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Abstract—The proliferation of artificial intelligence (AI) has
opened up new avenues for the modeling of power electron-
ics with ultra-fast transient responses, such as wide-bandgap
(WBG) devices. This paper highlights the significance of ultra-
fast transient device-level hardware emulation for the DC rail-
way microgrid (DRM) in real-time. To this end, the proposed
approach partitions the DRM power system by transmission
line method (TLM) and employs gated recurrent unit (GRU)
and electromagnetic transient (EMT) modeling techniques for
system-level subsystems. Meanwhile, for WBG devices, gallium
nitride (GaN) high electron mobility transistors (HEMT) and
silicon carbide (SiC) insulated gate bipolar transistors (IGBT) are
modeled using a novel physical feature neuron network (PFNN),
which offers high flexibility with a variable time-step (as low as
1ns), thereby improving the accuracy, efficiency and accelerating
the emulation on the field-programmable gate array (FPGA). The
effectiveness of the proposed approach is confirmed by comparing
the emulation results with offline simulation results obtained
from PSCAD/EMTDC® for system-level and SaberRD® for
device-level transients. The proposed PFNN approach provides
strong versatility, ultra-fast transient emulation capability, and
significantly improved accuracy, which bodes well for the future
of power electronics device-level emulation.

Index Terms—Artificial intelligence (AI), DC railway micro-
grid (DRM), field-programmable gate arrays (FPGAs), gallium
nitride (GaN), gated recurrent units (GRU), hardware-in-the-
loop (HIL), machine learning (ML), power electronics, real-time
systems, silicon carbide (SiC), wide-bandgap (WBG).

I. INTRODUCTION

In the era of heightened emphasis on energy conservation
and emission reduction, DC railway microgrid (DRM) [1]-
[4] is poised to become a cornerstone solution for sustainable
railway transportation. Among the crucial components of
DRM, wide-bandgap (WBG) devices [5] [6], including gallium
nitride (GaN) high electron mobility transistors (HEMT) and
silicon carbide (SiC) insulated gate bipolar transistors (IGBT),
hold a pivotal position in ensuring its efficient operation. GaN
HEMT [7] and SiC IGBT [8] have witnessed an upsurge in
popularity in recent years, thanks to their superlative charac-
teristics of high power density, fast switching speed, and low
on-state resistance, which make them ideally suited for the
DRM environment [9] [10]. Therefore, precise modeling of
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these devices and their intricate interactions with the DRM is
indispensable for realizing optimal performance and control.

Accurate modeling of power electronic devices is a crucial
prerequisite for designing and optimizing power circuits. Tra-
ditional modeling methods for WBG devices can be divided
into two categories: physics-based models and empirical mod-
els [11] - [14]. Physics-based nonlinear models aim to capture
the physical mechanisms and phenomena of the devices,
such as the channel formation, the current conduction, the
charge distribution, and the temperature effects. These models
provide a detailed understanding of the device operation and
performance, but are usually complex and computationally
intensive. Empirical models, on the other hand, rely on fitting
mathematical equations to the experimental data, such as
the output characteristics, the transfer characteristics, and the
switching behavior. These models are often simpler and faster,
but may lack accuracy and generality. A trade-off between
complexity and accuracy is often required when choosing a
suitable modeling method for SiC IGBT and GaN HEMT
devices for power circuit simulation. As the demand for high-
performance and energy-efficient power circuits continues to
grow, more advanced modeling techniques are required to
capture the complex behavior and interactions of these WBG
devices in power circuits.

While there exist numerous offline simulation and solution
methods for modeling WBG devices, most of these nonlinear
models cannot fulfill the real-time execution requirements
of hardware-in-the-loop (HIL) emulation. However, the es-
tablishment of a real-time emulation is an emerging and
crucial demand for the control and performance verification
of transportation systems. To overcome the challenges of
real-time emulation with traditional computation methods,
utilizing FPGA-based parallel accelerated computation is a
highly effective approach [15]. This approach has been widely
adopted in real-time system-level microgrids emulation, in-
cluding aircraft power systems [16], and traction systems [17].
For real-time device-level modeling, several methods such
as nonlinear behavioral model (NBM) [18] and curve-fitting
models [19] employ FPGA to achieve device-level emulation,
thereby reflecting the transient of power electronic devices.

With the growing demand for accurate and efficient model-
ing of power electronics devices in HIL applications, machine
learning (ML) methods have emerged as a promising solution.
Traditional modeling methods for SiC IGBT and GaN HEMT
devices often suffer from high computational complexity,
parameter sensitivity, and a lack of accuracy under dynamic
conditions. In contrast, ML methods offer several advantages
by leveraging large datasets to learn the underlying relation-
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ships between input and output data, leading to more accurate
and efficient models. For SiC IGBT and GaN HEMT, ML
methods can overcome the limitations of traditional modeling
methods by capturing their nonlinear and time-varying behav-
ior and predicting their performance under different operating
conditions. Moreover, ML methods can significantly reduce
the latency and hardware resource consumption required for
model development and validation, enabling rapid prototyping
and optimization of power electronic systems. Therefore, ML
methods have become a promising alternative to traditional
modeling methods for SiC IGBT and GaN HEMT in HIL
applications. Although numerous research papers have utilized
neural networks (NNs) for modeling the transient behavior
of IGBT [20] - [23], the application of ML methods to
GaN HEMTs modeling is still underexplored. The ultra-short
transient process of GaN HEMT, which lasts for approxi-
mately 10ns, requires a extremely small time-step, making
it challenging to implement fixed time-step ML methods. To
address this issue, this paper proposes the physical feature
neural network (PFNN), which integrates ML algorithms with
interdisciplinary physical-based modeling to accurately model
the transient process of GaN HEMT. The PFNN offers ultra-
fast transient emulation capability, and significantly improved
accuracy, which is a variable-time-step non-linear model dis-
tinguished from other traditional approaches. Additionally,
the PFNN method is not limited to GaN HEMTs, as it can
be applied to model device-level devices such as SiC IGBT
(excellent versatility).

This paper presents a novel approach for real-time HIL
emulation of DRM using PFNN accelerated WBG SiC/GaN-
based models on the Xilinx® Ultrascale+ architecture FPGA
hardware platform. The main contributions of this work are
described in the following sections. Section II introduces the
ML method adopted for modeling the SiC and GaN devices.
Section III presents the DRM system and the implementation
of its real-time emulation using the proposed ML-based mod-
els. Section IV demonstrates the effectiveness of the proposed
approach through real-time emulation results and verification
using experimentally verified software, PSCAD/EMTDC® for
system-level and SaberRD® for device-level transients. Fi-
nally, Section V concludes the paper.

II. MACHINE LEARNING MODELING METHODS

This section introduces the operational models of traditional
device-level computational models, followed by an overview
of commonly used ML topology types for modeling and
comparative analysis among different NNs. Subsequently, a
fixed time-step-points neural network (FTPNN) based on fully
connected artificial NNs (FNNs) is proposed for GaN HEMT
and SiC IGBT modeling. In view of the limitations of FTPNN,
the PFNN modeling process is further proposed. Finally, a
comparative discussion is presented on the advantages and
limitations of these modeling methods.

A. Traditional EMT Calculation Model

Fig. 1 illustrates the conventional device-level IGBT wave-
form calculation process, which is point-to-point in nature:

Fig. 1. Traditional point-to-point calculation algorithm.

Fig. 2. NN topologies: (a) FNN; (b) RNN.

based on the circuit topology and parameters, historical volt-
ages and currents are used to calculate the output voltage
and current for the next time-step from the last computation
result. Undoubtedly, this calculation analysis method is highly
accurate, but for SiC/GaN-based transient waveform changes
occurring within 1µs or even 50ns, this calculation strategy
is difficult to accomplish from one time-step to the next
(usually about 10µs). Due to the nonlinearity of the elements
(the internal equivalent capacitance value changes with the
change of current and voltage), the circuit parameters in
these calculation processes are dynamically changing, and the
iterative matrix calculation typically consumes a large amount
of computing resources and causes significant latency. More-
over, this point-to-point fixed time-step calculation method is
sequential and difficult to accelerate through FPGA hardware
parallel architecture. Therefore, for device-level waveforms,
traditional electromagnetic transient (EMT) calculation meth-
ods are inefficient to implement real-time parallel execution.

B. ML Modeling Topology

To develop an ML model for power electronics devices, it is
necessary to employ reliable and precise NN topologies, such
as traditional FNNs, classical recurrent NNs (RNNs) [24], long
short-term memory (LSTM) [25] NNs, gated recurrent units
(GRU) [26] NNs , and others. For most power electronics ML
applications, near-future prediction is more crucial than long
sequence prediction or coarse prediction. Therefore, complex
NNs, which require significant computational resources and
sub-microsecond real-time execution, are unacceptable for
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Fig. 3. FTPNN-EMT hybrid model: (a) output waveform; (b) parallel
algorithm.

these applications. In [27], a comparison of several NN algo-
rithms reveals that FNN and conventional RNN are the most
cost-effective, although LSTM may enhance accuracy at the
expense of larger hardware resources. GRU is a compromise
between conventional RNN and LSTM, and is often used
as a substitute for RNN in many-step applications or when
hardware resources are sufficient. As illustrated in Fig. 2 (a),
the simplest ML model, the FNN, calculates data at the current
time-step based on the signal at the previous time-step. When
building models with time-series signal inputs, there may be
differences in the data processing structure between FNN and
classical RNN, which is shown in Fig. 2 (b).

C. SiC/GaN FTPNN Model

Compared with the EMT point-to-point fixed time-step
model that is difficult and inefficient to implement on par-
allel hardware, using NN to calculate transient waveforms
can achieve highly efficient parallel execution for real-time
emulation. In previous studies [27] [28], the effectiveness
of FTPNN method was demonstrated using FNN or system-
level EMT and device-level ML algorithms for IGBT models.
The NN results of this type of model generally use FNN
and minimize the number of layers and neurons as much
as possible due to real-time requirements and the need for
outputting dozens of data points, such as using 50 data points
to emulate a 1µs waveform with a fixed time-step size of 20ns
or 20 data points to emulate a 1µs waveform with a fixed
time-step size of 50ns. Fig. 3 (a) shows the output waveform
of this FTPNN model: the purple dots are generated by the
EMT calculation algorithm, while the orange dots generate
a series of data points with a fixed time-step to emulate
the transient waveform using FTPNN. Fig. 3 (b) shows the
parallel computing process and output of data points for EMT
and FTPNN of this model. This model is easy to train and
can achieve an optimal point in terms of hardware resources,
accuracy, and latency, making it an exemplary application of
the intersection of power electronics and ML technologies.

D. SiC/GaN PFNN Model

The FTPNN method effectively solves the problem of real-
time emulation of IGBT device-level transient waveforms.

Fig. 4. PFNN-EMT hybrid model: (a) output waveform; (b) parallel algo-
rithm.

However, for the ultra-short transient processes of GaN de-
vices, it is still difficult for the FTPNN method to achieve
small time-steps (less than 20ns). Moreover, when using
small time-steps, the FTPNN method increases latency and
consumes significant hardware resources due to the large size
of the output matrix caused by the large number of output
data points. Therefore, another more efficient method, PFNN,
is proposed in this paper to emulate SiC/GaN-based transient
waveforms. The PFNN method significantly reduces hard-
ware resource consumption by allowing customizable time-
steps while outputting only the critical data points, such as
waveform inflection points and waveform peak and valley
points, based on the model’s physical features (PF). The
output data points of the PFNN method include not only
voltage values but also their corresponding time values. By
reducing the output of irrelevant information, this method
can greatly reduce the consumption of hardware resources
when the waveform does not change much. Similarly, the
system-level data points are calculated using the EMT model,
while transient data points are calculated in parallel using
the PFNN method. After obtaining the data points (t1, v1)
to (tn, vn), the piecewise linearization method can be used
to insert intermediate data points according to the required
time-step. This allows for the output of data points with a
time-step of 10 ns or even 1 ns. Although this data insertion
process requires some extra hardware resources, this method
saves significant computational resources and reduces latency
compared to the FTPNN method using ML training and output
strategies.

Fig. 4 illustrates the modeling and data selection process
of PFNN. Taking IGBT turn-off transient waveform as an
example, Fig. 4 (a) shows a 3D dataset containing voltage,
current, and time. FTPNN method collects voltage and current
data at fixed time-steps for training neural networks, while
FPNN method requires data filtering before training. For
instance, as shown in Fig. 4 (d), the voltage and current
waveforms are differentiated with respect to time, and the
zero-crossing times of the derivative waveform are marked as
key data points. Then, the (t, v, i) values at those time points
are collected to form a dataset for training the corresponding
PFNN transient waveform model. Fig. 4 (b) and (e) show the
original (t, v, i) dataset and the waveform in 3D space with

This article has been accepted for publication in IEEE Open Journal of Power Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJPEL.2023.3297449

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

Fig. 5. PFNN modeling: (a) 3D original current-voltage-time datasets; (b)
compressed 3D voltage-time waveform; (c) 2D voltage-time waveform; (d)
PFNN training dataset selection; (e) 3D original current-time datasets; (f) 2D
current-time waveform.

TABLE I
COMPARISON OF MODELS FOR TRANSIENT WAVEFORMS

Feature LUT EMT FTPNN PFNN

Complexity + ++++ ++ ++
Execution Time + ++++ +++ ++

Resource Consumption ++++ +++ ++ ++
Accuracy + +++ ++ +++
Generality + ++++ +++ ++++

Long-Period Output No No No Yes

voltage or current dimension reduced, respectively, while Fig.
4 (c) and (f) display the compressed waveform in 2D for easier
data analysis and identification of critical data points. It is
evident that NNs have strong fitting capability for continuous
3D waveforms, while 2D waveform plots are suitable for data
analysis and identification of critical data points.

E. Comparison of Different Methods

The look-up table (LUT) approach (empirical model) is the
simplest and most direct, with the advantage of having low
computation time and properly outputting the data points of
the transient waveform. The disadvantage of this method is
that 1) obtaining the data from the LUT or measuring the
parameters of the model details is complicated, and 2) the
model’s adaptability and generalization capacity is vulnerable.

The EMT approach is now the most widely used offline
simulation method. When compared to other methods, it has
the advantages of high accuracy, versatility, and excellent gen-
eralization potential. The downside is that the computational
burden is heavy, and iterative or serial processes are necessary,
making the real-time emulation of a tiny time-step impractical.

The FTPNN method is a straightforward ML application.
In comparison to the EMT technique, this method sacrifices
precision but employs parallel computing to achieve real-time
emulation of the minuscule step size. When compared to the

LUT technique, it is more versatile and simple because it only
requires input and output data to train.

The PFNN approach, incorporating FTPNN and a physical
model, yields accurate results with minimal resource consump-
tion and latency. It exhibits robust generalization and long-term
output capabilities, but requires empirical knowledge and skill
in data processing, feature extraction, and NN training.

III. IMPLEMENTATION FOR REAL-TIME DRM HIL
EMULATION

In this section, the topology and modeling of the DRM
system is introduced firstly. Then, the data processing, training,
and parameter determination of ML models are discussed.
Finally, the latency and resource consumption of the both EMT
and ML models are analyzed.

A. Overall DRM Power System

Fig. 6 (a) shows the complete topology of the DRM system,
including the AC-transformer-rectifier subsystem (ACTRS),
DC railway subsystems, energy storage subsystems (ESSs),
and isolated DC/DC (IDCDC) converters, which are connected
via an 8kV MVDC bus. The MVDC bus generates 380V
LVDC, which is utilized to charge electric vehicles via the
IDCDCs. SiC IGBTs are used in the MVDC to LVDC IDCDC
to adapt to high-power operation, while GaN HEMTs are used
in the LVDC to electric vehicle IDCDC in order to increase
the switching frequency and reduce the power loss of the
charging device. Fig. 6 (b) shows the topology of the IDCDC,
which mainly consists of 8 switches, one transformer, and
one LC filter. The transmission line method (TLM) is applied
to partition different subsystems for parallel computation.
The ACTRS topology is modeled using the traditional EMT
method, and the IDCDC module is also built by the EMT
algorithm to ensure accuracy and solubility. For example,
the transformer in the IDCDC system is modeled using the
trapezoidal rule algorithm, which can be expressed:

it1 = it−∆t
1 +

dt(vt
1+vt−∆t

1 )
2L11

− L12(i
t
2−it−∆t

2 )
L22

, (1)

vt2 = −vt−∆t
2 +

2L12(i
t
1−it−∆t

1 )
dt +

2L22(i
t
2−it−∆t

2 )
dt , (2)

where, i1, i2, v1, v2 are current and voltage on the primary
and secondary sides of the transformer, respectively; L11,
L22, L12 are the self-inductance of the primary winding,
the self-inductance of the secondary winding, and the mutual
inductance between the primary and secondary windings.

These EMT methods can ensure sufficient accuracy and low
computational complexity with a time-step of 1 µs. Then,
the GRU is applied to model the DC railway subsystem and
ESS, which is advantageous in terms of balancing hardware
resource consumption, accuracy, and latency. The expression
of the relative GRU DC railway subsystems and ESSs is given:

it = f (vt−∆t, ..., vt−n∆t, it−∆t, ..., it−n∆t) , (3)

where n is the number of sequences length; v and i are the
two port output voltage and current of the subsystem.
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Fig. 6. DRM: (a) overall system; (b) IDCDC topology; and (c) time-domain
modeling.

For the SiC IGBT and GaN HEMT in the IDCDC, ML
methods are used for modeling, whose expressions are:

{i,v} = fFTPNN (vt1 , vt1+∆t, it1 , it1+∆t) , (4)

{t, i,v} = fPFNN (vt1 , vt1+∆t, it1 , it1+∆t) , (5)

where t, i, v, are output time, current, voltage vectors of
device transient; ∆t is the system-level time-step; and t1
represents the moment when the transient of the switch starts.

Fig. 7. PF Data processing.

B. Dataset processing for PFNN Modeling

The crucial step in PFNN modeling is the careful selection
of data points with pertinent physical feature, directly impact-
ing the resultant waveform. The selection process is guided by
the waveform characteristics specific to GaN HEMT or SiC
IGBT devices, allowing for precise data point identification.
For instance, based on current polarity (turn-on, turn-off)
and voltage polarity (positive or negative), waveforms under
positive voltage can be categorized into four groups: positive
current on, positive current off, negative current on, and nega-
tive current off. Each category exhibits distinct characteristics.
Subsequently, within each category, relevant data points are
chosen based on current and voltage derivatives, as well as
the identification of maximum and minimum values. Fig. 7
exemplifies this process, highlighting the extraction of im-
portant characteristic data points.This variable-time-step, non-
linear modeling approach (PFNN) enables the reconstruction
of waveforms using a reduced number of data points, in
contrast to previous fixed-time-step methods (SaberRD® and
FTPNN). Notably, the data point selection process is guided by
human expertise rather than AI algorithms, demanding a deep
understanding of power electronics and practical experience.
This selection strategy relies on specialized knowledge to
guarantee precise representation of the waveforms, ensuring
their accurate capture and fidelity within the PFNN model.This
meticulous data point selection procedure ensures the fidelity
of the PFNN model and its ability to faithfully capture the
intricate details of the device behavior.

C. Training Process and Parameter Design

For ML models, to ensure their generalization and accuracy,
various operating conditions data need to be collected and

This article has been accepted for publication in IEEE Open Journal of Power Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJPEL.2023.3297449

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Fig. 8. Parameter selection.

normalized for efficient and effective training. It is worth
noting that the device-level data was obtained from offline
simulations performed using SaberRD® for the SiC IGBT
CMH1200DC-34S [29] and GaN HEMT IGT60R00D1 [30].
Before feeding the dataset into the training program, the data
are grouped and shuffled. Then 80% of the data are utilized
for training, while the remaining 20% are used for testing
and validation. For training a single GRU, the total training
times are about 5,000,000 forward computations and error
backpropagations. For SiC IGBT transient PFNN and FTPNN,
it is about 800,000 times, and it is about 650,000 times for
that of GaN HEMT. The training process uses the Adam [31]
training strategy with an initial learning rate of 0.001.

As for the design of the number of hidden layers and
neurons in the hidden layer of the model, it is a process
constantly obtained through experience and testing. According
to our previous research [27], [28], the general hidden layer for
the IGBT transient FNN is 1 with about 20-40 neurons, which
is a balance between hardware resource consumption and
accuracy. In pursuit of improved accuracy and generalization
in ML models, it is advantageous to employ a larger number of
neurons under identical conditions. Nonetheless, it is important
to acknowledge that this approach comes with the trade-
off of increased hardware consumption and latency. Hence,
when determining the parameters for PFNN, careful consid-
eration is given to hardware implementation constraints and
requirements. The selection process aims to strike a balance
between achieving high accuracy and minimizing resource
utilization, ensuring efficient and practical deployment of the
model. As depicted in Fig. 8, when the latency requirement
is set to be less than 1µs, a pipeline design for the FPGA
matrix is devised. This design aims to maximize the number
of neurons while minimizing the number of digital signal
processors (DSPs). Eventually, the number of neurons is set
to approximately 30. Following thorough verification, it has
been established that these parameters fulfill the criterion of
maintaining an average prediction error of less than 1%. The
GRU sequence length needs to be determined based on the
complexity of the model. The sequence length of the DRS
GRU is approximately 30, while the ESS GRU is relatively
simple with a length of about 5. Moreover, the sequence length
should take into account the emulation time-step. For instance,
if the emulation time-step is 1µs, the sequence length needs

Fig. 9. Hardware setup of the DRM real-time emulation.

to be much larger than that for the emulation time-step of
100µs. The sequence length mentioned above is determined
by the parameters selected for a time-step of 50µs for DRSs.

D. Hardware Platform
Fig. 9 depicts the hardware connection diagram of the

DRM emulation system. For this study, the Xilinx® VCU128
board with UltraScale+™ XCVU37P FPGA was utilized, and
Table II showcases the main hardware resource consumption
of individual modules. The Xilinx® VCU128 board offers
abundant hardware resources, including 4332 block random
access memories (BRAMs), 9024 DSPs, 2607k flip flops
(FFs), and 1304k LUTs. The entire system is designed with
one ACTRS, three IDCDCs, three GRU DRSs, three ESSs,
four device-level SiC IGBTs, and four device-level GaN
HEMTs. The EMT subsystem features a simple model and
calculations, which can be achieved with less than 5% of
hardware resources for a emulation step size of 1µs. The GRU
model is implemented in relatively complex switch-controlled
systems, and after TLM segmentation, only the current output
is considered. Therefore, the emulation step size is set to 50µs,
resulting in relatively low hardware resource consumption. The
SiC IGBT transient model FTPNN has the input, output, and
hidden neuron numbers set to the exact same values, leading
to nearly identical computational resource consumption and
latency. As for the GaN transient model, the PFNN output data
points are fewer, making it significantly reduced parameters
and calculations than the FTPNN model, resulting in lower
resource consumption and latency (0.5µs).

E. Real-time Hardware Implementation of PFNN
In the context of real-time PFNN requiring hardware accel-

eration, the selection of data types in FPGA implementations is
crucial. While traditional methods often utilize floating-point
data types for their precision and larger data range, fixed-
point data types are more suitable for resource-saving and low-
latency applications. In this paper, we leverage the advantages
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TABLE II
MODEL HARDWARE RESOURCE CONSUMPTION ON XILINX®

ULTRASCALE+™ XCVU37P FPGA

Device BRAM DSP FF LUT Latency

EMT ACTRS 2% 1% 1% 2% 0.64µs
EMT IDCDC 1% 6% 3% 5% 0.83µs

GRU DRS 2% 4% 3% 3% 8.3µs
GRU ESS 2% 1% 1% 2% 4.1µs

PFNN GaN HEMT 1.5% 0.9% 0.2% 0.5% 0.69µs
PFNN SiC IGBT 1.5% 0.9% 0.1% 0.6% 0.89µs

FTPNN GaN HEMT 0% 0.9% 0.1% 5% 0.61µs
FTPNN SiC IGBT 0% 0.9% 0.1% 9% 0.82µs

Total Utilization 16% 47% 39% 83%

Available 4332 9024 2607k 1304k

of fixed-point data types, as the ML models employed have
normalized training data, including inputs, outputs, weights,
and biases within the range of -1 to 1. Consequently, the
ap fixed< 32, 12 > data type is employed for matrix opera-
tions in the FPNN model. This data type achieves a precision
of 10e-6 for the decimal part, while the integer part adequately
satisfies the requirements of a simple LUT. By utilizing the
ap fixed data type, a significant reduction in the utilization of
DSP resources is achieved. To expedite the tanh calculation,
a LUT method is employed as described in reference [27],
necessitating a certain amount of BRAMs. In contrast, this
paper adopts the rectified linear activation function (ReLU)
activation function within the FPNN model, which signif-
icantly conserves hardware resources. These considerations
in selecting appropriate data types and activation functions
contribute to optimizing hardware resource utilization and
improving the efficiency of FPGA implementations.

The hardware optimization for PFNN implementation pri-
marily targets the matrix operations involved. Fig. 10 compares
the hardware resource consumption of different configurations
for matrix operations, including pipeline design using for
loops, partial unrolling, and full unrolling, as well as the
utilization of fixed-point and floating-point data types under
the pipeline strategy. To facilitate comparison, the resource
consumption is expressed as percentages. According to Fig.10,
the pipeline design demonstrates the lowest resource utiliza-
tion. For the SiC IGBT PFNN model with fixed-point data
types, it consumes 60 BRAMs, 80 DSPs, 3418 FFs, and 7261
LUTs, representing 1.5%, 0.9%, 0.1%, and 0.6% of the total
available FPGA resources, respectively, while achieving a la-
tency of 0.89µs. Partial unrolling reduces the latency to 0.58µs
at the cost of additional DSPs (291), FFs (2302), and LUTs
(19804). Full unrolling of the for loop enables a computation
time of just 60ns but requires 3489 DSPs, 21109 FFs, and
158025 LUTs, occupying 38.7%, 0.8%, and 12.0% of the total
resources, respectively. By employing floating-point data types
instead of fixed-point, the same PFNN model experiences an
increased latency from 0.89µs to 1.6µs, along with the con-
sumption of 105 BRAMs, 155 DSPs, 16734 FFs, and 15839
LUTs, corresponding to 2.6%, 1.7%, 0.6%, and 1.2% of the
total resources, respectively. The use of fixed-point data types
reduces both hardware resource consumption and latency. It is

Fig. 10. SiC IGBT PFNN hardware resource consumption with different
optimized implementations.

worth noting that the actual resource consumption may vary
based on coding and optimization techniques. For instance,
utilizing LUT methods for partial function calculations can
reduce DSP usage while increasing LUT utilization. Storage
options may involve reducing LUTs in favor of BRAMs.
Specific optimization strategies and hardware implementations
are case-specific and depend on the scenario.

IV. RESULTS AND DISCUSSION

This section presents a comparison of the DRM em-
ulation results at both system-level and device-level. The
system-level reference comparison results are obtained from
PSCAD/EMTDC®, while the device-level reference compar-
ison results are obtained from SaberRD®. The SaberRD®

method, which represents the existing traditional approach
validated by commercial software. Although it offers high
accuracy due to the Newton-Raphson method, it falls short
in real-time simulation requirements due to point-to-point
calculations and extensive iterative computations. The IGBT
device-level modeling provided by SaberRD has been experi-
mentally validated in published papers [32]- [34]. The FTPNN
method, which we previously developed in [27] and [28].
This method meets real-time emulation requirements for SiC
IGBTs and regular IGBTs. However, it requires significant
computational resources, particularly when dealing with short
transient processes, and the training of the ML component
presents increased challenges. The PFNN method, proposed
in this paper, builds upon the latest advancements of the
FTPNN approach. It achieves a balance between accuracy
and hardware resource consumption, enabling data output with
a minimum step size of 1ns for the emulation of ultra-
fast transient processes in GaN HEMTs. The system-level
emulation includes outputs from both GRU models with a
time-step of 100µs and EMT models with a time-step of 1µs.
For device-level emulation, the FTPNN model has a fixed
time-step of 50ns, while the PFNN model has a variable time-
step that can reach a minimum resolution of 1ns.

Fig. 11 (a) and (b) show the current outputs of the ESS in
PSCAD/EMTDC® and the GRU ESS model, respectively, as
the current varies from 5A to 15A, then 18A, -5A and finally
returns to 5A. This variation is determined by the voltage
changes on the MVDC bus, as shown in Fig. 11 (c) and (d).
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The voltage changes with power variations, and the steady-
state range is maintained between 7.9kV and 8kV .

Fig. 11. System-level waveforms: (a) ESS output current from
PSCAD/EMTDC®; (b) ESS GRU output current from real-time emulation;
(c) MVDC bus voltage from PSCAD/EMTDC®; (d) MVDC bus voltage from
real-time emulation.

Fig. 12 shows the voltage-current and power loss waveforms
of the GaN HEMT switch transient process. The waveform
suffix “1” represents the reference waveform from SaberRD®,
while the suffix “2” represents the output waveform from the
PFNN. Fig. 12 (a) to (h) represent the positive current turn-
on current transient, positive current turn-off current transient,
positive current turn-on voltage transient, positive current turn-
off voltage transient, negative current turn-on current transient,
negative current turn-off current transient, negative current
turn-on voltage transient, and negative current turn-off voltage
transient, respectively. The voltage operates in the range of
370V to 390V corresponding to the LVDC bus voltage of
380V . The turn-on and turn-off range of current is from -
100A to 150A. Each graph uniformly shows waveforms for
six different currents. The results show that even though the
GaN HEMT transient is less than 10ns, the PFNN model can
efficiently and accurately reproduce the transient waveform
with an average error of less than 2%. Furthermore, the
comparison between the SaberRD® waveform and the PFNN
waveform, and the FTPNN waveform is shown in Fig. 12
(i), (j), (k), and (l), respectively. They correspond to four
transients: positive current turn-on, positive current turn-off,
negative current turn-on, and negative current turn-off, all at
100A. From Fig. 12, the PFNN can accurately reproduce the
GaN HEMT transient power loss, while the FTPNN cannot
reflect the power loss (the transient integrated power loss is
less than 10µJ), because the transient is approximately 10ns,
which is far smaller than the fixed time-step of 50ns for
FTPNN. The power loss calculated from the SaberRD® data
for these four states is 1016µJ , 34µJ , 17µJ , and 348µJ ,
while the power loss for PFNN is 852µJ , 32µJ , 17µJ , and
484µJ , respectively. The error in power loss arises due to the
selective feature extraction employed in PFNN, which solely
relies on current and voltage features. Incorporating power
loss as a feature point in accordance with user specifications
would yield results more consistent with SaberRD®, at the

expense of heightened hardware resource utilization. The
optimized PFNN with power loss as a feature point, denoted
as PPINN PL, is illustrated in Fig. 12, with respective values
of 978µJ , 32µJ , 17µJ , and 388µJ .

Fig. 13 depicts the transient waveforms of SiC IGBT. The
suffix “1” denotes the reference waveform from SaberRD®,
the suffix “2” represents the output waveform from PFNN, the
suffix “3” represents the output waveform from FTPNN, and
suffix “4” compares the output waveforms of the three models.
Similar to Fig. 12, Fig. 13 (a) to (h) represent the current and
voltage transients during turn-on and turn-off under positive or
negative current for six different current levels ranging from 0
to 200A. By comparing the waveforms in the first, second, and
third columns, it is evident that while FTPNN can also reflect
the IGBT transient process to some extent (since the transient
lasts for about 500ns), PFNN is closer to the SaberRD® model
output. PFNN accurately captures the maximum and minimum
values of the waveform during oscillation intervals. Moreover,
PFNN is more efficient in not wasting data points in smooth
and unchanged intervals. The waveforms in the fourth column
at 100A positive or negative current reveal that PFNN can
output more detailed transients than FTPNN.

V. CONCLUSION

This paper presents a novel approach for real-time hardware
emulation of the DRM system using ML-accelerated WBG
models. The proposed system is divided into different parallel
EMT or ML parts through TLM. To achieve WBG SiC/GaN-
based device-level transient modeling outputs for the critical
IDCDC converter, two NN strategies, namely FTPNN and
PFNN, are introduced. The GRU model at system-level is
validated by PSCAD/EMTDC®, while the GaN HEMT and
SiC IGBT models at device-level are verified by SaberRD®.
The proposed PFNN model offers several advantages over
existing approaches: 1) strong versatility–PFNN can be applied
to different device-level components, such as SiC IGBTs,
GaN HEMTs, and conventional IGBTs, with varying power,
voltage, current ranges, and transient time lengths; 2) ultra-fast
transient emulation capability–PFNN can emulate voltage and
current transients at the 10ns level; 3) high flexibility with
variable time-step–PFNN can achieve a ultra-small time-step
(as low as 1ns) or a time-step greater than 1µs. In summary,
the proposed ML-accelerated PFNN model offers high accu-
racy, strong generality, ultra-fast emulation capability, and high
flexibility, which has the potential to significantly accelerate
the performance of real-time DRM emulation system.
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Fig. 12. Device-level GaN HEMT transient waveforms under changing load conditions (the 1st for offline SaberRD®, and the 2nd for real-time PFNN):
(a) positive current turn-on transient current; (b) positive current turn-off transient current; (c) positive current turn-on transient voltage; (d) positive current
turn-off transient voltage; (e) negative current turn-on transient current; (f) negative current turn-off transient current; (g) negative current turn-on transient
voltage; and (h) negative current turn-off transient voltage; and waveform comparison: (i) positive current turn-on; (j) negative current turn-on; (k) positive
current turn-off; and (l) negative current turn-off.
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Fig. 13. Device-level SiC IGBT transient waveforms under changing load conditions (the 1st column for offline SaberRD®, the 2nd column for real-time
PFNN, the 3rd column for real-time FTPNN, and the 4th column for the comparison among SaberRD®, PFNN, and FTPNN): (a) positive current turn-on
transient current; (b) positive current turn-on transient voltage; (c) negative current turn-on transient current; (d) negative current turn-on transient voltage; (e)
positive current turn-off transient current; (f) positive current turn-off transient voltage; (g) negative current turn-off transient current; and (h) negative current
turn-off transient voltage.
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