
University of Alberta

D ig it a l B u il t - in S e l f -t e s t o f A n a l o g It e r a t iv e D e c o d e r s

by

Mimi Wai Mei Yiu

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science

D e p a r tm e n t o f Electrical and Computer Engineering

Edmonton, Alberta
Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13915-3
Our file Notre reference
ISBN: 0-494-13915-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To Dad, Mom, my sisters Amy, Eliza, and Winnie
for their love, encouragement,
understanding, and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

There has been great interest in implementing iterative decoders due to their

outstanding performance with bit error rates close to the theoretical limit for error-

free transmission known as the Shannon bound. Conventional digital

implementations are often complex, demanding significant silicon area and power.

Analog circuits for iterative decoding have been proposed and demonstrated by

various researchers in recent years. Ensuring high test quality at low cost for these

analog-signal designs has become a challenge to test engineers. A design method

is presented for testing analog iterative decoders using digital built-in self-test

(BIST). Mixed signal BIST schemes are often complex and demand larger than

acceptable hardware cost. By using a digital BIST scheme, analog iterative

decoders can easily be tested in the digital domain. A BIST was designed for an (8,

4) extended Hamming decoder using TSMC 0.18 pm CMOS technology. It is

capable of detecting catastrophic faults in the decoder. The decoder has a bit error

rate (BER) performance of 0.3 db to 0.8 dB away from maximum likelihood (ML)

decoding at speeds of up to 3.7 Mbps. The digital BIST scheme is suitable for any

iterative decoder using the sum-product algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to say special thanks to Dr. Vincent Gaudet and Dr. Christian

Schlegel for their guidance, support, teaching, funding, and their confidence in me

and my work even during hard times.

I would like to thank Dr. Chris Winstead, a mentor and a friend of mine, who had

come up with the idea for this thesis. I am deeply indebted to Dr. Winstead for

always taking his precious time to help me solving different problems on analog

decoding. I would also like to thank Dr. Winstead and Nhan (Dave) Nguyen for

designing the BER test interface.

Many thanks to Nhan Nguyen, Tyler Brendon, and John Koob for helping me to

solve many problems about analog decoder implementations and design tools

applications. Their guidance and enthusiasm helped me to overcome all the

periods of frustration and anxiety. Their helpful design tips also saved me a great

amount of time on implementing the analog decoder chip.

I would like to extend my thanks to the people in the HCDC lab and VLSI lab for

creating a friendly and stimulating working environment, and for many inspiring

discussions of communication systems and iterative decoders.

Funding for this project was provided by Canadian Microelectronics Corporation

grants 0404CF-ICFAAMY1, NSERC, iCORE, and the Mary Louise Imrie

Graduate Student Award.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction... 1

1.1 Motivation.. 1
1.2 Thesis Outline... 2

2 Error Correcting Codes...4

2.1 Communication Systems...4
2.2 Algebraic and Probabilistic Coding...5
2.3 Types of Codes...5

2.3.1 Block Codes... 5
2.3.2 Convolutional Codes..6

2.4 Channel Capacity... 7
2.5 Hamming and Minimum Distances of a Code.. 8
2.6 Linear Codes and Systematic codes...9
2.7 Hamming Codes..9
2.8 Low Density Parity Check (LDPC) Codes.. 10
2.9 Trellis Codes..11
2.10 Turbo Codes.. 11
2.11 The Sum-Product Algorithm.. 14
2.12 Chapter Summary... 17

3 Analog Iterative Decoding Circuits...19

3.1 Analog Implementation of Iterative Decoders.. 19
3.2 Sum-Product M odule...20

3.2.1 Current Multiplication...21
3.2.2 Current Summation.. 22
3.2.3 Normalization... 23

3.3 Factor Graph N odes...24
3.3.1 Equality Nodes...24
3.3.2 Check Nodes..25
3.3.3 Bi-directional Nodes..26

3.4 LLR Ratio to Probability Distribution.. 26
3.5 Chapter Summary... 27

4 Built-In Self-Test.. 28

4.1 VLSI Testing... 28
4.2 Design for Testability...29
4.3 Built-In Self-Test... 30
4.4 BIST Structure.. 30

4.4.1 BIST for Digital Systems.. 30
4.4.2. BIST for Analog Circuits... 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Digital BIST for Analog Iterative Decoders..32
4.6 Chapter Summary... 35

5 Digital BIST and Implementation...36

5.1 Digital BIST Schem e.. 36
5.1.1 Proposed Methodology... 36
5.1.2 BIST for the Computation Core...37
5.1.3 BIST for I/O Interface..41

5.2 Implementation...42
5.2.1 Analog (8, 4) Hamming Decoder Core....................................42
5.2.2 BIST for Decoder Core... 59
5.2.3 Universal I/O Interface...61
5.2.4 BIST for the I/O Interface...65

5.3 Implementation Procedures.. 67
5.4 Simulations... 70

5.4.1 Simulations on Self T est... 70
5.4.2 Simulations of Analog Decoder...76

5.5 Chapter Summary... 78

6 Testing... 79

6.1 Fabrication of Prototype.. 79
6.2 General Test Setup and Equipment..80
6.3 Self Test... 81

6.3.1 Test Program on PC ... 82
6.3.2 FPGA Controller Board.. 82
6.3.3 Test Support Board.. 82
6.3.4 DUT Board..83
6.3.5 Test Procedures..83
6.3.6 Test Results...84

6.4 BER Test.. 85
6.4.1 Test Program on PC ... 86
6.4.2 FPGA Controller Board.. 87
6.4.3 Test Support Board.. 87
6.4.4 DUT Board..88
6.4.5 Test Procedures..88
6.4.6 Test Measurements.. 89

6.5 Chapter Summary... 92

7 Conclusions and Future W ork...93

7.1 Conclusions and Contributions... 93
7.2 Future W ork.. 95

Bibliography..97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Logic behavior of the modified sum-product circuit................... 37
5.2 Description of the decoder BIST signals.. 58
5.3 Mapping from node number to address signal............................. 59
5.4 Description of the I/O BIST signals.. 65
5.5 Probability values of input currents used for simulating the

decoder core... 75

6.1 CLK_DIV and corresponding test speed and decoding speed
[3 9].. 88

6.2 Summary of (8, 4) Hamming decoder with B IS T 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Communication system... 4
2.2 Convolutional encoder with k = 2, n = 4, and m = 2 7
2.3 Additive white Gaussian noise channel... 8
2.4 A simple convolutional encoder... 12
2.5 State transition diagram of the FSM describing the encoder in Fig.

2 .4 12
2.6 Trellis diagram of the convolutional encoder in Fig. 2 .4 13
2.7 Turbo Encoder containing two convolutional encoders E l and E2,

and one interleaver I I .. 13
2.8 Turbo Decoder containing two MAP decoders, an interleaver n ,

and a deinterleaver II '1 .. 13
2.9 Factor graph of a regular LDPC code.. 15
2.10 n-edge factor graph node constructed by a cascade of three-edge

nodes.. 15

3.1 Sum-product module: (a) top-level block diagram [29] and (b)
module divided into smaller blocks.. 20

3.2 Trellis diagram for f(x, y, z) = 1 iff: (a) x © y = z and (b) x = y = z
[29] 20

3.3 Gilbert vector multiplier for two input vectors of length m and n . . 21
3.4 General sum-product circuit with Gilbert normalizer......................... 22
3.5 Equality node: (a) Trellis representation (b) One-direction circuit in

transistor level.. 23
3.6 Check node: (a) Trellis representation (b) One-direction circuit in

transistor level.. 24
3.7 Three-edge bi-directional node constructed by three unidirectional

sum-product modules... 25
3.8 Differential Pair for LLR voltages to probability currents

conversion... 26

4.1 Duty of a general ATE tester.. 27
4.2 A typical BIST architecture for digital system s................................... 29
4.3 BIST architecture for analog systems.. 30
4.4 BER curves of a (8, 4) Hamming MAP decoder with/without

defects [56]... 33
4.5 Threshold loss due to mismatch for several regular LDPC

ensembles [59]... 33

5.1 Structure of a general analog iterative decoder ch ip 35
5.2 Decoder chip with B IST .. 36
5.3 Modifications of a check node sum-product c irc u it........................... 37
5.4 Modifications of an equality node sum-product circuit...................... 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Unidirectional circuits disconnected by additional sw itches....... 39
5.6 Flow chart describing the decoder self-test operations........... 39
5.7 Single S/H input stage.. 40
5.8 Factor graph of (8, 4) Hamming decoder................................... 42
5.9 Transformed factor graph of (8, 4) Hamming decoder........... 42
5.10 Unidirectional check node circuit (CHECK 1)........................... 45
5.11 Unidirectional check node circuit with extra pair of diode

connected output transistors. (CHECK1_NG)........................ 46
5.12 Bi-directional three-edge check node (CHECK3_1NG).................... 47
5.13 Bi-directional three-edge check node (CHECK3_2NG)..................... 48
5.14 Switches implemented by: (a) PMOS pass transistor (b) NMOS

pass transistor (c) Transmission g a te .. 49
5.15 Four-edge check node (CHECK4).. 49
5.16 Unidirectional equality node circuit (EQUALITY 1) 50
5.17 Unidirectional equality node circuit with extra pair of diode-

connected transistors (EQUALIY1_NG)................................. 51
5.18 Bi-directional three-edge equality node (EQUALITY3).................... 52
5.19 Bi-directional three-edge equality node (EQUALIY3_NG) 53
5.20 Five-edge equality node (EQUALITY5).................................. 54
5.21 Unidirectional equality node circuit with current outputs

(EQUALITYJOUT).. 55
5.22 EQUALITY l_IOUT with switches as input MUXs

(EQUALITY_OUT)... 55
5.23 The (8, 4) Hamming decoder co re ... 56
5.24 Circuit for equalizing probabilities (RESET)........................... 57
5.25 Top level diagram of the decoder B IS T 59
5.26 Three-edge nodes assigned with num bers................................. 59
5.27 Flow diagram of decoder B IS T .. 60
5.28 Structure of the I/O interface... 61
5.29 Chain of S/H cells at transistor level.. 62
5.30 Timing diagram of the S/H interface... 62
5.31 Output interface.. 63
5.32 Timing diagram of output interface... 64
5.33 Comparator at transistor lev e l... 64
5.34 Top level diagram of I/O B IS T ... 65
5.35 Flow diagram of I/O B IST .. 66
5.36 Design procedures of (a) analog circuits (b) digital circuits.. 68
5.37 Automated layout of the I/O B IS T ... 69
5.38 Waveform of decoder BIST detecting no fault in the decoder and

showing that nodes C l, C2, C3, E l, E2, and E3 are good 71
5.39 Waveform of decoder BIST detecting faults in nodes C5, CIO, C15,

E10, E20, and E 2 5 ... 72
5.40 Waveform of I/O BIST: (a) detecting no fault in the interface (b)

detecting faults in the third set of responses receiving from the
interface.. 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.41 Simulation results of full faulty decoder chip in test mode showing
that the decoder core is faulty, I/O interface is functional, and some
of the internal nodes are b a d .. 74

5.42 Simulation results of full functional decoder chip in test mode
showing that the decoder core, I/O interface, and all internal nodes
are functional... 74

5.43 Analog decoding simulation of the decoder core with In - 10 nA
showing an error correction on b it3 ... 76

5.44 Simulation of the full decoder with Iu = 1 pA showing the
decoding process of three codewords.. 77

6.1 Die photo of (8, 4) Hamming decoder with BIST (ICFAAMY1) . . . 78
6.2 Picture of test set-up: PC, Keithley unit, FPGA board, test support

board, PCB, multi-meter, and oscilloscope.. 79
6.3 Picture of FPGA, Test Support, and DUT boards................................ 80
6.4 General test-setup block diagram for ICFAAMY1 80
6.5 Screen capture of test results displayed by the BER test program. . . 86
6.6 BER measurements with varying test speed... 90
6.7 BER measurements with varying bias current...................................... 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Acronyms
ADC Analog-to-Digital Converter
ATE Automatic Test Equipment
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BIST Built-In Self-Test
BPSK Binary Phase Shift Keying
CMOS Complementary Metal Oxide Semiconductor
DAC Digital-to-Analog Converter
DC Direct Circuit
DFT Design for Testability
DRC Design Rule Checking
DUT Device Under Test
FEC Forward Error Correcting
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
FSM Finite State Machine
IC Integrated Circuit
I/O Input/Output
LDPC Low Density Parity Check
LFSR Linear Feedback Shift Register
LLR Log-Likelihood Ratio
LVS Logic Versus Schematic
MAP Maximum a Posteriori
ML Maximum Likelihood
MUX Multiplexer
NMOS N-type Metal Oxide Semiconductor
ORA Output Response Analyzer
PC Personal Computer
PCB Printed Circuit Board
PGA Pin Grid Array
PMOS P-type Metal Oxide Semiconductor
RAM Random-Access Memory
ROM Read-Only Memory
RTL Resistor-Transistor Logic
S/H S ample-and-Hold
SNR Signal-to-Noise Ratio
TPG Test Pattern Generator
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VLSI Very Large-Scale Integrated
XOR Exclusive OR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Electrical
Id drain current
Iu unit current representing probability 1
Gnd zero potential, ground
V dd supply voltage
Vss zero potential, ground
L (V g) square transistor current when Vgs = 0
U t thermal voltage kT/q, equal to 25.9mV at 300K
Vds drain-to-source voltage
Vgd gate-to-drain voltage
Vgs gate-to-source voltage
VrefN reference voltage applied to source of NMOS
VrefP reference voltage applied to source of PMOS
V t threshold voltage
Vu unit voltage
W/L transistor width to length ratio or size ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Motivation

It was shown by Shannon that it is possible to transmit information over a noisy

channel with arbitrarily small probability of error, at rates up to the capacity of the

channel [43]. Reliable transmission of information over noisy channels requires

the use of Forward Error Correcting (FEC) codes where the data is encoded to

contain additional redundant information such that errors can be detected and

corrected at the receiving site.

Forward Error Correcting codes such as turbo [8] and low density parity

check (LDPC) codes [16, 34, 35] can achieve outstanding performance with bit

error rates close to the Shannon bound. These types of codes employ the sum-

product decoding algorithm [26], a message-passing algorithm that implements

probability propagation on a graph. Decoders for these codes exchange

probabilistic (soft) information between constituent decoders and iterate several

times to improve the decoding reliability.

Since iterative decoding of these high-performance FEC codes requires

real number operations and they are computationally demanding, digital

implementations can be very complex and challenging to design. Analog

implementations of these types of decoders have often been shown to have better

performance than digital ones in terms of complexity, silicon area, and power

consumption [25, 40, 56]. The sum-product algorithm can be simply implemented

in the analog domain using basic transistor circuits, and analog circuits require

fewer wire connections between components than fully parallel digital

implementations. Analog decoders can save a significant amount of power and

silicon area by eliminating the need for analog-to-digital conversion at the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receiver front-end. Researchers have found that such analog decoding networks

can out perform comparable digital decoders by up to two orders of magnitude in

terms of speed when designed for the same power consumption or vice versa [29].

Some research groups have also demonstrated analog Turbo decoders for

commercial standards [3, 54], Moreover, an analog decoder operating at supply

voltage of 0.8 V was recently designed to demonstrate the feasibility of low

voltage analog decoding [39].

However, increasing the testability of analog iterative decoders has

become a major challenge. The testing problem has grown as decoder designs get

larger. Modem design and package technologies make external testing even more

difficult. For complex analog 'designs with a high-volume consumer market, test

cost is the bottleneck in reducing overall production cost [13]. Efficient

manufacturing of larger decoder chips will depend on their testability. Built-in

self-test (BIST), a design-for-testability (DFT) technique in which testing is done

using built-in hardware [1], is a feasible way to improve overall testability and

facilitate diagnosis and repair of these decoders. Mixed signal BIST schemes

usually require significant hardware cost and are often complex. To increase the

testability of analog iterative decoders without having complicated test design, a

digital BIST scheme is presented. The digital BIST scheme can make testing of

analog iterative decoders easier. The BIST scheme is suitable for analog iterative

decoders using the sum-product algorithm. An analog decoder using an (8, 4)

extended Hamming code is implemented along with the digital BIST scheme. A

Hamming code is chosen to be implemented with the digital BIST scheme since it

is one of the most widely used linear block codes and it is simple and easy to

understand. The digital BIST is capable of detecting catastrophic faults in the

Hamming decoder.

1.2 Thesis Outline

This thesis consists of seven chapters. Chapter 2 gives an overview of error

correcting codes including background information on communication systems,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channel capacity, different types of codes, good examples of codes, and the sum-

product algorithm. Chapter 3 presents an overview of analog decoding including

previous work, principles, and circuit theory. Chapter 4 gives an overview of

built-in self-test, describing its advantages, BIST mechanisms for both digital and

analog systems and why digital BIST is beneficial to analog iterative decoders.

Chapter 5 presents the digital BIST scheme and how it is implemented in the (8,

4) extended Hamming decoder. Chapter 6 illustrates the test setup and results for

the Hamming decoder with BIST. Chapter 7 concludes the thesis and presents

recommendations for improvement of the research and future research problems.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Error Correcting Codes

2.1 Communication Systems

Since the information channel in most communication systems introduces errors

during transmission due to noise, error correcting codes are essential to reduce the

error rate and improve the reliability of the transmission. Fig. 2.1 shows a typical

communication system. The components of a communication system include the

source, encoder, modulator, channel, demodulator, decoder, and sink. An

information message u generated by the source is first encoded into a coded

sequence x by adding redundant information for error detection or correction. The

modulator then performs modulation on the coded information to facilitate

transmission over the channel and the demodulator undoes the process at the

receiving side. The channel could be a wire, coaxial cable, waveguide, an optical

fiber, a radio link, or even a memory. The signal going through the channel is

distorted by undesirable signals called noise. Finally, the demodulated noisy

signal y is decoded by estimating the most likely sent message u according to y

and received by the sink.

Noise

1

Source
u Channel X

/
c

.2

Channel
i
Cl

y Channel
Encoder o

S
is
o'
=)

Decoder
*►

Figure 2.1 Communication system

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Algebraic and Probabilistic Coding

Error Correcting Codes are divided into two categories: algebraic coding and

probabilistic coding [30], Algebraic coding performs hard decisions at the

decoding stage, which is useful to provide strong protection against low noise

levels. In algebraic decoding, decoder input signals with noise are first digitized

into hard bits (1 or 0) by a comparator before doing any error detection or

correction.

Probabilistic coding applies soft decisions at decoding stage and is suitable

for providing moderate protection against high noise levels. In probabilistic

decoding, the distorted input signal at the decoder is translated into probability

information or an alternate form called the log-likelihood ratio (LLR) before

decoding takes place. The LLR ratio can be computed by using the equation:

LLR = (2.1)
p (y \x = 0)

where y is the received symbol and x is the transmitted symbol. The conversion to

hard bit decisions is done after the decoding is completed.

2.3 Types of Codes

There are two main types of codes that are commonly used: block codes and

convolutional codes.

2.3.1 Block Codes

In block codes, a k-bit block of data is collected and then encoded into a codeword

of n-bits (n > k). For each k-bit data, there is a distinct codeword of n-bits. So,

corresponding to the 2k different possible messages, there are 2k different possible

codewords. When k data bits are sent by a codeword of n bits, the code rate is

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Such a code is called a (n, k) code. For encoding, codeword x is generated by

multiplying the information vector u by a generator matrix G:

x = u • G. (2.3)

Decoding the codeword requires a parity-check matrix H which is orthogonal to

the generator matrix:

The received word r is multiplied by the transpose of the parity-check matrix and

the result s, known as syndrome, is the binary representation of where the errors

occurred:

If all elements of s are zero, the received word is a valid codeword. If s contains

non-zero elements and the received word contains only one error, the bit in error

can be determined by analyzing which parity checks have failed.

The coding and decoding processes for block codes are memoryless.

Encoding and decoding of a block of data depends only on that current block and

not on any other block.

2.3.2 Convolutional Codes

Convolutional codes introduce memory into the error-correcting process. The

encoder takes k-bit blocks of information sequence u and produces a code

sequence v of n symbol blocks. Each encoded block depends not only on the

corresponding k-bit information block but also on m previous information blocks.

Therefore, the encoder has a memory order of m. The code rate R is also defined

as k/n. The coding process of convolutional codes is done using a finite state

machine consisting of shift registers and sum modulo 2 units (XOR gate).

Generator matrices for convolutional codes are described by polynomials. Fig. 2.2

G • Hr = 0. (2.4)

s = r Hr. (2.5)

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shows an example of a feed-forward convolutional encoder with k - 2, n - 4, and

m = 2 and its generator matrix is

G
1 0 D 1
0 1 1 D

(2 .6)

where D represents a unit delay. Decoding of convolutional codes can be done by

using the Viterbi algorithm, a decoding algorithm proposed by Andrew Viterbi

[14, 50]. It is a very general algorithm used to deduce the sequence of states of a

finite state machine (FSM) that generated a given output sequence.

ui SRI SR2

SR3u2 SR4

SR ©
S hift R eg is ter

Figure 2.2 Convolutional encoder with k = 2, n = 4, and m = 2

2.4 Channel Capacity

Channel capacity represents the amount of information that can be sent through a

channel. The additive white Gaussian noise (AWGN) channel is the most

fundamental form of all communication channel models. The Gaussian Channel is

shown in Fig. 2.3 where Y is the channel output, X is the transmitted information,

and N is a zero-mean Gaussian random variable with unit variance u© = A©2

where No is the spectral noise power in the channel. The output of the channel is

given by

Y = X + N. (2.7)

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The channel capacity of a band-limited AWGN channel is given by

C = W log 1 + - (2 .8)

where W is the channel bandwidth, S is the average transmitted power, and N is

the average noise power. The term S/N is also called the signal-to-noise ratio or

SNR. According to Shannon's Channel Coding Theorem, it is possible to design a

code that permits error-free transmission across the channel at a rate R, provided

that R < C.

N

X ► Y

Figure 2.3 Additive white Gaussian noise channel

2.5 Hamming and Minimum Distances of a Code

The Hamming distance is defined as the number of bits which differ between two

codewords and the minimum distance is the smallest Hamming distance over all

pairs of distinct codewords. The minimum distance is a very important indication

of the error robustness of a code. For a linear block code with a minimum distance

of dmin, the number of errors t that can be corrected is

t = (dmin- l)/2, (2.9)

or the number of errors t that can be detected is

t = dmin- 1, (2.10)

but not both simultaneously (assuming hard decisions). The greater the minimum

distance of a code, the bigger the differences between each pair of codewords,

therefore, the greater the chance to correctly decode the transmitted word.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Linear Codes and Systematic codes

A block code C is linear if, for codewords a and b in C, a + b is also in C.

Therefore, the sum of two codewords is also a codeword for a linear block code.

A systematic code is a special case of linear block codes. For a codeword

composed of n bits xj, X2 xn, and a data word composed of k bits My, U2, ..., uy,

if x\ = My, X2 - U2, ..., Xk = My and the remaining bits from xy+y to x„ are linear

combinations of wy to My, the code is known as a systematic code. Thus in a

systematic code, the first k bits of a codeword are the original data bits and the last

n - k bits are the parity bits.

2.7 Hamming Codes

Hamming Codes were discovered by Richard Hamming in 1949 [23, 43]. They

are systematic linear block codes with codewords that are 2m - 1 bits long (m > 3),

having 2m - m - 1 information bits, m parity bits and a minimum distance of 3.

They can correct any single error or detect any double error.

The codewords of Hamming codes consist of the original information bits

and the calculated parity bits. For a (n, k) Hamming code, the size of the generator

matrix is k x n and it can be partitioned into a k x k identity matrix Ik and a k x (n -

k) parity generation matrix P. The columns of P are selected so that each column

is unique:

G = [Ik I P]. (2.11)

The parity check matrix is an (n - k) x n matrix in the form:

H = [Pr I In.k]. (2.12)

Hamming codes can be extended by adding an extra column of parity bits

into the G matrix such that the code can detect up to 3 errors but can still only

correct a single error. The minimum distance is then changed from 3 to 4:

G e x t = [G l p] . (2.13)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each extra bit in p is added to maintain an even number of Is in each row. If there

is an even number of Is in the row, the extra bit becomes 0, otherwise it becomes

1. The parity check matrix for the extended Hamming code is constructed by

adding a row of all Os to the H matrix and then a column of Is to the H matrix.

2.8 Low Density Parity Check (LDPC) Codes

Low density parity check (LDPC) codes were first discovered by Gallager in 1962

[16]. However, the coding community largely ignored them since early iterative

algorithms used hard decisions and LDPC codes require high complexity

computation. These codes had little value until the discovery of soft-information

iterative algorithms. In 1996, Mackay et al. rediscovered LDPC codes and showed

that they have near-Shannon limit performance [34, 35]. The rediscovery was

prompted by the invention of Turbo Codes in 1993 by Berrou, Glavieux, and

Thitimajshima [7].

LDPC codes are specified by very sparse random parity check matrices

and these codes possess promising distance properties. LDPC codes are linear

block codes that can be defined in terms of a in - k) x n parity check matrix H. For

regular LDPC codes, the H matrix has a small fixed number j of 1 s per column (j

> 2) and a small fixed number A: of Is per row (k > j). Irregular LDPC codes,

which have non-constant number of Is in each column and row in the H matrix,

can perform better than regular LDPC codes in the waterfall region1. To obtain

good bit error rate (BER) performance, large block lengths are required.

2.9 Trellis Codes

Codes that can be defined by trellis diagrams are called Trellis codes. Trellis

diagrams were first introduced in Forney’s paper on the Viterbi algorithm in 1973

[14]. A trellis diagram consists of states and labeled edges such that every path in

1 The waterfall region is the segment of the BER curve with the steepest descent.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the diagram represents a codeword or a code sequence. The encoding of any trellis

code is done by a finite-state machine (FSM). The trellis diagram can plot the

succession of states of the FSM over time.

A trellis representation can be used for both block codes and convolutional

codes. Unlike block codes, convolutional codes can have infinitely long

codewords and the encoding process can continue indefinitely. However, we can

add a sequence of zeros at the encoder input after a certain number of information

bits to drive the FSM back to the initial state to terminate the code. Such

termination turns a convolution code into a block code. The zeros that are added

for termination are called termination bits L.

For example, Fig. 2.4 shows a simple convolutional encoder and the

encoder can be described by a FSM with four states. The state transition diagram

of the FSM is shown in Fig. 2.5. The trellis diagram of such a convolutional

encoder is presented in Fig. 2.6. A trellis diagram is a time unrolled version of the

state transition diagram. In this example, two termination bits are added to

terminate the code. In the trellis diagram, time is represented horizontally from

left to right and the diagonal line segments represent the transitions.

2.10 Turbo Codes

Berrou, Glavieux, and Thitimajshima introduced Turbo codes, also known as

Parallel Concatenated Convolutional Codes (PCCC), in 1993 [7], The discovery

of these codes was a critical event in the error control coding discipline since these

can achieve Shannon’s bound to within 0.5 dB of SNR [43], outperforming all

other coding schemes.

An example Turbo encoder is presented in Fig. 2.7. Turbo codes use two

parallel-concatenated convolutional encoders connected by an interleaver to

generate codes. The interleaver is used to permute the input bits so that the two

encoders operate on different input sequences.

An example Turbo decoder is presented in Fig. 2.8. Decoding of Turbo

Codes can be achieved by using two soft-input/soft-output (SISO) decoders using

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Maximum a posteriori (MAP) algorithm [6], an interleaver, and a

deinterleaver. During decoding, the result calculated from decoder 1 is sent to

decoder 2, and result coming from decoder 2 is feed back to decoder 1. This

process is iterated many times until reliable bit decisions are reached.

SRI SR3SR2u

Figure 2.4 A simple convolutional encoder

1/11Input/Output

0/00
State 3 h a state 2

1/10
0/01 1/10

0/01

State 0 State 1
1/11

0/00

Figure 2.5 State transition diagram of the FSM describing the encoder in Fig. 2.4

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

States

00

01 •

10 •

11 •

0/00 0/00 0/00 0/00 0/00 0/00 0/00 0/00

1/11 1/11 1/11 1/11

Figure 2.6 Trellis diagram of the convolutional encoder in Fig. 2.4

► P

Figure 2.7 Turbo Encoder containing two convolutional encoders E l and E2, and
one interleaver II

u
Pi
P?

-> u

Figure 2.8 Turbo Decoder containing two MAP decoders, an interleaver IT, and a
deinterleaver IT1

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.11 The Sum-Product Algorithm

A factor graph represents how complex functions, dependent on many

variables, can factor into a product of simpler functions, each of which depends on

a subset of the variables [15, 26]. Factor graphs consist of nodes and bi-directional

edges which describe the network of connections among variables. For the

majority of codes, factor graphs are bipartite since these graphs are composed of

only two types of nodes, and there are only connections between nodes of

different types. This type of graph can be used to provide a graphical

representation of the parity check matrix.

The sum-product algorithm is an important decoding algorithm in error-

control coding that operates by message passing on a factor graph. Local

probability functions associated with the global function are computed at each

node and the results, known as messages, are passed on to the connecting nodes.

This process is also referred to as probability propagation since the algorithm

deals with messages that are probabilities. The algorithm is named ‘sum-product

algorithm’ because its computation rules consist of additions and multiplications

only. The decoding procedure of the sum-product algorithm describes decoders

for many codes such as trellis codes, LDPC codes, block product codes, and turbo

codes. Decoding on factor graphs using the sum-product algorithm is optimal if

the graph is cycle-free. If the graph is not cycle-free, we can increase the block

length of the code to a sufficiently large number to obtain a performance close to

the optimal decoder.

Fig. 2.9 shows a factor graph representing a regular LDPC code with the

following H matrix:

H =

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The factor graph contains equality nodes at the top and check nodes at the bottom

and edges connecting the two types of nodes. Edges between nodes are

bidirectional. Each equality node and check node represents a column and a row

in H, respectively. When hy in H is 1, an edge exists between the i!h check node

and j th equality node. In the factor graph, the number of edges connected to a node

is called the degree of the node. Since there are two Is in each column of H and

four Is in each row, each equality node has a degree of 2 and each check node has

a degree of 4.

For most factor graphs, we only need to describe the operations in nodes

with three edges. Any nodes with a degree of more than three can be broken down

into a cascade of three-edge blocks as shown in Fig. 2.10. This notion will be used

later on in our implementation.

Equality Nodes

Check Nodes

Figure 2.9 Factor graph of a regular LDPC code

C,

Figure 2.10 rc-edge factor graph node constructed by a cascade of three-edge
nodes

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a three-edge node with inputs X and Y and output Z, given that a

probability distribution for X is p x - {pxi0), px(1)1, where px(0) is the probability

that X equals 0 and px(1) is the probability that X equals 1, and for Y is p Y -

{py{0), Py(1)}, the probability function for an equality node is

(2.14)

Here y is a normalization factor to ensure that pz(0) + pz(1) = 1. The probability

function for a check node is

~Pz(0) P X (0) P y(0)

_ P z (1)_
_ 7

_ P x 0) P Y(X)_

Pz (0)

Pz(V

P x (°) P y (°) + P x (1) P y (V

p x (0)pY(l) + p x (\) p Y(0)
(2.15)

When decoding on factor graphs using the sum product algorithm, we have

to follow the extrinsic information rule, which states that the message sent from a

node n on an edge e is a function of all messages received at node n, except the

message received on edge e [26]. Let us assume messages are expressed as LLRs

and rk denotes the received symbol at equality node k from an AWGN channel.

The decoding sequence for the sum-product algorithm is then as follows [41]:

Step 1. Initialize messages as for each equality node, where op is the noise

variance and On = No/2. N 0 is the spectral noise power of the AWGN

noise in the channel.

Step 2. Pass initial messages from equality nodes to check nodes.

Step 3. Calculate check node probability information and send the messages from

check nodes to equality nodes with which they are connected.

Step 4. Calculate equality node probability information and send the messages

from equality nodes to the check nodes with which they are connected.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step5. Repeat step 3 and 4 until a fixed number of iterations have been completed

or the estimated codeword u satisfies the constraint u • HT = 0.

2.12 Chapter Summary

In this chapter, a brief review of error correcting codes was presented. We have

explained how a communication system works, how codes are divided into

different categories, some terms and definitions of coding theory, and the sum-

product decoding algorithm. The analog decoder implemented in this thesis is

based on the concepts and decoding algorithm discussed in this chapter.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Analog Iterative Decoding Circuits

3.1 Analog Implementation of Iterative Decoders

In Chapter 2, we covered the sum-product algorithm used for iterative decoding.

The algorithm works with probability information, and messages are passed

between nodes on factor graphs representing a specific code. We called this

process ‘probability propagation’. Since the algorithm deals with probability

distributions, its implementation requires real-number arithmetic and digital

implementations of such arithmetic are often complex. In 1998, Hagenauer [21, 22]

and Loeliger et al. [29, 30] independently proposed to decode error-correcting

codes by analog circuits. The work by both Hagenauer and by Loeliger et al. was

inspired by “turbo”-style decoding of codes described by graphs [15, 52, 53]. The

analog circuits are used to implement the sum and product functions of iterative

decoding algorithms in a simple way. With these circuits, decoders using the sum-

product algorithm can be directly implemented in analog VLSI. The main

advantage of analog decoders is that the decoder runs in continuous time until it

reaches an equilibrium state that corresponds to the closest transmitted codeword.

Lustenberger et al. built the first working analog decoder using discrete transistors

[31]. Lustenberger et al. then went on to produce larger designs, most notably a

decoder chip [33] announced in 1999. Hagenauer et al. implemented an actual

decoder one year later [37], Winstead et al. [55] built the first complementary

metal-oxide semiconductor (CMOS) decoder. Moreover, Nguyen et al. [40]

implemented a low voltage analog decoder, and Gaudet and Gulak [17] designed a

programmable interleaver for analog Turbo decoders. Other working decoder ICs

have also recently been reported [3, 24, 51].

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Sum-Product Module

The sum-product module shown in Fig. 3.1(a) is the basic building block for

factor graph-based probability propagation networks. It takes two probability mass

functions px(x) and pAy) then computes the third probability mass function pz(z)

according to the following equation [29]:

Pz(z) = 7 I I Px (x) pY(y)f(x,y,z), (3.1)
x e X y e Y

where / is a function with codomain {0, 1} expressing the relationship between

random variables x, y, and z. The scaling factor y is added to the equation to

ensure probabilities add up to 1. We can simply illustrate the [0, 1}-valued

functions/by trellis diagrams as shown in Fig. 3.2(a) and Fig. 3.2(b). Nodes on

the left correspond to the elements in X (xe X), nodes on the right correspond to

the elements in Z (ze Z), and/(x, y, z) = 1 if and only if an edge between xe X and

ze Z labeled y e Y exists.

The sum-product module can be decomposed into three sub-modules

depicted in Fig. 3.1(b). The three sub-modules are a normalization block, a sum

block £ , and a product block []• In a circuit realization, probabilities are

represented by currents. Given a probability distribution px - {px(0), px(1)}, the

probability currents are defined as follow:

I xo~I uPx(t y ’ (3-2)

IX\ ~ 1\j Px (1) • (3.3)

where Iu is a unit current representing a probability of 1. The probability px{0) is

equal to IX(/Iu and px{ 1) is equal to IX]/Iu■ Summation of currents is done by

connecting wires together, and normalization and multiplication of currents are

realized by using Gilbert vector normalizers and Gilbert vector multipliers,

respectively, as will be explained in the next sections.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f(x,y,z) Pz(’)
PY(0

k

m,n

Normalization

(a) (b)

Figure 3.1 Sum-product module: (a) top-level block diagram [29] and (b) module
divided into smaller blocks

State

o

1

State

0
x y z

0
x y z

Time — Ti me — ^

(a) (b)

Figure 3.2 Trellis diagram for f(x, y, z) = 1 iff: (a) x © y = z and (b) x = y = z [29]

3.2.1 Current Multiplication

Current multiplications can be performed conveniently by Gilbert vector

multipliers operating in the subthreshold region [18]. The multiplier is a standard

circuit for real number multiplications. Fig. 3.3 presents the Gilbert vector

multiplier for the product block ["[• The output currents of the multiplier are easily

derived using the translinear principle in [19]:

7=1

In order to perform multiplication, all the transistors in the Gilbert

multiplier should operate in the subthreshold region. In the subthreshold region,

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each transistor has to satisfy the condition vgs < Vj, where vgs refers to the voltage

between the gate and source of a MOS transistor and VT refers to the threshold

voltage. The drain current is [57]:

fo y e x p
U.

1-exp
/ \

K ' V ds

UT
(3.3)

where Io is a technology constant with units of amperes, W and L are the

transistor’s width and length, k is a technology constant ~ 0.7, and Ut is the

temperature dependent thermal voltage ~ 25 mV at room temperature. Moreover,

we want to keep v* sufficiently large so that it has little effect on Io in equation

(3.3). The MOS transistor is said to be in saturation when v* is large enough to be

neglected and we can ensure this condition by setting the reference voltage VrefN in

Fig. 3.3 to be about 0.3 V or greater. In equation (3.3), the drain current is then an

exponential function of the gate to source voltage.

3.2.2 Current Summation

In order to complete the computation of (3.1), we need to sum the currents /,jfor

each zeZ for which/(x„ yj, z) = 1. As mentioned in the beginning of Section 3.2,

summation of currents can easily be accomplished by tying wires together and

relying on Kirchhoff’s current law.

Iyi

Iyn

0 j> j> c

i H

o 3

1

V retN

V

, i

1

VrefN

L(

' ^

VrefN

0

Lh

Im l Im2 I mi
o o

Ixl 1x2 Ixm

Figure 3.3 Gilbert vector multiplier for two input vectors of length m and n

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 Normalization

In the sum-product circuits, attenuation of outputs happens due to the current loss

of unused product terms. This is because in the sum-product algorithm, the

product of two small real numbers below unity tends towards zero. If there are

many stages of sum-product computations, the attenuation may become severe.

This issue can be resolved by scaling up the current outputs and making the sum

of all outputs from the Gilbert multiplier equal to Iu, the unit current representing

a probability of 1. In [20], Gilbert has presented a vector scaling circuit that

performs the exact normalization function we needed to resolve the attenuation

problem. The circuit implements the following function:

The normalization of the outputs does not affect the correctness of the algorithm.

Fig. 3.4 presents the Gilbert normalizer circuit for a two-element current vector

along with the sum-product circuit.

(3.4)

V re fP V re fP

IzO

I z l

IyO 111

V refN

lyi
c

V refN
IxO I x l

Figure 3.4 General sum-product circuit with Gilbert normalizer

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Factor Graph Nodes

Factor graphs consist of equality and check nodes. They are implemented using

the sum-product module and with its circuit shown in Fig. 3.4. We now describe

the specific implementations of equality and check nodes.

3.3.1 Equality Nodes

For an equality node, the function/(jc, y, z) in equation (3.1) is equal to 1 if x - y =

z, or e lse ,/is equal to 0. The corresponding trellis diagram is shown in Fig. 3.5(a).

The output currents of an equality node are calculated by:

/ r x̂Ô yO
J x J n

(3.5)

where y is a constant that depends on the bias current in the normalizer. Fig. 3.5(b)

illustrates the sum-product circuit for a unidirectional equality node.

In

state

0
x y z

Time — *-

V refP V retP

IyO - > IlO

V refN

V refN

■ IzO

" Iz l

(a) (b)

Figure 3.5 Equality node: (a) Trellis representation (b) One-direction circuit in
transistor level

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Check Nodes

For a check node, the function/(x, y, z) in equation (3.1) is equal to 1 if x © y = z,

where © denotes mod-2 addition, or e lse ,/is equal to 0. The corresponding trellis

diagram is shown in Fig. 3.6(a). The sum-product module for a check node

becomes an XOR gate. The output currents of a check node are calculated by:

1 lO IxqIy0 f i / y l

Ixohl+hJyO
(3.6)

Fig. 3.6(b) illustrates the sum-product circuit for a unidirectional check node.

State

O'
x y z

Time

V refP V refP

IyO

V refN

lyi

VrefN

IzO

I z l

(a) (b)

Figure 3.6 Check node: (a) Trellis representation (b) One-direction circuit in
transistor level

3.3.3 Bi-directional Nodes

In a factor graph, all edges are bi-directional since messages are passed back and

forth between the equality nodes and check nodes. Construction of three-edge bi-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directional nodes requires three instances of unidirectional sum-product modules

connected to each other as illustrated in Fig. 3.7.

Figure 3.7 Three-edge bi-directional node constructed by three unidirectional
sum-product modules

3.4 LLR Ratio to Probability Distribution

Before performing decoding on a factor graph using the sum-product algorithm,

the decoder has analog voltage inputs representing LLRs. We can convert the

LLR voltages into probability currents by using a differential pair circuit shown in

Fig. 3.8. The probability currents of this circuit are calculated by [62]:

I x0 = a e ^ Vs\ (3.7)

/ n = ae(Vref~Vs\ (3.8)

where or is a current constant. The relationship between the input voltages and the

output currents can be expressed as:

K LLR(X) = Viin v ref /fin (3.9)

where K is a voltage constant.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ioo II
o

Vin o- oVref
Vs

IUO

Figure 3.8 Differential Pair for LLR voltages to probability currents conversion

In this chapter, we have discussed previous work on analog decoding and the

implementation of analog iterative decoders using the sum-product algorithm

based on Gilbert multipliers. The circuits for different parts of a decoder were

illustrated including the normalization circuit, sum-product circuit, and the LLR to

probability conversion circuit. These circuits are the fundamental circuits used to

build the Hamming decoder in this thesis. In the next chapter, we will introduce

the topic of built-in self-test. Background information and a BIST architecture are

provided.

3.5 Chapter Summary

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Built-In Self-Test

4.1 VLSI Testing

Testing of integrated circuits (ICs) is an inevitable process to ensure high quality

of functionality in commercial products. Verification testing is performed during

the early design phase to ensure the correctness of the design. When the

verification is successful, it indicates the beginning of production, which implies

large-scale manufacturing. During mass production of the design, fabricated chips

are tested in the factory and this is called manufacturing testing.

Automatic test equipment (ATE) is used to perform manufacturing testing

to guarantee the performance of each device after it is fabricated [9]. Test

programs are written to control the test procedures of such testers. The test

program directs the ATE to generate test patterns (such as digital signals and sine

waves) to apply to the device under test (DUT). The ATE tester then analyzes the

response coming out of the DUT and determines whether the device is good or

bad. The work of a general ATE tester is illustrated in Fig. 4.1.

Test
Stimulus

Pass
or

Fail
ATE DUTPass

DUT
Response

Fail

Figure 4.1 Duty of a general ATE tester

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, as today's ICs become faster and more complex, the testing

difficulty increases rapidly. Since the number of input/output (I/O) pins fails to

grow as quickly as the logic content, physical access to internal circuitry becomes

very difficult. Testing program generation for ATEs becomes much more complex

and time consuming. It is challenging to achieve a high fault coverage, making it

hard to detect all faults in the device. Testers for high-speed and complex ICs can

cost millions of dollars. In the near future, it may cost as much to test the silicon

as it costs to manufacture it [5], Therefore, in order to achieve efficient and

economical manufacturing, one must consider the need for production test

capabilities during the early design phase. Such methodology is called design for

testability (DFT). Adding these capabilities to ensure the testability of a device at

the design phase can make the most savings since testing cost increases in every

stage. If defects are detected at a later stage in the manufacturing process, the cost

will be higher to repair/remove the faulty items.

4.2 Design for Testability

Design for testability (DFT) is a set of rules and strategies applied during the

design phase of a device, in which test structures are inserted, resulting in a more

easily or thoroughly testable product [8]. The added test structures do not provide

any additional functionality to the original device but will reduce the test time

during manufacturing to lower the production cost. There are many types of DFT.

Some DFT methodologies are well structured using industry-defined standards.

Other methodologies are designed to solve some test problems for a specific

device or category of devices. DFT is of crucial importance to the semiconductor

industry. The main advantage of DFT is to guarantee high quality and reliability

while reducing the test cost and decreasing the testing difficulty for designers.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Built-In Self-Test

Built-in self-test (BIST) is a DFT technique where additional hardware features

are included into integrated circuits to carry out testing [1]. With BIST, a chip can

perform test functions by itself. Test pattern generation and response analysis

circuitry are built into the chip, which is akin to ATE going onto the chip. The

concept of BIST has been used in the military-aerospace industry for decades and

began to appear in the semiconductor industry about 15 years ago [5]. An

excellent tutorial on BIST, including its functional and economic advantages, is

given in [1].

Control
Lines C ontrol

Lines

Primary
Inputs

Prim ary Good/Faulty

TPG
ORAInput

MUX

Test
Controller

DUT
(w ith optim al
m odifications)

Outputs

Figure 4.2 A typical BIST architecture for digital systems

4.4 BIST Structure

4.4.1 BIST for Digital Systems

BIST designs can differ in many ways. Fig. 4.2 shows a typical BIST

architecture for digital systems. The self-test must be performed in a test mode

which is initiated by a start signal, and whose completion is indicated by a

complete signal. The test controller controls the operations of all the functional

blocks. The test pattern generator (TPG) creates test vectors, which can be

implemented using read-only memory (ROM) with stored patterns, a counter, or a

linear feedback shift register (LFSR). The input multiplexer (MUX) selects

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between test pattern and primary inputs depending on signal coming from the test

controller. The output response analyzer (ORA) performs compaction on the

output response(s) of the device-under-test (DUT) when necessary and compares

the results with the fault-free response(s). It can be implemented using a ROM

with stored response, or a LFSR as a signature analyzer.

4.4.2. BIST for Analog Circuits

Analog testing is made more difficult by the wide variety of functionalities and

design specifications of analog circuits. Several functional BIST schemes have

been designed for special classes of analog and mixed-signal circuits with the use

of analog-to-digital converters (ADC) and digital-to-analog converters (DAC) [4,

49]. Teraoka et al. used an on-chip digital signal processor (DSP) core to test an

ADC and DAC embedded in a single-chip speech codec [47]. Tabatabaei and

Ivanov presented a built-in current monitor suitable for supply current testing of

analog circuit blocks [46]. Nagi, Chatterjee, and Abraham proposed a signature-

analysis scheme to solve the tolerance problem posed by the imprecise nature of

analog signals. Chatterjee has proposed a concurrent testing method for linear

analog circuits using continuous check sums [10]. The state of the art in mixed-

signal DFT and BIST has been described in a tutorial in [12].

Control
Lines Control

Lines

Primary
Inputs

Primary Good/Faulty

TPG — DAC
ORAADCInput

MUX

Test
Controller

DUT
(with optimal
modifications)

Outputs

Figure 4.3 BIST architecture for analog systems

Fig. 4.3 shows a general BIST for analog circuits. This is similar to Fig.

4.2 except that a digital-to-analog converter (DAC) and an analog-to-digital

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

converter (ADC) are added to convert digital test signals to analog waveforms and

vice versa. However, the output response analyzer (ORA) works in a radically

different way. In a mixed signal system, the sampling noise in the DAC and ADC

combined with the processing and environmental variations in analog circuits will

prevent an exact output response. One effective approach to solve this problem is

to use a digital accumulator to obtain the sum of the magnitudes of the analog

circuit test response. The accumulator-based ORA determines the pass/fail status

of the BIST by evaluating whether the final sum is within a predetermined range

of values [44].

4.5 Digital BIST for Analog Iterative Decoders

Advanced error correcting codes and/or coded modulation schemes are an

essential part of most modem data transmission systems for both wireless and

wireline applications. Analog iterative decoders have often been shown to have

better performance than digital ones in terms of implementation complexity,

silicon area, and power consumption [25, 40, 56]. Testing strategies are very

important for all IC designs and this is certainly true for analog decoder designs.

BIST is becoming a necessity.

This leads us to the following question. How can we test the analog

iterative decoders in a simple way?

A common approach for testing analog decoders is to perform a

sophisticated statistical test to confirm that the chip operates within design

margins. However, it requires the test program to perform signal modulation,

Gaussian noise insertion, and bit error counting, which makes testing very

difficult. Moreover, it is often time-consuming to measure a suitably low bit error

rate (BER) when performing a statistical analysis.

A possible solution to provide easy testing for analog decoders would be to

build a digital BIST. A digital BIST scheme is favorable for analog iterative

decoders because of its simplicity. First of all, it avoids the use of DACs to change

the test pattern from the TPG into an analog signal. DACs demand significant

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

silicon area and BISTs associated with DACs are often complex due to their

sampling noise [36]. Second, when using digital BIST schemes, decoders can be

divided into sub-circuits and can be tested separately with simpler test methods as

analog BIST schemes cannot do so. Third, if analog iterative decoders are tested

in the analog domain, it will be complicated and time-consuming. In [56],

Winstead et al. illustrate that it is the nature of analog iterative decoders to hide

errors until they present themselves at a low BER after fabrication. Fig. 4.4

presents the BER curves of a MAP decoder for an (8, 4) Hamming code with and

without defects. Defects cause an error floor1 at a low BER rate and note that this

is for a very small/weak (8, 4) Hamming code. In a larger-scale decoder, a fault

can be much less obvious because the code is so powerful. Finally, in [59], large-

scale analog iterative decoders have been shown to be tolerant to device mismatch

under two conditions. First, the mismatch standard deviation must not exceed a

critical value, beyond which the decoder’s performance degrades beyond

acceptable limits. Fig. 4.5 shows the threshold loss for several regular LDPC

ensembles due to mismatch. According to Fig. 4.5, large analog LDPC decoders

should be robust to intrinsic errors even if the mismatch is as high as 10 - 25%.

Second, all transistors must respond to their gate inputs, which means there are no

stuck-at faults. The first condition is statistical and can be met by design. In

CMOS processes, we can meet mismatch targets by increasing the transistor size.

The second condition applies to all transistors, and this can be guaranteed by

digital BIST where the digital behavior of Gilbert multipliers is observed. Digital

BIST can detect a high percentage of stuck-at fault errors for analog iterative

decoders. In order to test the analog decoders in the digital domain, modifications

of the decoder circuits are required. This will be explained in Chapter 5.

1 An error floor is the segment o f the BER curve towards high SNR where the curve has a
shallower slope.
2 The threshold for a regular LDPC code is defined as the minimum signal-to-noise ratio, which

allows error-free decoding, for an infinite length code.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B-P5K
ic

ier1

1Cf
2 30 1 7 04

SNR

Figure 4.4 BER curves of an (8, 4) Hamming MAP decoder with/without defects
[56]

i

0.3

0.2

0.40 0.05 0.15 0 25 0.351

Mismatch Standard Deviation, OL
Figure 4.5 Threshold loss due to mismatch for several regular LDPC ensembles
[59]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Chapter Summary

In this chapter, background information on VLSI testing and DFT are

introduced. We also presented the concept of BIST along with its advantages and

general architectures. In addition, we have discussed the reasons for designing a

digital BIST scheme for analog iterative decoders. In the next chapter, we will

present a BIST scheme suitable for analog iterative decoders and how it is

implemented for an (8, 4) extended Hamming decoder.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Digital BIST and Implementation

5.1 Digital BIST Scheme

5.1.1 Proposed Methodology

Fig. 5.1 shows a system block diagram for the (8, 4) Hamming code decoder chip.

Chip designs for other codes are similar to this one but with different numbers of

sample-and-hold circuits (S/H) and comparators depending on the block length

and rate of the code. The serial-to-parallel interface was originally developed by

S. Yu et al. [62, 63]. Operation of the interface is synchronized by a clock signal.

It converts the serial data stream received from the channel to a parallel set of

inputs passed to the computation core. The computation core represents the analog

network, which performs probability propagation corresponding to the factor

graph. The bank of comparators makes digital decisions according to the core

outputs and latches all values at once.

Input Data
C lk

Reference
Voltage

vlatch vlatch

outO out3

Com parator
with latch

Com parator
w ith latch

Serial to Parallel
Interface

Computation Core

Figure 5.1 Structure of a general analog iterative decoder chip

The proposed strategy for testing the decoder chip is to divide the entire

chip into two sections and to design a BIST for each of these sections. The first

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

section of the chip is the computation core itself, and the second section is the

input/output (I/O) interface that contains the S/H cells and the comparators. Fig.

5.2 shows the structure of the decoder chip with BISTs.

T est

A ddress
S ignal

D ecoded Bits F in ish_C ore, F in ish _ I/0 ,
G ood_C ore, G o o d _ I/0
G ood_N ode

Figure 5.2 Decoder chip with BIST

5.1.2 BIST for the Computation Core

The computation core in Fig. 5.1 represents the analog network, which

corresponds to a factor graph. All the nodes with more than three edges are

constructed by connecting 3-edge bi-directional nodes in a chain, and all 3-edge

bi-directional nodes are constructed by connecting three unidirectional circuits.

Therefore, one needs only to consider the implementation of unidirectional nodes

from which larger designs can be built. Thus the computation core contains only

unidirectional equality and check nodes based on Gilbert multipliers. As a result,

the BIST scheme is consequently developed to test each unidirectional node

separately. Since the computation core consists of only two distinct elements,

equality nodes and check nodes, we only have to deal with two types of circuits,

shown in Fig. 3.5 and Fig. 3.6, during testing.

The purpose of the BIST is to check if all transistors in the unidirectional

circuits are working properly. A digital BIST can simply carry out such a test for

the circuits. In order to do so, the analog circuit needs to be converted into a

digital logic gate during test mode.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Data,
R eference V oltages,

C lock , etc.

T est S ig n a ls-

O rig inal S ignals—

B IS T (I/0)

Comparators

BIST(Core)
Computation

Core

Serial to Parallel
Interface ■4 - -

Fig. 5.3 demonstrates how the check node circuit is modified to allow

digital testing. Note that the original circuit is the same as in Fig. 3.5 except the

current source is represented at the transistor level and the input diode-connected

transistors are moved to the outputs. The circuit becomes a voltage-in, voltage-out

sum-product module, which offers an alternate way to make connections between

nodes. Modifications of the check node circuit are done by adding switches to

reroute the wires and shifting the bias voltage and reference voltages to ground

(Gnd) or the supply voltage (VDD). When feeding in ones and zeros to the

modified circuit, it behaves like a static CMOS logic gate. During test mode, the

‘Dig’ signal goes to V d d and the ‘Ang’ signal goes to Gnd. This reconfigures M l-

M4 to form two inverters. In effect, the entire circuit acts like a differential XOR

gate. Table 5.1 describes the behavior of the modified circuit during test mode.

Gnd

DD DD

M3 M4

Dig Dig I

X

X

V refPV refP

M3 M4

1 outO o u t l j

M l M2

V refN V refN

x,

Figure 5.3 Modifications of a check node sum-product circuit

Table 5.1 Logic behavior of the modified sum-product circuit

X Y Vout Vout
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Vout = X Y + XY

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The same topology is used to test the unidirectional equality nodes. Fig.

5.4 demonstrates how the equality node circuit is modified. The only difference is

that four more transistors are added to transform the equality node circuit into a

check node circuit during test mode. Therefore, the equality node circuit also acts

like an XOR gate during testing and Table 5.1 is also suitable for the modified

equality node circuit.

Figure 5.4 Modifications of an equality node sum-product circuit

When testing the computation core, all of the unidirectional node circuits

have to be disconnected and this can be done by adding switches as illustrated in

Fig. 5.5. Switches can be built by using transmission gates. To start self-test, the

BIST sends a signal to the computation core to disconnect all circuits and to

transform them into logic gates. Afterward, it sends test vectors XY = 00, 01, 11,

10 into each node and analyzes the response from each node according to Table

5.1. It then indicates if the core is good or faulty. When testing is completed, the

BIST sends out a finish signal and waits for an input signal to convert the core

back to normal operation. Fig. 5.6 shows a flow chart describing the self-test

operations.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p x (from/to another node)

.TEST

T E S T

(from/to another node) Py

-K-
~ic

' p 2 (from/to another node)

Figure 5.5 Unidirectional circuits disconnected by additional switches

Start

T est = 1? No

Yes

No
All nodes are good? End

Send test vectors

D isconnect all nodes

A nalyze test responses

_____________| Y es_______

O utput decoder core is good

Indicate test is finished

O utput decoder core is bad

Indicate test is finished

Figure 5.6 Flow chart describing the decoder self-test operations

For test debugging purposes, an optional feature is added to the BIST. The

test results of three unidirectional circuits are gathered into one group, called a

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘check group’ or ‘equality group’ for check nodes or equality nodes, respectively.

Through the address signal, one can access the test result of each group to see if

any part of the core is not working.

5.1.3 BIST for I/O Interface

The serial-to-parallel interface in Fig. 5.1 consists of some sample-and-hold (S/H)

cells and these cells are composed of one switch for selection, one capacitor for

storing the data, and one buffer for isolating the data if there is another stage

following [63], Fig. 5.7 shows the schematic of a single S/H input stage.

The purpose of the I/O BIST is to ensure the switches are working, the

capacitors are storing correct values, and the comparators are making proper

decisions. A simple BIST can be built to test the I/O interface. During test mode,

test patterns are sent and stored into the S/H cells. The stored values are then

converted into probabilities and they bypass the computation core and directly

reach the comparators. Finally, outputs from the comparators are checked. Two

signals are created to indicate test completion and the test result. Although the I/O

interface uses continuous analog voltages as inputs to the S/H cells, a 1-bit test is

sufficient to detect severe faults.

Pipe
Sel

Out

Pipe Q iold
- r - CSample

Figure 5.7 Single S/H input stage

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Implementation

A proof-of-concept implementation of the BIST scheme proposed in the previous

sections was built for a CMOS analog decoder for an (8, 4) extended Hamming

code. The implementation details are explained in this section. The decoder was

designed using 0.18 pm 6M1P CMOS technology.

5.2.1 Analog (8, 4) Hamming Decoder Core

The (8, 4) Hamming decoder has the following generator matrix and parity check

matrix:

G =

1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

H =

1
0
1
0
0
1
1
0

1
1
0
0
1
1
0
0

1
1
0
0
0
0
1
1

0
1
0
1
1
0
0
1

1
0
1
0
1
0
0
1

0
1
0
1
0
1
1
0

0
0
1
1
0
0
1
1

0
0
1
1
1
1
0
0

The H matrix has a size of 8x8 because redundant bits are added to improve the

performance of the decoder at high SNRs [31]. The factor graph corresponding to

the H matrix is shown in Fig. 5.8. When computing the final values Yn, we need to

include the intrinsic information Un from the channel to correctly produce a

reliable decision. The factor graph is then transformed to that shown in Fig. 5.9.

The larger equality nodes compute extrinsic information from the connected check

nodes and the smaller equality nodes calculate the outputs Yn by using both

extrinsic information and intrinsic information.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U <= D ecoder Output
U j U 2 U 3 U 4 Y < - Information from channel

Y, Y2 Y3 Y4 Y5 Y6 Y7 Y8

Equality
N odes

Check
N odes

Figure 5.8 Factor graph of (8, 4) Hamming decoder

Equality
N odes

Check
Nodes

Figure 5.9 Transformed factor graph of (8, 4) Hamming decoder

Implementation of check nodes:

Let us first look at the most basic unidirectional check node circuits shown

in Fig. 5.10 and Fig. 5.11, respectively. The circuit in Fig. 5.10 is named

CHECK1 and the circuit in Fig. 5.11 is named CHECK1_NG. Both schematics

have the same functionality except the latter has an extra pair of diode-connected

transistors at the output along with some switches for digital testing. This is

because the output of a unidirectional node circuit may feed into the X input or Y

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input of other nodes, or to the X input of one node and Y input of another node.

Therefore, the output diode-connected transistors may have to have a reference

voltage of VrefN or Gnd (Vss), or both. In both circuits, the transistors which

function as switches have the minimum transistor size W/L = 0.42 pm/0.18 pm

and the rest of the transistors which perform decoding were sized as W/L - 1

pm/0.3 pm to reduce the mismatch variance.

As mentioned in Section 3.3.3, connecting three unidirectional circuits

forms a bi-directional node. Fig. 5.12 and 5.13 show the bi-directional three-edge

check node, named CHECK3_1NG and CHECK3_2NG. The first contains one

extra switch and this switch is used for error injection. This feature is added for

testing purposes to see if the BIST can detect and determine the locations of errors.

Therefore, when performing self-test, one can inject an error for every

CHECK3_1NG circuit in the decoder core and the BIST should be able to detect

the fault. The SWITCH_PPT block is used to switch between V re/p and V d d

depending whether the device is operating in decoding mode or test mode. The

SWITCH_PPT is built using two PMOS pass transistors and is illustrated in Fig.

5.14(a). The SWITCH blocks are used to separate each unidirectional circuit

during test mode and are built by transmission gates illustrated in Fig. 5.14(c).

These switches also work as input multiplexers (MUXs) to select between analog

decoding inputs and digital test inputs.

Each check node in the factor graph of Fig. 5.1 has four edges. This is

implemented by combining two three-edge bi-directional check nodes

(CHECK3_XNG) into a CHECK4 node as demonstrated in Fig. 5.15. The

SWITCH_NPT block is used to switch between V refN and V ss depending on which

mode the decoder is operating in, and its schematic is shown in Fig. 5.14(b). The

SWITCH blocks function as de-multiplexers used to direct the outputs of the

CHECK3_XNG nodes to either the BIST or the connected equality nodes, also

depending on which mode the decoder is using.

We mentioned in Section 5.1.2 that the test results of three

CHECK1/CHECK1_NG nodes are gathered to one group and can be accessed

through an address signal. Three CHECK1/CHECK1_NG nodes actually become

a CHECK3_XNG node, so we can access the test results of each CHECK3_XNG

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the decoder. The factor graph in Fig. 5.1 has eight CHECK4 nodes; therefore,

test results of sixteen CHECK3_XNG nodes can be accessed in the decoder.

Implementation of equality nodes:

The idea used for building four-edge check nodes (CHECK4) can be

applied to build a five-edge equality node (EQUALITY5). Fig. 5.16 and Fig. 5.17

present the unidirectional equality node circuit with and without an extra pair of

diode-connected transistors and they are named EQUALITY 1 and

EQUALITY1_NG, respectively. Fig. 5.18 and Fig. 5.19 shows the EQUALITY3

and EQUALITY3_NG circuits. EQUALITY3 has an extra switch to inject errors.

The five-edge equality node named EQUALITY5 can be built by using three

EQUALITY_3 or EQUALITY3_NG blocks as illustrated in Fig. 5.20. There are

eight EQUALITY5 nodes in the factor graph; therefore, test results of twenty-four

EQUALITY3/EQUALITY3_NG nodes can be accessed in the decoder through an

address signal.

The smaller equality node in the factor graph is actually a unidirectional

equality node circuit (EQUALITY 1) without the diode-connected transistors at

the outputs. It receives the intrinsic information form the channel and the extrinsic

information from the larger equality node and calculates the final decoded outputs.

Since it is a voltage-in current-out circuit, we called it EQUALITY l_IOUT. The

circuit is shown in Fig. 5.21. Two invertors are added to the circuit and they

perform inversion only when the circuit is in test mode. The diode-connected

transistors are removed for the EQUALITYl_IOUT circuit; therefore, invertors

are necessary to produce logic outputs during test mode. The test results of the

four EQUALITYl_IOUT circuits are gathered into one group. Fig. 5.22 shows the

EQUALITY_OUT that contains the EQUALITYl_IOUT and the input MUXs.

Implementation of factor graph decoder core:

The (8, 4) Hamming decoder described by the factor graph in Fig. 5.1 can

be directly mapped to the analog circuit network shown in Fig. 5.23. The factor

graph is built by connecting the CHECK4 nodes, EQUALITY5 nodes and the

EQUALITY_OUT nodes according to the edges in the factor graph. During the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoding process, probability computations are performed within each node and

results are passed back and forth between the CHECK4 and EQUALTIY5 nodes.

Then the EQUALITY_OUT computes the final current outputs and passes the

results to the comparators of the output interface to make final bit decisions. Some

reset circuits are also built to initialize the interconnections between the

EQUALITY5 nodes and CHECK4 nodes. Probabilities are equalized after each

codeword is decoded. The circuit is shown in Fig. 5.24 and named as RESET.

C HECK 1
VuGncJ i r ^

 —------ M l

M l-13 = lum/0.3um
M14-17 = 0.42um/0.18um

M2jb

X <0:1> W
Y <0:1> ^

Dig ^
Ang ^

VpSrc ^
VuGnd ^
VnSrc ^

X <0>
- f M8C

] [IM3 M4

M14

X<1>

Dig

M15

V out<0> Vout<1>

j[~ M 6

j[~ M 9

Dig

- e

r
M5

<>
M16

r r
M17

M7

M10

► V out<0:1>

CM il

Y<0>
M12

Y<1>
M13

Figure 5.10 Unidirectional check node circuit (CHECK 1)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M 1 - M 1 8 = lu m / 0 . 3 u m

M 1 9 - M 2 6 = 0 . 4 2 u m / 0 . 1 8 u mC H E C K I N G VuGnd
M 8

M 9 M i l

VuGnd
M l

M 2 3 M 2 5

M 2 M 3 M 4
M 2 4 M 2 6

M 1 2
M 1 9

X < 0 :1 >
Y < 0 :1 > r r

M 2 2

V o u t _ N < 0 > V o u t_ N < 1 >
V o u t_ N < 0 :1 >
V o u t_ G < 0 :1 >M 2 0

A ng

V pSrc
VuGnd

V refN

M 6 M 7

M 1 3

M 1 6

X < 1 >
M 1 4

M 1 5

Y < 0 > Y <1 >
M 1 7 M 1 8

Figure 5.11 Unidirectional check node circuit with extra pair of diode connected
output transistors. (CHECK1_NG)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.12 Bi-directional three-edge check node (CHECK3_1NG)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V
pS

r

I d AAA* AAAAAAAAA
A A A A

!/](/)(/)
' C C C

> > >

Figure 5.13 Bi-directional three-edge check node (CHECK3_2NG)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I n 2

- T ^
M l

In 1

m n _

(a)

M3

In 2

(b)

M5/̂
M 6

M74
M 8

(c)

Figure 5.14 Switches implemented by: (a) PMOS pass transistor (b) NMOS pass
transistor (c) Transmission gate

LjJ

***** **

im

U THT. t f f t , t f t r

tTt

T f t t i l

i i i l i l i l l

* * * * * * * * * * * * *

111

i i

Figure 5.15 Four-edge check node (CHECK4)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUALITY 1

Dig
Ang ^

VuGnd ^
VpSrc ^
VnSrc ^

X<0:1> ^
Y<0:1> t

X<0>

X<1>

VuGnd i r ^ 1
 — |l M l

M l-1 3 = lum/0.3um
M14-21 = 0.42um/0.18um

M2J t c M3 M 4

II Dig
M 14 l|— —

J L
M15

V out<0> Vout<1>

[~ M 6

Dig

M 17

M7J [

_ r r
M 19

Ang
[~M20 M21~j Dig

P m8
M 10

[~ M 9

Y<0> P m12 Y<1>

C M5

M 16

► V out<0:1>

M 18

M i l

jpM13

Figure 5.16 Unidirectional equality node circuit (EQUALITY 1)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUALITY1_NG
M l-1 7 = lum/0.3um
M l 8-29 = 0.42um/0.18um

M 8

Dig M 22

M 23

M 9

X < 0 : 1 > |
r < 0 :1 >

Dig |
A ng f

V pS rc j
VuGnd [

V refN I

M2Hf

M l

M 4

MlsZlI ~

M 19

 Tm 6

/o u t_ N < 0 > V o u t_ N < t>

M 24

F m i o

CMS

~ ILM20

M21

M 7 j

J l_
M27

A ng

Dig

I
M 25

— T m i i

► V o u t_ N < 0 :1 >
► V o u t_ G < 0 :1 >

L M 2 6

^ i -j r M 2 8 M 2 9 nL- ?i5-

X < 0 > — ILM 12
ir M 14IU

. r - 1.
M 13

in
- u

M 16 M 17

Figure 5.17 Unidirectional equality node circuit with extra pair of diode-
connected transistors (EQUALIY1_NG)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<
Z)
o

1 1
1 ■ 1

T3
-O C

1
1 ■

o
t o

>

LJ
>

Q < > > >

to

cp cn

AAAA
A A A A

S (Si s i tS)
V V V V — CN O 2 .E c i I > •-> r-o f--)EE

> >

AAAAAAAAA A A

• in cn oo
• c c c

> > >

Figure 5.18 Bi-directional three-edge equality node (EQUALITY3)

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TOT
•A C a> p

r o
X

T j
<
a

u in

T O T TTTI I II

IT T O T T O
cn CT15 |

AAAA AAAAAAAAA
AAAA
s si si si
V V V V
<- cm a z

TT

Figure 5.19 Bi-directional three-edge equality node (EQUALIY3_NG)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IXl

> > > > ;

x h

m i

'Ah

LO

H i
<
Z)
o

t f t t . T

t t f

Tit

I t

I t 11T t j l

I t t i A I t l t

I t

i t t t t t . t f t t , t f t

i i i i y ***** *i

V nSrc3 .
V nSrc2 .
V n S rc l .

I I I £ £ .

V n src3 _
V nSrc2 -
VnSrc

■ t o < :

Figure 5.20 Five-edge equality node (EQUALITY5)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUALITY 1_ I0UT
VuGnd ^ —

M l-1 1 = lum /0.3um
M 1 2 -1 7 = 0.42um /0.18um

M l

M5M4M2 M3

M 12 M13

Ang

VuGnd
V pSrc

X < 0 :1 >
Y < 0 :1 >

,o u t< 0 >

V o u t< 1 >

Ang
M14

r r
M15

Ang

X < 0>
M6

M8

X < 1 >
M7

M9

Y < 0 > Y < 1 >
M10 M il

► Io u t< 0 :1 >

► V o u t< 0 :1 >

Figure 5.21 Unidirectional equality node circuit with current outputs
(EQUALITY_IOUT)

EQUALITY_OUT

Oiq
A ng

Dig

A ng

Co
NoGo

SWITCH Out
Ini

In2

u ig
Go

NoGo
(̂ SWITCH Out

!n2

V f)K P I> A ng
--------------------- E o u t < 0 >

Y 0

DigCo
NoGo

Go
V P I K L A n9

In 1

In2

E o u t< 1 > SWITCH Out
In 1

In2
Y1

E o u t< 0 : 1 >
[n < 0 :1 >

X 0

Y1

Dig
A ng

V uGnd
V p S rc | ► u < 0 : 1 >

► E < 0 :1 >

X<0:1>

DIq Iout<0:1>
. 9 EQ U A U TY 1JO U T , a ,
Ang Vout<0;1>

A ng

V uGnd
V pSrc

VpSrc

Figure 5.22 EQUALITY l_IOUT with switches as input MUXs
(EQUALITY_OUT)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equality:

EQUAL] TYb CHECK4

iQUAU 1YS CHECK4

EQUALITY5

EQUAUTY5 CHECK4

EQUALITY:

EQUALITY:

EQUALITY5

fsiiiiii *
Figure 5.23 The (8, 4) Hamming decoder core

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All transistor size = 0.42um/0.18um

RESET

R S T _ bR S T ^

4< 0>

5< 0>

6< ' 0 >

9 :B>

1------------4 ---------- ^ 9<1>

Figure 5.24 Circuit for equalizing probabilities (RESET)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 BIST for Decoder Core

The decoder BIST controller was designed in VHDL and the top-level diagram of

the BIST is shown in Fig. 5.25. The signals C l, C16 and E l, ..., E25 are the

test result groups. They are n-bit vectors where n - 6, 8, or 10 depending on the

number of diode-connected output transistors in each node. The description of

each signal is provided in Table 5.2. In Fig. 5.25, the Show_Node signal is a 6-bit

vector used to access test result groups. The test result groups include the

CHECK3_1NG, CHECK3_2NG, EQUALITY3, and EQUALITY3_NG nodes

and they can be accessed through this address signal. Fig. 5.26 demonstrates how

each 3-edge bi-directional node was assigned with a number and Table 5.3 shows

how the number was mapped to the 6-bit address signal. The operations of the

BIST can best be described by the flow diagram presented in Fig. 5.27. When

self-test starts, all unidirectional node circuits in the decoder are separated and the

BIST sends the test vectors to these circuits. It then analyzes the circuit response

and outputs the test result. A multiplexer was added to the design to access the

internal test results.

Table 5.2 Description of the decoder BIST signals

Signal Description

Clk Clock signal controlling the timing of the circuit.
Test Controls the start/stop of the self-test. Test = 1 —> Start,

Test = 0 ~> Stop.
X Test pattern sending to the X-input of each unidirectional

node circuit.
Y Test pattern sending to the Y-input of each unidirectional

node circuit.
Cl-16, El-25 Circuit response from the decoder core

Finish Indicates the end of the self-test. Finish = 1 —> Test Ended.
Good_Core Indicates if the decoder is good. Good_Core = 1 —>

Decoder is good, else decoder is faulty.
Show_Node Address signal used to select which three-edge node is

accessed for checking the test result.
Good_Node The test result of the selected three-edge node. Good_Node

= 1 —> Node is good, else node is faulty.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clk

Test

Show _N ode
From /to

outside o f chip

Finish

Good_Core

G ood_N ode

D eco d er B IS T

T est C ontroller
+

T est Pattern G enerator
+

O utput R esponse A nalyzer

C l
- / -

C16
- + -

E l
—+—

E25
- + -

From /to

decoder core

Figure 5.25 Top-level diagram of the decoder BIST

E Q U A L IT Y 5
N odes

C H E C K 4

N odes

B i-d irec tio n a l

15 - 16

Connectivity between CHECK4 and EQUALITY5

 U nid irec tional

Figure 5.26 Three-edge nodes assigned with numbers

Table 5.3 Mapping from node number to address signal

S h ow _N od e C heck
N o d e N o.

S h ow _N od e Equality
N od e N o.

S h o w _ N o d e Equality
N o d e N o.

0 0 00 0 0 C l 10 0 0 0 0 E l 11 0 0 0 0 E 17
0 0 0001 C2 10 0001 E 2 11 0001 E 18
0 0 00 1 0 C3 10 0 0 1 0 E3 1 1 0 0 1 0 E 19
0 0 0011 C 4 10 0011 E 4 11 0011 E 20
0 0 0 1 0 0 C5 10 0 1 0 0 E5 11 0 1 0 0 E21
0 0 0101 C 6 1 0 0 1 0 1 E6 11 0101 E 22
0 0 0 1 1 0 C l 1 0 0 1 1 0 E7 11 0 1 1 0 E 23
0 0 0 1 1 1 C8 1 0 0 1 1 1 E8 11 0111 E 24
00 1000 C9 10 1000 E9 11 1000 E25
00 1001 CIO 10 1001 E 10

00 1010 C l l 10 1010 E l l

0 0 1011 C 12 10 1011 E 12

0 0 1100 C 13 10 1100 E 13

0 0 1101 C 14 10 1101 E 14

00 1110 C 15 10 1110 E 15

00 1111 C 16 10 1111 E 16

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

Send X = 0
Send Y = 0

Circuit Response
Vout = 0?

'\V o u t = Y l^

No

Yes

No

No

Yes

Yes

No

Yes End

No

Yes

Vout = I f
Vout = Of

Vout = Of
Vout = I f

All 3-edge nodes
'\functionaJ>/ ^

Vout = i f
Vout = Of

Send X = 1
Send Y = 1

Send X = 1
Send Y = 0

Send X = 0
Send Y = 1

Good_Core = 0
Finish = 1

Good_Core = 1
Finish = 1

The ith 3-edge
node is faulty

The ith 3-edge
node is functional

Figure 5.27 Flow diagram of decoder BIST

5.2.3 Universal I/O Interface

The I/O interface used for our (8, 4) Hamming decoder was previously designed

by Yu et al. in [62, 63] though in a different technology. Fig. 5.28 shows the

structure of the VO interface. The input interface contains two chains of eight

sample-and-hold (S/H) cells, one for Vin and one for Vref. The cells are used to

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convert the serial input into a set of parallel inputs. Initially, the LLR voltages are

stored into the first capacitor of the S/H cells. After an entire codeword is received,

the stored data are passed in parallel to the second capacitor for holding.

Meanwhile, the first capacitor starts to sample the next incoming codeword. The

held LLR voltages are then converted into probability currents/voltages and are

passed to the decoder core for analog decoding. The core then generates pairs of

soft output currents representing the probabilities that the received bits were 1 s or

Os. Finally, the set of comparators compares the two probabilities, makes final

hard decisions and latches all outputs at once. Besides having parallel outputs,

shift registers are added to make serial outputs available at DOUT1.

PIPE
X ' . V in l DOUT1

11(0)
•HI 11(1)

— DOUT2
Vin8XT.

PIPE
12(0)

SEL8
12(1)

H8

— DOUT3
13(0)

13(1), SELI
V ref_x '

PIPE
x r_ V refl

— DOUT4
HI

14(0)

14(1)

Vref8X ' .
PIPESEL8

H8

Shift
Register

Shift
Register

Shift
Register

Shift
Register

Comparator

Comparator

Comparator

Comparator
D ecoder

C ore

Figure 5.28 Structure of the I/O interface

Fig. 5.29 shows a chain of S/H cells at the transistor level. The operation

of the S/H chain can be demonstrated through a timing diagram shown in Fig.

5.30. Initially, we need a FRAME signal at the beginning to reset the interface and

to indicate the start of the incoming codeword stream. The reset takes place at the

falling-edge of the clock and therefore, the FRAME signal has to stay high until

the falling-edge of clock events. After resetting the interface, the first LLR voltage

is stored at Csi by enabling the SELI signal, and the second LLR voltage is stored

at Cs2 by enabling SEL2 at the next clock cycle, and so on. While the eighth LLR

voltage is stored at Css and SEL8 is high, the SEL8 causes a discharge in the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

capacitor Chi for i - 1, 8 in order to clear the old values. At the next clock

cycle, the PIPE signal goes high and fetching the stored values from Csi to Cni-

The PIPE signal is also used to reset the decoder core. This process repeats itself

for the next incoming codewords.

SELI PIPE

Vin M l M 2
LLR to Prob.

M 4M 3

M lf J j— G nd M 6 ~] |—SEL8

M 1 = M2 = 0.48um/0.18um
M 3-6 = 0.44um/0.18um

SEL2 PIPE

LLR to Prob.

|— G nd
SEL2 PIPE

PIPESEL8

LLR to Prob.

|— G nd
'H 8

Figure 5.29 Chain of S/H cells at transistor level

100m

FRAME

100m

1.90

100m

100m

1.90

100m

1.90

100m

100m

1.90

•100m

1.90

100m

1.90

100m
0 .0 0 4 0 .0 o 8 0 .0u 120u 160o 2 0 0 u

tim e (s)

Figure 5.30 Timing diagram of the S/H interface

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 5.31 shows the output interface consisting of four comparators and

four shift registers, and Fig. 5.32 shows its timing diagram. The transistor-level

schematic of the comparator is shown in Fig. 5.33. The comparator first receives

the current inputs, then makes a decision and stores the result onto the set-reset

(SR) latch. The decision is then passed into the shift register when SAMPLE is

high and the shift register outputs the decoded bit at falling-edge of the same clock

cycle. The serial output is provided by shifting the register outputs to DOUT1

during the next three consecutive cycles.

When decoding starts, the first decoded outputs appear seventeen cycles

after the FRAME signal and the subsequent decoded outputs arrive every nine

cycles. The one extra cycle is due to the PIPE signal for fetching values from Cs,

to Cni and to reset the decoder.

In order to perform self-test on the I/O interface, switches were added to

function as input MUXs, to pass the signals directly from the input interface to the

output interface, and to route the outputs of the comparators back to the I/O BIST.

14(0)
Gnd — — CLK

— SAMPLEC om parator
14(1)

DOUT4LATCH
13(0)

— CLK
— SAMPLECom parator

13(1)

DOUT3LATCH
12(0)

— CLK
— SAMPLECom parator

12(1)

DOUT2LATCH

11(0)
— CLK
— SAMPLECom parator

11(1)

DOUT1LATCH

DO
D1

DO
D1

DO
D1

DO
D1

Figure 5.31 Output interface

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 90 ° • L-ÂCH

o : SAMPLE

F n
v : D0UT1

S' f— j j— 1

D 0U T 2

f i . i .

D 0U T 3

s
DOUT4

f I— !
0 .0 0 2.00U 4 .0 0 u 6.00U 8 .0 0 u 10.0 u 12 .0u 14.0u

tim e (s)

Figure 5.32 Timing diagram of output interface

LATCH °iq

Id)

M9

V-

M 5 ^ H

o| [^M3 M 4 j |o

V+

H L M 6

LATCH

M7J I— —̂ IL M8

j[^M 10 M il

LATCH

1(0)

]QM12

Vout+

V o u t-

M l - 4 = 0.6um /0.3um
M 5 -8 = lum /0.3um
M 10 = M i l = 1.5um/0.7um
M 9 = M 12 = 1.2um/0.7um

Figure 5.33 Comparator at transistor level

5.2.4 BIST for the I/O Interface

The I/O BIST controller was designed in VHDL and the top-level diagram of the

BIST is shown in Fig. 5.34. The description of each signal is provided in Table

5.4. By observing the I/O interface in Fig. 5.28, we can tell that the input interface

has eight pairs of outputs but the output interface has only four pairs of inputs. To

solve this issue, we can add some MUXs to route either the first or the last four

pairs of voltage outputs to the comparators. The BIST can initially test the first

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

four S/H cells of each S/H chain and then test the other four. When self-test starts,

the I/O BIST sends the test vectors to the S/H cells serially and the first four pairs

of stored bits are then converted to probabilities and passed directly to the

comparators. The BIST evaluates the output response from the comparators and

then it starts sending test vectors again but this time the last four pairs of stored

bits are converted to probabilities and sent to the comparators instead. Comparator

outputs are then checked again with the BIST. Finally, the BIST determines

whether the I/O interface is functional or faulty. Fig. 5.35 shows the flow diagram

used to describe the operations of the I/O BIST.

Clk

Test

From/to

outside of chip

Finish

Good_I/0

I/O BIST
VCout

---------- T-----------------
4

Test Controller
+

Test Pattern Generator
Sel

+ Serial_In
Output Response Analyzer

Frame
-----------►

From/to

I/O interface

Figure 5.34 Top-level diagram of I/O BIST

Table 5.4 Description of the I/O BIST signals

Signal Description

Clk Clock signal controlling the timing of BIST operations.
Test Controls the start/stop of the self-test. Test = 1 —> Start,

Test = 0 —> Stop.
Frame Frame signal to reset the I/O interface

Serial_In Test pattern sending to the input interface
VCout Outputs from the comparators
Finish Indicates the end of the self-test. Finish = 1 — > Test Ended.

Good_I/0 Indicates if the decoder is good. Good_IO = 1 —> I/O
interface is good, or else the interface is faulty.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

No
Test = 1?

Yes

No

— »- End
Yes

No
VCout = 1111?,

Yes

No
VCout = 0000?,

Yes

No
VCout = 1111?,

Yes

Comparator
outputs

VCout = 00002.

Good J /O = 0
Finish = 1

Good_I/0 = 1
Finish = 1

Send test pattern
Serial_In = 1, Sel = 0

Send test pattern
Serial_In = 0, Sel = 0

Send test pattern
Serial ln = 0, Sel = 0

Send test pattern
Serial_In = 1, Sel = 1

Figure 5.35 Flow diagram of I/O BIST

5.3 Implementation Procedures

In order to build the entire decoder chip, we have divided the chip into four

sections: a decoder core, a decoder BIST, an I/O interface, and an I/O BIST. Since

the decoder core and I/O interface are analog circuits and the two BIST designs

are digital circuits, they were designed using different tools and are finally

combined together in Cadence.

The decoder core was designed in Cadence using a full-custom flow. Since

extra rows are added to the generator matrix of the code, it makes the parity check

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix contain an equal number of Is in the rows and columns. The code becomes

more regular and therefore, all nodes have the same architecture and we can reuse

the circuitry for one node to build another node. This reduces the complexity of

the schematic and layout design process. A bottom-up strategy was used to build

the decoder core. We started from the most basic unidirectional node circuit and

its schematic was designed in Cadence Virtuoso and simulated using Cadence

Spectre. As the function of the circuit was verified, we started drawing the circuit

layout in Cadence Layout XL. The shape of the layout was kept as regular as

possible. The number of metal layers used was minimized at the lower level such

that higher metal layers can be saved for later use at the top level. Power rails

were added at the top and bottom of the layout so that overlapping can be done

when combining layout into larger blocks.

The layout was then extracted with parasitic capacitance, and LVS and

DRC were performed to ensure that the layout matched with the schematic and

that no design rule was violated. The layout was then simulated and compared

with schematic results. After the basic blocks were built, they were used to

integrate larger blocks. The process was repeated until the entire decoder core was

built. Fig. 5.36(a) shows the procedures for implementing our analog circuit.

As the I/O interface was used in other decoders designed by our group [39,

54], the schematics and layouts of the interface were provided. Simulations were

performed to verify the functionality of the interface. To facilitate self-test,

switches were added to the schematics and layouts of the interface and LVS, DRC,

and simulations were run to ensure correctness of the design.

The decoder BIST and I/O BIST were both designed in VHDL using the

Xilinx ISE tools. First of all, VHDL code was simulated with a VHDL testbench

in ModelSim to verify the functionality of the code. We then translated the VHDL

file into a netlist, which contains standard cell information and their connectivity.

The netlist represents the circuit, which behaves as described in the VHDL code,

and it was generated by Synopsys Design Analyzer. The program also generated

timing constraint files used for creating the layout. We then created the schematic

in Cadence by importing the netlist. Layout was drawn with an automated floor

planning and routing tool called First Encounter. First Encounter creates a layout

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to the circuit and timing information from the netlist and constraint files.

The layout was then imported into Cadence. LVS, DRC, and simulations were run

to verify the design. Fig. 5.37 shows the automated I/O BIST layout as an

example. The same procedures were used for both the decoder BIST and I/O BIST.

Fig. 5.36(b) reveals the procedures of implementing a digital circuit.

Finally, the top-level design was built by combining the decoder core,

decoder BIST, I/O interface, and I/O BIST. The top-level layout was done by

connecting wires manually in Cadence Layout XL. LVS, DRC, and Spectre

simulations were necessary. Then I/O drivers and bond pads were added to the

top-level design in order to finish implementing the entire chip. Our chip consists

of two decoders: a full decoder and a back-up decoder. The back-up decoder does

not contain the output interface and the I/O BIST. The back-up decoder was added

into the chip because of the comparator offset problem encountered by other

researchers in our group who also used the same I/O interface in their designs [39,

54], Therefore, without comparators and shift registers, the back-up decoder sends

decoded probability currents directly to the chip outputs. External operational

amplifiers and comparators are needed if we want to perform verification test on

the back-up decoder.

! Run ex tracted sim ulation in Spectre

! t
! Run D R C and LVS

| t
! Draw layout in Layout XL

| t
1 Run schm atic sim ulation in Spectre

i t
I D esign schm atic in V irtuoso

Analog Circuit Design

(a)

Figure 5.36 Design procedures of (a) analog circuits (b) digital circuits

68

R un ex trac ted sim ulation in Spectre

t
R un D R C and LV S

t
Im port layout in to C adence

t
C reate layout in First E ncounter

t
Im port schem atic into C adence

t
G enerate netlist and con tra in t files in S ynopsys

t
Run sim ulation in M odelS im

t
W rite V H D L code

Digital Circuit Design

(b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.37 Automated layout of the I/O BIST

5.4 Simulations

5.4.1 Simulations on Self Test

The digital BISTs were designed in VHDL and then verified in ModelSim. The

VHDL code was simulated by feeding appropriate input vectors from a testbench

file and monitoring the outputs. Two conditions were checked: the BIST testing a

DUT with faults and the BIST testing a DUT with no fault.

A clock cycle of 40 ns was used for the ModelSim simulations. Fig. 5.38

shows the waveform of the decoder BIST testing a DUT with no fault. In the

waveform, self-test started at 60 ns and the decoder BIST started sending test

vectors at 100 ns. Data was sent at the rising-edge of the clock and responses were

checked at the falling-edge of the clock. The test ended at 300 ns and the decoder

BIST indicated that the DUT is functional. The Show_Node signal checked the

internal test results of nodes C l to C3, E l to E3, and E25 and they are all

functional. Fig. 5.39 shows the waveform of the decoder BIST testing a DUT with

faults. The input test vectors were set up such that the DUT contained faults in

nodes C5, CIO, C15, E10, E20, and E25. At the end of the test, the decoder BIST

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicated that the DUT was faulty and showed that nodes C l, C3, E l, E5 are good

and nodes C5, CIO, C15, E10, E20, E25 are bad.

Fig. 5.40(a) shows the waveform of the I/O BIST testing a DUT with no

fault. Self-test tested at 60 ns and the I/O BIST sent the serial test pattern at 100 ns.

The first set of DUT responses was checked at 700 ns and the second, third, and

fourth set of responses were checked at 1.1 pis, 1.5 pis, and 1.86 |ls respectively.

As long as the response is correct, the signal Good_IO stays high. The self-test

finishes at 1.86 pis and the BIST indicates that the DUT is functional. Fig. 5.40(b)

shows the waveform of the I/O BIST testing a DUT with faults. This time the

third set of DUT responses is incorrect. The BIST detected the errors and set the

Good_IO to low and stopped the test.

After importing the layout of the BISTs and connecting them to the

decoder core and I/O interface, the full decoder chip in test mode was simulated

using Cadence Spectre. A clock cycle of 1 pis was used. We first simulated the

decoder chip performing the self-test and no errors were injected into the decoder

core. Fig. 5.41 shows the simulation results of the functional decoder chip. The

results are the same as ones obtained from ModelSim in Fig. 5.38 and Fig. 5.40(a).

Then we enabled a signal called ERR1 so that there were faults injected into all

the CHECK3_1NG nodes, which means nodes C l, C3, ..., C15 in Table 5.3 were

faulty. Then we enabled another signal called ERR2 to make all the EQUALITY3

nodes (nodes E3, E6, ..., E24) contain faults. The full decoder was then simulated

again but this time with faults injected into the decoder core. The simulation

results are shown in Fig. 5.42. The fault indicated that the I/O interface was good

and the decoder core was faulty. Some internal nodes were accessed and nodes C2,

C16, El, E8, E25 were good and nodes C l, C15, E3, E9, E24 were bad.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.38 Waveform of decoder BIST detecting no fault in the decoder and
showing that nodes C l, C2, C3, E l, E2, and E3 are good

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
0

ns
20

0
ns

30
0

ns
40

0
ns

CO

<N

G

T3

T 3

-8

1.1! i 1111111,1, *, 11.1,1,!, 1,1,11 s, 1, j 1111
1 1 1 1 1 1 1 1 S 1 1 1 1 1 1 1 1 i 1 1 1 : 1 1 1 i : i ; ? : ^ *

i m m m t i i n i i i| | - s 5 a 5 | s 5 | | 5 5 | | | | | i B ? | | 3 5 g' f, 3

J " i I
Figure 5.39 Waveform of decoder BIST detecting faults in nodes C5, CIO, C15,
E10, E20, and E25

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q-

CO

CO

T3

CO

CO

o' .2 2

.2 > , « -2 ,
A W A - I

® _l w ©

■» .2 -2
- i 15 « s'

(a) (b)

Figure 5.40 Waveform of I/O BIST: (a) detecting no fault in the interface (b)
detecting faults in the third set of responses receiving from the interface

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i a At Clk
0.0 n n n n f i n n n n n n n n n n n n n n i i n n n n n n n n n n t i n n n n n n n n n n t i n n n n n n n n ^

1 . 8 T e s t -
> 0 . 0 L £

I g d : S h ow _N ode< 5>
> 0 .0 F n

♦: S h ow _N ode< 4>
> 0I0 F | .

 ̂ 0 * : S h o w _N ode< 3>
0 . 0 F — I

^ 1 g S h ow _N ode< 2>
> 0.0 r

1 g k.; Show _N ode< 1>
0'.0 F , ■—

 ̂ g ♦ : Shoyy_N ode<0>
0'.0 F

1 qpi F inish_C ore
> -1 0 0 m r . _________ .

„ , a t: Good_core Decoder core is functional
> - 1 . 0 F . . . T . -r-n—!T . ■ , , , , T |

^ 2 0 G ood_N ode
> - 1 . 0 F . . . * i r

C9 C14 C5 C3

i g g Finish J O
> -1 0 0 m E____________

2 0 i t Good_IO
-1.0 F . . . ■

E10 E13 E22 E17

I/O interface is functional^

la

la

t im e (s)

Figure 5.41 Simulation results of full functional decoder chip in test mode
showing that the decoder core, I/O interface, and all internal nodes are functional

—• 1.8
> 0 .0

— 1.8
> 0 .0w
- - 1 .8
> 0 .0

1.8
> 0 .0

1.8
> 0 .0

— 1.8
> 0 .0

1.8
> 0 .0

1.8
> 0 .0

1 .90
> - 1 0 0 m

9 0 . 0u
> - 1 1 0 u

— 1 .90
> — 1 0 0 m

1.90
> — 1 0 0 m

1.90
> — 1 0 0 m

0

Show _N ode<1>

Show _N ode< 0>

: Good_Core f "''Decoder core is faulty
=t2

: Good_Node Cl C2 C15 El E3 E9 E24

I/O interface is functional

20u 30u
tim e (s)

Figure 5.42 Simulation results of full faulty decoder chip in test mode showing
that the decoder core is faulty, I/O interface is functional, and some of the internal
nodes are bad

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 Simulations of Analog Decoder

The analog decoding behavior of the decoder core was simulated in Spectre.

Probability currents were injected into the decoder inputs and decoded probability

currents were observed. The decoder core used a supply voltage of V d d - 1.8 V

and unit bias current of l v - 10 nA. Such a small current was used since we want

to test the robustness of the decoder core and carefully examine how the error bit

was being corrected. Table 5.5 shows the probability values of the currents being

injected into the decoder core. The probability currents represent a received

codeword from the channel, which is 00001101. The received codeword contained

an error at the third bit which is in bold. The output currents are shown in Fig.

5.43. The output currents ul<0> and u l< l> represent the probabilities that the

first received bit was a 1 or 0, u2<0> and u2<l> represent the probabilities of the

second bit, and so on. We can observe from Fig. 5.43 that the third bit represented

by u3<0> and u3<l> was corrected from 0 to 1. Other currents also settled to an

equilibrium state. The simulation could not give us an accurate estimation of how

fast the decoder can run. In analog decoding, time required for the currents to

settle depends on the input probabilities, the error pattern, and the unit bias current.

Table 5.5 Probability values of input currents used for simulating the decoder core

Bit no. P(0) Io (nA) P(l) Ii (nA)
1 0.9 9 0.1 1
2 0.8 8 0.2 2
3 0.6 6 0.4 4
4 0.7 7 0.3 3
5 0.1 1 0.9 9
6 0.2 2 0.8 8
7 0.7 7 0.3 3
8 0.4 4 0.6 6

After connecting the I/O interface to the decoder core, an analog decoding

simulation was run with the full decoder. The simulation results are shown in Fig.

5.44. The serial inputs to the full decoder have probability of p(1) equals 0.8 or

0.2 depending on whether the incoming bit is a 1 or 0 and p(0) = 1- p(l). Three

codewords are shifted serially into the decoder. The first decoded outputs appear

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the falling edge of the 17th cycle and they are presented in parallel through

DOUT1 to DOUT4 or shifted serially through DOUT1. The decoded outputs

appear every nine cycles. The extra cycle is due to the I/O pipeline and decoder

reset. A bias current of 1 pA and a clock rate of 1 MHz were used giving a

decoding rate of 444 kbps. The three codewords being simulated were 01010100,

01010111, and 00001011 where the error bits are shown in bold. The decoded

output bits were 0111, 0001, and 1000 as shown in Fig. 5.44.

□ u 4 < 0 >

X u 4 < l >

^ u l < 0 >

n u i < i >
+ u2<0>
O u2<l>

V u 3 < 0 >

A u 3 < l >

1 0 .0 n

9 .0 0 n

7 .0 0 n
p l (0) = 0 .9

p2(0) = 0.8
p3(0) = 0.6
p4(0) = 0.7
p5(0) = 0.1
p6(0) = 0.2
p7(0) = 0.7
p8(0) = 0.4

<
5 .0 0 n

4 .0 0 n

3 .0 0 n

2 .0 0 n

1 .0 0 n

0 ..0 10 u 2 0 u
time (s)

Figure 5.43 Analog decoding simulation of the decoder core with lu - 10 nA
showing an error correction on bit3

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7

900ml

2.70

900m

2.10

900m

2.9

900m

4.0

0.0

4.0

0.0

4.0

uik

.F i n n n n n n n f t n

0.0

Frame

1 ...

□ : VRef
0 1 0 1 0 1 0 0 X 0 1 0 1 0 1 1 1 X 0 0 0 0 1 0 1 i

. . , n . n . rn.r ,
v: DOUT<0>

0 1 1 1 0 0 0 1 1 0 0 0
r . l n n

a: D0UT<1>
i 0 0

i. : i n , .
D0UT<2>

i 0 0
. . r. n

i: D0UT<3>
i 1 0

...n....... ,
0.0 10U 20u 30u

time (s)
40u

Figure 5.44 Simulation of the full decoder with Iy - 1 jxA showing the decoding
process of three codewords

5.5 Chapter Summary

In this chapter, a digital BIST scheme for analog iterative decoders using the sum-

product algorithm was proposed. The proposed BIST scheme was applied on an (8,

4) Hamming decoder. Implementation details of the Hamming decoder chip

including the decoder core, decoder BIST, I/O interface, and I/O BIST were given

and simulations in ModelSim and Cadence Spectre were provided. In the next

chapter, we will present the IC test results.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Testing

This chapter describes the testing of the decoder chip. Two different types of tests

were performed to verify the chip: a self-test and a BER test. We will describe the

general test setup and equipment and give details about the self-test and BER test

along with test results.

6.1 Fabrication of Prototype

The (8, 4) Hamming decoder chip with BIST was designed and fabricated in a

1P6M TSMC 0.18 pm process with assistance from CMC Microsystems. Fig. 6.1

shows a die photo of the decoder chip.

Figure 6.1 Die photo of (8, 4) Hamming decoder with BIST (ICFAAMY1)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 General Test Setup and Equipment

The general test set-up for testing the decoder chip is shown in Fig. 6.2. The test

set-up contains a PC with RedHat 9 Linux platform that controls the prototype test

procedures, collects test results and displays results on screen. The Keithley 236

Source Measure Unit is used to generate small unit bias currents in the range of

nA to (J.A. The oscilloscope and multi-meter are used for probing signals. The

decoder chip is located on a PCB board connected to a test support board and the

test support board is connected to an FPGA as shown in Fig. 6.3. Fig. 6.4 shows

how the testing PC, FPGA, test support board and PCB board communicate with

each other. The test support board plays an important role since it provides

communications between the PCB and FPGA through a USB interface device and

also between FPGA and DUT through some electronic devices (e.g. buffer, DAC,

amplifier, etc.).

Figure 6.2 Picture of test set-up: PC, Keithley unit, FPGA board, test support
board, PCB, multi-meter, and oscilloscope

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FPGA TesirtSupport DUT

*VfCmRSft

Figure 6.3 Picture of FPGA, Test Support, and DUT boards

USB PC

Power Supplies

M ulti-m eter

Oscilloscope
FPGA

Buffers and/or DAC

Keithley

236 Unit

Decoder Chip

Test Support
Board

Digilent Digilab 2E Board

DUT Board

Figure 6.4 General test-setup block diagram for ICFAAMY1

6.3 Self Test

Since the (8, 4) Hamming decoder chip was implemented with built-in test circuits,

we can detect any catastrophic faults within the chip easily and we only need a

simple test program and VHDL program to control the test flow. The PC first

sends a start signal to the FPGA through a USB interface and the FPGA then

enables the TEST signal of the decoder chip to start self-test. The FPGA waits for

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the self-test to finish and reads the test results from the chip. Then the test results

are sent from the FPGA back to the PC and the results are displayed on the PC

monitor.

6.3.1 Test Program on PC

The PC test program for the self-test is a very simple program written in C++. It

sends a start signal to the FPGA and then waits for the test results to come back

and displays them on the screen. The test program shows on the screen whether

the decoder core and I/O interface are functional and it also indicates the result of

each internal 3-edge bi-directional node including C l to C16 and E l to E25.

6.3.2 FPGA Controller Board

The FPGA controller board is a Digilent Digilab 2E board which contains a Xilinx

Spartan 2E FPGA chip with 200K gates [66]. The test controller is written in

VHDL, and is designed in a FSM fashion. The FPGA controller basically

performs four main tasks: receiving a control signal from PC, applying a control

signal to decoder, receiving test results from the decoder, and sending test results

back to the PC. Since the FPGA provides a clock rate of 50 MHz and the decoder

chip may not be able to perform self-test at such a high speed, a slower clock is

created in the VHDL code to control the self-test of the decoder chip. Moreover,

the USB interface can send only one byte of data at a time. Therefore, the FPGA

first sends the test results of the internal nodes Cl to C8, followed by C9 to C16,

E l to E8, E9 to 16, E17 to E24, then finally E25, core results and I/O interface

results.

6.3.3 Test Support Board

The test support board is located between the FPGA board and DUT board as

shown in Fig. 6.3. The role of the board is to provide USB communications

between the FPGA board and PC and to provide voltage supplies for the decoder.

The support board can provide up to four variable voltages to the DUT. The

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

voltages are generated by an amplifier AD8544 [64] connected as a voltage

follower and each of them can be adjusted by a potentiometer ranging from

0 .02 .no to 0.98Vdd with small currents in mA. For decoder self test, only one

voltage is needed which is 1.8 V used for operating the core circuit of the decoder

chip. An adjustable voltage supply which supports larger currents is also provided

by an LM317 voltage regulator set to 3.3 V in order to drive the I/O ring of the

decoder chip. Digital signals are also buffered using SN74LV125A digital driver

chips [68]. Through the buffers, twelve digital signals can be sent from the DUT

to the FPGA and vice versa. To communicate between the FPGA board and the

PC, the test support board includes a DLP245M USB-to-FIFO converter device

[67], The FPGA controller uses four handshaking signals to control the read and

write operations of the USB device. The device contains 384 bytes of FIFO

transmit buffer and 128 bytes of FIFO receive buffer.

6.3.4 DUT Board

The decoder chip has a pin grid array (PGA) package with 68 pins and a socket

for this package type is added to the DUT board such that the chip can become

removable. Power supply and ground lines are routed to the test support board.

Switches are added for the ERR1 and ERR2 signals so that we can turn on/off the

error injection option of the decoder chip.

6.3.5 Test Procedures

Performing the self-test only requires the 3 steps listed below:

1. Adjust the I/O ring supply to 3.3 V and core supply to 1.8 V. Verify the

voltages and ground on the DUT board by probing the signals using multi

meter.

2. Program FPGA device with the appropriate .bit file generated from the VHDL

code.

3. Run the C++ test program and observe results on screen.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.6 Test Results

The decoder chip is capable of performing self-test at a clock rate of 12.5 MHz.

With this clock rate, the self-test has a run time of 5 (xs. The results of the first self

test are copied from the PC and listed below:

1 byte read, Node C8 downto C l is: 11111111
1 byte read, Node C16 downto C9 is: 11111111
1 byte read, Node E8 downto E l is: 11111111
1 byte read, Node E16 downto E9 is: 11111111
1 byte read, Node E24 downto E17 is: 11111111
1 byte read, Good_Core, Good_IO, and Node E25 is: 101

In the first test, the ERR1 and ERR2 signals were turned off so that no faults were

injected into the chip. The result shows that Good_Core is 1, which means the

decoder core is good. The test results of all the internal 3-edge bi-directional

nodes are 1; therefore, all the nodes are good. However, since Good_IO equals 0,

it means that the I/O interface is bad. It actually makes sense that the I/O interface

is bad since in [39] and [54], Winstead and Nguyen both encountered a charge

leakage problem on the S/H capacitors and comparator DC offset problems. Since

the I/O BIST does not tell which bits of the decoder outputs are bad, out of the

four decoder output bits, some bits may work fine and some may not.

We then ran the same test but this time we inserted the ERR1 signal and

made nodes C l, C 3 ,..., C15 become faulty. The test results are shown below:

1 byte read, Node C8 downto C l is: 10101010
1 byte read, Node C16 downto C9 is: 10101010
1 byte read, Node E8 downto E l is: 11111111
1 byte read, Node E16 downto E9 is: 11111111
1 byte read, Node E24 downto E 17is: 11111111
1 byte read, Good_Core, Good_IO, and Node E25 is: 001

The decoder BIST is capable of detecting all the faults. We then repeated the test

and inserted the ERR2 signal instead to make E3, E6, ..., E24 become faulty. The

test results are:

1 byte read, Node C8 downto C l is: 11111111
1 byte read, Node C16 downto C9 is: 11111111
1 byte read, Node E8 downto E l is: 11011011
lbyteread , Node E16 downtoE9 is: 10110110
1 byte read, Node E24 downto E17 is: 01101101

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 byte read, Good_Core, Good_IO, and N ode E25 is: 001

The decoder BIST is also able to detect the faults. Finally, we simultaneously

enabled ERR1 and ERR2 and ran the test again:

1 byte read, Node C8 downto C l is: 10101010
1 byte read, Node C16 downto C9 is: 10101010
1 byte read, Node E8 downto E l is: 11011011
1 byte read, Node E16 downto E9 is: 10110110
1 byte read, Node E24 downto E17 is: 01101101
1 byte read, Good_Core, Good_IO, and Node E25 is: 001

The decoder successfully detected all faults. Therefore, without running any long

BER test, we can easily find out whether a chip is defective or not.

6.4 BER Test

In the last section, we showed that the (8, 4) Hamming decoder is able to test itself

and discover any catastrophic faults. Based on the discussion provided in Section

4.5, the performance of a decoder is verified as long as there is no stuck-at fault

and a small mismatch variance is met. Therefore, it should not be necessary to

perform any lengthy statistical test during the manufacturing process when the

decoder chip can perform self-test. However, we are testing the design prototype

and this prototype is the very first analog decoder design that contains built-in test

circuitry. It is necessary for us to examine how the extra circuitry affects the BER

performance of the analog decoder.

The BER test set-up was designed by Winstead and Nguyen in [39] and

[54], The PC first generates channel samples with Gaussian noise and sends them

to the FPGA. The FPGA collects the samples and applies them to the DAC to

obtain analog channel samples. The analog samples are clocked into the decoder

chip and time is provided to allow decoding. Once decoding is finished, the

decoded bits are captured by the FPGA controller and sent back to the PC. Finally

the PC determines whether the decoded bits are correct or not and calculates the

BER.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.1 Test Program on PC

The BER test program is responsible for generating coded bits and Gaussian noise

samples, sending codewords with noise to and receiving decoded bits from the

FPGA through the USB interface, counting errors, and plotting the results. Fig.

6.5 shows a screen shot of the test results displayed by the test program. The task

sequence of the program is listed below [39]:

1. Plot BER curves of the ideal uncoded BPSK, optimal ML decoding, and

digital (8, 4) Hamming sum-product decoder.

2. Send information including start of test, test speed, and block length of code.

3. Generate a random source word and encode it using the generator matrix.

4. Modulate codeword in BPSK and add AWGN according to SNR.

5. Convert AWGN modulated symbols to LLR.

6. Convert LLR to DACCODE values.

7. Send DACCODE values to FPGA and wait for decoding results.

8. Receive decoded bits from FPGA and compare with the source word to

determine bit errors.

9. Update BER and plot data on graphs.

10. Repeat step 3 to 12 until required number of errors met for each SNR point.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.5 Screen capture of test results displayed by the BER test program

6.4.2 FPGA Controller Board

The FPGA controller acts like a bridge between the PC and the DUT. It receives

control information from the PC and generates synchronized digital control

signals (e.g. DAC clock, decoder clock, and frame) at appropriate times. It also

receives DACCODE values from the PC and stores them into an on-board RAM.

The stored values are then passed onto the DAC on the test support board. The

controller waits for decoding to take place and then sends the decoded bits back to

the PC.

6.4.3 Test Support Board

The test support board for the BER test is very similar to the one used in self-test.

Besides having the USB device, variable voltage sources, and buffers, the test

support board also includes a digital-to-analog converter AD9764 [65] which has

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14-bit resolution and it can operate at up to 125 MS/sec. The DAC takes the 14-bit

sample inputs and generates differential output currents. The currents are

converted to voltages using resistive loads and they are passed through an analog

buffer AD8138 which allows control of peak-to-peak amplitude and common

mode voltage through potentiometers. In order to run the BER test, we need a 3.3

V for the I/O ring of the decoder chip, a 1.8 V for the core circuit of the chip, 0.3

V for VrefN and 1.5 V for Vrefp.

6.4.4 DUT Board

The DUT board contains a PGA socket for the decoder. Power supply and ground

lines are routed to the test support board. Posts are used so that unit bias currents

can easily be fed into the decoder. Test points and probes are added for signal

probing and debugging.

6.4.5 Test Procedures

When performing the BER test, some parameters can be varied to obtain better

decoding performance. The parameters include bias current, peak-to-peak

amplitude and common-mode voltage for the differential voltages on the test

support board, and decoder test speed. The general procedures of running the BER

test are [39]:

1. Adjust I/O ring supply to 3.3 V, core supply to 1.8 V, VrefN to 0.3 V, and VrefP

to 1.5 V. Verify the voltages and ground by probing signal using multi-meter.

2. Adjust differential voltages to full swing (1.8 V) and the common-mode

voltage close to 1.8 V since this voltage will be divided equally between the

input sample and hold capacitors. The voltages can be verified using an

oscilloscope.

3. Set CLK_DIV = 63 in test program to get the slowest decoder testing speed of

155 kSps. See Table 6.1 for testing speeds.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Allow bit errors to be counted and wait for BER results and graphs.

Table 6.1 CLK_DIV and corresponding test speed and decoding speed [39]

CLK_DIV Test Speed
(Sps)

(8, 4) Decoded Bit Rate
(bps)

0 8.33 M 3.702 M
1 4.54 M 2.018 M
2 3.12 M 1.387 M
4 1.92 M 0.853 M
8 1.087 M 0.483 M
16 581 k 258 k
32 301 k 133.8 k
63 155 k 68.9 k

6.4.6 Test Measurements

By running the BER test, we have observed that two out of four decoded bits

perform as expected and the other two bits, which produce a flat BER around 0.5,

appear to suffer from excessive comparator input offsets. The failure is simply due

to a poor design choice in the comparators of the decoder. This problem is also

addressed in [39] and [54] and any number of known solutions can be used in

future generations of chips. For example, current comparators which employ

input-offset canceling mechanisms may be used to counter the natural mismatch

effects in semiconductor processing. The offset problem actually agrees with the

self-test results of the I/O BIST in Section 6.3.6. This indicates that the I/O BIST

has performed a correct diagnosis.

Since two of the comparators function with a tolerable offset, the test

results of the corresponding bits provide a good indication of the decoder's overall

performance. This is because each bit-position has a strong correlation with every

other position; therefore, the performance of one bit can represent the performance

of the full decoder. If the decoder is not working, none of the bits will produce

meaningful results. So, we have used two out of four output bits to measure the

BER.

We first ran BER tests with a constant unit bias current Iu = 5 (J.A and vary

the test speed to see how it affects the performance of the decoder. The BER tests

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were run at 155 kSps, 1.087 MSps, and 8.33 MSps. The BER results are shown in

Fig. 6.6. The curves indicate that a decoder running at a slower speed produces

better BER performance and the BER moves towards ML. This is reasonable

because a slower clock speed allows the decoder more time to converge and settle

at a correct probability values. We then ran the BER test again and this time we

kept the test speed constant at 155 kSps and varied the unit bias current. Fig. 6.7

shows the resulting BER curves. With a larger bias current, the decoder performs

better since a larger Iu accelerates the settling time of the probability currents in

the decoder. However, there is an upper bound for Iu to keep the decoder in

subthreshold mode. So, it is appropriate to keep the bias current below

approximately 10 (xA.

By observing the BER curves, we know that if we want to run the decoder

at faster speeds, we need to increase the bias current to maintain the decoder

performance. We can also see that the extra test circuitry does not affect the

performance of the (8, 4) Hamming decoder. In fact, the performance of the (8, 4)

analog Hamming decoder with BIST gives a better BER than the digital decoder

using the same code but without the extra parity check nodes. The curve produced

by running the test at 155 kSps with I v = 5 |lA is only 0.3 dB to 0.4 dB from the

ML curve. Although only two bits are measured from the analog decoder, its BER

curve gives a significant indication that the analog implementation of the (8, 4)

Hamming decoder can potentially outperform the digital implementations. Table

6.2 shows a summary of the decoder. The power consumption was obtained by

measuring the current flowing through the core voltage supply and then

multiplying it by the supply voltage. The energy per decoded bit was calculated by

dividing the power consumption by the information throughput.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 Summary of (8, 4) Hamming decoder with BIST

Technology TSMC 0.18 pm 1P6M 1.8 V
Analog area (with interfaces) 0.072 mm2

Decoder BIST area 0.036 mm2
I/O BIST area 0.006 mm2

Total circuit area 0.138 mm2
Clock speed 8.3 MSps

Decoding rate 3.7 Mbps
Self test run time 5 ps @ 12.5 MHz

Power 13 mW @ Iu = 4 pA, SNR = 8 dB,
Speed = 3.7 Mbps

Energy/decoded bit 3.5 nJ/bit

Varying test speed with iu = 5uA

<> Uncoded BPSK
— I— ML

Q Digital (8,4) hamming SP
(64 iterations, no extra check nodes)
Test speed = 155 kSps
Test speed = 1.087 MSps

>■ Test speed = 8.33 MSps___________

4.5 5.5 6.5
Eb/No (dB)

7.5

Figure 6.6 BER measurements with varying test speed

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varying lu with test sp e ed = 155 kSps

•7 Uncoded BPSK
H— M L

 Digital (8,4) Hamming SP
(64 iterations, no extra check nodes)
lu = 300 nA
lu = 1 uA

£L

CQ 10

IQ"5

4.5 5.5 6.5
Eb/No (dB)

7.5

Figure 6.7 BER measurements with varying bias current Iy

6.5 Chapter Summary

In this chapter, we have described the testing of the analog decoder with BIST.

Two different types of test were performed: self-test and BER test. The test setups

of both tests were explained in detail and the self-test results and BER

measurements were presented. In the next chapter, we conclude this thesis,

provide recommendations for improvement, and discuss possible future work.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

7.1 Conclusions and Contributions

The objective of this thesis has been to demonstrate the feasibility of testing

analog iterative decoders in the digital domain with the use of built-in test

hardware. A digital BIST scheme was proposed for testing sum-product analog

decoders and the suggested design was implemented using a small (8, 4) extended

Hamming analog decoder as a proof-of concept. The same testing scheme can be

applied to sum-product analog decoders with bigger code sizes.

With the built-in test circuits, the (8, 4) extended Hamming analog decoder

can perform testing by itself. We only need a simple test setup to control the self

test and read the results. We have shown that the decoder core BIST is capable of

detecting catastrophic errors and the I/O BIST is capable of detecting comparator

offset errors. Compared to running the BER test in minutes or even hours, the self

test can be done in microseconds, which greatly reduces the testing time. Since

setup for BER test is also very complicated, we can save a great deal of time by

eliminating the BER test setup. Therefore, by largely shortening the testing time

of analog decoders, testing cost can significantly reduced during the

manufacturing process since time means money.

A BER test was run to ensure that the extra test circuits and the

modifications of the original decoder structure do not affect the performance of

the decoder. The decoder can be clocked at 8.3 MHz giving a decoding rate of 3.7

Mbps. The test results have proven that the decoder is very robust even with the

extra test circuitry added and decoder modifications, and we have also shown that

the decoder can give a better BER than a digital decoder operating on the same

code and decoding algorithm.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The energy consumed by each decoded bit is measured at 3.5 nJ/bit at 8

dB. This is relatively small compared to the (8, 4) Hamming decoder built by

Winstead et al. [56], which has an energy consumption of 45 nJ/b. However, it is

very difficult to have a fair comparison with other similar (8, 4) Hamming

decoders since they are built using different technologies and I/O interfaces.

The main tradeoff of having test circuits inside the decoder chip is the

hardware overhead. The BIST area occupied one-third of the total circuit area and

the area of the decoder itself also increased quite seriously. The hardware

overhead is approximately 50%. However, when implementing the (8, 4)

Hamming decoder with BIST, we did not aim for minimum area since our main

goal was to prove that analog decoders can be tested easily in the digital domain

with simple built-in circuits. We have also added extra test features into the

decoder, such as error injection and internal test result reading. These features can

be eliminated to reduce the silicon area.

There are several potential ways to improve the area overhead problem.

For example, digital BIST circuits can be designed with purely structural VHDL

code instead of behavioral VHDL to minimize the number of standard cells being

used, or they can also be designed using other methods instead of using VHDL

such as RTL design. We can also reduce the silicon area by removing all the

switches used for changing the VrejN and Vrefp to Vss and V d d - It is because VrefN

and Vrefp are in fact connected to the input pins of the chip. The reference voltages

are provided directly from power supplies outside of the chip; therefore, instead of

feeding VrefN and Vrefp, we can feed Vss and Vdd during the decoder self test. The

suggested methods of minimizing silicon area and eliminating extra test features

can potentially improve the overhead to 30%. BIST seems to be economically

unacceptable for analog decoders with small codes. However, analog decoders for

larger codes require dramatically less silicon area than digital decoders [54];

therefore, the area reduction achieved through analog decoding can significantly

outweigh the burden of a BIST. Moreover, for bigger analog decoders, we predict

that the silicon area required for extra test circuitry should not increase linearly as

the block length of the code. It is because instead of sending test patterns to or

receiving test responses from all the unidirectional circuits in parallel, we can use

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a multiplexing scheme to partially send or receive data from the decoder. Then we

can use the same digital BIST circuit to test large decoders.

In terms of designability, it is relatively easy to implement the decoder

with built-in test hardware. Basically, we only need to add switches, either pass

transistors or transmission gates, to modify the decoder such that it decomposes

into an array of small XOR gates during test mode. The design of the BIST is also

straightforward since the main tasks of the BIST are to send simple test patterns

and analyze the results.

7.2 Future Work

Testability is a key barrier for analog decoders to be deployed in the

communications market. With our successful demonstration of the digital BIST

approach for analog decoders, such problems can be circumvented. We now

propose the following future research topics.

More attention should be drawn on the I/O interface. The interface should

be redesigned with more careful consideration and characterization since it can

significantly affect the performance of an analog decoder. It is especially crucial

to guarantee that the comparators make correct bit decisions. Currently, a few

researchers have been looking into how to reduce the leakage currents in the input

S/H cells and obtaining a small comparator offset in the output interface.

It is also challenging to provide a small bias current in the range of nA to

|lA especially for system-on-chip solutions. We were using a Keithley source unit

to provide such small bias current for the decoder chip, but when analog decoders

come to interface with other receiver components, a methodology should be

arrived to produce the bias current. Some research work should be done to address

this issue.

In this thesis, we have demonstrated the feasibility of having digital BIST

for analog decoders by applying the suggested BIST scheme on a small (8, 4)

Hamming decoder. In the future, the same testing idea should be applied to larger

decoders and silicon area should be minimized to reduce the area overhead.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Moreover, since the digital BIST scheme proposed in this thesis is mainly for

sum-product analog decoders, it may be beneficial to apply similar testing

schemes for other decoders using different decoding algorithms. Researchers in

our group have also implemented a low voltage analog decoder and have shown

that the power usage of the decoder is way less than any other decoder designs.

Therefore, future work should also be done on examining how to test low voltage

analog decoders with the digital BIST concept.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] V. Agrawal, C. Kime, and K Saluja. A tutorial on built-in self-test:
Principles. IEEE Design & Test o f Computers, 10(1):73-82, 1993.

[2] V. Agrawal, K Saluja, and C. Kime. A tutorial on built-in self-test:
Applications. IEEE Design & Test o f Computers, 10(2):69-77, 1993.

[3] A. G. Amat, G. Montorsi, S. Benedetto, D. Yogrig, A. Neviani, and A.
Gerosa. An analog Turbo decoder for the UMTS standard. In IEEE Int.
Symp. on Information Theory, page 296, Chicago, IL, June 2004.

[4] K. Arabi, B. Kaminska, and J. Rzeszut. A new built-in self-test for digital-
to-analog and analog-to-digital converters. In Proc. Int. Conf. Computer-
Aided Design, pages 491-494, Los Alamitos, CA, 1994.

[5] B. Arnold. Built-in-self-test gains ground as ATE time and cost soar.
Electronic design. 48(19): 117-124, Dec. 2000.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate. IEEE Trans, on Information
Theory, 20:284-287, Mar. 1974.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error
correcting coding and decoding: Turbo codes. In IEEE Int. Conf. on
Communications, pages 1064-1070, Geneva, Switzerland, May 1993.

[8] M. Bums and G. W. Roberts. An introduction to mixed-signal 1C test and
measurement. Oxford University Press, New York, 2001.

[9] M. Bushnell and V. Agrawal. Essentials of electronic testing for digital,
memory, and mixed-signal VLSI circuits. Kluwer Academic Publishers,
Norwell, MA, 2000.

[10] A. Chatterjee. Concurrent error detection and fault tolerance in linear
analog circuits using continuous check-sums. IEEE Trans. VLSI Systems,
1 (2): 138-150, June 1993.

[11] A. Chatterjee, B.C. Kim, and N.Nagi. DC built-in self-test for linear
analog circuits. IEEE Design & Test o f Computers, pages 26-33, 1996.

[12] A. Chatterjee and N. Nagi. Design for testability and built-in self-test of
mixed-signal circuits: A tutorial. In Proc. VLSI Design Tenth Int.
Conf., pages 388-392, Jan. 1997.

[13] I. D. Dear, C. Dislis, A. P. Ambler, and J. Dick. Economic Effects in
Design and Test. IEEE Design & Test o f Computers, 8(4):64-77, 1991.

[14] G. D. Fomey Jr. The Yiterbi algorithm. In Proc. o f the IEEE, volume 61,
no. 3, pages 268-278, Mar. 1973.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] G. D. Fomey Jr. Codes on graphs: normal realizations. IEEE Trans, on
Information Theory, 47: 520-548, Feb. 2001.

[16] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, 1963.

[17] V. Gaudet and G. Gulak. A 13.3Mbps 0.35pm CMOS analog Turbo
decoder IC with a configurable interleaver. IEEE J. o f Solid State Circuits,
38(11):2010-2015, Nov. 2003.

[18] B. Gilbert. A precise four-quadrant multiplier with subnanosecond
response. IEEE J. o f Solid State Circuits, 3(4):365-373, 1968.

[19] B. Gilbert. Translinear circuits: a proposed classification. Electronics
Letters, 11(1): 14-16, 1975.

[20] B. Gilbert. A monolithic 16-channel analog array normalizer. IEEE J. o f
Solid State Circuits, 19(6):956-963, 1984.

[21] J. Hagenauer. Decoding of binary codes with analog networks. In Proc.
1998 Information Theory Workshop, pages 13-14, San Diego, CA, Feb.
1998.

[22] J. Hagenauer and M. Winklhofer. The analog decoder. In IEEE Int. Symp.
on Information Theory, page 145 Cambridge, MA, Aug. 1998.

[23] R. W. Hamming. Error detecting and error correcting codes. Bell Sys.
Tech. J., 29:147-160, Apr. 1950.

[24] S. Hemati, A. H. Banihashemi, and C. Plett. A high-speed analog min-sum
iterative decoder. In IEEE Int. Symp. on Information Theory, pages 1768-
1772, Sept. 2005.

[25] D. A. Johns and B. Zand. High-speed CMOS analog Viterbi detector for 4-
PAM partial-response signaling. IEEE J. o f Solid State Circuits,
37(7):895-903, July 2002.

[26] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans, on Information Theory, 47:498-519,
Feb. 2001.

[27] B. P. Lathi. Modern digital and analog communication systems. Oxford
University Press, New York, 1998.

[28] S. Lin and D. J. Costello. Error Control Coding. Prentice Hall, Englewood
Cliffs, NJ, 2004.

[29] H.-A. Loeliger, M. Helfenstein, F. Lustenberger, and F. Tarkoy.
Probability propagation and decoding in analog VLSI. In IEEE Int. Symp.
on Information Theory, page 146, Cambridge, MA, Aug. 1998.

[30] H.-A. Loeliger, F. Tarkoy, F. Lustenberger, and M. Helfenstein. Decoding
in analog VLSI. IEEE Communications Magazine, pages 99-101, April
1999.

[31] F. Lustenberger. On the design o f analog VLSI iterative decoders. PhD
thesis, Swiss Federal Institute of Technology (ETH), Zurich, Nov. 2000.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[32] F. Lustenberger, M. Helfenstein, H. A. Loeliger, F. Tarkoy, and G. S.
Moschytz. An analog VLSI decoding technique for digital codes. In Proc.
IEEE Int. Symp. on Circuits and Systems, volume 2, pages 424 - 427, June
1999.

[33] F. Lustenberger, M. Helfenstein, H.-A. Loeliger, F. Tarkoy, and G. S.
Moschytz. All-Analog Decoder for a Binary (18, 9, 5) Tail-Biting Trellis
Code. In Proc. ESSIRC 1999, pages 362-365, Duisburg, Germany, Sept.
1999.

[34] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse
matrices. In Cryptography and Coding. 5th IMA Conference (ed. C. Boyd),
no. 1025 in Lecture Notes in Computer Science, pages 100-111. Springer,
1995.

[35] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low
density-parity check-codes. Electron. Letter, volume 32, pages 1645-1646,
Aug. 1996.

[36] K. Maggard and C. Stroud. Built-in self-test for analog circuits in mixed-
signal systems. In Proc. IEEE Southeast Regional Conf, pages 225-228,
1999.

[37] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer. An analog 0.25pm
BiCMOS tailbiting MAP decoder. In IEEE Int. Solid-State Circuits Conf,
pages 356-357, Feb. 2000.

[38] N. Nagi, A. Chatteqee, and J. A. Abraham. A signature analyzer for
analog and mixed-signal circuits. In Proc. Int. Conf. Computer Design,
Los Alamitos, CA, 1994.

[39] N. Nguyen. Implementation o f Sub-IV Analog Decoders. MSc thesis,
University of Alberta, Edmonton, AB, Sept. 2004.

[40] N. Nguyen, C. Winstead, V. C. Gaudet, and C. Schlegel. A 0.8V CMOS
analog decoder for an (8, 4, 4) extended Hamming code. In IEEE Int.
Symp. on Circuits and Systems, volume 1, pages 1116-1119, May 2004.

[41] C. Schlegel and L. Perez. Trellis and Turbo Coding, IEEE/Wiley, 2004

[42] C. Schlegel. Trellis coding. IEEE Press, New York, 1997.

[43] C. E. Shannon, “A mathematical theory of communication. Bell Systems
Tech Journal, 27:379-423, 623-656, July 1948.

[44] C. Stroud, P. Karunaratna, and E. Bradley. Digital components for built-in
self-test of analog circuits. In Proc. IEEE int. ASIC Conf., pages 47-51,
1997.

[45] P. Sweeney. Error Control Coding. John Wiley & Sons, West Sussex,
England, 2002.

[46] S. Tabatabaei and A. Ivanov. A built-in current monitor for testing analog
circuit blocks. In IEEE Int. Symp. on Circuits and Systems, volume 2,
pages 109-114, June 1999.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[47] E. Teraoka et al. A built-in self test for ADC and DAC in a single-chip
speech CODEC. In Proc. Int. Test Conf., pages 791-796, Los Alamitos,
CA, 1993.

[48] R. Togneri and C. J. S. deSilva. Fundamentals o f information theory and
coding design. Chapman & Hall/CRC, New York, 2002.

[49] M. F. Toner and G. W. Roberts. A BIST scheme for a SNR, gain tracking
and frequency response test of a sigma-delta ADC. IEEE Trans. Circuits
and Systems, pages 1-15, Jan. 1995.

[50] A. J. Yiterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans, on Information Theory,
13:260-269, April 1967.

[51] D. Vogrig, A. Gerosa, A. Neviani, A. Amat, G. Montorsi, and S.
Benedetto. A 0.35-pm CMOS analog turbo decoder for the 40-bit rate 1/3
UMTS channel code. IEEE J. o f Solid State Circuits, 40(3): 753 - 762,
Mar. 2005.

[52] N. Wiberg, H.-A. Loeliger, and R. Kotter. Codes and iterative decoding on
general graphs. Europ. Trans. Telecommunications, volume 6, pages 513—
525, Sept/Oct. 1995.

[53] N. Wiberg. Codes and decoding on general graphs. PhD thesis, University
of Linkoping, Sweden, 1996.

[54] C. Winstead. Analog Implementation o f a Product Decoder. PhD thesis,
University of Alberta, Edmonton, AB, Aug. 2004.

[55] C. Winstead, J. Dai, W. J. Kim, S. Little, Y.-B. Kim, C. Myers, and C.
Schlegel. Analog MAP decoder for (8, 4) Hamming code in subthreshold
CMOS. In Proc. Advanced Research in VLSI Conference, pages 132-147,
Salt Lake City, UT, March 2001.

[56] C. Winstead, J. Dai, S. Yu, C. Myers, R. R. Harrison, and C. Schlegel.
CMOS analog MAP decoder for (8, 4) Hamming code. IEEE J. o f Solid
State Circuits, 39(1): 122-131, Jan. 2004.

[57] C. Winstead, N. Nguyen, Y. Gaudet, and C. Schlegel. Low-voltage CMOS
translinear circuits for analog decoders. In Proc. Int. Symp. on Turbo
Codes and Related Topics, Brest, France, Sept. 2003.

[58] C. Winstead, N. Nguyen, V. Gaudet, and C. Schlegel. Low-voltage CMOS
circuits for analog iterative decoders. Accepted to appear in IEEE Trans,
on Circuits and Systems I, 2005

[59] C. Winstead and C. Schlegel. Density evolution analysis of device
mismatch in analog decoders. In IEEE Int. Symp. on Information Theory,
page 293, Chicago, IL, June 2004.

[60] M. Yiu, V. Gaudet, C. Schlegel, C. Winstead. Digital built-in self-test of
CMOS analog iterative decoders. In IEEE Int. Symp. on Circuits and
Systems, volume 3, pages 2204-2207, May 2005

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[62] S. Yu. Design and test o f error control decoders in analog CMOS. PhD
thesis, University of Utah, Salt Lake City, Dec. 2003.

[63] S. Yu, C. Winstead, C. Myers, C. Schlegel, and R. R. Harrison. An analog
decoder for (8, 4) Hamming code with serial input interface. University of
Utah, March 2002.

[64] —, Analog Devices. AD8541/AD8542/AD8544 Data Sheet: General-
Purpose CMOS Rail-to-Rail Amplifiers, 2003.

[65] —, Analog Devices. AD9764 Data Sheet: 14-bit, 125 MSPS TxDAC D/A
Converter, 1999.

[66] —, Digilent. Digilab 2E Reference Manual: Digilab 2E FPGA
Development Board, 2002.

[67] —, DLP Design. DLP-USB245 User Manual: USB to FIFO Parallel
Interface Module, 2002.

[68] —, Texas Instruments. SN74LV125A Data Sheet: Quadruple Bus Buffer
Gates with 3-State Outputs, 2003.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

