
U n iv ers ity o f A lb e rta

M o d u l a r d a t a o f f i n i t e g r o u p s

by

Jerem y D a v id M acdonald

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science

Department of Mathematical and Statistical Sciences

Edmonton, Alberta
Fall 2006

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22308-6
Our file Notre reference
ISBN: 978-0-494-22308-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

U n iv ers ity o f A lb e rta

L ib ra ry Release Form

N am e o f A u th o r: Jeremy David Macdonald

T it le o f Thesis: Modular data of finite groups

D egree: Master of Science

Y ea r th is D egree G ranted: 2006

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
m aterial form whatever without the author’s prior written permission.

Jeremy David Macdonald
10527-136 street
Edmonton, Alberta
Canada, T5N 2G1

D ate :

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Abstract

The modular data associated with a finite group G is a representation of SL2(Z),

generated by matrices S and T , arising in conformal field theory and other contexts.

A group’s modular data determines many group-theoretic properties but it is unclear

whether it determines the group. Under the naive definition of equivalence it does

not determine the group, but we study a more restrictive definition under which

groups of order less than 128 axe distinguished. We make some remarks comparing

modular data with 2-characters, giving an example of groups w ith equivalent 2-

characters but inequivalent modular data. In the conformal field theory context,

matrices commuting with S and T are of importance (modular invariants). We

examine the algebra of such matrices, giving its dimension for the cyclic group

Zn. Decomposing the representation into irreducibles is related to the study of this

algebra and we give some results for Zn and the dihedral group D n, including the

decomposition for Zp (p a prime).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Acknowledgements

I thank my supervisor, Dr. Terry Gannon, for his guidance, advice, and patience.

I thank my family who supported me despite not understanding what it is I do.

I would like to acknowledge financial support from NSERC and the Department of
Mathematical and Statistical Sciences, University of Alberta.

Thanks to Andrew and Quan for providing a stimulating work environment.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Contents

1 In tro d u c tio n and background 1
1.1 Introduction.. 1
1.2 Group theory background.. 2

1.2.1 Group actions.. 3
1.2.2 Generators and relations.. 3

1.3 Representation and character theory of finite g ro u p s 4
1.3.1 Representations of finite groups... 4
1.3.2 Group actions on finite sets are permutation representations . 6
1.3.3 Character th e o ry ... 7
1.3.4 Induced characters.. 9
1.3.5 Character ta b le s ... 9

1.4 The modular group SL2(Z) .. 12

2 In tro d u c tio n to fin ite group m odu lar d a ta 15
2.1 Definition of modular data for a finite group... 15

2.1.1 The space C^iGcomm) and two bases.. 15
2.1.2 SL2(Z) representation and the definition of modular data . . 19

2.2 Properties of modular d a t a ... 23
2.3 Appearances of modular d a ta ... 25

2.3.1 Conformal field th e o ry .. 25
2.3.2 Braid group ... 26
2.3.3 Other appearances.. 27

2.4 Examples of modular d a ta .. 28
2.4.1 Abelian g ro u p s... 28
2.4.2 Dihedral groups... 29
2.4.3 Quaternion groups .. 30
2.4.4 Comparison of dihedral and quaternion modular data 31

3 T h e cen tra lize r algebra o f pg 34
3.1 Permutation representations and the centralizer a lg e b ra 35
3.2 Decomposing p a .. 38

3.2.1 Galois sym m etry ... 46
3.3 Dimension of CA(pzn) ... 46

4 M o d u la r d a ta as a group in varian t 52
4.1 Group invariants ... 52

4.1.1 Modular data as an in v a ria n t... 52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

4.1.2 Ordering on C .. 53
4.1.3 Strong equivalence.. 54
4.1.4 An example: £ > 4 .. 55
4.1.5 Connection with graph isom orphism .. 56

4.2 Computational technique .. 56
4.2.1 Building modular d a ta .. 56
4.2.2 Ordering cyclotomics... 57
4.2.3 Which groups should be tested? .. 57
4.2.4 T equivalence.. 58
4.2.5 Easy tests for S non-equivalence.. 59
4.2.6 Modular data with different block s tru c tu re s 60
4.2.7 When the easy tests fail... 60

4.3 Graph certificate a lg o rith m ... 61
4.3.1 Equitable p a rtitio n s ... 61
4.3.2 Partition re fin em en t... 62
4.3.3 Certificate a lg orithm ... 63
4.3.4 Algorithm improvements... 64
4.3.5 Certificate algorithm and modular d a t a 65

4.4 S and T simultaneously equ ivalen t.. 66
4.4.1 Backtracking a lg o rith m ... 66

4.5 Results.. 67
4.5.1 Weak equivalence.. 67
4.5.2 Strong equivalence... 68
4.5.3 Program correctness... 69

5 fc-characters and m odu lar d a ta 71
5.1 The group determinant and ^-characters.. 71

5.1.1 fc-characters.. 73
5.2 Group properties determined by fc-characters...................................... 74
5.3 W hat group properties are determined by modular data? 75
5.4 Groups with the same 2-characters but different modular data . . . 79

6 C oncluding rem arks 80

A G A P source code 84
A .l Building modular d a ta ... 84
A.2 Certificate a lg o rith m .. 88
A.3 Code for showing weak equivalence.. 92
A.4 Code for Proposition 5 .1 .. 93
A.5 Code for Proposition 5 .1 0 .. 94

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Symbols

G en era l sym bols

G, H finite groups
H < G H is a subgroup of G
e group identity
(x , y) group generated by x and y
K (g) conjugacy class of g
C(g) centralizer in g
Z(G) centre of group G
Cn cyclic group of order n
D n dihedral group of order 2n
Qin quaternion group of order 4n
Sn symmetric group on n symbols
B n braid group on n strings
Zn Z /n Z (integers modulo n)
x = n y x and y are equivalent modulo n
M m(B) algebra of m x m matrices over ring B
SL2(Z) {A e M 2(Z) | det A = 1}
SL2(Zm) {A e M 2(Z m) | det ,4 = 1}
. . . . f. . ri

primitive n root of unity e n
< x, ip > inner product of characters
s, t generators of SL2(Z)
H upper half-plane of C
z complex-conjugate of z € C

Sym bols re la tin g to m odu lar d a ta

R = R (G) a set of representatives of the conjugacy classes of G
R a a set of representatives of the conjugacy classes of C g (oi)
C °(G c0mm) C-valued functions o n G x G constant under simultaneous conjugation
V permutation basis of C °(G Comm)
|[a, 6] element of V
C character basis of C Q{GCOmm)
ch“ element of C
PG modular data (representation of SL2(Z) defined by G)
SG = S pG(s)
T g = T pG{t)
Sym(C) group of valid permutations of basis C

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 1

Introduction and background

1.1 Introduction

Associated with every finite group G is a representation pa of the modular group

SL2(Z). SL,2(Z) is important due to its relation with the moduli space of tori (dis­

cussed in §1.4). The representation arises in several contexts, most im portantly in

conformal field theory (an extremely symmetrical quantum field theory that has

applications in string theory). We w ill review these contexts in §2.3. In the confor­

mal field theory context there is a ‘preferred’ basis C for the representation space,

so pa is a m atrix representation, in paxticulax defined by matrices S and T (the

images under pa of generators of SL2(Z)). In this context pa is called the modu­

lar data associated with G. There is also a basis V in which pa is a permutation

representation. We w ill define pa and these bases in Chapter 2.

A major question is to what extent S and T determine G (i.e. how strong of a

group invariant is it). This depends on the definition of equivalence of S and T used.

Under the naive definition, it seems that S and T only determine G up to order

15 ([Cun05]). We propose a more restrictive definition and prove, computationally,

that S and T determine G for groups of order less than 128 (Chapter 4). This is

one of the most important original results of the thesis. In Chapter 5 we review

two important complete invariants of finite groups — the group determinant and

^-characters — and make some comparisons with modular data. We include a new

result giving groups with equivalent 2-characters but inequivalent modular data.

In the conformal field theory context, the centralizer algebra of pa plays a key

role in determining the possible modular invariants (an important quantity in the

conformal field theory, see Chapter 3). For modular data arising from finite groups,

neither the centralizer algebra nor the modular invariants have been well-explored

1

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

(modular data arises in other ways in conformal field theory, for example from

affine algebras, and has been studied more carefully). In Chapter 3 we give some

new results on the centralizer algebra including its dimension for cyclic groups.

We give some results on decomposing pg into irreducible representations (pg is in

fact a representation of a finite quotient of SL2(Z)) which help to understand the

centralizer algebra.

The remainder of this chapter consists of background material we w ill be needing

later on. This is all standard material. The reader planning to skip ahead to

Chapter 2 is advised to pause at §1.4 which deals with SL2(Z).

1.2 Group theory background

We start w ith some group theory basics and fix some notation. A good reference

for elementary group theory is [DF99].

Let G and H to denote finite groups throughout, w ith e denoting the group

identity. Let g, h E G .

• Cg(g) = {x E G | xg = gx} is the centralizer of g and is a subgroup. When

the group G is clear we w ill write C(g).

• Z (G) = {g E G | gx = xg for all x E G } is the center of G and is a subgroup.

• I f there exists x E G such that xgx-1 = h then g and h are said to be conjugate

(in G). Conjugacy is denoted g ~ g h, or simply g ~ h.

• K g(g) = {xgx~l \ x E G } is the conjugacy class of g. When the group is clear

we w ill write K (a).

• The order of G is its cardinality as a set and is denoted |G|.

• The order of g is the least positive integer m such that gm = e and is denoted

M -

• The exponent of G is the least positive integer m such that gm = e for all

g E G. Equivalently, it is the least common multiple of the orders of all the

elements of G,

Exponent(G) = lcm{|<?| | g E G}

W ith regard to conjugacy classes, we remark that

2

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• Conjugacy is an equivalence relation, and G is partitioned into conjugacy

classes.

• Conjugate elements have the same order. This follows from the equation

(xgx- i y = xglx~1.

1 .2 .1 G ro u p actio n s

For a set O, a (right) group action of G on fl is a map Cl x G — ► Cl, (u, g) i— * ui.g

satisfying

(a) u).(gh) — (uj.g).h for all g, h 6 G, u> € Cl.

(b) u.e = u> for all u> 6 Cl

We say that G acts on Cl. A left group action is define analogously. The orbit of ui is

Orb(o>) = {u}.g \ g € G}. The set of all orbits is denoted Cl/G and forms a partition

of Cl. The stabilizer of u is Stab(j(o;) = {g € G | ui.g = ui} and is a subgroup of G.

Every group acts on itself by conjugation, the action being g.x = gxg~l for x,g € G

(this is left group action, defining x.g = g~l xg gives a right group action). We give

two important lemmas about group actions. For proofs, see Chapter 4 Proposition 2

of [DF99] and Theorem 2.2 of [Cam99].

Lem m a 1.1 Let G act on Cl, g e G, u> € Cl. Then

\G\
|Orb(w)| =

|S tabc(^)|

In particular, when Cl = G and the action is conjugation, the formula becomes

lK{9){ = i c (i j i

Lem m a 1.2 (‘B urnside’s Lem m a’) Let G act on Cl and define Fix(g) = {u> e

Cl | ui.g = u } . Then number of orbits of the action is py |Fix(p) |.

Though the lemma is often called Burnside’s Lemma, it is not due to Burnside (it

was known to Frobenius earlier).

1 .2 .2 G e n e ra to rs an d re la tio n s

One way of describing a group is with generators and relations. To do this formally,

one forms a quotient of a free group. This construction can be found in [DF99], but

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

we w ill content ourselves with an example. The dihedral group D n of order 2n is

described using generators and relations as

D n = (x ,y \y n = e, x2 - e, yx = xy-1)

The generators of the group are the symbols x and y and the relations are yn = e,

x2 = e, and yx = xy~l . A word in the symbols x ,y ,x- 1,y_1 is just a sequence com­

posed of these symbols, for example xyx~l yy~l or yxxxxx-1 . These words form

the group elements, in addition to the group identity e (which can be represented

by the ‘empty’ word consisting of no symbols). Two words are multiplied by con­

catenation, e.g. xy multiplied by yx is xyyx. We write xx • • • x (n times) as xn,

and xx-1 = x -1 x = e. The relations specify further simplifications that we can

apply to words. For example, the element yxxxxx-1 can be simplified to yx3, then

to yxe = yx using the relation x2 = e, then to xy-1 using the relation yx = xy -1

(though this last step is arguably not a ‘simplification’).

For finite groups, we can often find a canonical representation of each element.

In the dihedral group above, the relation yx = xy-1 allows us to interchange x

and y (note that the relation also implies xy = y- 1x), meaning we can write any

element in the form xlyi for some i , j E Z. Since x2 = e and yn = e we need only

use i E {0 ,1 } and j E { 0 ,1 ,. . . , n — 1}. These elements are all distinct (a proof is

required), hence the group has order 2n. In general, determining whether two words

are equal (represent the same group element) is an undecidable problem.

1.3 Representation and character theory o f finite groups

In this section we present a brief introduction to representation theory and character

theory, including several results that we w ill need later. A good introduction to

character theory is given in [Gro97], and the presentation here is based on that

source. Proofs can be found there.

1 .3 .1 R e p re s e n ta tio n s o f fin ite groups

Let V be an m-dimensional vector space over C. A representation of G on V is a

homomorphism ip : G — ► G L (V), where G L (V) is the group of nonsingular linear

transformations from V to V . I f we fix a basis of V , we get G L (F) = G L(m , C)

(the group o fm x m invertible matrices over C) and <p : G — ► G L(m ,C) is called

a matrix representation. We call m the dimension or degree of the representation.

4

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Since ip(g) is a linear transformation on V , we write <p(g)v for the image of v € V

under <p(g). Representations over fields other than C are defined the same way, but

we will only deal with C-representations.

A subspace U C V is called ip-invariant if <p(g)U C U for all g € G. I f any non­

zero (^-invariant subspaces exist then <p is called reducible, otherwise <p is irreducible.

Two representations <p : G — *■ G L (V) and <f>: G — > G L(W) are equivalent if there

exists a vector space isomorphism L : V — > W such that Ltp(g) = 4>{g)L for all

g € G. W rite <p = 4> for equivalent representations.

Define the direct sum <p® (j) of representations <p and <j> on the vector space V ® W

by (ip © (f>)(g)(v,w) — (p(g)v, <f>(g)w). When <p and <j> are m atrix representations,

the direct sum is the block-diagonal m atrix

A representation is completely reducible if it is equivalent to a direct sum of irre­

ducible representations. Define the tensor product ip <g> 0 of of ip and <f> on V <g> W

by (<p ® 4>){g)(v ® w) = (p(g)v) ® (4>(g)w). For m atrix representations, (<p ® 4>){g)

is the (Kronecker) tensor product ip{g) 0 (f>(g)- We are interested in representations

of finite groups.

T heorem 1.3 Let k be the number of conjugacy classes of the finite group G. Then

there are exactly k inequivalent irreducible C-representations of G.

This is N O T true for infinite groups. For example, the integers have uncountably

many inequivalent irreducible representations. Take any 0 ^ z € C. Then <pz(n) =

zn forms a family of inequivalent irreducible representations of Z.

Every group has a 1-dimensional ‘triv ia l representation’, 1 : G — > G L(1,C),

1(g) = 1. The triv ia l representation is one of the irreducible representations of G.

For finite groups, we have the following important theorem:

T heorem 1.4 Every C-representation <f> of a finite group G is completely reducible.

I f ipi, y>2 , . ■., tpk are the inequivalent irreducible representations of G, then there

exist m i, m 2, . . . , m*, € Z>o such that

k
4> = ^ m n p i

1 = 1

where mnpi =

5

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Again, this is not the case for infinite groups. The Z representation n i— > (g ")

is not completely reducible. Two useful results which we w ill use often axe Schur’s

Lemma and one of its corollaries:

Lem m a 1.5 (Schur’s Lem m a) Let ip and 7r be irreducible C -representations o fG

on the spaces V and W (respectively). Suppose L : V — > W is a linear transfor­

mation such that L(p(g) = tt(g)L for all g E G. Then either L = 0 or L is an

isomorphism (and representations are equivalent). Further, i f V = W then L is a

scalar map.

C o ro lla ry 1.6 Let ip be an irreducible representation of G and z E Z (G). Then

ip{z) = £I

where £ is an \z \^ root of unity and I is the identity matrix of size deg p.

P ro o f. For every g E G we have zg = gz so <p(zg) — <p(gz) and

v{z)v{9) = v(g)<p(z)

Then by Schur’s Lemma, tp(z) = £J for some £ E C. Since xl1! = e we have

I = ip(e) = </?(x)lxl = hence £1*1 = 1.

□

1 .3 .2 G ro u p actio n s o n f in ite sets a re p e rm u ta tio n re p re s e n ta tio n s

A permutation representation of G is a m atrix representation ip where p(g) is a

permutation m atrix (a m atrix with exactly one 1 is each row and column, and 0

elsewhere). A permutation representation is the same as an action of G on a finite

set. Suppose G acts on the finite set 0, = . . . , u m}- Let f i form a basis for

Cm. Then ip defined by

(771 \ 771

= '5 2 CiUJi-9

t= i / i= i

is a permutation representation of dimension m. Indeed, writing <p as a m atrix with

respect to the basis fi, we get

t \ _ / 1 if Uj.g = uii
J (0 otherwise

Conversely, given a permutation representation <p on vector space V , let ft be the

basis in which <p(g) is a permutation m atrix and let G act on by ui.g = ip(g)u.

6

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1 .3 .3 C h a ra c te r th e o ry

Let p be a (m atrix) representation of G. Define the character x of p as the trace

of tp:

X - G — * C

g i— ► tr (<p(g))

Trace is invariant under change-of-basis, so the character is independent of the

choice of basis. Equivalent representations have equal characters. Characters are

class functions on G, meaning they are constant on conjugacy classes. Indeed,

X{hgh~l) = tr (p (h)p(g)p(h)~1) = tr (p(g)) = x(g)

Being class functions, we may write x (K (g)) instead of x(s)> where K (g) is the

conjugacy class of g. A character is called irreducible if the corresponding represen­

tation is irreducible. Since finite G has k (number of conjugacy classes) irreducible

representations, it also has k irreducible characters. Let Irr(G) denote the set of

irreducible characters of G.

Theorem 1.7 Let C F (G) = { / : G — ► C | f(g) = / (hgh- 1) for all g,h e G } be

the C-vector space of class functions on G. Then the set of irreducible characters

of G forms a basis of C F (G). In particular, the irreducible characters are linearly

independent and C F (G) has dimension k.

The triv ia l representation is always irreducible, so G always has a triv ia l character

1(5) = 1. Note that 1-dimensional representations are equal to their characters.

Since y(e) is the trace of the identity m atrix, we have that x{e) is the dimension m

of the corresponding representation. We call m the degree of x- The next theorem

relates these degrees to the order of G, and helps in finding the irreducible characters.

T heorem 1.8 Let Xi>X2, • • • , Xfc be the irreducible inequivalent characters of G.

Then

2 ^ (e)2 = lG l
i= l

Though characters are defined as functions into C, the character values actually

lie in a subring of €:

7

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P ro p o sitio n 1.9 Let x be a character of G. Then for all g € G, x{g) € Z [£m],
where m = Exponent(G) and is the primitive m th root of unity exp(27ri /m) .

Define a Hermitian form on C F (G), which is extremely useful in character the­

ory:

Several important theorems can be stated or proved using this form.

Theorem 1.10 Let <f> be a representation of finite group G with decomposition into

irreducibles p = Let Irr(G) = (x i, X2, • • •, Xk}> with Xi being the charac­

ter of pi- Then the character x ° f <t> decomposes as

k

X = Y miXi
i=1

Further, the multiplicities are given by mi —< X iXi >•

T heorem 1.11 (F irs t O rth o g o n a lity R e la tio n) Let xu Xj £ Irr(G). Then

< Xii Xj > = $ij-

T heorem 1.12 Let x £ Irr(G). Then x is irreducible if and only if < x> X > = 1-

Theorem 1.13 Let pi be the irreducible representations of G and (f)j the irreducible

representations of H . Then the irreducible representations of G x H are the Pi <g> 4>j.

P ro o f. First we show that the pi <g> <f>j are irreducible. Let Xi be the character of pi

and ipj the character of <j>j. Then the character of pi <g> 4>j is the product Xi ’ V’j (this

is easy to see writing pi and <pj as m atrix representations), and we apply Theorem

Further, x(<? *) = x(g)> where bar denotes complex conjugation.

Y x{g)^(g)

1.12:

Y X i(g)^ j(h)x i{g)^ j(h)
(g,h)eGxH

geG / V 1 1 h&H

< XuXi > < 'I’j i ' l ’j >

1

hence by Theorem 1.12 the corresponding representation is irreducible.

8

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

To show that these are all of the irreducible representations, we apply Theorem

1.8:

Y ^ X i(e)2ipj(e)2 = ^ X i (e) 2^ = \G WH \ = \G x H \

hence there are no other irreducible characters hence no other irreducible represen­

tations.

T heorem 1.14 (Second O rth o g o n a lity R e la tio n) Let a\, 0 ,2 , ■ ■. ,ak be represen­

tatives of the conjugacy classes of G. Then

x (a i) x (aj) = Si j \CG {ai)\
xelrr(G)

1 .3 .4 In d u c e d ch ara c te rs

Let H < G and p an m-dimensional m atrix representation of H . We can get a

representation of G from p. Let x \H , X2 H , . . . , x^H be the left cosets of H in G.

Define p ^ : G — > G L (mk, C) by letting p%(g) be the block m atrix whose i , j block

is

{Vh)h = tp {x f1gxi)

where p (x ~ l gxj) is the m x m zero m atrix whenever x f l gxj £ H .

P ro p o sitio n 1.15 The function p ^ above is a representation of G, called the in­

duced representation. Its character x% called the induced character and is given

by

x h (9) = Tjji x iv ^ g y)
2/G G

y~ 1gy€H

R em ark 1.16 We need not fix a basis in order to define the induced character. I t

always exists and is unique up to equivalence. The restriction of Xh to H is in

general not equal to x-

1 .3 .5 C h a ra c te r ta b les

Let K \ ,K 2 , . . . ,K k be the conjugacy classes of G and x i, X2 , ■ ■ ■, Xk its irreducible

characters. The character table of G is the array with columns indexed by the

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

conjugacy classes and rows by the irreducible characters and whose (Xi, K j) entry is

X i (K j) . Neither the rows nor the columns are ordered in any particular way, though

one often writes the class of e first, the triv ia l character first, and the characters in

order of increasing degree. See below for examples of character tables. Note that

the number of irreducible characters is the same as the number of conjugacy classes,

so the character table is square.

Let G have k conjugacy classes and irreducible characters as above, and sup­

pose H also has k conjugacy classes. Then we say that G and H have isomorphic

character tables if there exist bijections 7r, cr between the irreducible characters and

conjugacy classes (respectively) of G and H such that X i(K j) = (7rX i)(cr̂ 0) for all

i , j . Permuting the rows of H ’s character table by n and its columns by cr produces

G ’s character table. Non-isomorphic groups may have isomorphic character tables

(see for example Dm and Q 2 n when n is even, described in the next section).

C h aracte r ta b le o f d ih ed ra l and quatern ion groups

As an example, we w ill write down the character tables of the dihedral and quater­

nion groups. We w ill these character tables later.

The dihedral group of order 2n is given by the presentation D n = (x, y \ x2 =

yn = e, xy = y~l x). The elements can be listed as xlyi where i € {0 ,1 }, 0 < j < n.

Results are slightly different for the cases when n is even and when n is odd. When

n is even, the conjugacy classes are

K (e)

K {x)

K {xy)

K { y1)

*(y»)

W

{xy2%

{xy2i+1

n

n
0 < i < j “ !>

n
{ y \y n~1}, ! < * < - — !

= { y * }

and the character table is

D n K (e) K (x) K (xy) * (v *) K {y l)
1 1 1 1 1 1

1 - 1 - 1 1 1
l/>2 1 1 -1 (- l) f (- 1)*

1 - 1 1 (- l) t (- 1)*

Xj 2 0 0 2 co s(2# i)

10

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

where 1 < i , j < j — I. For n odd, the conjugacy classes are

K (e) = {e}

K (x) — {xy1 | 0 < i < n}

K W) = { y \v n- % i < i < ^

and the character table is

D n K{e) K (x) K t f)
1 1 1 1

Ip! 1 - 1 1

Xj 2 0 2 co s(2?)

where 1 < i , j < (n — l) / 2.

The (generalized) quaternion group of order 4n has the presentation Q2n =

{x, y | y2n = e, x2 = yn, yx — xy-1). Its elements can be listed as xlyi where i E

{0 ,1 } and 0 < j < 2n. Conjugacy classes are given by

K (e) = {e}

K {x) = { xy2l | 0 < i < n — 1}

K (xy) = {xy2l+1 \ 0 < i < n — 1}

K {y l) = { y \ y 2n- % l < i < n - l

K (y n) = {yn}

The character table is slightly different for n odd and n even. Let i = 1 when n is

even and t — i { i2 — — 1) when n is odd. Then the character table is

Qln K (e) K{x) K {xy) K (y n) K {y i)
1 1 1 1 i 1

Ip! 1 - 1 - 1 i 1
ll> 2 1 l —i (- i) n c - iy
tp3 1 —t L (- i) n (- i ?
Xi 2 0 0 2(- l) i 2 c o s (^)

where 1 < i, j < n — 1. Notice the similarity w ith the character table of D n. In

particular, when n is even Q^n and D^n have the same character tables.

11

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1.4 The modular group SL2(Z)

The group SL2(Z) is called the modular group and consists of all 2 x 2 integer

matrices with determinant 1,

Modular data is a representation of SL2(Z) so we w ill be interested in it throughout.

O f particular importance is that fact that SL2(Z) is generated by two elements:

P ro p o sitio n 1.17 SL2(Z) is generated by the elements s = (° ~01) and t = (J }) .

P ro o f. Our proof is based on one given in [Apo76]. First we remark that tn = (J ?)

and s2 = — (J ?)• Let A = (“ ^) G SL2(Z). Assume c > 0 and proceed by induction

on c. I f c = 0, then since det(A) = 1 we have ad = 1, so a = d = 1 or a = d = —1.

In the first case, A = (q \) = tb and in the second case A = — (q ~i6) = s2t~b. I f

c = 1, then 1 = det(A) = ad — b so

Now assume c > 1 and that every m atrix in SL2(Z) with lower-left entry non­

negative and less than c is generated by s and t. Since ad — be = 1, we know

Since r < c we get by the induction assumption that At qs is generated by s and t

To complete the proof, if c < 0 then As2 = —A has lower-left entry non-negative

hence is generated by s and t, so A = (—A)s-2 is generated by s and t.

R em ark 1.18 In fact, every element of SL2(Z) can be expressed using only positive

P ro p o sitio n 1.19 A presentation for SL<2(Z) is < s ,t | s4 = 1, s2 = (st)3 > .

gcd(c, d) = 1 and in particular d ^ 0 and d ^ c (remember c > 1). Then division of

d by c gives

hence A = (A t gs)s 1tq is generated by s and t, completing the induction.

□

powers of s and t since s4 = 1 so s 1 = s3 and t 1 = (J i1) = ststs3.

12

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P ro o f. Showing that s = (J q1) and t = (q i) satisfy the relations is easy. Showing

that no that no other relations are needed is more difficult.

□

For a positive integer m define a subgroup T(m) < SL2(Z) as

r(m) = {(“ d) 6 SL2(Z) 1 (“ i)S(o l) (modm)}
Lem m a 1.20 T(m) is a normal subgroup o /S L2(Z) and SL2(Z)/T (m) = SL2(Z m).

P ro o f. One uses the obvious homomorphism </? : SL2(Z) — ► SL2(Z m), (“ £)

((e mod m) (d mod m)) and shoWS that ker(^) = F (m) ^ Im O) = SL2(Zm) SO the
lemma follows from the ‘First Isomorphism Theorem’. The only non-trivial step is

showing Im(<£>) = SL2(Zm). A proof is given in §6.1 of [Lan87].

□

SL2(Z) acts the complex plane C as Mobius transformations. For (“ ^) € SL2(Z)

and z € C the action is
(a b \ _ az + b
\c d j cz + d

Mobius transformations are conformal maps (i.e. they locally preserve angles). Let

H = { t e C | Im (r) > 0} be the upper half-plane of C. One easily checks that for

r £ m and A 6 SL2(Z), A.t is also in H so we have an action of SL2(Z) on OH. The

orbit space IH/SL2(Z) parametrizes the conformal equivalence classes of tori, as we

w ill see. Tori are conformally equivalent if there is a conformal (complex-analytic)

bijection mapping one to the other.

One way to define a torus is as the orbit space of C by a lattice. Let r , w € C be

linearly independent over R (i.e not real multiples of each other). The lattice with

basis r , w is the Z-span of r and w, denoted Z r+ Z u ; = { Ir+ m w \ I, m 6 Z }. One can

show that the lattice with basis r, w equals the lattice with basis a r + bw, cr + dw

if and only if a,b,c,d €. Z w ith ad — be = ± 1. That is, the possible ways to

change basis are given by (“ £) € M 2(Z) w ith determinant ±1 . The determinant

— 1 transformations can be written as a determinant 1 transformation followed by

interchanging the basis vectors,

fa b \ /0 1 \ _ fb a \
yc d) \1 0/ \d c)

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The ordering of the basis is irrelevant, so we may restrict to determinant 1 i.e.

SL2(Z). A lattice acts on C by translation:

z .(It + mw) = z + It + mw

The orbit space C / (Z t + Z w) looks like a parallelogram with vertices at 0,r,u;, t + w .

Every point along the side of the parallelogram is in the same orbit as one on the

opposite side, so opposite sides are identified (‘glued together’) and the result is a

torus.

Rotation and scaling are conformal maps, so we can rotate and scale the basis

vectors r, w and end up with a conformally equivalent torus. Consequently we may

assume w = 1 and r € H. So every r € H corresponds to a torus. But we can change

basis w ith (“ ^) € SL2(Z) and still have the same lattice: (r, 1) i— ► (a r + b,cr + d).

Scaling so that the second basis vector in 1, we get that r and = (“ ^) .r

describe the same torus. Consequently H /SL2(Z) parametrizes, without redundancy,

the conformal equivalence classes of tori and is called the moduli space of the torus.

14

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 2

Introduction to finite group
modular data

2.1 Definition of modular data for a finite group

In this section we provide the definition of modular data for a finite group. We

define modular data as a representation of SL2(Z) on the space C °(G cototo). This

space was defined in [KSSB99]. There are two bases of interest for C °(Gcomm), C

and V, giving two m atrix representations of modular data. In §2.3 we review the

contexts in which finite group modular data arises. In most of the literature modular

data appears only as a m atrix representation in the C basis. However, we present

modular data first in the V basis and explicitly derive modular data in the C basis.

This derivation does not seem to be given elsewhere.

2 .1.1 T h e space C ° (G comm) an d tw o bases

Let G act on G x G by simultaneous conjugation, i.e. for x € G and (g,h) € G x G

x.(g,h) = (xgx-1 ,xh x_1)

Define a subset G comm of G x G as the set of all commuting pairs, Gcomm = { (5 , h) €

G x G | gh — hg}. Since g and h commute if and only if xgx~l and xhx~l commute,

the G-action on G x G induces a G-action on Gcomm. We consider the G-orbits of

Gcomm and w ill write (g, h) ~ (g \ h!) to denote elements that are in the same orbit.

Fix a set R = R(G) of representatives of the conjugacy classes of G. For each

a € R fix a set Ra of representatives of the conjugacy classes of C (a). Let TZ =

{ (a ,6a) | a e R, ba e R a}.

Lem m a 2.1 TZ forms a set of representatives of the G-orbits of Gcomm- In partic­

ular, every (g,h) € Gcomm has a representative (g,hg) G R .

15

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P ro o f. First, it is clear that no two elements of TZ are in the same orbit. Now

let (g, h) e Gcomm • Then there exists x €. G such that xgx~l = g e R, so (g, h) ~

(g, xhx~l). Since xhx~l 6 C(g) there exists y € C(g) such that y(xhx~l)y~1 =

hg E R§. So we have (g, h) ~ (g ,xhx~l) (ygy l ,yxhx xy x) = (g,hg) e TZ,

proving the lemma.

□

Define C (G comm) as the space of complex-valued functions on Gcomm and the

subspace C °(G comm) C C(Gcomm) as those functions that are constant on the G-

orbits, i.e.

c°(Gcomm) = { / € C(Gcomm) I f (xgx~l , xhx~l) = f (g,h) for all x , g , h e G}

Equivalently, C 0(G COmm) is the space of complex-valued functions on the orbit space

Gcomm /G .

First we build the basis V of C°(Gcomm), called the permutation basis. We w ill

see later that modular data is a permutation representation when expressed in this

basis, hence the name. For each a € R and ba € R a define the function [o, 6J to be

the characteristic function of the G-orbit of (a,ba), i.e.

We apologize for the awkward choice of notation [a, 6aJ for a function. After this

section we identify [a, 6a] with the G-orbit of (a,ba). In particular, keep in mind

that [a, b] = [c, dj if and only if there exists g € G such that (gag~l , gbg~x) = (c, d).

For Abelian groups conjugation is triv ia l so [a, 6J = [c, d\ <*=*> (a, b) = (c, d).

P ro p o sitio n 2.2 (p e rm u ta tio n basis) The set of functions V = {|a , ba] | a €

R, ba € Ra} forms a basis for G °(G comm).

P ro o f. Considering G° (Gcomm) as C-functions on the orbit space Gcomm IG , the

[a, ba] are the characteristic functions of the orbits hence form a basis.

□

C o ro lla ry 2.3 The dimension of C°(Gcomm) is YlaeR Ta, where qa is the number

of conjugacy classes of Cc(a).

16

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

We now build the second basis C, called the character basis (the name comes

from characters of a vertex operator algebra in conformal field theory). For (g, h) €

Gcomm) let (g,hg) be its representative in 7Z. For each a 6 R and irreducible

character x £ Irr(C c («)), define the function ch* € C °(G Comm) by

ch* (g , h) = [x &s) 9 = a
| 0 otherwise

The definition depends only on the representative (g, h g) hence ch* is in C °(G comm).

The functions do not depend on the choice of representatives R. Indeed, replac­

ing a w ith xax~1 we see that C (xax~1) = xC (a)x~1. Then x £ corre­

sponds with xx £ Irr(C (xaa;-1)) = Irr(xC (a)a;-1), where for xhx~x E xC(a)a;-1 ,

X x { x h x ~ l) — x ih). For this reason we may always assume that g E R, and write

X (h) instead of x(hg)- We w ill often identify ch* with the pair (a, x).

P ro p o s itio n 2.4 (character basis) The set of functions C = {ch* | a E R, x €

Irr(C (a))} forms a basis of C°(Gcomm)-

P ro o f. Since the number of conjugacy classes of C(a) is equal to the number of ir­

reducible characters of C(a) we have that the number of functions in C is 5ZaGft<7a>

i.e. the dimension of C °(G comm). Now we show that the ch* are linearly inde­

pendent. Suppose ch* = a (6» ch& f°r some o t^) € C. Then for every

h E C (a) we have

X (h) = ch*(a, h)

= ^ (o> bi)
(b,ip)eC

= ^] 0c(a,i>)ĉ ia {at h)
(a,ip)eC

y>eIrr(C(a))

This implies that a(a,ip) = 0 for ^ ^ x and ct(a,x) = 1 since the irreducible characters

of C{a) are linearly independent. Now let d E R w ith a. Then for every k E C(d)

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

we have

0 = ch *(d,fe)

(b,tp)eC

= Z a w) W)
(d,ip)ec

Z a (d , v W)
V>€lrr (C(d))

which implies all the a ^) = 0 since the ^ 6 Irr(C (d)) are linearly independent.

So we have that all the a = 0 except cc(a x) = 1 so the ch-* are linearly independent

and C is a basis of C °(G comm).

□

Next we present the formulas needed to change from one basis to the other. We

have not seen it written down anywhere in the literature.

P ro p o sitio n 2.5 (C hange o f basis fo rm ula) Let ch* € C and [a, ba| € V . Then

we can express ch* in terms o fV and f (a,ba) terms of C as follows:

cha = Z x(&a)[a,&aj (2-1)
baSRa

â,6aI = Tr — Z x(ba)ch* (2.2)
i C g (“) (“) | xeIrr(C(a))

P ro o f. Let (5, h) € Gcomm • Evaluating the right-hand side of 2.1 at (g, h) gives

9
. _ otherwise

bâ Ra

which is exactly the definition of ch%(g,h) . Evaluating the right-hand side of 2.2 at

(g, h) and using the Second Orthogonality Relation (1.14) gives

\r 1 ni Z X(ba)<&x{g ,h) = , Sa~ 9(, ■ Z X (b a) x (h)
\ Ccip.) (a) I x e irr(C(a)) \C CG{a) (&a) | xeIrr(C(a))

_ f 1 (a, ba) ~ (g , h)
\ 0 otherwise

which is the definition of [a, 6a|.

18

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2.1.2 SLi2 (Z) representation and the definition of m odular data

Let A = (® j) G SL2(Z) and (g, h) e Gcomm- Define a right action of SL2(Z) on

W ith a bit of writing one checks that this is a right action, noting that commutativity

of g w ith h is required. The action commutes with the action on G on Gcomm, namely

Consequently we have that (g,h) ~ (g ',t i) <=>- (g,h). (“ £) ~ (9 / ,h '). (“ £).

This action induces a right action on C° (Gcomm) via

where / G C °(G comm). As C °(G comm) is a C-vector space, this defines a represen­

tation of SL2(Z).

D e fin itio n 2.6 The representation of SL2(Z) on the space C° (Gcomm) is called the

modular data associated with G and will be denoted p = pa-

As SL2(Z) is generated by s and t, modular data is determined by p g (s) = S

and pc(t) = T . We w ill not use different symbols for S and T w ith respect to the

different bases, but the basis w ill (hopefully) be clear from context.

M o d u la r d a ta in th e p e rm u ta tio n basis

For the basis functions f<7, h] G V, the SL2(Z) action is

= ((xgx~1)a(xhx~)c, (xgx~1)b(xhx~1)d))

— (xgah°x~1 ,xghhdx~ l)

= x.(gahc,gbhd)

(f - (c d)) i ^ y) = f ((^ y) - (c d) 2)

(Il9 , h } . (ac bd)) (x , y) = \g,h] [(x,y) . (ac bd) X)

1 tf(g,h) ~ (x,y). (“ rf)_1
0 otherwise

0 otherwise

= (l9 ah°,gbhdj j (x,y)

19

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Consequently we have a (right) action of SL2(Z) on V,

and modular data pc is a permutation representation (hence the name permutation

basis for V). Note however that the basis V is not ordered, so to write p as matrix

representation we must first fix an order on V. We will discuss this in detail in

Chapter 4, but for now assume that we fix an order on V.

For the generators s = (̂~q) and t = (J }), we have

I g,h].s = [h,5_1l (2.3)

\g,h].t = \g,gh] (2.4)

Consequently, S and T in the V basis are given by

f 1 (h,g~l) ~ (g',ti)
(9 ',h'),(g,h) ^ q otherwise

T _ / i (g,gh) ~ (g' ,t i)
(9 ',h’),(g,h) | q otherwise

M o d u la r d a ta in th e character basis

For the character basis, the action of a general element (“ € SL2(Z) on the basis

functions ch* is not as easy to describe as in the permutation basis. But it suffices

to give the action of the generators s and t.

Proposition 2 .7 For ch* G C, the action of s, t € SL2(Z) is described by

= ^ < * 5 (2-7)

chi-s = 1^737 H 7373] 5 Z X<xbx-1pMx-'ax)ch* (2.8)
1 k M (b,i>)eC 1 W l xeG(a,6)

where G(a, b) = {x G G \ axbx-1 = xb x^a}.

R e m ark 2 .8 The set G(a,b) is precisely the set of x G G such that x~ l ax G C(b)

and xbx~l G C(a), i.e. the x such that x (x 6x - 1)^ (x - 1ax) makes sense. When

G(a, b) = 0 the sum over G(a, b) is 0.

Proof. The proof of (2.7) is sketched in [CGROO] and we elaborate it here. The

proof of (2.8) is our own, though the result is of course the standard definition of S.

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Let (g,h) e G comm. We prove (2.7) first. Evaluating the left-hand side of (2.7)

at (g,h) gives

(ch* .t)(g,h) = c h *(g,g 1 h) = j 9) 9 ~ a
otherwise

Evaluating the right-hand side gives

= { ^ s ~ a
x (e) (0 otherwise

We may assume g = a, so we need to show —‘ = x{h~l g)- Let ip be the

representation of C(g) corresponding to x- Since g 6 Z(C(g)), Corollary 1.6 gives

<P(9) = for some f € C, so x (9) = deg(</?)£ = x(e)£. Then

p(h~l g) = p(h~ 1)tp(g) =

hence

X{h~l g) = tr {ip{h~1)) = ix {h ~ x) =

as required.

For (2.8), the left-hand side is

(chJ.S){g, / i) = ch>f(/.-1,9) = { * (9 [)

In evaluating the right-hand side, we use the Second Orthogonality Relation (1.14),

Lemma 1.1, and Proposition 1.9:

p 5oi k W X , h)

1 E E x (x p x -1)^ (a :-1ax)^ (/i_1)
\C(a)\\C(g)\ ^€lrr(c(fl))

1 ^ — F *) (- |C (a) | |C (^) I S X (x g x ~ l) I E M x - ' a x m - ')
1 x€G (a,g) V ^G lrr(C(g))

~ |C(a)||C'(<7)| x(xgx 1)|C'c,(s)(h)|<5I - i aa:̂ c,(9)/l- i
x£G (a,p)

where X is the set of all x e G satisfying

axgx~l = xgx~xa (2.9)

x _1ax ~c(g) (2-10)

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

I f (2.10) is satisfied, then we have z 6 C(g) such that zx~1axz~1 = /i_1 hence

a h-1 . So for a / g h_1, the sum is empty and the value is 0 as desired.

Otherwise, we we may assume a = h-1 . Since g and h commute, so do g and

h~l = a so a £ C(g). We need to know more about the set X .

Partition G into right cosets of (7(a). Let x £ X , and take any 2 £ C(a). We

show that zx £ X :

a{zx)g(zx)~l = z(axgx~l)z~1 = z(xgx~1a)z~1 = (zx)g(zx)~1a

and

{zx)~1azx = x~l z~l azx = x~ l ax ~c{g) a

hence C(a)x c l . So X must be a union of right cosets of C(a).

Now let C(a)w C X and suppose that for every choice of coset representative w,

w C(g). Since w 6 X , by (2.10) there exists v € C(g) such that vw~l awv_1 = a,

i.e. vw~l £ C(a). But this is exactly the condition for the cosets C(a)w and C(a)v

to be equal, which is a contradiction since v € C(g). Hence every coset that is

contained in X can be written as C(a)x with x € C(g). Conversely, every coset

C(a)x with x € C(g) is in X since clearly C{g) C X . So every element of X can

be written as zx with z £ C (a) and x £ C(g) = C(g~1). Hence the character value

appearing in the sum is

X ((z x)g -1(z x)~ 1) = x{zg~l z ~ l) = x(<7- 1)

To complete the proof we need to see that |X | = |C(a)||i('G(9)(a)|-

Let Kc{g){a) = {fci, . • •, h } and partition C(g) into I subsets C(g)i - { i £

C{g) | xax~l = hi}. Note that C(g)i ± 0. For X{ £ C(g)i and Xj £ C(g)j we get

i = j <1= ^ X i d X ~ l = XjCLXj1

4=^ x ~ l Xi<ix~l Xj = a

x J l Xi £ C (a)

**=*► C{a)xi = C{a)xj

hence the cosets C(a)x with x £ C(g) are parameterized by the C(g)i and there are

I of them, showing that |X | = \C(a)\\Kc(g)(a)\ and completing the proof.

□

22

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

We will use the notation (a, x) instead of ch* to index S and T in the character

basis. Proposition 2.7 gives the following formulas for 5 and T . These matrices are

the way finite group modular data is usually defined.

S(a'*)'IW) = |CG(a)||CG(i)| ̂ l * XbZ~1)'K z ~laX) (2'U)

T(a,x), ib ,V) = (2 -12)

Observe that S is symmetric and T is diagonal. An alternate way to write S is

S(a,x) ,M) = 1^7 x i x h x - ^ i y g y - 1) (2.13)
1 1 g e K a, h e K br C G(g)

where x, y are any solutions to g = x~1ax and h — y~l by.

Since C is not ordered, there are \C\\ possible ways of choosing an ordering so

that we can S and T as matrices. We will see in Chapter 4 that there is a natural

way to impose some order on C (not a total order though).

2.2 Properties of modular data

In this section we give a few properties of finite group modular data that will be

useful later. We start with two simple observations.

Lem m a 2.9 For any (a, x), (b, ip) € C, i f the order of a does not divide the exponent

of C(b) or the order of b does not divide the exponent of C(a) then S { a ,x),(b,ii>) = 0-

Proof. We prove the contrapositive. I f G(a, b) ^ 0 then g~l ag € C(b) and for

some g G G. Hence |a| = \g~1 ag\ divides the exponent of C(b). Similarly |6| divides

the exponent of C(a).

□

Lem m a 2.10 The order o fT is the exponent of G.

Proof. The order of a group element is invariant under conjugation, hence the

order of T is the same in both the C and V bases. We will use the V basis. Let m

be the order of T. Then tm acts trivially on V. For every g € G, [5 , ej is in V, so

l5>5ml = 1 = \g,e]

But [5 , <?m] = [5 , e] gm = e, hence |p| divides m. This holds for all g € G,

hence lcm{|p| | g e G} = Exponent(G) divides m. Conversely, if I = Exponent(G)

then \g, hj.t1 = |p, glh\ = {g, hj so I divides m.

23

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

□

Next we give a proposition from [CGROO] that will help us compute certain

entries of S.

P roposition 2.11 Let (a, x), {b, v) EC and suppose that v is the restriction to C(b)

of some character v' defined on the group (G(a,b),C(b)). Then if G{a,b) / (ft,

V'(a)Xc(a)(b)
&(«*),(6,t,) - |C ^ |

where Xc(a) ^ induced, character. In particular, when b = z € Z (G) we get

O _ ^ (a)x (*)S(a,X),(z,v) ~ |C (a)| (2-14)

Proof. Since v1 is defined on (G(a,b),C(b)) and restricts to v on C(b), we have

for all g € G(a,b), v{g~l ag) = if{g~l ag) = v'(gg~l agg~l) = v '(a) so we get

= |c (a) | |c m i S x i n i g - X r ^ s)
g€G(a,b)

V ^ Y 1 x igbg-1)|C,(a)||C (6)|
g e G

gbg~1eC(a)

V'(a)Xc(a) (b)
\C(b)\

When b = z E Z (G), we have C(z) = G so v = v' and the condition gzg~l e C (a)

in the definition of the induced character is true for all g. Then the the induced

character is given by

= \C{a) \ ^ = W) /

and the result follows.

□

Finally, but most importantly, we show that po is in fact a representation of a

finite quotient of SL2(Z). This is important since the representation theory of finite

groups is considerably simpler than that of infinite (discrete) groups.

24

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P roposition 2.12 Modular data pa of G is a representation of SL2(Zm), where m

is the exponent of G, and decomposes into irreducibles

PG = 0 m iP i
i

where pi are the irreducible representations o /S L2(Zm).

Proof. First we show that T(m) < ker(pc)- Letting (1"^1m i ^ m) G L(m), we

have that for every [g, h} e V,

lg, hj. ^ +c * m 1 b™dm) = lg1+amh™, g^ h 1+dm 1 = [g, hi

hence the action of T(m) on the permutation basis is trivial and T(m) < ker(pc).

Consequently, pc induces a representation of SL2(Z) /r (m) = SL2(Zm),

AT(m) pG(A) for A e SL2(Z)

which we also refer to as p g - As it is a representation of the finite group SL2(Zm),

it decomposes into irreducibles (Theorem 1.4).

□

In the next chapter we examine the decomposition of po into irreducibles.

2.3 Appearances of modular data

Modular data of finite groups arises in several contexts. The most important is in

conformal field theory ([Gan05],[CGR00]), though it originally appeared in group

representation theory ([Lus79]). I t can also be realized as an action of the 3-string

braid group.

2.3.1 Conformal field theory

In string theory the basic objects are 1-dimensional strings rather than point par­

ticles. Rather than a world-line, a string traces out a 2-dimensional world-sheet.

Conformal field theory (C FT) is a quantum field theory whose symmetries include

conformal transformations. When the space-time of the C FT is the world-sheet of a

string, the C FT gives important information about the corresponding string theory.

One of the most important cases is when the space-time of the C FT is the

torus. As we saw from 1.4, the moduli space of tori is H /SL2(Z). The essential

25

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

quantity in this C FT is the partition function z (t) (r € H), which describes how

the C F T ’s state space transforms under the symmetry algebra of the C F T (which

is a vertex operator algebra). The partition function is a sesquilinear combination

of characters ch^(r), which are indexed by primary fields A G 4>. Algebraically, the

primary fields index the irreducible representations of the vertex operator algebra

and the cA are the characters of those representations. We will discuss the partition

function further in Chapter 3. The characters transform nicely under the action of

SL2(Z) on H:

chA(s.r) = chj4(- l / r) = ^ SABchB{T)
Be<t>

chA(t.r) = c1u(t + 1) = ^ 2 TABchB(r)
Be<t>

The matrices S and T define a representation of SL2(Z) via s i— ► S, 1 1— > T, which

is called modular data. So where do finite groups come in?

The finite group modular data arises as follows. Consider first the string theory

having as its space-time a n-torus Rn/ L n, where L n is a self-dual lattice. The

modular data arising in the corresponding C FT is trivial: 5 = 1 and T = 1. Now

take G to be a subgroup of the automorphism group of Ln and form the orbit

space (Rn/ L n) /G , as a manifold (the ‘orbifold’ construction). For the string theory

on (IRn/ L n)/G , the modular data arising in the C FT is the modular data of G,

i.e. given by (2.11) and (2.12) (C is the set of primary fields). Other types of

modular data arise from other space-times. For example, when the string theory

has a compact Lie group as its space-time the modular data is associated with an

affine Kac-Moody algebra.

2.3.2 Braid group

Finite group modular data can be derived from a action of the 3-string braid group

S 3 on G x G. The braid group S 3 has the presentation

S 3 = (<7l, CT2 | <7iCT2<7i = <72CTl<72)

Geometrically, consider 3 ‘strings’ (not in the sense of string theory!) going from 3

‘start points’ to 3 ‘end points’. The crossings-over and under of the strings and the

start/end points that they connect determines the group element (a ‘braid’). Two

braids are multiplied by joining the end points of one to the start points of the next.

26

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Pretty pictures of braids can be found in any book on the braid group (e.g. [Bir75]

or [Kam02]).

SL2(Z) arises as a quotient of Bz- The centre of £3 is ((cri^cri)2), and

Bz/(((Tia2 cri)4) = SL2(Z). The isomorphism is given explicitly by o\ 1— ► t and

(<ti<72<7i)_1 1— ► s (one checks that the relations s4 = 1 and s2 = (sf)3 hold). Modu­

lar data comes from an action of Bz on G x G. Consider the group algebra C [G xG]

as a C vector space, and define the action on basis vectors (g, h) by

(g,h).ai = (g,gh), {g,h).<J2 = {gh~l ,h)

This is a B 3 representation since a \a 2 (r\(g, h) = 0 2 0 x0 ?.(g, h). We can get an SL2(Z)

representation in two ways. First, let Vi be the subspace of C[G x G] spanned by

Gcomm. (he. by commuting pairs). One checks that V\ is mapped to itself under the

Bz action and that (crio^ci)4 acts trivially on Vi, hence we get a representation of

SL2(Z). The second way is to let V2 be the subspace spanned by all vectors of the

form ' 2̂x€G(xgx~ 1 ,xhx~1). Again one checks that V2 is stable under the Bz action

and that (c r io ^ i)4 acts trivially. Now form the intersection Vi fl V2 and notice that

it is isomorphic to G°(GC0TOTO). Notice that o\ and (cti^cti)-1 act on G x G by

(g,h).ai = (g,gh)

(<7, / o - (* r W) =
= (gh,h~l g ^ h) . ^ 1

= (/i,h _ 1p_ 1/i)

Restricting the action to Vi 0 V2, this coincides with the action of s and t on

c ° {Gcomm).

The action of Bz on G x G = G2 generalizes to an action on the n-string braid

group Bn on Gn~l (and on C[Gn]). The action is given in Chapter 2 of [Gan06]. It

plays a role in C FT on higher-genus surfaces (see Chapter 6).

2.3.3 Other appearances

The definition of the S matrix (in the C basis) originates with G.Lusztig in [Lus79],

in a purely group-theoretical context. This paper classifies the ‘unipotent’ repre­

sentations of certain finite Chevalley groups. Lusztig uses C (as pairs, not functions

on C°(Gcomm)) to parametrize the representations. The representations fall into

families F , and to each family is associated a finite group Tj- (one of Si,S 2 ,Sz,Sz).

27

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Then Cyt parametrizes the representations in T . The matrix S appears (though

Modular data of G also arises in the representation theory of the quantum double

of G ([KSSB99], [Mas95]). The quantum double D(G) is a ribbon Hopf algebra

on G x G. The irreducible representations of D (G) are indexed by C (as pairs (a, x),

on the presentation given in [CGROO].

2.4.1 A belian groups

Modular data for Abelian groups is easy to write down. Every Abelian group

G can be expressed as G = x Zd2 x • • • x Zdt where dilcfel • • • |di. Let m —

(m i, m2, . . . ,rrit) 6 G. Each conjugacy class consists of a single element, so R = G,

and all of the centralizers are equal to G. Consequently, the size of C is |G|2. All the

irreducible representations are 1-dimensional, hence are equal to their characters.

They are parameterized by r = (r i, r 2, . . . , r{) G Z ^ x Z ^ 2 x ■ ■ • x Z^, and are given

with a slightly different definition) and is used to define a ‘Fourier transform’ on

functions on Cr-

formed from G. As a vector space, it is identified with the space of C-valued functions

not functions), with a and Cg (o) being used in the definition of the representation

space. Their characters can be identified with C, as functions on G x G. Then the

representation pa arises as the action of SL2(Z) on C.

2.4 Examples of modular data

We now work out some examples for modular data. Material in this section is based

by
(2'Kim.i \ n (2-Kimi \ T2 (2-k im i \
{ —) - “ H —)

Then the formulas for S and T in the character basis are

(2.15)

(2.16)

28

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2.4.2 D ihedral groups

The dihedral group of order 2n is given by the presentation D n = (x, y \ x 2 = yn =

e, xy — y~ lx) with elements listed as xlyi where i € {0 ,1 }, 0 < j < n. Results are

different for the cases when n is even and when n is odd. First consider the case n

even. D n has § + 3 conjugacy classes. Below is the character table, along with the

centralizers of the conjugacy class representatives — 1).

D n K(e) K{x) K (x y) * (» *) K {y i)
1 1 1 1 1 1

ipi 1 - 1 -1 1 1
1 1 - 1 (- l) f (~ i y

^3 1 - 1 1 (- l) f i - i y

X i 2 0 0 2 (- i y * < * * (¥)
C(g) Dn / — \ (x , y a)

= Z 2 x Z 2
(zy ,y^)

= Z 2 x Z 2
D n (») ^ z n

From the above table, we can compute the size of C:

|C| = (= + 3) + 4 + 4 + (= + 3) + Q — i) » 4 + M

The characters of (y) = Z n are Vi(y>) = with a primitive nth root of unity

and 0 < i < n. For {x,y%) = Z 2 x Z 2 and (xy,y%) = Z 2 x Z 2, the characters are

<pri(x^yk 2) = (—l y i+ lk and <£y/((xy)7yfc?) = (—l) ri +lk respectively.

Since e and y% are in Z(G), we can use (2.14) to compute any entry with an

index involving e or y t . Since Z2 x Z 2 has exponent 2 but no element yl , 1 < i < §

has order 2, Proposition 2.9 tells us that any entry indexed by yl and either x or

xy is 0. For ,k,Xi),(yi,Xl)i we observe that every conjugate of yk is either yk or y~k

hence G(yk,y l) = D n and Xi{sVl9 ~l) = Xi(yl) for every g € G (similarly for Xj)- So

we get
8 (2 ml \ / 27r j k \

S(yk,Xi),(yl ,Xj) ~ ~ cos J cos J

Next consider Any xlyi e G (x ,x) satisfies xxly ixy~ix l = xly ixy~ ix lx,

which has solutions {yj ,xyj \ j = 0, 3 , §, for \ even and (y7, xy-7 | j = 0, § } for

§ odd. The character values are now easy to compute, and a similar computation

shows that we get the same result for 5(*y,v5ri).(*i/.¥V'i'), namely

q _ q _ 1 J (-1)r+r'+l+1' + (- l) r+r' for § even
b(xy,<PTl)AxyWT'l') ~ 4 | (_ l)r+ r ' for n

29

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Finally, for we get G{x,xy) = {yj ,xyj | j = ^ , when \ is

odd and G(x, xy) = 0 when | is even. This gives

l (_ l) r + r '+ Z + r fo r n odd

for | even

For n odd, £>n has + 2 conjugacy classes. The character table and the

centralizers are listed below, where 1 < i , j <

D n K(e) K (x) K &)
1 1 1 1

A 1 - 1 1

Xi 2 0 2 cos (2?)

C { g) D n (x) ^ Z 2 (y) — zn

The size of C is

|C| =
n

+ 2 I + 2 + n
n2 - 1

+ 4
2 J V 2 J 2

The characters of {y) = Zn are denoted as above, and the characters of (x) = Z 2

are (f)r (xl) = (—l) r i, r € {0 ,1}. As before, any entry involving e is computed using

(2.14). All the entries are 0 since no yl has order 2. The S ŷktXi)^yi Xj)

entries are the same as before. Finally, we have G (x,x) = {e, x } hence

S(x,<t>T),(x,<t>r ,) = 2 ^ ~ +

2.4.3 Quaternion groups

The quaternion group Q 2n of order 4n is given by the presentation Q 2n = (x,y \ y2n =

e, x 2 = yn, xy = y~1x). Note the similarity with the dihedral groups and recall

that for n even, Q 2n and D 2n have the same character tables. Q 2n has n + 3 conju­

gacy classes, described earlier in 1.3.5. The centralizers are listed below along with

the character table (<- = 1 for n even, 1 = i for n odd).

Q 2n K(e) K {x) K (xy) K {y n) K{y=)
1 1 1 1 1 1

V’i 1 - 1 - 1 1 1
^2 1 1 — 1 (- l) n (- l) J
^3 1 — 1 l (- l) n (-1 y

Xi 2 0 0 2(- i y 2 cos (?)

C (g) Q 2n <*> = Z 4 (xy) “ Z4 Q 2n (y) = z 2n

From the above we can compute the size of C:

\C\ = (n + 3) + 4 + 4 + (n + 3) + (n — l)(2n) = 2 n2 + 14

30

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The characters of (y) = Z 2n, (x) — Z4, and (xy) = Z4 are, respectively, Vi(yi) =

4>r {x^) = i ri , and <pr ((xyy) = where r 6 {0 ,1 ,2 ,3 }.

Computing T is straightforward. Computing the entries of S proceeds in a

similar manner to the dihedral groups. We use (2.14) for any entries indexed with

e or yn since these are in Z(G). The entries indexed by y-7 (j y n) and either x or

xy are all 0. Indeed, when n is odd, none of the yJ have order 2 or 4, so do not

have order dividing 4 = E xp o n en t^). When n is even, and y^r have order

4. However, xlyi G G (x ,y t) must satisfy xxly^y^y~^x~ '1 = xly^y^y~^x~ix, which

implies ry? = xy^ t, a contradiction. Similarly for .

The entries indexed with yk and yl are the same as in the dihedral case, namely

4 (m l \ (Trjk\
S(yk,XiUyl,Xj) = ~ cos J cos J

For 5(Ii<̂))(X)̂ r,) we get that G(x,x) = {yj ,xyj \ j = 0, f ,n , for n even and

G (x,x) = {y ^ xy i | j — 0,n } for n odd. Then character values are easy to work

out, and we get the same result for >S,(a;y,pr.),(xi/,w)» namely

„ _ _ / 2 cos (f r /)) f ° r n even
b(x,<j>r),{x,4>r,) — b(xy,ipr),(.xy,<prl) — | ^i~r~r for n odd

(noting that 2cos (f (r + r ')) = (i r+r' + (- i) r+r')). Finally, for 5 (x,0r)i(x?/̂ r,) , we

get G(x, xy) = {yJ, xyJ | j = ^ ± 1 } when n is odd and G(x, xy) = 0 when n is

even. This gives
o _ f \ i ~ r~r' for n odd

(x,4>r),(xy,ipr>) | Q for n even

2.4.4 Com parison of dihedral and quaternion modular data

In Chapter 4 we will be comparing modular data of different groups, and defining

what we mean by groups having ‘equivalent’ modular data. To motivate that section,

we make a brief comparison of the dihedral and quaternion modular data.

£>2n and Qin have the same character tables when n is even. Their modular data,

however, is different. In particular, their T matrices are different. Each a € i?r»2n

corresponds to an a1 e Rq2n via xo2n x q 2u, VD2n yq2n. Then for a ^ x,xy

we easily check that x(a) = x V) , hence T ^) M = 7fj"x>),(a>,x'y But in D2n

the centralizer of x is Z2 x Z 2 and the four entries T̂ x,<j)ri),{x,4>ri)i r , l € {0, 1} are

1,1, —1, —1, while in Q in the centralizer of x is Z4 and the four entries T (x^ r)t(x

are 1, i, —1, —i. Similarly for xy, hence T ° 2n and T ^ 2n are different. In particular,

31

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

for D i and Q4 we have

T D* = diag(l, 1 ,1 ,1 ,1 ,1 , - 1 , - 1 , 1 , 1 , - 1 , - t . t , 1 , - 1 ,1 , -1 ,1 ,1 ,1 ,1 , -1)

T '34 = diag(l, 1, 1, 1, 1, 1, - 1, - i , i , 1, - 1, - i , i , 1, - 1, - i , i , 1, 1, 1, 1, - 1)

Trying to compare S matrices is more difficult. We can see that the same entries

appear in SDin and S®2n. But without fixing an order on C, we cannot test for

equality. We write down the S matrices for D 4 and Q 4 as an example (see below).

Notice that although the matrices are very similar, the value -4 appears six times

in the diagonal of S® 4 but only twice in the diagonal of SD i. Reordering the basis

means simultaneously permuting rows and columns of S , which does not change

the entries that appear on the diagonal (they are permuted though). Consequently,

we should regard these S matrices as inequivalent. We will define formally what

we mean by equivalent in Chapter 4, and have the same entries appearing in the

diagonal will be one of the conditions.

32

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 1 1 1 1 2
1 1 1 1 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 2
2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -4
2 -2 -2 2 0 4 0 -4 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 4 0 -4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 -2 2 0 -4 0 4 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 -4 0 4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 2 -2 0 0 0 0 0 4 -4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 -4 4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 0 0 -4 4 0 0 0 0 -2 2 -2 2 0
2 -2 2 -2 0 0 0 0 0 0 0 4 -4 0 0 0 0 -2 2 -2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 4 0 0 -4 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 4 -4 0 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 -4 4 0 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 -4 0 0 4 2 2 -2 -2 0
1 1 1 1 -2 2 -2 2 -2 2 2 -2 -2 2 -2 -2 2 1 1 1 1 -2
1 1 1 1 -2 -2 2 -2 2 -2 -2 2 2 2 -2 -2 2 1 1 1 1 -2
1 1 1 1 -2 -2 2 -2 2 2 2 -2 -2 -2 2 2 -2 1 1 1 1 -2
1 1 1 1 -2 2 -2 2 -2 -2 -2 2 2 -2 2 2 -2 1 1 1 1 -2
2 2 2 2 -4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 4

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 1 1 1 1 2
1 1 1 1 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 2
2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -4
2 -2 -2 2 0 4 -4 0 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 -4 4 0 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 0 -4 4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 -2 2 0 0 0 4 -4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 2 -2 0 0 0 0 0 4 -4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 -4 4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 0 0 -4 4 0 0 0 0 -2 2 -2 2 0
2 -2 2 -2 0 0 0 0 0 0 0 4 -4 0 0 0 0 -2 2 -2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 4 -4 0 0 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 -4 4 0 0 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 -4 4 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 4 -4 -2 -2 2 2 0
1 1 1 1 -2 2 2 -2 -2 2 2 -2 -2 2 2 -2 -2 1 1 1 1 -2
1 1 1 1 -2 -2 -2 2 2 -2 -2 2 2 2 2 -2 -2 1 1 1 1 -2
1 1 1 1 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 2 2 1 1 1 1 -2
1 1 1 1 -2 2 2 -2 -2 -2 -2 2 2 -2 -2 2 2 1 1 1 1 -2
2 2 2 2 -4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 4

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 3

The centralizer algebra of p q

As we mentioned in §2.3.1, the C FT partition function z {t) is a sesquilinear combi­

nation of the conformal blocks ch^. In particular,

Z(T) = X ^ABchA(r)chB(r)
A,B€<p

We identify z with the matrix M . The values M ab are non-negative integers (they

are multiplicities of irreducible representations in the space of states of the C FT).

One of the primary fields is distinguished (the ‘vacuum’), denoted 0, and Moo = 1-

Since the C F T is symmetric under conformal transformations, the partition function

z (t) depends only the conformal equivalence class of tori, so is invariant under the

SL/2(Z) action on H, i.e. z (A.t) = z (t) for A £ SL2(Z). From this we derive the

most important property of M : M commutes with S and T.

The modular invariants essentially classify the possible CFTs, so one wants to

know all the possible modular invariants for given modular data. There will only

be finitely many. For modular data arising from affine algebras, some classifications

have been done while for finite group modular data, very little is done. Modular

invariants have only been computed for a few specific groups (e.g. some dihedrals,

A 4 , S3). In theory, one can compute modular invariants for any abelian group but

a general formula is not known.

In this section we will not be computing modular invariants, but will be exam­

ining the algebra of complex matrices that commute with S and T. We are able to

give some general results for the cyclic and dihedral groups, which should help to

understand their modular invariants in the general case.

34

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.1 Perm utation representations and the centralizer al­
gebra

The fact that modular data is a permutation representation is tells us much about

Pg - It seems that this property of modular data has yet to be fully exploited.

We start with some background on permutation representations and the centralizer

algebra of a representation. Results in this section are standard material and can

mostly be found in [Cam99].

Let G act on a finite set Cl. The group action is equivalent to a permutation

representation 7r by taking fl as a basis for the representation space. The group

action induces a component-wise action on Cl x Cl,

(x,y).g = (x.g,y.g)

where g £ G and (x , y) € Cl x fi. Orbits of this action are called the orbitals of G

acting on Cl (or orbits of G acting on 9 x 9) . The number of orbits and orbitals

can be determined from the decomposition of 7r into irreducibles.

Lem m a 3.1 Let G have permutation representation 7r corresponding to the action

of G on finite set Cl. Let 7r = ©imi7Tj be the decomposition of ir into irreducibles

with 7r 1 the trivial representation, and let x be the character of n. Then

(a) x(g) is the number of fixed points of g.

(b) The number of orbits of G acting on f i is m i, the multiplicity of the trivial

representation.

(c) The number of orbitals of G acting on Cl is mf.

(d) The number of orbitals of G acting on Cl is < x , X >■

Proof. Let Xi be the characters of the 7Ti. For a permutation representation, the

(i , i) matrix entry 7r(g)i,i is 1 if and only if the i th basis element is a fixed point of

g. Hence the character value x(p), which is the number of l ’s on the diagonal of

7r(g), is the number of fixed points of g. Since x(g) is 311 integer, x(g) = x(ff)- Now

35

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

‘Burnside’s Lemma’ gives

number of orbits of G acting on 0

1 1 geG

|G | X 1 ' Xfo)
1 'g e G

' 1 geG

= < X i , X >

= mi

proving the first result. For the third result, first we observe that (u>i,u>2) is a fixed

point of g in the action on x Q if and only if both u>i and u>2 are fixed points of

g in the action on fi. Hence |Fixnxn(g)| = |Fixn(p)|2. Then we apply ‘Burnside’s

Lemma’ again, giving

number of orbitals of G acting on Q

= number of orbits of G acting on Q x Q

= T ^ X l Fix^ (< 7) l
' geG

= T^T X Z IFixn (^)!2
1 1 geG

= p E x W 2
1 1 geG

= T n \ J 2 x (9) x (9)
I ' geG

= < x , x >

To get the second result we use the third,

< X , X > = i^ r X X(5)x(s)
' ' geG

= X m*]? ^ X x te)X i(5)
* 1 1 geG

= ' £ mi < X , X i >
i

= E-m2

36

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

completing the proof.

Let v : G — ► GL(m, C) be a representation of G. Define the commutant or

centralizer algebra CA(u) of v as the set of m x m complex matrices that commute

with v(g) for all g e G, i.e.

CA (u) — { M € M m(C) | Mu(g) = v{g)M for all g € G)

Notice that CA(i/) is closed under addition, matrix multiplication, and scalar mul­

tiplication therefore is an algebra over C. Decomposing v into irreducibles allows us

to describe the structure of CA(V), with the next proposition.

Proposition 3.2 Let v be a representation ofG with decomposition into irreducibles

v = @\= 1 miVi. Then CA(u) is isomorphic, as a C-algebra, to E^= 1M TOi(C). In par­

ticular, the dimension of CA(u) as a C-vector space is mj-

Proof. Rewrite the decomposition of v as v = © t= 1r/j, where r =

the rjj are irreducible (the rjj are the Vi, just relabeled). We can find a basis such

that u(g) is a block-diagonal matrix, i.e.

/ m(9) \
m (g)

v{9) =

\ nr{g)

The decomposition defines a block-matrix structure on any r x r matrix, with the

(*, j)-block being a dim(^,) x d im ^) matrix. Let M 6 CA(r'). Then we have

Mv{g) = v (g)M

for all g G G. Comparing the (i, j)-blocks of each side of the above gives

M ijr j j ig) = Vi(g)Mid

for all g 6 G. For rji y , Schur’s Lemma gives My = 0 (otherwise My is an

isomorphism and r/i and r/j are equivalent). For g, ~ gj, Schur’s Lemma gives

M i j = \i,jIdim(T)i) f°r some Ay € C. Notice that for any choice of Ay, M € CA(v).

Hence CA(z/) consists of all matrices

(A \ ® idj \
M. ® Id2

\

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

where € M mj(C) and dt = dim(i/j). Since M mj(C) ® = M m (C) we have

CA(i/) = n iM mi(C). The dimension of M mj(C) as a vector space is m? so the result

on the dimension of CA(i/) follows.

□

C oro llary 3 .3 Let 7r be a permutation representation of G, corresponding to the

action of G on Cl. Then the number of orbitals of the action is the dimension of the

centralizer algebra CA(7r).

3.2 Decom posing pg

As we saw in the previous section, knowing the decomposition of pc into irreducibles

gives the structure of the centralizer algebra of pc, which is a major step in knowing

the modular invariants. I f we also know the change-of-basis that puts pc into the

block-diagonal form then we know the centralizer algebra (the change-of-basis matrix

is probably difficult to find however). Just knowing the dimension of the centralizer

algebra, however, will constrain the number of modular invariants.

In this section we are able to give the decomposition for the cyclic groups Cp of

prime order. We also give the multiplicity of the trivial representation for all cyclic

and dihedral groups. The results in this section are original.

P roposition 3.4 The multiplicity m i of the trivial representation in the decompo­

sition of pc is greater than or equal to the number of distinct orders (of elements)

in G.

P roof. The multiplicity m i is the number of orbits of SL2(Z) acting on V. Let

g,h € G with |g| ^ \h\. We claim [5 , e] and [h, e] are in different orbits, proving

the proposition. Suppose [5 , ej and [h, e] are in the same orbit. Conjugation does

not change the order of an element so {g, e] ^ [h, e]. So there exists (“ e SL2(Z)

such that

M . (: = Isa>06l = [M

Then gb = e so \g\ divides b. But a and b axe coprime, so a and |(/| are coprime,

hence |g| = |ga| = |h| which is a contradiction.

□

38

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Lem m a 3.5 Suppose g € G has the property that C(g) is cyclic. Then for every

h £ C(g) the orbit of [<?, hj contains an element of the form [a, e].

P roof. Let C(g) = (x). Then g = xr and h = x l for some r, I £ Z. Let

k = gcd(r, I), and write k = ar + bl so that 1 = a£ + bj .̂ Then () € SL2(Z)

and

{xk, e]. ^ = [xr , xl] = {g, hj

hence [xfc, e] is in the orbit of fg, /i].

□

P roposition 3.6 Let pcn be the modular data of Cn. Then then multiplicity m i

of the trivial representation in the decomposition of pcn is the number of positive

divisors of n. Writing Cn = {x), the orbit representatives for SL2(Z) acting on V

are Jxd,e] where d is a positive divisor of n.

P roof. First we observe that since Cn is Abelian, the ~ relation on Gcomm is

trivial, so [g, h] = (g, h) = (g1, h'). Lemma 3.5 applies to Cn, hence

we need only consider the elements |x l , e], 0 < i < n. Clearly {[e, e]} is one orbit.

We claim that for i , j / 0, [x*, e] and fx-7, e] are in the same orbit if and only if

gcd(i, n) = gcd(j, n). The claim shows that orbit representatives are given by [xd, ej

where d is a positive divisor of n, proving the Proposition. Now we prove the claim.

Assume [x \e j and [xJ-,e] are in the same orbit. Then there exists (“ ^) €

SL2(Z) such that

lat'.ej. (“ £) = [! *■ , I *] = K e]

i.e. there exist a, b € Z coprime and satisfying

ia = j (mod n)

ib = 0 (mod n)

Writing 1 = k a + l b and i b = r n for some k , l , r £ Z gives i = k a i + I r n . Then for

some a , 0 € Z,

gcd(*, n) = a i + /3n = (ak)ai + (a ir + /3)n

hence gcd(a*, n) divides gcd(i, n). Clearly gcd(i, n) divides gcd(a«, n) so gcd(ai, n) =

gcd(i, n). Now ai = j (mod n) implies gcd(a*,n) = gcd(j, n), so we get gcd(*,n) =

gcd (j, n).

39

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Conversely, assume gcd(i,ra) — gcd(j , n) = d. Write i = ddi and j = ddj.

Since ck and n are coprime, di is invertible modulo n, i.e. there exists d~x 6 Z

and d f l is coprime to n. Since dj is also coprime to n, gcd(d“ 1dJ, n) = 1 hence

(dt ̂ dJ ” j € SL2(Z) for some u, v e Z. So

therefore fx \ e] and [xJ, e] axe in the same orbit.

□

P roposition 3 .7 Let D n be the dihedral group of order 2n and r the number of

positive divisors of n. Then the multiplicity m \ of the trivial representation in the

decomposition of pon is

{ r + 1, n odd
r + 3, n even, § odd

r + 4, n even, % even

Orbit representatives for SL2(Z) acting on V are as follows, where D is the set of

positive divisors of n.

• For n odd, { |x , e], \yd, e] | d 6 £>}

• For n even, § even, {[x, e], J xy, ej, |[x, y t] , | Xy, y t] , {yd, ej \ d e D }

• F o rn even, \ odd, {Jar, e], [xy.e], [x ,y f] , [yd,el | d € D }

P roof. We start with n odd. First, we need to write down the permutation basis,

i.e. all the [a, 6a] where a € R and ba € Ra- The sets R, R a are summarized below,

where i runs through { 1, 2, . . . , r̂ } .
a € R Ra
e {e , x , y1}
X { e , x }

yi {y j I 1 < j < n }

Let V ' be the set of [a, 6] where x appears in neither a nor b (i.e. when we write a

and b in the form x%yi with i G {0 ,1} and 0 < j < n , we have i = 0). We will show

that we can use the result for C n for these elements. Notice that V is a union of

SL2(Z) orbits (x does not arise as a power of y). Let V(y) = {[y*, yJJ | 0 < i , j < n}

40

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

be the permutation basis of (y) = Cn. I f we define the equivalence relation M on

V {y) by

{y\ y31 1x1 ly , y J (k = n - i and I = n — j) ot (k = i and I = j)

then we get V(y) / N = V' (conjugation by any element involving x takes (y*, y-7) to

{yn~ \ yn~i)). Now observe that

I v V l - (“o1 . “j) = b r V 4 = b n- \ y n- ‘ \

meaning two elements related by M are in the same SL2(Z) orbit. Hence the number

of orbits of SL2(Z) acting on and V^y) / N = V ’ are the same, namely r. The

orbit representatives are the \yd, ej where d G D.

The remaining elements of V are [x, ej, fe, x], and [x, x j. These form one orbit,

since [x, ej.t = [x, x] and [x, e|.s = [e, x]. So the number of orbits is r + 1.

Now we turn to n even. The table below describes V, where i runs through

{1,2, . . . , f - 1}.
a € R

xy
yi

n
y 2

R a

e { e , x , x y , y x, y a }
x { e , x , y t , x y f }

{e,xy,y»,xyy?}
{yj | 1 < j < n }
{ e ,x ,x y ,y \y ^ }

The elements [a, b} with x appearing in neither a nor b are handled as in the case n

odd, and we get r orbits. The elements [x, e], [e, x], and [x ,x] form one orbit, as

in the n odd case. Similarly [xy, e], [e, xy|, and [xy, xy] form one orbit.

The remaining six elements are [x ,y?], [x ,xy? |, [xy,y?J, [x y ,x y y t], [y? ,x],

and [y^ ,xy j. We have [x,y?J.s = [x,xy?J and [x ,y?].f = [y ^ ,x j, so [x ,y 5 j,

[x ,xy?], and [y i ,x | lie in one orbit. Similarly [xy ,y?], [xy,xyy?J, and [y^ ,xy]

are in the same orbit. For § even these are distinct orbits while for | they are one

orbit. Indeed, suppose | is odd and let ^ — 1 = 2k. Then

[y^, x j.t = [y ^ ,y^ x j = lyky^y~k,yky^xy~kj = [y^ ,xy? “ 2fc] = [y * ,x y]

so we have only one orbit, and the total number of orbits is r + 3. Now suppose |

is even, but that we have only one orbit. Then there exists (“ 6 SL2(Z) sending

[x ,y t] to [x y ,y t] ,

[x ,y t]. ^ = [xayc^ , x V ^ l =

41

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Consequently there exists xlyi e D n such that

xly^xayĉ y~^x% — xy. (3.1)

But this implies that x2l+a = x, so a is odd and (3.1) becomes xayc?_2; = xy when

i is even, and xay_ct +2-? = xy when i is odd. The former case implies c | — 2j = 1

(mod n), which is impossible since —2j , and n are all even. The latter case gives

the same contradiction, so we have two distinct orbits and the total number of orbits

is r + 4.

□

For the cyclic group Cp, we axe able to give the complete decomposition of pcp

into irreducible representations of SL2(Zp). Recall from Theorem 1.10 that the

decomposition of pcp into irreducible representations corresponds with the decom­

position of its character xpCp int ° irreducible characters. We give the decomposition

of the character. The irreducible characters of SL2(ZP) are described in [Dor71] and

[FH91], and we give a review here. A explicit description of the corresponding

representations is given in [Eho93].

Let p > 5 be a prime. SL2(ZP) has p + 4 conjugacy classes, given in the table

below. In the proof we will need to know if the trace of the class representative is 2

(note that trace is a class function).

Representative No. elements in class No. of classes Trace

1 1 2

ii 1 1 -2

t = (b \) p2- 1. 2 1 2

t2 = (h i) P2- l2 1 2

hi e*+» II i
i

h-»
H* P2-1

2 1 -2

E2=1 2 1 -2

(5 i- ° i) , * P(P+ 1) £=3
2 7* 2

(i 0 ’ <9fe±1 P(P~ 1) Ezd2 / 2

Fix x ^ 0 , ± l and let a = (q x- i)• Then the elements a1, for 1 < I < (p — 3)/2,

form a complete set of representatives for the classes of the form (J ^ i) . For classes

of the form ̂̂ \ j , [FH91] shows that a complete set of representatives is given by

bm, where 6 is an element of order p + 1 and 1 < m < (p— l) /2 . Using this notation

42

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the character table for SL2(Zp) is as follows, where £p_ i and (p+ i are primitive p — 1

andp+1 roots of unity, e = (—1)(p-1)/2, 1 < z, Z < (p—3)/2, and 1 < j , m < (p—1) / 2.

SL2(ZP) [i] N M [*2]
1 1 1 1 1

xp p p 0 0
Xi p + 1 (- 1) ^ + 1) 1 1

03
6
£2
m
m

p - 1

5(P + !)
W + 1)
\{P ~ !)
\ { p - i)

i - i y (p - i)

H p + 1)
h i p + !)

- ± e (p - 1)

- h i p - 1)

- 1
i (l + V^P)
5 (1 - v ^)

i (- l + Vep)

- 1

2(1 - y f f l
1(1 +

5 (- l - y/w)
U - l + J ip)

SL2(Zp) [.zt\ [.z t2] [a*] [bm]
1 1 1 1 1

xp 0 0 1 - 1

Xi
03

6

6

m

m

(- 1) '
(- i y + i

\e (l + y/ep)

5 e (i - V * p)
\ e (l - J e p)

5 e (l + V^P)

(- 1)*
(- i y + i

2 e (i - V * p)

5 e (l + V *p)

3 e (l + V^P)

j c (l - \ / e p)

< S ~ i+ a
0

(-1 y

(~ i y

0
0

0
_ _ f —jm

sp+ l 'sp+l
0

0
(— l)m+1
(- i j m + i

When p = 3 the character table is the same except there are no [a1] conjugacy

classes and no Xi characters. When p = 2, SL2(Z2) = S3 and the character table is

well-known.

Theorem 3.8 Let Cp be the cyclic group of prime order p > 5 and x the character

of its modular data pcp ■ Then x decomposes as

h(p-3)
X = 2 (1) + £ 1 + 6 + ^ + 2 ^ 2 Xi

i= l

For p — 3 the decomposition is

x = 2(1) = & + & +V>

and for p = 2

x = 2(1) = ip

where xp is the 2-dimensional character o/SL2 (Z2) = S3.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P roof. Assume p > 5. From Theorem 1.10, we know that the multiplicity of

v € Irr(SL2(Zp)) in the decomposition of x is given by < Xi v >• We need to know

the character values x (“ d)> which by Lemma 3.1 is the number of fixed points of

(“ bd) acting on V.

Let Cp — (x). Since conjugation in Cp is trivial, elements [xl , x-7] € V correspond

with vectors (i, j) € Zp x Zp and the action of (“ ^) € SL2(Zp) on V corresponds

with right multiplication of (i , j) by (“ %),

\xl ,x j J. b̂ j = |xot+CJ,x w+dj] <— ► (i , j) ^ ® ^ = { a i + c j , U + d j)

Consequently, [x*,xJJ is a fixed point if and only if (i, j) is an eigenvector of (“ ^)

with eigenvalue 1. So (“ ^) has a non-trivial fixed point if and only if

0 = " (V d-i)
0 = a d — a — d + l — cb

2 — a + d

2 - i

Since Zp is a field of p elements, the number of fixed points of (“ is pr , where r

is the dimension of the eigenspace. Since det (®J) = 1, i f l i s a n eigenvalue then

it is the only eigenvalue. Hence (“ bd) has a 2-dimensional eigenspace iff (“ bd) is

diagonalizable iff (“ bd) = (J 5)- So we have the following formula for y:

1 a -|- d ^ 2
p a + d = 2, (ac bd) ± I

(aA) = i
(3.2)

Now we can compute the multiplicities. We know from Proposition 3.6 that

mi = 2. Let v 6 Irr(SL2(Zp)), u / 1. The multiplicity m u of v in x is < v, X >■

Using (3.2), < 1 , v > = 0 (First Orthogonality Relation), |SL2(Zp) = p3 —p|, and the

fact that x is 1 except on the conjugacy classes [1],[t], and [f2], we get the following

44

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

simplification of < x, v >'■

< x ’ v > =

= r a i (iteE w <*w - u " w) + r a i U{A)

- iSL^)i (“ 1MA)) + < >

= (p3 - p)_1(p 2 - i M - 0 + (p - 1)^(p2 - i) M t) + K*2))

= (p3 - p) _1 (ip 2 - 1M-0 + ^(p3 - p 2 - p + IK K *) + K *2)))

Now computing multiplicities is easy:

= (p3 - p)_1 ((p2 - i)p + o + o)) = 1

mXi = (P3 “ P)_1 ((P 2 - !)(P + !) + \ (P 3 ~ P2 ~ P + !) 2) = 2

= (P3 - P) _1 ((P2 - 1) ^ (P + 1) + ^(P3 - P 2 - P + 1) (1)) = 1

m?2 = m?i = 1

We know that x has dimension x(-0 — P2 — |C|. Using the multiplicities we know

so fax and evaluating at I we find that

(p—3)/2

2 + V’C0 + CiC0 + 6 (J) + 2 (7) = 2 + p + p + i + (p - 3) (p + i) = p2
t=l

hence all the remaining multiplicities are 0 .

The case p — 3 is the same except there are no Xi, and p = 2 is easy to work out

since SL2(Z2) = S3.

□

Knowing the decomposition allows us, by Proposition 3.2, to compute the di­

mension of the centralizer algebra:

dim CA (pzn) = y ^ m 2 = 4 + l + l + l + 2 (p - 3) = 2 p -H
i

We will obtain the general result for Z„ in the next section, by counting orbitals.

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.2.1 Galois sym m etry

There is a Galois symmetry that might be useful in finding the decomposition for

other groups. A representation p of G is always equivalent to a matrix representation

with matrix entries in the cyclotomic field Q(£m), where m is the exponent of G and

£m a primitive mth root of unity. The Galois group Gal(Q(£m)/Q) consists of the

automorphisms cr;, I € Z£> (the group of units of Zm), defined by c r;(^) = ££(and

extended linearly to all of Q(£m). Each automorphism yields a representation a up

defined by

(<W (0))y = M f (g) i j)

The representations p and a\p are said to be in the same Galois orbit. For example,

the irreducible representations of Zp are given by Xi(r) = £p f°r some pth root

of unity £p and 0 < i < p. A ll except xo are in the Galois orbit of x i since

0 iX i(r) = <ri(%) = £pr -

Since the character of a representation is the trace, the character of a up is just

<ri(x(g)), where x is the character of p. When Xi is irreducible, so is 07X1 (we have

< alXii&lXi > = < XhXi >)• Now in the case of modular data p with character x

we know we know that the character values are integers so pix = X- Prom this

we determine that irreducible characters in the same Galois orbit have the same

multiplicity in the decomposition of x- Indeed,

m Xi =

= 5 Z Xi(g)x(9)
V t>eG

= t4 t aiXi(g)x(g)
' ' geG

- < G l X h X > = ™ , aiXi

In the decomposition of pzp, one finds that the Xi 3X6 in the same Galois orbit as are

£1 and £2, and indeed the multiplicities are the same. In this case the multiplicities

were easy to work out, but in more difficult cases the Galois symmetry might prove

useful.

3.3 Dim ension o f CA(pzn)

We find the dimension of the centralizer algebra of Z n, and list the dimensions for

some small-order dihedral groups. The results in this section are new. We start

46

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

with the dimension for Zp, p a prime, as a stepping stone to the proof for Zn.

Lem m a 3.9 The number of orbitals for SL2(Z) acting on the permutation basis V

ofZp is 2p + 1. Orbitals representatives are given by

(a) ([1, 0], [i , 0]) , 0 < i < p

(b) ([1, 0], [0, j]) , l < j < p

(c) ([0, 01, [1, 0])

(d) ([0, 0], [0, 01)

P roo f. By Proposition 3.6, there are only 2 orbits of SL2(ZP) acting on V, w ith

representatives [0 ,0] and [1 ,0]. Hence every orbital has a representative with first

component [0 ,0] or [1 ,0]. There are two orbitals w ith first component [0 ,0], namely

{([0 ,0], [0 ,0])} and {([0 ,0], [<7, /i]) | [5 , h} € V }. So for the remaining orbitals we

may assume there is a representative with first component [1 ,0]. The number of

orbitals with first component [1, 0] is equal to the number of orbits of the stabilizer

of [1,0] acting on V. This stabilizer is given by

StabSL2(zp) ([l ,0]) = { (“ d) € SL2(ZP) | [a ,6] = [1 ,0]}

= { (c d) ^ SL2(Zp) | a =p 1, b =p 0 }

= { (c l) | c € Z p }

Elements of S ta b ([l,0]) act on [i,0] and [0, i] by

M i - (1 J) = IbO] (3.3)

I°,il.Q f j = Uc’j i (3-4)

From (3.3), we get that no two of ([1 ,0], p ,0]), 0 < i < p are in the same orbital.

From (3.4) we see that A € S ta b ([l,0]) cannot change the second component of

[0,*], hence ([1, 0], [0, j]) , 1 < j < p are all in different orbitals, which are also

different from the orbitals containing the ([1 ,0], [i, 0]). Finally, for any ([1 ,0], [*, j })

with j 0, j has an inverse j ~ l € Zp so

([1,0], [i, j]) . (_ ^ - i J) = (IM1> [* = ([1,0], [0,jD

hence ([1 ,0], [z ,j]) is in the same orbital as ([1 ,0], [0, j]) . Therefore all of the

orbitals are accounted for, and there are 2 p + 1 of them.

47

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

□

For the decomposition of pzn we w ill write Zn as a direct product of cyclic

groups of prime power order. The modular data of a direct product is just the

tensor product:

Lem m a 3.10 Let pa and pn be modular data of G and H . Then the modular data

of G x H is the tensor product po <8> pH- la particular, in matrix form the modular

data is the Kronecker product,

s G x H _ s G ® S H

r p G x H rpG 0 rp H

P ro o f. This is a straightforward computation involving unpleasant notation, but

we w ill sketch it. Conjugacy classes of G x H are given by K , x L j, where K j runs

through the conjugacy classes of G and L j through those of H . Representatives

are (k i, l j) and the centralizers are C G xH {h ,lj) = C d h) x C n ilj)- Irreducible

characters of CG{ki) x CH (lj) are x^m, ■ (g, h) = Xi,rrn{9)^j,nj{h) where Xi,mt €

Irr(CG!(fci)) and € Irr (C # (ij)). Then for T we have

rj-iGxH _

r <- X i !m i (k i) lp j :nj (l j)
{kiJiUkaM Xi,mi ^,TV Xa,m0^ i>,„6 (e)^ -„ . (e)

_ (x r r s (h) \
- \ b k itk J Xi,m i,Xa,ma X i> m i (e)) n j M , n b ^ n j { e) J

 rpG rp H
(ki>Xi,m ̂))(ka >Xa,ma) (h))(6̂))

hence T GxH = T G <8> T H . The computation for S is similar and more unpleasant.

A t this point one should ask if the modular data of the semi-direct product G tx H

is related to that of G and H . We do not know the answer. For example, D n is

the semi-direct product of Cn and C2. But the dimensions of their modular data

are dim(pcn) = n2, dim(p2) = 4, dim(px?n) = n2/ 2 + 14 (n even), and dim (pon) =

(n2 —1)/2 + 4 (n odd). Unfortunately, the dimensions do not (at least to this author)

suggest any obvious relation.

48

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P ro p o s itio n 3.11 Let n = p ^p ^ 2 • • • • • p”r ^ Z>o- Then the dimension of the

centralizer algebra for pzn is

r

dim CA(pzJ = (f a + 1)p T +
i= 1

P ro o f. First we show that it suffices to prove the theorem for Zpn. Let D (n) =

dim C A (pcn). We need to prove that D is multiplicative, i.e. D (lm) = D (l)D (m)

when gcd(Z, m) = 1. Let pz, = ®ihPi and pzm = ® jm jp ' be the decompositions

of the modular data of Z i and Zm (note that pi are the irreducible representations

of SL2(Z 0 while p'- are the irreducible representations of SL2(Zm)). From Lemma

3.10 we know that the modular data of Z im = Z / x Zm is the tensor product,

PZ; x Z m = P Z , ® P Z m

= ® ^ © m^ i

= ^ km-jPi <S> p'j
i,j

From Theorem 1.13 we know that the irreducible representations of SL2(Z;m) =

SL2(Z;) x SL2(Zm) are precisely the pi <S> p'j, so the above is the decomposition into

irreducibles. Applying Proposition 3.2 we get

D (lm) = Y , (k m j) 2 = = D (l)D (m)

as desired.

Now we show that D(pn) = (n + l)p n + npn_1, by induction on n. The base

case n = 1 is Lemma 3.9. Assume the formula hold for n — 1. Recall the action of

SL2(Z) on V:

lx > 2/1 • (̂ c ^ = lax + cy,bx + dyj

I f x ,y = p 0 then ax + cy, bx + dy = p 0. Since we have a group action, if at least one

of x, y is not 0 modulo p, then so is at least one of ax + cy, bx + dy. Consequently

we can partition the orbitals into three sets:

• A: the orbitals whose representatives ([u;, x j, [y, 2]) have w ,x ,y ,z = p 0.

• B: the orbitals whose representatives ([to, x], {y, 2]) have at least one of w ,x

not 0 modulo p

49

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• C: the orbitals whose representatives ([in, x], [y, 2]) have in, x = p 0 and at

least one of y, 2 not 0 modulo p.

For A, the injective homomorphism ip : Z p n - i ^ Z p n , x — ► px, induces a

bijection between A and the orbitals of SL2(Z) acting on Vzpn_i ■ Then by induction,

there are D (pn~ l) = npn~l + (n — l)p n_2 orbitals in A.

Next we count the orbitals in B. Let ([in, x], [y, 2]) be any orbital representative

from a B orbital. Since either in or x is not 0 modulo p, we know from Proposition

3.6 that [in, x] is in the same SL2(Z) orbit as [1 ,0 |. So we may assume the first

component is [1 ,0]. As in Proposition 3.9, we find that the stabilizer of [1 ,0] is

StabsL2(zpn)([l, 0]) = | ^ 1) I c 6 ZPn }

Since the second component [y, z\ is unconstrained, the number of orbitals in B is

the number of orbits of the stabilizer on Vzvn • The action of the stabilizer is

M . (J ^ j = h + cz,zj

In particular, the second component (ie. z) is invariant. Let 2 = pkz, where pk is

the greatest power of p dividing 2. Then 2-1 exists modulo pn. Letting c = d z~ x we

see that the orbits are given by {[y + dpk, 2] \ d € Z , 2 e Z p n } , i.e. parametrized

by 2 and the value of y modulo pk. For 2 = p n 0 there are pn orbits, each [y, 0] in

its own orbit for y € Z p n . Now assume 2 ^ p n 0. For k = 0, l , . . . , n — 1, there are

pn-k_pn-k- 1 choices for z such that pk is the greatest power of p dividing 2. For such

2, each value of y modulo pk gives a different orbit, so there are (pn~k + p n~k~ 1)pk =

pti _ p n -1 orhits for each k. Then the number of orbits in B is

n—1
Pn + J^ (P n ~ Pn~X) = (n + !)Pn - nPn~l

k=0

Finally, we count the orbitals in C. Since at least one y, 2 is not 0 modulo p, we

may assume the second component is [1 ,0]. Since we assume w, x = p 0, we may use

the homomorphism <p to identify [in, x] € Vzpn w ith [<p- 1(w), <p- 1(x)] e Vzpn- \ • So

the number of orbitals in C is the number of orbits of StabgL2(z)([l) 0]) acting on

"Pz „ 1 • We know this from the B case above, i.e.p7*- A '

npn~l — (n — l)p n-2

50

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Then the total number of orbitals is the sum of those in A ,B , and C:

D (pn) = (npn~l + (n - 1)pn~2) + ((n + l)p n - npn_1) + (rip""1 - (n - l)p n- 2)

= (n + l)p n + npn~l

□

The next step is to find the dimension of the centralizer algebra for the dihedral

groups. We have looked briefly at this, but have not found a general formula. Using

GAP we computed the dimensions up to £>20 (via the formula m* = < x, Xi >)■ The

results are below.

n dimCA(p£>„) n dim CA(pon)
1 5 11 19
2 51 12 186
3 11 13 21
4 86 14 111
5 13 15 53
6 91 16 174
7 15 17 25
8 120 18 181
9 27 19 27
10 101 20 218

An easy conjecture is that for primes p, dim CA(pop) = p + 8. Notice that the

dimension is small for n odd. This is also observed in [BBST01], where the authors

compute modular invariants for D q, D^q, and £>14. They conjecture that for n an

odd prime, and perhaps generally for n odd, the number of modular invariants does

not increase drastically with n, while for n even the number of modular invariants

can be quite large (they expect that Ds may have more than 105).

51

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 4

Modular data as a group
invariant

In [CGROO], the authors raised the question of whether non-isomorphic groups can

have ‘the same’ modular data. We provide some answers in this section.

4.1 Group invariants

By a group invariant we mean a property of a group that remains unchanged under

group isomorphism. For example, group order, number and size of conjugacy classes,

and the character table are group invariants.

Call a group invariant complete if groups are isomorphic if and only if their in­

variants are equal. Complete invariants for finite groups are quite complex. The

main examples are fc-characters and the group determinant (described in the next

chapter). Most invariants are of course not complete. For example, both the dihe­

dral and quaternion groups of order 8 have the same character tables, but are not

isomorphic.

4.1.1 M odular data as an invariant

A permutation P € Sm has an associated permutation m atrix P e M m({0 ,1 }). We

w ill use the same symbol P to refer to both, and we make a few observations for a

permutation m atrix P and any m atrix A:

• P -1 = P 1* (TV denotes the transpose)

• left multiplication of A by P permutes the rows of A by P

• right multiplication of A by P -1 permutes the columns of A by P

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• conjugation of A by P is the simultaneous permutation of rows and columns

Matrices A and B are permutation-congruent if there exists a permutation m atrix

P such that P A P ~ l = B. Equivalently, B is obtained from A by simultaneous

permutation of rows and columns.

Isomorphic groups G and H have the same modular data by formulas (2.11) and

(2.12). However, we fix orders on the bases Cg and Cy allowing us to write S and T

and matrices. Most likely will we have SG ^ SH and T G ^ T H since the orderings

on Cg and Cy might not correspond. However, an isomorphism between G and H

gives rise to a permutation P describing the proper correspondence. W riting P as

a permutation m atrix this gives

P S Gp ~ l = SH and P T 0 ? - 1 = T H

D e fin itio n 4.1 We say that modular data for G and H is weakly equivalent if

there exists a permutation matrix P such that P S GP ~ 1 = SH and p p GP ~ l = T H .

Notice that G and H with weakly-equivalent modular data induce equivalent rep­

resentations of SL2(Z). The converse, however, need not be true. We consider the

matrices S and T to be group invariants, subject to the above definition of equiv­

alence (the representation p is also an invariant). One then asks whether or not

modular data is a complete invariant.

This question was asked in [CGROO], though they do not specify precisely what

it should mean for modular data to be equivalent. Both [Cun05] and [BBST01]

provide an answer. Both use the definition of ‘weak equivalence’ above. However,

[Cun05] concludes that there are 2 groups of order 16 w ith equivalent modular data

while [BBST01] states that these same groups do not have equivalent modular data.

We w ill investigate weak equivalence and see that [Cun05] is correct. Conse­

quently, weak equivalence is not very interesting. We propose a more restrictive

(and less naive) definition of equivalence and show that under this definition mod­

ular data determines the group for groups of order less than 128. This is one of

the major original results of the thesis. Our definition involves placing some very

natural restrictions on ordering C.

4.1.2 Ordering on C

Any ordering we place on C must of course be invariant under isomorphism. For

fixed g e R call the set {(h ,x) € C \ h = g} the g-block and denote it (g, *). Place

53

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the following restrictions on ordering C:

• Every 5-block must appear contiguously.

• The e-block appears first.

• After the e-block, the blocks appear in order of ascending size.

• Within each 5-block, the element (5 ,1) appears first.

The restrictions do not define a total order since we may permute blocks of the

same size (except for (e, *)) and we may permute elements within a block (except

for (5,1)). We call such permutations valid permutations. They form a subgroup of

which we denote Sym(C). A valid ordering on C is any total order conforming to

the above restrictions. Sym(C) maps a given valid order to every other valid order.

Henceforth we assume C is endowed with a valid order.

The ordering restrictions define the the block structure of the basis. Let (e, *),

(52, *),(53, *), . . . ,(5/, *) be the blocks of the basis, ordered as above. Then the block

structure of C is the length I vector of sizes of the blocks,

block structure = (|(e, *)|, 1(52, *)|, • • • , \{gi, *)l)

Bases Cg and Cy, have equal block structure iff Sym(Cg) = Sym(C^) The block

structure define a block-matrix structure on S and T.

4.1.3 Strong equivalence

D e fin itio n 4 .2 We say that modular data for G and H is strongly equivalent

i f there exist permutation matrices P G Sym(C<?) and Q G Sym(C#) such that
p g G p - i _ q q H q - 1 an(i p rpG p-i _ Q p H Q -i ‘equivalent modular data’

mean ‘strongly equivalent modular data’.

We say that SG and SH are strongly-equivalent even P T GP ~ l ^ Q T HQ ~l (sim­

ilarly for T ° and T H). Observe that Q is necessary for the definition of strong

equivalence but not for weak equivalence. Strong equivalence gives the equation

(<Q~1 P)S g (Q ~ 1 P)~ 1 = SH , but Q ~l P need not be in Sym(Cc) since G and H

might have different block structures. Consequently, (Q ~ 1P)S G(Q ~ 1 P)~ 1 might

not be a valid expression of SG since the ordering restrictions might be violated.

For groups w ith the same block structures, we do have Q ~l P G Sym(Cc) so we can

simplify the definition of strong equivalence to simply the existence of P G Sym(Cc).

54

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

This has huge implications in testing for equivalence. I f G and H have different

block structures, we (in theory) need to consider every P E Sym(C<3) paired with

every Q € Sym(Cff). I f they have the same block structure, we need only determine

if P exists. Even so, there are many possibilities for P. Note however that for

weak equivalence P could be any element of S|q, but ordering restrictions on C

dramatically reduce the possibilities for P in strong equivalence. We also feel it is

important that the ordering restrictions are determined only by the basis and do not

require significant computation to determine. One could, for example, insist that C

be ordered such that the entries of T are in increasing order. This would, however,

require one to compute T before ordering C.

One further restriction we could place on the ordering is to order elements

(g, x i) , (9 , X2), • • • within a block by the degrees of the characters Xi• This ordering

is easy to compute, but does not tend to impose much restriction as many of the

characters have degree 1. It also means more difficulty in programming, and we w ill

see later that it is not necessary.

4.1 .4 A n example: Z?4

As an example, the dihedral group D 4 has (ordered) character basis

CDi = ((e,l),(e,^i),(e,^2),(e,^3),(e,Xi),

(x, 1), (x, (j)o,i), (x, 0iiO), (x, 01,i),

(xy, 1), (xy , <£0li) , (xy, ^i.o), (xy, <pi,i),

(y,i),(y>«i)i(y.w2)>(y.v3),

(y2, i), (y2, V>i), (y2, ̂ 2), (y2, ̂ 3), (y2, x i))

Refer to §2.4.2 for the definitions of the above characters. The block structure is

(5 ,4 ,4 ,4 ,5). I f we write the basis in numerical indices as

((1 ,2 ,3 ,4 ,5), (6, 7 ,8,9), (10,11,12,13), (14,15,16,17), (18,19,20,21,22))

we can see that a valid permutation is (2 ,3)(6 ,10)(7 ,12)(8 ,1 1)(9 ,13)(19,20,21).

Some invalid permutations are (6 ,7), (14,19,15,20,16,21,17,22,18), and

(1 ,18)(2 ,19)(3 ,20)(4 ,21)(5,22). The basis has size 22, but | Sym(CDJ | = 746496 as

compared with IS22I = 22! = 1124000727777607680000. A ll but two of the charac­

ters have degree 1.

55

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

4.1.5 Connection w ith graph isom orphism

Solving our modular data equivalence problem means determining permutation-

congruency of symmetric matrices (with some restrictions). This is essentially the

edge-coloured, graph isomorphism problem.

By an edge-coloured graph Q = (V, £, c) we mean a graph with vertex set V, edge

set £, and a colouring of edges c : £ —► {some set of labels}. We can represent Q as

an adjacency m atrix A where

^ _ j colour of edge (i , j) when edge (i , j) exists
tJ \ 0 when (i , j) is not an edge

An edge-coloured graph isomorphism between graphs Q and H is a bijection <p '■

Vg —> Vy between vertex sets such that

• e £n

• c g (i , j) = c y (t j > (i) , 4 > (j))

In terms of adjacency matrices, applying (j> corresponds to a simultaneous row and

column permutation. So an (edge-coloured) graph isomorphism is a permutation P

such that P A gP ~l — Ay,.

Our modular data equivalence problem is essentially edge-coloured graph isomor­

phism. Consider the m atrix S as the adjacency m atrix for a graph, the entries of S

being the “colours” of the edges (the actual numerical values are unimportant). We

observe that since S is symmetric, the corresponding graph is undirected. Entries on

the diagonal of S represent loops in the graph. T is diagonal, so the corresponding

graph is just nodes with loops. S tends to have very few distinct entries, so the cor­

responding graph has few colours. For example, the S m atrix for £>4 has 484 entries

but only 6 distinct values. Considering S as an edge-coloured graph allows us to ap­

ply a powerful graph isomorphism algorithm to determine permutation-congruence,

which we describe in §4.3. I t is not useful for T since the corresponding graph has

very little structure, but we w ill see that permutation-equivalence of T matrices is

easy anyway.

4.2 Com putational technique

4.2.1 Building m odular data

We use the GAP computational discrete algebra system [GAP05a]. GAP contains

a library of groups of ‘small’ order [GAP05b], which includes all groups of order less

56

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

than 1024 (and actually much more). The library was computed by Besche, Eick,

and O’Brien and is also used in the M AG M A system. Let (n, m) denote the mth

group of order n in the data base.

Building S and T matrices is straightforward in GAP. Functions for computing

conjugacy classes, centralizer, character tables, etc. are all provided so we can easily

build S and T using formulas (2.13) and (2.12). We found that building S via (2.13)

was considerably faster than using (2.11). We also have the option of building S

and T in the C basis by first computing in the V basis, then using the change-of-

basis formula (Proposition 2.5) to change bases. Finding S and T relative to V

is computationally easy. Computing the change-of-basis m atrix is harder. For T ,

using C directly is far better since T is diagonal relative to C. For S, we found that

for smaller groups (order < 32), the direct computation in C was faster while for

larger groups changing bases was faster. GAP code for both methods is given in

Appendix A .I.

4.2.2 Ordering cyclotom ics

The entries of S and T are cyclotomic numbers over Q, and we w ill need to be able

to order these. The GAP system defines a total order on cyclotomics, as follows.

Define the conductor of a cyclotomic (to be the smallest integer m such that C is

in Q(fm)- Then cyclotomics are ordered according to the following.

(a) Rationals are ordered as usual.

(b) Rationals are less than irrational cyclotomics.

(c) For cyclotomics w ith different conductors, the one with the smaller conductor

is less.

(d) For cyclotomics with the same conductor m, GAP uses an ordered basis of

Q(£m) ns a Q-vector space, called the Zumbroich basis. This basis has size

[Q(£m) : Q] = <Km) (Euler totient). Each cyclotomic then corresponds to a

length <p(m) Q-vector, and these vectors are ordered lexicographically.

4.2.3 W hich groups should be tested?

Our goal is to show that there are no two groups with order less than or equal to 128

that have (strongly) equivalent modular data. By no means do we need to compare

57

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

every pair of such groups. First, we note that the (e, 1), (e, l)-entry of SG is

'̂(e,l),(e,l)| — j^j 1 — \G\
1 1 g €K e,h€KenCG(e) 1 1

In the ordering of C, (e, 1) is always first so |G |-1 is always the top-left entry of S.

So groups of different orders do not have equivalent modular data. Groups w ith the

same order can have different sized bases, so such groups do not have equivalent

modular data. Many groups with the same order do have the same sized bases so

these are the pairs that we need to test. For example, there are 2328 groups of order

128 (up to isomorphism), with 22 different sizes of bases ranging from 172 to 16384.

We w ill focus on showing that pairs of groups DO N O T have equivalent modular

data, so it is sufficient to show that either T G and T H or SG and SH are not

equivalent. However, we do have a few pairs which we show are weakly-equivalent.

We axe mostly interested in strong equivalence, though many of the methods we use

apply to both cases. Note that not weakly equivalent implies not strongly equivalent.

4.2.4 T equivalence

Determining equivalence of T matrices is easy. First, we use the multiset test. By a

multiset we mean a collection which may contain several copies of the same element.

The multiset corresponding to the m atrix T G is just the collection of all its entries.

Then T G and T H axe permutation congruent if and only if the are equal as multisets.

For strong equivalence, equality as multisets is not sufficient so we define a canonical

form for T.

Since T is diagonal, we w ill think of it as a tuple, broken into blocks according

to the block structure. The canonical form is as follows:

(a) Each block is sorted in ascending order, with the exception that the (g, 1)

entry remains first.

(b) Blocks of the same size axe compared lexicographically and sorted in ascending

order, w ith the exception that the (e, *) block must be first.

There is a valid permutation mapping T into its canonical form, and we observe that

this form is unique. Consequently, equal canonical forms implies strong equivalence.

For G and H w ith the same block structure, the converse is true. For different block

structures, the converse is not true. For groups with different block structures and

58

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

different canonical forms, we make no further attempts to show T inequivalence and

hope that the S matrices are inequivalent.

We always test for T non-equivalence first since it is computationally easy, and

only proceed to test S non-equivalence when the T matrices are equivalent. This

is very significant as S matrices can be very time-consuming and in some cases

infeasible to build. At order 128, several groups have bases of size 16384 but all

of these have non-equivalent T matrices. Building S for these groups would be

unfeasible and determining equivalence could be nearly impossible.

4.2.5 Easy tests for S non-equivalence

Given a pair SG and SH , we have a few easy tests that can show non-equivalence.

(a) Diagonal invariant. Notice that the diagonal of P S P -1 is the diagonal of S

permuted by P. For weak equivalence, S matrices must the same diagonals as

multisets. For strong equivalence, take the diagonal of S and order it the same

way we defined the canonical form of T. This forms the ‘diagonal invariant’.

For S matrices with the same block structure, different invariants implies non-

(strong)-equivalence.

(b) First-rows invariant. Since the (g, 1) entry of each block appears first, valid

permutations do not move the first row of each block (though entries in the row

can be permuted). Then, as with the diagonal, we can make another invari­

ant from the first rows, ordering each row in ascending order and comparing

rows of the same size lexicographically. For S matrices w ith the same block

structure, the first rows appear in the same places in the m atrix. Therefore

S matrices with the same block structure but different first-row invariants are

not equivalent.

(c) Multiset test. As with T , we can make a multiset from the elements of S. I f

the multisets corresponding to S ° and SH are not equal, S ° and SH are not

equivalent.

(d) Characteristic polynomial test. Permutation-congruent matrices must have

59

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the same characteristic polynomial,

det (P S GP _1 - X I) = det (P (S G — A /)P -1)

= det (P) det (SG — X I) det (P _1)

= det (SG — X I)

though the converse is not true. GAP can compute characteristic polynomials.

This test is not overly useful on more difficult cases and is computationally a

bit slow (but programming it is dead easy).

The diagonal and first-rows invariants are important since we can compute these

invariants without computing all the entries of S. This can both save time and make

comparisons of certain large S matrices feasible.

4.2.6 M odular data w ith different block structures

Some pairs of groups have the same T canonical form but different block structures.

To compare the S m atrix of these groups, we cannot use the diagonal and first-rows

invariants. The multiset test is sufficient for many of these cases but not all (the

characteristic polynomial test is applicable but does not seem to be very helpful in

these cases). For these cases, we have two simple tests.

Observe that the first block is always the e-block, and its first row is the (e, 1)-

row. Even though SG and SH might not have the same size e-blocks, some submatrix

of the larger e-block must be permutation congruent with the smaller e-block. Fur­

ther, some sub-row of the larger first row must be permutation congruent to the

smaller first row. Consequently, we have two necessary conditions for equivalence:

• The e-blocks of SG and SH are equal as sets (not multisets).

• The first row of the larger e-block contains, as a multiset, the first row of the

smaller e-block.

These conditions, though simple, sufficed in all the cases that we needed.

4.2.7 W hen the easy tests fail...

Once a pair of groups G and H passes all the easy tests, we apply a graph isomor­

phism algorithm. This algorithm computes a ‘certificate’ using equitable partitions.

60

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

I t is essentially the algorithm described in §7.3.2 of [KS99], which computes certifi­

cates for simple graphs. We make the obvious extension to handle edge-coloured

graphs with loops. The next section describes this algorithm in detail.

4.3 Graph certificate algorithm

A certificate for a graph Q is a complete invariant. So it is a property Cert(£/)

such that graphs Q and Tt are isomorphic if and only if Cert(£?) = Cert(?f). The

point of a certificate is that we need only test equality of certificates to determine

isomorphism of graphs. The downside of course is that certificates are difficult to

compute.

Let G be an m - vertex edge-coloured graph with adjacency m atrix A = A g .

Define Num (A) as the length m (m + l)/2 tuple formed by reading down the columns

of A , starting on the left-most column and stopping at the diagonal element in each

column. Let Tig C Sm be any set of permutations of the vertices of G determined by

the structure of G (i.e. not dependent on the ordering of vertices in A). For 7r € Sm

being a permutation of the vertices of Q, let A % denote the adjacency m atrix for the

permuted vertices (ie. A 1r = 7rA7r_1, treating 7r as a permutation m atrix). Then we

define the certificate for G as

Cert(<?) = m in{Num (A7r) | 7r 6 EL;}

The fact that Tig is determined only by the structure of G ensures that this is in

fact a certificate.

The choice of Ug is extremely important. I f we use all of Sym(m), the compu­

tation of Cert(£?) becomes an NP-complete problem. Indeed, in the case when G is

a simple graph (no edge colours), a minimum value of Num (A) has the maximum

number of leading zeros. This comes from a maximum size submatrix of zeros, the

vertices of which define a maximum independent set (i.e. a set of vertices w ith no

common edges). Finding a maximum independent set is known to be NP-complete

(it is equivalent to finding a maximum clique in the complement of G)- Our choice

for Tig is based on refining equitable partitions to discrete partitions.

4.3.1 Equitable partitions

An ordered partition of the vertices of G is an m-tuple P = (P i, P2, . . . , Pm) where

{P i, P2, . . . , Pm} forms a partition of V. The P* are called blocks. P is discrete if

61

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

|Pt| = 1 for all i. A discrete partition P defines a permutation n of the vertices and

hence defines a value for Num (A7r) = Num (Ap). The unit partition is the partition

with only one block.

Let the edge colours of Q form an ordered set)C = {fci, /c2, . . . , kt}. For modular

data, K is the ordered set of the entries which appear in the m atrix (see §4.2.2 for

how cyclotomics are ordered). For a vertex v € V and a subset S C V define the

neighbour tuple of v relative to S as

Nbr(u,«S) =

where m, = |{(u, x) 6 £ \ x € S, c(v, x) = fcj}. So Nbr(u, S) is an ordered count of

the number of edges of each colour that go between v and S. We say a partition P

is equitable if for all i, j and for all u, v € Pi,

Nbr(u, Pj) = Nbr(u, Pj)

A discrete partition is equitable.

4.3.2 P artition refinement

The ordered partition Q — (Qi, - • ■ ,Q S) is a refinement of the ordered partition

P = (P i , , Pt) if every Qi is contained in some Pj and whenever u € P *i, v € Pi2

w ith i \ < we have u £ Qj1, v € Qj2 with j \ < j i - We now describe an algorithm

that refines a partition P to an equitable partition Q. GAP source code is given in

Appendix A.2.

Algorithm 4.3 (Refining algorithm) Given an ordered partition P of Q, refine

it to an ordered equitable partition.

begin

1. Let S be a list that is a copy of P .

2. while S is not empty

3. Remove the last block U from S

4. fo r each block B of P

5. Compute N br(6, U) for each b € B

6 . Partition B into subsets, each subset containing b with the same

Nbr(b,U) value

7. Order the subsets by increasing N br(6, U) value

62

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

8 . Replace B with the ordered subsets

9. Append the ordered subsets to S

end

P ro o f. We need to show that Algorithm 4.3 produces an equitable partition.

Suppose not, i.e. in the final partition P there are blocks Pi and Pj and 61,62 £ Pi

w ith N br(6i, Pj) ^ Nbr(&2, Pj). Now Pj must have at some point been in S since S

is initialized to P [Line 1] and any new blocks are appended to S [Line 9]. So Pj

was considered at Line 3 as U. But the for loop [Line 4] ensures that every block

of P has constant N br(—, P j) value, contradicting the existence of P j .

□

The ordering of P is done at Line 7 and depends only on the structure of Q.

Indeed, suppose we have an isomorphism <p : Q —> PL and a partition P of the vertices

of Q. Then the partition of H that results from running Algorithm 4.3 on <p(P) is the

same as the partition of H resulting from running the algorithm on P then applying

((> to the result.

We have one improvement to this algorithm that we use in implementation. If

we are considering a block U at Line 3, but we have already considered blocks that

form a partition of U , then U need not be used. Indeed, U cannot cause any block

B to be split up since the subsets forming the partition of U would already have

done so. This happens fairly often: a block B w ill be appended to S, but before

this block is considered it w ill be partitioned by another block and the sub-blocks

of B are appended to S and considered before B.

4.3.3 C ertificate algorithm

Algorithm 4.3 generally produces a partition that is not discrete. To get a discrete

partition we can take the first non-unit (i.e. size greater than 1) block P j , choose

p E Pi and split Pi into {p} and P j \ {p} and refine the resulting partition using

the refining algorithm. I f P is still not discrete we repeat (using the first non-unit

block of the refined partition) until we have a discrete partition, which defines a

permutation of the vertices. Define II^ p as the permutations resulting from all

such choices of p. Then Certp(£?) = m in{Num (Aw) | 7r 6 Ilg p } . The details are

Algorithm 4.4 below. Code is provided in Appendix A.2. Note that the certificate

63

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

depends on the initial choice of partition P . For strong equivalence we need a

different choice for P, as we w ill see later.

Algorithm 4.4 Given a partition P of the vertices ofQ, compute Certp{Q).

1. Refine P to an equitable partition using Algorithm 4-3.

2. i f P is not a discrete partition

3. Find the first block Pi of P with \Pi\ > 1

4■ for each element p E Pi

5. Call Algorithm 4-4 with input (P i , , P *_i, {p}, Pi \ {p }, P i+ i, . . . , Pm)

and store the certificate.

6 . Return the least certificate found.

7. else

8 . Return N um (A p).

4.3.4 A lgorithm im provem ents

Algorithm 4.4 is a recursive backtracking algorithm. In Line 5, one element is split

off from its block and the algorithm is called recursively. The new partition is

refined to be equitable. Unfortunately, the refinement procedure might not change

the partition very much and consequently the search tree for the algorithm can be

extremely large. There are, however, two ways to prune the search tree (both given

in [KS99]) and one further improvement (due to the author).

The first method is to prune by remembering the least certificate found so far.

Suppose we have an equitable partition P , w ith Pj being the first non-unit block and

i > 1. Then P = ({p i} , {p2} , . . . , {p i- i} , P i , , Pm), so the top left (* - 1) x (i - 1)

submatrix of Ap is already fixed and the first (i — l) i /2 entries of Num (Ap) are

determined. We can compare this initial portion of Num (Ap) with the corresponding

in itial section of the best certificate found so far. I f the best certificate is less, then

this partition P cannot produce a lesser certificate so we can abandon this branch

of the search tree.

The second method is to use automorphisms of Q. We can collect automor­

phisms at Line 8 of Algorithm 4.4 if we record both the best certificate C(,est and

the permutation 7r&est that produced it. I f at Line 8 we find that Num (Ap) = Cbest

then An = Anbest (only equal adjacency matrices define the same Num). Then

64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

,r-i = A, hence TTbest̂ 1 is an automorphism of Q. We store these automor­

phisms. This w ill of course only discover some (possibly none) of the automorphisms

of g.
We use these automorphisms at Line 5 of the certificate algorithm. Suppose

there exists and automorphism 7r of Q such that

7r(P) = ({7 r(p i)},...,{7 r(p i_ i)},{7r(p)},7r(P i \p),7r(P<+ i) ,...,7 r (P m))

= ({Pi}» • ■ ■ > {P i- l} . 9, tt(Pi \ {p}), 7r(Pi+ l) , . . . , 7T(Pm))

where q € P is an element that has been considered earlier in the for loop. That

is, suppose 7r fixes the first i — 1 elements and replaces p with an element that has

already been considered in that position. Then since 7r is an automorphism and q has

been considered already, we know that this partition w ill yield the same certificate

as the one with q in place of p, so we can abandon this branch of the search tree.

We do not know the entire automorphism group of &, but we do know the

subgroup generated by the automorphisms we have collected. We can search this

subgroup for n and if it exists in the subgroup we can prune the search tree. GAP

has the capacity to generate the subgroup and search it for the existence of n (using

the GAP commands Group and R epresentativeA ction).

There is also an improvement to the refining algorithm that we can use in some

cases. Suppose in Algorithm 4.4 we find Pj with size 2, P* = {p, q}. The algorithm

w ill be splitting Pi into {p} and {q} and calling the refining algorithm. Then we

need only initialize S — ({p }, {<?}) at Line 1 of Algorithm 4.3, instead of S = P.

Indeed, any block Pj w ith j ^ i cannot cause any other such block to split during

the refining step since P is equitable before breaking up Pj. Nor can Pj split the

new blocks {p} and {q} as they are singletons. So the Pj are not needed in S.

4.3.5 C ertificate algorithm and m odular data

The certificate algorithm depends on the initial partition P . P must only depend

on the structure of the graph (not the ordering of the vertices) otherwise isomorphic

graphs could have different certificates. The obvious choice for P is the unit partition

(all vertices in one block). This is what we use for weak equivalence as it allows any

permutation. For strong equivalence, we would like a partition P so that matrices

have the same certificate if and only if they are strongly-equivalent. This does not

seem to be possible, but we can come close.

65

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The ordering restrictions on the character basis C defines a partition P by making

each (/-block a partition block. The restrictions do not tell us how to order blocks of

the same size so we do not have a unique ordered partition. Our compromise is to

union all blocks of the same size into a single block (except that the e-block remains

by itself) and use this as the starting partition P. The consequence of this choice

is that two S matrices with the same certificate need not be (strongly) equivalent

since the permutations defining the certificates need not be valid permutations, but S

matrices with different certificates are not be equivalent. This negative result suffices

for all the cases we tested. This choice of P speeds up the algorithm considerably

compared to using the unit partition.

4.4 S and T simultaneously equivalent

Using the above methods we found no candidates for strong equivalence, but several

cases had weakly-equivalent T and S matrices (independently). The challenge was

then to determine if the the modular data was in fact weakly-equivalent, i.e. the

existence of P giving simultaneous equivalence, P T GP ~ l = T H and P S GP ~ l = SH .

4.4.1 Backtracking algorithm

We employed a straightforward backtracking algorithm. The algorithm recursively

builds a discrete ordered partition P = ({x i} , {£2}, • • •, {^n})- Let

pl = ({® i}. •■•»{*«})» ^ (0 = xii and SpLpt be the I x I m atrix with i , j entry

Sp(i),p(j), 1 < i , j < I-

At depth I, the first I — 1 values of P are fixed and we choose xi from the unused

indices. For each choice of x;, we check if SGt = Spt and T Gt — Tpt - I f so, recursively

call the algorithm at depth I + 1. Otherwise, continue to the next choice for xp

We remark that this is not a particularly efficient algorithm, though it served

our purposes. We also found that the initial ordering of the matrices had a strong

influence over the efficiency, in the case when G and H had weakly-equivalent data.

The algorithm chooses values for xi in increasing order, i.e. x \ — 1,X 2 = 2, . . . is

(without regard to pruning) the first choice for P. By default, we order the bases Cq

and Ch by a valid order (§4.1.2). However, we found that this choice was particularly

disadvantageous. By randomly choosing p, q € S)c| and permuting SG,T G by p and

Sh ,T h by q before running the algorithm we were able to find an equivalence in

considerably less time. The ordering on Cg and Ch that produces the equivalence

66

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

does not seem at all related to the block structure. This suggests that our definition

of strong equivalence is a good one (for the purpose of making modular data a

complete invariant).

4.5 Results

We give results for both weak equivalence and strong equivalence, though our focus

is on strong equivalence.

4.5.1 W eak equivalence

The table below gives all pairs of groups with order less than 33 that have ei­

ther permutation-congruent T matrices or permutation-congruent S matrices. For

groups w ith equivalent T and S , we indicate whether T and S are simultaneously

equivalent (i.e. whether the groups have weakly-equivalent modular data).

Groups T equivalent S equivalent Weakly-equiv M D |C|
(16,3), (16,13) Yes Yes Yes 88
(16,4), (16,12) Yes No 88
(32,2), (32,23) Yes No 352
(32,2), (32,24) Yes Yes Yes 352
(32,2), (32,47) Yes No 352
(32,5), (32,38) Yes Yes Yes 352
(32,7), (32,8) No Yes 100
(32,9), (32,40) Yes No 184
(32,9), (32,42) Yes Yes Yes 184

(32,10), (32,13) Yes No 184
(32,10), (32,14) Yes No 184
(32,10), (32,41) Yes No 184
(32,13), (32,14) Yes No 184
(32,13), (32,41) Yes No 184
(32,14), (32,41) Yes No 184
(32,22), (32,48) Yes Yes Yes 352
(32,23), (32,24) Yes No 352
(32,23), (32,47) Yes No 352
(32,24), (32,47) Yes No 352
(32,27), (32,49) Yes Yes Yes 184
(32,29), (32,34) Yes No 184
(32,32), (32,35) Yes No 184
(32,40), (32,42) Yes No 184

In particular, the pair (16,3) and (16,13) have equivalent modular data in the weak

sense, as do several pairs at order 32 (the order 16 case is the one given in [Cun05]).

67

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Theorem 4.5 There exist non-isomorphic groups with weakly-equivalent modular

data. The smallest-order examples are the order 16 groups with presentations G =

(x , y | x4 = y4 = xyxy = 1, yx3 = xy3) and H = (a, b, c | a4 = b2 = c2 = cbca2b =

1, bab = a, cac = a).

These groups axe not strongly-equivalent. In particular, the T matrices do not have

the same canonical form, and the S matrices have different diagonal invariants.

The ordering that we found giving weak equivalence does not seem to have any

recognizable structure (and of course is is not a valid ordering in the sense of §4.1.2).

Corollary 4.6 For n divisible by 16 there exist groups of order n with weakly-

equivalent modular data.

Proof. Let G and H be the order 16 groups above, with P S GP ~ l = SH and
p T G p - 1 = t h T h e n Q ^ Gjyi and H x C1̂ have weakly-equivalent modular data.

Indeed, by 3.10 we have SGxCm = SG <8 > SGm and T HxCm = T H <g> T Cm. W riting

SG® S Cm as an m x m block m atrix and applying P to the blocks gives the necessary

equivalence.

□

We also observe that the groups (32,7) and (32,8) have different T but equivalent

S matrices. This is a bit unexpected considering that T is much simpler than S.

4.5.2 Strong equivalence

For strong equivalence, we were able to prove the following theorem. It is one of the

most important new results of the thesis.

Theorem 4.7 There is no pair of groups with order 127 or less having strongly-

equivalent modular data.

We were also able to show that most groups of order 128 do not have strongly-

equivalent modular data. However, we were left with 528 pairs for which we were

unable to determine equivalence or non-equivalence.

There are 3596 groups with order less than or equal to 128. O f these, 2328

have order 128. The number of pairs with the same group order and same size

character bases is around 353000. As mentioned earlier, most pairs have inequivalent

T matrices: only 4371 pairs have the equivalent T matrices. Another 2502 pairs

68

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

have T matrices for which we could not determine equivalence or inequivalence (the

groups have different block structure and the T matrices, in the canonical form, are

not equal). Consequently we had 6873 pairs for which the S matrices needed to be

compared. The ‘easy tests’ are sufficient for most of these cases, eliminating 6322

pairs and leaving 551.

O f these remaining 551 pairs, we use the certificate algorithm to show that 23

of them have inequivalent S matrices. O f these 23, 9 occur at order 64, 1 at order

100, and the remaining 13 at order 128.

For the remaining 528 pairs, we were unable to determine their status. These all

occur at order 128, most of them with \C\ = 928 and the largest with \C\ = 2944. In

many of these cases the S matrices were simply too time-consuming to build, so we

could not apply all the tests (the first-rows and diagonal invariants were essential

in eliminating many large cases, since we avoided building the complete S m atrix).

In the other cases the certificate algorithm did not terminate in reasonable time.

We found 4371 pairs w ith strongly-equivalent T matrices. The smallest example

is (16,4) and (16,12). The next smallest examples are at order 32: the pair (32,9)

and (32,40), the pair (32,32) and (32,35), the triple (32,2),(32,23),(32,47) and the

four groups (32,10),(32,13),(32,14),(32,41). Also, we do not know if the T matrices

of (32,27) and (32,49) are strongly-equivalent (their S matrices are not strongly-

equivalent though).

There are groups with strongly-equivalent S matrices. The smallest example is

the order 32 groups (32,7) and (32,8). Their T matrices are not equal as multisets.

4.5.3 Program correctness

The GAP code for this study is about 1700 lines. We test this code in order to give

confidence in the results. We are, however, reliant on the correctness of the GAP

system and of the small groups library. We run two major tests.

(a) S and T formula test. We test the formulas for S and T by building S and T

using the C basis and comparing it with the matrices built using the V basis

and changing basis. We also test S built from (2.11) versus (2.13). A ll groups

up to order 43 were tested successfully.

(b) Certificate test. To test the certificate algorithm, we build S and compute its

certificate. Then permute C by a random valid permutation and build S from

69

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the reordered basis. Compute the certificate for the new S and ensure that it

is equal to the original certificate. Since we are choosing valid permutations

at random, we repeat several times (five) w ith different random valid permu­

tations. We perform the test successfully for all groups up to and including

order 44.

70

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 5

/^-characters and modular data

In the preceding chapter we saw that under the strong equivalence a group’s modular

data determines the group for small orders. Ideally, we would either prove that

modular data is a complete invariant, or find two groups with (strongly) equivalent

modular data. We have been unable to do either. We suspect that the modular

data is not a complete invariant, but we w ill see in §5.3 some of the group properties

that are determined by modular data. In §5.1 we review two properties that are

complete invariants, the group determinant and k-characters. We w ill also look at

2 -characters, which are an invariant but do not determine the group, and see how

the group properties determined by the 2-characters compare to those determined by

modular data. Finally, we give a new result giving groups with the same 2-characters

but different modular data.

5.1 The group determinant and ^-characters

Group characters of non-Abelian groups were introduced by Frobenius to study the

factorization of the group determinant. Let G be a finite group, and {xg \ g € G }

a set of independent commuting variables. Let X q be a m atrix indexed by G, w ith

the (g,h)-entry being xgh -i. Then the group determinant is © g = d e t(X c). The

indexing set G is not ordered, but every choice of order gives the same determinant

since det(P© G -P_1) = det(P) d e t (0 c) det(P _1) = d et(© c) for every permutation

m atrix P .

The group determinant is a complete invariant for finite groups, meaning G and

H are isomorphic if and only if ©g and 0 # are the same. This was first proved by

Formanek and Sibley in 1991 [FS91], using maps between group algebras. A proof by

Mansfield in 1992 is shorter and reconstructs the group multiplication directly from

71

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the group determinant by examining terms of the form x" 2xgXh and x"~zxgXhXk

[Man92].

We must be precise in what it means for two groups to have ‘the same’ determi­

nant. For groups G and H , @g is in the polynomial ring Z[x9] while 0 # is in Z[x/J.

A bijection <j): G —► H induces a ring isomorphism

4> ■ z [xg] — > z [x h]

Xg 1 ► x 4>(g)

We say that G and H have the same determinant if such a bijection <p exists w ith

4>(Qg) = & h - For groups of order n, there are n! choices for <f>. Notice that this is

essentially the same combinatorial problem that we had with the character basis C

of modular data in Chapter 4. In that case we were able to give some order to C

in a obvious way and without doing any computation. It is not clear whether we

could place some order on G in a similar way. We could, for example, insist that the

elements of G be collected together according to orders or conjugacy classes, but

this might require extra computation. Consequently, it seems that comparing two

group determinants is very difficult.

O f course, in many cases it w ill be easy to show that two group determinants

are not the same, just as we had many easy cases for modular data. A simple test

is to form the multiset consisting of the coefficients of © g - I f the multiset for ©<3 is

not equal to that of © # then ©<3 and 0 # are not the same. It is very unlikely that

this invariant actually determines © g (i.e. does not determine G). But it is fun to

check that it holds for some small order cases. We use GAP to prove the following

(see Appendix A.4 for the GAP code):

P roposition 5.1 The multiset consisting of the coefficients of the group determi­

nant is unique for groups of order less than 1 0 .

The reason the result is given for such small order is that the group determinant

is very slow to compute, since it is the computation of a symbolic determinant (i.e.

the entries are the symbols xg rather than numbers). Modular data by comparison

is much easier to compute. I t is not surprising that the group determinant is difficult

to compute and compare since it is a complete group invariant.

72

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

5 .1 .1 /c-characters

To factor the group determinant Frobenius introduced functions x ^ '■ Gk — ► C,

where x is an irreducible character of G and k e Z > i called k-characters. (see

[Fro68] and the summary in [Joh91]). These can be defined recursively by

x H g i) = x (g i)

x k (g i , g 2 , - - - , g k) = x { g i) x k~ 1(g2 , g s , - - - , g k)

- x fe_1(5i52,53,---,Pfc) - ••• - x k~ 1(g2,g3, - - - ,gigk)

The 2-character is explicitly given by

x {2)(g, h) = x (g) x (h) - x{gh)

and the 3-character is

x (3) (g, h, k) = x (g) x (h) x (k) - x (g) x { h k) - x (h) x { g k) - x (k) x (g h)

+ x (g h k) 4- x (gkh)

R e m ark 5 .2 To compute the above expression, we need to know that a character

value x(gig 2 ---gk) depends only on the cyclic order of the factors 5 i, 52, • • • , •

This is a consequence of the fact that characters are conjugacy class functions, so

fo r example

x (g m ■ ■ ■ gk) = x (gkgig 2 ■ ■ ■ gkgk1) = x(gkgi ■ ■ ■ g k - 1)

The definition of ^-characters immediately yields the following proposition.

P ro p o sitio n 5.3 Let deg(x) = m.

(a) For k > m then x ^ = 0.

(b) The m-character, together with deg(y), determines the k-characters fo rk < m.

P ro o f. Letting gi — e we get

X {k)(e ,g2 , . . . , g k)

= x (e) x (k~ 1){g2 , . - - , g k) - x (k~ 1){g2 , - - - , g k) --------- x (k~ 1){g2 , - - - , g k)

= (deg(x) - k + l)) x {k~ 1) (g2 , - - - ,gk)

Consequently = 0 and by the recursion all higher fc-characters are zero. I f we

know deg(y) we can compute x k f°r k < m .

73

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Frobenius obtains the following result, showing how fc-characters appear in the

group determinant.

P roposition 5 .4 Let © be the group determinant of G. Then the number of irre­

ducible factors of 0 is equal to the number of irreducible characters of G and each

irreducible factor 8 of 0 corresponds to an irreducible character xe of G. The degree

k of 6 is equal to the degree of xe, cmd 9 is given by the formula

9 = l_ E X{e \g i , 02, , 9 k)xgix92 ■■■x9k
(9 i , 9 2 , - , 9 k) € G k

5.2 Group properties determ ined by ^-characters

In [Bra63], Brauer posed the question of what information is needed in addition

to the character table to form a complete invariant for finite groups. He proposed

additional conditions as follows. Let G have irreducible characters Xi and conjugacy

classes Kj . For a conjugacy class K o lG and integer m, define = {xm \ x € K }.

Observe that i ifH is a conjugacy class of G. Indeed, any xm and ym in i f H are

conjugate since y — gxg- 1 for some g & G hence ym = gxmg~1. K is closed under

conjugation since gxmg~l = (gxg~l)m. Now assume G and H have isomorphic

character tables via X i(K j) = (7rX i)(cr̂ j) - Then Brauer’s additional condition is

that = (crKj)tml for all i , m. Groups satisfying these conditions are known

as a Brauer pair. Brauer asked whether such a pair must be isomorphic. The answer

is no, first shown in [Dad64].

Proposition 5.4 shows that knowledge of all the fc-characters of a group is suffi­

cient to compute the group determinant, and therefore to determine the group. This

gives an answer to Brauer’s question. In fact, less information is needed. Hoehnke

and Johnson showed in [HJ95] that knowledge of the 3-characters (which, as we

know, gives the 1- and 2-characters) is sufficient for the group determinant. Con­

sequently the 3-characters are a complete group invariant (and is a much simpler

invariant than the group determinant).

This of course raised the question of whether or not the 2-characters determine

the group. This was shown to be false in [JS93], where certain Brauer pairs are shown

to have the same 2-characters. The smallest groups with the same 2-characters are

the two non-Abelian groups of order 27, proved in [JS95]. The definition of G and H

74

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

having ‘the same 2-characters’ is the existence of a bijection ir between irreducible

characters of G and H and a bijection r : G — ► H such that

X i (9) =

X i 2) { 9 , h) = (t t X i) {2) (r (g) , T { h))

Since 2-characters do not determine the group, [JMSOO] found group properties

that are determined by the 2-characters. Define the weak Cayley table of G as the

table w ith rows and columns indexed by G and whose (g, h)-entry is the conjugacy

class of gh. Then [JMSOO] shows that the weak Cayley table contains the same

information as the 2-characters:

Proposition 5.5 I f the irreducible 1- and 2-characters of G are known, then the

weak Cayley table can be constructed. Conversely, i f the weak Cayley table is known

then the irreducible 1 - and 2 -characters can be computed.

By examining the values x^(0>p)> [JMSOO] shows that the following properties

are determined by the 2-characters.

Proposition 5.6 Given the 2-characters ofG corresponding to irreducible 1-characters,

the following are determined:

(a) For each z € Z (G), the set {g £ G | g2 = z}.

(b) For each conjugacy class K , the class .

(c) The set of elements whose order is a power of 2, together with the order. In

particular, the involutions (order 2 elements) of G.

(d) The Frobenius-Schur indicator of G.

5.3 W hat group properties are determ ined by modular
data?

In Chapter 4, we saw that modular data determines the group for orders less than

128. We do not know if modular data determines the group for all orders, but in

this section give properties of a group that are determined by modular data.

Proposition 5.7 Given S andT in the character basis, ordered according to §4-1.2,

the following information about G is known.

75

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

(a) Order of G.

(b) Exponent ofG .

(c) Character table of G.

(d) Block structure of Ca­

fe) Sizes of the conjugacy classes and centralizers ofG .

(f) Whether or not G is Abelian. I f G is Abelian, we can determine G.

Proof. The order of G is Sfe\^ which is the top-left entry according to the

basis ordering. The exponent of G is the order of T , as we saw in Proposition 2.10.

To determine the character table, we start by applying formula (2.14) to compute

the ratio ________
S (art),(e,x) _ X W (e) _ |C(o)l _T77T
s (a,i>),(e, i) |C (a)| 1(a) ip(a)

That is, for a row (a, xp), x (a) is the conjugate of the (e ,x) column entry divided

by the first column entry. Let Xi> X2 ,Xk be the irreducible characters of G. We

compute X i(e)> X2(e), • • • using the first row. We reach the last irreducible character

once 5Zf= i X i (e) 2 = |G| (Theorem 1.8), and we now also know the size of the e-block.

Then for any row (a, ip), we use the first k columns to get the values of all Xi on

the conjugacy class K a. Since the irreducible characters are linearly independent

class functions, two rows correspond to different conjugacy classes if and only if the

character values are different. This gives the character table and also identifies each

g-block, so we know the block structure of Cq-

For the sizes of the centralizers we observe that the first entry in an (a, 1) row is

= I y i
\CG(a)\\G\ ^

1

and we can identify the (a, 1) row since we know the block structure. The size of

the conjugacy class is given by Lemma 1.1.

G is Abelian if and only if it has |G| conjugacy classes, if and only if \C\ = |G |2.

Since we know |G| we can determine if G is Abelian. An Abelian group is determined

by its character table.

76

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

□

Next we consider what group information is contained in the modular data

relative to the permutation basis. For fixed a, define the a-block as (a, *) = {(g , h) €

V | g = a}. Place the following ordering restrictions on V:

(a) Every a-block must appear contiguously.

(b) The e-block appears first.

(c) A fter the e-block, the blocks appear in order of ascending size.

(d) W ithin each a-block, the element (a, e) appears first.

Notice that these ordering restrictions correspond with those we placed on C, so

both bases have the same block structure.

Proposition 5.8 Suppose we are given S and T with respect to the basis V , ordered

as above. Then we know the following information.

(a) The block structure of the basis.

(b) The order of the elements in each conjugacy class.

Proof. To identify the e-block, we have [e ,g].f = [e ,g j, hence T has a 1 on the

diagonal for each [e, h]. The next block starts w ith [5, e] .t = [5 , 5] ^ [5 , e], so the

first non-diagonal entry of T indicates the start of the next block. Now examine S.

Since [5, ej.s = [e, g_1], the first column of each block is identified by an entry in

one of the e-block rows. For the remaining elements of the block (i.e. h ^ e) we

have [5 , hj.s = [/&,g-1], so the entry in S is outside the e-block rows.

For the order of each conjugacy class, find the column of the first entry [3 , e]

of its block, as above. Since fg, ej.f^s3 = [g, e]. (J i 0) = [^ g j, the smallest I such

that g* = e is the smallest I such that the entry in the [g, e] column of T lS3 is in

the e-block rows.

□

I f we have modular data in both bases, we know the orders of all the elements

of G:

77

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

P roposition 5.9 Suppose we know S and T with respect to both the character and

permutation bases. Then in addition to the information from Propositions 5.7 and

5.8 we know the list of orders of the elements of G.

P ro o f. The character basis gives the size of each conjugacy class, and the permu­

tation basis gives the order of elements in each class.

□

We saw earlier that the 2-characters determined the number of elements w ith

order a power of 2, along with the order. Proposition 5.9 is stronger, but still

is not a very strong condition. The smallest groups with the same orders of el­

ements are at order 16, for example C \ x C4 and the group with presentation

G = {x, y | x 4 = y4 = e, xy = yxz). These groups both have elements with

orders 1,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4.

Proposition 2.5 gives the formula to change bases between C and V. The formula

requires the knowledge of the character tables of all the centralizers Cg (o,). I t is not

clear whether this information can be obtained from S and T (in either basis). I t

turns out that there are groups with inequivalent modular data that have the same

character tables of centralizers.

For a character basis Cg , consider the multiset consisting of character tables of

the centralizers Cg(o)> a £ R. Say that two character bases are character table

equivalent if these multisets are equal, with isomorphic character tables counting as

equal. The following proposition is new.

P ro p o sitio n 5.10 The smallest groups with character table equivalent bases are at

order 64■ These groups have inequivalent modular data.

P ro o f. We content ourselves with a computer-assisted proof, using GAP. Comput­

ing the centralizers and their character tables is straightforward. Testing character

table is also straightforward in GAP: the Transform ingPerm utations function de­

termines the existence (and finds) permutation matrices P and Q such that for

given matrices A and B, P A Q = B. Notice that this means rows and columns may

be permuted differently, as is allowed in character table equivalence (unfortunately,

this also prevents us from using Transf ormingPermutations to test modular data

equivalence since we need P = Q in that case). Code is provided in Appendix A.5.

We find that there are 6 pairs at order 64 w ith character-equivalent bases, given by

78

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the GAP library numbers (64,13) with (64,14), (64,70) with (64,72), (64,74) with

(64,80), (64,142) w ith (64,157), (64,143) with (64,158), and (64,175) w ith (64,181).

Checking with our results from Chapter 4, we find, not surprisingly, that all these

pairs have equivalent T matrices, and have S matrices that pass all of the ‘easy

tests’ (e.g.. equal as multisets). The pairs all have different certificates though, so

their modular data is inequivalent (in the weak, and therefore the strong, sense).

□

5.4 Groups w ith the same 2-characters but different
modular data

We will show that there exist groups with the same 2-characters, but inequivalent

modular data. I t is well-known that for p and odd prime, there are 2 non-Abelian

groups of order p3. These groups have the following presentations, given in [You93].

P — (a ,x ,y | aP = yp = 1, xp = a, yx = axy, ax = xa , ay = ya)

Q = (a, b, c | ap = bP = c? — 1, cb = abc, ab - ba, ac = ca)

Johnson and Sehgal show that these groups have the same 2-characters [JS95]. We

show that their modular data is non-equivalent. This result is new.

Proposition 5.11 The groups P and Q above have non-equivalent modular data.

In particular, their T matrices are not equal as multisets.

Proof. P has exponent p2 while Q has exponent p. Indeed, the exponent divides

the order of the group so the only possibilities are p and p2 (not p3 since the groups

are non-Abelian). In P, x has order p2 hence P has exponent p2. In Q, elements

can be written as alVck where 0 < i, j , k < p — 1. The pth power of an element is

(aib>ck)p =

= a pi+s!£T £Ljk

= e

hence Q has exponent p.

Since the exponent of the group is the order of T, the groups P and Q have

T matrices that are inequivalent as multisets. Consequently their modular data is

non-equivalent.

□

79

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 6

Concluding remarks

In this thesis we examined some properties of finite group modular data that had

until now been poorly-explored. Our most important original results were the fol­

lowing:

• S and T determine the group for groups of order less than 128, under a new

definition of equivalence.

• the dimension of the centralizer algebra of Zn modular data

• the decomposition of Zp (p a prime) modular data into irreducible SL2(Zp)

representations

• existence of groups with the same 2-characters but different modular data

Each of these results has raised further research questions.

Modular data as a group invariant

We do not know whether S and T determine the group, under the new definition of

equivalence. We showed that most groups of order 128 had inequivalent S and T , but

were left w ith 528 pairs whose status we could not determine. Our current methods,

with minor improvements and more computing time, can probably deal w ith these

528 pairs. These pairs are certainly a place to look for a counter-example. The fact

that there are groups with strongly-equivalent S matrices (the smallest pair being

at order 32) may suggest that we w ill find a counter-example. However, if there

is no counter-example at order 128, it may be worth trying to prove that modular

data determines the group. The paper [DavOO] may be useful in this respect.

We don’t have a guess as to what the answer is. The permutations giving the

weak-equivalence in the order 16 and 32 cases do not respect the block structure of

80

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

C. We were surprised by this, as we thought that making the bases Cq and Ch cor­

respond would make it easier to find a permutation giving equivalence. Proposition

5.10, showing that groups can have ‘character table equivalent bases’ (the same char­

acter tables of centralizers) but still have inequivalent modular data is also telling.

I t suggests that the set G(a, b) is particularly important in the definition of 5 , and

is worth examining more closely.

2-characters

Though we proved that groups may have the same 2-characters but different modular

data, we have further questions about how 2-characters may be related to modular

data. We can get the character table from S and T. Can we get the 2-character

table? I f modular data does not determine the group, are there groups with the same

S and T but different 2-characters? We also saw that the 2-characters determine

the Frobenius-Schur indicator, but did not see anything similar for modular data.

In C F T there is an analogue of the Frobenius-Schur indicator, defined in terms of

entries from S and T [Ban97]. Perhaps it provides a way to recover the character-

theory indicator?

On a side note, 2-characters and fc-characters are interesting in themselves.

Group characters (1-characters) span the space of class functions on G. In [Joh91],

Johnson defines ‘extended 2-characters’ (2-character plus some other combinations

of 1-characters), which are (pairwise) orthogonal but do not span the space of ‘2-

class functions’. Is there a better generalization of group characters that do span the

space of fc-class functions? We remark that fc-characters are built from 1-characters:

they are not really a generalization of 1-characters but rather way of extracting more

information from 1-characters.

Centralizer algebra and decomposing pa

Since SL2(ZP) has a nice representation theory, we expect that for any group with

exponent p we should be able to decompose pa as we did for Zp. For SL2(ZP«),

the representation theory is more complicated (Zpn is not a field). The irreducible

representations of SL2(Zpn) are known and are given in [NW76] (and in English in

[Eho95]), though they are not given directly. Still, the decomposition for Zn should

certainly be possible.

As we remarked in Chapter 3, decomposing po into irreducibles gives the struc-

81

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

ture of the centralizer algebra, but to get the centralizer algebra itself (relative to

the C basis) we need the change-of-basis m atrix from C to the basis in which pa is

block-diagonal. I t is not obvious how to find it. But knowing the change-of-basis

gives the centralizer algebra and is a major step towards knowing the modular in­

variants. This approach to finding modular invariants for finite group data is worth

further research.

For the dimension of the centralizer algebra, we expect that staring long enough

at the data we presented for D n w ill yield a nice formula, with a similar proof to

the Zn case. We should also find the dimension of the centralizer algebra for other

group families, w ith the symmetric and alternating groups being a major goal.

G roup properties in m odu lar d ata

We saw that modular data of a direct product of groups is the tensor product, but

we do not know if there is a similar relation for the semi-direct product. This is

worth exploring further. In general, we want to know how group-theoretic properties

and constructions are reflected in modular data. We understand modular data for

abelian groups. I f G is simple (nilpotent, solvable, etc.) what can we say about its

modular data?

C F T on higher-genus surfaces

Recall from §2.3.1 that modular data in the C FT context arose when the C FT had

the torus as its space-time. More generally, we are interested in C F T living on

any world-sheet of any number of strings, i.e. C FT on surfaces of genus g with

n punctures (each puncture corresponds to string, and the genus tells how many

times a string splits apart and later reforms). Higher-genus surfaces can be built

from lower-genus surfaces. For example, take two tori, each with one puncture,

and ‘glue them together’ at the puncture. The result is a genus 2 zero puncture

surface (‘double torus’). In this way the torus and its corresponding modular data

is important as a building block of more general cases (incidentally, modular data

also corresponds in a way to the torus with one puncture).

In the general genus g w ith n punctures case, the partition function c h ^ r)

becomes a correlation function, w ith r living in the moduli space of the surface.

Instead of SL2(Z), we get the mapping class group of the surface. The role of the

characters is played by conformal blocks, and these yield a representation of the

82

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

mapping class group just as the characters give a representation of SL2(Z) (which is

the mapping class group of the torus). These representations have yet to be studied

carefully and is an avenue for future research.

The action of the braid group Bn on Gn_1 w ill probably be important in the

representations of the higher-genus mapping class groups. The genus g w ith n

punctures mapping class group is built from the genus g zero punctures group and

a braid group. The exact relationship is described in [Bir75].

83

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Appendix A

GAP source code

Select GAP source code is given below. Lines beginning with axe comments.

Source code for some simple functions is omitted, though in such cases a short

description of the function is given in comments. Any other functions that axe not

documented are standard GAP functions. Documentation for GAP is available from

the GAP website, h ttp ://w w w .g ap -system .o rg /.

A .l Building modular data
The following code is used to build the bases C and V and the matrices S and T.

 #-------------- CharBasis-----------------------
Given a finite group G, return the character
basis of G. The basis is ordered as follows:
1. The (e,*)-block is first
2. Every (g,*)-block appears contiguously
3. The (g,l) entry is first in each block
The basis is listed as 4-tuples [g,c,i,j] where
g=element of R
c=character of C(g)
i=block number
j=0 if c is trivial character, 1 otherwise
CharBasis:=function(G)
local R.CT.CTg.I.C.Basis.c.g.i.D.p;
CT:=CharacterTable(G);
R:=List(ConjugacyClasses(CT), Representative);
Basis : = [] ;
i:=0;
for g in R do

i:=i+l;
C:=Centralizer(G,g);
CTg:=CharacterTable(C);
I:=Irr(CTg);
Run through I to find the trivial character and put it first,
for c in I do

Identity(c) returns the identity character of underlying character table
if c=Identity(c) then

84

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.gap-system.org/

Add(Basis,[g,c,i,l]);
fi;

od;
Run through the remaining characters of I
for c in I do

if coldentity(c) then
Add(Basis,[g,c,i,0]);

fi;
od;

od;
OrderBasis sort the basis blocks by size, but with (e,*) first
return OrderBasis(Basis);
end;

 #------------ PermBasis----------------------------
Given G return the permutation basis of G. The
basis is given as 4-tuples [g,h,i,j] as follows:
g=reps of conjugacy classes of G
h=reps of conjugacy classes of C(g)
i=block number
j=l if h=e, 0 otherwise
The basis is ordered as folows:
1. Each (g,*)-block appears contiguously
2. The (e,*)-block is first
3. (g,e) is first in each block
PermBasis:=function(G)
local R,Basis,C,Rc,g,h,i,Blocks,perm;
R:=List(ConjugacyClasses(G).Representative);
Basis : = [];
i:=0;
for g in R do

i:=i+l;
C:=Centralizer(G,g);
Rc:“List(ConjugacyClasses(C).Representative);
for h in Rc do

if h=Identity(h) then
Add(Basis,[g,h,i,l]);

fi;
od;
for h in Rc do

if hoidentity(h) then
Add(Basis,[g,h,i,0]);

fi;
od;
Rc: = [] ;

od;
OrderBasis sort the basis blocks by size, but with (e,*) first
return OrderBasis(Basis);
end;

 #------------------ CharTlistb-----------------------
Return T as a list, relative to the character basis
(remember T is a diagonal matrix)
CharTlistb:=function(G,CB)

85

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

local T,i;
T : = [] ;
for i in [1..Length(CB)] do

T[i]:=ChiOf(CB[i] [2],CB[i][1])/DegreeOfCharacter(CB[i] [2]) ;
ChiOf(chi,g) returns chi(g)
od;
return T ;
end;

 #------------- CharSb------------------------------
Given group G and character basis CB, return
S matrix of G ’s modular data
CharSb:=funct i on(G,CB)
local i,j,k,l,x,y,S,a,b,g,h,chiA,chiB,val,temp,Coeff.D,

row,p ,KnC,Cg,Ka,Kb,setKb,Centralizers, X, Y ,Blocks;

Computing S using the permutation basis, then
changing basis may be better for "large" groups
if Order(G)>32 then

return CharSbyPerm(G,CB);
fi;
val:=0;
S: = [] ;
Coeff:=Inverse(Order(G));
for i in [1..Length(CB)] do

S[i] : = [] ;
od;
D:=CharData(G,CB);
D[i][1] = conjugacy class K(a) of CB[i][l]=a
D[i][2] = list of x such that for each b in K(a) there is exactly one
x with x~{-l}ax=b
for i in [i..Length(CB)] do

chiA:=CB[i][2];
a : =CB [i] [1] ;
Ka:=D[i] [1] ;
X:=D[i][2];
Centralizers:=[];
for k in [1..Length(Ka)] do

Centralizers[k]:=Set(Centralizer(G,Ka[k]));
od;
for j in [i..Length(CB)] do

val:=0;
b : =CB [j] [1] ;
chiB:=CB[j][2];
Kb:=D[j] [1];
Y : =D[j] [2] ;
for k in [1..Length(Ka)] do

g:=Ka[k];
x : =X [k] ;
KnC:=Intersection(Kb,Centralizers[k]);
for 1 in [1..Length(Kb)] do

h : =Kb [1] ;
if h in KnC then

y:=Y[l];

86

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

val:=val+ComplexConjugate(ChiOf(chiA,x*h*x~-l))
*ComplexConjugate(ChiOf (chiB,y*g*y~-l)) ;

fi;
od;

od;
val:=val*Coeff;
S[i] [j] : =val;
S[j] [i] : =val;

od;
Memory saving

Unbind(Centralizers);
Unbind\[\](D,i);

od;
return S;
end;

 #------------CharSbyPerm------------------------
Given group G and the character basis CB,
compute the S matrix by computing S in the
pemutation basis then changing basis
CharSbyPerm:=function(G,CB)
local PB,Sp,M;
PB:=PermBasis(G);
Sp:=PermSb(G,PB);
M :=C0BMatrixPtoC(G,PB,CB);
return (M)*Sp*Inverse(M);
end;

 #-------------COBMatrixPtoC-----------------------
Given G and the two bases, return the change-
of-basis from perm basis (PB) to char basis (CB)
See thesis for change-of-basis formula.
COBMatrixPtoC:=function(G,PB,CB)
local i,j,k,g,h,s,M,a,chi,Kg;
M :=0*IdentityMat(Length(PB));
for i in [1..Length(PB)] do

g:=PB[i] [1] ;
h:=PB[i] [2];
Kg:=ConjugacyClass(G,g);
s:=l/0rder(Centralizer(Centralizer(G,g) ,h)) ;
for k in [1..Length(CB)] do

Only the (g,*) in CB have non-zero coefficients
if IsConjugate(G,g,CB[k][1]) then

chi: =CB [k] [2] ;
j:=FindIndexInCB(G,[CB[k][1],chi],CB);
FindlndexInCB retruns j such that CB[j]=[g,chi]

The prem and char bases need not use the same
set R of reps of conj classes of G
if g<>CB[k][1] then

a:=RepresentativeAction(G,g,CB[k][1]);
M[j] [i]:=s*ComplexConjugate(ChiOf(chi,Inverse(a)*h*a));

else
M[j][i]:=s*ComplexConjugate(ChiOf(chi,h));

87

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

fi;
f i ;

od;
od;
return M;
end;

A .2 Certificate algorithm
The following code is for Algorithms 4.3 and 4.4.

 #------------------ MatrixCertif icatelnitial-----------------------
Given a matrix/edge-coloured graph M and an ordered partition P
of its verticies, find the certificate with the restriction that
P is respected.
MatrixCertificateInitial:=function(M,P)
local I,worst,n,result,i,Aut;
I:=MatrixElements(M);
P:=Refine(M,P,1,0);
n:=Length(M);
Aut: = [()] ;
result:=MatrixCertBack(M,P,I,[0,()],Aut);
return result[1];
end;

 #-------------- Ref ine-------------------------------
Input:
M=matrix/edge-coloured graph
P=partition of nodes of M
I=sorted set of elements of M
A=starting partition blocks
Refine the given partition P to an equitable
partition. If A=0, use P as the starting blocks.
If A<>0, only use A. A<>0 should only be used when
we're in the "size 2 splitting" situation.
Ref ine:=function(M,P ,I,A)
local B,S,T,n,U,Cp;
B :=ShallowCopy(P);
if A=0 then

S:=Reversed(B);
else

S:=Reversed(A);
fi;
U:=Flat(S);
while not IsEmpty(S) do

n:=Length(S);
T:=S[n];
S:=S{[1..n-l]>;
We need not consider a block if we’ve already considered
all the blocks that partition it. When we use a block,
remove all its indicies from U. If a block gets split,
the subblocks are candidates for splitters, so the indicies
are added to U. Then as these subblocks get used as

88

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

splitters, their indicies are removed from U. Once their
original block is dug down to in S, all of the indicies
will be gone since the subblocks have all been considered,
if IsSubset(U.T) then

U:=Difference(U,T);
Cp:=ShallowCopy(B);
SplitPartition(M,B,S,T,I,U);
U:=Set(U);

fi;
od;
return B;
end;

 #--------------- SplitPartition-------------------------
Input:
M=matrix/edge-coloured graph
B=current ordered partition of indicies
S=set of blocks to be used for future splitting
T=block to be used to split B
I=sorted set of elements of M
U=set of ’unused’ indicies
Splits the partition B using the block T. Adds
any split blocks to S, and adds the indicies
in any split blocks to U.
SplitPartition:=function(M,B,S,T ,I, U)
local i,New;
i:=l;
while i<=Length(B) do

New:=Split(M,B[i],T,I);
if Length(New)>1 then

Replace(New,B,i); # replaces B[i] with New
i:=i+l;
Append(S,Reversed(New));
Append(U,Flat(New));

fi;
i:=i+l;

od;
end;

 #------------Split-------------------------------------
Given graph M, a set of indicies Block, a list of
indicies T, and a (sorted) set of elements I of M.
Splits Block according to T. That is, order the elements
of Block according to the vector of their coloured
neighbours in T. Group elements with the same
coloured neighbours together in a subblock and
order the subblocks by increasing size of neighbour vector.
Return this ordered partition of Block.
Split:“function(M,Block,T ,I)
local n,m,j,V,K,New,last,current,pos;
n:“Length(M);
m:=Length(I);
K: = [] ;
for j in Block do

89

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

V:=-ColouredNeighbours(M,I,j,T);
Add(V.j);
Add(K,V);

od;
Sort(K, LexIgnoreLast);
LexIgnoreLast compares lists lexicographically, but ignoring the last element
last:=K[l]{[l..m]>;
New:=[[K[l][m+1]]];
pos:=l;
for j in [2..Length(K)] do

current :=K[j]{[l. .m]>;
last: =K [j-1] { [1. .m]>;
if currentoiast then

pos:=pos+l;
Add(New,[]);

fi;
Add(New[pos],K[j] [m+1]);

od;
return New;
end;

 #----------- Colour edNeighbours----------------------
Given a matrix M, an ordered list L of its
unique elements, an integer i, and a list of
integers T, return a vector V where
V[i]=number of i’s neighbours of type L[i],
(ie. number of times L[i] appears in M[i])i
only counting neighbours that are in locations
given by indicies in T
ColouredNeighbours :=f unction (M,L, i ,T)
local j,k,V;
V:=0*[1..Length(L)] ;
for j in T do

k:=Position(L,M[i] [j]);
if k=fail then continue; fi;
V[k] : =V [k] +1;

od;
return V;
end;

 #----------------- NumberMatrix-------------------------
Return the list formed by reading down the columns
of the given matrix, left to right, stopping at
the element on the diagonal.
NumberMatrix:=function(M)
local i,j,L;
L : = [] ;
for i in [1..Length(M)] do

Append(L,M{[l.. i]>{[i]» ;
od;
return Flat(L);
end;

 #----------------- MatrixCertBack--------------------------

90

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Input:
M=matrix/edge-coloured graph
P=partition of M ’s indicies
I=sorted set of M ’s elements
Best[l]=best certificate found so far
Best[2]=perm that produces Best[l]
Aut=group of automorphisms of M found so far
Backtracking algorithm for finding the certificate of
a matrix/edge-coloured graph. Uses the best certificate
found so far and the automorphism group for pruning
the search tree.
MatrixCertBack:=function(M,P,I.Best,Aut)
local i,k,j,c,C,n,Rest,N,part,Npart,1,Stab,pre,image,PR,prune;
Find the first non-singleton in P
for i in [i..Length(P)] do

if Length(P[i])>1 then
break;

fi;
od;
If P is a total order...
if i=Length(M) then

if Best[l]=0 then
Best[l] : “NumberMatrix (M{Flat(P)HFlat(P)»;
Best [2]:=(PermList(Flat(P)))~-l;

fi;
If P defines the same cert as the best so far, then P
defines an automorphism of M, so ve can remember it
if NumberMatrix(M{Flat(P)HFlat(P)»=Best[l] then

Add(Aut,((PermList(Flat(P)))“-l)*(Best[2] >~—1);
fi;
P is a total order, so return the certificate
return [NumberMatrix(M{Flat(P)}{Flat(P)}),(PermList(Flat(P)))~-l];

fi;
The initial portion of P consisting of singletons defines
a partial certificate
part:=Flat(P{[l..i—1] >);
Npart: “NumberMatrix (M{partHpart});
n :“Length(Npart);
Prune using the partial certificate
if Best[l]<>0 and Npart>Best[1]{[i..n]> then

return Best;
fi;
Run through the first non-singleton block, splitting
off each element in turn and trying the partition
C : =P [i] ;
for j in [i..Length(C)] do

c:=C[j];
prune:“false;
pre:“ShallowCopy(part);
image:“ShallowCopy(part);
image[i]:=c;
for k in [1..j-1] do

pre[i]:=C[k];
If we know of a automorphism of M that fixes the initial singleton

91

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

portion of P and replaces our current first-place element c with
a lower-index element of this block, we can prune since we’ve already
tried these lower-index elements in the first position
if RepresentativeAction(Group(Aut),pre,image,OnTuples)<>fail then

prune:=true;
break;

fi;
od;
If we found the RepAction above, we can prune this branch so we continue
to the next candidate in C
if prune then

continue;
fi;
Split the jth element off from C and place it first
Rest:=Difference(C,[c]);
Replace([[c].Rest],P,i);
Use size 2 block partitioning if applicable
if Length(Rest)=l then

PR:=Refine(M,P,I,[[c].Rest]) ;
else

PR:=Ref ine(M,P ,1,0);
fi;
Compute the best cert for that partition
N :=MatrixCertBack(M,PR,I,Best,Aut);
if N[l]<Best[l] then

Best:=ShallowCopy(N);
fi;
Restore to the original partition
Replace([C],P,i);
Replace([],P,i+1);

od;
return Best;
end;

A .3 Code for showing weak equivalence

Below is the code for the backtracking algorithm used to find P such that P S GP ~ 1 =

SH and P T g P _1 = T H . This is used to prove Theorem 4.5.

#---------PermSearch----------------
PermSearch:=function(Tg,Th,Sg,Sh)
local p,q,G,result;
G:=SymmetricGroup(Length(Tg));
p:=Random(G);
q:=Random(G);
result:=PermSearchBacktrack(Permuted(Tg,p),Permuted(Th,q),PermuteMatrix(Sg,p),

PermuteMatrix(Sh,q),[],1,[1..Length(Tg)]);
if result[l]=false then

return result;
else

return [result[1],p*Inverse(PermList(result[2]))*Inverse(q)];
fi;

92

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

end;

----------PermSearchBacktrack------------
PermSearchBacktrack:“function(Tg,Th,Sg,Sh,perm,1,unchosen)
local i,result,copyunc;
if IsEmpty(unchosen) then

if Sg{permHperm}=Sh and Tg{perm}=Th then
return [true, perm];

else
return [false];

fi;
else

for i in unchosen do
perm[l]:=i;
copyunc:=ShallowCopy(unchosen);
RemoveSet(copyunc,i);
if Sg{perm>{perm>=Sh{[l.. 1] > { [1 . . 1] > and Tg{perm}=Th{[1 ..1]> then

result:=PermSearchBacktrack(Tg,Th,Sg,Sh,perm,1+1,copyunc);
if result[l]=true then

return result;
fi;

fi;
od;

fi;
Unbind(perm[l]);
return [false];
end;

A .4 Code for Proposition 5.1

 #----------------- GroupDet----------------
Given G, calculate its group determinant
GroupDet:“function(G)
local I,LG,P,M,n,i,j,g,x;
n:“Order(G);
P :“PolynomialRing(Integers,n);
I:“IndeterminatesOfPolynomialRing(P);
LG:=0*[1..n];
i:=l;
for x in G do

LG[i]:=x;
i:=i+l;

od;
M:=0*IdentityMat(n);
for i in [l..n] do

for j in [l..n] do
g:=LG[i]*(LG[j])‘(-l);
M[i] [j]:=I[Position(LG.g)];

od;
od;
return Determinant(M);
end;

93

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

 #-------- Coeff icientsOfMultivariatePolynomial------
Given a multivariate polynomial P, return a list
of its coefficients
CoefficientsOfMultivariatePolynomial:“function(P)
local i,M,N;
M:=CoeffOfMPRecurse(P,1);
N: = [] ;
for i in [1..Length(M)] do

if IsZero(M[i])“false then
Add(N,M[i]);

fi;
od;
Sort(N);
return N;
end;

 #----------Coeff Of MPRecurse-----------------------------
Recursive function used in
CoefficientsOfMultivariatePolynomial
CoeffOfMPRecurse:=function(L,n)
local i,M;
if (IsUnivariatePolynomial(L) and DegreeIndeterminate(L,n)>0) or
IsConstantRationalFunction(L) then

return PolynomialCoefficientsOfPolynomial(L,n);
else

M :“PolynomialCoeff icientsOfPolynomial(L,n);
for i in [1..Length(M)] do

M[i] :=CoeffOfMPRecurse(ShallowCopy(M[i]),n+l);
od;
return Flat(M);

fi;
end;

A .5 Code for Proposition 5.10

 #--------------- CharEquivBases---------------------------
Given groups g,h determine if their character bases are
"character table equivalent".
CharEquivBases:“function(g,h)
local CTg,CTh,L,i,j;
CTg:“List(List(ConjugacyClasses(g).Representative),

x->Irr(CharacterTable(Centralizer(g, x))));
CTh:“List(List(ConjugacyClasses(h).Representative),

x->Irr(CharacterTable(Centralizer(h,x))));
if Length (CTg) OLength (CTh) then

return [false, "different sized bases"];
fi;
L:=0*[1..Length(CTg)];
for i in [1..Length(CTg)] do

for j in [1..Length(CTh)] do
if L[j]=l then

continue;
fi;

94

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

if TransformingPermutations(CTg[i],CTh[j])<>fail then
L[j] :=1;
break;

fi;
od;

od;
if Sum(L)=Length(CTg) then

return [true];
else

return [false, Sum(L), Length(CTg)];
fi;
end;

95

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Bibliography

[Apo76]

[Ban97]

[BBST01]

[Bir75]

[Bra63]

[Cam99]

[CGROO]

[Cun05]

[Dad64]

Tom M . Apostol. Modular Functions and Dirichlet Series in Number

Theory. Number 41 in Graduate Texts in Mathematics. Springer-Verlag,

1976.

Peter Bantay. The Frobenius-Schur indicator in conformal field theory.

Phys. Lett. B, 394(1-2):87-88, 1997.

Eiichi Bannai, Etsuko Bannai, Osamu Shimabukuro, and Makoto

Tagami. Modular invariants of the modular data of finite groups (en-

glish). Surikaisekikenkyusho Kokyuroku, (1228):1-12, 2001. Codes, lat­

tices, vertex operator algebras and finite groups (Japanese) (Kyoto,

2001).

Joan S. Birman. Braids, links, and mapping class groups. Princeton

University Press, 1975.

Richard Brauer. Representations of finite groups. In T .L . Saaty, editor,

Lectures on Modem Mathematics, pages 133-175. John W iley & Sons,

1963.

Peter J. Cameron. Permutation Groups. Number 45 in London Mathe­

matical Society Student Texts. Cambridge University Press, 1999.

Antoine Coste, Terry Gannon, and Phillippe Ruelle. Finite group mod­

ular data. Nuclear Physics. B , 581(3):679-717, 2000.

Michael Cuntz. Fourier-Matrizen und Ringe mit Basis. PhD thesis,

Universitat Kassel, 2005.

E.C. Dade. Answer to a question of R. Brauer. Journal of Algebra, 1:1-4,

1964.

96

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[DavOO]

[DF99]

[Dor71]

[Eho93]

[Eho95]

[FH91]

[Fro68]

[FS91]

[Gan05]

[Gan06]

[GAP05a]

[GAP05b]

[Gro97]

A. A. Davydov. Finite groups with the same character tables, Drinfel'd

algebras and Galois algebras. In Algebra (Moscow, 1998), pages 99-111.

de Gruyter, Berlin, 2000.

David S. Dummit and Richard M . Foote. Abstract Algebra. John W iley

and Sons, second edition, 1999.

Larry Dornhoff. Group Representation Theory. Marcel Dekker, Inc.,

1971.

Wolfgang Eholzer. Fusion algebras induced by representations of the

modular group. International Journal of Modem Physics A, 8(20):3495-

3507, 1993.

Wolfgang Eholzer. On the classification of modular fusion algebras. Com-

mun. Math. Phys., 172:623-659, 1995.

W illiam Fulton and Joe Harris. Representation Theory. Springer-Verlag,

1991.

Ferdinand Georg Frobenius. Uber die Primfactoren der Gruppendeter-

minante. In J-P. Serre, editor, Gesammelte Abhandlungen, pages 38-77.

Springer-Verlag, 1968.

E. Formanek and D. Sibley. The group determinant determines the group.

Proc. Amer. Math. Soc., 112:649-656, 1991.

Terry Gannon. Modular data: the algebraic combinatorics of conformal

field theory. J. Algebraic Combin., 22(2):211-250, 2005.

Terry Gannon. Moonshine beyond the Monster: The Bridge Connecting

Algebra, Modular Forms and Physics. Cambridge University Press, 2006.

The GAP Group. GAP - Groups, Algorithms, and Programming, Ver­

sion 4-4> 2005. (h ttp ://www. gap-system . org) .

The GAP Group. GAP - Groups, Algorithms, and Programming, Ver­

sion 4-4> package SmallGroups, 2005. (h ttp ://w w w .gap-system .org).

Larry C. Grove. Groups and Characters. John W iley & Sons, 1997.

97

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.gap-system.org
http://www.gap-system.org

[HJ95]

[JMSOO]

[Joh91]

[JS93]

[JS95]

[Kam02]

[KS99]

[KSSB99]

[Lan87]

[Lus79]

[Man92]

[Mas95]

H.-J. Hoehnke and K .W . Johnson. 3-characters axe sufficient for the

group determinant. Contemporary Mathematics, 184:193-206, 1995.

Kenneth W . Johnson, Sandro M attarei, and Surinder Sehgal. Weak cay-

ley tables. J. London Math. Soc., 61(3):395—411, 2000.

K .W . Johnson. On the group determinant. Math. Proc. Camb. Phil.

Soc., 109:299-311, 1991.

Kenneth W . Johnson and Surinder K . Sehgal. The 2-character table

does not determine the group. Proc. Amer. Math. Soc., 119(4):1021-

1027, 1993.

Kenneth W . Johnson and Surinder K . Sehgal. The 2-characters of a

group and the group determinant. Europ. J. Combinatorics, 16:623-631,

1995.

Seiichi Kamada. Braid and knot theory in dimension four, volume 95 of

Mathematical Surveys and Monographs. American Mathematical Society,

Providence, R I, 2002.

Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms :

Generation, Enumeration, and Search. CRC Press, 1999.

T .H . Koornwinder, B.J. Schroes, J.K . Slingerland, and F .A . Bais. Fourier

transform and the Verlinde formula for the quantum double of a finite

group. J. Phys. A: Math. Gen., 32:8539-8549, 1999.

Serge Lang. Elliptic Functions. Springer-Verlag, 1987.

George Lusztig. Unipotent representations of a finite Chevalley group of

type E 8. Quart. J. Math. Oxford (2), 30:315-338, 1979.

Richard Mansfield. A group determinant determines its group. Proc.

Amer. Math. Soc., 116(4):939-941, 1992.

Geoffrey Mason. The quantum double of a finite group and its role

in conformal field theory. In Groups ’93 Galway/St. Andrews, Vol. 2,

number 212 in London M ath. Soc. Lecture Note Ser., pages 405-417.

Cambridge Univ. Press, 1995.

98

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[NW76] Alexandre Nobs and Jurgen W olfart. Die irreduziblen Darstellungen

der Gruppen SL 2 (Zp), insbesondere SL 2 (Zp).Il. Comment. Math. Helv.,

51(4):491-526, 1976.

[You93] J.W .A . Young. On the determination of groups whose order is a power

of a prime. American Journal of Mathematics, 15:124-178, 1893.

99

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

