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ABSTRACT

Central to both in-vehicle route guidance systems (RGS) and automated vehicle
dispatching systems (AVDS) is the vehicle routing and scheduling component which is
required to find “optimal” routes and schedules in real-time for individual RGS-equipped
vehicles and AVDS fleet vehicles in urban traffic networks. This thesis is motivated by the
realization of the potential importance of explicitly considering the dynamic and stochastic
nature of travel times within the vehicle routing and scheduling procedures in both RGS

and AVDS and the need to develop efficient routing algorithims that can operate

successfully in real time..

The dynamic and stochastic nature of the link travel time under three typical traffic
conditions in urban traffic networks are first investigated through various thecretical and
statistical procedures. The shortest path problem (SPP) with dynamic and stochastic link
travel time and the dial-a-ride problem (DARP) with dynamic and stochastic O-D travel
time are formulated and their respective solution algorithms are developed. These models
and algorithms are then used to analyze the influences of the uncertainties of the travel
times on the routing and scheduling results. The techniues from the artificial intelligent
field (Al), including heuristic search strategies and artificial neural networks (ANN), are
applied in vehicle routing and travel time estimation procedures to improve the
computational efficiency of the routing and scheduling algorithms for real-time operation

purposes.



The theoretical and computational analyses indicates that the consideration of the
dynamic and stochastic nature of travel times in the SPP will result in different “optimal”
paths as compared to a deterministic model. It is found that the dynamic and stochastic
nature of travel times has a significant effect on the routing and scheduling results of the
DARP. The heuristic routing and scheduling algorithms developed in this thesis are
extensively tested and evaluated using an actual network from the City of Edmonton,
Alberta and the results indicate that these algorithms are applicable in real-time operation

systems such as RGS and AVDS.
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CHAPTER 1

INTRODUCTION

1.0 OVERVIEW

In the past 30 years there has been significant interest in applying advanced
technologies to solve the problems associated with the surface transportation systeni ——
the field now commonly referred to as Intelligent Transportation Systems (ITS). It is
generally thought that by gathering, processing, displaying and communicating information
in a real-time fashion, advances in the surveillance, telecommunication and computer
technologies provide an opportunity to improve the transportation system by reducing
congestion, pollution and accidents. One of the major ideas behind the ITS is to help
transportation network users maximize their travel related satisfactions based on real-time

traffic information.

There are two general categories of the ITS field that are directly oriented to
transportation network users. The first category is Route Guidance System (RGS), which
focuses on guiding individual travelers or fleet vehicles to their specified destination by
providing intelligent and safe advice on which transportation mode they should use, when

is the best time for them to depart, and which routes or roads they should take.
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The second category is Commercial Vehicle Operations (CVO) and Advanced
Public Transportation Systems (APTS), in which one major component is the real-time
Automated Vehicle Dispatching System (AVDS) for commercial vehicle and public
transportation fleet management. The objective of the AVDS is to help the dispatcher
better manage fleet operations by providing drivers with better routes and scheules based
on the real-time information about traffic status, demands and vehicle locations. The end
result is an improvement in the reliability and efficiency of carrier pick-up/delivery

operations.

While they could have very different structures in system architecture, both RGS
and AVDS typically have common components. In particular, a vehicle route optimizer is
required to solve the underlying vehicle routing problems in a real-time fashion. In an
RGS, the routing problem is to find the “optimal” routes in an urban traffic network for
users who want to travel from one location (origin ) to another one (destination).
Conversely, the vehicle routing problem within an AVDS consists of determining the
“optimal” pickup and/or delivery routes and schedule for vehicles required to visit a

number of spatially and temporally dispersed locations in an given area.

To model and solve these routing problems, one of the most important pieces of
information needed is the anticipated link travel time. In an RGS, link travel times are
directly used to find the “optimal” route from an origin to a destination. In an AVDS, the
link travel times are used to calculate the anticipated travel time from one location (origin)
to another location (destination), or O-D travel time. The O-D travel times are then used

to find the optimal routes and schedules for the fleet vehicles.
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Due to inherent fluctuation of travel demands, unpredictable occurrences of tratfic
incidents and changes in weather conditions, the travel times in an urban traftic

environment may be significantly dynamic and stochastic.

This research is motivated by the realization of the potential importance of
explicitly considering the dynamic and stochastic nature of travel times within the vehicle
routing and scheduling procedures in both RGS and AVDS and the need to develop

efficient routing algorithms that can operate successfully in real time.

1.1  IN-VEHICLE ROUTE GUIDANCE SYSTEM (RGS) AND REAL-
TIME AUTOMATED VEHICLE DISPATCHING SYSTEM
(AVDS): OVERVIEW AND PROBLEMS

1.1.1 In-vehicle Route Guidance System (RGS)

The in-vehicle RGS are intended to collect real-time information on the status of
the traffic network system and communicate the information on the "optimal” routes to
RGS-equipped vehicles. The broad strategic goals of the RGS are to improve the
network efficiency and reduce traffic congestion, accidents and environment pollution.
However, the specific objective of most RGS under development is to allow the equipped
vehicles to save travel time when they travel from one location (origin) to another

(destination).

Attracted by the potential benefits from the in-vehicle route guidance systems
(King and Mast, 1987, U.8.DOT, 1990; Rilett, 1992), various countries are currently

experimenting with real-time in-vehicle route guidance systems. In the USA, the major
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projecis in progress include the Travtek program in Orlando, Florida (Rillings and Lewis,
1991), the ADVANCE program in Chicago, Illinois (Boyce, 1991) and the Pathfinder
program in Los Angles, California (Mammano, 1991). The Europeans are working on the
ALISCOUT systems in Great Britain and Germany (Catlink, 1989), while Japan is

experimenting with the Vehicle Information and Control System (VICS) (Takaba, 1991).

Although these systems vary in complexity, they can be illustrated by a
conceptualization shown in Figure 1.1. As shown in Figure 1.1, the traffic information
used in an RGS is usually managed by a traffic information center (TIC). The TIC
receives data from two sources: 1) historical traffic data that contain average travel times
by time of day, day of week, season of year, different weather conditions, etc., and 2) real-
time traffic data that are collected from the network. The real-time data can be obtained
from variety of sources including traffic detectors embedded throughout the network, and
probe vehicles which are able to transmit travel time data to the TIC. There are also some
other data sources such as police reports of incidents. The real-time data from different
data sources can then be combined to generate current link travel time estimates in the
network. With the historical and real-time traffic data as inputs, a prediction model is then
used to estimate the travel time on each link in the traffic network for a future time
horizon, for example, one hour ahead. When a route guidance task is required, the "route

optimizer" will try to find the “optimal” routes for the user based on certain objective(s).

Generally there are two types of routing objectives: user optimal and system
optimal. In the "user optimal" sense, the “optimal” routes are calculated by considering

only the individual RGS user’s objectives such as minimizing travel time, minimizing travel
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Figure 1-1 A conceptualization of a in-vehicle route guidance system (RGS)

cost and maximizing safety. In "system optimal" systems, routes are chosen to maximize
the benefit of system wide users including unguided drivers, community as well as guided
drivers. Although the latter routing objective would be more preferred by the RGS
operating authorities, the majority of experimental RGS programs currently under
development use the “user optimal” objective because it is more likely to be accepted by
the individual users. The RGS with the former routing objective will be the focus of this
research and can be specifically defined as finding the path which is anticipated to have the

minimum travel time from an origin (for example, current vehicle location) to a destination
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in a traffic network. This problem is generally referred to as a "shortest path problem”

(SPP).

It should be noted in the conceptualization of an RGS as presented above that in
order to solve the SPP, one of the most important pieces of information needed is the
anticipated link travel times in the underlying traffic network. The treatment of the link
travel time also influences how the SPP would be modeled. For example, if the link travel
times are assumed to be constant values, then the SPP is basically a static and
deterministic problem and the optimal path can be found using traditional shortest path

algorithms (Rilett, 1992).

In an urban traffic environment, the link travel times may be highly dynamic and
uncertain because of the inherent fluctuation of travel demands, unpredictable occurrences
of traffic incidents and changes in weather conditions. The uncertainties in link travel
times is problematic in that, theoretically, there is no means of identifying the minimum

travel time path among all the paths between two locations until after the trips are made.

Consequently, the SPP itself needs to be redefined and the applicability of the traditional
shortest path algorithms needs to be re-examined. For most RGS under development,
these problems are circumvented by implicitly assuming that the average link travel may be
used in place of the random variables that represent travel time. The shortest paths found
in this type of network are used as the expected and hence optimal shortest paths. This
method, although simple, has two potential problems. First, there is uncertainty regarding
the solution quality of the identified path compared to the optimal solution. That is, there

could be a difference between the expected shortest path directly found in a network with



Chapter | Introduction 7

dynamic and uncertain link travel times and the “expected” shortest path in the same
network but the uncertain link travel times are replaced by average link travel times (Hall,
1986). Secondly, it does not consider the individual driver's attitude toward risk under
uncertainty. For example, minimizing the expected travel time may no be the sole
objective. It is very plausible that the variation of the travel time and the probability of
lateness at the destination may also be critical in determining a driver’s route choice. For
example, a driver may choose a route that has a 5 minute longer travel time if the variance
associated with that trip is small in order to be sure he/she arrives at the destination on
time. It is therefore necessary to study the potential cost and benefit for a RGS to
incorporate both dynamic and uncertain natures of link travel times in the route

optimization procedure. Specifically, the following problems need to be addressed:

i) How shouid the dynamic and stochastic attributes of link travel times be represented?

How can the link travel time estimates be calculated with real-time information?

ii) How can the SPP be modelled when the link travel times are dynamic and stochastic?

Specially, how should the “optimal” route be defined?

iii) How would the uncertainty of the link travel time influence the route choice? When is
it prudent to ignore the stochastic attributes by using the average link travel times in
routing procedure? What kind of link travel time information should be used to

calculate the “optimal” path?

iv) Would the SPP be too complicated to be solved optimally in real-time after explicitly
modelling the dynamic and uncertain nature of the link travel times? Would real-time

operational solution methods exist for the more realistically modeled SPP?
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1.1.2 Real-time Automated Vehicle Dispatching System (AVDS)

The real-time AVDS, as part of advanced fleet management system, focuses on
using real-time information on traffic condition and current vehicle locations in the vehicle
routing and scheduling optimization process. The primary objective is to improve the
efficiency and reliability of the fleet operation by dispatching and scheduling the vehicles in
a real-time fashion. It has been realized that real-time data based vehicle routing and
scheduling algorithms will provide more efficient routes with less total vehicle travel time.
Therefore, fleet vehicles can be more efficiently used and customer service can be more
accurately controlled. In addition, the service operator will provide better service by
responding more quickly to changes in system status such as a new service request,

vehicle breakdowns and unexpected traffic incidents (Stone ef a/., 1993).

Based on fleet operation characteristic, AVDS can be classified into two
categories. One is developed in single stop distribution operations, in which each vehicle
is only assigned to serve one demand once at a time. Examples include taxi systems,
emergency vehicle services, etc. In this type of operation system, the fundamental
function of the "route optimizer" is to solve many shortest path problems and therefore the

related problem is similar to the ones in RGS.

Another category occurs in multiple stop distribution operations, where each
vehicle may be assigned to serve several demands. There are numerous applications that
have this type of service operation. Typical examples include school bus systems, shared-
ride dial-a-ride paratransit systems, mail delivery systems, snow plough vehicles, etc.

Among them, the shared-ride dial-a-ride paratransit system (or demand responsive transit
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system) is becoming the first application area of the AVDS in North America (Stone ¢t af.,

1993) and will be used as an example application in this research.

Although a number of automated paratransit systems and software have been
developed during the past decade, there is not a single system which fully uses real-time
travel time data in their vehicle routing and scheduling process. With the undergoing
development of the technologies associated with the 1TS, it is anticipated that real-time
traffic data will be available as part of the major resources provided by traffic information
management systems. This thesis will assume that an AVDS would use real-time travel
time data as part of the inputs to the vehicle routing and scheduling optimization process;
Therefore, the focus will be on how to apply these data to improve the vehicle scheduling

and thus system service reliability.

A conceptualization of an AVDS is shown in Figure 1.2. In this hypothetical
AVDS, most components are fully automated, At the beginning of the service operation,
routes and schedules are prepared and given to each driver to serve the customers who
request service in advance (for example, one day in advance). During the operation, a
customer calls on the telephone to request a pick-up/drop-off trip, and as soon as the
reservation clerk has entered the customer's ID or name, his/her service is verified by the
computer. Within a few seconds the computer determines which vehicle to assign the trip
to, calculates the new vehicle schedule and informs the reservation clerk when the vehicle
will provide the service to the customer. The trip assignment and schedule calculation are
conducted by the “route optimizer” based on the information of current vehicle locations

from the vehicle locating system (VLS), anticipated link travel times from the traffic
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Figure 1-2 A conceptualization of a real-time automated vehicle dispatching system
(AVDS)
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information center (TIC) and customers’ information. For each vehicle in service, the
travel direction or detailed travel path from a given location to another is also given by the

operation center or simply by a RGS.

In this type of operation, the central problem concerns the method used to
determine the optimal pickup and drop-off routes and times for a fleet of vehicles, which
are required to carry customers between specified origins and destinations. This problem
belongs to the well-known "vehicle routing and scheduling problem” and has been

specifically referred to as the “dial-a-ride problem” (DARP).

As seen in the operation process shown above, there are indeed two types of
DARP involved. One is called advance request DARP (or subscriber DARP) which
mainly arises at the beginning of the operation. The vehicle routing and scheduling
objective is to assign all the booked customers to the empty vehicles. Because the
customers are known in advance, the "route optimizer" can have plenary time (for
example overnight) to develop the routes and schedules. Therefore, the computational

efficiency of the solution algorithm for this situation is not a critical issue.

The second problem is called demand responsive DARP (or real-time DARP)
which arises when a new customer calls for immediate service. At the time of request, the
vehicles are following their prearranged routes and schedules to pick-up or deliver
customers. At this time, some earlier customers may have been delivered to their
destination and, hence, need not be considered in this problem. The remaining earlier
customers who have each been assigned to a vehicle are either waiting for pick-up or are

on board to their destinations. The problem is to determine the insertion of the new
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customer into the previous routes and schedules and the new routes and schedules after
the customer is inserted. In order to preserve the stability of the routes and schedules, it is
usually required that the previous trip assignment and visiting sequence for each vehicle
should be kept unchanged as much as possible. For example, the change in route and
schedule can be restricted only to the vehicle that the new customer is assigned to.
Although this problem is relatively easy to solve compared to the advance request DARP,
efficient solution algorithms are still required to make the solution procedure operational

in real-time.

While the associated technologies are readily available for an AVDS, a major
requirement for successful implementation is to model and solve the real-time DARP. The
DARP has been historically modeled in a static and deterministic manner in the sense that
the travel time from an origin location to a destination location (or O-D travel time) is
assumed to be constant. As described in last section, the O-D travel times in an urban
traffic network are inherently dynamic and uncertain. Ignoring the dynamic and stochastic
nature of the travel times may result in sub-optimal solutions to the DARP, or more
seriously, solutions violating customers' time windows. Therefore, the most realistic
model would be one that integrates both the dynamic and stochastic attributes of the O-D
travel times into the vehicle routing and scheduling procedure. The following problems

need to be addressed:

i) How should the dynamic and stochastic attributes of the O-D trave! times be

represented? What method should be used to estimate and predict the dynamic and
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uncertain O-D travel times (or parameters) based on the real-time traffic information in

an accurate and quick manner?

ii) How can the DARP be modeled more realistically when the O-D travel times are
dynamic and uncertain? Essentially how should the system operator’s routing

objective and customers’ service time requirement be defined?

i) How would the uncertainty of the O-D travel time influence the route choice? When
is it acceptable to ignore the stochastic component of O-D travel time by using an

average value in routing procedure?

iv) How can the DARP be solved effectively and efficiently after it explicitly considers the
dynamic and uncertain nature of the O-D travel times? Would real-time operational

solution methods exist for the more realistically modeled DARP?

1.2 STUDY OBJECTIVES

The initial objective of this research is to evaluate the potential benefits and cost of
incorporating the dynamics and uncertainty of the link travel time into the vehicle routing
models which arise from two ITS application areas: in-vehicle route guidance system

(RGS) and automated vehicle dispatching system (AVDS).

The research will first focus on modeling the link travel time distribution patterns
in an urban traffic network under both recurring congestion and incident congestion
situations. The uncertainty of the link travel times will be assumed to be caused by

random factors and therefore the link travel times will be modeled as random variables



Chapter | Introduction 14

Solution algorithms and methods will then be developed to calculate the “optimal” routes
and O-D travel times in a network with dynamic and stochastic link travel times. Artificial
intelligence techniques will be applied in the solution method to improve their computation
efficiency. Finally, the research will focus on formulating and solving the DARP with
dynamic and stochastic OD travel time model. Real-time operational solution methods to

this problem will be developed.

With the models and algorithms developed, the research will try to address the

following questions:

i} What type of route optimization framework should be used to model the SPP and

DARP when the travel times are dynamic and stochastic?

ii) How would the uncertainties of the link travel times affect the route choices in RGS
and AVDS? Could they be ignored or is it sufficient to use the average travel times in

the routing procedure?

i} If the stochastic influence is significant, are there any solution methods which will be

efficient enough to be implemented in real-time operations?

1.3 RESEARCH FRAMEWORK AND METHODOLOGY

This research will systematically investigate the two real-time vehicle routing
problems, the SPP and DARP, in a dynamic and stochastic environment. Figure 1-3
schematically illustrates the combined research framework and the relationship between

the underlying problems. The research will first investigate the dynamic link travel time
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Figure 1-3 A combined framework

distribution patterns. Next, both the SPP with different link travel time models and the
DARP under different OD travel time models will be formulated. Solution methods to
these problems will be developed and results from different models will be compared in
terms of both solution quality and computational effort. For real-time application
purposes, this research inll also explore the feasibility of applying certain Artificial
Intelligence techniques {Al) in the vehicle routing procedures. The detailed discussions

are presented in the following sections,

1.3.1 Investigate the Link Travel Time Distribution Patterns under Various
Traffic Conditions

Each link is assumed to operate under two traffic conditions: the regular traffic

condition and the incident congestion condition. This research will first examine the
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probability distribution patterns of the link travel time under regular traffic condition using
field data from the City of Edmonton and a simulation model. The link travel time
distributions will be modeled using mathematical distributions and associated parameters.
A basic tenet of this work is that the mathematical distribution used should be as simple as
possible for two primary reasons. First, the stochastic behavior of link travel timesin a
traffic network is a function of many variables including link type, traffic control, etc.
Consequently, it is an extremely complicated procedure to estimate the appropriate
distribution for a given situation. Secondly, the use of a complicated distribution means
using more parameters and therefore more information needs to be stored or

communicated for real-time applications.

Under incident congestion traffic conditions, the travel time on a link may have
two components: running time on the link and the waiting time in the queue (queuing
delay). It is expected that the distribution of link travel time under traffic incident
congestion can be established based on historical and real-time information on traffic

volume, incident duration and capacity reduction.

1.3.2 Formulate and Solve the Shortest Path Problem {SPP)

The stochastic nature of the SPP ensures that they may be defined in many ways.

For the objectives specified in this research, the following two models will be considered:

SPP-1 Find the expected shortest path when the dynamic random travel time is

replaced by the dynamic expected travel time;
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SPP-2: Directly find the expected shortest path in a network with dynamic and

stochastic link travel time:

It will be shown that the first model can be solved by using a dynamic shortest path
algorithm. For the second model, its computational tractability will be examined first and

subsequently a heuristic algorithm will be developed to solve this problem.

1.3.3 Formulate and Solve the Dial-A-Ride Problem (DARP)
In order to model the DARP in a shared-ride dial-a-ride transit system, the

following operational setting will be used:
i) There are a fixed number of vehicles available;

ii) The operation objective is to minimize a combined disutility of the operator and
customers, The operator's disutility is defined as a linear function of total vehicle
travel time. The disutility of customers is defined as a quadratic function of
customer's extra ride time because of other customers and deviations from desired

pick-up/delivery times;,

i) A specific level of service must be maintained such that (a) the customer's ride times
will not exceed a pre-specified maximum and (b) the time of pick-up and delivery of
customers will not deviate from their desired pick-up or delivery time by more that
pre-specified amounts. With stochastic travel time, these two conditions will be

modified to reflect the associated uncertainty;

With above operation settings, the research will focus on the following two

demand responsive DARP models:
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DARP-I Replace the dynamic random travel time with the dynamic expected travel
time and find the routes and schedules for the vehicles which will minimize
the combined disutility of the operator and customers under specified

service constraints;

DARP-2: Directly find the routes and schedules for the vehicles which will minimize
the expected combined disutility of the operator and customers under

specified service constraints;

These problems may be solved by a tree search procedure. The only difference in
two models listed above is that the second model requires an integration step when the

expected disutility is calculated.

1.3.4 Develop Heuristic Vehicle Routing Algorithms

It will be shown that optimal vehicle routing algorithms tend to be too
computationally intensive to be used for the real-time operations in realistic traffic
networks. The problem is compounded when the uncertainties of the travel times are
explicitly modeled. In order to make vehicle routing algorithms operational in real-time
fashion, heuristic algorithms will be developed using techniques from Al. Two types of
heuristic methods will be explored. One will be using heuristic search strategies such as
A* algorithm, branch pruning method and bi-directional search for the one to one shortest
path search. Another approach will be to use Artificial Neural Networks (ANN) to
estimate the O-D travel time distribution parameters that are used in the solution

procedure of the DARP.
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1.3.5 Testing

In order to evaluate and compare the performance of the algorithms proposed for
both SPP and DARP, it is necessary to apply the algorithms to a set of problems and to
examine the factors that impact the empirical performance. In this procedure, certain
evaluation criteria such as computation time and accuracy will be specified first. The
testing problems are generated as close to real world problems as possible and a network

from the City of Edmonton, Alberta will mainly be used as a test bed.

1.4  ANTICIPATED CONTRIBUTIONS OF THE RESEARCH

The research is anticipated to be used in the area of transportation system
modeling, operations research and the development of route guidance systems and vehicle

dispatching systems. The specific contributions include:

1) The stochastic and dynamic nature of the link travel times is explicitly modeled in the
same framework using probability theory. Statistical and theoretical models are
developed to estimate the link travel times under the conditions of recurring and non-
recurring congestion. The conclusions and models may be used by a traffic

information management system that provides travel time data to the RGS and AVDS:;

ii) The SPP and DARP with dynamic and stochastic travel times are analyzed and their
respective solution algorithms are developed. These models and algorithms may be

used in a RGS and AVDS if they are justified to be necessary;,

iii) The influence of the uncertainties of link travel times in route optimization are

identified using the developed models and algorithms. The conclusions may provide
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guidelines for the appropriate types of vehicle routing models that should be used in

the RGS and AVDS;

iv) The techniques from the Al field, including heuristic search strategies and artificial
neural networks are applied in vehicle routing and travel time estimation procedures.
The resulting algorithms and methods may have significant applications for real-time

operations of RGS and AVDS,

L5 ORGANIZATION OF THE THESIS

This dissertation has been organized into nine chapters. Chapter 2 provides a
literature review of the state of the art of the main topics related to the subject of this
thesis. It includes a review of some typical link travel time representation, estimation and
prediction methods used in RGS experiments around the world, a detailed discussion on
various shortest path problems arising in different network models and their respective
shortest path algorithms and a briet review of the k shortest path problem and algorithms.

Lastly, the chapter provide an overview of the dial-a-ride problems and related issues.

In Chapter 3, the dynamic and stochastic link travel time pattern on three types of
links are investigated. The first type of link represents an undersaturated, uninterrupted
flow situation which prevails in most of the freeways and arterial sections excluding
intersections. The second type of link represents a signal controlled link. Lastly, the third
type of link represents a traffic situation with incident congestion. The link travel time
distributions on these three types of links and their relationship with traffic conditions and

traffic controis are discussed.
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In Chapter 4, several approximation models are developed to estimate the mean
and variance of the travel time of a given route in dynamic and stochastic networks.
Subsequently, Chapter 5 examines the properties associated with the shortest path
problem in dynamic and stochasti';: networks. A heuristic algorithm based on the k-
shortest path elgorithm is proposed and its quality of solution and computational

requirements are analyzed based on a network from Edmonton, Alberta.

Chapter 6 develops various new heuristic shortest path algorithms by combining
the optimal shortest path algorithms with the heuristic search strategies. The algorithmic
implementation of the proposed heuristic algorithms and their computational efficiency

and solution quality are discussed in detail.

In Chapter 7, the ANN are introduced as an effective method to provide a quick
estimation on the O-D travel time (mean and variance). Different ANN models are

developed and compared to other O-D travel time estimation methods.

Chapter 8 first discusses how the dial-a-ride system can be modeled with respect to
the objectives of the system operator and customers when the O-D travel times are
random variables. Two heuristic dial-a-ride vehicle routing and scheduling procedures are
introduced to solve the new problem. A computational study is subsequently conducted
to demonstrate the difference between the models with and without considering the
dynamic and stochastic nature of the O-D travel time. The computational efficiency of the
routing and scheduling algorithm with different O-D travel time estimation methods is

finally demonstrated.
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Lastly, Chapter 9 summarizes the main findings and conclusions of this thesis and

provides the future perspective following this desertion work.

Appendix A and Appendix B discuss some theoretical estimations of the

computation efficiency of two heuristic shortest path algorithms.

Appendix C provides an introduction to the ANN, with particular emphasis on the

back propagation network.
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CHAPTER 2

LITERATURE REVIEW

2,0 INTRODUCTION

The central function of an in-vehicle route guidance system (RGS) and a real-time
automated vehicle dispatching system (AVDS) is the ability to provide routes that are
optimal in the underlying traffic network. This has led to the necessity of modeling and
estimating travel time in a traffic network and developing new solution approaches to the
shortest path problems (SPP) arisen in a RGS and the dial-a-ride problem (DARP) in an
AVDS. This chapter will focus on the various methods available for modeling and
estimating the link travel times and O-D travel times, and the different shortest path

problems and dial-a-ride problem models and the respective algorithms to these problems.

The first section of this chapter will identify some link travel time representation,
estimation and prediction methods used in the primary RGS experiments around the
world. The selected RGS includes TravTek and Pathfinder system in Orlando,
ADVANCE system in Chicago and ALI-SCOUT system in Germany. The review of these
systems will focus on how the link travel times are represented, how the link travel times
are estimated from different data sources and how the link travel times during future

periods are predicted.
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In the second section of this chapter, the predominant shortest path problems and
their associated algorithms will be discussed. The review will concentrate on the shortest
path problems arising in different network models with respect to static/dynamic and
deterministic/stochastic link travel costs. Various shortest path algorithms and their

performance will be discussed.

In the third section an overview of the dial-a-ride problems and the related
algorithms is provided. Models of static and dynamic dial-a-ride problems and algorithms

are subsequently discussed.

The last section will summarize previous work in the research area which is the
primary focus of this thesis. It will be shown that the current methodology has limited
application for real-time application, and this will serve as the starting point of this

dissertation work.

2.1 ESTIMATION AND PREDICTION OF LINK TRAVEL TIME

The primary information required for route optimization in both RGS and AVDS
is the travel time on each link in the road traffic network where the RGS and AVDS
would be operating. Link travel times can be obtained from a variety of sources such as
loop detectors, probe vehicles, traffic simulation models and et al. From these data
sources both historical and current values of the link travel time can be generated. A
prediction model is then required to forecast the link travel time during future time period.
These procedures are called link travel time data fusion and link travel time prediction

respectively. Various data fusion methods and travel time forecasting methods have been
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proposed during the development of the RGS demonstration projects. This section
provides a general review of link travel time representation, data fusion procedures, link
travel time forecasting methods used in RGS demonstration projects: ADVANCE, ALI-

SCOUT, TravTek and Pathfinder.

2.1.1 ADVANCE System

The ADVANCE project was initiated in Chicago in 1992, The RGS in the
ADVANCE system is a vehicle-based or distributed route guidance system, e.g., each
equipped vehicle has an on-board computer which calculates the “best” route for the
driver. The concept of the route guidance implemented in ADVANCE RGS is dynamic in
the sense that the route optimization is based on anticipated link travel times. The final
method used to predict the link travel times is still under development and the methods
discussed in the following paragraphs are only used in the initial deployment of the

ADVANCE system (Boyce et al., 1993; Tarko, A. et al. , 1993).

Two types of link travel time profiles are used. static and dynamic. The static
profiles, kept in each equipped vehicle, represent the historical behavior of the link traffic
and are used for route calculation when the road traffic is considered in a stable condition.
In ADVANCE, this is defined as a non-incident situation. Dynamic profiles are used by
the traffic information center (TIC) to update the static profile when the real-time link
travel time is detected to deviate significantly from the historical value. Based on the real-
time link travel time, the future link travel times (for example, 40 minutes), are estimated
and the differences between the anticipated link travel time with the historical travel time

are sent to each equipped vehicle for the route calculation.
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Two types of data source are used for the estimation of link travel time during the
current time period. One data source is detectors embedded in the road network, The
output of a detector is the real-time occupancy and volume on the link. The expected
detected link travel time (EDTT) is derived from the detected occupancy based on a link
specified regression model. Anotuer data source is the RGS-equipped vehicles that
provide the time to take them to travel on each link (EPTT) along their route, These two

data sources are fused to generate expected on-line link travel time (EOTT) based on

Bayes's inference rule:

EDTT/ o} +EPTT/ o’

EOTT = . - -
Voy+l/o, -1

Where °d2 is the variance of the detected link travel time; °p2 is the variance of the link
travel time from pruoe vehicles. This on-line travel time is then fused with historical trave!

time to generate new historical link travel time using similar formula as 2-1.

If the value of EOTT does not deviate significantly from the historical link travel
time during the same time period, the historical link travel time profile would be used for
the prediction of future link travel time. Otherwise, a new dynamic link travel time profile
would need to be created. Although the link travel time prediction method used in
ADVANCE experiment has not been discussed in the recent literature (Boyce et al.,
1993), a conceptualized approach to forecasting the link travel time has been proposed by

Chen and Underwood (1991). The approach begins by simulating the routing of vehicles
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through the network to obtain the dynamic link travel time profile, then rerouting the
vehicles based on this simulated dynamic link travel time profile, and iterating this process
until it converges to a steady state. Obviously, to be effective, the simulation procedure
must be significantly faster than real time. This approach is at the development stage in
respect of both theory (dynamic traffic assignment) and practice (need powerful

computers that parallel computation).

It should be noted that the link travel time estimation models proposed for the
ADVANCE project inexplicably assumed that the link travel time is dynamic and
stochastic (e.g., the variance of the link travel time is used in Equation (2-1)). However,
the actual information used in the vehicle routing process is the average link travel time.
That is, the stochastic attributes of the link travel times are not considered in the route
optimization. As part of the ADVANCE operation test, Rouphail (1995) provided some
theoretical and empirical evidence on the variation and distribution of the link travel times.
They proposed some microscope travel time distribution models for vehicle entering a
signalized traffic link as a function of traffic flow and traffic control. Their research also
shows that the variation of link travel time with traffic control is very significant and the

probability distribution is bimodal.

2.1.2 ALI_SCOUT System

The ALI_SCOUT system which began its field test in Berlin in 1988, is a
centralized route guidance system where the routes are calculated by a central computer
and then sent to the vehicles through road side beacons locating at mojor intersections.

The route calculation in ALI-SCOUT is based on anticipated travel time on links. The
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link travel time prediction method was proposed by Hoffman and Janko (1990) and
includes a method for creating an historical link travel time profile and a dynamic

prediction algorithm.

A historical travel time data base is maintained for each link. The data base is
composed of a standard profile for each link. This standard profile is updated daily using

the data from the preceding day. If tij.n represent the average travel time during nth time

period for link (i,j), then,

new tij n=a tj n+(1-a)old tjj o (2-2)

Where tj p, is the new observation of the average travel time of the nth period for link

(i,j)); o is a weighting coefficient.

The travel time prediction method assumes that the ratio of current travel time and
the mean travel time for the historical data base remains unchanged over future time

period. This ratio is called deviation coefficient (Pij.k) and defined as follows, if the

current time period is k:

- U (2-3)
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Where tjj. i is the mean travel time from standard profile; t j; ¢ is the current average
travel time on link (i,j) for time period k. If there is no current travel time available, then
pij. k s set to 1. The coefficient can be smoothed by combining it with the deviation

coefficients of preceding periods or of the neighboring links.

Finally, the predicted travel time for link (i,j) at a future time interval m, T*ij. m- s

then given by:
¢ lim
t., =—t— (2-4)
ijm p.

ij.k

Koutsopoulos and Xu (1993) proposed an information discounting strategy as an
extension of the prediction method discussed above. Instead of assuming the deviation
coeflicient remains constant for the entire prediction horizon, they predict the travel time
on link (i,]) at a future time period m, tjj ¢, , by discounting the travel time t*ij. m from
Equation (2-4) to both the travel time from origin node s to node i , Pg; and the standard

deviation Gy m with an exponential function as follows:

(2-5)
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Where m is the future time period when the vehicle arrives at node i; tij. m is the historical
travel time for link (i,j) at time period m; 0 is a constant scalar, which can be adjusted to
provide better fit between projected and actual travel time. A similar method was also

proposed by Rilett (1992).

It should be noted that link travel times in these methods are considered as random
variables and a smoothing process is used to obtain the average profile of the link travel
times. However, the variation of the link travel time is not considered in the path finding

procedure.

2.1.3 Pathfinder and TravTek Systems

The Pathfinder in Los Angeles, California, and TravTek, in Orlando, Florida,
represent the first two implementations of ITS in the North America. The current
implementations of both systems have similar architecture with a central computer that
gathers data from variety of sources, generates and disseminates the prevailing status of
the network traffic to the equipped vehicles. The prevailing status of the network traffic is
represented by the current link travel time in the road network. In the Pathfinder system,
the current link travel time 1s transferred into congestion levels for display in the in-vehicle
computer screen. In the TravTek system, the current link travel time is used to calculate
the optimal route from current position to the destination. The generation of current link

travel times, i.e., data fusion, is based on data from various sources.

The data fusion method proposed for Pathfinder and TravTek involves a fuzzy
logic maximum height solution process (Sumner 1991). The data sources considered

includes probe vehicles, loop detector, TRANSYT modeling, operator interface and



Chapter 2 Literature Review 32

historical files. Each data source is represented by two fuzzy variables including quality of
data and aging. A score is produced by allocating the quality number to the data source
and then linearly decrement the score each minute using the age factor. In any minute, the
source with the maximum score is considered the best one and the data from that source
are used to estimate the link travel time. The problem with the fuzzy logic method is that
only one data source is actually used in link travel time estimation. This means that the
data from the remaining sources are completely neglected or ignored when estimating the

current travel time.

2.2 SHORTEST PATH PROBLEM AND ALGORITHMS

The key component in any RGS is the method used to identify the “best” path
between two points, or shortest path algorithm. The shortest path algorithm is also an
important part in any AVDS where an accurate estimation of the minimum O-D travel
time and/or cost is required in the vehicle routing and scheduling process. The objective
of a shortest path algorithm is to find the path with minimal travel cost from an origin
location to a destination location. The travel cost is a general term representing one or a
combination of travel time, travel fee and safety level et al. In this research, travel time
will be used without any further notation although the results are applicable for any
gene-alized cost. This shortest path problem has been studied for over thirty years in
diverse fields such as computer science, communication and transportation engineering.

Numerous algorithms and extensions have been proposed. The review will focus on the
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basic shortest path problems, algorithms and their extensions including dynamic and/or

stochastic shortest path problems.

In order to simplify the description of algorithms, an annotation is provided as
follows. A road traffic network is represented by a digraph G(N,A) consisting of a set of
nodes N and a set of arcs A (or links used in this paper). Denote the number of nodes
[N[=n and the number of links |A|=m. A link a=(i,j) € A is directed from node i to node j
and associated to a travel time ;. A path from an origin(s) to destination(d) is a

sequential of nodes and links: s, (s,j), §........... (i,d). d. The travel time of the path is the

sum of the times along all its links.
The following notation wil} also be used.

L) = the minimal travel time to node i, starting at origin node s. 1t is often known as the

label of the node;

P(jy = the preceding link (a pointer) on shortest path to node i;

Q

a list of nodes placed in a certain order for examination:

2.2.1 Shortest Path in a Static and Deterministic Network

The static and deterministic shortest path problem is defined as finding a minimum
time path in a network where the travel time associated with each link is a constant.
Without any other constraints, this problem can be solved in polynomial time. Due to its
computation tractability, most of the research in this area has focused on an optimal
solution of the problem and how to improve the efficiency of the optimal algorithms by

using different data structures and search strategies.



Chapter 2 Literature Review 34

An optimal shortest path algorithm is essentially an application of dynamic

programming theory to the search of shortest path in a graph. The shortest path is found

through an iterative decision making procedure from the origin node (s) (or destination

node) to destination node {or origin node) by applying following recursive formula:

Ly = "g?j“{L(i) +T50 5 L =0

(2-6)

This dynamic programming problem can be solved by effective labeling algorithms

which have following common procedure (Assume that the search starts from origin node

s):
Step 1: Initialization:  i=s Lj)=0: Lgy= vj#i:
Py = NULL
Define the scan eligible node set Q={i};
Sicp 2:  Stop Rule: IF Q= THEN stop.
ELSE select and remove a node i from Q;
Step 3: Node Expansion: Scan the forward star of the node i. For each link a=(i.j)
IF Lay + i <L),
THEN L(j) = L(i) 1 P(i) = a, insert node j into Q;
Step 4: Iteration: GOTO step 2.

The major vartations between different algorithms pertain to the data structure

used to form the scan eligible rode set and the manner in which the nodes are identified

and selected for examination. Based on the behavior of an algorithm, the optimal shortest
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path algorithms are usually classified as two categories: label correcting and label setting

aigorithms. The 'label' refers to the travel time.

2.2.1.1 Label correcting algorithms:

The label correcting algorithms use a list structure to manage the scan eligible
node sets that need to be examined during the shortest path tree building process.
Variations of the list operation policy make up of different label correcting algorithms such
as depth first search (last-in-first-out list), breadth first search (first-in-first-out list) and

derived search strategies.
There are three typical algorithms in this category:

(1). Label correcting with queue (Moore, 1969) : In this algorithm, the addition of new
node is only allowed at tail and deletion only at head. Its computation complexity is

O(m.n);

(2). Label correcting with double ended queue (Pape, 1974) : In this algorithm, the
addition and deletion are possible at either end, depending on whether or not the node has
been examined before. This type of list operation reduces the probability that a selected
node will have to be reanalyzed at some future point and consequently improves the
overall search efficiency. However, its worse case complexity is O(n.2n), that is, it is

worse than label correcting with queue algorithm,

(3). Label correcting with threshold lists (Glover ef al., 1985) : The development of this
algorithm was an attempt to combine the advantages of both label setting and label

correcting algorithms. In this algorithm, two lists called NOW and NEXT are maintained
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during the shortest path search. At each iteration, a node in NOW list is selected for
examination in a LIFO manner. When the NOW list is exhausted, a threshold value is
calculated to determine which nodes currently in NEXT may be moved to NOW list. The
expected efficiency of this algorithm results from both avoiding the necessity of
maintaining a complete ordered list as in label setting algorithms and reducing the
redundant calculation as in label correcting algorithms. The computation complexity of

this algorithm is same with label correcting with double ended queue, i.e., O(n.20).

The major feature of the label correcting algorithms is that it cannot identify the
optimal shortest path between the root node with another node before they explore every
node in the network. This attribute makes them suitable in the situation when all the

shortest paths from the root node to the other nodes in the network need to be identified.

2.2.1.2 Label setting algorithms:

In label setting algorithms, a scan eligible node set is maintained orderly based on
their current path time from the root node, i.e., their labels. During the shortest path
search the node with least label is selected for examination and at same time the shortest
path to this node is identified. The major difference among the label setting algorithms is
the data structure used to maintain the ordered node set. There are following three types

of label setting algorithms popularly identified:

(1). Label setting with sorted list (Dijkstra, 1959): sorted list is the simplest way to store

the ordered scan eligible node set. The node with minimum label is at the head of the list.

Insertion of a new node takes O(n), that implies an O(n?) computation complexity;
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(2). Label setting with binary heap (Tarjan, 1983): in this algorithm, a binary tree data

structure called heap is used to store the ordered scan eligible node set. This tree data

structure reduce the computation complexity into O(n.log n) from O(n?) required by using

sorted list;

(3) Label setting with buckets (Dial, 1969): in this algorithm, a pointer array is used to
store the ordered buckets . Each bucket in the array corresponds to certain label range and
stores the nodes with its label within the range. It therefore requires a pointer array with
enough length to handle the maximum possible label (or path length). This algorithm can
reduce the computation efforts to select a node with minimum label and insert a node in
the scan eligible node set. However, its sensitivity to the network size and link length

makes it inefficient for large network problems.

2.2.1.3 Compuftation studies on Jabel corracting and label setting algorithms:

It has been found insufficient to use the worse case complexity to assess the ability
of a particular algorithm to perform certain functions. This is especially true when the
problem has special structure that does not fit the general situation. Many comprehensive
computation studies on the performance of the shortest path algorithms have therefore
been conducted in different research fields. Most of the comparisons are based on criteria
such as computation time, complexity of implementation and storage requirements,
According to the literature that focuses on transportation networks (Gallo et al., 1984;
Hung et al. 1988; Vuren et al., 1988), the following conclusions may be summarized.
Among the label correcting algorithms, the label correcting algorithm with the double

ended queue and the label correcting algerithm with threshold lists are found dominant,
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The difference in computational efficiency between those two label correcting algorithms
are trivial in transportation road networks. However the former is much easier to
implement and consequently is more widely used algorithm. On other hand, the label
setting algorithm with binary heap is one of the fastest algorithm among label setting
algorithms. In addition, the label correcting algorithm is always faster than the label
setting algorithms. The last conclusion may result from comparison conditions. It should
be noted that all comparison studies found in the literature are based on one-to-all mode,
i.e., finding the shortest path from a root node to all the other nodes in graph. If only the
shortest path between a pair of nodes is required as in a RGS, label setting algorithms

could be better than label correcting algorithms.

2.2.2 Shortest Path in a Dynamic Network

An important extension of static shortest path problem is the dynamic shortest path
problem. This problem entails finding the minimum time path in a network where the
travel time on some or all links is dynamic, that is, the link travel time changes with time of
day. This problem is especially important in road traffic networks where recurrent

congestion is a common phenomenon.

The dynamic shortest path problem was first studied by Cooke and Halsey (1966)
and further described in Drefus's paper (1969). They concluded that the problem can be
solved by using Dijkstra's algorithm and the algorithm is as efficient as if the link travel
time is not dynami. Kaufman and Smith (1990) first proposed the application of the
dynamic shortest path algorithm in a RGS and further clarified the sufficient condition that

ensure that the optimal solution can be found.
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Assume that the link travel time is T(T;) with T; representing the entry time on link

(ij). The following new recursive formula can be established:

Ly = “ilijn{l-'(i) + Tyt 3 Ly =0, T, =given (2-7)

Where Lg; and L, are respectively the travel time from origin node s to node i and
to node j; T, is the departure time at the origin node s. If the label associated with node j
has a minimum value when the path goes through node i = i*, then the arrival time (or

departure time) at node j can be updated with the following formula:

T, =T. + 71 j(Ti.) (2-8)

It is obvious that it will not impose extra computation burden to solve the above recursive
formula by using labeling algorithms presented in section 2. 2. 1. The only difference is
that departure time at each node is a new decision variable and must be updated at each
recursive step. However, because the link travel time is a function of the entry time at the
link, the labeling algorithms are not allowed to start from the destination node and work

backward to find the shortest path as in a static network.
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2.2.3 Shortest Path in a Stochastic Network

In many application situations, the link travel time in a network is not deterministic
and is governed by some discrete or continuous stochastic process. This is typical in a
road traffic network where the travel time on each road segment may be considered as a
random variable, resuiting from many factors such as the fluctuation of traffic demand and
variation in individual driver's behavior, The shortest path between two nodes in a
stochastic network depends on the state of the network and therefore is not necessarily
always composed of the same links. Contrast to the deterministic shortest path problem,
the shortest path problem in stochastic networks can have many different models.
Examples include how to find the probability distribution function of the shortest path
length in a stochastic network and how to find the path that stochasticly dominates over

all the other paths based on a specific utility funtion.

The earliest work in this area is attributed to Frank {1968) who identified a method
of determining the probability distribution of the shortest path length. In that paper the
links in a network are assumed to have independently distributed length (travel time) with
a continuous probability function. Mirchandani (1976) extended Frank's work by
considering the case that the probability function of the link length is discrete. Although
these work provided insight of the characteristics of the shortest path length between two

nodes, they cannot be applied to find the optimal path.

2.2.4 Shortest Path in a Dynamic and Stochastic Network

A dynamic and stochastic network has the combined attributes of both dynamic

and stochastic networks. That is, the link travel times in general manifest time-dependent
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pattern (dynamic) , and are not deterministic at any time moment or time interval.
Dynamic and stochastic networks are the most feasible models of road traffic network
where the travel time on each road depends on the time of day (e.g., peak and off-peak

period), and at same time has certain amount of variation at any time period.

The shortest path problem in dynamic and stochastic networks was first studied by
Hall (1986) which still remains the only research work on this specific problem. Hall's
work focused on the problem of finding the path that has the minimum expected travel
time from an origin node to a destination node. That paper first demonstrated the
augment that the traditional label setting or correcting algorithms (discussed in section
2.2.1) may fail to find the expected shortest path. A new algorithm was then proposed as
an attempt to handle the dynamic and stochastic attribute of the network. The algorithm is
fundamentally an enumeration procedure based on a k-shortest path algorithm. The

algorithm processes as follows:

Step 1: Initialization:Setk=1, 1, =

Find the (1st) shortest path from node s (origin) to destination node
d, based on minimum possible travel times over links in the
network. Call the path P{, set 7j equal to the minimum possible

travel time over P| and calculate the corresponding expected travel

time T

Step 2: Stop Rule:  If Ty <ty  1,=Ty



Chapter 2 Literature Review 42

P =Py
If 7, < t: P is the optimal path
1, is the minimum expected travel time
Stop
Step 3: Expansion: Set k =k+1

Based on the minimum possible travel times on each link, find the

kth shortest path from node s to the destination node, call it Py

Set 1| equal to minimum possible travel time over Py, calculate the

expected travel time Ty over Py

Step 4: Iteration: Goto Step 2

This algorithm provides a method to exploit the expected shortest path in dynamic
and stochastic networks, however, there are some related issues that need to be addressed

before it can be applied in real applications.

First, Hall's paper has not discussed about how to calculate the expected travel
time of a given path when the link travel times on the path are dynamic and stochastic.
This computation may be simple for the network which has small number of nodes and
links, and the random link travel time has small number of states. However, it will not be

trivial for large scale networks.
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The second issue is related to the computation efficiency of the algorithm.
Because there is no computation experiment and complexity estimation conducted on this
algorithm, it needs to be verified whether or not it ¢an be applied to real world road traffic
network. This doubt arises from the conjecture that the algorithm may have to exploit a

large number of k-shortest paths before it finds the expected shortest path,

The last issue is that Hall's augment is based on a transit network, it is not
necessarily the case for the road traffic networks because these two types of networks
have very different link travel time patterns. It is therefore necessary to further investigate

how much estimation error would be induced if the standard shortest path algorithms are

used.

2.3 K SHORTEST PATH PROBLEMS AND ALGORITHMS

The above section described the problem of finding the shortest paths between two
nodes in various types of network model. In many situations, however, there is a need to
find the nearly optimal paths such as the second shortest and the third shortest paths
(instead of only the shortest paths). The underlying problem is often referred as to k
shortest path problem (k-SPP), and a solution procedure to k-SPP is called k shortest path
algorithm. It should be noted that the k-SPP assumes that the underlying network is

deterministic,

As a typical example, k shortest path algorithms have been exclusively used to

solve the constrained shortest path problem which is to find the shortest paths that must
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satisfy a set of constraints. In this thesis the k shortest path algorithms will be used in a

proposed solution approach to the DSSPP as discussed in Chapter 5.

There are generally three classes of k shortest path algorithms. The first one is
Dreyfus’s algorithm (Dreyfus, 1969). The second class is due to Shier, representing a
generalization of the labeling shortest path algorithms discussed in Section 2.2.1. The last
one is the algorithms based on path deletion concepts (Azevedo ef. al., 1993). Because
this thesis will not examine the efficiency of various k shortest path algorithms, Shier’s
algorithms will be selected for use for its close relation with the shortest path algorithms.

The following section prevides a detailed discuss on Shier’s algorithm.

As the labeling algorithms for the shortest path problem, the k shortest path
labeling algorithms can also be classified as label correcting and label setting algorithms.
The concepts and characteristics of these two algorithms are similar to the shortest path
labeling algorithm. The following graph will present the k shortest path label setting

algorithm which has been adapted in this thesis.

Using the same notations for the SPP presented in Section 2.2 except that a k
vector of labels Ly={t";, &, ..., &} is assigned to every node j, where the entry £, of L;
represents the current label of ith shortest path to node j. A vector q is used to store the
minimal temporary entry for each node. The k shortest path label setting algorithms
proceed sequentially and at each step identify a new correct entry of some k vector of
some node in the final solution. This process continues until all the component value of

the k vector L, corresponding the destination node g are made permanent. The following
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lists the procedure of finding the k shortest paths from origin node (s) to destination node

(g) (the search starts from the origin node).

Step 1. Initialization:i = s, L(i) = {0, ®0,00, ... 0}; q=0;
Ly = {00, .. o} qp=0 Vjzi;
Define the scan eligible node set Q={i};
Step 2:Stop Rule: IFQ= THEN  siop.
ELSE select the node i with smallest temporary entry q value from
Q. Assume the sequence of this entry in L; is k*, then
IF k*=k THEN
IF i =g THEN stop
ELSE remove node i from Q
ELSE qq =&, and insert node i into Q;
Step 3: Node Expansion:  Scan the forward star of the node i. For each link a=(i,])
IF  qp+c;<f THEN K =qq+cy;
IF & < qq THEN qg) =", and insert node j into Q;
Step 4. Lteration: GOTO step 2.

It should be noted that this procedure only identifies the k shortest path length
from the origin node to the destination node, the actual k shortest paths are found through

a backtracking procedure based on the k vector value of each node.

2.4 DIAL-A-RIDE PROBLEMS AND SOLUTION METHODS

There has been considerable research on the dial-a-ride problem (DARP) in

operations research and transportation science over the past 30 years. The interest on this
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problem is mainly attributed to the development of paratransit system where the daily
operation requires the routing and scheduling of vehicles for the handicapped, the elderly
and other people who cannot access the fixed route public transit system. In the dial-a-
ride system, customers call a dispatcher in order to request service. Each customer
specifies a distinct pick-up and delivery location in the service area and usually, a desired
time for pick-up or drop-off. The problem is to develop a set of "optimal" routes and
schedules for vehicles to carry the customers from their pick-up locations to their drop-off
locations. The DARP is a constrained version of the Vehicle Routing Problem (VRP), the
constraints relate to the precedence relationships between the origin location and
destination location of each customer (Bodin et al., 1983). A more recent survey of the

literature was provide by Savelsbergh and Sol (1995).

The DARP is traditionally classified into two categories based on the
characteristics of customers' service requests; static and dynamic. In the static DARP, all
the customers reserve service in advance, e.g., one day ahead, so that complete
information about the customers is known before the routing and scheduling is carried out.
This problem is also called advance request DARP. On the other hand, if some of the
customers request immediate service, then the routing and scheduling are done in real time
and the problem is referred as to the dynamic or the demand responsive DARP. In the
dynamic DARP, the customers requesting immediate service must be inserted into the

existing route.

The past research on the DARP mainly focused on how to realistically model the

operation scenario (operator's and customers' requirements), and how to solve large scale
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DARP for most real operation situations . The section 2.3.1 outlined the research work

done on static DARP. The dynamic DARP and algorithms are reviewed in section 2. 3. 2.

2.41 Static Dial-A-Ride Problem and Algorithms

The static DARP has further sub-classifications based on the number of vehicles

used (i.e., single vehicle vs. muitiple vehicles ), and any service requirements (i.e.. with or

without time windows).

The single vehicle static DARP was first studied by Psaraftis (1983). The
objective used is a linear combination of total route duration (representing the operator's
disutility) and total waiting time and riding time of all customers {customers' disutility).
The constraints on the problem include vehicle capacity and maximum position shift for
each customer between his position in the reservation list and the position in the sequence
of pick-up. A dynamic programming algorithm was developed to solve the problem with
and without time windows optimally. The optimal algorithm requires O(N23N) time and

is only tractable for small size problems (less than 10 customers).

Sexton and Bodin (1985a,1985b) proposed an approach for the single vehicle
static DARP with time windows, The operation scenario modeled is characterized as that,
each customer has a desired drop-off time. The objective used is to minimize the total
inconvenience which a customer may experience. The total inconvenience is expressed as
a linear combination of the excess ride time and the deviation from the desired drop-off
time. Based on their proposed formulation, the problem is solved through an iterative

procedure which alternately finds the route and schedule.
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In contrast to the single vehicle case, the multiple vehicle DARP is 2 more realistic
model of most applications and has received a significant amount of attention. Many
heuristic approaches to this problem have been developed and most of these approaches
are alike in terms of algorithmic philosophy. The algorithm proposed by Jaw (1986) is

H

discussed below.

Jaw's heuristic algorithm derived some concepts from the work done by Wilson et
al. (1977) for the dynamic DARP. (The dynamic DARP is discussed in next section) . The
algorithm is composed of a search for the feasible insertion of customers into the work
schedule and an optimization step. The feasibility of inserting a customer is verified on the

basis of the following assumptions on the operating scenario:

1. Each customer specifies either a desired pick-up time (DPT) or a desired drop-off
time (DDT). No DPT- (DDT-) specified customer will be picked up earlier than

his/her DPT (DDT);
2. No customer's actual ride time will exceed a given maximum;

3. The time deviation between the actual pick-up {drop-off) time and the desired
pick-up (drop-off) time of a customer will not exceed a given maximum value for

DPT-specified (DDT-specified) customers.

With these constrains all the customers are sequentially inserted into the work schedule of
each vehicle. At each step, the customer that generates the least extra COST when it is

inserted into a feasible position, is selected as the best insertion. The COST is defined as
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a weighted sum of disutility of all the customers and of operator costs. The disutility of a

customer {DU; for customer i) is defined as

pU; =DbUf + DUT (2-9)
Where:
pud = disutility due to deviation from most desired time
T O X+ Gy
and
DU = disutility due to excess ride time

= C3Y¥+Cyqyi?

Where C;, C,, C; and C, are parameters that can be adjusted to reflect customers'

preference pattern on the deviation from their desired times (x;) and excess ride times (y;).

The incremental cost, VC, to the system operator resuited from insertion of a new
customer (customer i) is defined as a combination of additional vehicle travel time (z;) and

the change of vehicle slack time (w;).

VCi~Csz+CgwjtUj(Cyz +Cgw)
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Where Cs, Cg, C7 and Cg are externally set parameters; Uj is an indicator of system work
load defined as a ratio of the number of customers to be serviced to the number of vehicles
available. With this parameter, the general objective function will place more emphasis on
the system operator's cost when the service demand is heavy or vehicle resources are

scarce.

2.4.2 Dynamic Dial-A-Ride Probiem and Algorithms

In contrast to a static dial-a-ride system, a dynamic dial-a-ride system accepts new
customers who call to request immediate service. 1t is therefore required for the system
to have the function to immediately determine the assignment of a new customer to a
vehicle and the new route and schedule for the vehicle that the customer is assigned to.
At the time of a new request, each vehicle in the system is on his/her way to pick up or
drop off a customer based on his/her earlier assigned route and schedule. Some of the
earlier customers who have been already delivered to their destinations, are no longer
considered in this problem. The other earlier customers are either on board to be

delivered to their destinations or are waiting to be picked up.

On the dynamic DARP, most of the work has been done by Wilson and his
colleagues at MIT (1976,1977). The approaches developed by them have been
extensively tested in the Rochester, New York Dial-A-Ride Demonstration Project, which
is also the earliest computerized dial-a-ride demand responsive system in North America.
Although the initial system has not been expanded because of the higher cost of the

computer resource at that time, these algorithms are still feasible.
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The Wilson's approach is an insertion algorithm. The algorithm examines all
possible insertion of pick-up and drop-off stops for the new customer into the routes for
all available vehicles and selects the best way to incorporate the new customer into the
existing routes and : ~hedules. In order to select the best vehicle and positions to assign
the new customer, an objective function is defined as a combination of the incremental

disutility of system customers' and incremental cost of the system operator after the new

customer is inserted,

The disutility of customer i, D, is defined as

Di=awiz+b Ri2+cPi2 (2-10)

where, a, b and c are parameters which can be adjusted for different type of customers
depending on the service demanded; wj is the desired pickup time for customer i; P is the
scheduled pickup time for customer i; R; is the ride time from pick-up to drop-off for
customer 1, Therefore the total incremental disutility for all customers after the new
customer is inserted can be calculated. For the inserted customer there is only the

disutility after he/she has been inserted into an existing route.

The objective function related to system operator attempts to spread the tour
length equally among all the vehicles as well as minimize the total travel time. This term,

VCy for vehicle k, is defined as:
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VCj = (Li"ew - Lold y (d-Lave+ e-Ly0ld) (2-1-1)

Where d and e are parameters; L) "®W is the tour length for the vehicle under
consideration after the new customer is inserted into the vehicle; Ly°ld is the tour length
for the vehicle under consideration before the new customer is inserted into the vehicle.

L.2V€ js the average tour length of all the vehicle after assignment.

2.5 SUMMARY

This chapter has provided an overview of the research literature on the estimation
and prediction of link travel times, the shortest path problems and dial-a-ride problems.

The main points are summarized as follows.
1. On the estimation and prediction of link travel time in the road traffic network

o The link travel time has been implicitly considered as a random variable and
represented by its mean and variance. However the mean travel time is
exclusively used in route optimization in the existing RGS experiments. The
variance is only used as an assistant parameter for data fusion and prediction of

travel times.

¢ The prediction of link travel time still resorts to some simple heuristic

algorithms. The methodology of link travel time prediction by using dynamic
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assignment procedure is still under development, and the computation

feasibility of its implementation needs to be further investigated.

e The link travel time is commonly assumed to be normally distributed. Liitle
work has been done on how to model the stochasticity of the link travel time,
and how to estimate and predict the distribution parameters or moments of the

link travel time, instead of just mean travel time.

2. On the shortest path problem

¢ Among the optimal algorithms, label setting algorithm with binary heap is
found to be one of the best to find the shortest path between two specified
locations while the label correcting algorithm with double ended queue is
preferred for the case to find the shortest paths from one location to many

other locations.

e The optimal shortest path algorithms, such as label setting algorithms and {abel
correcting algorithms, tend to be too computationally intensive for real-time
one-to-one applications in realistic traffic networks. More efficient shortest

path algorithms such as heuristic algorithms need to be developed;

» The shortest path problem in a dynamic network can be solved as efficiently as
the static shortest path problems by the labeling algorithms. However it is not
the case when the network is both dynamic and stochastic. Further study is

necessary to solve this problem;
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e Under the network with stochastic link travel time, the variation of path time
could become another important criterion for route selection. However the

resuited problems have not been well studied;
3. On the dial-a-ride problem

e Operation researchers and practitioners have been trying to model the dial-a-
ride problems more realistically by properly considering both the system
operator's cost and the system customers' requirement in the route and
schedule optimization. However all of the models assume that the travel time

between two locations, or O-D travel time, is static and deterministic;

e Solution methodologies to the DARP are still dominated by heuristic

algorithms, mostly of the insertion type;
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CHAPTER 3

DYNAMIC AND STOCHASTIC LINK TRAVEL TIME

3.0 INTRODUCTION

For both the RGS and AVDS conceptualizations discussed in Chapter !, one of
the most important pieces of information required is the link travel times in the underlying
traffic network. As described in Chapter 2, link travel times determine how the shortest
path problem involved in a RGS should be defined. In an AVDS, the link travel times are
the basic data used for estimating the O-D travel times which are required as basic input
for the vehicle routing and scheduling problems. Due to the inherent fluctuation of travel
demands, interruption of the traffic controls, unpredictable occurrences of traffic incidents
and changes in weather conditions, the link travel times in an urban traffic environment
may be extremely dynamic and stochastic thoroughout the day. The objective of this
chapter is to examine the dynamic and stochastic attributes of the link travel times and
provide some insight into how the related parameters can be obtained under various traffic
conditions. The conclusions found in this chapter are used as input to Chapter 4 and

Chapter 5.

As discussed in Chapter 2, the link travel time estimation and prediction problem

has become one of the central focuses of various demonstration RGS projects (Hoffman
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and Janko, 1990; Boyce et al., 1993 ). However, all related research and proposed
methods implicitly assume that the only relevant information on the link travel times is the
average travel time for a set of discrete time intervals throughout the day and thus the link
travel time variation, or the stochastic attribute is ignored.

This chapter concentrates on the dynamic and stochastic link travel time pattern on
three types of links. The first type of link represents an undersaturated, uninterrupted,
flow condition which prevails on most freeways and arterial sections excluding
intersection interruptions (May, 1990). Section 3.1 discusses how the link travel time
distribution on this type of link can be theoretically obtained from the respective speed

distribution.

The second type of link, which represents a signal controlled condition, is
discussed in Section 3.2. The link travel time on this type of link includes the running time
on the link and the queuing delay at the intersection caused by a signal control. A
simulation model is developed to examine the link travel time distribution as a function of

traffic volume, signal control and platoon progression quality.

Section 3.3 discusses the third type of link which represents the traffic congestion
condition caused from incidents. A stochastic model is developed to estimate the
probability distribution of the incident delay, from which the mean and variance of the
incident delay is derived. An example incident is created and used to analyze the
performance of this new link travel time model. A sensitivity analysis of the estimation

error by a deterministic model and the variance of the incident delay as a function of the
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incident duration is also performed. Finally, the section examines that how real time

information can be incorporated in the estimation of incident delay.

It should be noted that the above three types of links by no means cover all the
road facilities and traffic conditions expected in a realistic network; however, some
conclusions and proposed methods may be extended to analyze the link travel time

distributions on other types of links.

3.1 LINK TRAVEL TIME PATTERN UNDER UNINTERRUPTED
UNDERSATURATED FLOW CONDITIONS

The link travel time during an uninterrupted, undersaturated flow condition only
includes the time in which a vehicle spends in motion -- the running time. Due to certain
inherent variations in traffic volumes, traffic composition and weather conditions, a vehicle
may experience different link running times on a link during different times of the day
(dynamic) and even at the same time over various days (stochastic). Similar to the
traditional treatment of the dynamic link travel time pattern, the time horizon is divided
into short intervals. The method of estimating the travel time distribution pattern in each
interval is the focus of this research. Although the size of the interval is not a topic of
research in this thesis, it should be noted that the interval should be wide enough to

contain sufficient data for statistical inference in practical situations.

Although there is little research on the distribution of the link running times, a
substantial amount of research has been conducted on the distribution of speeds— the

reciprocal of the running time (TRB 1994; May, 1990). This section first compares the
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empirical link running time distribution to a mathematical distributions — the normal
distributions. The section then discusses how running speed distributions can be used to

derive running time distributions.

3.1.1 Running Time Distribution: Some Empirical Evidence

This section provides some empirical evidence regarding the vehicle running time
distribution pattérn on a highway section under undersaturated traffic conditions. The
travel time data used in the following analysis were taken from a travel time survey
conducted by the Transportation Department of the City of Edmonton in 1991. The
survey data consist of link by link travel times on 9 routes during the AM peak
(7:00am~9:00am), the PM peak (4:00pm~6:00pm) and the off peak periods
(10:00am~12:00am) obtained during a floating car study. This research selected link
travel time data on 102 Avenue from 101 Street to 100 Street which was covered by three
surveyed routes with 24 observations during and AM-peak period and Off-peak time
period. The frequencies of the link running time using a 4 second interval are calculated
and the cumulative distribution is shown in Figure 3-1. For comparison purposes, two
mathematical distributions, the normal and lognormal distributions that used the surveyed
mean and variance as inp_ut parameters, are also shown in Figure 3-1. It can be observed
that the link running time distrtbuiion closely resides between the normal and lognormal
distributions. It should be noted that these data can be fit perfectly using some more
general and powerful distributions such as a Johson Translation System. However, in
order to arrive a conclusive answer on which mathematical distribution is best fit into the

link running time, a intensive field survey needs to be conducted to collect enough data
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samples for a robust statistical analysis. Instead, for the purpose of this thesis, a
theoretical analysis is performed in the following section to provide more evidence on the

link running time distribution pattern.
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3.1.2 Theoretical Derivation of the Running Time Distribution

The previous section indicates that a normal or lognormal distribution may be able
to represent the vehicle running time distribution on a link. In addition, past research has
suggested that the running speed, the reciprocal of the running time, is either normally
distributed or lognormally distributed (Gerlough and Huber, 1975). Because running
speed and running time are functionally related to each other and both are random
variables it would be expected that given, the distribution of one the distribution of the
other, at least theoretically, may be derived. The following paragraphs show the

derivation of the running time distributions based on the running speed distributions.
1) If the running speed is normally distributed:

Consider a link with a length noted as D. The vehicle running speed on this link,
S, is normally distributed with a known mean. |, and a standard deviation, o, . The
vehicle running time on the link, noted as T, is a random variable which ran be calculated

as follows:

G-1)

w| Qo

In Equation (3-1) the variable D is deterministic and S is a normally distributed random
variable that can be expressed as u; + o; X, where X is a normally distributed random
variable with a mean equal to zero and a standard deviation of 1, that is, X is N{0,1}.

Therefore, Equation (3-1) can be rewritten as follows:
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D _ D/y, (3-2)

T= =
p,+o. X 1+v X

where v.is the coefficient of variation (COV) of the running speed, defined asv_ = iy
M,

Equation (3-2) can be expﬁnded as a Taylor’s series at the point X=0:

1o D X, X7 (-3)
0o 2l

5

If the above series is truncated at the linear term, the running time T becomes a
linear function of X, and thus becomes a normally distributed variable with its mean and

standard deviation defined as follows:

D (3-4)
Py = —
T us
or = Hr Vs (3-5)

It should be noted that the quality of this approximation depends on the value of
vs. The smaller v; is, the closer the running time would be to a normal distribution. A
simple simulation was conducted to illustrate how close the running time is to a normal
distribution under various values of the coefficient of variation (COV) for the running
speed. The simulation assumes the link length is 0.5 km and average running speed is 50
km/h. Figure 3-2 shows the cumulative distributions of the simulated running time and a

normal distribution based on the above approximations shown in Equation (3-4) and



Chapter 3 Dynamic and Stochastic Link Travel Time

66

a
= 100%
=
@
g
3
o 50% 1 .
2 Running speed COV = 0.05
8 0% t 1 — et —t y t =t t t t t t + t
°© 2 8 8 ¢ 8 8 ® 8 8 8
Running 1 me {seconds)
&
2 100%
€
Q
[ 3]
2
o 50% 1
=
«
E
3 0% e —————— ettt
°© ° 2 ®& 8 % 8 8 R 8 8 8
Running time (seconds)
& 100.00%
]
t
-]
g
§' 50.00% T
-_.g Running speed COV = 0.20
=
E
0 00% t—pet—rt —
° 2 T 83 8 8
Running time (seconds}
“““““ Simulated distribution Normal distribution

Figure 3-2 The running time distributions as compared to normal distribution



hapter 3 Dynamiic and Stochastic Link Travel Time 67

Equation (3-5) under different speed COV. It was found that when the coetficient of the
running speed variation is less than 0.20, the simulated running time distributions are
relatively close to the normal distribution. The chi-square test for each case, except for V,
= 0.20, indicated that the running time distribution statistically shows no difference trom

the normal distribution at the level of significance of 0.95.
2) 1If the running speed is lognormally distributed:

The following equation can be obtained by a natural logarithmic operation on

Equation (3-1):

InT=InD-InS (3-6)

From the above equation it can be found that if the running speed, S, is
lognormally distributed, that is, In S has a normal distribution, then In T 1s also normally
distributed or the running time is lognormally distributed. The mean and standard

deviation of In T can be obtained by the following:

Par=1InD - P s (3-7)

OiaT = Clns (3-8)

Where [, s and oy, s are respectively the mean and standard deviation of the running

speed.
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3.2 LINK TRAVEL TIME DISTRIBUTION UNDER A TRAFFIC
SIGNAL CONTROL CONDITION

The total travel time that a vehicle spends in a road section which operates under
the control of a traffic signal is comprised of two principle components: the running time
and the intersection approach delay. As the running time distribution has been described
in Section 3.1, this section focuses on the analysis of the distribution pattern for the

intersection approach delay.

The delay in which a vehicle may experience at an intersection could have extra
variation due to the signal control system and the vehicle’s unpredictable arrival timc at
the intersection with respect to the beginning of the green interval. For example, a vehicle
can go through an intersection without any delay if it arrives at the intersection during the
green interval with no queue present on the approach. On the other hand, the vehicle has

to wait for the entire red interval if it arrives at the beginning of the red interval.

Teply and Evans (1989) first measured the delay distribution at a signalized
approach when they studied a method for evaluating signal progression quality. They
found that most of the delay distributions are bimodal and therefore simple statistical
parameters (e.g., mean value) cannot adequately describe these distributions. Motivated
by the potential ITS applications, Rouphail and Dutt (1995) proposed a theoretical model
for estimating the travel time distribution of a signalized traffic link under idealized
conditions which include a constant traffic flow and a fixed traffic control. However, their

models are limited with respect to the conditions they considered and in addition, they did
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not provide a systematic analysis of the delay distribution patterns caused from changes in

traffic conditions and controls.

This thesis applied a simulation method to examine the travel time distribution
patterns and their relationship with some independent factors such as traffic volume, signal
timing and signal coordination. The reason is twofold. First, the traffic situation at the
signalized approach involves a complicated vehicle arrival and discharge process and
consequently it is impossible to develop a theoretical model to describe this situation
unless a more idealized situation is assumed (Rouphail and Dutt, 1995). The second
reason is that there are no signalized approach delay data available to sufficiently conduct

a statistical analysis of an individual vehicle’s distribution pattern under various types of

traffic conditions and controls.

Similar to the running time analysis, the time horizon is divided into small intervals
(e.g., five minutes), that includes at least one complete cycle. For example, if the interval
is 5 minutes and the signal cycle time is 120 seconds, there is 2.5 cycles in each interval.
This research and the simulation focuses on one cycle within an individual interval during
which the traffic arrival or rate is relatively stable. It should be noted that the dynamic
pattern is not directly discussed but reflected in the arrival rate in an interval.
Furthermore, it is assumed that the exact arrival time of a vehicle within a cycle is not
predictable or uniformly distributed. Figure 3-3 schematically illustrates the time horizon

(time of day), time interval, signal cycle, and some hypothetical link travel times.

The following sections describe the simulation model used, verification of the

simulation model and its application in a sensitivity analysis.



Chapter 3 Dynamic and Stochastic Link Travel Time 70

Link 4 i |
Travel ! + 4 .1.!

Time (Y 0 41 |

R IR S I S

+1 4t 4t o4H ot .

I AR SR S PR

: + 4 F ] +

:*-L!** Ty +, A ++§

T T e

i o i

i o g

0 S S S S

ig r : ) |

Onccycle*-'_—/ 1 I

One interval

=

-
»

Time of Day

Figure 3-3 Relationship between the tirne horizon, time interval and cycle time

3.21 ASi

mulation Model

The simulation model explicitly models the delay that a test vehicle experiences

while going through an intersection approach. The approach is assumed to be used

exclusively for through traffic and controlled by a pre-timed traffic signal. The simulation

focuses on the traffic operation during a time period of one cycle. The following

paragraphs provide a detailed discussion of the simulation parameters and simulation

procedures used.

~") The arrival pattern:

The arrival rate of the traffic is assumed to be cyclic and its cycle time is assumed

to be the same as the signal cycle at the intersection. The vehicles arriving at the approach
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are assumed to follow two groups as shown in Figure 3-4. One group, referred to as non-
platoon arrivals, includes vehicles randomly arriving at ilie intersection. The vehicle
headway in this group can be modeled by a shifted negative distribution and the minimum

headway used in this distribution model is assumed to be one second (May, 1993).

The second group consists of those vehicles arriving at the intersection in a
platoon. It is assumed that these vehicles interact with each other and their headways are
more likely to follow other types of distributions such as the Normal distribution or
Pearson type III distribution. The initial study included three distribution cases — the
constant value (deterministic), the normal distribution and the negative exponential
distribution. It was found that the simulation results (i.e., delay distribution) were not
sensitive to the arrival distributions chosen and therefore the constant headway assumption

was used for the platoon arrivals in the following analysis.

Platoon length

. Arrivals in platoon
Arrival
rate
/_ Arrivals not in platcon

Green Amber Red

g}latoon arrival time

Figure 3-4 Cyclic arrival pattern at the approach
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It can be seen from Figure 3-4 that two other important parameters are the platoon
arrival time (time after the green starts) and the platoon size (defined as platoon duration).
1t can be reasonably assumed that the platoon arrival time is constant for a given
approach. The platoon size, however, can vary significantly depending on such factors as
the arrival pattern at the upstream intersection and the link length. This simulation uses a

normal distribution to approximate the distribution of the platoon size.
2) The discharge pattern:

The vehicle discharge pattern during the green interval depends on the queue
status at the approach. If there is no queue when a vehicle arrives, then it can immediately
discharge with no discharge delay. Otherwise, the vehicle must wait until the vehicle
ahead discharges. The discharge rate at saturation, or the saturation flow, has been found
to be relatively stable (Teply et. al., 1995). Therefore, a deterministic discharge headway
is used in this simulation. The saturation flow used is 1800 pcu/h which corresponds to a

discharge headay of two seconds.
3) Simulation procedure;
The simulatien proceeds with the following logic:

o the simulation proceeds as follows. It generates each vehicle and processes it

(or discharges it) before the next vehicle is generated;

¢ if the preceding vehicle is in a platoon and the total platoon length does not
exceed a pre-generated platoon length for this arrival cycle, the new generated

vehicle is considered as part of the platoon and a platoon headway is used.
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Otherwise, a non-platoon headway is used. The same logic is followed when

the proceeding vehicle is not in a platoon,

o if the vehicle arrives during a green interval and if there is no queue, the
generated vehicle is immediately processed such that its departure time is equal
to its arrival time at the intersection. Otherwise, the vehicle discharges the
departure time of the vehicle ahead of it in the queue plus the discharge

headway;,

o at the end of an experimental run, the distribution of the individual vehicle’s

travel time can be obtained.

The above procedure was implemented within a Microsoft Excel spreadsheet.

3.2.2 Verification of the Simulation Model

Before the simulation program was used to analyze the link travel time
distributions it is necessary to first calibrate and validate the model. The verification uses
data from a traffic survey conducted by the University of Alberta (Fung, 1994). The
survey examined a set of individual intersection approaches during different time periods
for a time period of approximately 30 minutes. The collected data include the traffic
counts of vehicles entering and exiting a specific section from an upstream reference point
to the stop line on the intersection approach at 10 seconds intervals. The total travel time
of an individual vehicle is calculated as the difference between the arrival time at upstream
reference point and discharge time at the stop line. The individual delay is then

determined by subtracting the unimpeded travel time on the section from the total travel
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time. Because the data are collected for 10 second intervais, the calculated delay can have

as much as a 5 second estimation error. However, it can be expected that this error would

not change the general distribution pattern of the delay.

Figure 3-5 shows the surveyed vehicle delay distribution as compared to the

simulated results for three cases. Case a and Case b are the data from 114 Street and 76

Avenue north bound during the AM peak period and the off peak period. Case c is from

I 14 Street and 76 Avenue southbound during the off peak period. The parameters used in

the simulation for each case are listed in Table 3-1. It should be noted that the platoon

arrival time and platoon length are identified in the cumulative arrival and discharge graph

for each case.

Table 3-1 Simulation parameters for model verification

Casea Caseb Case c
Volume (pcu/h) 944 720 520
Cycle time (seconds) 130 80 80
Green interval (seconds) 95 45 45
Saturation flow (pcu/h) 1800 1750 1600
Platoon length (seconds) 0 50 0
Platoon arrival time(seconds) 0 20 0

(referred from start of green)
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Figure 3-5 The intersection delay distributions: simulated vs. surveyed
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Chi-square tests were performed on the data for the three cases. [t was found that
the simulated distribution and the surveyed distribution are statistically identical (x* = 1.00

< xzmhlc = 11.10) at a confidence level of 0.95.

3.2.3 Intersection Delay Distribution: A Sensitivity Analysis

The following sections use the proposed simulation model to examine how the
vehicle delay distribution pattern changes as a function of certain external factors including,

traffic volume, signal timing and signal control progression quality.

3.2.3.1 Vehicle delay distribution vs. traffic volume

The objective of this section is to investigate the influence of traffic volume on the
distribution pattern of the individual vehicle delay at signalized intersection approaches
and thus to provide insight into the delay distribution patterns under congested situations
(for example, AM or PM peak period) and non-congested situations (for example, off
peak period). In the simulation, it is assumed that the vehicle arrivals are purely random
and that there is no cyclic platoon arrivals. The signal cycle time is set to 100 seconds
with an effective green interval of 50 seconds. Figure 3-6 shows the mixed PMF and PDF
that represent the probability of delay for three different traffic volumes. The discrete
mass point occurs when the delay equals to zero. For example, when the traffic volume is
200 pcu/h on the link, there is an approximately 43 percent of chance that a particular
vehicle will experience no delay when going through the intersection. The graph shows
that the probability of experiencing no delay at the intersection significantly decreases as
the traffic volume increases. The graph also reveals that the shape of the delay distribution

is fairly close to a uniform distribution for the delay between zero (minimum delay) and
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the effective red time {or maximum delay, 50 seconds in this case) in undersaturated traffic

situations.

Figure 3-7 shows the mean and standard deviation of the delay as a function of the
traffic volume. As expected, the larger is the traffic volume at the approach, the larger is
the average delay. However, it is interesting to see that the standard deviations are almost
constant in the undersaturated situations. A possible explanation is that the variation of
approach delay at an intersection is related primarily to the signal control instead of other
factors such as traffic volume. This finding implies that it may not be necessary to
consider the traffic volume variation in the estimation of standard deviation at a signal

controlled approach.

Figure 3-8 shows the simulated vehicle delay distribution when the volume to
capacity ratio is equal to 0.95 (or volume = 850pcu/h). This PMF may be compared to
<he normal distribution with same mean and variance. A Chi-square test was performed
and it was found that the sample distribution and the normal distribution are statistically
identical (x> = 3.75 < b = 9.50) at a 95% confidence level. This implies that when the
traffic at an intersection approach is close to its capacity the vehicle delay distribution is

approximately normally distributed.

3.2.3.2 Vehicle delay distribution vs. green interval

This section illustrates the relationship between the vehicle delay distribution and
the effective green interval at an approach. Figure 3-9 shows the mixed PMF and PDF of
the vehicle delay when the effective green interval is varied and the vehicle arrival rate is

constant with an arrival rate of 500 pcu/h. As before, the signal cycle time is set to 100



seconds. It can be seen that there is a higher probability that a vehicle will not experience
delay as the green interval increases. For example, when the green interval is 70 seconds
for the given approach, there is approximately a 50 percent chance that a vehicle will
experience zero delay when going through the intersection. As expected, the probability
of experiencing zero delay at the intersection decreases as the approach is allocated less
green interval. It may also be seen that the shape of the delay distribution 1s fairly sensitive
to the green interval. As the allocated green interval decreases, the delay distribution is
skewed from the left side (lower delay) to the right side (higher delay) and at the same
time it becomes more probable that an individual vehicle will experience a delay longer

than the effective red time (that is, a vehicle will wait more than one cycle).

Figure 3-10 shows the mean and standard deviation of the delay as a function of
the effective green interval. 1t can be found that both the meau and standard deviation of
the delay decrease as the green interval increases. However, the variation of the vehicle
delay is much less sensitive to the green interval as compared to the mean of the vehicle
delay. Consequently, the COV of the vehicle delay increases as the green interval
increases. For example, in this case the COV is tripled when the green interval increases

from 30 seconds to 70 seconds.

3.2.3.3 Vehicle delay distribution vs. the quality of the progression

The quality of the progression on the signal controlled approach is commonly
recognized to have a significant impact on the average approach delay (Teply and Evans,
1989; May, 1993). This section shows the impact that the progression has on the vehicle

delay distribution. As in the previous cases, a simulation study was used whereby the



Chapter 3 Dynamic and Stochastic Link Travel Time 79

vehicle arrival rate is 800 peu/h with 80 percent of the volume arriving in a platoon. The
average platoon length is assumed to be 50 seconds with an associated standard deviation
of 10 seconds. The variation of tt;e platoon ratio is generated by changing the platoon

arrival time at the approach. The signal cycle time is set to 100 seconds with a 50 second

effective green interval.

Figure 3-11 shows the PMF and PDF under different values of the platoon ratio
(Rp). 1t can be found that the vehicle delays with platoon arrivals are distributed more
irregularly as compared to the situations without platoon arrivals. It appears that there are
essentially two population groups among the vehicles. One group is composed of the
vehicles with a delay less than of 10 seconds and the vehicles in the other group have a
delay of approximately 50 seconds. In the case of good coordination (higher Rp} most of
the vehicles have significantly lower delay as compared to the situation of low platoon
ratio. In this latter case the majority of the vehicles arrive during the red phase and

consequently are delayed for longer periods.

Figure 3-12 illustrates the relationship between the mean and standard deviation of
the delay and the progression ratio. It can be seen that the average delay decreases
approximately at a constant rate as the progression ratio increases. This result is
consistent with the consideration of the platoon ratio included in delay calculation in
Highway Capacity Manual (TRB, 1994). Figure 3-12 also indicates that both good
coordination and bad coordination will result in a slightly lower standard deviation (less
than five seconds). This implies that the signal coordination may be disregarded in the

estimation of standard deviation.
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3.3 LINK TRAVEL TIME DISTRIBUTION UNDER INCIDENT
CONGESTION

The previous sections have discussed the distribution patterns of the link running
time and intersection delay that a vehicle may experience under a normat traffic condition.
Another major delay a vehicle may encounter is the incident delay resulting from incidents.
Because traffic incidents are essentially rare and random events, they need to be
considered in real time vehicle routing procedures only when they are realized (or
detected). Accordingly, this research considers the situation that an incident has been
detected and tries to estimate the distribution pattern of the incident delay that a vehicle

may experience when it arrives at the incident spot.
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Traditionally, incident delay is estimated by using a deterministic queuing model
which assumes that the traffic situation (i.e., the arrival rate) and incident situation (i.c..
.he reduced capacity and incident duration) can be exactly identified (Al-Deek and
Kanafani, 1991; Koutsopoulos and Yabouski, 1991). This approach may be adequatce for
an “after” evaluation where the information on the traffic volume and incident situation are
available. However, it is inappropriate for the prediction of incident delay in real-time
applications such as a dynamic RGS. In this later situation, the only information available
for link travel time prediction might consist of the time when an incident occurs
(detected), the current situation of the incident (removed or not and reduced capacity) and
traffic volume. Obviously, the length of the incident is unknown. Therefore, the incident
delay is a dynamic and stochastic variable, and might not be correctly estimated by a
deterministic model. Another potential drawback to the deterministic model is that the
model does not consider the variance of incident delay which is significant under the

incident congestion and clearly important for vehicle routing decisions.

This section developed an incident delay estimation model which explicitly
considers the randomness of the incident duration. The ultimate goal will be to use this
model to estimate the dynamic and stochastic incident delay (e.g., represented as mean and
variance) which can be used in the new vehicle routing models discussed in Chapter 4 and

Chapter 5.

3.3.1 Assumptions and Notation
The incident delay experienced by an individual vehicle that goes through an

incident location depends on many factors. The main factors include incident severity
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(capacity reduction), incident duration, the traffic volume and the time when the vehicle
arrives at the incident location. All of these factors may be considered as random variables
in a real-time situatic® which makes the estimation procedure of the incident delay very

complicate.. To simplify the model development, the following assumptions are used:

1) The traffic arrival rate at the incident location is constant and can be estimated

exactly;,

2) The capacity reduction caused by the incident is constant and can be detected

exactly;
3) The link is long enough so that there will be no spill back to the upstream link;

4) The incident duration is a random variable and its probability distribution function

(PDF) can be identified from a historical incident database;

5) If the incident is over and the capacity is restored to its original value, then the
prediction problem becomes a simple deterministic problem, and hence is not

considered in this derivation.

Based on above assumptions, a stochastic model was developed by treating
incident duration as a random variable within a typical deterministic queuing model.
Figure 3-13 is a queueing diagram showing the cumulative vehicle arrivals and vehicle
departures before and after the incident is cleared. It also illustrates some parameters used

in the following analysis. The parameters used are defined as follows:

Basic parameters: The values of these parameters are known and used as basic input:
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T*

To

D*

fpe(x)

T,

1l

average link flow over the time period when the incident impact prevails

{pcu/h);

link capacity under non-incident conditions (pcu/h);
reduced link capacity caused by an incident (pcu/h);
time when an incident occurs ;

current time (or time when the prediction is required);

incident duration, a random variable with known PDF. Based on

assumption 5, D* = T, - T*;
PDF of the incident duration (D*);

estimated time when an vehicle arrives at the incident spot on the link;

Derived parameters: The value of these parameters can be calculated with input of ihe

basic parameters (refer to Figure 3-14):

T

T,

a random variable representing the time point al which a maximum delay
occurs. It can be represented as a function of the random incident duration

D*:
Ti=T* + D* ¢*/q (3-9)

a random variable representing the time when the incident is cleared, it can

also be represented as a function of the incident duration D*:
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D,

D,

Py

P,

ok 110
T;=T*+(L C YD * (3-10)

c—q

incident duration which makes the arrival time of an individual veincle
coincident with the time when the incident is cleared. i.e. . T,= T» lt ¢an be

derived from Equation (3-10):

D=L, -

¢—-c*

(3-11)

incident duration which makes the arrival time of an individual vehicle (T,)
coincident with the time when a maximum delay occurs, i.e., T,=7T, It can

be derived from Equation (3-9):
D=9 _p (3-12)
2 C* a

probability that the incident duration is less than D, :
Dl

P =P(D*¥<D,)= J'fp. (x)ddx (3-13)
{

probability that the incident duration is greater than D; :

P, = P(D*> D,) = [ f, (x)dr (3-14)

D,

probability that the incident duration is greater than D, and less than Dy

Py=1-P-P (3-15)
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A = maximum possible incident delay when a vehicle arrives at the incident spot

at time T, it occurs when incident duration is greater than Da:

g-c* . .,
dy =" (1, - 1% (3-16)
D, = conditional expectation of the incident duration, which is defined as:
i
Dy = [xf, (x)de (3-17)
Iy
Vi = conditional expectation of the squared incident duration, which is defined
as:
i
Vip =[5 £, (x)de (3-18)
12N
D, = incident delay experienced by a vehicle which arrives at the incident spot at

time T,, it is a random variable and its distribution needs to be found

3.3.2 Probability Distribution of Incident Delay

The probability distribution of the incident delay (D.)} depends on the probability
distribution pattern of the incident duration. Their relationship can be established by
analyzing how the incident delay is calculated. As shown in the queuing diagram in Figure

3-13, the incident delay can be grouped into three situations:
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(1). If a vehicle arrives at the time that the incident and the resulting queue has been
cleared, i.e. T, = Tz, it will experience no delay. Therefore the probability that the delay

equals zero 1s the same as the probability of T, = T, or,
P(D.= 0) = P(T, > T,)
substitute for T, using Ecuation (3-10) gives:

P, =0)= P(x< S2L (1 1wy
c—c*

=PD*< D)

(3-19)
=P

Where P, is defined in Equation (3-13).

(2) If a vehicle arrives at time T, in the range of Ty < T, 5 T, it will experience a fixed

amount of delay (dn) that can be calculated using Equation (3-16). Therefore:

Lk
D,=d, =1 (1 - 1%

d B
c*

the probability of delay at this point is equal to the probability that T, < T, < T\, or,
P(D,=d,)=P(l,<T,<T)=P(I,<T)
substituting for T, using Equation (3-9) gives:

P(D, =d,) = P(D* = -L(1, - 1%))
C

= P(D* 2 D2)

3-20
P (3-20)
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Where P, is defined in Equation (3-14).

{3) If a vehicle arrives at time T, in the range of T, <T, <T2, it will experience a variable

delay depending on the incident duration, which is expressed as:

D, =2 prEo G20

C C

1., - 1%

Based on Equation (3-9) and Equation (3-10), the condition T, < T, <T:can be

transformed into;

¢—q
*

(T, ~ 1%) < D¥ <L (1, - 1%
(4

c—-C
or, Dy < D* < ), based on the definitions shown in equations (3-11) and 3-12.
Correspondingly, the incident delay (D.) has the range:

0 <Dy <da (3-22)

Because the PDF of incident duration (D*) is known, the PDF of the incident delay (D,)

can be derived from Equation (3-21):

Joa(¥) = ‘ fD( ¢ *X+D]) (3-23)
¢

Lok C—C

In conclusion, the incident delay (D,) is a mixed discrete and continuous random
variable with a distribution function decided by a probability function (Equation (3-19) and
Equation (3-20)) and a density function (Equation(3-23)). Figure 3-15 schematically

illustrates the distribution pattern of the incident delay.
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pDu{ Da:n} = pl

Pl)u{ ;lzdm} = PZ

-
|

0 d,, Incident delay, D,

Figurc 3-15 The mixed PMF and PDF of the incident delay

3.3.3 Mean and Variance of Incident Delay

In the above section the probability distribution of the incident delay has been
derived. However, in the majority of real applications, the more reasonable information
about the random incident delay is its first and second moments, i.e. the mean and variance
of the incident delay. With the given distribution functions, these two descriptors can be

obtained through the following mathematical expectations:

oy (3-24)
E[D,1=0-P(D,=0)+d, - P(D, =d,)+ [ f, (x)xdx

VARLD,]= E[D3]- (E[D,])’ (3-25)

where,



Chapter 3 Dynamic and Stochastic Link Travel Time 93

d'I'J'I
E{DM =00 (D, = 0)+d? - P(D, =d, ) + j_fpu (x) x* dx

using equations (3-9) (3-10) (3-13) gives:

¢ (3-26)

c*
(Dl: "Dl P%)

EID,)=Pd, +

c—c*

3 1 '2
YV, +D P,—2D,D,,) (3-27)

ELD = Pydy +(

5

where all the parameters are defined in section 3.3.1.

3.3.4 Expected Incident Delay: A Comparison to the Deterministic Incident
Delay Model

Incident delay is traditionally estimated by using a deterministic model which
assumes that the attributes of an incident (capacity reduction, duration) are known or can
be estimated exactly. A deterministic queuing model is used to estimate the amount of
delay. If the average incident duration used is p*, the incident delay (D,) is calculated by

the following formula (Figure 3-13):

0 ifT,>1,
g-c* .. . p e
D, =y T (1, - 1) if 1, <7, (3-28)
vk .
(T T FhL<T,<T

where all the other symbols are defined in section 3.3.1 with D* replaced by its mean, p*.

Apart from the fact that the deterministic model does not provide information on

the incident variation, it will also generate a biased estimation on the mean incident delay
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as show in Equation (3-24) and Equation (3-28). A numerical example is created to
demonstrate the estimation biases of the deterministic model and its sensitivity to the

variation of the incident duration.

Assume that there 1s a one-way two lane highway with capacity equal to 3600
pcuw/h. An accident was just detected on the road, which reduced the hiphway capacity to
1800 pcu/h. The average traffic volume under normal tratfic flow conditions during this
time period is estimated to be 3000 pcu/h among which approximately 500 pch/h are
assumed to diverts to other routes due to the incident. Furthermore, it is be assumed that
the incident duration is lognormally distributed with a mean incident duration of 30

minutes and a standard deviation ranging from 0 to 30 minutes.

The incident delay, calculated using Equation (3-24), as a function of the variance
15 illustrated in Figure 3-16. From Figure 3-16, it can be seen that, as expected, the mean
delays estimated by both models are exactly the same when there is no variation in the
incident duration. However, as the variation of the incident duration increases, the result
from the stochastic model is significantly different from that of the deterministic model.
The: deterministic model may over-estimate and under-estimate the incident delay
depending on the arrival time. For example, if the standard deviation of the incident
duration is 20 minutes (Figure 3-16(c)), the deterministic model would over-estimate the
expected incident delay by as much as 50 percent for a trip arriving at the incident spot 20

minutes after the incident occurs,
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Figure 3-16 Estimation of the expected incident delay: deterministic model vs.

stochastic model
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If instead the trip arrives at the incident spot after 40 minutes, the deterministic
model would under-estimate the expected incident delay by over 50 percent. Figure 3-16
shows the relationship between the maximum over-estimation error and under-estimation
error with the standard deviation of the incident duration. The estimation error is defined
as the ratio of the difference in the expected delays estimated by the deterministic and
stochastic models to the expected delay by the stochastic model. As shown in Figure 3-

17, the estimation error is virtually proportional to the variation of the incident duration.

3.3.5 Variation of Incident Delay

Similar to the expected length of incident delay, the variation of incident delay is
also dependent on the variation of the incident duration. Figure 3-18 illustrates the
standard deviation of the incident delay as a function of the arrival time at the incident
location under different variances of the incident duration. The data were obtained from
the same example as presented in the previous sections. As expected, the larger the
variation of the incident duration, the larger the variance of the incident delay.

From Figure 3-18 1t can be seen that there is a large amount of variation in the
average incident delay and that this variation is more significant for the trips arriving after
the expected incident duration time. For example, when the standard deviation of the
incident duration is greater than 15 minutes, the COV of the incident delay for trips
arriving after the expectad incident duration (30 minutes) have values larger than 2.0

Another fact that can be observed is that although the expected incident delay is
small when a vehicle arrives around the expected incident clearance period, the variation

of the incident delay could be very large. As shown in Figure 3-18(c), when the arrival



Chapter 3 Dynamic and Stochastic Link Travel Time 97

time is 80 minutes after the occurrence of the incident, the expected delay is as small as 2
minutes, however the standard deviation reaches 6 minutes. One indication of this fact is
that a routing decision based on the average travel time would provide a route with a

higher order of risk resulting in an inferior decision.

160%

140%
120% o
100% =]

80% <
60% ,/
40% S
20% -~
0%

Maximum estimation error

0 10 20 30 40 50

Standard deviation of incident duration (min.)

—— Qver-estimated = ~ ~ - under-estimated

Figure 3-17 Estimation error of the incident delay by a deterministic model
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3.3.6 Incident Duration: Prior and Posterior Probability Distribution

As discussed in previous sections, one of the major pieces of information required
for estirating the incident delay is the incident duration distribution. It can be expected
that the incident duration can have a very high variation depending on the incident
managing capability of the local authority, the incident location and the incident severity
among other factors. However, it is still feasible to establish location specific distribution
functions based on historical data (Golob et. al., 1987; Giuliano, 1989). Conversely, the
information on the incident status (i.e., removed or not?) may also be available in most
cases. Under the context of ITS, such information may be managed by a traffic
information center (TIC) as discussed in Chapter 1. The following sections focus on how
the ability to update information can be used to improve the estimation of the probability
distribution of incident duration and how it may be applied in the incident delay estimation

model developed above.
(1) Prior probability distribution of incident duration:

Some previous theoretical and empirical work (Golob et. al., 1987, Giuliano,
1989) have shown that the incident duration typically has a lognormal distribution. This
research therefore assumes that the incident duration is lognormally distributed and its
distribution can be established and categorized if necessary. These incident duration
distributions can be considered as prior knowledge on the incident duration. 1f the mean
of the natural logarithmic of the incident duration (In(D*)) is A and the standard deviation

of In{(D*) 1s &, then In(D*) 1s N{A £} with density function noted as fp«(x).
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(2) Posterior probability distiibution of incident duration:

Assume that the TIC at the current time (Ty) receives new information showing
that an incident still has not been cleared since its occurrence at time T*. The implication
of this information is that the incident duration must be longer than (Ty-T*). Therelore,
the probability distribution of the incident duration should be modified to take into
account this new information. The modified PDF of the incident duration, i.e. posterior

PDF (£’p+(x)), can be obtained by applying Bayesian theory:

For(X) = k- L(x)- fpu(x) (3-29)
where:
L(x) = the likelihood function of the observed output, which is:
0 ifx<T,
L{x)=
1 ifx>T,
k = a constant defined as follows:

= UL(x)fi;t(x)obc} - [ff,;(x)dx}

In(7,) - 4 }
1-d(—022 &
{ )

Figure 3-19 schematically illustrates the relationship between the prior PDF,
posterior PDF and the likelihood function. It should be noted that the above method can
also be extended to incorporate other types of information on the incident situation such

as an estimation of incident duration from an emergency vehicle operator or police officer.
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Figure 3-19 Prior and posterior distribution function of the incident duration

3.4 CONCLUSIONS

This chapter discussed the dynamic and stochastic link travel time patterns of three

special cases. The conclusions are summarized as follows,
1. On the link running time distribution:

o This research showed both theoretically and empirically that the link running
time can be represented by a normal or lognormal distribution;

» The link running time approximately has the same type of distribution as the
link running speed. Consequently, the distribution parameters of the link
running time can be indirectly obtained using data on the link running speed.

This finding could be important when the link running speed is easier to obtain.
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2. On the distribution of the signalized approach delay:

3.

A simulation model has been developed to analyze the distribution pattern of
the delay that a vehicle may experience at a signalized intersection;

It was found that the signalized approach delay is a mixed random vartable and
its distribution pattern can not be approximated by a single mathematical
distribution or distribution family. When vehicles arrive cyclically at the
approach and some of the vehicles arrives in platoon, the delay distribution
may be bimodal. This latter effect is particularly noticeable when coordination
IS poor;

The variance of the vehicle delay has been found to be insensitive to the traflic
volume and the quality of progression, but it is affected by the signal setting,
Therefore, for an intersection that has a fixed signal timing, a single value of
vehicle delay variance may be used:;

When the traffic at the signalized approach is close to a saturated condition,

the vehicle delay can be approximated by a normal distribution.

On the incident delay distribution:

This chapter developed a stochastic model for the prediction of the congestion
delay caused by an incident. In contrast to the historical deterministic model,
the new model explicitly considered the stochastic attribute of the incident
duration. The derived formula for calculating the mean and variance of the
incident delay requires only a minor amount of additional data and

computational effort, and therefore may be used in some real applications;
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» A deterministic model may over-estimate or under-estimate the expected
incident delay, depending on the arrival time. The maximum estimation error is
proportional to the standard deviation of the incident duration;

e The incident delay has been shown a high degree of variability, even when the
expected delay is low. The maximum variance occurs much later than when
the time of the maximum expected delay occurs;

¢ The new model can also use the updated information on the incident situation.
This is done by modifying the PDF of the incident duration based on Bayesian

theory;
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CHAPTER 4

ESTIMATION OF ROUTE TRAVEL TIME IN DYNAMIC
AND STOCHASTIC TRAFFIC NETWORKS

4.0 INTRODUCTION

Central to any RGS are the shortest path algorithms required to calculate the
optimal route from an origin node to a destination node given the underlying traffic
network data. The development of the appropriate shortest path algorithms is directly
related to how the travel time of a given route in the network can be calculated, or the
relationship between the route travel time and the link travel times. For example, it has
been found that standard shortest path algorithms can be equally applied to find the
shortest paths in a dynamic network (Drefus, 1969 ; Kauman and Smith ,1990). This
finding is essentially based on the addition property of the route travel time in a dynamic
network. That is, the travel time of a route is the summation of the link travel times along
the route. It is because of this addition property that makes Bellman’s “principle of
optimality” hold. Therefore, it is necessary to examine the relationship between the route
travel time and the link travel times in a dynamic and stochastic traffic network before
algorithms can be developed for solving the shortest path problem in this type of network.

The models developed in this chapter will be used as the foundation of Chapter 5 to
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develop solution methods to the shortest path problem in a dynamic and stochastic

network.

The calculation of the route travel time based on the link travel times is also
important for solving the DARP when the dynamic and stochastic attribute of the O-D
travel time is explicitly modeled. The objective of this chapter is to investigate this
relationship in a network where the link travel times are both dynamic and stochastic, and
more specifically, to develop methods for estimating the mean and variance of the travel

time of a given route based on link travel time data.

The problem of calculating the travel time of a given route in a traffic network has
not been directly investigated because it is trivial when the link travel times in the network
are assumed to be deterministic or independent random variables. Under such
assumptions, for example, the mean and variance of route travel tume are simply the
summation of the mean and variance of link travel times along the route (i.e., the addition
property holds). However, when the traffic network is modeled as both dynamic and
stochastic, such addition property of the route travel time may no longer exist due to the

non-linear nature of the link travel time.

This chapter first defines the context of a dynamic and stochastic network and the
route travel time estimation problem in this type of network. A complete notation and
some important assumptions are described. Next, this chapter derives a probabilistically
based method for estimating the mean and variance of route travel time using the mean
and variance of the individual link travel times. The method explicitly accounts for the

dynamic nature of the link travel times and any correlation between links on the route.
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Approximation models are proposed for use in real applications and the issues related to

the practical application of these models are also addressed.

Lastly, the approximation models are compared with the traditional methods, both
theoretically and empirically. The empirical analysis is based on a simulation study using

the Edmonton network as the test bed.

4.1 PROBLEM DEFINITION

Consider a road network composed of nodes and links. Each link in the network
has an associated generalized cost. In this thesis the travel time will be used to represent
this generalized cost. The dynamic and stochastic attributes of a traffic network are
defined by modeling the link travel time on some or all of the links in the network as a
stochastic process, noted as {ty, T}. That is, the link travel time probability distributions
are dependent on the arrival time (or time of day, T) at the starting node of a link.
Furthermore, this thesis assumes that the link travel times are continuous random variables
and the only available information about their distribution is their respective means (noted
as Wery = E[t1{T]) and variances (noted as 6%, = VAR[t5|T]). Therefore, the link travel
times will be described solely by their time-dependent means and variances. It should be
noted that the subscript that specifies the link is deliberately omitted for notation
convenience. The methods available to estimate the mean and variance of the travel time
of a given route with a given departure time in this type network is the focus of this

chapter.
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Because this thesis considers the travel time estimation problem of'a given route, a
path starting from an origin node 1 to a destination node N is used to define the prablem.
As shown in Figure 4-1 the path goes though node i and node i+1 by link (i,i+1). Assume
that a series of travel experiments are conducted along this path. Each experiment
represents a procedure of departing from the origin node 1 at the exact same time {1, )
and traveling along the path to the destination node N, Due to the dynamic and stochastic
attributes, the outcomes of the experiment such as arrival time at each node and travel

time on each link are random variables. These random variables are defined as follows:

T, = a random variable indicating the arrival time at node 1. Assume that therc is
no waiting time at the node, then T; equals to the time entering the link
(i,i+1), or departure time at node i. In addition, the departure at the origin

node 1, Ty, is assumed to be deterministic and known a priori,
f(Ty) = the probability density function of T;;

E[Ti]

the expected arrival time or departure time at node i ;

Var[T;] = the variance of the arrival time or departure time at node i;

Figure 4-1 A route from origin node s to destination node g including link (i, i+1)
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t = a random variable indicating the travel time on link (i, i+1). It should be
noted that this variable (t) represents the link travel time under the given
experiment in contrast to tr which is a stochastic process denoting the link

travel time during a whole day;

The following section will describe how the mean and variance of the route travel
time can be estimated with the knowledge of the mean and variance functions of the link

travel times.

4.2 THE MEAN AND VARIANCE OF ROUTE TRAVEL TIME

For each experiment described above, the total route travel time is a summation of
the travel time of all the links along the route. This route travel time quantity can be

obtained by calculating the arrival time at each node using a recursive formula:

Tis =Ti+t (4-1)

As the estimation of the route travel times is equivalent to the estimation of the
arrival time at the destination node, the arrival time has been used in the following
discussion. It should be noted that estimation of the route travel time depends on how the

link travel time is modeled,

In a deterministic model, the travel time on each link in the network is assumed to
be an exact quantity and known a priori. In this case, the link travel time under each

experiment will have the same value and thus there is only a single route travel time. In
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the case where the link travel time is also static, the travel time from node s to node g can
be obtained by using Equation (4-1) with a constant t value for each link. It should be

noted that in this case the departure time has nc impact on the route travel time.

When the dynamic attribute of the link travel time is directly modeled to reflect the
time-dependent attributes of the traffic network, the link travel time is a function of the
time of day or the arrival time at node i (T;). The arrival time at the destination node can

be obtained by using Equation (4-1) with t replaced by a link travel time function.

However, when the link travel times are both dynamic and stochastic, and
explicitly modeled by using their time dependent means and variances, the estimation of
the mean and variance of the route travel time is considerably more complicated. Asa
simplified approach, they may be approximately estimated by assuming that the link travel
times are independent between links. For comparison purposes, these models are

provided as follows and are referred ¢ in this thesis as a naive model:

E[Ti] = E[T] + () (4-2)

Var[Ti4+1] = Var[T;] + GZ(E[TJ) (4-3)

The following part of this section will develop more realistic models for estimating
the mean and variance of the route travel time when the link travel time is dynamic and

stochastic.
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4.2.1 Mean of Route Travel Time

Considering Equation (4-1), the relationship between the means of the arrival times

at node i and node j is;
E[Ti+1] = E[T;] + Elt]

This relationship can be further transformed as follows (Ross, 1989):
E[T;+1}=E[Ti] + E[E[tIT;]]

The recursive formula for calculating the expected travel time of the route is therefore:

E{Ti+1]1= E[Tj] + E[u(Ti)l (4-4)

The second term in Equation (4-4) requires the integration [ Hy(T;) f(T) dT;.
Therefore this equation is applicable only if ;che PDF of the arrival time, f{T;), is available,
and this means a recursive formula for estimation of the PDF of the arrival time must also
be derived. This is impossible in this case because the only information available about the
link travel times is their first two moments, means and variances. Furthermore, even if the
PDF of the link travel time is available and the PDF of the arrival time can be derived, the
integration indicated above is difficuit to perform. For these reasons, an approximate

recursive relationship of the arrival times is required and is presented as follows.

The main task is to identify a method to determine the second part of Equation (4-

4). E[i(Ty))- Start from its definition as show in Equation (4-5):
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Elural = R fm) 4T, (4-5)

Assume that the mean link travel time function H(T;) is differentiable at point T =

E[T;], Equation (4-5) can then be expanded as a Taylor's series around this point:

M(Ti) = WELTIT) + H'(E[Ti]) (Ti - E[Ti + 0'E[ry) (Ti - EIT22 + .. (4-6)

If the series is truncated at the linear terms (or assume the second and up order derivatives

are equal to zero) and then applied in Equation (4-5), the first order approximation of

E[M(Ti)] is obtained:

E[W(T2)] = [{u@[T:D+W'(ELT:]) (T-ELT:1)} (T3 T,
= w(E[T;]) | {(T;) dT; + 0

= (E[Ti])

Therefore the first order approximation model of the recursive formula (4-4) is:

E[Tin] 2 E[Ti] + WE[T))) (4-7)

The first order approximation (Equation 4-7) can be successively improved by
including higher order terms of the Taylor series. For example, if the second order term in

Equation (4-6) is included, the second order approximation of E[(T;)] is accordingly:
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EIu(T)) = (W(ECT]) + WELTI(T - E[T) + w(ELTI(Ti - E[TIY2} AT o,

= M(E[Ti])j f(T:) dT; + 0 + p"(E[T:]) j (Ti - E[T:])* (T3} dT: /2
= w(E[T]) + W"(E[T:}) Var[T;}/2

the second order approximation model of the mean arrival time can be obtained:

E[Tin] = E[Ti] + WE[Ti]) + W"(E[Ti]) Var[Ti]/2 (4-8)
From above approximation models, the following observations are obtamned.

REMARK |: The first order approximation model is the same as the one from a
deterministic treatment, or the naive approximation model shown in Equation (4-2). That
is, the expected route travel time is found by substituting the average link travel time for
the random link travel time and then calculating the route travel time. From Equation (4-
8), it can also be expected that this model may be acceptable when the variance of the
arrival time is very small, or the mean link travel time is approximately a linear function of

time of day (i.e., W"(E[T:]) = 0). This will be further examined empirically in Section 4.4.

REMARK 2: The reasonableness of the second order approximation model shown in
Equation (4-8) can be illustrated using the following simple example. Consider a network
with one link (i,j). Assume that the time entering the link, T;, is random and normally
distributed with a mean equal to E{T;]. The link travel times are assumed to be
deterministic and dynamic. There are three potential dynamic patterns: linear, convex and

concave as shown in Figure 4-2. It can be found that when the link travel tiine is constant,
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the link travel time is W(E[T;]) for any arrival time. Therefore, the expected link travel
time will be L (E[T;]), which is the same obtained from Equation (4-7) when 1" (E[T;]) =
0. When the link travel time is a convex function of arrival time, i.e., u (E[Ti]) = 0, then
the travel time under any realization of the arrival time will always be greater than
«(E[T:]) and therefore the expected travel time should be greater than u(E[T:]). This
result is compatible with the result from the Equation (4-8) because the last term in

Equation (4-8), w"(E[Ti]} Var[T:])/2, is always greater than zero. A similar explanation

for the case when the link travel time is concave may be demonstrated.

Mean link .
travel time K (E[T;]) >0
H(T) .

S— WYET]) <0

g ‘,_arrival time pattern, T;

B
L

EfT| T, Time of Day

Figure 4-2 The effect of the link travel time pattern on the estimation of the
expected link travel time
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4.2.2 Variance of Route Travel Time

The variance of the arrival time can also be derived from Equation (4-1):
Var[Tj+1] = Var[T;] + Varft] +2COV(T;j, t)

In the above Equation, the last two parts can be estimated using following relationships

(Ross, 1989):
Var[t] = E[Var[t|T;}] + Var[E[t|T;]]
= E[o?(Ty)] + VarlpTp)
and
COV(T;, t) = E[T;t] - E[T{] E[t]
= E[E[Tt|T}]] - E[Ty) E[g(Ti)]
= E[T{-E[t/Ti]] - E[Ti] Elu(Ti))
= E[TinTi)l - E{Ti] Elrqri))

Based on the above recursive formula, the arrival time variance is shown in Equation (4-

9):

Var[Tj+(] = Var[T;] + E[c?(Tp)] + Var[u(i)] +

2 E[TinTi)] - 2E[Ti] EfpTi)] (4-9)
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For the same reasons as the estimation of the mean of route travel time, the
practical application of the Equation (4-9) requires an approximation method. Through a
similar procedure, the first and second approximation models of the recursive Equation (4-
9) can be obtained by replacing the functions p(T;) and o(Ti) with their truncated Tayior
series. The first order approximation is obtained by assuming that the second and higher

derivatives of u(T) and o(T) are equa! to zero, as shown in Equation (4-10):
Var[Tis] = {1+ 62Ty + 20 E[TY) + W HET)) Var[Ti]
" o2 E[TY) (4-10)

By assuming the third and up derivatives of u(T) and o(T) are equal to zero, the secomnd

order approximation of Equation (4-10) can be obtained as shown in Equation (4-11):

Var[Ti+1] = {1+ c™(E[Ti]) + 2u(E[T:]) + w(E{Ti] +
o(E[T:]) o"(E[Ti]) - u"z(E[Ti])Var[T;]M tVar[T;]
+ GHE[Ti]) + W(E[T:]) w(E[Ti]) E[(T; -E[T:])")

+ wHE[TI]) EI(T; -E[T:])*)/4 (4-11)

As shown in Equation (4-11), the second order approximation, although potentially
leading to an improved solution, would involve identifying the third and fourth central
moments of arrival time T;. This means that in order to use this formula, a recursive
formula for estimating the third and fourth order moments of the arrival times are

required. This also implies that the third and fourth order moments of the link trave! times
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need to be identified, which will bring extra complexity in the estimation procedure. On
the other hand, as the arrival time at each node is a summation of many random variables
(link travel times), it may be expected it would be close to a normal distribution according
to the Central Limit Theorem. It is therefore recommended in this thesis that for practical
purposes, the second approximation without the last two terms should be used. The new
approximation formula is still called a second order approximation and is defined in

Equation (4-12).

Var[Ti+1] = { I+ o*(E[T;]) + 20 (E[T:]) + u*(E[Ti] + o(E[Ti])) 6"(E[T3]) -

WE[Ti)Var[ T4} Var[Ti] + oXE[T:]) (4-12)

From above approximation models, the following observations are obtained.

REMARK 3:  The first order approximation model of Equation 4-10 shows that the
variance of the route travel time does not depend solely on the link trave! time variation,
but also on the time variation pattern of the link travel times. This model can partly be
verified by using a similar example as that described in Remark 2. Consider a one link
situation. Assume that the time entering the link, T, may be modeled as a uniformly
distributed random variable with U{a,b} (where U{a,b} represents a uniform distribution
from a to b). In addition, the link travel time is assumed to be a deterministic linear
function of the time of day (for example, t = k T), as shown in Figure 4-3. 1t 1s not
difficult to find that the arrival time at the exit node of the link is also uniformly distributed

but with different parameters, i.e., U{b+kb,a+ka}. Therefore, the variance of the arrival
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Figure 4-3 The effect of the link travel time pattern on the estimation of the link
travel time variance

time at the exiting node of the link is essentially (1+k)” times greater than the variance of
the arrival time at the entering node of the link. The same conclusion can be directly

obtained from Equation (4-10) as shown in Equation (4-12):

Var[Tj+1] = (1+ w(E[T:1)” Var[T;} = (1+ k)’ Var[T;] (4-12)

REMARK 4: It can be anticipated that the difference between the second order
approximation model (Equation 4-11) and the first order approximation model (Equation
4-10) may be trivial in applications on realistic traffic networks. The major reason for this

is that the time variation of the link travel time in a traffic network is relatively small
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compared to the dimension of day time and hence the second order derivatives may be
negligible. Section 4.4 will provide an empirical investigation of whether or not the

difference is significant,

4.3 LINK TRAVEL TIME APPROXIMATION

The application of the approximation models developed above requires that the
link travel time expectations associated with the random variable (both mean and variance)
must be modeled as differentiable functions of time of day. Therefore, the discrete link
travel time data (mean and deviation) that are typically available have to be approximated
by a smooth function before they can be used. The following section discusses how the
link travel time may be approximated using a differential function representing the

recurring traffic congestion situation.

Under normal traffic situations, the link travel times may be assumed to be stable
day by day and can therefore be statistically modeled based on historical link travel time
data. This historical data may be obtained from various data sources such as road side
detectors, probe vehicles, or even traffic models. Due to inherent fluctuation of traffic
demand and errors in measurement related to each data source, the link travel time
obtained is not a fixed value even for the same time moment of two similar days. Figure
4-4-a shows a hypothetical example of the travel time data for a link. To use these data to
estimate the mean and variance of the link travel time, the time horizon is usually divided
into time periods (for example, 5 min. interval) so that the number of data points for each

period is high enough to provide statistically confident estimates and to minimize data
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management problems. As shown in Figure 4-4-b, this procedure actually models the time
dependent link travel time as a step function. When the arrival time falls into a time
period, the average travel time at that time period will be used. An improvement on this

method is to use a pair wised linear function, as shown in Figure 4-4-c (Rilett, 1992).

In this thesis the application of the second order approximation models requires
the mean and variances of the link travel time to have a second order derivative and
therefore a second order polynomial is used to approximate the link travel time. 1f the
mean travel time on link i is p and the time entering the link is T, then the general form of

the function is:

n=bg+by T+by T2 (4-13)

For the purpose of the route travel time estimation, the major interest of the
approximation is the link travel time pattern around the mean arrival time on the link,
therefore it will be neither necessary nor efficient to fit all the data with one continuous
function. The approximation method developed and proposed in this thesis uses three
data points. If the time in which the link is entered falls in time period k, the link travel
times from time period k-1 to time period k+1 are approximated by Equation (4-13) which
goes through these three points as shown in Figure 4-4-d. The parameters can be found
by solving three linear Equations with three variables. If u, represents the mean link travel
time for interval k with the middle time of the interval noted as T,. the solution will be

that of Equation (4-14):
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tby = [T (4-14)

where {b}= {b0,b1.62}" and [T] = {(1,Tet, Ter?), (1, T T2, (1, T Tt ?) ) and {pt} =
Ty 1y By

Therefore, once the arrival time is known, the link travel times {(mean and variance)
and their derivatives can be quickly obtained without significant extra computational

burden.

It should be noted that the approximation method proposed above is a relatively
simple approach and a more comprehensive method could be used to approximate the link
travel time under different situations. For example, the variance of the arrival time and the
size of the link travel time interval can also be taken into account during the
approximation procedure. For the situation of a smaller link travel time interval or a larger
arrival time variance, more than three intervals may need to be considered in the
approximation method. The underlying relation is schematically illustrated in Figure 4-5.
It can be seen that a function which fits the intervals from k-2 to k+2 would be a better
approximation function for the given situation. It should be noted that it won’t be a
problem for this thesis to incorporate this type of new approximation scheme. The only
modification will be to change the function format shown in Equation (4-13) and the

parameter estimation methods shown in Equation (4-14).
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Figure 4-5 Illustration of the relation between the link travel time approximateing
scheme with the arrival time pattern and link travel time interval

4.4  SOLUTION QUALITY OF THE APPROXIMATION MODELS: A
SIMULATION STUDY

In the . »ove section, different orders of approximation models have been derived
to estimate the route travel time in a dynamic and stochastic network. Quantitatively, the
second order approximation models will provide a more accurate solution than the first
order models and the naive models, but they would obviously need more computational
effort. However, the benefit derived from the increased accuracy will depend on the
network attributes, especially the dynamic and stochastic pattern of the link travel times.

This section evaluates the approximation models by comparing them with the results from
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a simulation model. The reason for using simulation method is twofold. One is that it is
impossible, as previously discu.sed in Section 4.2, to obtain an explicit mathematical
expression for calculating the route travel time in a dynamic and stochastic network. The
other reason is that it is prohibitively expensive to carry out field experiments. Therefore,
a simulation procedure is used to acquire the “real” value of the mean and variance of the
route travel time. The following sections will intreduce the procedur: and the test
network used for the simulation. The focus of the sensitivity analysis is on the relationship
between the different models and various network attributes including the dynamic link
travel time pattern, the link travel time variance and the link travel time distribution

pattern.

4.4.1 Simulation Procedure

The purpose of the simulation procedure is to obtain the “real” route travel time
PDF distribution parameters, i.e., the mean and variance of the route travel time in a
dynamic and stochastic traffic network as defined in Section 4.1. The simulation
procedure introduced involves repeatedly “traveling” *his route with same departure time
from the origin node and recording the travel times. The travel time of each trip is
obtained by sequentially sampling the travel time on each link along the route. The travei
time on each link has a given type of PDF with mean and variance as functions of the time
entering the link. The travel time value on each of the links are sampled independently.
The following section will provide further discussion on this subject. The following is the

detailed procedure:
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Step 1: Randomly pick i) an O-D pair in the test network, and ii) a departure time

at the origin node. Select one path between the O-D and record it;

Step 2. Start from the origin node and go through all the links on the recorded path
until reaching the destination node by generating the link travel time and

calculating the arrival time at each node using the following formula:
Tioy=Ti+ (T}

where T; is the departure time at the i#4 node; t(T;) is the sampled travel
time on link (1,i+1) which can be generated based on the link travel time
distribution with mean p(T;) and variance 6*(T;). The first node (ori= 1)
is the origin node s and the departure time at this node, T, is given. The
route travel time is the difference between the arrival time at the destination

node and the origin node;

Step 3: After finishing the required iterations of step 2, the mean and variance of
the route travel time for the given O-D pair and departure time are

calculated by:

Calculate the mean and variance of the arrival times using (i) the naive
model; (ii) the first order approximation model and (iii} the second order

approximation models as presented in section 4-4.
Step 4 Goto step 1 until given number of O-D pairs are analyzed;

In this study, five hundred O-D pairs are generated and examined for each

simulation combination. For each O-D pair, five thousand simulation runs are performed
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to obtain the “real” mean and variance of the O-D travel times. It has been theoretically
estimated that this number of simulation runs will make the final estimation error smaller

than 0.1 seconds for both the mean and standard deviation (Fu, 1992).

4.4.2 The Edmonton Network

A road network representing the City of Edmonton is used to test the route travel
time estimation models. This network will subsequently be used in some of the foliowing
chapters. The original network data files were provided in a EMME/2 model format by
the City of Edmonton. These files were then converted into the FIRST format, Figure 4-
6 shows the Edmonton network from FIRST’s screen output. This network, composed
of 3800 links and 1400 nodes, was used for planning applications. 1t includes all the

freeways and arterials in the Edmonton area.

4.4.3 Simulation Scenarios

For analysis purposes, the AM peak hours (6:00AM~9:00AM) were selected as
the study period. Due to a lack of real time data, the dynamic and stochastic travel time
patterns in the network were created based on a hypothetical change in travel time during
the AM peak period. The link travel time data were then represented as a set of discrete
means and standard deviations through the AM peak period. The ratios of the standard

deviations to the means, i.e., the coefficient of variation (COV), is assumed to be constant.

In order to analyze the sensitivity of the solution quality of the approximation

models to the network attributes, three types of network attributes were investigated:
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1.

Dynamic pattern of the link travel time during the AM peak period: Three types of

dynamic link travel time patterns were created and are respectively labeled as Peak
Pattern A, Peak Pattern B and Peak Pattern C as shown in Figure 4-7. Peak
Pattern A represents a three hour peak time period (from 6AM to 9AM) while
Peak Pattern B represent a two hour peak time period (from 6AM to 8AM). Peak
Pattern C has a peak time period from 6AM to 7AM. 1t should be noted that these
three peak patterns are not necessary real representations of the traftic patterns,
however they can be interpreted as representations of the time variation of traffic

pattern from a relatively smooth situation (Pattern A) to a relatively peaked

situation (Pattern C);

300

250 4. —— Pattem A —x—PatternB8 —— Pattern C

200 +

150 +

Mean link travel time
(secands)

Time of day

Figure 4-7 Time variation patterns of the link travel time
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2. Travel time coefficient of variation (COV): The COV of the travel times on each
link is assumed to range from 0.0 to 1.0. Three discrete values, 0.1, 0.5 and 0.9

are used in the simulation study;

3. Travel time PDF: As discussed in Chapter 3, the link travel time distribution could
be very complicated and is impossible to be modeled as a single distribution model
such as a normal distribution or a log normal distribution. This simulation

examined three scenarios. As shown in Figure 4-8, the first scenarios assumes that

0.02 - P1 Two-points discrete distribution

1-P1
001 /Uniform distribtion
/ Nomal distribution
[~
. » ¥
0 w0t o B ap 400 500

Link travel time {seconds)

Figure 4-8 Probability distribution patterns of the link travel time
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all links have normally distributed link travel times. The next scenario assumes that cach
link has a uniformly distributed travel time. The last scenario assumes that each link has
only two possible values, t1 and t2 with probability P1 and 1-P1 respectively as shown in
Figure 4-8. This last scenario can be viewed as an extreme example of bimodal
distribution. For the comparison purpose, it was assumed that for each link the travel time
mean and variance under three scenarios are same. 1t should be noted that tor both
normal distribution and uniform distribution their distributions can be uniquely decided by
mean and variance. For the two-value discrete distribution, it was further assumed that
the probability P1 and thus 1-P1 is known, and consequently the t} and t2 value can be

calculated based on the mean and variance.

4.4.4 Approximation Quality and Sensitivity Analysis

4.4.4.1 General performance

This section demonstrates the general performance of the approximation modeis
under a given link travel time pattern (Pattern B) and a given link travel time COV
(COV=0.5). The link travel times are assumed to have normal distributions. Figure 4-9
shows the relationship between the approximation error of the first order model and the
second order model for estimating the mean of the route travel times. The approximation
error is defined as the absolute difference between the approximated result and simulated
result and the following sections will use the same definition without further notation. It
can be seen that the estimation error for the second order model is primarily less than 15

seconds while it is primarily less than 25 seconds for the first order model. However,
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these average estimation errors are not so significant if compared to the average trip time

of 1840 seconds.

Figure 4-10 and Figure 4-11 show the scatter graph of the route travel time
standard deviations calculated by the approximation models (the naive model and the first
order approximation model) and by the simulation method. It can be seen that the
improvement in using the first order model is significant compared to the naive model.
The average estimation error is 3 seconds for the first order model as compared to 28

seconds for the naive model.

'The simulation results (Figure 4-12 ) also show that the difference between the
first order model and second order model for estimating the route travel time variance is

insignificant. This results confirm Remark 4 in Section 4.2

4.4.4.2 Sensitivity to the link travel time COV

The purpose of this section is to examine how the variations of the link travel times
in the network influence the solution quality of the approximation models. The simulation
uses a single link travel time pattern (Pattern B) and a single probability distribution
(normal distribution) for all links in the network. Figure 4-13 shows the relationship
between the approximation error of the first order mode! and the second order model for
estimating the mean of the route travel times as a function of link travel time COV. As
would be expected, the improvement of the second order model over the first order model
is related to the magnitude of the link travel time variance. For example, when the COV is

doubled the second model has approximately one half the error as the first order model.
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Figure 4-14 shows the graph of the estimation error of the route travel time
standard deviations calculated by the approximation models (the naive model and the first
order approximation model) as a function of the link travel time COV. It can be seen that
the improvement of using the first order model or second order model over the naive
model is more significant than that found from the mean route travel time estimation
sensitivity analysis. This would be expected because the rate of change of the average link
travel time influences the route travel time variance calculation as shown in Remark 3 of

Section 4.2.

4.4.4.3 Sensitivity to the dynamic pattern of the link travel time

This section shows how the time variation pattern of the link travel time in the
network influences the solution quality of the approximation models. The link travel times
are normally distributed with the COV equal to 0.5. Figure 4-15 and Figure 4-10 show
the relationship between the estimation errors of approximation models and the time
variation pattern of the link travel times. Similar to the finding in the previous sections,
the improvement of using the second order model over the first order model for estimation
of mean route travel time (Figure 4-15) and the first order model over the naive model for

estimation of route travel time variance (Figure 4-16) is significant.

As would be expected, the route travel time estimation error is highly correlated to
the dynamic pattern of the link travel times. The more peaky the link travel time pattern,
the higher the estimation error. It can also be found that the estimation of the mean route
travel time is much more sensitive to the estimation of the route travel time variance. This

is because the accuracy of the mean route travel time model mainly depends on the second
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order derivative of the link travel time which is significantly influenced by the change rate
of the link travel time pattern. Similar to the results in the previous sections, the
improvement of using the second order model over the first order model for estimation of
mean route travel time is apparent. The relative improvement of the second order model
over the naive model for estimation of route travel time variance is neglgible. However,

both these models are significantly more accurate than the naive model.

It can also be seen that the improvement of the higher order models over the lewer
order models is insignificant as the link travel times in the network changes more sharply
(from pattern C to pattern A). This result is expected for the reasons explained in Remark

4 previously discussed in Section 4.2.2.

4.4.4.4 Sensitivity to the PDF of the link travel time

This section shows how the link travel time PDF in the network influences the
solution quality of the approximation models. The COV of the link travel times are set to
0.5 and Pattern B is used to represent the dynamic pattern of the link travel times. Figure
4-17 and Figure 4-18 show the relationship between the estimation errors of the

approximation models and the link travel time distribution.

[i can be found that the link travel time distribution pattern has no significant effect
on the estimation of both the mean and variance of the route travel time. Based on this
empirical result, it may be concluded that the simple normal distribution could be used for
route travel time estimation purposes. This also implies that the relevant information on

the link travel time are its mean and variance as a function of the time of day.
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4.5  CONCLUSIONS

This chapter developed several approximation models to estimate the mean and
variance of the route travel time in traffic networks where the link travel times are
dynamic and stochastic. The dynamic and stochastic attributes of the link travel times are
modeled by the mean and variance of the link travel time as a function of time day or
arrival time at the link. The approximation models are derived and examined theoretically

and empirically. The major conclusions are summarized as follows:
(1). On the estimation of the expected route travel time:

¢ Ina dynamic and stochastic network, the expected route travel time is not a
summation of the expected link travel times. It at least also depends on the
average link travel time pattern during the time of day (for example, the second
order derivative of the expected link travel time) and the link travel time variations.
The traditional method (the naive model) may overestimate or underestimate the

expected route travel time.

e The expected route travel times can be more accurately estimated using the second
order approximation model. Based on the simulation study, the relative
improvement of the second order approximation models over the first order model
{or naive model) is quite small (less than 0.2%). However, this small percentage

of difference could be important for route selection in a traffic network.

¢ The relative improvement of the second order model compared to the first order

model or naive model depends on the link travel time variance and the severity of
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the time variation of the link travel time. The relative improvement becomes
greater as the link travel time variances and the link travel time changing rate

increase.

The link travel time distribution pattern has no significant ettect on the mean route
travel time estimation. Therefore, the normal distribution may be used to represent

the link travel time distribution.

(2). On the estimation of route travel time variance:

In a dynamic and stochastic network, the route travel time variance does not cgaul
to the summation of the link travel time variances. It also depends on the link
travel time changing pattern during the time of day, for example, the first and
second order derivatives of the expected link travel time and link travel time
variance. The traditional method (naive models) may overestimate or

underestimate the route travel time variance.

The variance of the route travel times can be more accurately estimated using the
first or second order approximation models. Based on the simulation study, the
first order model and the second order model are quite close in terms of solution

quality, however, they provide significantly better solutions than the naive model.

The relative improvement of the first or second order models compared to the
naive model depends on the link travel time variance and the severity of the time
variation of the link travel time. The relative improvement becomes greater as the

link travel time variances and the link travel time changing rate increase.
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CHAPTER 5§

ESTIMATION OF EXPECTED MINIMUM
PATHS IN DYNAMIC AND STOCHASTIC
TRAFFIC NETWORKS'

5.0 INTRODUCTION

For most RGS currently under development the optimal route between an origin
and destination is defined as the one with a minimum expected travel time. This optimal
route is commonly calculated by applying a Dijsktra type shortest path algorithm where
the link travel times are treated deterministically rather than stochastically. Typically the
random link travel times are replaced by average link travel time values for a set of
discrete time intervals throughout the day. The drawback to this type of deterministic
treatment is that while it makes the problem computationaity tractable it may in fact

generate sub-optimal solutions of the problem as shown in this chapter.

Conversely, when both the dynamic and stochastic nature of link travel times are
explicitly modeled, the optimal algorithms can become computationally inefficient and/or
impractical for use within an actual application. The objective of this chapter is to develop

a new shortest path algorithm which can provide improved solutions without significantly

" A modified version of this chapter has been published in “Proceedings of Vehicle Navigation and Information
System (VNISY”, 1995 Annual Meeting of VINS, Seattle, Washington.
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adding to the overall computation time. Essentially, this chapter attempts to answer the
question: how can the uncertainty associated with link travel times be incorporated within

the calculation of the expected optimal routes?

The shortest path problem has been studied extensively in the fields of computer
science, operations research and transportation engineering. Most of the literature has
focused on the problem in which the link travel cost (or weight) is assumed to be static
and deterministic. Many efficient algorithms have been developed (Bellman, 1958,
Dijsktra, 1959; Dreyfus, 1969) and in this thesis, these algorithms are referred to as the
standard shortest path algorithms. It should be noted that the standard shortest path
algorithms also have been found to be applica;ble under certain conditions in dynamic
networks where the deterministic link travel time is a function of the time of day (Cooke

and Halsey, 1966; Kauman and Smith, 1990).

Frank (1969) and Mirchandani (1976) first studied the problem of determining the
probability distribution of the shortest path length in a stochastic network where link travel
times are random variables. Loui (1983), Mirchandani and Soroush (1986) studied the
shortest path problem with different types of utility functions. It was found that if the
objective is to identify the expected shortest path, then the problem simply reduces to a
deterministic shortest path problem in a network where the random link travel times are
replaced by their expected values. Therefore, the efficient standard shortest path
algorithms can still be used to find the expected shortest paths in a static and stochastic

network.
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In a dynamic and stochastic network, the link travel costs in general manifest a
time-dependent pattern (dynamic), but are not deterministic at any point in time or time
interval. This situation is a more realistic representation of a traffic network because the
travel times on traffic networks generally change with time of day in some general pattern
(for example, peak and off-peak periods) which has a certain amount of variation
associated with it. However, the standard shortest path algorithm may fail to find the
expected shortest path in dynamic and stochastic networks as demonstrated by Hall
(1986). An algorithm was proposed to find the optimal route and this algorithm was
demonstrated on a small transit network example. The algorithm however can only be

practically applied in solving problems on small networks because of computational

constraints.

This chapter is organized as follows. The dynamic and stochastic shortest path
problem is first defined and the properties associated with this problem are discussed. A
heuristic algorithm based on the k-shortest path algorithm is subsequently proposed.
Finally, the tradeoffs between solution quality and computational efficiency of the

proposed algorithm will be demonstrated on a realistic network from Edmonton, Alberta.

5.1  DYNAMIC AND STOCHATIC SHORTEST PATH PROBLEM:
DEFINITION AND PROPERTIES

As discussed previously in Section 4.1, a dynamic and stochastic network is
defined by assuming that the link travel times on some or all of the links in the network are
random variables and their probability distributions are dependent on the time of day.

Furthermore, it is assumed that the link travel times are continuous random variables and
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the only available information about their distribution is their respective means and
variances. The problem is to find the optimal path, that is. the path with the minimum
expected travel time from an origin to a destination with a given departure time in the
network. This problem is referred to as the dynamic and stochastic shortest path problem

{DSSPP).

In the previous chapter, some approximation models were developed for
estimating the mean and variance of the route travel time in a dynamic and stochastic
network. These approximation models (the second order approximation mode! for the
mean and the first order approximation model for the variance) will be further used to
analyze the basic attributes or properties of the DSSPP in the following discussion. To

facilitate the discussion, these two equations are restated below (Figure 5-1):

(G

_%s}

A A
——
]

R

Figure 5-1 A path from origin node s to destination node g including link (i, j} in a
traffic network
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E{T|| = E[T}] + wEITi]) + w'(E[T.) Var|T.|2 (3-1)
Var[le =11+ U'Z(Em]) + ZFL'(EIT.I) -+ i"z(ElT,l)}V‘"lTi] + ﬁz(EiT.]) (3-2

where,

T. = a random variable indicating the arrival time or departure time at node 1

E[T;] = the expected arrival time at node i,

Var[T;J= the variance of the arrival time at node i;

W1y = the mean travel time on link (i,j) as a function of time of day, T, and p' and

W represent respectively the first and second order derivatives of y;
oT) = the standard deviation of the travel time on link (i,)) as a function of time of’

day, T, and 6" and o”’ represent the first and second order derivatives ol o;

From Equation (5-1) and (5-2), the following properties of the DSSPP may be

observed:

PROPERTY 1: If the mean link travel time as a function of time (u(T)) of at least one link
in a network is non-linear, the standard shortest path algorithms may fail to find the

optimal path between two nodes in the network,

This observation may be illustrated by the use of the example network shown in
Figure 5-2. The network is composed of two sub paths (pl and p2) from the origin node

s to an intermediate node i, and one lini. *3, j) from node i to the destination node j.
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p1
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~—— P2
travel time
on link (1,j},
R(T) -/\
i arrival time frequency
i at node i through p2
/P! —/"I\——Ti“’” Time of day, T

Figure 5-2 A simple dynamic and stochastic network

Assume that the travel time on p1 is deterministic and that the travel time on p2 is
stochastic. The travel time on link (i,j), pry, is deterministic but changes with time in a
non-linear fashion as shown in Figure 5-2. 1f the expected arrival time at node i through
pl, T{*", is marginally less than through p2 (T{™) then the subpath p1 is the minimum
expected route from node s to node i. On other hand, it can be seen in Equation (5-1) that
the expected minimum arrival time at node j not only depends on the expected arrival time
at node i, but also on the variance of the arrival time at node i and the second derivative of
the mean travel time on link (i, j). Given that the travel time on link (i, j) is concave and
hence its second derivative is negative, it is possible that the subpath p2 is on the expected

minimum path from s to . In short, Bellman's “principle of optimality” which states that
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any subpath of a shortest path must be a shortest path (Denardo, 1982), does not hold in a

DSSPP.

The above property also implies that the standard shortest path algorithms could

be applicable if the link travel time function (T) is linear or in a more relaxed sense,

close to linear within the local range.
PROPERTY 2: The DSSPP is intractable.

The intractablity of the DSSPP can be shown using a special acyclic type of
network (Garey and Johson, 1979). As shown in Figure 5-3, the network has N nodes
sequentially labeled from 1 to N, with 2 links between each successive pair of nodes. The
problem is to find the expected shortest path from node 1 to node N. If the network is
deterministic, the problem can be solved by finding the shortest path to node 2 first, then
node 3, and onward until node N. The computation time is O(n). This type of procedure
will not work in a dynamic and stochastic network because the optimal path to node i does
not have to be part of the optimal path to node i+1. This means that all the 2" paths from
1 to N must be examined before the optimal path can be definitely identified. The

computation time therefore grows exponentially with the number of nodes, N.

Figure 5-3 An acyclic network
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5.2 A HEURISTIC ALGORITHM TO CALCULATE THE EXPECTED
SHORTEST PATH

In the previous section it was shown that standard shortest path algorithm may not
identify the expected shortest path on a dynamic and stochastic network and the DSSPP is
intractable in the sense that there is no polynomial time algorithm, like the standard
shortest path algorithm, to solve this problem. Therefore, a heuristic algorithm was

developed to identify the “optimal” routes.

As shown in Chapter 4, it would be expected that under non-incident conditions
the rate of change of the mean link travel time would be relatively small. Therefore, the
path identified by the standard shortest path algorithm would typically be close to the
expected shortest path. The heuristic algorithm proposed in this thesis uses this fact to
identify the best route without significant additional computation efforts. The algorithm is
based on the k-shortest path algorithm and has a parameter K indicating that K shoriest

paths will be examined. The algorithm proceeds as follows:

Step 1:Find the shortest, the second shortest and up to the K¢/ shortest paths from
the origin node to the destination node, based on the mean travel times

over links in the network. These are stored in ascending order in list A.

Step 2: Set k = |; take the k¢4 shortest path from A and call it P. Calculate the
expected travel time over P by using Equations (5-1) and (5-2), denoted it

Lupt -
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Step 3:1f k > K: P 1s the "optimal" path. L, is the minimum expected travel time,

Stop.
Otherwise, go to step 4;

Step 4: Set k = k+1, take the keh shortest path from A and call it Py, Calculate the
expected travel time over Py by using Equations (5-1) and (5-2) and

denoted it L

lf Lk < LOI“: P = pk and I—‘npl = Lk ﬂ.nd GOIO Step 3

There were three issues that needed to be addressed before this algorithm could be
implemented. The first issue was to identify the technique for finding the K shortest paths.
This thesis uses Shir's k-shortest path label setting algorithm due to its close relation with

the shortest path label setting algorithms (Shir,1979).

The second issue is to identify the value of K. From a practical point of view the
appropriate K value can be based on an empirical sensitivity study. The use of larger
values for K will increase the chances of finding the optimum expected shortest path, but
at same time will require a greater computational effort. The balance of solution quality

and computation cost in determining the K value will be further discussed in Section 5-3.

Finally, the proposed heuristic algorithm requires applying the approximation
formulae in Equations (5-1) and (5-2) which are derived based on the assumptions that the
mean and standard deviation of the link travel time are continuous functions of time of day
and have at least second order derivatives. This can be achieved using the link travel time

smoothing method as discussed in the section 4.4 of Chapter 4.
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53 COMPUTATIONAL ANALYSIS

The objective of this section is to demonstrate the solution quality and
computational efficiency of the proposed algorithm with respect to the value of the
parameter K used in the algorithm. The heuristic algorithm developed in this thesis was
coded in C++ and executed under the Microsoft Windows operating environment on a

486 compatible with 50 MHz speed and 8 MB RAM.

The experiment was performed on a network from the City of Edmonton. This
network, composed of 3800 links and 1400 nodes, is primarily used for planning
applications. The AM peak (6:00AM~9:00AM) was selected as the study period. Due to
a lack of real-time data, the dynamic and stochastic travel time patterns in the network
were created based on the free flow speed on each link and a theoretical change in travel
time during the AM peak period. The link travel time data were then represented as a set
of discrete means and standard deviations through the AM peak period. The standard
deviation range is from 10 to 20 percentage of the mean travel time. Figure 5-4 shows an

example of the means and standard deviations of the travel times on an example link.

To demonstrate the solution quality of the heuristic algorithm a comparison is
usually made with the optimal solution. Because it is too computationally intensive to
identify the expected optimal path in a farge network, a reference path is used for
comparison purposes. In this thesis the reference path is set as one found using the
proposed algorithm with a pre-specified value of K. A K value of 10 was used indicating
that the best path within these 10 paths is the “optimal” path. The relationship between

the solution and the K value will be discussed in the following paragraphs
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Figure 5-4 Link travel time pattern

Three hundred O-D pairs were randomly generated and their respective expected
minimum paths were calculated using the proposed algorithm. Figure 5-5 shows the
relationship between the K value and the percentage of time the optimal path was found.
For example, when the K value is equal to one, there is a 30% chance that the minimum
path route would not be identified whereas if K is increased to 5 this percentage decreases
to 5%. It should be note that a K value of 1 corresponds to the case of simply using a

standard minimum path algorithm.

Figure 5-6 shows the relative error of the solution as a function of the K value. It
can be seen that the relative error is very small. For example, when K is equal to I, the

relative error is very small (less than 0.3%). The average absolute error for a K value of |
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is approximately S seconds with a maximum error of 120 seconds with respect to the
average travel time of 1788 seconds. It may be seen in Figures 5-5 and 5-6 that the
greatest jump in accuracy occurs at the lower K values (i.e. more improvement from K=1

to 2 than from K =9 to 10).

The computation time of the proposed algorithm with respect to the K value is
shown in Figure 5-7. It can be seen that the CPU time increase is fairly significant. For
example, when K is equal to 2 the increase in CPU time is approximately 90%. However,
it should be kept in mind that this algorithm is considerably faster than a complete

enumeration.
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Figure 5-5 Solution quality vs. K value
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54

CONCLUSIONS

It was shown that the DSSPP is computationally intractable and that it cannot be

solved exactly using standard shortest path algorithms. This thesis proposed a heuristic

algorithm for solving the DSSPP where the dynamic and stochastic attributes of the link

travel times are modeled by the mean and variance of the link travel time as a function of

time of day. The algorithm is based on k-shortest path algorithm and its performance was

tested in a real size network. The following points were illustrated in this study:

The standard shortest path algorithms may fail to find the minimum expected paths in a
dynamic and stochastic network. The solution error by the standard shortest path
algorithm was shown to be relatively small (5 seconds on average) primarily because
of the simplicity of the network and , more importantly, because the dynamic travel
times changed relatively slowly with time. It is anticipated that a greater impact would

be found during incident conditions.

The proposed heuristic algorithm provided improved solutions with only a moderate
increase in overall computation time. The solution improvement was found to be
significant with the K value increasing from 1 to 2 (more than 18% in terms of the
percentage of finding the best solution although the increase in computation time was

on the order of 90%);

While theoretically incorrect, the use of standard shortest path algorithms in dynamic
and stochastic traffic networks may be applicable from a practical perspective. This

will be especially true if the change of travel time in the network is moderate.
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e Finally, it should be noted that the above conclusions are based on hypothesized link
travel time data. It would therefore be necessary to conduct further studies based on
real travel time data before any general conclusions are made. It would also be
beneficial to conduct the experiments during incident conditions to identify whether

this technique has any potential benefits in these situations.
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CHAPTER 6

HEURISTIC SHORTEST PATH ALGORITHMS

6.1 INTRODUCTION

One of the major requirements for in-vehicle Route Guidance System (RGS) and
real-time Automated Vehicle Dispatching System (AVDS) is the ability to calculate the
shortest path from an origin to a destination in a quick and accurate manner. In a
distributed RGS, an in-vehicle computer is commonly used to calculate the optimal route
in a large traffic network. Typically the recommended routes must be found within a very
short time period (e.g., a few seconds). In an AVDS, due to real-time operational
requirements, new routes and schedules must be determined within a reasonable time after
a customer requests a service. Because the O-D travel times, which are the basic input to
the routing and scheduling procedure, are dynamic in an urban traffic environment, a
shortest path algorithm has to be repeatedly used to calculate the O-D travel times during
the optimization procedure. More detailed discussion will be provided in Chapter 8 as for
how the O-D travel time estimation method influences the efficiency of the dial-a-ride

vehicle routing and scheduling process.

'n the above applications, optimal shortest path algorithms typically cannot be

directly used because they are too computationally intensive to be feasible for real-time



Chapter 6 Heuristic Shortest Path Algorithms 159

operations (Kuznetsov,1993). The consideration of the dynamic and stochastic pattern of
traffic networks imposes extra computational burden to solve the shortest path problem,
as previously discussed in Chapter 5. The objective of this paper is to develop heuristic
shortest path algorithms using various heuristic search strategies from the field of Artificial
Intelligence (Al) and to demonstrate their solution quality and computation efficiency
when these algorithms are implemented in traffic networks. For this purpose, the traffic
network 1s assumed to be static and deterministic in our discussion. However, it should be
noted that most proposed heuristic algorithms work equally efficient when they are
applied in dynamic and stochastic traffic networks (when the traditional shortest path

algorithm is applicable for the reason presented in Chapter 5).

Heuristic search strategies have traditionally been investigated by researchers in the
Al field (Hart ef al. 1968; Nilsson 1971; Newell e7 af. 1972; Pearl, 1984). The shortest
path problem is typically used as a testing mechanism to demonstrate the effectiveness of
these heuristics. Because the performance of a given heuristic algorithm is 2 function of
the particular application or network, the conclusions from one application usually cannot

be generalized to others,

The current RGS field tests in North America, Europe and Japan have generated
renewed interest in using heuristic algorithms to find shortest paths in a traffic network for
real-time vehicle routing operations. Guzolek and Koch (1989) discussed how some
heuristic search methods can be used in a vehicle navigation system, but there has not been
an comprehensive study examining the implementation and performance of the algorithms.

Kuznetsov {1992) discussed the application of the algorithm A* (called the force driven
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method in his paper), bi-directional search methodelogy and hierarchical search
methodology used for pathfinding in the TravTek project. Although some empirical
results have been presented, no exact information has been provided on the algorithms

themselves.

This chapter is organized as follows. A brief overview on the optimal shortest
path algorithms and their computational performance are first provided because they are
the benchmark that the proposed heuristic algorithms will be compared to. Next, this
chapter specifically examines three heuristic search strategies that may be classified as i)
Limiting the search area; ii) decomposing the search problem, and iii) Limiting the scarch
links. In addition, new heuristic shortest path algorithms are developed by combining the
optimal shortest path algorithms with the heuristic search strategies. The algonthmic
implementation of the proposed heuristic algorithms are detailed. Finally, the
computational efficiency and solution quality of the new heuristic algorithms are

demonstrated on a network from Edmonton, Alberta.

6.2 THE SHORTEST PATH PROBLEM AND OPTIMAL
ALGORITHMS

A road traffic network is represented by a digraph G(N,A) that consists of a set of
nodes N and a set of arcs A (or links used in this thesis). Denote the number of nodes
[N|=n and the number of links |Al=m. A link a=(i,j)e A is directed from node i to node |
and has an associated general cost cij. The general cost represents the impedance of an
individual vehicle going ti.: sugh that link and is usually described by link travel time, link

length and toll fee, or some combination of these costs. Without losing generality, the link
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travel time is used exclusively in this chapter to represent the link general cost. A path
from an origin node (s) to a destination node (g) may be defined as a sequential list of
links: (s.j), ....(1,). The travel time of the path is the sum of travel times on the individual
links, The problem is to find the path that has the minimum total travel time from the

origin node to the destination.

This shortest path problem(SPP) has been studied for over thirty years in diverse
fields such as computer science and transportation engineering. Due te their
computational tractability, most of the research in this area has focused on developing
optimal algorithms to solve the problem. The majority of the optimal shortest path
algorithms are essentially applications of dynamic programming theory to the search of the
shortest path in a graph. The shortest path is found through an recursive decision making
procedure from the origin node (or destination node) to the destination node (or origin

node).

Most shortest path algorithms have the same standard structure. To describe this
procedure, the following notation is introduced. The route cost from the origin node to a
particular node i is defined as Ly, and this route cost is commonly referred as the “label” of
the node. P is denoted as the list which store the preceding links on the shortest path tree
to each node, and Py, represents the preceding link on the shortest path to nodei. Qs
denoted as the scan eligible node set which manages the nodes to be examined during the
search procedure. The following is the prototype procedure of the shortest path

algorithms with the assumption that the algorithm starts from the origin node.
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Step 1 Initialization: Seti=o. Ly =0 Li== V=1, Py = NULL.
Detfine the scan eligible node set Q={i}:
Step 2: Node Expansion:  Select a node 1 from Q, and scan each link emanating from
node 1. For each link a=(1))
If
L + ¢j < Lgy |
then
Lj = L + ¢ Py = a,
Insert node j into Q, and remove a node i from Q;
Step 4 Stopping Rule: If Q = & then STOP.

otherwise: goto step 2.

The major variations between different algorithms pertain to the data structure
used to form the scar eligible node set and the manner in which the nodes are identified
and selected for examination (Gallo ¢f a/. 1986). Based on the behavior of the algorithm,
the optimal shortest path algorithms are usually classified into two categories: labe!

correcting or label setting algorithms (Rilett, 1992).

6.2.1 Label Correcting Algorithm

The label correcting algorithm uses a list structure to manage the scan eligible
node set that need to be examined during the shortest path tree building process. It is the
variations of the list operation policy that is used to differentiate the label correcting
algorithms such as label correcting with queue (Moore, 1969), label correcting with
double ended queue (Pape, 1974), and label correcting with threshold lists (Glover ¢f af.,

1985).
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The major feature of a label correcting algorithm is that it can not provide the
shortest path between a root node and another node before the route to every node in the
network is identified. The necessity of this type operations (referred to as one fo all
search mode) makes the label correcting algorithms more suitable in situations when many
shortest paths from a root node need to be found. Because of this special attribute and the
fact that it has historically been found to be the quickest, the label correcting algorithm is
often used in these models of most transportation planning applications (Gallo and

Pallottino, 1984;Rilett, 1992).

6.2.2 Label Setting Algorithm

In the label setting algorithms, the scan eligible node set is ordered based on the
current path cost from the root node, i.e., their labels. During the shortest path search the
node with the lowest label is selected for examination and at thesame time, the shortest
path to this node is identified. The major difference among the label setting algorithms is
the data structure used to maintain the ordered scan eligible node set. Examples include
Label setting with sorted list (Dijkastra, 1959), Label setting with binary heap (Tajar,
1983) and Labe! setting with buckets (Dial, 1969). For convenience in describing the
heuristic algorithms in the following sections, the procedure of the label setting algorithm

is listed in more detail here:

Step I Initialization: Seti=o0,L;=0; L= Vj=i; P;j=NULL.

Define the scan eligible node set Q={i};
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Step 2: Node Selection: Select and remove the node with the lowest label (travel
time) from Q, This is node i;
Step 3. Node Expansion:  Scan the forward star of node i. For each link a=(i,j)
If
L+ cj <Ly
then
Lg =L + ¢ Piy = a,
Insert node j into Q;
Step 4. Stopping Rule: If the node i is the destination node, then STOP.

otherwise: goto step 2.

The major feature of a label setting algorithm is that if only a particular route from
an origin node to a single destination node is required to be found, the algorithm can be
terminated when the label of that destination node is set. This type of operations is usually
referred as a one fo one search mode. As a result, the label setting algorithms are
particularly appropriate for the applications such as distributed RGS where the abjective is

to find the shortest paths between two specific locations.

6.2.3 Computational Performance of the Optimal Shortest Path Algorithms

The computational performances of the label correcting and labe! setting
algorithms have been studied widely from both a theoretical and empirical point in many
different research fields. According to the literature which has a focus on transportation
networks (Gallo et al., 1984; Hung et al. 1988; Vuren et al., 1988), a number of
conclusions pertaining to their characteristics have been identified. Among the label

correcting algorithms, the label correcting algorithm with double ended queue and label
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correcting algorithm with threshold lists are found to be dominant with respect to
computational cfficiency. The difference in computation time between these two label
correcting algorithms is relatively minor for most transportation road network problems
and consequently the former has traditionally been used because it is more easily
implemented. On the other hand, among label setting algorithms, the label setting

algorithm with binary heap is the fastest.

Based on this previous research, the label setting with binary heap algorithm
(labeled as LS) and the label correcting with double ended queue algorithm (labeled as
LC) are selected as the base algorithms for developing new heuristic shortest path

algorithms for one to one search applications.

6.3 HEURISTIC SHORTEST PATH SEARCH METHODS

The optimal shortest path algorithms discussed in section 6.2 tend to be too
computationally intensive for real-time one-to-one applications in realistic traffic
networks. This “inefficiency” stems from the fact that the algorithms employ
“uninformative” outward search techniques without making use of any prior information
such as the location of the origin and/or destination nodes. For example, if the origin node
was located in the center of the city and the destination node was located in the far south,
the optimal search techniques would be just as likely to search for the minimum path
routes north of the origin node as they would search south of the origin node. Intuitively,
the efficiency of the algorithms could be improved if more information was used in the

search process. This latter point was recognized very early by researchers in the Al iield
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and a number of heuristics were proposed that attempted to use various sources of

additional knowledge to reduce the search efforts.
The heuristic search strategies can be generally classified into four categories:

(i). Limiting the search area, (ii). Decomposing the search problem, (iii). Limiting the
search links, and (iv). Some cotnbination of above. In the following sections, these

heuristic search strategies and their applications in the shortest path search are explored.

6.3.1 Limiting the Search Area

The non-informative search algorithms, such as optimal label setting and optimal
label correcting algorithms, have a fundamental disadvantage in that they examine all the
intermediate nodes from origin node to destination node without considering how likely
these nodes will be on the shortest path. The idea behind the “limit search area” strategy
1s to make use of some knowledge about the attributes of the shortest path(s) from the
origin node to the destination node to constrain the shortest path search within a certain
area, The theory is that the resulting search area would be much smaller than that by a
non-informative optimal algorithm. The following sections introduce two methods which
implement the “limit search area” strategy: the branch pruning method and the A*

algorithm,

6.3.1.1 Branch Pruning Method

The branch pruning method, similar to the well-known branch-and-bound

algorithms in operations research, is proposed in this thesis as an attempt to limit the
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search area by pruning the intermediate nodes that have lower likelihood of being on the

shortest path to the destination node.

In a typical urban traffic network represented by a digraph, each link is typically
connected only to the neighboring nodes (e.g. intersections) and the travel time on a link is
generally correlated with its length. This attribute allows the search area to be constrained
within a specified area surrounding the origin node and destination node. The nodes
outside this area are assumed to have a lower probability of being on the shortest path and
therefore can be dismissed without further examination during the search procedure. The
problem is to define the search area such that the computation time can be effectively
reduced while at the same time obtaining a good solution. It is proposed in this chapter

that « suitable method would be to use the following inequality to bound the search area:

L)+ eiay < B 6-1)

-
|

= the current minimum travel time from origin node o to node i;
ein = the estimated travel time from node i to destination node g;

E(.g = an estimated upper bound of the minimum travel time from the origin node s to the

destination node g.
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The equation (6-1) can be added to the optimal tabel setting and label correcting
search procedure to form the following heuristic branch pruning shortest path algorithms:
the branch pruning label setting algorithm (BP_LS) and the branch pruning label

correcting algorithm (BP_LC).

The branch pruning algorithms have exactly the same structure as the optimal
algorithms. The only difference is that during the search procedure Equation (6-1) will be
tested before a node is selected for examination. For example, the BP_LS algorithm
would follow the same steps as the LS algorithm discussed in section 6.2.2, with the

exception that the second step would be modified as follows.

Step 2: Node Selection: Select and remove the node with the lowest label (travel

time) from Q, This is node i;

If Ly + €6y > Ewy . then goto step 4.

Basically, the modified step 2 states that if node i is not in the search area it is
removed from further consideration. The efficiency of the branch pruning algorithms is
schematically illustrated in Figure 6-1. It can be seen that the new heuristic algorithm
reduces the search area to that of an ellipse from a circle as examined by an optimal label
setting algorithm. In an idealized Euclidean grid network, these heuristic algorithms may
be shown to examine a search area that is approximately 9% of the search area used by the

LS algorithm (Appendix A).
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Figure 6-1 A schematically illustration of the pruning power of the branch pruning
algorithms

It should be noted that the application of the branch pruning method in the LC
algorithm is quite unique in the sense that it effectively allows the LC algorithm to be
operated in a one-to-one search mode. It can be expected that the BP_LC algorithm
would be more efficient as compared to the BP_LS algorithm because they have same

search area but the BP_LS has to maintain a ordered list at each search step.

The efficiency and accuracy of the branch pruning shortest path algorithms deperd
on the quality of the estimation functions of &g and E. It should be noted that

optimality of the branch pruning shortest path algorithms will be preserved if the
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estimation e, is always lower than the minimum travel time from node i to destination
node g and at the same time the estimated value ot E, is greater than the minimum travel
time from origin node s to destination node g. In addition, the branch pruning shortest
path algorithms are the same as their related optimal shortest path algorithms when e,
equals zero and E, ) is close to infinite. That is, when the constraint in equation (1) is no

longer in effect.

On other hand, if the e, value is over-estimated and the E,, value is under
estimated, then the minimum paths to the destination node may be pruned before the
destination node is examined. As a result, the estimation of the value ¢, and Eg, is
critical for implementation of the branch pruning algorithms. There could be many
methods by which e, and Eg ) can be defined. Because there is a straight dependent
relationship between the travel time with the travel distance and travel speed, in this thesis
it is suggested that the travel distance Dy, and an average travel speed V be used to

estimate e and Eq gy

€ig = Dig/ V (6-2)

Ewg =K eeg (6-3)

The parameter K, known as the bound factor is used to set the difference between the

estimated lower bound on travel time (e ) and the upper bound on travel time (Eg ).
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With these definitions, the performance of the branch pruning algorithms will be
controlled by the estimation of trave! distance Dy, the average speed V and the bound
factor K. The travel distance Dy, is set to the Euclidean distance from node i to node g
and can be directly calculated based on the coordinates of the nodes. The average travel
speed (V) is normally related to travel distance and the time of day in an urban
environment. For simplicity, it is assumed to be a constant value. With these
assumptions, the bound factor K becomes the only controllable parameter in a branch
pruning algorithm. The larger the bound factor K, the larger the search area and hence the
more likely the optimal solution will be found, and consequently the longer the computing
time. A “proper” value of K will be in all likelihood network specific, and quite possibly
O-D specific as well. Section 6.4 will demonstrate how this value may be determined

using the Edmonton network as an example.

As mentioned previously, one major problem pertaining to the branch pruning
shortest path algorithm is that the algorithm may stop without providing any solution if the
bound factor used is too small so that all of the branches of the shortest path tree from the
origin node are pruned before reaching the destination node. This problem can be
resolved by adding a self-adjustment loop in the algorithm, i.e., the algorithm will
automatically increase the bound factor K and restart the search from the origin node if a
solution has not been found when the scan eligible list is exhausted. Of course, it is

desirable to select the value of K such that this does not happen.

Instead of restarting the whole search, an alternative method is to record all of the

pruned nodes during the search procedure and put them back into the scan eligible node
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list once it is exhausted. It would be expected that the latter approach would be faster
than the former method. The reason is that at each iteration the latter approach will use
the search results of the previous iteration instead of restarting the search from scratch
again as the former method does. The disadvantage of using the second method is that it

would require extra memory to store information on all of the pruned nodes.

The K value at each iteration can be determined either by simply increasing a
prespecified proportion or by using the information in the previous iteration. In the latter
method, the K value can be determined by using the ratio of maximum value of the
estimated route travel times going through the pruned nodes to the estimated lower bound

on the route travel time from the origin node to the destination node:

rr:gx{ Ly eyt
K, =%
e(s.g)

(6-4)

Where P, is the pruned node set at iteration n.

It should be noted in all of the above analysis that a good initial K value can avoid

either fooping for the self adjustment or searching an unnecessary large area.

6.3.1.2 A* Algorithm
The A* algorithm was first proposed by Hart (1968) and further extended by
Nilsson (1971), Pohl (1971) and Pearl (1984). The strategy behind this aigorithm is tc

change the order in which nodes are examined such that the nodes that have higher
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“likelihood” of being on the minimum path are given priority over those with a lower
“liklihood”. The performance of the A* algorithm has been well studied with respect to
Euclidean networks where the objective is to minimize the travel distance. An empirical
study has shown that the A* algorithm examines less than about 10% of the nodes that
would be examined by an optimal label setting algorithm (Golden ¢f al 1978). 1t was also
shown that (Sedgewick, 1986) the A* finds the shortest path in many Euclidean praphs
with an average computation effort O(n), compared to O(n.log n) required for the 1.S
algorithm. This section will focus on how this algorithm can be implemented in traffic

networks.

The A* algorithm makes use of an additive heuristic evaluation function F, = L,
+ e for node i, where Ly is the travel time of current evaluated path from origin node to
node i and e, is an estimated travel time for node i to destination node g. The sum of
these two functions, Fyj, is the merit of node i, representing how likely node i will be on
the shortest path. The lower the merit of a node, the more likely the shortest path will go
through this node. Based on this idea, the algorithm does a best first search, i.e., it
maintains an ordered list of nodes to be scanned according their merits and selects a node
whose merit is the lowest among all the nedes for expansion. The selected node is
expanded by scanning its forward star (or backward star), evaluating them according to
their F value, and inserting them into the ordered scan eligible node set. This continues
until the destination node is chosen for expansion. The A* algorithm has a similar
structure as the LS algorithm except that the evaluation function F;, would be used as the
label for determining the node examination order. The main difference lies in step 3 which

is modified as shown below:
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Step 3: Node Expansion: Scan the forward star of node i. For each link (1.j)
If
Ly + ¢+ ey < Foy |
then
Ly =La *cj; Fy= Lo+ cj + &g  Po=a,

Insert node j into Q,

Because the A* algorithm proceeds as a best first search, the node which satisfies
the following inequality would be examined before the algorithm terminates (the

destination node is examined):

Loy * €ip € L (6-5)

This attribute makes the A* algorithm hold an important property, that is, it is guaranteed
to find the optimal solution as long as the heuristic function never overestimates the actual

travel time (Nilsson, 1971).

Equation (6-5) also defines the area which would be examined during the shortest
path search. The resulting search area becomes elliptical in shape rather than the circular
shape associated with the LS algorithm. The pruning power of an A* algorithm is
schematically illustrated in Figure 6-2. It should be noted that all the nodes on the edge of

the search area (ellipse) will need to be examined during the search procedure. This
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contrasts with the situation of the branch pruning algorithm (Figure 6-1) where some
nodes on the edge are no longer in the scan eligtble node list after proving to be located
out of the assumed feasible solution area. Theretore the branch pruning algorithm is
theoretically faster as it can maintain a smaller scan eligible node set as compared to the

A¥* algorithm.

Area expanded
by LS
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o
dest,

Area expanded by
an A* algorithm

Figure 6-2 A schematically illustration of the pruning power of the A* algorithms

The performance of the A* algorithm depends on the quality of the heuristic
function used. Similar to the branch pruning method, e, can also be estimated by using

equation (6-2). When the travel distance is estimated by using Euclidean distance, the
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averape speed V becomes the only controllable parameter in this algorithm. In order to
keep ey, as a lower bound estimate, an upper bound average speed should be used.
iHowever, it should noted that the higher the average speed used, the larger the search area
will be, and thus the more computational effort required. As the value of V approaches
infinity, the estimated travel time approaches zero and the A* algorithm becomes the same
as the L.S algorithm. On other hand, the use of a smaller value of V can limit the search
area more significantly and the algorithm is faster, however the probability of finding the

optimal solution is reduced.

6.3.2 Decomposing the Search Problem

1t has been well recognized that the computational effort required to solve the
shortest path problem increases exponentially as the distance between the origin node and
the destination node increases (Korf, 1986). As a result, if an original problem can be
decomposed into smaller sub-problems, the computational saving can be realized. This
section introduces how this strategy is implemented in the bi-directional search method

and the subgoal method.

6.3.2.1 Bi-directional Search Method

Most traditional search methods are uni-directional in the sense that they seek the
problem solutions from the initial stage to the goai stage. A bi-directional search method,
first proposed in the 1960's (Nicholson, 1966), attempts to divide the search procedure
{problem) into two separate procedures (problems). One search proceeds forward from
the initial stage while another search processes backward from the goal stage. The

solution is identified when these two search procedures meet at some middle stage(s).
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This concept is well suited for solving the shortest path problem. The algorithm
simultaneously builds the shortest path trees forward from the origin and backward trom
the destination until some stopping criteria is met. Figure 6-3 schematically illustrates the

concept and effectiveness of this method as compared to the LS algorithm.

The stopping criteria that guarantees to find the shortest path is given below :

(Nicholson, 1966}

v d N Lo . Lu' (()-—())
Ly + L, SFE‘R;{ 0 +J’,-T(,‘EI}\‘;{ !
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Figure 6-3 A schematically illustration of the pruning power of the bi-directional
search algorithms
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Where the label L, with the superscript o and d represent respectively the label of node i
on the shortest path tree out of the origin node (o) and the labe! of node i on the shortest
path tree out of the destination node (d). With this correct stopping criteria, the bi-
directional search algorithm has been found inferior to the uni-directional algorithms
(Dreyfus,1969). In this thesis, this bi-directional searching algorithm was modified by
introducing a new stopping rule. The new stopping rule is defined as that the tree building
procedure from both ends will not stop until given numbers (say m) of candidate paths are

found.

Two steps are involved in the new bi-directional shortest path search method. The
first step is to generate a given number of candidate paths by using algorithms such as the
LS algorithm or A* algorithm to build shortest path trees from both ends simultaneously.
Whenever there is a node whose labels on both shortest path trees are set, the
corresponding path, which goes though this node from the origin node to the destination
node, is then recorded as a candidate path. This procedure will not stop until it generates

m candidate paths. The second step selects the best path among those candidate paths.

With the new stopping rule , heuristic bi-directional shortest path algorithms can
be created by combining the bi-directional search method with the LS algorithm and the
other heuristic methods. For example, the bi-directional search method can be combined
with the branch pruning method and label setting algorithm to form the heuristic bi-
directional branch pruning labe! setting algorithm (B_BP_LSm), and it can be combined

with the A* algorithm to form the heuristic bi-directional A* algorithm (B_A*m).
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It should be noted that although the resulting algorithms would be faster with the
introduction of the new stopping rule, they are not guaranteed to find the optimal solution.
The performance of a heuristic bi-directional algorithm is controlied by the parameter m
used in the algorithm, The larger the value of m, the more likely the optimal solution will
be found and the longer the computation time will be. By selecting an appropriate value

of m, a satisfactory balance between accuracy and efficiency can be reached.

The performance of the bi-directional search algorithms may also be influenced by
the method used to alternate between the forward search and the backward search.
Although iterating equally between both searches would be the simplest method, it 1s not
the most efficient. The best strategy involves identifying the minimum path search that has
the fewest nodes which have been examined but have not had the minimum path identified.
That is, the computational effort is concentrated on the search having the least nodes to
examine and sort during each iteration. Intuitively, the search that is in a sparse area of a

network will get priority.

Finally, it should be noted that the bi-directional algorithms cannot be directly used
to find the shortest path in a dynamic network. The reason is that in a dynamic network
the shortest path tree from the destination node is not unique but rather depends on the
arrival time at the destination node which is not known in practical situations (usually,

only the departure time at the origin node is known).

6.3.2.2 Subgoal Method
A subgoal is defined as an intermediate state which is part of the optimal solution

of a problem. For the shortest path search problem in a road traffic network, subgoals
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indicate the locations (nodes) where the shortest path from an origin to a destination will
go through. With advance knowledge of the subgoal node(s), the problem of finding the
shartest path from the origin node to destination node can be decomposed into two or
more smaller problems. For example, if there is one subgoal node, the original probiem
can be solved by solving two sub-problems: one is to find the shortest path from the origin
ncde to the subgoal node while another is to find the shortest path from the subgcal node

to the destination node.

The efficiency of the subgoal method depends on the number and location of the
subgoal nodes. The greater the number of the subgoal nodes and the more uniformly they
are distributed between the origin node and the destination node, the more the
computational saving will be. In an idealized situation, M subgoal nodes equally located
between the origin node and the destination node in uniform and infinite network, the
reduction of the search area using the subgoal nodes would be /.1, For example, if a
single subgoal node is known and located around the middle of the shortest path from an
origin to a destination, then the use of this subgoal node will reduce the search area
approximately 50% as compared to the LS algorithm as shown in Figure 6-4. Of course,
this method can be used in conjunction with some other techniques discussed in previous

secttons to further reduce the search area.

Although the computation efficiency of the subgoal method is obvious, the penalty
of this search reduction is that the solution may not be optimal, i.e., the path going
through the subgoal node may not be a real shortest path. Its application depends on

whether or not such valuable information is available. In a road network routing
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environment, potential subgoals include bridges. intermediate stops and driver's

preference.
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Figure 6-4 Pruning power of using a sub-goal

6.3.3 Limiting the Search Links

As seen in section 6.2, during the shortest path search procedure the main decision

variable is identifying the best link emanating from each node. In a traditional shortest

path algorithm, when a node is selected for expansion, each link from this node will be

equally examined without considering how likely it will be on the shortest path(s) or will

be used as part of the optimal path in practical situations. The idea of limiting search links
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is to systematically skip the examination of the links that have very a low probability of
being on t.... shortest path in practical situations. This idea can be effectively implemented

by using the hierarchical search method discussed in the following section.

6.3.3.1 Hierarchical Search Method

The hierarchical search is well known in the Al field is also known as an
'abstraction' problem solving strategy. It was first presented by Plolya et al. (1945) and
fiurther explored by Sacerdoti (1974) and Korf (1987). The basic idea behind the
hierarchical search is that in order to effectively find a solution of a complex problem, the
search procedure should at first concentrate on the essential features of the problem
without considering the low level details, and then complete the details later. This method
can be explained by the procedure that a driver manually finds a route between two
locations on a map. Typically, the driver first examines the major roads in the area
adjacent to the origin location and destination location, and then finds the access roads to
the major road from both origin and destination locations. This technique was proved
very effective in reducing the complexity of large problems, and is also the only one which
has potential to beat the exponential increase of computation time in terms of travel
distance (Korf, 1987). The computational saving in an idealized two level hierarchical

network is shown in Appendix B.

Due to the hierarchical topological structure inherent to urban traffic networks.
hierarchical search techniques can be effectively used to find shortest paths in these
networks. Most transportation road networks are designed as a combination of different

functions of roads to provide services to different types of trips. For example, freeways
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and arterials mainly service the long distance trips while local roads or collectors are used
to access the arterial or for local trips. Therefore as an optimal route it should aiso meet
the road functional planning principles. For instance, a long trip should not take a path
going through a lower class of roads such as residential roads even if it has a lower travel

time.

The algorithmic implementation of the hierarchical search method for pathtinding
takes an opposite procedure as that described above. This can be illustrated by using
simple two level hierarchical networks as shown in Figure 6-5. A bi-directional search
algorithm can be used to effectively carry out the hierarchical search strategy. The search
starts from the lower level network where the origin node and destination node are
located, and builds shortest path trees forward from the origin node and backward out of
the destination node on that level network. This search at the lower level network will be
bounded by the links (or nodes) which also reside in the higher level network. Once the
search climbs on the higher level network, that is, when all the nodes in the scan eligible
node set also belong to the higher level network, it will proceed using a bi-directional

search algorithm within that level until the shortest path is found.

There are two problems to be solved before this search strategy can be effectively
implemented. The firsi problem is to identify the methodology for disaggregating the
network into different levels and subsequently how to represent the hierarchical networks.
For the application in a road traffic network, the first part of the problem may be trivial
because the functional planning and the classification of the road network can be readily

used for abstraction.
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Figure 6-5 A schematically illustration of the shortest path search procedure in a
two level hierarchical network

The method of representing and managing the hierarchical networks could be
critical. In principle, the lower level should contain all data of the levels above it. The
relations between neighboring levels can be established through dummy links between
intersections in the higher level network with same intersections in the lower level
network. These dummy links provide free travel between the different levels. It should be

noted that this representation requires redundant storage about the network data.

The second problem is to establish the rule by which the search is controlled, i.e.,

when the search should “go up” to a higher level network or “turn down” to a lower level
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network. As discussed above, the bi-directional search method can etfectively be used te
search the shortest path in hierarchical networks. The control used is the search area
bounded by the higher level networks (nodes and links). Consequently, this control
method will not allow any shortcuts such as moving from one arterial to another by going
through a residential road. In a traffic network there are certainly many types of shortcuts
existing and some of them are even unavoidable. For example, it is usually necessary (o
shift between two parallel freeways by going through an arterial which connects them. In
this situation, the search procedure discussed above will miss the actual shortest path ( the
path which has a shortcut). To avoid this problem, one method is to increase the search
depth at each level. For example, instead of being bounded by the higher level network,
the search can be expanded one block further at each level. Another method to achieve

this is to use the number of nodes searched at each level as a control (Kuznetsov, 1993).

6.4 COMPUTATIONAL STUDY

The section 6.3 has provided a in-depth discussion on various heuristic search
strategies and their applications in shortest path searches. The qualitative analyses,
although providing some interesting insight on the performance of a heuristic, arc not
sufficient to assess a heuristic algorithm for practical applications. For example, the

following questions need to be answered:

a) How much improvement can a heuristic algorithm offer compared to an optimal

algorithm when applied in a realistic traffic network?
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b) What parameter value is best for the heuristic algorithms? and

¢) Which is the best heuristic algorithm for a given application such as RGS and AVDS?

In this section, a computational study is conducted as an attempt to answer some

of these questions. The algorithms to be investigated are summarized in Table 6-1. It

should be noted that the sub-goal method and hierarchical search method discussed in

previous section are not covered in the following computational study because of the time

limitation for this thesis study.

Table 6-1 Heuristic algorithms and their acronyms

ACRONYM ALGORITHM

LS Label setting algorithm with binary heap

LC Label correcting algorithm with double end queue

BP_LS Label sctting combined with branch pruning method

BP LC Label corrccting combined with branch pruning method

B_BP_LS Bi-dircctional label setting with a correct stopping rule combined with
branch pruning method

B_BP_LSM Bi-directional label setting with the new introduced stopping rule combined
with branch pruning method

A* A* algorithm with binary heap

B_A* Bi-directional A* with correct stopping rule

B_A*M Bi-directional A* with new introduced stopping rule
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Before assessing the performance of these heuristic algorithms, there are three
issues that need to be addressed. The first issue is to identify the appropriate method for
defining the test network on which the heuristic algorithms will be used . In our study, a
single real world road network is used as a test network instead of many randomly
generated graphs as most experimental studies have done. The reason for this is that the
research focuses on developing heuristic shortest path algorithms for RGS and AVDS and
the application environments of these systems are urban traftic networks that usually have
a similar network structure. The same network described in Chapter 4 is used in this
study. It should be noted that the primary objective of this study is to show relative

performance of the algorithms instead of arriving at a definite answer.

The second issue is how to select the evaluation criteria used to measure the
quality of solution and computational effort of an algorithm. [n this study, CPU time and
relative CPU time saving are used to measure the computation effort of an algorithm while
the relative solution error is used as a measure of the quality of a solution. All the relative

performances are compared to the LS algorithm without further notation.

The final issue is the implementation environment including software and
hardware. All the programs in this study are coded with C++ and executed under
Microsoft Windows on a 486 compatible computer with a 50 MHz speed and 8 MB

RAM.

The overall methodology for the analysis is as follows. O-D pairs are randomly
generated and their shortest paths are found by using each heuristic algorithm. The CPU

times and the estimated route travel times for each algorithm are recorded for analysis.
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The analysis concentrates on two aspects. The first one is the behavior of each heuristic
shortest path algorithm in terms of their sensitivity to the parameters used and search
depth (or O-D travel time). The second aspect is the relative performance of all the
heuristic shortest path algorithms for different applications. The following sections

sumimarize these results.

6.4.1 Performance of Branch Pruning Algorithms

This section will discuss the empirical performance of the branch pruning
algorithms including the algorithms BP_LC, BP_LS, B_BP_LS and B_BP_LSm. The
analysis will first focus on the relationship between their performance with their common
parameter, i.e., the bound factor K used in them. The m value in the B BP LSm
algorithm is set to 1. Figure 6-6 illustrates the relationship between the CPU time saving
of each algorithm as a function of the K value. The BP_LC algorithm is the most efficient
among these tested with a CPU time saving of approximately 40%. The bi-directional
algorithm with a correct stopping rule (B_BP_LS) is always inferior to its respective uni-
directional algorithm (BP_LS). This result confirms the argument presented in previous
research (e.g., Drefus, 1969). By introducing the new stopping rule as described in
Section 6.3, the CPU time saving for B_BP_LSm are about 30%. It can also be seen that
there is an optimal range of K values (approximately 1.4~1.8 for the Edmonton network)
which gives the highest CPU time saving for each algorithm. This is a result of the fact
that more self adjusting loops are required when the K value used is relatively small while
the search area becomes unnecessarily large if the K value is relatively high. In both cases

computation benefits of the algorithm are lost to the resulting increased travel time.
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Although the branch pruning algorithms are superior to the optimal label setting
algorithms (LS) in terms of computation efficiency, they are not guaranteed to find the
optimal solution. Figure 6-7 shows a graph of the relative error of each algorithm as a
function of the bound factor K. It may be seen that the maximum relative error of the
B_BP_LSm algorithm is relatively high compared to the other three algorithms (1.25% vs,
0.1%); however, it decreases quickly as the K value increases. For example, when the
value of K is increased to 1.8, the B BP_LSm algorithm has an approximately 0.2%
relative error. This remaining error is mainly caused by the introduction of the new
stopping rule. It may be expected that this error would be reduced by increasing the value

of m used in the B_BP_LSm algorithm. This will be further discussed in section 6.4.3

From the analysis of Figure 6-6 and Figure 6-7, it may be concluded that for the
Edmonton network, K values of 1.4~1.8 are appropriate for the BP_LC algorithm. The K
values would result in an approximately 50% decrease in computation time as compared
to the LS algorithm with a corresponding relative error of approximately 0.1%. The
B _BP LSm algorithm appears to perform adequately at a K value of 1.8, and this results

in a 30% CPU time saving and a relative error of 0.1% as compared to the LS algorithm.

In one to one search mode, the actual performances of these algorithms are also
dependent on how far an O-D pair is apart. Figure 6-8 illustrates the relationship of the
CPU time consumed for the LS, BP_LS, BP_LC and B_BP_LSm algorithms to find the
shortest path of an O-D pair as a function of the O-D travel time. Each point in the graph
represents about the average results of 100 randomly generated O-D pairs. As would be

expected, as the O-D travel time increases so does the calculation time required to identify
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the shortest path, and the algorithm LS has the highest increase rate. Once again, the
BP_LC algorithm show its significant domination over other algorithms in terms of the

CPU time increase rate with respect to the O-D travel time.

6.4.2 Performance of A* Type Algorithms

This section examines the empirical performance of the A* family of algorithms
including the A*, B_A* and B_A*m algorithms. The analysis will first focus on the
relationship between their performance with their common parameter, i.e., the average
speed V used in them. The m value in B_A*m is set to 1. Figure 6-9 shows a graph of
the CPU time saving as a function of the average speed V. As would be expected each A*
type algorithm provided a significant computational saving compared to the LS algorithm.
The CPU time saving of each algorithm decreases as the average speed increases. This is
simply because the increase of the parameter V increases the search area. Similar to the
results in the last section, the bi-directional A* algorithm B_A* is not faster than its
respective uni-directional algorithm A*. With the new stopping rule discussed in Section
6.3, the B_A*m algorithm is found to be significantly faster than the B_A* algorithm as

evidenced by the CPU time saving of about 40%~65% compared to the LS.

It can also be seen in Figure 6-9 that the CPU time of algorithms A* and B_A*
decrease approximately twice as fast as the B_A*m as the average speed V increases.
This pattern would be expected as the B_A*m algorithm, on average, expands about half
of the search area of the A* or B_A* algorithms, and the search area of a A* type

algorithm is proportional to the average speed.
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The solution quality of the A* type algorithms is shown in Figure 6-10. 1t can be
found that while the maximum relative errors of these algorithms are rather high (13%),
they decrease quickly as the average speed increases. When the value of V is over 80
km/h, the A* and B_A* algorithms have almost no estimation error while the B_A*m
algorithm has an approximately 0.5% relative error. This remaining error is mainly caused
by the introduction of the new stopping rule instead of the attribute of the A* type

algorithms. This will be further discussed in the next section.

Figure 6-11 illustrates the relationship of the CPU time for each algorithm to
calculate the shortest path of an O-D pair as a function of the Q-D travel time. It way be
seen that the CPU time for the A* algorithm increases much faster than the B_A*m
algorithm. It can therefore be expected that for algorithm B_A*m the average CPU time

saving would be greater in the case of larger traffic networks.

From the empirical analysis as shown in Figure 6-9 and Figure 6-10, it may be
concluded that for the Edmonton network, an average speed of 70 km/h is appropriate for
the A* algorithm. This would result in an about 40% decrease in computation time as
compared to the LS algorithm and 0.25% relative error. The B_A*m algorithm performs
adequately at a V value of 80 km/h with a 50% CPU time saving and a relative error of

1% as compared to the LS algorithm.

6.4.3 Performance of Bi-directional Search Algorithms
This section will focus on the empirical performance of the bi-directional
algorithms with respect to the parameter m. Figure 6-12 shows a graph of the CPU time

saving of the B_A*m algorithm and the B_BP_LSm algorithm as a function of the
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parameter m. The parameter average speed V is set to 60 km/h in both algorithms. From
Figure 6-12 it may be seen that the CPU time saving of both algorithms decreases as the
value of m increases and the rate of decrease is relatively constant. Compared to the
B_BP_LSm algorithm, the B_A*m algorithm is approximately 20% lower in CPU time
saving and 1% higher in relative error. For both algorithms, the increase of the m value

from | to 10 results in an approximately 1% decrease in the relative error.

The relative error of B_BP_LSm algorithm decreases quickly to a stable value
(about 0.25%) when the m value increases from 1 to 4 while the corresponding decrease
of CPU time saving is about 8%. This may indicate that an m value of 4 is appropriate for
the B_BP_LSm if applied in the Edmonton network. For the B_A*m algorithm, because
there is no significant change of the rates in both CPU time saving and relative error,
selection of the m value could depend on the applications (e.g.. how much relative error is

acceptable).

6.4.4 Selection of Heuristic Algorithms

It is difficult to select the best one among all the heuristic algorithms because each
heuristic algorithm usually uses specific parameter(s) in them and the evaluation criteria
are usually conflicting (e.g., the lower computation time is usually accompanied by higher
solution error). Therefore, the selection of the best heuristic algorithm is really conditional
to the application requirements, that is, how quickly a solution is required and how much
calculation error the application can tolerate. This section attempts to quantify all of the
heuristic algorithms using the same evaluation criteria and examine their relative

performances.
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Figure 6-14 shows the location of each heuristic algorithm in the evaluation metric
based on two measures: CPU time and relative error. 1t can be seen that the heuristic
algorithms generally provide 20% to 60% computational time savings as compared to the
optimal algorithm (LS). The average estimation error is less than 0.5% with respect to an
average travel time of 1939 seconds. The performance of the branch pruning label
correcting algorithm (BP_LC) is comparatively good with a small relative estimation error

(0.01%) and a significantly high CPU time saving (40%~60%).
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The heuristic bi-directional A* algorithm (B_A*) was found to be slightly more efficient
as compared to the BP_LC algorithm, however the former has a significantly higher
estimation error (0.5%). From Figure 5 it can also be noticed that the algorithms B_A*m,
BP_LC, A* and LS/LC form a dominating core. That all the other algorithms are always

inferior in terms of both solution quality and computational efficiency.

It should be noted that this metric is based on their empirical performance applicd
in the Edmonton network, therefore their relative position could be shifted if a different
size of network is used. For example, although the BP_LC algorithm dominate over the

B_A*m algorithm with respect to speed and error, the domination may change if a larger
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network is used. The performance of the heuristic algorithms are also sensitive to the

parameters used in them, as shown in the previous sections.
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Figure 6-14 Relative performance of the heuristic algorithms

6.5 CONCLUSIONS

This chapter has demonstrated how various heuristic search methods from the Al
field can be efficiently applied in finding the shortest path in an urban traffic network.
Several heuristic shortest algorithms have been developed and their empirical performance

has been studied by using a real size network. The following conclusions are summarized:
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1. On various heuristic shortest path algorithms

¢ The branch pruning method proposed in this research uses the information on
the estimated maximum travel time from the origin node to destination node
and the estimated lower bound of travel time between any pair of nodes to
bound the solution search area. 1t was found that this method can be readily
incorporated into the shortest path finding algorithms. The resulting heuristic
algorithms include parameters and are therefore easily customized to meet the

requirements of both computational efficiency and solution quality;

¢ The traditional A* algorithm can be modified to take into account the travel
speed effect in the travel time estimation (evaluation function) when it is
applied to find the shortest path in a traffic network. With a parameter
included, the A* algorithms can be adjusted to reach a trade-off between

computational efficiency and solution quality;

o Inorder to overcome the inefficiency of the traditional bi-directional searching
algorithm, a modified bi-directional searching method was proposed by
introducing a new stopping criteria in the searching procedure. The new
algorithm has been shown to be very effective in finding the shortest path in a

traffic network;

s The heuristic search methods can be combined with each other to generate

more powerful algorithms.

2. On the relative performance of the heuristic shortest path algorithms
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Among all the heuristic algorithms the branch pruning label correcting
algorithm (BP_LC) generally gave the best results in terms of both
computation efficiency and solution quality. Although not guaranteed to find
the optimal routes, its relative error in route travel time was relatively small

(less than 0.1%) while its computation saving was significant (30~60%),

Although the algorithm B_A*m is slightly faster than the BP_LC algorithm but
has the shortcoming of a higher estimation error (0.25%). It has an important
advantage of being less sensitive to the route time for long trips. This attribute
could make it more favored than BP_LC in the case that the underlying

network is very large (compared to the Edmonton network);

With an appropriate value of the parameter V, the A* algorithm can be
guaranteed to provide optimal solutions while still reducing computation time
(10%~30% CPU time saving compared to LS). This is in contrast to that of all

other heuristic algorithms;

In the situation where the link travel times in the network are dynamic and thus
the bi-directional algorithms can’t be directly used, the BP_LC and A*

algorithm would be the best selections;

Finally, it should be emphasized that the empirical performances of the
heuristic algorithms pertain to the test network, the computing platform and
the coding language that are used in this study. However it could be expected
that the relative saving of computation time would be higher if these heuristic

algorithms are applied in larger networks.
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CHAPTER 7

ESTIMATION OF DYNAMIC AND STOCHASTIC
O-D TRAVEL TIME USING ARTIFICIAL
NEURAL NETWORKS

7.0 INTRODUCTION

The travel time from one location (origin) to another (destination) in a traffic
network, or O-D travel time, can be calculated exactly using shortest path algorithms as
discussed in previous chapters. However, there are many situations which require a quick
and accurate estimation of this O-D travel time. In these situations, even the heuristic
algorithms presented in Chapter 6 may be not fast enough. For example, in a real-time
vehicle dispatching system, a fleet of vehicles is required to be optimally routed and
scheduled to visit a number of locations dispersed in the service area. During this routing
and scheduling optimization procedure, the O-D travel times have to be calculated in
thousands of times if the O-D travel time is modeled as a function of the departure time at
the origin location. As a result, a shortest path algorithm, although most accurate, is not
fast enough to be used in such types of applications. This fact is further demonstrated in

Chapter 8.

The quick and accurate O-D travel time estimation may also be used to improve

some or the heuristic shortest path algorithms discussed in Chapter 6. For example, it has
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been shown that a bi-directional shortest path algorithm is more efficient than a uni-
directional algorithm, but the former algorithm is only applicable in networks where the
travel times are static (Kuznetsov, 1993, Fu and Rilett, 1994). This is because in a
dynamic network, the bi-directional algorithm requires exact information about the
departure time at an origin node and the arrival time at a destination node. An accurate
estimate of the minimum travel time may make it possible to implement a bi-directional

algorithm in a dynamic network (Fu and Rilett, 1994).

0-D travel time can also be estimated based on the travel distance from the origin
location to the destination location, or O-D travel distance and average travel speed. In
this paper, this method is referred as to distance-based method. The O-D travel distance is
commonly modeled as a function of location coordinates, or more often, a function of a
family of distance functions (Love 1988). In most situations a linear regression model of
rectangular distance and Euclidean distance is used to approximate the O-D travel
distance. The estimation of the dynamic and stochastic O-D travel time in an urban
environment, however, is a more complex problem than the estimation of the travel
distance. This is because the O-D travel time is a function of road network topology, time
of day, recurring/non-recurring congestion as well as travel distance. These factors all

have a highly ndn-linear impact on the O-D travel time.

Artificial Neural Networks (ANN) have become one of the most popular
techniques in the Artificial Intelligence (AI) field during the last decade. The special
architecture and computation mechanics inherent in the ANN model make it useful for a

wide variety of tasks such as image processing, pattern recognition and solving
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combinatorial problems. ANN have been found to be very useful in simulating the
relationship between quantitative and qualitative inputs and their related output. A
simplified description about ANN is provided in Appendix C and more detailed

information may be found in other references {Rumelhart 1986).

The primary objective of this chapter is to demonstrate the feasibility of using an
ANN for estimating dynamic and stochastic O-D travel times. The dynamic and stochastic
attributes of the O-D travel time is assumed to be represented by the O-D travel time mean
and standard deviation as a function of the time of day. Therefore, this research
essentially tries to estimate the mean and standard deviation of the O-D travel time in a
dynamic and stochastic urban traffic network. This research concentrates on modeling the
O-D travel time associated with recurring congestion on a traffic network and therefore
the estimated O-D travel time reflects historic traffic behavior. The applicability of ANN

in the dial-a-ride vehicle routing and scheduling process is demonstrated in Chapter 8.

This chapter first proposes three feed forward neural networks to model the link
travel time behavior (mean and standard deviation) during different time periods of a day:
AM peak, PM peak and off peak. Subsequently, the chapter examines how the input
attributes are identified, how the training data are represented and how the “best” ANN
model is developed. The data for training and testing is stmulated using a traffic network
from the City of Edmonton described in Section 4.4.2 of Chapter 4 as a base. A
comparison between the ANN models and the distance-based method is then presented.
Lastly, the computation time of the proposed ANN model is compared to that of the exact

shortest path algorithms.
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7.1 NEURAL NETWORK BASED TRAVEL TIME ESTIMATION
MODEL

7.1.1 ANN Network Topology

The ANN used in this analysis is called a back-propagation neural network and its
topology is shown in Figure 7-1. The ANN consists of three layers with the neighboring
layers fully connected. The output layer includes cells representing the variables to be
estimated, that is, the O-D travel time. The input layer represents the factors which may
have an impact on the O-D travel time, such as the origin and destination locations, the
departure time at the origin and some other information. The next section provides a
more detailed discussion on the selection of these factors. The number of hidden nodes is
a decision variable and determined during the training and testing stage discussed in the

following section.

1t is well known that the travel times in a traffic network tend to be relatively
stable, although the variability associated with these travel times can be high. In a typical
urban environment there are three different time periods: the AM peak, the PM peak and
the off peak, during which the travel time patterns differ significantly. In order to avoid
the unnecessary training burden of using a single ANN to map the whole day travel time
pattern, three separate ANN models are developed for these three time periods and are
referred to as the AM Net, PM Net and OFF Net in this thesis. For the purposes of this
research the AM peak is defined as lasting from 6 AM to 9 AM and the PM peak 1§
defined as lasting from 3 PM to 7 PM. All other time periods belong to the off-peak

period.
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7.1.2 Data Representation

The representation of the data is one of the most important steps in the
development of a neural network model. There are two major steps in the data
representation process. The first step identified the input and output attributes, which is
schematically illustrated in Figure 7-1. The output, O-D travel time (toa), is composed of
the expected O-D travel time (E[to]) and the standard deviation of the O-D travel time
(S[t.]). There are two network design options with respect to output estimation. The
first option (Option 1) is to use two separate neural networks, one for the mean estimation
and another one for the standard deviation estimation. In this case, each network has one
output cell. Another option (Option 2) is to estimate both output variables using a single
network and consequently two output cells are needed. This research investigates both of

these two options.

There are a wide variety of inputs and input combinations. In this research, two
input scenarios are tested. Considering that the O-D travel time completely depends on
the locations of the origin and destinations and the departure time, the first scenario
considered (Scenario A) includes five input attributes: the coordinates of the origin and
destination locations, i.e. (Xo,Yo) and (x4,va), and the departure time(To), at the origin

location.

Because the O-D travel time are directly related to the distance between the origin
location and the destination location, two extra variables representing the estimated
distance are added to those of scenario A to form the second scenario, i.e., Scenario B.

These two variables are the rectangular distance (Manhattan distance) ({,) and the
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Euclidean distance {¢;) from the origin location to the destination location and are detined

in (7-1) below.

2 =|xo _xu‘|+lyo _.Va'|

(7-1)

[, = \/(x,, —x,) (v, -y

The second step involved data normalization. For the sake of learning
effectiveness, all the input data are scaled into values that ranged between 0 and !, while
the outputs are scaled into values that ranged from 0.2 to 0.8. This ensures that the
output remains in the quasilinear part of the sigmoid function where learning is faster

(Gallant, 1993).

7.1.3 Training and Testing Examples

The training and testing data should be taken from the urban area where the O-D
travel time estimation method is to be applied. It would be desirable if direct field
collected O-D travel times are available for training and testing the ANN. Because there
are no detailed data available for the modeling purposes of this research, simulated data
are used for the purpose of this thesis. The simulated data are based on the Edmonton
network described in Section 4.4.2 of Chapter 4. Consequently, the models developed in
this study and their associated results are only valid for demonstration purposes, although

the principles hold for more detailed networks used in conjunction with field data.
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For each training and testing sample, the mean and standard deviation of the O-D
travel time are calculated by applying a shortest path algorithm in the test network. These
calculated O-D travel times (simulated) are assumed to be the real O-D travel time and
therefore are referred as to actual O-D travel time in the following discussion. The
dynamic and stochastic link travel time data for the Edmonton network are created as
follows. The first step is to create the mean travel time profile for each link in the
network. In order to consider the difference in the traffic patterns between different areas
in the network, the urban area is divided into three sub-areas: Downtown, Mid-town and
Suburban, as shown in Figure 7-2. The links in each area are assumed to have the same
dynamic travel time profile (i.e., profile of mean link travel time) and these are shown in
Figure 7-3 for each area. During peak hours the average travel time increases because of
the increased volume in the network. The mean link travel time during the off-peak period
is assumed to be equal to the link length divided by the posted speed. To model the
inherent variability of the link travel time, the simulated mean link travel time is modeled
as a uniformly distributed random variable. The formula for calculating this simulated

travel time is shown in equation (7-2).

(/.= (0.95 + 0.10xU{0,1}) B, (7-2)

where U{0,1}= a uniformly distributed random variable with a range between 0 and 1.

U,

mean link travel time for link e;

ke
[

base link travel time for link e.
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The second step is to simulate the variance of the link travel time. It is assumed
that the coefficient of variation of the link travel times (COV), defined as the ratio of the
standard deviation to the mean) are uniformly distributed and their distribution are only
different by sub areas. Table 7-1 gives the hypothetical distribution of the link travel time
COV for each subdivision. A larger value of COV is used for the links in the central area

of the city considering that it has more traffic controls and a higher network density.
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Figure 7-2 The Edmonton network and sub-areas
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Table 7-1 Link travel time covariance in different subareas

Subdivision Downtown Midtown Suburban
Link Travel Time (COV) U40.9,1.0} U{0.5,0.6} U{0.1,0,2}
300
o 250 ¢ AMpeak Off peak ' PM peak
=X + EEL E— »e —
2 2007 | Mid-town |
his 50 |
= 450 4
$ Downtown
g —
+— 100 -
< 7
:C_—] 50 L  Suburban
0 T T T T T T T T LI T T T T T T T T T T T T T 1 T T 1 T T T T T T T L T T T T T T T T LI T T ¥ T T T
6:00 7:00 8:00 900 10:00 11:00 12:00 1:00 2:00 3:00 4:00 500 6:00 7:00
AM PM
Time of day

Figure 7-3 Dynamic link travel time pattern

The origin and destination locations are randomly generated and used to create the
training data. For each O-D pair, six random departure times are generated during each of

the AM, PM and off-peak periods, respectively. Gtven the departure time, the shortest
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path and the mean and standard deviation of the O-D travel time is calculated using the

algorithms developed in Chapter 5. These data are then combined with the coordinate

intormation for each O-D pair to form the training data. Table 7-2 shows an example of

the training data for two O-D pairs.

Table 7-2 Training data examples (original data)

(Xo.Yo) (X Ya) 1, 2 T.* Eltal Sltal

() {m) (m) (m) (Min} (Sce) (Sce)
(33814.1,34357.9) (3011.3,43866.8) 40312, 30796.5 394 3878 1820
(33268.2.37791.5y  (2891.0.37372.2)  32237. 30380. 511 1419 786

Total minutes elapsed since midnight.

7.1.4 Training, Testing and Results

The training of the neural network is done via the back-propagation learning

algorithm which is presented in Appendix C. The objective of the training and testing

procedure is to find the best ANN topology to model the O-D travel time. The quality of

an ANN is evaluated by two criteria. The first one is the learning speed which is reflected

by the iterations needed to completely train the neural network. The second one is the

mean square error (MSE) defined in the following equation (Gallant, 1993):
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; (7-2)
where N = total number of examples to be trained,

M = number of output cells;

Yy, = actual value at output cell i for example k;

Dy = estimated‘ value at output cell i for example k.

Through the pfocess discussed in Section 7.1.3, A total of 1000 data sets are
generated as training examples and 250 data sets for testing. The procedure to identify the
best ANN included three steps. The first step is to decide which input data scenario
(Scenario A or Scenario B) gave the best results. For the specified purpose, this step
considered the modeling quality of estimating the mean O-D travel time. It is found that
the ANN with scenario B (7 inputs) is better than scenario A (5 inputs) in terms of both

learning speed and prediction quality.

After selecting the input attributes, the second step identified the best
representation of the location information. It is determined that the two distance measures
contain most of the distance information between the two locations and that the
coordinates only reflect the location information of the trip origin and destination,
Therefore, the network area under analysis is divided into a 1000x1000 grid, and the O-D
locations used coordinates based on this system. As expected, the use of exact
coordinates is found to slow down the learning speed with only a very minor improvement

in model quality.
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The final step is to decide which network madel of Option | (separated neural
network model) and Option 2 (joined neural network model) discussed in Section 7.1.2 is
more capable and to identify the optimum number of hidden nodes for each network
model. In this step, neural networks with 2 to 20 hidden nodes are first trained and
analyzed for both network models for the AM period. As expected. the joined ncural
network model required a more complex neural network (more hidden nodes) compared
to the separate neural network model. 1t is found that for the separate neural network
model, using 5 hidden nodes achieved better results than a neural network with 10 hidden
nodes for the joined neural network model. Figure 7-4 and Figure 7-5 shows the
estimated coefficient of variation (COV) of the O-D travel time and the actual O-D travel
time COV as a function of trip length from both network models. The data are
deliberately generated in that all the trips originate from a single location in the downtown.
For the joined neural network model (Figure 7-4), it can be seen that the neural network
over-estimates the O-D travel time variance for short trips, but provides good estimates

for trips longer than approximately 10 minutes.

As compared to the joined neural network model, the separate neural network
model provided much better results as shown in Figure 7-5. In both cases the O-D travel
time COV decreases and approaches to stable values as the trip length increases. This
result is expected because the link travel times COV are modeled high in central area and
lower in surrounding areas for this study. It is therefore decided to use the separated

neural network model in this thesis.
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Next, neural networks with 2 to 20 hidden nodes are trained and analyzed for all
three time periods. The neural network with 5 hidden nodes is found to be adequate to
madel both the AM and PM peak periods while the neural network with 4 hidden nodes is

satisfactory for the off-peak period.

As an example, the MSE as a function of the number of iterations for the separated

mean travel time AM Net (the so-called learning curve) is shown in Figure 7-6.

The neural networks are subsequently tested on 250 randomly generated O-D data
sets. Figure 7-7 illustrates the results from a separate model with five hidden nodes for
estimating the mean O-D travel time as compared to the actual mean O-D travel time
during the AM peak period. The average relative error (the difference between the
estimated mean travel time with the actual mean travel time divided by the actual mean
travel time) is 12.1%. This relative error translates to about 264 seconds for the average

trip length of 2180 seconds.

In order to show the ability of the trained neural networks to model the dynamics
of the travel time during a day, the predicted mean travel and the actual mean travel time
with different departure timas of day are compared. Figure 7-8 shows these travel times
for two O-D trips, where the estimated value is from a separate model. One trip is from
the northwest of the Suburban (A) to the south of the Mid-town area (B) and another is
from the south of the Mid-town area (C) to the Downtown (D) as shown in Figure 7-2. It
can be found that the non-linear relationship between the O-D travel time with time of day

is tracked relatively well by the neural networks.
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Figure 7-4 COV of the O-D travel time by a jointed network model: actual value vs.
estimated value as a function of trip length
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Figure 7-5 COV of the O-D travel time by a separate network model: actual vilue
vs. estimated value as a function of trip length
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7.2  COMPARISON OF TRAVEL TIME ESTIMATION USING AN
ANN AND A DISTANCE-BASED METHOD

The above sections showed how a ANN can be used to estimate the O-D travel
time from one location to another in a traffic network. As discussed in Section 7.0, the
relationship between the O-D travel time and location information can also be established
using regression analysis. The objective of this section is to compare the relative

performance between an ANN model and a distance-based model.

The off-peak period is deliberately selected as the modeling period so that the non-
linear impact of the departure time on the O-D travel time can be removed. 1n addition,
the travel times are assumed to be deterministic and therefore there is no O-D travel time
variance needed to be modeled. As a result, the O-D travel estimation problem is then
effectively the same as the O-D travel distance estimation problem in which distance-based

models have been successfully applied(Love and ef. al. 1988).

7.2.1 Data

A total of 1000 O-D sets are randomly generated for developing the regression
mode! and new ANN models. In addition, 800 randomly generated O-D data sets are

used for testing.

7.2.2 Models

The ANN used to model the off-peak period is the same as that shown in Figure 7-

1 except that the departure time input cell and standard deviation output celi are removed.
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The distance-based model included two vanables: the rectangular distance (f,) and

the Euclidean distance (f), and is shown in the following equation:
taa = 0.0262 ¢, + 0.0237 , + 380.7, R*=0.88

(9.151) (6.772)  (25.966)

where:

tod travel time from origin(o) to destination(d), seconds;

bk

the rectangular distance and the Euclidean distance, refer to

Equation (7-1) in Section 7.1.2

7.2.3 Results

Both the ANN and the distance-based model are applied to the test data and the
results are summarized in Table 7-3. It can be seen that the relative estimation error from
the neural network model is approximately . ) percent less than the regression model. It is
anticipated that the dominance of the ANN over the distance-based mode! would be more
significant if dynamic and stochastic travel times are modeled, that is, if the AM and PM

peak times are used.

7.3 COMPARISON OF COMPUTATIONAL EFFICIENCY BETWEEN
THE ANN METHOD AND SHORTEST PATH ALGORITHMS

The purpose of this section is to demonstrate the computational efficiency of the
ANN models compared to the method of directly using the shortest path algorithm to

calculate the travel time,
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Table 7-3 Comparison of prediction error of ANN model and distance-based model

ANN Regression
Data Measurement Model Model
Modeling Data Mean of the relative error 13.7% 20.7%
Standard deviation of the relative error 14.0% 31.8%
Testing Data Mean of the relative error 18.1% 29.4%
Standard deviation of the relative error 25.8% 31.3%
Notation: Relative crror = |predicted value-actual value|/actual value

The comparison is based on the Edmonton road network as shown in Figure 7-2.
The label setting algorithm (LS) and the A* algorithm presented in Chapter 6 are used to
find the expected minimum O-D travel times. One thousand O-D pairs are randomly
generated and their travel time are found by using LS, A* and a trained ANN. In
addition, the CPU times for each algorithm are recorded. It should be noted that all the
programs in this study are coded in C++ and on a 486 computer with a 50 MHz clock
speed and 8 MB RAM. It can be seen that the ANN is approximately 800 times faster

than the LS algorithm and 500 times faster than the A* algorithms.

Another advantage to the ANN is that the computation time of an ANN does not
change as O-D travel time increases. In contrast to the ANN model, the computation
effort of a shortest path algorithm increases exponentially as the O-D travel time increases.
Figure 7-9 shows the computation time of the A* as a function of O-D travel time for the

Edmonton network.
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Table 7-4 Computation time of the shortest path algorithms and the ANN model

Method Total CPU to calculate the travei times of 1600 O-D pairs
( Seconds)
LS algorithm 390
A* algorithm 230
ANN maodel 0.49
2
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Figure 7-9 The relationship between the computation time and the travel time: A*
shortest path algorithm
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7.4

CONCLUSIONS

This chapter introduced the concept of using ANN models for estimating the

dynamic and stochastic O-D travel time in a urban traffic network. Based on real network

data and simulated link travel time pattern, variety of ANN models are trained and tested.

The following conclusions may be drawn:

4,

It is found that an ANN model can be trained to effectively map the highly non-
linear relationship between the O-D travel time and their location information in

dynamic and stochastic traffic networks;,

The success of an ANN technique for travel time estimation mainly depends on
how the input information is abstracted and what type of network model is used.
This study demonstrated that some enhanced data (for example, distance
information) can be very helpful in improving the performance of an ANN, and
separate models for different parameters to be estimated are much more effective

than using a joined network model.

The solution quality of the ANN method is found to be significantly better than the
traditional regression model for estimating O-D travel times. It can therefore be
expected that great savings can be obtained in the applications by using the ANN

O-D travel time estimation method instead of the traditional method,

While the ANN is not as accurate as the shortest path algorithms, it is much faster.
It has been empirically shown that the ANN is more than 500 times faster than the

shortest path algorithms. Therefore it is useful in situations where travel time
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calculations are necessary but where the computation time is limited. lt can be
expected that the ANN mode! holds great potential to be applied in various real-
time on-line applications such as AVDS. Chapter 8 further discusses how to

integrate the ANN models in the dial-ride vehicle routing and scheduling process.
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CHAPTER 8

DIAL-A-RIDE VEHICLE ROUTING AND
SCHEDULING WITH DYNAMIC AND
STOCHASTIC O-D TRAVEL TIME

8.0 OVERVIEW

As discussed in previous chapters, the travel time from one location (origin) to
another location (destination), or Q-D travel time, is dynamic and stochastic due to the
inherent variation of urban traffic congestion, weather conditions, and even driving
behavior. For simplicity, the O-D travel time has been assumed to be static and
deterministic in most existing models of the dial-a-ride vehicle routing and scheduling
problem (DARP) (Bodin ef al., 1983; Sexton and Bodin,1985a,1985b; Wilson et al.,
1977; Psaraftis, 1983; Jaw et. al. 1986; Savelsbergh and Sol, 1995). It can be expected
that in situations of high uncertainty the service vehicles may not be able to follow the
schedules found based on these models and thus a reliable service may not be guaranteed.
For example, based on the assumption of deterministic O-D travel time it would be
feasible to schedule a vehicle to drop off a customer at his/her destination at his most
desired drop-off time. However, there is a certain amount of uncertainty that the
customer may be dropped off after his most desired time because of the randomness of the

vehicle travel times. The drawback associated with the assumption of static O-D travel
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time is more straightforward in the sense that the use of an incorrect O-D time would
result in erroneous and inetficient schedules. The first objective of this chapter is to
develop a dial-a-ride vehicle routing and scheduling model which explicitly considers the
dynamic and stochastic attributes of the O-D travel time and to analyze the impact of the
dynamic and stochastic attribute of the O-D travel time on the routing and scheduling

results of dial-a-ride vehicles.

As previously discussed in Chapter 7, the O-D travel time can be estimated using
various methods such as the distance based method and the ANN method as presented in
Chapter 7, and the shortest path algorithms as discussed in Chapter 6. These methods
have been shown to be very different in terms of estimation quality {or accuracy) and
computational efficiency which in turn influences the performance of the routing and
scheduling algorithm. The second objective of this chapter is to investigate the feasibility
of using these O-D travel time estimation methods in the dial-a-ride vehicle routing and

scheduling algorithm.

This chapter first discusses how the DARP can be modeled with respect to the
objectives of the system operator and customers when the O-D travel times arc modeled
as random variables and a mathematical formulation of the new DARP is subsequently
provided. Next, a heuristic dial-a-ride vehicle routing and scheduling algorithm is
introduced to solve this problem. Lastly, a computational study is then conducted to
illustrate the difference in solutions between the models with and without considering the
randomness of the O-D travel time and the computational efficiency of the proposed

algorithm when different O-D travel time estimation methods are used.
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8.1 DIAL-A-RIDE VEHICLE ROUTING AND SCHEDULING
PROBLEM: MODELS

There are fundamentally two vehicle routing and scheduling problems invoived ina
dial-a-ride service system that need to be treated differently. The first problem is the static
DARP, or subscriber DARP as referred to in this thesis, which usually needs to be soived
at the beginning of every day when all the customer requests are known (for example,
booked one day in advance, these trips are also called subscribed trips). The objective of
the routing and scheduling procedure is to determine the assignment of all customers (or

trips) to the available vehicles and their respective routes and schedules.

The second problem in a dial-a-ride system is called dynamic DARP, or real-time
DARRP as referred to in this thesis, in which the objective is to determine the assignment of
a new customer into the existing schedule of a vehicle in real-time (these trips are also
called demand trips). The new customer usually phones the service center to request an
immediate service while each fleet vehicle is already in service and has been given an
operation schedule. The problem is computationally tractable when only one vehicle’s
schedule is allowed to be changed and the original visiting order of the vehicle to be
changed must be maintained. The methods to solve this problem can be readily extended
from the algorithms for the advance request dial-a-ride problem (Bodin ef al., 1983).
However, for real-time operation purpose, the dispatcher has to immediately give the
customer his/her pickup/dropoff time; therefore, the “optimal” insertion schedule must be
found in a very short time period (for example, a few seconds). This real-time operation
requirement may hinder the use of more realistic, but more time consuming models and

algorithms. While the feasibility of solving this real-time problem with different O-D
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travel time estimation methods is illustrated in Section 8.3 .4, the modeling methodology

and algorithm are described through the subscriber DARP.

In order to model and formulate the DARP it is necessary to take into account
both the service operator’s objective and the customers’ objectives. The term objective,
as discussed in this thesis, means both variable objectives (for example, minimize total
travel time) and fixed objectives or constraints (for example, customer’s drop-off time
must be earlier than his/her desired drop-off time). Due to the involvement of the multiple
variable objectives and the randomness of the system status (i.e. random O-D travel time),
the utility concept is introduced to combine the variable objectives of the system operator
and the customers, and to resolve the randomness of the operation measure (Keeney and
Raiffa, 1976). Specifically, a disutility function, which represents the relationship between
the degree of dissatisfaction of the service operator or customers associated with the
routing and scheduling results, is used to represent the variable objectives. Therefore, the
general objective of the routing and scheduling procedure can be represented by the total
disutilities of the service operator and customers. In the following sections, the objectives
(i.e., disutility functions and constraints) related to the service operator, drivers and
customers are defined when the O-D travel times are random. It should be noted that
because it is not the goal of this thesis to examine what is the actual format of the utility
tunction for modeling the service operator or customers’ risk attitude, some commonly

used utility functions are adapted in the following discussions.
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8.1.1 Objectives Related to Service Operator

The service operator’s objective is to provide transportation service to customers
while minimizing the total operating cost. The operating cost is commonly assumed to be
proportional to the total travel time and the number of vehicles used (Savelsbergh and Sol,
1995). This latter consideration is especially important when some rented or contracted
vehicles (in addition of internal vehicle fleet) have to be used in service. This thesis
assumes that there is a certain number of vehicles available for service. Therefore, the

objective is to minimize the total travel time given a fixed number of service vehicles.

When the travel time is random, the objective of minimizing the total travel time
needs to be redefined. By assuming that the operator is risk neutrai in terms of travel
time, the expectation of the total travel time can therefore be used to represent the

operator’s disutility, DU,:

DU, = a; E[tt] (8-1)

where: t = a random variable representing the total vehicle travel time;
E[tt] = expectation of the total vehicle travel time tt;
a = a constant representing the weight allocated to the operator’s

objective in the general objective of the routing and scheduling

procedure.
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8.1.2 Objectives Related to Each Service Vehicle and Driver

The operational objectives related to service vehicles or drivers could include the
preferred or pre-specified service area and working shift of each driver (length of working
period and break time). These objectives are considered as constraints in the routing and

scheduling process. This thesis only considers vehicles’ working time period.

8.1.3 Objectives Related to Customers

The customers’ objectives are reflected in the customers’ satisfaction from the
provided service, which can be reflected by two measures. One measure is the time
deviation from the customer’s desired pick-up/ drop-off time which represents the
closeness between the actual or scheduled pick-up/drop-off time and his/her most desired
pick-up/drop-off time. The other measure is the customer’s excess ride time as compared
to his/her direct ride time (without diversion). In the routing and scheduling process, both
of these two measures need to be explicitly considered. The following section provides
some detailed discussions on how these objectives are modeled when the travel time and

arrival time are random.

8.1.3.1 Satisfaction from the pick-up/drop-off time

It is assumned that each customer has a desired pick-up/ drop-off time. This desired
pick-up/ drop-off time indicates that he/she should not be scheduled to be picked-up
(dropped-off) earlier (later) than this time. In addition, the customer may also expect that
the actual service time is as close to his/her desired time as possible. In order to avoid an
excessively large deviation from the desired time, a maximum allowable deviation value is

usually set in the scheduling process. Therefore, a closed time window can be formed for
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cach customer to specify the time period in which a customer must be picked up (dropped
off). Ifa customer specifies a desired pick-up time, there is a pick-up time window for

him/her. Otherwise, there is a drop-off time window for him/her.

In this thesis, the travel time is assumed to be random, therefore, the vehicle arrival
time at a stop (i.e., pick-up/ drop-off time) must also be modeled as a random variable.
This implies that each customer must be dropped off/picked up within thetr individual time
window with a given probability. The time constraints used in deterministic models need
to be modified to reflect the stochastic attributes of service time. For example, for a
customer who specifies a desired drop-off time, the modified constraints should stated that
the customer must be dropped off at his/her destination within his/her desired drop-off
time period (time window) within a given probability. This thesis uses Equation (8-2) to

represent this type of new constraint for each pick-up/drop-off operation.

Prob(ET, <T <LT)za (8-2)
Where:ET; = the earliest time to pick up/ drop off customer i,
LT;= the latest time to pick up/drop off the customer i;
o = a pre-specified constant representing the minimal probability.

Since each customer is allowed to specify either a desired pick-up time or desired
drop-off time, the above constraint (either pick-up time or drop-off time).needs only be

tested once for each customer. For a customer who specifies a desired pick-up time (1;),
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the pick-up location has a time window with ET;= t; and LT;= 1;+ §, where J is the
maximum deviation from the desired time allowed. For a customer who has a desired
drop off time (1;), only the drop-off time needs to be tested with ET;=1;- 8 and LT, = .
The calculation of the probability from Equation (8-2) requires information on the
distribution of the vehicle arrival time. This thesis assumes that the vehicle arrival time at
a stop is a continuous random variable and its PDF is noted as fy; (x). Therefore, Equation

(8-2) can be rewritten as shown in Equation (8-3).

LT (8_3)
J.fTi (x)dx =z

ET,

Figure 8-1 schematically tllustrates this type of constraint where the curve
represents the vehicle’s arrival time (pick-up time/ drop-off time) PDF, and the shaded
area under the curve is the probability that the customer may be picked up or dropped ofl

within the time window [ET;,LT;].

It should be noted that two issues need to be addressed before Equation (8-3) may
be used in a scheduling algorithm. The first issue is how to determine the PDF of the
vehicle arrival time at a stop (pick-up or drop-off location). The second issue is how 1o
calculate the integration in Equation (8-3) when the PDF is given. Similar to the argument
presented in Chapter 4, it is unfeasible to determine the PDF of the vehicle arrival time at
each stop when the O-D travel times are dynamic and stochastic. Furthermore, even if the

PDF can be identified, the integraticn involved would impose a large computational
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burden for a routing and scheduling algorithm. In order to avoid these problems, the
vehicle arrival time at each stop is assumed to be normally distributed. Consequently, the
problem of estimating the PDF becomes a problem of estimating its mean and variance
which can be solved using the approximation models developed in Chapter 4 and further

explored in Chapter 5 and Chapter 7.

The integration of a normally distributed density function can be accurately
approximated by some explicit expressions or an explicit lookup table, and thus the
computational burden may be greatly reduced. This thesis used the formula shown in
Equation (8-4) to approximate the distribution function of a standard normal distribution

(Karian and Dudewicz, 1991).

Vehicle's arrival time This area represents the
PDF al customer i’s prebability that the
pick-up or drop-off arrival time is within
location, T, _\ customer i’s time window

ey
o

8 ‘ Time of day

Figure 8-1 Time window with random arrival time
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(8-4)
10

P(x) = jfx(x)dx = x(44-x) +0.5
Although the time window represented in Equation (8-2) provides a general

control on the service quality, it does not completely reflect customers’ satistaction or
service requirements. For example, a customer who specified a desired drop-oft time not
only wants to be dropped off at his/her destination before his/her most desired time, but
also expects that his/her drop-off time is as closer to his/her most desired time as possible.
The larger the time deviation, the less satisfied the customer would be. In order to include
this type of customer dissatisfaction in the scheduling process, a disutility is introduced as
part of the objective function. For customer i, the disutility due to the deviation from the

most desired pick-up and drop-off time, Du;’, is defined as follows:

. 8-S
DUY = J'fTi(ti-f-x)-U(x)dx (8-)

Where:

deviation from the desired time defined as:

"
il

=% Forcustomers specifing a desired pick—up time

5-T,  Forcustomers specifing adesired drop—off time
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fri(x}) = the probability density function of the arrival time T;;

Ux) a utility function representing a customer’s dissatisfaction from the

schedule as a function of the deviation from his/her desired time (x).

A general form of the utility function which is commonly used to model customers’
risk-aversion attitude under uncertainty is the quadratic function (Wilson ef al., 1977, Jaw
el. al. 1986). To simplify the integration involved in Equation (8-5), the linear term of the
general quadratic function is taken out and the resulting utility function is U(x) = a; X,
where a; is an externally specified constant indicating how much weight the importance of

the time deviation is allocated in the general objective function.

Once the disutility function is identified, the disutility due to time deviation shown
in Equation (8-5) can be transformed as a function of the mean and variance of the arrival

time at the pickup/drop-off stop, as shown in Equation (8-6):

DU! =a, - (E[T,]-1,)* +a, - Var[T ] (8-6)

From the Equation (8-6), it can be seen that the disutility due to time deviation not
only depends on the expected deviation from the most desired time (E[T;]-t:), but also on
the variance of the arrival time (Var[T;}). This relationship makes intuitive sense in that it
would be expected that due to arrival time variation a customer may not be satisfied even

when the expected arrival time deviation is zero.
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8.1.3.2 Satisfaction from the ride time

In addition to the service time deviation, the other important measure of service
quality is the customer’s ride time. As a shared ride system, customers may experience
excess ride time (difference between actual ride i'me and direct ride time) and the larger
the actual ride time for a customer, the more dissatisfied the customer will be. In order to
avoid too much excess ride time in a schedule, most dial-a-ride systems specify a
maximum ride time as a criteria. When the travel time is random, this condition can be

expressed as a constraint involving a probability function as shown in Equation (8-7):

Prob(f <L) (8-7)

Where T, is a random variable representing the scheduled ride time for customer i and f is

an externally set criteria. For example, it may be decided that the constraint must be

satisfied with a probability of 95%. This constraint is schematically illustrated in Figure 8-
2, where the curve represents the customer’s ride time PDF and the shaded area under the
curve is the same probability as shown in Equation (8-7). Equation (8-7) can be rewritten

as shown in Equation (8-8):

L 8-8
J£ (x> &

Where: f; (x) = the PDF of customer i’s ride time.
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This arca represents the
probability that customer
i’s ride time is less than
the maximum allowable
ride time, L.

Customer i’s ride lime

PDF -

. I Ride time
Maximum allowable

ride time (L)

Figure 8-2 Customer’s ride time condition

Similar to the treatment for the time deviation condition discussed above,
customer’s ride time is assumed to be normally distributed and the integration involved in

Equation (8-8) can be calculated based on Equation (8-4).

The maximum ride time criteria discussed above provides an upper bound of the
service quality. However, it does not reflect the customer’s desire of having their ride
diversion as small as possible. Therefore, a new disutility item is incorporated in the
general objective function. Considering that both actual ride time and direct ride time are
random variables, the new disutility function uses the relative mean ride time diversion as
an indicator of customers’ dissatisfaction. For illustration purpose, this thesis uses a
quadratic function as shown in Equation (8-9), to represent each customer’s utility

function.
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DU =a,y’ (8-9)

Where: a; = an externally set constant representing the weight allocated to the ride

diversion in the general objective function;

y; = the relative deviation of mean ride time for customer i, defined as:

_E[T]-E[t]
Y= R (8-10)
Where: t, = the direct ride time with expected direct ride time noted as E[ t, |

E{t] = the expected scheduled ride time for customer i;

The reason for using the relative ride time diversion function shown in Equation
{(8-10) is that a customer’s toleration on the ride time deviation is also related to the
direction ride time of his/her trip. Commonly, the longer the direction ride time of his/her

trip is, the larger ride time deviation he/she can tolerate.

8.1.4 Problem Formulation

The previous sections have discussed how the service operators’ objective and
customers’ service needs can be modeled when the O-D travel times are dynamic and
stochastic. To clarify the overall problem structure, the subscriber DARP with dynamic

and stochastic O-D time is formulated as a mathematical program.

Let M be the set of vehicles. Each vehicle keM has a seat capacity Qy, a start

location k€S and an end location excE. Each vehicle is assumed to start empty. Let N
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be the set of trip requests. For each trip request i€ N, a load of size (in terms of seats
required) g; has to be transported from an origin Jocation 0;€O to a destination location
d;eD. For each location ieQuD there is a desired time window with an earliest service

time ET; or/and latest service time LT; .

For all i,je SUELQUD let {t;1;.T;} denote the stochastic process of the travel
time from location i to location j with departure time at node i equal to T; . It should be
noted that this definition is similar to the definition of the dynamic and stochastic link
travel time provided in Section 4.1 of Chapter 4. For any given T;, t;j1; is assumed to be
normaily distributed with a known mean noted as Ly and variance noted as o ery (Tt
should be noted that when denoting the mean and variance, the subscript j is deliberately
omitted for notation convenience). Note that the loading time (pickup/drop-off time) at
the origins and destinations can be easily incorporated in the travel time and is not
considered explicitly. 1t is also assumed that vehicles are not allowed to idle at each stop

or on road.

The following four types of decision variables are introduced to represent the

vehicle schedules:

<. = {l if vehicle k visits location j immediately after location 1;
7 Y0 otherwise
{ 1 if trip requestiisassigned tovehicle k;

~ 10 otherwise

l<
B
i

3
I

arrival time at location i, a random variable;

v; = the load of the vehicle after visiting location i;
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The DARP may be formulated as follows:

Qbjective: minimize a total cost function which is a summation of the system operator's

disutility (DU,) defined in Equation (8-1) and the customers’ disutility defined in Equation

(8-5) and (8-10) as follows:
N N (8-11)
Minimize C=DU, +> DU+ DU;

Subject to the following constraints:

Constraint 1 each customer is only serviced by one vehicle:

Sy =1 (forallieN) (8-12)

keM
Constraint 2: vehicle load and capacity related:
vi=0 ( for all i€8) (8-13)

Vi=Vitq { when xj =1,
for all i,je SUELOUD, keM) (8-14)

v, < Z Q. V. ( for all ieOUD) {(8-15)

kel

Constraint 3. each stop (pick-up or drop-off location) is visited once:

DX = XXy =Yy (forallicOUD, keM) (8-16)

jeSUELOWD JESVEGLOWLD

Constraint 4; relation between the departure time {mean and variance) of vehicles at
locations can be obtained using the approximation models developed in Chapter 4 (refer to

Equation (4-8) and Equation (4-12) in Chapter 4):
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E[Tj] = E[Ti} + WE[T:]) + w(E[T:]) Var[T:}/2

VarlTj] = {1+ 2@y 20 ey WA E T Varl Tl o E(T))
{ when x;x = 1, for all 1,je SUELOUD, keM} (8-17)

Constraint 5 customers’ desired service time windows (same as Equation (8-2) shown in

section 8.2.4.1);

Prob(ET, <T, <LT)2a (for all jeOuUD) (8-18)

Constraini 6: customers’ maximum ride time (same as Equation (8-7) shown in Section

8.2.4.2):
Prob(t <L)>P ( for all ieN) (8-19)

Constraint 7. general

Xik € {0,1} ( for all ie SUELOUD, keM) (8-20)
ya € {0,1} ( for allieN, keM) (8-21)
T, =20 ( for allie SUELOWD) (8-22)
vi 20 ( for all ie SUEUOWD) (8-23)

As compared to the deterministic DARP discussed in Chapter 2, the major
extension of the dial-a-ride problem formulated above is modeling the O-D travel time as a
stochastic process. The deterministic DARP is therefore a special case of this new
formulated dial-a-ride problem. The former has been proved to be computationally

intractable (or NP-complete), therefore, the stochastic dial-a-ride problem must also be
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NP-compiete and any optimal solution methed to this problem may only be viable to small
size problems (for example, less 50 customer trips). Since this thesis concerns itself
mainly with the development of solution methods to the large size problems from practical
applications (for example, over thousand customer trips), a heuristic algorithm is used to

solve the problem formulated above.

8.2 HEURISTIC DIAL-A-RIDE VEHICLE ROUTING AND
SCHEDULING ALGORITHM

Due to its inherent intractability, the subscriber DARP is often solved by heuristic
algorithms for practical applications (Savelsbergh and Sol, 1995). There are typicaily two
types of heuristic routing and scheduling procedures widely used: a sequential insertion
procedure and a concurrent insertion procedure (Bodin ef al., 1983). These algorithms
can be extended to solve the dial-a-ride problem with the new objective functions and
constraints discussed above. For the objective of this thesis, the concurrent algorithm is

extended in this chapter. The following is a generic version of this solution procedure:
Step 1: Determine the time window for the pick-up and drop-off of each customer;
Step 2: Select a customer i from the customer list.
Step 3: For each vehicle k from the fleet:

(1). find all feasible ways in which customer i can be inserted into the
partial schedule of vehicle k. If it is unfeasible to insert customer i into

vehicle k, examine the next vehicle k+1 and restart step 3;



Chapter 8 Dial-A-Ride Vchicle Routing and Scheduling 244

(2) find the insertion of customer i into vehicle k which results in a

minimum insertion cost;

Step 4: If it is not feasible to assign customer i to any vehicle, then either hire a
new vehicle to serve this customer or “reject” this customer. Otherwise,
assign customer i to vehicle k* for which the insertion cost is minimal

among all the vehicles.

Central to the concurrent insertion algorithm are two steps: a feasibility test step
to insert a customer trip into an existing schedule and an opfimization step to find the best
feasible insertion and best schedule. A detailed discussion of these two steps are provided
in the following sections. In addition, how various O-D time estimation methods can be

integrated into the above algorithm is discussed.

8.2.1 Feasibility Test

The feasibility test is to assure that the service quality constraints for both the
newly inserted customer and all other customers already on that vehicle are not violated.

The following tests must be passed for the feasibility check:

Test I test the vehicle’s load (on board passengers) at each stop. The vehicle’s
load must always be less or equal to the vehicle’s capacity as expressed in

Equation (8-15);

Test 2: test the satisfaction of the inserted customer and the customers already on
the vehicle. This test includes the customers’ time window (Equation (8-

18)) and the customers’ ride time (Equation (8-19)).
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8.2.2 Optimization

The optimization step is to minimize the total additional cost due to inserting a
customer into a vehicle’s schedule. The cost function is defined in Equation (8-11) and
the additional cost is the difference between the cost before and after inserting a customer.
As discussed in previous sections, the cost function is primarily related to three measures
which include the total travel time for each vehicle, the arrival time at each stop and each
customer’s ride time. Once a vehicle’s visiting sequence is determined (for example, afler
a customer is inseried into an existiﬁg partial route), an optimal starting time tor this
vehicle can be obtained by minimizing the total cost (or total disutility) of the schedule
based on the O-D travel time information. Subsequently, the total travel time, the arrival

time at each location and each customer’s ride time can be determined to arrive at the total

cost.

8.2.3 0O-D Travel Time Estimation Methods

As seen in the previous section, the O-D travel time is the key information needed
for the dial-a-ride vehicle routing and scheduling process. The estimation quality and
computational efficiency of the O-D time estimation method directly influence the
performance of the dial-a-ride vehicle routing and scheduling process. In order to analyzc
the feasibility of integrating the O-D travel time estimation methods, as developed in
previous chapters, into the dial-a-ride vehicle routing and scheduling process, a
computational analysis is conducted in Section 8.3.4 which examines the following three
0-D travel time estimation methods: a) Distance based method: Discussed in Chapter 7,
b) ANN method: Discussed in Chapter 7, ¢) Heuristic shortest path algorithm: Discussed

in Chapter 6.
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8.3 COMPUTATIONAL ANALYSIS

In the previous section a heuristic algorithm has been proposed to solve the DARP
problem presented in Section 8.1. The objective of this section is to demonstrate the
solution and computational requirements of the proposed algorithms as compared to the
traditional deterministic model through simulated problems. The proposed algorithm is
first applied to solve the simulated problems under various model parameter settings
(Section 8.3.2 and Section 8.3.3) and using various O-D travel time estimation methods
(Section 8.3.4). The results are then used to illustrate the influence of O-D travel time
variations and O-D travel time estimation methods on the system performance. The

system performance is measured using the following four statistics:

a) Number of Vehicles Required: Total number of vehicles required to serve the

transportation requests;

b) Fxpected Vehicle Productivity (trips/vehicle hour): defined as the ratio of total

number of customers (or trips) to the total expected vehicle time;

¢) Fxpected Average Excess Ride Time (minutes): defined as the total expected excess

ride time of all customers divided by total number of customers;

d) FExpected Average Time Deviation (minutes): defined as the total expected time

deviation divided by total number of customers.

8.3.1 Test Problems

Two test problems are created for examining the performance of the model and

algorithms presented in this chapter. The first one is used to investigate the difference in
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solutions obtained from solving the subscriber DARP with and without considering the

stochastic attribute of the O-D travel time. The following is an assumed operation

scenario for this problem:

a)

b)

d)

The service area is a square of 20x20 square kilometers,

The O-D travel time is assumed to be normally distributed with a mean equal to the
ratio of the rectangular distance to an average travel speed of 40 km/h. The
coeflicient of variation of the O-D travel time ( equal to mean/standard deviation) is

assumed to be same for all O-D pairs;

There are a total of 50 vehicles available and all of them are located in the center of the
service area. All vehicles have the same seat capacity of 8 seats/vehicle. Each

vehicle’s available service time is from 6:00AM to 6:00PM;

There are a total of 200 customers (trips) uniformly located in the service area. Each
customer either has a desired pick-up time or a desired drop-off time (50 percent each
in this study) with a service time between 8:00AM and 12:00AM. The maximum time
deviation from each customer’s desired time is set to 30 minutes and the maximum

ride time is set to 90 minutes.

The second problem is used to examine the computational efficiency of the

proposed algorithm when using different O-D travel time estimation methods. This

problem has the following settings:

a)

The service area is the urban area of City of Edmonton, Alberta with a given network

previously described in Chapter 4;
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b) The O-D trave! time is estimated by three different methods: distance based method,
ANN model and the A* algorithm. The formal two methods are discussed in Chapter

7 and the A* algorithm is described in Chapter 6;

c) Each vehicle is initially located in the Downtown of the City of Edmonton with a seat
capacity of 8 seats/vehicle. Each vehicle’s available service time is from 6:00AM to

6:00PM,

d) Customers’ trip ends (locations) are randomly generated and uniformly dispersed in
the service area. Each customer either has a desired pick-up time or a desired drop-off
time (50 percent each in this study) with a required service time between 8:00AM and
12:00AM. The maximum time deviation from each customer’s desired time is set to

30 minutes and the maximum ride time 1s set to 90 minutes.

8.3.2 System Performance Vs. the Objective Function Parameter a,

The purpose of this section is to examine how the objective function parameter a,,
which is associated with a pick-up or drop-off time deviation, influences the routing and
scheduling results under different variations of the O-D travel times in the network. The
values of the other modeling parameters are set to a1 = 1.0, a3 = 0, a = = 90%. Figure
8-3 and Figure 8-4 show the relationship between the number of vehicles required and the
expected vehicle productivity as functions of the value of parameter a, under different
values of the coefficient of variation (COV) of the O-D travel time. As would be
expected, as the value of a; increases, the customers’ satisfaction from the service time 1s
weighted higher in the objective function and as a result, more vehicles are required to

serve the same number of trips. In addition, a lower vehicle productivity is achieved . It
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can also be found that in the case of a higher variation of the O-D time, more vehicles are
required in order to provide the ame level of service. For example, when the COV
increases from zero to 0.10, approximately five extra vehicles are required for the same

number of customer trips.

As shown in Figure 8-5, there is an expected strong negative correlation between
the average time deviation and a;. When the a; value increases from 0.000 to 0.001, the
average time deviation is reduced by approximately 50 percent. It can also be seen that
the reduction is lower when the COV of O-D travel time is higher. This may be explained
in that under higher variance of O-D travel time, the actual time window at each stop
would be narrower and therefore less adjustment can be made to move the schedule closer

to the most desired time.
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Figure 8-3 The relationship between the number of vehicles required and the
parameter a;
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8.3.3 System Performance Vs. Objective Function Parameter a;

This section examines how the objective function parameter a; associated with a
customer’s excess ride time influences the routing and scheduling results under different
variations of the O-D travel times in the network. The values of the other modeling
parameters are set to a; = 1.0, a, = 0, . = = 90%. Figure 8-6 and Figure 8-7 show the
relationship between the number of vehicles required and the vehicle productivity as
functions of the value of parameter a; under different values of COV of the O-D travel
time. It can be found that as the value of a; increases, and the customers’ satisfaction
from the ride time are given a higher weight in the objective function and as a result more
vehicles are required to serve the same number of trips and at same time lower vehicle
productivity results. It can also be seen from Figure 8-6 that the number of vehicles
required is highly sensitive to the a; value when it is less than 0.0001. For example, there
is an approximately 20 percent increase in the required number of vehicles when the a:
value increases from 0 to 0.0001, At the same time, the average excess ride time is

reduced as much as 50%, as shown in Figure 8-8.

It can also be found from Figure 8-6 and 8-7 that as the O-D time variation (COV)
becomes larger, more vehicles are required which results in lower vehicle productivity.
For example, when a; s equal to 0.0001 and the O-D travel time is deterministic
(COV=0), a total of 45 vehicles are required to service the 200 trips with results in vehicie
productivity of 3.1 trips/vehicle/hour. However, if the a3 value is kept the same and the
COV of the O-D time is increased to 0.1, 5 extra vehicles are required and the vehicle

productivity decreases to 2.95 trips/vehicle/hour.
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Figure 8-8 The relationship between the expected average excess ride time and the
parameter a;

There is a somewhat changing correlation between the average excess ride time
and the O-D time variation. When the a3 value is less than 0.0008, the smaller value of the
average excess ride time corresponds to the larger value of the O-D time COV. When the

a3 value is greater than 0.0008, their correlation becomes less significant.

8.3.4 Computational Efficiency Vs. O-D Travel Time Estimation Methods

This section investigates the computational effort of the proposed algorithm with
respect to the O-D travel time estimation methods described in Section 8.2.3. Three
different sized dial-a-ride vehicle routing and scheduling problems are used for the
analysis. The first problem includes 10 vehicles and 50 customer trips while the second

problem involves 40 vehicles and 200 trips. The last problem includes 60 vehicles and
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1000 trips. The computational platform is a Pentium 90MHZ. Two routing and
scheduling situations discussed in Section 8.1 are considered, that is, the subscriber DARP
and real-time DARP. The real-time scheduling situation is simulated by inserting a new
trip into the existing schedules after the advanced request DARP of above three problems

are solved.

Figure 8-9 shows the relationship between the CPU time required to schedule all
the trips and the problem size under different O-D travel time estimation methods. It can
be seen that the heuristic shortest path algorithm(A*} is only feasible to be used in the
vehicle routing and scheduling process for solving small size problems (less than 50 trips
in this test), although it can provide amore accurate estimation of the O-D travel time as
compared to other two methods. The routing and scheduling algorithm with the ANN
method is much more efficient than one using the heuristic shortest path algorithm. This
study shows that the 1000 trips problem is solved within 90 minutes of CPU time when
the ANN method is used. This computational time may be still acceptable because for the
subscriber trip scheduling, computing time is not as critical as real-time scheduling. As
would be expected, using the distance based method is most efficient, however, it is much

less accurate than the ANN method , as described in Chapter 7.

Figure 8-10 shows the relationship between the CPU time required to insert a new trip
into the existing schedules and the problem size of the existing schedule under different O-
D travel time estimation methods. Similar 0 above conclusion, the heuristic shortest path
algorithm (A*) is limited to solving only smali size problems. It can be seen that in the

case where ANN method is used, it requires less than 10 seconds for the
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scheduling algorithm to insert a trip into the existing schedules with 1000 trips on them.
This finding implies that the ANN method is efficient enough to be used in a real-time

scheduling sitaation.

8.4 CONCLUSIONS

This chapter discussed how to model the system operator’s and customers’
objectives in the dial-a-ride vehicle routing and scheduling process when the O-D travel
times are modeled as dynamic and stochastic variables. A mathematical formulation of the
new DARP is provided. A heuristic dial-a-ride vehicle routing and scheduling procedure
is then introduced to solve the new problem. Lastly, a computational study is conducted
to illustrate the solution quality and computational requirements of the proposed model

and algorithm under different O-D travel time attributes and estimation

methods developed in previous chapters. The major conclusions are summarized as

follows:

e The O-D travel time variation has significant impact on the vehicle routing and
scheduling results. Additional vehicles are required when the influence of the

stochastic attribute of the O-D time on the service quality is explicitly considered,

o The impacts of the stochastic O-D travel time on the routing and scheduling resuits
also depends on the modeling parameters which reflect the sensitivity of customers’
satisfaction from the service time. For example, the higher the value of parameter a,
(associated with time deviation from desired time), the higher the impact that the O-D

time variation has on the routing and scheduling results;
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e Although the explicit consideration of the stochastic attributes of the O-D travel time
in routing and scheduling the dial-a-ride vehicle requires extra information on the O-D
travel time (for example, mean and variance), it would result in more reliable
schedules. The computational performance of the proposed algorithms is acceptabie

for real applications;

e The computational study shows that the ANN models developed in Chapter 7 are
feasible to be used in the dial-a-ride vehicle routing and scheduling algorithm to solve
realistic subscriber DARP and real-time DARP (over 1000 trips). On the other hand,
the heuristic shortest path algorithm is found to be only viable in solving small sized

problems (less than 50 trips);
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

9.0 INTRODUCTION

This thesis has systematically investigated two real-time vehicle routing
problems, the shortest path problem (SPP) and the dial-a-ride problem (DARP)
which arise in two ITS applications: the in-vehicle route guidance systems (RGS)
and the automated vehicle dispatching systems (AVDS). New and enhanced
vehicle routing problems have been formulated to model the vehicle route
optimization problem under dynamic and stochastic link travel time and O-D travel
time. Several solution algorithms to these new problems have been developed and
used to analyze the influence of the uncertainty of the travel time on the vehicie
routing results. This chapter includes two sections. The first section will describe
the major conclusions and findings of this research and the second section will

discuss recommended research directions.

9.1 CONCLUSIONS

The major conclusions and findings obtained through this research can be

summarized in six groups. The first section lists the conclusions arising from the
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analyses of the dynamic and stochastic link travel times in urban traffic networks.
The second section reviews the models developed and conclusions obtained about
the estimation of the route travel time in dynamic and stochastic networks. In the
third section, findings and conclusions on the dynamic and stochastic shortest path
problem (DSSPP) are reviewed. The fourth section summarizes the heuristic
shortest path algorithms developed in this thesis and their relative performances n
terms of both solution quality and computational efficiency. In the fifth section,
the conclusions on dynamic and stochastic O-D travel time estimation using
artificial neural networks (ANN) are reviewed. The final section presents the
conclusions about the dial-a-ride problem with: dynamic and stochastic O-D travel

time.

9.1.1 Dynamic and Stochastic Link Travel Time

[1].  This research has shown that the link running time on a link under an
uninterrupted, unsaturated flow situation, or approximately has the same
type of distribution as the link running speed. Consequently, the
distribution parameters of the link running time can be indirectly obtained
using data on the link running speed. This finding could be important
because traditionally the link running speed is easier to obtain. It is also
found, both theoretically and empirically, that the link running time can be

represented by a normal or lognormal distribution,

{2]. A simulation model has been developed to analyze the distribution pattern

of the delay that a vehicle may experience at a pre-timed signal intersection
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under undersaturated traffic conditions. It is found that the delay on a
signalized approach is a mixed random variable and its distribution pattern
can not be approximated by a single mathematical distribution or
distribution family. It is also confirmed that the delay distribution may be
bimodal, especially under the situation of poor signal coordination.

The variance of the vehicle delay has been found to be not sensitive to the
traffic volume and the quality of progression but to the signal setting. This
finding indicates that it may not be necessary to update the vehicle delay
variance in real time for an intersection that has a fixed signal timing,

It is also found that when a signalized approach is close to saturated
condition, the distribution of the vehicle delay approaches that of a normal

distribution.

A stochastic incident delay estimation model has been developed which
explicitly considers the stochastic attribute of the incident duration. The
derived formula for the estimation of the mean and variance of the incident
detay has been found to be operational in the sense that little extra data and
computation effort are required and therefore may be used by a TIC to
estimate link travel times in the case of incident congestion. The new
model also allows the use of updated information on the incident situation;
A computational study showed that the traditional deterministic model may
over-estimate or under-estimate the expected incident delay. The
estimation error is found to be proportional to the standard deviation of the

incident duration. 'The incident delay has been shown to have a high degree
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9.1.2

[2].

of variability, even when the expected delay is low. The maximum variance

occurs much later than the time when the maximum expected delay occurs.

Route Travel Time in Dynamic and Stochastic Networks

This research has developed several approximation models to estimate the
mean and variance of the route travel time in traffic networks where the
link travel times are dynamic and stochastic. It is found that in a dynamic
and stochastic network the expected travel time of a given route may not
be a summation of the expected link travel times. It also depends on how
the average link travel time changes during the day (for example, the
second order derivative of the expected link travel time) and link .fr'avel

fime variations;

The expected travel time of a given route can be accurately estimated using
the second order approximation model. Based on the simulation study, the
relative improvement of the second order approximation models over the
first order mode! and naive model is quite small (less than 0.2%).
However, this small difference could be important for route selection in a
traffic network. The relative improvement of the second order model
compared to the first order model or naive model depends on the link
travel time variance and the severity of the time variation of the link travel
time. The larger the link travel time variances and the rate of link travel

time change, the greater the relative improvement,
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It has been found that the link travel time distribution pattern has no
significant effect on the estimation of the expected route travel time.

Therefore, normal distribution may be used to represent the link travel time

distribution;

It has been found that in a dynamic and stochastic network the route travel
time variance is not the summation of the link trave! time variances as in a
traditional naive model. The variance of the route travel times can be more
accurately estimated by using the first or second order approximation
model. Based on the simulation study, the first order model and the second
order model are quite close in terms of solution quality, however, they
provide significantly better solutions than the naive model. The relative
improvement of the first or second order model compared to the naive
model depends on the link travel time variance and the severity of the time
variation of the link travel time. The larger the link travel time variances

and the link travel time changing rate, the greater the relative improvement.

Shortest Path Problem in Dynamic and Stochastic Networks

It is theoretically shown that the shortest path problem in dynamic and
stochastic networks is computationally intractable and that it cannot be
solved exactly using standard shortest path algorithms. This thesis has
proposed a heuristic algorithm for solving the DSSPP where the dynamic
and stochastic attributes of the link travel times are modeled by the mean

and variance of the link travel time as a function of time of day;
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The standard shortest path algorithms that are used to solve deterministic
shortest path problems cannot find the minimum expected paths in a
dynamic and stochastic network, The solution error by a standard shortest
path algorithm in the example used is small primarily because of the
simplicity of the network and, more importantly, because the dynamic

travel times changed relatively slowly with time.

The proposed heuristic algorithm improves the solution with only a
moderate increase in the overall computation time as compared to a
standard shortest path algorithm. The solution improvement is found to be
significant when the number of paths (K value) increases from 1 to 2 (more
than 18% in terms of the percentage of finding the best solution although

the increase in computation time is on the order of 90%);

As an approximation, the use of standard shortest path algorithms in
dynamic and stochastic traffic networks may be acceptable from a practical
perspective. This will be especially true if the change of travel time in the

network is moderate as in undersaturated networks.

Heuristic Shortest Path Algorithms

This thesis has developed, implemented and tested several heuristic search
methods from the Al field to find the shortest paths in urban traffic

networks.
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The branch pruning method proposed in this research uses the information
on the estimated maximum travel time from the origin node to destination
node and the estimated lower bound of travel time between any pair of
nodes to bound the solution search area. It is found that this method can
be readily incorporated into the shortest path finding procedure. The
resulting heuristic algorithms include parameters and therefore are easily
customized to meet the requirement of both computational efficiency and

solution quality;

The traditional A* algorithm can be modified to take into account of the
travel speed effect on the travel time estimation (evaiuation function) when
it is applied to find the shortest path in a traffic network. Asa
parameterized algorithm, A* algorithms can be adjusted to reach a trade-

off between computational efficiency and solution quality;

In order to overcome the inefficiency of the traditiona! bi-directional
searching algorithm, a modified bi-directional searching method is
proposed by introducing a new stopping criteria in the searching
procedure. The new algorithm are proven to be very effective to finding

the shortest path in a traffic network;

Among all the heuristic algorithms, the branch pruning label correcting
algorithm (BP_LC) generally gave ihe best results in terms of both

computation efficiency and solution quality. Although not guaranteed to
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find the optimal routes, the relative error in the route travel time is relative
small (Q.1%) while its computation saving is significant (30~60%).
Although the algorithm B_A*m is slightly slower than the BP_LC
algorithm and has the shortcoming of higher estimation error (0.25%), it
has an important advantage of being less sensitive to the route time for
long trips. This attribute could make it more favorable than the BP_LC in
the case where the underlying network is much larger (compared to the
Edmonton network).

With an appropriate set of parameter values, the A* algorithm can be
guaranteed to provide optimal solutions and provide a beneficial
computation time (10%~30% CPU time saving compared to LS). This is

in contrast to that of all other heuristic algorithms;

In the situation where the link travel times in the network are dynamic and
thus the bi-directional algorithms can’t be directly used, the BP_LC and A*

algorithm would be the best selections;

Dynamic and Stochastic O-D Travel Time Estimation Using
Artificial Neural Networks

This these has developed several ANN models for estimating the dynamic
and stochastic O-D travel time in an urban traffic network. It is found that
an ANN model can be trained to effectively map the highly non-linear
relationship between the O-D travel time and the location information of

the origin and destination nodes in dynamic and stochastic traffic networks;
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The success of an ANN technique for travel time estimation mainly
depends on how the input information is abstracted and what type of
network model is used. This thesis demonstrated that some enhanced data
(for example, distance information} can be very helptul in improving the
performance of an ANN. It is found that modeling the mean and variance
of the O-D travel time using separate ANN models are more effective than

using a joined network ANN model;

The solution quality of the ANN method is found to be significantly
dominant over the traditional regression model for estimating O-D travel
times. It can therefore be expected that more reliable solutions can be
obtained in the applications by using ANN O-D travel time estimation

method instead of the traditional method;

While the ANN is not as accurate as the shortest path algorithms, it is
much faster than the latter. It is empirically shown that the ANN is more
than 500 times faster than the shortest path algorithms such as A* and label
setting algorithm, Therefore, it is useful in situations where travel time
calculations are necessary, but where the computation time is limited. It
can be expected that the ANN model holds great potential for various real-

time on-line applications such as AVDS.
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Dial-A-Ride Vehicle Routing and Scheduling with Dynamic and
Stochastic O-D Travel Time

This thesis has proposed a new dial-a-ride vehicle routing and scheduling
model which explicitly incorporates both the system operator’s and
customers’ risk attitudes under dynamic and stochastic O-D travel times.
A heuristic routing and scheduling procedure is introduced to solve this

new problem.

It is found that the O-D travel time variation has a significant impact on the
vehicle routing and scheduling resulis. Additional vehicles are required
when the stochastic attribute of the O-D time is explicitly considered as
compared to a deterministic model. A larger variance in the O-D travel

time results in more vehicles required,

It is also found that the impacts of the stochastic O-D travel time on the
routing and scheduling results depend on the model parameters which
reflect the sensitivity of customers’ satisfaction from the service time. For
example, the higher the value of parameter a; (associated with time
deviation from desired time), the higher the impact that the O-D time

variation has on the routing and scheduling results;

Although the explicit consideration of the stochastic attributes of the 0-D
travel time in routing and scheduling the dial-a-ride vehicle requires extra
information on the O-D travel time (for example, mean and variance), it

results in more reliable schedules and thus a better service qualitv. The



Chapter 9 Conclusions and Recommendatious 269

[5].

9.2

9.21

[1}.

computational performance of the proposed algorithms is found to be

ac ceptable for real applications.

The computational study shows that the ANN models developed in this
thesis are feasible to be used in the dial-a-ride vehicle routing and
scheduling algorithm to solve realistic subscriber DARP and reai-time
DARP (over 1000 trips). On the other side, the heuristic shortest path
algorithm is found to be only viable to oe used in the dial-a-ride vehicle
routing and scheduling algorithm for solving small size problem (less than

50 trips).

RECOMMENDED FURTHER RESEARCH

This research may be extended in the following five areas.

On Dynamic and Stochastic Link Travel Time

This thesis has focused on analyzing and modeling the dynamic stociiastic
travel time patterns on several selected types of links in a urban traffic
network. Additional research should be conducted to examine the link
travel times under saturated traffic conditions and on other types of links
such as those operating under signal coordination. It should be noted that
some of the techniques developed in this thesis may be applied to analyze

these types of links;
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This thesis has applied various theoretical methodologies in the analysis of
link travel time distributions. The next step should focus on collecting field

data to verify and calibrate the models developed in this thesis;

For the incident congestion situation, this thesis proposed a model to
incorporate the real-time information on the incident status in the incident
delay estimation procedure. This model should be enhanced to consider
other types of information such as current traffic volume (or diversion},
current queuing length and empirical estimations of incident duration (for
example, from police or tow driver). These additions would significantly

improve the prediction ability of the proposed model;

Instead of applying probability theory fo model the incident delay as in this
thesis, another potential model that should be investigated is using fuzzy
set theory to model the incident condition and incident duration. The
advantage of this type of model is that it would allow the modeling of one
specific type of uncertainty that results from ambiguity and linguistic

description;

It has been shown in this thesis that the link travel time could be
significantly stochastic. Consequently, this research should be extended to
examine the issues that determines the value of real-time link travel time

information and the adequate time interval for link travel time aggregation.



Chapter 9 Conclusions and Recommendations 271

9.2.2

[T}

[2].

9.2.3

[].

On the Shortest Path Problems in Dynamic and Stochastic
Networks

This thesis analyzed the shortest path problem in a dynamic and stochastic
network with the assumption that the individual users’ routing objective is
to find the paths with the expected minimum travel time (or the users’
travel utility function is linear with respect to travel time). Further research
may be necessary to analyze other types of shortest path problems such as
chance constrained shortest path problem or shortest path problem with

nuss-linear utility functions;

Another extension to the shortest path problem discussed in this thesis
would be to consider the departure time as a decision variable. In this
situation, the problem would be to find both the optimal path and the

optimal departure time for a specific trip.

On the Heuristic Shortest Path Algorithms

The heuristic shortest path algorithms introduced in this thesis are
exclusively parameterized and their performance under various parameter

settings should be tested in real RGS experiments,

The various heuristic search techniques introduced in this thesis should be
adapted to develop heuristic k-shortest path algorithms. The latter is often
required to solve some specific categories of shortest path problems such
as the dynamic and stochastic shortest path problem discussed in this thesis

and shortest path problems with muitiple objectives.
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Artificial Neural Networks (ANN)

This thesis has demonstrated that the ANN technique is a very etlective
method to model the dynamic and stochastic O-D travel time in an urban
traffic network. The ANN technique may also be used to model other

vehicle routing and scheduling related parameters;

Additional research would be required to develop new on-line training
methods for the ANN models so that these models can be improved
gradually based on the O-D travel times collected during daily operations

of the service vehicles.

In order to further improve the estimation quality, other types of ANN

should also be explored.

On Dial-A-Ride Routing and Scheduiing with Dynamic and
Stochastic O-D Travel Time

The new DARP and algorithm should be tested and calibrated using actual
data from existing dial-a-ride service systems. Guidelines should be
developed for selection of suitable values of the parameters in the model.
The algorithm may need to be modified to solve larger sized problems with

an acceptable computational time,

The various O-D travel time estimation methods should be combined in the
vehicle routing and scheduling process so that larger problems can be

solved without a loss in solution quality;
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Other solution techniques such as genetic algorithm and tabu search
methods should be explored to improve the solution of the dial-a-ride

problems presented in this thesis.

Finally, the O-D travel time can be modeled as a fuzzy number and new

DARP can be formulated and solved based on fuzzy set theory.
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APPENDIX A:

COMPUTATIONAL EFFICIENCY OF THE BRANCH
PRUNING ALGORITHM: AN EXPLANATORY
MODEL

The purpose of this appendix is to show the computational efficiency of the branch
pruning algorithm (BP_LS) proposed in section 6.3.1.1 of chapter 6, as compared (o a
regular label setting algorithm under an idealized network. The computational time ol an
algorithm is assumed to be proportional to the search area when the algorithm is used to
find a shortest path from an origin node to a destination node. Therefore, the ratio of the
search area of the branching pruning algorithm as compared to the search area of a label
setting algorithm (LS) is used to measure the computational efficiency of the branch

pruning algorithm.

(1)  Problem and Notation

Assume that there is a uniform infinite grid network with Euclidean distance used
as link cost (Figure A-1). The problem is to derive the relative computation time (or
search area) to find the shortest distance path from an origin node to a destination node in
this network by the branch pruning algorithm and the regular label setting algorithm. The
origin node o is set at the origin of the coordinate axis, (0,0). The destination node r is
assumed to be at (Xo,Yo). Assume that L(i) is the shortest travel distance from the origin

node to the node i. The Euclidean distance is assumed to be used as the lower bound of
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the travel distance for the branch pruning algorithm. In addition, note the Euclidean
distance from node i to node j as e(i,j) and the respective upper bound of the travel
distance as E(i,j). The following sections show how the search area by each algorithm is

determined and how the computational efficiency is derived.
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Figure A-1 A schematic illustration of the search area of the LS algorithm and
BP_LS algorithm in an idealized network
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(2). The Search Area of the LS Algorithm (A_s)
In a label setting algorithm, a node i will be set if and only if it is closer to the

origin than the destination, that is:

i#f LG <L)

The area defined by the above inequality is the area that a label setting algorithm must
examine before it finds the shortest path, This area can be approximated by the following

equation:
Avs = T (X + yo©) R (a-1)
(3) The Search Area of the BP_LS Algorithm (Agp)

In the branch pruning algorithm, a node i will be set if and only if the following

condition is satisfied:
L(i) + e(i,d) < E(o,d}) (a-2)

The area defined by the above inequality, i.e., Agp, must be less than the area, noted as

'sp, defined by:

e(o,i) + e(i,d) < E(o,d) (a-3)

This inequality function specifies an ellipse defined by the following equation:
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2 2
+ ¥ =y (a-4)
b

X
e}
a

where a and b are defined as follows

el

2a = E(o,d) and 2b= E?n_a) — €0

7 E(o, d)m (a-3)

So, A'yp=mab=
Bt 4

If we define E{o,d) = K e(0,d) where K is the bound factor as described in Section 6.3.1.1

of Chapter 6, then,

A T K K -1 e(od) T K\[ ()(0 +y,;1 (@-6)

B =
4

(4) Computational Efficiency (V)

The computationai efficiency of the branch pruning algorithm is defined as the
ratio of the search area of the branch pruning algorithm as compared to the search area of

a label setting algorithm. Based on this definition, ¥ can be estimated by:

W= BP< BP=KU (xo+Yo) KU

Al A 4(}{0 +y0)

(a-7)

As would be expected, the computational efficiency of the branch pruning
algorithm relates to the K value. As shown in Figure A-2, the lower the K value, the
larger the computational saving. For example, if the K value is set to 1.5 the resulting

computational efficiency is 0.42. That means the branch pruning algorithm only examines
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42 percent of the areas that a label setting algorithm does. It should be kept in mind that
although using a smaller value of K will increase the computational efliciency of the
algorithm, it may reduce the solution quality of the heuristic algorithm as discussed in

Chapter 6.

Computational efficiency

1 1.2 14 1.6 1.8 2 2.2 2.4
Paramter K

Figure A-2 Computational efficiency of the branch pruning algorithm
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APPENDIX B:

( _MPUTATIONAL EFFICIENCY OF THE
HIERARCHICAL SEARCH ALGORITHM: AN
EXPLANATORY MODEL

The purpose of this appendix is to show the computational efficiency of the
hierarchical search algorithm discussed in Section 6.3.3.% of Chapter 6, as compared to a
non-hierarchical label setting algorithm for one-to-one shortest path research under an
idealized network. The computational time of the algorithms is assumed to be
proportional to the number of nodes set when the algorithms are used to find a shortest
path from an origin node to a destination node. Therefore, the ratio of the number of
nodes examined by the hierarchical search algorithm to the number of nodes examined by
a non-hierarchical label setting algorithm (LS) is used in this thesis as a measure of the
computational efficiency of the hierarchical search algorithm. The following sections

illustrate how this ratio is determined.

(1)  Problem and Notation

In order to avoid the effect of the network boundary on the performance of the
shortest path algorithm, a uniform infinitely large grid network is used for analysis
purposes. The network may be considered to have two type of roads, see freeways and
arterials, and can be categorized into two levels, a base level network including both

freeways and arterials and an abstract level network including only the freeways, as shown
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in Figure B-1. Each link in the base level network has a length noted as /, and
consequently the network has a node density of 1//. The abstract level network has an
interval distance noted as L. and thus has a network node density equal to I/L°. The
problem is to derive the relative computation time {or number of nodes examined) to find

the shortest path from an origin node to destination node in the network by the

el Scarch arca at the lower or
EaEe & higher level network from an
: i ] t ~_ | origin to a destination
AR
=Scarch area from an origin s 5 ‘ :
' node and a destination node o i o
. --Jimto the higher level network - foro boc ‘
1 ¥ 3
: / ! - Arterial
! B i ; ' :
! ' S — ~treeway

L
i
]
G
]
1
]
t

o
A L 744

Figure B-1. A hierarchical Euclidean network



Appendices 281

hicrarchical search algorithm and by a non-hierarchical label setting algorithm. The origin
node and the destination node are assumed to be located inside different grids of the
abstract level network. The Euclidean distance from the origin node to the destination

node is noted as R.

The number of nodes examined by each algorithm can be determined based on the
search area examined by the algorithm and the network node density of the underlying

network with the following relationship:
Estimate of # of nodes cxamined ~ Scarch area * average dens.:, of the search area

The following sections is the derivation procecure of the search area by each algorithm.

(2) The Number of Nodes Examined Using a Non-hierarchical L.abel
Setting Algorithm (No)

The search area of the non-hierarchical label setting algorithm is defined by the
circle centered at the origin with radius equal to the distance between the origin and
destination (R), as shown in Figure B-1. For the non-hierarchical search procedure, the
search is undertaken on the base level network with a density of 1/F. Therefore, Ny can

be obtained by:

(b-1)

(3) The Number of Nodes Examined Using a Hierarchical Label Setting
Algorithm (N}

As discussed in Section 6.3.3.1 of Chapter 6. the hierarchical search is composed

of two procedures. The first procedure is to examine the area around the origin and
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destination node on the base level network (the small circles shown in Figure B-1). The
second procedure is to examine the area from the origin node to the destination node on

the abstract level network {the big circle in Figure B-1).

The number of nodes examined in the tirst procedure (N.4) can be decided by:

L. 1 L
Ny =2:(5) -n-l—zz’r!—Q (b-2)

The number of nodes examined in the second procedure (N,):

N, =z R~ (b-3)
L

The total number of nodes can be obtained by (Ny):

Ny = Nog + N, (b-4)

(4) Computational Efficiency (y)
Based equations (b-1),(b-2),(b-3) and (b-4), the computational efficiency of the

hierarchical searching method can be calculated by:

N 2
WzNH ! —— L
0 JT‘R.-'—_,
i
or
2 2
L !
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As expected, Equation (b-5) shows that the further away the origin node is from
the destination node (or smaller the R/L value is) and the higher the network is abstracted
(or the higher the L/ is), the more effective the hierarchical searching algorithm will be.
Figure B-2 shows the numerical relationship between the computational efficiency and the
relative trip length as compared to the interval distance under different network density
ratio (//1.). 1t can be found that when the trip length (R) covers more than two freeway
intervals (or R/L>2), the increase of trips length only generates very slight computational
saving. It should be noted that the upper bound of the computation efficiency is P/L* (that

is, when r approaches to infinite).

> 20
g 1 —&—YL=0.1
% 16 —X—|/L.=0.4
T 121 ~DO—yL=08
é ——L=0.01
] |
Eé. 0.8 5
3 o4at1 ¥ "
More efficient A R Y X
0.0 : ; ; -
0 | 2 3 4 5 6 7 8

Trip distance/interval distance (R/L)

Figure B-2. The computational efficiency of the hierarchical label setting algorithm
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(5) Numerical Example

Assume: /=100 (m); R = 10,000 (m)
L = 1,000 (m)

Based on Equation (b-5), the computational efficiency (y) is 0.02. That means the
hierarchical searching method only examines two percent of the nodes that a non-

hierarchical searching algorithm examines,



Appendices 283

APPENDIX C:

ARTIFICIAL NEURAL NETWORK(ANN): AN
INTRODUCTION

An ANN is fundamentally a information processor and it can been trained to
perform a variety of tasks. They have been used successfully in image processing, speech
recognition and solving combinatorial problems. The popularity and successes of ANN
technologies are directly attributed to theirs architecture of easily mapping to a parallel
computation model, its ability to infer patterr.s from data that is incomplete and/or

inaccurate, and its special characteristics in knowledge representation and acquisition.

An ANN consists of a number of simple process elements (PE) linked together via
weighted directed connections as shown in Figure C-1. Each PE (i) receives an input
signal, Xj, from the other PE (j) via incoming connections. There is a weight associated

with each connection, denoted by wjj, which indicates the “effect” of PE (j} on PE (I).
The input signals are combined together and yield a net value (Tj) by a basic fuaction such

as the following commonly used linear function:

T=Yw.X. (c-1)
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Incoming Connections
X1 PEi

el
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Figure C-1 A typical ANN processing element (PE)

This net value is then transformed into an activation value, Yi, as an output of the PE 1 by

a nonlinear activation function such as the sigmoid function:

(c-2)

The output value is then sent to alt the PEs which has outgoing connections associated

with t.

An ANN can simply be viewed as a model with input and output channels. The
input value to an ANN propagates through the ANN until yielding an output of the ANN.
An ANN can learn by adjusting the connection weights (w;) based on examples, i.¢., pairs

of input with desired output. The objective of the learning stage is to find the weights to
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minimize an error function representing the difference between the actual output with
desired output. An error function is commonly defined as a sum of squared errors over all

the output cells,

2 (c-3)
E=052(Y, -D,)
k

where: Y = the actual output on output node k, D is the desired output for

output node k.

The process of identifying the optimal weights can be completed by using many
algorithms. One of the most popular learning algorithm is the back-propagation method
for feed forward neural networks. The back-propagation algorithm is essentially a
gradient decent search algorithm in which the weight adjustments are determined by the
error signals transmitted in the backward direction. For each training example, the input
attributes are fed in from the input Jayer and the output of each PE can be calculated layer
by layer, from the input layer to the output layer, using equations (c-1) and (c-2). The
learning error can then be determined by comparing the output of each celi on output layer
(Y:) to the desired output response, Dx. The amount of error attributed to each cell, §;, is

calculated layer by layer, from output layer to input layer, by using following formula:

(D.=Y)Y.-0'(T) for output PEs
5 ={ I }
Y (c-4)
by Wi -rSm -f'(Tj) for other PEs
m>j

where: T; = defined in Equation (c-1);
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f(T) = Y;.defined in Equation (c-2),

f(Tj) = first derivative, = Yj (1-Yj)

After the §; associated with each PE is calculated, every weight is adiusted by the

following equation:

wij(n)=wij(n—l)+1;r-c‘>'j-Yj +a-Awij(n-l) (c-5)

where: n learning rate;
o = momentum,

Awjj(n-1)=  the weight change at iteration n-1.

The learning rate and the momentum are external parameters which can be

adjusted to improve the training effectiveness and efficiency.
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GLOSSARY

A* algorithm: A heuristic shortest path algorithm that examines nodes in order of their
“likelihood” of being on the minimum path. The nodes that have a higher
“tikelihood” of being on the minimum path are given priority over those with a lower
“likelihood” during search procedure. The “likelihood” of a node being on the
minimum path is defined as the summation of the cost from the origin node to this

node plus an estimated cost from this node to the destination node

Bellman’s “principle of optimality”: A principle that is used as the foundation of
dynamic programming theory. It is stated as: an optimal decision has the property
that, whatever the initial decision is, the remaining decisions must be optimal with
respect to the outcome resulting from the first decision. If applied in shortest path
search, it can be simply interpreted as, any segment of a shortest path is a shortest

path from the beginning node of that segment to the ending node of that segment

Bi-directional search algorithm: A heuristic shortest path algorithm that is composed
of two simultaneous search procedures. One search procedure proceeds forward
from the origin node while another search procedure proceeds backward from the
destination node. The shortest paths are identified when these two search

procedures meet at some middle node(s)
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Branch pruning algorithm: A heuristic shortest path algorithm that limits the search
area by pruning the intermediate nodes that have a lower likelihood of being on the

shortest paths to the destination node

Centralized RGS: A type of RGS architecture where the RGS route for an individual

vehicle is calculated externally to the vehicle in a central location (usually the TIC)

Coefficient of variation (COV): The standard deviation of a random variable divided by

the mean of the random variable

DARP: Dial-a-ride problem, a problem arising in a dial-a-ride system where customers
call a dispatcher in order to request service. Each customer specifies a distinct pick-
up and drop-off location in the service area and usually a desired time for pick-up or
drop-off. The problem is to develop a set of "optimal" routes and schedules for
vehicles to carry the customers from their pick-up locations to their drop-off
locations. DARP can be classified into two problems: subscriber DARP and real-

time DARP

Deterministic network: A network where all the links have or are assumed to have

deterministic travel times

Deterministic travel time: A travel time with a determined quantity

Distance function: A function representing the relationship between the travel distance
between two geographical locations and the coordinates of these two locations, for

example, Euclidean distance function and Manhattan distance function
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Distributed RGS: A type of RGS architecture where the RGS route is calculate bya
computer in the vehicle based on information sent from the TIC. The route

calculation is made regardless of what any other RGS vehicles are doing

Pynamic and stochastic network: A network where some of the links have or are

assumed to have dynamic and stochastic travel times

Dynamic and stochastic travel tirie: .\ travel time which is a stochastic process. That is,
throughout the day, the trave! time is a random variable with a determined

probability distribution

Dynamic minimum path: A minimum path that is calculated based on estimates of link
travel times that are a function of when the driver is estimated to arrive at a

particular fink as opposed to current estimates of the links current travel time

Dynamic network: A network where some of the links have or are assumed to have

dynamic travel times

Dynamic shortest path: See Dynamic minimum path

Dynamic travel time: A deterministic travel time which is a function of the time when a

vehicle enters the link, or the time of day

Expected minimum path: The path with minimum expected travel time from an origin to

a destination with a given departure time in a network
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Heuristic shortest path algorithm: A shortest path algorithm that uses henristic during

its search procedure

Heuristic: A rule of thumb, strategy, trick, simplification, or any other kind of device
which drastically limits the search for optimal solutions 1n large problem spaces.
Heuristics do not guarantee optimal solutions; it is considered useful if it ofters

solutions which are good enough most of the time

K-shortest path algorithm: A solution procedure that is used to find the shortest, the
second shortest and up to ks shortest paths from an origin node to a destination

node in a network

Link: A representation of a section of roadway that connects two nodes and has the same

set of characteristics (for example, speed Limit, capacity)

Link travel time: See fravel time

Node: A representation of a physical location of traffic network (for example,

intersections)

NP-hard: A class of problems for which no pelynomially-bounded algorithm has yet
been found. It has been suggested (but not proved) that the effort required to solve
this class of problems increases exponentially with problem size in worst case.
Heuristic or approximate procedures are commonly resorted to obtain near-optimal

solutions to a problem proved to be NP-hard.
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O-D travel time: Time spend to travel from an origin location to a destination location in

an urban traffic network using a specific transportation mode such as car and transit
Optimal path: See Expected minimum path
Path: Represents a list of sequential links from an origin node to a destination node

Polynomially-bounded algorithm: A procedure whose computational time increases
only polynomially with problem size in the worst case. The class of all problems for

which polynomially-bounded algorithms are known to exist is denoted by P.

Real-time DARP: One type of DARP. In this problem all the customers demand

immediate service, the routing and scheduling is done in real-time

Route: 1) See Path; or 2) A sequence of ocations (for example, pickﬁp and/or drop-off

locations) to be visited

Schedule: Specifies the times at which the activities at specific locations (e.g. pick up or

drop off a customer) are to be carry out

Standard shortest path algorithms: The shortest path algorithms that are used to find

the shortest paths in deterministic networks

Stochastic network: A network where some of the links have or are assumed to have

stochastic travel times

Stochastic travel time: A travel time that has some random component. In this thesis the

travel time is represented by a random variable
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Subscriber DARP: One type of DARP. In this problem the customers call in advance,
and therefore a complete database of customer demand is known before any routing

and scheduling 1s carried out

Time window: A specific time interval during which a service task (for example, pick-up

or drop-off a customer) is required to be completed

TIC: Traffic Information Center, a place where traffic network link travel time

information is stored and disseminated to RGS vehicles or AVDS operation center

Utility function: A numerical function representing the relationship between the degree of
satisfaction (or dissatisfaction) that an individual or group (for example, customers)

associated with a series of decisions or alternatives



