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Abstract

Along with the growing number of network users and the emerging of new multimedia
applications. today’s communication networks are required to not only have higher band-
width to satisfy the large amount of users, but also have the ability to provide integrated
services in the same underlying backbone. Based on optical technologies. a revolution in
telecommunication networks, optical networks provide higher capacity and reduce cost for
new applications. As a dominating transfer mode in optical networks, circuit-switching
deserves more attentions. On the other hand. ATM was designed as a major technical con-
tribution for B-ISDN, and to have the ability of supporting a wide variety of services in a
seamless manner. This thesis investigates the design issues of switching networks and the
two important transfer modes: circuit-switching and ATM. with the goals of studying the
blocking behavior for multicasting in circuit-switching environment and of measuring the

performance of the existing switch designs and developing new methods to improve thern.
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Chapter 1

Introduction

Today’s network applications require communication networks with increasingly higher
bandwidth and the ability to provide integrated services in the same underlying backbone
for heterogeneous traffic. The effort of supporting a combination of analog and digital traffic
in the public switched telephone systems can be dated to 1960s. A significant outgrowth
for this trend is the notion of integrated services digital network (ISDN). The ISDN is in-
tended to be a worldwide public telecommunication network to replace the existing public
telephone networks and deliver a wide variety of services. ISDN has already evolved from
its first generation — narrowband ISDN — to its second generation — Broadband ISDN
(B-ISDN).

In communication networks. switches form an important part that provides a facility
for moving data from node to node until they reach their destinations. The basic function
of a switch is to forward the data arriving at its inputs to the corresponding outputs while
supporting control and management functions.

Transfer modes play a key role in switch designs. There are different transfer modes.
ranging from the most static conventional circuit-switching to the most fexible packet
switching. Each of them has its merits and disadvantages. In this section. we review the
relevant characteristics of some important transfer modes.

In the early 1980s, a revolution in telecommunications networks began by the use of a
relatively unassuming technology, fiber-optic cable. Based on optical technologies, optical
networks provide higher capacity and reduce cost for new applications. The circuit-switching
transfer mode is served as a dominating transfer mode in optical networks. Here. we first
introduce the conventional circuit-switching and its two enhancements.

The conventional or pure circuit-switching has long been used in telephone networks.
This transfer mode is based on TDM (time division multiplexing) principle. When there
is a call request, a circuit is established for the complete duration of the connection. The
information is transferred in the time slot assigned to this connection and will always use
the same slot in the frame during the complete duration of the connection. Pure circuit-

switching is the most static transfer mode and is unsuitable for different kinds of services.



Two enhancements of pure circuit-switching are multirate circuit-switching and fast
circuit-switching. In multirate circuit-switching, a connection requests an integer multiple of
some basic channel rate. Unlike pure circuit-switching. the technology of multirate circuit-
switching is used to support applications with arbitrary rates. and different connections
can share the capacity of the same link if the total bandwidth of these connections doesn’t
exceed the link capacity. Pure circuit-switching is a special case of l-rate circuit-switching.

Multirate circuit-switching has some disadvantages. First, it makes the switching sys-
tems based on it more complex than those of pure circuit-switching. Another problem is the
selection of the basic rate. In addition. multirate circuit-switching can not cope efficiently
with sources with a bursty character.

In fast circuit-switching, the resources are only allocated when information is sent, and
released when no information is sent. At call set-up. users request a connection with a
bandwidth equal to some integer multiple of basic rate. The system will not allocate the
resources. but store the information on the required bandwidth. When the source starts
sending information. the switch allocates the necessary resources immediately.

The next transfer mode talked here is the Asynchronous Transfer Mode (ATM). ATM
is designed for B-ISDN and potentially capable of supporting all classes of traffic in one
transmission and switching fabric. It has the potential to subsume both the Internet and
the telephone network. creating a unified infrastructure that carries voice. video, and data.
Many applications, such as digital medical imaging, benefit from the flexibility in switching
and high speed that ATM provides. The detailed review of the characteristics of ATM is
in Chapter 5.

The most flexible transfer mode is packet switching. In packet switching network, user
information is encapsulated in packets which contain additional information (in the header)
used inside the network for routing, error correction, flow control, etc. This transfer mode is
used in the Internet. It has some disadvantages such as delay insensitive and packet out-of-
order. In order to offer an acceptable end-to-end performance on each link of the network,
complex protocols are necessary. Along with the rapid growth of Internet applications.
supporting real-time continuous traffic (e.g., digital audio and video) over the Internet is a
fast growing direction. Four protocols used in the Internet are introduced below.

ST-ITand RSVP are internetworking protocols for low establishment. Both of them can
support multicasting between multiple senders and heterogeneous receivers. They allow the
receivers to subscribe or unsubscribe to broadcast groups dynamically. Also rate negotiation
is very dynamic between the sender and the multiple receivers. One difference between
these two protocols is that ST-II requires the sender to manage the flow, but RSVP allows
each receiver to make resource reservation tailored to its needs, which is more effective
for heterogeneous receivers. For these two protocols, routers not only take part in flow
establishment, but also in monitoring and adjusting flow transmission. Also routers can

communicate with each other and dynamically reroute flows and reload information about



flows.

RTP and RTCP are used over other protocols to support continuous media applications
in a transport-independent way. They don’t assume (or expect) any sophisticated support
from the network (especially. support from large-scale switches). As such, the use of such
protocols emphasizes the need for the applications to adaptively change their transmission

speeds.

1.1 Thesis Contributions and Organization

This thesis examines some architectures and routing algorithms that are used in the design
of large-scale switching networks for high speed transport modes.

In one direction, because circuit-switching is the dominating transfer mode in optical
networks. we examine the problem of blocking behavior for switching networks serving
in circuit-switching environment. Our emphasis is on analyzing routing algorithms that
support in-switch broadcast operations. To this end., we review the existing methods for
computing end-to-end blocking in 3-stage Clos networks in Chapter 3. And in Chapter
4. we analyze the 2-call blocking behavior for 3-stage Clos networks in circuit-switching
environment. under two in-switch multicast schemes: second-stage multicasting and first-
stage multicasting. We also provide a preliminary comparison of these two schemes.

In another direction, we examine switch designs for supporting ATM cell switching.
Some typical ATM switch designs are reviewed first in Chapter 5. The focus of this thesis
is the AT&T growable ATM switch design. In Chapter 6, the worst-case scenario of this
switch design is studied. The pattern for a class of bad traffic matrices is found and the
algorithms used to generate this class of traffic matrices are proposed. This can help us to
build benchmarks that are suitable for testing newly proposed improvements. Finally, some
methods to improve the performance of this switch design are discussed.

The organization of this thesis is as follows. In Chapter 2, we provide the background
knowledge about some important switching architectures. A generic switching architecture
is first presented. Then a survey of typical switching architectures are followed. In Chapter
3. we introduce some previous works on the point-to-point call blocking behavior of Clos
network. The focus of this chapter is Yang’s models ([15]). In Chapter 4, based on Yang's
models, we extend the studying of blocking behavior for Clos network to the 2-call blocking,
where each 2-call has one source input module and two distinct destination output modules.
Two schemes to multicast a 2-call are used in the analysis. The 2-call blocking models for
the two schemes are presented. In Chapter 5. some background knowledge about ATM
and ATM switch designs are given. First this chapter reviews the main characteristics of
ATM. Then there is a survey of three typical ATM switch designs. In Chapter 6, we study
the worst-case scenario of AT&T growable ATM switch design. This switch design uses a
fast but sub-optimal routing algorithm: straight maiching. Chapter 6 provides the results

for the traffic type which has significant cell loss by using the straight matching algorithm,



and also two algorithms to help generate benchmarks for worst-case traffic type. The last

chapter. Chapter 7. concludes the work of this thesis and also discusses areas of future work.



Chapter 2

Background for Switching
Architectures

In this chapter. we provide the background knowledge for switching architectures. First, a
generic switching architecture is introduced in Section 2.1 to give an overall understanding

of the architecture of a switch. Then a survey of typical switching architectures is provided

in Section 2.2.

2.1 A Generic Switch Architecture

The basic function of a switch is to connect calls, route cells. or route packets from its input

ports to its output ports. Figure 2.1 illustrates a generic architecture which consists of the

following parts:

1.

o

The Switch Interface Unit: The switch interface includes input modules and output
modules. For ATM switches, the modules convert between SONET signals and ATM

cell streams.

The Switch Fabric Unit: The switch fabric is primarily responsible for routing of

calls or cells and possibly signaling and managing information as well.

The Connection Admission Control Unit (CAC): This part is in charge of estab-

lishing, modifying and terminating connections.

The Switch Management Unit: This part handles a variety of management func-
tions. such as fault management, performance management, and so on. Also it collects
and administrates management information, communicates with users and network

managers, and supervises and coordinates all management activities.

When designing switches. some factors are taken into consideration: complezity, scala-

bility, management or control, speed and performance.
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Figure 2.1: A Generic Switching Architecture

2.2 A Survey of Typical Switching Architectures

This section provides a survey of some typical switching architectures. There are different
kinds of switching architectures. Each of them has its merits and shortcomings. Some of
them are limited in scalability and suitable for small switching modules. such as Shared-
Memory. Shared-Medium and Crossbar. For multistage fabric. it is easy to scale and can be
used to construct large-scale networks.

In Section 2.2.1. the architectures of Shared-Memory. Shared-Medium and Crossbar are
introduced. Then. different MINs (multistage interconnection networks) will be introduced

in Section 2.2.2.

2.2.1 Some Small-Size Architectures

The architectures introduced here are Shared-Memory, Shared-Medium and Crossbar. They

are limited in scalability and suitable for small size networks or switching modules.

e Shared-Memory: In this architecture, all the incoming data are converted from
serial to parallel form and written sequentially to a common buffer pool. A memory
controller controls the order in which data are read out of the memory according to

the internal routing tags in the headers of the data.

The main drawback of this approach is that it is not scalable due to the limitation on
the memory access time. The speed requirement is also put on the processing speed
of the memory controller. Three examples of this architecture are CNET’s Prelude
switch, Hitachi's shared buffer switch and AT&T's GCNS-2000.

e Shared-Medium: In this architecture, data are routed through a shared medium
such as ring or bus. For example, in ATM environment, a cell arriving at an input
port is broadcast to all output ports attached to the same medium. Each output port

checks the incoming cell to decide if this cell is to it.



An attractive feature of this approach is that multicast and broadcast can be easily
supported. But the speed requirement is placed on both the shared medium and
the filters and buffers in the output ports. This places a physical limitation on the
scalability. Some typical switches using this architecture are IBM's PA RIS (Packetized
Automated Routing Integrated System) and plaNET, NEC's ATOM (ATM Output
Buffer Modular Switch), and Fore Systems’ ForeRunner AS5X-100.

Sometimes. multiple rings and multiple buses are used in a single or multiple hi-
erarchical structure to increase the capacity. An experimental SCPS (Synchronous

Composite Packet Switch) uses multiple rings to interconnect the switching modules.

e Crosshar Switching Architecture: Crossbar is the simplest fabric and can be imple-
mented using multiple buses. Here. each input port is connected to each output port
through a crosspoint. A crossbar is internally self-routing and nonblocking. However.
the complexity and the cost grow quadratically with the number of ports. This draw-
back makes it not suitable for large switches. Two famous examples are Knockout

Switch and Gauss Switch.

For Knockout switch ([16]), there is a L x N concentrator in each output port, where
N is the number of ports. If there are more than L cells destined to the same output
port In one time cycle (slot). only L cells can be put into the buffer associated with
that output port. This is called the Knockout Principle. Multicasting is easy to be
implemented in Knockout switch, but significantly impacts the switch performance

and increases the complexity of buffer control.

2.2.2 A Survey of Some Multistage Fabrics

Here. a number of multistage architectures are introduced. Large switches are usually built
from smaller modules which can be constructed using the architectures introduced in the

previous section.

o The 3-Stage Clos Architecture

A Clos network has 3 stages (see Figure 2.2), and can be described by the parameters
N(m.n.no. k). The first stage contains k (n; x m) switch modules. Each of the m
outgoing links in a first-stage module is connected to a switch module in the middle
stage. The second stage contains m (k x k) switch modules. Each of the k outgoing
links of a middle module is connected to a third stage switch module. The third stage
contains Ak (m X ns) modules. Each pair of input and output module has m paths.
For symmetric architecture where n; = ns, the Clos network can be represented as
N(m,n, k).

Clos network has been widely used for data communications and parallel computing

systems. It is also the focus of this thesis. In circuit-switching environment, the study
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Figure 2.2: A 3-stage Clos Network

of Clos networks focuses on the blocking behavior. In the ATM environment, the
study of Clos networks includes routing, performance evaluation and multicasting.
Examples of ATM switch designs based on it include: the AT&T growable switch and
the Cross-path switch (to be discussed later).

Batcher-Banyan Architecture

A Banyan network is internal blocking. In a Banyan switch, there is exactly one path
from any input to any output. Self-routing can be implemented (in a distributed
manner) by adding the destination output port number to the packet and letting each
switch element to decide which way to go. Lee has shown that if the destination
addresses of all the incoming packets are in strictly increasing or decreasing order, the

internal blocking can be avoided ([5]).

A Banyan network has less crosspoints than a Crossbar switch with the same input-
output size. In a Batcher-Banyan network, a Batcher sorting network is used in front
of a Banyan network to make all the packets in strictly increasing or decreasing order.
Batcher-Banyan networks of large size are physically limited by the possible circuit
density and number of input/output pins of the integrated circuits. Also supporting
multicasting brings more complexity to the switch control. Examples of switch designs

based on this fabric include: Starlite ([1]) and Bellcore’s Sunshine ([9]).

The Benes and The Cantor Networks

The number of crosspoints in a 3-stage Clos network can be reduced by recursively
replacing each module with a 3-stage subnetwork until all switch elements are (2 x
2). For N = 2", if we apply the above factorization, we get a (2loga N — 1)-stage
rearrangeable network, called the Benes network. The total number of crosspoints in
a N x N Benes network is about 4Nloga N which is roughly the minimum number
required for rearrangeable nonblocking networks ([5]). In a Benes network, there are
multiple paths from one input to one output. Self-routing for a subset of all V!



permutations can be implemented on a Benes network.

For a strictly nonblocking network of size N = 2", if F(2") is its crosspoint complexity.
then F(2") < N(logaN)28F(2) ([5]).

2

The Cantor network is strictly nonblocking with the complexity of roughly 4N (loga N)=.
A N x N Cantor network contains loga N planes of N x N Benes networks. Each input
link is connected to the logy N Benes network planes through a 1 x loga N demulti-
plexer, while each output link is connected to the log: N Benes planes through a
loga N x 1 multiplexer.

Although the Benes and the Cantor networks are attractive in the crosspoint com-

plexity. it is not easy to find fast routing and control algorithms for them.

o Augmented Data Manipulator (ADM) Networks

ADM networks are blocking networks which have more permutation power than

Banyan networks, with a slight increase in cost.

In an ADM network with size N = 2™, there are m stages and NV switching elements
(SEs) in each stage. Stages are numbered (from left to right) as m — 1,m — 2, ...,0.
Each SE has three input links and three output links. For a SE j at stage 4. its first
output is connected to node (j — 2¢ mod N) of stage i — 1 (up). its second output to
node j of stage ¢ — 1 (straight), and the third output to node (§ + 2¢ mod V) of stage
¢ — 1 (down). For multicast and broadcast cells, a SE can connect its input link to

two or all of its output links.

If the stages of the ADM network are traversed in reverse order, the resulting network
is called the JADM network. Both the ADM and ITADM networks have multiple paths
between any single source and any single destination. except that there is only one
path between a source S and destination D when S = D. One important feature of
ADM and [ADM networks is that self-routing can be implemented in them for both

unicasting and limited multicasting.

2.3 Concluding Remarks

In this chapter, we present the background knowledge of switching architectures. A generic
architecture of a switch is introduced first. Then a survey of typical switch architectures are
provided. Some of them are limited in scalability and suitable for small switching modules,
such as Shared-Memory. shared-medium and Crossbar. On the other hand, the group of
multistage architectures, including Batcher-Banyan, Clos, Benes, Cantor, ADM, are easy
to scale and can be used to construct large-scale networks. Especially, Clos network is the

main focus of this thesis.



Chapter 3

The Blocking Behavior for Unicast
Calls in Clos Networks

In the first part of this thesis (Chapter 3 and Chapter 4), we consider approximation
methods for computing blocking probability in unicast and multicast circuit switching. We

are motivated by

e the importance of the circuit switching transfer mode in high-speed networking (e.g.,

for its use in optical networks).

e the importance of 3-stage Clos architecture in constructing large-scale switching sys-

tems. and
e the growing demand of supporting broadcast inside the switch.

The Clos networks have been widely used and extensively studied. In the circuit-
switching environment. call blocking is the primary measure of main focus. The work in
this direction can be generally categorized into two classes: deterministic and probabilistic.

In deterministic analysis, the main focus is on finding the minimum number of middle
stage modules. given the relevant parameters of the first stage modules, such that the
network is nonblocking for arbitrary connection requests. Clos showed ([2]) that a 3-stage
Clos network is strictly non-blocking if m > n; + n, — 1, where n, is the number of input
links per input module, and n» is the number of output links per output module. For a
symmetric 3-stage Clos network, it is strictly non-blocking if m > 2n—1, where n; = n, = n.
If the network satisfies this condition, any middle switch module may be chosen arbitrarily
to make a connection without re-arranging the existing connections. Furthermore, Benes
proved that the network is rearrangeable nonblocking if m > n, ([14]). If the network
satisfies this condition. any call can be connected by re-arranging the existing connections.

In the probabilistic study. the main focus is on analyzing the blocking behavior of Clos
network that is not strictly nonblocking. Unfortunately, exact computation of blocking
appears to be a very hard problem. Therefore, extensive studies in the literature appears
on approximating the blocking probability measure. Of these studies, several previous

10



analytical models have been proposed on approximating the blocking probability of Clos
network for unicast or point-to-point calls. In particular, some approximation methods can
not get a zero blocking probability even if the strictly nonblocking condition is satisfied.

Our goal in this chapter is to give an overview of the techniques used for approximating
the end-to-end blocking. We emphasize a recent algorithm introduced in [15]: in this paper,
Yang and Kessler presented an analytical model for the unicast call blocking probability of
the Clos network that can more accurately describe the blocking behavior and is consistent
with the deterministic nonblocking condition.

The organization of this chapter is as the follows. Section 3.1 reviews the first pioneering

model — Lee’s model. Yang’s model is described in Section 3.2.

3.1 Lee’s Blocking Model

In this section. we give a brief description of Lee’s model. As noted by many authors.
the problem of computing blocking probability is very difficult. hence the approximation
algorithms are needed to be developed. Lee pioneered the first approximation model in
[3]. Lee’s model is simple. However, the blocking probability can not reach zero when the
strictly nonblocking condition is satisfied, by using this model.

Before describing Lee’s model, let’s first introduce some concepts and assumptions which

are used both here and in the rest of the thesis:

e (traffic assumption: A frequently used circuit-switching model assumes that connection
requests arrive according to an exponential distribution with average interarrival time
of % and that each request has an exponential duration with average Zli Let a be
the probability that a typical input link is busy (that is just the parameter -/\;\_—#) and
assume a homogeneous system where each input link is busy with the same probability
a. In the case where the switch has the same number of input and output links, this

then means that a typical output link is busy with the same probability a.

e Random routing: The switch is controlled by a routing algorithm that chooses any

available path randomly.

e interstage link: we call a link between the first stage and the middle stage an input-
middle interstage link, and a link between the middle stage and the third stage a

middle-output interstage link.

e [link independence: the events that individual links are busy are assumed to be inde-

pendent.

e network configuration: The 3-stage Clos network considered here is N (n,m, k). There
are k n x m (or m X n) input (or output) modules, and m k x k middle stage modules.
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Figure 3.1: The paths between a given input and output pair in the Clos Network

Let’s consider a point-to-point call request from an input link of input module 7 to
an output link of output module j (see Figure 3.1). Clearly, at most n — 1 input-middle
interstage links from input module ¢ can be already busy, and at most n — 1 middle-output
interstage links to output module j can be already busy. Also there are m disjoint paths
connecting input module ¢ and output module j. Assume that the incoming traffic is
uniformly distributed over the m interstage links, then the probability that an interstage
link is busy is

p=T

Also, denote the probability that an interstage link is idle by ¢ = 1 — p.

If a path can be used to connect the new call request, then the input-middle interstage
link and the middle-output interstage link in this path should be both idle. Thus the
probability that a path can not be used is (1 — ¢?). If all the m paths can not be used. then
the call is blocked. With the link independence assumption, the probability that a call is
blocked is approximated by

Pp=(1-4¢)".

This is Lee’s model for approximation Pg. In some cases, it may not be very accurate.
For example, we know that at most n out of n output links of an input module can be
busy. Lee’s model doesn’t account for this. Therefore, Lee’s model does not yield a zero
blocking probability for strictly nonblocking networks. For example, if we set n = 32,
m = 2n —1 =63, and a = 1, Lee's model yields

Pg =25 x 1075,

A more accurate model was provided by C. Jacobaeus ([6]). in which, the input limitation

is taken into account automatically, and the blocking probability of the three-stage Clos

network is calculated by the following formula:

— (r)?(2=a)®" "™
Pp = m!(2n—rm)!

Jacobaeus® formula is still an approximation to the blocking probability. If we use the

above example, where n = 32, m =2n — 1 = 63, and a = 1, Jacobaeus’ model yields

12



Pg =34x10"20,

3.2 Yang’s Blocking Model

In [15]. Yang and Kessler proposed an improved analytical model for approximating the
unicast blocking probability of Clos networks. For networks where m > n. for example.
Yang’s model takes into account the fact that at most n out of the m links incident to each
module can be busy. This model can be used for random routing strategy. and also can be

easily extended to packing strategy.

3.2.1 The Blocking Model for Random Strategy

In this section. Yang’s blocking model for random routing strategy is introduced. Similar
to Lee’s model, we consider a call request from input module 7 to output module j (see
Figure 3.1). Assume n; input-middle interstage links from input module ¢ are busy and n»
middle-output interstage links to output module j are busy, where 0 < nj,ns <n — 1. Let
n; denote the event that there are n; busy input-middle interstage links from input module
¢z, and nz denote the event that there are n, busy middle-output interstage links to output
module j. If a busy input-middle interstage link and a busy middle-output interstage link
share the same middle stage module, then this pair of links is said to be overlapping. An
important counting argument that is used here, and also in Chapter 4 is:

Lemma 3.1 ([15]): Given events n; and na, the probability that A& pairs of interstage links

are overlapping in Clos network is given by

() _ (D)%)
() (%)

1 . .
) ('n ) ways to choose 1, busy input-middle
n2

Pr{k pairs of links overlapping |n;.n>}=

m

Proof: As we know. there are a total of (n
1

interstage links and ny busy middle-output interstage links. Assume & pairs of interstage

links are overlapping. Now we consider the following construction:

m . . . .
1. there are (n ) ways to choose n, busy input-middle interstage links;
1

T
k
Ak middle-output interstage links;

N4

then ( ways to choose k input-middle interstage links which are overlapping with

3. finally, the rest of no — & busy middle-output interstage links in output module j

correspond to the m — n; non-busy input-middle interstage links from input module
m — 1y

ways to choose them.
no — k ) ¥

t, and there are (

Thus, the probability that & pairs of links are overlapping is

13



)G ) () %)
() () ()

Symmetrically. the probability can also be
() (n %)
k ny — k =
™m
()

A connection request under consideration is not blocked if and only if there exists one path
in which both the input-middle interstage link and the middle-output interstage link are

not busy, that is, if and only if
ny+ny — k< m,
which implies
k> maz{0.n +ny —m+ 1}.
On the other hand. & < min{n,n.}. Thus,
Pr{connection not blocked |n;,nz}

_ <—min{ni.n2} (1 . .
= X k=maz{0ni+na—m-1} P T{k pairs overlapping |n;.nz}

() (%)
min{ny,na} k ny — k

- ZL =mac{0.n +nr—m-+1} m
2
On the other hand. under the assumption of link independence, we know that the events

n; and n3 are independent, which gives
Pr{n;.n2} = Pr{n; }Pr{n.}
To compute Pr{n;} and Pr{nz}. we use p = 22, the probability that an interstage link is
busy, and ¢ = 1 — p, the probability that an interstage link is idle (as in Lee’s model).
By the independence assumption, the number of busy input-middle interstage links (or

middle-output interstage links) follows the binomial distribution. that is. the probability
that n; input-middle interstage links are busy is (;n ) ptg™™ ™", Given the fact that there
1

are at most n — 1 busy input-middle interstage links from input module 7, we get

m ™m
(7l ) lq'" ng (n. )panm nay
Pr{n;}= L and, Pr{n,}= 2

n—1 m m—J’ : n—1 m jgm—j
ol )P o)

Thus, the probability that a connection request is not blocked is given by

Pr{connection not blocked}

=yl n,’_OPI{COIlllCCtIOD not blocked |ny,n2}Pr{ni}Pr{n,}

Zn 1 n—1 min{n; ,na} m Ty m. — Ty nprg dm—nyg —no
np =0 ny=0 k=mar{0.ny+ns—m+1} n| k Mo — k P q

== (7))

Pg = 1-Pr{connection not blocked}

and the blocking probability is
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The above Pp reaches zero when the number of middle stage modules rn > 2n — 1. The
complete proof for this latter property contains some complex technical details (omitted in

this outline) and can be found in [15].

3.2.2 Concluding Remarks

In [15]. the blocking model has also been extended to routing using a packing strategy.
whereby an empty middle stage module is not used for routing a new request unless there is
no partially filled middle stage module that can satisfy that particular connection request.
It is generally believed (from numerical results. using different traffic patterns) that packing
can lower the blocking probability of the network.

The analysis for the packing strategy is generally similar to the random strategy. But there

are some differences between them:

e It is assumed that a certain number d (d < n — 1) of middle stage modules are fully-
packed, that is. all interstage links to or from these middle stage modules are busy.
The incoming traffic is thus uniformly distributed over the m — d interstage links to
those middle stage modules which are not fully-packed. This results in the probability
that an interstage link is busy is

p= { 1, for the d links to the fully-packed middle stage modules

%‘_;(‘ll, for the m — d links to the non fully-packed middle stage modules

e Instead of using events n; and n», here events nj and n5, are used to denote that
there are n] = n| —d busy input-middle interstage links to the non fully-packed middle
stage modules from input module 7 and n) = ns — d busy middle-output interstage

links from the non fully-packed middle stage modules to output module 7.

In [15]. both analytical and simulation results are presented. The models for the random
routing strategy and packing strategy are both compared with Lee’s model and Jacobaeus’
model. The simulation results for the random strategy yield a lower blocking probability

than the analytical model.
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Chapter 4

The Blocking Behavior for 2-calls
in Clos Networks

In Chapter 3. we have reviewed some previous work on approximating point-to-point call
blocking probability of Clos networks. In this chapter. we extend this direction further by
studying multicast call blocking behavior of Clos networks.

The organization of this chapter is as the follows. In Secction 4.1, some previous work
about the multicast call blocking is reviewed. In this section, three routing schemes for
multicasting are introduced. Also. some notations and assumptions which are used in the
later of this chapter are presented here. This thesis focuses on two routing schemes. So,
in Section 4.2 and Section 4.3. the blocking models for these two schemes are presented

separately. Some simulation and analytical results are prowided in Section 4.4.

4.1 Previous Works

In [4]. a multicast call from an input module to k distimct output modules is termed a
k-call. In particular, a point-to-point call is also known as a l-call. In this work ([4]),
the deterministic non-blocking and rearrangeable non-blocking conditions for a k-call are
derived. This chapter focuses on the studying of 2-call blocking behavior in Clos networks.
As we know, a Clos network consists of switching modules. If a Clos network can route
multicast calls. then some or all of the switching modules may have the fan-out feature, i.e.,
each of the input links on one module can be connected to any number of this module’s
output links. So a multicast switch module is a module that has fan-out feature, while
a switch module is called an unicaest switch module if an input link can be connected to
only one of its output links at one time. Generally, three basic routing schemes are used for
connecting multicast calls in a 3-stage Clos network, according to the placement of multicast

switch modules:

e first-stage multicast: This scheme assumes that all modules in the input stage
are multicast modules. But the middle stage contains only unicast modules. So a

multicast call can be broadcast through the input stage. For example, for a 2-call
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from input module 7 to two output module j and k, two paths should be set up,
where one is: input module ¢ — a specified middle stage module — output module j;
and the other is: input module ¢ — another specified middle stage module — output
module A. Due to the unicast feature of middle stage modules, we can not use one
middle stage module to connect one input module to two different output modules.
So here in the above example. two different middle stage modules are used to route

this 2-call. Figure 4.1 is an example of this multicasting scheme.

Figure 4.1: First-Stage Multicasting Scheme

e second-stage multicast: This scheme assumes that all the switch modules in the
middle stage are multicast modules. But the first stage contains only unicast modules
and doesn’t have multicast feature. So we can multicast a call through the middle
stage. Here, let’s use the above example. So there are two paths from input module 7
to output module j and output module &. One path is: input module 7 — a specified
middle stage module — output module 5; while the another one is: input module 2
— the same middle stage module — output module k. Since the first stage can not
make multicast. only one middle stage module can be used. So the two paths share

the same middle stage module. Figure 4.2 is an example of this multicasting scheme.

| S

— L

[ —

L

Figure 4.2: Second-Stage Multicasting Scheme

e first-and-second-stage multicast: The third scheme assumes that both the first
and the second stage can do broadcasting. This can split a multicast call at the
first stage into sub-calls with lower fan-out. It is very flexible, but the efficiency of
this method depends on the splitting algorithm. Figure 4.3 is an example of this

multicasting scheme. This scheme is not discussed in this chapter.

In this chapter, we will study the 2-call blocking behavior in a Clos network, under the first
two routing schemes: first-stage multicast and second-stage multicast. The following

are some assumptions used in the rest of this chapter:

e In this chapter, the Clos network has d input and output modules, m middle stage

modules, and n input or output links on each input or output module.
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Figure 4.3: First-and-Second-Stage Multicasting Scheme

e The link independence assumption used in Chapter 3 is also used here. Also. same as
Chapter 3. the probability that a typical input link of one input module is busy is a.
and the probability that a typical output link of one output module is busy is also a.

p is used to denote the probability that an interstage link is busy.

e Throughout the thesis. we assume that a 2-call is from one input module to two
distinct output modules. For a call from one input module to two output links on the
same output module, we assume that the output module can broadcast the call. So
only one path is needed to be set up. This kind of calls are treated as unicast calls in

this thesis.

e For an input module i, we use a vector A; to represent the status of all the input-
niddle interstage links from it. Similarly, for an output module j, a vector B; is used
to represent the status of all the middle-output interstage links to it. Each element in
a status vector corresponds to an interstage link. If one interstage link is busy. then
the corresponding element in the vector is 1; otherwise, it is 0. All the status vectors

have the same size m. which is the number of middle stage modules.

e As we know from Chapter 3, an available path from an input module to an output
module consists of two interstage links which share the same middle stage module.
So in the two vectors for the input module and the output module, the elements
corresponding to the idle input-middle interstage link and the idle middle-output
interstage link in this available path are both 0. We call this a matching between
the two vectors. See Figure 4.4. Each matching corresponds to an available path.
So in Figure 4.4, we can see. between input module 7 and output module j, there is
an available path through middle stage module 1 and another available path through

middle stage module m — 1.
A connection or a path between an input module and an output module can not be

set up if there is no matching between their status vectors.

e In the rest of this chapter, we only consider random routing strategy. If there are
more than one middle stage module can be selected for one connection, one of them

is selected randomly.
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Figure 4.4: Matchings between Input Module i and Output Module j

4.2 The Blocking Behavior for Second-Stage Multicast Scheme

In this section. we will analyze the 2-call blocking behavior under the second-stage multicast
scheme. As we know, this scheme doesn’t take advantage of the fan-out feature in the first
stage. So for each 2-call. only one middle stage module is used to connect the source and
the two destinations.

Assume a 2-call from input module ¢ to output modules j and k. Let’s use 4;, B; and By
to represent the status of the three modules. If there is a middle stage [ which can connect

this 2-call, then the following three interstage links must be idle:

e the input-middle interstage link between input module 7 and middle stage module [.

which is corresponding to 4;[l].

e the middle-output interstage link between middle stage module [ and output module

J. which is corresponding to Bj[l].

e the middle-output interstage link between middle stage module [ and output module

k. which is corresponding to By[l].

So we can get A;[l] = Bj[l] = Bg[l] = 0. We call this a matching among these three vectors.
If there is a matching among the source vector and the two destination vectors, that means
there is an available middle stage module which can be used to connect the input module to
the two output modules. Figure 4.5 shows two matchings among A;. B; and By. Therefore.
a 2-call from input module ¢ to output modules j and & can be connected through either

middle stage module 3 or m — 1.

4.2.1 The Probability for Matchings

Before we provide the 2-call blocking probability, we first try to get the probability of
matchings among three vectors.

Assume there is a 2-call from input module 7 to output modules j and A. The network state
is shown in Figure 4.6, in which r input-middle interstage links from input module 7 are
busy. s; middle-output interstage links to output module j are busy, and s; middle-output
interstage links to output module & are busy.

If we use A;, B; and By to represent the state of input module ¢ and output modules j and
k. we can get that thereare r 1's in A;, s; I's in Bj and s3 1's in By, where r, 51,50 <n—1.
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Figure 4.6: The state of the network with a call request from input module 7 to output
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Let r denote the event that there are r 1’s in A;, s1 denote the event that there are s; 1's

in B;. and s» denote the event that there are s» 1's in By.

The analysis here uses the counting argument in Lemma 3.1 in Section 3.2.1, with the

following difference: in Lemma 3.1, the analysis focuses on the probability of fully-used

paths (both input-middle interstage link and middle-output interstage link are busy), while

here. the analysis is about the probability of matchings or available paths (both input-

middle interstage link and middle-output interstage link are idle). So we get the following

Corollary 4.1:

Corollary 4.1: Let x denote the event that there are z 1's in one source vector A, and y
denote the event that there are ¥ 1's in one destination vector B. Given the events

x.y. the probability that A and B have ¢ matchings is



("e ) =)

Pr{c matchings |x,y}= ( pr )

m—y
On the other hand, let x’ denote the event that there are z’ 0’s in one source vector A,

and y’ denote the event that there are ¢’ 0’s in one destination vector B. Given the events

x'.y’. the probability that A and B have ¢ matchings is
(5%
c Trg{' —c) -
( Y )

Now. given the events r.s;.sa2. we present the method of computing the nonblocking prob-

Pr{c matchings [x'.y'}=

ability Pr{connection not blocked |r.s1.s2}:

e First. we assume that there are ¢, matchings among B; and By, given s; and sa.

m — Sy St
Cy m — S2 —Cy

Pr{c; matchings {s1,s2}= ( m )

Based on Corollary 4.1, we get

m — 89
e Then, by using the bitwise OR operation to the vector B; and vector By. we get a
new vector D. The method of combining is: for any 1 <{ < m. if both Bj[l] and B[]
equal to 0. then D[{] will be 0: otherwise. D[l] is 1. So D will have ¢; 0’s, Figure 4.7

shows this combining B; and By into D.
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Figure 4.7: Combining B; and By, to get D

e Let ¢y denote the event that there are ¢; 0’s in D. Then, we assume that there are
c2 matchings between A; and D. These ¢; matchings are also matchings among the

three vectors. Given events r and ci, from Corollary 4.1, the probability that A; and

("a ) (e le)
(%)

D have c» matchings is

Pr{cs matchings |r.c;} =
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From the above analysis. we will extract the 2-call blocking probability for the second-stage

multicasting scheme in the next section.

4.2.2 Blocking Probability

As we can see. the blocking of a 2-call happens when there is no matching among the three
modules. Given events r. s; and s». the 2-call under consideration is not blocked if and
only if there exists at least one matching among A;, Bj and Bg.
As in Section 4.2.1, assume that there are ¢; matchings between B; and By and there are ¢
matchings between A; and the vector D by combining B; and Bj. So that means there are
c2 matchings among the three vectors. In order to make the call non-blocking, ¢;.c2 > 1.
When (s +s2) is less than m. there will be at least (m — s; — s2) matchings between B; and
By So ¢ > max{l.m — sy — s2}. On the other hand. obviously the number of matchings
cannot exceed either (m — s;) or (m — s»). So the condition for ¢; to make the call not
blocked is max{ 1,m —s; —s2 } <¢; < min { m — s;,m — so}. Similarly, we can get the
conditions for co : max{ l.c; =7 } < ¢ < min { m —r,¢; }.
Therefore. the probability that the connection is not blocked. given events r, s; and sz, is
given by

Pr{connection not blocked |r,s;.s2}

_ —min{m—s;.m—s»} mznfm ~r.ci} - . .
= chzrnar{l,m—sl—sz} Pr{c; matchings 151 s2} 3 2 eammar{Le—ry Pr{c2 matchings [r.c1}

m — s, m =T r
min{m-—sy.m—sa} (4} m — S» — Ci min{rn—r.cl} C2 Cp —C2

= chznmx{l,m—sl—sg} c»=rna:r{l.cl—r} m
m — 59 C

Under the assumption of link independence, we know that the events r, s; and sp are

independent, which gives

Pr{r.s;.s2} = Pr{r}Pr{s;}Pr{sz2}.
Because the first stage does not do multicasting, the calculation of Pr{r} is the same as the
calculation for Pr{n;} and Pr{nz} in Section 3.2.1. p is the probability that an interstage
link is busy, while ¢ = 1 — p. Since we only consider random selection of available paths,

the calculation of p is ¢+ (as what in Chapter 3). So we get

Pr{r}= (r: )T:rq'" ]

n—1
j=0

plqm—]

Furthermore, the calculation of Pr{s;} and Pr{ss} can be obtained as

<m>p5‘llm"51
PI‘{SI}Z 51




Thus. the probability that a 2-call connection request is not blocked under second-stage
multicast scheme is given by
Pr{connection not blocked}
=" :l_zlo :-::lo Pr{connection not blocked |r,s;.s2}Pr{r} Pr{s;}Pr{s2}
and the blocking probability is
Pp = 1—Pr{connection not blocked}

4.3 The Blocking Behavior for First-Stage Multicast Scheme

In this section, we will analyze the 2-call blocking behavior under the first-stage multicast
scheme. As we know. this scheme utilizes first stage multicasting without second stage
multicasting. So if a 2-call can be routed. there must be two paths through two different
middle stage modules.

Assume a 2-call from input module 7 to output modules j and k. Let’s use A4;, B; and B
to represent the status of the three modules. If there are two distinct middle stage modules
[y and [y which can connect this 2-call, then the following interstage links must be idle:

e the input-middle interstage link between input module ¢ and middle stage module [,

which is corresponding to A;{l;].

e the middle-output interstage link between middle stage module /| and output module

J. which is corresponding to Bj[l;].

e the input-middle interstage link between input module ¢ and middle stage module 2,

which is corresponding to A;[ls].

e the middle-output interstage link between middle stage module /> and output module

k. which is corresponding to Bg[ls].

So we can get A;[li] = Bj[l1] = Ai[la] = Bi[lz] = 0. That means, there must be at least one
matching not only between A; and Bj, but also at least one different matching between 4;
and By.

Assume we have the same network state as in Figure 4.6: there are v 1's in A;, 5| 1's in B,
and s» 1's in By, where s;, 50 <n —1and r < m — 2. Due to the first-stage multicasting,
in order to connect a new call, at least two input-middle interstage links from the input
module should be idle, so r < m — 2.

Let r denote the event that there are r 1's in A;, s; denote the event that there are s; 1's
in B;. and s3 denote the event that therc are sy 1's in By.

From Corollary 4.1. given events r and s1, we can get the probability that 4; and B; have

("o ) n=i-c.)

Pr{c, matchings |r.s;}= proy
(m

¢) matchings:
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Similarly. given events r and s». the probability that 4; and By have ¢y matchings is given

by
(l L )( i )

Pr{c> matchings |r.s2}= —
(o)

As stated before, for the first-stage multicasting scheme, there is no multicasting in the

second stage. So we cannot use one middle stage module to connect a 2-call. If there is
only one matching between 4; and B; and one matching between A; and By. and both
matchings correspond to the same middle stage module, then this 2-call will be blocked.
Using the concept in Section 4.2, we know that for this case. there is only one matching
among the three vectors. From Corollary 4.1 and the analysis in Section 4.2.1, we can get

the probability for this scenario from the following steps. given events r, sy and sp:

e Assume there are ¢] matchings between A; and B;. For this case, ¢| = 1. The

probability that there is only one matching between A; and Bj; is given by

)(m—;——l)

Pr{one matching |r.s;}= (m —r ( s )

m — Sy

e Similarly, assume there are ¢, matchings between A; and By. For this case, ¢, = 1.

The probability that there is only one matching between A; and By, is given by

(=2 -1)

Pr{one matching |r,sa}= (m —r) ( - )

m — S

e Then, we use the bitwise OR operation introduced in Section 4.2.1 to combine A; and
Bj into a new vector D;., and A; and By into a new vector D,. So there are c¢] 0's
in D; and ¢ 0's in D». Let ¢} denote the event that there are ¢{ 0’'s in D;, and ¢}
denote the event that there are ¢ 0’s in Dy. Given ¢ and c5. the probability that

there are ¢ matchings between D; and D, is given by
! . 7
Cl m - Cl
c d,—c
— .
ch

For this scenario, ¢{ = ¢, = ¢ = 1. So the probability that there is only one matching

Pr{c matchings [c].ch}=

between D, and D> is

Pr{one matching jc],ch}= .
So the probability for this scenario is the following
Pr{this scenario happens|r,sy,s2}

=Pr{one matching |r,s; }Pr{one matching |r,s2}Pr{one matching |c},ch}
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Here. this scenario doesn’t happen for any set of {r, s;, s2}. For example, if m — 7 —s; > 2.

then there will be at least two matchings between A; and B;. So if there is at least one
matching between 4; and By, this scenario doesn’t happen. So we only consider this
scenario. whenr>m —s; —landr >m — s, — 1.

Given events r. s; and s2. the 2-call under consideration is not blocked if and only if

e There exists at least one matching between A; and B;. Assume there are c; such

matchings. So the following condition must be satisfied:
max{ I,m —r—s; } <c; <min { m —r.m—s,}.
e There exists at least one matching between A; and Bi. Assume there are c¢s such
matchings. So the following condition must be satisfied:

max{ l.m —r —sy } <co < min { m —r,m — s5}.
e The above one matching scenario doesn’t happen.

Therefore. the probability that the connection is not blocked, given events r. s; and ss, is
given by
er>m—s;—landr>m-—sy—1:

Pr{connection not blocked |r.sy,s2}

_ Zmin{m—r,m—sl} Zmin{m—r,m—s-_v}

cy=maxr{l.m—r—s}“cr=mar{l.m—r—s»

T T
_{m-r)* (m — 5. — l) (m — S92 — l)
m m m
(TTL—S[) (m—.Sg)

e Or, for other r. s; and s». the one matching scenario doesn’t happen, so

} Pr{c| matchings |r, sy }Pr{c; matchings|r.ss}

Pr{connection not blocked |r,s1,s2}

_ Zmin{m—r.m—sl} Zmiu{m—r.m—sg}
- ci=maz{l.m—r—si}4~cr=mar{l,m—r—sa2}

Pr{c; matchings |r,s; }Pr{cs matchings |r,so}
Under the assumption of link independence, we know that the events r, sy and s, are
independent, which gives

Pr{r.si.s2} = Pr{r}Pr{s1}Pr{s2}
We still use p = 2% (as in Section 4.2) to represent the probability that an interstage link
is busy, while ¢ = 1 — p. The calculation of Pr{s;} and Pr{s2} is the same as in Section

4..2, which is
L S| am—s 39 m—s
p lq 3 p°iq 2

(3 (s
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The calculation for Pr{r} is different. Due to first stage multicasting. the number of busy
input-middle interstage links from input module ¢ is not bound by n — 1 but m — 2. So
Pr{r} is given by
(‘rr]') T —-r
- )P
Pr{r}=

() prgme

1=0

Thus, the probability that a 2-call connection request is not blocked under first-stage mul-
ticast scheme is given by
Pr{connection not blocked}
=ym2 = :.‘__,___10 Pr{connection not blocked |r.s1,s2}Pr{r} Pr{s;}Pr{s2}

and the blocking probability is
Pg = 1—Pr{connection not blocked}

4.4 Numerical Results for The Two Multicast Schemes

In this section. numerical results are provided to examine the quality of the approximations
for the blocking probability obtained from the analytical models. The results enable us to
make a preliminary comparison of the two multicast schemes.

The network configuration we examined has 8 input (output) modules and 8 input (output)
links on each input (output) module. The number of middle stage modules is changed from
8 to 16. We use a high call arrival probability, which is 0.8. In the simulation. each time
we generate 10000 2-calls. Given a. the probability that one interstage link is busy can be
computed by p = 2*. In the simulation, the status (idle or busy) of each interstage link is
generated by a Bernoulli process with parameter p. For each 2-call, we generate the status
for 3m interstage links, where m interstage links from source module, 2 interstage links
to two destination modules. After that, we apply the two multicasting schemes to check if
the current call is blocked based on the status of the 3m interstage links.

Figure 4.8 shows the relationship between the analytical models and the the simulation
results for the two multicast schemes. The curve “analytical-1” is for the analytical model
by using the second-stage multicast scheme, and the curve “analytical-2” is for the analytical
model by using the first-stage multicast scheme. Also, the curve "simulation-1" is for the
simulation results by using the second-stage multicast scheme, and the curve "simulation-27
is for the simulation by using the first-stage multicast scheme.

In Figure 4.8. the number of middle stage modules m is increasing from 8 to 16. and
a = 0.8. As we can see, for each multicast scheme, the curves for the analytical model and
the simulation results exhibit approximately the same shape. For both the second-stage
scheme and the first-stage scheme, the analytical models yield a lower blocking probability
than the simulation results. In overall. the first-stage multicasting scheme has a lower
blocking probability than the second-stage scheme.

The two models proposed in this chapter provide lower bounds for the simulation results. In
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Figure 4.8: analytical models versus simulation results, a = 0.8

the analysis of the two models. we assume the events that there are matchings between any
two vectors are independent with each other. For example, consider the event that there
are c¢; matchings between A; and Bj and the event that there are ¢y matchings between
A; and By. Sharing the same r, these two events are actually not independent with each
other. So the two models may over-count the real probability.

Each of the two multicast schemes considered in this chapter has its merits and disadvan-
tages. Based on the results we obtained from the analytical models and the simulations. we

can make a preliminary comparison of them:

e In overall. the first-stage multicast scheme has a lower blocking probability than the
second-stage multicast scheme. This is due to the flexibility of the first-stage multicast

scheme in selecting available paths.

e Although the second-stage multicast scheme has a higher blocking probability. it uses
less resources than the first-stage multicast scheme by putting the multicasting as near
to the output stage as possible. For example. if we use interstage links as a kind of
resources, three interstage links are used to connected a 2-call under the second-stage
uulticast scheme, while four interstage links are used under the first-stage multicast

scheme.

[SV]
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4.5 Concluding Remarks

In this chapter, we analyze the 2-call blocking behavior for Clos networks under two different
multicasting strategies. From the numerical results, we can see that the analytical models
are consistent with the simulation results and can be good approximations of the actual
blocking probability. We believe that based on the models presented in this chapter, more
accurate analytical models for other routing strategies can be obtained as well. and the
models can be extended to general k-calls. The models in this chapter provide lower bounds
for the simulation results. The more useful upper bounds can be a good direction for the
future works. Furthermore, the preliminary comparison of the two multicast schemes here

can give a hand to the future works on the multicasting strategies in Clos networks.
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Chapter 5

ATM and ATM Switch Designs

In this chapter, we first review the characteristics of ATM and ATM switches. Then we
provide a survey of some typical ATM switch designs.

The organization of this chapter is as the follows. Section 5.1 introduces the background
knowledge about ATM and ATM switches. It includes a review of the important character-
istics of ATM and ATM protocols. It also introduces how an ATM switch works and some
issues for ATM switch designs. Section 5.2 provides a survey of three ATM switch designs:
the AT&T growable ATM switch, the cross-path switch and the I- Cubeout switch.

5.1 ATM

The Asynchronous Transfer Mode (ATM) is an important technology for B-ISDN, and
is proposed to transport a wide variety of services in a seamless manner. ATM has the
flexibility of packet switching and guarantees QoS for each connection as circuit-switching.
ATM is based on a fixed-size virtual circuit-oriented cell-switching methodology. Each cell
is 53-byte long. where 5 bytes are for header and 48 bytes are for the data. Before data
transmission, a virtual circuit is set up. A virtual path is defined between each pair of
endpoints in the communication network. All virtual circuits between the same source and
destination should take the same virtual path. This can simplify routing and keep the cell
ordering. In the cell header, there are a virtual path identifier (VPI) and a virtual circuit
identifier (VCI). The VPI and VCI may vary from link to link.

When there is a new request for connection setup, a setup message which contains the
information about the new connection is routed through the network. If there is enough
bandwidth left in the virtual path between the source and destination of the new connection.
the network can accept this request; otherwise, this request is rejected.

The ATM protocol reference model is based on standards developed by the ITU. There are
three layers in this model: the physical layer, the ATM layer and the ATM Adaption Layer
(AAL). The physical layer is defined to transport ATM cells between two ATM entities. The
ATM layer provides an interface between the AAL and the physical layer. The AAL layer is
on the top of the ATM layer and interfaces the higher layer protocols to ATM layer. When
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Service Class AAL Quality of Service Parameter Technical Parameters
constant bit AALL The cell rate is constant with CLR, CTD,

rate (CBR) time. CBR applications are quite CDV. PCR

sensitive to cell-delay variation.
Examples are telephone traffic.
video conferencing and television.

variable bit AAL2 The rate can vary with time but CLR, CTD.

rate (VBR) require a bounded delay. CDV, PCR,
Examples are compressed SCR, BT@PCR
packetized voice or video.

available bit AAL3/4 | This service has variable bit rate CLR,

rate (ABR) or AAL5 | and doesn’t require bounded delay. | flow control

But it is desirable for switches
to minimize delay and cell loss
as much as possible. Examples
are file transfer and e-mail.
unspecified AAL3/4 | No connection is set up before PCR
bit rate (UBR) | or AAL5 | data transmission. Examples are
datagram traffic and data
network applications.

e CLR = cell loss ratio CTD = cell transfer delay
e CDV = cell delay variation PCR = peak cell rate

e SCR = sustained cell rate BT = burst tolerance

Table 5.1: ATM Service Classes

relaying the data received from the higher layers to the ATM layer. the AAL segments the
data into ATM cells; conversely, when relaying the data received from the ATM layer to
higher layers, the AAL reassembles back the payload. Four AALs are proposed to support

four service classes defined for ATM. The service classes are summarized in Table 5.1.

5.2 A Survey of Some ATM Switch Designs

Many large-scale (> 1024 inputs/outputs) switch designs have been proposed in the litera-
ture for B-ISDN. Of these designs, only a handful are of the multistage fabric and appear
to be suitable for ATM. In this section. we survey some designs in the latter category whose
performance is justified either analytically or numerically, or by both techniques. Table 5.2

summarizes the important features of them.

5.2.1 The AT&T Growable Architecture

The ATM switching network proposed by [10] and [11] is based on the symmetric 3-stage
Clos networks N(n,m. k), where there are & input (output) modules, m middle stage mod-
ules and n input (output) links on each input (output module). We call a pair of input
module 7 and output module j an input-output pair (¢.j). So there are m disjoint paths
for each input-output pair (. j) through the m middle stage modules. This design adopts
buffered Knockout output modules in order to maintain the best possible delay/throughput
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Switching Network | Cell Re-ordering | Delay Cell Loss (a sample result)
AT&T Growable No 1 or 2 time slots Switch size N =00, n =16
ATM Swicching Expansion m/n = 47/186,
Network ({10]. [L1]) 100% load, cell loss below 10~7
Cross-Path No Variable, at most Switch size N = 1024. n = 16
Switching one frame long Expaunsion m/n = 48/16,
Network ([13]) 80% load, cell loss about 10"
I[-Cubeout Yes variable, at most m slots, | Switch size N = 512, 15 stages
Network ([12]) m: the number of stages | of 8 x 16 SEs, cell loss is 10~°

Table 5.2: A Sample of Architectures

performance. For each output, if there are more than m cells destined to it at the same
time. only m cells can be routed to it.

The transmission time is divided into time slots. Then the switching fabric operates syn-
chronously with the arriving ATM cells in each time slot. Paths are assigned on a slot-by-slot
basis by using a routing algorithm called straight matching repeatedly in each time slot. At
the end of each time slot, the cells which cannot be assigned paths are dropped.

The straight matching routing algorithm plays an important role in the original switch
design, and also in Chapter 6 of this thesis. Here, we will describe how this algorithm works.
As we know from the above introduction, this algorithmn is applied in each time slot. Given
a group of incoming cells in one time slot, it dynamically computes the connection patterns
in the middle stage modules to make path assignment. Furthermore, this algorithm divides
oue time slots into & minislots. In each minislot, every input module is given permission to
schedule its cells to a particular output module. For example, in the first minislot, input
module 7 tries to schedule its cells destined to output module j and reserves as many free
paths as required for these cells. In the hth minislot, input module 7 attempts to schedule
its cells destined to output module ((j + & — 1) mod k). At the end of one time slot, each
input module can schedule its cells to all the output modules.

Here. we introduce a concept base which is used in the straight matching algorithm and in
Chapter 6. For a given slot, assume in the first minislot. input module i (0 < i < k — 1)
tries to schedule its cells destined to output module j (0 < 7 < k — 1). We define the base
to be: (7 — %) mod k, which is the distance from the output module to the input module.
This base is the same for all the input-output pairs which are given permission to schedule
cells in the first minislot. So, if we let base to be 0, then in the first minislot, input module
0 schedules its cells to output module 0, and input module 1 to output module 1, etc.

To implement the straight matching routing scheme, two sets of vectors A and B are used to
represent the status of input and output modules. For example, in one minislot, the status
of the input module 4 can be represented by vector 4;, and the status of the output module
J can be represented by vector Bj. Each element in a vector corresponds to an outgoing
or ingoing link. If this link is occupied, then that element has a 1, otherwise has a 0. The
concepts of the 4 and B vectors are similar to those in Chapter 4. Each input module
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keeps its own A;; the B vectors are circulated in the first stage as routing control messages.
In each minislot, an input module receives some vector B; from the above input module,
compares it with its own vector. and reserves some links by marking the corresponding
elements 1 in both of these two vectors, then passes this vector B; down to the next input
module at the end of this minislot. At the end of one time slot, each input module meets
all the B vectors, so it can schedule its cells to all the output modules.

The straight matching algorithm is fast but suboptimal. The algorithm doesn’t consider any
advanced knowledge of the incoming traffic. Also it doesn’t give priority to heavy loaded
input or output modules. As we can see, within each time slot, the input-output pairs
scheduled in the later minislots encounter more reserved links so they suffer from more cell
loss. For an input module 7, if most of its cells request output module 7. but the input-
output pair (¢, 7) is scheduled in the last minislot, then the most loss will happen to that
input-output pair. On the other hand. assume the input module i has the cells arriving
in continuous time slots to output module j (in a burst). If the input-output pair (Z, )
happens to be scheduled in the last minislot in every time slot. then most cells from input
module ¢ to output module § will be lost.

In [11}], cell loss analysis for unicasting was provided. Two kinds of cell loss are considered:
Knockout loss. and additional loss due to the suboptimal algorithm. An upper bound on
the cell loss probability for arbitrary patterns of independent cell arrivals is drawn from the
worst case: the last scheduled input-output pairs. Also a tighter bound for uniform arrival
traffic is shown.

Although the straight matching algorithm is suboptimal and may not be able to schedule
all the cells even if an optimal algorithm can do. it is quite fast. simple and also has good

overall performance.

5.2.2 The Cross-Path Architecture

In [13], a large-scale ATM switch called Cross-path switch is proposed. The architecture is
based on 3-stage Clos network. Input buffering and output buffering are both used in the
fabric. The switch uses a distributed, quasi-static routing algorithm called path switching.
Unlike the straight matching algorithm which rearranges the middle stage connection pat-
terns in each time slot. the path switching algorithm takes the QoS requirement of the VCs
into consideration and uses predetermined connection patterns for the center stage in a
round-robin way to satisfy the bandwidth requirements of the virtual connections. Let f
be a set of predetermined connection patterns which are used repeatedly every f time slots,
then a frame has f time slots. Figure 5.1 is an example for the predetermined connection
patterns when f = 2.

The predetermined connection patterns can be made by coloring a bipartite capacity graph
which is generated from traffic statistics, and are stored in each input module. In one

time slot. the input modules use a subset of predetermined connection patterns to schedule
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time slot |

time slot 0

Figure 5.1: Connection Patterns in the middle stage for routing scheduling

their cells. Because each input module has the routing information. there is no need of
communications among the input modules. If the traffic doesn’t change significantly, using
path switching can get good overall performance.

This design has some drawbacks. As the number of VCs requiring high bandwidth increases.
the number of connection patterns increases; this may result in an increase in the delay
incurred by VCs that require low bandwidth. The predetermined connection patterns are
saved in each input module, which requires extra memory in input modules. Moreover,
these patterns are obtained from traffic statistics. but it is not easy to decide what traffic
statistics can be used.

In [13], numerical results about cell loss probability are given. Due to the input buffering,
cell loss only happens in the third stage. The cell loss probability here is a straightfor-
ward extension of the loss probability analysis for Knockout switch. By assuming 100%
throughput in the third stage. [13] also provides results for the throughput limitation on

input modules.

5.2.3 The I-Cubeout Architecture

In [12]. an ATM switch design called I-Cubeout was proposed. This design consists of
repeated copies of multiple stages of b x 2b switching elements. which are interconnected
according to the indirect n-cube connection style. The output buffers are separated from
the multistage structure. Each b x 2b switching element has b outlets to the switching
elements in the next stage and b outlets to separate output buffers. Figure 5.2 illustrates
the architecture of the I-Cubeout switch.

The I-Cubeout employs distributed self-routing. The routing tags are computed at the
primary inputs. If a cell reaches a switching element connected to a destination output
buffer, it is sent to the output buffer. When two cells conflict at one switching element,
only one cell is moved forward and the other is deflection-routed. The cell with a small
distance to its destination is given priority, where the distance is defined as the minimum
number of stages a cell has to travel before getting to its destination. This conflict resolution
allows the cells to reach their destinations as soon as possible and free resources for other
cells. If two conflicting cells have the same priority, a random one is selected. If a cell

cannot reach the destination output buffer in the first copy. it can continue to traverse in
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Figure 5.2: [I-Cubeout switch with NV =8, b = 2, four stages

the later copies.
The important idea behind this design is that the cell loss can be reduced by introducing
more stages. Moreover. it is scalable and has an acceptably low cell loss. However, the cell

delay varies from cell to cell, so cell ordering may not be kept.

5.3 Concluding Remarks

In this chapter, we present a survey of ATM technology and three typical ATM switch
designs. Among these three designs, the growable ATM switch from AT&T is very simple
and competitive. and hence deserves a serious considerations to study its bottleneck and try
to seek improvement for it. The straight matching routing algorithm is used in this switch
design and makes path assignment dynamically in each time slot. It is fast but sub-optimal.

The further studying of this algorithm will be provided in the next chapter.
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Chapter 6

Worst Case Scenario of AT&T
Growable ATM Switch

This chapter provides new results about some worst case scenarios for the straight matching
routing algorithm for the ATM switching network proposed by [10] and [11].

The straight matching algorithm is fast and effective. However, it is sub-optimal: for a given
traffic matrix in one time slot. there may still be cell loss even without any Knockout loss.
The work of [11] focused on the performance evaluation of this algorithm in general and its
application in multicasting networks under random traffic pattern. To better understand
the behavior of the original algorithm, we focus in this chapter on worst case scenarios. We
ask questions like: if we are given the network parameters (n,k.m, and load). how much is
the maximum cell loss incurred by using this algorithm and what kind of traffic matrices
can cause such cell loss? How to improve the basic algorithm to reduce cell loss for these
bad matrices? This chapter focuses on these problems.

The organization of this chapter is as follows. Section 6.1 provides some experimental results
and observations. It contains some sample traffic matrices which lose more cells than other
matrices with the same network parameters (n.k,m, and load). Section 6.2 introduces
two algorithms for generating a special type of bad matrices. Algorithm [ is presented in
Section 6.2.2 and is for the fully-loaded case when load= 1. Algorithm 2 (Section 6.2.3) is
an extension of 4lgorithm I for non-fully-loaded cases when load< 1. Both Algorithmn 1 and
Algorithm 2 base on the assumption that base= 0 (The concept of base is in Section 5.2.1).
In Section 6.2.4, these two algorithms are extended for the cases when base# 0. Section 6.3
introduces a class of matrix transformations that can preserve cell loss value. Section 6.4
describes some specialized preprocessing methods to improve the original straight matching
algorithm. These methods can change the behavior of the original algorithm by re-arranging
the input traffic matrices or changing the scheduling order of the algorithm before applying

the algorithm.



6.1 Experimental Results and Observations

In this section, some experimental results and observations from the simulation are provided.

First, here are some assumptions used in the simulation:

e The size of a network is decided by three parameters: n is the number of input (output)
links on one input (output) module, m is the number of middle stage modules. and &

is the number of input (output) modules.

e The cell arriving to one input link is generated by a Bernoulli process with parameter
p. where p is the probability that there is a cell arriving. The network is fully-loaded

if p = 1, where each input link has a cell arriving.

e The traffic in each time slot is represented by a k& x k& matrix T. Each element Tz, j]
is the number of cells from input module ¢ to output module 7 in a particular time
slot. The total cells from one input module can not exceed n, so the sum of all the
numbers in one row of 7" is no more than n. In order to focus on the loss incurred
by routing. we eliminate the Knockout loss so that the sum of one column of T is no

more than m.

e For the straight matching algorithm, scheduling order for all the input modules are
decided at the beginning of each time slot. The scheduling order indicates to which
output module an input module should schedule its cells in one special minislot. For
instance, the cell scheduling for a network with A input and output modules is in
Table 6.1 (IM for input module, OM for output module).

minislot | IM 0O IM1 IM 2 oo | IM k-1
0 OMO OM1|[OM2 ]| ... | OMk-1
1 OM 1 OM2|I0OM3 | ... OMO

2 OM 2 OM3|OM4 ]| ... | OM1
k-1 OMk-1|OMO|[OM1 ]| ...| OM k-2

Table 6.1: An Example of the Scheduling Order

A parameter base is used in the simulation to control the scheduling order. This
parameter uses the concept base introduced in Chapter 5 and is defined as follows:
in each minislot, input module ¢ is scheduled to access output module j, such that
base= (j — <) mod k. Table 6.1 shows the scheduling order when base= 0. In this

chapter, we assume base= 0, unless otherwise specified.

e When there are two, or more available straight matchings for one cell, instead of using
the random selection method (as used in the original straight matching algorithm), a
packing strategy is used to select the available top-most middle stage module.
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From the simulation, we can get the following examples of bad traffic matrices which cause

about 30% cell loss for some fully-loaded networks with different sizes, by using base= 0:

e Case 1: m =n =k = 4. The maximum cell loss observed by randomly generating
traffic matrices is 6 cells out of total 16 cells in one time slot. Here are four examples

of traffic matrices which can cause such cell loss:

0« 1 1 2 2« 1 0 1
2 2« 0 0 2 0+ 1 1
Tiv=| 1 | 9. o | = 0 2 2« 0
1 0 1 2% 0 1 1 2«
2%« 0 1 1 2« 0 0 2
1 2« 1 0 1 2« 0 1
=141 o 0« 1 | D= 0 1 2+« 1
0 0 2 2 1 1 2 0=

e Case 2: m =n =6, k =4. The maximum cell loss observed is 8 cells out of 24 cells.

A sample matrix is

o 2 2 2
2 4% 0 0
2 0 4« 0
2 0 0 4«

e Case 3: m =n =4, k =6. The maximum cell loss observed is 8 cells out of 24 cells.

A sample matrix is

O« Ox 1 1 1 1
Ox Ox 1 1 1 1
1 1 2« 0 0 O
1 1 0 2« 0 O
1 1 0 0 2+ 0
1 1 0 0 0 2«

e Case 4: m =n =k = 6. The maximum cell loss observed is 12 cells out of 36 cells.

A sample matrix is

O 0« 3 L 1 1
0« 0« 0 2 2 2
0 3 3« 0 0 0
1 2 0 3+« 0 o0
2 1 0 0 3+ 0
3 0 0 0 0 3«

e Case 5: m =n =k = 8. The maximum cell loss observed is 20 cells out of 64 cells.

A sample matrix is
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Ox 0« 2 0 2 2 0 2 \
0« 0%« 1 2 1 1 2 1
2 1 53« 0 0 0 0 O
0 2 0 5% 0 0 1 0
2 1 0 0 5 0 0 O
2 1 0 0 0 5 0 O
0 2 0 1 0 0 58« O
2 1 0 0 0 0 o0 5*)

From the simulation results, we can find a way to generate some special structure of bad

traffic matrices. The algorithms and theorems for the generation of such bad matrices are

introduced in the next section.

6.2 Generation of Bad Matrices

In this section, we first introduce a general method to construct a class of traffic matrices

which can lose asymptotically % cells for any network size An, under the assumption that
p =1.m =n and base= 0. Then we extend this method to the cases when é < p<1and

the cases when base# 0.

6.2.1 Partition of the input traffic

First. we introduce the main idea behind this method. As we know. a traffic matrix Ty
can be converted to a bipartite graph G which contains & input nodes and k output nodes.
There are T'[z, j] edges between input node 7 and output node j. So the problem of routing
a given traffic matrix through m middle stage modules can be converted to the m-coloring
problem in the corresponding bipartite graph. The m-coloring problem means coloring the
edges in a graph using m colors such that no two edges sharing the same node receive the
same color. Figure 6.1 is an example of this conversion, assuming m = n = 6,k = 4. So,

there are total 24 cells and 6 colors.

01 23

o] 0222

112400

212040

31200 4
Traffic matrix

Bipartite Graph

Figure 6.1: The trafiic matrix and its corresponding bipartite graph

We first outline the construction method for the small case in Figure 6.1. We can divide
the bipartite graph in Figure 6.1 into two parts, where the first part contains input node 0
and output node 0. and the second part contains all other nodes. As we can see, there is
no edge between input node 0 and output node 0. In the second part, there are two edges

between each pair of input node 7 and output node 7 (z = 1,2, 3).
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We now show that at least 8 cells will be lost by the original straight matching algorithm.
Since base=0, the cells along the main diagonal in matrix T}, will be scheduled first. So
in Figure 6.1, all the edges between any input node 7 and output node 7 in the bipartite
graph will be colored first. After the first minislot coloring, at least 4 colors are used and
can’t be used in the later minislots. So there are only two colors left for the later rounds.
For the edges from input node 0 and the edges to output node 0 in the first part. because
these edges are colored after the first minislot. only two colors can be used for them. But
input node 0 (output node 0) has 6 outgoing (ingoing) edges. Thus, at least 8 edges can’t
be colored. and there can be at least 8 cells lost.

We now generalize the above construction method for the fully-loaded case. Here, we refer
to input node ¢ and output node ¢ as same-inder input-output pair. For a given matrix and a
given pair (z. j) of integers (i counts for the number of some input modules hence 0 <z < &,
and 7 counts for edges of the bipartite graph hence 0 < j < nk), if the corresponding

bipartite graph of this matrix can be divided into the following two parts:

1. The first part contains ¢ same-index input-output pairs. There is no edge between

any input and output node in this part.

N

The second part contains the other & — 7 same-index input-output pairs. There are at

least j edges between the nodes iu each same-index input-output pair.

Then we can calculate the lower bound of cell loss for this given matrix quickly without
applying the matching algorithm to the whole matrix, which is 2ij. Furthermore, for a
given set of parameters (m.n, k. p). if we can find a pair (¢, j) which can be calculated from
(m.n.k, p) and maximize the lower bound of cell loss 2ij. then we can construct a group
of traffic matrices which can lose at least 2ij cells. We can apply this partition idea to

Algorithm I in the next section.

6.2.2 The Generation Algorithm for Fully-loaded Case

By using the idea of partition in the last section. we can get the following Algorithm I to
generate the bad matrices which can cause about ‘T" cell loss, under the assumption that
p=1. m=n and base= 0.

Algorithm [ has two phases:

1. In the first phase, we compute the values of the pair (¢, j) which can be utilized to

generate a complete traffic matrix with certain lower bound of cell loss.

N

In the second phase. we can construct a complete traffic matrix (using the pair (z. 7))
that causes a zero Knockout loss (the assumptions in Section 6.1 about the summation

for each row or column in the traffic matrix).

First, we describe the first phase:
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e There are two parameters: 7 and j. Assume there are 7 same-index input-output pairs
in group 1. Moreover, there are at least j edges between each same-index input-output

pair in the second group. Assume we divide the bipartite graph into four parts:

1. Part A contains the 7 input nodes in group 1 and all the edges from these nodes.

2. Part A’ contains the k& — ¢ input nodes in group 2 and all the edges from these
nodes.

3. Part B contains the ¢z output nodes in group 1 and all the edges to these nodes.

4. Part B’ contains the k — i output nodes in group 2 and all the edges to these

nodes.

We use E 5 to denote the set of edges from Part 4 to Part B’. Since all the input
nodes in Part A only have edges to the output nodes in Part B’, F g contains i *n
edges. where |E p/| = t *n. Also. we use E g to denote the set of edges from
Part A’ to Part B’. E_p contains two subsets of edges. The first subset. E.yg,.
consists of edges between each same-index input-output pair in the second group.
where |E y g/, | > j* (k —1). For each edge in the second subset E y g, its input node

and output node do not have the same index number. And. |E 4 g/,| > 0.
Then. we use Epg: for all the edges to Part B’, where |[Eg| = (k — i) * n. Since

|Ep| = |Eap| + |Evp| =|Eapl|+|Eyp |+ |Eyp.l.

wecanget (k—i)*xn > ixn+jx(k—1). Soj < n—i*_"l Also. since j > 1, n—% > 1.
(n—1)k
2n—1 -~

Then we get 7 <

e The algorithm searches in the space 1 <1 < [%“-J For each particular value of ¢,
let j = |n — i*—_f‘l |. Then compute the new lower bound of maximum cell loss, which
is 275. After all the iterations, a pair (4.j) can be found to maximize 2ij. Let the

values of this pair to be (maz;, maz;).

The second phase of Algorithm I is to construct a complete traffic matrix based on (maxz;,

maz;) and the zero Knockout assumptions. Here is the description of the second phase:

e Randomly select naz; same-index input-output pairs and put them in group 1. In
the traffic matrix, for all the elements T'[z,y] where = and y are both in group 1, set

them to 0;

e The other nodes are in group 2. In the traffic matrix. for all the elements T'[z. z]

where z is in group 2. set them to be at least max;:

e Fill the other positions of the traffic matrix according to the fully-loaded condition,

which means that the sum of each row is n and the sum of each column is m (m = n).
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Here, we provide the first theorem which proves Algorithm I can lose around £2 cells:
Theorem 6.1: The matrices generated by the above algorithm can cause asymptotically
L:T" cell loss, under the assumption that p = 1. m = n and base= 0.
Proof: Algorithm 1 divides the input and output nodes into two groups. Assume there are
1 same-index input-output pairs in the first group and k£ — 7 same-index input-output pairs
in the second group. Also assume at least j edges between each same-index input-output
pair in the second group.
After the first minislot. at least j colors are used. Since mn = n, n — j colors are left for
the later rounds. Because p = 1. each input (output) node has n outgoing (ingoing) edges.
So for each node in the first group. at least j edges can’t be colored. That means for each
node in the first group. at least j cells are lost. Totally, at least 2¢j cells would be lost.

Let's use a function f = 2:5. As we know. in Algorithm 1. 1 < i < (,n”k and j =

[n — ""l)J Substituting 7 and 7 in f = 2ij. we get

_ ki—2i2
f=2n k—il
In order to maximize f. we first find the derivative of function f:
1 o 2 —dik+k®
= Qn—(m—-
Let f' = 0. Then 2i®> — 4ik + k* = 0. From this equation. i = k + -‘L;k ori=k— -‘é—ik
Since i < k. weset t = k — 4/» So
2
f=2ij=2in%=2 = (2 - V2) nk
= (6 — \/") k=~ 0.34nk =~ 2£. =

6.2.3 The Generation Algorithm for Non-fully-loaded Cases

We now extend Algorithm [ to non-fully-loaded cases to generate a class of bad matrices.
when p < 1. That means each input module has pn active links or pn cells. Let n’ = pn. So
an original n x n (mm = n) input module with p can be represented by a n’ x n input module.
If p <0.5. then n > 20/, and the network behaves as a strictly non-blocking network. So we
just consider the case when p > 0.5. Same as Algorithm I, we assume m = n and base= 0.
Similar to Algorithm I, Algorithm 2 contains two phases: the first phase makes the parti-
tion: the second phase constructs the complete traffic matrix. There is one difference from
Algorithm 1. For each output module, it can have at most m cells to it. To be simple, we
assume that each output module in the first group has x cells to it, where 0 < z < n.

We first introduce the first phase of Algorithm 2:

e There are three parameters z, j and z: 7 is the number of same-index input-output
pairs in group 1. j is the minimum number of edges between each same-index input-
output pair in the second group. and z is the number of edges to each output module

in group 1.

e Similar to Algorithm 1, we divide the bipartite graph into four parts: Part A, Part B,
Part A’, Part B’. The division of these four parts is the same as in Section 6.2.2. We
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use E for all the edges in the graph. £ g for the edges from Part A to Part B’. Ey g
for the edges from Part A’ to Part B. E g for the edges from Part A’ to Part B’.
Also. E'yrpr consists of two subsets: Eyp/, (edges between same-index input-output

pairs) and E y g, (edges not between same-index input-output pairs).

From the above assumptions, given x and i, we can get the following equations and

inequalities:
|E| =|Eap| +|Expl + |Exvp| = |Eap|+ |Evp| +|Exp |+ |Evp.
[El=p*xn=k
(Eag|=p=xixn
|[Evgl=t1*zx
|[Evp | = (k-]
|Evpr,

>0
From these, we can get
prxnxk>pxixnt+rxi+ (k—1) %7

So here is the first inequality for j: j < p*n — i*fl

Oun the other hand. for all the & — ¢ output nodes in Part B’. there can be at most

(k — %) * n edges to them. Let Eg for all the edges to Part B’:
|Ep| = |Eap| +|Evp | +Evp,] < (k—i)*n
So
prixn+(k—i)xj <|Eip|+|Evp |+ |Evp, < (k—i)*n

Then we can get (K —i{)*n—(k—i)*xj—p=+ixn > 0. So here is the second inequality

for j: j <n-— 3;—‘_—"[—‘ Combining the two inequalities for j. we get

. - . i% *EXTL
j Smin(p*n— £.on— FZF)

The algorithm searches in the space 1 <i < k—1 and 0 < z < n. For each particular

value of 7 and each particular value of z, j = |[min(p*n — i*_’;n — £22)]. Then

compute the new lower bound of maximum cell loss.

As we know, if there are at least ;7 edges between each same-index input-output pair
in the second group. then j colors are used and cannot be used later (n — j colors left
for group 1). On the other hand, each input node in group 1 has p * n edges, so if
p¥n—mn+7j >0, then p*n — n + j edges from one input node in the first group
can’t be colored. Similarly, for each output node in the first group, it has = edges. So
ifx—n+j >0, then £ —n + j edges to one output node in the first group can’t be

colored.
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In contrast with Algorithm 1, when we compute the new lower bound of maximum
cell loss in the loop for a given z. 7 and the corresponding j, we consider the following

four cases:

l.p*n—-—n+7 >0and £ —n+ 3 > 0: For each input node in group 1. at least
p*n—n+j edges can’t be colored. And for each output node in group 1, at least
T —n + j edges can’t be colored. So the total loss can be i x (pxn +x — 2n + 27).

So the new lower bound is i * (o * n + = — 2n + 27).

N

px*n—n+j>0and r —n+j <0: Since £ —n+j < 0, the number of colors left
(n — j) is larger than the number of edges to an output node in the first group.
So we can’t decide if some edge to an output node in the first group can’t be
colored. But we are sure that p*xn — n + j edges from one input node in the first
group can’t be colored. So the total loss can be at least i(p*n —n + 7). Then
the new lower bound is i(p *n — n + 7).

3. pxrn—n+37<0and xr —n+j > 0: Similar to the second case, we can’t decide
if some edges from an input node in the first group can’t be colored. But we are
sure that x —n + j edges to one output node in the first group can’t be colored.

So the total loss is at least i * (z —n + j). The new lower bound is 7 * (z — n + 7).

4. pxn—n+j <0and  —n+j < 0: for all the input and output nodes in the first
group, we can’t decide if some edges from an input node or to an output node
can’t be colored. Then we cannot use this method to decide the loss. So we do

nothing and skip this case.

After all the iterations, a set of (i.j,z) can be found to maximize the lower bound of

maximum cell loss. Let the values of this set to be (max;. mazx;, maz,).

The second phase of Algorithm 2 is to construct a complete traffic matrix based on (maz;.
maz;. mar,) and the assumptions mentioned at the beginning of this section. Here is the

description of the second phase:

e Randomly select maz; same-index input-output pairs and put them in group 1. In
the traffic matrix, for all elements T'[z.y] where z and y are both in group 1, set them
to 0:

e Place the remaining nodes in group 2. In the traffic matrix, for all the elements T'[z, ]

where z is in group 2. set them to be at least max;:

e Fill the other positions of the traffic matrix according to the non-fully-loaded condi-
tion. In the traffic matrix, for each column corresponding to an output module in
group 1, the sum of this column should be maxz,. For other columns corresponding
to output modules in group 2. the sum of each column can not exceed n. Also, the

sum of each row is p * n.
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By using the above algorithm. we can generate the following sample matrix for the case

2

that n=m =k =6, p= 5 and base= 0:

O« 1 1 L 1

3 0 0 0
0 3« 0 0
0 0 3« 0

OO O O owl

0 0 0 3=

0 0 0 0 3=«

In this matrix. each input module has 4 (pn) cells, and £ = 5, i = 1. j = 3. This matrix
2

loses 3 cells. which is much for thecase n =m =k =6. p = 3 and base= 0.

= e e

6.2.4 Bad Matrices for Non-Zero base

In the last two sections, we have introduced Algorithm I and Algorithm 2 for base= 0. In
this section, we will show that these two algorithms can be easily extended to generate bad
matrices when base# 0.

First, we introduce another concept: b-skewed input-output pair. In the last sections, we use
a same-index input-output pair to indicate an input module (node) and an output module
(node) which have the same index number, for example, input module i and output module
¢ form a same-index input-output pair. For a given 6. where 0 < b < k — 1, a b-skewed
wnput-output pair consists of input module ¢ and output module (¢ + b mod k) for any
0<:1<k-1.

Now, we explain the idea of extending Algorithm I and Algorithm 2 to generate bad matrices
when base= b. where 0 < b < k — 1. The algorithms here also contain two phases: partition
and construction.

In Algorithm I and Algorithm 2, the first phase is to divide the same-index input-output
pairs into two groups. Here, instead of using the same-index input-output pairs, we use
b-skewed input-output pairs when base= b. We can use the same method as in Algorithm I

and Algorithm 2 to divide all the b-skewed input-output pairs into two groups:

e The first group contains ¢ b-skewed input-output pairs, and no edge between any input

node and output node in this group.

e The second group contains other b-skewed input-output pairs, and at least j edges
between the input node and output node in each b-skewed input-output pair in this

group.

For the non-fully-loaded cases, a value for x is also needed.

Then we can complete the construction of a traffic matrix in the second phasec:

e Randomly select i b-skewed input-output pairs in the first group. In the traffic matrix,
for all the elements T'[z,y] where =z and y are both in group 1, set them to 0;

e In the traffic matrix, for all the elements T'[z. (z + b) mod k] where z is in the second

group. set them to be at least j;
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e Fill the other positions of the traffic matrix according to the fully-loaded or non-fully-

loaded coundition.

We use an example to explain the two phases. Assume base= 1. m = n = 4. k = 6, and
p = 1. Instead of using the regular same-index input-output pairs, we use the following

1-skewed input-output pairs:

pair 011231415
input node 0(1])213141}5
outputnode | 1 |2 {3450

Similar to Algorithm 1. the first phase decides 2 I-skewed input-output pairs in the first
group and at least 2 edges between the input node and output node in each b-skewed input-
output pair in the second group. Then the second phase constructs the whole traffic matrix.
If we select Pair 0 and Pair 1 in the above table and put them in the first group, we can

get the following traffic matrix which can lose 8 cells when base= 1:

1 0= 0%« 1 1 1
1 0+ 0+ 1 1 1
0 1 1 2« 0 O
0 1 1 0 2« 0
0 1 1 0 0 2«
2% 1 1 0 0 O

Here is another example for non-fully-loaded cases. Assume base= 1. m =n =k =6, and

2

p=3- lfweset z =5,i=1.7 =3, we can get the following traffic matrix which can lose 3

cells when base= 1:

0 0« 1 1 1 1
0O 1 3« 0 0 O
0 1 0 3« 0 0
0 1 0 0 3« 0
O 1 0 0 0 3=«
3= 1 0 0 0 O

6.3 Cell Loss Preserving Transformations

This section introduces a matrix transformation that preserves the cell loss. The motivation

for studying such a matrix transformation is three-fold:

e The results obtained in this direction are useful in improving the performance since
they allow us to classify a number of apparently different matrices into a small number

of patterns, and then designing solutions for each pattern.

e This direction gives us a way of generating worst-case benchmarks of arbitrary large

size traffic matrices without replicating the exact structure of certain matrices.

e Experimentally, we observed that many bad matrices are actually transformations of

each other.
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First, we introduce some transformation of traffic matrices and their corresponding bipartite
graphs. For a given matrix, if we rotate the bottom same-index input-output pair in its
bipartite graph to the top and re-number the input and output nodes from top to bottom,
we can get a new bipartite graph and its corresponding traffic matrix. Figure 6.2 shows
how this rotating and re-numbering works. [n Figure 6.2, the graph G| and the traffic
matrix T are the original graph and matrix, while the graph G» and the traffic matrix T
are the graph and matrix after transformation (one same-index input-output pair rotating
and re-numbering). T is obtained from rotating T} one column right and one row down.

T} and T5 have the same cell loss under the same base.

Original rotating Re-numbering
0 [ i) 3 e, 4
1 O t a 1] H i
2 2 _’ 1 1 — M ®) 2
L) 3 M®) 2 3 3
Gl G2
ot 2 3 3ot o2 o1 23
0 ro (B ﬂ 3 ‘/ 210 1 0 210 1
1] 2200 0 b 2o . 1| 201 1
2y 2 0 1 0220 2 o220
3 |\| ot 2 2 L o1 1 2 )l 3 ‘\ o 11 1/
A T2

Figure 6.2: The rotation and re-numbering of bipartite graph

As we can see, this transformation only changes the index number of input and output

nodes and doesn’t change the connection patterns between each pair of input and output

node. So after the transformation. for any input (output) node i in the original graph,
where 0 <z < Ak — 1. it corresponds to the input (output) node (¢ + 1 mod k). We call this

one input-output pair treansformation. Here is the Lemma 6.1:

Lemma 6.1: The original bipartite graph and the graph obtained after rotating one input-
output pair and re-numbering. have the same cell loss behavior, under the same
base.

Proof: Let I; (O;) represent any input (output) node ¢ in the original graph and I! (O})

to be any input (output) node 7 in the graph after transformation. So for one input-output

pair transformation, I; (O;) corresponds to [(Ii+1)mod N (Ozi-.ul)mod L

of edges between [; and O; is the same as the number of edges between I (’

Ej-t'-l:lHlOd Kk’
Assume base= b. So in the first minislot {minislot 0), I; schedules its cells to O

And the number
i+1ymod & 20d
The transformation preserves the connection patterns.

(i+s)ymod &
!

e : s ’
On the other hand. in minislot 0, [(i+1)mod & itb+1)mod & O(i+b+1)mod .

is corresponding to O(i+b)1nod ¢~ Since the number of edges between I; and O(i+b)n10d 1S
. ! ! 4

the same as the number of edges between I(i+1)mod & and O(i+b+1)m0d . and the packing

strategy is used (not randomly selection), cell loss is the same for I; and I E

minislot 0.

schedules its cells to Oz

i+1)mod & B



As to minislot j, I; schedules its cells to O(i-:—b—:—j)mod k and I’ schedules its cells

(i+1)mod &

! : o ’
to O(i+b+j+l)m0d o O(i+b+j)m0d  1s corresponding to O(i~:—b+j+1)mod o~ The number of

edges between [; and O(i+b+j)m0d . is the same as the number of edges between I(’

14
and O(i—:—b+j+l)m0d K
Through all the time slot, I; and I('

matching between any I; and I(’

i+1)mod &

So cell loss is the same for I; and I(,i+1)mod N in minislot j.

. have the same cell loss behavior. Since the
i+1)ymod &

. is one-to-one, all the input nodes in the original
i+1)mod &

graph have the same cell loss as the input nodes in the graph after transformation. So
the cell loss is preserved after the transformation: one input-output pair rotating and re-

numbering. [

This lemma can be extended to Lemma 6.2 for multiple input-output pair transformation,
where multiple same-index input-output pairs are rotated and then re-numbering. Here is
the second lemmas:

Lemma 6.2: The original bipartite graph and the graph after one multiple input-output

pair transformation, have the same cell loss behavior, under the same base.

Proof: This lemma can be proved easily by repeating the proof process in Lemma 6.1. For
example, G» is one input-output pair transformation of the original graph G,. If we make
one input-output pair transformation on G» to get G3. G3 is the graph after two input-

output pair transformation of G;. G3 has the same cell loss as G+. so as G}. [ |

The above lemmas describe the suggested transformation on the bipartite graphs represent-
ing traffic distributions. We now formalize the transformation on the corresponding traffic
matrices. We first introduce the concept of the diagonal matrix Dy . associated with a traf-
fic matrix Ty x: the ith row of Dy is obtained from the ith diagonal of T} k: that is, for any
t (i =0.1...k — 1). use the elements of T (T[0.¢],T[1,(: + 1) mod &}, .... T[k - 1, (i + k — 1)
mod &]) to construct the ith row of its diagonal matrix D (Dfi.0]. D[i.1]...., D[i, k — 1]).
From the construction method, we can get D[i.j] = T[j. (¢ +j) mod k]. On the other hand,
a traffic matrix T can be generated from a diagonal matrix D from Tz, j] = D[(j — i) mod
k..

01 1 2 0 2 2 2

. 22 00 1 0 01

For example. if T} = 11 92 ol Then D, = 1 0 1 0
1 01 2 2 2 1

If we rotate D; one column right, we can get another diagonal matrix D» and its corre-

sponding traffic matrix T,

2 0 2 2 21 0 1
1 100 20 1 1
Da=tg 1 ¢ 1|2dT=|, 4, 5 4
1 2 2 1 01 1 2

T and 7> have the same cell loss under the same base. Similarly, if we rotate D; two or
three columns right, we can get other two diagonal matrices. From these diagonal matrices,

the generated traffic matrices have the same cell loss as 77 and 75 under the same base.
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Here is the second theorem:
Theorem 6.2: Given a traffic matrix 7). by columr:-rotating its diagonal matrix D, we
can get another diagonal matrix D> and generate the corresponding traffic matrix
T5. T, has the same cell loss as 7. under the same base.
Proof: First, we consider one column rotating right of diagonal matrix. So given T} and
D,. we can get
D\[z.y] = Ds[z, (y + 1) mod kJ.
For any T\[i. j]. since T\[i. j] = D\[( — i) mod k.i],
Ti[i. j] = D»[(j — i) mod &, (i + 1) mod &J.
On the other hand. T5[z.y] = Dsf(y — z) mod k.z]. Let £ = (i + 1) mod k and y = (5 + 1)
mod k.
T5[(¢ + 1) mod k. (5 + 1) mod k]
= D-[(((j + 1) mod k) — ((z + 1) mod k)) mod &, (i + 1) mod &]
= Ds[(j — %) mod k. (i + 1) mod k]
= T[4, j]
So, we know that input module I; (output module O;) for T} is corresponding to input
module I(i—:-l)InOd i (output module O(i+1)mod ) for Ty. If we consider the bipartite graph
G for T1 and the bipartite graph G for 75, we can get that G» is one input-output pair
transformation of G;. From Lemma 6.1, G| and G5 have the same cell loss, so do T} and
Ts.
The proof for one-column rotating right can be easily extended to the case one-column
rotating left. For example. D is one-column rotating left of Ds. Also the proof can be

extended to multiple column rotation by applying Lemma 6.2. [ |

6.4 Improvement of the Straight Matching Algorithm

In this section, some preprocessing methods are introduced which may improve the orig-
inal straight matching algorithm for the bad matrices. In the following sections. we seck

improvements based on the following methods:

e Reorganization of the incoming traffic: A bad matrix contains some permutation
pattern which may cause much cell loss. So the first way can be reorganization of the

incoming traffic.

e Randomization of the scheduling order: The cell loss of a traffic matrix also
depends on the scheduling order of the routing algorithm. For example. for an input
module. scheduling its cells to output module ¢ first may cause less cell loss than
scheduling its cells to output module 7 later. So another way is to modify the schedul-

ing order, for example, changing the base parameter.
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6.4.1 Sorting

The idea of using a sorting network as part of a large-scale switch has been first used in
Batcher-Banyan networks. The first method introduced here sorts all the incoming cells
in a non-decreasing order according to their destinations. then distributes the sorted list
of cells to the input modules. So this method can reorganize the incoming traffic. For a
given traffic matrix, this method can combine some non-zero elements in the matrix and

concentrate all the non-zero elements along the main diagonal. For example, after sorting

0 1 1 2

e . A 2 2 00

and re-distribution. the traffic matrix 11 2 0
1 01 2

4 0 0 0

) 0 4 0 0
becomes to the matrix 00 4 0
0 4

The later matrix has no cgll l(c))ss, where the first one has 6 cells lost. if using the same base.
To implement this method. a sorting network needs to be introduced before the routing
network. After the sorting. the sorted list of cells will be distributed to the input stage
of the routing network. There are two different ways to distribute the cells to the routing

network:

e Scheme 1 - concentration: The cells are concentrated to the input modules from
top to bottom. This method fills the top-most module first. then to the modules
below it. If the number of arriving cells is less than the number of total input links
in the input stage of the routiug network, then the input modules at the bottom may

not be used or fully utilized.

¢ Scheme 2 - even distribution: The cells are evenly distributed to the input mod-
ules. If there are total [ cells and & input modules, then each module may have L%J

or [£] cells.

Figures 6.3 to 6.6 show a comparison of the original network without sorting and the
networks with sorting. In the simulation, the number of input (output) links on one input
(output) module in the routing network is 16 (n = 16). and the number of input (output)
modules is also 16 (k = 16). m is the number of middle stage modules in the routing
network. p is the traffic load. We set bese= 0.

Figure 6.3 shows the relationship of m and the cell loss for the three methods under the
fully-loaded condition p = 1. As we can sce, when m = m. the network with sorting can
achieve better improvement over the network without sorting. For this case, each input
module in the routing network has n cells and each output module also has n cells to it
(m = n). So after sorting, the n cells on input module 7 in the routing network are all
destined to output module ¢. For instance, there are n cells to output module 0. After
sorting. these cells are on the top of the sorting list and only distributed to the input
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module 0. On the other hand. input module 0 is fully loaded by the cells to output module
0. So in the traffic matrix after sorting, all the non-zero elements are in the main diagonal.
Thus there is no cell loss for the network with sorting.

In Figure 6.3, the two curves for the two schemes are identical: this is explained as follows.
For the fully-loaded case. each input module has the same number of cells n. so does each
output modules (n cells to it). So. given a particular sorted list of cells (by destination out-
put modules), the two distribution schemes identically distribute the cells to input modules.
That is. the bipartite graphs considered in the straight matching algorithm are identical.

Then we can get the same cell loss for them.

| ] I I
“original® —<—
“schemel" -+-- |
“scheme2" -82--

cell loss

B—d—d—& é
16 18 20 22 24 26 28 30 32
m

Figure 6.3: original versus scheme 1 and scheme 2, p =1

Figure 6.4 shows the relationship of m and the cell loss for the three methods under the
non-fully-loaded condition when p = 0.8. Similar to Figure 6.3, when m = n, the network
with sorting improves over the network without sorting. Here, the two curves for the two
schemes with sorting are not the same. As we know. for the non-fully-loaded case, the
number of cells in the sorting list is less than the number of input links in the routing
network. So the two schemes make different distribution of cells to the routing network.
That is the reason they have different cell loss.

Figure 6.5 shows the relationship of p and the cell loss for the three methods when m =
n = 16. Here, m = n. the best improvement of the network with sorting over the network
without sorting can be achieved when p = 1. The same thing happens in Figure 6.6, where
m = 22. The network with sorting achieves the best improvement over the network without

sorting when p = 1.
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Figure 6.4: original versus scheme 1 and scheme 2, p = 0.8

From the above results, we can see that the network with sorting can improve performance
in overall. The sorting method is most preferred for the network with less middle stage
modules and the heavy traffic. However, the sorting network increases the architecture

complexity of the whole network.

6.4.2 Randomization of Scheduling Order

In the original method. at the beginning of one time slot. the scheduling order is decided
by base. For example, given a particular value of base, the scheduling order can let input
module ¢ schedule its cells to output module (7 + base + [ mod k) in minislot {. Instead of
using this kind of scheduling order which is decided by base, we can use some randon ones.
Let’s use the following example to explain this method. In this example, n =m =k =6

and p = 1. The traffic matrix is
O« 0« 3 1 1 1

O« Ox O 2 2 2
0 3 3« 0 0 o
1 2 0 3« 0 0
2 1 0 0 3« 0

3 0 6 0 0 3=
If we use base-decided scheduling order and base= 0. then the scheduling order should be

in Table 6.2.
If using this scheduling order, the above traffic matrix can lose 12 cells. However, if we use
the scheduling order in Table 6.3 which can not be decided just by one parameter base. only

two cells lost.
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Figure 6.5: original versus scheme 1 and scheme 2, m = 16

minislot | IMO0 | IM1 |IM2 |IM3 |IM4 |IM5

0 OMO|OM1 | OM2|OM3 | OM4 | OMS5
1 OM1I | OM2|OM3|{OM4{0M5|OMO
2 OM2|OM3 OM4|OMS5|OMO|OM1
3 OM3|OM4 | OMS|OMO|OM1 | OM?2
4 OM4|OMS5 | OMO|{OM1|[OM2 | OM3
S OMS5|OMO;{OM1|OM2 | OM3 | OM 4

Table 6.2: The Scheduling Order when base= 0

The method of changing base is a special case of this randomization method. Instead of using
base=0. we can set base to be another value less than k. For the matrices (T.T5,73.T}) in
Section 6.1, if we use base=1.2, 3. the main diagonal can be avoided being scheduled in the
first minislot. As a result, these four matrices lose two cells instead of 6 cells for base= 0.

The methods provided in this section can help to alleviate the problem caused by using the
basic algorithm directly to the bad matrices. However, they still have some drawbacks. The
sorting method can reorganize the incoming traffic, but the sorting network increases the
hardware complexity of the whole architecture. The randomization method can change the

scheduling order, but how to decide which alternative random scheduling order should be

used is still a problem.
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Figure 6.6: original versus scheme 1 and scheme 2, m = 22

minislot | IMO |IM1 {IM2 |IM3 |IM4 [IM5

OM2|OM1|OMO|OMS5 | OM4 | OM3
OM1|{OMO|OMS5|OM4|OM3|OM2
OMO|OMS5|OM4j0OM3 | OM2|OM1
OMS5|OM4|/OM3|OM2|OM1|OMO
OM4 | OM3 | OM2;0OM1 | OMO0O|OMS5
OM3 | OM2 OM1|OMO|OMS5 | OM4

Ui W= O

Table 6.3: The Random Scheduling Order

6.5 Concluding Remarks

In this chapter. we take a further study on the worst case scenarios for the straight matching
algorithm. Based on the simulation results, we found the a class of bad traffic matrices.
The algorithms are proposed to generate such bad matrices for the fully-loaded case (p = 1)
and non-fully-loaded cases (_% < p < 1), under the assumption that base= 0. For the
fully-loaded case, the traffic matrices which are constructed by using Algorithm I (Section
6.2.2) can cause asymptotically L—J'i cell loss for any network size An. Furthermore, the two
algorithms are extended to the cases with non-zero bases. This chapter also shows that a
kind of traffic matrix transformations can preserve the cell loss. At last, some preprocessing
methods are introduced which may improve the original straight matching algorithm for
the bad matrices. Some simulation results are provided to show that some preprocessing

methods, such as sorting, can reduce the cell loss in general.
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Chapter 7

Conclusions and Future Works

Along with the rapid growth of Internet and the emerging of new multimedia applications,
there is an urgent need for telecommunication and data communication networks to be
able to provide high bandwidth and integrated services. As a dominating transfer mode in
optical networks which can provide higher capacity and reduce cost for new applications,
circutt-switching emerges in association with a new technology. The blocking behavior of
Clos networks in circuit-switching environment is a well-studied topic in the literatures.
In the first part of this thesis. we extend existing results by investigating 2-call blocking
behavior of Clos networks in circuit-switching environment. On the other hand, ATM is a
technology which is designed to carry different kinds of traffic and services in one uniform
backbone. In the second part of this thesis, we focus on studying the performance of some
typical ATM switch designs. In this chapter, we summarize the contributions of this thesis,
and suggest some directions for future works.

In the first part of this thesis (Chapter 3 and Chapter 4). we first reviewed some previous
works on the point-to-point call blocking behavior of 3-stage Clos networks. Then we
extended previous works to the analysis of 2-call blocking probability. We studied two in-
switch multicasting schemes: second-stage multicasting and first-stage multicasting. Two
analytical models are presented for these two schemes. Furthermore. based on the analytical
results and simulation results, a comparison of the analytical models and the simulation
results and a preliminary comparison of the two schemes are provided. It is shown that the
first-stage multicast scheme has a good potential for producing lower blocking probability
than the second-stage multicast scheme with the cost of consuming more network resources.
In the second part of this thesis (Chapter 5 and Chapter 6), we first reviewed some typical
ATM switch designs. We selected the AT&T growable ATM switch as our studying object.
In Chapter 6, we first studied the performance of this switch design under uniform unicast
trafic. We characterized a class of traffic matrices that cause a significant cell loss. Then
we proposed three algorithms used to generate the bad matrices under different network
configurations. Furthermore. we studied some pre-processing methods which may improve

the performance of the switch for the bad matrices. These approaches include sorting and
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randomization of scheduling orders. Based on simulation results. it was shown that sorting
can improve the performance in general.

Although significant progress has been made over the past several years. much additional
work in circuit-switching and ATM is still needed. Below, we outline some possible future

directions:

e Today, many applications such as video-on-demand. distant learning, distant diagno-
sis. video conferencing and so on. require point-to-multipoint communication. Mul-
ticasting is an important issue we should give more effort in the future work. The
future work can be done in the two aspects. First. a study of &-call blocking behavior
is needed. This study can be done for random routing strategy and other routing
strategies. Also such a study can be done for the network allowing the rearrangement
of the existing calls. Although rearrangement of the existing calls can somehow af-
fect the quality of the existing calls, it can reduce the architecture complexity of the

networks. for instance, crosspoints.

e Multicasting in ATM switches has been widely studied in the literatures. In ([8],{7]),
the performance of the AT&T growable ATM switch under multicast traffic is pro-
vided. Upper bounds on the cell loss probability for arbitrary patterns of independent
cell arrivals under the second-and-third-stage multicast scheme and the first-and-third-
stage multicast scheme are given. However. there is no previous work for the study
of the worst-case multicast traffic for the AT&T growable ATM switch. So the work
about the bad traffic matrices can be extended to find the bad multicast traffic types.

e In this thesis. we studied two pre-processing methods to improve the performance
of the switch under a traffic load corresponding to the load of bad matrices. More
work can be done in this direction to propose other possible pre-processing methods
and also to improve the existing pre-processing methods. Beside the preprocessing
ideas. we can also use post-processing methods to refine the path assignment obtained
from the original routing algorithm. If we can get a better path assignment after post-
processing. then the better one can be used and the cell loss can be reduced; otherwise,

the network can still use the path assignment from the original routing algorithm.

e In Chapter 5, we reviewed some typical ATM switch designs. We note that the path
switching algorithm used in the Cross-Path switch ([13]) is in contrast with the straight
matching algorithm used in the AT&T growable ATM switch. In particular, the path
switching algorithm uses predetermined connection patterns to satisfy the bandwidth
requirements of the VCs in a round-robin fashion. Since after the VCs setup, the
switching network knows the QoS requirement, the arrival rate, the incoming link
and the output link of each VC going through it, it is able to predict many aspects
of the incoming traffic. The path switching algorithm takes the advantage of such

information in cell scheduling. But the straight matching algorithm doesn’t take this
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into consideration. If it happens that the traffic matrices with high arrival frequency
are bad matrices, the performance can be affected severely. So if the switch can predict
the traffic matrices with high arrival frequency and decide if they are bad matrices,
then it can adjust the basic routing algorithm to reduce the cell loss and improve the
performance. The future work can be done to combine the advantages of these two
routing methods and try to propose some new routing algorithms or switch designs

in between.

With today’s communication networks experiencing enormous growth, it is important that
we develop and take advantage of technologies to keep pace with those increasing demands.

We believe there will be a bright future in communication networks waiting for us.
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