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KA -0_1A 08 s '/_HX = Qflx . (6.40)
a . B .a

Substitution of (6.40) into (6.7) gives . -

¥(t,o) = g (K} v° +JH§\06°‘)(K“,BVB + HYGR) L (6.41)
Since K* (Z,z) and HAG(Z,Z) are determined solely by the

a N ‘K\ . .
gravitational field and the points Z and z we have from

(6.41) , ‘ ﬂ’/(
, ' : Pl |

a«{/av ng,uv |<A -, ap/ec” = zgx‘uv“HAa ",  ‘“
go that ‘( 4
2 (<me-9) %) /aV® - me-w) Fg VA= K (6.42)
- and | | |
(=M= %) /35% < m-y) g, yUP - i b (6.43)

(

v

We now finé\expressions for 3¢/3V* and 54/35% in terms

- of K* fﬁig HY . From (6.16) for n = 1: ~ds/ds = [Fyuvi1Mdt,
= o a : .

and from (6!15) we have

0(o) = 8(0§ + f g% dv =
&n=0
V=g

4

if._Axf Aava dt - J dt.dj ‘x“(z(t,v))vx(t,v)]u(t,v) dv
‘ ) 0 v /

A

r 4 )
where 'v is, an aff1ne paramqter ‘along the geodeswcs Iz,

Insert1ng (6. 39) into the above yields '



¢ (o) =[‘¢(t;c) dt =‘J (V"‘A(1 + V“ea + o1 ) dt

<
EY -

with © and T  defined as

o

v=g - ,
— A U
Oa(t:,) = - J Fku(z(t,’v))K a(t’\))] .(t,\)) dv >
Cv=0 '
) ;=0
_oé Hq(t) = - f Fkn(z(t,v))H a(t,v)] (t,v) dy
v=0

(6.44) immediately gives

ol : e '
= + =
edad/aV eAOl eea s edd/do ena

. From L(t) = -m(-w)%+e¢'and (6.42), (6.43), (6.46), w

p_ and s®® in terms of K* and H* :
a . . a , a

f
=

p, = aL/aV% - eA p, *eo .

s = ZU[GBL/BGB]_= 26 *(H B1p* + enf?)

o
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(6.44)

(6.45)

(6.46)

obtain

(6.47) .

.

(6.48)

7  (6.47) and (6.48) are the definitions of four-momentum and

"spin proposed by Dixon ((5.1)7and;(5.2) of [1icl).

o
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Appendix 1

a +l."..a .

For-a relativ nsor & = (¢ ) m " we have
- A a o....0 .
~ 1 m f
B, 8 | "
(I{\ ')a = . -

m B B B B B «a a

Lo spsyeens i hCes Tef ys ML s me M6 "

1=1 1 i- 1 i+l “m Pm+l n

n B B a o a a

. 2\",526(11 5@ CSBuH_-l GBi-l(S iag )68i+l S n
i=m+1 1 m o+l i- i i+1 n

B B« a
— wsPs L...5 U5 m+1._.56n5§
a 1 m m+l n
1]
R a .
When ¢, = (A,, Fay|a(n) R gys|acn) i R =0,1,...) we have

R n a
. 1
L 1 gm
n=2 1i=1
= a,.
+ 1 aq, !
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© n o Ba o
* n=2 i=1 I O s C e
. © n-1 “1"“1-1Ba1+1 .9ﬁ;1Ran
‘n=4 i=¥F “n ' 4 l'ai-laai+1 “n-1
o Dy ewolt
+ Z qa ' pflRBa a,a Ta a
n=4 . 1727374 """ "n-1

/

‘The symmetries of g and m together with p, = P.-eA, give

(pa - Pa)'uB

o
I

% BYA(n) 15 Yui(n) s -
Z m FGYI?\'(H) ZHZO (D+1)m ; FY}J}!(Z\‘(H)G)

Byux(n)ps

AN ol

0 yuv|a(n) %5

o 2 Yuvi(n)Bp,$
Z (n+l) q YHV2 R v T G o)

which inserted into (2.22) gives (2.30).
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Appendix 2

Consider a class'of Lagrangians

L(u®*, 3 a™, 8,.) = L(u%, 3 a"™, o
o, O ) @ ‘

where L*Q an arbitrary function of its last two arguments,

subject to L(u”,3 a",6,,1,0) a fixed function of u’, 8, and

- o

3,8 - (eé is shorthand'for (am(egﬂ ,eiT;,¢AJ A{a, BYG).)'Let
3 = sM+uuM-u )7t From (any) L we can form
o a o Sy o

', Q m . _ a AB A m. &
L' (u®, 8 a", 8,) = L(u"/C-uun) =, & 3,a%, eé) |

= fgua/(—uxul)%, Kiaxam, 6,> 1, 0)
N Yo) that each L g1ves the same L.

We will show that var1at1on of the metr1c for any L-
gives a tptal energy tensor Tpc that 1sqeibre351b1¢ in terms
of L’. Since each L determines the same L’ it then follows
that T cv1's-ind(-':pen‘ck-ﬁnt of the particular choice of L.

A To ca]culate T o from L we fol]ow the same steps as in

sect1ons 3 and 4 mod1fy1ng (3.11) to include u® | )

"

I = ( L(wA,wAlé)nd“x + (16m) L J V-g R d%x ,

<

- a m -(a)‘ a
by = (ums an, e T g, RY )

.
‘The variation in u® resulting from variation of the metric.

r
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may be computed from (3.1) and (3.3). SinCé‘nH“BY =

-%Euaﬁq paBy

‘(-g) where ¢ is the LeVifcfvita permutation-

symbol, (3.3) implies that sN* is péralTei to NP, implying

syt parallel to ut, sut o= el say. G(QQBuaus) =0 then .

implies 5ga%uaug+2ega8uaue = 0, so that2e = dgthauB and 6u“_
= %agasuausu”. This gives an additiohalﬁterm (aL/3u™)uMuPu®
in the r.h.s. of (3.20). With v, containing u® the. funda-

mental identity gives an additional (3L/3u”)u’ on the r.h.s.

. . , o ' L .
of (3.22). The above two remarks imply that the field
equations (3.24) contain an additional (éL/aux)Azuq:on,theﬁr

r.h.s. so that (3.26) and (3;27) are_replaced by

o Ay Ao _ c - G e
v ot (&F/Bu ?Apu tp(mat) F R
| | - - - (A2.1)
tp?mao = Llsg + EE_Aguc - (apam) L —eéTZ?ﬂaLlig»
' Q ayu* C e a™ e
A g - alo
and‘tp?¢) given by (3.28) . o B
*.To express t ° in terms of L' -we note! - .
p ( mat) } S . o
B_L' _ El'__ 3 [ uB 3L T —A—Aa "am]
0t o s Ccuuh ) T e e aut B
. L : L » ‘ "UXlU V Vo
_d B By ., 2 B B e om
= ;;B(Ga *ouu ) + &= g__-{ ]ala

.. .. B m ) o . | _Y
2353, 20

'We are not concerned abOuf the arbitrariness of t % or T °

as functions of u® and 5_a™ due to the constraints” (fqug):

and (u%3,a®) are therefore set equal to 1'and 0 in the -
following formulae‘aftenvdifferentiation;j; e
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- oL 3 aL A by . A
= AT+ (6%u, + u®g, *+ 2u u'u ,
BUB a 3 (2 . a™) B “Ba o BT A
i.e. ALY oL B Ly (s a™ (A2.2)
au® e ¢ a(aga™ F° .
Simi]arAly‘ |
Lt 3L 3, ey - 3L ,9 | (A2.3)
(s a®)  a(3 a®) a(s a™ - Y A Ta(aa™ Y
o Y o 2N . Y -
x
According to (A2.2), (A2.3), L' satisfies /
. ‘.. A" ' . A. ‘ ' N
L' e g g L, -0 L (2.8
sut 33 a) : ~
(A2.2) and (A2.3) imply .
ik Ao m aL - BLV A aL m g
AU - (3 _an). = = &+ — u (3 a)ju; ,
aut ° P a(a a™) au*vP ,a(asam),ﬁ
'. _‘( 5. am) ak c AL o

— Ay =
Y a(aBam) : auP

u. -

(cf. (3.32)). These, togethér-wfth (3.

p(uat) ©f (3.27) and (A2.1) are

@
1

(3 anL
p m
_a(goa ) .

27) and (3.82), imply.-
the same. . | ‘
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The contribution to P, from L ., = ehA;uaY(fUAux)% is
- " - o . p -~ ' : - N N » a "' _ C -
_RD(A) 3L py/3u LeayY, enA  + enA u u ( L(4>U°
enA . ' b
° p V v .
The contribution’ to pr from L,y is
‘i p O = o _ -1 ’“m myy
) »‘Po(A) L(A)Ap L(A)n,‘(apa,)(anZB(aca ).

o mn‘. UV, .m n mn = M =
‘Formulae y 9" (5 a )(gvg Yooy Yop = S5 v
‘Ymn(auam)(avéé), Y o= det(y™) and n :VNY% (cf. éectionIZ)“

) 1np]y : ‘ o "’h . ' ‘ . . C e
3 ) (aris e ATy o N{a amypl B pn . oo
(apa Jan/als_a”)) =lﬂqpa )(;y Vyv o nlaly ety at) o
s ._ N}( 35 (3 m) cvaA n o
| 5 o F N Ratlg et = ,
3 o - _. “; o . "
’ Thergfore.Pp(A) -'0'3‘
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. Equation (2.8) implies

= LAa(n)T({ )}‘ + (I\ Bﬁ(n)) g

Ny }
qu Aa(n)r

. (e;kxa+wfn+i )

Aa(n)
)

(¥ b, 8TP
%g) Ala(n) ﬁ%\\?[é(n) ot

" ,iiﬁi LAg(“)TlTs(e)(wA]a( y) * lasv) -

\‘\"?.::-.} 5 19 & .
+ (LAg(n)T(I‘B)pG?ﬁ]afg% - nLéog(n—l)r

i

s

P
Yal (pa(n- 1y)) 875,

" according to repeated apblica%\bn of (2.5). If we repeat the

-
-y

above procedure n times we obtain

\\\;/>, A Htﬁ/(n)T )(wAla(n)T)

;

n+1 Aa(n)r

= ( 1) l‘ra(n) (e) A +‘(diV)

Qe

Aa(n—m)B(m)T B, o
¥ 2 -1 ( . IBKm)(IA ?o lpBlgt(n—m)v_

m=0

/

Aoa(n-m l'B(m)T
IB(m)wAI(pa(n -m- 1)))5r°

- (n-m)L

~argy

: Inserting'this_jnto TA4.1) and noting fthat

% SN . ~
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fa=
° n, Aa(n)
nz-o(—l) L-'* ]g(n)s(e)uﬂfA + (div)

- - . e )
+ _y®R(pAe(r)B(m)t B, ©
mzo rzo( L |§(m)(IA )0 YBla(r)
_ Aog(r—l)g(m)T, ‘ 0
rk : 1§(m)wAl(og(r—l))]6Fcr
- Lﬁa(e)wA + (div)
é Aa(r)t B, o© R Aoatr—l)r
+ L.~ I - a p

A o { )
A=‘F*6(e)wA + UTOQGFgT + Caiv)

according‘to (4.3), (4.11).



y _
\> 105
- Appendix 5

Expand f(z)dz"/dt in.powers of "

Toqform the antiéymmetric part of the summation in the above

r

equation, consider

d (% 1 -~ .8 A(n)
do Z ()1 ° ° ag(n)f(z)}

-B | n+l) Bey Y )\(n)
o f(D ¢ 2[(n+2)' n—’%—‘_l_), o +(+1)' U] 3 )f()

(A5.2)

Using (5.24) and subtracting (A5.2) from (A5.1) gives

e B,y d [T 1 8 A (n) |
f(Z)dZ /d'l‘ .d_r[nzo m—l')—!‘_o' O]"I Bz\(n) f(Z)I

: - ' (A5.3)

f(Z)
120 YA (n)
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- This identity is given in [5, page 242]. When used in
[5] to obtain the translational equations of motion (equa-
tion 168, page 20t) the total proper-time derivative is not
combined with mu®, as we do in (5.30), but is placed on the
r.h.s. of the equations as paft of the total four - force.

A short derivation 6fithe polarizatiog equations
(5.17), (5.18), is available from (A5.3). Sétting-f(z) =
es*(x-z) thén integrating w.r.tokr immedi%tely gives

-

i) = J edz”/dt 8%(x-z(t)) dr

- JGU“6“<x-Z<f>>dr -7 (-1 fmiﬁl‘“’<£>s“<x-z<r>>dT
n=0 Xeé(n)

= J%x) + aBMaB(x)

according to (5.25) and (5.26). N
If Qe set f(z) equal to §%(x-z) in (A5.3), then mult- -
iply the resultant identity by mu® and integrate w.r.to T, -

we obtain
taB(x) = J mu®dz®/dc a“(x-;(r)) dr

JmuamBY}(n)(T)sz;—Z(T))dT :

= dedUBG“(x—Z(T))dr - ety (-n™t,

n=0 xyg(n)

SO
nZO @D T % An)

) _
Jd(g: )osoﬁ(n)au(x_z(T))dr
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From (5.20), (5.24), (5.22) and (5.23) this is

t2B - ToB 4 aYN“BY + AP
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Appendix 6
.

\\“;~’Expanding o*f(z)dz"/dt gives ' o : ' .
c®f(2)dz"/dt = o®F(Z+a) (UY + V) R

- 1 = f(z),x(nf’a"}(n)(“Y MKARIENE (éﬁ-‘)

Let

>

e L (1) a2 () oy

0

m

XY = ¢%f(z)dzY/dr - (AB.2)

te~18

»A(n)
n

From -(A6.1) and (5.24) we obtain X%Y = Lo

- o A(n) 1 1 a
zof(Z),g(n)o- n [(;T'(;;l)!)° ur
n. ; /.

+ ( 1 (n+1) )oaéY

n! (n+2)! YU 4 Erer Yéal |
n! (n+22).:

1
(n+1)1° (n+2)!

T s ltn)‘ n oY 1 e (n+1)2 a-y (n+l) Y~a]
§ nzof(Z),g(np“” @DV @ @t @)’

(AB.3)

-

When f(z) is set equal to fBY(z) we find from (5.30) that .
the'se¢ond term in the above summation is just
e-1(muB-pP)U%. This term will combine with mu!®U®} of (5.31)

X .
to form pl°UBl. We wish to express the remainder of (A6.3)

as a combination of derivatives of f(Z) coupled to multipole
moments m®8Y(n): together with a derivative w.r.to t. It is -
appropriate to consider the derivative w.r.to t of a term

”/;;;ing the form J a_f (2) %62 (™) where a_ are

»n=0 '3 (n)
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L

numerical coefficients. From (A6.3) the most simple choices
for a_ are'(g+1)2/(n+2)! or (n+1)/(n+2)!. Making the latter

chéiqe we‘jind‘fbom (A6.3) and (5.24) that

3

oy | %1 A yyr _d [T 4 oo av}(n)l«
Y- nzo @t D@ oV - F ﬁzo @)1 T Dy @)® o0 ,

@ e ‘ 2 .
= ) f(Z)’)\(n)cZ‘(-n)ca[ LA ((n+l) (ntl) )OY]

gy A (n+1)! (n+2) ! (n+2)!
v (a+l) oy § A(n) A(n-1) = An
T L Gt e Dy s H af (D gy o)
. T o a(n) §((atl) v L, (n+l) (n+2) -y
. nzolf(Z),g(n)a° o [(n+2)!U Y Ty © ]
- : a )\(n)‘; (n+1l) 6 (n+1l) (n+2) =3¢
- nZO FD s o7 70 [(n+2)! Y Tt ° ]
< 1. ' ! Syah(n) "
- - yai(n
s nZO e §n+1)f(Z)’%(n)6m 2 . (A6.4)
(A6.2) and (A6.4) givekahe required expansion:
‘ o*f(z)dzY/dx
: | 9 &
I | ayA(n) | Syal(n)
*nZOE f(Z),l(n)m +vnzoe (“+1)f(2),3(n)6m .
T o1 Z(n) yo o 4 [§ (a#l) o : Caty Am))
) ;-n+1)!f(z)’l(n)0. L ° v +.a?{nZo (n+2)!f(z)’2‘(n)c‘o,c ‘] )

n=0 »

" (cf. IS5, page»2421),w,

' Choosing Ffz) =vaY(z) gives én expréssién“¥bﬁi
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%P

Y(z)sz/dT which on substitution into (5.31) gives the .

spin equation of motion (5.33).
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Appendix 7
e B .
Eet A denote
o Sl 4 BY _ 1. cuv_aB | (A7.1)
. B CL O S AL I S LA ) .

- . ', ) . 7 QB- _ a aB - . - .
- *he f1e1d;equat19ns f g C 4r(J-+M ’8)' f[as,f] 0 imply

2 B B lgduge ’ 7
Aa"B i fuBJ - ZM fAu’a T (A7.2)
. l . L\\
Define . . . b
- ]
408y (m) R n_aBy(m)A(n) T A7.3
NEEYRRT (%) §o(-1)"m*PY0 oy, (. )
H n= 0 ] . Lo~ .
g |
then

L peBy(m) L aBy(@) wefry(m o .(A7.ﬂl;//ﬂ
From (A7.4) we Have  ) : - ;_._ | . (/’/1

. i ‘ ”
| Aut A7.5).
- Auca S Ausa Auaa)ar +»H :fAu,aj - 5)

f““~—4%:;larly:.“

Au

~M = mHf - (METE

XuT S Xur _;f';kury..}‘ 1 

M flﬂadT'— m ,fkpaaf (M fAu,at)gy
/ o h o
Repeatedfappliéétjon'of'(A7.4f gives .

AuTY
+
Mf. fku,ary



Au
e~ M f)\u s QL

mkﬂz(n)
0

1
Ne~18

E qurz(n)

Ay,ag(n)’— (

n n

From (5.35), (A7.2) and (A7.6) we obt#in

af  _ 8 1. % auty(n)
aBT(mat)- T Aa s B * ZBT(nZQM . fku,ax(n)]

;-
Ny

According to (5.37) and (A7.1) this is just (5.36).

0 ~Au,ay(n)),r

112

(A7.6)



113

Appendix 8

- In the eqdétion following (5:38) we wish to express the two
summation terms on the r.h.s. as ngz; (cf. (5.37)) plus a

divergence. From (A7.4) we have

. -qu a BY}(H)
nZOf Y’é(n)m
AN ' -
e () Byta(n)y _ BytA(n)
Z Y »A(n) * 8 yofaY’X(n)M ] zof y,k(n)TN
.0 4By T a BkyA(n)y -~ |
= £+ aY( Zof e ) - .(A8.1)
‘and. -
N , Y881 (n).
nZo(n+l)f 6X(n)m
- a YGBé(ﬁ)\ v ' y8BTA(n)
—.nzo(n+1)f axm™ + aT(nZO(n+1)f GX(H)M ¥
T o YGBTX(n)f‘
- nzo(n+1)f Y’GE(H)T A
The last term is - 2 nfaY-ka;)MYGBAGn).which combines with
o n=0 . '
‘the f1rst term on the r.h.s to g1ve
i yaex(n) o :
nZo(nu)f sx(n)m o _ (As.z)
L N 9 4}
- Y6Bl(n) K&Byl(n)
- nzof yraamM + e (nzo(“+1)f L@ )

Substitution of (A8.1) and (A8.2) into the equation -



following (5. 38) and use of f5.37);}(5,55)_giveg-(5,40)_

114
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Appendix 9

Fﬁom‘sectioni6.2 we have

(% : : )

$(o) = f AA(Z(t,o))v}(t,o) dt

and

- deo/do = f F ovM1Y dt

Continued differentiation and use of (6.4), (6.10) gives "3(‘>
(neglectiné derivatives of curvature and squares of -~
curvature):

-d?¢/da? = J (Fuv[ vV o+ E Va1 M) g

A : ¥V . T 7 ’

t
< / . -A - . »/i>.

&

-d3¢/do? = VIVIATIAZ 4ap o A v B R P VIONTY gt
uv[k o UV A pao

INUDS PO Q&t o ‘

~-d%¢ /dot

c

R ESERE I LT IPY-
o U\"I)‘IXZ St

J (Fuvllllzls

+ 3F RyY WPICTVINM o F R E O 191V1241P) gy
X . "6 .

uvlki A po BV A po
S

The above expreésibns are all 0f‘thé form (6.36),‘Ne may

verify (6.16) by induction: differentia®ing (6.16) gives
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<‘/ ' | __— _da+l¢/don+r/(’ ' e
= L ﬁvQ }(n)lv : vid(n~1)
- f I N AR CACE D SN IVAITS ML s1*
R ((n- l)+—(n 1) (n=2) ) F “‘ vP191V 212 (n-2)

ule(n 2) po

;',,"A

| | | .
+ Go-D) (n-2) +:(n-1) (n-2) (n- 3) LR R D L L T

]x(n—3) 5T

b

_ The coefficients in the above expression are n, n(n-1) and

n(n- 1) (n-2) so that the above 1s just (6. 16) with n
replaced by n* . '
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) ™~ . Appendix 10

Cons1der a comp051te part1c1e cons1st1ng of n point par-
t1c]es With wor]d lines z(i)(t) (§ = 1,2,...n). With a
common central world-line Z *(t), the Lagpangian L(i) of each
particlé i may be expanded-in pewers of connecting vectors .
o?i). The total action for ?hef¢0mposite particle in an

external field N is then
T = } TN . — 7 = -
1 = [ L dt™~.__with L Z "L(B\ | (A\W\Q\H
< - ' ' ‘ 1_71\ : %
and

L = L

Sy L A10.2
I is a functiona]-ﬁf
e . . (A10.3)
,XA(t) z (2 (i)(t)’ 1,..».n)“

" The 4n trenslational equations of motich are obtained from
.dl/de = 0 for infinitesimal‘displaCeﬁents of each z?i)(t)
with endpo1nts held fixed. In other words, from demahdihg
dl/de = 0 for arbitrary var1at1ons aX (t, e)/as subject to

X (t ,e) = X, (t ,0) (i = 1,2). This, however, gives too much
1nformat1on when one is 1nterested in the overall motion and
-sp1n ef the comp051te pant1cle and not 1ts detailed internal

;denamiés Each part1cle 1 1s governed by equat1ons {6.27),

"(6.30) and the equations for the comp051te partlcle are-

~

)
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obviously given by summing over i in theSe.‘The equations

for the total four-momentum and total spin

. E BL(i) ¢ = 2 [a (1) MA g )
S A T

are then (6.27) and (6.30).

)

To compare with Chapter 2, Section 3, let e. ' (t)

(a
a
denote any orthonormal tetrad defined along Z°(t). Two types
of (conétrained) variation in X,(t) will be discussed below
that are essentially the variations considered in Ch. 2,
Sec. 3. The aétion principle appearing there is then a
consequence of the more general Princip}e dl/de = 0 for
arbitrary X,/ a¢e of this chapter. Instead of independent
var?ation of each z?i)(t), the action principle of Ch. 2,
Sec. 3, selects Just the var1at1ons needed to deduce the

CompOSIte equations.

' (a).
Let each O(i) have scalar components %(i)a w.r.to e "

a o (a)a - = o J(a)a ‘ (a)a
(1) _'O(i)ae > 904 9 (1ya® +“G(i)a (A1O 5)

It follows From (A1O 1, (A10.2), (A10.5) that L may be
| S FaS

o= (v, el (a), y ) . (A10.6)

o > %a A* “(Da’ “(1)a

1L denotes_ the Lagrangian both as a fun?t1on of
(gap,0¢1),0¢4)) and as a function of (ela), &2, G(i)a,o% 1)a)
since the particular meaning w1ll always be c]ear from the
arguments d1fferent1at1ng L o ,
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From (A10.5) it follows that

°Y
Y] 3L . lil aL() 80(1) = Ii (i) O,(i)
se(a)B 4 ao(i) '(?)B i=1 9 Ii) B 2
giving
‘ / ‘ n sl ,
£ o(ada 3L ] oo (1)
et@8 4oy (D a&%i)

Definitions (2.19) and (A10.4) for spin.are therefore the
same. Furthermore, we have P  and M2 given by (A10.4) when L
is written either in terms of the connecting vectors or in

terms of the tetrad

Cons1der the equat1ons resu]t1ng from di/de = 0 for:

(a)

arbitrary 3Z2%/3e¢ with e, and oy, held fixed by parellel

propagation. This is exactly the action principle generating
(2.23)1. dl/de = 0 is g1ven by summing (5 24) over i, and

Ge(a)/ée = 0, 60(1) /se = 0, 1mp]y 50(1)/65 02, The:

resulting equat1ons are therefore (6 27} (i.e (2 23)) for

Mthe compos1te part1c1e

‘Equation (2.22) was obtawned by var1at1on of e( a)

subject to agaB/Qe = 0, with 3Z%/3¢ = 0, ao(i)a/ae = 0. This

‘The scalar components c( 1)a p]ay no part in the derivation
of the equations of motion since they are held fixed here
and in the next type of variation cons1dered As scalars-
their infinitesimal generators are zero so they do not
contribute to" the invariance identities. No mention of the :
-dependence of L on scalars such as. 9(1)a and electric charge
e need therefore be made.
zThe resu1t1ng var1at1o 1n z is giyen by
0= ? )/56 =‘c [3e +° U%i) x82§ ) de. Uy
y @ = -8g .
‘and c? 8%) this is a r1g1d” %ranslat?or)wlB B
‘62}15 £ '}/Be = aZ Mt e)/ 2e. -
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induces asvariation in X,(t) given by 865, /se =

(1)

o(i)aée(a)a/dé = o%i)lxaz?i)/BE*, and from (6.24) gives
al/de = §[(aLiti/ao%, )eo%, /sedt = 0. Let sel®/se =

B (a) ih s /8 0 1 Q( aB) = T Gca /58 =
Qe where §g , € = implies = 0: Then (1) =

(1)aQaB éa) = o%Bg (1B Insert1ng this into dl/de = 0 gives
[a B8]

the spin equation of motion as zéL(t)/GU(i) (1y = 0.

. Equation (6.29) and the equat1on fo]]ow1ng it then give

(6.30) (i.e. (2.22)) for the total spin.
ﬁé%éummarize,'extremizing 1 for érbitﬁary variations

azti)/ae leads to equations of motion (6.27), (6.30) for

‘each‘i while the constra1ned variations induced in z( )

from those of Chap. 2, Sec. 3, give the same equations

summed over i for the total four-momentum and spin.

" "For zero curvature G‘zol)\ = (z o T ) = 5»: so that
kz<a (t,e)Re = S Jt ) /8¢ -Jl“?(t) which is a
"rigid" rotation. ? i o
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described by "stream 1ihes", each labelled by a particular
set of“values for a™. For both fluids and solids the number
of particles in an infinitesimal fiux tube d®a is assumed to
be a constant of the motion given by N(a™)d%a. In terms of
the gradients auam and N(amf the numerical flux may be

written as

Wy o m, HaBy 1y 2 3 .
N (x) = N(a )Q¥/? gaag ) (35a2) (2 a) | (3.3)

‘where nuaBY is the comp]étely antisymmetrfc permutation

tensor'. Conservation of particle number implies that

1§

=0 . ‘ - {3.4)

mn m mn

<
=
1

o
=2
i

HV: m n
g (32 )y(3,a) , (3.5)

distances between neighbouring points a® and a"+da™ of the

material in the 1océl rest frame are given by
.2 B m, n - ‘
(ds®), = yp da da . (3.8)

A useful form for the number density n is itsvexpression‘ihv‘

terms of N(a™) and "7,

1. eMeBY /et eBY  yhere cHoBY are the LeviTCiVita
permutation symbols.
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n(x") = N(a™) (dety®™™% (3.7)
The material wiil be assumed to be in adiabatic motion with
‘the'entropy per particle S constant along each world line, S
= S(a™). The entropy current S" = S(a”)N" according to (3.4)
then satisfies sulu = 0. B '
3.3 Grav1tatlona1 F1e1d Equations Derived from Variation of

Tetrad N _ ,/“

\

The gravitatidna] fie]d equations are derived from
(a)

variation of an orthonormal tetrad field e, (x) that
satisfies
ROBNO I af (a) _(b) _ _ab
ab a 8 gaS 2 ) ea eB n ’ (3.8)
n, = n°" = diag(1,1,1,-1) (ab=1tod) . (3.9)

The sixteen component tetrad field plays a dual role: the

(a) _(b)

ten symmetrized products "abe €3 = Q943 define the metric

and determine the gravitational field, while the dependence

of the Lagrangian density upon the six angular veloc1t1es

wab_b (ah' iﬁgu determ1nes the “internal sp1n of the

med1um Because of this second role the Lagrang1an dens1ty
w111 depend expllcvtly on the tetrad field in add1t1on to
}‘1ts dependence v1a the metr1c tensor g B’ One could have .
considered a Lagrang1an dens1ty depend1ng upon both o Jp and
(2) ‘(and then var1ed g o8 to obta1n the ten grav1tat1ona1 |
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equat1ons and var1ed six 1ndependent components of the -
tetrad field to obta1n spin equat1ons) However, since the
orthonormality cond1t1ons gaB = ndje(a)eéb) are.fen rela-
fions between the twenty-six variables (g;B, eéa)), we héve
sixteen independent variables and it is much simpler to
choose the egﬂ as the_eiXteen.;We take, therefore, arbit-:
rary independent variations in,the eéa) to obfain-ten grav—
itational equations and six spin equations. ' (

Helpful guidance for the following calculatiens‘comes
from Rosenfeld and Belinfante [7]. They consider épin flux
due to fields only, while a total spin flux due to both
material and field is considered here.

The sp%n and translational equations of motion for the
mediun and the sYstem of field equations for the applied
fie]dsvare all obtained from the four-dimensional action
integral

1 = j L(wA, wAla) d“x~+ (167r)—1 f VY=g R dhx’ o (3.10)

5]

in which we have madé the specific choice of the curvature‘
scalar R for the gravxtat1onal free-field Lagrang1an1 Ihe
‘Lagrang1an dens1ty L is taken to be an unspec1f1ed functaon

of the fields

- . m — m e wm m ma e e me e e e

‘According to Lovelock’s theorem [27a] any cho1ce , ~
L{gyg .., 2 e gag,.;.).wh1ch leads to second
order f1e13 equat1on§ for ‘minimally coupled sources 158
o Ysr1at1ona11¥ equ1valent to’ the curvature scalar R = g R

*



27

_ ¢.m (a) a (3.11)
l!”A_(a > ea ’¢’A) RBYG)

-~

and first covariant derivatives wAIa‘ ¢A is an arbitrary set
of fields interacting with the gravitatiohél field and thé'

medium. We are restricting the dependence of L to only first
derivatives in order to simplify the discussion. To simp]ffy

further we will also assume that no deriYatives oerasY6

enter. This is still sufficiently general to cover most
cases of practical intérest. (For the analysis of the
general casec§ee.Chapter 4.) The Lagrangian density L is
assumed toibe constructed from a® and amlu = auém so as to
be independent of the particular choice of “matgria{ co-

-ordinates” a”. (N*(x) and n{x), given by equations (3.3)

and (3.7), are both invariant under a® » &% = f%am).)
Under an arbitrary variation 5e§a) of the tetrad field}
and the resulting variation

_ (®) ;.(a) 1
89, = 2N e, e (3.12)

>

of the metric, variation 6 L has contributions from three

( (e)
sources:
1. the explicit dependence of L on ega), egg :
2.7'thé variation of the_affihe connexion hidden ‘in the
e . . - (a) o ' '
1‘  c?y§r1anﬁ_det1vat1ves ealB‘¢A|a_’
3. the variation of R* - . -
i . : By§- L
- Accordingly, “from (2.8) we have ‘GOQL =
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(sL/se(@))se(®) + U9 572 4 g BYSeR® __ + (div)  (3.13)
g g p OT a By§d

where GL/GwA and UTGp were defined in {2.12) and (2.14).

S

‘A BYS L Bys _ - a. - ‘ o :
Q%" = B QT = AR (3.14)

and (div) bépresents a divergence aa(...).

To re-express the last two terms of (3.13) in terms of
: ol
(a) 4

5e0 , we note that
&2 y(sr® [ o (3.15
SR By S Z(SFB[S)ly] ? Gror (69)(0{1) 2(69)01 (3. )
enable us to write the identities ’J
ays N olu] oo v o . : o
0, TOeR%, 5 = -20 7IMTETE L v (div) (3.16)

t6 p . 1(1;e0Tp Ty _ 1T (p0) ' :
,U; pGTOT = 7(3(5 *_S ) U X‘T6990-+ (d1V) (3.17)

i

TC

_valid for arbitrary tensor densities OaBYa; u o We have

defined the "spin flux”
soTe = Pl | (3.18)
Using.fhe'variation~in R

. « _ S ”‘_ ‘ 3 k ; ’vx . | S
Caen e(TER) = (8D Lmge*Pe ya0e" (3,19)
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1 aB
29

()] = 0 gives, with the aid of (3.13),
(3.187, (3.17) and (3.12)

where G*® is the Einstein tensor, G®? = R%f -

=

R, the

action principle s

.

8m g6 = (sL/sel?)) ()0
k) : g (3.200

1;c0Tp QIGA _ f(pc) vk(bU)u - 1/
+ (87T 4+ sPTY) - Ty gt 0

The symmetry of GP° and the second and third terms of the

right hand side in 5,0 gives at once the six equations of

i
motion for spin:

(a) (a), _ _
el (6L/Geo] ) = 0 . , (3.21)

The gﬁa?itationa1 fiéld’éQUations are the remaining ten |
equations of.(B.éO).'As a first step towards reducihg these
to a familiar form; the identity (2.16).15 used.to-replace
(5L/5e§a))e<a)p with terms having a direct physical inter-

pretation. Let R and Q* denote R and QGBYG. In the.

BYS
present context of (3.10) and (3.11), the identity (2.16)

" reads'-

(3.22)

(6L/6e(a))e(3) = Y*°
o p . ) B

+ t fof + A( B O'R
plT Yo QA IA )p

. : \
-modulo the nongravitational field equations:

'The ;ast term og.é3.22) has'thesexplicit_fobm
. a = ag -
Q8 (14B) Ry = Q BYOR gys T 3Q,9YORe .
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sL/so, = 0 . (3.23)

Substitution of (3.22) dnto (3.20) gives the following form

of the gra&itational field equations:

(8my V=g 6°9 = /og T°7 =
(3.24)

(§970 #SPTE wsTPTY 4@ 0T e 0hr, P POR

tpO + _]_~_ .
2 pA A B

3.4 matter and Fie]d‘Decompositien of_Energy-Momentum and
Spin ’ o
\»

Equation (3.24).ideht1fies T°9 as the *correct"\(symf
metfic, covariantly coﬁetant)Stotaluenehgy:homentUm tensor.
It is.expreesed in terms of a canonical eﬁergy~tensor'den?‘
sity t . a spin flux SP%" and gravitaiiona] quadrupole

terms. The presence of 1nteract1on terms in L implies that

t 9 and SPO9T will not/ﬁn general be simply a sum of free
P

“material and fiel ’parts, but will contain (respectively)
interaction momqéiaand spjh;jAs-Israeﬂ [6a]l points out for
the electromagnet1c case:
“This expression for the total energy tensor is the .
fundamenta] resuit, and quest1ons about which part
should be called the ’electromagnetic energy tensor
are mere semantics and to a large extent,.super-

fluous. However, if a prescription is desired, even

though.itvbe‘arbifrary. the least that one should
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demand is that it Pe simple,’natural, genera]i and
unambiguous. " |
In the context of Lagrangian dynamics one immediately has a
sihble, natural, géneral ané unamb iguous spfit into matter

4

‘and field parts from the following considerations.

Consider,
o - 1 ° - Ao
tp Lp \bélpL
<
140 my_ oL (2 3L oL
fo] ’ C!IO .‘ .

If a cbnvention must be}adopted’?dr a‘spIit thén the obvious
'one is to désignate the second and third terms as belonging .
to the material since their form involves differentiating

and multiplying.by méteﬁial derivatives Baam and eé?%;a“

Similarly the last terml obtained by differenfiation and

multiplication by ¢ is Fegarded as field enebgy-mOmen;

A!a"
tum.? The splitting of tbo is completed by'decomposing-L:

into a sum

L= Ll ¥y, 2Py Yala) - (3.25)

" in which L, = {TELI and L, = /:§L2 represent‘matten and

fie]drparts respectively. We thus have

' This is a very general procedure.- If. a set of variables by
on which a Lagrangian density L depends are of two types, Vi
= (8,, n,), then our convention immediately splits wAigLA0;~
into energy-momentum BAADBL/QGAIO of type one and energy-

-momentum nAlpaL/BnAlG f type two. S -
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o _ o g :
tp -'Ep(¢) * to(mat) . (3.26)
where ' .
t ° =L % - {3 a™) oL s el g - {3.27)
p(mat) o 1p, o T oo 'alp (3) :
. , 3(d am) a(eawg)

defﬁnes’theimateria1 energy-momentum tensor dehsity and
s = - o = 0; .9 9 | |
Yooy /-8 b () Lo " %afo L/ *alo (3'28)_

defines the cahoniCa] energy tensor density for the Fie]ds
¢A. The particu]ér splitﬁof—L into L1 and L, is of minor
importance. Equations (3.27) and (3.28) involve the total L
eicépf for the'“diagona{"fterms lez andbLéSS. Changing the
Vlgplit of L will merely redistribute engrgytmomentum between
these'diagbné1_terhs.' A

B ‘The'COQditiqns u“éaém = Q,,qua = -1 determine the
nfour-velqéity u® as a function of aaam (m = 1,2,3) (cf. Sec.
2). 1f u® appears in L it ?@‘%Gybe~regarded as such. Noting
thét;fﬁe second!term on the right hand side of (3.27) is
oftHogqnal to u” only in its first index, we write it as a
sum of a convective four-momentum flux and a stress tefm by
pbbjectioﬁ {on the second index) parallel and orthogonaljto
u®. This can bé}expressed neat1y by introducing a new -
. Lagrangian thaf includes u® among its variables. In terms of

the projection operator

B e 6® ey W® I (3.29)
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: m m. (a) | (a) * R 3 pQ P
_amd L(a™, 3,8 1 €, ", e, g1 Oa ¢A|B' R BYG) we.deflne
5 ‘ |
L' (u™, a™, 5 a™,...) = L{a®, af3 a™,...) . . (3.30)
a a B :
It then fo]]ows‘that
oL’ _ _ 3L o 1 2™, 2B 8L o (3.37)
au” (s _a™ 3(3 a™ " a(3 a™ ©
. a (1"'
giving _ ‘
- (3 am)_&; = 3_[-_;)_”0 - (Bﬁ_am)_&l_ . (3v32)
. . JUR
a(aoa ) . du ‘ 9 (s _a™
- ) .,
From (3.31) L' “satisfies
aL’ua _ Q;* ’ u, 8L _ 0 ) (3.33) ‘
- au® a(a a™) ,' :

It seems most simple to introduce u® in (3.30), althougm we
could have considered a Lagrangian dependent on both a a®

and u” at the outset in (3.10) and (3. 11). Such a Lagrang1an
is largely arbitrary as a functlon of 3, am émd u® due to the
constra1nts u u* = -1, u 3, a” = 0, so that a class of
Lagrang1ans 1s assoc1ated with any given Lagrang1an One Can:
show that atl members of a given class of Lagrang1ans give
the same energy- momentum on variation of the metric (Appen-
d15}2). The neatest presentatjon of the results is,in terms
_of'L' whose dependence on u® end aaaé hés been delimited tQ'
a unidue form by conditions (3.33).

The dependence of the Lagrangian on~the ahgular

y
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yeloc,it_i’es wab = g@a eél"é u® determines the internal spin.
(Ihis is demonstratedvih Appendix 10 for a single particle,
and hence for the material as a whole.) We therefore assume

. that e(T) appears in the Lagrangian via wab or,

B
equivalently, via e(a) = eéTé
With L’ (u%,.., (a),..f..) = /g L(u, .., @ )y . (3.34)
. a‘B a
it fol]owg\ﬁhat
(a) aL - - /g e (T) 3L © = [,[.—g_?_l'_ ) BL'}UG . (3.35)
éTg (a) | 3u® 3u® -
(3.32) and (3.35% give
' L (a) 3L . 3L o m, ol
L - (3 a™ - e = /—g|Z=u - (s a)———
P a(a a™y ale el [aup P a(a a” ]
) ‘“alo
Inserting this into (3.27) yields ‘
AR TS I (RS AR m_2L ) (3.36)
p(mat) auP 17p 1p 3(3_a ™y
-whér? tp?;at) z /_Et(mati . Accord1ng]y ‘we def1ne the

e

candhical'matenial four-momentum Pp and the pnessune tensor

B , | |
S ; 2 g{ o o o, |

1

o | . (3.37)
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so thap

o =P W 4P (3.38)

p(mat) o P
From the same considerations as the first footnote of
this section the total spin flux can be decomposed into

matter and field parts. (2.14) and (3.18) give

. . A1
sP°T = 2utlPd 2 T By loPdy
A B
_ oL -, [p,0l18,.Ca) ,, 8L ¢ B, [op]
= ZEETET( 8,79 )eB +23$XT:(IA') o3
CIIT ’ - .
"In terms of the material spin $°°
$9 zge@le BL_ (5
e'd
o]
and field spin flux siz;
pot _ ,_ 3L Blopl - (3.40)
Sm(‘b) 3¢A[T(IA )[ ¢B
"we have (_‘_g)“z SpGT = SDO uT + S‘Eg; | . _ | (341)\

This decomposition .is independent of the'Split of L since

(3.39) and (3.40) are in terms of the total. L.
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3.5 Balance Lawse

The Einstein tensor-satisfies G*° 0 and G[GB] = 0.

8
The Elnste1n equat1ons (3 24) are therefore inconsistent
uniess T° at1sf1es the same identities. These 1dent1t1es
for Ta may be der1ved from the action pr1nc1p1e by demhnd-
ing that I takes an extremal value for the actual trans-
lational mot1on and sp1n evolut1on and then s1mp]1fy1ng with
the aid of (3 23% Sett1ng 61 = 0 for var1at10n of world-
11nes ) varvat1on of six spin co- ord1nates and var1at1on of
the non- grav1tat1ona1 fields will thus ensure the cons1st—
ency of (3.24). The_result1ng ten equat1ons for the four*’-
-momentum:and spin are usua]ly-referfed to as balance laws,
'lequations of mofion or as "iocai'lconservat1on }aws for-'o

J tota] sp1n and total four momentum |

| The sp1n equat1ons have been given already in (3 21). ‘
.__Accord1ng to (3.20) they immediately imply TleBl - 0. 10
exnress’them as a balance law, making use of (3.30), (3.34)
and (3.39)'givee the spin equations (3.21) in the fo]]owing~l.

form:

lig 0,0 '= (a) al . (a) 8L ‘ '
Z(So”.),l;v_a [p—m+ o 3a@ (3.42)

ol

o /"‘
L(u?, a", adam,-e(a), e@ 4y . (3.43)
H a o é ' ]
'J.»'U
- (a) 3L - 4a oL -



Comparison of (3.42) and (3.44) gives the balance law

spin

1l,cpo. a [po] , B, [po]
7(3 u>) = t + (BL/BQé)(IA ) o

| o (mat) B

The equations governing the translat1ona1 motion
obtained from extremization of the act1on integral on

"varying the wor1d—1ines"‘. We consider a 1-parameter

of tetrad fie]ds'eéa)(x,e) and congruences x*(a",t,c).

?
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(3.44)

for

(3.45)

are

family
We

extremize the action integral I(¢) of (3.10) subject to

fixed end-points x“(am.ti,e) = x”(am,ti,O) (i = 1,2)
(a)

ai

Gééa)/sc =0 (e attached to world-lines held fixed by

a

parallel propagation). For the infinitesimal variation

Ha®

X" (a®, t,e) = x ,t,0) + ee¥(a®,t) the accompanying

absolute variations are:

5@6 = e@Alpép , §(/-gd" x) = sgqla/:gd“x ,
sa® = 0 , §(a“am)‘= - e(apam)g W,
sut = eASgplGuo 3 §(dt)-= - e, Y uBdx
and aeia) - 0 implying | _ (3.46)
| | G(ééé)) = eeia)Rl eV 4 Ge(a) [géq '

cuv st

——————————————————

! For the app11catnnn of th1s techn1que {0 non- sp1nn1ng

matter, cf. [28].

¥



38

The action principle then gives for arbitrary ¢"(a®, t). .-

d :
0 ) g—el ) d—é—J' /:—g— L(ua’a ’a a ae(a) ’e((1a) ,@é)d“x =
) : aL u . S oL . ) .p o .
LEa + T A u _ 8L 2oa 47
[ { IOL auu |:)E lo' 3(3 am (3p )E IO (3 4 )
a
S Q . \

The first of (3.33), together with (3.34), implies

Ak e, Bl ) g , | (3.48)
su” ela) o '
Hence @
3L .p_op o 3L «(a) p © L .p o
Z=A u® + £ = ot (3.49)
au“_pg o ;gfa fa Fofot au°g Ea

3 - : : o
Substitution of (3.49) into (3.47) and integration by parts

~jgives the following four-momentum'ba7ancé ] aw

Hol 1 SBYG % ®

p(u@t)Jo T T 72 008y (mat) T ™ §|p_ . (3.50) |

-

3.6 Einsteiq-LoEentz Theory for Die]ectrjcs

To illustrate the results of this chapter we now
consider a charged dipolar med}um and its interaction with a
Maxwell-Einstein field, described by a vector potential A,

and the metric tensor.



The phenoméno]ogica] current® % and the (skew- .

‘ o _ , ]
-symmetric) displacement'tenson.HaB‘ane defined by

(3.51)

o _ - al _ ‘ -
Jo o= BL/BAa , H = -4n8L/3ABla = 81_18L/3FOLB R

in which it has been assumed that AaIB appears in the

Lagrangian only through the skew-symmetric combination Fu =

8.
‘“23[aAB]. The electromagnetic fie]d equations are therefore
{(cf. eq.(3.23))
= CHERL = 4mg® 3.52
B[GFBY] 0 A ) H IB 4rd ) | ( )

J““ = 0 . - ~ (3.53)

In order that equations (3.52) reduce to those of
Maxwell in the absence of matter, L must reduce to thé free-
-field electromagnetic Lagrangian?

*

1

_ - uv » ' : '
Ly, = —(1§n) Fqu | . ) _ (3.54)

Defining the electromagnetic polarization tensor

aB . -
’M = 23(L LOY/aFaB

43.55)
‘The microscopic current is j° = §{L-Lg)/8A, = d“+M“B|B.

2 Lovelock [27 b,cl has shown that the mgst general :
"LolA,, 98Aa, Qag) for which sL,/sA, = F© E is given by
(8.53) plus a trivial divergence term. . -
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leads at once to the usual Lorentz polariz%tion relations

AR
AN

HGB - FGB _ 4411,”0-8 . . _ (356)

37

processes be expected to be absent, we therefore demand that

L_satisfies

J% = aL/aA_ = eN® : (3.57)

From (3.4) and (3.535 it follows that the charge per par-
ticle e satisfies de/dt = 0. Aséumptiohu(3.57) amounts to
assuming that the (undifferentiated) potentiaP_Aulappears’{n
" L only through a bilinear interaction term

>

Lay ©

T]
409

- m aBysd 1y (3 a2 3
eA N eN(a )Aae (3,2 )(aYa ) (3 a%) . (3.58)

From (3.58) it is apparent that L(A) is independent of the
metric and therefore does not contribute to T°°. Further-

more, since L is the only gauge-dependent part of L,

| (a)y
(with Aa[s entering via Fogr) T°° must be gauge invariant.
To ensure that the decomposition of T°° is into gauge

\ ‘ _
invariant parts, some adjustments must be made to the

definitions of matter and field energy-momentum andéspin.
The redefinitiohsvare simplest when L is assumed to be

(a)

part of'Ll. Then it is easily seen from (3.37) that both Pp0

énd a "kinetic four-momentum" P,

J
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p =P - enA (3.59)
p o /

are gauge invariant (Appendix 3). From (3.28) and (3.40) we

obtain
o Z 1 R0 -1, o0 pot _ ,ployolt © (3.60)
tp(¢) dep .(4w) Aa|pH , 4n5(¢) A R
so that : ”
o 1 ‘ T0 oT o T _ o} o .
= : = T - A J (3.61)
toor * 2050 T S P e ) T Totem T A

where we have defined a gauge-invariant electromagnetic

energy tensor by

i

g -1 cga o (3.62)
5 (em) (41) .FpaHA + Lzép .

From (3.26), (3.38), (3.59) and (3.61) we obtain

; —%t o} 1 TGO | oT o T
(-g) "t = * Z(Sp(¢) ¥ $(¢)p v p(¢))lT
(3.63)
- o o o
L P To(em)

This, together with (3.41), gives the gravitational field
equat ions (3.24) in the form |

(8m) 16PY = TPY = 10O + T1°°

—l 10 oTp opT :x(pc)u"
+ Z(S?mat) + S(mat) + S(mat))lr + 4Q



"in which the tensors

pa _ WP, 0 pa ‘ pOT . ¢pOo T ,
T(mat) - p u + P . s S(mat) S u 1] \3-65)

represent thé material fluxes of four-momentum and spin
angular momentum. Their divergeneee, according to (3.45) and

(3:50), may be expressed as

lgpat . tleol  _ ple yola _ o claBy
27 (mat) |t T(mat) F aM 4R GBYQ_ s (3.66)
» A o - 1 Bya ByS,a
Tmary * Teem o Jo = 2RpasySmary * %o R oayslo (3.67)
where we have used the result
¥ - - @ Ly  (3.68)
Totemy o = 7 Foa? 2" Fuvlo

which follows from (3.62), (3.56) and’(3.52). As we remarked
in Section 5, these equatibns can be used to verify direci]y
that the total ené;gy tensor TP% is symmetric and conserved.
Frem (3.62) ngﬂ depends on the split oqu&only

through its second (diagonal) term. A change in the decom-
position of L wi1] merely redistribute terms between the
diagonal pabts of the the material and field energy tensors.
(3.62) d;?fers from proposals of Abraham; and Einstein and
Laub>[2] for the localization of electromagnetic energy and
momentum in a dielectric medium. The split (3\.64)1 of ™7

into matter and fijeld may be called a generalized MinkowsKi .
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splitting since (3.62) becomes the tensor proposed by
Minkowski [2] when L, is chosen to equal -(16ﬂ)'1Fa8HaB. The
choice (3.54) for L, seems to be of spebial impor tance. This

. po
- gives a'nem) !
special relativistic dielectric theory as being of special

. that has been recognized for some“fime in

significance [3a, 3b, 4al, while Israel and Stewart [6b]
have recently given persuasive reasons for its use.
Field equations (3.64) and (3.52) (with (3.56)) both

contain divergence terms, namely the “Be]infanterRosegfeld"

X(podu

spin term and 4Q in (3.64) and the polarizatian

UA ,
current 4nMa8|B in (3.52). This suggests interpreting the
spin.and quadbupolé terms as "gravitational polarization"” ~
contributions (po]arizatidn of enargy-momentum) . Cha&tj{/g

will explore the concept of gravitational polarizationy .
\ .

3.7 Spinning Fluids and Dust
| Recalling that equations (3.7) and (3.5) determine the \

number density n(x) as a function of a™ and 3_a", assume

that L depends on 3_a"™ only via n:

SL(u®, a®, 2 a®,...) = L (u®, a®, n,...) . (3.69)

-

From (3_a")(an/2(35a"))

nAg (Appendix 3) it follows that

the pressure. tensor (3.37) in terms of pressure P is

P 9 = ppc , P

0= Pay Ly - nal /en . (3.70)
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The general considerations of this paper are therefore
appropriate for the description of ideal (dissipation—free)

spinning fluids whose spin density is convective,(giVen by

seBY = g¥FyY,
(mat)

of [26]. (A much more complicated {(and realistic) descrip-

These are the "Weyssenhoff" spinning fluids

t1on of spinning fluids may be obtained in [6d].)

It was noted in sectlons 3.4 and 3. 6 how a change in
the decomposition of the tota] Lagrangian will re-d1str1bute
"diagonal” energy-momentum between‘matter and field. The
definition of materiaﬁ preesﬁre P wili therefore depend on
the particular splitveflL, as may be seen from (3.70).
Setting P equal to zero ie therefore'only a meaningful
criterion for "dust" as long one "is dealing with a fixed

decomposition of i. Consider the case where L, is taken to

A ¢A|a' g
interaction terms in LF allocated to the material). From

bé the free-field Lagrangian L, = Lyls ) {(all the
(3.70) the  definition P = 0 for dust is nal;/on = L,
giving L, = nLD(u“,...) with L independent of n. L is then
the single particle Lagrangian of (2.18) (modulo -uaua
factors). |

.

Finally, when LF is a function only of n, Ly = -oln),
from (3.37) and (3.70) we obtain the usual expressions for

P and P for a non-spinning fluid in a gravitational field..

P = pu , P = n(ap/an) - o . (3.71)



4. HIGHER‘DERIVAIIVE COUPLING

Chapter 3 considered Lagrangians depending on variables vy,
andﬂfjrst covariant derivatives wélaW We now discuss the
more general situation where L is allowed to depend on
higher derivatives of the fields. The notation of Chapter 2,
Sec. 4 is used with a(n) denoting a symmetr1zgd set of
indices. With the convent1on that aL/aW has the same sym-
metries as WA the use of symmetrized 1nd1ces 1mp11es\¢hat
the mu1t1pole moments (defined as aL/a¢Al ; have the same

symmetr1es as in special relativity.

4.1 Generalization of Fundamental Identity (2.16)

Consider a scalar density L(WA)”where ¥y, o=

(wAlg(n)' n = Q, 1,...) and extend~définitiois (2.13),
(2.12), (2.14) as follows:
LAG, +..an o (Aa(n) _ aL/aw NP . (4.1)
et mzo(;l)m LAg(n)Q(m)‘g(m) , | (4;§f
o - z LAreln), Vla(n) (4.3)
?po E’%gL i nz-(n+1)wA!( a(n))LAoa(n) (4;4)

-~

The condition (2.11) that L(¥,) be a scalar density is

~

9
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sL (1,2 %v. + 87L = 0

Ao Y T %
awé ‘
- \y - . .
With A wAIE(“)' n 0, 1,...) this 1is
3 Aq(n) BB(n), o L <O '
= : L =0 .
e S A ] O

This generalizes (2.15).

must now be generalized.

(2.5, gives

LAg(n)(I B) Ow
A p

L

Blg(n)

Ag(n) BB(n), ©

Ty 2o VBlB(0)

_ Acgg(n-1) :
ok lPA\(pgt(nd))

, (n=

46

(4.5)

The two steps leading to (2.16)

First note that repeated use of

(4.7)
12 ).

Next, we 'rewrite, the first term on the r1ght hand side of

the above equation as a divergence plus a term not 1nvo1v1ng

derivatives of

' CArel o Aale) A (4.8)
: |T .k , _
Hence "
b Aa(n) B .o L
Z a )p ll)Bl__\’gn(n) o
® ATa(n) Aa(n) B, < '7
z (L ¢ lT + L* )(IA‘)D WBlg(n) .A
: n-O - . . U
_ X » U ;
L, Ata(n) g : T (ATa(n) . a. [
LR (1 B - LaTe B, ©
(nZO * (IA % wBl@(n))lT nZO * (I, Do wB‘%(n)v44/

. to note that (4.2) implies

The simplest method of achieving this is



v | b L ,  47
~/ T . Aa(n) ,_ B_ o
+ LS, YB|g(n)
. n=0 ~
_ nTg A._ B, g ' ,
U ol L*(IA )p Uy . (4.9)
(4.6), (4.7), '(4.9) together yield -
—o . -0 A, B g - '
u olr * to L*(IA»)p g = 0 S (4.jQ)

s

It wi]]xbecome-c]ear in the next sectionithaf,,for

fvariafioné] purpoées ;equat1on (4 10) is more useful when

wr1tten in terms of UT p and tOO def1ned by

= - oy A0Ta(n) |
p B p’ 0 ;,nz “+l)wAl(oa(n))L | ,‘(4.11).

. ° _ éd‘ ‘ [ Aoa(n)

p Z wAl(pa(n)) (4.12)

- o _ F o 4 ‘
olt © to tp so thaﬁ

Frdm’(4u8), {4:ﬂ1)xwe have Y'°

SRS (4.13)

.Insertihg.(4.13) into. (4.10), we obtain the generalized form

. of identity (2.16)

Iy

T+t % e )y = 0. . (4.14)
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4.2 Generalized Action Integral; variation of Tetrad
As a genéra]ization]of the action integral (3.10) we

now consider

’

T J'L(wA|g(;>) d'x + (16m)~} f /E R avx, (415

G N eéa)' bar Rigys) © 5 (4.16)

5

in‘Which”arbitrary symmetrized derivatives of the field

L

variables ¢A, RGBYG are now permitted to appear, but we

'still'assqme that second and higher derivatives of a” and

a : )
eé,) are absent. ; e ~

L 8 . - -
Under a variation of the tetrad field we have (Appendix

4) -
LA 0 (b . ¥
G(E)L = L*G(e)w'A + U DGFO'T + (d]v) ' (417)

_— A . .
with Ly, U7 defined in (4.2), (4.3) and. (4.11).
\\;’ Define the'gravitatiOnal aultipole muments'anYﬁé(?)
and associated quantitiés OAA(n’ 5 special cases of generaf

definitions (4.1}, (4.2)1

§A(n) © AM(D) _ . ‘ SR "'
qle ~(n) = )/:EQA'T(n) = 3L/9RA|>\(n) = aL/aRgBySlA(n)‘ (418)
(g PYER®) L R .Z.(ﬁl)quA(n)égm)let;>; (4.19)

n=0
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From (4.16) we have

A A = (a) (a)h g BYS cpa R
L*6(QJ?A_\ (6L/se "7 )se ,i.0“~ SR By

~7

giving (4.17) in the form S(E)L =

o (a), . (a) . o p :
(6L/6eo )6eO + U e o SR By S

+
(o]
jos)
=
On
2
+
Q'
o edy ¢
<
N
M .
O(

) This'generafizes‘(3.13), and a calculation patternec after

(3.15) to (3.20) gives . - : S
. \
(8my~1v/=g GP9 = (GL/SE§8))e(a)p _
0 (a.21)
+ (L(sPT9 + g9TR) - yT(pa)) 4+ 4Qr(po)u
-2 ; T e | X -

We thus recover the spin equation in the form (3.21).

With v, = (a®.e(®) & R ) the f 1 iden-
‘ i Yy ﬁ(awiiea N BYGE e undamentg 1den.
tity (4.14) is /

o~

(GL/Seéa))ega) =

0

| (4°.22)
10 o A,_ B, o A By, O '
u ot * t }+ o (1, )Q Ry + L*(¢)(IA )p ¢p
{ Aa(n) _ 5 RS P \v ‘
 where L*(¢)f = m§0< 1) ‘3L/3¢Akg<n)§(m)?|g(m) (4.23)

Inserting (4.22) into (4.21) gives the gravitational field
equat ions
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UQT)
T

- - ' g 1 pPTO cTp
(8m) " 1vg 6°9 = /g TP = 177+ (ST 4+ 8777 4 s

k(po)ﬂ A Bypo A B,po :
QRO L QI TR Ly oy (Tp ) ¢ - (4.28)
The 4 represent the external fields and their
Alx(n) ,

derivatives. Although ¢A may be chosen so that their field

4

“equations take the form,Li(¢) = 0 we still include the last
‘term of (4.24) for the following reason: for the electromag-

)

netic field it is more convenient to choose ¢ = (Aa,Fa'B

(with ¢ for h=1,2..) rather than ¢

A]}(n) - FaBlk( ) Alk(n) =

Aa]ﬁ(n) (n=0,1...); even though L*(¢) = 0 on]y for the

latter choice. When L depends only on first derivatives of
Aa; as in chapfer 3; both conventions for ¢A give the same
results with little difference in ease Qf'derivation.

Chapter 4 followed the more traditidnal method of sett%ng‘

= Aa‘ The gauge dependent t ‘ y was then combined with

p (¢
the gauge dependent field spin flux terms in the usual

*a

manner to obtain_gauge invariance. When L depends on higher
/

derivatives of.A the first advantage of using N tAa’FaB

)

is the gauge . invariance from the outset of t %¢) ana Sig;

(only step (3.59) is needed for complete gauge invariance of

all parts of Tp ). The second advantage is that the multi-
pole moments aL/a¢A|k( y = aL/BF ll(n) have the same sym:
metr1es as the special relativistic def1n1t1ons of the next

chapter. '
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4.3 Matter #nd Field Decomposition
WeJCOntinue in similar fasﬁion (o chapter.3, decompos -

ing L as - | ﬁ' ' ”>

L= LW )geay! * SAUNTIRY . (4.25)
[w
Since wAlg(ﬁ) COOF?JGS only first deriyatives Qf a” and

eéa), it follows thqf

o]

g _ o : o _ . , ) Aga(n) : 26
o Tomary T Yooy T L Ralpa(a))® (4.26)
where ~ ‘
g - _ 40 m l - o(a) 7
o(mat) OOL; (3 _a) _aL _ ed]p aLa) (4.27)
and "3(3ga7) 8ealo
' o g, s Acg(n)
t = &L, - ~ 4.28
p(9) p -2 n§O¢A|(pg(n)) *(¢) ( )
The discussion of the structure of t_° in.chapter
: p(mat)

3, equations (3:29) to (3.38), applies without change: in
. 1 i L7

. terms of L1 = (—.g)-"z'L1 and /=g L(ua,..u, ééa),...) =
D u® . gl m _(a) _(a) - m B m ‘
L(U ’ a ’ aaa 3 ea ’ ealsgun-) - L‘a 3 Auasa ,_.) (4.29)
we have ’
- 1 1
g P~ U« S o g - '
to(mar) = (T8) 2 cpapy = Pou” 7 Py o (4.30)
where :
- - c = e - m \y'\ ; »
Py = 3L Lyug » P, Loy - (3,a") 2L . {4.31)
au. 3(35a")

In (4.26) tp0 has split into matter, field and curv-

ature parts. The quantities_YTcé; UTop, SPIT aiso split:
. N : .

if we define
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10 N B, 0 % Atg(n) _ o A0TO(n)
Yorp = T le I becoy fmlam) T L At o) tree,
. | (4.32)
18] _ B g Ta(n) g S R Aota(n)
Yryp F o nZOQA "8 (n) n£0<“+1> Al (pa(n))
(4.33)
POT _ T[pO) gPOT Trp po . _ (a) p (a)
s{ey = 2uts5 T SPRy = 2ughs T, 577 s PaLsae; 07"
(4.34)

then (4.3), (4.1&) give

ETRCIT L - A o e(a¥. (a) T :
U o = (¢)p + U(R)p V=g (aL/a_e0 )ep u .(4.35)
‘and ) _
DGT /-— PO, T poT spor 4.36)
S(¢) (R) . (4.3
As in chapter . “he decomposition 6£ SPIT g indépendent of.

- the split L - L, +L,. This split is only needed in order to
'partjtion the'term 6gL of tp? and, thus only affects the
‘diagonal parts of (4.27) and (4.28).

' To summarize, in equationé (4.24) generalizing (3.24)
the total eﬁergy tensor Tpo is found to consist of:
1. A material energy-momentum tensor t( at) © PPu® + pPO
written as a convective four-momentum flux and a pres-

‘sure tensor.

2. A canonical energy tensor for the fields ¢A, given by
(4.28) as a certain combination of field derivatives
' Alx(n) and quantities L*?i?) formed from the multipole
moments - 3L/3¢Alx( ) accordwng to (4.23).

3. A divergence formed from the total spin flux which
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‘consists of matter, field and curvatﬁre parts.
4. Contributions from gravitational multipole moments.
5. A term pfoportional Eo L§(¢) wHich'is usually zero by
virtue of the field equations satisfied by }A and if

g . . g
non-zero may be ineluded in tp(¢).

4.4 Einstein-Lorentz Theory

Set ¢, = (Aé, F ) in the previous section (see

aB
discussion that follows (4.24)).
The electromagnetic fi®%ld equations are obtained by

variation of Aa keeping gaB fixed. The variation in L is

L = 3L 8A, + ] 3L §(Fugla(n))

o
0
oA, "=0%F 152 (n)
= 3L 8A, + ] (-1)“( aL §Fag *+ (div)
oA a=0 3F |
* oaB[A(n) )| x(n)

Ngéing that aFaB = ZVHﬁAB] and that‘BL/BFaBlZ(n) is

antisymmetric in «,8, we replace §F,g with -2vgsA  to obtain

GA; + (div) \?~(9.37)

§L = 3L SAy + 2 (-1)“[ dL

A n=0 ‘
d afaslz(n>}|5<n>e
Denoting
0 zaL , Wz ogr ) (-7 sl L (4.38)
=0

from (4.37), (4.38) the variational principle 61 = 0 gives

the electromagnetic field equations:

r
4
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1, ’ ) (.)
Haﬂrs = 4nd® (4.39)
In terms of L, = -(167)  F 4F*® (cf. (3.54)) and L define
multipole moment densities "
[}
A g : .
n*PA () = 28(L - L) /oFga acny (4.40)
. . afB ‘
polarization tensor M
TRUEER) (-1 E2) (4.41)
n=0 ~(n)
and associated tensors
. MaBY,(m) = z {_1)nma81(m)2§(n)l>\(n) o' (442)
n=0 ~ .
which imply polarization re]atiohs
N (4.43)

Assume that the material is non-conducting by setting

J% = eN® (cf. (3.57)). Again this implies that both Pp° and

the "Kinetic" momentum p,

I

= - (4.44)
Pp _.P\p | gnAp _

‘are gauge invariaht.
From (4.2),_(4.23) and (4.43) we obtain
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—'5 A B, o, _ ~-lya0;
(-8) "Li(py (Iy Yo by = (4m) THTUF - Ap ,
g o l — ‘m ascg(n)
foe) = Spba - ZJ—EnZOFaSI(pg(n))M ’
so that ‘ ‘
. g A B o _ g g V
Toe) * Lae)Tadp 05 = /o8 T - A0 (4:45)

o(eg)

where we have defined a gauge-invariant electromagnet1c
energy- momentum tensor by ‘

A}

o _ o 1 T aBoi(n)
p (em) = 6pL2 4"Fap ZOFQBI(QX(H))M (4(46)
R
Inserting (4.26)._(?.301, (4.44), (4.45) into (4.24)
4

gives the gravitational field equations as

-l.p0 _ p0 _ Lpo po licpro oTp eTpT
(87) .76 T T(mat) T(eq) + 2(S + S°°FP 4§ ) .
A(po)u B oO - Aoa(n) 4. .47
h ‘ PTG L pPy° po 4.48
where (mat) pPu® + p (- )
represents the flux of material four-momentum, T?Zm) is
g1ven by (4.46) and the total spin flux S ot . (-g) T 3SPOT s

po
T( m)’

and all multipole moments, general1zes the (genera11zed)

glven by (4.36). dependIng on all der1vat1ves of F

aB

o0

Minkowski tensor (3.62).
, Pt

In terms of ‘the multipole moments (4.40), (4.41),

(4.42) the field spin flux is given by
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POT - _ -4 poT =
Stemy = (78) TSy

(4.49)

p og]ixta(n) _ SR gqduota(n
e A O GG

ey
RO



5. MULTIPOLE EXPANSION OF ELECTRIC CURRENT AND
ENERGY -MOMENTUM

5.1 Introduction

We have seen in the earlier chapters how the varia¥
tional approach may be used to derive the fully covariant
dynamics of spinning polarized media. By not specifying any
particular Lagrangian we have created a framework into which
‘any detailed model must fit. Of course, the_brice we pay for
this is the lack of physical insight to be gained from the
formal definitions such as P_ = 3L/av* and M =

2a(L-L0)/aFm The objectives!of this chapter are to gain a

8"
clear understanding'of the meaning of the vafious dynamical
quantities such as p®, $*f and M*® appearing in earlier
chapters and to exploré’the concept of "gravi;ational pdi;r-
ization" (polarization of energyfmomentum) in detail.

We shall derive the sahe dynamical laws, albeit in
special relativity, by shOwihg first that the structure of
charge and current‘foﬁ a composité particle (extended body)
may be summarized in certafn uniquely defined quantities
calledvmdﬁtipoie moments. These are tensors genera1izing the
electric and magnetic dipole, quadrupole moments etc. of
'non-relativistic electrodynamics and they‘comb1ne in a
~certain wéy to fofm the polarization tensor. |

Starting from the microscopic form for the current of a
system of ﬁoint charges, we shall show that a multipole

expansion results in the decomposition of current into an
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overall flow and a polarization part. Thié is one of. the two
steps in the construction of the macroscopic Maxwell equa-
tions for polarized media from point charge theory. The
other step is to su1tab1y define an averag1ng scheme to
obtain smoothly varying quantities. (Th1s thesis explores
only the multipole formal%sm and not the averaging pro-
cedures.)

| A non-relativistic derivation of the macroscopic -
Maxwell equations using spatial aVeragjng may be fcund in
[31] (reviewed in Jackson [32], see alco references cited
there). A detailed analysis of the relativistic formulation
is contained in de Groot and Suttorp’s bocK [5] (chapter V).
They achieve smooth averaged quantities by assuming the
composite particle density is large enough that a smooth
distribution function exists. This reference a]éo derives
composite particle equations of motion, balahce laws and
‘discusses in detail the?3¢1 repreSentation of the various
dynamical quantities.

i We extend the multipole expansion method by showing
that it may be applied to fluxes more general than just the
_electric 4-vector current. Appfied specjfically to the
microscopic energy-momentum tensor (4-momentum flux), the
me thod leads to a grav1tat1onal polarlzat1on tensor N By
completely anafcgcus to tﬁ//electromagnet1c polarization
tensor M°©. (The relat1on between N 'and the spin terms of

the grav1tat1ona1 field equations w111 be discussed in

section 6.)
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In fbrmulating_the‘single particle dynamics, defini-
tions of four4momentum and spin arise that make the equa-
tions of motion and balance equations appear in their most

simple. form (the same equations as ‘those of the Lagrangian

formulation). Finallg, the expansion of thelhicroscopic
energy-momentum is shown to give the same decomposition of
total eﬁergy-momentum into;matehial;'electromagnetic and
polarization parts as the Lagrangian result, eq.(4:47).

We will therefore_see, for:media who§e spin is ultim-
ately orbital in hature, that the hicroséopic (sywnetric)
total\energy—momentum leads to a macroscopic total. (sym-
metric) energy-mpmentum_tensor of wﬁich the asymmetric four-
-momentum flux is oh]y a part. This part describes the
overall ("gross") flow of four-momenium just as the phenom-
enological electric current describes the overall flow of .
charge, while the total energy-ﬁomehtum and the total

. c . . . n, 7
electric current also contain polarization patts.

5.2 Classical Micrbsédpic‘Mode1 of.Matter
» The microscopic pictdre is a cloud of'structure]eSS}
charged, point particles i, each with rest mass m., charge

e, wor l1d- 1ine zi(si),.normalized four-velocity ui(si) =

o
i

istjc) microscopic electromagnetic field equations are

-dz%/ds, and four-momentum p% = m_u®. The (special relativ-
i i , i i o

i
~

af _ :a _' , o .y : :
an = (x) —1% ! e uy 8% (x-z,(s)) ds, (5.1)
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where s%(x) denotes the four- d1mens1ona1 delta funct1on ‘The

symmetric m1croscop1c material energy momentum tensor (fouﬁxx\

-momentum flux) is

aB _ B oty : ' N
ASENC ;}[ miu uy (X/Ei(si))7iii,ﬂ#;~~~«J§-2)
. //// ’
If the point particles are/ﬁhnched together into’

: - i
distinct stabie groups ,_soxthat each one is part of a

'compos1te part1cle K (extended body), then our physical’
‘picture is- a medium’ cons1st1ng of- part1c1es K with sp1n/and
other StPUCtUPer/Pet‘Zk(Tk) denote some chotce of/central
(reference) worid-]ihé for parttcle K, withjfodr/@elocity Ui

= dZ fdr If we neg]ect the charge structur//of each

)

part1c1e K by assuming that the total charge ey - 2 . ey
i of
l1es ent1re1y on Zk, we have the m1cro§cép1c current j%(x)
approximated by |
a _ (1 I : ] :
Poo =] | e st sy dr L (5.3)

k

> This part of j%(x) is due to the motion as a whotle of the

composite particles j%(x) consists of y%(x) and a""polariz-
ation" part that describes the contribution from the deta11r
ed charge structure of each particle. We may also approx- ;;,;

imate t(8 (x) with

y () =)

(at K

[ PkUB 8% (x-1 (5 dt ->  ;;«f(5l41v* L
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. (see [5,6c]).
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s

< <

hin terms of the totai four-momentum"pi = ) miu: of each

i of k
K. The meaning of the above express10n is clear it is the

Flux of four- momentum (four momentum current) of the

_comeSiterparticies idealized as point particies.!

_ O\
5.3 Notation

From (5.1) to (5.4) it is suffiCient to consider the
mu]tipole expanSion of the current and energy momentum due

to a single particle “Many particle resuits are then infer-

red simply by summation, first over i for fixed kK to obtain

composite partic]e quantities, then over k. We therefore
con51der a 51ngle p01nt particle w1th charge e, rest mass m,
wor 1d- 11ne z%(s),’ normalized four-velocity u‘ = dz /ds and

four - momentum mu® We investigate the particle s eocentric

-dynamics with respect to some (arbitrariiy chosen) time—

-like reference world 1ine Z% (1) with normalized four-

 velocity U* = dz%/dt. - . oot

‘ Référenqé » - o : Particle
world-Tine ’ _ world-line

__..._——-....___......-__-

t(5.3) and (5.4) must be averaged to obtain smoothly varying -

- spacetime functions. For example, whenever a smooth distrib-

ution function u{x,q) depending on phase space variables g

o may be defined, averages of (5.3) and (5.4) are obtained by

replacing the summation over Kk and 1ntegration along Za w1th
1ntegration over phase space: L

<J (x)> =:f U(X,Q)e(Q)U (Q) do 3‘
aB . _ .
Tmar)” ~ f “<X,ﬂ>pi(n)ui(n) de -,
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-

"

Any monotonic function s = s(t) defines a connecting vector

L amd 1

|

i

(1) = 2%(1) - %) . {5.5)
(We do not restﬁict's(r) with conditions such as o“Ua =0
" since the muitipole e*pansion may bé carried through for any
central wohid-?ine and any world*tqbe félicingf.

Let o denote do®/dt. Let

1

Iﬁ(f(r))‘z'f £C0) (0. )™ 8% (x-Z (1)) dr ~ (5.8)
where a. ‘=a /éx“ =g and (¢.0)" = o1, .0 By ;'43' »
a8 g \ 8,4 . «..0 ,%i.‘. o 4
-1 has ‘the following three properties: . } .

‘I;(c;f<r> +c,g(m) = o)1 (£(0) + ¢, 1 _(g()) ,  (5.7)

iglnﬁfkf)°a) = 1_,,(£(D) . (5.8)

) 3aln(f(r)U9) =~1n(df(1)/dr) + “aalﬁ-l(f(T)éa) . f_ (5{9);
Proof of (iii):

3, 1o (£0u%) = [ £ (@0 ((-a /328t (x-2(n) U e
= I‘%;(fgrzga}f.;c )9 1...6;58“(X-Z(f)) dt

= Inﬁdf(r)/dr) +‘naalp_i(f(r)8a)



<

63

According to (5.9),

Iﬂ(f(r)cdhg).= In(%o“) + In(f&“) + nd (£0%5%)

Eol

88 BIn—l

where the dot denotes differentiation w.r.to .
Using (5.8) and summing giVes‘ |
d -~

‘n+l o n+l

a By (-1) a
! mint 2plalfo V) - nZO a1 La(fo7)

’ ® n+1l :
- Io(f&g) + BB[ zl %ﬁ%%TT’ In_l(f(cu08_+ ndaos))
ne : :

or

Ln+l

0 = - Io(féa) + ) %i%%TT In(%ca)
: ' ' . n=0 . ) ' , )
4 | - (5.10)
: v ,(-1)n ; ap,B 1 a B (n+1) a-B
o 3s[nzo Gan T Lo (U7 + myore® + gy o))

~
i

5.4 Multipole Expansion of Current and Energy-Momentum |
| Having developed some notation; Qg now pro¢eed to
- expand the microscopic fluxes in:powers of ¢° to produce a
sp1ittihg into "groés" and polarization partsl |
The current and energy-momentum of the bagtic1e°are

.given by

Y — %0 - f eu®(s) s*(x-z(s)) ds , - (5.11)



(mat)

These are examples of a general fiux

£ (x) = J F(s)u®(s) s*(x-z(s)) ds

a

"From z% = Z%+s% we have

uds = dz® = (dz%/dt)ydr = (U%+5%)dr
and _ '

JloyBl o leg8]

Inserting (5.14) into (5.13) gives

_& . . .
fE(x) = J FCTY (U () +6% (1)) 6% (x-z (1)) dt

s4(x-2-0) as

Expanding &%(x-z)

(-»"

n!

§% (x-z(1))

1
He-18

n=0

gives, in the notation of (5.6)
- "}

3

n=0_ "~

K ‘5,
& »

SN

t2® (0 = I mu®u® &% (x-z(s)) ds it

(0.3)"8H (x-2(1))

. A « - n .
oo = ) ST (Fay %)
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(5.12)

i

(5.13)

{(5.14)

(5.15)

(5.16)

fiLet F* denote -the lowest order (s0) term in the above: -

EEN

FO(x) = I (fu?) = J,f(T) 84 (x-Z (1)) dt -

\

A}
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" Then, with (5.8),

9

n+1

L) o I (F(UR+%)0)

a _ 6] *Q

it~ 8

n=0

(5.10) then implies

W18
”~~
!
[
S

fOx) = F%(x) + BBXaB +

where

(-1)" [a 8], (n+1) 8]
g1 La(2f0 (U 45007 ))

Setting f = e and f = mu” respectively giveé

G0 = 9% (%) + aBM“8 o, (5.17)
aB _ B 4 NOBY a8 : '
t(mat)(x) = T2 () + BYN + AT, . (5.18)
with
JE(x) = I (el®) = f el® s4(x-Z(1)) dt (5.19)
%8 ¢x) = IO%muaUB) = [ mu®y® s%(x-2(t)) dt , - (5.20)
aB _ s (;1) [a 8] (n+1)8] | |
M™T () —~enzo DT Lal20 (U 2 y) (5.21)
aBy, . _ ¢ _(-P 4 18 (¥ 4(ntD) ov] |
N (x) = nZO (ot D) I_(2mu®s " (U + a+2)° y) | (5.22)
and . »

~——
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; (a+D) !

and RIS ™ (d(mu DBy . (5.23) .
n=0 ’

M2 is the polarization tensor. It is constructed from the .

particle multipole moments

B (n) _ 2e _lagyBl . (nt1) =BTy A(m)
P2 oy = EE ol (u 4 (Bien )en TRl (5,24

and associated multipole moment densities

r d
Lt

neBA @) gy = 1 (meFA ) (o)) =‘fmasl(“’(1)8“<x—2(1))dT (5.25) -

1

*

s
according to

¥

M8~ 5 (c1y®a, B2 ()  (5.26)

A(n)

R

which is equivalent to (5.21).
(5. 26) is the special relat1v1st1c form of (4.41). (5.24)
and (5.25) therefore g1ve a clear physical hean1ng to (4. 40f
in terms of the detailed particle structure
) Ao‘B in (5 18) arises from the 1ntegrat1on by parts in

_ identity (5.9). It has no counterpart in (5.17) since de/dr
= 0. If the. part1cles are in free’ mot1on so that A8 van-
1shes, then (5.17) and (5.18) are the decomposition of j°
and t%B £) into “gross® and "pQ1arizgtion" currents.

‘general when matter and field interact we have d(mu®)/dt and
AaB af

‘ nonuzero. A”" is a_ field-matter 1nteract1on ‘term ‘that

itself must be split fhree ways into material, field and
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,(5'27) as
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polarization parts.

"

B
5.5 Spinning Multipoie in an External Electromagnetic Field,
Balance Laws. A

The Lorentz force equation is

2
~ .

O d(mu®)/dt = efas(z)dza/dr . {5.27)

In the expansion (5.17) the multipole moments (5.24) appear
as the basic entities summarizing the four curreﬁt "struc-
ture". It is pdssible to express the above Lorentz force in
terms of these and'derivativeg of g at %, tdgether wizﬁ,a

total time derivative along the reference”wor1d~line&

his
can be seen from the following identity (Append1x 5) va

for a funct1on flz):

f( Z) dEB//dT =
(5.28)

B 1% Ba(n) L4 [§ 1
. f(Z)U - e I,IZ()1’(Z),M(.H)m + 37 nE TarD) 1° (0 3) f(Z)]

ef“B(z) then gives the multipole expansion of

4

. . |
dp®/dt f°‘8<z>u8 - T Y (D) (5.29)

where
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(=]

a e o o8 A(n) 3
.pa = mu - ZO .(;1—*-—_1—)_" f B(Z):Z\(n)o ag - (530)

The total time derivative of (5.28) has been combined with
mu” in (5;29). This gives the equations in their simplest
form; with the force determined from the fundamental quan-
tities‘Ua and masé(n) of the previous section. The resulting’
equation is the special relativistic limit of the Lagrangian
equation (2.29). '

To obtain spin equations of motion con. der

%%?(ZUFQmUB]) - &[amus] + c[a%?(muﬁl)

=.mu[aUB] + ?o[ufB]Y(Z)(dZY/dT) (5.31)

from®(5.15) and (5.27). The multipole expansion'pf the
second term;in the above may be found in Appendix 6. With

spin angular momentum defined as

¢

Db L [ego 8] NG e(ntl) 8] ¢ Ay (5
s*® = 20'%(mu” 'x:EO-(n+2)! 1D (oo ) (5.32)

the expansion of (5.31) takes the form

1ase®/dx = ployfh (5.33)
v CIEN Blyr(n) v Lo | Gél( )
- f , L y§BA(n
, nZO Y(z)’é(ﬁ)m + nZo(é+l)f.Y(Z)’5}(“)m

°

which is the special relativistic limit of (2.30). ‘In



69

similar fashion to the definition (5.30) of four-inmomentum,
some interaction angular momentum that appeared in fhe spin
equatlons as-a total L1me der1vat1ve has been designated as
"material™. The couple act1ng is then determ1ned from U® and
m*E2(0) £5r a given electromagnetic field.

Equations (5.29) and (5.33) may be cast in the form of

balance laws. Define a material energy-momentum tensor
af L ‘
(mat) ~

-

B - . B - a B ,
T?mat)(x)‘_ Io(puU ) = J pU SH(X-Z(T)).dT - (5.34)

(5.9) and (5.29) immediately give

IR TR LI I Bv2 () ,

The right hand side may be written as a divergence (Appendix

7), giving
ap Ta8 (5.36)
3 (T(maty ¥ T(emy) =0
where
aB.__‘ v~ ca BY;_l_asyé a By
Temy = (4™ (f 7 i fg) - F .M

15 YG)\(n)B
> Z fYG ,A(n) Oy - (5737)
(5.37) is the special relativistic limit of (4.46) where L,

=-L0.
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The angular momentum balance law is obtained in the
same way. Let

aBy

- S(mat) I, (s*%uY) = f s2BYY s%(x-2(¢t)) dtr .  (5.38)

Then from (5.9) and (5.33)

1 aBy _ 1 af _ J+laB]
?ays(mat) = 2Io(ds /dt) = T(mat)
® .. ® [ ‘ > ]
_ [a . BlyA(n) a : YSX(n)B
USRI EOL (0 + 1 D FL G0 ()" (x)

The last two terms are expressible as the sum of ngzg.and a

divergence (Appendix 8). In terms of

seBy - (5.39)

(em) ~
o0 [, .]
fa BlxAa(n)y o kpi(n)yB
2 nZO f K’%(n)m. | - (n+1) f K’u}<n)m - ]\
we have.
1 8 B : (8] '
aBy aBy - : o
o T St T (e * Teem) (5.40)

(5.39).15 the special relativistic form of (4.49).
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5.6 Localization of Energy Momentum.

Having obtained the same equations of motion and
balance laws as in the Lagrangian theory, we now consider ’
the derivation of energy-momentum localization as embodied
in the gravitational field equations (4.47). The microscopic

total energy tensor o ‘

aB _ ,aB afB | ‘ 4
£ =t eyt t(em) | (5.41)

‘is given by summing (5.12) and the mié:;;;;;¥é electromag-

netic energy-momentum tensor

\

- _ =21 oy B _ l aB .y6 . (542)
t(em)(x) = (am) T (F70F Y &9 f//f;a)

V. /
i K4

s :
A1l three tensors in (5.41) are s;khef;ic. We wish to show
that the multipole expansion of (5.41) is the special rela-

tivistic form of (4.47).

The total energy-momentum tensor is often defined from

the balance .equations. Any conserved_tensor, for example
aB - af
+
(mat) (em)® ‘
state however that certain tensors have vanishing diver-

is then a candidate. The balance laws merely

gence. To these an arbitrary curl may be ;dded wfthout
affecting the balance law, so the balance laws do not
.5rovide a uniqug prescriptidn for localization.

At the microscopic level equa;ion (5.41) UHiquely |
specifies’the total enerqgy momentum distribution. Only the

(averaged) multipole expansion of th'may be legitimately

\\
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‘referrgd to as’the true distribution of total =znergy-momen-
T ' ‘

tum.'ﬁhich wi]t be symmetric and conserved 1i t*®. From
(5.36) and {5.40) we have that TS + 198 5 coriserved
( at) (em) |
but ‘asymmetric, while one may e§%11y verify . the tensor
J%® defined by s
af s . yoB 1 ayf Bya Bay
JoF ez (T(mat) + T(em)) + 2aY(s + S + S y , (5.43)

a8y _ caBy gaBY : -
> (mat) + (em) ’ . (5.44)

is bot;/;gkserved and symmetric. This is the simplest! sym-
metric conserved tensor one may construct from the balance.

laws. Since T8  a7eB . yoB and t%® are all conserved they
(mat) (em) 3

must differ from each other by a curl. We have, for some
. o

L af aBy | )
t (T(mat)_+ T(em)) + aYA (5.45)

>

(5.45),'(5344) and (5.40) imply ayA[dB]Y =_-%éy5a8Y, giving

(fa8ly . lcaBy , 1, aByS ,
A , 5 + 3350 (5.46)

K - o

for some Q
Any third rank tensor that is antisymmetric in its last two-

indices, such as A®fY, may be rewritten as

- - e n  E wn w  ee o o

1The definition of das contains only those tensors that
.appear in (5.36) and (5.40).
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a8y - pledly , plyels , plv8le r (5.47)

~,

(5.45), (5.47), (5.46) and (5.43) imply that the required

expansion of ’cmB takes the form

P QNP0 | ~ (5.48)

oB

p®8 = o

-

(5.48) is the special relativistic limit of (4.47) and
completes the comparison with Chapter 4..This chapter has
provided physical iﬁterpretation'of the formal definitions
.of the Lagrangian theory, albeit in special‘re1ativity..The
f]uxes of four-momentum and spin acquire a direct operation-
al significance in terms of'the distbibution of spinning"
particles. Localization. (4.47), formally defiheq by varia-
tion 6f the metric, has been shown to be :he (=2veraged)
multipole expansion of the microscopic'tag; lhe present
‘derivation of (5.48) is tailored for those not w6rk1ng in
general relativity, for whom the definition of energy-momen-
tum as the variational derivative bf L with‘réspect'to the
metric may hcve little physical:appeaf. Thé Concept ofv)
"gravitational polarization" has been invéstfgated by

compar ison with the traditional account of ele.. omagnetic f
poiarization. The~8elinfante-RoSenféld spin terms ,'together

with;the gravitational multipole cohtributions,'have beenbv

shown to-be thé counterpart of M®®.



6. MULTIPOLE ANALYSIS IN CURVED SPACETIME

" 6.1 Introduction

This. chapter wii] generalize the mult‘pole analysis of
the preQious chapfer to curved spacetime. Trying to general-
ize, step by step, each equation of the previous chapter‘
proves to be an extremely arduous task beéau§e the chapter
makes greaf use of the simplicities afforded by special rei-
afiQity (comhufing of parfiél derivatives; vector nature of
(Minkowski) co-ordinate differences, “non-local® character
of vecfors). The Following questiohs»must be answered before
one can even consider a Taylor expansion and éubseduent
_ manipulétion of derivatives: M
1. hpw iglthe "conTéﬁiﬁng“'vector ¢ to be defined?

2. how is the(pqrtfcie four-momentum (a vector field along -

’ \.

/ R

the cehtra}lWOrld-line z%) to be defined in terms of the
energy-momentum distribution (pu along z") and the
applied fields? |
In spécia]yne1ativity the connecting vector may be

:identif}ediwith the geodesic (straighf iine) path jojning
- the two points:fTo genéraiize»this unambiguously to curved
spacetime one muét consider only points zu(t) in a normal
neighbourhoqd'of‘za(t) (non-focusing of geodesics) and then
set'da equal to qla'wheré:la is the unit taqgenf vector at
Z” to the geodesic Zz (of length o). |
> In the definitfon of four-momentum (pnd spin) one ﬁeeds

a criterion for selecting the type of transport of pu'from

74
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z" to.Za) from all‘possible choices that reduce to paraliel

, propagation for vanishing CUrvature'[12]. As Dixon has
shown!, paraliel propagation is not the ideal ChOij‘\

The approach. of Chapter- four does not general.ze eas11y‘
to curved spacetime because the1r is no s1mp1e fully covar-
iant way of expanding (and then man1pu1at1ng) tensors. A
'%su1tab1e method may be 1nferred by noting that sca]ars are

the only tensor1a1 objects one may expand s1mp1y ind a fu]]y
covariant way, and the relevant sca]ar from which the
dynamics may be der1ved is of course the- Lagrang1an The
first effect of cons1der1ng curved spacet1me is. therefore
(the identification of eccentr1c Lagranglan dynamlcs |
(expansion of L) as the only conceptual]y s1mple approach
The second effect is that anYGE(n) (and p%, s%F, m@BY(n))
no longer needs to be "synthesized" as in the previous
vohapter. it is given by d1fferent1at1on of the expanded form
of L. One mere]y turns the Lagrang1an ‘crank"” .
.. We therefore consider the eccentric,uLagrangian

dynamics of a particle. From a Lagrangian standpotnt the™;
~ expression Py = aL/av® enters artomatically as the natural
,def1n1t1on of four- momentum This avoids compar1ng the‘

relative merits of varlous proposals fog/pa and §° af (and
“ their Just1f1cat1ons in spec1a1 51tuat1ons) standard

Lagrang1an formalism by itself provides the answer to

question 2. A natural deftn1t1on_for S o8 also appears in theh

v'D1xon def‘nes four ~-momentum and spin so that for each
symmetry of spacetime that also preserves the the electro- -
magnetic field, a corresponding component of four-momentum
or spin is a constant of the mot1on



equations to be derived and is adopted. These definitions -
‘are compared with Dixon's in Section 6 and are .found to be
-the same. This establishes the definitions on a completely

firm foundation from two viewpointsQ

6 2 Expansion of Lagrang1an

" As long as one is dea11ng with scalars, values at
different spacet1me points may be compared.ﬁhypersurface
1ntegrals are covar1ant and Taylor expansions may be wr1tten
covamantly1 The scalar of fundamental 1mportance is the -

¥

Lagrahgian.‘Forﬁa point particle in an electromagnetic field

the action integral is

1 = -mfds + eJAXdzA = f L, dt | (6.1)
 where L |
. _ ‘ . | -
L. = - m{-g, dz*dz"]" + eA (2)dz" - (82)
O ‘( ‘et dt ], ¥ e - ’/’k

{ 1n terms of a’ sca]ar parameter t along wor}d 11ne zl.
B m‘-Lo is to be wr1tten in terms of a reference world line

A CONSIdeP a two-space z (t,’o) with
| ‘ - |
. o

v¥ = az¥(t,0) /0t ',*L' ¥ = az¥(t,0) /00, o,

'Fdr points z, Z in a normal neighbourhood of. eachother.

" onel may write h? ? nsion of a 'scalar field ¢(x) as’ -_‘;Qru*e‘
elz)| = Z(iln!)cg D) 9(Z) | g (n) uﬁere o“ 18 tbe oeodesic
Zveck joining Z to Z ,q

."_a:“y PR ' ,n
LRy PPN
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2%(t, 0) = 7%¢t) v = dz%dt (6.3)

o = vMdt/ds , u¥ = v¥dt/dr

(where T and s are the proper-times along z* and

2% (t, o = const)).

O=constant

Figure -2 \

Initially zu(t, c)-with t constant are an arbifrany sét of
spacelike curves joiningJZa(%) énd Z"(t, o) with ¢ any
~arameter aiong‘them. Indices a, B, v,... wii] be used for
tensors at Za(t) to distinguish them fnom‘tensors'at zA
which will have indices Ay M, oV, Za(t)'fepresents the
referehqe‘wor]d-liné énd zx(t. g) with o constant the;actuél

(

particle world2line. From (6.3) we have

v sV = 81176t 3  (6.4)
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To expand (6.1) we need to write the scalars

¥(o) = J(-.gu\,v“v\));i dt , ' - (6.5)

~

v

0(5) = [ Aylz(t,0))v

ar, (6.6)

in terms of tensors at z°.
Consider first the expansion of the scalar ¥(t, o)

where

o(t,0) = -@s/dtf = vy (t,0) , ¥(o) = f (_-w)“Lz dt . (6.7)

Making use of (6.4),

ap/dc = 2vyevh/so = avpeitset (6.8)
u 2qM
1 329 “gl . ovys
2 302 - 55 6t uéo&t A
81 Vo U AqE u (6.9)
= %'y 81" + v 1°R vViITE o+ vy 8210 . .
5 a WV AR §too -

‘Now‘cﬁoose the curves”zx{t, o), t constant, to be geodesics

with_o an affine parameter, so that

- o 61“(t,o)/66.=v0 . (6:10)

'.diving‘ | : L . .
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Using (6.4) and (6.10) gives

G

SRS TS T
1 333 - p 521 V187K
2 30° ~ 2 FT Tost Rvuxglx_ Ty R;:;;j

IV RIVIETK 4 2R V18 51 (uy M)
VHAE [k : VUAE g_t Y
I

= 2 81" 1VR vA18 + R

-t
i

Since Rvulglvlg is symmetric, this is
i?: #GR AR GRS CALA (6.12)
-~$ ukE 3T vupo A" .

For s1mpl1c1ty, neg]ect squares and derivatives of the

curvature Then

- ' : u [o] :
L3ty . V81 81 = (6.13)
7 357~ YRvwps! T 5g 5% p

t

and higher derivatives of y are all O(Rz, VR). Let ja(t)
denote 1" (t, 0=0) and define the "geodesic connect ing
vector" (from Z.to z) to be 0% = 01“.'&? is 1ndep;;dent of
-choice of affinerérameter o. In particular, if 0 were
chosen to be tHe_geOdeSic distance along szthen‘]a would be
the unit tangent vector at Z to Zz'and o 5'(odoa)%.

Collecting together (6.7), (6.8), (6.11), (6.12) and (6.13)

;_gives .
Y(tyo) = ¥ 2—[3-35%4£DJ =V V4 2V 50 , % L
. . nlg 3¢ om0 - a5t -8t &t

o u=0
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) . . . )
a 8,uByY L 480°yY L 1680PsaY .
+ RasYso g (Vv +'§ETtV 'S_T'E_’) + 0(R2, vR) . (6.14)

Now consider the expansion of

4
0(0) = [ A(z(t,0))v (ty0) dat (6. 15)

Differentiating gives d?/do =
‘ v oy Ayl v ou
,f(Au|v1 e a1t et)de = f WL+ (A - Agp) v )t

' b

. - ) BRI

Ci.e. d¢/dq J Fuvv 1 dt

One may show (Appendix 9) that continued differentiation

ines, for. n ='1,,2....
n n
-d ¢/do =

f |
N [Fqua(n-1> w|A(n-2) 7%

+ 1(a-1) (a- z)FuvIA(n N JUILAITSEACEED

'+ Liae1) (ae?) (an | b P107V 1A A (n=4 g
*FEmD (D) - DF ) (o )"\ oo %% L 0] o A
: | | | | | %hiJJ&
+o(r?, W) . o (e.te)

In terms of o® =.01%, (6.16) gives '

o 1 .co. = n N : . o ) ’

| o(o) DR s TP ] o(t,0) dt*f'

- 1Here we - 1gnore fd(Avl“) since 1; does not contribute anything to 61
‘ when the. world-line is varied,-,f L A

oo . ) . ;' -~ . K *(': o
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where ,

p(t,o) = A Vd - z F ﬂx(n5 [.__l___ VaO'B +

o n=o %BlY¥(n) (n+1)!
o .
+ n+l M UB ¥ 1 R a B £ & 1 Y . 1 (SUTY
Rk AR A S T s w3
4% . ) <
3
+ O(RZ) VR) . M

e

This completes the expans1on of (6.1). The 2Ft1on 1ntegra1 N

has been expressed in_terms of tensors at 7 4

) .‘Q # < / ’
= o a 60 ' nQ : e 1
1 = f Lgv , ga%, g ' 5t FaBI}(n)' R de) dt (§.18)
where
-\. . ) ’ » . 3 . ﬁ
, Ly o ‘ b
CL(E) = - m(-y(t,0)) % + ed(t,o) (6.19)

/o

"and the expanded’ forms of w‘andiy_are Piveﬁ_in (6.14) and

5

(6.17). . T g

b . N —
/ , ' ‘
14 »
) ~
»

,6 3 Equations of Motion in Given Externa] F1e1ds -

ca -

The prevlous section concerned 1tself w1th the expan-

sion of the sLecif1c act1on (6. 1) in pbwers of o°. The B

w

expans1on may be car#ﬁed out qu1te generally for any actlon :

1ntegral representing a particle with wor 1d- llne z (t) in

..given externa] ftelds ¢

'An'action integral i\ .[-74’5 B

\

N v : A \ x : S

Pd
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e [ LG gygn ey02) db | (6.20)
may be written as ‘ ' -
I = f LV, guge 0% % ¥,(D)) dt + O(RZ, WR)  (6.21)

;
- a
(¢Ala(n) , R% By 6) and ¢ = 80%/6t. |
g The equat1ons of mot1on are. obta1ned from variation of

where Y

z4(t) with fixed endpoints. Also, since Z “(t) is any chosen
reference world-line, I must be iﬁvariant under arbitrary.
variafidn of Zq(t) Th{s implies that by simultaneous varia-
t1on in both 2" (t) and Z%(t) it is possible to derive the
equat1ons of mot1on 1n var ious equ1va1ent forms

Cons1der a one parameter famlly of - 1nf1n1tes1ma1 dis-
placements in both z"(t) and z%(t), z (t,e) = 2" (t)+en® (1),
z%(t,e) = Zd(t)+€5a(t),‘with'fixed éndpoints. We,noie that

since 9% and 60°/st are both'twq;point-vector.fiélds‘,
‘differehtiation must ‘be used with caution, ¢ oL../cSt and OQTBV
are not the same: we have , - 5

,B a A

..a

6% = s0%/6t = s0%(T(t),2(tF)/8t = 0% VT + 0|V (6.22)
- The accompanying absolute variations aré
" a )
sV _ 8 [az } 8¥y
— R e | — N - ‘1/ 32 ,
A ‘ e | 6t ° 65 éla-a"é
‘3 ................. N N ’ -

ig® transforms as a vector at Z and .as a scalar at z. For a
discussion of two-point tensor fields (also calied bitensor
fields) see [30] '

© . . . . i

B.



azf + o°
o€,

a _ a
§¢" = o

Se l)‘

IB de Se

Y

3_2_)‘ , }5_[600‘] =8 [Goa] + GBRBQ ARy
8 €
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(6.23)

§
Y§' oo

t Se

Extremizing I(e) = j&Ldt subject to fixed z"(t,, ¢ ) =

zM(t,, 0, 2%(t,, ) = Z%(t,, 0), (i =1, 2), yields for
arbitrary variations 3z"/3¢, 32%/3e,
t2 a a a ‘
I TR A
de . 3Va<5t 2¢ Ban a&aat 6;
1
3L 5. o« ,ya7S , 3L 22%) . _
+ S=57R, vYsZo + = = | dt = 0 .
5o B v§¢ e B‘Pé é\la de _

By integration by parts, the action principle then gives

3

t s
2 a . .
SL st r 6 sl ol gy ys o, oL
t sa® se . | aVv?® Al “

st 3

Al

Q.
—

(6.24)

a
™

for arbitrary az“/ae; azu/aé, where
sLo_ 3L .8 [?_L] (6.25)
sa®  30%  stlac®

~and §0%/8c is given in (6.23).

Choosingkalg/ae = 0 (reference world-line 2%(t) held .

fixed, actual world-line z*(

(6.24), the equations of mbf

t) variéd),therefore‘gives, from

jon in the form.

o . (6.26)

o
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The equations of motion may also be?%?fained in an alternate

form by simultaneous variation 1nAboth z"(t).and Za(t),
subject to §0%/se = 0. From (6.24) this immediately gi.zs

the translational equaffons of motion

-
T

-l By A |
8P /6t = R8 Gas v o+ M Wéla' (6.27)
where .
T .. [@ oL a8l (6.28)
P Ty ? S B *—?] » M= = oY, )

Also from (6.24), we see that choosing 3z"/se = Ov(z“(t)
“held fixed, Z%(t) varied) implies that L satisfies the

(SL/GOBjcB!a - 6P /6t + —R sBYys 4 Miy
>

Byda ala = O

~which confirms the equivalence of (6.26) and (6.27).
To. obtain the spin equations of motion, note from

(2.11) the following identity satisfied by L:.

B8, 0L o 3L 8 L B,

By _ o ,
Y. =0 (6.29)
N P sﬁg'gay ac®  ag® (Ié £ o

-

which impl%es

5 B BL = - ?L- V8°+ 3L g ' - SL OB» aL B
Ef 80
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Antisyﬁmetrization and (6.28), (6.26)! then give the spin

/
|
e
|
|

"?le . < (6.30)
T t

equations of motion

—ss“s/at = P[“VB] + M1 B)

‘The derivation of (6.27) and (6j30) closely parallels
that of'(2.§3) and (2.22). However, no introduction of spin
coordinates eéa)(t) and their subseqﬁent variation was
needed in this section; the spin equetions (6.39) are
essentially a consequence of fhe(translatﬁonal equations in
the form (6.26). Appendix 10 formulates the present sectibﬁ
in terms of a tetrad field and shows that (2.22) and (2.23)

follow from the more genefa] considerations of this gection.

6.4 Gravita?ional Field Equations

The curved-spacetime generalization of (5.48) may be
obtained by adding free-field Lagrangians for tﬁe electro-
magnetic and gravitetional fields io the expanded form

(6.19) of the’particleﬂLagrangian and then calculating the L‘;

’

gravitational field’equafions from variation of the metric. ' ;

This results in the one- partxcle limit' of the equations of b ‘igm
BN
LR

Chapter 4 which descr1bed a cont1nuous matter. d1str1but1on

1We ma{ write 1 of (6.21) as I =. fL (x)d¥x where Li(x) =
fL{z)s%(x-Z(<))dt (r is proper time along Z%*)}. If U%(x),

- ¢%(x) are any smooth functions of x reduc1ng to U%(t), o%(1)
on Z%, and if L,(x) denotes L(U%(x);g,glx),...), then L;(x)
= /—gn(x)Lp(x) where number density Aen(x) = [o%(x- Z(<))dr.
This is the one particle limit of ”dus%like" matter. (We
go?sider 5“(x Z) to be a scalar dens1ty at x and a scalar at
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~

'The gravitational field equat.ons are (4.24) with téc, geto
: \ agd. aB aBy :

given by (4.26), (4.36{\:? re t(mat) and S(mat) have thg
taB = { Pu(T)UB(I) sH(x-Z(1)) dr ,'
(mat) .

. | (6.31)

aBy . aB, B Yoy ' '
Sﬁmt) [ STP(TYUT () 67 (X Z(f)) dt

6.5 Einstein-Lorentz Theéry

For a multipole partic]e in an Einsteiﬁ-Maxwe]] ield,
equations (2.25) to (2.28) inserted intol(6.27)rand'(6.30)
(i.e. (2.23) and (2.22)) give the equations of motion
(2.29), (2.30). specific expressions for p”, 5B m2fy ()
and q;BYG,.that generalize (5.24), (5.30) and (5.32) are
given simply by differentiation of the Lagrangian (6.19).
Noting that (-'\b);5 = ds/dt, equations (6.14), (6;47), (6.19)

give the following:

A
4

p* = al/av_ - eA?

. v
! N

Cdtfye , ce o v 8,yB,.2°By) _ v __e ra 8 y(n)
ma;{v too tRg o e (v *i“’]_ nZO G T 8y °

| e e - gve B e 8 y(n) -
'ﬁzo 2(n+3)n!FYs|I(q)Re 9 9 ¢ 97 i (6'32)

<

[

5
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aB _ [a . -
S 20 BL/BGB]

&

dt [ae,yB81 , =B8], 1, B] _€_§ VY ey
2myco (v + g + 3R 46 © (2V'+go ))

2e(n+1) - [a_B] o8 y(2)
o (a1 ? F sly(m® 77

]
o]
ne~18

2. e lagt 8l n e 6 y(n)
nzo I(asd)ar oloF nly () Ree Gonoeq grin) (6.33)

m*BY (D)~ 951/0F | =
a8

) Bly(mn)
- 26 layBl . (atl) - 381 y(n)
‘ , mr © VTt . +2) Yot
« o« - 16.34)
e [a Bl € 8;yuY (n+3) 2yy _v(n)
- T RE Y50 6 a (V +'§THIZ)O Yol 2
and , - ‘ ' -
v\// ) ' 1} - T ‘
T e ealer o= L (6.35)
. ' . : 2,810y % 1:81: 51
%m%i‘c[a(yﬁlv[Y + %oB]V[Y + §._VB.]G[Y. + goﬂlo[Y)o }.
Cw (s (3] [: \ [y 31
e v 1 ( e x(n) 1oy, .y>] 50
-‘i‘nZO ot o® ely(n) ((n+3)v ¥ 3(n+s) ° ¢

(p* and S“é are parameteb-independent, m" BY(n) and qmswS are



not, set t = t to Fix them uniquely. )

(6.14) and (6.17) are expanded only to "first" order in
| aBYG’ i.e. neg]ectihé squares and derivatives of curvatqpe.
It follows that (6.32), (6.33) and (6.34) are to first order
in R‘J‘BY(S while (6.35) is to zero order. An expans{on>of I to
all orders of R would enabie anYGE(n) to be calculated for

any n.

: It Qas noted in the previous section how the addition
of free- f1e1d Lagrangians for ¢A and . g af to a Lagrangian o
the form 6.21) gives, on variation of g B’ the grav1ta—
tional field équathns.of Chapter 4 with the material

tensors having the one particle forms (6.31). Setting ¢, =

(A,, Fog), the whole of Cﬁaptér 4, Sectfon 4 applies, with

N

b

Vg I (%) = J eU® s (x-Z(1)) dr = I, (eU®)

[

e

[T TE 00 = T (%R, f*‘s?z;t)<x> - IO(S“BU”)g‘,I(G{SS)a&%

»¥

/g O‘BX(H)( %) I‘o(maBir(n) ), V5 quyég(n} éx) o QB'YGE"(Q_'.(_T‘)) ,
ﬁhere p*, 58 etc. are the sing]e_particlé\fourémomentum;g
‘spiﬁ etc. §pecificvexpréssions‘f6132) to. (6.35) ﬁay be
_substifuted into (4.4%) to give the curved-space‘gen?ra1iz-J
ation of localization (5.48). )

. For a collect1on of part1cles, each mov1ng as a test
body in the overall electromagnet1c and grav1tat1onal f1elds

without d1rect particle 1nteract1on a sum of act1ons of the

N . oo A
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form (6.21) will give the gravitational- field equations

- (4.47) with J%, T&it) etc. given by summation of the right

hand sides of (6.36). (4.47) therefore apply to a gaseous
aséembly of co]iisionless, ohargeo sp1nn1qg particles. In
terms of an invariant d1str1but1on functlon pix,e) equat1ons
(6:36) are replaoed~by phase space integrals, for example
S(x) = [ulx,2)e(@)u®ta)dar. In (3.38) o is a timelike left =

eigenvector of t?ﬁaﬂ and the material spin flox.S?gLQ =
ST is conveotive;l"carried along” by u”. For a gas the

at)
convect1ve SN S L -

' sp1n flux S?BY = [us*®U'de will not, in general, be

6.6 Propagators for Momentum and Sp1n

-To compare ‘with the def1n1t1ons for momentum and spln
g1ven\by Bﬁxon [11], in part1cular (5.1) and (5.2) of [11c]
we now show that p and S oB may be relatgé to p ‘=gmul via
two propagators (two- pp1nt tensor f1elds K oy de); <

Let _1x (Z,z) denote. the inverse of o

P%»exf~rﬁﬂvd-:c
Y TR :
R L o T 5 (6.37)
Then ” ’Vf ’ ‘ .
‘ S 2 Ty g o B . .
1 =‘1 ‘ + .38
' I SN CE
gives o ! :b v
D . (6.39)
L : . el & | | o ‘ .
where &

o

1Cf. [6c] which postulates. on the basis of the balance o
]aws,_the field equations for a dipolar ‘gas.

< »
- o



