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ABSTRACT

This thesis deals with three kinds of inequalities, the Landau-Kolmogorov-
type inequality, inequalities involving mixed and directional derivatives, and direct
and converse inequalities of Bernstein-Durrmeyer operators.

The Landau-Kolmogorov-type inequality will be discussed in Chapter 2.
We will use Chebyshev-Euler splines to obtain some new results of the Landau-
Kolmogorov-type inequality on a finite interval. These results can be applied not
only to finite intervals but to R or R* as well

In Chapter 3, estimates of mixed partial derivatives by itcrated directional
derivatives of the same order in R? are given. This incquality will he proved for
1 < p < 0o on any open set in R% with the best constant 1. This result can
be extended to other function spaces which satisfy certain conditions.

The last three chapters, that is, Chapter 4, 5 and 6 arc devoted to the study
of the multivariate Bernstein-Durrmeyer operators. Some basic properties and
strong converse inequalities of type C and D of these opcrators will be given in
Chapter 4. The strong converse inequality of type A for 1 <p<oo, d <3 and
1<p<oo, and any d will be proved in Chapter 5. For p=1 (or p =00) and
d > 3, a somewhat weaker result, namely a strong converse incquality of type B

will be obtained. In Chapter 6, we will establish the weak-type direct and converse



incqualities between the approximation of the multivariate Bernstein-Durrmeyer

operators and the best algebraic polynomial approximation.
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CHAPTER 1

INTRODUCTION

1.1. Preamble

In this thesis, we consider three kinds of inequalities, the Landau-Kolmogorov-
type inequality, inequalities involving mixed and directional derivatives, and direct
and converse inequalities of Bernstein-type operators.

It is well known that the Landau-Kolmogorov inequality was initiated by

Landau in 1913. It can be written as

s
;‘, 1<€<n-1

f(n)

(1.1.1) 17O, < Cae I

Landau {10] proved the above inequality with sharp constants for n=2, I=R
or I=R*. In 1939, Kolmogorov [9] proved (1.1.1) on R for all n and deter-
mined the best constants Cp¢. There are several alternate proofs of Kolmogorov’s
theorem available in the literature.

Several papers dealt with (1.1.1) for I = R*, but their constants are not
the best possible when n > 4. In 1970, Schoenberg and Cavaretta [11] gave
a procedure to compute the best constants of (1.1.1) for [ = R* for all n.
However, the constants are given as limits of some sequences and are not explicit.

When we consider the Landau-Kolmogorov inequality on a finite interval

(1.1.1) is not valid. Instead of I on the left hand side of (1.1.1) we need either

1



I', a subinterval of I, or an additional term on the right hand side. Gorny [8§]
started the study of the above inequality on a finite interval in 1939. This problem
is still being investigated and I hope to make a contribution towards its solution.

One can consider the Landau-Kolmogorov inequality in other metric spaces.
In this thesis, we will consider this inequality only in uniform norm on the real
line R or part of R . We will use Chebyshev-Euler splines to obtain some new
results for the Landau-Kolmogorov inequality on a finite interval. These results
can be applied not only to finite intervals, but to R, or R*, as well.

When we deal with multivariate differentiation in R? a natural question
arises: how can one estimate mixed partial derivatives by iterated dircctional
derivatives of the same order in R%7 Estimates were proved implicitly in the
effort to characterize the K-functional of the pair (L, W;) (1, Ch. 5]. Though
this fact is not stated explicitly, the Kemperman Lemma [1, Lemma 4.11] actually
implies

of
Ik

ok f
0y - - - 9

< C(k)sup
Ly(D) ¢

(1.1.2) |

Ly(D)

(with C(k) that increases geometrically when k — oo [1, Ch. 5]) for a domain
D which is nice enough and any k directions &;,...,& in R¢. (This will
be shown explicitly in Chapter 3.) This inequality may be also accomplished by

resorting to the Laplacian and the Riesz transforms, where p is restricted to



1 < p < 0o and the constant is of the order (dp/(p —1))* (see [12]). We will
prove the above inquality for 1< p<oo with the best constant, that is, 1.

We will then consider the Bernstein-Durrmeyer operators. These operators
were introduced by Durrmeyer (7] in 1967 (for the one dimensional case) and
studied by Derriennic [3] (1981) who also introduced the multivariate analogue in
[4]. Their approximation behaviour was discussed extensively by Derriennic (3],
and by Ditzian and Ivanov [5].

Recently, Berens and Xu (2] found a useful relation between the eigenvalues
of M, and M,_;. From that, they obtained a strong converse inequality of
type D, in the terminology of [6], that was given later.

The Bernstein-Durrmeyer operators possess some desirable properties, most
notably, commutativity (between themselves and with the Voronovskaja-type dif-
ferential operator), self-adjointness, and simple expansion by Legendre polynomi-
als. These properties of the Bernstein-Durrmeyer operators make them simpler
in some respects than Bernstein polynomial operators. Therefore, we may be
able to prove some approximation results for them that we are not able to prove
for Bernstein polynomial approximation, or its L, analogue, the Kantorovich
operator.

Derriennic [4] (1985) generalized the above operateors to the multivariate case.
In this thesis, we will study these multivariate Beznstein-Durrmeyer operators, give

some of their basic properties and prove the strong converse inequality of type A



for 1<p<o0, d<3 or 1<p< oo, any d andof typeBfor p=o00, 1 and
d > 3. Finally, we will compare this approximation process with the best algebraic

polynomial approximation using the weak-type inequalities in both directions.

L]

1.2. Outline of the thesis
The Landau-Kolmogorov inequality will be discussed in Chapter 2. We will
use the Chebyshev-Euler splines to prove that if ||fll; < |Tukll,, |[|f™]], <

"T,E:',g"I and @+ k4 £ is even, then
(12.1) FOQ) < ITO),  1S£<n-1

where T, r(z) is the Chebyshev-Euler spline of degree n with k knots and

I =[-1,1]. Aided by the above inequality we can prove that

- L
(12.2) £l < Ch e FIN % £

with the best constant C:.,u where I' is a subinterval of I, but we do not
know whether or not this is the biggest subinterval with the above property. In
the last section of Chapter 2, we will replace I by R, the real line, and obtain
a new proof of Kolmegorov’s theorem.

In Chapter 3, we will prove that

o 2
06 O

() 7

(1.2.3) I

L



where ¢ and &,...,& are unit vectorsin R?, L =Ly(D), 1<p<oo, or
L =C(D), D being an open set in R?. From the validity of {1.2.3) for C(RY),
we may deduce the result for other function spaces, namely any Banach space of
functions or generalized functions on R4 for which translation is a strong, weak,
or weak* continuous isometry.

In the following three chapters, we will study the multivariate Bernstein-
Durrmeyer operators. Some basic properties and strong converse inequalities of
type C and D (in the terminology of [6]) of these operators will be given in Chap-
ter 4. The strong converse inequality of type A for 1 < p < oo, d <3 and
1< p< oo, and any d will be proved in Chapter 5. For p=1 or p=o09,
and d > 3, we will prove a somewhat weaker result, namely a strong converse
inequality of type B in the terminology of [6]. In the last chapter, that is, Chap-
ter 6, we will obtain the weak-type direct and converse inequalities between the
approximation of the multivariate Bernstein-Durrmeyer operators and the best
algebraic polynomial approximation.

References will be given at the end of each chapter.
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CHAPTER 2

LANDAU-KOLMOGOROV INEQUALITY
ON A FINITE INTERVAL

2.1. Introduction

In 1913, Landau [11] proved that
(2.1.1) 1O, < CacllfIT [F™NF,  15€<n-1

for n=2 I =R or I =R% with the sharp constants V2 and 2, re
spectively. In 1939, Kolmogorov [10] solved (2.1.1) on R forall n and ¢ and
determined the best constants. There are several alternate proofs of (2.1.1) for
I = R of which we mention those by Bang [1] (1941), Cavaretta (3] (1974), and

de Boor and Schoenberg [2] (1976).

Hadamard [7] (1914), Gorny [6] (1939) and Matorin [12] (1958) were con-
cerned with (2.1.1) for I = R*, but their constants were not optimal when
n > 4. In 1970, Schoenberg and Cavaretta [14] gave a procedure to find the best

constant for the inequality for I = R*, and all n and £. The constants were

given as limits of some sequences and are not explicit.



Several papers have dealt with inequalities similar to (2.1.1) on a finite in-
terval. Of these, we mention Gorny [6] (1939), Kallioniemi [8] (1976), Pinkus [13]
(1978) and Fabry [5] (1987). In the present work, Chebyshev-Euler splines are
used to prove the inequality generalizing the Landau-Kolmogorov-Gorny incqual-
ity with the best constant in some sense. These results arc generalizations of works

by Fabry [5] and Kallioniemi [8]. We will prove that

ITaa(0)) & 1S
B [y Ny

(2.1.2) FOllicrisa-g <
|| "[ 1+6,1-8] pl—k%(zn—l.n!)

n,

where T, k(z) is the Chebyshev-Euler spline of degree n with k knots, p, .« =

22l £l I Tak(O)]
Taill—yq and 6= ( , ' ™
o kl-s. pn | 1,y o

P (2071 nl)w
can not be replaced by any smaller one.

1/n
) . The constant

If we use a sequence of intervals [—A,, A, such that A, — oo, we can
derive a new proof of Kolmogorov’s theorem for R. Therefore, one obtains a
uniform approach to the Landau-Kolmogorov problem by using the Chebyshev-

Euler splines (see also Schoenberg and Cavaretta [14] for I = Rt).

2.2. Properties of the Chebyshev-Euler splines

In order to solve the Landau problem on a finite interval we consider the



following perfect splines defined on the interval I =[-1,1]:

k n-—1
(2.2.1) T(z) = 2" 'z" + ) (-1)'2"(z— &)} + Y aja?

i=1 j=0

where aj, 0<j<n and &, 1= i < k are free parameters, and

(2.2.2) ~l<b << <& <L

Let T be the collection of all perfect splines of the form (2.2.1).

DEFINITION 2.2.1: We define the perfect spline Ty x(z) as the function of form

(2.2.1) such that

(223) Tl = ja 171

We call T, i(z) the Chebyshev-Euler spline of degree n with k knots

(sce [4] and [14]).

If for T(z) € T there are m points —1 <1 <ty <+ <ty £1 such

that
T(t;) = (-1)H|T|,, 1<i<m

for some fixed ip (0 or 1), wesay that T'(z) has m points of equioscillation.



Now, we cite an important theorem from [4], yielding some basic propertics
of the Chebyshev-Euler splines. In the next section, we will use those properties
to prove our main results. This theorem guarantees the existence and uniqueness

of Tni(z).

THEOREM 2.2.2 (CAVARETTA [4]). There is a unique perfect spline Tux(x) of
degree n with k simple knots satisfying (2.2.3). T, x(z) has preciscly n+k+1

points of equioscillation, and is in fact the Chebyshev-Euler spline.

The following proposition was stated in [14] but no proof was given there.

For the sake of completeness, we will prove it here.

PROPOSITION 2.2.3. For T,i(z) given in Definition 2.2.1,

Tup(—z)= (—1)"+an,k(m).

PROOF: Suppose ~1 < € < €& < -+- < €k < 1 are the k simple knots of

Tni(z), and

k n—1
Toi(z) =2""1z" + E(—l)" 2%z - &)Y + Z arzt.

=1 =0

10



Since

(—z — &)} = (-1)"(z + &)" - (-1)*(z + &%

we have
k . k .n—l n
To k(=) = (-1)" [2"'11" + 3201y + (-1 Y (e) gr-tyt
i=1 i=1 =0

+ ni(_l)n+la‘ :L'l]

£=0

k
= (~1)m** [2"'1:1:" + 3 (1Y 2"z — )3 + P,,_l(z)]
j=1

= (=1)" T, i(z)

where j=k—i+1, &= —Nk-i41 =—nj, and

Pa_y(z) = (-1)* "2—:1 [(—1)"+‘a¢ + 2" (Z) Xk:(—l)‘ g;'-‘] z*

=0 i=1

is a polynomial of degree n — 1. Thus ﬁ,,k(z) is a perfect spline of the form
(2.2.1), and ||Tupll; = ||fn,k|| ;- Therefore, by the uniqueness of T, i(z), we

have

T i(z) = To k()

11



and
€i=—Ek_.-+1, t=1,2,...,k.

This completes the proof of Proposition 2.2.3, O

PROPOSITION 2.2.4 (KARLIN [9]). Suppose puix = |[Tuxll, with T, i(z)

satisfying (2.2.3). Then py is strictly decreasing in k and

k-!-l'x-lr-loo Pak =0

([9, p. 409, Lemma 5.7)).

2.3. The main results

In this section we discuss the main results of the paper. First we prove -
(2.1.2) and give another version of the Landau-Kolmogorov incquality on the finite

interval. Then we derive a new proof of Kolmogorov’s theorem on the real line

R.

In order to prove (2.1.2), we need the following key result, which was proved
in [8] for k = 0. In that case, T,i(z) is exactly the Chebyshev polynomial of

degree n.

12



THEOREM 2.3.1. Let f(z)€ C"~![-1,1], and f(»=1)(z) be absolutely contin-

uous such that
Il < paey JIFMf 2770 - ml
Then, foreven n+k+¢ and 1<€<n-1, we have

(2.3.1) 1£90)| < |T0)-

The constant |T,Sf,)c(0)| on the right hand side of (2.3.1) cannot be replaced by

any smaller one.

PROOF: Without loss of generality, we assume that n+k and £ are both odd.

(The case where both n+k and £ areeven can be treated in a similar manner.)

Set
F(z) = (f(z) — f(—=z))/2-

Then F(z) and T,i(z) are both odd functions, and
FO(z) = (fO(z) - (-1)'fP(-z))/2, 0<i<n.

Hence

|[FO©)] = |£9(0)],

13



and

IF|l < pnks "F(")" <2nt.nl

We now have only to show that
[FOO)] < |T2(0)].

Assuming this is not so, there exists a constant a, a > 1, or a < -1, such
that
F(0) = aT5(0).
We assume a« > 1 and the case a < —1 can be treated in a similar manner.
Define h(z):{-1,1] — R by
k(z) = aTy x(z) — F(z),

then h(z) is an odd function.

Since [|F|| € pnx and T, i(z) has n+k+1 points of cquioscillation
by Theorem 2.2.2, h(z) must have at least n + k zeros in [~1,1]. By the
Rolle theorem, h{(~')(z) must then have at least n+ k + 1~ £ simple zcros
in (=1,1). Observing also that h(~!)(z) is an odd function, h{*~1)(0) = 0.

Thus, by the Rolle theorem again, h{9(z) must have at least n 4k —£ zcros

14



in (=1,0)U(0,1). On the other hand, by the definition of h(z), h{9(0)=0.
Therefore, h(¥(z) has a:t least n+k—£+1 zerosin (~1,1) and R(»—1)(z)
will have at least k+2 zerosin (—1,1). This implies that there exists an integer
ig, 1 <19 < k~1, such that h(®=1)(z) has at least two zeros in [€igs Eig+1)-

We select two of these zeros, say 77 and 72, and assume 7 < 72. Thus,

0 = [AD(ma)] = [ () ~ K" m)

2 \
(aT,(.:'k'(z) - F(“)(z)) dz
m

> a(ne — )2 -0l = (g2 —m)2" 7" -nl >0,

which is a contradiction. O

THEOREM 2.3.2. Let f(z)€ C*~![-1,1], and f»—1(z) be absolutely contin-

uous, then for an even integer n +k + £,

T2 0)! L
el 1 EA

l_'r‘T n—1
pn,k (2 'n)

(2.3.2) 1N rvs1-a <

2! - nl|l £
pa k[l ]
on the right hand side of (2.3.2) can not be replaced by any simnaller one.

1/n
where 6 = ( ) and 1< ¢ <n~1. Furthermore, the constant

PROOF: For any zo € [-1+ 6,1 —§], define F(z):[-1,1] = R by

F(z) = pn,kf(z0 +6z)/ ||fIl -

15



Then
IFIl < pngs  |JF™|| <271 -l
and
|FO )| = pu s FO(z0 + 62)/ | £

Applying Theorem 2.3.1, we have

|FO(z0)| = [FO©O)| UFN /(pnk - &)

|75200)]
" o (20t n

L A
AU (A

This completes the proof. O

For the general finite interval [a,}], using linear transformation, we have

COROLLARY 2.3.3. Let f{z) € C"Va,b], f("~V(z) be absolutely continuous,

then for even n+k+ 4,

|Tut (©)] &1
(2.3.3) 1F N arss-0 < =2 - z "f"[la,bi' 1l
Prk @n—t -nl)s
on—1 ni 1/n
where 5=( n"f"[“"’]) and 1<£<n—1.
pr k[l F o
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In Theorem 2.3.1 we use IT,(:;‘(O)I to estimate |f(9(0)]. Actually, using
the same argument, we can estimate |f (9(£1)| by IT,(:;C(:i:l)| This is a gen-
eralization of Theorem 1 in [5], that theorem was proved only for the Chebyshev

polynomials.

THEOREM 2.3.4. Suppose f(z) satisfies the conditions in Theorem 2.3.1. Then,

for 1<€<n-1, wehave
(2.3.4) |FO1)| < |TFD).

The constant |Tf3(:&:1)| can not be replaced by any smaller one.

REMARK . A stronger result than Theorem 2.3.4 was obtained by Schoenberg
and Cavaretta in [14]. In fact, the interval can be a little smaller, but the proof

there is quite complicated and only a sketch of the proof is given.

Using Theorem 2.3.4, we can also estimate the two parts of the interval
[-1,1] adjacent to *1. Thus, combining with Theorem 2.3.1, we will obtain
another version of the Landau-Kolmogorov inequality on the finite interval. This
improves the result of Theorem 2 in [5}, in particular, for the middle part of the

interval.

17



THEOREM 2.3.5. Let f(z) € C"~?[-1,1], and f»=1)(z) be absolutely contin-

uous, thenfor n+k+{ evenand 1<¢<n-1,

0o 1ol <ol (1) [ (5, ()M}

where I; = [~1+2(: +1)/3, -1 +2(: +2)/3], i=-1,0,1

PROOF: For i=-1,0,1, let zq € I;, define Fi(z):[-1,1] = R by
Fi(z) = paif(zo + (z —)u)/ ||l

where p = min{2/3, 2" -n! | fll /(pnkllf™|)]*}. Then, Fi(z) is well defined,

and
"Fl“ < Pn ks "F,(n)” < zn—l . ‘n!, 7= —1,0, 1.

Applying Theorem 2.3.4 or Theorem 2.3.1 and observing that

|FOzo)| = IFIHFOO|/(pupn?),  i=-1,0,1,

we have
‘ I 520 3\ 1A |"
|f( )(‘l‘o)l I ( )I ( max on—1. g1’ 5 ;n—;
This completes the proof of Theorem 2.3.5. a
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REMARK . Since n+k-+£ can be any integer (even or odd) in Theorem 2.3.4,

n+k+£ can be odd in the inequality (2.3.5) for ¢ = 1. It is also unnecessary

to divide [—1,1] into three equal parts, but in this case, the constant (3/2)" in

front of ||f||l /pnx Wwill be replaced by a different constant.

In Corollary 2.3.3, one can obtain the inequality (2.3.5) by linear transfor-

mation for a general finite interval [a,]. Now we can derive a new proof of the

Landau-Kolmogorov inequality on R.

For convenience, we normalize Ty x(z) first, writing
(2.3.6) S k(z) = P71 To p(P3 42).
Clearly Sux(z) is defined on [-—p:’-i', p;’f], and satisfies

ISecll =1,  |ISCh| =2"""-nl.

LEMMA 2.3.6. For S, i(z) defined in {2.3.6), we have

237 [S940)] 2|52 0) 2+ 2

where 1<€<n-1 and n+£+17 is even.

19
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PROOF: Without loss of generality, assume that i =0 and n+¢£ is cven. Sct

1/n
2k
Fosesa(@) = 222 T ot ((E_Zﬁ) m) ,

Pn,2k+2 Pn2k

Since pn2k+2/Pn2k <1, Fnzky2(z) is well defined on [-1,1], and
| Fazk+2ll < a2k, "Fr(:?z)k+2" <2oml.nl
By Theorem 2.3.1,

4
0]

s
(0 _ Pn2k Pn2k+2 \ "
F"’2k+2(0)| T Pn2k+2 ( Pn2k )

4
Tr(a,;kn(o)l <

or
4 {4
790 _ [7%142(0)]
S 1-% 2 - 1-4 ’
Pn 2k Pn,2k+2
Thus,
{4 4
S9(0)] 2 [8920)]-

THEOREM 2.3.7. Let f(z) € C*1(—o0,0), f»=1)(z) be absolutely continu-

ous, then

1-4L

(23.8) "f(t)"(-—oo,oo) < Cn,l "f"(—o"o,oo) "f(")”z_‘—oo,oo)

20



where Cue = lim 159, 44:(0)|/(2" 1 nt)%, and i=0 or 1 such that n-+E+i

is even. Moreover, Cq, is the Kolmogorov’s constant for R.

PROOF: Suppose that i =0 and n+£ is even. Applying Corollary 2.3.3, we

have

1580 0) | 1-% £
17l csr < G iy MU0 W

Since k is arbitrary, and by Lemma 2.3.6,

"y %
"f“)”(—oo,oo) < Cn,l "f“:—o::,oo) "f(n)"(n"°°1°°)

Now, consider the function sequence {Sy2k(2)}3%,- Let N beany integer.
By Proposition 2.2.4, there exists an integer K such that
-1
pn’;k_>_N+1, for k> K.
Using definition of Sy 2x(z) and applying Theorem 2.3.4, we now have

"Sv(tt,)%”[_)v'm < Tv(:())(il)l , 0<L£<Zn, k2K

Hence, for any z3, =2 € [-N, N}, we have

T'Sf:l)(il)l £y — 2], 0<f<n-1,k2K.

4 4
Suer) = Siule)| <

21



Therefore the functions {S,(g H(2)}82 (0< €< n-—1) are uniformly bounded

and equicontinuous on [~N, N].

Using the Arzela-Ascoli theorem, we can find a subsequence {Su2k: ()52,
of {Sn2k(z)}2k, such that {S(l £ (2)}2; (0<£<n—1) areall uniformly
convergent on [N, N]. By the diagonelization process, we pick a subsequence
{Sn,2k; (2)}721 of {Snz2k/(x)}2;, such that {.S,(gk ()}, 0<€<n-1)

are all uniformly converger v + . any finite interval.

The limit function of the above process, En(z), satisfies En(z) € C"™!(—00,00),

E{*(z) is absolutely continuous,

"E"”(—OO,OO) <1 "Egn)"(-—oo 00) — < 2" el
and
2k(0)| 0<¢<n-1

Therefore, Epn(z) is an extremal function of (2.3.8), and Cn, should be the

Kolmogorov’s constant for R. This completes the proof. 0

By Kolmogorov’s theorem, we know Cpg,e explicitly, but it is difficult to

calculate ful)zk +i(0) for large n and k. However, Theorem 2.3.7 established

the relation between the Kolmogorov’s constant Cn,¢ and {Sn 2k4i(0)} 52, For

22



n=2 or 3, we can calculate Sf:)%“, which yields exactly the Kolmogorov’s

constants Cpne¢. Actually all terms in (2.3.7) have the same value for n =2 and

n=3.

—
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CHAPTER 3

MIXED AND DIRECTIONAL DERIVATIVES*

3.1. Introduction

Estimates of mixed derivatives by directional derivatives were proved (im-
plicitly) in the effort to characterize the K functional of the pair (Lp, W;) (see
[1, Ch. 5]). Though this fact is not stated explicitly, the Kemperman Lemma (see
[1, Lemma 4.11, p. 338]) actually implies for a domain D which is nice enough

o*f
otk

ok f

T < C(k)sup

L,(D) ¢

(3.1.1) l

L, (D)

with C(k) that increases geometrically with k (see {1, Ch. 5]). In this paper
we will show that C(k) can be replaced by 1, which is obviously the best pos-
sible constant, as the directions £;,...£k areany k directions, or unit vectors,
in R?. We remark also that here the assumption that D is open in R?¢ is
sufficient. Furthermore, the result is valid for many other spaces, as will be shown
in Section 3.5. We hope that this inequality will help in settling other problems,
for example the investigation of the still open problem of the best constant for
the multivariate Landau-Kolmogorov inequality (see [2]). We further believe that

(3.1.1) with the elegant best constant C(k) =1 is desirable by itself.

*Joint work with Z. Ditzian. Proceedings of the American Mathematical Society,
Volume 108, Number 1, January 1990, pages: 177-185.

25



3.2. The local result
The local version of the result of this paper is given in the following theorem,

which is essentially the basis for all other results of the paper.

k
THEOREM 3.2.1. Suppose aa_g'? f(z) exists and is continuous in a neighbourhood
K
UC R* of z for any direction £. Then the mixed derivative 5?—_55— f(2)
1...06k

exists, is continuous in a neighbourhood of z¢, and

0 0 oF
(3.2.1) ———f(wo)l < sx;p|a—£kf(wo)|-

.a—é—l.-.aﬁk

REMARK. We note that ¢; are any k directionsin R

k
We observe that Theorem 3.2.1 implies for an open domain D and 5% f(z) €

Y -%f(m) € C(D) and
k

C(D) tha.t a—gl...a

(3.2.2) f( )

sup

(% e) 1)

We will actually prove the result for the spaces of functions L,(D) and

C(D) simultaneously.

o*f

2.2. I 9N <M,
THEOREM 3.2.2. Suppose f € B, 3£’°f € B forall ¢ an aek ||, <
where either B =L,(D) 1<p<oo or B=C(D), D beingan open sct in
0 0

d —_ L —
R®. Then 3 ...agkaB and
(3:2.3) sl < (-9) (=)

& 36, " Bk e I\2 ,
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REMARK 3.2.3. It sufficient to prove that _Q_ ...m—0—f €B, and
Bt~ Ok

"_?_ 2
OE: ' Ok

ak
a_aﬁ’"f (=)

f(z)

(3.2.4) < sup
¢

B, B

where B, = L,(D,) or B.=C(D.) and where
(3.25) D, ={z; 2+ B(e)C D}, Ble)={ulull <e)

and |ly|| is the Euclidean norm in RY. That the inequality (3.2.4) implies (3.2.3)
is clear for B = C(D) and follows from the theorem on monotone convergence
for B = Lp(D).

For the proof which will be carried through in Section 3.4 using several
lemmas stated and proved in Section 3.3, we need the following concepts. For a

function space on domain D, S(D), we define the transformations
(3.2.6) T(y)f(z) = f(z +v), T(y): S(D) - S(D-v)

and
(3.2.7)

A, f(z) = (T@y) - Df(z) = fz+y) - f(z), By: S(D)— S(DN(D ~v)).

In the next section, and when proving Theorem 3.2.2, S(D) will be Ly(D.)
or C(D,) where D, would be D, and its translates. We give (3.2.6) and

(3.2.7) in the present generality to accommodate some remarks in Section 3.5.
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3.3. Some crucial lemmas

We first prove the following equivalence result.

LEMMA 3.3.1. Suppose f € Lo(D) or f € C(D). Then the derivative

exists in Ly,(D) or C(D) as alocal strong derivative if and only if
(3.3.1) B~%Ang, ... Ane, f(z) = 9(z) in Lp(D.) or C(D.)

for every € > 0. In this case

o(z) = % .. a%f(z)

a.e. in D, for B = Ly(D) and everywherein D, for B = C(D).

%‘...

REMARK. For h small enough, which depends on &, Apg, ... Apg, is defined

on L,(D.).

PROOF: By the repeated application of the mean value theorem, we see that the

first assumption implies the second for the space of continuous functions. For the

space L, the same argument is used essentially, and we write for |h| < e/k,

z €D,

(3.3.2) A FAng, ... Ake f(z)

h h h ak
= pk cee — uy...dug a.e.
=h L T(ngk)A ‘/o T(‘ulfl)a&l . afk f(:z:)d 1 .d k c
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Obviously, the operator O : Lyp(D) — L,(D.) given by
h h h
On=h7* / T(uits) / / T(ur&1)duy . . . duk
0 0 0
is bounded, and
10se — @l Dy — 0 forall ¢ € Ly(D).
We now show that for g(z) given by (3.3.1) and [t} < elk

(3.3-3) Atlfi e Albfk f(z)

t1...1k

t te1 21
= ! /0 T(ukﬁk)/o /0 T(uié1)g(z)duy . . . dug

t1...%k

ae. in Dy, when g in(3.3.1)isin Ly(D.) 1<p<oo, and everywhere in

D,. when g€ C(D.). To show (3.3.3) we observe that for |ti| < £

1
t1...1k

Ot,...t,, =

1 t
/(; T(urbi) - A T(uré1)duy ... dug

is a bounded transformation from Ly(D.) to Lp(D2e) (1<p< oo) or from

C(D.) to C(Dz.). In fact for ¢; small enough

(3.3.4) 10¢,....ellB. < llvliB
and
(3.3.5) Jim, 104,...0.p(2) — ()l B, =0,
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no matter what order of ¢; we use in the limit. This implies

Oh...t,‘g(z) = ’{il.]% h—kotl...u AhEg e Ahfkf(z)

1

t] .. -tk A‘lfl b 'A‘hfkf(m)}

= ,{13}) On,...n{

1
... 1k

Ahfl ce Alk&f(m)

for z € Dy.. We now write

g(z) = tlllgo cee t{lglo Ot;...u g(:l:)

. . 1
= lim ... lim Age, - Dye f(2)

t1—0  te—01y ... .1k

9
=—a—£1-...-agf($)

in Ly(Ds) orin C(Dg.), which implies our result. O

LEMMA 3.3.2. Theorem 3.2.2 is valid with a constant C(k) instead of 1, that

is

(=) (5) @

(3.3.6) H 9 .2

%‘;-..‘aﬁ

< C(k)sup
B ¢ B

PROOF: We have to prove the analogue of (3.2.4) with a constant C(k) that

does not depend on &. This follows the Kemperman lemma (1, p. 338]) which
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yields
k
(3.3.7) Mo = > HEITREAL
i=1 sc{i,...,k}
where the sum is on all the subsets § of {1,...,k}, |S| is the number of

clements in S
t=hy & and hs= th—lg,-.
JES JES
We choose h such that 2kkh < & so that the transformation on the right

and on the left of (3.3.5) is from B to B.. The constant can now be estimated,

but there is no use for it as eventually the constant 1 will be achieved. O

is

k
LEMMA 3.3.3. Under the assumptions of Theorem 3.2.2, “—?——— f
36 -0 ||

continuous in §;.
k
' 3{1 oo aﬁk

is continuous in &;, but the result is valid as stated and may be useful in the

f

PROOF: For our purposes it is probably sufficient to prove that
B,

future. We can assume the change is in &. Let & —§& = 6y where 7 isa

unit vector. By earlier consideration

&1

0 0 _
22500 - 1 tvctne - vl <
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for ¢ =¢ and £ =¢ for ¢ and h small enough. Using (3.3.4), we now

write

”h-"‘Ahg1 . Ahe,.f(&')"B‘ — ”h—kAhf; Apgg - - Dpg, f(x)”B.

1 1
< “5 ApsnDng, - - - Ape, f(a:)

'EgﬁTfl' B,
o0 0
< 6 O T T T T a v T
< Shbe R B0 €, " OE” || s,
|22
=N onoe, ot | 5
a*f
< g7
< 8C(k)sup IE* || 5

The last inequality follows from Lemma 3.3.2. The result is easily concluded from

the above estimate. ()

3.4. Proof of the main result

We are now able to prove the main result, i.e. Theorem 3.2.2.

PROOF OF THEOREM 3.2.2: The proof follows by induction on k. For &k =2

we use the identity

(3.4.1) AneDun = DY ermy/z — T(BD) AL (e n/2:

32



st (for €#m) & =E+n/lE+al =52 m=E-—n/lE-nl="15

(where the norms are the Euclidean norm of R?), and recall

2 _ 2 2
s - ) -

Using Lemma 3.1, (3.4.1), (3.4.2) and h <¢/4, we have

(3.4.2) @+ B = “E *2' n

d 0

2|, = e Asedumdls,

s ’l'i_%{az 12 A% fll 5, + v? "h_zAi'“f”Bc/z }

o*f 8*f }
_{a o9& il onilis
52
< ryy ’
ssupllze |,
and therefore,
8 {2 o f 2 || O } 0% f
3.4.3 v ar < —=I1| +0 |55 <s —1 .
@43 Naear|, =" logl, ™ NantllsS =& l5e s

We proceed with the induction hypothesison 0 <m <k to obtain

i} i}
I= — A
Ets,-‘-l-l,)& 06 6€kf B
a\™ 0 i}
< —_—
_E,emsﬁa-,& (35) O m+1 aﬁkf B
O\mys O \k—m
< —_— —
S sup (ag) (31;) il
=I(m)<I
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We okserve, using Lemma 3.3.3, that maximum can replace supremum in

both /(m) and I. We need to show that for some direction ¢

akf
I=I(m)= |
m = |54
Given 0 <m < k, we have
om ak—m
1= 10m = | e |

If ¢ =, the theorem is proved, and therefore, we assume £ # n. If k is
even, we choose m so that 2m = k, and using the first inequality in (3.4.3)

repeatedly, we have

k o™ m
1=1(5) = | g
m a2l aZm—zt
2lb2m—2l f
[Z ( ) 651 2m—2t B

a2m

< a2m
ez

m-—1 m
B

=0

and as a2+ 0% =1, we have

m—1 m
Z (e)a2lb2m—2l =1-— a2m,

and therefore,

aZm

”lé&ﬁ

f
B
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For odd k we construct a sequence {mi,&i,ni} such that 0<m; < k,

am.' ak—m.'

DET By

(3.4.4) I=I(m;) = f

B

and the angle between &4 and 741 is half the angle between £; and 7;.
For m; < & we choose &1 = (& +m)/léi +mill, 74 =i and miyy =
9m;, while for m; > & we choose &ip1 = &, i1 = (& + i)/l +mill and

k — miy1 = 2(k — m;). To show that (3.4.4) is valid for i+ 1, we write for

m; < %
¢= (& -/l —mll and ;= gl

and hence

azt 62m.—-—2t ak-2m.- f
6612_{.1 aCZm.-—2l anf;lilm.'

I=1I(m;) < i (Tré') a?(1 — a?)™~t

=0 B
. aZm.' ak—2m.'
<™ || o e fll (@ —af™)L
6fx?+1' 677?4-12"" B

The case m; > £ is symmetric. As |[|& — ni| = 0, Lemma 3.3.3 yields our

0

theorem.
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3.5. Extensions to other function spaces and other domains
As Theorem 3.2.2 is valid for C(D) for all open sets D, it is valid for
C(R?). From this we may deduce the result to a Banach space of functions or

generalized functions on R? for which translation is an isometry, that is

(3.5.1) IT@)f(ls = £ +)lls = IfOl 5

Translation is called strongly, weakly or weakly* continuous if T(y)f —f — 0
(as |ly]l = 0) in the strong, weak or weak® topology respectively (the last only

when X* = B, for some Banach space X).

THEOREM 3.5.1. Suppose B is a Banach space of functions or gencralized func-

tions on R% for which translation is a strongly, weakly or weakly* continuous
o o f o f

isometry. Then € B for all implies ———F—

7 ae* ¢ implies Be ot

are taken in the strong, weak or weak* sense respectively, and

€ B where derivatives

(3.5.2) < sup

e
PROOF: We define

F(z)=(f(z+)9())

for g € B* in case the strong or weak result is proved, and for g € X, X* =
g

B in case the weak* result is proved. We set |lgllp» =1 or |lgllx =1
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respectively, and write

2" f(-)
aE*

OFF(-)
otk

< sup
C(R?) 3

< sup

N _OF()
C(RY) &

0t ...06

k k
As 5&—‘6—3—5;}'—‘ (0) is given for every g, 'éﬁa—fa_ﬂ exists and we may choose

ge such that

ak
—F > | ———F(0
Naé.].-oafk C(R‘)— aflo-.agk ( )l

ak

= (mf('),ge('»’
ak

> ||l — &

- aﬁl coe afkf B

with any € > 0. O

REMARK 3.5.2. Theorem 3.5.1 applies to Loo(RY) as translation is weakly”

continuous isometry in that space.

REMARK 3.5.3. For an open set § for which a function f € W; () can be
extended to F € WI(R?), thatis F(z) = f(z) for z € Q and for which
m(0S) =0, we have

ak

o f
3£ , 0<kZr.

Ly(R)

(3.5.3)

sup
Ly(©)

Ilafl---aﬁkF
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The same is valid for the norms C(Q) and C() if Q issuchthat fe€ C"()
can be extended to F € C"(R?). Such extensions are discussed extensively clsc-

where (see [3] and [4]).

REMARK 3.5.4. In Theorem 3.2.2, L,(f2) can be replaced by any Banach space

of functions on 2, B(?) which satisfy:

(1) [f(z)] = |g(z)] for =€ implies |fl|la@) 2 ll9llsa),
2 iOu..e. By S fllB@) for %i small enough
and

(3) IfllB.y < M implies  lim |Ifllz@.) = Ifllo@)-

It is easy to see that properties (1), (2) and (3) are satisfied by many spaces
and are not particular to L,.
REMARK 3.5.5. As (R4)? =Q satisfies the condition in Remark 3.5.3, (3.5.3) is
valid for C(Rj‘*_), and therefore, the method of Theorem 3.5.1 will imply validity

for any Banach spaces on R,‘f_ for which translation T(y) for y € R“+ is a

contraction which is strongly, weakly or weakly* continuous.
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CHAPTER 4

MULTIVARIATE DURRMEYER-BERNSTEIN OPERATORS*

4.1. Introduction

The Bernstein polynomial approximation process given by
2. (n k = k

—_ k(1 _ \n—kel) = —_

(4.1.1) Bu(f,z)= Y. (k)az (1 -z) f(n) =Y Puu(e) f(n)
k=0 k=0

has served as a guide for theorems that can be proved for a whole class of non-
convolution linear approximation processes. The Durrmeyer modification of Bern-
stein approximation [10] given by

(4.1.2) Mo(f,z) = (n+1) i Pox(2) /0 : P k(t)f(t)dt,

k=0

appears more complicated and maybe is more difficult to compute but possesses
some desirable properties, most notably, commutativity, self-adjointness and sim-
ple expansion by Legendre polynomials. It is the above-mentioned propertics of
M,f that makes it simpler than Bernstein polynomial approximation. Thercfore,

we may be able to prove for (4.1.2) approximation results that we are not able to

*Joint work with Z. Ditzian.
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prove (either at this time or ever) for Bernstein polynomial approximation or its

L, analogue, the Kantorovich operator.

The basic properties of the Durrmeyer-Bernstein operator were given by
Derriennic (2], [3] and [4]. Being a new operator, there were many articles obtain-
ing for the Durrmeyer-Bernstein polynomials what was already known for other

approximation processes with similar techniques used for those processes.

In [6] Ditzian and Ivanov obtained among other theorems a result [6, Th. 7.1]
for M,f , the analogue of which has not yet been proved for Bernstein polynd-
mials (and it is not sure that the analogous result is indeed valid for Bernstein
polynomiais, shough we helieve it is). A more recent attemnt st acnieving better
results for M, f than those known for Bernstein polynomials or their L, ver-
sion, the Kanotorovich polynomials, was made by Berens and Xu [1, Th. 3] who
achieved an equivalence result between the rate of approximation, ||Mnf — fll»
and the appropriate K -functional. This result has been exceeded now by a better

result for Bernstein polynomials by Ditzian and Ivanov [7, section 8].

For the multivariate case an equivalence between the rate of convergence of
the Bernstein polynomials 2nd the appropriate K -functional is still some distance
away, and techniques in [7] would require proof of some difficult inequalities. Even
for the special case of the saturation theorem the equivalence results that are

available [9] are less elegant than desired.
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We feel, therefore, that it is worthwhile to have the equivalence between the
rate of convergence of M, f—f on a simplex and the appropriate K -functional
both as model for further results and as the first multivariate non-convolution

theorem of its type.

4.2. Notations and preliminary results

The multivariate Bernstein type, or Bernstein-Durrmeyer-type operator was
introduced by Derriennic [3] and is given by
n + d
(42.1) Mafy0) = CEDL S 2w [ Prsofie)es
! Ler

where

T = {v=(v1,...,v¢): 0< v, Zd:v,-SI},

i=1

z = (1,...,%a), = (U1,...,%a), B=(k1,...,ka) with k; integers,

(4‘2'2) Pn,ﬁ(u) ﬂ'( Iﬂl)' (1 - |u|)n—|ﬂ|

and

d d
Bl=halka, 1Bl=D ki, lul=) w
=1 i=1

(4.2.3)

k‘---u:‘ where u i=11if kj=u;=0.

and uf =uf
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Derriennic observed and proved the following important properties.

A. M,f isself-adjoint. That is, for f, g € Ly(T) one has

(4'2'4) (Mnf’ g) = <[I.,Mn(f’ u)g(u)du = ./I’Mn(g’u)f(u)du = (f’ Mng)'

B. Thespace L, definedby I, = Lpn®Iln- where II, isthe collection

of all polynomials of total degree £ , and
(fr9) = [ fedoupde

satisfies

A= (n+d)!n!
™™ (n+m+d)l(n—m)

(4'2'5) M,q = An,mq, q € L,.

That is, L,, is an eigenspace of M, with eigenvalue Ap m -

C. Denoting the orthogonal projection of f on Ly by Pmf we have

(4.2.6) M,f = i Amm P f-

m=0

D. The expansion (4.2.6) implies

min(¢,n)

(4.2.7) MoMef = Y AnmAtm Pmf = MeMaf.

m=0
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E. M,f is a contraction in L,

(4.2.8) IMafllp < 15 llp-

While this last assertion was not explicitly stated, it is clear. In fact, for p = oo

> P p(u) /T P, p(z)dz

a0l < M oe DL
’ LeT

= "f"oov
oo

for p=1

(n + d)!
IMa(f, )z < ) /T Po p(u)du /T Pap(@)|f(@)\de

n!
Ler

= [ ¥ Pusteli@lis = [ 1),

Ler
and for 1 < p < oo one obtains the estimate E by the Riesz-Thorin interpola-

tion theorem.

We now introduce the self-adjoint partial differential operator

(4.2.9) a
a:1(1 --3:1) —T1T2 ... —I1Zd LN
0 0 —Z1T2 :
PD)= (-2 ... 2L
(D) (6:1:1 ’ ’ 3:1:4) : .
—ZT1%4 z4(l — z4) 5%

For this differential operator one can show the following Voronovskaja-type

result.
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LEMMA 4.2.1. For fe€ C*T)

(4.2.10) nangon (M, f(z) - f(z)) = P(D)f(z), zeT.

PROOF: Actually this is just a new form of a result proved by Derriennic [4,

Theorem 2] who showed

hm n(Mnf(:B) f(:z:)) Z(l-—-(d-i— 1)z ')3f( z)

i=1

3 z) 4 62 f(=
S e

=1 j=1
J#i

which is (4.2.10) as inspection shows.

We feel that the form (4.2.9), which is explicitly self-adjoint, is more conve-

nient than the summation. Of course, the self-adjointness itself follows from the

self-adjointness of the left hand side of (4.2.10).
We define the K -functional

(4.2.11) K(f,t)p=inf  (If -l +t[|P(D)gllp)-

We note that if we were less restrictive on g and took [, in the restriction on
¢ in (4.2.11) into account, we would not get a smaller K -functional, and if we
restrict g more (like g € C'7(T) ), we would not get a bigger K -functional.
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We can now deduce immediately the following results:

LEMMA 4.2.2. For q€ L,

(4.2.12) P(D)q = —m(m + d)q.

PrROOF: We only have to show

(4.2.13) lim n(Ap,m — 1) = —m(m + d).

n-—+00

This is evident, as

ne--(n—m+1)—-(n+m+d)---(n+1+d)\
n(An,m"l):n( (n+m+d)...(n+1+d) )_
B DVl T Dy ( 1 .
=[ TR - R+ 4] +o(3) =—m(m+d)+0(l)-
1+0(%) - n
LEMMA 4.2.3. For f € Li(T) we have
(4.2.14) P(D)M,f = n(n + d)(Mu-1f — Mnf).
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PrROOF: Using straightforward computations, we have

n(n + d)

m (/\n—l,m - /\n,m)o

(4.2.15) Anm = —

We now recall (4.2.6) and (4.2.12) to write

n

P(D)M, f = P(D) i A Pmf ==Y m(m+d)ramPmf,

m=0 m=0

in which we substitute (4.2.15) to obtain (4.2.14).

From Lemma 4.2.3 we deduce the following useful corollary:

COROLLARY 4.2.4. For f € Li(T) we have

— 1
(4.2.16) Mof—f= ——P(D)Myf.
kL Bk +d) k

PrOOF: For £>n (4.2.14) implies
1
Muf — Mef = Z ey L DIMf.

As for f € Lyi(T), ||IMef — flloyr — 0 , we have (4.2.16).

LEMMA 4.2.5. For f € C*(T) we have

(4.2.17) P(D)M,f = M,P(D)f.
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PRrOOF: We first note that for f € II,

[4
f=)_Pf and Pif €L

=0
and hence (4.2.6) and (4.2.12) imply

min(n,¢)
P(D)Maf =~ Y i(i + d)AniPif = MaP(D)f.

=0
We now observe that any f € C*(T) and ¢ > 0 can be approximated by

p€Ily, £={(f,e) so that
If = plloem + IP(DYSf - P)llee) <e.
As p already satisfies (4.2.17), we estimate
M. P(D)(f - Pllcery < IP(DYf - Pllleen L&,
and using Lemma 4.2.3,

IP(D)Ma(f — p)I| < n(n + &) (| Mn-1(f = P + | Ma(f ~ P)II) < 2(n(n +d)IIf -l

< 2n(n + d)e.

Since n is fixed and & arbitrary, we obtain (4.2.17). O
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4.3. The main result

We denote as usual, A, ~ B, , that is the sequence A, and B, are

cquivalent iff

¢ YA, < B, < cAn.

The main theorem of this paper is the ‘ollowing equivalence between K ( £ -,1;)
P

and an expression involving the rate of convergence of Mif to I

THEOREM 4.3.1. For f€ Ly(T), 1<p< o
1

431)  K(f, 2) ~suplMef —fll, ~ sup [IMif - £l
n/p k2n n<k<2n

where K (f, %) is given by (4.2.11).
P

PROOF: We first prove the direct result

(4.3.2) 1Maf - flly < 4K (£, %),

We choose ¢ € C?(T) such that

IF=gll, <1+ q)K(f, 71{), and %HP(D)glIp <1+ n)I{(f, %),’
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which is possible for any 7 >0 (g dependson f,n,p and 5 ). Using E of

section 4.2, we have

IMa(f — 9) = (f = 9)llp < 2lIf —gllp <201 +n)K (f ’ %)

Using Corollary 4.2.4, Lemma 4.2.5 and (4.2.8) we have

oo 0o 1
Mag=slo =1l Y. g POMigls S 3 o IMPDIol
k=n+1 k(k+d) Nl k(k +d)
°° 1 1 ™
< 1 _t 1
<X gt @sb=[3 > il

1
< ZIIP(D)glly < (1+0)K (f ’ %),,-

Choosing 1 = 3 , we have (4.3.2).

Since K ( f, %) is monotone in n and
P

sup ||Mif — fllp £ sup |Mxf = fllp,

n<k<2n
we have to show only

(4.3.3) K(f, %)psc sup || Mif — fllp.

n<k<2n

We now construct

2n

o= ¥ el X mra
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and observe that g € C*(T)

lg = flls < su |Mif - fllp

P
<k<2n

and

2n

1
Y = ——=P(D)Mf
L, K+ d) (D)Mi

1 1] & 1 17!
LipDygll, < = _1
el <1 3 g p

=n-1

2n
< Hontd) > (M1 f — Mif)
n k=n+1 P

< C(IMaf = fll, + 1 Manf = £1,) SC_sup [[Mef = fll.

REMARK 4.3.2: Examining the direct proof and the choice of g , we observe

that (4.3.1) can be replaced by

1
4.3.4 K(f, =) ~ M f —
(43.4) (5 2),~ o, 1S = 11l

forany A>1 and n > ng(A) . With a little more work we obtain:

THEOREM 4.3.3. For f € L,(T)
[An]

(4.3.5) K (f, l)» ~n Tt Y M - £,

n k=n
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for any fixed A>1 and n 2 no(A) .

PROOF: The direct result follows (4.3.2). We then use (4.3.4) with B instead of
A such that B2 < A and average the estimate that was obtained for K ( £ %)
r

where we take the actual inequality (and not the final result). a

We did not prove Theorem 4.3.3 in full detail as Theorem 4.3.1 provides a

nice (and easy to prove) equivalence result, and we believe that in the future

10 = £l ~ K (£, 3)

will be proved and that will supercede the results here. This last result eludes us

at present for the multivariate case.

The saturation result can now be observed from the saturation of the K -

functional K ( £ %)P

THEOREM 4.3.4. Suppose f € Ly(T)1 < p < oo . Then for K(f, %) =
P
O(;l;) n — oo it is necessary and sufficient that P(D)f defined in the distribu-

tion (Sobolev) senseisin Ly(T) for 1< p<oo andin M(T) (finite mecasures

on T )for p=1.



PROOF: The necessity is the routine weak * convergence argument. The suffi-

ciency follows the fact that C?*(T) (and even the space of polynomials) is dense

O

in the appropriate space.

4.4, Iterations

In this section we will demonstrate how to iterate the result of the last section

and obtain the following result.

THEOREM 4.4.1. For f € Ly(T)

1 r
(4.4.1) K, (f, ;?),, ~ e [E(Mk‘ - I)] f ,,
where
(44.2) Ko(f,t)p = jinf (If = gllo +tIP(D)glls)

and P(D)" isthe r't iterate of P(D) given in (4.2.9).

PROOF: For the direct inequality we write f=f —g+g where

I - ol < 2K (5, =) and nIPDYally < 2K (F, )
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Obviously,

1
SIS -l <ME(f )

H(Mk.

i=1

and using the estimate in Theorem 4.3.1,

from which the direct inequality

< H k7| P(D)Y gllp < Cn~"|P(D) glly

i=1

hies

i=1

)

Toms, —I)]

i=1

follows. For the other direction we define

Ont = [ 2 k<k1d>]—l(§, wra™)

as we have defined g in Theorem 4.3.1. We now define

(4.4.3) On,=I-(I-0;)

where OF is the r‘t iterate of O, . We now choose
= Op,rf.

Using (4.2.8),

10=fll> < [I£1l5,
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and hence

[Tz 2]

i=1

1 = glly < IT = O flly I = Oa)fllp ST sup

nSk.' S2n P

We now write
r

w1yl < Y (3) DY 0isl,

=1

-2 (0

<n7"(2" - 1) |P(D) O fll,

0"V P(DY OLf

P

<Cn~™ sup ||(Mx—I)P(DY'OL7 ],
n<k<2n

<C(r) sup
n<k;<2n

[]_:I(Mk.- - I)]f

=1

p

ADDED IN PROOF: We have just learned that two additional papers on the subject
by Berens et al. and by Derriennic are in preparation. There should not be much
overlap as Berens received this manuscript (in the present form) at the Jakimovski
conference in Tel-Aviv, and Derriennic’s main interest is in a class of interesting
new operators DS.") which extend M, . The inverse results here for M, are

better than Derriennic’s but we do not treat DS{’) at all.
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CHAPTER 5

STRONG CONVERSE INEQUALITY
FOR THE BERNSTEIN-DURRMEYER OPERATOR*

5.1. Introduction

The Bernstein-Durrmeyer operator (see [10] and [3]) is given by

n 1
(5.1.1) Ma(fy7) = (0 +1) Y Pas(2) / Pox(9)(v) dy

k=0

where

Pox(z) = (Z) k(1 — )",

We will prove a strong converse inequality of type A, in the terminology of (8],

that is, we will show
. 1
(5.1.2) 1Maf = fll, ~ inf(I1F = oll, + — [ e*a")'l],)

for 1 <p< oo with ¢(z)? = 2(1 —z). For 1 <p < oo, we will prove an
analogue of (5.1.2) for the multivariate Bernstein-Durrmeyer operator introduced
by Derriennic [4]. Incase p=1 or p=co and the higher dimensional analogue
of (5.1.1), we will prove a somewhat weaker result (that is, a strong converse

inequality of type B in the terminology of [g]). Several recent articles (1], [2] and

*Joint work with Z. Ditzian and K. Ivanov.
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[6] achieved (among other results) converse inequalities for these operators that

are obviously weaker than those in the present paper.

5.2. Noiations
The Multivariate Bernstein-Durrmeyer operator was introduced by Derrien-

nic [4] as

(n+d)

Y Pasl@) [ Puplu)f()

Ler

(5.2.1) M,(f,z) =

where z,u € R¢ (a: = (z1,.. .,md)), B = (ki1,...,kq) with k; integers, and

d
T={u:0<u; Y u; <1}. The polynomial P,g(u) is given by
=1
5.2.2 P, Ul,... ug) = P g(u 1 — fu])*~ 1l
( ) n,kly-",kd( 1 ud) )ﬂ( ) ﬂ'( lﬂl)! ( l I)

d
where B! = ky!---kg!, uf =ult coeukd (uF =1if ki =u;=0), = Zlu,-
t=

d
and |B| =} ki.

i=1
Many properties were proven about the operators M,f which will be

quoted as we use them. We define

623 PD)=3 2 o, '””')5— + Z(az, ‘%)mf('a?a } ai)

i=1 J

and recall that for f € C*(T), it was proved in [5] that
(5.2.4) n{Mn(f,z) - f(z)} = P(D)f(z)-
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(The operator P(D) given by (5.2.3) may take other forms as can be seen in [4]

and [2).)

5.3. Estimate of "P(D)Mnf"p

It follows from Derriennic’s research [6), detailed only for d =1 and d=2,

that
(5.3.1) | P(D) Mufll, < Cn"|Ifll,-
We will need for r =1 the following better estimate on the constant C.

THLOREM 5.3.1. For f € L,(T), where T isthe o-dimensional simplex given

in Section 5.2, and for P(D) given by (5.2.3), we have

(5.3.2) IP(D)Mafl, < 2dn||fll, -

PROOF: Pirst we show that it is sufficient to prove (5.3.2) for p =00 (or p=1).
Assume (5.3.2) for p=oo. Wetake g € CT) and f € Ly(T) and then use

[2, Lemma 2.5)

(5.3.3) P(D)Mng = M,P(D)g, g€ C*T).
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We recall from [4] the self-adjointness of M, and P(D) with respect to the

scalar product (f,g) = [ f(u)g(u) Zu to obtain

(5.3.4)
(P(DYM.f,9)| = [{f, P(D)Mag)| S || £ll,(my IP(DIMuglly, ¢y

<2dn|ifll 14(T) ”9"Lm(T) :

As (5.3.4) is valid for all g € C*(T), we have (5.3.2) for p =1. The incquality
(5.3.2) for p=o00 and p =1 implies now (5.3.2) for 1 < p < oo via the
Riesz-Thorin interpolation theorem.

We observe that
(5.3.5) zi(1 - |z|)5%P,,,p(z) = (ki(1 = |z]) = (n = |B)zi) P p(2)

and hence

(5.3.6) -52—'_2:,-(1 - |z|)£—iPn,,g(a:)

_ (k1= JaD) — (n —1BD=:)"

z:(1 - z)) Pap(z) — (n — |B] + ki) Pa,p(z)-

Similarly
(5.3.7) (5‘% - 5%) a:;zj(éi—i ~ %)Pn,p(z)

_ (kizj — kjzi)?

ziz; Ppp(2) = (ki 4 k) Pup(z)-
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Recalling Ma(l,z) =1, we have

0 = P(D)M,(1,z)

d 2
,_ 3 (k{1 = lal) = (n = 181)22)
w9 = (B Tm

Ler " il

s (kiszjz’szi)_z } - nd> P, 5(z)

i<j J

= Z (Zn,6(z) — nd)Pn,p(2),

wET

which implies

Y I,p(z)Pa,p(z) = nd Y P.p(z) =nd.
Ler LeT

We now estimate

<l

(5.3.9) bn,p = gn—,%ii—)i /T f(z)Pn,p(z)dz

and use I g(z) > 0 to obtain

|P(D)YMo(f,2)| < ) (In,8(2) + nd)Pup(@fll o1y < 20|71 (my -
Ler

We are also able to prove the following useful estimate.
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THEOREM 5.3.2. Under the assumptions of Theorem 5.3.1, we have

(5.3.10) | P(D)M2 f||p <dn||fll,-

PROOF: Following the proof - heorem 5.3.1, we only have to consider » = .

We can write

|P(D)M(f,z)| = |[MnP(D)M,(f,z)|

((n+d) ) Z Py.(z) E

/ (@) P(D)P, g(u) du

leT EGT
P, d
x [ Pas(o)lfo)lds
d
(n+ ! ”f”Loo(T) Z Py () Z / n,-y(u)P(D)P"Iﬂ('ll)(h(“.
leT Ler l
We will show
(5.3.11) (m :!d) n,(W)P(D1F, g(u)du| < nd

n

which implies (5.3.10) for p=o00 and kence for 1 p < co. To prove (5.3.11),

we write

Jo, = 2t > /T P, (4)P(D)P, p(u)du

n!
LeT

_ (n+d)! L Z/(L (D) Py o (u))(Li (D) Py p(u)) du

|
n:
Ler'i<)
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where
(5.3.12)

o 0 ., .
L;i(D) = /ui(l - Iul)a—i— and L; ;(D) = \Juiu; (5&: - 51—;) for i #j.

]

Straightforward computation of L; j(D)Pnn(u) (where n=p or 5= v) leads

now to

Jn,-y S

(n + d)! 2 ki1 = Jul) = (n = 1B]uil 16:(1 = [ul) = (n = 7))
=aabD /T{E ui(L — [ul)

Ler i=1

kiuj — kjuil [biu; — €ui
+ Z LA J) uilij R | '}P,._.,(u)Pn,ﬂ(u) dt.
i<j

Recalling I q(u) (with n=p and n=1) givenin (5.3.8), we use the Cauchy-

Schwartz inequality to obtain

+ d)!
Iny S i n! ) Z /T I"’ﬂ(“)1/2In,7(”)lﬂPnn(“)Pn,ﬂ(“) du
" Ler

{5 T /Tfn,ﬂ(u)Pu,,@)Pn,p(u)du}m

Ler

AT In,7<u)Pu,7(u>Pn,ﬂ(u)du}m

Ler

= T x T3y
The estimate J; ., < (nd)'/? follows from

3" I p(w)Pnp(u) = nd
Ler
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which follows from (5.3.8). To estimate J3*, we write, using (5.3.5),

i(1=|u)) = (n = [y])ui)?
/7" (61 = [u]) = (n — |yDui) Pp(u) du = /(g (1-Ju))—(n— |7|)u.) ,m(u)du

ui(1 — [u])
n!
= m(n =yl + &)
and
(Liuj — &jui)® u,)
/ ou ,’Y(u) du = ( +d)'(e +e )
which imply J3%, < (nd)'/2. 0

5.4. Voronovskaja-type estimates
M. Derriennic [5] proved the Voronovskaja-type estimate (5.2.4). For the

converse inequality of the present paper, we need the following stronger result.

THEOREM 5.4.1. Suppose f € C4(T), M,f is given by (5.2.1) and P(D) is

given by (5.2.3). Then we have for n > 1

an(d)

(54.1) ||Mnf — f — ——~P(D)[Mnf + f]
P
< (@ + gy ) PP,
Rt it o, !
where an(d)= 3 gy T alny n+d]'
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Proor: Using Corollary 2.4 of [2],

o0

Mnf—f=kz k(k+d)P( YMef,
we write

a,.(d)

I(n) =

M.f - f—- P(D)(f + M.f)

00

1
> k(k+d)P(D)(M"f f+ E HE+d)

k=n+1 =n+1

N =

oo

kz k(k+d) Z J(J+d)

=k+1

N~

——7P(DYM;f

Z k(k+d) Z J( +d)P( )'M; f

> P(D)*M;f S PD2PMf~ 1
_Z J(J+d; Z k(k+d) _.’,Z i(5 +4d) gk(k+d)

=n+41

! 1 L |
< 5sup||P(D)*M; | Z ](J+d)| 2 k(k—ﬁs—gjk(k-}-d)l

J =n+1
(with the understanding ), :-- = 0). Using Lemma 2.5 of [2], we have for
k=n+1
feCyT)

P(D)*M;f = M;P(D)*f
and hence

12Dy M;f|| < [|P(DY £
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We now have

I(n)s 5 ||P(D)2f" Z ](]+d)l n(d) 2a5- l(d)l

J=n+1

5 IPDY £ 7).

To estimate J(n), we define j; by
jo = max{j : 2a;-1(d) — an(d) > 0}

and as aj(d) is a decreasing sequence in j, we have

LA | 1
J(n)=j§“ ( +d)(2011__1(d) an(d) + _%:-H iG +d)(an(d) 200 l(‘l))

= Ji(n) + J2(n).

To estimate Jy(n), we write

Jo
Jr)= Y (aj-1(d) — j(d))(¢j-1(d) + a;(d))
j=n+l
3 ! d d d
+ jgl m - an( )(a’n( )— ajo(( ))
2/3
(n+1)°

< aq(d)? - (.tj,,(d)2 - %a,,(d)2 +

as the definition of jo implies an(d) — aj,(d) > Fan(d) and

Jo oo
1 1 2/3
z —_— < E < for n> 1.
. . 2 -— o2 . 2 — 3 .
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To estimate Jz2(n), we write

Ia(n) < an(daz(@ - S (ajo1(d) — aj(d) (aj-1(d) + @;(d))

J=jo+1

= an(d) aj,(d) — ajo(d)-

Combining the estimates for Ji(n) and Jz(n) andas jo22n+1, we have

J() < Jan(d) + = + () (@n(d) ~ 225(d)
2/3
CESE

2/3 1 1

<loars ;, 1
< sanld) + oy Y2 En 2y 2n+1—2°‘"() Tk

< san(d) + + 20rjo(d)(tjo-1(d) — @5o(d))

which combined with the estimate of I(n) concludes the proof. O
REMARK 5.4.2: For most purposes, the slightly easier to prove estimate
(5.4.2) 1Mo f - £ - an(@P(DIl, < 5 |IPDYS,

will be sufficient. In some cases, however, (5.4.1) will yield results which are

qualitatively better.

In one result (Theorem 5.7.2), we need the following extension of (5.4.2).

THEOREM 5.4.3. Suppose f € C?*+*(T) and M,, P(D), T and d are as

given in section 5.2. Then

(5.4.3) (Mo ~ 1) - an(dy POY £, < 22| PDY+ 1],
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PROOF: We first observe

IS = f = an@POIl = | 3 e p PDMef - f)“

k

oo oo 1 )
= Z k(K + k(k +d) J_Xk;, iG+4d) PDYM;]

< 5w 5 e,

=k+1

< Y g P,

< 3 POy,

We prove (5.4.3) by induction. We assume (5.4.3) for r = ¢ and write
|(M, — 1)+ f — an(d) P(D)(Ma ~ D, < e,/f, |P(DY* (M — D], -
Since we have
|P(D)* (M — D], = [[(Ma - DP(DY 1], < = | PDY 1],
and since the induction hypothesis for £=1 implies

laa(d)(Ma — DP(DY'S = an(d)*' P(D)** £}, < “"(d) 1P@)* 11,

the result follows.
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5.5. Estimates of ||P(D)M]f|l, and its consequences
In this section, we will give an estimate of [P(D)M, fll,er and of

|P(D)M £,y which will prove useful also for other Ly(T).

THEOREM 5.5.1. Suppose f € Lo(T), Mnf, T and P(D) are as defined in

section 5.2. Then we have for r =1,2,...

n

(5.5.1) |P(DYM; fllL 1y < 7 Wl Ly -

For the proof we need the following computational lemma.

LEMMA 5.5.2. For Anx given by

(n + d)!n!

.9, = <k<
(5.5.2) Anik (n+d+ k)l (n—Fk)’ Osksn
we have
(5.5.3) k(k+d)A, <n/vr, 0Z<k<n

PROOF: Since 0< Api <1, (5.5.3) follows immediately when k(k+d) < n/r.

To prove (5.5.3) for k satisfying k(k + d) > n//r, we estimate /\{,’k using

. (medmt N (Eaoki) iy, _dtk Y
"n-k‘((n+d+k)!(n-k)!) ‘(Hn+d+z‘) —,.I;Il(l—n+d+i>

i=1

kj .
S( d+ k 1 1

1 - —— = < .
n+d+k, (1+.‘k'lii‘.)ki—'1+k(k+d)jn"1
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For 7 =1, we have

n n
Ank < < .
Wk S TR T D) S Kk T d)

For k(k+d)2>2n/y/r and j=r—1, we have

1 1 1
< < < —
Aok S TR S DG =D S T G- D S

and hence

k(k+d) n
v k(k+d)

<

n
r < —_
k(k + d)AL < NG

O

PROOF OF THEOREM 5.5.1: The eigenspaces of the self adjoint operators (M) f

and M, f arei.esameand f can be expanded by

f=)_Pf
k=0
where
(5.5.4) MoPrf = Ak Prf and P(D)Pf = —k(k+ d)Prf

with A, given by (5.5.2)for k<n and A,k =0, k>n (sce[4]). We now

have, using Bessel equality and Parseval inequality,

Z k(k + d)A],  Pef
k=1

IP(DYMz fllL, ) =
La(T)
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n 1/2
= (30 (et + DX50)’ WPeS )
k=1
] n ) 1/2
< max (k(k + )M, k) (Z || Pe f “Lz(T))
k=1

n
< 7 Wl 2oy -

The following estimate for ||[P(D)Maf||, can now be derived.

COROLLARY 5.5.4. For 1 < p < oo and f € Ly(T) and any A > 0, there

exists r, r=r(A,p,d), such that

(5.5.5) 1ADDM fllL,ry < Anllfllz, e -

PROOF: We recall that Theorem 5.3.1 implies

(5.5.6) IP(D)M; fll,(ry < 2dnlIfliL,cr) -

We now use the Riesz-Thorin interpolation theorem with (5.5.6) for p =

oo (or p=1) and (5.5.1) to obtain (5.5.5) for 2<p<oo (or 1<p<2).
a
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5.6. Strong converse inequalities
In this section, we will prove converse inequalities for the Bernstein-Darrmeyer
operator. We will duplicate some arguments from (8] for the sake of completeness.

We define the K-functional

(56.1) Klfit0 = jaf,, (If =l + IP(DYsll).

We note that in this section we are dealing with r = 1. Furthermore, we
would not get a different K-functional if we relaxed the restriction on the class

of functions to which g belongs. We recall that
(5.6.2) An~ B, if C™'A,<B,<CA,.

The converse result is given in the following theorem.

THEOREM 5.6.1. Suppose P(D), M,f and T are those given in section 5.2

and Ki(f,t), = K(f,t)p is given by (5.6.1). Then we have

(5.6.3) 1Mo f — fll, + | Manf — fll, ~ K(f,1/n)p, 1<p< oo
and
(5.6.4) IMaf = fll, ~ K(f;1/n)p,  1<P<o0.
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REMARK 5.6.2: In the terminology of [8] the results (5.6.3) and (5.6.4) are strong
converse inequalities of type B and type A, respectively. Actually, for d = 1,

(5.6.3) yicids
W\Maf - fll, ~ K(f,1/n), for 1<p=soo,

and this type of equivalence will be shown for d = 2 and d = 3 as well (sce

Theorem 5.6.3). For d > 1 (5.6.3) has an advantage over (5.6.4) only for p=1

and p = oo.
ProOOF: It was shown in (3.2) of [2] that
“f - anf"p < 2I{(fa n_l)P

and hence we need only estimate K(f,1), by [|[M.f— flp+lIMaaf - fl, orby
IMnf — fl| to prove (5.6.3) and (5.6.4), respectively. (Of course the conditions
arc not the same.) We do so by constructing g € C*(T) such that both f— gl
and 1| P(D)g|l will satisfy the appropriate estimate. As the K-functienszi is
given as infimum on all g € C*(T), we will have our result. To prove (5.6.2,, we

choose

1
g= '2'(MndM12;f + MEf).
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Using the commutativity relation M,M,, = M,,M,, wc have

<
P

1 . 1 .
| MuaM2f —~ f”,, +3 | Maf - £,

1 2 1,
“f - EMndMnf_ EMnf E

< 3 1Maaf = fll, +20Muf = fll-

To estimate P(D)g we use (5.4.1) but with nd rather tii-n n, that is, we

write

(5.6.5) ' Mustp — = 24D p(D) Moaw + )

P
< la (d)* + = Lo |P(DY |
—\4 dn 2dn+ . 3 r

with ¢ = M2f. We can write using Theorem 5.3.1

|P(DYM2f|, < 2nd||P(D)M. £,

< 2nd || P(D){5{ Mua3f + M)

p

+nd [ P(D)(ManM2S = Maf) ||, IP(D)(M = DM, S,

< 2nd||P(D)gll, + (2nd)* |Mnf = fll, + 2n*d* [Manf - fll,,-

(Recall P(D)(ManM2f — Myf) = P(D)Mn(Mnf — f) + P(D)ME(Munf ~ f).)
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We now complete the proof using (5.6.5) with ¥ = M?f and the above to write

1
A IP(D)gly < M2 S = M2F], + (oneld? + m) |Pya|,

< Manf = 11, + 20Maf = £,

+ (%adn(d) + aﬁﬁ:) ||P(D)g||,,-

we have

Since agn(d) <

1
—_—<
dn+1) ~ dn+1’

1 .
L)\ P(D)gll, < 84 (20Munf = Fll, +2UMas = Fl), for m 23
To prove (5.6.4) we choose g = %(M,f+2f+M,';+lf) with r =r(p,d) such

that (5.5.5) is satisfied with A =2 (which is possible for 1 < p < co and any

d by Corollary 5.5.4). Obviously

1 4, 1 .
1f - all, < S (IME*27 = £l + 1M 7 = 11,) < 52 + D) 1Maf = Fl,-

To estimate 1 ||P(D)gl| we use Theorem 5.4.1 and write

Ma(MEH ) = M = S D (D) MEHS + ¥ )
p

1 _ 1 o g
< (ZOln(d)2 + 2_(11_-{?_1.)-5) i|P(D)?’1Wn+1f||p
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and

|P(DY?MI 5, < 2n || P(DMLSI,

< 2n P(D)(%M,f“f + 5 M) ”
P

+n-2dn(||M7Yf - f||, -+ IMES = fIL,)

< 2n||P(D)g|l, + n?2d(2r + 1) |M..f - f],
and proceed as before to complete th: ; roof [:]
THEOREM £.6.3. Under the assumptions of Theorem 5.5.1, we have
1Mot = £ll, ~ K(i,1/n),

for 1'<p<o and d=1,2,3.

PROOF: Actually, we only have to prove the ~quivalence for p=1 and oo in

case d=2 and d=3. Wechoose g = 4(M}f+M;f) and usc(5.4.1) to write

with ¢ = M3f. The proof now follows the same lincs (sce also [7]) using the

Mup — 4 28D PDY M+ 9)

i 1 1 y
I,, < (Zar,.(d)2 + m) “p(D)lz/)“,.

fact that nas(d) is close to one for n > no and using Theorem 5.3.2 instead of

Theorem 5.3.1. O
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REMARK 5.6.4: It would be desirable to prove Theorem 5.6.3 for all d and we

believe that this result is valid. This wowu follow from the estimate

IP(D)Mfll, = elri 2l

with &(r) =o(1), r — co. While we bclieve this last estimate to be true, we are

not able to prove it at present.

5.7. Iterations

In this section we will use the results of the last section to obtain Theorems

about equivalence to K,(f,t").

THEOREM 5.7.1. For f€ L,(T), 1<p< oo, or fE L,(T), dim T £ 3 and

1<p< oo,

(8.7.1) Kc(f,n™")p ~ I(Ma = I)fll,

where K.(f,t"), is given by (5.6.1) and M, by (5.2.1).

ProorF: The estimate

(5.7.2) Ke(fin™)p £ C(r) [|(Mn — I)rf"p
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follows from the estimate achieved in Theorems 6.1 and 6.3 and Thcorem 10.4 of

(8] which use the estimate
1

(5.7.3) =[|P(OYMN, < BIS - Mafl,
for some €. We proved for some r

L ”P(D)(M"Hf + M'f)“ <B|f-M

2n n n p - 1 I ilf”p
which implies (5.7.3). ((5.7.3) could have been proved directly.) The estimate
(5.7.4) |(Mn — I)" ||, £ B(r)K-(f,n™"),

was shown when proving Theorem 4.1 of {2] and is the easier direction in any

case. |

We can also prove the following result which is of interest only for p =1

and p=oo when d> 3, asotherwise it is just a special case of Theorem 5.7.1.

‘THEOREM 5.7.2. For f € Ly(T), 1<p< o0, wehav

(5.7.5) Ko(fin™")p ~ mas [|(Mn - D™ (Maa - D[, n2mo

and

(5.7.6) K (fin™)p ~ ((Mn = D)l + 1(Mam = )" fll,, 7270
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for some m = m(r).

REMARK 5.7.3: The advantage of (5.7.5) is that it is easier to prove (and d may
be smaller than m). The advantage of (5.7.6) is that it yields two terms and hence
the iteration is still a strong converse inequality of type B in the terminology of
[8]. Moreover, Mnqy and Mpm in (5.7.5) and (5.7.6) can be replaced by Mq,

with nd <f<nA and nm < €< nA, respectively.
PROOF OF THEOREM 5.7.2: The direct inequalities in (5.7.5) and (5.7.6), that is,
|(Mn = 1) (Mag = I’ fl|, S CK(fin™)p,  0SisST

and
"(Man - I}rf"p < CKr(f,n v 199 s = 17m

follows from earlier results (see for instance the proof of Theorem 4.1 in {2]). For

the proof of (5.7.5) we have to show
(5.7.7) K (f,n™")p < Borg?%cr |(Ma = D™ (Maa — I)'f]|,-
To obtain (5.7.7) we choose g as

(5.7.8) g=O0n,f= Z(—l)"‘ C) or’f, Onf= %(M,,de, + M2)f.

=1
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We estimate [|f —g||, by

If = gll, = If = On e fll, = I(OF = D) fll, < 7710w = DI,

S A onsl?é,. "(M" — 1) (Mpa —~ I)i”p )

To complete the proof of (5.7.7) we estimate n~"||P(D)"g|[, by

n 7 |[P(D)gll, = n"" | P(D) On,rfll, < 2'n7" max |P(DY O fll,
< 2'n”"||P(D) O fll,
< An~TH(||P(D)10TN (M, - 1) f||p +||P(D) o (Mya — 1) j'“p)

£---<E orél?écr Ii(M,, — )" (Mg ~ I)‘f”p .
To prove (5.7.6) it remains to show that for some integer m we have
(519 Kelfin™)p < B ~ D fly + (Mo = I S,
We postpone the choice of m and choose ¢
= - _1ye+1 [T pg(r+1)s
(5.7.10) g g( 1) (s) MV g,
The estimate of ||f —g||, is given by
1 = ll, = M+ = D f]| < (r+ 1) (Mo — I £,
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To estimate ™" ||P(D)7gl|, we write

P(D) M{re fll < n~r2" |P(D)Y M7 £,

nT |P(DYgll, S n~"2" sup

15887

and hence it is sufficient to estimate n~"||[P(D)"M;+ f ||p . Using Theorem 5.4.3

with mn replecing n and m chosen so that 2rd2' < m, we have

[(Mam = 1) M f = atum(d)"P(D) M7 £,

r -
< Syt PO,

<ﬂ( 1), IP(D)" ML,
:é 1 TMT r 1 =~ (r rasrts
< B s IPOY M. - DS +m(mn),z(s) (DY M+,

rd 2d\r
<™ 2 poymztr, +5(E) T N - 171,

—m (mn)" “aip T g

d2" 1
z < 5 we complete the proof writing

Since

o) [ POV M1, < 5

I(Mam = 7 £l + & (zd) (M — 1 £,

and recalling v, (d)" = (n_lr;)r +O(n~—""1). O
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CHAPTER 6

BEST POLYNOMIAL AND !RRMEYER
APPROXIMATION IN Ly(S) *

6.1. Introduction

In an earlier article [7], the multivariate Bernstein polynomial approximation
was compared to Best polynomial approximation in the uniform norm on the
simplex. As the Bernstein polynomial approximation is not a bounded operator
on L,(S), we cannot compare it with the best polynomial approximation to
a general function in Lp(S). In the univariate case, it was the Kantorovich-
Bernstein operator that took the place of Bernstein operators in the comparison.
We find the Durrn.eyer-Bernsteir; polynomial . - roximation to be the preferred
alternative since it is not only biv add on L,(S), but commutes with other
operators of the same family and with the appropriate differential operator as
well. Furthermore, the Durrmeyer-Bernstein operators are seif-adjoint and can be
given by an expansion of orthogonal polynomials. The multivariate Durimeyer-
Bernstein operators were actually introduced by M. Derriennic [4] who gave them
as an extension of the one-dimensional case given by Durrmeyer [12].

d
For the simplex S = {u = (u1,-..,ud) : u;i = 0, 2 u; < 1}, the

i=1

*Joint work with Z. Ditzian.
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Durrmeyer-Bernstein operator is given by

@1y M) = EEL S Pog(w) [ Pagle) fie)de

Les

with z,u, B € R® (B = (k1,...,ks) with integer entries k;) and
(6.1.2) Ppi,,.. k(u1,-.., ug) = Ppg(u) = B(n |ﬂ|)!u (1 _ lul)n—llil

where Bl=ky! - kg!, wf =ubr.cukd (W =13 ki=u;=0), Ju= T | Wi
and |8 = E'_l k;. A key to theorems on these operators is the sclf-adjoint partial

differential operator associated with them and given by

(6.1.3)
P(D) = ; 7, x,(l |:c|)a—- + Z ( oz, é%) TiT; (“a% - 3%5,)
= ;Pi,j(D)'

In this paper, we will show that the behaviour of [|[M,f - f “1,,,(5) is closely

related to E[/5(f)L,(s) where
(6.1.4)

Ex(f)L,(s) = inf{||f - Pl]L’_(S) : P polynomial of total degree smaller than k}.
As a result of our investigation, we will have for 0 < a <,

(6.1.5) (Ma = I) fli, ) = O(™®) <= Eal(flr,(s) = 0(n™").
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The first result of this type was proved by K. Ivanov [13] who showed for

fecio,1] and 0<a<1,
(616)  IBaf—fllopy =00 <= En(f)cion = O0(n™)

where B, is the Bernstein polynomial operator. For C(S), this type of result
was proved in [7). That is, for f € C(S) and 0 < a <1, it was shown in (7

that
617)  IBaf - fllos =0(™) < Ea(Pors) = 0(n™2).

Similar to the situation in [7], we will prove a more delicate relatinn between Ex(f)
and the rate of approximation. Here the results are on Ly,(S), 1<p<L oo or
C(S) and not merely on C(S) and are much better even for C(S). Moreover,
because of the properties of M,, we will obtain relations between P(D)f and
directional smoothness and apriori estimates. In Section 6.2, we obtain a bound
of [(Ma—1I)"fllL, sy by Ei(f)L,(s) with k* <n. InSection 6.3, we describe
the relation between Ei(f)r,(s) and the related K -functional. In Section 6.5,
we estimate E,(f)r,(s) with the aid of the sequence N(Me = I)"fllp,s) for
k < n?. In Section 6.6, we derive conclusions from the above results pertaining

to directional smoothness, Besov spaces and apriori estimates.
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6.2. Estimates of [|(M, —I)"f|l,

We recall the identity (see [2] or [3])

ad 1
(6.2.1) M.f—f= e P(D) M, f.
k;m k(K + d) k

The identity (6.2.1) combined with P(D)Mig = MiP(D)g for g € C*"(S)
(2, Lemma 2.5], [[Mif|l, < [Ifll, and Z:;nﬂr(il.q.—dj < 1 yields for g €

CZr(S)
(6.2.2) I(Mn ~I)"g|l, < n~" || P(D)"gl], -
We can now state and prove our estimate.

THEOREM 6.2.1. For f € Ly(S) and 2%F-1) < n <2%% we have

k
¥ [(Ma = I fll, < C Y 22 B By (£),.

=0

(6.

w

Using the monotonicity of E,(f), andof 2™, we can write Theorem 6.2.1

in the following way that some (not us) may find more attractive.

COROLLARY 6.2.2. For f € L,(S), we have

(6.2.4) (Mo =Drfll, <Cn™" Y K Ei(f)y.
1<kLVn
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PROOF OF THEOREM 6.2.1: We denote by P, the polynomial of best approxi-

mation of total degree smaller than n in L,(S) and write

(6.2.5)
N(Mn — D)7 fll, < (M = I)7(f = Pas )|, + [[(Mn = 1) Pa|l,,

< 2"En(f)p + lI(Ma — I)"Paa], -

‘We now write

k
Pp =) (Pye — Ppe-r) + Py
=0

Using (6.2.2) for g = Py« — Pye-1 and the above expansion, we have

k
(6.2.6) |(Mn — I)"Pys ||, < 2™ Y [|P(D)(Pye — Pyen),, -
=1

We will show for P,,, a polynomial of total degree m,
(6.2.7) IP(D)Pull, < Crrm? || Punl,,

with C; thatisindependentof m and P,. As P{D)P,, isagaina polynomial

of total degree smaller than or equal to m, we can iterate the above to obtain
(6.2.8) | P(D) Pull, < Cm*" || Pull,,

Using (6.2.8) and
|Poe — Pye-rl, < 2E5e-1(f)p
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in (6.2.6) and recalling (6.2.5), we complete the proof of (6.2.3) pending the proof

of (6.2.7). To prove (6.2.7) we recall that P(D)Pm is bounded by a com-

bination of finite number of terms (see (6.1.3)) where each one is exactly like
= ||P1,1(D)Pm(z)||,- In fact, one obtains other

a (7]
=—21(1 = |z]) 53— Pm()
I 22 PR
terms by affine transformations. For example, "PI:?(D)f(w)"L,(S) is ||P1,1(D)f(u)|]Lp(5)

33:1

with u; =z, up =1~z -+-—24, u3 = T3, ,ud = 4. To estimate the above

expression, we have

o} 0
e

(7]

z2(1 — |z]) (E)2 Pr(z) + ”%Pm(a:)

Ly(S)

<

Ly(S)
as |1 — |z —z1| < 1. The Bernstein inequality

21(1 ) (ai) Pn(a)

< Com? [| Pz, (s)
Ly(S)

(6.2.9)

is a special case of Theorem 2.1 of [8] where we set r = 2 and the simplex S

for the bounded convex set. The Markov inequality

< Csm? ||Pall,
L) m i 7,,(5)

(6.2.10) ‘ aizl-Pm(m)

is a special case of Theorem 4.1 of [8] with the simplex S standing for the bounded
convex set. Combining the estimates (6.2.9) and (6.2.10), we derive the desired

O

estimate.
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6.3. Estimate of E,(f).,(s) by an appropriate K-functional

We recall from the monograph [10] by the second author and V. Totik that

(6.3.1) En(f)Ly(s) < MWS(f,1/n)L,5 + 27" IfllL,(s))

which is valid for any simple polytope and hence for the simplex S. The modulus

of smoothness wg'(f,t)r,(s) was defined by

6.3.2 m(fyt)p = llar I
( ) wg(fit)p feu‘l’)s oi‘:}; hds(c,z)‘/’ef(m) L,(5)

where Vs is the set of unit vectors in the directions of the edges of S

33) d = i
(6.3.3) s(e,z) (z+f\reuré sd(:c,a: + Ae)) ( z-ég?:es d(z + Me,z + AQC))

and d(a,b) is the Euclidean distance between a and b. We note that the
expression in (6.3.2) may look somewhat simpler than w@(f,t), defined in [10,
Chapter 12] but observing (12.2.1) and (12.2.2) of [10], it is clear that thesc arc
the same notions with the convention that A} f(z) = 0 if cither of z £ The
does not belong to S. We further note that if we replace (Zs'(e, z) by di(e,z),

satisfying

6.3.4 C~ld%(e,z) < ds(e,z) < Cd%(e, z for e€ Vg
S

89



in (6.3.2), we obtain a concept that is equivalent to wg(f,t)p. It can be easily

seen that for d%(e;,z) defined by
(6.3.5) ds(ei,z) = z:(1—|z])  and 5((ej — €)/V2,2) = ziz;
we have

d(e,z) < ds(e,z) and  ds(e,z) < 4d5(e,z) for e€ Vs

and hence (6.3.4) is satisfied. Therefore, using d3(e,z) instead of ds(e,z) leads
to an equivalent expression.

We now define the K-functional
(6.3.6)

I{m S(fa m)p

we(-)™ (a%)mg(-) L,,(s)>

where Vs is the set of edges of S and @¢(z)? =d%(é,z) for £ € Vs.

e (5) ("f i, +t" s

It is implicitly clear from [10, Chapter 12] that we have the following result.
THEOREM 6.3.1. For f € Lp(S)

(6.3.7) W2(f,t)p < CKm,s(frt™)p.

PROOF: For the sake of completeness, we will give the proof of (6.3.7). For this

it would be sufficient to show for any direction ¢ € Vs and function f € Ly(S5)

(6:3.8) |am@ef @), 5 < Ol

Lp(S)
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andfor feC™

foccm (%) 0

In fact, because of symmetry and linear transformations, it is sufficient to

(6.3.9) lamaef@)|,  <cn

Ly(s) — Ly(S) .

prove (6.3.8) and (6.3.9) for £ = e; and ©e(z)? = pe,(2)? = 21(1 — |z]). We

define t = l—fi-i—l wherc T =(z,,...,z4) and write

f(@) = f(z1,22,...,24) = f(EQ1 = |T|), 22y .., 2a) = f((1 = |Z]), T) = F3(2)

ARy, @)e f(2) = Al Fe(t)  with w(t)? =t(1-1).

We denote §={E=(z2,...,z4): z; 20, 1—29—:--—z4 20} and using the

one-dimensional result, that is, (2.4.3) of [10], we write
"A"l f(m)“p = / /I_IEIIA"‘ f(:z:)lp dz; dz
h‘Pel(z)el L’(S) E 0 "‘Pcl(z)cl 1
1
- /~ / AR o Fx()](1 - [3]) dt d&
sJo
1
< o [imora-@nada:
5 Jo

= C"/S|f(a:)|” dz = C? ||fI},(s)-

To prove (6.3.9), we observe that
(2N ey = oo (4)"
ruer (o) f@)=wtrm () Fe0
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and using the univariate analogue of (6.3.9) which is (2.4.4) of {10}, we have

P - L m _
||A2"¢,,<,),,f(x) L = /3" (1 -1z /0 |AR o Fe(t)” dt dZ
1 d m P
< /.(I—IEI)C”h"'P / o(t)™ (3?) Fs(t)| dtdz
s 0
1-|%| a\" P
< CPR™P /~ / e, (2)™ (-—) f(z)| dedz
SJo a:cl
a\" P
cove o () 0,
l() azl LP(S)

For p= oo, the obvious easy modifications are used to prove (6.3.8) and (6.3.9)

and this will complete the proof of our theorem. O

6.4. Relation between ||(M,—I)™f|, and Kors(f,t")p

The estimate of ||(Mn — I)"f||, by the K -functional given by

(641) Ko(fy = jaf (IS = all,+ ¢ IPDY gl ),
that is,
(6.4.2) I(Ma = I)"fll, < CK:(f,n™")p

was given in [2). The estimate (6.4.2) has a strong converse, i.e. the terms of
(6.4.2) are equivalent, and therefore it is somewhat surprising that we need here

a relation with a different K-functional that is not (and can not be) of a strong
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converse type variety. This estimate is helpful in the next scction and will be

useful for the main result and comparisons of different K-functionals.

THEOREM 6.4.1. For f € Lo(S), Myuf defined by (6.1.1) and Kars(f,t),

defined by (6.3.6), we have
(6.4.3) Kar,s(f,t7)p < (M — D™ fll, + CtTk Kar,s(f,£77)p

for any pair of integers r and m.

Proor: The function f can be written as

f=-Mmf =Y (’Z)(—l)‘M,ff

=1

aud hence, it is sufficient to show that

) 2r

(6.4.4) g (3—6) M f SCikE Il sy
Ly(S)

and

2r 2r
(6.4.5) Ty (3) Mif < Cles (_a_) f

o¢ 73
Ly(S) Ly(5)

where ¢ isan edge of S, ¢ (z)? = zi(l - |2|) and ¢, _.,)/5(2) = zizj.
In fact, symmetry and affine transformations imply that it is sufficient to prove
(6.4.5) and (6.4.6) for £ = z,. These results will be stated in the next two lemmas

which, when proved, will imply (6.4.3). O
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LEMMA 6.4.2. For f € Ly,(S) and f € C*(S5),

(6.4.6)

(221 = l2)" (gi—l)erk(f,z)

Ly(S)

<C

@1y () e

Ly(5)
LEMMA 6.4.3. For f € Lpy(S),

S CE || fllg sy -
Ly(S)

(6.4.7)

-k (5) Malh)

REMARK 6.4.4. While Theorem 6.4.1 was proven for any pair of integers r and

m, the more interesting case is when m 2> r.

In {5], a theorem similar to Lemma 6.4.3 is given but as it is not exactly
Lemma 6.4.3 and as the method here can be shown for all d at the same time,

we chose to give the proof directly.

PROOF OF LEMMA 6.4.2: The idea of the proof follows the method that was
used to prove the univariate analogue (see [9, I, p. 75]). With the conventions
P s(z) = 0 whenever % ¢ S and that B4 v is vector addition in R

(which we use throughout this paper), we have

6_21—1’ %,8(2) = k(Pi—1,8-¢, (%) — Pi-1,8(2))
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and hence

(6.4.8) (a%)zrpkﬂ(x) T 2r), Z( 1)'( )Pk 2r,8—(2r=i)e, (T)-

Using integration by parts, we obtain

(a_i?)er"(f”’)‘ (Hd) Z ( ) rPk,ﬁ(z) /s Pee p() f(u) du

((kk +2‘i.))| Z Z( -1)' (2T)Pk—2rﬂ (2r-x)e,($)/ Py g(u) f(u)du

€s =0

((:-'-2‘?)1 Z Pi_2r,p(2) /Z( -1)' (2T>PLﬂ+(2r—-u)r,(u)f(‘U)(lu

1=0

_ (k+a)H L i)” o
= (k- 2r)(k + 2r)! rgespk—i‘r.ﬂ("’)/sf(' ) (au, Piyorpgiare, (u)d

! 9 2r
= C _(gr-;-!‘(ii'_’:_'zr)! Z Pk—2r,ﬂ(z)[gpk+2r,ﬂ+2rc|(u) (E‘—l.) f(u) du.

Ees
We can now write
(6.4.9)
[21(1 — fa))" (5%) e
_( :!d)! S a(k,B,r)P pire(s)
5-€s

X [st,ﬂ+re1 (w)ui(1 = [u])])” (53’1‘) i f(u)du
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where

ok, fir) = 7% —k !27')! (k : !21')! (k ;2T) (ﬂk++23;) (ﬂ +kre,>—2 <1

Recalling that k—_%; € S implies 2t € S, we have

(2:(1 = Ja))" (5"—) Mi(f,2)

Lp(S)
(k-{-d) 2r
< S Pugprra(s) [ Peprra(lia(l - ((Cn ) fw)|d
€S
a 2r
< e (jsca - | (32 ) 7))
' Ly(S)
a 2r
<llma-er () f@|
Ly(S)
which completes the proof of the Lemma. O

The proof of Lemma 6.4.3 requires the following univariate Lemma.

LEMMA 6.4.5. For P ;(t) = (;)tj(l —t)%-7 o(t)> = {(1 —t) and integer r,

we have
k d 2r
(6.4.10) Zgo(t)?' (;ﬁ) Py ,(t) < Ck"
j=0 Leo[0,1]
and
2r
(6.4.11) () (%) Py (1) < Ck™1.
L1 [0,1]
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PROOF: Following the almost standard procedure (see [6], [9] and [10]), we divide
[0,1] into Ex =[},1-}] and Ef = [0,1]\Ei and give the estimateon L,(Ex)

and L,(Ef) separately. Using (6.4.8), we have

d 2r k‘
t)r (—) P (¢ 51:“'22"——'— sup P 2rj—i(t)
< CK,
and
2r d o k! —ro2r
v(t) (E) Py;(t) S Gt 2 o2 | Pewzr,y- ()l 1, 10,11
Li(E5)

< Ck™ L.

To obtain the estimates on Loo(Ex) and L;(Eg), we recall from [6, p. 283] that

(2r)(t) is a sum of terms of the type

kt)2r—2l—m

ql,m(t)( (t(l t))2r-—( klPk'j(t)

where £>0, m>0, 2r—20—m >0 and g¢m(t) isapolynomialin ¢t which
does not depend on k and j (see also [10, Chapter 9]). We now use
k
3" 1i — kt|* Py j(t) < Kk*?p(t)*  for t€ Ey,
=0

which follows from (3.6) of [6] for even s and the Cauchy-Schwartz incquality for
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odd s. As |gem(t)] £ C(€,m), we complete the proof of (6.4.10), writing

k
Gem(8)(H(1 — 1)) 7R Y I — Kt Py(2)

j=0 Leo (Ex)

< ce,m)Kk" k™2 lo(t) ™™ ||, (&, S Cr¥"

Using (4.8) of [9] or (9.4.15) of [10], that is,

L (P(t)u—zrkllj _ kt|2r—21—mpk,j(t) < Ckr—l
k

together with the above description of P,g?;)(t), we have (6.4.11). O
We are now ready for the proof of Lemma 6.4.3.

PROOF OF LEMMA 6.4.3: Using the Riesz-Thorin interpolation theorem, it is

sufficient to prove our result for p=1 and p=oo. Using

(221 = )" (-;;)"Mku,z)

Ly(S)

,

Ly(S)

(a_i?) ’ Pip(z) [SPk,ﬂ(u)lf(un du

k+ d)!
< |42 S @a-ey
fes
it is clear that we need only show

< Ck"
Leo(S)

(a—f;)zrﬂ,p(z)

(6.4.13) l

> (z:(1 - =)
fes
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and

< Ck".
L.1(S)

2¢
(6.4.14) ("+d) ”( l(1—|.7,,-|))'( 9 ) Pip(z)

To prove (6.4.13) and (6.4.14), we observe that for 8 = (¢y,...,04), onc

can write
Pk:ﬁ(z) = Pk,(lz,...,td)(z27 7zd)Pk lﬁl+ll |ll (3:1/(1 - 21*2 '))
and

o= (=) (- i) s

Therefore, we have

(z1(1 = []))" (5%) rPk,ﬁ(x) = (1—_—5—2—;‘) (1 - ZTfl‘m‘)

2 Zy
X Pk,l,,...,t,(zz, ceey zd)PIE—-'BBI-i—t; o (1__—5:_4—_) .

i=2 Ti

v
L

We now set Zi:(ez,...,e,,), Z = (z2,...,24)s S = {(z2,...,%a) : 2

2:;2 z; <1} and y = ———— €[0,1]. To prove (6.4.13), we write

—E-za

( 0 )2r Pr,p()

> (@1 ~lah)

<|x P
P, 5(2) sup [l(y(1-y))" ) 1P~ (v)l < Ck"
»B ~
Loo(S) |B]<k =0 -IBl.¢ Leof0,1]
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To prove (6.4.14), we write

k + d)! )
ELD 1~ 1e)

a 2r
(5:;) Py,p5(z)
Ly1(S)

(k+d) - /l—li:l( 1 1‘( _ 1 r
a LT@ L \og) U 1oE
(2r) Iy

P e (1 - |E|)

< &L [ P 3@ - ) / —yyr

Eid / P, #3)(1 — [E)C(k — By a5

P )| dv

< Gik".

6.5. The basic estimate of E,(f), by [(M,-— I)rf“p

In this section, we will utilize the results of sections 6.3 ar.d 6.4, in combina-

tion with techniques from [10, Section 9.3] and from [14] to obtain the weak-type

estimate of En(f), by [[(Ma—-I)™fll,-

THEOREM 6.5.1. For f € L,(S), aninteger m and p >0, we have

(6.5.1) E,.(f)L'(s)SC(n"” > 2‘P||(M2=e—I)"‘fIlL,(S)+n"’IIfIIL,,(S))

0<i,2i<n



and
(6.5.2)

En(ftyi SO (v 5 KO (M = D™ Sl 50+ Ul )

1<k<n?

REMARK 6.5.2. Theorem 6.5.1 is valid for all integers m and any p > (0 but
seems to be more interesting for 2m > p. We note also that the present Theorem

is valid even if p is an integer.

PROOF OF THEOREM 6.5.1: Using (6.3.1) and Theorem 6.3.1, we have

(6.5.3) En(f)L,s<C (w?(fa 1/n)p +n7%" ||f||1,,(3))

< C1 (Kans(fin s 417 flls,q)) -

We now use Theorem 6.4.1 to obtain
(6.54) Kar,s(£,8%)p < (Miz = D™ fll, + CE"F Kar,s(f, k77,

where C is independent of t, £ or f. We choose for a given p, 0<p <2r,
an integer j > 1 such that Cj#~%2" < 1. (For a given p, we choose r such
that 2r > p andfor this r, (6.5.4) yieldsa constant C; theinteger j depends
nowon p, r and C.) Werecall that Kars(f,t), <||f]l, forany ¢ and this,
combined with the above, implies

> 1M = DAl + W)

NI i

(6.5.5) Kzr,s(f, n—2r)p _<__ Cln—"(



where

% = max{€: j* < n}.
At this point, we can combine (6.5.3) and (6.5.5) to derive for some p >0 and
j (that depends on p),

(65.6)  En(f)r,s) SCon™( D i ||(Mje = D™ | (5 + I ||L,(S))-
<t<to

We note that p is any positive number and that for some of the following, (6.5.6)
is s.ufﬁcient. The additional work below is needed for the somewhat simpler form
(6.5.1) (where no statement about the existence of j is required) or the form
(6.5.2) that is similar to the Stechkin-type sums and so desired by many. The
proof for both (6.5.1) and (6.5.2) follows the technique of V. Totik [14].

For the proof of (6.5.1) (and of (6.5.2)), we still use j defined above which
dependson C of (6.4.3)andon p. Wechoose i to be the biggest integer i for
which [|[(Maz: — )™ f|| L,(s) achieves the minimum in the range j¢! < 2! <j¢
for the given f and p. We now use (6.5.4) with &= n~? and k=2%, and
then with ¢ =2"% and k =2%-2 (for £ oddor even when ¢ is odd or even,

respectively). This implies

K2r,S(fa n—2r)P < "(M22“° - I)mf"P

+Cin~? Z 2Pty

2<Vslo

(Myiv—s = I f]|, + Crn* £,



< can=e( 3 2 (Mg = 11, + 1151, )

2" <n
o<y

which in turn implies
Ea(f), < Czn_"( Y 2 (M — D™, + ||f||,,) ren 1,

2¥<n
o<y

and since p < 2r, we have (6.5.1). We note that while the choice of i, was
dependent on f, the final result is not.

To obtain (6.5.2) we use (6.4.3) directly rather than (6.5.4). We dcfinc
a sequence vy depending on f and j such that v, is the largest integer
satisfying 72672 < vy < j2¢ such that ||(M, - I)™f ll, achieves the minimum
in that range. We now apply (6.4.3) first with ¢t =n~% and k=, and then
with t=v, 1 and k =wvp_s. (Of course £ is even or odd when £, is even or
odd.) This consideration implies

K (7Y < (M = D751, + € (3o 0/ [ Morca = I, + 111, )

2<L8<tp

<cmme( 3 7t - DA, + 161, )

1<v<n2
Since the last inequality is independent of the choice of vy, it is independent of

f. Combining this with (6.5.3), we obtain (6.5.2). a



6.6. Applications and corollaries

Theorems 6.2.1 and 6.5.1 imply immed:ately

THEOREM 6.6.1. For 0<a<r, 1<p<oo,

(6.6.1)
(M = I) fllp,5) = O(n™%) <= Ea(f)rL,(5) = O(n™*)

= W¥(f 1), = O(%).

PROOF: E,(f), = O(n™2%) implies Ey(f), = 0(272%%) which implies via
(6.2.3) |[(Mn —I)"f|| = O(n™*). The other direction follows from (6.5.6) (or

(6.5.1) or (6.5.2)). The second equivalence was proved in [10, Chapter 12].
0

One can also define the appropriate Besov spaces for the sequences ||(Mn — I)"fl[ (s

and En(f)L,(s)-

We define for the sequence {a,},

oo 1/s
(Z|a,,|’(n+1)-1> , 1<s<o

n=0

{an}le, =

sup |an|, s =00
n

and obtain the following result with the understanding that Eo(f), = ||fll, -

THEOREM 6.6.2. For 0<a<r, 1<p<oo, 1<s< o0 and

bu(f)p = (Mn = I)" fli,(s)



the norms

[{(r + 1**Ea(Ar,}l,, and  [{(n+21)*ba(Hs}ll,, + 151l

are equivalent.

Theorem 6.6.2 includes Theorem 6.6.1 when we set s = oo.

PROOF: The proof follows the proof in {11] for a similar situation. Here, however,
we have to take care of the fact that bn(f), is not necessarily a monotonic
decreasing sequence. This can be done directly by using the Ha.r;iy inequality
rather than the geometric progression used in [11]. It can also be done by a choice
similar to that given in the proof of Theorem 6.5.1. And in fact, a gcometric

sequence is comparable as it follows from [3] that
I(Me = D) fll, ~ W(Mn =) fll, if k~n
at least when d <3 or when 1 <p < 0. a

We cannot hope to obtain equivalence between the expressions E.(f), and
I(Mn —I)™f||, as the first is an unsaturated approximation process and the sec-
ond is a saturated approximation process. It is interesting to note the implication

of the above on the saturation class.



THEOREM 6.6.3. If ||(Ma —I)™f|l, = O(1/n™), then wimH(f,t) = O(t*™)

2m+4-1 2
and hence [|ATnH f"L’(s) < Mu2m,

PROOF: Theorem 6.5.1 implies En(f), = O(1/n®*™) and hence Theorem 12.2.3

of [10] (see (12.2.4) with r =2m + 1) implies
w5 (f,1)p = O(£*™).
O

In [2] it was shown that |[|(M, —I)f|, = O(n™") if and only if P(D)f
exists in the weak sense and belongs to L,(S) for 1 < p < oo and to M(S)

(measures on S) for p = 1. In fact, we have the following somewhat more

general saturation theorem.

THEOREM 6.6.4. For an integer m, |[|(Mn,—I)™f|l, = O(n™™) if and only if
P(D)™f exists in the weak sense and belongs to Ly(S) for 1<p<oo andto

M(S) (measureson S) when p=1.

PROOF: Suppose P(D)™f exists in the weak sense and belongs to L,(S) for
1<p<oo andto M(S) for p=1. Hencefor g €D (where D is the space

of L. Schwartz test functions), we have

-m m — -m - 5 P(D)" My, --- My, f
n~"™((M, - I) f,y)—<n Z Z kl(kl+d)-f-km(k,:+d)’g>

ki=n+1 km=n-+1



=n~m e v
h;-}-l k".;.*.; kl(kl +d) km(km + d)

X (f, P(D)" My, - - - My, g).

We write
(f, P(D)" My, --- Mk, g) = (P(D)™ f, My, - - - My, )
and hence
(P(D)™f, My, - - - Mi,,g)| < |P(D)™ £l llgll,
where || || means || [, for 1 < p < oo and || |laqs) for p=1 and

¢! +p~! = 1. This implies
In™"™((Mn — I)™ £, g)| < [|P(D)™ f| llgll,
for all g € D and as such ¢ are dense,
n™" ||(Ma — D)™ fli, < |P(D)™ fl], -

The other direction is even more standard and follows the weak® com-
pactness of the unit ball of a Banach space. The sequence n~™(M, —I)™f in
Lp, 1<p<oo or L; has ¢ asa weak® accumulation point in Ly(S) for

l1<p< oo or M(S) respectively. For g € D, we have

n""(Mn — D)™ f,9) = (f,n™™(Mn — I)™g) — (f, P(D)"9)
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but
n~™((M, — )™ f,g) — (¢, 9)

which identifies ¢ as P(D)™f in the weak sense. (]

REMARK 6.6.5. We note that here the direct result causes none of the problems

usually encountered in similar cases and this is due to the extremely nice properties

of Durrmeyer operators.

We can now deduce from Theorem 6.6.4 and 6.6.3 the following interesting

Corollary.

COROLLARY 6.6.6. If P(D)™f exists in the weak (distributional) sense and

belongs to L,(S) for 1<p<oo orto M(S) for p=1, we have

wZmt1(f,t) < CE*™.

The following apriori estimate is also a result of the theorems in the present

article.

THEOREM 6.6.7. If wi(P(D)™f,t)p < Lt* for 0 < a <2, then wi™*?(f,1), <

th2m+a.

PROOF: Using the direct estimate of (M, — I)f and earlier results, we have

(M0 = ™+ ||, < Cn=™ |(Ma — DPD)™f]l,-
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We further recall that w%(g,t), < Ct* implies En(¢9), < Cin™® and hence

I(Mp — Dgll, < Con~*/2. With g =P(D)™f, we now have
(M — ™1 £ < Con=m=te/D
and use (5.1) with 2m +a <p to obtain
Eo(f)L,(s) < Can™?™"2,

We now use Theorem 12.2.3 of [10], that is, (12.2.4) with r = 2m + 2 to obtain

our result. d
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