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H I G H L I G H T S 

·A tri-level model based on bidirectional Stackelberg-Nash game theory is proposed. 

·The KKT condition is combined with the bisection method to solve the tri-level model. 

·The duality of the MGO as both secondary leader and follower is emphasized. 

·The profits of each stakeholder are considered and the PIES's carbon emissions are reduced. 
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A B S T R A C T 

Multi-stakeholder participation is crucial in facilitating the development of park-integrated energy systems 

(PIES). Balancing the diverse interests of various stakeholders, each with its distinct requirements presents 

a notable challenge. Concurrently, the model's complexity increases due to the engagement of various 

stakeholders, posing challenges to its resolution through traditional methods. In this context, this paper aims 

to investigate an optimal scheduling model that incorporates shared energy storage (SES) system, 

microgrids operator (MGO), electric vehicles station (EVS), and user aggregator (UA) with multiple 

prosumers. To comprehensively address the interests of all stakeholders, this study introduces a tri-level 

optimization model. The proposed model integrates a bidirectional Stackelberg-Nash game framework, in 

which the SES acts as the leader, the MGO acts as the secondary leader, and the UA-EVS acts as the 

followers while allocating benefits based on the asymmetric Nash bargaining theory. The Stackelberg game 

model between MGO and UA-EVS is analyzed using the Karush-Kuhn-Tucker (KKT) condition, while the 

Stackelberg game model between SES and MGO is resolved using the bisection method. Meanwhile, the 

Nash bargaining method among users is solved using the alternating direction method of multipliers 

(ADMM) technique. The analysis indicates that the proposed strategy can reduce PIES's costs and carbon 

emissions, yielding a win-win situation for all stakeholders. 

    

1. Introduction 

PIES could reduce carbon emissions and enhance energy efficiency [1]. 

Besides fully utilizing internal resources, the PIES is interconnected with 

external energy suppliers, such as superior power grids (SPG) and natural 

gas networks.  This integration can effectively enhance the reliability of the 

PIES energy supply [2-3]. With the backing of national policies and 

advancements in energy technologies, there has been an increasing 

involvement of various stakeholders in the PIES, consequently 

strengthening the overall structure of the PIES [4]. Equipped with energy 

storage system (ESS), MGO, UA, and EVS, PIES have the potential to 

supply energy to entire communities, thus effectively reducing carbon 

emissions and decreasing energy expenses. However, with the involvement 

of ESS in market transactions, it becomes imperative to identify a solution 

for the economic interaction between ESS and other stakeholders [5]. 

ESS within the PIES framework possesses the potential to optimize 

resource allocation by leveraging the variation in electricity prices during 

peak and valley periods [6]. The optimization function of ESS in the system 

has been extensively investigated in various scholarly publications. Ref. [7-

8] proposed a coordinated operation mode between ESS and cogeneration 
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units, considering various factors such as flexibility and uncertainty. Due 

to the high input cost and low energy utilization rate of individual ESS, the 

role of SES is becoming prominent. In [9-10], a stage configuration 

approach for determining the capacity of SES was built. Nevertheless, the 

above literature should have addressed the interest requirements of SES as 

the stakeholder. Ref. [11] proposed that SES should engage with users 

independently. In [12-13], the SES model could interact with both the 

virtual power plant and the grid for energy, exhibiting a certain level of 

autonomy. Nonetheless, the literature above failed to consider the 

interaction between SES and other stakeholders in the game. Bringing 

multiple subjects with diverse interests to engage in gaming is a crucial 

strategy for attaining the economic operation of SES. 

Numerous scholars have extensively analyzed the interest dynamics 

among stakeholders through the establishment of a Stackelberg game 

model. In [14], a low-carbon optimal scheduling model was built between 

zero-carbon communities and multiple prosumers based on the Stackelberg 

game. In [15], using the Stackelberg game method, an integrated energy 

operator could maximize its profit while minimizing the cost and 

uncertainty of the IES. Meanwhile, a lot of literature has begun to consider 

the possibility of cooperative transactions involving multiple followers. In 
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[16], a multi-objective optimization controller based on the Nash 

bargaining game was built to address the driving situation of EVs in 

complex scenarios. In [17], a cooperative game model was proposed for 

multiple virtual power plants, and the Shapley value method was employed. 

To address the optimal interests of operators and multi-followers 

concurrently and take the collective nature of followers as a cohesive entity, 

[18] proposed a Stackelberg-cooperative game model to allocate the 

interests of all parties reasonably and solve through iterative algorithms. A 

cooperative Stackelberg game model was proposed, and the original 

problem was decomposed into two-stage problems using the KKT 

condition [19]. However, the literature mentioned above primarily 

concentrates on the two stakeholders, neglecting the duality of the 

participating subjects who assume the roles of both followers and leaders. 

In Ref. [18-19], when the electricity price is high, the MGO can only meet 

the UA's demand by purchasing electricity from the higher level. This 

situation is not conducive to the motivation of the MGO. When SES 

schedules directly with users, it cannot achieve optimal revenue. As a result, 

SES's collaboration with MGO as the upper leader can both lower MGO's 

costs and optimize SES's benefits. 

The methods for resolving the Stackelberg and cooperative game 

models have been thoroughly examined. Regarding the cooperative game 

models, previous studies have utilized the Shapley value to allocate benefits 

[20-21]. To tackle the issue of inequitable allocation of benefits using the 

Shapley value method, some scholars have proposed that Nash bargaining 

can ensure a fair distribution of benefits while safeguarding the privacy of 

each user [22]. However, the bargaining power of the general Nash 

bargaining method depends solely on the proportion of a user's transaction 

volume among all users. In contrast, the asymmetric Nash bargaining 

method refines the user's contribution through nonlinear mapping theory 

[23]. Therefore, the bargaining power calculated using asymmetric Nash 

bargaining is more reasonable than that of the general Nash bargaining 

method, thus ensuring a fair distribution of benefits [24]. The solution 

method commonly employed for the two-level Stackelberg game model is 

to convert through the KKT condition and solve it using a solver [25-26] or 

utilize heuristics for resolving [27-28]. However, converting a tri-level 

model into a single-level model using two consecutive KKT conditions is 

not feasible due to the presence of a 0-1 variable generated during the initial 

application of the KKT condition. Although the heuristic algorithm has 

high solving efficiency, is susceptible to becoming trapped in local optimal 

solutions and exhibits limited global search capability [29]. Thus, selecting 

the solution strategy for the tri-level game model among multiple 

stakeholders is crucial.   

In summary, some literature has examined the Stackelberg game model 

between SES acting as the leader and MGO acting as the follower [30-32], 

as well as the Stackelberg game model between MGO acting as the leader 

and internal multi-users [18-19, 33]. However, the dual characteristics of 

MGO as both leaders and followers have yet to be studied. Given the 

limitations in the studies above, this paper aims to explore stakeholders' 

dual roles as leaders and followers and to analyze the mechanisms through 

which multiple stakeholders can effectively collaborate. A tri-level 

optimization model considering a bidirectional Stackelberg-Nash game is 

proposed to resolve the issue of multi-stakeholder revenue distribution. 

Considering the independence of SES as a stakeholder, the upper-level 

model depicts the electricity trading process between SES and MGO, with 

SES acting as the leader and MGO acting as the follower. The middle-level 

model depicts the process of energy interaction among MGO, UA, and EVS, 

wherein MGO assumes the secondary leader in setting the price for UA and 

EVS. The lower-level model examines the peer-to-peer (P2P) transactions 

occurring between users in UA and employs the asymmetric Nash 

bargaining method to tackle the issue of distributing benefits among 

multiple users. The paper presents several notable contributions and novel 

aspects, which are outlined below: 

(1) A novel tri-level optimization model is developed that integrates a 

bidirectional Stackelberg-Nash game framework to allocate benefits 

among stakeholders. In this framework, the ESS acts as the leader, the 

MGO acts as the secondary leader, and the UA acts as followers while 

distributing benefits through the asymmetric Nash bargaining theory.   

(2) A strategy is proposed to address the tri-level model. The 

Stackelberg game model between MGO and UA is transformed into the 

KKT condition for solving, while the Stackelberg game between SES 

and MGO is settled using the bisection method. The asymmetric Nash 

bargaining among users is resolved through the ADMM method.  

(3) The proposed strategy can lower PIES's carbon emissions while 

efficiently accounting for various stakeholders' interests. The proposed 

model enables MGO to purchase electricity from SES at a lower price 

when the electricity price is high, thus reducing MGO's costs when 

trading directly with UA. At the same time, it enhances SES's status in 

the game and fairly distributes the income among all stakeholders.  

This paper is organized as follows: Section 2 presents the issue that will 

be addressed. Section 3 provides the tri-level optimization model, which 

includes SES, MGO, UA, and EVS. Section 4 describes the method of 

solving. Subsequently, Section 5 presents the case study to validate the 

research above. Finally, Section 6 concludes this paper. 

2. Problem statement   

2.1．Basic characteristics of multi-stakeholder 

 

Fig. 1 Basic model framework of this research. 

Figure 1 illustrates the fundamental framework of this study. The SES 
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acts as the leader, aiming to optimize its advantages through interactions 

with SPG and MGO. Specifically, the entity acquires electricity from SPG 

and stores it during low time-of-use (TOU) tariffs. The SES establishes 

tariffs and sells the power based on the demand of MGO. The MGO acts as 

the secondary leader and is equipped with various energy generation 

technologies, including wind turbines (WT), photovoltaic (PV), gas boilers 

(GB), and combined heat and power (CHP). MGO sells power acquired 

from SES and its own power and thermal energy to UA and EVS to 

generate profits. The lower-level UA and EVS are followers in the 

framework, meeting their energy requirements by procuring energy from 

the MGO. Additionally, multiple users within the UA have rooftop PV 

installations. These users have formed a cooperative alliance through P2P 

power reciprocity. Each alliance member trades power through 

transmission line interconnections, reducing their reliance on MGO and 

enhancing their ability to set prices autonomously. Notably, This paper 

does not discuss the mechanism of thermal energy trading among users due 

to the impracticality of large-scale interaction pipelines required for 

thermal energy. 

2.2．Hierarchical transaction framework analysis 

 

Fig. 2 A bidirectional Stackelberg-Nash game-based energy trading 

framework. 

The proposed model framework, depicted in Figure 2, introduces the 

bidirectional Stackelberg-Nash game. Firstly, a bidirectional Stackelberg 

game establishes the interest relationship model between SES, MGO, UA, 

and EVS. As the leader of the PIES, the SES holds the authority to establish 

the electricity price sold to MGO. MGO acts as the secondary leader and 

engages in bargaining with UA to determine a fair price for the sale of 

power and heat. Secondly, this model guarantees the equitable distribution 

of user benefits through the asymmetric Nash bargaining theory. Users 

initially fulfill their energy requirements through the PV. When faced with 

a power shortage, users can participate in P2P trading or procure power 

from MGO to meet their power deficit. 

According to Nash bargaining theory, this paper proposes dividing the 

tri-level model into two stages: maximizing benefits for all stakeholders 

(P1) and distributing user benefits (P2). At stage 1, each stakeholder aims 

to optimize their profits and, in the process, determines the price and 

volume of energy transactions. At stage 2, users in UA determine the tariffs 

and allocate benefits based on the electricity price and energy trading 

volume in the P1 stage through the P2P process.  

3. PIES model establishment 

3.1．Upper-level model 

As the leader in the framework, SES maximizes its interests by 

purchasing power from the SPG during periods of low TOU and trading 

power with the MGO. The objective function can be formulated as follows:  
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Eq. (1) comprises three parts: The first component represents the 

revenue generated by selling energy to MGO. The second part represents 

the benefits of SES by trading of electric energy to SPG. Lastly, the third 

term represents the SES charge - discharge losses. Eq. (2) represents the 

power balance constraints of SES. Eqs. (3) - (5) represent the SES's 

capacity and charge/discharge power constraints. The power constraints of 

SES on purchasing and selling electricity to SPG and MGO are expressed 

by constraints (6) - (7).  Constraints (8) indicate that the electricity price 

procured and sold by SES to MG cannot surpass the average value. 

Constraints (9) indicate that the average price of electricity sold is restricted 

to prevent SES or MGO from inflating the selling price for profit. 

3.2．Middle-level model 

MGO generates profit by selling the energy produced through various 

sources to UA and EVS, including CHP, GB, PV, WT, and the power 

purchased from SES. The objective function can be expressed as follows: 
3 3
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      Eq. (10) can be divided into two parts: the cost part and the interest part. 

The cost mainly includes 1) expenses for procuring energy from SES and 

EVS. 2) penalty costs for curtailment of wind and solar. 3) expenses for 

natural gas consumption by CHP and GB, and 4) costs for carbon trading. 

The interest is derived from the revenue from selling electricity and heat to 

UA and EVS. Eqs. (11) - (12) represent the constraints on electrical and 

thermal power balance for MGO. The power limitations of MGO in selling 

heat and electricity to UA and EVS are represented by constraints (13) - 

(14). Constraints (15) - (17) specify that the electricity and heat prices 

purchased by UA and EVS cannot exceed the average value. It is also 

assumed that the electricity price at which EVS sells to MGO is fixed.3.2.1 

Models of CHP and GB in MGO 

The CHP and GB jointly meet the UA's heat load demand. Their output 

power and natural gas consumption can be expressed as follows:  
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Eq. (18) describes the correlation between CHP and GB's power output 

and gas consumption. Constraint (19) represents the output power 

constraint of CHP and GB. 

3.2.2 Models of WT and PV in MGO 

The estimated power of WT and PV is a constant value. The difference 

between the actual and estimated power is the curtailment of wind and solar 

power. It can be expressed as follows: 
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Eq. (20) shows the power expressions of WT and PV, and constraint 

(21) is the upper and lower limit constraints.  

3.2.3 The CET model in MGO  

Numerous scholars have researched carbon emissions trading (CET) 

mechanisms. CET offers financial incentives for not exceeding carbon 

quotas and imposes penalties for exceeding them, aiming to encourage 

carbon emission reduction. CET can be expressed as follows:  
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Eq. (22) expresses the cost of the CET. Eq. (23) represents the carbon 

quota allowance, while Eq. (24) indicates the actual carbon emissions of 

the MGO. 

3.3．Lower-level model 

3.3.1 EVS model 

Compared to the individual EV model, the multi-type EV cluster model 

in EVS is more effective at capturing the actual operational status of the 

charging station. Assuming fixed arrival and departure times for each type 

of EV and a fixed state of charge (SOC), the EVS model can be optimized 

to maximize revenue for each type of EV. 
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EVS trades power with the MGO to lower energy expenses while 

fulfilling its energy requirements.  
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Constraint (14). 

Eq. (26) represents the EVS model's total SOC, and the EVs' charging 

and discharging state are determined using historical data. Eq. (27) 

indicates the expected SOC of the EVs. Constraint (28) represents the upper 

and lower limits of the total SOC. The initial SOC and the duration of stay 

for different types of EVs vary, as detailed in Appendix B. 

3.3.2 UA model 

The UA model consists of three users with internal power trading 

capabilities. UA can purchase electricity from the MGO to meet its energy 

demand. The objective of the UA in the bidirectional Stackelberg game is 

to minimize the overall cost, and this article assumes that there are three 

users in the UA. It can be represented as follows: 
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3 3
UA UA MGO,sell MGO,sell MGO,sell MGO,sell

user , , , , , , , ,

1 1 1 1

min ( ) ( )
T T

e t i e t i h t i h t i

t i t i

C C P v P v
= = = =

= + +   

(29) 

Subject to Constraints (13), (15) and (17). 

Eq. (29) describes the cost of purchasing energy from the MGO and the 

user's utility function, which accounts for most of UA's expenses. 
3
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Eq. (30) demonstrates that the user's electricity utility function for DR 

includes transferable and reducible loads.  

The electrical load part can be expressed as: 
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Eq. (31) represents the users' load before and after the DR, while Eq. 

(32) represents their electric power balance. Eq. (33) defines the three users' 

total P2P trading volumes as 0. Constraint (34) expresses the acceptable 

range for the electrical load DR, and constraint (35) indicates the allowable 

value for P2P transactions among users. 

The heat load part can be expressed as: 
h,l h,DR

, , ,

h

t i t i t iP P P= −  (36)         

MGO,sell h,l h,DR

, , , ,h t i t i t iP P P= −  (37)                   

Subject to 
h,DR h,DR h,DR

min , maxt iP P P−    (38)                  

Eqs. (36) - (37) represent the heat load balance, while constraint (38) 

defines the allowable range of the thermal load DR. The details will not be 

repeated here. 

      The revenue expression for individual users in UA is as follows: 

UA UA MGO,sell MGO,sell MGO,sell MGO,sell UA

user , , , , , , , , trade

1 1

min ( ) ( )
T T

i e t i e t i h t i h t i

t t

C C P v P v C
= =

= + + + 

(39) 

UA P2P P 2 P

trade , , , ,

1

T

t i j t i j

t

C P v
=

=  (40) 

Eq. (39) - (40) is the income of individual users, and the income of 

users' P2P transactions is considered compared with Eq. (29). 

Subject to 
P 2 P P 2 P P 2 P

min , , maxt i jv v v   (41) 

3
P 2 P

, ,

1

0t i j

i

v
=

=  (42) 

Constraints (13), (15), (17), (31) - (38).  

Constraint (41) refers to the limit constraint of P2P trading. Constraint 

(42) ensures that the electricity price traded between users remains equal.  

4. PIES model solving 

4.1．Bidirectional Stackelberg-Nash game interaction mechanism 

This paper establishes a bidirectional Stackelberg-Nash game model, 

which is a two stage and tri-level process.  

Stage 1 is the bidirectional Stackelberg game encompassing SPG, MGO, 

UA, and EVS. All stakeholders strive to optimize their benefits (P1). SES's 

energy sales strategy is adjusted in accordance with the MGO's power 

demand. The energy price determined by MGO is subsequently modified 

based on the demand for power purchases from UA and EVS. The resulting 

energy price for UA is then transmitted to Stage 2.  

Stage 2 is the cooperative game model among UA alliance members 

(P2). The user's P2P transaction price is determined by the P2P transaction 

volume derived from Stage 1. The objective is to fairly allocate user 

benefits through the asymmetric Nash bargaining method. 

The calculation steps for the model are as follows: 

Step 1: Based on the Nash bargaining theory, the model is solved by 

dividing it into two sub-problems: the maximization of benefits for all 

stakeholders (P1) and the equitable distribution of user benefits (P2). 

Step 2: The SES is the leader in formulating an initial electricity sales 

price strategy for MGO. 

Step 3: The MGO assumes the dual roles of both secondary leader and 

follower. It is responsible for developing and communicating the electricity 

consumption strategy to SES. Meanwhile, MGO sets the energy price for 

UA and EVS based on their demand. 

Step 4: The UA adjusts its internal energy based on DR optimization, 

following the MGO's energy sales price strategy. Then, the UA returns its 

energy purchasing strategy to the MGO. 

Step 5: The SES updates the electricity sales price based on the power 

purchase strategy reported by MGO and guides MGO in implementing 

dynamic adjustments. This process ensures that SES maximizes its 

economic benefits. 

Step 6: The MGO revises its electricity consumption strategy and 

energy sales price by considering SES's updated electricity price and UA's 

energy purchase strategy, with the aim of maximizing its economic gains. 

Step 7:  Repeat steps (4) - (6) until the electricity price strategy of SES, 

the electricity purchase strategy and energy sale price strategy of MGO, and 

the UA energy purchase strategy stabilize and remain unchanged, the game 

equilibrium (P1) is reached. 

Step 8:  According to the volume of electric energy exchanged among 

users, the asymmetric Nash bargaining approach is utilized to compute the 

cooperative game income distribution (P2). Subsequently, the final price 

for electric energy trading among users is calculated. 

Step 9: Utilizing the game equilibrium solution is the optimal trading 

strategy for energy trading within the system. 

4.2．Solution strategy for tri-level bidirectional Stackelberg game  

Generally, there are several approaches to resolving the tri-level model:  

(1) The KKT condition converts the tri-level model into a two-level 

model, which is then solved using either a distributed algorithm or a 

heuristic algorithm. 

(2) Directly employing heuristic algorithms to resolve the tri-level 

model, such as double-level particle swarm optimization (PSO). 

Although the second method is convenient, there is a risk that the PSO 

algorithm may converge to a local optimal solution, which can affect the 

accuracy of the solution. Therefore, the objective functions and constraints 

of the UA and EVS models at the lower level are converted into additional 

conditions of the middle-level MGO model first using the KKT condition. 

Second, the resolution of the Stackelberg game between the upper-level 

SES and middle-level MGO models is undertaken. However, when 

converting the two-level model to a single-level model, the KKT condition 
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cannot be applied again because the MGO model includes 0-1 variables 

during the initial application of the KKT condition. During the execution 

of the heuristic algorithm to solve the game, the energy price will fluctuate 

within a defined range. These fluctuations exhibit a gradual contraction rate, 

and two neighboring boundaries can yield identical outcomes. Therefore, 

this study utilizes the bisection method to tackle the issue. The bisection 

method is a distributed algorithm commonly employed to iteratively solve 

problems by evaluating whether the outcomes of two consecutive iterations 

yield identical results.  

4.3 Solving Stackelberg game models between the middle and lower level  

The process of conversion is given below: 

(1) The tri-level model can be simplified into a two-level model through 

the KKT condition, addressing issues related to the lower-level EVS and 

UA models. The middle-level MGO model incorporates complementary 

relaxation conditions involving bilinear products.  

(2) The big M method replaces the complementary relaxation 

conditions introduced by the Lagrange multipliers with the constrained 

product, and the bilinear product is transformed into an equivalent linear 

expression based on strong dual theory. 

4.3.1 The process of solving the EVS model 

The objective function of the EVS is Eq. (25). 

The constraints of the EVS are as follows: 

 

EVS

EVS EVS EVS

EVS EVS

MGO,sell,EV MGO,sell,EV

, , ,max

MGO,buy,EV MGO,buy,EV

, , ,max

EVS

exp

min max

MGO,sell,EV

, ,EV MGO,buy,EV EV EV

1 , , , ,EV
1 1 1 1

0

0

e t n e

e t n e

T

t

T N T N
e t n

t t e t n t n t n

i n i n

P P

P P

S S

S S S

P
S S P i i


−

= = = =

  


 


=

  

= + −


 





   (43) 

The process of KKT condition is shown in Appendix C. 

  In summary, the original objective function of EVS is equivalent as:  

EVS EVS

EVS 2 MGO,sell,EV 4 MGO,buy,EV

, max , max

1 1

5 6 7 EVS

min max , exp

min { ( )

}

T N

t n t n

t n

t t t n

C u P u P

u S u S u S

= =

= − − +

− +

 
                 (44) 

4.3.2 The process of solving the UA model 

The objective function and constraints of the UA are as follows: 
3

UA MGO,sell MGO,sell MGO,sell MGO,sell e,DR h,DR

, , , , , , , , , ,

1 1

min ( )
T

e t i e t i h t i h t i t i t i

t i

C P v P v aP bP
= =

= + + +

(45) 
3

, ,

1, 1

MGO,sell DR

, , , ,

MGO,sell DR P 2 P

, , , , , , ,

P 2 P P 2 P P 2 P

,min ,max

DR DR DR DR

, max , max

MGO,sell MGO,se

, , ,max

0

0 ,0

0

P2P

t i j

i j

h,l h,

h t i t i t i

e,l e, pv

e t i t i t i t i t i j

i j t,i,j i j

e, e, h, h,

t i t i

e t i e

P

P P P

P P P P P

P P P

P P P P

P P

= =

− −

=

= −

= − − −

 

   

 



ll MGO,sell MGO,sell

, , ,max,0 h t i hP P












 

                            (46)       

The process of KKT condition and duality theory can also be found in 

Appendix C. 

After the above analysis, the original objective function of UA is 

equivalent as:  

3
UA 2 MGO,sell 4 MGO,sell

, ,max , ,max

1 1

5 pv 6 7 DR 8 DR

, , , , , , min , max

9 DR 10 DR 10 DR 11 P 2 P 12 P 2

, min , max , max , ,min , ,max

min [

( )

T

t i e t i h

t i

e,l h,l e, e,

t i t i t i t i t i t i t i

h, h, h,

t i t i t i t i i j t i i j

C w P w P

w P P w P w P w P

w P w P w P w P w P

= =

− −

= − − −

− + + − +

− − + −



P ]

            (47)      

In summary, after the KKT condition processes the Stackelberg game 

model of the middle level and the lower level, the objective function and 

constraints of MGO can be expressed as: 

MGO SES,sell SES,sell SES,buy SES,buy

, , , ,

1

CHP GB gas WT,cur WT PV,cur PV CET

, , , ,

1 1

3
2 MGO,sell 4

, , , ,max , ,max

1 1

max ( )

(( ) ) ( )

( ) [

T

e t e t e t e t

t

T T

e t e t e e t e e t e

t t

T
e,DR h,DR

t i t i t i e t i h

t i

C P v P v

G G v P v P v C

aP bP w P w P

=

= =

= =

= − − −

+ − + − −

+ − − −



 

 MGO,sell

5 pv 6 7 DR 8 DR

, , , , , , min , max

9 DR 10 DR 10 DR 11 P 2 P 12 P 2 P

, min , max , max , ,min , ,max

2 MGO,sell,EV 4 MGO,buy,EV

, max , max

( )

]

{ ( )

e,l h,l e, e,

t i t i t i t i t i t i t i

h, h, h,

t i t i t i t i i j t i i j

t n t n

n

w P P w P w P w P

w P w P w P w P w P

u P u P

− −

=

−

− + + − +

− − + − −

− − +
EVS EVS5 6 7 EVS

min max , exp

1 1

}
T N

t t t n

t

u S u S u S
=

− + 

 

(48) 

Subject to  

(11)-(24), (26)-(28), (31)-(38), (40)-(42), (C.4)-(C.6), (C.9)-(C.11).  

4.4 Solving Stackelberg game models for upper and middle levels 

Based on the analysis above, the tri-level model has been converted into 

a two-level model by the KKT condition, and it can be solved through the 

bisection method [34].  

In this paper, the bisection method utilizes the price of electricity 

purchased and sold from SES to MGO as the iterative goal and constraint. 

Quickly find the optimal solution by adjusting the constraint interval of the 

price. This constraint interval always contains the optimal price value, and 

the upper and lower bounds are updated in iterations. If the results of two 

consecutive iterations are the same, the bisection method is employed to 

handle the boundary, and the iteration is concluded when the convergence 

condition is met. Taking the selling price 
SES,sell

,e tv  from SES to MGO as 

example, suppose 
SES,sell

, ,e t nv  represents the price of electricity sold at time t  

at the n  iteration, 
SES,sell

, ,maxe tv  is the upper limit of the electricity price and 
SES,sell SES,sell SES,sell

, ,max , , , , 1max{ , }−=e t e t n e t nv v v ,
SES,sell

, ,mine tv  is the lower limit of the electricity 

sales price and 
SES,sell SES,sell SES,sell

, ,min , , , , 1min{ , }−=e t e t n e t nv v v , the initial value of 
SES,sell

, ,maxe tv

and
SES,sell

, ,mine tv  are the upper and lower set value of the price. n  is the actual 

number of iterations and  is the convergence condition. The steps to 

calculate the bisection method are as follows: 

Algorithm 1: The process of bisection method 

1: Initialization: 
SES,sell

, ,maxe tv ,
SES,sell

, ,mine tv ,  . 

2: Input: 
SES,sell

, ,1e tv  , n . 

3: Output: 
SES,sell

, ,e t nv . 

4: for n= 1, 2, …, n do 

SES,sell SES,sell SES,sell
, , , ,min , ,max( + ) / 2e t n e t e tv v v= , 1n n= + ； 

Add constraints
SES,sell SES,sell SES,sell

, ,min , , , ,maxe t e t n e tv v v  . This step divides the 

current solution interval into two halves. Solve the model.  

if

SES,sell SES,sell

, , 1 , ,

SES,sell

, ,

e t n e t n

e t n

v v

v


+
 −




 then 

Declare convergence for the bisection method; 
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else  

                  Set 1n n= + . 

Add constraints 
SES,sell SES,sell SES,sell

, ,min , , , ,maxe t e t n e tv v v  . This step updates 

the constraint range that contains the optimal solution.  

Solve the model. 

if

SES,sell SES,sell

, , 1 , ,

SES,sell

, ,

e t n e t n

e t n

v v

v


+
 −




 then 

Declare convergence for the bisection method; 

elseif  

SES,sell

, ,e t nv =
SES,sell

, ,maxe tv ，then the optimal solution is in the interval 

SES,sell SES,sell
, , , ,max[ , ]e t n e tv v ,Let SES,sellSES,sell

, ,, ,min e t ne tv v= update the lower 

boundary of the constraint. 

elseif  

SES,sell

, ,e t nv =
SES,sell

, ,mine tv ， Let SES,sellSES,sell
, ,, ,max e t ne tv v=  update the upper 

boundary of the constraint. 

else    

Set 1n n= + . 

Return to Line 4, until meet the termination conditions or n n .                  

5: end  

The schematic diagram of the method is depicted in Figure 3.  

 

Fig. 3 Schematic diagram of the bisection method. 

In summary, sections 4.2-4.3 provide the solution to the bidirectional 

Stackelberg game model using the KKT condition and the bisection method. 

First, the KKT condition solves the Stackelberg game process between the 

middle-level MGO model and the lower-level UA-EVS models, 

transforming the tri-level model into a two-level model. Second, the 

Stackelberg game process between the upper-level SES and middle-level 

MGO models is processed through the bisection method. The proof of the 

bidirectional Stackelberg game is given in Appendix A. 

4.5 Solving cooperative game model among users 

Nash bargaining is a cooperative game used to distribute the benefits 

among users the Nash equilibrium solution ensures that all participants 

in the UA have equal bargaining power. It can be expressed as: 

UA UA,0

UA UA,0

max ( )

s.t .

i i

i

i i

C C

C C



 −


 


 (50)    

UA,0

iC  represents the income of individual users in non-cooperative 

transactions. That is the breakdown point of the negotiations. Eq. (50) 

ensures that the user's income will not be damaged after the cooperation. 

sup

1

max(0, )
T

P2P

n n,t

t

E L
=

=                                                                        (51) 

rec

1

max(0, )
T

P2P

n n,t

t

E L
=

= −  (52) 

sup sup rec rec
max max/ /

e en nE E E E

nd
−

= −  (53) 

UA,0 UA P 2 P

UA,0 UA P 2 P

max ( )

s.t . 0

nd

i i i

i

i i i

C C E

C C E



 − +


 − + 


 (54) 

Eqs. (51)-(54) express the distribution of benefits from the user's 

participation in the cooperation. 
P 2 P

iE is the income after the cooperative 

game. 
sup sup

max max( , )nE E n=  and 
rec rec

max maxmax( , )E E n=  are the 

maximum amounts of power supplied and received by the user, 

respectively. nd is the benefit distribution coefficient. Convert the above 

equation to Eq. (55):  
UA,0 UA P 2 Pmin ln( )n i i i

i

d C C E


− − +  (55) 

Decouple Eq. (42) into a price double coupling constraint: 

P 2P P 2P

, , , , 0t i j t j iv v− =  (56) 

When the transaction price between users is equal, they have reached a 

cooperation agreement. The bargaining power size nd is calculated 

according to the initial transaction price and volume among users. 

Based on Eq. (55)-(56), the augmented Lagrange function is established 

as shown in Eq. (57): 
P 2 P UA,0 UA P 2 P

P 2 P3 3
P 2 P P 2 P P 2 P P 2 P P 2 P 2

, , , , , , , , , 2

1 1

ln( )

( ) || ( ) ||
2

i n i i i

T T
i

i j t i j t j i t i j t j i

i t i t

L d C C E

v v v v



= =

= − − + +

+ + +  
 (57) 

P 2 P

,i j is the Lagrange multiplier and 
P 2 P

i is the penalty parameter. 

k  is the actual number of iterations. The steps to calculate the ADMM 

method are as follows: 

Algorithm 2: The process of ADMM method 

1: Initialization: 
P 2 P

,i j P 2 P

i . 

2: Input: 
UA,0

iC ,
UA

iC . 

3: Output: 
P 2 P

,i jv . 

4: for k= 1, 2, …, k do 

for , 3i j  do 

User i  updates trading decisions： 

                   
P 2 P P 2 P P 2 P P 2 P

, , ,( 1) arg min ( ( ), ( ))i j i i j j iv k L v k v k+ = ；   (58) 

User j updates trading decisions： 

P 2 P P 2 P P 2 P P 2 P

, , ,( 1) arg min ( ( ), ( ))j i j i j i jv k L v k v k+ = ；   (59) 

if 
P 2 P P 2 P 2

, , 2

1

|| ( 1) ( ) ||
T

i j i j

t

v k v k 
=

+ −  then 

Declare convergence for the ADMM method; 

else 

set 1k k= + , update Lagrange multipliers via Eq. (60). 
P 2 P P 2 P P 2 P P 2 P P 2 P

, , , ,( 1) ( ) ( , )i j i j i i j j ik k v v  + = + ；    (60) 

Return to Line 4, until meet the termination conditions or k k

.    

5:       end  

6: end 

Figure 4 depicts the flowchart for solving the bidirectional Stackelberg-

Nash game model. 
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Fig. 4 Bidirectional Stackelberg-Nash game solution process.

5. Case study 

All case studies are implemented by Gurobi 10.2 with MATLAB 

2022b on a PC with an Intel Core i5/2.7-GHz-based processor and 16 GB 

of RAM. 

5.1 Study parameters 

The research focused on the PIES of a city in China to assess the 

efficacy of the proposed approach. Subsequently, a bidirectional 

Stackelberg-Nash game model was developed to analyze the corresponding 

dynamics. The electricity price data between SES and SPG are shown in 

Table 1, while additional parameters are provided in Appendix B. The 

forecast data for WT and PV in the MGO and the users' electrical load can 

be found in Appendix D. 

5.2 Program comparison analysis 

A series of scenarios has been established for comparative analysis. 

Table 2 presents the settings for specific scenarios. 

Scenario I: Assuming that the electricity prices set by MGO and SES 

remain constant. There are no game relationships between the three entities.  

Scenario II: Only the Stackelberg game model between MGO and UA-

EVS is considered, while the Stackelberg game model between SES and 

MGO is excluded.  

Scenario III: Based on Scenario II, the cooperative game model 

between users is additionally considered. 

Scenario IV: Consider the bidirectional Stackelberg-Nash game model, 

proposed scheme in this paper.  

Table 1 

Electricity price between SES and SPG. 

Time/h Sale(¥/kW) Purchase(¥/kW) 

01:00-06:00 

23:00-24:00 
0.4 0.35 

07:00-09:00 

15:00-17:00 

21:00-22:00 

0.79 0.68 

10:00-14:00 

18:00-20:00 
1.2 1.12 

Table 2 

Description of the contents of each Scenario. 

Scenario 

Stackelberg game 

model between SES 

and MGO 

Stackelberg game 

model between MGO 

and UA-EVS 

Cooperative 

game model 

within UA 

I × × × 

II × √ × 

III × √ √ 

IV √ √ √ 

Table 3 

Optimization results for different Scenarios. 

Scenario    SES profit (¥) 
MGO 

profit (¥) 

UA  

profit (¥) 

Carbon 

emissions/kg 

I 6105 10023 -27733 6520 

II 6007 14989 -31573 6094 

III 6002 14875 -30621 6072 

IV 7224 13388 -30613 5831 
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Table 4 

Users’ benefit analysis before and after cooperation in Scenarios II and Ⅲ. 

User Cooperation is not 

considered II (¥) 

Cooperation is 

considered III (¥) 

Ultimate 

benefits (¥) 

General Nash 

bargaining (¥) 

Asymmetric Nash 

bargaining (¥) 

1 -10483 -9115 -10166 317 276 

2 -10532 -9687 -10215 317 144 

3 -10558  -11819 -10240 318 562 

Table 5 

Users’ benefit analysis before and after cooperation in Scenarios IV. 

User Cooperation is 

not considered (¥) 

Cooperation is 

considered (¥) 

Ultimate 

benefits (¥) 

General Nash 

bargaining (¥) 

Asymmetric Nash 

bargaining (¥) 

1 -10473 -9028 -10157 316 275 

2 -10530 -9694 -10214 316 145 

3 -10558 -11891 -10242 316 561 

Upon analyzing the data from Scenarios II and III in Table 3, it becomes 

evident that the revenue of SES in these two situations is almost identical. 

It can be attributed to the fact that the Stackelberg game process between 

SES and MGO is not considered in either Scenario. In contrast to Scenario 

II, Scenario III incorporates the concept of cooperative gaming in UA and 

fully respects the interests of UA. As a result, the daily income of MGO in 

Scenario III decreases by 114¥, while the daily cost of UA decreases by 

1252¥. Each user's contribution in the P2P process can be fully considered 

by considering the asymmetric Nash bargaining. In Scenario IV, the 

bargaining factors of the users are 0.99, 0.41, and 2.06, respectively. In 

Table 5, the application of the general Nash bargaining method has 

increased each user's earnings by 316¥ through cooperation. It is 

unreasonable. Considering the asymmetric Nash bargaining, User 3 made 

the highest contribution, resulting in a 245¥ increase compared to the 

general Nash bargaining. Conversely, the income decreased due to users 1 

and 2's lower contributions. The scheme effectively ensured a fair income 

distribution, safeguarded cooperation participants' interests, and achieved a 

fair distribution of cooperation benefits. 

Upon analyzing the data presented for Scenarios I and IV in Table 3, it 

becomes evident that the revenue of SES in Scenario IV exhibits an increase 

of 1109¥ compared to Scenario III. It can be attributed to the inclusion of 

the Stackelberg game model between SES and MGO in Scenario IV, 

allowing SES to leverage its position as the leader of MGO and effectively 

utilize its pricing advantage within the game model. Given that users 

establish a cooperative alliance to negotiate with MGO, the decrease in 

MGO's revenue has minimal influence on the cost of UA. This observation 

indicates that the cooperative game among multiple users is strongly 

resilient to risks. Meanwhile, in Scenario IV, the carbon emissions of MGO 

decreased by 241kg compared to Scenario III. This reduction can be 

attributed to the decrease in output of the CHP, resulting in a lower carbon 

footprint for the system. 

Upon analyzing the data presented in Table 3 for Scenarios I and IV, it 

becomes apparent that the utilization of the bidirectional Stackelberg game 

model, as discussed in this paper, leads to a significant increase in revenue 

for SES by 1119¥ and an increase in income for MGO by 3365¥. This 

phenomenon can be attributed to the fact that Scenario IV amplifies the 

initiative of MGO, which relies on SES for energy provision while also 

establishing a competitive dynamic with it. It effectively fosters the 

enthusiasm of all stakeholders to actively participate in the transaction. 

Although the cost of UA in Scenario IV is negatively impacted, this 

approach can potentially improve PIES's overall efficiency and support the 

energy system's sustainable operation. 

5.3 Power and price analysis 

Appendix D contains the convergence curves of the bidirectional 

Stackelberg-Nash game. Additionally, the change curves of the SOC of 

EVS and the electricity price set by the MGO to EVS are presented in 

Appendix D and will not be reiterated in this section. 

5.3.1 Price curve analysis 

 

Fig. 5 The electricity price traded by SES with MGO. 

 
(a) electricity price under Scenario II 

 
(b) heat price under Scenario II 
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(c) electricity price under Scenario III 

 
(d) heat price under Scenario III 

Fig. 6 The electricity and heat price set by MGO to UA. 

 
(a) P2P transaction price 

 
(b) P2P transaction volume 

Fig. 7 P2P transaction price and electricity volume in Scenario III. 

Figure 5 depicts the electricity price variations between the upper-level 

SES and middle-level MGO models in Scenarios I-IV. Given that the 

bidirectional Stackelberg game is not considered in Scenarios I-III, it is 

assumed that the initial electricity prices between SES and MGO are set to 

the values determined by the bisection method. That is, the initial values 

are calculated as half of the sum of the upper and lower limits of the 

electricity price. When considering the Stackelberg game model between 

SES and MGO, the electricity price that SES purchases from MGO 

decreases, thereby enhancing SES's independent pricing authority. The 

electricity price sales from SES to MGO increased during low TOU periods 

and decreased during high TOU periods. It indicates that by incorporating 

the Stackelberg game, the SES electricity sales price effectively considered 

the actual electricity consumption of MGO and balanced the interests and 

needs of both stakeholders. 

Figure 6 depicts the energy trading between MGO and UA. When the 

cooperative game is not considered, the MGO establishes individual prices 

for each user. This is due to the absence of a cooperative alliance among 

the users, which allows MGO to set prices based on its interests. After 

forming the cooperative alliance, users within UA can engage in power 

trading based on their respective energy requirements. It reduces their 

dependence on MGO and allows the users to collectively negotiate with 

MGO using Nash bargaining theory, thereby enhancing the overall interests. 

Figure 7 depicts the transaction price and amount of electricity in the user 

cooperative game. 

5.3.2 Power balance analysis 

Next, this paper focuses on the stakeholders in Scenario IV.  

 
(a) electricity power balance diagram 

 
(b) thermal power balance diagram 

Fig. 8 Power balance diagram for MGO in Scenario IV. 
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(a) electricity power balance diagram 

 
(b) thermal power balance diagram 

Fig. 9 Power balance diagram for user 1 in Scenario IV. 

Figure 8 depicts the balance of MGO's electrical and thermal power. 

When considering the data presented in Figure 5, it becomes evident that 

MGO chooses to purchase electricity from SES and sell it to UA during the 

time periods of 1:00-6:00 and 16:00-24:00. The decision is primarily driven 

by the lower supply price of SES and the demand for UA during peak load 

hours. During 9:00-15:00, combined with the WT and PV output power in 

Appendix D, MGO primarily supplies energy to UA through renewable 

energy and profits by selling excess power to SES and EVS. MGO 

generates electricity primarily through CHP to reduce costs during 18:00-

20:00 when SES charges higher rates. 

Figure 9 depicts the equilibrium curve representing the electrical and 

thermal power of User 1 in Scenario IV. The balance curves of electrical 

power and thermal power for users 2-3 are shown in Appendix D. From the 

data in the figure; it is evident that user 1 purchases electricity from MGO 

during periods of 1:00-7:00 when the electricity price sold by MGO is low. 

User 1 does this to meet its own energy demand and earns profits through 

P2P transactions from 6:00-7:00. During 8:00-16:00 when the PV generates 

high output power, user 1 primarily acquires electricity through the 

utilization of PV, DR and P2P transactions. During 17:00-20:00 when the 

electricity price supplied by MGO is high, user 1 has to purchase electricity 

from MGO due to insufficient supply and meet the power demand through 

P2P transactions during the 21:00-22:00. 

 

Fig.10 Power and SOC analysis from SES. 

Figure 10 depicts the diagram of variation in SOC and charge/discharge 

power for the SES. As shown in the figure, SES purchases power from SPG 

and sells it to MGO during the low TOU period of 1:00-6:00 to generate 

profits while ensuring that its SOC reaches its maximum value. During the 

periods of 11:00-14:00, when the power supply is adequate, SES can 

generate profit by purchasing electricity from MGO and selling excess 

electricity to SPG. 

 

Fig.11 Carbon emissions under different Scenarios. 

The following analyzes the impact of carbon emissions on the system 

scheduling results. From the carbon emission characteristic curves of the 

three scenarios in Figure 11, the willingness of PIES to reduce carbon 

emissions has been significantly improved after considering the bisection 

Stackelberg game model proposed in this paper, that is, considering the dual 

attributes of MGO leaders and followers at the same time. Compared with 

Scenario 2 and Scenario 3, the carbon emissions of Scenario 4 during the 

period of 16:00-20:00 during the peak electricity consumption period are 

significantly reduced. Combined with the analysis in Figure 10, to reduce 

the system's carbon emissions, the SES unit conducts the charging process 

when the electricity price is low. It sells the electricity to MGO at a price 

lower than the time-of-use price during the peak demand period, which also 

reduces the cost of MGO and the system's carbon emissions. 

To illustrate the efficacy of the bisection method, a heuristic algorithm 

is employed to solve the Stackelberg game between SES and MGO in 

scenario IV. 
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Table 6 

Optimization results for different algorithms. 

Solution algorithm 
SES 

profit (¥) 

MGO 

profit (¥) 

UA  

profit (¥) 

Number of 

iterations 

  Solution 

time/s 

Bisection method 7224 13388 -30613 58 75 

Heuristic algorithm 7100 15305 -30649 132 603 

Table 6 presents statistics indicating that the bisection method 

effectively reduces the iterations and time of solving, while the heuristic 

algorithm falls into the local best solution. 

6. Conclusion 

Considering the situation that multi-stakeholders have different 

interests in PIES, this paper proposed a tri-layer bidirectional Stackelberg-

Nash game model for low-carbon optimal scheduling of park-integrated 

energy system. The main conclusions are as follows: 

1) The proposed bidirectional Stackelberg-Nash game model, which 

incorporates MGO, SES, and UA, enhances the engagement of all 

stakeholders in PIES. Users in UA actively engage in the demand 

response process, and benefits are equitably distributed through 

asymmetric Nash bargaining. 

2) Considering MGO's dual role as both a leader and follower, the 

cost of MGO directly trading with UA is decreased, enabling 

MGO to procure electricity from SES at a reduced price. At the 

same time, it enhances the dominance of SES in the gaming 

process and boosts revenue compared to SES trading directly with 

lower-level users. This model ensures the optimal benefits of both 

SES and MGO. 

3) From the analysis of the case study, the bidirectional Stackelberg-

Nash game model improves the status of UA in PIES transactions, 

prompts MGO to negotiate reasonably with SES and UA, and then 

forces MGO to cede part of its interests. 

With the number of stakeholders in the system gradually increasing, the 

need for a fair distribution of interests among all parties has gradually 

become more prominent. However, in practice, there may be cases where 

many users or EVs are involved in optimizing scheduling. Therefore, the 

influence of individual EV randomness will be further considered. The EV 

model will be refined and integrated directly with the upper-layer SES, and 

the path planning of EVs with the distribution network will be considered. 
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Nomenclature    

Indices  
SPG,buy

maxP  The maximum selling electricity of SES to SPG (kW) 

T  Index for a typical day 
MGO,sell

,maxeP  The maximum selling electricity of MGO to UA (kW) 

n  Index for number of EV 
MGO,sell

,maxhP  The maximum selling heat of MGO to UA (kW) 

,i j  Index for various users 
MGO,sell,EV

,maxeP  The maximum selling electricity of MGO to EV (kW) 

Variables  
MGO, ,EV

,max

buy

eP  The maximum selling electricity of EV to MGO (kW) 
SESC  The objective function of CES (¥) 

CHP

,maxeP  The maximum power of CHP (kW) 
MGOC  The objective function of MGO (¥) 

CHP

,maxhP  The maximum heat generation power of CHP (kW) 
CETC  The cost of CET (¥) 

GB

maxP  The maximum heat generation power of GB (kW) 
UA

userC  The DR costs of UA (¥) 
e,DR

minP  The minimum value of the electrical energy DR (kW) 
UA

tradeC  The cost of the user's cooperative game (¥) 
e,DR

maxP  The maximum value of the electrical energy DR (kW) 
SES

tS  The amount of power in the SES (kWh) 
h,DR

minP  The minimum value of the thermal energy DR (kW) 
EVS

TS  The SOC of the EV leaves the EVS (kWh) 
h,DR

maxP  The maximum value of the thermal energy DR (kW) 
SESu  Charge-discharge state variables for SES 

P 2 P

,mini jP−  The maximum electricity traded between user i and j (kW) 

allE  The carbon emission allowances (kg) 
P 2 P

,maxi jP−  The minimum electricity traded between user i and j (kW) 

qE  Actual carbon emissions (kg) 
SES

minS  The maximum power of the SES(kWh) 
SES,sell

,e tP  Purchased electricity of MGO from SES at time t  
SES

maxS  The minimum power of the SES(kWh) 
SES,buy

,e tP  Selling electricity of MGO to SES at time t  
EVS

expS  The expected battery level of EV (kWh) 
SPG,sell

,e tP  Purchased electricity of SES from SPG at time t  
EVS

arriveS  The SOC of the EV arrives at the EVS(kWh) 
SPG,buy

,e tP  Selling electricity of SES to SPG at time t  
EVS

maxS  The maximum SOC of EV (kWh) 

,

cha

e tP  The charging power of the SES at time t  
EVS

minS  The minimum SOC of EV (kWh) 

,

dis

e tP  The discharging power of the SES at time t  
SPG,sell

ev  The electricity price sold to SES by SPG (¥/kW) 
MGO,sell

, ,e t iP  Purchased electricity of user i from SES at time t  
SPG,buy

ev  The electricity price sold to SPG by SES (¥/kW) 
MGO,sell

, ,h t iP  Purchased heat of user i from SES at time t  
MGO,sell

,maxev  The maximum electricity price sold to UA by MGO (¥/kW) 
MGO,sell,EV

, ,e t nP  Purchased electricity of EV from SES at time t  
MGO,sell

,minev  The minimum electricity price sold to UA by MGO (¥/kW) 
MGO,buy,EV

, ,e t nP  Selling electricity of EV to SES at time t  
MGO,sell

,maxhv  The maximum heat price sold to UA by MGO (¥/kW) 
WT,cur

,e tP  Curtailment power of WT at time t  
MGO,sell

,minhv  The minimum heat price sold to UA by MGO (¥/kW) 
PV,cur

,e tP  Curtailment power of PV at time t  
MGO,sell,EV

,maxev  The maximum electricity price sold to EVS by MGO (¥/kW) 
WT

,e tP  Actual power of PV at time t  
MGO,sell,EV

,minev  The minimum electricity price sold to EVS by MGO (¥/kW) 
PV

,e tP  Actual power of WT at time t  
SES,sell

,maxev  The maximum electricity price sold to MGO by SES (¥/kW) 
WT,pre

,e tP  Predict power of PV at time t  
SES,sell

,minev  The minimum electricity price sold to MGO by SES (¥/kW) 
PV,pre

,e tP  Predict power of WT at time t  
SES,buy

,maxev  The maximum electricity price sold to SES by MGO (¥/kW) 
e,DR

,t iP  The DR electrical power of user i at time t  
SES,buy

,minev  The minimum electricity price sold to SES by MGO (¥/kW) 
h,DR

,t iP  The DR thermal power of user i at time t  
SES,sell

,aveev  Annual electricity price sold to MGO by SES (¥/kW) 
e,l

,t iP  Electrical load of user i at time t  
SES,buy

,aveev  Annual electricity price sold to SES by MGO (¥/kW) 
e

,t iP  Electrical load of user i after DR at time t  
MGO,sell

,aveev  Annual electricity price sold to UA by MGO (¥/kW) 
h,l

,t iP  Heat load of user i at time t  
MGO,sell

,avehv  Annual heat price sold to UA by MGO (¥/kW) 

,

h

t iP  Heat load of user i after DR at time t  
loss

ev  Power dissipated of the charge/discharge of the SES (¥/kW) 
P2P

, ,t i jP  The electricity traded between user i and j  
gas

ev  Natural gas prices(¥/kW) 
SES,sell

,e tv  The electricity price sold to MGO by SES at time t  
WT

ev  Curtailment penalty cost of WT(¥/kW) 
SES,buy

,e tv  The electricity price sold to SES by MGO at time t  
PV

ev  Curtailment penalty cost of PV(¥/kW) 
MGO,sell

, ,e t iv  The electricity price sold to user i by MGO at time t  
P 2 P

minv  The minimum electricity price between users(¥/kW) 
MGO,sell

, ,h t iv  The heat price sold to user i by MGO at time t  
P 2 P

maxv  The maximum electricity price between users(¥/kW) 
MGO,sell,EV

,e tv  The electricity price sold to EV by MGO at time t  
CET  The cost of carbon emissions(¥/kW) 

MGO,buy,EV

,e tv  The electricity price sold to MGO by EV at time t  
re  Allowances for carbon emissions per unit (kg) 

P 2 P

, ,t i jv  The electricity price between users(¥/kW) 
se  Carbon emissions per unit (kg) 

CHP

,e tG  The natural gas consumed by CHP at time t (kg) 
ehc  The thermoelectric ratio of CHP 

CHP

,h tG  The natural gas consumed by CHP at time t (kg) 
EV

,t ni  The EV schedulable time (t) 
GB

,e tG  The natural gas consumed by GB at time t (kg) a  DR electricity cost of user(¥/kW) 
EVS

tS  EVS’s SOC at time t (kW) b  DR heat cost of user(¥/kW) 
cha

maxP  The maximum charge efficiency of the SES(kW) 
SES  Charge/discharge efficiency of SES 

dis

maxP  The maximum discharge efficiency of the SES(kW) 
CHP

e  Power production efficiency of CHP 
SES,sell

maxP  The maximum purchased electricity of MGO from SES (kW) 
CHP

h  Heat production efficiency of CHP 
SES,buy

maxP  The maximum selling electricity of MGO to SES (kW) 
GB

e  Power production efficiency of GB 
SPG,sell

maxP  The maximum purchased electricity of SES from SPG (kW) 
EV  Charge/discharge efficiency of EV 
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Appendix A. 

In a multi-agent game, the equilibrium solution is unique if the model satisfies the following three conditions. 

① The strategy spaces of all participants are all non-empty compact convex sets; 

② Given the leader's strategy, the optimal solution of the follower exists and is unique; 

③ Given the follower's strategy, the leader's unique optimal solution exists. 

The proof is as follows: 

(1) Since the policy sets of SES, MGO, and UA-EVS are all non-empty tight convex sets, condition ① is satisfied. 

(2) When the electricity price strategy of the secondary leader MGO is determined, the optimal strategies for the follower UA and EVS are solved.  

2 UA

2MGO,sell
, ,

0
e t i

C

v


=


                                                                                                                                                                                                                 (A.1) 

2 UA

2MGO,sell
, ,

0

h t i

C

v


=


                                                                                                                                                                                                                 (A.2) 

2 EVS

2MGO,sell,EV
,

0
e t

C

v


=


                                                                                                                                                                                                            (A.3) 

2 EVS

2MGO,buy,EV
,

0
e t

C

v


=


                                                                                                                                                                                                            (A.4) 

(A1)—(A4) illustrate that the second-order partial derivative is 0, indicating that the objective function of UA and EVS is linear for the energy sales 

strategy provided by MGO. It suggests that there is an optimal strategy that satisfies condition ②. 

When the electricity price strategy of the leader SES is given, the optimal strategy of the follower MGO is solved.  

2 MGO

2SES,sell
,

0
e t

C

v


=


                                                                                                                                                                                                                   (A.5) 

2 MGO

2SES,buy
,

0
e t

C

v


=


                                                                                                                                                                                                                  (A.6) 

Eqs. (A5) - (A6) express that the second-order partial derivative is 0, which indicates that the objective function of MGO is linear for the energy sales 

strategy provided by SES, and there is an optimal strategy that satisfies the condition ②. 

(3) The optimal strategy of the secondary leader MGO is determined when the energy purchasing strategies of the UA and EVS are provided. 

2 MGO

2MGO,sell
, ,

0
e t i

C

P


=


                                                                                                                                                                                                                (A.7) 

2 MGO

2MGO,sell
, ,

0

h t i

C

P


=


                                                                                                                                                                                                                (A.8) 

2 MGO

2MGO,sell,EV
,

0
e t

C

P


=


                                                                                                                                                                                                           (A.9) 

2 MGO

2MGO,buy,EV
,

0
e t

C

P


=


                                                                                                                                                                                                          (A.10) 

The Eqs. (A7) - (A10) demonstrate that the second-order partial derivative is equal to 0. It suggests that MGO has a distinct pricing strategy that aligns 

with UA and EVS energy consumption strategies, meeting condition ③. 

When the MGO's energy purchasing strategy is provided, the optimal strategy for the leader SES is determined. 

2 SES

2SES,sell
,

0
e t

C

P


=


                                                                                                                                                                                                                 (A.11) 

2 SES

2SES,buy
,

0
e t

C

P


=


                                                                                                                                                                                                                 (A.12) 

Eqs. (A11) - (A12) express that the second-order partial derivative is 0. It indicates that SES has a distinct pricing strategy that aligns with MGO's energy 

consumption strategy, meeting condition ③. 

The results indicate a unique equilibrium solution for the bidirectional Stackelberg game proposed in this paper. 
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Appendix B. 

Table B.1  

Electricity price between SES and MGO. 

Parameter value Parameter value Parameter value Parameter value Parameter value Parameter value 

SES,buy

,maxev  SPG,sell

ev  SES,sell

,maxev  
SPG,sell

ev

*1.5 

MGO,sell

,maxev  SPG,sell

ev  MGO,sell

,maxhv  0.6 
MGO,sell,EV

,maxev  SPG,sell

ev

*1.2 

P 2P

maxv  SPG,sell

ev  

SES,buy

,minev  SPG,sell

ev -

0.35 

SES,buy

,maxev  
SPG,sell

ev  MGO,sell

,minev  SPG,sell

ev

*0.5 

MGO,sell

,minhv  0.15 MGO,sell,EV

,minev  SPG,sell

ev *0.5 P 2P

minv  0.2 

Table B.2 

Other parameters. 

Parameter value Parameter value Parameter value 
cha

maxP  3000 min

h,DRP  -0.1*
h,l

,t iP  PV

ev  0.5 
dis

maxP  3000 max

h,DRP  0.1*
h,l

,t iP  
CET  0.3 

SES,sell

maxP  1000 
P 2P

,mini jP−  -200 
re  0.39 

SES,buy

maxP  1000 
P 2P

,maxi jP−  200 
se  0.047 

SPG,sell

maxP  3000 
SES

minS  4500 
ehc  1.67 

SPG,buy

maxP  3000 
SES

maxS  500 a  0.5 
MGO,sell

,maxeP  2000 
SES,sell

,aveev  1.20 b  0.4 
MGO,sell

,maxhP  2000 
SES,buy

,aveev  0.85 
CHP

e  0.3 
CHP

,maxeP  2000 MGO,sell

,aveev  0.6 CHP

h  0.45 

CHP

,maxhP  1500 MGO,sell

,avehv  0.5 GB

e  0.9 

GB

maxP  2000 
loss

ev  0.01 EV  0.95 

min

e,DRP  -0.1*
e,l

,t iP  
gas

ev  3.2 
SES  0.98 

max

e,DRP  0.1*
e,l

,t iP  WT

ev  0.5   0.01 

Table B.3 

Parameter settings for EV clusters (Single-volume EV). 

The types of EV 
MGO,sell,EV

,maxeP  
MGO, ,EV

,max

buy

eP  
EVS

expS  
EVS

maxS  
EVS

minS  
EVS

arriveS  
EV

,t ni  Quantity 

1 6 6 38 38 8 15 [10,24] 11 

2 6 6 30.4 30.4 6.4 16 [2,9] 13 

3 6 6 22.8 22.8 4.8 12 [13,22] 10 

4 6 6 38 38 8 25 [1,8] 10 

5 10 10 60.8 60.8 12.8 25 [11,23] 6 

The data in the table above are for individual EVs, and EVS's charging and discharging power and SOC are the sum of the corresponding data of the 

five types of EV clusters. There are 50 EVs in total, with the quantities for each type of EV listed in column 9 of Table X.  

Appendix C. 

The KKT condition and duality theory are utilized to transform the equation of EVS mentioned above: 

(1) The constraints of EVS can be translated into: 

EVS EVS

EVS EVS

EVS

EVS

MGO,sell,EV 1

, , ,

MGO,sell,EV MGO,sell,EV 2

max , , ,

MGO,buy,EV 3

, , ,

MGO,buy,EV MGO,buy,EV 4

max , , ,

5

min ,

6

max ,

EVS 7

exp

1

0 :

0 :

0 :

0 :

0 :

0 :

0 :

e t n t n

e t n t n

e t n t n

e t n t n

t t n

n t t

T t

t t

P u

P P u

P u

P P u

S S u

S S u

S S u

S S −



− 



− 

− 

− 

− =

−
EVS

MGO,sell,EV

, ,EV MGO,buy,EV EV EV 8

, , , , ,EV
1 1 1 1

0 :
T N T N

e t n

e t n t n t n t n

i n i n

P
P i i u

= = = =

















− + =


 

                                                        (C.1) 
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1

,t nu -
8

,t nu  are the complementary relaxation variables corresponding to each constraint. 

(2) The Lagrange function of EVS is： 

EVS MGO,sell,EV MGO,sell,EV MGO,buy,EV MGO,buy,EV 1 MGO,sell,EV 2 MGO,sell,EV MGO,sell,EV

, , , , , , , , , , , , max , ,

1 1

3 MGO,buy,EV 4 MGO,buy,EV

, , , , max , ,

{ [( ) ( )

(

T N

e t n e t n e t n e t n t n e t n t n e t n

t n

t n e t n t n e t n

L P v P v u P u P P

u P u P P

= =

= − − − − −

− −

 
EVS EVS EVS EVS

EVS EVS EVS

MGO,buy,EV 5 6

, , min , max ,

MGO,sell,EV

, ,7 EVS 8 EV MGO,buy,EV EV EV

, exp , 1 , , , ,EV
1 1 1

)] ( ) ( )}

( ) { ( [ ])}

t n n t t n n t

T T N
e t n

t n T t n t t e t n t n t n

t t n

u S S u S S

P
u S S u S S P i i


−

= = =

− − − − −

− − − − +  

                 (C.2) 

(3) The partial derivative of the Lagrange function is： 

EVS

EVS

EVS

MGO,sell,EV

,1,EV MGO,buy,EV EV EV

arrive ,1, 1, 1,EV
1 1

MGO,sell,EV

, ,EV MGO,buy,EV EV EV

1 , , , ,EV
1 1 1 1

, 1

, [2, ]

N N
e n

e n n n

n n

t
T N T N

e t n

t e t n t n t n

i n i n

P
S P i i t

S
P

S P i i t T







= =

−

= = = =


+ − =


= 


+ − 


 

 

                                                               (C.3) 

Finding the partial derivatives for the variables 
MGO,sell,EV

, ,e t nP , 
MGO,buy,EV

, ,e t nP and  
EVS

tS respectively: 

EVS

8 EVEVS
, ,MGO,sell,EV 1 2

, , , ,MGO,sell,EV EV

, ,

EVS
MGO,buy,EV 3 4 8 EV EV

, , , , , ,MGO,buy,EV

, ,

5 6 7 8EVS
,

5 6 8

, 1

0

0

0, [2, 1]

t n t n

e t n t n t n

e t n

e t n t n t n t n t n

e t n

t t t t n

t t t n tt

u iL
v u u

P

L
v u u u i

P

u u u u t TL

u u u uS





+


= − + − =




= − − + + =



− + − − =  −
=

− + − +
8

, 0,n t T











 = =

                                                                                (C.4) 

(4) Complementary relaxation conditions 

Using the complementary relaxation condition for Eq. (C.1) ： 

EVS EVS

EVS

MGO,sell,EV 1 1

, , , ,

MGO,sell,EV MGO,sell,EV 2 2

max , , , ,

MGO,buy,EV 3 3

, , , ,

MGO,buy,EV MGO,buy,EV 4 4

max , , , ,

5 5

min , ,

max

0 0 :

0 0 :

0 0 :

0 0 :

0 0 :

0

e t n t n v t

e t n t n v t

e t n t n v t

e t n t n v t

t t n v t

P u Z

P P u Z

P u Z

P P u Z

S S u Z

S

 ⊥ 

 − ⊥ 

 ⊥ 

 − ⊥ 

 − ⊥ 

 −
EVS 6 6

, , ,0 :n t t n v tS u Z












⊥ 

                                                                                               (C.5)                 

Eq. (C.5) represents that the above corresponds to scalars at most only one is greater than 0. 
1

,v tZ - 
6

,v tZ  are the Boolean variables. 

(5) The linear inequality constraint obtained by the big M method is:  

MGO,sell,EV 1

, , ,

1 1

, ,

MGO,sell,EV MGO,sell,EV 2

max , , ,

2 2

, ,

MGO,buy,EV 3

, , ,

3 3

, ,

MGO,buy,EV MGO,buy,EV 4

max , , ,

4

,

0 (1 )

0

0 (1 )

0

0 (1 )

0

0 (1 )

0

e t n v t

t n v t

e t n v t
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e t n v t

t n v t

e t n v t

t n

P M Z
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P P M Z
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P M Z
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P P M Z

u M

  −

 

 −  −

 

  −

 

 −  −

 

EVS EVS

EVS EVS

4

,

5

min ,

5 5

, ,

6

max , ,

6 6

, ,

0 (1 )

0

0 (1 )

0

v t

t v t

t n v t

n t v t

t n v t

Z

S S M Z

u MZ

S S M Z

u MZ
















  −  −

  

  −  −

  
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The KKT condition and duality theory are utilized to transform the equation of UA mentioned above: 

                                     

(1) The constraints of UA can be translated into: 
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1

,t iw -
13

,t iw  are the complementary relaxation variables. 

(2) The Lagrange function of UA is： 

3
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(3) The partial derivative of the Lagrange function is： 

Finding the partial derivatives for the variables 
MGO,sell

, ,e t iP ,
MGO,sell

, ,h t iP , 
e,DR

,t iP ,
h,DR

,t iP and 
P 2 P

, ,t i jP respectively: 
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(4) Complementary relaxation conditions 
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1

,v tX - 
10

,v tX  are the Boolean variables. 
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(5) The linear inequality constraint obtained by the big M method is:  
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Appendix D. 

 

Fig. C.1 PV and MT output forecasts of MGO. 
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Fig. C.2 PV output forecast and electrical load of the users. 

 

Fig. C.3 The convergence process of bidirectional Stackelberg game. 

 

Fig. C.4 The convergence process of cooperative game. 
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Fig. D.1 Analysis of EVS. 

 

Fig.D.2 Power balance diagram for user 2 in Scenario IV. 

 

Fig.D.3 Power balance diagram for user 3 in Scenario IV. 
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