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HIGHLIGHTS

« A tri-level model based on bidirectional Stackelberg-Nash game theory is proposed.

» The KKT condition is combined with the bisection method to solve the tri-level model.

* The duality of the MGO as both secondary leader and follower is emphasized.

» The profits of each stakeholder are considered and the PIES's carbon emissions are reduced.
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Multi-stakeholder participation is crucial in facilitating the development of park-integrated energy systems
(PIES). Balancing the diverse interests of various stakeholders, each with its distinct requirements presents
a notable challenge. Concurrently, the model's complexity increases due to the engagement of various
stakeholders, posing challenges to its resolution through traditional methods. In this context, this paper aims
to investigate an optimal scheduling model that incorporates shared energy storage (SES) system,
microgrids operator (MGO), electric vehicles station (EVS), and user aggregator (UA) with multiple
prosumers. To comprehensively address the interests of all stakeholders, this study introduces a tri-level
optimization model. The proposed model integrates a bidirectional Stackelberg-Nash game framework, in
which the SES acts as the leader, the MGO acts as the secondary leader, and the UA-EVS acts as the
followers while allocating benefits based on the asymmetric Nash bargaining theory. The Stackelberg game
model between MGO and UA-EVS is analyzed using the Karush-Kuhn-Tucker (KKT) condition, while the
Stackelberg game model between SES and MGO is resolved using the bisection method. Meanwhile, the
Nash bargaining method among users is solved using the alternating direction method of multipliers
(ADMM) technique. The analysis indicates that the proposed strategy can reduce PIES's costs and carbon
emissions, yielding a win-win situation for all stakeholders.

units, considering various factors such as flexibility and uncertainty. Due
to the high input cost and low energy utilization rate of individual ESS, the
role of SES is becoming prominent. In [9-10], a stage configuration
approach for determining the capacity of SES was built. Nevertheless, the

1. Introduction

PIES could reduce carbon emissions and enhance energy efficiency [1].
Besides fully utilizing internal resources, the PIES is interconnected with

external energy suppliers, such as superior power grids (SPG) and natural
gas networks. This integration can effectively enhance the reliability of the
PIES energy supply [2-3]. With the backing of national policies and
advancements in energy technologies, there has been an increasing
involvement of various stakeholders in the PIES, consequently
strengthening the overall structure of the PIES [4]. Equipped with energy
storage system (ESS), MGO, UA, and EVS, PIES have the potential to
supply energy to entire communities, thus effectively reducing carbon
emissions and decreasing energy expenses. However, with the involvement
of ESS in market transactions, it becomes imperative to identify a solution
for the economic interaction between ESS and other stakeholders [5].

ESS within the PIES framework possesses the potential to optimize
resource allocation by leveraging the variation in electricity prices during
peak and valley periods [6]. The optimization function of ESS in the system
has been extensively investigated in various scholarly publications. Ref. [7-
8] proposed a coordinated operation mode between ESS and cogeneration
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above literature should have addressed the interest requirements of SES as
the stakeholder. Ref. [11] proposed that SES should engage with users
independently. In [12-13], the SES model could interact with both the
virtual power plant and the grid for energy, exhibiting a certain level of
autonomy. Nonetheless, the literature above failed to consider the
interaction between SES and other stakeholders in the game. Bringing
multiple subjects with diverse interests to engage in gaming is a crucial
strategy for attaining the economic operation of SES.

Numerous scholars have extensively analyzed the interest dynamics
among stakeholders through the establishment of a Stackelberg game
model. In [14], a low-carbon optimal scheduling model was built between
zero-carbon communities and multiple prosumers based on the Stackelberg
game. In [15], using the Stackelberg game method, an integrated energy
operator could maximize its profit while minimizing the cost and
uncertainty of the IES. Meanwhile, a lot of literature has begun to consider
the possibility of cooperative transactions involving multiple followers. In



[16], a multi-objective optimization controller based on the Nash
bargaining game was built to address the driving situation of EVs in
complex scenarios. In [17], a cooperative game model was proposed for
multiple virtual power plants, and the Shapley value method was employed.
To address the optimal interests of operators and multi-followers
concurrently and take the collective nature of followers as a cohesive entity,
[18] proposed a Stackelberg-cooperative game model to allocate the
interests of all parties reasonably and solve through iterative algorithms. A
cooperative Stackelberg game model was proposed, and the original
problem was decomposed into two-stage problems using the KKT
condition [19]. However, the literature mentioned above primarily
concentrates on the two stakeholders, neglecting the duality of the
participating subjects who assume the roles of both followers and leaders.
In Ref. [18-19], when the electricity price is high, the MGO can only meet
the UA's demand by purchasing electricity from the higher level. This
situation is not conducive to the motivation of the MGO. When SES
schedules directly with users, it cannot achieve optimal revenue. As a result,
SES's collaboration with MGO as the upper leader can both lower MGO's
costs and optimize SES's benefits.

The methods for resolving the Stackelberg and cooperative game
models have been thoroughly examined. Regarding the cooperative game
models, previous studies have utilized the Shapley value to allocate benefits
[20-21]. To tackle the issue of inequitable allocation of benefits using the
Shapley value method, some scholars have proposed that Nash bargaining
can ensure a fair distribution of benefits while safeguarding the privacy of
each user [22]. However, the bargaining power of the general Nash
bargaining method depends solely on the proportion of a user's transaction
volume among all users. In contrast, the asymmetric Nash bargaining
method refines the user's contribution through nonlinear mapping theory
[23]. Therefore, the bargaining power calculated using asymmetric Nash
bargaining is more reasonable than that of the general Nash bargaining
method, thus ensuring a fair distribution of benefits [24]. The solution
method commonly employed for the two-level Stackelberg game model is
to convert through the KKT condition and solve it using a solver [25-26] or
utilize heuristics for resolving [27-28]. However, converting a tri-level
model into a single-level model using two consecutive KKT conditions is
not feasible due to the presence of a 0-1 variable generated during the initial
application of the KKT condition. Although the heuristic algorithm has
high solving efficiency, is susceptible to becoming trapped in local optimal
solutions and exhibits limited global search capability [29]. Thus, selecting
the solution strategy for the tri-level game model among multiple
stakeholders is crucial.

In summary, some literature has examined the Stackelberg game model
between SES acting as the leader and MGO acting as the follower [30-32],
as well as the Stackelberg game model between MGO acting as the leader
and internal multi-users [18-19, 33]. However, the dual characteristics of
MGO as both leaders and followers have yet to be studied. Given the
limitations in the studies above, this paper aims to explore stakeholders'
dual roles as leaders and followers and to analyze the mechanisms through
which multiple stakeholders can effectively collaborate. A tri-level
optimization model considering a bidirectional Stackelberg-Nash game is
proposed to resolve the issue of multi-stakeholder revenue distribution.
Considering the independence of SES as a stakeholder, the upper-level
model depicts the electricity trading process between SES and MGO, with
SES acting as the leader and MGO acting as the follower. The middle-level
model depicts the process of energy interaction among MGO, UA, and EVS,
wherein MGO assumes the secondary leader in setting the price for UA and
EVS. The lower-level model examines the peer-to-peer (P2P) transactions

occurring between users in UA and employs the asymmetric Nash
bargaining method to tackle the issue of distributing benefits among
multiple users. The paper presents several notable contributions and novel
aspects, which are outlined below:

(1) A novel tri-level optimization model is developed that integrates a
bidirectional Stackelberg-Nash game framework to allocate benefits
among stakeholders. In this framework, the ESS acts as the leader, the
MGO acts as the secondary leader, and the UA acts as followers while
distributing benefits through the asymmetric Nash bargaining theory.
(2) A strategy is proposed to address the tri-level model. The
Stackelberg game model between MGO and UA is transformed into the
KKT condition for solving, while the Stackelberg game between SES
and MGO is settled using the bisection method. The asymmetric Nash
bargaining among users is resolved through the ADMM method.

(3) The proposed strategy can lower PIES's carbon emissions while
efficiently accounting for various stakeholders' interests. The proposed
model enables MGO to purchase electricity from SES at a lower price
when the electricity price is high, thus reducing MGO's costs when
trading directly with UA. At the same time, it enhances SES's status in
the game and fairly distributes the income among all stakeholders.

This paper is organized as follows: Section 2 presents the issue that will
be addressed. Section 3 provides the tri-level optimization model, which
includes SES, MGO, UA, and EVS. Section 4 describes the method of
solving. Subsequently, Section 5 presents the case study to validate the
research above. Finally, Section 6 concludes this paper.

2. Problem statement
2.1. Basic characteristics of multi-stakeholder
SPG

Power energy flow ———»
Thermal energy flow——»
Natural gas energy flow ——» T

Fig. 1 Basic model framework of this research.

Figure 1 illustrates the fundamental framework of this study. The SES



acts as the leader, aiming to optimize its advantages through interactions
with SPG and MGO. Specifically, the entity acquires electricity from SPG
and stores it during low time-of-use (TOU) tariffs. The SES establishes
tariffs and sells the power based on the demand of MGO. The MGO acts as
the secondary leader and is equipped with various energy generation
technologies, including wind turbines (WT), photovoltaic (PV), gas boilers
(GB), and combined heat and power (CHP). MGO sells power acquired
from SES and its own power and thermal energy to UA and EVS to
generate profits. The lower-level UA and EVS are followers in the
framework, meeting their energy requirements by procuring energy from
the MGO. Additionally, multiple users within the UA have rooftop PV
installations. These users have formed a cooperative alliance through P2P
power reciprocity. Each alliance member trades power through
transmission line interconnections, reducing their reliance on MGO and
enhancing their ability to set prices autonomously. Notably, This paper
does not discuss the mechanism of thermal energy trading among users due
to the impracticality of large-scale interaction pipelines required for
thermal energy.

2.2. Hierarchical transaction framework analysis

SES power energy —p
SES electricity price- —

MGO thermal energy-

»
MGO heat price- — P

P2P power energy > SEG ) MGO power energy
P2P electricity price - — | MGO electricity price
EVS power energy —P SPG power energy——p
EVS electricity price — - | SPG electricity price—
4

Bidirectional ( SES

Userl

Fig. 2 A bidirectional Stackelberg-Nash game-based energy trading
framework.

The proposed model framework, depicted in Figure 2, introduces the
bidirectional Stackelberg-Nash game. Firstly, a bidirectional Stackelberg
game establishes the interest relationship model between SES, MGO, UA,
and EVS. As the leader of the PIES, the SES holds the authority to establish
the electricity price sold to MGO. MGO acts as the secondary leader and
engages in bargaining with UA to determine a fair price for the sale of
power and heat. Secondly, this model guarantees the equitable distribution
of user benefits through the asymmetric Nash bargaining theory. Users
initially fulfill their energy requirements through the PV. When faced with
a power shortage, users can participate in P2P trading or procure power
from MGO to meet their power deficit.

According to Nash bargaining theory, this paper proposes dividing the
tri-level model into two stages: maximizing benefits for all stakeholders
(P1) and distributing user benefits (P2). At stage 1, each stakeholder aims
to optimize their profits and, in the process, determines the price and
volume of energy transactions. At stage 2, users in UA determine the tariffs
and allocate benefits based on the electricity price and energy trading
volume in the P1 stage through the P2P process.

3. PIES model establishment
3.1. Upper-level model

As the leader in the framework, SES maximizes its interests by
purchasing power from the SPG during periods of low TOU and trading
power with the MGO. The objective function can be formulated as follows:

max CSES Z(PSES sell. SES sell PSES buyVSES buy)

(Y]
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Eq. (1) comprises three parts: The first component represents the
revenue generated by selling energy to MGO. The second part represents
the benefits of SES by trading of electric energy to SPG. Lastly, the third
term represents the SES charge - discharge losses. Eq. (2) represents the
power balance constraints of SES. Egs. (3) - (5) represent the SES's
capacity and charge/discharge power constraints. The power constraints of
SES on purchasing and selling electricity to SPG and MGO are expressed
by constraints (6) - (7). Constraints (8) indicate that the electricity price
procured and sold by SES to MG cannot surpass the average value.
Constraints (9) indicate that the average price of electricity sold is restricted
to prevent SES or MGO from inflating the selling price for profit.

3.2. Middle-level model

MGO generates profit by selling the energy produced through various
sources to UA and EVS, including CHP, GB, PV, WT, and the power
purchased from SES. The objective function can be expressed as follows:
max CMGO — ii (Pel\:\(;‘ao sell, el\/\l(_‘;lo sell) + ZZ (PhN!I(?O Se”Vr’:A[G.O sell)

t=1i=1 t=1 i=1
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Eq. (10) can be divided into two parts: the cost part and the interest part.
The cost mainly includes 1) expenses for procuring energy from SES and
EVS. 2) penalty costs for curtailment of wind and solar. 3) expenses for
natural gas consumption by CHP and GB, and 4) costs for carbon trading.
The interest is derived from the revenue from selling electricity and heat to
UA and EVS. Egs. (11) - (12) represent the constraints on electrical and
thermal power balance for MGO. The power limitations of MGO in selling
heat and electricity to UA and EVS are represented by constraints (13) -
(14). Constraints (15) - (17) specify that the electricity and heat prices
purchased by UA and EVS cannot exceed the average value. It is also
assumed that the electricity price at which EVS sells to MGO is fixed.3.2.1
Models of CHP and GB in MGO

The CHP and GB jointly meet the UA's heat load demand. Their output

power and natural gas consumption can be expressed as follows:
PCHP GCHP CHP

PCHP :GCHP EHP (18)
P GGB GB

h,t ht e
Subject to
0 < PCHP < PCHP

e, max
0< PC”F’ <P (19)
0< PhﬁB <P

Eqg. (18) describes the correlation between CHP and GB's power output
and gas consumption. Constraint (19) represents the output power

constraint of CHP and GB.
3.2.2 Models of WT and PV in MGO

The estimated power of WT and PV is a constant value. The difference
between the actual and estimated power is the curtailment of wind and solar
power. It can be expressed as follows:

PWT + PWT.cur — PWT,pre
{ et et et (20)

PV PV,cur _ pPV,pre
PPV 4+ PPV — pP

Subject to

WT WT,pre
Pe,t < Pe,t

PWT,cur < PWT' pre

. (21)
PePtv < PPVp

PV, cur PV,pre
Pe ™ <Py

Eq. (20) shows the power expressions of WT and PV, and constraint
(21) is the upper and lower limit constraints.

3.2.3 The CET model in MGO

Numerous scholars have researched carbon emissions trading (CET)
mechanisms. CET offers financial incentives for not exceeding carbon
quotas and imposes penalties for exceeding them, aiming to encourage
carbon emission reduction. CET can be expressed as follows:

C* = (B — Eq)UCET (22)
T
Eq = erZ(Ceh PeCtHP Ph(,:tHP + PhétB) (23)
t=1
T
Ea =6 (Go" +G¥F (24)
t=1

Eq. (22) expresses the cost of the CET. Eq. (23) represents the carbon
quota allowance, while Eq. (24) indicates the actual carbon emissions of
the MGO.

3.3. Lower-level model
3.3.1 EVS model

Compared to the individual EV model, the multi-type EV cluster model
in EVS is more effective at capturing the actual operational status of the
charging station. Assuming fixed arrival and departure times for each type
of EV and a fixed state of charge (SOC), the EVS model can be optimized
to maximize revenue for each type of EV.

mln C EVS ZZ(PEI\:IGHO sell, EV MGO sell, EV Pel\:lio ,buy, EV MGO buy, EV) (25)
t=1 n=1

EVS trades power with the MGO to lower energy expenses while
fulfilling its energy requirements.

Subject to
EVS EVS T3 T N PMGO sell, EV
GO, bt
Sl = Stfl + ZZTIEVPEI\:I n e EV EV ZZ et |1Er\]/ (26)
i=1 n=1 o1 n=l

s @

EVS Evs
Smin < Sl S Smax (28)
Constraint (14).

Eq. (26) represents the EVS model's total SOC, and the EVs' charging
and discharging state are determined using historical data. Eq. (27)
indicates the expected SOC of the EVs. Constraint (28) represents the upper
and lower limits of the total SOC. The initial SOC and the duration of stay
for different types of EVs vary, as detailed in Appendix B.

3.3.2 UA model

The UA model consists of three users with internal power trading
capabilities. UA can purchase electricity from the MGO to meet its energy
demand. The objective of the UA in the bidirectional Stackelberg game is
to minimize the overall cost, and this article assumes that there are three
users in the UA. It can be represented as follows:
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Subject to Constraints (13), (15) and (17).
Eq. (29) describes the cost of purchasing energy from the MGO and the
user's utility function, which accounts for most of UA's expenses.
T 3
Cier = 2.2 (aR5™ +bR™) (30)
t=1 i=1
Eqg. (30) demonstrates that the user's electricity utility function for DR
includes transferable and reducible loads.
The electrical load part can be expressed as:

Pt = pe! — peoR 1)

R =B~ RY R 2
Subject to

z RAZF — 0 (33)

i=1,j=1

PECR < PR < peDR 34)
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Eq. (31) represents the users' load before and after the DR, while Eq.
(32) represents their electric power balance. Eq. (33) defines the three users'
total P2P trading volumes as 0. Constraint (34) expresses the acceptable
range for the electrical load DR, and constraint (35) indicates the allowable
value for P2P transactions among users.

The heat load part can be expressed as:

R" =R -p* (36)

Pt =R} - P (37)
Subject to

Pr:"E)R < Ph ,DR < Ph ,DR (38)

Egs. (36) - (37) represent the heat load balance, while constraint (38)
defines the allowable range of the thermal load DR. The details will not be
repeated here.

The revenue expression for individual users in UA is as follows:

T
min CiUA C UA + Z(PMGO seII MGO, sell) + Z(Ph’\??o sellvrll\ll‘GIO sell) + C
t=1

user et,i e t,i trade

(39)

Coe = Z Rivir; (40)

Eq. (39) - (40) is the income of individual users, and the income of
users' P2P transactions is considered compared with Eq. (29).

Subject to
Voin SVip; SV (1)
: P2pP
ZV“] = (42)

Constraints (13), (15), (17), (31) - (38).
Constraint (41) refers to the limit constraint of P2P trading. Constraint
(42) ensures that the electricity price traded between users remains equal.

4. PIES model solving
4.1. Bidirectional Stackelberg-Nash game interaction mechanism

This paper establishes a bidirectional Stackelberg-Nash game model,
which is a two stage and tri-level process.

Stage 1 is the bidirectional Stackelberg game encompassing SPG, MGO,
UA, and EVS. All stakeholders strive to optimize their benefits (P1). SES's
energy sales strategy is adjusted in accordance with the MGO's power
demand. The energy price determined by MGO is subsequently modified
based on the demand for power purchases from UA and EVS. The resulting
energy price for UA is then transmitted to Stage 2.

Stage 2 is the cooperative game model among UA alliance members
(P2). The user's P2P transaction price is determined by the P2P transaction
volume derived from Stage 1. The objective is to fairly allocate user
benefits through the asymmetric Nash bargaining method.

The calculation steps for the model are as follows:

Step 1: Based on the Nash bargaining theory, the model is solved by
dividing it into two sub-problems: the maximization of benefits for all
stakeholders (P1) and the equitable distribution of user benefits (P2).

Step 2: The SES is the leader in formulating an initial electricity sales
price strategy for MGO.

Step 3: The MGO assumes the dual roles of both secondary leader and
follower. It is responsible for developing and communicating the electricity
consumption strategy to SES. Meanwhile, MGO sets the energy price for
UA and EVS based on their demand.

Step 4: The UA adjusts its internal energy based on DR optimization,
following the MGO's energy sales price strategy. Then, the UA returns its
energy purchasing strategy to the MGO.

Step 5: The SES updates the electricity sales price based on the power
purchase strategy reported by MGO and guides MGO in implementing
dynamic adjustments. This process ensures that SES maximizes its
economic benefits.

Step 6: The MGO revises its electricity consumption strategy and
energy sales price by considering SES's updated electricity price and UA's
energy purchase strategy, with the aim of maximizing its economic gains.

Step 7: Repeat steps (4) - (6) until the electricity price strategy of SES,
the electricity purchase strategy and energy sale price strategy of MGO, and
the UA energy purchase strategy stabilize and remain unchanged, the game
equilibrium (P1) is reached.

Step 8: According to the volume of electric energy exchanged among
users, the asymmetric Nash bargaining approach is utilized to compute the
cooperative game income distribution (P2). Subsequently, the final price
for electric energy trading among users is calculated.

Step 9: Utilizing the game equilibrium solution is the optimal trading
strategy for energy trading within the system.

4.2. Solution strategy for tri-level bidirectional Stackelberg game

Generally, there are several approaches to resolving the tri-level model:

(1) The KKT condition converts the tri-level model into a two-level
model, which is then solved using either a distributed algorithm or a
heuristic algorithm.

(2) Directly employing heuristic algorithms to resolve the tri-level
model, such as double-level particle swarm optimization (PSO).

Although the second method is convenient, there is a risk that the PSO
algorithm may converge to a local optimal solution, which can affect the
accuracy of the solution. Therefore, the objective functions and constraints
of the UA and EVS models at the lower level are converted into additional
conditions of the middle-level MGO model first using the KKT condition.
Second, the resolution of the Stackelberg game between the upper-level
SES and middle-level MGO models is undertaken. However, when
converting the two-level model to a single-level model, the KKT condition



cannot be applied again because the MGO model includes 0-1 variables
during the initial application of the KKT condition. During the execution
of the heuristic algorithm to solve the game, the energy price will fluctuate
within a defined range. These fluctuations exhibit a gradual contraction rate,
and two neighboring boundaries can yield identical outcomes. Therefore,
this study utilizes the bisection method to tackle the issue. The bisection
method is a distributed algorithm commonly employed to iteratively solve
problems by evaluating whether the outcomes of two consecutive iterations
yield identical results.

4.3 Solving Stackelberg game models between the middle and lower level

The process of conversion is given below:

(1) The tri-level model can be simplified into a two-level model through
the KKT condition, addressing issues related to the lower-level EVS and
UA models. The middle-level MGO model incorporates complementary
relaxation conditions involving bilinear products.

(2) The big M method replaces the complementary relaxation
conditions introduced by the Lagrange multipliers with the constrained
product, and the bilinear product is transformed into an equivalent linear
expression based on strong dual theory.

4.3.1 The process of solving the EVS model

The objective function of the EVS is Eq. (25).

The constraints of the EVS are as follows:

MGO sell,.EV MGO,sell, EV
0<F} < Bonax

MGO buy, EV MGO,buy,EV
O < P < Pe max

Evs EVS
ST - Sexp (43)
EVS EVS
Smin < St S Smax
v s T N PMGO ,sell, EV
_ EV pMGO,buy, EV EV _etn
S =5, +zz77 Potn

i=1 n=1 i=1 n=1
The process of KKT condition is shown in Appendlx C.
In summary, the original objective function of EVS is equivalent as:
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4.3.2 The process of solving the UA model

The objective function and constraints of the UA are as follows:
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pP2pP PZP P2P
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0< PeDR < PeDR 0< PhDR < Ph,DR

MGO,sell MGO,sell MGO sell MGO,sell

O<Pet| <Pema>< O<P <thax

The process of KKT condition and duality theory can also be found in
Appendix C.

After the above analysis, the original objective function of UA is
equivalent as:

T 3
H UA MGO,sell MGO,sell
minC :ZZ[ \Ntlpemax * W Ph maxse

t=1 i=1
WS'(PP'V_Pl,ei'l)_FW Phl +\Nt|Pr§|rI13R _\Nslpr:aE()R (47)
WPy = WP — WP+ WeiP L — WP ]

In summary, after the KKT condition processes the Stackelberg game
model of the middle level and the lower level, the objective function and
constraints of MGO can be expressed as:

MGO SES, seII SES sell SES, buy, ,SES, buy
C Z ( P Pe,t Ve,t ) -

max

i((GS:—IP+GEGB)VgaS) Z(PWTcur WT PPchr PV) CCET
t=1

T 3

DR h,DR MGO,sell MGO,sell
(aPti Jrbpt.i )722[ Wt|Pe max * W Ph maxSe
t=1 i=1
5 | hl DR DR
W '(va Pe )+W P +\NI|Pneun _\Nslpmeax
h,DR 0Oph.DR 0ph,DR 1pP2P 2pP2P
tlpmln \Nllpmax \Nllpmax +\N1 P —j,min \Nl P Jmax]
MGO,sel. EV __ MGO,buy,EV 5 EVS
Z{Z( ut anax * tnpmax uy )+U Sm|n - Sma\x tnSexp
t=1 n=1
(48)
Subject to

(11)-(24), (26)-(28), (31)-(38), (40)-(42), (C.4)-(C.6), (C.9)-(C.11).
4.4 Solving Stackelberg game models for upper and middle levels

Based on the analysis above, the tri-level model has been converted into
a two-level model by the KKT condition, and it can be solved through the
bisection method [34].

In this paper, the bisection method utilizes the price of electricity
purchased and sold from SES to MGO as the iterative goal and constraint.
Quickly find the optimal solution by adjusting the constraint interval of the
price. This constraint interval always contains the optimal price value, and
the upper and lower bounds are updated in iterations. If the results of two
consecutive iterations are the same, the bisection method is employed to
handle the boundary, and the iteration is concluded when the convergence
condition is met. Taking the selling price vt>*" from SES to MGO as
example, suppose Vs: o™ represents the price of electricity sold at time t
at the n iteration, Vytewr is the upper limit of the electricity price and
Vool = maxdvSte VIS vEESE s the lower limit of the electricity
sales price and Vg, = mindvei ™, V2o '}, the initial value of V5!
and v are the upper and lower set value of the price. n is the actual
number of iterations and A is the convergence condition. The steps to
calculate the bisection method are as follows:

Algorithm 1: The process of bisection method

SES,sell SES,sell
1: Initialization: Vormm » Vermin » A -

SES sell
2:Input: Voo, N

SES sell

3: Output: Ve,

4.forn=1,2,..., ndo
" SES,sell SES, sell SES sell
Ve tn _(Velmm e{max)/z n= n+l
Add constraints Ver v < Vore ™ <Viree' . This step divides the

current solution interval into two halves. Solve the model.

VSES,seII _ SES,sell
. et,n+l etn
if e <A then
et,n

Declare convergence for the bisection method;



else
Set n=n+1.
Add constraints Voree < Vot <Vitoe! . This step updates
the constraint range that contains the optimal solution.

Solve the model.

SESsell _, SESsell
if {“”“SESS;"" <2 then
et.n
Declare convergence for the bisection method,;
elseif

SES sell SES,sell

Vern =Vermax » then the optimal solution is in the interval

[UsEsee!, vos] Let vjfsmvsif]"_VSEise” update the lower
boundary of the constraint.
elseif

SES sell SES sell
o = Vo, Let ySESS _ GSESsl pdate the upper

e,t,max

Vv

boundary of the constraint.
else
Set n=n+1.
Return to Line 4, until meet the termination conditions or n > n -
5:end
The schematic diagram of the method is depicted in Figure 3.
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n+2,t /H]I

rn\l

Fig. 3 Schematic diagram of the bisection method.

In summary, sections 4.2-4.3 provide the solution to the bidirectional

Stackelberg game model using the KKT condition and the bisection method.

First, the KKT condition solves the Stackelberg game process between the
middle-level MGO model and the lower-level UA-EVS models,
transforming the tri-level model into a two-level model. Second, the
Stackelberg game process between the upper-level SES and middle-level
MGO models is processed through the bisection method. The proof of the
bidirectional Stackelberg game is given in Appendix A.

4.5 Solving cooperative game model among users

Nash bargaining is a cooperative game used to distribute the benefits
among users the Nash equilibrium solution ensures that all participants
in the UA have equal bargaining power. It can be expressed as:

UA UA0
maXH(Ci -C)
iy (50)
s.t. CiUA > CiUA‘0

CiLWJ represents the income of individual users in non-cooperative
transactions. That is the breakdown point of the negotiations. Eq. (50)
ensures that the user's income will not be damaged after the cooperation.

EX = imax(o, LF2) (51)

t=1

;
Ex*=-> max(0,L;%) (52)
t=1
d, =" /B _ g Em (53)
max H(CiUA,O _ CiUA + EiPZP)dn
iey (54)

s.t. CUA°_CU 4+ EP? >0

Egs. (51)-(54) express the distribution of benefits from the user's
participation in the cooperation. Eipzp is the income after the cooperative
game. ES» =max(E*,vn) and E., =max(E...,Vn) are the
maximum amounts of power supplied and received by the user,
respectively. d, is the benefit distribution coefficient. Convert the above
equation to Eq. (55):
min H_dn In(CiUA'0 = CiUA + EiPZP) (55)

icy

Decouple Eq. (42) into a price double coupling constraint:

P2P | P2P
Viij Ve =0 (56)

When the transaction price between users is equal, they have reached a
cooperation agreement. The bargaining power size dn is calculated
according to the initial transaction price and volume among users.

Based on Eq. (55)-(56), the augmented Lagrange function is established
as shown in Eq. (57):

szp =-d, In(CiUA'0

3 T
s
DDA + ff?)+2' le(f’ff v I

iot=1

_CVUA 4 EVPZP) +

67

_ A["isthe Lagrange multiplier and p{*" is the penalty parameter.
k is the actual number of iterations. The steps to calculate the ADMM
method are as follows:

Algorithm 2: The process of ADMM method

L Initialization: 4" pf*"
2: Input: C*%, CA.
3:Output: V"
4:fork=1,2, ..., k do
for i,je3 do
User i updates trading decisions:
Vi 2 (k +1) =argmin L 2P (v 27 (k) Vi 7P (K)) . (58)
User j updates trading decisions:
ViZP(k+1) =argmin L5 (v 27 (k), v 2P (k) : (59)

if Z||VP2P(k+l) VP2 (k) < & then

Declare convergence for the ADMM method;
else

setk =k +1, update Lagrange multipliers via Eq. (60).
APZP(k +l) &PZP(k) +pIPZP(vPZF’ P|2P ; (60)

1) '
Return to Line 4, until meet the termination conditions or k > k
5. end
6: end

Figure 4 depicts the flowchart for solving the bidirectional Stackelberg-
Nash game model.
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Fig. 4 Bidirectional Stackelberg-Nash game solution process.

5. Case study

All case studies are implemented by Gurobi 10.2 with MATLAB
2022b on a PC with an Intel Core i5/2.7-GHz-based processor and 16 GB
of RAM.

5.1 Study parameters

The research focused on the PIES of a city in China to assess the
efficacy of the proposed approach. Subsequently, a bidirectional
Stackelberg-Nash game model was developed to analyze the corresponding
dynamics. The electricity price data between SES and SPG are shown in
Table 1, while additional parameters are provided in Appendix B. The
forecast data for WT and PV in the MGO and the users' electrical load can
be found in Appendix D.

5.2 Program comparison analysis

A series of scenarios has been established for comparative analysis.
Table 2 presents the settings for specific scenarios.

Scenario I: Assuming that the electricity prices set by MGO and SES
remain constant. There are no game relationships between the three entities.

Scenario I1: Only the Stackelberg game model between MGO and UA-
EVS is considered, while the Stackelberg game model between SES and
MGO is excluded.

Scenario Ill: Based on Scenario Il, the cooperative game model
between users is additionally considered.

Scenario 1V: Consider the bidirectional Stackelberg-Nash game model,
proposed scheme in this paper.

Table 1
Electricity price between SES and SPG.

Time/h
01:00-06:00
23:00-24:00
07:00-09:00
15:00-17:00
21:00-22:00
10:00-14:00
18:00-20:00

Sale(¥/kw) Purchase(¥/kW)

0.4 0.35

1.2

Table 2

Description of the contents of each Scenario.

Stackelberg game Stackelberg game Cooperative
Scenario  model between SES  model between MGO game model
and MGO and UA-EVS within UA
[ X X X
1 X N X
11 X N N
v v N N
Table 3
Optimization results for different Scenarios.
MGO UA Carbon
Scenario  SES profit (¥)
profit (¥) profit (¥) emissions/kg
| 6105 10023 -27733 6520
1 6007 14989 -31573 6094
11l 6002 14875 -30621 6072
v 7224 13388 -30613 5831




Table 4

Users” benefit analysis before and after cooperation in Scenarios Il and I11.

User Cooperation isnot Cooperationis  Ultimate General Nash Asymmetric Nash

considered Il (¥) considered 111 (¥) benefits (¥) bargaining (¥) bargaining (¥)

1 -10483 -9115 -10166 317 276
2 -10532 -9687 -10215 317 144
3 -10558 -11819 -10240 318 562
Table 5

Users’ benefit analysis before and after cooperation in Scenarios V.

User Cooperationis Cooperationis Ultimate General Nash Asymmetric Nash

not considered (¥) considered (¥) benefits (¥) bargaining (¥) bargaining (¥)

1 -10473 -9028 -10157 316 275
2 -10530 -9694 -10214 316 145
3 -10558 -11891 -10242 316 561

Upon analyzing the data from Scenarios Il and I11 in Table 3, it becomes
evident that the revenue of SES in these two situations is almost identical.
It can be attributed to the fact that the Stackelberg game process between
SES and MGO is not considered in either Scenario. In contrast to Scenario
11, Scenario Il incorporates the concept of cooperative gaming in UA and
fully respects the interests of UA. As a result, the daily income of MGO in
Scenario 111 decreases by 114¥, while the daily cost of UA decreases by
1252¥%. Each user's contribution in the P2P process can be fully considered
by considering the asymmetric Nash bargaining. In Scenario IV, the
bargaining factors of the users are 0.99, 0.41, and 2.06, respectively. In
Table 5, the application of the general Nash bargaining method has
increased each user's earnings by 316¥ through cooperation. It is
unreasonable. Considering the asymmetric Nash bargaining, User 3 made
the highest contribution, resulting in a 245¥% increase compared to the
general Nash bargaining. Conversely, the income decreased due to users 1
and 2's lower contributions. The scheme effectively ensured a fair income
distribution, safeguarded cooperation participants' interests, and achieved a
fair distribution of cooperation benefits.

Upon analyzing the data presented for Scenarios | and IV in Table 3, it
becomes evident that the revenue of SES in Scenario IV exhibits an increase
of 1109¥ compared to Scenario Il1. It can be attributed to the inclusion of
the Stackelberg game model between SES and MGO in Scenario IV,
allowing SES to leverage its position as the leader of MGO and effectively
utilize its pricing advantage within the game model. Given that users
establish a cooperative alliance to negotiate with MGO, the decrease in
MGO's revenue has minimal influence on the cost of UA. This observation
indicates that the cooperative game among multiple users is strongly
resilient to risks. Meanwhile, in Scenario 1V, the carbon emissions of MGO
decreased by 241kg compared to Scenario Ill. This reduction can be
attributed to the decrease in output of the CHP, resulting in a lower carbon
footprint for the system.

Upon analyzing the data presented in Table 3 for Scenarios | and 1V, it
becomes apparent that the utilization of the bidirectional Stackelberg game
model, as discussed in this paper, leads to a significant increase in revenue
for SES by 1119¥ and an increase in income for MGO by 3365¥. This
phenomenon can be attributed to the fact that Scenario 1V amplifies the
initiative of MGO, which relies on SES for energy provision while also

establishing a competitive dynamic with it. It effectively fosters the
enthusiasm of all stakeholders to actively participate in the transaction.
Although the cost of UA in Scenario IV is negatively impacted, this
approach can potentially improve PIES's overall efficiency and support the
energy system's sustainable operation.

5.3 Power and price analysis

Appendix D contains the convergence curves of the bidirectional
Stackelberg-Nash game. Additionally, the change curves of the SOC of
EVS and the electricity price set by the MGO to EVS are presented in
Appendix D and will not be reiterated in this section.

5.3.1 Price curve analysis

0.9F

Price (¥)

0.6

03F

0.0

Time (h)

Scenario IV SES purchase Scenario IV SES sell
- = = Scenario I-III SES purchase —&— Scenario I-1II SES sell

Fig. 5 The electricity price traded by SES with MGO.
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Fig. 6 The electricity and heat price set by MGO to UA.
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Fig. 7 P2P transaction price and electricity volume in Scenario I11.

Figure 5 depicts the electricity price variations between the upper-level
SES and middle-level MGO models in Scenarios I-1V. Given that the
bidirectional Stackelberg game is not considered in Scenarios I-1l1, it is
assumed that the initial electricity prices between SES and MGO are set to
the values determined by the bisection method. That is, the initial values
are calculated as half of the sum of the upper and lower limits of the
electricity price. When considering the Stackelberg game model between
SES and MGO, the electricity price that SES purchases from MGO
decreases, thereby enhancing SES's independent pricing authority. The
electricity price sales from SES to MGO increased during low TOU periods
and decreased during high TOU periods. It indicates that by incorporating
the Stackelberg game, the SES electricity sales price effectively considered
the actual electricity consumption of MGO and balanced the interests and
needs of both stakeholders.

Figure 6 depicts the energy trading between MGO and UA. When the
cooperative game is not considered, the MGO establishes individual prices
for each user. This is due to the absence of a cooperative alliance among
the users, which allows MGO to set prices based on its interests. After
forming the cooperative alliance, users within UA can engage in power
trading based on their respective energy requirements. It reduces their
dependence on MGO and allows the users to collectively negotiate with
MGO using Nash bargaining theory, thereby enhancing the overall interests.
Figure 7 depicts the transaction price and amount of electricity in the user
cooperative game.

5.3.2 Power balance analysis

Next, this paper focuses on the stakeholders in Scenario V.
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Fig. 8 Power balance diagram for MGO in Scenario IV.
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Fig. 9 Power balance diagram for user 1 in Scenario V.

Figure 8 depicts the balance of MGO's electrical and thermal power.
When considering the data presented in Figure 5, it becomes evident that
MGO chooses to purchase electricity from SES and sell it to UA during the
time periods of 1:00-6:00 and 16:00-24:00. The decision is primarily driven
by the lower supply price of SES and the demand for UA during peak load
hours. During 9:00-15:00, combined with the WT and PV output power in
Appendix D, MGO primarily supplies energy to UA through renewable
energy and profits by selling excess power to SES and EVS. MGO
generates electricity primarily through CHP to reduce costs during 18:00-
20:00 when SES charges higher rates.

Figure 9 depicts the equilibrium curve representing the electrical and
thermal power of User 1 in Scenario IV. The balance curves of electrical
power and thermal power for users 2-3 are shown in Appendix D. From the
data in the figure; it is evident that user 1 purchases electricity from MGO
during periods of 1:00-7:00 when the electricity price sold by MGO is low.
User 1 does this to meet its own energy demand and earns profits through
P2P transactions from 6:00-7:00. During 8:00-16:00 when the PV generates
high output power, user 1 primarily acquires electricity through the
utilization of PV, DR and P2P transactions. During 17:00-20:00 when the
electricity price supplied by MGO is high, user 1 has to purchase electricity
from MGO due to insufficient supply and meet the power demand through
P2P transactions during the 21:00-22:00.
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Fig.10 Power and SOC analysis from SES.

Figure 10 depicts the diagram of variation in SOC and charge/discharge
power for the SES. As shown in the figure, SES purchases power from SPG
and sells it to MGO during the low TOU period of 1:00-6:00 to generate
profits while ensuring that its SOC reaches its maximum value. During the
periods of 11:00-14:00, when the power supply is adequate, SES can
generate profit by purchasing electricity from MGO and selling excess

electricity to SPG.
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Fig.11 Carbon emissions under different Scenarios.

The following analyzes the impact of carbon emissions on the system
scheduling results. From the carbon emission characteristic curves of the
three scenarios in Figure 11, the willingness of PIES to reduce carbon
emissions has been significantly improved after considering the bisection
Stackelberg game model proposed in this paper, that is, considering the dual
attributes of MGO leaders and followers at the same time. Compared with
Scenario 2 and Scenario 3, the carbon emissions of Scenario 4 during the
period of 16:00-20:00 during the peak electricity consumption period are
significantly reduced. Combined with the analysis in Figure 10, to reduce
the system's carbon emissions, the SES unit conducts the charging process
when the electricity price is low. It sells the electricity to MGO at a price
lower than the time-of-use price during the peak demand period, which also
reduces the cost of MGO and the system'’s carbon emissions.

To illustrate the efficacy of the bisection method, a heuristic algorithm
is employed to solve the Stackelberg game between SES and MGO in
scenario V.



Table 6

Optimization results for different algorithms.

SES MGO UA Number of Solution

Solution algorithm

profit (¥) profit (¥) profit (¥) iterations time/s
Bisection method 7224 13388 -30613 58 75
Heuristic algorithm 7100 15305 -30649 132 603

Table 6 presents statistics indicating that the bisection method
effectively reduces the iterations and time of solving, while the heuristic
algorithm falls into the local best solution.

6. Conclusion

Considering the situation that multi-stakeholders have different
interests in PIES, this paper proposed a tri-layer bidirectional Stackelberg-
Nash game model for low-carbon optimal scheduling of park-integrated
energy system. The main conclusions are as follows:

1)  The proposed bidirectional Stackelberg-Nash game model, which
incorporates MGO, SES, and UA, enhances the engagement of all
stakeholders in PIES. Users in UA actively engage in the demand
response process, and benefits are equitably distributed through
asymmetric Nash bargaining.

2)  Considering MGO's dual role as both a leader and follower, the
cost of MGO directly trading with UA is decreased, enabling
MGO to procure electricity from SES at a reduced price. At the
same time, it enhances the dominance of SES in the gaming
process and boosts revenue compared to SES trading directly with
lower-level users. This model ensures the optimal benefits of both
SES and MGO.

3)  From the analysis of the case study, the bidirectional Stackelberg-
Nash game model improves the status of UA in PIES transactions,
prompts MGO to negotiate reasonably with SES and UA, and then
forces MGO to cede part of its interests.

With the number of stakeholders in the system gradually increasing, the
need for a fair distribution of interests among all parties has gradually
become more prominent. However, in practice, there may be cases where
many users or EVs are involved in optimizing scheduling. Therefore, the
influence of individual EV randomness will be further considered. The EV
model will be refined and integrated directly with the upper-layer SES, and
the path planning of EVs with the distribution network will be considered.
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Appendix A.

In a multi-agent game, the equilibrium solution is unique if the model satisfies the following three conditions.
(D The strategy spaces of all participants are all non-empty compact convex sets;
@ Given the leader's strategy, the optimal solution of the follower exists and is unique;
(3 Given the follower's strategy, the leader's unique optimal solution exists.
The proof is as follows:
(1) Since the policy sets of SES, MGO, and UA-EVS are all non-empty tight convex sets, condition @ is satisfied.
(2) When the electricity price strategy of the secondary leader MGO is determined, the optimal strategies for the follower UA and EVS are solved.
o2cUA
W = (A1)
et
2CcUA
W = O (A2)
hti

—_— =0 (A3)
MGO,sell,EV :
OV t

d2CEVS o (A2)
COB EV?
(A1)—(A4) illustrate that the second-order partial derivative is 0, indicating that the objective function of UA and EVS is linear for the energy sales
strategy provided by MGO. It suggests that there is an optimal strategy that satisfies condition @.
When the electricity price strategy of the leader SES is given, the optimal strategy of the follower MGO is solved.
2cMeo
W = 0 (A.5)
et
a2cMeo
Wg = (A.6)
et
Egs. (A5) - (A6) express that the second-order partial derivative is 0, which indicates that the objective function of MGO is linear for the energy sales
strategy provided by SES, and there is an optimal strategy that satisfies the condition @.
(3) The optimal strategy of the secondary leader MGO is determined when the energy purchasing strategies of the UA and EVS are provided.
2cMGo

oRMCO 2=0 (A7)

82C MGO

HPMGO sell 2 =0 (A.8)
ht,i

62C MGO

oPMGOsell.EV 2 =0 (A.9)

et
52(: MGO

MGO,buy,EV 2 0 (A.10)
OPyy

The Egs. (A7) - (A10) demonstrate that the second-order partial derivative is equal to 0. It suggests that MGO has a distinct pricing strategy that aligns
with UA and EV'S energy consumption strategies, meeting condition 3.
When the MGO's energy purchasing strategy is provided, the optimal strategy for the leader SES is determined.
2~SES
0°C -0
SESsell 2~ (A11)
oPY
H2CSES

opSESbuy? = (A.12)

et

Egs. (A11) - (A12) express that the second-order partial derivative is 0. It indicates that SES has a distinct pricing strategy that aligns with MGO's energy
consumption strategy, meeting condition ®.

The results indicate a unique equilibrium solution for the bidirectional Stackelberg game proposed in this paper.



Appendix B.

Table B.1

Electricity price between SES and MGO.

Parameter value Parameter value Parameter value Parameter  value Parameter value Parameter value
VeS;Sa,:uy VeSPG,seII VeS‘l;ZnSa,)s(ell VeSPG,seII V:,AWG‘anISE” VESPG,SEII Vm{;;,sell 0.6 V;\flrfa(;,sell,EV veSPG,seII V:é: veSPG,seII
*1.5 *1.2
VeS;Sihbuy VESPG,seII _ V:;S;uy VeSPG,seII V:’/I”G‘i?.sell VeSPG,seII Vmﬁg,sell 0.15 V;\flrfi:,sell,EV VeSPG,seII *0.5 vr:iZnP 0.2
0.35 *0.5
Table B.2
Other parameters.
Parameter value Parameter value Parameter value
hi h,DR hl PV
P 3000 Pa -0.1* B} v, 0.5
P 3000 phoR 0.1* P Ceer 0.3
SES,sell P2P
poESs 1000 P min -200 e 0.39
pSEsbuy 1000 Py 200 e, 0.047
porGsel 3000 §3Es 4500 Car 1.67
Poro™ 3000 S 500 a 05
plsos! 2000 Vovas 1.20 b 0.4
v 2000 Vwiad 0.85 7 03
R 2000 Vool 06 7o 0.45
R 1500 ool 05 ne® 0.9
pe® 2000 v 0.01 7= 0.95
peoR -0.1* B Ve 3.2 s 0.98
PR 0.1* P v 05 A 0.01
Table B.3
Parameter settings for EV clusters (Single-volume EV).
sell, buy, EVS EVS EVS EVS EV .
The types of EV Peh:lnig ey Ra’\fnGaS e SexD Smax Smin arrive It n Quantlty
1 6 6 38 38 8 15 [10,24] 11
2 6 6 304 304 6.4 16 [2,9] 13
3 6 6 22.8 22.8 4.8 12 [13,22] 10
4 6 6 38 38 8 25 [1,8] 10
5 10 10 60.8 60.8 12.8 25 [11,23] 6

The data in the table above are for individual EVs, and EVS's charging and discharging power and SOC are the sum of the corresponding data of the
five types of EV clusters. There are 50 EVs in total, with the quantities for each type of EV listed in column 9 of Table X.

Appendix C.

The KKT condition and duality theory are utilized to transform the equation of EVS mentioned above:

(1) The constraints of EVS can be translated into:

Pe’,\:l,GnO’se”’Ev >0: utl,n
th:;}O,sell,EV _ Pe’,\f,?.o'se"'EV >0 uin
IgeTﬁo,buy,EV > 0 . usn
Pml\gfo‘buy‘EV _ PeTﬁo,buy,Ev >0 ut4,n
S S
S, =Snm20:ud
Smor — Sne 20:U¢
EVS
S, —Sgp =0:u/
S EVS _ S EVS _ ii?]EVPMGO‘buy‘EViEV + iZN: PeT?‘leeu,Ev iEV
t t-1 et,n t,n EV t,n
i=1 n=1 i=1 n=1 n

=0:u?

t,n

(€1



1
t,n

-ut

t,n

u are the complementary relaxation variables corresponding to each constraint.
(2) The Lagrange function of EVS is:

LEVS Z{Z[(PMGO sell, EV MGO,sell, EV PMGO ,buy, EV MGO buy, EV) U PMGO ,sell, EV UZ (PMGO ,sell, EV PMGO sell, EV)
t,n

et,n etn et,n t,n"et,n max et,n
t=1 n=1
MGO, buy,EV 4 MGO,buy,EV MGO, buy,EV 5 Evs Evs 6 Evs Evs
tnPetn ul,n(Pmax Petn )]_utn(snt _Smin)_ut,n(smax _Sn,t )}_ (Cz)
T . MGO,sell, EV
7 Ev EVS 8 BV EV pMGO, buy, EV EV e,t,n fEV
zut,n (ST Sexp ) z{ut,n(st Z[’] Pet n ,n + EV It,n ])}
t=1 t=1 n
(3) The partial derivative of the Lagrange function is:
o N N MGO sell,EV
EV pMGO,buy,EV; EV e
Sarrive+z Peln Iln Z 77 I1n't_1
EVS n=1 n=1
Soo= R TN PMGO sell, EV (C.3)
8171 +ZZUEVPGI\{I('3]ObuyEV EV Zz et,n tn’te[z T]
i=1 n=1 i=1 n=1
Finding the partial derivatives for the variables Po0*" | PMOOPEY gng S respectlvely:
EVS 8 :EV
oL VMGO,seII,EV _ ul + uz _ ut,nlt,n =0
6PMGO sellEV — Tet.n tn tn UEV -
et,n
OLEVS
_ MGO,buy, EV 3 4 8 EV EV
PMEO By EV — “Vern — Uy F U HUh o 77 =0 (C4
et,n
oLES  [—u’+ul—ul —uf =0te[2,T -1]
S, —u? +u —ul + uHl L=0t=T

(4) Complementary relaxation conditions
Using the complementary relaxation condition for Eq. (C.1) :
0< P:ﬁo'se"’EV L u:l >0: Z1

MGO,sellEV _ 5MGO,sell,EV .52
0<P, -P. J_U n20:Z;,

0<PNSOPE |y >0:Z8,

0 < PYSOLWEY Pe“fio PYE U 2028, (©9)
0<S, —=Spn Lus >0:2%,
0<Spm — Sy LU, >0:2°
Eg. (C.5) represents that the above corresponds to scalars at most only one is greater than 0. ZV ZGt are the Boolean variables.
(5) The linear inequality constraint obtained by the big M method is:
0< PSS <M (1-2Z;,)
0<u;, <MZj,
0 PUSOIEY SO <M (1-22 )
0<u’, <MZ?
0< P“"Go'b“y'EV <M(1- nyt)
0<u}, <Mz},
0< RUPME - RUPM <M (1-Z)) o
0<u’, <Mz,
0<S, —Smr <M(@L-25)
0<u’, <Mz},
OSSmaxfsnt <MQ@A-2¢ wt)
o<u’, <Mz},

The KKT condition and duality theory are utilized to transform the equation of UA mentioned above:

(1) The constraints of UA can be translated into:
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(2) The Lagrange function of UA is:

T 3
UA _ MGO,sell, ,MGO,sell MGO,sell, ,MGO,sell e,DR h,DR MGO,sell 2 MGO,sell MGO,sell 3 pMGO,sell
L™ = Z{Z[Petl Vet + Ph,t,i Vhti + a-F)t,i + th,i 4 th,i Pe,t,i —W (Pe,max - Pe,t,i ) —Wi Ph,t,i -
t=1 i=1

Wt4,i (PMeOsal _ Phnv/llveio,seu) _Wfi (PMeosI _ PI,EiJ " Pttei,DR +PY + PP2") _Wfi (PMeOsel _ Pthll " R:,DR) _ \Nl7,i (F)ti,DR PSRy (C8)

h,max et,i ti,j hti min

3
W (P = R = Wi (R = Pad™) = Wi (P = RE™™) =W (R — R in) =W (P =PI 1= 20 WEREY

min tij n-m,min —m, max tij
i=1,j=1

(3) The partial derivative of the Lagrange function is:

Finding the partial derivatives for the variables P,{5 ", BNGO*! R&PR PNOR ang R respectively:

aLUA
_ yMGO,sell _
aPMGO‘seII - Ve,l.i Wil
et,i

2 5
P W, =W, =0

,n

aLUA
— MGOsell 3 4 6 _
aPMGO'Se" - Vh,t,i - Wt,n + Wt.n _Wt,n =0
h,t,i

oA - ;
opeDR =a—W, — W, + \Nta,n =0 (C9
i

UA
;ﬁ‘wzb—ws W +w® =0
t,i

t.n ~ Wi t,n
oLvA
W=—th,ln — W, + W, =0

ti,j

(4) Complementary relaxation conditions

0< PO | W >0: X},

0< PMGO,seII _ PMGO,seII L szvi >0: XVZ[

e, max et,i

0< PN 1w 20:X¢,

ti =

0 < PMGO,seII _ PMGO,seII J_ W:i > 0: X:t

h, max h,t,i

0<PPR_PPR | WP >0: X5,

min t,

0<PER _PEOR | wf >0: X?,

0<PMOR_PIOR |y >0: X,

t,

0< PR —BIO® | wf, > 0: X?,

(C.10)

ORI RV, L, 20: X,
0<PF30, ~ L Lwi>0: X}

1 10 -
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(5) The linear inequality constraint obtained by the big M method is:
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—#— Revenue curve of user l‘

1+ Revenue curve of user 2‘

Fig. C.4 The convergence process of cooperative game.

—a— Revenue curve of user 3
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Fig.D.2 Power balance diagram for user 2 in Scenario IV.
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Fig.D.3 Power balance diagram for user 3 in Scenario IV.
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