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Abstract

The modular data associated with a finite group G  is a representation of SL2(Z ), 

generated by matrices S and T , arising in conformal field theory and other contexts. 

A group’s modular data determines many group-theoretic properties but it is unclear 

whether it determines the group. Under the naive definition of equivalence it does 

not determine the group, but we study a more restrictive definition under which 

groups of order less than 128 axe distinguished. We make some remarks comparing 

modular data with 2-characters, giving an example of groups w ith equivalent 2- 

characters but inequivalent modular data. In  the conformal field theory context, 

matrices commuting with S and T  are of importance (modular invariants). We 

examine the algebra of such matrices, giving its dimension for the cyclic group 

Zn. Decomposing the representation into irreducibles is related to the study of this 

algebra and we give some results for Zn and the dihedral group D n, including the 

decomposition for Zp (p a prime).
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Chapter 1

Introduction and background

1.1 Introduction

Associated with every finite group G  is a representation pa of the modular group 

SL2(Z ). SL,2(Z) is important due to its relation with the moduli space of tori (dis­

cussed in §1.4). The representation arises in several contexts, most im portantly in 

conformal field theory (an extremely symmetrical quantum field theory that has 

applications in string theory). We w ill review these contexts in §2.3. In  the confor­

mal field theory context there is a ‘preferred’ basis C for the representation space, 

so pa is a m atrix representation, in paxticulax defined by matrices S and T  (the 

images under pa of generators of SL2(Z )). In  this context pa is called the modu­

lar data associated with G. There is also a basis V  in which pa is a permutation 

representation. We w ill define pa and these bases in Chapter 2.

A  major question is to what extent S and T  determine G (i.e. how strong of a 

group invariant is it). This depends on the definition of equivalence of S and T  used. 

Under the naive definition, it seems that S and T  only determine G  up to order 

15 ([Cun05]). We propose a more restrictive definition and prove, computationally, 

that S and T  determine G  for groups of order less than 128 (Chapter 4). This is 

one of the most important original results of the thesis. In  Chapter 5 we review 

two important complete invariants of finite groups —  the group determinant and 

^-characters —  and make some comparisons with modular data. We include a new 

result giving groups with equivalent 2-characters but inequivalent modular data.

In  the conformal field theory context, the centralizer algebra of pa plays a key 

role in determining the possible modular invariants (an important quantity in the 

conformal field theory, see Chapter 3). For modular data arising from finite groups, 

neither the centralizer algebra nor the modular invariants have been well-explored

1
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(modular data arises in other ways in conformal field theory, for example from 

affine algebras, and has been studied more carefully). In  Chapter 3 we give some 

new results on the centralizer algebra including its dimension for cyclic groups. 

We give some results on decomposing pg into irreducible representations (pg is in 

fact a representation of a finite quotient of SL2(Z )) which help to understand the 

centralizer algebra.

The remainder of this chapter consists of background material we w ill be needing 

later on. This is all standard material. The reader planning to skip ahead to 

Chapter 2 is advised to pause at §1.4 which deals with SL2(Z).

1.2 Group theory background

We start w ith some group theory basics and fix some notation. A good reference 

for elementary group theory is [DF99].

Let G  and H  to denote finite groups throughout, w ith e denoting the group 

identity. Let g, h E G .

•  Cg(g) =  {x  E G | xg =  gx} is the centralizer of g and is a subgroup. When 

the group G  is clear we w ill write C(g).

•  Z (G ) =  {g E G | gx =  xg for all x E G } is the center of G  and is a subgroup.

•  I f  there exists x E G  such that xgx-1  =  h then g and h are said to be conjugate 

(in G). Conjugacy is denoted g ~ g  h, or simply g ~  h.

•  K g(g) =  {xgx~l \ x E G } is the conjugacy class of g. When the group is clear 

we w ill write K (a ).

•  The order of G is its cardinality as a set and is denoted |G|.

•  The order of g is the least positive integer m such that gm =  e and is denoted

M -

•  The exponent of G  is the least positive integer m  such that gm =  e for all 

g E G. Equivalently, it is the least common multiple of the orders of all the 

elements of G,

Exponent(G) =  lcm{|<?| | g E G}

W ith  regard to conjugacy classes, we remark that

2
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•  Conjugacy is an equivalence relation, and G is partitioned into conjugacy 

classes.

•  Conjugate elements have the same order. This follows from the equation

(xgx- i y =  xglx~1.

1 .2 .1  G ro u p  actio n s

For a set O, a (right) group action of G on fl is a map Cl x G — ► Cl, (u, g) i— * ui.g 

satisfying

(a) u).(gh) — (uj.g).h for all g, h 6 G, u> € Cl.

(b) u.e =  u> for all u> 6 Cl

We say that G acts on Cl. A left group action is define analogously. The orbit of ui is 

Orb(o>) =  {u}.g \ g € G}. The set of all orbits is denoted Cl/G and forms a partition  

of Cl. The stabilizer of u  is Stab(j(o;) =  {g € G  | ui.g =  ui} and is a subgroup of G. 

Every group acts on itself by conjugation, the action being g.x =  gxg~l for x,g  € G 

(this is left group action, defining x.g =  g~l xg gives a right group action). We give 

two important lemmas about group actions. For proofs, see Chapter 4 Proposition 2 

of [DF99] and Theorem 2.2 of [Cam99].

Lem m a 1.1 Let G act on Cl, g e G, u> € Cl. Then

\G\
|Orb(w)| =

|S tabc(^)|

In  particular, when Cl =  G and the action is conjugation, the formula becomes

lK{9){ =  i c ( i j i

Lem m a 1.2 ( ‘B urnside’s Lem m a’) Let G act on Cl and define Fix(g) =  {u> e 

Cl | ui.g =  u } . Then number of orbits of the action is py |Fix(p) |.

Though the lemma is often called Burnside’s Lemma, it is not due to Burnside (it 

was known to Frobenius earlier).

1 .2 .2  G e n e ra to rs  an d  re la tio n s

One way of describing a group is with generators and relations. To do this formally, 

one forms a quotient of a free group. This construction can be found in [DF99], but
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we w ill content ourselves with an example. The dihedral group D n of order 2n is 

described using generators and relations as

D n =  ( x ,y \y n =  e, x2 -  e, yx =  xy-1 )

The generators of the group are the symbols x and y and the relations are yn =  e, 

x2 =  e, and yx =  xy~l . A word in the symbols x ,y ,x- 1,y_1 is just a sequence com­

posed of these symbols, for example xyx~l yy~l or yxxxxx-1 . These words form 

the group elements, in addition to the group identity e (which can be represented 

by the ‘empty’ word consisting of no symbols). Two words are multiplied by con­

catenation, e.g. xy multiplied by yx is xyyx. We write xx • • • x (n times) as xn, 

and xx-1  =  x -1 x =  e. The relations specify further simplifications that we can 

apply to words. For example, the element yxxxxx-1  can be simplified to yx3, then 

to yxe =  yx using the relation x2 =  e, then to xy-1 using the relation yx =  xy -1 

(though this last step is arguably not a ‘simplification’).

For finite groups, we can often find a canonical representation of each element. 

In  the dihedral group above, the relation yx =  xy-1  allows us to interchange x 

and y (note that the relation also implies xy =  y- 1x ), meaning we can write any 

element in the form xlyi for some i , j  E Z. Since x2 =  e and yn =  e we need only 

use i E {0 ,1 } and j  E { 0 ,1 ,. . . ,  n — 1}. These elements are all distinct (a proof is 

required), hence the group has order 2n. In  general, determining whether two words 

are equal (represent the same group element) is an undecidable problem.

1.3 Representation and character theory o f finite groups

In  this section we present a brief introduction to representation theory and character 

theory, including several results that we w ill need later. A good introduction to 

character theory is given in [Gro97], and the presentation here is based on that 

source. Proofs can be found there.

1 .3 .1  R e p re s e n ta tio n s  o f fin ite  groups

Let V  be an m-dimensional vector space over C. A representation of G on V  is a 

homomorphism ip : G  — ► G L (V ), where G L (V ) is the group of nonsingular linear 

transformations from V  to V . I f  we fix a basis of V , we get G L (F ) =  G L(m , C) 

(the group o fm x m  invertible matrices over C) and <p : G  — ► G L(m ,C ) is called 

a matrix representation. We call m the dimension or degree of the representation.

4
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Since ip(g) is a linear transformation on V , we write <p(g)v for the image of v € V  

under <p(g). Representations over fields other than C are defined the same way, but 

we will only deal with C-representations.

A  subspace U  C V  is called ip-invariant if <p(g)U C U  for all g € G. I f  any non­

zero (^-invariant subspaces exist then <p is called reducible, otherwise <p is irreducible. 

Two representations <p : G — *■ G L (V ) and <f>: G  — > G L(W ) are equivalent if  there 

exists a vector space isomorphism L : V  — > W  such that Ltp(g) =  4>{g)L for all 

g € G. W rite <p =  4> for equivalent representations.

Define the direct sum <p® (j) of representations <p and <j> on the vector space V ®  W  

by (ip © (f>)(g)(v,w) — (p(g)v, <f>(g)w). When <p and <j> are m atrix representations, 

the direct sum is the block-diagonal m atrix

A  representation is completely reducible if it is equivalent to a direct sum of irre­

ducible representations. Define the tensor product ip <g> 0 of of ip and <f> on V  <g> W  

by (<p ® 4>){g)(v ® w ) =  (p(g)v) ® (4>(g)w). For m atrix representations, (<p ® 4>){g) 

is the (Kronecker) tensor product ip{g) 0  (f>(g)- We are interested in representations 

of finite groups.

T heorem  1.3 Let k be the number of conjugacy classes of the finite group G. Then 

there are exactly k inequivalent irreducible C-representations of G.

This is N O T true for infinite groups. For example, the integers have uncountably 

many inequivalent irreducible representations. Take any 0 ^  z € C. Then <pz(n) =  

zn forms a family of inequivalent irreducible representations of Z.

Every group has a 1-dimensional ‘triv ia l representation’, 1 : G  — > G L(1,C ), 

1(g) =  1. The triv ia l representation is one of the irreducible representations of G. 

For finite groups, we have the following important theorem:

T heorem  1.4 Every C-representation <f> of a finite group G is completely reducible. 

I f  ipi, y>2 , . ■., tpk are the inequivalent irreducible representations of G, then there 

exist m i, m 2, . . . ,  m*, € Z>o such that

k
4> =  ^ m n p i  

1 = 1

where mnpi =

5
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Again, this is not the case for infinite groups. The Z representation n i— > ( g " )  

is not completely reducible. Two useful results which we w ill use often axe Schur’s 

Lemma and one of its corollaries:

Lem m a 1.5 (Schur’s Lem m a) Let ip and 7r be irreducible C -representations o fG  

on the spaces V  and W  (respectively). Suppose L  : V  — > W  is a linear transfor­

mation such that L(p(g) =  tt(g)L for all g E G. Then either L  =  0 or L  is an

isomorphism (and representations are equivalent). Further, i f V  =  W  then L  is a

scalar map.

C o ro lla ry  1.6 Let ip be an irreducible representation of G and z E Z (G ). Then

ip{z) =  £I

where £ is an \z \^  root of unity and I  is the identity matrix of size deg p.

P ro o f. For every g E G we have zg =  gz so <p(zg) — <p(gz) and

v{z)v{9) =  v(g)<p(z)

Then by Schur’s Lemma, tp(z) =  £J for some £ E C. Since xl1! =  e we have

I  =  ip(e) =  </?(x)lxl =  hence £1*1 =  1.

□

1 .3 .2  G ro u p  actio n s  o n  f in ite  sets a re  p e rm u ta tio n  re p re s e n ta tio n s

A permutation representation of G  is a m atrix representation ip where p(g) is a

permutation m atrix (a m atrix with exactly one 1 is each row and column, and 0

elsewhere). A permutation representation is the same as an action of G  on a finite 

set. Suppose G  acts on the finite set 0, =  . . . , u m}- Let f i form a basis for

Cm. Then ip defined by

( 771 \  771

= '5 2 CiUJi-9

t= i /  i= i

is a permutation representation of dimension m. Indeed, writing <p as a m atrix with  

respect to the basis fi, we get

t \ _  /  1 if Uj.g =  uii
J ( 0 otherwise

Conversely, given a permutation representation <p on vector space V , let ft be the 

basis in which <p(g) is a permutation m atrix and let G  act on by ui.g =  ip(g)u.

6
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1 .3 .3  C h a ra c te r th e o ry

Let p be a (m atrix) representation of G. Define the character x  of p  as the trace 

of tp:

X - G  — * C

g i— ► tr  (<p(g))

Trace is invariant under change-of-basis, so the character is independent of the 

choice of basis. Equivalent representations have equal characters. Characters are 

class functions on G, meaning they are constant on conjugacy classes. Indeed,

X{hgh~l ) =  tr  (p (h)p(g)p(h)~1) =  tr (p(g)) =  x(g)

Being class functions, we may write x (K (g )) instead of x(s)> where K (g ) is the 

conjugacy class of g. A character is called irreducible if  the corresponding represen­

tation is irreducible. Since finite G has k (number of conjugacy classes) irreducible 

representations, it also has k irreducible characters. Let Irr(G ) denote the set of 

irreducible characters of G.

Theorem  1.7  Let C F (G ) =  { /  : G — ► C | f(g )  =  / ( hgh- 1) for all g,h  e G } be 

the C-vector space of class functions on G. Then the set of irreducible characters 

of G forms a basis of C F (G ). In  particular, the irreducible characters are linearly 

independent and C F (G ) has dimension k.

The triv ia l representation is always irreducible, so G always has a triv ia l character 

1(5) =  1. Note that 1-dimensional representations are equal to their characters. 

Since y(e) is the trace of the identity m atrix, we have that x{e) is the dimension m  

of the corresponding representation. We call m  the degree of x- The next theorem 

relates these degrees to the order of G, and helps in finding the irreducible characters.

T heorem  1.8 Let Xi>X2, • • • , Xfc be the irreducible inequivalent characters of G. 

Then

2 ^ ( e)2 =  lG l
i= l

Though characters are defined as functions into C, the character values actually 

lie in a subring of €:

7
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P ro p o sitio n  1.9 Let x  be a character of G. Then for all g € G, x{g)  € Z [£m], 
where m  =  Exponent(G) and is the primitive m th root of unity exp(27ri /m ) .

Define a Hermitian form on C F (G ), which is extremely useful in character the­

ory:

Several important theorems can be stated or proved using this form.

Theorem  1.10 Let <f> be a representation of finite group G with decomposition into 

irreducibles p  =  Let Irr(G ) =  (x i, X2, • • •, Xk}> with Xi being the charac­

ter of pi- Then the character x  ° f  <t> decomposes as

k

X =  Y miXi
i=1

Further, the multiplicities are given by mi —<  X iXi >•

T heorem  1.11 (F irs t O rth o g o n a lity  R e la tio n ) Let xu Xj £ Irr(G ). Then 

<  Xii Xj > =  $ij-

T heorem  1.12 Let x  £ Irr(G ). Then x is irreducible if  and only if  <  x> X > =  1-

Theorem  1.13 Let pi be the irreducible representations of G and (f)j the irreducible 

representations of H . Then the irreducible representations of G x  H  are the Pi <g> 4>j.

P ro o f. First we show that the pi <g> <f>j are irreducible. Let Xi be the character of pi 

and ipj the character of <j>j. Then the character of pi <g> 4>j is the product Xi ’ V’j  (this 

is easy to see writing pi and <pj as m atrix representations), and we apply Theorem

Further, x(<? *) =  x(g)> where bar denotes complex conjugation.

Y  x{g)^(g)

1.12:

Y  X i(g )^ j(h )x i{g )^ j(h )
(g,h)eGxH

geG  /  V 1 1 h&H

<  XuXi > <  'I’j i ' l ’j  >  

1

hence by Theorem 1.12 the corresponding representation is irreducible.

8
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To show that these are all of the irreducible representations, we apply Theorem

1.8:

Y ^ X i(e )2ipj(e)2 =  ^ X i ( e ) 2^ =  \G WH \ =  \G x H \

hence there are no other irreducible characters hence no other irreducible represen­

tations.

T heorem  1.14 (Second O rth o g o n a lity  R e la tio n ) Let a\, 0 ,2 , ■ ■. ,ak be represen­

tatives of the conjugacy classes of G. Then

x ( a i ) x ( aj )  =  Si j \CG {ai)\
xelrr(G)

1 .3 .4  In d u c e d  ch ara c te rs

Let H  <  G  and p  an m-dimensional m atrix representation of H . We can get a 

representation of G from p. Let x \H , X2 H , . . . , x^H  be the left cosets of H  in G. 

Define p ^  : G — > G L (mk, C) by letting p%(g) be the block m atrix whose i , j  block 

is

{Vh )h  =  tp {x f1gxi ) 

where p (x ~ l gxj) is the m x m  zero m atrix whenever x f l gxj £  H .

P ro p o sitio n  1.15 The function p ^  above is a representation of G, called the in­

duced representation. Its character x% called the induced character and is given 

by

x h (9) =  Tjji x iv ^ g y )
2/G G

y~ 1gy€H

R em ark  1.16 We need not fix a basis in order to define the induced character. I t  

always exists and is unique up to equivalence. The restriction of Xh  to H  is in 

general not equal to x-

1 .3 .5  C h a ra c te r ta b les

Let K \ ,K 2 , . . . ,K k  be the conjugacy classes of G  and x i, X2 , ■ ■ ■, Xk its irreducible 

characters. The character table of G  is the array with columns indexed by the
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conjugacy classes and rows by the irreducible characters and whose (Xi, K j ) entry is 

X i ( K j ) .  Neither the rows nor the columns are ordered in any particular way, though 

one often writes the class of e first, the triv ia l character first, and the characters in 

order of increasing degree. See below for examples of character tables. Note that 

the number of irreducible characters is the same as the number of conjugacy classes, 

so the character table is square.

Let G  have k conjugacy classes and irreducible characters as above, and sup­

pose H  also has k conjugacy classes. Then we say that G  and H  have isomorphic 

character tables if  there exist bijections 7r, cr between the irreducible characters and 

conjugacy classes (respectively) of G  and H  such that X i(K j) =  (7rX i)(cr̂ 0 ) for all 

i , j .  Permuting the rows of H ’s character table by n and its columns by cr produces 

G ’s character table. Non-isomorphic groups may have isomorphic character tables 

(see for example Dm  and Q 2 n when n is even, described in the next section).

C h aracte r ta b le  o f d ih ed ra l and quatern ion  groups

As an example, we w ill write down the character tables of the dihedral and quater­

nion groups. We w ill these character tables later.

The dihedral group of order 2n is given by the presentation D n =  (x, y \ x2 =  

yn =  e, xy =  y~l x). The elements can be listed as xlyi where i € {0 ,1 }, 0 <  j  <  n. 

Results are slightly different for the cases when n is even and when n is odd. When 

n is even, the conjugacy classes are

K (e) 

K {x ) 

K {xy) 

K {  y1) 

*(y»)

W

{xy2% 

{xy2i+1

n

n
0 < i <  j  “ !>

n
{ y \y n~1}, ! < * < -  — !

=  { y * }

and the character table is

D n K (e) K (x ) K (xy ) * ( v * ) K {y l)
1 1 1 1 1 1

1 - 1 - 1 1 1
l/>2 1 1 -1 ( - l ) f ( - 1)*

1 - 1 1 ( - l ) t ( - 1)*

Xj 2 0 0 2 co s(2# i )

10
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where 1 < i , j  <  j  — I.  For n odd, the conjugacy classes are

K (e) =  {e}

K  (x) — {xy1 | 0 <  i <  n}

K W )  =  { y \v n- %  i < i < ^

and the character table is

D n K{e) K (x ) K t f )
1 1 1 1

Ip! 1 - 1 1

Xj 2 0 2 co s(2? )

where 1 <  i , j  <  (n — l ) / 2.

The (generalized) quaternion group of order 4n has the presentation Q2n =  

{x, y  | y2n =  e, x2 =  yn, yx — xy-1 ). Its elements can be listed as xlyi where i E 

{0 ,1 } and 0 <  j  <  2n. Conjugacy classes are given by

K (e) =  {e}

K {x ) =  { xy2l | 0 <  i <  n — 1}

K (xy ) =  {xy2l+1 \ 0 <  i <  n — 1}

K {y l ) =  { y \ y 2n- % l < i < n - l

K (y n) =  {yn}

The character table is slightly different for n odd and n even. Let i  =  1 when n is 

even and t — i  { i2 — — 1) when n is odd. Then the character table is

Qln K (e) K{x) K {xy) K ( y n) K {y i)
1 1 1 1 i 1

Ip! 1 - 1 - 1 i 1
ll> 2 1 l —i ( - i ) n c - iy
tp3 1 —t L ( - i ) n ( - i ?
Xi 2 0 0 2( - l ) i 2 c o s ( ^ )

where 1 <  i, j  <  n — 1. Notice the similarity w ith the character table of D n. In  

particular, when n is even Q^n and D^n have the same character tables.

11
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1.4 The modular group SL2(Z)

The group SL2(Z ) is called the modular group and consists of all 2 x 2 integer 

matrices with determinant 1,

Modular data is a representation of SL2(Z ) so we w ill be interested in it throughout. 

O f particular importance is that fact that SL2(Z ) is generated by two elements:

P ro p o sitio n  1.17 SL2(Z) is generated by the elements s =  ( °  ~01) and t =  (J } ) .

P ro o f. Our proof is based on one given in [Apo76]. First we remark that tn =  ( J ?) 

and s2 =  — (J ?)• Let A =  ( “ ^) G SL2(Z ). Assume c >  0 and proceed by induction 

on c. I f  c =  0, then since det(A) =  1 we have ad =  1, so a =  d =  1 or a =  d =  —1. 

In  the first case, A =  ( q \ )  =  tb and in the second case A =  — (q ~i6) =  s2t~b. I f  

c =  1, then 1 =  det(A) =  ad — b so

Now assume c >  1 and that every m atrix in SL2(Z ) with lower-left entry non­

negative and less than c is generated by s and t. Since ad — be =  1, we know

Since r  <  c we get by the induction assumption that At qs is generated by s and t

To complete the proof, if c <  0 then As2 =  —A  has lower-left entry non-negative 

hence is generated by s and t, so A =  (—A)s-2  is generated by s and t.

R em ark  1.18 In  fact, every element of SL2(Z ) can be expressed using only positive

P ro p o sitio n  1.19 A presentation for SL<2(Z ) is <  s ,t | s4 =  1, s2 =  (st)3 > .

gcd(c, d) =  1 and in particular d ^  0 and d ^  c (remember c >  1). Then division of 

d by c gives

hence A =  (A t gs)s 1tq is generated by s and t, completing the induction.

□

powers of s and t since s4 =  1 so s 1 =  s3 and t 1 =  (J i1) =  ststs3.

12
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P ro o f. Showing that s =  ( J q1 ) and t =  ( q i ) satisfy the relations is easy. Showing 

that no that no other relations are needed is more difficult.

□

For a positive integer m  define a subgroup T(m ) <  SL2(Z) as

r(m) = {(“ d) 6 SL2(Z) 1 (“ i)S(o l) (modm)}
Lem m a 1.20 T(m ) is a normal subgroup o /S L2(Z ) and SL2(Z )/T (m ) =  SL2(Z m). 

P ro o f. One uses the obvious homomorphism </? : SL2(Z ) — ► SL2(Z m), ( “ £)

(  (e mod m) (d mod m)  )  and shoWS that ker(^ ) =  F (m ) ^  Im O ) =  SL2(Zm) SO the
lemma follows from the ‘First Isomorphism Theorem’. The only non-trivial step is 

showing Im(<£>) =  SL2(Zm). A proof is given in §6.1 of [Lan87].

□

SL2(Z ) acts the complex plane C as Mobius transformations. For ( “ ^) € SL2(Z ) 

and z € C the action is
(a  b \ _  az +  b
\c  d j cz +  d

Mobius transformations are conformal maps (i.e. they locally preserve angles). Let 

H =  { t  e C | Im (r) >  0} be the upper half-plane of C. One easily checks that for 

r  £ m and A 6 SL2(Z ), A.t  is also in H so we have an action of SL2(Z ) on OH. The 

orbit space IH/SL2(Z ) parametrizes the conformal equivalence classes of tori, as we 

w ill see. Tori are conformally equivalent if there is a conformal (complex-analytic) 

bijection mapping one to the other.

One way to define a torus is as the orbit space of C by a lattice. Let r , w € C be 

linearly independent over R (i.e not real multiples of each other). The lattice with 

basis r , w is the Z-span of r  and w, denoted Z r+ Z u ; =  { Ir+ m w  \ I, m  6  Z }. One can 

show that the lattice with basis r, w equals the lattice with basis a r +  bw, cr +  dw 

if  and only if a,b,c,d €. Z w ith ad — be =  ± 1. That is, the possible ways to 

change basis are given by ( “ £) € M 2(Z ) w ith determinant ±1 . The determinant 

— 1 transformations can be written as a determinant 1 transformation followed by 

interchanging the basis vectors,

fa  b \ /0  1 \  _  fb  a \
yc d ) \1  0/  \d  c )

13
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The ordering of the basis is irrelevant, so we may restrict to determinant 1 i.e. 

SL2(Z ). A lattice acts on C by translation:

z .(It  + mw) = z +  It  +  mw

The orbit space C / (Z t + Z w) looks like a parallelogram with vertices at 0,r,u;, t + w . 

Every point along the side of the parallelogram is in the same orbit as one on the 

opposite side, so opposite sides are identified (‘glued together’) and the result is a 

torus.

Rotation and scaling are conformal maps, so we can rotate and scale the basis 

vectors r, w and end up with a conformally equivalent torus. Consequently we may 

assume w =  1 and r  € H. So every r  € H corresponds to a torus. But we can change 

basis w ith ( “ ^) € SL2(Z ) and still have the same lattice: (r, 1) i— ► (a r +  b,cr +  d). 

Scaling so that the second basis vector in 1, we get that r  and =  ( “ ^) .r  

describe the same torus. Consequently H /SL2(Z ) parametrizes, without redundancy, 

the conformal equivalence classes of tori and is called the moduli space of the torus.

14
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Chapter 2

Introduction to finite group 
modular data

2.1 Definition of modular data for a finite group

In  this section we provide the definition of modular data for a finite group. We 

define modular data as a representation of SL2(Z ) on the space C °(G cototo). This 

space was defined in [KSSB99]. There are two bases of interest for C °(Gcomm), C 

and V, giving two m atrix representations of modular data. In  §2.3 we review the 

contexts in which finite group modular data arises. In  most of the literature modular 

data appears only as a m atrix representation in the C basis. However, we present 

modular data first in the V  basis and explicitly derive modular data in the C basis. 

This derivation does not seem to be given elsewhere.

2 .1.1  T h e  space C ° (G comm) an d  tw o  bases

Let G  act on G x G by simultaneous conjugation, i.e. for x € G  and (g,h) € G  x G

x.(g,h) =  (xgx-1 ,xh x_1)

Define a subset G comm of G  x G  as the set of all commuting pairs, Gcomm =  { (5 , h) € 

G  x G | gh — hg}. Since g and h commute if and only if xgx~l and xhx~l commute, 

the G-action on G x G induces a G-action on Gcomm. We consider the G-orbits of 

Gcomm and w ill write (g, h) ~  (g \ h!) to denote elements that are in the same orbit.

Fix a set R  =  R(G ) of representatives of the conjugacy classes of G. For each 

a € R  fix a set Ra of representatives of the conjugacy classes of C (a). Let TZ =  

{ (a ,6a) | a e R, ba e R a}.

Lem m a 2.1  TZ forms a set of representatives of the G-orbits of Gcomm- In  partic­

ular, every (g,h ) € Gcomm has a representative (g,hg) G R .

15
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P ro o f. First, it is clear that no two elements of TZ are in the same orbit. Now 

let (g, h) e Gcomm • Then there exists x €. G  such that xgx~l =  g e R, so (g, h) ~  

(g, xhx~l ). Since xhx~l 6 C(g) there exists y € C(g) such that y(xhx~l )y~1 =  

hg E R§. So we have (g, h) ~  (g ,xhx~l ) (ygy l ,yxhx xy x) =  (g,hg) e TZ, 

proving the lemma.

□

Define C (G comm) as the space of complex-valued functions on Gcomm and the 

subspace C °(G comm) C C(Gcomm) as those functions that are constant on the G- 

orbits, i.e.

c°(Gcomm) =  { /  € C(Gcomm) I f  (xgx~l , xhx~l ) =  f (g,h)  for all x , g , h e  G}

Equivalently, C 0(G COmm) is the space of complex-valued functions on the orbit space 

Gcomm /G .

First we build the basis V  of C°(Gcomm), called the permutation basis. We w ill 

see later that modular data is a permutation representation when expressed in this 

basis, hence the name. For each a € R  and ba € R a define the function [o, 6J  to be 

the characteristic function of the G-orbit of (a,ba), i.e.

We apologize for the awkward choice of notation [a, 6aJ for a function. After this 

section we identify [a, 6a] with the G-orbit of (a,ba). In  particular, keep in mind 

that [a, b] =  [c, dj if and only if there exists g € G such that (gag~l , gbg~x) =  (c, d). 

For Abelian groups conjugation is triv ia l so [a, 6J =  [c, d\ <*=*> (a, b) =  (c, d).

P ro p o sitio n  2.2 (p e rm u ta tio n  basis) The set of functions V  =  {|a , ba] | a € 

R, ba € Ra} forms a basis for G °(G comm).

P ro o f. Considering G° (Gcomm) as C-functions on the orbit space Gcomm IG , the 

[a, ba] are the characteristic functions of the orbits hence form a basis.

□

C o ro lla ry  2.3 The dimension of C°(Gcomm) is YlaeR Ta, where qa is the number 

of conjugacy classes of Cc(a).

16
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We now build the second basis C, called the character basis (the name comes 

from characters of a vertex operator algebra in conformal field theory). For (g, h) € 

Gcomm) let (g,hg) be its representative in 7Z. For each a 6 R  and irreducible 

character x  £ Irr(C c (« )), define the function ch* € C °(G Comm) by

ch* ( g , h )  =  [  x &s) 9  =  a
|  0 otherwise

The definition depends only on the representative (g, h g) hence ch* is in C °(G comm). 

The functions do not depend on the choice of representatives R. Indeed, replac­

ing a w ith xax~1 we see that C (xax~1) =  xC (a )x~1. Then x  £ corre­

sponds with xx £ Irr(C (xaa;-1 )) =  Irr(xC (a)a;-1 ), where for xhx~x E xC(a)a;-1 , 

X x { x h x ~ l ) — x ih ). For this reason we may always assume that g E R, and write 

X ( h )  instead of x(hg)- We w ill often identify ch* with the pair (a, x ).

P ro p o s itio n  2.4 (character basis) The set of functions C =  {ch* | a E R, x  €

Irr(C (a ))}  forms a basis of C°(Gcomm)-

P ro o f. Since the number of conjugacy classes of C(a) is equal to the number of ir­

reducible characters of C(a) we have that the number of functions in C is 5ZaGft<7a> 

i.e. the dimension of C °(G comm). Now we show that the ch* are linearly inde­

pendent. Suppose ch* =  a (6» ch& f°r some o t^ )  € C. Then for every

h E C (a ) we have

X ( h )  =  ch*(a, h)

=  ^  (o> bi)
(b,ip)eC

=  ^  ] 0c(a,i>)ĉ ia {at h)
(a,ip)eC

y>eIrr(C(a))

This implies that a(a,ip) =  0 for ^  ^  x  and ct(a,x) =  1 since the irreducible characters 

of C{a) are linearly independent. Now let d E R  w ith a. Then for every k E C(d)

17
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we have

0 =  ch *(d,fe)

(b,tp)eC

=  Z  a w ) W )
(d,ip)ec 

Z  a ( d , v W )
V>€lrr (C(d))

which implies all the a ^ )  =  0 since the ^  6 Irr(C (d )) are linearly independent. 

So we have that all the a  =  0 except cc(a x) =  1 so the ch-* are linearly independent 

and C is a basis of C °(G comm).

□

Next we present the formulas needed to change from one basis to the other. We 

have not seen it written down anywhere in the literature.

P ro p o sitio n  2.5 (C hange o f basis fo rm ula) Let ch* € C and [a, ba|  € V . Then 

we can express ch* in terms o fV  and f (a,ba) terms of C as follows:

cha =  Z  x(&a)[a,&aj  (2-1)
baSRa

â,6aI  =  Tr — Z  x(ba)ch* (2.2)
i C g (“ ) (  “) | xeIrr(C(a))

P ro o f. Let (5, h) € Gcomm • Evaluating the right-hand side of 2.1 at (g, h) gives

9
. _ otherwise

bâ Ra

which is exactly the definition of ch%(g,h) .  Evaluating the right-hand side of 2.2 at 

(g, h) and using the Second Orthogonality Relation (1.14) gives

\r  1 ni Z  X(ba)<&x{g ,h)  =  , Sa~ 9( , ■ Z  X ( b a ) x ( h )
\ Ccip.) ( a ) I x e irr(C(a)) \C CG{a) (&a) | xeIrr(C(a))

_  f 1 (a, ba) ~  (g , h )
\  0 otherwise

which is the definition of [a, 6a|.
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2.1.2 SLi2 (Z) representation and the definition of m odular data

Let A =  (® j )  G SL2(Z ) and (g, h) e Gcomm- Define a right action of SL2(Z ) on

W ith  a bit of writing one checks that this is a right action, noting that commutativity 

of g w ith h is required. The action commutes with the action on G  on Gcomm, namely

Consequently we have that (g,h) ~  (g ',t i)  <=>- (g,h). ( “ £) ~  (9 / ,h '). ( “ £ ). 

This action induces a right action on C° (Gcomm) via

where /  G C °(G comm). As C °(G comm) is a C-vector space, this defines a represen­

tation of SL2(Z ).

D e fin itio n  2.6  The representation of SL2(Z ) on the space C° (Gcomm) is called the 

modular data associated with G and will be denoted p =  pa-

As SL2(Z) is generated by s and t, modular data is determined by p g ( s )  =  S

and pc(t) =  T . We w ill not use different symbols for S and T  w ith respect to the

different bases, but the basis w ill (hopefully) be clear from context.

M o d u la r d a ta  in  th e  p e rm u ta tio n  basis

For the basis functions f<7, h] G V, the SL2(Z ) action is

=  ((xgx~1)a(xhx~)c, (xgx~1)b(xhx~1)d))

— (xgah°x~1 ,xghhdx~ l )

=  x.(gahc,gbhd)

(f - ( c d ) ) i ^ y )  =  f  ( ( ^ y ) - ( c d )  2)

(Il9 , h } . ( ac bd) ) ( x , y )  =  \g,h] [ (x,y) .  ( ac bd) X)

1 tf(g,h) ~ (x,y). ( “ rf)_1
0 otherwise

0 otherwise

=  ( l9 ah°,gbhdj j  (x,y)
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Consequently we have a (right) action of SL2(Z) on V,

and modular data pc is a permutation representation (hence the name permutation 

basis for V).  Note however that the basis V  is not ordered, so to write p as matrix

representation we must first fix an order on V. We will discuss this in detail in

Chapter 4, but for now assume that we fix an order on V.

For the generators s =  (  ̂~q ) and t =  ( J }), we have

I g,h].s =  [h,5_1l (2.3)

\g,h].t = \g,gh] (2.4)

Consequently, S and T  in the V  basis are given by

f 1 (h,g~l ) ~ (g',ti)
(9 ',h'),(g,h) ^ q otherwise

T  _ /  i  (g,gh) ~ (g' ,t i)
(9 ',h’),(g,h) |  q otherwise

M o d u la r  d a ta  in th e  character basis

For the character basis, the action of a general element ( “ € SL2(Z) on the basis

functions ch* is not as easy to describe as in the permutation basis. But it suffices 

to give the action of the generators s and t.

Proposition  2 .7  For ch* G C, the action of s, t € SL2(Z) is described by

=  ^ < * 5  (2-7)

chi-s  =  1^737 H  7373] 5 Z  X<xbx-1pMx-'ax)ch*  (2.8)
1 k M (b,i>)eC 1 W l xeG(a,6)

where G(a, b) =  {x  G G \ axbx-1  =  xb x^a}.

R e m ark  2 .8  The set G(a,b) is precisely the set of x G G such that x~ l ax G C(b) 

and xbx~l G C(a), i.e. the x such that x (x 6x - 1)^ (x - 1ax) makes sense. When 

G(a, b) =  0 the sum over G(a, b) is 0.

Proof. The proof of (2.7) is sketched in [CGROO] and we elaborate it here. The 

proof of (2.8) is our own, though the result is of course the standard definition of S.
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Let (g,h) e G comm. We prove (2.7) first. Evaluating the left-hand side of (2.7) 

at (g,h) gives

(ch* .t)(g,h) = c h *(g,g 1 h) =  j 9) 9 ~  a 
otherwise

Evaluating the right-hand side gives

=  {  ^  s ~ a
x (e) ( 0  otherwise

We may assume g =  a, so we need to show —‘ =  x{h~l g)- Let ip be the

representation of C(g) corresponding to x- Since g 6 Z(C(g)),  Corollary 1.6 gives 

<P(9) =  for some f  € C, so x ( 9 ) =  deg(</?)£ =  x(e)£. Then

p(h~l g) =  p(h~ 1 )tp(g) =

hence

X{h~l g) =  tr  {ip{h~1)) =  ix {h ~ x) =

as required.

For (2.8), the left-hand side is

(chJ.S){g, / i) =  ch>f(/.-1,9 ) =  {  * (9 [)

In  evaluating the right-hand side, we use the Second Orthogonality Relation (1.14), 

Lemma 1.1, and Proposition 1.9:

p 5oi k W  X ,  h)

1 E  E  x (x p x -1)^ (a :-1ax)^ (/i_1)
\C(a)\\C(g)\ ^€lrr(c(fl))

1 ^  — F * ) (-  |C (a ) | |C (^ ) I S  X ( x g x ~ l ) I E  M x - ' a x m - ' )
1 x€G (a,g) V ^G lrr(C(g))

~  |C(a)||C'(<7)| x(xgx  1)|C'c,(s)(h )|<5I - i aa:̂ c,(9)/l- i
x£G (a,p)

where X  is the set of all x e G  satisfying

axgx~l =  xgx~xa (2.9)

x _1ax ~c(g) (2-10)
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I f  (2.10) is satisfied, then we have z 6 C(g) such that zx~1axz~1 =  /i_1 hence 

a h-1 . So for a / g  h_1, the sum is empty and the value is 0 as desired. 

Otherwise, we we may assume a =  h-1 . Since g and h commute, so do g and

h~l =  a so a £ C(g). We need to know more about the set X .

Partition G  into right cosets of (7(a). Let x £ X ,  and take any 2 £ C(a).  We

show that zx £ X :

a{zx)g(zx)~l =  z(axgx~l )z~1 =  z(xgx~1a)z~1 =  (zx)g(zx)~1a

and

{zx)~1azx =  x~l z~l azx =  x~ l ax ~c{g) a

hence C(a)x  c l .  So X  must be a union of right cosets of C(a).

Now let C(a)w  C X  and suppose that for every choice of coset representative w, 

w C(g). Since w 6  X ,  by (2.10) there exists v € C(g) such that vw~l awv_1 =  a, 

i.e. vw~l £ C(a). But this is exactly the condition for the cosets C(a)w  and C(a)v  

to be equal, which is a contradiction since v € C(g). Hence every coset that is 

contained in X  can be written as C(a)x with x € C(g). Conversely, every coset 

C(a)x with x  € C(g) is in X  since clearly C{g) C X .  So every element of X  can 

be written as zx with z £ C (a) and x £ C(g) =  C(g~1). Hence the character value 

appearing in the sum is

X ((z x )g -1(z x )~ 1) =  x{zg~l z ~ l ) =  x(<7- 1 )

To complete the proof we need to see that |X | =  |C(a)||i('G(9)(a)|-

Let Kc{g){a) =  {fci, . • •, h }  and partition C(g) into I subsets C(g)i - { i £  

C{g) | xax~l =  hi}. Note that C(g)i ±  0. For X{ £ C(g)i and Xj £ C(g)j  we get

i  =  j  <1= ^  X i d X ~ l  =  XjCLXj1

4=^ x ~ l Xi<ix~l Xj =  a 

x J l Xi £ C (a )

**=*► C{a)xi =  C{a)xj

hence the cosets C(a)x  with x £ C(g) are parameterized by the C(g)i  and there are 

I of them, showing that |X | =  \C(a)\\Kc(g)(a)\ and completing the proof.

□
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We will use the notation (a, x )  instead of ch* to index S and T  in the character 

basis. Proposition 2.7 gives the following formulas for 5  and T . These matrices are 

the way finite group modular data is usually defined.

S(a'*)'IW) = |CG(a)||CG(i)| ̂ l * XbZ~1)'K z ~laX) (2'U)

T(a,x), ib ,V) =  (2 -12 )

Observe that S is symmetric and T  is diagonal. An alternate way to write S is

S(a,x) ,M )  =  1^7 x i x h x - ^ i y g y - 1) (2.13)
1 1 g e K a, h e K br C G(g)

where x, y are any solutions to g =  x~1ax and h — y~l by.

Since C is not ordered, there are \C\\ possible ways of choosing an ordering so

that we can S and T  as matrices. We will see in Chapter 4 that there is a natural

way to impose some order on C (not a total order though).

2.2 Properties of modular data

In  this section we give a few properties of finite group modular data that will be 

useful later. We start with two simple observations.

Lem m a 2.9 For any (a, x), (b, ip) € C, i f  the order of a does not divide the exponent 

of C(b) or the order of b does not divide the exponent of C(a ) then S { a ,x),(b,ii>) =  0-

Proof. We prove the contrapositive. I f  G(a, b) ^  0 then g~l ag € C(b) and for 

some g G G. Hence |a| =  \g~1 ag\ divides the exponent of C(b). Similarly |6| divides 

the exponent of C(a).

□

Lem m a 2.10 The order o fT  is the exponent of G.

Proof. The order of a group element is invariant under conjugation, hence the

order of T  is the same in both the C and V  bases. We will use the V  basis. Let m  

be the order of T. Then tm acts trivially on V.  For every g € G, [5 , ej is in V,  so

l5>5ml = 1 = \g,e]

But [5 , <?m] =  [5 , e] gm =  e, hence |p| divides m. This holds for all g € G,

hence lcm{|p| | g e G} =  Exponent(G) divides m. Conversely, if  I =  Exponent(G)

then \g, hj.t1 =  |p, glh\ =  {g, hj so I divides m.
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□

Next we give a proposition from [CGROO] that will help us compute certain 

entries of S.

P roposition 2.11 Let (a, x ), {b, v) EC  and suppose that v is the restriction to C(b) 

of some character v' defined on the group (G(a,b),C(b)). Then if  G{a,b) /  (ft,

V'(a)Xc(a)(b)
&(«*),(6,t,) -  |C ^ |

where Xc(a) ^  induced, character. In  particular, when b =  z € Z (G ) we get

O _  ^ (a)x (*)S(a,X),(z,v) ~  |C (a )| (2-14)

Proof. Since v1 is defined on (G(a,b),C(b)) and restricts to v on C(b), we have

for all g € G(a,b), v{g~l ag) =  if{g~l ag) =  v'(gg~l agg~l ) =  v '(a ) so we get

=  |c (a ) | |c m i S  x i n i g - X r ^ s )
g€G(a,b)

V ^  Y 1  x igbg-1)|C,(a)||C (6)|
g e G

gbg~1eC(a)

V'(a)Xc(a) (b) 
\C(b)\

When b =  z E Z (G ),  we have C(z) =  G so v =  v' and the condition gzg~l e C (a ) 

in the definition of the induced character is true for all g. Then the the induced 

character is given by

=  \C{a) \ ^  =  W ) /

and the result follows.

□

Finally, but most importantly, we show that po is in fact a representation of a 

finite quotient of SL2(Z). This is important since the representation theory of finite 

groups is considerably simpler than that of infinite (discrete) groups.
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P roposition  2.12 Modular data pa of G is a representation of SL2(Zm), where m  

is the exponent of G, and decomposes into irreducibles

PG =  0 m iP i
i

where pi are the irreducible representations o /S L2(Zm).

Proof. First we show that T(m ) <  ker(pc)- Letting ( 1"^1m i ^ m) G L(m ), we

have that for every [g, h} e V,

lg, hj. ^  +c * m 1 b™dm)  =  lg1+amh™, g^ h 1+dm 1 =  [g, hi

hence the action of T(m ) on the permutation basis is trivial and T(m ) <  ker(pc).

Consequently, pc induces a representation of SL2(Z ) /r (m ) =  SL2(Zm),

AT(m) pG(A) for A e SL2(Z)

which we also refer to as p g - As it is a representation of the finite group SL2(Zm), 

it decomposes into irreducibles (Theorem 1.4).

□

In  the next chapter we examine the decomposition of po into irreducibles.

2.3 Appearances of modular data

Modular data of finite groups arises in several contexts. The most important is in 

conformal field theory ([Gan05],[CGR00]), though it originally appeared in group 

representation theory ([Lus79]). I t  can also be realized as an action of the 3-string 

braid group.

2.3.1 Conformal field theory

In  string theory the basic objects are 1-dimensional strings rather than point par­

ticles. Rather than a world-line, a string traces out a 2-dimensional world-sheet. 

Conformal field theory (C FT) is a quantum field theory whose symmetries include 

conformal transformations. When the space-time of the C FT is the world-sheet of a 

string, the C FT  gives important information about the corresponding string theory.

One of the most important cases is when the space-time of the C FT  is the 

torus. As we saw from 1.4, the moduli space of tori is H /SL2(Z). The essential
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quantity in this C FT  is the partition function z ( t ) ( r  €  H), which describes how 

the C F T ’s state space transforms under the symmetry algebra of the C F T  (which 

is a vertex operator algebra). The partition function is a sesquilinear combination 

of characters ch^(r), which are indexed by primary fields A  G 4>. Algebraically, the 

primary fields index the irreducible representations of the vertex operator algebra 

and the cA are the characters of those representations. We will discuss the partition 

function further in Chapter 3. The characters transform nicely under the action of 

SL2(Z) on H:

chA(s.r) =  chj4( - l / r )  =  ^  SABchB{T)
Be<t>

chA(t.r) =  c1u(t +  1) =  ^ 2  TABchB(r)
Be<t>

The matrices S and T  define a representation of SL2(Z) via s i— ► S, 1 1— > T,  which 

is called modular data. So where do finite groups come in?

The finite group modular data arises as follows. Consider first the string theory 

having as its space-time a n-torus Rn/ L n, where L n is a self-dual lattice. The 

modular data arising in the corresponding C FT  is trivial: 5  =  1 and T  =  1. Now 

take G  to be a subgroup of the automorphism group of Ln and form the orbit 

space (Rn/ L n) /G , as a manifold (the ‘orbifold’ construction). For the string theory 

on (IRn/ L n)/G ,  the modular data arising in the C FT is the modular data of G, 

i.e. given by (2.11) and (2.12) (C is the set of primary fields). Other types of 

modular data arise from other space-times. For example, when the string theory 

has a compact Lie group as its space-time the modular data is associated with an 

affine Kac-Moody algebra.

2.3.2 Braid group

Finite group modular data can be derived from a action of the 3-string braid group 

S 3 on G  x G. The braid group S 3 has the presentation

S 3 =  (<7l, CT2 | <7iCT2<7i =  <72CTl<72)

Geometrically, consider 3 ‘strings’ (not in the sense of string theory!) going from 3 

‘start points’ to 3 ‘end points’. The crossings-over and under of the strings and the 

start/end points that they connect determines the group element (a ‘braid’). Two 

braids are multiplied by joining the end points of one to the start points of the next.
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Pretty pictures of braids can be found in any book on the braid group (e.g. [Bir75] 

or [Kam02]).

SL2(Z) arises as a quotient of Bz- The centre of £3 is ((cri^cri)2), and 

Bz/(((Tia2 cri)4) =  SL2(Z). The isomorphism is given explicitly by o\ 1— ► t  and 

(<ti<72<7i )_1 1— ► s (one checks that the relations s4 =  1 and s2 =  (sf)3 hold). Modu­

lar data comes from an action of Bz on G x G. Consider the group algebra C [G xG ] 

as a C vector space, and define the action on basis vectors (g, h) by

(g,h).ai =  (g,gh), {g,h).<J2  =  {gh~l ,h)

This is a B 3  representation since a \a 2 (r\(g, h) =  0 2 0 x0 ?.(g, h). We can get an SL2(Z) 

representation in two ways. First, let Vi be the subspace of C[G x G] spanned by 

Gcomm. (he. by commuting pairs). One checks that V\ is mapped to itself under the 

Bz action and that (crio^ci)4 acts trivially on Vi, hence we get a representation of 

SL2(Z). The second way is to let V2 be the subspace spanned by all vectors of the 

form ' 2̂x€G(xgx~ 1 ,xhx~1). Again one checks that V2 is stable under the Bz action 

and that (c r io ^ i)4 acts trivially. Now form the intersection Vi fl V2 and notice that 

it is isomorphic to G°(GC0TOTO). Notice that o\ and (cti^cti)-1 act on G  x G by

(g,h).ai =  (g,gh)

(<7, / o - ( * r W )  =
=  (gh,h~l g ^ h ) . ^ 1

=  (/i,h _ 1p_ 1/i)

Restricting the action to Vi 0  V2, this coincides with the action of s and t  on

c °  {Gcomm).

The action of Bz on G x G =  G2 generalizes to an action on the n-string braid 

group Bn on Gn~l (and on C[Gn]). The action is given in Chapter 2 of [Gan06]. It  

plays a role in C FT  on higher-genus surfaces (see Chapter 6).

2.3.3 Other appearances

The definition of the S matrix (in the C basis) originates with G.Lusztig in [Lus79], 

in a purely group-theoretical context. This paper classifies the ‘unipotent’ repre­

sentations of certain finite Chevalley groups. Lusztig uses C (as pairs, not functions 

on C°(Gcomm)) to parametrize the representations. The representations fall into 

families F ,  and to each family is associated a finite group Tj- (one of Si,S 2 ,Sz,Sz).
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Then Cyt  parametrizes the representations in T . The matrix S appears (though

Modular data of G  also arises in the representation theory of the quantum double 

of G  ([KSSB99], [Mas95]). The quantum double D(G )  is a ribbon Hopf algebra

on G  x G. The irreducible representations of D (G )  are indexed by C (as pairs (a, x ),

on the presentation given in [CGROO].

2.4.1 A belian groups

Modular data for Abelian groups is easy to write down. Every Abelian group 

G  can be expressed as G  =  x Zd2 x • • • x Zdt where dilcfel • • • |di. Let m — 

(m i, m2, . . .  ,rrit) 6 G. Each conjugacy class consists of a single element, so R =  G, 

and all of the centralizers are equal to G. Consequently, the size of C is |G|2. All the 

irreducible representations are 1-dimensional, hence are equal to their characters. 

They are parameterized by r  =  (r i, r 2, . . . ,  r{) G Z ^  x Z ^ 2 x ■ ■ • x Z^, and are given

with a slightly different definition) and is used to define a ‘Fourier transform’ on 

functions on Cr-

formed from G. As a vector space, it is identified with the space of C-valued functions

not functions), with a and Cg (o) being used in the definition of the representation 

space. Their characters can be identified with C, as functions on G x G. Then the 

representation pa arises as the action of SL2(Z) on C.

2.4 Examples of modular data

We now work out some examples for modular data. Material in this section is based

by
(  2'Kim.i \  n (  2-Kimi \  T2 (  2-k im i \
{ — )  - “ H — )

Then the formulas for S and T  in the character basis are

(2.15)

(2.16)
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2.4.2 D ihedral groups

The dihedral group of order 2n is given by the presentation D n =  (x, y \ x 2  =  yn =  

e, xy — y~ lx) with elements listed as xlyi where i € {0 ,1 }, 0 <  j  <  n. Results are 

different for the cases when n is even and when n is odd. First consider the case n 

even. D n has § +  3 conjugacy classes. Below is the character table, along with the 

centralizers of the conjugacy class representatives — 1).

D n K(e) K{x) K (x y ) * ( » * ) K {y i)
1 1 1 1 1 1

ipi 1 - 1 -1 1 1
1 1 - 1 ( - l ) f ( ~ i y

^3 1 - 1 1 ( - l ) f i - i y

X i 2 0 0 2 ( - i  y * < * * ( ¥ )
C(g ) Dn / — \ ( x , y a )

=  Z 2 x Z 2
(zy ,y^) 

=  Z 2 x Z 2
D n ( » ) ^ z n

From the above table, we can compute the size of C:

|C| = ( = + 3 ) + 4 +  4 + ( = + 3)  +  Q  — i ) » 4  +  M

The characters of (y) =  Z n are Vi(y>) =  with a primitive nth root of unity

and 0 <  i  <  n. For {x,y%) =  Z 2 x Z 2 and (xy,y%) =  Z 2 x Z 2, the characters are 

<pri(x^yk 2 ) =  (—l y i+ lk and <£y/((xy)7yfc?) =  (—l ) ri +lk respectively.

Since e and y% are in Z(G ),  we can use (2.14) to compute any entry with an 

index involving e or y t .  Since Z2 x Z 2 has exponent 2 but no element yl , 1 <  i <  § 

has order 2, Proposition 2.9 tells us that any entry indexed by yl and either x or 

xy is 0. For ,k,Xi),(yi,Xl)i we observe that every conjugate of yk is either yk or y~k 

hence G(yk,y l) =  D n and Xi{sVl9 ~l ) =  Xi(yl) for every g € G (similarly for Xj)- So 

we get
8 ( 2 ml \  /  27r j k \

S(yk,Xi),(yl ,Xj) ~  ~ cos J cos J

Next consider Any xlyi e G (x ,x)  satisfies xxly ixy~ix l =  xly ixy~ ix lx,

which has solutions {yj ,xyj  \ j  =  0, 3 , §, for \  even and (y7, xy-7 | j  =  0, § }  for 

§ odd. The character values are now easy to compute, and a similar computation 

shows that we get the same result for 5(*y,v5ri).(*i/.¥V'i'), namely

q _ q _  1 J ( -1  )r+r'+l+1' +  ( - l ) r+r' for § even
b(xy,<PTl)AxyWT'l') ~  4 |  (_ l)r+ r ' for n
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Finally, for we get G{x,xy) =  {yj ,xyj  | j  =  ^ ,  when \  is

odd and G(x, xy) =  0 when |  is even. This gives

l ( _ l ) r + r '+ Z + r  fo r n odd

for |  even

For n odd, £>n has +  2 conjugacy classes. The character table and the 

centralizers are listed below, where 1 <  i , j  <

D n K(e) K (x ) K & )
1 1 1 1

A 1 - 1 1

Xi 2 0 2 cos ( 2? )

C { g ) D n ( x ) ^ Z 2 (y) — zn

The size of C is

|C| =
n

+  2 I +  2 +  n
n2 - 1

+  4
2 J  V 2 J 2

The characters of {y) =  Zn are denoted as above, and the characters of (x) =  Z 2 

are (f)r (xl ) =  (—l ) r i, r  € {0 ,1}. As before, any entry involving e is computed using 

(2.14). All the entries are 0 since no yl has order 2. The S ŷktXi)^yi Xj)

entries are the same as before. Finally, we have G (x,x)  =  {e, x } hence

S(x,<t>T),(x,<t>r ,) =  2 ^ ~  +

2.4.3 Quaternion groups

The quaternion group Q 2n of order 4n is given by the presentation Q 2n =  (x,y \ y2n =  

e, x 2 =  yn, xy =  y~1x). Note the similarity with the dihedral groups and recall 

that for n even, Q 2n and D 2n have the same character tables. Q 2n has n +  3 conju­

gacy classes, described earlier in 1.3.5. The centralizers are listed below along with 

the character table (<- =  1 for n even, 1 =  i  for n odd).

Q 2n K(e) K {x ) K (xy ) K {y n) K{y=)
1 1 1 1 1 1

V’i 1 - 1 - 1 1 1
^2 1 1 — 1 ( - l ) n ( - l ) J
^3 1 — 1 l ( - l ) n ( -1  y

Xi 2 0 0 2( - i  y 2 cos ( ? )

C ( g ) Q 2n <*> =  Z 4 (xy) “  Z4 Q 2n (y) =  z 2n

From the above we can compute the size of C:

\C\ =  (n +  3) +  4 +  4 +  (n +  3) +  (n — l)(2n ) =  2 n2 +  14
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The characters of (y) =  Z 2n, (x) — Z4, and (xy) =  Z4 are, respectively, Vi(yi) =  

4>r {x^) =  i ri , and <pr ((xyy) =  where r  6 {0 ,1 ,2 ,3 }.

Computing T  is straightforward. Computing the entries of S proceeds in a 

similar manner to the dihedral groups. We use (2.14) for any entries indexed with 

e or yn since these are in Z(G).  The entries indexed by y-7 (j  y  n) and either x or 

xy are all 0. Indeed, when n is odd, none of the yJ have order 2 or 4, so do not 

have order dividing 4 =  E xp o n en t^ ). When n is even, and y^r have order 

4. However, xlyi G G (x ,y t )  must satisfy xxly^y^y~^x~ '1 =  xly^y^y~^x~ix, which 

implies ry?  =  xy^ t, a contradiction. Similarly for .

The entries indexed with yk and yl are the same as in the dihedral case, namely

4 ( m l \  ( Trjk\
S(yk,XiUyl,Xj) =  ~ cos J cos J

For 5(Ii<̂ ) )(X)̂ r,) we get that G(x,x) =  {yj ,xyj  \ j  =  0, f ,n ,  for n even and 

G (x,x) =  {y ^ xy i  | j  — 0,n }  for n odd. Then character values are easy to work 

out, and we get the same result for >S,(a;y,pr.),(xi/,w)» namely

„  _  _  /  2 cos ( f  r / ) )  f ° r  n  even
b(x,<j>r),{x,4>r,) — b(xy,ipr),(.xy,<prl) — |  ^i~r~r for n odd

(noting that 2cos ( f  (r +  r ')) =  ( i r+r' +  ( - i ) r+r')). Finally, for 5 (x,0r)i(x?/̂ r,) , we 

get G(x, xy) =  {yJ, xyJ | j  =  ^ ± 1 }  when n is odd and G(x, xy) =  0 when n is

even. This gives
o _  f \ i ~ r~r' for n odd

(x,4>r),(xy,ipr>) |  Q for n even

2.4.4 Com parison of dihedral and quaternion modular data

In  Chapter 4 we will be comparing modular data of different groups, and defining 

what we mean by groups having ‘equivalent’ modular data. To motivate that section, 

we make a brief comparison of the dihedral and quaternion modular data.

£>2n and Qin have the same character tables when n is even. Their modular data, 

however, is different. In particular, their T  matrices are different. Each a € i?r»2n 

corresponds to an a1 e Rq2n via xo2n x q 2u, VD2n yq2n. Then for a ^  x,xy  

we easily check that x(a) =  x V ) ,  hence T ^ ) M  =  7fj"x>),(a>,x'y But in D2n 

the centralizer of x is Z2 x Z 2 and the four entries T̂ x,<j)ri),{x,4>ri)i r , l  € {0, 1} are 

1,1, —1, —1, while in Q in the centralizer of x is Z4 and the four entries T (x^ r)t(x 

are 1, i,  —1, —i. Similarly for xy, hence T ° 2n and T ^ 2n are different. In  particular,
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for D i and Q4 we have

T D* =  diag(l, 1 ,1 ,1 ,1 ,1 , - 1 , - 1 , 1 , 1 , - 1 , - t . t ,  1 , - 1 ,1 , -1 ,1 ,1 ,1 ,1 , -1 )

T '34 =  diag(l, 1, 1, 1, 1, 1, - 1, - i , i ,  1, - 1, - i , i ,  1, - 1, - i , i ,  1, 1, 1, 1, - 1)

Trying to compare S matrices is more difficult. We can see that the same entries 

appear in SDin and S®2n. But without fixing an order on C, we cannot test for 

equality. We write down the S matrices for D 4 and Q 4  as an example (see below).

Notice that although the matrices are very similar, the value -4 appears six times 

in the diagonal of S® 4 but only twice in the diagonal of SD i. Reordering the basis 

means simultaneously permuting rows and columns of S , which does not change 

the entries that appear on the diagonal (they are permuted though). Consequently, 

we should regard these S  matrices as inequivalent. We will define formally what 

we mean by equivalent in Chapter 4, and have the same entries appearing in the 

diagonal will be one of the conditions.
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1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 1 1 1 1 2
1 1 1 1 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 2
2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -4
2 -2 -2 2 0 4 0 -4 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 4 0 -4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 -2 2 0 -4 0 4 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 -4 0 4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 2 -2 0 0 0 0 0 4 -4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 -4 4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 0 0 -4 4 0 0 0 0 -2 2 -2 2 0
2 -2 2 -2 0 0 0 0 0 0 0 4 -4 0 0 0 0 -2 2 -2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 4 0 0 -4 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 4 -4 0 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 -4 4 0 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 -4 0 0 4 2 2 -2 -2 0
1 1 1 1 -2 2 -2 2 -2 2 2 -2 -2 2 -2 -2 2 1 1 1 1 -2
1 1 1 1 -2 -2 2 -2 2 -2 -2 2 2 2 -2 -2 2 1 1 1 1 -2
1 1 1 1 -2 -2 2 -2 2 2 2 -2 -2 -2 2 2 -2 1 1 1 1 -2
1 1 1 1 -2 2 -2 2 -2 -2 -2 2 2 -2 2 2 -2 1 1 1 1 -2
2 2 2 2 -4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 4

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 1 1 1 1 2
1 1 1 1 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 1 1 1 1 2
1 1 1 1 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 2
2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -4
2 -2 -2 2 0 4 -4 0 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 -4 4 0 0 0 0 0 0 0 0 0 0 2 -2 -2 2 0
2 -2 -2 2 0 0 0 -4 4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 -2 2 0 0 0 4 -4 0 0 0 0 0 0 0 0 -2 2 2 -2 0
2 -2 2 -2 0 0 0 0 0 4 -4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 -4 4 0 0 0 0 0 0 2 -2 2 -2 0
2 -2 2 -2 0 0 0 0 0 0 0 -4 4 0 0 0 0 -2 2 -2 2 0
2 -2 2 -2 0 0 0 0 0 0 0 4 -4 0 0 0 0 -2 2 -2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 4 -4 0 0 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 -4 4 0 0 2 2 -2 -2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 -4 4 -2 -2 2 2 0
2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 4 -4 -2 -2 2 2 0
1 1 1 1 -2 2 2 -2 -2 2 2 -2 -2 2 2 -2 -2 1 1 1 1 -2
1 1 1 1 -2 -2 -2 2 2 -2 -2 2 2 2 2 -2 -2 1 1 1 1 -2
1 1 1 1 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 2 2 1 1 1 1 -2
1 1 1 1 -2 2 2 -2 -2 -2 -2 2 2 -2 -2 2 2 1 1 1 1 -2
2 2 2 2 -4 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 4
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Chapter 3

The centralizer algebra of p q

As we mentioned in §2.3.1, the C FT partition function z {t ) is a sesquilinear combi­

nation of the conformal blocks ch^. In particular,

Z(T) =  X  ^ABchA(r)chB(r)
A,B€<p

We identify z with the matrix M .  The values M ab  are non-negative integers (they 

are multiplicities of irreducible representations in the space of states of the C FT). 

One of the primary fields is distinguished (the ‘vacuum’), denoted 0, and Moo =  1- 

Since the C F T  is symmetric under conformal transformations, the partition function 

z ( t )  depends only the conformal equivalence class of tori, so is invariant under the 

SL/2(Z) action on H, i.e. z (A.t ) =  z (t )  for A £ SL2(Z). From this we derive the 

most important property of M : M  commutes with S and T.

The modular invariants essentially classify the possible CFTs, so one wants to 

know all the possible modular invariants for given modular data. There will only 

be finitely many. For modular data arising from affine algebras, some classifications 

have been done while for finite group modular data, very little is done. Modular 

invariants have only been computed for a few specific groups (e.g. some dihedrals, 

A 4 , S3 ). In  theory, one can compute modular invariants for any abelian group but 

a general formula is not known.

In this section we will not be computing modular invariants, but will be exam­

ining the algebra of complex matrices that commute with S and T.  We are able to 

give some general results for the cyclic and dihedral groups, which should help to 

understand their modular invariants in the general case.

34
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3.1 Perm utation representations and the centralizer al­
gebra

The fact that modular data is a permutation representation is tells us much about 

Pg - It  seems that this property of modular data has yet to be fully exploited. 

We start with some background on permutation representations and the centralizer 

algebra of a representation. Results in this section are standard material and can 

mostly be found in [Cam99].

Let G  act on a finite set Cl. The group action is equivalent to a permutation 

representation 7r by taking fl as a basis for the representation space. The group 

action induces a component-wise action on Cl x Cl,

(x,y).g =  (x.g,y.g)

where g £ G  and (x , y) € Cl x fi. Orbits of this action are called the orbitals of G

acting on Cl (or orbits of G acting on 9  x 9 ) .  The number of orbits and orbitals

can be determined from the decomposition of 7r into irreducibles.

Lem m a 3.1 Let G have permutation representation 7r corresponding to the action 

of G on finite set Cl. Let 7r =  ©imi7Tj be the decomposition of ir into irreducibles 

with 7r 1 the trivial representation, and let x  be the character of n. Then

(a) x(g) is the number of fixed points of g.

(b) The number of orbits of G acting on f i is m i, the multiplicity of the trivial 

representation.

(c) The number of orbitals of G acting on Cl is mf.

(d) The number of orbitals of G acting on Cl is < x , X  >■

Proof. Let Xi be the characters of the 7Ti. For a permutation representation, the 

(i , i) matrix entry 7r(g)i,i is 1 if and only if the i th basis element is a fixed point of 

g. Hence the character value x(p), which is the number of l ’s on the diagonal of 

7r(g), is the number of fixed points of g. Since x(g) is 311 integer, x(g) =  x(ff)- Now

35
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‘Burnside’s Lemma’ gives

number of orbits of G  acting on 0  

1 1 geG

|G | X  1 ' Xfo)
1 'g e G  

' 1 geG

=  < X i , X >

=  mi

proving the first result. For the third result, first we observe that (u>i,u>2 ) is a fixed 

point of g in the action on x Q if and only if both u>i and u>2 are fixed points of 

g in the action on fi. Hence |Fixnxn(g)| =  |Fixn(p)|2. Then we apply ‘Burnside’s 

Lemma’ again, giving

number of orbitals of G  acting on Q

=  number of orbits of G  acting on Q x Q 

=  T ^ X l Fix^ (< 7 ) l
' geG

=  T^T X Z  IFixn (^)!2
1 1  geG

=  p E x W 2
1 1 geG

= T n \ J 2 x ( 9 ) x ( 9 )
I ' geG

=  < x , x >

To get the second result we use the third,

< X , X >  =  i^ r X  X(5)x(s)
' ' geG

=  X m* ]? ^ X x te )X i(5 )
* 1 1 geG

=  ' £ mi < X , X i >
i

= E-m2

36
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completing the proof.

Let v : G — ► GL(m, C) be a representation of G. Define the commutant or 

centralizer algebra CA(u) of v as the set of m  x m  complex matrices that commute 

with v(g) for all g e G, i.e.

CA (u) — { M  € M m(C) | Mu(g) =  v{g)M  for all g € G )

Notice that CA(i/) is closed under addition, matrix multiplication, and scalar mul­

tiplication therefore is an algebra over C. Decomposing v into irreducibles allows us 

to describe the structure of CA(V), with the next proposition.

Proposition  3.2 Let v be a representation ofG with decomposition into irreducibles 

v =  @\= 1 miVi. Then CA(u) is isomorphic, as a C-algebra, to E^= 1M TOi(C). In  par­

ticular, the dimension of CA(u) as a C-vector space is mj-

Proof. Rewrite the decomposition of v as v =  © t= 1r/j, where r  =

the rjj are irreducible (the rjj are the Vi, just relabeled). We can find a basis such

that u(g) is a block-diagonal matrix, i.e.

/  m(9) \
m ( g )

v{9) =

\ nr{g)

The decomposition defines a block-matrix structure on any r  x r  matrix, with the 

(*, j)-block being a dim(^,) x d im ^ )  matrix. Let M  6 CA(r'). Then we have

Mv{g) =  v (g)M

for all g G G. Comparing the (i, j)-blocks of each side of the above gives

M ijr j j ig ) =  Vi(g)Mid

for all g 6 G. For rji y , Schur’s Lemma gives My =  0 (otherwise My is an

isomorphism and r/i and r/j are equivalent). For g, ~  gj, Schur’s Lemma gives

M i j  =  \i,jIdim(T)i) f°r some Ay € C. Notice that for any choice of Ay, M  € CA(v).

Hence CA(z/) consists of all matrices

(  A \  ® idj \
M. ® Id2

\
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where € M mj(C) and dt =  dim(i/j). Since M mj(C) ® =  M m (C) we have

CA(i/) =  n iM mi(C). The dimension of M mj(C) as a vector space is m? so the result 

on the dimension of CA(i/) follows.

□

C oro llary  3 .3  Let 7r be a permutation representation of G, corresponding to the 

action of G on Cl. Then the number of orbitals of the action is the dimension of the 

centralizer algebra CA(7r).

3.2 Decom posing pg

As we saw in the previous section, knowing the decomposition of pc into irreducibles 

gives the structure of the centralizer algebra of pc, which is a major step in knowing 

the modular invariants. I f  we also know the change-of-basis that puts pc into the 

block-diagonal form then we know the centralizer algebra (the change-of-basis matrix 

is probably difficult to find however). Just knowing the dimension of the centralizer 

algebra, however, will constrain the number of modular invariants.

In this section we are able to give the decomposition for the cyclic groups Cp of 

prime order. We also give the multiplicity of the trivial representation for all cyclic 

and dihedral groups. The results in this section are original.

P roposition 3.4  The multiplicity m i of the trivial representation in the decompo­

sition of pc is greater than or equal to the number of distinct orders (of elements) 

in G.

P roof. The multiplicity m i is the number of orbits of SL2(Z) acting on V.  Let 

g,h  € G  with |g| ^  \h\. We claim [5 , e] and [h, e] are in different orbits, proving 

the proposition. Suppose [5 , ej and [h, e] are in the same orbit. Conjugation does 

not change the order of an element so {g, e] ^  [h, e]. So there exists ( “ e SL2(Z) 

such that

M . ( :  =  Isa>06l =  [ M

Then gb =  e so \g\ divides b. But a and b axe coprime, so a and |(/| are coprime, 

hence |g| =  |ga| =  |h| which is a contradiction.

□
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Lem m a 3.5 Suppose g € G has the property that C(g) is cyclic. Then for every 

h £ C(g) the orbit of [<?, hj contains an element of the form [a, e].

P roof. Let C(g) =  (x). Then g =  xr and h =  x l for some r, I £ Z. Let 

k =  gcd(r, I), and write k =  ar +  bl so that 1 =  a£ +  bj .̂ Then (  )  € SL2(Z)

and

{xk, e]. ^  =  [xr , xl] =  {g, hj

hence [xfc, e] is in the orbit of fg, /i].

□

P roposition  3.6 Let pcn be the modular data of Cn. Then then multiplicity m i 

of the trivial representation in the decomposition of pcn is the number of positive 

divisors of n. Writing Cn =  {x), the orbit representatives for SL2(Z) acting on V  

are Jxd,e] where d is a positive divisor of n.

P roof. First we observe that since Cn is Abelian, the ~  relation on Gcomm is

trivial, so [g, h] =  (g, h) =  (g1, h'). Lemma 3.5 applies to Cn, hence

we need only consider the elements |x l , e], 0 <  i <  n. Clearly {[e, e]} is one orbit. 

We claim that for i , j  /  0, [x*, e] and fx-7, e] are in the same orbit if and only if 

gcd(i, n) =  gcd(j, n). The claim shows that orbit representatives are given by [xd, ej 

where d is a positive divisor of n, proving the Proposition. Now we prove the claim.

Assume [x \e j  and [xJ-,e] are in the same orbit. Then there exists ( “ ^) € 

SL2(Z) such that

lat'.ej. ( “ £ )  = [! *■ , I * ]  =  K e ]  

i.e. there exist a, b € Z coprime and satisfying

ia =  j  (mod n) 

ib =  0 (mod n)

Writing 1 =  k a  +  l b  and i b  =  r n  for some k , l , r  £  Z gives i  =  k a i  +  I r n .  Then for 

some a , 0 €  Z,

gcd(*, n) =  a i +  /3n =  (ak)ai +  (a ir  +  /3)n

hence gcd(a*, n) divides gcd(i, n). Clearly gcd(i, n) divides gcd(a«, n) so gcd(ai, n) =  

gcd(i, n). Now ai =  j  (mod n) implies gcd(a*,n) =  gcd(j, n), so we get gcd(*,n) =  

gcd (j, n).
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Conversely, assume gcd(i,ra) — gcd( j , n )  =  d. Write i  =  ddi and j  =  ddj. 

Since ck and n are coprime, di is invertible modulo n, i.e. there exists d~x 6 Z 

and d f l is coprime to n.  Since dj is also coprime to n, gcd(d“ 1dJ, n) =  1 hence 

( dt ̂ dJ ” j  € SL2(Z) for some u,  v  e Z. So

therefore fx \ e] and [xJ, e] axe in the same orbit.

□

P roposition 3 .7  Let D n be the dihedral group of order 2n and r  the number of 

positive divisors of n. Then the multiplicity m \ of the trivial representation in the 

decomposition of pon is

{ r  +  1, n odd 
r  +  3, n even, § odd

r  +  4, n even, % even

Orbit representatives for  SL2(Z) acting on V  are as follows, where D  is the set of 

positive divisors of n.

•  For n odd, { |x , e], \yd, e] | d 6 £>}

•  For n even, § even, {[x, e], J xy, ej, |[x, y t ] ,  |  Xy, y t ] ,  {yd, ej \ d e D }

•  F o rn  even, \  odd, {Jar, e], [xy.e], [x ,y f ] ,  [yd,el | d € D }

P roof. We start with n odd. First, we need to write down the permutation basis,

i.e. all the [a, 6a] where a € R  and ba € Ra- The sets R, R a are summarized below,

where i  runs through { 1, 2, . . . , r̂ } .
a € R Ra
e {e ,  x ,  y1}
X { e , x }

yi {y j  I 1 <  j  <  n }

Let V '  be the set of [a, 6] where x appears in neither a nor b (i.e. when we write a 

and b in the form x%yi with i  G {0 ,1} and 0 <  j  <  n ,  we have i  =  0). We will show 

that we can use the result for C n for these elements. Notice that V  is a union of 

SL2(Z) orbits (x does not arise as a power of y). Let V(y) =  {[y*, yJJ | 0 <  i , j  <  n}
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be the permutation basis of (y) =  Cn. I f  we define the equivalence relation M on

V {y) by

{y\  y31 1x1 ly , y J (k =  n - i  and I =  n — j )  ot (k =  i and I =  j )

then we get V(y) /  N =  V' (conjugation by any element involving x takes (y*, y-7) to 

{yn~ \  yn~i)). Now observe that

I v V l -  ( “o1 . “j )  =  b r V 4  =  b n- \ y n- ‘ \

meaning two elements related by M are in the same SL2(Z) orbit. Hence the number 

of orbits of SL2(Z) acting on and V^y) /  N =  V ’ are the same, namely r. The 

orbit representatives are the \yd, ej where d G D.

The remaining elements of V  are [x, ej, fe, x], and [x, x j. These form one orbit, 

since [x, ej.t =  [x, x] and [x, e|.s =  [e, x]. So the number of orbits is r  +  1.

Now we turn to n even. The table below describes V, where i runs through 

{1,2, . . . ,  f  -  1}.
a € R

xy
yi

n
y  2

R a

e { e , x , x y , y x, y a }
x { e , x , y t , x y f  }

{e,xy,y»,xyy?}
{yj  | 1 < j < n }
{ e ,x ,x y ,y \y ^ }

The elements [a, b} with x appearing in neither a nor b are handled as in the case n 

odd, and we get r  orbits. The elements [x, e], [e, x], and [x ,x ] form one orbit, as 

in the n odd case. Similarly [xy, e], [e, xy|, and [xy, xy] form one orbit.

The remaining six elements are [x ,y? ], [x ,xy? |, [xy,y?J, [x y ,x y y t], [y? ,x ], 

and [y^ ,xy j. We have [x,y?J.s =  [x,xy?J and [x ,y? ].f =  [y ^ ,x j, so [x ,y 5 j, 

[x ,xy? ], and [ y i ,x |  lie in one orbit. Similarly [xy ,y?], [xy,xyy?J, and [y^ ,xy] 

are in the same orbit. For § even these are distinct orbits while for |  they are one 

orbit. Indeed, suppose |  is odd and let ^ — 1 =  2k. Then

[y^, x j.t =  [y ^ ,y^ x j =  lyky^y~k,yky^xy~kj =  [y^ ,xy? “ 2fc] =  [y * ,x y ]

so we have only one orbit, and the total number of orbits is r  +  3. Now suppose |  

is even, but that we have only one orbit. Then there exists ( “ 6 SL2(Z ) sending

[x ,y t ]  to [x y ,y t] ,

[ x ,y t ]. ^  =  [xayc^ , x V ^ l  =
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Consequently there exists xlyi e D n such that

xly^xayĉ y~^x% — xy. (3.1)

But this implies that x2l+a =  x, so a is odd and (3.1) becomes xayc?_2; =  xy when 

i  is even, and xay_ct +2-? =  xy when i is odd. The former case implies c |  — 2j  =  1 

(mod n), which is impossible since —2j ,  and n are all even. The latter case gives 

the same contradiction, so we have two distinct orbits and the total number of orbits 

is r  +  4.

□

For the cyclic group Cp, we axe able to give the complete decomposition of pcp 

into irreducible representations of SL2(Zp). Recall from Theorem 1.10 that the 

decomposition of pcp into irreducible representations corresponds with the decom­

position of its character xpCp int °  irreducible characters. We give the decomposition 

of the character. The irreducible characters of SL2(ZP) are described in [Dor71] and 

[FH91], and we give a review here. A explicit description of the corresponding 

representations is given in [Eho93].

Let p >  5 be a prime. SL2(ZP) has p +  4 conjugacy classes, given in the table 

below. In  the proof we will need to know if the trace of the class representative is 2 

(note that trace is a class function).

Representative No. elements in class No. of classes Trace

1 1 2

ii 1 1 -2

t =  ( b \ ) p2- 1. 2 1 2

t2 =  ( h i ) P2- l2 1 2

hi e*+» II i 
i

h-» 
H* P2-1

2 1 -2

E2=1 2 1 -2

(5 i- ° i ) ,  * P(P+  1) £=3
2 7* 2

( i 0 ’ <9fe±1 P(P~  1) Ezd2 / 2

Fix x ^ 0 , ± l  and let a =  (q x- i  )• Then the elements a1, for 1 <  I <  (p — 3)/2, 

form a complete set of representatives for the classes of the form ( J ^ i ) .  For classes 

of the form  ̂̂  \  j , [FH91] shows that a complete set of representatives is given by 

bm, where 6 is an element of order p + 1  and 1 <  m <  (p— l) /2 .  Using this notation

42

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



the character table for SL2(Zp) is as follows, where £p_ i and (p+ i are primitive p — 1 

andp+1  roots of unity, e =  (—1)(p-1 )/2, 1 <  z, Z <  (p—3)/2, and 1 <  j ,  m <  (p—1) / 2.

SL2(ZP) [i] N M [*2]
1 1 1 1 1

xp p p 0 0
Xi p  +  1 ( - 1) ^ + 1) 1 1

03
6
£2
m
m

p -  1 

5(P +  !)
W  +  1)
\{P  ~  !) 
\ { p -  i )

i - i y ( p - i )

H p  +  1 )
h i p  +  !)

- ± e ( p -  1)

- h i p - 1)

- 1
i ( l  +  V^P) 
5 (1 - v ^ )

i ( - l  +  Vep)

- 1  

2(1 -  y f f l  
1(1 +

5 ( - l  -  y/w) 
U - l  +  J ip )

SL2(Zp) [.zt\ [.z t2] [a*] [bm]
1 1 1 1 1

xp 0 0 1 - 1

Xi
03

6

6

m

m

( - 1 ) '
( - i y + i

\e ( l  +  y/ep)

5 e ( i  -  V * p ) 
\ e ( l  -  J e p )

5 e ( l  +  V^P)

( - 1)*
( - i y + i

2 e ( i  -  V * p ) 

5 e ( l  +  V *p )  

3 e ( l  +  V^P)  

j c ( l  -  \ / e p )

< S ~ i+ a  
0

( -1  y  

( ~ i y  

0 
0

0
_  _  f —jm  

sp+ l  'sp+l
0

0
( — l )m+1 
( - i j m + i

When p =  3 the character table is the same except there are no [a1] conjugacy 

classes and no Xi characters. When p =  2, SL2(Z2) =  S3 and the character table is 

well-known.

Theorem  3.8 Let Cp be the cyclic group of prime order p >  5 and x  the character 

of its modular data pcp ■ Then x  decomposes as

h(p-3)
X =  2 ( 1 ) + £ 1 + 6  +  ^  +  2 ^ 2  Xi

i= l

For p — 3 the decomposition is

x =  2(1) =  &  + &  +V>

and for p =  2

x  =  2(1) =  ip

where xp is the 2-dimensional character o/SL2 (Z2 ) =  S3.
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P roof. Assume p >  5. From Theorem 1.10, we know that the multiplicity of 

v € Irr(SL2(Zp)) in the decomposition of x  is given by <  Xi v >• We need to know 

the character values x  ( “ d)> which by Lemma 3.1 is the number of fixed points of 

( “ bd) acting on V.

Let Cp — (x). Since conjugation in Cp is trivial, elements [xl , x-7] € V  correspond 

with vectors (i, j )  € Zp x Zp and the action of ( “ ^) € SL2(Zp) on V  corresponds 

with right multiplication of ( i , j )  by ( “ %),

\xl ,x j J. b̂ j  =  |xot+CJ,x w+dj] <— ► ( i , j )  ^ ® ^  =  { a i  +  c j , U +  d j )

Consequently, [x*,xJJ is a fixed point if and only if (i, j )  is an eigenvector of ( “ ^) 

with eigenvalue 1. So ( “ ^) has a non-trivial fixed point if and only if

0 = " (V  d-i)
0 =  a d  — a  — d + l  — cb 

2 — a  +  d

2 - i

Since Zp is a field of p elements, the number of fixed points of ( “ is pr , where r  

is the dimension of the eigenspace. Since det (®J)  =  1, i f l i s a n  eigenvalue then 

it is the only eigenvalue. Hence ( “ bd) has a 2-dimensional eigenspace iff ( “ bd) is 

diagonalizable iff ( “ bd) =  ( J 5)- So we have the following formula for y:

1 a -|- d ^  2
p a +  d =  2, ( ac bd) ± I

( aA )  =  i
(3.2)

Now we can compute the multiplicities. We know from Proposition 3.6 that 

mi =  2. Let v 6  Irr(SL2(Zp)), u /  1. The multiplicity m u of v in x  is <  v, X >■ 

Using (3.2), < 1 ,  v > =  0 (First Orthogonality Relation), |SL2(Zp) =  p3 —p|, and the 

fact that x  is 1 except on the conjugacy classes [1],[t], and [f2], we get the following
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simplification of < x, v >'■

< x ’ v >  =

= r a i  ( iteE w <*w - u " w )  + r a i  U{A)

-  iSL^)i ( “ 1MA))  + < >

=  (p3 - p )_1(p 2 -  i M - 0  +  (p - 1 )^(p2 -  i ) M t )  +  K*2))

=  (p3 - p ) _1 ( ip 2  -  1M-0 +  ^(p3 - p 2 -  p +  IK K * ) +  K *2) ) )

Now computing multiplicities is easy:

=  (p3 - p )_1 ((p2 -  i)p  +  o +  o)) =  1

mXi =  (P3 “ P)_1 ((P 2 -  !)(P  +  ! )  +  \ ( P 3 ~ P2 ~ P  +  ! ) 2)  =  2 

=  (P3 - P ) _1 ((P2 - 1 ) ^ ( P + 1 )  +  ^(P3 - P 2 - P + 1 ) ( 1 ) )  = 1

m?2 =  m?i =  1

We know that x  has dimension x(-0 — P2 — |C|. Using the multiplicities we know 

so fax and evaluating at I  we find that

(p—3)/2

2 +  V’C0 +  CiC0 +  6 (J )  +  2 (7) =  2 + p + p  +  i +  (p - 3 ) ( p  +  i ) = p2
t=l

hence all the remaining multiplicities are 0 .

The case p — 3 is the same except there are no Xi, and p =  2 is easy to work out 

since SL2(Z2) =  S3.

□

Knowing the decomposition allows us, by Proposition 3.2, to compute the di­

mension of the centralizer algebra:

dim CA (pzn) =  y ^ m 2 =  4 +  l  +  l  +  l  +  2 ( p - 3 )  =  2 p -H
i

We will obtain the general result for Z„ in the next section, by counting orbitals.
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3.2.1 Galois sym m etry

There is a Galois symmetry that might be useful in finding the decomposition for 

other groups. A representation p  of G  is always equivalent to a matrix representation 

with matrix entries in the cyclotomic field Q(£m), where m  is the exponent of G  and 

£m a primitive mth root of unity. The Galois group Gal(Q(£m)/Q ) consists of the 

automorphisms cr;, I € Z£> (the group of units of Zm), defined by c r;(^ ) =  ££( and 

extended linearly to all of Q(£m). Each automorphism yields a representation a  up 

defined by

(<W (0))y  =  M f ( g ) i j )

The representations p  and a\p  are said to be in the same Galois orbit. For example, 

the irreducible representations of Zp are given by Xi(r ) =  £p f°r some pth root 

of unity £p and 0 <  i <  p. A ll except xo are in the Galois orbit of x i since 

0 iX i(r) =  <ri(%) =  £pr -

Since the character of a representation is the trace, the character of a up is just 

<ri(x(g)), where x  is the character of p. When Xi is irreducible, so is 07X1 (we have 

<  alXii&lXi > = <  XhXi >)• Now in the case of modular data p with character x  

we know we know that the character values are integers so pix  =  X- Prom this 

we determine that irreducible characters in the same Galois orbit have the same 

multiplicity in the decomposition of x- Indeed,

m Xi =

=  5 Z  Xi(g)x(9)
V t>eG

=  t4 t  aiXi(g)x(g)
' ' geG  

-  < G l X h X > = ™ , aiXi

In  the decomposition of pzp, one finds that the Xi 3X6 in the same Galois orbit as are 

£1 and £2, and indeed the multiplicities are the same. In this case the multiplicities 

were easy to work out, but in more difficult cases the Galois symmetry might prove 

useful.

3.3 Dim ension o f CA(pzn)

We find the dimension of the centralizer algebra of Z n, and list the dimensions for 

some small-order dihedral groups. The results in this section are new. We start
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with the dimension for Zp, p a prime, as a stepping stone to the proof for Zn.

Lem m a 3.9 The number of orbitals for SL2(Z) acting on the permutation basis V  

ofZp is 2p +  1. Orbitals representatives are given by

(a) ( [1, 0], [ i ,  0]) , 0 <  i < p

(b) ( [1, 0], [0, j ] ) ,  l < j < p

(c) ([0, 01, [1, 0])

(d) ([0, 0], [0, 01)

P roo f. By Proposition 3.6, there are only 2 orbits of SL2(ZP) acting on V, w ith 

representatives [0 ,0] and [1 ,0]. Hence every orbital has a representative with first 

component [0 ,0] or [1 ,0 ]. There are two orbitals w ith first component [0 ,0 ], namely

{([0 ,0 ], [0 ,0 ])} and {([0 ,0 ], [<7, /i]) | [5 , h} € V }. So for the remaining orbitals we

may assume there is a representative with first component [1 ,0]. The number of

orbitals with first component [1, 0] is equal to the number of orbits of the stabilizer

of [1,0] acting on V. This stabilizer is given by

StabSL2(zp) ( [ l ,0 ] )  =  { ( “ d) € SL2(ZP) | [a ,6] =  [1 ,0 ]}

=  { (c  d) ^ SL2(Zp) | a =p 1, b =p 0 }

=  { ( c l )  | c € Z p }

Elements of S ta b ([l,0 ]) act on [i,0 ] and [0, i]  by

M i - ( 1  J ) =  IbO] (3.3)

I°,il.Q f j  = Uc’j i  (3-4)

From (3.3), we get that no two of ([1 ,0 ], p ,0 ]), 0 <  i <  p are in the same orbital.

From (3.4) we see that A  € S ta b ([l,0 ]) cannot change the second component of

[0,* ], hence ( [1, 0], [0, j ] ) ,  1 <  j  <  p are all in different orbitals, which are also 

different from the orbitals containing the ([1 ,0 ], [i, 0]). Finally, for any ([1 ,0 ], [*, j } )  

with j  0, j  has an inverse j ~ l € Zp so

([1,0], [ i, j]) . ( _ ^ - i  J) = (IM1> [* =  ([1,0], [0,jD

hence ([1 ,0 ], [z ,j]) is in the same orbital as ([1 ,0 ], [0, j ] ) .  Therefore all of the 

orbitals are accounted for, and there are 2 p +  1 of them.
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□

For the decomposition of pzn we w ill write Zn as a direct product of cyclic 

groups of prime power order. The modular data of a direct product is just the 

tensor product:

Lem m a 3.10 Let pa and pn be modular data of G and H . Then the modular data 

of G  x H  is the tensor product po <8> pH- la  particular, in matrix form the modular 

data is the Kronecker product,

s G x H  _  s G ® S H

r p G x H    rpG  0  rp H

P ro o f. This is a straightforward computation involving unpleasant notation, but 

we w ill sketch it. Conjugacy classes of G  x H  are given by K , x L j, where K j runs 

through the conjugacy classes of G and L j through those of H . Representatives 

are (k i, l j ) and the centralizers are C G xH {h ,lj) =  C d h )  x C n ilj)-  Irreducible 

characters of CG{ki) x CH (lj) are x^m, ■ (g, h) =  Xi,rrn{9 )^j,nj{h) where Xi,mt €

Irr(CG!(fci)) and € Irr (C # (ij)). Then for T  we have

rj-iGxH _

r <- X i !m i ( k i ) lp j :nj  ( l j  )
{kiJiUkaM Xi,mi ^,TV Xa,m0^ i>,„6 (e)^ -„  . (e)

_  ( x r r s (h ) \
-  \ b k itk J Xi,m i,Xa,ma X i> m i ( e )  )  n j M , n b ^ n j { e )  J

  rpG  rp H
(ki>Xi,m  ̂))(ka >Xa,ma ) (h  ))( 6̂) )

hence T GxH =  T G <8> T H . The computation for S is similar and more unpleasant.

A t this point one should ask if the modular data of the semi-direct product G  tx H  

is related to that of G  and H . We do not know the answer. For example, D n is 

the semi-direct product of Cn and C2. But the dimensions of their modular data 

are dim(pcn) =  n2, dim(p2) =  4, dim(px?n) =  n2/ 2 +  14 (n even), and dim (pon) =  

(n2 —1 )/2 + 4  (n odd). Unfortunately, the dimensions do not (at least to this author) 

suggest any obvious relation.
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P ro p o s itio n  3.11 Let n =  p ^p ^ 2 • • • • • p”r ^ Z>o- Then the dimension of the 

centralizer algebra for pzn is

r

dim CA(pzJ  =  ( f a  +  1 )p T  +
i= 1

P ro o f. First we show that it suffices to prove the theorem for Zpn. Let D (n ) =  

dim C A (pcn). We need to prove that D  is multiplicative, i.e. D (lm ) =  D (l)D (m ) 

when gcd(Z, m) =  1. Let pz, =  ®ihPi and pzm =  ® jm jp ' be the decompositions 

of the modular data of Z i and Zm (note that pi are the irreducible representations 

of SL2(Z 0  while p'- are the irreducible representations of SL2(Zm)). From Lemma 

3.10 we know that the modular data of Z im =  Z / x Zm is the tensor product,

PZ; x Z m =  P Z , ® P Z m

= ® ^ © m^ i

=  ^  km-jPi <S> p'j
i,j

From Theorem 1.13 we know that the irreducible representations of SL2(Z;m) =  

SL2(Z;) x SL2(Zm) are precisely the pi <S> p'j, so the above is the decomposition into 

irreducibles. Applying Proposition 3.2 we get

D (lm ) =  Y , ( k m j ) 2 =  = D ( l)D (m )

as desired.

Now we show that D(pn) =  (n +  l)p n +  npn_1, by induction on n. The base 

case n =  1 is Lemma 3.9. Assume the formula hold for n — 1. Recall the action of 

SL2(Z ) on V:

lx > 2/1 • (̂ c ^  =  lax +  cy,bx +  dyj

I f  x ,y  = p 0 then ax +  cy, bx +  dy = p 0. Since we have a group action, if at least one 

of x, y is not 0 modulo p, then so is at least one of ax +  cy, bx +  dy. Consequently 

we can partition the orbitals into three sets:

•  A: the orbitals whose representatives ([u;, x j, [y, 2]) have w ,x ,y ,z  = p 0.

•  B: the orbitals whose representatives ([to, x ], {y, 2]) have at least one of w ,x  

not 0 modulo p
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•  C: the orbitals whose representatives ([in, x ], [y, 2]) have in, x = p 0 and at 

least one of y, 2 not 0 modulo p.

For A, the injective homomorphism ip : Z p n - i  ^  Z p n ,  x — ► px, induces a 

bijection between A  and the orbitals of SL2(Z ) acting on Vzpn_i ■ Then by induction, 

there are D (pn~ l ) =  npn~l +  (n — l)p n_2 orbitals in A.

Next we count the orbitals in B. Let ([in, x ], [y, 2]) be any orbital representative 

from a B  orbital. Since either in or x is not 0 modulo p, we know from Proposition 

3.6 that [in, x] is in the same SL2(Z) orbit as [1 ,0 |. So we may assume the first 

component is [1 ,0]. As in Proposition 3.9, we find that the stabilizer of [1 ,0] is

StabsL2(zpn )([l, 0]) =  |  ^  1)  I c 6 ZPn }

Since the second component [y, z\ is unconstrained, the number of orbitals in B  is 

the number of orbits of the stabilizer on Vzvn • The action of the stabilizer is

M . ( J  ^ j =  h  +  cz,zj

In  particular, the second component (ie. z) is invariant. Let 2 =  pkz, where pk is 

the greatest power of p dividing 2. Then 2-1 exists modulo pn. Letting c =  d z~ x we 

see that the orbits are given by {[y  +  dpk, 2] \ d  € Z ,  2 e Z p n } ,  i.e. parametrized 

by 2 and the value of y modulo pk. For 2 = p n  0 there are pn orbits, each [y, 0] in 

its own orbit for y € Z p n .  Now assume 2 ^ p n  0. For k =  0, l , . . . , n  — 1, there are 

pn-k_pn-k- 1 choices for z such that pk is the greatest power of p dividing 2. For such 

2, each value of y modulo pk gives a different orbit, so there are (pn~k + p n~k~ 1 )pk =  

pti _  p n -1 orhits for each k. Then the number of orbits in B  is

n—1
Pn +  J^ (P n ~  Pn~X) =  (n +  !)Pn -  nPn~l

k=0

Finally, we count the orbitals in C. Since at least one y, 2 is not 0 modulo p, we 

may assume the second component is [1 ,0]. Since we assume w, x = p 0, we may use 

the homomorphism <p to identify [in, x] € Vzpn w ith [<p- 1(w), <p- 1(x )] e Vzpn- \  • So 

the number of orbitals in C  is the number of orbits of StabgL2(z )([l) 0]) acting on 

"Pz „ 1 • We know this from the B  case above, i.e.p7*-  A '

npn~l — (n — l)p n-2 
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Then the total number of orbitals is the sum of those in A ,B , and C:

D (pn) =  (npn~l +  (n -  1 )pn~2) +  ((n  +  l)p n -  npn_1) +  (rip""1 -  (n -  l)p n- 2) 

=  (n +  l)p n +  npn~l

□

The next step is to find the dimension of the centralizer algebra for the dihedral 

groups. We have looked briefly at this, but have not found a general formula. Using 

GAP we computed the dimensions up to £>20 (via the formula m* = <  x, Xi >)■ The 

results are below.

n dimCA(p£>„) n dim CA(pon)
1 5 11 19
2 51 12 186
3 11 13 21
4 86 14 111
5 13 15 53
6 91 16 174
7 15 17 25
8 120 18 181
9 27 19 27
10 101 20 218

An easy conjecture is that for primes p, dim CA(pop) =  p +  8. Notice that the 

dimension is small for n odd. This is also observed in [BBST01], where the authors 

compute modular invariants for D q, D^q, and £>14. They conjecture that for n an 

odd prime, and perhaps generally for n odd, the number of modular invariants does 

not increase drastically with n, while for n even the number of modular invariants 

can be quite large (they expect that Ds may have more than 105).
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Chapter 4

Modular data as a group 
invariant

In  [CGROO], the authors raised the question of whether non-isomorphic groups can 

have ‘the same’ modular data. We provide some answers in this section.

4.1 Group invariants

By a group invariant we mean a property of a group that remains unchanged under 

group isomorphism. For example, group order, number and size of conjugacy classes, 

and the character table are group invariants.

Call a group invariant complete if  groups are isomorphic if and only if their in­

variants are equal. Complete invariants for finite groups are quite complex. The 

main examples are fc-characters and the group determinant (described in the next 

chapter). Most invariants are of course not complete. For example, both the dihe­

dral and quaternion groups of order 8 have the same character tables, but are not 

isomorphic.

4.1.1 M odular data as an invariant

A permutation P  € Sm has an associated permutation m atrix P  e M m({0 ,1 }). We 

w ill use the same symbol P  to refer to both, and we make a few observations for a 

permutation m atrix P  and any m atrix A:

•  P -1  =  P 1* (TV denotes the transpose)

•  left multiplication of A  by P  permutes the rows of A  by P

•  right multiplication of A  by P -1 permutes the columns of A  by P
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•  conjugation of A  by P  is the simultaneous permutation of rows and columns

Matrices A  and B  are permutation-congruent if there exists a permutation m atrix 

P  such that P A P ~ l =  B. Equivalently, B  is obtained from A  by simultaneous 

permutation of rows and columns.

Isomorphic groups G  and H  have the same modular data by formulas (2.11) and 

(2.12). However, we fix orders on the bases Cg and Cy allowing us to write S and T  

and matrices. Most likely will we have SG ^  SH and T G ^  T H since the orderings 

on Cg and Cy might not correspond. However, an isomorphism between G  and H  

gives rise to a permutation P  describing the proper correspondence. W riting P  as 

a permutation m atrix this gives

P S Gp ~ l =  SH and P T 0 ? - 1 =  T H

D e fin itio n  4.1 We say that modular data for G and H  is weakly equivalent if  

there exists a permutation matrix P  such that P S GP ~ 1 =  SH and p p GP ~ l =  T H .

Notice that G and H  with weakly-equivalent modular data induce equivalent rep­

resentations of SL2(Z ). The converse, however, need not be true. We consider the 

matrices S and T  to be group invariants, subject to the above definition of equiv­

alence (the representation p is also an invariant). One then asks whether or not 

modular data is a complete invariant.

This question was asked in [CGROO], though they do not specify precisely what 

it should mean for modular data to be equivalent. Both [Cun05] and [BBST01] 

provide an answer. Both use the definition of ‘weak equivalence’ above. However, 

[Cun05] concludes that there are 2 groups of order 16 w ith equivalent modular data 

while [BBST01] states that these same groups do not have equivalent modular data.

We w ill investigate weak equivalence and see that [Cun05] is correct. Conse­

quently, weak equivalence is not very interesting. We propose a more restrictive 

(and less naive) definition of equivalence and show that under this definition mod­

ular data determines the group for groups of order less than 128. This is one of 

the major original results of the thesis. Our definition involves placing some very 

natural restrictions on ordering C.

4.1.2 Ordering on C

Any ordering we place on C must of course be invariant under isomorphism. For 

fixed g e R  call the set {(h ,x )  € C \ h =  g} the g-block and denote it (g, * ). Place
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the following restrictions on ordering C:

•  Every 5-block must appear contiguously.

•  The e-block appears first.

•  After the e-block, the blocks appear in order of ascending size.

• Within each 5-block, the element (5 ,1) appears first.

The restrictions do not define a total order since we may permute blocks of the 

same size (except for (e, *)) and we may permute elements within a block (except 

for (5,1 )). We call such permutations valid permutations. They form a subgroup of 

which we denote Sym(C). A valid ordering on C is any total order conforming to 

the above restrictions. Sym(C) maps a given valid order to every other valid order. 

Henceforth we assume C is endowed with a valid order.

The ordering restrictions define the the block structure of the basis. Let (e, *), 

(52, *),(53, *), . . .  ,(5/, *) be the blocks of the basis, ordered as above. Then the block 

structure of C is the length I vector of sizes of the blocks,

block structure =  (|(e, *)|, 1(52, * )|, • • • , \{gi, *)l)

Bases Cg and Cy, have equal block structure iff Sym(Cg) =  Sym(C^) The block 

structure define a block-matrix structure on S and T.

4.1.3 Strong equivalence

D e fin itio n  4 .2  We say that modular data for G and H  is strongly equivalent 

i f  there exist permutation matrices P  G Sym(C<?) and Q G Sym(C#) such that 
p g G p - i  _  q q H q -  1 an(i  p rpG p-i _  Q p H Q -i ‘equivalent modular data’

mean ‘strongly equivalent modular data’.

We say that SG and SH are strongly-equivalent even P T GP ~ l ^  Q T HQ ~l (sim­

ilarly for T °  and T H). Observe that Q  is necessary for the definition of strong 

equivalence but not for weak equivalence. Strong equivalence gives the equation 

(<Q~1 P )S g (Q ~ 1 P )~ 1 =  SH , but Q ~l P  need not be in Sym(Cc) since G and H  

might have different block structures. Consequently, (Q ~ 1P )S G(Q ~ 1 P )~ 1 might 

not be a valid expression of SG since the ordering restrictions might be violated. 

For groups w ith the same block structures, we do have Q ~l P  G Sym(Cc) so we can 

simplify the definition of strong equivalence to simply the existence of P  G Sym(Cc).
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This has huge implications in testing for equivalence. I f  G and H  have different 

block structures, we (in theory) need to consider every P  E Sym(C<3) paired with 

every Q € Sym(Cff). I f  they have the same block structure, we need only determine 

if P  exists. Even so, there are many possibilities for P. Note however that for 

weak equivalence P  could be any element of S|q, but ordering restrictions on C 

dramatically reduce the possibilities for P  in strong equivalence. We also feel it is 

important that the ordering restrictions are determined only by the basis and do not 

require significant computation to determine. One could, for example, insist that C 

be ordered such that the entries of T  are in increasing order. This would, however, 

require one to compute T  before ordering C.

One further restriction we could place on the ordering is to order elements 

(g, x i) , (9 , X2), • • • within a block by the degrees of the characters Xi• This ordering 

is easy to compute, but does not tend to impose much restriction as many of the 

characters have degree 1. It  also means more difficulty in programming, and we w ill 

see later that it is not necessary.

4.1 .4  A n example: Z?4

As an example, the dihedral group D 4 has (ordered) character basis

CDi =  ((e,l),(e,^i),(e,^2),(e,^3),(e,Xi),

(x, 1), (x, (j)o,i), (x, 0iiO), (x, 01,i),

(xy, 1), (xy , <£0li) , (xy, ^i.o), (xy, <pi,i), 

(y,i),(y>«i)i(y.w2)>(y.v3),

( y2, i), ( y2, V>i), (y2, ̂  2), ( y2, ̂ 3 ), (y2, x i))

Refer to §2.4.2 for the definitions of the above characters. The block structure is 

(5 ,4 ,4 ,4 ,5 ). I f  we write the basis in numerical indices as

((1 ,2 ,3 ,4 ,5 ), (6, 7 ,8,9 ), (10,11,12,13), (14,15,16,17), (18,19,20,21,22))

we can see that a valid permutation is (2 ,3 )(6 ,10 )(7 ,12 )(8 ,1 1 )(9 ,13)(19,20,21). 

Some invalid permutations are (6 ,7), (14,19,15,20,16,21,17,22,18), and

(1 ,18)(2 ,19 )(3 ,20 )(4 ,21)(5,22). The basis has size 22, but | Sym(CDJ | =  746496 as 

compared with IS22I =  22! =  1124000727777607680000. A ll but two of the charac­

ters have degree 1.
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4.1.5 Connection w ith  graph isom orphism

Solving our modular data equivalence problem means determining permutation-

congruency of symmetric matrices (with some restrictions). This is essentially the

edge-coloured, graph isomorphism problem.

By an edge-coloured graph Q =  (V, £, c) we mean a graph with vertex set V, edge

set £, and a colouring of edges c : £  —► {some set of labels}. We can represent Q as

an adjacency m atrix A  where

^  _  j  colour of edge ( i , j )  when edge ( i , j )  exists 
tJ \  0 when ( i , j )  is not an edge

An edge-coloured graph isomorphism between graphs Q and H  is a bijection <p '■

Vg —> Vy  between vertex sets such that

•  e £n

•  c g ( i , j )  =  c y ( t j > ( i ) , 4 > ( j ) )

In  terms of adjacency matrices, applying (j> corresponds to a simultaneous row and 

column permutation. So an (edge-coloured) graph isomorphism is a permutation P  

such that P A gP ~l — Ay,.

Our modular data equivalence problem is essentially edge-coloured graph isomor­

phism. Consider the m atrix S as the adjacency m atrix for a graph, the entries of S 

being the “colours” of the edges (the actual numerical values are unimportant). We 

observe that since S is symmetric, the corresponding graph is undirected. Entries on 

the diagonal of S represent loops in the graph. T  is diagonal, so the corresponding 

graph is just nodes with loops. S  tends to have very few distinct entries, so the cor­

responding graph has few colours. For example, the S m atrix for £>4 has 484 entries 

but only 6 distinct values. Considering S as an edge-coloured graph allows us to ap­

ply a powerful graph isomorphism algorithm to determine permutation-congruence, 

which we describe in §4.3. I t  is not useful for T  since the corresponding graph has 

very little  structure, but we w ill see that permutation-equivalence of T  matrices is 

easy anyway.

4.2 Com putational technique

4.2.1 Building m odular data

We use the GAP computational discrete algebra system [GAP05a]. GAP contains 

a library of groups of ‘small’ order [GAP05b], which includes all groups of order less
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than 1024 (and actually much more). The library was computed by Besche, Eick, 

and O’Brien and is also used in the M AG M A system. Let (n, m) denote the mth 

group of order n in the data base.

Building S and T  matrices is straightforward in GAP. Functions for computing 

conjugacy classes, centralizer, character tables, etc. are all provided so we can easily 

build S and T  using formulas (2.13) and (2.12). We found that building S via (2.13) 

was considerably faster than using (2.11). We also have the option of building S 

and T  in the C basis by first computing in the V  basis, then using the change-of- 

basis formula (Proposition 2.5) to change bases. Finding S and T  relative to V  

is computationally easy. Computing the change-of-basis m atrix is harder. For T , 

using C directly is far better since T  is diagonal relative to C. For S, we found that 

for smaller groups (order <  32), the direct computation in C was faster while for 

larger groups changing bases was faster. GAP code for both methods is given in 

Appendix A .I.

4.2.2 Ordering cyclotom ics

The entries of S and T  are cyclotomic numbers over Q, and we w ill need to be able 

to order these. The GAP system defines a total order on cyclotomics, as follows. 

Define the conductor of a cyclotomic (  to be the smallest integer m  such that C is 

in Q(fm)- Then cyclotomics are ordered according to the following.

(a) Rationals are ordered as usual.

(b) Rationals are less than irrational cyclotomics.

(c) For cyclotomics w ith different conductors, the one with the smaller conductor 

is less.

(d) For cyclotomics with the same conductor m, GAP uses an ordered basis of 

Q(£m) ns a Q-vector space, called the Zumbroich basis. This basis has size 

[Q(£m) : Q] =  <Km ) (Euler totient). Each cyclotomic then corresponds to a 

length <p(m) Q-vector, and these vectors are ordered lexicographically.

4.2.3 W hich groups should be tested?

Our goal is to show that there are no two groups with order less than or equal to 128 

that have (strongly) equivalent modular data. By no means do we need to compare
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every pair of such groups. First, we note that the (e, 1), (e, l)-entry of SG is

'̂(e,l),(e,l)| — j^j 1 — \G\
1 1 g €K e,h€KenCG(e) 1 1

In  the ordering of C, (e, 1) is always first so |G |-1 is always the top-left entry of S. 

So groups of different orders do not have equivalent modular data. Groups w ith the 

same order can have different sized bases, so such groups do not have equivalent 

modular data. Many groups with the same order do have the same sized bases so 

these are the pairs that we need to test. For example, there are 2328 groups of order 

128 (up to isomorphism), with 22 different sizes of bases ranging from 172 to 16384.

We w ill focus on showing that pairs of groups DO N O T have equivalent modular 

data, so it is sufficient to show that either T G and T H or SG and SH are not 

equivalent. However, we do have a few pairs which we show are weakly-equivalent. 

We axe mostly interested in strong equivalence, though many of the methods we use 

apply to both cases. Note that not weakly equivalent implies not strongly equivalent.

4.2.4 T  equivalence

Determining equivalence of T  matrices is easy. First, we use the multiset test. By a 

multiset we mean a collection which may contain several copies of the same element. 

The multiset corresponding to the m atrix T G is just the collection of all its entries. 

Then T G and T H axe permutation congruent if and only if the are equal as multisets. 

For strong equivalence, equality as multisets is not sufficient so we define a canonical 

form for T.

Since T  is diagonal, we w ill think of it as a tuple, broken into blocks according 

to the block structure. The canonical form is as follows:

(a) Each block is sorted in ascending order, with the exception that the (g, 1) 

entry remains first.

(b) Blocks of the same size axe compared lexicographically and sorted in ascending 

order, w ith the exception that the (e, *) block must be first.

There is a valid permutation mapping T  into its canonical form, and we observe that 

this form is unique. Consequently, equal canonical forms implies strong equivalence. 

For G and H  w ith the same block structure, the converse is true. For different block 

structures, the converse is not true. For groups with different block structures and
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different canonical forms, we make no further attempts to show T  inequivalence and 

hope that the S matrices are inequivalent.

We always test for T  non-equivalence first since it is computationally easy, and 

only proceed to test S non-equivalence when the T  matrices are equivalent. This 

is very significant as S matrices can be very time-consuming and in some cases 

infeasible to build. At order 128, several groups have bases of size 16384 but all 

of these have non-equivalent T  matrices. Building S for these groups would be 

unfeasible and determining equivalence could be nearly impossible.

4.2.5 Easy tests  for S non-equivalence

Given a pair SG and SH , we have a few easy tests that can show non-equivalence.

(a) Diagonal invariant. Notice that the diagonal of P S P -1  is the diagonal of S 

permuted by P. For weak equivalence, S matrices must the same diagonals as 

multisets. For strong equivalence, take the diagonal of S and order it the same 

way we defined the canonical form of T. This forms the ‘diagonal invariant’. 

For S matrices with the same block structure, different invariants implies non- 

(strong)-equivalence.

(b) First-rows invariant. Since the (g, 1) entry of each block appears first, valid 

permutations do not move the first row of each block (though entries in the row 

can be permuted). Then, as with the diagonal, we can make another invari­

ant from the first rows, ordering each row in ascending order and comparing 

rows of the same size lexicographically. For S matrices w ith the same block 

structure, the first rows appear in the same places in the m atrix. Therefore 

S  matrices with the same block structure but different first-row invariants are 

not equivalent.

(c) Multiset test. As with T , we can make a multiset from the elements of S. I f  

the multisets corresponding to S °  and SH are not equal, S °  and SH are not 

equivalent.

(d) Characteristic polynomial test. Permutation-congruent matrices must have
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the same characteristic polynomial,

det (P S GP _1 -  X I) =  det (P (S G — A /)P -1 )

=  det (P ) det (SG — X I) det (P _1)

=  det (SG — X I)

though the converse is not true. GAP can compute characteristic polynomials. 

This test is not overly useful on more difficult cases and is computationally a 

bit slow (but programming it is dead easy).

The diagonal and first-rows invariants are important since we can compute these 

invariants without computing all the entries of S. This can both save time and make 

comparisons of certain large S matrices feasible.

4.2.6 M odular data w ith  different block structures

Some pairs of groups have the same T  canonical form but different block structures. 

To compare the S m atrix of these groups, we cannot use the diagonal and first-rows 

invariants. The multiset test is sufficient for many of these cases but not all (the 

characteristic polynomial test is applicable but does not seem to be very helpful in 

these cases). For these cases, we have two simple tests.

Observe that the first block is always the e-block, and its first row is the (e, 1)- 

row. Even though SG and SH might not have the same size e-blocks, some submatrix 

of the larger e-block must be permutation congruent with the smaller e-block. Fur­

ther, some sub-row of the larger first row must be permutation congruent to the 

smaller first row. Consequently, we have two necessary conditions for equivalence:

•  The e-blocks of SG and SH are equal as sets (not multisets).

•  The first row of the larger e-block contains, as a multiset, the first row of the 

smaller e-block.

These conditions, though simple, sufficed in all the cases that we needed.

4.2.7 W hen the easy tests  fail...

Once a pair of groups G and H  passes all the easy tests, we apply a graph isomor­

phism algorithm. This algorithm computes a ‘certificate’ using equitable partitions.
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I t  is essentially the algorithm described in §7.3.2 of [KS99], which computes certifi­

cates for simple graphs. We make the obvious extension to handle edge-coloured 

graphs with loops. The next section describes this algorithm in detail.

4.3 Graph certificate algorithm

A certificate for a graph Q is a complete invariant. So it is a property Cert(£/) 

such that graphs Q and Tt are isomorphic if and only if Cert(£?) =  Cert(?f). The 

point of a certificate is that we need only test equality of certificates to determine 

isomorphism of graphs. The downside of course is that certificates are difficult to 

compute.

Let G  be an m - vertex edge-coloured graph with adjacency m atrix A  =  A g .  

Define Num (A) as the length m (m + l)/2  tuple formed by reading down the columns 

of A ,  starting on the left-most column and stopping at the diagonal element in each 

column. Let Tig  C Sm be any set of permutations of the vertices of G  determined by 

the structure of G  (i.e. not dependent on the ordering of vertices in A). For 7r € Sm 

being a permutation of the vertices of Q,  let A % denote the adjacency m atrix for the 

permuted vertices (ie. A 1r =  7rA7r_1, treating 7r as a permutation m atrix). Then we 

define the certificate for G  as

Cert(<?) =  m in{Num (A7r) | 7r 6  EL;}

The fact that Tig  is determined only by the structure of G  ensures that this is in 

fact a certificate.

The choice of Ug is extremely important. I f  we use all of Sym(m), the compu­

tation of Cert(£?) becomes an NP-complete problem. Indeed, in the case when G  is 

a simple graph (no edge colours), a minimum value of Num (A) has the maximum 

number of leading zeros. This comes from a maximum size submatrix of zeros, the 

vertices of which define a maximum independent set (i.e. a set of vertices w ith no 

common edges). Finding a maximum independent set is known to be NP-complete 

(it is equivalent to finding a maximum clique in the complement of G)- Our choice 

for Tig is based on refining equitable partitions to discrete partitions.

4.3.1 Equitable partitions

An ordered partition of the vertices of G  is an m-tuple P  =  (P i, P2, . . . ,  Pm) where 

{P i, P2, . . . ,  Pm} forms a partition of V. The P* are called blocks. P  is discrete if
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|Pt| =  1 for all i. A discrete partition P  defines a permutation n of the vertices and 

hence defines a value for Num (A7r) =  Num (Ap). The unit partition is the partition  

with only one block.

Let the edge colours of Q form an ordered set )C =  {fci, /c2, . . . ,  kt}. For modular 

data, K  is the ordered set of the entries which appear in the m atrix (see §4.2.2 for 

how cyclotomics are ordered). For a vertex v € V and a subset S C V define the 

neighbour tuple of v relative to S  as

Nbr(u,«S) =

where m, =  |{(u, x) 6 £  \ x € S, c(v, x) =  fcj}. So Nbr(u, S) is an ordered count of 

the number of edges of each colour that go between v and S. We say a partition P  

is equitable if  for all i, j  and for all u, v € Pi,

Nbr(u, Pj) =  Nbr(u, Pj)

A  discrete partition is equitable.

4.3.2 P artition  refinement

The ordered partition Q — (Qi, - • ■ ,Q S) is a refinement of the ordered partition  

P  =  ( P i , , Pt) if every Qi is contained in some Pj and whenever u € P *i, v € Pi2 

w ith i \  <  we have u £ Qj1, v € Qj2 with j \  <  j i -  We now describe an algorithm  

that refines a partition P  to an equitable partition Q. GAP source code is given in 

Appendix A.2.

Algorithm 4.3 (Refining algorithm) Given an ordered partition P  of Q, refine 

it to an ordered equitable partition.

begin

1. Let S be a list that is a copy of P .

2. while S is not empty

3. Remove the last block U  from S

4. fo r each block B  of P

5. Compute N br(6, U) for each b € B

6 . Partition B  into subsets, each subset containing b with the same

Nbr(b,U) value

7. Order the subsets by increasing N br(6, U) value
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8 . Replace B  with the ordered subsets

9. Append the ordered subsets to S

end

P ro o f. We need to show that Algorithm 4.3 produces an equitable partition.

Suppose not, i.e. in the final partition P  there are blocks Pi and Pj and 61,62 £ Pi

w ith N br(6i, Pj) ^  Nbr(&2, Pj). Now Pj must have at some point been in S since S 

is initialized to P  [Line 1] and any new blocks are appended to S [Line 9]. So Pj  

was considered at Line 3 as U. But the for loop [Line 4] ensures that every block 

of P  has constant N br(—, P j )  value, contradicting the existence of P j .

□

The ordering of P  is done at Line 7 and depends only on the structure of Q. 

Indeed, suppose we have an isomorphism <p : Q —> PL and a partition P  of the vertices 

of Q. Then the partition of H  that results from running Algorithm 4.3 on <p(P) is the 

same as the partition of H  resulting from running the algorithm on P  then applying 

((> to the result.

We have one improvement to this algorithm that we use in implementation. If  

we are considering a block U  at Line 3, but we have already considered blocks that 

form a partition of U , then U  need not be used. Indeed, U  cannot cause any block 

B  to be split up since the subsets forming the partition of U  would already have 

done so. This happens fairly often: a block B  w ill be appended to S, but before 

this block is considered it w ill be partitioned by another block and the sub-blocks 

of B  are appended to S and considered before B.

4.3.3 C ertificate algorithm

Algorithm 4.3 generally produces a partition that is not discrete. To get a discrete 

partition we can take the first non-unit (i.e. size greater than 1 )  block P j ,  choose 

p E Pi and split Pi into {p} and P j  \  {p} and refine the resulting partition using 

the refining algorithm. I f  P  is still not discrete we repeat (using the first non-unit 

block of the refined partition) until we have a discrete partition, which defines a 

permutation of the vertices. Define II^ p  as the permutations resulting from all 

such choices of p. Then Certp(£?) =  m in{Num (Aw) | 7r 6 Ilg p } . The details are 

Algorithm 4.4 below. Code is provided in Appendix A.2. Note that the certificate
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depends on the initial choice of partition P . For strong equivalence we need a 

different choice for P, as we w ill see later.

Algorithm 4.4 Given a partition P  of the vertices ofQ, compute Certp{Q).

1. Refine P  to an equitable partition using Algorithm 4-3.

2. i f  P  is not a discrete partition

3. Find the first block Pi of P  with \Pi\ >  1

4■ for each element p E Pi

5. Call Algorithm 4-4 with input ( P i , , P *_i, {p}, Pi \  {p }, P i+ i, . . . ,  Pm)

and store the certificate.

6 . Return the least certificate found.

7. else

8 . Return N um (A p).

4.3.4 A lgorithm  im provem ents

Algorithm 4.4 is a recursive backtracking algorithm. In  Line 5, one element is split 

off from its block and the algorithm is called recursively. The new partition is 

refined to be equitable. Unfortunately, the refinement procedure might not change 

the partition very much and consequently the search tree for the algorithm can be 

extremely large. There are, however, two ways to prune the search tree (both given 

in [KS99]) and one further improvement (due to the author).

The first method is to prune by remembering the least certificate found so far. 

Suppose we have an equitable partition P , w ith Pj being the first non-unit block and 

i  >  1. Then P  =  ({p i} , {p2} , . . . ,  {p i- i} , P i , , Pm), so the top left (* -  1) x (i -  1) 

submatrix of Ap  is already fixed and the first (i — l ) i /2  entries of Num (Ap) are 

determined. We can compare this initial portion of Num (Ap) with the corresponding 

in itial section of the best certificate found so far. I f  the best certificate is less, then 

this partition P  cannot produce a lesser certificate so we can abandon this branch 

of the search tree.

The second method is to use automorphisms of Q. We can collect automor­

phisms at Line 8 of Algorithm 4.4 if we record both the best certificate C(,est and 

the permutation 7r&est that produced it. I f  at Line 8 we find that Num (Ap) =  Cbest 

then An =  Anbest (only equal adjacency matrices define the same Num). Then
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,r-i =  A, hence TTbest̂  1 is an automorphism of Q. We store these automor­

phisms. This w ill of course only discover some (possibly none) of the automorphisms 

of g.
We use these automorphisms at Line 5 of the certificate algorithm. Suppose 

there exists and automorphism 7r of Q such that

7r(P ) =  ({7 r(p i)},...,{7 r(p i_ i)},{7r(p )},7r(P i \p),7r(P<+ i) ,...,7 r (P m))

=  ({Pi}» • ■ ■ > {P i- l} . 9, tt(Pi \  {p}), 7r(Pi+ l) , . . . , 7T(Pm))

where q € P  is an element that has been considered earlier in the for loop. That 

is, suppose 7r fixes the first i — 1 elements and replaces p with an element that has 

already been considered in that position. Then since 7r is an automorphism and q has 

been considered already, we know that this partition w ill yield the same certificate 

as the one with q in place of p, so we can abandon this branch of the search tree.

We do not know the entire automorphism group of &, but we do know the 

subgroup generated by the automorphisms we have collected. We can search this 

subgroup for n and if it exists in the subgroup we can prune the search tree. GAP  

has the capacity to generate the subgroup and search it for the existence of n (using 

the GAP commands Group and R epresentativeA ction).

There is also an improvement to the refining algorithm that we can use in some 

cases. Suppose in Algorithm 4.4 we find Pj with size 2, P* =  {p, q}. The algorithm  

w ill be splitting Pi into {p} and {q} and calling the refining algorithm. Then we 

need only initialize S — ({p }, {<?}) at Line 1 of Algorithm 4.3, instead of S =  P. 

Indeed, any block Pj w ith j  ^  i cannot cause any other such block to split during 

the refining step since P  is equitable before breaking up Pj. Nor can Pj split the 

new blocks {p} and {q} as they are singletons. So the Pj are not needed in S.

4.3.5 C ertificate algorithm  and m odular data

The certificate algorithm depends on the initial partition P . P  must only depend 

on the structure of the graph (not the ordering of the vertices) otherwise isomorphic 

graphs could have different certificates. The obvious choice for P  is the unit partition  

(all vertices in one block). This is what we use for weak equivalence as it allows any 

permutation. For strong equivalence, we would like a partition P  so that matrices 

have the same certificate if and only if they are strongly-equivalent. This does not 

seem to be possible, but we can come close.
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The ordering restrictions on the character basis C defines a partition P  by making 

each (/-block a partition block. The restrictions do not tell us how to order blocks of 

the same size so we do not have a unique ordered partition. Our compromise is to 

union all blocks of the same size into a single block (except that the e-block remains 

by itself) and use this as the starting partition P. The consequence of this choice 

is that two S matrices with the same certificate need not be (strongly) equivalent 

since the permutations defining the certificates need not be valid permutations, but S 

matrices with different certificates are not be equivalent. This negative result suffices 

for all the cases we tested. This choice of P  speeds up the algorithm considerably 

compared to using the unit partition.

4.4 S  and T  simultaneously equivalent

Using the above methods we found no candidates for strong equivalence, but several 

cases had weakly-equivalent T  and S matrices (independently). The challenge was 

then to determine if the the modular data was in fact weakly-equivalent, i.e. the 

existence of P  giving simultaneous equivalence, P T GP ~ l =  T H and P S GP ~ l =  SH .

4.4.1 Backtracking algorithm

We employed a straightforward backtracking algorithm. The algorithm recursively 

builds a discrete ordered partition P  =  ({x i} , {£2}, • • •, {^n})- Let

pl =  ({® i}. •■•»{*«})» ^ (0  =  xii and SpLpt be the I x I m atrix with i , j  entry 

Sp(i),p(j), 1 < i , j  <  I-

At depth I, the first I — 1 values of P  are fixed and we choose xi from the unused 

indices. For each choice of x;, we check if SGt =  Spt and T Gt — Tpt - I f  so, recursively 

call the algorithm at depth I +  1. Otherwise, continue to the next choice for xp 

We remark that this is not a particularly efficient algorithm, though it served 

our purposes. We also found that the initial ordering of the matrices had a strong 

influence over the efficiency, in the case when G  and H  had weakly-equivalent data. 

The algorithm chooses values for xi in increasing order, i.e. x \ — 1,X 2 =  2, . . .  is 

(without regard to pruning) the first choice for P. By default, we order the bases Cq 

and Ch  by a valid order (§4.1.2). However, we found that this choice was particularly 

disadvantageous. By randomly choosing p, q € S)c| and permuting SG,T G by p and 

Sh ,T h  by q before running the algorithm we were able to find an equivalence in 

considerably less time. The ordering on Cg and Ch  that produces the equivalence
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does not seem at all related to the block structure. This suggests that our definition 

of strong equivalence is a good one (for the purpose of making modular data a 

complete invariant).

4.5 Results

We give results for both weak equivalence and strong equivalence, though our focus 

is on strong equivalence.

4.5.1 W eak equivalence

The table below gives all pairs of groups with order less than 33 that have ei­

ther permutation-congruent T  matrices or permutation-congruent S matrices. For 

groups w ith equivalent T  and S , we indicate whether T  and S are simultaneously 

equivalent (i.e. whether the groups have weakly-equivalent modular data).

Groups T  equivalent S equivalent Weakly-equiv M D |C|
(16,3), (16,13) Yes Yes Yes 88
(16,4), (16,12) Yes No 88
(32,2), (32,23) Yes No 352
(32,2), (32,24) Yes Yes Yes 352
(32,2), (32,47) Yes No 352
(32,5), (32,38) Yes Yes Yes 352
(32,7), (32,8) No Yes 100
(32,9), (32,40) Yes No 184
(32,9), (32,42) Yes Yes Yes 184

(32,10), (32,13) Yes No 184
(32,10), (32,14) Yes No 184
(32,10), (32,41) Yes No 184
(32,13), (32,14) Yes No 184
(32,13), (32,41) Yes No 184
(32,14), (32,41) Yes No 184
(32,22), (32,48) Yes Yes Yes 352
(32,23), (32,24) Yes No 352
(32,23), (32,47) Yes No 352
(32,24), (32,47) Yes No 352
(32,27), (32,49) Yes Yes Yes 184
(32,29), (32,34) Yes No 184
(32,32), (32,35) Yes No 184
(32,40), (32,42) Yes No 184

In  particular, the pair (16,3) and (16,13) have equivalent modular data in the weak 

sense, as do several pairs at order 32 (the order 16 case is the one given in [Cun05]).
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Theorem 4.5 There exist non-isomorphic groups with weakly-equivalent modular 

data. The smallest-order examples are the order 16 groups with presentations G  =  

(x , y | x4 =  y4  =  xyxy =  1, yx3  =  xy3) and H  =  (a, b, c | a4 =  b2 =  c2 =  cbca2b =  

1, bab =  a, cac =  a).

These groups axe not strongly-equivalent. In  particular, the T  matrices do not have 

the same canonical form, and the S matrices have different diagonal invariants. 

The ordering that we found giving weak equivalence does not seem to have any 

recognizable structure (and of course is is not a valid ordering in the sense of §4.1.2).

Corollary 4.6 For n divisible by 16 there exist groups of order n with weakly- 

equivalent modular data.

Proof. Let G  and H  be the order 16 groups above, with P S GP ~ l =  SH and
p T G p - 1 =  t h  T h e n  Q ^ Gjyi and H  x C1̂  have weakly-equivalent modular data. 

Indeed, by 3.10 we have SGxCm =  SG <8 > SGm and T HxCm =  T H <g> T Cm. W riting  

SG® S Cm as an m x m  block m atrix and applying P  to the blocks gives the necessary 

equivalence.

□

We also observe that the groups (32,7) and (32,8) have different T  but equivalent 

S matrices. This is a bit unexpected considering that T  is much simpler than S.

4.5.2 Strong equivalence

For strong equivalence, we were able to prove the following theorem. It  is one of the 

most important new results of the thesis.

Theorem 4.7 There is no pair of groups with order 127 or less having strongly- 

equivalent modular data.

We were also able to show that most groups of order 128 do not have strongly- 

equivalent modular data. However, we were left with 528 pairs for which we were 

unable to determine equivalence or non-equivalence.

There are 3596 groups with order less than or equal to 128. O f these, 2328 

have order 128. The number of pairs with the same group order and same size 

character bases is around 353000. As mentioned earlier, most pairs have inequivalent 

T  matrices: only 4371 pairs have the equivalent T  matrices. Another 2502 pairs
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have T  matrices for which we could not determine equivalence or inequivalence (the 

groups have different block structure and the T  matrices, in the canonical form, are 

not equal). Consequently we had 6873 pairs for which the S matrices needed to be 

compared. The ‘easy tests’ are sufficient for most of these cases, eliminating 6322 

pairs and leaving 551.

O f these remaining 551 pairs, we use the certificate algorithm to show that 23 

of them have inequivalent S matrices. O f these 23, 9 occur at order 64, 1 at order 

100, and the remaining 13 at order 128.

For the remaining 528 pairs, we were unable to determine their status. These all 

occur at order 128, most of them with \C\ =  928 and the largest with \C\ =  2944. In  

many of these cases the S matrices were simply too time-consuming to build, so we 

could not apply all the tests (the first-rows and diagonal invariants were essential 

in eliminating many large cases, since we avoided building the complete S  m atrix). 

In  the other cases the certificate algorithm did not terminate in reasonable time.

We found 4371 pairs w ith strongly-equivalent T  matrices. The smallest example 

is (16,4) and (16,12). The next smallest examples are at order 32: the pair (32,9) 

and (32,40), the pair (32,32) and (32,35), the triple (32,2),(32,23),(32,47) and the 

four groups (32,10),(32,13),(32,14),(32,41). Also, we do not know if the T  matrices 

of (32,27) and (32,49) are strongly-equivalent (their S matrices are not strongly- 

equivalent though).

There are groups with strongly-equivalent S matrices. The smallest example is 

the order 32 groups (32,7) and (32,8). Their T  matrices are not equal as multisets.

4.5.3 Program  correctness

The GAP code for this study is about 1700 lines. We test this code in order to give 

confidence in the results. We are, however, reliant on the correctness of the GAP  

system and of the small groups library. We run two major tests.

(a) S and T  formula test. We test the formulas for S and T  by building S  and T  

using the C basis and comparing it with the matrices built using the V  basis 

and changing basis. We also test S built from (2.11) versus (2.13). A ll groups 

up to order 43 were tested successfully.

(b) Certificate test. To test the certificate algorithm, we build S and compute its 

certificate. Then permute C by a random valid permutation and build S from
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the reordered basis. Compute the certificate for the new S and ensure that it 

is equal to the original certificate. Since we are choosing valid permutations 

at random, we repeat several times (five) w ith different random valid permu­

tations. We perform the test successfully for all groups up to and including 

order 44.
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Chapter 5

/^-characters and modular data

In  the preceding chapter we saw that under the strong equivalence a group’s modular 

data determines the group for small orders. Ideally, we would either prove that 

modular data is a complete invariant, or find two groups with (strongly) equivalent 

modular data. We have been unable to do either. We suspect that the modular 

data is not a complete invariant, but we w ill see in §5.3 some of the group properties 

that are determined by modular data. In  §5.1 we review two properties that are 

complete invariants, the group determinant and k-characters. We w ill also look at 

2 -characters, which are an invariant but do not determine the group, and see how 

the group properties determined by the 2-characters compare to those determined by 

modular data. Finally, we give a new result giving groups with the same 2-characters 

but different modular data.

5.1 The group determinant and ^-characters

Group characters of non-Abelian groups were introduced by Frobenius to study the 

factorization of the group determinant. Let G  be a finite group, and {xg \ g € G } 

a set of independent commuting variables. Let X q be a m atrix indexed by G, w ith 

the (g,h)-entry being xgh -i. Then the group determinant is © g  =  d e t(X c ). The 

indexing set G  is not ordered, but every choice of order gives the same determinant 

since det(P© G -P_1) =  det(P ) d e t (0 c )  det(P _1) =  d et(© c) for every permutation 

m atrix P .

The group determinant is a complete invariant for finite groups, meaning G and 

H  are isomorphic if and only if ©g and 0 #  are the same. This was first proved by 

Formanek and Sibley in 1991 [FS91], using maps between group algebras. A  proof by 

Mansfield in 1992 is shorter and reconstructs the group multiplication directly from
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the group determinant by examining terms of the form x" 2xgXh and x"~zxgXhXk 

[Man92].

We must be precise in what it means for two groups to have ‘the same’ determi­

nant. For groups G  and H , @g is in the polynomial ring Z[x9] while 0 #  is in Z[x/J. 

A  bijection <j): G —► H  induces a ring isomorphism

4> ■ z [xg] — > z [x h]

Xg 1 ► x 4>(g)

We say that G  and H  have the same determinant if such a bijection <p exists w ith  

4>(Qg ) =  & h - For groups of order n, there are n! choices for <f>. Notice that this is 

essentially the same combinatorial problem that we had with the character basis C 

of modular data in Chapter 4. In  that case we were able to give some order to C 

in a obvious way and without doing any computation. It  is not clear whether we 

could place some order on G  in a similar way. We could, for example, insist that the 

elements of G be collected together according to orders or conjugacy classes, but 

this might require extra computation. Consequently, it seems that comparing two 

group determinants is very difficult.

O f course, in many cases it w ill be easy to show that two group determinants 

are not the same, just as we had many easy cases for modular data. A simple test 

is to form the multiset consisting of the coefficients of © g - I f  the multiset for ©<3 is 

not equal to that of © #  then ©<3 and 0 #  are not the same. It  is very unlikely that 

this invariant actually determines © g  (i.e. does not determine G ). But it is fun to 

check that it holds for some small order cases. We use GAP to prove the following 

(see Appendix A.4 for the GAP code):

P roposition  5.1 The multiset consisting of the coefficients of the group determi­

nant is unique for groups of order less than 1 0 .

The reason the result is given for such small order is that the group determinant 

is very slow to compute, since it is the computation of a symbolic determinant (i.e. 

the entries are the symbols xg rather than numbers). Modular data by comparison 

is much easier to compute. I t  is not surprising that the group determinant is difficult 

to compute and compare since it is a complete group invariant.
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5 .1 .1  /c-characters

To factor the group determinant Frobenius introduced functions x ^  '■ Gk — ► C, 

where x  is an irreducible character of G  and k e Z > i called k-characters. (see 

[Fro68] and the summary in [Joh91]). These can be defined recursively by

x H g i )  =  x ( g i )  

x k ( g i , g 2 , - - - , g k ) = x { g i ) x k~ 1(g2 , g s , - - - , g k )

- x fe_1(5i52,53,---,Pfc) -  ••• - x k~ 1(g2,g3, - - - ,gigk)

The 2-character is explicitly given by

x {2)(g, h)  =  x ( g ) x ( h )  -  x{gh)

and the 3-character is

x (3) (g, h, k)  =  x ( g ) x ( h ) x ( k )  -  x ( g ) x { h k )  -  x ( h ) x { g k )  -  x ( k ) x ( g h )  

+ x ( g h k ) 4- x ( gkh )

R e m ark  5 .2  To compute the above expression, we need to know that a character 

value x(gig 2 ---gk) depends only on the cyclic order of the factors 5 i, 52, • • • , •  

This is a consequence of the fact that characters are conjugacy class functions, so 

fo r example

x ( g m  ■ ■ ■ gk) =  x (gkgig 2 ■ ■ ■ gkgk1) =  x(gkgi  ■ ■ ■ g k - 1)

The definition of ^-characters immediately yields the following proposition. 

P ro p o sitio n  5.3 Let deg(x) =  m.

(a) For k >  m then x ^  =  0.

(b) The m-character, together with deg(y), determines the k-characters fo rk  <  m. 

P ro o f. Letting gi — e we get

X {k)(e ,g2 , . . . , g k)

= x ( e ) x (k~ 1){g2 , . - - , g k )  - x (k~ 1){g2 , - - - , g k ) --------- x (k~ 1){g2 , - - - , g k )

=  (deg(x) - k  +  l ) ) x {k~ 1 ) (g2 , - - - ,gk)

Consequently =  0 and by the recursion all higher fc-characters are zero. I f  we 

know deg(y) we can compute x k f°r k < m .
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Frobenius obtains the following result, showing how fc-characters appear in the 

group determinant.

P roposition  5 .4  Let © be the group determinant of G. Then the number of irre­

ducible factors of 0  is equal to the number of irreducible characters of G and each 

irreducible factor 8  of 0  corresponds to an irreducible character xe of G. The degree 

k of 6  is equal to the degree of xe,  cmd 9 is given by the formula

9 = l\_ E  X{e \g i ,  02, ,  9 k)xgix92 ■■■x9k 
(9 i , 9 2 , - , 9 k ) € G k

5.2 Group properties determ ined by ^-characters

In  [Bra63], Brauer posed the question of what information is needed in addition 

to the character table to form a complete invariant for finite groups. He proposed 

additional conditions as follows. Let G have irreducible characters Xi and conjugacy 

classes Kj .  For a conjugacy class K  o lG  and integer m, define =  {xm \ x € K }. 

Observe that i ifH  is a conjugacy class of G. Indeed, any xm and ym in i f H  are 

conjugate since y — gxg- 1  for some g & G  hence ym =  gxmg~1. K is closed under 

conjugation since gxmg~l =  (gxg~l )m. Now assume G  and H  have isomorphic 

character tables via X i(K j)  =  (7rX i)(cr̂ j ) -  Then Brauer’s additional condition is 

that =  (crKj)tml for all i , m. Groups satisfying these conditions are known

as a Brauer pair. Brauer asked whether such a pair must be isomorphic. The answer 

is no, first shown in [Dad64].

Proposition 5.4 shows that knowledge of all the fc-characters of a group is suffi­

cient to compute the group determinant, and therefore to determine the group. This 

gives an answer to Brauer’s question. In  fact, less information is needed. Hoehnke 

and Johnson showed in [HJ95] that knowledge of the 3-characters (which, as we 

know, gives the 1- and 2-characters) is sufficient for the group determinant. Con­

sequently the 3-characters are a complete group invariant (and is a much simpler 

invariant than the group determinant).

This of course raised the question of whether or not the 2-characters determine 

the group. This was shown to be false in [JS93], where certain Brauer pairs are shown 

to have the same 2-characters. The smallest groups with the same 2-characters are 

the two non-Abelian groups of order 27, proved in [JS95]. The definition of G and H
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having ‘the same 2-characters’ is the existence of a bijection ir between irreducible 

characters of G  and H  and a bijection r  : G  — ► H  such that

X i ( 9 )  =

X i 2 ) { 9 , h ) =  ( t t  X i ) {2) ( r ( g ) , T { h ) )

Since 2-characters do not determine the group, [JMSOO] found group properties 

that are determined by the 2-characters. Define the weak Cayley table of G  as the 

table w ith rows and columns indexed by G  and whose (g, h)-entry is the conjugacy 

class of gh. Then [JMSOO] shows that the weak Cayley table contains the same 

information as the 2-characters:

Proposition 5.5 I f  the irreducible 1- and 2-characters of G are known, then the 

weak Cayley table can be constructed. Conversely, i f  the weak Cayley table is known 

then the irreducible 1 - and 2 -characters can be computed.

By examining the values x^(0>p)> [JMSOO] shows that the following properties 

are determined by the 2-characters.

Proposition 5.6 Given the 2-characters ofG  corresponding to irreducible 1-characters, 

the following are determined:

(a) For each z € Z (G ), the set {g £ G | g2  =  z}.

(b) For each conjugacy class K , the class .

(c) The set of elements whose order is a power of 2, together with the order. In  

particular, the involutions (order 2  elements) of G.

(d) The Frobenius-Schur indicator of G.

5.3 W hat group properties are determ ined by modular 
data?

In  Chapter 4, we saw that modular data determines the group for orders less than 

128. We do not know if modular data determines the group for all orders, but in 

this section give properties of a group that are determined by modular data.

Proposition 5.7 Given S andT in the character basis, ordered according to §4-1.2, 

the following information about G is known.
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(a) Order of G.

(b) Exponent ofG .

(c)  Character table of G.

(d) Block structure of Ca­

fe) Sizes of the conjugacy classes and centralizers ofG .

(f) Whether or not G is Abelian. I f  G is Abelian, we can determine G.

Proof. The order of G is Sfe\^ which is the top-left entry according to the 

basis ordering. The exponent of G  is the order of T , as we saw in Proposition 2.10. 

To determine the character table, we start by applying formula (2.14) to compute

the ratio ________
S (art),(e,x) _  X W (e )  _ |C(o)l _T77T 
s (a,i>),(e, i) |C (a)| 1(a) ip(a)

That is, for a row (a, xp), x ( a ) is the conjugate of the (e ,x ) column entry divided 

by the first column entry. Let Xi> X2 ,Xk be the irreducible characters of G. We 

compute X i(e)> X2(e), • • • using the first row. We reach the last irreducible character 

once 5Zf= i X i ( e ) 2  =  |G| (Theorem 1.8), and we now also know the size of the e-block. 

Then for any row (a, ip), we use the first k columns to get the values of all Xi on 

the conjugacy class K a. Since the irreducible characters are linearly independent 

class functions, two rows correspond to different conjugacy classes if and only if the 

character values are different. This gives the character table and also identifies each 

g-block, so we know the block structure of Cq-

For the sizes of the centralizers we observe that the first entry in an (a, 1) row is

=   I y i
\CG(a)\\G\ ^

1

and we can identify the (a, 1) row since we know the block structure. The size of 

the conjugacy class is given by Lemma 1.1.

G  is Abelian if and only if it has |G| conjugacy classes, if and only if \C\ =  |G |2. 

Since we know |G| we can determine if G  is Abelian. An Abelian group is determined 

by its character table.
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□

Next we consider what group information is contained in the modular data 

relative to the permutation basis. For fixed a, define the a-block as (a, *) =  {(g , h) € 

V  | g =  a}. Place the following ordering restrictions on V:

(a) Every a-block must appear contiguously.

(b) The e-block appears first.

(c) A fter the e-block, the blocks appear in order of ascending size.

(d) W ithin each a-block, the element (a, e) appears first.

Notice that these ordering restrictions correspond with those we placed on C, so 

both bases have the same block structure.

Proposition 5.8 Suppose we are given S and T  with respect to the basis V , ordered 

as above. Then we know the following information.

(a) The block structure of the basis.

(b) The order of the elements in each conjugacy class.

Proof. To identify the e-block, we have [e ,g ].f =  [e ,g j, hence T  has a 1 on the 

diagonal for each [e, h ]. The next block starts w ith [5, e] .t =  [5 , 5] ^  [5 , e ], so the 

first non-diagonal entry of T  indicates the start of the next block. Now examine S. 

Since [5, ej.s =  [e, g_1], the first column of each block is identified by an entry in 

one of the e-block rows. For the remaining elements of the block (i.e. h ^  e) we 

have [5 , hj.s =  [/&,g-1 ], so the entry in S  is outside the e-block rows.

For the order of each conjugacy class, find the column of the first entry [3 , e] 

of its block, as above. Since fg, ej.f^s3 =  [g, e]. ( J i 0 ) =  [^ g j,  the smallest I such 

that g* =  e is the smallest I such that the entry in the [g, e] column of T lS3 is in 

the e-block rows.

□

I f  we have modular data in both bases, we know the orders of all the elements 

of G:
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P roposition  5.9 Suppose we know S and T  with respect to both the character and 

permutation bases. Then in addition to the information from Propositions 5.7 and 

5.8 we know the list of orders of the elements of G.

P ro o f. The character basis gives the size of each conjugacy class, and the permu­

tation basis gives the order of elements in each class.

□

We saw earlier that the 2-characters determined the number of elements w ith  

order a power of 2, along with the order. Proposition 5.9 is stronger, but still 

is not a very strong condition. The smallest groups with the same orders of el­

ements are at order 16, for example C \ x C4 and the group with presentation 

G  =  {x, y | x 4  =  y4 =  e, xy =  yxz). These groups both have elements with  

orders 1,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4.

Proposition 2.5 gives the formula to change bases between C and V. The formula 

requires the knowledge of the character tables of all the centralizers Cg (o,). I t  is not 

clear whether this information can be obtained from S and T  (in either basis). I t  

turns out that there are groups with inequivalent modular data that have the same 

character tables of centralizers.

For a character basis Cg , consider the multiset consisting of character tables of 

the centralizers Cg(o)> a £ R. Say that two character bases are character table 

equivalent if  these multisets are equal, with isomorphic character tables counting as 

equal. The following proposition is new.

P ro p o sitio n  5.10 The smallest groups with character table equivalent bases are at 

order 64■ These groups have inequivalent modular data.

P ro o f. We content ourselves with a computer-assisted proof, using GAP. Comput­

ing the centralizers and their character tables is straightforward. Testing character 

table is also straightforward in GAP: the Transform ingPerm utations function de­

termines the existence (and finds) permutation matrices P  and Q  such that for 

given matrices A  and B, P A Q  =  B. Notice that this means rows and columns may 

be permuted differently, as is allowed in character table equivalence (unfortunately, 

this also prevents us from using Transf ormingPermutations to test modular data 

equivalence since we need P  =  Q in that case). Code is provided in Appendix A.5. 

We find that there are 6 pairs at order 64 w ith character-equivalent bases, given by
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the GAP library numbers (64,13) with (64,14), (64,70) with (64,72), (64,74) with 

(64,80), (64,142) w ith (64,157), (64,143) with (64,158), and (64,175) w ith (64,181). 

Checking with our results from Chapter 4, we find, not surprisingly, that all these 

pairs have equivalent T  matrices, and have S matrices that pass all of the ‘easy 

tests’ (e.g.. equal as multisets). The pairs all have different certificates though, so 

their modular data is inequivalent (in the weak, and therefore the strong, sense).

□

5.4 Groups w ith the same 2-characters but different 
modular data

We will show that there exist groups with the same 2-characters, but inequivalent 

modular data. I t  is well-known that for p and odd prime, there are 2 non-Abelian 

groups of order p3. These groups have the following presentations, given in [You93].

P  — (a ,x ,y  | aP =  yp =  1, xp =  a, yx =  axy, ax =  xa , ay =  ya)

Q =  (a, b, c | ap =  bP =  c? — 1, cb =  abc, ab - ba, ac =  ca)

Johnson and Sehgal show that these groups have the same 2-characters [JS95]. We 

show that their modular data is non-equivalent. This result is new.

Proposition 5.11 The groups P  and Q above have non-equivalent modular data. 

In  particular, their T  matrices are not equal as multisets.

Proof. P  has exponent p2 while Q has exponent p. Indeed, the exponent divides 

the order of the group so the only possibilities are p and p2 (not p3 since the groups 

are non-Abelian). In  P, x has order p2 hence P  has exponent p2. In  Q, elements 

can be written as alVck where 0 <  i, j ,  k <  p — 1. The pth power of an element is

(aib>ck)p =

=  a pi+s!£T £Ljk 

=  e

hence Q has exponent p.

Since the exponent of the group is the order of T, the groups P  and Q have 

T  matrices that are inequivalent as multisets. Consequently their modular data is 

non-equivalent.

□
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Chapter 6

Concluding remarks

In  this thesis we examined some properties of finite group modular data that had 

until now been poorly-explored. Our most important original results were the fol­

lowing:

•  S and T  determine the group for groups of order less than 128, under a new 

definition of equivalence.

•  the dimension of the centralizer algebra of Zn modular data

•  the decomposition of Zp (p a prime) modular data into irreducible SL2(Zp) 

representations

•  existence of groups with the same 2-characters but different modular data 

Each of these results has raised further research questions.

Modular data as a group invariant

We do not know whether S and T  determine the group, under the new definition of 

equivalence. We showed that most groups of order 128 had inequivalent S and T , but 

were left w ith 528 pairs whose status we could not determine. Our current methods, 

with minor improvements and more computing time, can probably deal w ith these 

528 pairs. These pairs are certainly a place to look for a counter-example. The fact 

that there are groups with strongly-equivalent S matrices (the smallest pair being 

at order 32) may suggest that we w ill find a counter-example. However, if there 

is no counter-example at order 128, it may be worth trying to prove that modular 

data determines the group. The paper [DavOO] may be useful in this respect.

We don’t  have a guess as to what the answer is. The permutations giving the 

weak-equivalence in the order 16 and 32 cases do not respect the block structure of
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C. We were surprised by this, as we thought that making the bases Cq and Ch  cor­

respond would make it easier to find a permutation giving equivalence. Proposition 

5.10, showing that groups can have ‘character table equivalent bases’ (the same char­

acter tables of centralizers) but still have inequivalent modular data is also telling. 

I t  suggests that the set G(a, b) is particularly important in the definition of 5 , and 

is worth examining more closely.

2-characters

Though we proved that groups may have the same 2-characters but different modular 

data, we have further questions about how 2-characters may be related to modular 

data. We can get the character table from S  and T. Can we get the 2-character 

table? I f  modular data does not determine the group, are there groups with the same 

S and T  but different 2-characters? We also saw that the 2-characters determine 

the Frobenius-Schur indicator, but did not see anything similar for modular data. 

In  C F T  there is an analogue of the Frobenius-Schur indicator, defined in terms of 

entries from S and T  [Ban97]. Perhaps it provides a way to recover the character- 

theory indicator?

On a side note, 2-characters and fc-characters are interesting in themselves. 

Group characters (1-characters) span the space of class functions on G. In  [Joh91], 

Johnson defines ‘extended 2-characters’ (2-character plus some other combinations 

of 1-characters), which are (pairwise) orthogonal but do not span the space of ‘2- 

class functions’. Is there a better generalization of group characters that do span the 

space of fc-class functions? We remark that fc-characters are built from 1-characters: 

they are not really a generalization of 1-characters but rather way of extracting more 

information from 1-characters.

Centralizer algebra and decomposing pa

Since SL2(ZP) has a nice representation theory, we expect that for any group with  

exponent p we should be able to decompose pa as we did for Zp. For SL2(ZP«), 

the representation theory is more complicated (Zpn is not a field). The irreducible 

representations of SL2(Zpn) are known and are given in [NW76] (and in English in 

[Eho95]), though they are not given directly. Still, the decomposition for Zn should 

certainly be possible.

As we remarked in Chapter 3, decomposing po into irreducibles gives the struc-
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ture of the centralizer algebra, but to get the centralizer algebra itself (relative to 

the C basis) we need the change-of-basis m atrix from C to the basis in which pa is 

block-diagonal. I t  is not obvious how to find it. But knowing the change-of-basis 

gives the centralizer algebra and is a major step towards knowing the modular in­

variants. This approach to finding modular invariants for finite group data is worth 

further research.

For the dimension of the centralizer algebra, we expect that staring long enough 

at the data we presented for D n w ill yield a nice formula, with a similar proof to 

the Zn case. We should also find the dimension of the centralizer algebra for other 

group families, w ith the symmetric and alternating groups being a major goal.

G roup  properties  in  m odu lar d ata

We saw that modular data of a direct product of groups is the tensor product, but 

we do not know if there is a similar relation for the semi-direct product. This is 

worth exploring further. In  general, we want to know how group-theoretic properties 

and constructions are reflected in modular data. We understand modular data for 

abelian groups. I f  G  is simple (nilpotent, solvable, etc.) what can we say about its 

modular data?

C F T  on higher-genus surfaces

Recall from §2.3.1 that modular data in the C FT context arose when the C FT had 

the torus as its space-time. More generally, we are interested in C F T  living on 

any world-sheet of any number of strings, i.e. C FT on surfaces of genus g with 

n punctures (each puncture corresponds to string, and the genus tells how many 

times a string splits apart and later reforms). Higher-genus surfaces can be built 

from lower-genus surfaces. For example, take two tori, each with one puncture, 

and ‘glue them together’ at the puncture. The result is a genus 2 zero puncture 

surface (‘double torus’). In  this way the torus and its corresponding modular data 

is important as a building block of more general cases (incidentally, modular data 

also corresponds in a way to the torus with one puncture).

In  the general genus g w ith n punctures case, the partition function c h ^ r) 

becomes a correlation function, w ith r  living in the moduli space of the surface. 

Instead of SL2(Z ), we get the mapping class group of the surface. The role of the 

characters is played by conformal blocks, and these yield a representation of the
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mapping class group just as the characters give a representation of SL2(Z) (which is 

the mapping class group of the torus). These representations have yet to be studied 

carefully and is an avenue for future research.

The action of the braid group Bn on Gn_1 w ill probably be important in the 

representations of the higher-genus mapping class groups. The genus g w ith n 

punctures mapping class group is built from the genus g zero punctures group and 

a braid group. The exact relationship is described in [Bir75].
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Appendix A

GAP source code

Select GAP source code is given below. Lines beginning with axe comments.

Source code for some simple functions is omitted, though in such cases a short 

description of the function is given in comments. Any other functions that axe not 

documented are standard GAP functions. Documentation for GAP is available from  

the GAP website, h ttp ://w w w .g ap -system .o rg /.

A .l  Building modular data
The following code is used to build the bases C and V  and the matrices S and T.

 #-------------- CharBasis-----------------------
# Given a finite group G, return the character
# basis of G. The basis is ordered as follows:
# 1. The (e,*)-block is first
# 2. Every (g,*)-block appears contiguously
# 3. The (g,l) entry is first in each block
# The basis is listed as 4-tuples [g,c,i,j] where
# g=element of R
# c=character of C(g)
# i=block number
# j=0 if c is trivial character, 1 otherwise 
CharBasis:=function(G)
local R.CT.CTg.I.C.Basis.c.g.i.D.p;
CT:=CharacterTable(G);
R:=List(ConjugacyClasses(CT), Representative);
Basis : = [] ; 
i:=0;
for g in R do 

i:=i+l;
C:=Centralizer(G,g);
CTg:=CharacterTable(C);
I:=Irr(CTg);
# Run through I to find the trivial character and put it first, 
for c in I do

# Identity(c) returns the identity character of underlying character table 
if c=Identity(c) then
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Add(Basis,[g,c,i,l]);
fi;

od;
# Run through the remaining characters of I 
for c in I do

if coldentity(c) then 
Add(Basis,[g,c,i,0]);

fi;
od;

od;
# OrderBasis sort the basis blocks by size, but with (e,*) first 
return OrderBasis(Basis);
end;

 #------------ PermBasis----------------------------
# Given G return the permutation basis of G. The
# basis is given as 4-tuples [g,h,i,j] as follows:
# g=reps of conjugacy classes of G
# h=reps of conjugacy classes of C(g)
# i=block number
# j=l if h=e, 0 otherwise
# The basis is ordered as folows:
# 1. Each (g,*)-block appears contiguously
# 2. The (e,*)-block is first
# 3. (g,e) is first in each block 
PermBasis:=function(G)
local R,Basis,C,Rc,g,h,i,Blocks,perm;
R:=List(ConjugacyClasses(G).Representative);
Basis : = []; 
i:=0;
for g in R do 

i:=i+l;
C:=Centralizer(G,g);
Rc:“List(ConjugacyClasses(C).Representative); 
for h in Rc do

if h=Identity(h) then
Add(Basis,[g,h,i,l]);

fi;
od;
for h in Rc do

if hoidentity(h) then 
Add(Basis,[g,h,i,0]);

fi;
od;
Rc: = [] ;

od;
# OrderBasis sort the basis blocks by size, but with (e,*) first 
return OrderBasis(Basis);
end;

 #------------------ CharTlistb-----------------------
# Return T as a list, relative to the character basis
# (remember T is a diagonal matrix)
CharTlistb:=function(G,CB)
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local T,i;
T : = [] ;
for i in [1..Length(CB)] do

T[i]:=ChiOf(CB[i] [2],CB[i][1])/DegreeOfCharacter(CB[i] [2]) ;
# ChiOf(chi,g) returns chi(g) 
od;
return T ; 
end;

 #------------- CharSb------------------------------
# Given group G and character basis CB, return
# S matrix of G ’s modular data 
CharSb:=funct i on(G,CB)
local i,j,k,l,x,y,S,a,b,g,h,chiA,chiB,val,temp,Coeff.D, 

row,p ,KnC,Cg,Ka,Kb,setKb,Centralizers, X, Y ,Blocks;

# Computing S using the permutation basis, then
# changing basis may be better for "large" groups 
if Order(G)>32 then

return CharSbyPerm(G,CB);
fi;
val:=0;
S: = [] ;
Coeff:=Inverse(Order(G)); 
for i in [1..Length(CB)] do 

S[i] : = [] ;
od;
D:=CharData(G,CB);
# D[i][1] = conjugacy class K(a) of CB[i][l]=a
# D[i][2] = list of x such that for each b in K(a) there is exactly one
# x with x~{-l}ax=b
for i in [i..Length(CB)] do 

chiA:=CB[i][2]; 
a : =CB [i] [1] ;
Ka:=D[i] [1] ;
X:=D[i][2];
Centralizers:=[];
for k in [1..Length(Ka)] do

Centralizers[k]:=Set(Centralizer(G,Ka[k]));
od;
for j in [i..Length(CB)] do 

val:=0; 
b : =CB [ j ] [1] ; 
chiB:=CB[j][2];
Kb:=D[j] [1];
Y : =D[j] [2] ;
for k in [1..Length(Ka)] do 

g:=Ka[k]; 
x : =X [k] ;
KnC:=Intersection(Kb,Centralizers[k]); 
for 1 in [1..Length(Kb)] do 

h : =Kb [1] ; 
if h in KnC then 

y:=Y[l];
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val:=val+ComplexConjugate(ChiOf(chiA,x*h*x~-l)) 
*ComplexConjugate(ChiOf (chiB,y*g*y~-l)) ;

fi;
od;

od;
val:=val*Coeff;
S[i] [j] : =val;
S[j] [i] : =val;

od;
# Memory saving

Unbind(Centralizers);
Unbind\[\](D,i);

od;
return S; 
end;

 #------------CharSbyPerm------------------------
# Given group G and the character basis CB,
# compute the S matrix by computing S in the
# pemutation basis then changing basis 
CharSbyPerm:=function(G,CB)
local PB,Sp,M;
PB:=PermBasis(G);
Sp:=PermSb(G,PB);
M :=C0BMatrixPtoC(G,PB,CB); 
return (M)*Sp*Inverse(M); 
end;

 #-------------COBMatrixPtoC-----------------------
# Given G and the two bases, return the change-
# of-basis from perm basis (PB) to char basis (CB)
# See thesis for change-of-basis formula.
COBMatrixPtoC:=function(G,PB,CB)
local i,j,k,g,h,s,M,a,chi,Kg;
M :=0*IdentityMat(Length(PB)); 
for i in [1..Length(PB)] do 

g:=PB[i] [1] ; 
h:=PB[i] [2];
Kg:=ConjugacyClass(G,g);
s:=l/0rder(Centralizer(Centralizer(G,g) ,h)) ; 
for k in [1..Length(CB)] do

# Only the (g,*) in CB have non-zero coefficients 
if IsConjugate(G,g,CB[k][1]) then 

chi: =CB [k] [2] ;
j:=FindIndexInCB(G,[CB[k][1],chi],CB);
# FindlndexInCB retruns j such that CB[j]=[g,chi]

# The prem and char bases need not use the same
# set R of reps of conj classes of G 
if g<>CB[k][1] then

a:=RepresentativeAction(G,g,CB[k][1]);
M[j] [i]:=s*ComplexConjugate(ChiOf(chi,Inverse(a)*h*a));

else
M[j][i]:=s*ComplexConjugate(ChiOf(chi,h));
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fi;
f i ;

od;
od;
return M; 
end;

A .2 Certificate algorithm
The following code is for Algorithms 4.3 and 4.4.

 #------------------ MatrixCertif icatelnitial-----------------------
# Given a matrix/edge-coloured graph M and an ordered partition P
# of its verticies, find the certificate with the restriction that
# P is respected.
MatrixCertificateInitial:=function(M,P) 
local I,worst,n,result,i,Aut;
I:=MatrixElements(M);
P:=Refine(M,P,1,0); 
n:=Length(M);
Aut: = [()] ;
result:=MatrixCertBack(M,P,I,[0,()],Aut);
return result[1];
end;

 #-------------- Ref ine-------------------------------
# Input:
# M=matrix/edge-coloured graph
# P=partition of nodes of M
# I=sorted set of elements of M
# A=starting partition blocks
# Refine the given partition P to an equitable
# partition. If A=0, use P as the starting blocks.
# If A<>0, only use A. A<>0 should only be used when
# we're in the "size 2 splitting" situation.
Ref ine:=function(M,P ,I,A)
local B,S,T,n,U,Cp;
B :=ShallowCopy(P); 
if A=0 then

S:=Reversed(B);
else

S:=Reversed(A);
fi;
U:=Flat(S);
while not IsEmpty(S) do 

n:=Length(S);
T:=S[n];
S:=S{[1..n-l]>;
# We need not consider a block if we’ve already considered
# all the blocks that partition it. When we use a block,
# remove all its indicies from U. If a block gets split,
# the subblocks are candidates for splitters, so the indicies
# are added to U. Then as these subblocks get used as
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# splitters, their indicies are removed from U. Once their
# original block is dug down to in S, all of the indicies
# will be gone since the subblocks have all been considered, 
if IsSubset(U.T) then

U:=Difference(U,T);
Cp:=ShallowCopy(B);
SplitPartition(M,B,S,T,I,U);
U:=Set(U);

fi;
od;
return B; 
end;

 #--------------- SplitPartition-------------------------
# Input:
# M=matrix/edge-coloured graph
# B=current ordered partition of indicies
# S=set of blocks to be used for future splitting
# T=block to be used to split B
# I=sorted set of elements of M
# U=set of ’unused’ indicies
# Splits the partition B using the block T. Adds
# any split blocks to S, and adds the indicies
# in any split blocks to U.
SplitPartition:=function(M,B,S,T ,I, U) 
local i,New;
i:=l;
while i<=Length(B) do

New:=Split(M,B[i],T,I); 
if Length(New)>1 then

Replace(New,B,i); # replaces B[i] with New 
i:=i+l;
Append(S,Reversed(New));
Append(U,Flat(New));

fi;
i:=i+l;

od;
end;

 #------------Split-------------------------------------
# Given graph M, a set of indicies Block, a list of
# indicies T, and a (sorted) set of elements I of M.
# Splits Block according to T. That is, order the elements
# of Block according to the vector of their coloured
# neighbours in T. Group elements with the same
# coloured neighbours together in a subblock and
# order the subblocks by increasing size of neighbour vector.
# Return this ordered partition of Block.
Split:“function(M,Block,T ,I)
local n,m,j,V,K,New,last,current,pos; 
n:“Length(M); 
m:=Length(I);
K: = [] ;
for j in Block do
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V:=-ColouredNeighbours(M,I,j,T);
Add(V.j);
Add(K,V);

od;
Sort(K, LexIgnoreLast);
# LexIgnoreLast compares lists lexicographically, but ignoring the last element 
last:=K[l]{[l..m]>;
New:=[[K[l][m+1]]]; 
pos:=l;
for j in [2..Length(K)] do 

current :=K[j]{[l. .m]>; 
last: =K [j-1] { [1. .m]>; 
if currentoiast then 

pos:=pos+l;
Add(New,[]);

fi;
Add(New[pos],K[j] [m+1]);

od;
return New; 
end;

 #----------- Colour edNeighbours----------------------
# Given a matrix M, an ordered list L of its
# unique elements, an integer i, and a list of
# integers T, return a vector V where
# V[i]=number of i’s neighbours of type L[i],
# (ie. number of times L[i] appears in M[i])i
# only counting neighbours that are in locations
# given by indicies in T 
ColouredNeighbours :=f unction (M,L, i ,T) 
local j,k,V;
V:=0*[1..Length(L)] ; 
for j in T do

k:=Position(L,M[i] [j]); 
if k=fail then continue; fi;
V[k] : =V [k] +1;

od;
return V; 
end;

 #----------------- NumberMatrix-------------------------
# Return the list formed by reading down the columns
# of the given matrix, left to right, stopping at
# the element on the diagonal.
NumberMatrix:=function(M) 
local i,j,L;
L : = [] ;
for i in [1..Length(M)] do 

Append(L,M{[l.. i]>{[i]» ;
od;
return Flat(L); 
end;

 #----------------- MatrixCertBack--------------------------
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# Input:
# M=matrix/edge-coloured graph
# P=partition of M ’s indicies
# I=sorted set of M ’s elements
# Best[l]=best certificate found so far
# Best[2]=perm that produces Best[l]
# Aut=group of automorphisms of M found so far
# Backtracking algorithm for finding the certificate of
# a matrix/edge-coloured graph. Uses the best certificate
# found so far and the automorphism group for pruning
# the search tree.
MatrixCertBack:=function(M,P,I.Best,Aut)
local i,k,j,c,C,n,Rest,N,part,Npart,1,Stab,pre,image,PR,prune;
# Find the first non-singleton in P 
for i in [i..Length(P)] do

if Length(P[i])>1 then 
break;

fi;
od;
# If P is a total order... 
if i=Length(M) then

if Best[l]=0 then
Best[l] : “NumberMatrix (M{Flat(P)HFlat(P)»;
Best [2]:=(PermList(Flat(P)))~-l;

fi;
# If P defines the same cert as the best so far, then P
# defines an automorphism of M, so ve can remember it 
if NumberMatrix(M{Flat(P)HFlat(P)»=Best[l] then

Add(Aut,((PermList(Flat(P)))“-l)*(Best[2] >~—1);
fi;
# P is a total order, so return the certificate
return [NumberMatrix(M{Flat(P)}{Flat(P)}),(PermList(Flat(P)))~-l];

fi;
# The initial portion of P consisting of singletons defines
# a partial certificate 
part:=Flat(P{[l..i—1] >);
Npart: “NumberMatrix (M{partHpart}); 
n :“Length(Npart);
# Prune using the partial certificate
if Best[l]<>0 and Npart>Best[1]{[i..n]> then 

return Best;
fi;
# Run through the first non-singleton block, splitting
# off each element in turn and trying the partition 
C : =P [i] ;
for j in [i..Length(C)] do 

c:=C[j]; 
prune:“false; 
pre:“ShallowCopy(part); 
image:“ShallowCopy(part); 
image[i]:=c; 
for k in [1..j-1] do 

pre[i]:=C[k];
# If we know of a automorphism of M that fixes the initial singleton
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# portion of P and replaces our current first-place element c with
# a lower-index element of this block, we can prune since we’ve already
# tried these lower-index elements in the first position
if RepresentativeAction(Group(Aut),pre,image,OnTuples)<>fail then 

prune:=true; 
break;

fi;
od;
# If we found the RepAction above, we can prune this branch so we continue
# to the next candidate in C 
if prune then

continue;
fi;
# Split the jth element off from C and place it first 
Rest:=Difference(C,[c]);
Replace([[c].Rest],P,i);
# Use size 2 block partitioning if applicable 
if Length(Rest)=l then

PR:=Refine(M,P,I,[[c].Rest] ) ;
else

PR:=Ref ine(M,P ,1,0);
fi;
# Compute the best cert for that partition 
N :=MatrixCertBack(M,PR,I,Best,Aut);
if N[l]<Best[l] then

Best:=ShallowCopy(N);
fi;
# Restore to the original partition 
Replace([C],P,i);
Replace([],P,i+1);

od;
return Best; 
end;

A .3 Code for showing weak equivalence

Below is the code for the backtracking algorithm used to find P  such that P S GP ~ 1 =

SH and P T g P _1 =  T H . This is used to prove Theorem 4.5.

#---------PermSearch----------------
PermSearch:=function(Tg,Th,Sg,Sh) 
local p,q,G,result;
G:=SymmetricGroup(Length(Tg)); 
p:=Random(G); 
q:=Random(G);
result:=PermSearchBacktrack(Permuted(Tg,p),Permuted(Th,q),PermuteMatrix(Sg,p), 

PermuteMatrix(Sh,q),[],1,[1..Length(Tg)]); 
if result[l]=false then 

return result;
else

return [result[1],p*Inverse(PermList(result[2]))*Inverse(q)];
fi;
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end;

----------PermSearchBacktrack------------
PermSearchBacktrack:“function(Tg,Th,Sg,Sh,perm,1,unchosen) 
local i,result,copyunc; 
if IsEmpty(unchosen) then

if Sg{permHperm}=Sh and Tg{perm}=Th then 
return [ true, perm];

else
return [ false ];

fi;
else

for i in unchosen do 
perm[l]:=i;
copyunc:=ShallowCopy(unchosen);
RemoveSet(copyunc,i);
if Sg{perm>{perm>=Sh{[l.. 1 ] > { [ 1 . . 1 ] >  and Tg{perm}=Th{[ 1 ..1 ]>  then 

result:=PermSearchBacktrack(Tg,Th,Sg,Sh,perm,1+1,copyunc); 
if result[l]=true then 

return result;
fi;

fi;
od;

fi;
Unbind(perm[l]); 
return [false]; 
end;

A .4 Code for Proposition 5.1

 #----------------- GroupDet----------------
# Given G, calculate its group determinant 
GroupDet:“function(G)
local I,LG,P,M,n,i,j,g,x; 
n:“Order(G);
P :“PolynomialRing(Integers,n);
I:“IndeterminatesOfPolynomialRing(P);
LG:=0*[1..n];
i:=l;
for x in G do 

LG[i]:=x; 
i:=i+l;

od;
M:=0*IdentityMat(n); 
for i in [l..n] do

for j in [l..n] do
g:=LG[i]*(LG[j])‘(-l);
M[i] [j]:=I[Position(LG.g)];

od;
od;
return Determinant(M); 
end;
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 #-------- Coeff icientsOfMultivariatePolynomial------
# Given a multivariate polynomial P, return a list
# of its coefficients
CoefficientsOfMultivariatePolynomial:“function(P) 
local i,M,N;
M:=CoeffOfMPRecurse(P,1);
N: = [] ;
for i in [1..Length(M)] do

if IsZero(M[i])“false then 
Add(N,M[i]);

fi;
od;
Sort(N); 
return N; 
end;

 #----------Coeff Of MPRecurse-----------------------------
# Recursive function used in
# CoefficientsOfMultivariatePolynomial 
CoeffOfMPRecurse:=function(L,n) 
local i,M;
if (IsUnivariatePolynomial(L) and DegreeIndeterminate(L,n)>0) or 
IsConstantRationalFunction(L) then

return PolynomialCoefficientsOfPolynomial(L,n);
else

M :“PolynomialCoeff icientsOfPolynomial(L,n); 
for i in [1..Length(M)] do

M[i] :=CoeffOfMPRecurse(ShallowCopy(M[i]),n+l);
od;
return Flat(M);

fi;
end;

A .5 Code for Proposition 5.10

 #--------------- CharEquivBases---------------------------
# Given groups g,h determine if their character bases are
# "character table equivalent".
CharEquivBases:“function(g,h) 
local CTg,CTh,L,i,j;
CTg:“List(List(ConjugacyClasses(g).Representative), 

x->Irr(CharacterTable(Centralizer(g, x))));
CTh:“List(List(ConjugacyClasses(h).Representative), 

x->Irr(CharacterTable(Centralizer(h,x)))); 
if Length (CTg) OLength (CTh) then

return [false, "different sized bases"];
fi;
L:=0*[1..Length(CTg)]; 
for i in [1..Length(CTg)] do

for j in [1..Length(CTh)] do 
if L[j]=l then 

continue;
fi;
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if TransformingPermutations(CTg[i],CTh[j])<>fail then 
L[j] :=1; 
break;

fi;
od;

od;
if Sum(L)=Length(CTg) then 

return [true];
else

return [false, Sum(L), Length(CTg)];
fi;
end;
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