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ABSTRACT

It is the purpose of this manuscript to study the class of orderable
groups which satisfy the maximal condition for subgroups locally., As
such, it is, therefore, a study of a class of torsion-free, generalized
solvable groups on which there is imposed a finiteness condition. The
choice of the local satisfaction of the maximal condition as a vehicle
of potential interest and utility in the study of 0-groups was suggested
by (1) a careful investigation of torsion-free, locally nilpotent
groups, and by (2) the realization that the imposition of this finiteness
condition upon an 0-group necessitates the nommality of each of the
group's convex subgroups.

Chapter 0 is expository in nature and serves to introduce the
concepts and results employed throughout this manuscript.

~ Chapter I is devoted to a study of torsion-free, locally nilpotent
groups. The main result of this chapter is that the convex families of
a torsion-free, locally nilpoi:ent group are central systéms of the group.
Necessary and sufficient conditions that a family of subgroups of a
torsion-free, locally nilpotent group G be the family of all convex
subgroups with respect to some order on G are also derived. The
chapter is concluded with the proof of a condition which guarantees
that certain members of the upper central series of a torsion-free,
nilpotent group G be absolutely convex in G.

Polycyclic 0- and polycyclic R-groups are investigated in Chapter
II. Herein is stated a necessary and sufficient condition that a
polycyclic 0-group be nilpotent, We also find that the derived group

of an 0-group which satisfies the maximal condition locally, which
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sacisfies the maximal condition, or which is polycyclic is a Z-group,
is a ZD-group, or is nilpotent, respectively, The fact, proved herein,
that a group G is a supersolvable, R-group if and only if G is a
finitely generated, torsion-free, nilpotent group yields a number of
interesting corollaries. Examples of polycyclic R-groups which are
neither nilpotent nor orderable conclude this chapter.

In Chapter III, we give counterexamples of various erroneocus
assertions appearing in the literature and present substitute theorems
for these false claims. We also prove that the group of o-automorphisms
of a polycyclic O-group is nilpotent by abelian and polycyclic.

In Chapter 1V, the omnipresent condition of the local satisfaction
of the maximal condition joins forces with yet another finiteness
condition, viz., the condition that' the 0-groups under consideration
admit only finitely many different orders. Such groups are shown to be
locally polycyclic; moreover, if such a group is nonabelian, then the
Fitting subgroup' exists, is absolutely convex, and coincides with the
isolator of the derived group of the given group. We end Chapter IV
by demonstrating that a torsion-free, nonabelian, locally nilpotent

group admits infinitely many different orders.
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CHAPTER 0
' PRELIMINARIES

A group G on which there can be defined a relation < which is
reflexive, antisymmetric, and transitive and which has the additional
property that a,b,x,y € G and a <b imply xay < xby 1is said to

be a partially ordered group, < is said to be a partial order on G,

and G is said to be partially ordered (with respect to <). Associ-

ated with each partial order X onagroup G is the positive cone

P(G) of G, where P(G) = {x[x e G and 1 < x}l. It follows easily
that the subset P(G) of the partially ordered group G possesses
the following properties:

(i) PN PLle = 1} , where P7l(G) = {x'llx e P(G)};

(ii) P(G)P(6) C P(G); and '.

(iii) x'lP(G)x_c_ P(G) for each x e G.
In other words, P(G) is a normal subsemigroup of G, containing no
element together with its inverse other than the identity 1 of G.

Conversely, if G is a group possessing a subset A which
satisfies properties (i) - (iii), then G is a rartially ordered group

with positive cone A with respect to the relation < given by
a<b if and only if a’lp ¢ A,

A group G which is partially ordered with respect to < is an

ordered group if and only if < 1is complete in the sense that a,begG

imply a<b or b < a. This is easily seen to be equivalent to the
assertion that G possesses a subset P(G) with properties (1) - (@{ii)
and, in addition, P(G)\ P'l(G) =G. If G is an ordered group with

respect to <, we say that < is an order on G, that G is ordered



(with respect to <), and that G is orderable (with respect to <).
Following Neumann [14], we shall denote the class of orderable groups
by "0" and shall say that G 'is an’'0-group if and only if G ¢ 0,

It is easily seen that any (partial) order on G is uniquely deter-
mined by its positive cone, so that » for the sake of brevity, we shall
say '"the (partial) order P(G) on G@", instead of 'the (partial)
order on G with positive cone P(G)."

A subgroup H of a group G ordered with respect to P(G) is
itself an ordered group with respect to the induced order P(H) =
P(GINH on H.

A subgroup C of a group G ordered with'respect to < is
convex (with respect to <) if and only if Xe G, ceC, and
1<x<c imply x e C, whereas a subgroup A of G is absolutely

convex if and only if A is convex with respect to each order on G.

is the intersection of all convex subgroups of G containing A. If
A is a subgroup of G, then it follows that the convex subgroup of G
generated by A is P(G)AN P'l(G)A.

Suppose now that G is ordered with respect .to < and that N
is a normal convex subgroup of G. The factor group G/N can be
ordered by the relation, which we also denote by <, given by

aN < bN if and only if a < bn for some n ¢ N:
It is clear that a<a- 1, whence aN < aN; if aN < BN and bN < aN, -
then a<bn; and b < an; for some nj, ny; € N. Thus, (a"lb)~1 <my
and a lp < np, while 1< (a"1b) 1 o1 < alp as < is an order
on G. By the convexity of N, alp ¢ N, whence aN = bN; if aN < bN

and BN < cN, then a_<_bn1 and b < cn, for some ny, ny e N, so




a < c(nyny). Thus, aN < cN; finally, if a,b € G, then a < bn for
some neN or b<an for all neN. Thus, aN < bN or bN < aN.

The order on G/N defined above is called the induced order on G/N

by G.
A result of Levi [11] which is relevant to this discussion and

which shall later prove useful is

Theorem 0.1: Suppose N is a normal subgroup of a group G and
that both N and G/N are orderable. Then there exists an order on
G inducing the orders on N and G/N if and only if P(N) is invari-

ant under the inner automorphisms of G.

Proof: If P(G) is an order on G inducing a given order P(N)
on N, then P(G) N = P(N), from which the invariance of P(N)
follows as a consequence of the }invariance of P(G) and N.

On the other hand, if P(N) and P(G/N) denote orders on N
and G/N, respectively, and if P(N) 1is invariant under conjugation
by elements of G, then it is easily verified that P(G) = P(N) U
{x|x € G-N and xN e P(G/N)} defines an order on G inducing the
orders P(N) and P(G/N) on N and G/N, respectively.

This line of thought has led us to the salient and useful

Theorem 0,2: If Ge 0 and H is a normal subgroup of G, then
there exists an order on G with respect to which H 1is convex if and

only if G/H e 0.

Proof: Clearly, if there exists an order on G with respect to
which H 1is convex, then G/H is ordered with respect to the order
induced on G/H by G.

Conversely, if P(G/H) denotes an order on G/H, then PH(G) =



PON WU {x|x e G-H and xH e P(G/I)} is easily shown to be an
order on G with respect to which H is convex.

If < 1is an order on a group G, then < is an Archimedean order

on G and G 1is an Archimedean ordered group (with respect to <) if

and only if a,be G, 1<a, 1<b imply the existence of a positive
integer n such that b < a®, An interesting observation to be im-
mediately made is that an Archimedean ordered group is "convex simple"
in the sense that such a group contains no proper, nontrivial, convex
subgroups.

If G and H are O-groups and f is a mapping of G into H,

then f 1is an o-homomorphism of G into H if and only if f is a

group homomorphism of G into H and f is order-preserving in the
sense that a,be G and a < b imply £(a) <o £(b), where < and
<, denote the orders on G and H, respectively., Furthemmore, if f
is a one-to-one o-homomorphism of G onto H and if £l s an

o-homomorphism of H onto G, then f is an o-isomorphism of G onto

H. Two ordered groups, say G and H, are o-isomorphic if and only if

there exists an o-isomorphism of G onto H.

At this time, it is now possible to state a well known, indis-
pensable result of Holder [7], a proof of which can also be found in
(2], pp. 45-46:

Theorem 0.3: A group G is an Archimedean ordered group if and
only if G is o-isomorphic to a subgroup of the additive group of real
numbers with the natural ordering.

As an immediate consequence of Theorem 0.3, we see that any archimedean
ordered group is abelian. |

Another result of interest and utility is due to Hion, the proof .



given here being essentially that given in [2], pp. 46-47:

Theorem 0.4: Suppose A f {0} and B are subgroups of the
additive group of real numbers, endowed with the natural ordering, and
suppose f is an o-homomorphism of A into B. Then there exists a
nonnegative real number r such that £(a) = ar for each a e A.

Proof: Let us first assume there exists a, € A such that 0 < a,
and such that f(ao) =0. Let ae A such that 0 < a., By the
Archimedean property for the reals, there exists a positive integer n
such that 0 < a < na, , whence 0 < f(a) inf(ao) = 0. Thus,

f(a) =0 for all 0 < ae A. In this case, therefore, £f(a) =0 for
all aeA,so r=0,

Let us now assume that 0 < ae A implies f(a) 0. Let 0 < 3,
0 < a,, where aq, a; € A, Suppose,. by way of a contradiction, that
f (al)/f (a)) aj/ay . Without loss of generality, assume that
f(al) /£(ay) < aj/a; . Let m/n be a rational number, with 0 <m and
0 < n, chosen so that f(a1)/£(ay) < m/n < al/az - Then ma; < nay
and nf(a)) = f(nap) < mf(apy) = f(ma,), which is impossible, since f
is order-preserving. Therefore, f(al)/f(az) = aj/ay ; i.e., f(a)/a ,
a e A, is constant for 0 < a € A. Thus, £(a) = ar for some real
number r, where a e A. Clearly, ‘T 1is nonnegative.

When Theorem 0.4 is applied to the group of o-automorphisms of an
Archimedean ordered group, it -- together with Theorem 0.3 -- yields
the following interesting and useful

Corollary 0.5: The oo-automorphisms of an Archimedean ordered

group form an abelian group which is isomorphic to a subgroup of the
multiplicative group of positive real numbers.

In other words, an o-automorphism of an Archimedean ordered group is



essentially nothing more than multiplicatign by a positive real number.

Needless to say, the class of torsion-free groups is an immensely
wide class of groups. One method of studying this monstrosity is, of
course, to study certain of its subclasses. In particular, we shall
be most interested in that class of torsion-free groups known as the
class of orderable groups. Many prominent mathematicians have found
the study of 0-groups an interesting study of torsion-free groups;
conspicuously among those earliest investigators of 0-groups was
B. H. Neumann, for it was Neumann who first proved that the property
of being an 0-group is a property of finite character;'that is, if we
agree to say that a group G ‘possesses a property P locally if and
only if each finitely generated subgroup of G possesses property P,
then Neumann was first to show that G is an 0-group if and only if
G is an 0-group locally (see [15]). An application of Neumann's
result to abelian groups renders transparent the fact that a nontrivial,
abelian group G is an 0-group if and only if G is torsion-free. As
is often the case, Neumann's result can be drawn as an easy corollary
to a later theorem of Los [12] and Ohnishi [17]:

Theorem 0.6: A group G is an 0-group if and only if for every

finite set a,, 2,.0058y , L a; for i=1,2,...,n, of elements of

G, the signs é? =+1, i = 1,2,...,n, can be chosen so that
& .
1¢ S(al , 32 yeves an ), where S(al , az yeees an ) denotes the
& En

normal subsemlgroup of G generated by {al » 82 5.0e5 3 L Fuchs
(see [2], pp. 34-35) has demonstrated the fundamentally important role
played by the normal subsemigroups of orderable groups.

Again, it was Neumann [14] who was first to prove the important

property that if Ge 0, a,b € G, and a™™ = b™™ for some nonzero



integers m and n, then ab = ba. However, both results of Neumann
listed above and, in general, many of the properties of 0-groups are
enjoyed by even a wider class of torsion-free groups known as
"R-groups", a class which has received the careful attention of
Kontorovic (see [8] and [9]) and Plotkin (see [18] and [19]): A group
G is an R-group if and only if a,b € G, n a positive integer and

al = b imply a = b. It is clear that an (nontrivial) R-group is

torsion-free, since a e G and 1M = g imply 1 =a. Even of
greater significance to us is the fact that each 0-group is an R-group:
For, if a,be G and a < b, then am™ < b for all positive integers
n. R-groups will prove to be of interest in that which subsequently
follows; therefore, we document here some of their most important
properties, following a paper of Kontorovic [8].

An iﬁportant concept in the study of certain classes of torsion-

free groups is that of "isolated subgroups:* A subgroup A of a

group G 1is an isolated subgroup of G if and only if ge G, n a

positive integer, and gl e A imply g € A. It follows readily that
the intersection of isolated subgroups is isolated. The isolator of a
subset S of a group G is the intersection of all isolated subgroups
of G containing S. Isolated subgroups are familiar entities in 0-
groups, for if G is ordered with respect to <, if C is a convex
subgroup of G, and if g € G such that gl ¢ C for some positive
integer n, then, without loss of generality, we may assume 1 <g
whence 1< g < gh; therefore, by the convexity of C, g € C. In other
words, any convex subgroup of an ordered group is an isolated subgroup
of the group, If G is a group and S is a subset of G, let us

denote the centralizer of S in @ by CG(S). We can now prove



Theorem 0.7: If G 1is an R-group and S € G, then Ce(S) is an
isolated subgroup of G. |

Proof: Let n be a positive integer and let g e G such that
g" € C5(S). Then s7lg = g for each s e S. Thus, (s lgs)™ = gl
for each s € S, whence, since G is an R-group, s'lgs = g for each
s € S. Therefore, g ¢ CG(S).

Corollary 0.8: The center Z(G) of an R-group is an isolated

subgroup of G.

Proof: Take S =G in Theorem 0.7.

Theorem 0.9. If G is an R-group, if a,b e G, and if [a%b™] =1
for some nonzero integers n and m,then [a,b] = 1.

Proof: It suffices to prove the assertion for m = 1, Now,
[ah,b] = 1 implies (b™lab)? = b~lap = an, Since, by hypothesis, G
is an R-group, b~ lab = a, whence [a,b] = 1.

Theorem 0.10: A torsion-free group G is an R-group if and only

if G/Z(G) 1is an R-group.

Proof: Suppose G is an R-group and let a,b € G such that
(aZ(G))™ = (bZ(G))™ for some positive integer n. Then al = bz for
some z € Z(G), whence [a",b?] = 1, Thus, by Theorem 0.9, ab = ba.
But a" =b", so (1) =z¢2(G). As Z(G) is isolated,
ab"l e Z(G), so aZ(G) = bZ(G). Therefore, G/Z(G) is an R-group.

Suppose now that G/Z(G) is an R-group and that a,b € G such
that a% = b for some positive integer n. Then (aZ(G))™ = (bzZ(G))™,
so that aZ(G) = bZ(G). Thus, a = bz for some z ¢ Z(G). But, al = bn,
sothat 1 =2 As G is torsion-free, z = 1, whence a = b, There-
fore, G 1is an R-group.

The chain {1} = Z CZ; ... CZ;<.... of subgroups of a group



G, where Zi+1/zi = Z(G/Zi) for i=0,1, 2, ...., is called the

upper central chain of G. Using Theorem 0.10, an easy inductive

argument establishes

Theorem 0.11: If G is an R-group, then each term of the upper

central chain, {1} =7 cz;< L<..clj< ..., of G is isolated

in G, each of the factors Z.

i¥1/2; of the upper central chain is a

torsion-free, abelian group, and each of the factors Zi+1/zi is an
R-group.

Theorem 0.12: If G is an R-group and A 1is a maximal abelian

subgroup of G, then A is an isolated subgroup of G.

Proof: Suppose g e G, n is a positive integer,. and gl e A. ' Then
[gll,g] =1 for a e A, whence, by Theorem 0.9, [g,a] =1 for all
ael. Thus, <g,A> is an abelian subgroup of G and, if gtA,A
would be properly contained in < g,A >; however, by the maximality of
A, this is not possible. Thus, g € A.

To conclude our discussion of R-groups, we prove

Theorem 0.13: If G is an R-group and 1 $ x € G, then the isolator

I(x) of x in G is a torsion-free, locally cyclic subgroup of G.

Proof: Since G is torsion-freeand 1% xeG, < x> is a
torsion-free cyclic -- thus, locally cyclic -- subgroup of G. Also,
the union of an ascending chain of torsion-free, locally cyclic groups
is a ﬁorsion-free, locally cyclic group. Therefore, x is contained in
some maximal torsion-free, locally cyclic subgroup A of G. Let
aeA, Then x,aeA, so <x,a>=<y> for some Y € A. Therefore,
x=y" a=y", and, hence, a® = X ¢ < x >CI(x). Since I(x) is
isolated, a ¢ I(x), whence ACI(x).

By reasoning entirely analogous to that above, x is also contained
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in some maximal abelian subgroup B of G. By Theorem 0.12, B is
isolated in G and x e B, whence I(x) C B. Moreover, since B is
isolated in G, the isolator Ip(x) of x in B contains the isolator
I(x) of x in G, But B is a torsion-free, abelian group and the
isolator of any nonidentity element of such a group is a torsion-free,
locally cyclic group (see [10], p. 210). Thus, IK)C Ig(x) and
Iz(x) is locally cyclic, whence I(x) is a torsion-free » locally cyclic
subgroup of G. As ACI(x) and as A is a maximal torsion-free, lo-
cally cyclic group, A = I(X).

An interesting subclass of the class of R-groups is the class of
"R*-groups": A group G is an R*-group if and only if a,b;xl,xz,...,

X X1 X
2

X
xneG and.alaz...a X

imply a = b, where by a%,
x € G, we mean x lax, R*-groups have been studies by Plotkin [18], and
Fuchs [3] has used the concept to pose an intriguing, unresolved problem:
Is every R*-group an 0-group? It is known that not all R-groups are
0-groups (see, for example, Chapter II). According to Fuchs [3], a

group G 1is generalized torsion-free if and only if ae G and 1 ¢ S(a)

imply a = 1, It follows easily (see [3]) that a group is an R*-group if
and only if G 1is generalized torsion-free. It is interesting to observe
that any ordered group G- is an R*-group: For, if G is ordered w1th
respect to < and a e G such that 1 <a, then a8 > 1 for each g ¢ G.
Thus any finite product of conjugates of a is greater than 1.

Prior to undertaking the final topic of this chapter, we digress
here to discuss an important subclass of 0-groups known as "0*-groups:"
A group G is an O*-group if and only if each partial order on G can
be extended to an order on G. An 0*-group is, therefore, characterized

. by the property that each maximal partial order on G is an order on G.
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An 0*-group G is easily seen to be an O-group, for {1} = P(G) is a
partial order on G, whence {1} can be extended to an order on G.
However, only recently has it been shown that not all O-groups are 0%-
groups (see [4]). As in the case for 0-groups, let us note that a group
G is an 0*-group if G is an 0%*-group locally, a fact manifested by a
result of Ohnishi [16]: A group G is an 0*-group if and only if

(1) a,b,ce G and b,c e S(a) imply S(b) N S(c) #0 and (ii) G
is an R*-group.

Numerous unresolved problems concerning O*-groups are posed by Fuchs
(see [2], pp. 209-213), one of the most interesting being, '"Are sub-
groups of 0*-groups, O*—groups?f' An affirmative answer to this question
1s given in this manuscript for the case when the 0*-group is locally
supersolvable, this result being a consequence of the fact that a tor-
sion-free, locally nilpotent group is an 0*-group (see [3]). We now
proceed with a discussion of the final topic of this chapter -- "gen-
eralized solvable groups,"

Since solvable groups form such a wide generalization of abelian
groups, it is not surprising that but a few of the nontrivial properties
of abelian groups can be carried over to solvable groups. More interest-
ing in this respect are certain classes of groups intermediate between
the classes of abelian and solvable groups -- nilpotent, supersolvable,
and polycyclic groups.

By a nommal (invariant) series of a group G is meant a finite

chain {1} = A,C M<C...6A 1 CA, =G of subgroups of G such
that Ai is normal in Aj_+1 (G for i=0,1, ..., n-1. An invariant

series {1} = A,CA C...CA =G of agroup G is a central series

of G if and only if Ai+1/AiC_. Z(G/Ai), i=0,1,...,n-1. A nomal
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(invariant) series {1} = AACAC... CA =G of agroup G is a

cyclic normal (invariant) series of G if and only if Ai+1/Ai is

Cyclic for each i =0, 1, »+e5 -1, A group G is nilpotent if and
only if G possesses a cyclic invariant series; finally, G is poly-
cyclic if and only if G possesses a cyclic nbrmal series, By the
length of a polycyclic group G with a cyclic normal series

{1} =A CAc...cA =G is meant the nuber of infinite cyclic
factors A1 +1/lg-_ of the given cyclic normal series. It is not difficult
to prove that the length of a polycyclic group is an invariant of that
group. It is well known that a polycyclic group satisfies the maximal
condition for subgroups and that a finitely generated nilpotent group
is supersolvable, whence any member of any one of the three classes
defined” inmediately above satisfies the maximal condition for subgroups
locally. The importance and relevance of these three classes of groups
is manifested by the knowledge that it is precisely the subsequent
investigations of thoseordered groups which satisfy the maximal condi-
tion locally that constitute the bulk of this manuscript.

Just as the desire to generalize the concept of an abelian group
ultimately led to the development of new and important classes of
solvable groups, so too has the desire to extend the notion of solvable
group led to a corresponding development of various classes of general-
ized solvable groups. The generalizations which have apparently been
most fruitful are those which extend the concept of a normal series to
that of a "normal system" of a group. In a brillant paper of Cernikov
and Kuros [1] -- which we follow here -- the notion of a normal system
is deftly employed to generate numerous important classes of genefalized

solvable groups.
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If G isagroupand ¢ is a family of subgroups of G which
is a chain with respect to set theoretical inclusion » then a jump in z,
denoted by A-—<B, is a pair A,B of elements of £ such that A is
a proper subset of B and no element of I lies strictly between A
and B. A family © of subgroups of a group G which contains {1}
and G, which is a chain with respect to set inclusion, and which is

closed with respect to arbitrary unions and intersections is a normal

system for G if and only if for each jump A=<B in I, A isa

normal subgroup of B. A normal system I is an invariant system for

G if and only if Ae g implies A 1is a normal subgroup of G, An

invariant system I of G is a central system for G if and only if

B/AC Z(G/A) for each jump A=< B in 3. Naturally, therefore, a

group is a generalized solvable group if and only if it contains a normal

system I for which B/A is abelian for each juip A—<B in :. A
group G is a Z-group if and only if G possesses a central system,
Z-groups are, therefore, generalized nilpotent groups. Finally, a group
G 1is a ZD-group if and only if G possesses a descending, well-ordered
central system. The remarkable, underlying fact which makes all this
discussion of generalized solvable groups immeciiately relevant to
0-groups is

Theorem 0.14: Every 0-group is a generalized solvable group. More-

over, if G is a group ordered with respect to < and & is the family
of subgroups of G which are convex with respect to <, then

(i) {1}, Ge £, £ is a chain with respect to set inclusion, and
Z 1is closed with respect to arbitrary unions and intersections;

(i) Cez and geG imply g =glgg ey,

(iii) If D—=<C is a jump in I, then D is a nomal subgroup
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C and C/D is isomorphic to a subgroup of the additive group of real
numbers;

(iv) If D—C is a jump in I, then [NG(D) »Ng(@),C] CD, vhere
Ng(D) denotes the normalizer of D in G and [NG(D) »Ng(D),C] =
< [x,y,2] | x,y ¢ Ng(D) and z e C>;

(v) Cei,acG, and S@MNC#+ 0 imply some conjugate of a
belongs to C.

Proof: (i) Clearly, {1}, Ge I. Now suppose A,B e 5 and AE B.
Then there exists a e A-B. Without loss of generality, let us assume
that 1<a, If beB, then b < a; otherwise, 1 < a <b implies, by
the convexity of B, that a ¢ B. Thus » by the convexity of AB<A.
Thus, Z 1is a chain with respect to set inclusion. The remaining
assertions of (i) follow easily.

(i) Suppose ceC, x,geG, and 1<x<c8 Then 1 _<_gxg'1
< ¢ and, by the convexity of C, gxg™! ¢ C; i.e., x ¢ C8. Therefore,
ez,

(iii) If D—<C isa jumpin % and ge G, then D8 is a proper
subgroup of €& and, if Ke I such that D8c K C8, then DC gkg 1
C, which is impossible as gKg'1 el and as D-<C is a jump in I.
Thus, if D~ C isajump in I and ge G, then D5— & is also
a jump in I. Now suppose D—<C is a jump in £ and x e NG(D).

Then D =DX—<C* is a jump in £, and I is a chain with respect to
set inclusion, whence ngC or Cng. If CXC__'.:‘ C, then
DCC*CC, so that C%=C. Similarly, if CCC¥, then we again find
& =C. An analogous argument shows NG(C) CNg(D). Therefore, if
D—<C is a jump in %, then Ng(@) = Ng(C). We have, therefore, that

the normality of either member of a jump in I guanantees the normality
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in G of the other.

The factor group C/D is an ordered group with respect to the
order induced on C/D by G. Since D—< C, C/D can contain no non-
trivial, proper, convex subgroups. But any ordered group containing no
nontrivial, proper, convex subgroups is an Archimedean ordered group
(see [2], p. 47). Application of Theorem 0.3 completed the proof of
(iii).

(iv) Since NG(D) = Ng(©), each element a e Ng(D) induces an

o-automorphism a on C/D given by
(0c)? = ncl,

Thus, if a,b e Ng(D), then, by Corollary 0.3, ab =5 a; i.e.,
(DC)EB = (Dc)BE , SO Db-la-lcba, whence [a'l, b'l, c'l]
= bab'la'lrcalba-]'bnlc—1 eD for a,beN;D), ceC.

(v) Let ae G, Ce £, and suppose, without loss of generality,
that 1 <a. If ﬁo conjugate of a belongs to C, then, by the con-
vexity of C, ¢ < a® for each geG and each c e C. Thus, any
finite product of conjugates of a is greater than each element of c,
whence S(a)N C = {. To conclude this first chapter, we mention now
the important theorem of Podderyugin- and- Rieger, the statement and proof
of which can be found in [2], pp. 51 - 52:

Theorem 0.15: A group G is an 0-group if and only if G possesses

a family I of subgroups satisfying conditions (i) - (v) of Theorem 0.14.
Furthermore, if I is a family of subgroups of G satisfying these five
conditions, then there can be defined an order on G with respect to

which each element of I 1is convex.



CHAPTER I
TORSION-FREE, LOCALLY NILPOTENT GROUPS

The literature devoted to the study of torsion-free, locally
nilpotent groups is of gigantic proportions. Even so, these groups
continue to command the continuing interests of many noteworthy mathe-
maticians, and the existing knowledge of torsion-free, locally nil-
potent groups is apparently far from complete. To those primarily
interested in 0-groups, the torsion-free, locally nilpotent groups are
of extreme importance, for each such group is an ekmnple not only of
an 0-group, but even an 0*-group. History readily verifies that the
concept of isolated subgroup, which arises naturally in the study of
0-groups, has proved to be an invaluable tool in many investigations of
torsion-free, locally nilpotent groups. It would, therefore, seem rea-
sonable to attempt to broaden the existing body of knowledge of torsion-
free, locally nilpotent groups by investigating these groups as 0- or
0*-groups. One of the many interesting and»uru'esolved problems posed
by Fuchs (see [2], Problem 9 (a), p. 209), which is relevant to this
line of thought, is the determination of those subgroups of an 0-group
G which appear as convex subgroups with respect to some order on G.
In the case when G satisfies the maximal condition for subgroups
locally, it is not too difficult to now resolve this problem. We begin
by establishing a result which has application to a class of groups
even wider than the class of torsion-free, locally nilpotent groups.

Lemma 1.1: If G 1is an ordered group satisfying the maximal con-

dition for subgroups locally, then each convex subgroup of G is normal
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in G,

Proof: Suppose C is a convex subgroup of G, g ¢ G, and c ¢ C.
Let K=<g,c> Then K is an ordered group satisfying the maximal
condition for subgroups, and KN C is a convex subgroup of K with
respect to the order P(K) = P(G)y K induced by G on K. If KN C
is not nommal in K and k € K such that k'l(KnC)k £ KN C, then,
without loss of generality, we may assume that KN CC k'l(K N Ok,
since KN C and k-l(Kn C)k are both convex in K and the convex
subgroups of K form a chain with respect to set inclusion. Thus,
kncCkl®a okckxa g cx3xnode ... is an
infinite ascending chain of subgroups of K, contrary to the fact that
K satisfies the maximal condition for subgroups. Therefore » KNnC
is normal in X, whence, as geK and ce KNnC, cBekn CCC.
Thus, C is nommal in G,

Corollary 1.2: If G is an ordered group satisfying the maximal

condition for subgroups locally and if H is a subgroup of G, then
there exists an order on G with respect to which H is convex if and
only if H is normmal in G and G/H e 0.

Proof: The convex subgroups of G are normal by Lemma 1.1. An
appeal to Theorem 0.2 completes the proof.

Corollary 1.3: If G is a torsion-free, locally nilpotent group,

then each convex subgroup of G is nommal in G. Furthermore, if H
is a subgroup of G, then necessary and sufficient conditions that G
admits an order with respect to which H is convex are that H be normal
and isolated in G.

Proof: Since G is torsion-free, locally nilpotent, G e 0 ; G also

satisfies the maximal condition for subgroups locally, whence each convex
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subgroup of G is normal in G,

If H is a subgroup of G which is convex with respect to some
order on G, then we have seen that H is isolated in G.

Now, suppose that H is a normal, isolated subgroup of G. Then
G/H is a torsion-free, locally nilpotent group, whence G/H e 0.
Theorem 0.2 guarantees that there exists an order on G with respect
to which H is convex.
If G' = [G,G] is the derived group of G, then, as an immediate con-
sequence of Lemma 1.1 and condition (iv) of Theorem 0.14, we have

Corollary 1.4: If G is an ordered group satisfying the maximal

condition for subgroups locally, then [G',C] CD for each jump D—<C
in the family of convex subgroups of G with respect to the given order.

Proof: As D,C are normal in G, condition (iv) of Theorem 0.14
is [G,6,C] €D; i.e., [G',C] CD.

As we shall soon see, the conclusion of Corollary 1.4 can be strength-
ened to read [G,C] €D by requiring that G be torsion-free, locally
nilpotent. To prepare for the demonstration of the truth of this
assertion, we prove

Lemma 1.5: Suppose G is an ordered group, D~ C is a jump in
the family of convex subgroups of G, either D or C is normal in G,
D # Dc, € C/D, and ch = Dc, for some g e G. Then Dc® = Dc for all
c e C,

Proof: Let C=C/D. By (iii) of Theorem 0.14, T is o-isomorphic
to a subgroup of the additive group of real numbers. It follows easily
that the mapping ¢+ ()& (i.e., Dc > DcB) is an o-isomorphism of C
onto C, where we note that, by the normality of either D or C, both

D and C are nommal in G. By Theorem 0.4, this mapping is, therefore,
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given by ¢+ ct, where t is a positive real constant. Thus R

Eo > Cot. But, by hypothesis, Eo = c,t, whence t =1. Thus, Dcf = Dc
for all c ¢ C.

" We are now ready to prove

Theorem 1.6: If G is a torsion-free » locally nilpotent group
and I is the family of convex subgroups of G with respect to some
order on G, then I is a central system of G.

Proof: By Theorem 0.14 and Corollary 1.3, £ is an invariant
system of G. It remains only to prove that C/D C____ZZ(G/D) for each
Jump D—<C in . Let GT=6G/D,C=C/D, geT, T+CeT, and let
K=<g,c>NT. Then {1} $K, <g,c> is nilpotent, and X is
normal in < g,C >, whence KN Z(< g,C )% {1}; i.e. » there exists
ke XN 2(< §,¢>) such that k # T. Thus, there exists Dk e C/D
such that D # Dk and Dk = Dk. Lemma 1.5 guarantees that
Dc8 = Dc for all c ¢ C, whence [c,g] ¢ D for each c € C and each
g € G. Therefore, [G,C]CD; i.e., C/DCZ(G/D).

By Theorems 0.14 and 1.6, necessary conditions that a family £ of
subgroups of a torsion-free, locally nilpotent group be the family of
convex subgroups of G with respect to some order on G are that I
be a central system of G and that C/D be isomorphic to a subgroup
of the additive group of real numbers for each junp D—<C in I,
While it is true that the five conditions of Theorem 0.14 are sufficient
conditions on a family % of subgroups of any group G to guarantee
that G can be ordered and that each member of I be convex with
respect to this forementioned order, these five conditions--as was
suggested by Fuchs (see [2], p. 52)--are not sufficient to ensure that

L coincides with the family of all subgroups of G which are convex
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with respect to this order; 1.e., it is possible that certain subgroups
of G, not in I, will appear as convex subgroups with respect to the
order on G which is constructed by the utilization of % (see the
proof of Theorem 11 in [2], Pp. 51 - 52). That this situation can
actually arise has been demonstrated by Graham [5], who has an example
to show that the five conditions of Theorem 0.14 do not characterize
the families of convex subgroups of 0-groups. We mention here that
Graham [5] has also obtained independent proofs of part of Corollary
1.3, and Theorems 1.6 and 1.7.

If however, we reimpose the condition that G be torsion-free,
locally nilpotent, then the two necessary conditions stated above are
sufficient to guarantee that an order can be defined on G with respect
to which only those elements of % will be convex. We state this result
as

Theorem 1.7: If G is torsion-free, locally nilpotent and I is
a family of subgroups of G such that

(i) £ 1is a central system of G, and

(ii) C/D is isomorphic to a subgroup of the additive group of
real numbers for each jump D—<C in z,
then I is the family of all subgroups of G which are convex with
respect to some order on G.

Proof: The proof will parallel that of Theorem 0.15 found in
[2], pp. 51 - 52 with only slight modifications (which are made possible
by the normality of the elements of ¥ and by the fact that [G,C]ICD
for each jump D~ C in ¥),.

If D—C is a jump in I, then, by hypothesis, C/D 1is a sub-

group of the additive group of real numbers and, thus, thefe is defined



21

on C/D é natural Archimedean order which we shall denote by P(C,D).

We are now ready to define an order on G: For 1$x¢e G, let D—<C

be the jump in I detemmined by x (i.e., D 1is the union of all
elements of I not containing x, while C is the intersection of all
elements of I containing x. It follows readily that D, C € Z, that
D—<C is a jump in I, and that x € C-D). Then x € P(G) if and only
if xD e P(C,D) in C/D. We now verify that P(G) is an order on G:
(i) If 1+geP@NPLG), thenboth gd and g D= (gD)™} belong
to P(C,D), where D-~—< C is the jump determined by g. As P(C,D) is
an order on C/D, gD = D, whence g e D. But this is impossible as

g € C-D. Thus, P(G)N P'l(G) = {1}; (ii) now suppose a,b € P(G) and
Dy —< G, Dp—< Cp are the jumps in I determined by a and b, respec-
tively. Since I 1is a chain with respect to set inclusion, let us
assume Cy<CCz. If Cp = Cp, then Dy =D; and, as P(Cp,D) = P(Cy,D1)
is an order on Cy/D, = C1/Dp, abDy = aDszz e P(Cy,Dy), whence

ab € P(G). Moreover, in the case Cy = Cp, Dl"‘< Ci (or, Dp—<C2) is
the jump determined by ab, for, if ab € C; and ab € Dy, then

aD; = b'lDl, contradicting the fact that both a and b are positive.
If G 1is properiy contained in C,, then DjC G €D, (). Thus,
abD, = bD € P(Cp,D2), whence ab e P(G); the same proof shows that

bé .s P(G); (iii) if x e P(G), with D-<C the jump in £ determined
by x, and if ge G, then x® = x[x,g], where [x,g] € D since

[G,D] D, and, thus, x8D = x[x,g]D = xD € P(C,D). Therefore, x& e P(G)
if xeP(G); (iv) if 1$xe G and D~<C is the jump in I
determined by x, then xD e P(C,D) or x1pe P(C,D), whence x € P(G)
or x1le P(G). Therefore, P(G) is an order on G, and each element

of I is convex with respect to P(G).
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Now let K be a subgroup of G which is convex with respect to
P(G). Let B be the union of all elements of I contained in K, and
let A be the intersection of all elements of ¥ containing K. Sup-
pose that K § I; i.e., suppose that B $ A. We assert that B—< A
is a jump in g: For, B is properly contained in A and, if D ¢ I
and BCDCA, then D& K or KCD, since both D and K are convex
and the family of convex subgroups is a chain with respect to set inclu-
sion. If DCK, then DC B, and this is not possible as B D. If
KC D, then ACD, whence A =D, Therefore, if K § I, then B— A
is a jump in ZI. Now each of B, K, and A is convex with respect to
P(G) and BC KcA, so that K/B is a proper, nontrivial » convex
subgroup of A/B with respect to the order on A/B induced by G,
vwhich is precisely P(A,B). But, this is not possible as A/E is
Archimedean ordered by P(A,B) and, therefore, confains no proper,
nontrivial, convex subgroups. Thus, A - B =K and, hence, K ¢ £.

The results of Theorem 1.7 make it clear that if G is a torsion-free,
locally nilpotent group and £ is a central system of G such that
C/D 1is isomorphic to a subgroup of the additive group of reals for
each junp D—<C in I, then each element of I is isolated in G;
however, this same conclusion can be drawn from much weaker hypotheses,
namely: If G is a group and I is a normal system of G such that
C/D 1is torsion-free for each junp D—<C in I, then each element
of I is isolated in G. To prove this assertion, suppose K ¢ X,-
geG, g"eK for some positive integer n, but g § K. Let D—=C
be the jump in I determined by g. Then gﬁ e KCD, so D=g"

= (gD)™. Thus, gD $ D and gD is of finite order in C/D, a contra-

diction.
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To conclude this first chapter, we turn briefly to a consideration
of the existence of absolutely convex subgroups. Little is apparently
known about such subgroups, a conclusion nanifested by the generality
of a suggested problem of Fuchs (see [2], Problem 11, p. 210). As
we shall later see, the problem of the existence of absolutely convex
subgroups in 0-groups arises in the consideration of those 0-groups
satisfying the maximal condition for subgroups locally and which admit
only finitely many different orders. For the present, however, we
shall be content to establish a sufficient condition that a torsion-
free nilpotent group admits certain members of its upper central series
as absolutely convex subgroups.

Theorem 1.8: If G is a torsion-free, nilpotent group with upper

central series {1} = ZO<:.Zlc:... <Z,=G and Z,

1+1/zi is locally

¢yclic for i =0,1,...,s, then {1}, Z1» Z3seseslgyq are absolutely
convex subgroups of G and {1} —< I1=< Z,—< ... I~ Zgyq are
jumps in the family of convex subgroups of any order on G.

Proof: We induct on n, the nilpotency class of G. If G is
abelian, we assert that {{1},G} 1is the convex family of G with
respect to any order on G; i.e., that {1} =< G; otherwise, there
would exist a convex subgroup C s?ch that {1} + CcoG. Suppose
lfceC and g.e G-C. Then < g,c > =< 8 > for some g &G
as G 1is locally cyclic. Thus, there exists an integer k such
that g§ = c e C, whence, as C is isolated in G, 8, € C. Thus, as
g = gg for some integer t, g € C, a contradiction. Suppose, there-
fore, that G is nonabelian and let there be given an order P(G)
on G. Suppose 21 = 2(G) 1is locally cyclic and let {1} ¥ C be a

convex subgroup of G (if no convex subgroup C of G exists such



24

. that {l1}cC<g, then g is o-isomorphic to g subgroup of the additive
group of reals, hence abelian)., Then ¢ is nomal in @ and, since
G is nilpotent, {1} +'Zl N c. Suppose ZIC_EC, So there exists
2eZ;-C. Let 14xe Z1 N C and consider < Z,Xx >, Now,
<zZ,x> g Z1 and Zl is locally Cyclic, whence for some ae Z
and some integers m and N, z=3a" and x= g, Thus, 2 = M 4
A= d™, so M= M C. But, C is isolated in G, whence z e C,
a contradiction, Therefore, Z1 €C for any nontrivial convex subgroup
C of G. Now let. A be the intersection of all the nontrivial convex
subgroups of @ (with respect to P(G)). Then Z1CA and A is
convex. Moreover, A is a minimal convex subgroup of G; i.e.,
{1}—<A is a jump. By Theorem 1.6, ACZ(G) = Z1. Thus, A = Z1, and,
therefore, Zy 1is convex with respect to P(G), while '{1}~<’Zl is a
jump in the family of subgroups of G which are convex with respect to
P(G).

If G = Zy, we are finished, TIf not, we consider the torsion-
free, nilpotent group G/Zl. Since Zl is convex, the given order
P(G) induces an order on G/Zl‘ Now Z(G/Zl) = ZZ/Zl and ZZ/Zl is
locally cyclic, so by applying the above argument for G and Z1 to
G/Z1 and Zz/Zl, we have that ZZ/Zl is a convex subgroup of G/Zl
and that {1}'—<ZZ/Zl 1S a jump in the family of convex subgroups of
G/Zl. But there is a one-to-one correspondence between the convex
subgroups of G/Zl and the convex subgroups of G containing Zl'
Thus, both 21 and Zp are convex subgroups of G with respect to
P(G) and {1}—~z,, 21— I, are jumps. Repeated application of this

argument to G/ZZ,...,G/ZS completes the proof.



CHAPTER II
ORDERED, POLYCYCLIC GROUPS

This chapter is devoted primarily to a study of those 0-groups
which are solvable and which satisfy the maximal condition for sub-
groups--ordered, polycyclic groups. At times, however, the condition
that the groups in question be orderable will be supplanted by the
weaker condition that the groups be R-groups.

It is well known that the union of a chain of normal, nilpotent
subgroups of a group G is a nommal » but not necessarily nilpotent,
subgroup of G. If, however, G satisfies the maximal condition for
nomal subgroups, which it clearly does if it satisfies the maximal
condition for subgroups, then infinite ascending chains of normal
(nilpotent) subgroups cannot occur and, therefore, by Fitting's
Theorem, G contains a maximm normal, nilpotent subgroup called the
Fitting subgroup of G. In particular, the Fitting subgroup of a
polycyclic group G always exists and is a characteristic subgroup
of G. Pertinent to this line of thought is

Theorem 2.1: If G is a polycyclic, R-group and if F denotes
the Fitting subgroup of G, then F is isolated in G.

Proof: Plotkin [18] has proved that if G is an R-group and H
is a locally nilpotent subgroup of G, then the isolator IH of H
in G 1is also locally nilpotent. Now I(F) is the intersection of
all isolated subgroups of G containing F. But, if S is isolated
in G and FCS, then S8 is also isolated in G and contains F
for each g e G, whence I(F) is normmal in G. Furthermore, as G
is polycyclic and I(F) is a subgroup of G, I(F) is finitely gener-

ated, whence I(F) is nilpotent. But, F is the maximum normal
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nilpotent subgroup of G; hence, I(F) CF. C(Clearly, FEI(F). Thus,
F=1I(F), and F is isolated in G,

The result just established strongly suggests that the Fitting
subgroup of an ordered polycyclic group can be made convex with
respect to some order on G. All that needs be done to establish this
conjecture is to prove G/F ¢ 0. With this in mind, we continue with

Theorem 2.2: If G is an ordered, polycyclic group of length
L(G) = r, then the number of subgroups of G which are convex with
respect to any (fixed) order on G is at most r + 1,

Proof: ILet D—<C be a jump in the family of convex subgroups
of G with respect to some (fixed) order on G. Then C/D is a
normal, finitely generated subgroup of the ordered, polycyclic group
G/D; moreover, C/D is iscmorphic to a subgroup of the additive group
of reals. Thus, C/D is a torsion-free, finitely generated, abelian
group and can, therefore, be decomposed into a direct product of
infinite cyclic factors, the number of infinite cyclic factors in the
decomposition being at least one. As G satisfies the maximal
condition for subgroups, the chain of convex subgroups of G is a
descending system of G, G= Co > C > Cor vvi >=Cy > Cotly~ ...,
where Cy 41 is the maximal convex subgroup of G contained in Cye
Now, if K is a nommal subgroup of G, then, since G is polycyclic,
L(G) = L(K) + L(G/K). Each convex subgroup of G is normal in G,
whence r = L(G) = L(C,.) + L(Cr-l/cr-z) + L(Cr_Z/Cr_3) + ...+
L(C/Cy) + L(G/Cy) > L(Cy) + r. Thus, L(Cr) =0 and, hence,

Cr = {1}, In other words, the maximun possible number of jumps in
the family of convex subgroups of G is r, whence the maximum possible
number of convex subgroups of G is r + 1,

The chain of convex subgroups of an ordered, polycyclic group is,



27

therefore, an invariant series of the group. It is interesting to
speculate about the nature of a polycyclic group G of length r whose
convex family (with respect to some order) has precisely r+1 members.
This speculation leads to

Theorem 2.3: An ordered, polycyclic group G is nilpotent if and
only if there exists an order on G with respect to which the mumber
of convex subgroups is precisely L(G) + 1, where L(G) denotes the
length of @

Proof: First, let us suppose that for same order on the polycyclic
group G the number of convex subgroup is r+l, where L(G) = r. Then,
for each jump D — C in the chain of convex subgroups of G, C/D
is an infinite cyclic group. Thus, Aut(C/D) is isomorphic to the
Cyclic group of order two. Note now that C/D is a normal subgroup of
the ordered group G/D and that conjugation of C/D by an element of
G/D is an o-automorphism of C/D. Since there are only two automo-
rphisms of C/D and only one--the identity--is order-preserving, we
have Dc€ = Dc for each c e C and each g e G. Thus, C/DC Z(G/D)
for each jump D — C, whence, as the chain of convex subgroups is
finite, G 1is nilpotent.

Next, let G be nilpotent, so that G is a torsion-free, finitely
generated, nilpotent group. We shall induct on the length of G. Let
{1t =z, C Z{ +++ €Ly =G be the upper central series of G. If
L(G) =1, then G = Z; 1is an infinite cyclic group, and {{1}, G} is
the family of convex subgroups of G with respect to the order on @
obtained by requiring 1 <8 where G =<g>. Let us noy assume the
theorem true for all torsion-free » finitely generated, nilpotent groups
G such that L(G) <k; let G be such a group and suppose L(G) = k.

Let P; denote some arbitrary, but fixed, order on G. Choose



1% ze Z(G), and let Cy = I(z) be the isolator of z in G. By
Theorem 0,13, C; is a torsion-free, locally cyclic group. As G is
polycyclic, C; 1is finitely generated, whence Ci; 1is an infinite
cyclic, normal, isolated subgroup of G. Thus, L(G/C{) = k-1, whence,
by inductive assumption, there exists an order P, on G/C; such that
the number of convex subgroups is k. Therefore, P(G) = (Pln (v
{x[x € G-C and xCj ¢ P,} is an order on G with respect to which
C; 1is convex and with respect to which the mmber of convex subgroﬁps
is kt1., This completes the proof.

It is easily seen that if G is an ordered group, if H is a sub-
group of G, and if C is a convex subgroup of G, the HNC is a
convex subgroup of H with respect to the order on H induced by G.
The next result reveals the useful and intuitive fact that any subgroup
of H which is convex with respect to the order on H induced by G
arises in this manner.

Lemma 2.4: Let P(G) denote an order on a group G. Let &
denote the corresponding family of convex subgroups of G; suppose H
is a subgroup of G. Then the family I* of subgroups of H which
are convex with respect to the induced order P(H) = P(GINH on H
is the family {CAHH[C e 1}. Moreover, if D* —< C* is a jump in
L*, then there exists a jump D —< C in % such that D* =HQA D
and C* =HN C.

Proof: If CeZ,if ae CNH, and h e H, and if l1<h<a,
then, as C is convex, h € C, whence he HN C and, thus,

HN C e Z*. Let us suppose K e £*, Let K; be the convex subgréup
of G generated by K; i.e., K; 1is the intersection of all convex
subgroups of G containing K. We assert that H AN K; = K. Note that

HNKg=HN (CQZ C) DHN K =K. Suppose, by way of a contradiction,
K<C
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that KCHN K; and let ae HN K;)-K. Without loss of generality,
we may assume that 1 < a. Now, K. = RGN KP"l(G) (see [2],

pp. 18-19) and a ¢ Kg» whence a = kg, where k ¢ K and ge P-l(G).
Thus,lia=kg_<_k and aeH. But, X is convex in H, so ackKk,
a contradiction. Thus, KG €L and HN Kg = K.

Now let D* —< C* be a jump in 5*. Let A Dbe the intersection
of all convex subgroups C of G such that CNAH=C* let B be
the union of all convex subgroups D of G such that DN H=D* We
assert that B—< A is a jump in I, that BNH=D* and AN H = C*:
First, ANH= () ONH=()Enn = c* = c*,

CeZ C C
C N H=C*
Next, BN H = ( {_ D)nH=U(DnH)=UD*=D*.
DeX D D
DN H=D*

Also, as D*¢ C*, BC A. Finally, let E € £ such that BCECA,
Then BAHCSEN HCAN H; i.e., D*CENHCC*, and EN He 5* as
Eel. But D*—~ C* isa jump in L*, whence D* =EMNH or
C*—EnH Thus, ECB or ACE and, hence, B=E or A = E.
Therefore, A=~ B is a jump in I,

Lemma 2.4 finds immediate application in the demonstration of the truth
of

Theorem 2.5: If G is an ordered group satisfying the maximal
condition for subgroups locally, then the derived group G' of G is
a Z-group.

Proof: By Lemma 2.4, each jump D*—< C* in the family 1* of
convex subgroups of G' with respect to the order on G' induced by
G is given by DN G'—< Cn G', where D—<C is a jump in the family
of convex subgroups of G. By Corollary 1.4, [G',C] C D, whence
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[G',C*] € D* for each jump D* — C* in L*, Therefore, £* is a
central system of G'; hence, G' is a Z-group.

If the word "locally" is deleted from the hypotheses of Theorem 2.5,
a stronger assertion regarding the nature of G' as a generalized
nilpotent group can be made:

Theorem 2.6: If G 1is an ordered group satisfying the maximal
condition for subgroups, then G' is a ZD-group.

Proof: As G satisfies the maximal condition, the chain of convex
subgroups of G is a descending system of G, G= Co>— Cr— Cy»—
eee >=Co>= Cy1 ..., where Cy+1 1is the maximal convex subgroup
6f G contained in C,» Thus, the family =* of convex subgroups of
G' with respect to the order on ' induced by G is a descending
system of G'. By Theorem 2.5, I* is a central system of G' and,
hence, G' is a ZD-group.

Let us bear in mind that our main concern in this chapter is with poly-
cyclic groups. This being the case, we return to ordered groups with
this structure by merely augmenting the hypotheses of Theoren 2.6 with
the condition that G be solvable. In so doing, we shall obtain an
interesting extension of the well known result that the derived group
of a supersolvable group is nilpotent; however, as shall soon be seen,
the conditions that G be polycyclic and ordered are not sufficient to
guarantee that G be supersolvable.

Theorem 2.7; If G is an ordered, polycyclic group, then G
is nilpotent.

Proof: By Theorem 2.6, G' is a ZD-group with its convex family x*
forming a descending central system of G'. But G' is a subgroup of
the polycyclic group G and is, therefore, polycyclic. By Theoren 2.2,

there are only finitely many convex subgroups of G' with respect to
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any order on G'. Thus‘ L* 1is a central series of G', and, thus, G'
is nilpotent.
Theorem 2,7 reveals an interesting and useful structure property of
ordered, polycyclic groups, namely

Corollary 2.8: If G is an ordered, polycyclic group, then G

is nilpotent by abelian.
As a further application of Theorem 2.7, it is now possible to establish
the truth of the conjecture suggested by Theorem 2.1:

Corollary 2.9: If G is an ordered, polycyclic group, then there

exists an order on G with respect to which the Fitting subgroup F
of G 1is convex.

Proof: G' is nilpotent, so G'CF. Thus, G/F is abelian. By
Theorem 2.1, G/F is torsion-free. Therefore, G/F is not only an ‘
0-group, but even an 0*-group. An appeal to Theorem 0.2 completes the
proof,

For the following sequence of results, we shall concentrate our
attention upon an important subclass of the polycyclic groups-—super¥
solvable groups. So powerful is this refinement from polycyclic to
supersolvable that it allows the replacement of the customary condition
of orderability by the R-group condition.

Theorem 2.10: A (nontrivial) group G is a supersolvable R-group

if and only if G 1is a torsion-free, finitely generated, nilpotent
group.

Proof: If G is a finitely generated, torsion-free, nilpotent
group, then G 1is supersolvable and orderable, whence G is a super -
solvable, R-group,

Let us now suppose G is a supersolvable, R-group. We first prove

2(G) + {1} : Let {1} = G6,C G C... €G, =G be a cyclic invariant
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series of G. Then Gl is an infinite cyciic group, and, hence,
Aut(Gy) is isomorphic to the cyclic group of order two, Also, G; is
nomal in G, so NC(Gl) =G and, thus, G/CG(Gl) = NC(GI)/CC(GI) is
isomorphic to a subgroup of Aut(Gl). Therefore, g € G implies
g2 e Ce(Gy); i.e., [g%,x] =1 for each ge€G and each x ¢ Gy. But
G is an R-group, whence, by Theorem 0.9, [g,x] = 1. Thus,
{1} % G; C Z(G).

Next, by Theorem 0,10, G/Z(G) 1is a supersolvable R-group. As
Gy 1is an infinite Cyclic subgroup of Z(G), the length of G/Z(G) is
less than the length of G, By induction on the length of G, it
follows that G/Z(G) is nilpotent, whence G is nilpotent. Bearing
in mind that a torsion-free, locally nilpotent group is an 0*-group,
the following corollaries are immediate consequences of Theorem 2.10;

Corollary 2.11: A nontrivial group G is a locally supersolvable,

R-group if and only if G is a torsion-free, locally nilpotent group.

Corollary 2,12: A locally supersolvable group G is an 0*-group

if and only if G is an R-group.,

Corollary 2.13: If G is a locally supersolvable, R-group, then

G and each subgroup of G is an 0*-group,

For the case, therefore, of locally supersolvable groups, Corollary
2.13 answers a question posed by Fuchs (see [2], Problem 20, p. 211):
"which subgroups of 0*-groups are again 0*-groups?"

A question arising naturally from Theorem 2.10 is whether the
hypothesis that G be supersolvable can be weakened, without affecting
the conclusion, to the condition that G be polycyclic. The follow-
ing example illustrates the necessity of the stronger condition, even
when the condition that G be an R-group is strengthened to the

condition that G be orderable,
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Example 2.14: Let H be the naturally ordered subgroup of the
additive group.of reals which is generated by a=1 and b =
1/2 A +/5); ie.,H=<a>+<b> Let 06 be the mapping of H
into H given by x® = xb for each x ¢ H. It is clear that 0 is
an o-automorphism of H onto H. Let G be the semi-direct product
of H by <6 > We observe that H is nommal in G, H is poly-
cyclic, and G/H is polycyclic, whence G is polycyclic,

The order P(H) on H is, of course, the set of all positive
real numbers in H. Note that G/H is an infinite cyclic group, so
GHeO. Let hePM). Then 67lho =h® =hb=h-1/2 1+ /5) >0,
so that P(H) is invariant under the inner autamorphisms of G. Thus,
by Theorem 0.1, there exists an order on G, namely

P(G) = PM) VU {x|x € G-H and xH = 6K1 for some integer k > 1},
with respect to which G is an ordered, polycyclic group.

Now, a® =b and b = 3 + b, Also, [a,8] = -a + b, while
[2,6°] = b. Thus, [a,6]"! [a,62] = a and, thus, a ¢ [a,G], whence
G 1is not even a ZD-group. Therefore, G 1is not nilpotent. Further-

more, the center Z(G) of G is trivial: For let z ¢ Z(G). Then

Z=hof, where heH and r is an integer. Since z e Z(G),
l1=a=2z1az=,"- (1/2 (1 + /5 ))F, whence r=0. Thus, z=heH
and, hence, z =m + (n/2)(1 + /5 ) for some integers m and n. Now

L BN @ DA VB Y)((W2)

0= [z,6] =2
(1 + /5)), from which it follows that n =mn = 0, whence z = 0. Thus,
Z(G) = {o}.

Let us now consider yet another aspect of this example: Let <
denote an arbitrary order on G. As 6 € G, either 6 is positive or

6 1is negative. Let us assume that 1 < 6. Note also that b is a

conjugate of a (i.e., 01 ag = 29 = b) and, thus, a is positive if
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and only if b is positive; let us also assume 1<a.

Let x e H. Then x% = xb, so 67 1xg = xb, whence x6 = 6xb. As
1 <6, xb <x6 and, thus, b < 6. Furthermore, 1 < a implies b < ab,
while a% =b and b0 = ab, whence a® < b and, thus, a < b.

If a? < b, then (az)e_i b® so that (ae)z‘i ab and, thus,
bz_i ab, whence b < a, a contradiction. Thus, b < a?,

We know that b < o, Assuming that bX < 6 for the positive integer
k implies (bk)e <09 = 8, so (be)k < 0, whence (ab)k < 8; i.e.,
akpK < g and, as 2 <k, b < a¥, whence bK*l ¢ Jkpk . 6. Therefore,
b < 6 for all integers n.

Therefore, if h e H, then h = a™™ < pMpt = pM 8; hence, if
xeH and eky e G-H, where k is a positive integer and y e H, then
X < eky since xy'l e H and xy'1 <0 <6k TItis not, therefore,
possible that 1< ekylf.x, where k 1is a positive integer and x,y € H,
whence H 1is convex with respect to <.

It follows, therefore, that H is an absolutely convex subgroup
of G. Let us also note that with respect to the arbitrary order <
the family of convex subgroups of G is (always) {{1}, H, G}. Finally,
only four different orders can be defined on G, namely those orders
obtained by interchanging either or both of the sets of positive and
negative elements of H and G/H.

For the case of a supersolvable group G, a very simple necessary
and sufficient condition that G e 0 has been found. One may suspect
that, as the R-group condition on a supersolvable group G is sufficent
to guarantee that G e 0%, the R-group condition on a polycyclic group
G is sufficient to guarantee that G e 0, Unfortunately, this is not

the case as is illustrated by
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Example 2.15: Let H = <8 >*<a >, vhere < a; > and <ay >
are infinite cyclic groups. Let v be the automorphism of H given
by a‘1’ =a, and a}f =31 - 3a;. Let x =1a; + iiaz € H. Then 3xV =
-3uay + 3Xa; - ua; and x"z = 81ia2 - 3\a, + Sﬁal - Aaj. Thus,

X+ 3V + xVZ =0 for all x e H; i.e., (1+ 3v +v2)(x) = 0 for all
X € H.

Let G be the semi-direct product of H by < v >, where we note
here that v is of infinite order in Aut (H) (the matrix of the trans-
formation v makes this apparent). As noted previously, x(xV) 3xVz =1
for x e H, whence G is not an R*-group and, hence, G ¢ 0. We shall
now prove that G is an R-group: Let g=VvtheG. Then (vt =
vtn(h"(t-l)nh\f(t-z) n...h"nh) for each positive integer t. Thus, if
)t = ™K)E, where h ,k € H, then
vtn(hv(t_l)nh"(t-z)n. ..h"nh) = vtm(k"(t-l)mk"(t-z)m.. .k"mk), whence

n =m. Thus,
v E Dy (D0 oy et D (D

t-1 t-2 -
(hk_l)vc )n(hk-l)v( )n-..(hk‘l)vn(hk 1y = 1. Nowlet u e H. We
now assext that

2 t-1)n
uu"nu"n. u"( ) =1

.. . . . i vl | yen
implies u =1; i.e., in additive notation, that 0z u+u’ +y +

(t-n

+uv = (1+ v+ ven 4 ve. v(t"l)n) (W) implies u = 0.

Note that 1+ vl + v2l s 4 y(t-)n =0 implies 0 = (1+vt)/ (101,
so that all the roots of 1+ vl + yv20 4+ _, 4+ (t-1)n _ 0 are of
modulus 1. Since the roots of 1+ 3v + v2 = 0 are not of modulus 1,
1+ 3 +v2 does not divide 1+ v+ y20 4 4 v(t-In Let

L+ v+ y2n g 4 p(t-Dn P(v)(1 + 3v + vz) + (r + sv), where P(v)

is a polynomial in v with integer coefficients and where r and s
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are integers, not both 0. Now, 0 = (L + v + 2R 4 vl + v(t-l)n)(u)

(PO +3v +v2) + (r + sv))(u) = PWIA +3v+v¥ () + (r + sv)(u)
Tu + sv(u)., Let u-= Aaq + ﬁaz. Then 0 = ru + sv(u) implies

(rx - sula; + (ru + sx - SSﬁ)aZ = 0, whence

TA - sy =90
sA + (r - 3s)u = 0,

Thus, (r? - 3rs + sy = 0, Suppose now that u # 0. Then
r2 - 3rs +s2 = 0, Recall that rt0 or s$o,

Case 1: Suppose r # 0. Then s = (3r + |r| V5 )/2, which is
impossible as  (3r + |r| V5 )/2 is irrational and s 1in an integer,
Thus, u = 0, whence rA =0. As r $0,2=0 and, hence, u = 0,

Case 2: Suppose s $ 0. Then, as in Case L, r=(3s+ |s| /5)/2,
which is again impossible. Thus, u = 0, whence si = 0. AsA s § 0.

A =0 and, thus, u = 0.

Therefore, if X,y € G and xt = yt for some positive integer t,
then x =y, whence G is an R-group. Clearly, G is polycyclic, but
G¢o0.

With this.example, the formal expositions of this chapter are
concluded. However, there remain many fascinating problems concermning
orderable, polycyclic groups which have been considered by this author
and which have escaped resolution. One such problem evolves from a
more general query of Fuchs: Is a polycyclic, R*-group necessarily an
0-group? Another question of considerable interest is: Are polycyclic

0-groups necessarily 0%-groups?



CHAPTER III
SOME REMARKS ON TWO PAPERS OF REE

The purpose of this chapter is to study two of the earliest papers
of R, Ree (see [20] and [21]) and to demonstrate that a number of incor-
rect assertions appear therein. It is interesting and only fair to note
that the errors in these papers are é direct consequence of but one erro-
neous, casually made, and seemingly innocuous statement found in the
proof of Theorem 1 of [20], for it is here that the claim is made that
any finitely generated subgroup of the additive group of reals is iso-
morphic to the additive group of integers; i.,e.,, that the additive group
of reals is a locally cyclic group. The measure of the magnitude of the
erroneousness of this assertion is made manifest upon the observation
that this statement is equivalent to the claim that all real numbers are
rational. It is, therefore, not surprising that the application of such
a statement has begotten the sequence of incorrect conclusions which
appear in the works under consideration.

Let us now begin our investigation of the results of the earlier
paper [20]: Theorem 1 asserts that if an ordered group G satisfies the
maximal condition for subgroups, then G is a ZD-group; Theorem 2 con-
tinues with the assertion that an ordered, finitely generated,solvable
group is nilpotent if and only if G satisfies the maximal condition
for subgroups.

Both of these assertions are false, as is demonstrated by Example
2.14, which exhibits an ordered polycyclic group which is not even a
ZD-group, The correct statement of Theorem 1 of [20] is obtained, by
Theorem 2.6, by replacing G by G' in the conclusion. Similarily,

by Theorem 2.7, the derived group G' of an ordered, polycyclic group
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G is necessarily nilpotent, but G need not be nilpotent. Theorem 2.3
provides a correct necessary and sufficient condition that an ordered,
polycyclic group be nilpotent,

Now, let G be a torsion- -free, finitely generated, nilpotent group
with upper central series {1} = Qi ...c Z, = G. Then 234172
is a torsion- free finitely generated, abelian grouwp, for i =1,2,...,n-1,
As Z; +1/%; is supersolvable, there exists a Cyclic invariant series,

= A/ ¢ AL ... CA/Z; = Zi+1/Zy, of Zj+1/Z5, vwhere each

AJ/Zi is an infinite cyclic group and where the AJ, j=1,2,...,t, are
subgroups of Zj4q. Note that, as [G, ZJ+1]CZJ, [G,A; +l] CZic A;.

J°
Therefore, there exists a central series {1} = E, C Fi <... CF =G

of G such that F+1/F is an infinite cyclic group, i 0,1,...,m-1,
Ree calls such a series an "F-series of G." ILet Fi41/Ff = < ‘Xi+1Fi >,
where Xj+1 € Fi41, 1 = 0,1, «+o,M-1. The elements X15 X3, +evy X are
Called an "F-basis of G," Ree correctly observes that each element
8 € G can be written uniquely in the form g = xfl xgz )gim » Where
€1, €25 ..., €, are integers, and that @ can be ordered lexicograph-
ically with respect to €15 €9, ..., enp as follows:

For g = xll x xmm and g = xll xzf ...xfm, we make 8128
if and only if ej =f; for i=1 »2,..0,Mm, OT €¢ < f¢ for some t
such that 1<t <m and ej =f; for i= 1,2,...,t-1, This lexico-

graphic order on G is said, by Ree, to be '"defined" by the F-basis R
X1» X35 eey X

These concepts are applied in [20] in the statement of Theorenm 3,
where it is asserted that any order on a torsion-free, finitely generated,
nilpotent group is defined by an F-basis of G. This assertion--even if

G is abelian--is false, as is demonstrated by
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Example 3.1: Let G be the subgroup of the additive group of
real numbers which is generated by {1, v2}; i, €., G=<1>+ < /7>,
Then G is a finitely generated, abelian subgroup of the additive
group of reals, and G can, therefore, be ordered by the restriction
of the natural ordering on the reals to G, With respect to this
.induced order, G is, of course, an Archimedean ordered group, and hence
G possesses no proper, nontrivial, convex subgroups. Let
{1} = F,CFC . &F, = G be an F-series‘of G with corresponding
F-basis, £1, £2,..., fue Then, as G is polycyclic of length two,
m= 2, so that {1} = BRCF CF =g, F] =<£; > and F)/F =
< £5F; >, Thus, each element gle G can be written uniquely in the
form eyf] + exf, , for some integers €15 €. Let <; denote the
order on G defined by the F-basis, fl,f2 Now suppose that g =

1fi texfy and 0 21 8 = eqfy + ezf2 <1 e)f,, where eé is an integer,
Then 0 < - eify + (e} - el f,. Thus as 0<e and 0 217€1 » we
have that 0 = €1 and, hence, g = e)fy e < £y >. Therefore, < f2 >

is a proper, nontr1v1al convex subgroup of G with respect to 1
whence the F-basis f1,f2 cannot define the given Archlmedean order

on G,

This concludes our study of [20], and we now move to the examination
of the later paper [21], where Ree again uses the concepts of F-series
and F-bases and where certain results from [20] are cited in order to
accomplish the proofs of various assertions. It is, therefore, not
surprising that the application of an incorrect Statement from [20]
leads to an erroneous assertion in [21], and indeed the following is a
counterexample to Theorem 2 of [21], which asserts that the group of

O-automorphisms (with respect to some order) of a torsion-free, finitely
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generated, nilpotent group is itself a torsion-free » finitely generated,
nilpotent group:

Example 3.2: Let G=<a1>+<a2>+<a3>,where <a; > is
an infinite cyclic group and where < 4y > + < a; > 1is isomorphic to
the subgroup H =< 1> + < 1/2(1 + /5)> of the additive group of real
numbers. Let P(G) = {na; | n is a nonnegative integer} U
{x|x e G- < a1 >» X = T3 + say + tag, and s + t/2(1 + /5) > 0}. It
readily follows that P(G)N P-1(G) = {0}, p(G) + P(G) C P(G),

-X + P(G) + xCP(G), a.nci that P(G)U P'l(G) = G, whence P(G) is an
order on G, For X,y e G, we define x <y 1if and only if 0 < =X +y,
It is easy to see that 0 < aps 0 < a, and 0 < az3 also, it follows
that the order P(G) 1is not Archimedean as a; << a, and al << ag
(i.e., na; < a, and na; < az for all integers n).

We now define two o-automorphisms of G:

i)y 4 a; > ap, a2+a3', az > ay +ag:

(ii) wv: 4 > 3y, a; *ay + ma;, az > ag + na, ,
where m,n are arbitrary nonzero integers. Then
a1 a, > a, a, > -a, + ag, az > aj , while vl a; »a ,

3, > -may + aj, az > na; + az. It is easily seen that d,v are auto-
morphisms of G. Let us show that d is order-preserving: Let

X =Ta) +sa, + tag and suppose 0 < x. Then, if s =t =0, it follows
that x = ra; and xd = ra; > 0 since d fixes a;. If s$0 or

t + 0, then the condition that 0 < X 1is independent of a; and so,
without loss of generality, we may assume that r = 0 and, hence, that
X =sa, + taz. Then 0 < x is equivalent to 0 < s + t/2(1 + V5), which
is equivalent to -2s/(1 + /5) < t. On the other hand, 0 < (sa2 + ta3)d

saz + t(az + ag) = ta, + (s + t)a3 is equivalent to t + (s+t)/2(1+/5)
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> 0, which is equivalent to 3t+t/5>-s(1+ /S),Awhich is true if
and only if t > -s(1 + /5)/(3 + /5) = - 2s/(1 + /5),

Therefore, d is order-preserving. Analogous arguments establish
that v,.d'l, and v'1 are also order—breserving, whence d and v are
o-automorphisms of G,

Let A =<d,v>, sothat A is a subgroup of the group of o-auto-
morphisms of G. It will be convenient now to represent the elements

r
ra) + sa, + taz as vectors (’E) and the mappings d,v,d'l, vl as

matrices:
100 100  /lmn ;1 [1mmn
d=foo1}, al=foa1}, v={o10), and v1={0 1 0.
011 010 001 . 0 01

| lab
In general, if a,b are real numbers let (a,b) = (0 1 0). It is easy
001

to check that (a ’bl)(aZ’bz) = (a1 *ay, by +by) = (az,bz)(al,bl) and
that (a,b)d = (b,a + b). For the elements d and Vv, we have:
vemn), v ), and fv,d1d = v = (o, n) (o,nem))d =

m - m,de = (m,n) = v. Thus, v is a commutator of every length, whence

Ve< [v,d,...,d]A > for all positive integers n; therefore,
n

1+ve [AA,...,A] for all nonnegative integers n. Thus, A is not
n+l

nilpotent, and, as A is a subgroup of the group of o-automorphisms of
G, the group of o-automorphisms of G is not, therefore, nilpotent,
While there is no hope of establishing a result as strong as the
one suggested by Ree in Theorem 2, it is possible to establish an
analogous result for ordered, polycyclic groups, namely
Theorem 3.3: If G is an ordered, polycyclic group and A denotes

the group of o-autcmorphisms of G, then A is nilpotent by abelian,
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and, moreover, A is polycyclic,

Proof: Let {1} — C—< ¢, Gz ..o~ C, =G be the chain of
convex subgroups of G with respect to the given order on G. Let
6 e A, Then 6 induces an O-automorphism 6* on Ci/ci-l for
i=1,2,...,n, given by (cCi_l)e* = ceCi_l; for, first, we observe
that Cg =G, 1i=0,1,...,n, as Cg is convex and as CiC Cj implies
Cg C C? . Next, chi_l = chi_1<..—.> c?_ = cg X, vhere x e C; ;4 cg =
cg x?, where X; € Cj.1 and x? = xé::} cg = (cle)e, as 6 is an auto-
morphism of G<& Cy = CyXq, where x1eC & c1Ci.1 = c,C;i-1» whence
o* i; one-to-one. Clearly, 8% is onto Ci/ci—l’ and 6* is a homo-
morphism of Ci/ci-l’ for i = 1,2,.,.,n. Finally, c1G1 2 01>
there exists a e Ci-1 such that ¢ < Cra & c:? < cg ae, where
ad ¢ i1 (clci_l)e* < (CZ_Ci—l) 9*, whence 0% is order-preserving.
A similar argument shows that (e*)'l ‘is also order-preserving.

For each i such that 1 <1i<n, let A denote the group of
all o-automorphisms 6 e A such that 6% centralizes Ci/Ci_l; i.e.,
such that (cCi_l)e* = ceCi_1 = cC;_y. Then A; 1is a normal subgroup
of A for each i-= 1,2,...,n, and A/Ai is isomorphic to a subgroup
of the group of o-automorphisms of Ci/Ci.1. But, each Ci/Ci.q is
an Archimedean ordered group, whence the group of o-automorphisms of
Ci/ci-l is, by Corollary 0.5, isomorphic to a subgroup of the multi-
plicative group of positive real numbers. Thus R A/Ai is abelian for
each i=1,2,..,,n. Thus, A/A, is abelian, where 8y = irS 1 Ai.
Note that A, centralizes Ci/Ci-l for each i = 1,2,...,n, so that
[C;,8,] C Ci.1» 1 =12,...,n, where by [x,6] and [6,x] we mean

x"1x® and (x'l)ex, respectively. Therefore, [C,»

A ’A ’.",A ] = ]-.
N Q2 "9
n

By a result of P. Hall [6, p. 10], which states that if H is a subgroup
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of a group G, if K is a subgroup of the group of autcomorphisms of H,

and if [H,K,K,...,K] = 1, then [K,K,...,K,E{] = 1, we have that

n 1 +( 121)
[AO,AO,..I;,AO,Cn] = 1, whence [AO,AO,.I.I.,AO] centralizes ¢, =G,
1+(7) 1+(2)
where [AO,AO,. ..,Ao] C A, Thus, [AO,AO,...,AO] is the identity auto-
YN

1+(2) L+(2)
morphism, and, thus, A, 1is nilpotent. Therefore » & 1s nilpotent by
abelian.

Smirnov [22] has proved that, for a polycyclic group H, every
abelian subgroup of Aut(H) is finitely generated, whereas Mal'cev [13]
has proved that any solvable group, all of whose abelian subgroups are
finitely generated, is polycyclic. From these results, it reédily follows

that A is polycyclic.



(HAPTER 1V
ON 0-GROUPS WHICH ADMIT ONLY FINITELY MANY DIFFERENT ORDERS

This chapter is devoted to a study of 0-groups which satisfy the
maximal condition for subgroups locally and which admit only finitely
many different orders. Little is known of O-groups which admit only
finitely many different orders, a fact manifested by a question of
some apparent difficulty which has been posed by B. H. Neumann (see [2],
Problem 18 (c)) and which asks, '"What are the O-groups with only a
finite number of (different) orders?" Teh [23] has verified that any
torsion-free, locally cyclic group admits only finitely many different
orders, proving that such a group admits precisely two different orders,
both of which are Archimedean, However » Teh has also shown that the
torsion-free, locally cyclic groups are singularily unique in the sense
that they are the only really "nice" (i.e., abelian) groups possessing
this finiteness property, for any torsion-free, abelian group of rank
exceeding one is shown by Teh to possess an uncountable number of dif-
ferent orders. We shall 'extend Teh's result in this chapter by proving
that any nonabelian, torsion-free, locally nilpotent group admits infi-
nitely many different orders. Corollary 2.11 indicates, therefore , that
examples of 0-groups which admit only finitely many different orders are
to be found at the earliest among the ordered polycyclic groups. Example
2,14 provides an example of just such a group. It would seem, therefore,
that we are confronted with the rather exasperating situation where the
absence of a "nice" structure serves to enhance the possibility that an
0-group admits only finitely many different orders.

As we shall see, polycyclic 0-groups and 0-groups which satisfy the

maximal condition for subgroups locally and which admit only finitely
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many different orders share many interesting properties. In support of
this assertion, we begin with

Theorem 4.1: Suppose G is an 0-group which satisfies the maximal
condition for subgroups locally and which admits only finitely many
different orders. Then the number of subgroups of G which are convex
with respect to an arbitrary, but fixed, order on G is finite, and
G' 1is nilpotent,

Proof: Let P(G) denote an order on G and let I denote the
corresponding family of convex subgroups of G with respect to P(G).
For each julp D =< C in Z, we know, by Lemma 1.1, that D and C

are nomal in G. We now define a different order PC(G) on G:

PC(G) = (PEN DU {x|xeCD and x<d for d e D}

Ulx|]x e G-C and c < x for ce C}.

It is clear that Pc(G) £ P(G) and that if D~ € and D,— C,
are jumps in I such that Gy $ C;, then Pcl(G) % PC2 (G). We now
verify that PC(G) is an order on G: Let 1 fy € G. Then precisely
one of the following is true: (I) ¢ < y for all c e C; (II) y eC
and y <d for all d e D; (ITI) yeD and 1<y; IV) y<c for
all ceC; (V) yeC and d <y forall de D or (VI) yeD and
y < 1. No;e that y e PC(G) if case (I), (II), or (I1I) holds, while

y e P(':l(G) if case (IV), (V), or (VI) holds. It is clear that (I) -
(VI) are mutually exclusive cases which exhaust G, whence PG N Pél ©G)
= {1} and P.(6) U P&l(G) =G. If geG, then y& satisfies (I),
(I1), or (III) if and only if y does, since D, C are normal subgroups
of G. This proves that g'IPC(G)g(_'_'_ PC(G) for each g ¢ G, Finally,
let y,z € Pc(G) and suppose z 2Y. Ifboth y and z satisfy (),
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then vyz 2 z>c for all c e C, whence Yz satisfies (I) and, thus,
¥z € Po(G). If y satisfies (I) and z satisfies (II), then vyz
satisfies (I); otherwise, yz < ¢ for some c e C, whence y < cz1 e C,
a contradiction, Similarily, if y satisfies (I) and z satisfies
(III), then vyz again satisfies (I). An inspection of the remaining
possible, consistent cases shown in each instance that yz ¢ P-(G). An
analogous argument holds when Yy £ 2. Thus, P:(G) is an order on G.

Now, if the family % were not finite, then infinitely many dif-
ferent orders could be defined on G, one for each jump in &.
Thus, £ is finite,

Finally, G' is an 0-group with respect to the induced order
PG G' on G' with convex family z* =" {CN G'|C ¢ 5}. By the
proof of Theorem 2.5, £* jis a central system of G', and, as % is
finite, £* is a central series of G', whence G' is nilpotent.
Immediate consequences of Theorem 4.1 are

Corollary 4.2: If G is an 0-group which admits only finitely

many different ordérs and which satisfies the maximal condition for
subgroups locally, then G is nilpotent by abelian.

Therefore, any group satisfying the hypotheses of Corollary 4.2 is not
only a generalized solvable, but even a solvable, group, whence

Corollary 4.3: If G is an 0-group which satisfies the maximal

condition for subgroups locally and which admits only finitely many
different orders, then G is locally polycyclic.

To state an even stronger conclusion, it is now clear that any group
which satisfies the maximal condition for subgroups and which admits
only finitely many different orders is necessarily polycyclic. We

continue with
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Lemma 4.4: Suppose G is a group, H is a normal subgroup of
G, and G/H is abelian. Then the isolator I(H of H in G ‘equals
<g|geG and gt e H for some positive iﬁteger n >,

Proof: Let A=<g|geG and g e H for some positive
integer n >, C(learly, HCA. We now assert that A 1is isolated in
G: For, if ge G and gk e A for some positive integer k, then
gk = Wup...ut, where Ui, U2, «vey U € G such that uiai e H for
appropriate integers a3, 1=1, 2,..., t. Let a-= a13...2¢.  Then
% = (pu,..u? = ol wH...u - H, as cach uf e H. Thus,
gk? ¢ H, whence g € A, Thus, A is isolated in G.

Now, if ge A is a generator of A, then g e H for some
positive integer n. If gt I(H); then I(H) would not be isolated
in G, as ghle HC I(H) would not imply g e I(H), a contradiction.
Thus, g € A implies g e I(H). Therefore, A = I(H).

We are now ready to prove

Theorem 4.5: If G is a nonabelian, ordered group which satis-
fies the maximal condition for subgroups locally and which admits
only finitely many different orders, then the Fitting subgroup F of
G exists and coincides with the isoiator I(G'") of G' in G; G/F
is nontrivial and locally cyclic; and F is an absolutely convex sub-
group of G,

Proof: Let < denote an arbitrary, but fixed, order on G and

let {1} =Co-< C1-< C—~< ... <¢C

n-l__< C, = G denote the corre-

sponding, necessarily finite, chain of convex subgroups of G, By
Theorem 0.14, G/Cn_1 is abelian, whence G - Cn-l’ and, thus, as
C,-1 1s isolated, I C Gi-1+ Since I(G') is isolated, G/I(G')

is a torsion-free, abelian group, whence G/I(G') € 0. By Theorem 0.2,
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there exists an order on G with respect to which I(G') is convex.

If the rank of G/I(G') exceeded one, then by Teh's Theorem [23], there
would exist infinitely many different orders on G/I(G'), and, thus, on
G. Therefore, G/I(G') is locally cyclic.

Let us now suppose that a e C,.; - I(G'). We know that there
exists an element b e G-C,.q. As G/I(G') is locally cyclic, there
exists g e G such that < aI(G'), bI(G') > = < gI(G') >, Thus,
al(G') = g"I(G') and bI(G') = g™(G') for appropriate integers n
and m, whence g@ ¢ C,-15 however, this implies that b = gMe Ch-1
as C,.1 1is isolated. Therefore, Cp-1 = I(G"), and, thus, I(G') is
an absolutely convex subgroup of G.

Now let F denote the locally nilpotent radical of G (i.e., F
is the largest normal, locally nilpotent subgroup of G) and let 1(F)
denote the isolator of F in G. As G' is, by Theorem 4.1, nilpotent,
G'CF and G,-1 = I(GY) C I(F); also, [I(F),G] C Cy-1- We now assert
that [I(F), C;1CCj.; for i=1,2,...,n: Suppose s <n is the
émallest positive iJ.lteger for which [I(F), Cgl ¢ Cs-1. Then
[Cs-15 I@..L(Liﬁ” = {1}. Also, [C,,C]C G, and

s -1
Cs C I(F), so [C5,Cg,...,C5] = {1}, whence Cs 1is nilpotent. Thus,
e ——
s+ 1

CsC F. Restricting the order on G to F makes F an ordered group
with convex subgroups FN G, i=0,1,...,n. Since 1€ CCF,
Cs5-17< Cg is a jump in the family of convex subgroups of F. As F
is locally nilpotent, [F,Cs] C C5.1 Dy Theorem 1.6. Since

[1(F),C] ¢Cs_1, there exist elements x e I(F) and c ¢ Cs such that

[x,c] ¢ Cs.q+ But, by"Lerﬁma 4.4, I(F)/F 1is periodic, so there exists a
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positive integer r such that [xF,c] e C5-1. However, G/Cs.q € 0,
so G/C5.1 is clearly a torsion-free » R-group, whence, by Theorem 0.9,
[xT,c] ¢ C5-1 implies ([x,c] e C5-1» @ contradiction. Therefore,
Cig I(F) and [I(P), Ci+1](_:_'Ci for 1= 0,1,...n-1, whence I(F) is
nilpotent. Therefore, I(F) CF and, hence, F = I(F) is the Fitting
subgroup of G. »

Let us now assume that I(G') + F. We assert that, in this case,
F =G: For, if not, there exist elements a and b such that
aeF-IG"Y) and beG-F. As G/C,-1 is locally cyclic,
<aC,.1, bCy1 > =< gCn_l > for some g e G. Thus, aCy-1 = gkCn-]_
and bC,_1 = g"C,.1 for appropriate integers k and m. Thus, gK ¢ F,
so, as F is isolated in G, g ¢ F. However, this implies b e F, a
contradiction. Therefore, if I(G') +F, then F=G, and G is
nilpotent. Therefore, {1} = Co< € —~<C—~ ... < Ch-1—X G =F is,
by Theorem 1.6, a central series of G, whence Ci/Ci.q C Z(6/C{.1) for
L= L2,eeon Also, (6/C)2)/(Gy-1/Crg) ¥ 6/Cy and G/C_; is
locally cyclic. Thus, G/C,.p is abelian. If the rank of G/Cn_z
exceeded one, then there could be defined infinitely many different
orders on G/Cn_z and, thus, on G. Therefore, G/Ch-2 is locally
cyclic. Again, (6/Gy.9)/(C, »/Cyp) = 6/Cy; and G/G,, is locally
cyclic, so G/Cn_ 3 1s abelian. Repeated application of this argument
ultimately yields the conclusion that G/C; is locally cyclic » where
C; € Z(G), whence G is abelian, a contradiction. Therefore, Ch-1
= I(G') = F,

Corollary 4.6: If G is a nonabelian, torsion-free, locally

nilpotent group, then G admits infinitely many different orders,
Proof: The proof of Theorem 4.5 shows that any nonabelian 0-group

which satisfies the maximal condition for subgroups locally and which
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admits only finitely many different orders has the properties that the
locally nilpotent radical F of G coincides with I(G') and that
G/I(G') is nontrivial; however, under the hypotheses of this corollary,
G is locally nilpotent, so that F = G. Hence, G cannot admit only

flnltely many different orders.
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