)|
)︁2}︁

. Meanwhile,

the power of the combined interference plus noise is E
{︁⃓⃓∑︁M

m=1 yI+N(m)
⃓⃓2}︁

. Because

both gBD and yI+N consist of the sum of many random variables, by the Central

Limit Theorem, we can treat them as being distributed as a single complex Gaussian

random variable with the same mean and the same total variance. For the useful

power, since gBD = S2 + R2, its mean is E{gBD} = E{S2}+ E{R2} = 0 since S2 and

R2 both have zero mean, and its variance is

E{|gBD|2} = E{(S2 +R2)(S
∗
2 +R∗

2)} = E{|S2|2 + |R2|2 + S2R
∗
2 + S∗

2R2} (B.27)

= E{|S2|2}+E{|R2|2}+E{S2}E{R∗
2}+E{S∗

2}E{R2)} = E{(|S2|2}+E{|R2|2},

where the last line holds due to S2 and R2 being uncorrelated. The real and imaginary

parts of gBD will therefore each have a variance of (E{(|S2|2}+E{|R2|2})/2.

Expanding the squared sum of the useful components, we get

E
{︃(︃ M∑︂

m=1

|gBD(m)|
)︃2}︃

=
M∑︂

m=1

E{|gBD(m)|2}+
M∑︂
i=1

M∑︂
j=1,
j ̸=i

E{|gBD(i)|}E{|gBD(j)|}

(B.28)

Since gBD has a complex Gaussian distribution, its magnitude |gBD| will be Rayleigh

distributed, with a mean of σg(R,I)

√︁
π/2 [172, Ch. 2.3], where σg(R,I)

is the standard

deviation of its real and imaginary parts. Hence, E{|gBD|} =

√
π(E{(|S2|2}+E{|R2|2})

2
.

For the interference plus noise, since yres, R1, and nk are all zero mean and un-

correlated with each other, by a similar calculation as in (B.27), we get E{|yI+N|2} =

Ires+E{(|R1|2}+σ2
n. Multiplying yI+N by exp(−j∠gBD) as part of the phase cancella-

tion of ySICk will not change the distribution of yI+N, as its phase will still be uniformly

distributed in [0, 2π) (modulo 2π). Furthermore, since the sum of the M interference

components is a sum of M independent complex Gaussian random variables, the sum

will end up as a complex Gaussian variable whose mean is the sum of the individual

component means and the variance is the sum of the individual component variances.
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Putting all this together, we end up that the SINR for the BD transmission from tk

after EGC will be

SINR
(2)
k =

E
{︂(︂ M∑︁

m=1

|gBD(m)|
)︂2}︂

E
{︂⃓⃓⃓ M∑︁

m=1

yI+N(m)
⃓⃓⃓2}︂ =

M∑︁
m=1

E{|gBD(m)|2}+
M∑︁
i=1

M∑︁
j=1,
j ̸=i

E{|gBD(i)|}E{|gBD(j)|}

M∑︁
m=1

E{|yI+N(m)|2}

=

⎛⎜⎜⎜⎝
M∑︁

m=1

(︂
E{|S2(m)|2}+ E{|R2(m)|2}

)︂
+

π
4

M∑︁
i=1

M∑︁
j=1,
j ̸=i

√︂(︁
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(B.29)

E{|R1|2} and E{|R2|2} were derived in Appendix B.2 and are given by (B.20) and

(B.26), respectively. Making note of the same correlations between certain vectors

(or lack thereof) as described in Appendix B.2, for E{|S2|2}, we have

E{|S2|2}

=ptαtk
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∗
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(B.30)

We note that within the first summation of the last line of (B.30), the term

ηnk|µ2,nk|2×1 is the same as
√
ηnkηnk µ2,nkµ

∗
2,nk. We can therefore pull that term out

of the first summation and add it to the second double summation, while dropping
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the j ̸=i restriction on the second. We then end up with

E{|S2|2} = ptαtk
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|µ1,nk|2tr(Rbntkuk
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(B.31)

For yres, we first note from (B.7) that E{ĝH
bnuk

wnk} = µ1,nk. We have E{gH
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}. Then,

for Ires = E{|yres|2}, we have
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E{ĝH

bnuk
q̂bntkuk

q̂H
bntkuk
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ĝH
bnuk

q̂bntkuk
ĝH
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∥ĝbnuk
∥2

}︂
−
(︁
µ1,nk+µ2,nkE{g̃H

bnuk
q̂bntkuk

}
)︁
µ∗
1,nk − µ1,nk

(︁
µ∗
1,nk+µ∗

2,nkE{q̂H
bntkuk

g̃bnuk
}
)︁
+ |µ1,nk|2

]︂
+
∑︂
i∈Ak

∑︂
j∈Ak,
j ̸=i

√
ηikηjk

[︂(︁
µ1,ik+µ2,ikE{g̃H

biuk
q̂bitkuk

}
)︁(︁
µ∗
1,jk+µ∗

2,jkE{q̂H
bjtkuk

g̃bjuk
}
)︁

−
(︁
µ1,ik+µ2,ikE{g̃H

biuk
q̂bitkuk

}
)︁
µ∗
1,jk − µ1,ik

(︁
µ∗
1,jk+µ∗

2,jkE{q̂H
bjtkuk

g̃bjuk
}
)︁
+ µ1,ikµ

∗
1,jk

]︂)︃
(B.32)

In (B.32), there are terms with E
{︂

g̃H
bnuk

ĝbnuk
q̂H
bntkuk

ĝbnuk

∥ĝbnuk
∥2

}︂
(or its conjugate). For

simplicity of notation, we’ll denote ĉ =
ĝbnuk

∥ĝbnuk
∥ and temporarily drop the subscripts on

the vectors. The expectation is E{g̃H ĉq̂H ĉ} = E{q̂H ĉg̃H ĉ} = Eg̃,q̂

{︁
q̂HEĉ{ĉg̃H ĉ|g̃}

}︁
.

Next, because ĝ is a circularly-symmetric complex Gaussian vector, it has a pseudo-

covariance matrix E{ggT} = 0L×L. Thus, the pseudo-covariance matrix of ĉ will also

be 0L×L. In other words, for any two elements ĉi and ĉj of ĉ, E{ĉ2i }, E{ĉ2j}, and
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E{ĉiĉj} will all be zero. Thus, we will have

Eĉ{ĉg̃H ĉ|g̃} =
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and so E{g̃H ĉq̂H ĉ} = 0. Hence, (B.32) reduces to
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