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Abstract

In this thesis, we construct a nonlocal transport model that describes the

evolution of microtubules (MTs) as they interact with motor proteins. MTs,

whose organization is crucial for normal cellular development, have been found

to organize into various patterns in vitro and in vivo through their interac-

tions with motor proteins. In the first part of the thesis, we state results of a

simplified version of the model, a model that describes the interaction of MTs

with stationary distributions of motors. In the second part of the thesis, we

state results for the full model, a model that describes the interaction of MTs

with moving distributions of motors. For both models, an advection-type term

accounts for directed MT transport, and an integral term accounts for reori-

entation of MTs due to their interactions with cross-linking motor proteins.

For our simplified model, directed movement corresponds to a combination

of MT treadmilling and MT sliding (where motor proteins are present). In

the full model, when motors are moving, directed movement corresponds to

treadmilling alone. Simulations of each model show how MT patterns depend

on boundary constraints, as well as different model parameters that repre-

sent motor speed, motor processivity, cross-linking capability (activity), and

directionality.

For stationary motors in large domains, and using model parameter values

for motors that are consistent with experimental values, we find that patterns

such as asters, bundles, and vortices are able to persist. In vivo, MTs take

on aster patterns during interphase. Also, in neurons and polarized epithelial

cells, MTs form bundles. Vortex patterns have not been observed in vivo,

however are found in in vitro experiments. In constrained domains, we find

that similar patterns form. However, we also find that when two opposing

motors are present, anti-parallel bundles are able to form. Such patterns

are similar to those found in the mitotic spindle during cell division. Our

model quantitatively describes how motors are involved in MT patterning.

To date, there are no other models that describe such patterning by explicitly

incorporating motor properties (for stationary motors) into a model for MT

evolution.



For moving motors, we simulate our model using periodic boundary condi-

tions, representing MT organizations in large domains. We do this to compare

our simulation results with results that have been found in vitro. Also, we

simulate our model using parameters consistent with fast and slow processive

motors, fast non-processive motors, and slow weakly processive motors, similar

to the types of motors used in experiments. Similar to experiments, we find

that depending on motor type and density, various types of patterns, such as

arrays of asters, arrays of vortices, and clusters of disorganized MTs exist.

Consistent with previous theoretical models, we find that MT patters de-

pend on motor density. In particular, for specific motor types, MTs form

vortices at low motor density, asters at intermediate values of motor density,

and bundles at high motor densities.
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Chapter 1

Introduction

In this thesis, we develop a mathematical model to describe how microtubules

(MTs) are organized in two-dimensional space as they interact with a class

of proteins called motor proteins. In particular, we develop a novel integro-

partial differential equation to describe MT evolution, that is coupled to a

reaction-diffusion system of equations to describe motor evolution. It is im-

portant to develop and study such models because MT organization (which

is effected by interactions with motor proteins) is directly linked to normal

cellular function. In particular, MTs take on different organizations, with the

aid of motor proteins, where these organizations play a crucial role in cellular

processes such as cell division, cell movement, as well as cell polarization [28].

The importance of MT organization is highlighted in detail in Section 1.3, and

consequences of unregulated MT organization are highlighted in Section 1.5.

MTs were discovered in the mid 1950s [7], and it was at this time that their

structure was fully described (see Section 1.1). One of the most interesting

breakthroughs in the field of MT research was in the 1980’s, when a unique

type of MT behavior, referred to as dynamic instability (described in detail

in Section 1.1), was discovered [31]. It was at this time that MTs also gained

widespread interest in the clinical world [71], in particular in cancer treatment

protocols. The reason for this interest is because MT dynamic instability is

required for cell division. So, by altering the dynamics of MTs, one can alter

the process of cell division in all cells, including those that are cancerous. In

particular, evidence suggests that even minor alterations of MT dynamics can

arrest the cell cycle progression at mitosis, eventually leading to apoptotic cell
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death. A number of different drugs are clinically used to alter MT dynamics

during cell division, with two of the most successful families of drugs being the

vinca alkaloids and taxanes. These particular drugs are used in the treatment

of a variety of human cancers and belong to a large class of drugs referred to

as chemotherapeutic drugs.

The problem of MT reorganization is very exciting because it has only been

in recent years that imaging techniques have advanced to the point where we

can capture 3-dimensional images of MTs, and track their movements over

time. Thus, it is now possible to test model hypotheses experimentally. In

particular, we can use experimental imaging techniques to track the evolu-

tion of MTs and motors, and compare the images captured from experiments

with simulation and theoretical results. An important feature of our model

is that it only has two interacting components, MTs and motors. This fea-

ture is experimentally advantageous, since there are a relatively small number

of biological variables to consider when conducting in vitro experiments (as

compared to MT organization in real cells). In general, we know that there

are many different factors that contribute to MT organization in cells, but in

this project we will focus only on MTs and motors, since in in vitro studies,

it has been shown that MTs organize into many different patterns in systems

comprised only of MTs and motors (as described in Section 1.3). Also, it has

been shown that motors play a key role in MT organization in vivo (as de-

scribed in Section 1.3.2). In particular, our model will describe the individual

movements of MTs (referred to treadmilling, and described in detail in Section

1.1), and their interactions with motor proteins (described in Section 1.2). A

detailed description of MT organization found in vivo and in vitro is given in

Sections 1.3 and 1.4, respectively, and an example of what can happen when

MT organization is disrupted is given in Section 1.5. For the major questions

addressed in this thesis, and a preview of the thesis results, please refer to

Section 1.6.

1.1 Microtubule structure and dynamics

Microtubule structure : Microtubules, along with actin polymers and in-

termediate filaments, are a main type of cytoskeletal filaments that make up
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Figure 1.1: Structure of a single microtubule showing 13 protofilaments, each is composed
of α- and β-tubulin heterodimers, connected laterally forming a hollow cylinder.

the cytoskeleton of cells [28, 65]. MTs are rigid protein polymers that are

composed of a single type of globular protein called tubulin. Tubulin is a

heterodimer, consisting of the protein subunits α- and β-tubulin, that poly-

merize in the cell to form MTs. In general, 13 protofilaments are associated

with a single MT (see Figure 1.1). The protofilaments are arranged linearly,

connected side-by-side in a circular fashion, so that each MT forms a long

cylinder with a hollow core.

Along each protofilament, the α- and β-tubulin are aligned in a head-to-

tail fashion, so that each MT is a polar structure with two distinct ends. The

positive end (the end with the majority of the β-tubulin) is generally more

dynamic, being able to grow and shrink relatively fast, while the negative end

(the end with the majority of α-tubulin) is less dynamic with slower growth

and shrinking rates. A MT grows (polymerizes) by the addition of tubulin

dimers and shrinks (depolymerizes) by the subtraction of tubulin dimers.
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Microtubule dynamics: As stated above, MTs typically grow through the

addition of tubulin dimers at the positive end of a MT. During growth, both α-

and β-tubulin units are bound to a guanosine-5’-triphosphate (GTP) molecule,

an energy source that is essential for the polymerization of MTs [20, 28, 65].

The GTP bound to the α-tubulin is not exchangeable for the lower energy

guanosine diphosphate (GDP) (and so it is stable), while the GTP bound to

the β-tubulin can be hydrolyzed to the lower energy GDP. In order for MTs to

grow, the positive end of the MT must contain β-tubulin bound to the higher

energy GTP. If the tip of the MT contains the lower energy GDP, the end of

the MT becomes unstable and is prone to depolymerization. In general, if a

cap of tubulin dimers with GTP-bound β-tubulin exists at the front (positive

end) of a MT, it can continue to grow. However, if hydrolysis catches up with

the growing end, the MT will collapse, and quickly depolymerize. This process

is referred to as a catastrophe. Once the end of the MT exchanges GDP for

GTP, the MT tip can rebuild its cap and start growing again. This process

is referred to as a rescue. The unique GTP binding and hydrolysis property

of MTs gives them two interesting dynamic properties, referred to as dynamic

instability [31, 68] and treadmilling [38, 67].

Dynamic instability was discovered by Mitchison and Kirschner [31], and

refers to the slow polymerization of a MT followed by a much faster depoly-

merization (see Figure 1.2). This behavior has been observed both in vivo and

in vitro, and is a common type of behavior found in most cell types.

MT treadmilling is a chemical process that is defined as the steady-state

unidirectional flux of subunits through a polymer as a result of continuous net

assembly at one end of a polymer and continuous net disassembly at the other

end. In MTs, this means that the reaction rate of assembly of tubulin dimers

at the positive end of a microtubule is approximately the same as the rate of

disassembly at the negative end of the same microtubule. The net result is

the apparent directed (constant) motion of the MT towards its positive end

(see Figure 1.2).

In general, MT treadmilling is a slower process than dynamic instability,

however, both processes have been found to be key contributors to MT re-

organization. In particular, mathematical models of aster formation in fish
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Figure 1.2: Dynamic instability and treadmilling in microtubules. Picture taken from [?].

melanophores reveal how MT asters form by MT treadmilling and nucleation

alone [9] (an example of aster configuration shown in Figure 1.5(a)). Also, the-

oretical models describing MT organization resulting from dynamic instability

show the existence of exponentially decreasing MT length distributions [10, 70].

Such results are similar to length distributions found in many cell types that

take on a centrosomal (aster) configuration. Other examples describing the

importance of treadmilling and dynamic instability in MT organization are

given in Section 2.1 and 2.2, respectively.

1.2 Motors and microtubule associated pro-

teins

There are many different types of proteins that associate with MTs, affect-

ing their organization, stability, and growth dynamics. Two important types

of proteins which we will discuss in detail here include motor proteins and
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Figure 1.3: Motor interactions with MTs. (a) MT alignment by a motor protein. (b) MT
sliding by static motor.

microtubule associated proteins (MAPs) [28, 65].

Motor proteins are ATPases, and so are driven by the hydrolysis of adeno-

sine triphosphate (ATP). ATP hydrolysis is the reaction by which chemical

energy that has been stored and transported in the high-energy phosphoan-

hydridic bonds in ATP is released, where the product left over is adenosine

diphosphate (ADP). By transforming chemical energy into work, they are

able to walk along MTs, carrying important proteins (at their cargo domain)

around the interior of the cell.

Motor proteins can affect MT organization in a number of ways; however,

here we assume that the two primary ways they do so are by (1) helping to

align MTs parallel with one another [44, 58], and (2) by aiding in MT directed

transport (MT sliding) [19, 57]. MT alignment occurs when motor proteins are

attached (or cross-linked) to two MTs simultaneously. As they walk along MTs

(either towards their positive end or negative end), they produce pushing and

pulling forces that help to reorient the MTs (see Figure 1.3(a)). MT sliding

occurs when a motor is attached (absorbed) to a non-moving substrate at its

cargo domain, where their free legs are able to attach to a MT. Since the

motor remains stationary, it effectively pushes the MT along its own axis as it

walks along it. Such a sliding mechanism has been used in in vitro experiments,

when the cargo domain of a motor is absorbed to a slide or coverslip [69, 15](see

Figure 1.3(b)). A mathematical description of such a motion is similar to MT

6



Cargo domain

Motor domain

Figure 1.4: A dynein and kinesin motor attached to a microtubule. Picture taken from
[?].

treadmilling in that both types of motion describe directed movement of MTs

along their axis. The only difference is that MT treadmilling can occur when

motors are not present (MT sliding requires motors).

MTs are associated with two main families of motor proteins, kinesin and

dynein (see Figure 1.4) [28, 65]. Kinesin, also referred to as a positive-directed

motor, moves towards the plus end of MTs and is comprised of two heavy

chains that wrap around each other in the central stalk region (an alpha-

helical coiled-coil domain). One end of each heavy chain is attached to the

MT, while the other end is connected to the cargo domain, which is comprised

of protein light chains. Dynein, a negative-directed motor, moves towards the

minus end of a MT and is comprised of two heavy chains with globular heads

that attach to the MT. Two stalks connect the heavy chains to light chains

located at the motor’s cargo domain.

There are a number of important motor properties that determine the

extent to which MT alignment and sliding aid in MT reorganization. These

properties include the speed of the motor, the ability for the motor to attach

to two MTs simultaneously (to cross-link), motor concentration [57, 19, 59,

58], and the kinetics (processivity) of the motor (the rate at which a motor

attaches/detaches from a MT). Processive motors are able to walk along MTs

for long periods of time, while non-processive motors may only walk along

MTs for short periods of time, or not at all. In Section 1.4, we describe how
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differences in these motor properties have been found to alter MT organization

in vitro.

MAPs are another type of protein that interact with MTs [28, 65]. Many

of these proteins identified to date are found in neural tissue, however there

are a small number that have been found to have widespread cellular distri-

bution. Examples of MAPs that have widespread distribution include MAP3

and MAP4, while other MAPs, including MAP1, MAP2, and tau, are only

found in neural cells.

In general, MAPs have a number of different important functions. For

example, some MAPs help MTs to form bundles by forming cross-bridges

between MTs, while others increase MT stability, alter rigidity, or influence

the rate of assembly. Three well studied MAPs isolated from the brain, MAP1,

MAP2, and tau, are thought to be involved in stabilizing MTs against dynamic

instability. Although these proteins play a role in organizing MTs, we will not

include them in our model efforts.

1.3 Microtubule organization in vivo

In the previous sections, we have described how single MTs are structured,

as well as some of the important proteins that interact with them. We also

described some of the important types of dynamics that single MTs undergo.

However, to fully understand MT function within cells, it is not only important

to understand how single MTs behave, but also how groups of them interact

and how they are organized within a cell. We will review general MT organi-

zations in Section 1.3.1, and describe in detail those that will be of particular

interest in this thesis in Section 1.3.2.

1.3.1 General organizations of MTs

MTs organize into different structures depending on the cell-cycle stage, as well

as the cell type [29, 56, 66]. Three primary cell-cycle stages are cell growth (G1

and G2), interphase (S), and mitosis (M) [28]. Also cells can enter a resting

phase (G0), called quiescence. Most cells that are in a quiescent stage, as well

as cells that are in interphase (non-dividing stage), have MTs that take on
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a centrosomal configuration (an astral configuration of MTs), similar to that

shown in Figure 1.5(a). During interphase, DNA is replicated and MTs grow

from the centrosome (where they are also nucleated). MTs are anchored at

the centrosome by their negative ends [28]. As MTs grow from the centrosome

by addition of tubulin dimers at the positive end of the MT, they organize

into a single aster that helps to provide structural support for cells, as well as

to provide a means to transport important proteins from the center of the cell

to the cell surface (via motor proteins).

In contrast, during mitosis, MTs reorganize as the cell prepares to di-

vide [28]. During mitosis, chromosome alignment and segregation depends

primarily on interactions between the cells kinetochore and the mitotic spin-

dle. The mitotic spindle is composed of a tight bundle of MTs located at the

cells dividing center (see Figure 1.5(b)), and the kinetochore is a proteinaceous

chromosome component located at the center of the mitotic spindle. Along

with the MTs associated with the mitotic spindle, two asters of MTs exist at

the poles of the cells, being centered at the two replicated centrosomes.

MTs not only take on different configurations during various stages of the

cell cycle, they also take on different configurations depending on the cell

type [29, 56, 66]. A common type of motile cell, called a fibroblast, takes on

a centrosomal-type configuration of MTs (see Figure 1.5(a)) [28]. These cells

group together and are a type of connective tissue cell that secrete collagen and

other components of the cells extra cellular matrix (ECM). Since fibroblasts

are motile cells, they can move around, and so can proliferate and migrate

during wound healing and in tissue culture.

Other types of specialized cells, such as skeletal muscle cells, neurons, and

epithelial cells, contain large numbers of non-centrosomal MTs [29]. Such

non-centrosomal organizations are essential for these cells to carry out their

specialized activities. For example, in neuronal cells, MTs are organized in

parallel arrays along the length of the cell axon, with their negative ends

directed towards the centrosome [29, 35]. Such a configuration allows for long-

distance transport of proteins and vesicles along the axon (via motor proteins)

that would not be possible for a single centrosomally located MT to achieve

on its own [17]. In cylindrical shaped polarized epithelial cells (e.g., cells of

the liver, intestine, kidney and cochlea), MTs are aligned parallel to the baso-
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(a)                  (b)                    (c)                     (d)
Figure 1.5: MT organization in vivo. Top row shows schematics while bottom row shows
images taken from real cells. Images (a), (b), and (d) show images of black and white
pictures in fluorescent labeled MTs [11], and image (d) is a 3D reconstruction based on
confocal optical sections using transition electron microscopy [4]. The blue line shows the
MT orientation. (a) Centrosomal configuration of MTs in cross-section of a fibroblast. MTs
are in an aster configuration and are anchored at their negative ends at the cells centrosome
(shown in red). (b) MT configuration in cross-section of a typical dividing cell. Two asters
of MTs are located at the spindle poles, centered at the replicated centrosomes, while an
anti-parallel bundle of MTs, referred to as the mitotic spindle, is located at the cell center.
(c) A polarized MDCK cell showing a distinct peripheral apico-basal parallel MT array. (d)
MT organization in a plant cell. MTs are arranged in a mixed parallel bundle.
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lateral walls of cells with their negative ends anchored at the cells adherens

junction (AJ), and their positive ends located at the basal surface (see Figure

1.5(c)). Such a configuration allows for vectorial transport of proteins between

the apical and basal domains via MTs, as well as polarized sorting of membrane

components [5, 29, 41].

Although there is much information regarding the static organizations that

MTs can take on, a description of how MTs move between these configurations

is incomplete. For example, it is not fully understood how MTs move between

a centrosomal configuration shown in Figure 1.5(a) to the configuration shown

in Figure 1.5(b) during cell division. Also, in some types of specialized cells,

such as columnar epithelial cells described above, MTs move from a centroso-

mal configuration when epithelial cells are not polarized (when cells are not

connected to one another) to a polarized configuration as shown in Figure

1.5(c)(when cells adhere to one another).

1.3.2 In vivo MT/motor systems of interest

In this thesis, we will focus on a variety of MT organizations found in cells.

Three examples we consider include MT organizations associated with the

cell-cycle stages of cell interphase, cell division, and the MT organization as-

sociated with polarized neurons. In particular, we will provide insight into

how negative-focused asters are established and maintained, similar to orga-

nizations formed during cell interphase (as shown in Figure 1.5(a)) and at

the spindle poles of dividing cells (as shown in Figure 1.5(b)). We will also

describe how anti-parallel organizations of MTs can be formed, similar to the

organization of MTs of the mitotic spindle (as shown in Figure 1.5(b)). Also,

we describe how parallel bundled organizations of MTs are formed, similar to

those found along the axons on neurons. As stated earlier, we will focus on

how these organizations arise in systems comprised of only motor proteins and

MTs.

In interphase and during cell division, the motor protein cytoplasmic dynein,

a processive, negative-directed motor, has been shown to be involved in the es-

tablishment of radial MT arrays. In particular, during mitosis, dynein activity

is required for the tethering of MTs at spindle poles [55]. Also, in interphase
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cells, dynein activity has been found to prevent the loss of MTs from their

radial array, as well protecting them (the MTs) from disruption [8].

In dividing cells, it has been proposed that mitotic spindle formation and

movement can be explained by a sliding filament mechanism [55, 26]. That

is, a mechanism by which certain cross-linking motors attach to two MTs

simultaneously and slide MTs anti-parallel to one another. A number of mi-

totic motors have been discovered, and it is believed that the slow moving,

positive-directed, weakly processive motor (kinesin-5), along with an opposing

negative-directed motor, act between overlapping MTs to form these anti-

parallel arrays. Kinesin-5 is able to form cross-links and has been found to

slide MTs relative to one another. A possible candidate for the opposing

negative-directed motor is kinesin-14 (commonly referred to NCD). Such a

motor is very fast, but not processive. However, such a motor stably anchors

itself along one MT and is able to generate force (non-processively) along a

second MT, aiding in MT bundling.

In neurons, forces involved in axonal extension are unclear. However, it has

been found that the fast, processive, positive-directed motor protein, kinesin-1

(also called conventional kinesin), may help provide the force for axonal growth

by aiding in the sliding of MTs. Recall, as described above, that the axon of

neurons is composed of very tight bundles of parallel MTs [23]. Other proteins,

such as cytoplasmic dynein and kinesin-5, are found in neurons, although their

roles are not entirely understood. Some studies suggest that these proteins are

associated with retrograde and anterograde transport of vesicules and short

MTs, respectively [18]. Also, other studies have shown that kinesin-5 is able

to cross-link MTs and aid in MT sliding [26].

1.4 Microtubule organization in vitro

In an effort to understand how MTs reorganize in cells, a number of in

vitro (and in situ) experiments have been conducted to examine the types

of MT patterns found in systems comprised of only MTs and motor pro-

teins [63, 59, 40, 51, 43, 44, 58, 19]. Such studies show that, depending on MT

and motor properties, as well as the size and shape of the boundary, various

MT patterns, such as those described in Figure 1.6, can be found. Some of
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Figure 1.6: MT patterns organized in vitro by the action of multimeric motor complexes.
MTs are visualized using dark-field microscopy [58]. Top row shows schematics while bottom
row shows images taken from experiment. Blue lines represent MT orientation. (a) Vortices,
(b) negative and positive-focused asters, (c) bundles, (d) and anti-parallel bundles.

the first MT patterning experiments, completed in the early 1990s, were glid-

ing assays [63], comprised of both positive and negative-directed immobilized

motors and moving MTs. These experiments show how anti-parallel bundles

of MTs can form in vitro when motors of opposite directionality interact with

freely moving MTs (see Figure 1.6(d)).

Newer experiments (late 1990s-present) have looked at MT patterning in

systems comprised of MTs and moving motors [43, 44, 58, 19]. Some studies

consider one motor type [43, 44], while others consider two (two motor types

with different directionality) [58, 19]. A well-known study of MT/motor orga-

nization using a single type of moving motor is that by Nédélec et al. [44]. This

study highlights the dependency of motor concentration on MT patterning.

In particular, this study shows that, depending on the motor concentration,

a variety of patterns including vortices, asters, and bundles can be formed.

MT patterns are formed by uniformly mixing stabilized MTs (stabilized by

Taxol) and kinesin motors in very large (quasi)-2-dimensional domains. Dif-

ferent patterns are obtained by varying the motor concentration. For low
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Figure 1.7: MTs form asters in mixtures with a processive NCD motor construct. MTs
are visualized using dark-field microscopy [58].

motor concentrations (< 15µg/ml kinesin), vortices are found (as in Figure

1.6(a)), for low-medium motor concentrations (∼ 25µg/ml kinesin), mixtures

of asters and vortices are found, and for medium-high motor concentrations

(∼ 37.5µg/ml kinesin), lattices of just asters are found (as in Figure 1.6(b)).

Finally, for very high motor concentrations (∼ 50µg/ml kinesin), MT bundles

are found (as in Figure 1.6(c)).

Other studies by Surrey and Nédélec et al. have described the importance

of motor processivity, motor speed, and motor directionality on MT pattern-

ing [58]. In particular, MT patterns formed using positive-directed motors

are different from those which use negative-directed motors. In mixtures of

MTs and NCD motors (negative-directed motors), negative-focused asters are

formed at moderate and high motor densities (as in Figure 1.7), while in mix-

tures of MTs and positive-directed motors, vortices are formed at moderate

motor densities and positive- focused asters are formed at high motor densities

(as in Figure 1.8).

Another important consideration in the study of in vitro MT patterning

is boundary constraints. In particular, some cells are very large (with cross-

sections on the order of 100 × 100 µm2), while others are very small (with

cross-sections on the order of 10× 10 µm2), and so the size and shape of the

boundary used in experiments is an important feature that should be analysed.

A recent study by Vignaud et al.[64] suggests that local effects occurring at

the boundary of a cell can propagate long distances throughout the entire
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Figure 1.8: MTs form vortices in mixtures with medium concentrations of kinesin motors,
and asters in mixtures with higher concentrations of motors. MTs are visualized using
dark-field microscopy [58].

Figure 1.9: Self-organization in constrained geometry of micro-fabricated chambers etched
in glass [44]. MTs observed by dark-field microscopy. MTs form asters, but buckle at the
boundary when they grow long enough and form vortex patterns.

MT network, changing the qualitative organization of MTs. An example of a

study that has explored the importance of boundary constraints on overall MT

patterning is that of Nédélec et al. [44]. Here, the author describes the effect

of confined geometries on MT patterns (see Figure 1.9). In smaller domains,

asters initially form. However, as MTs grow and reach the boundary, they

begin to buckle and the system breaks down into a global vortex pattern.

1.5 Unregulated MT organization

One question that arises when studying MT organization is, what happens

when MT organization is altered? One major area of study that addresses this

question is epithelial to mesenchymal transition (EMT), as a step in cancer

progression [33, 62, 61]. EMT occurs when polarized epithelial cells lose their
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polarization and adhesive characteristics, to become mesenchymal cells, cells

that are non-epithelial with migratory characteristics that are loosely embed-

ded in the extracellular matrix. EMT occurs naturally in many developmental

processes. For example, in vertebrates, it is required for the formation of neural

crest cells, which delaminate (split) from the dorsal-most region of the neural

tube. However, EMT is also a key step in the metastasis of many different

kinds of cancers. In particular, this happens when polarized epithelial cells

of a cancerous tissue lose their polarization and adhesive characteristics and

break down the extracellular matrix, migrating and eventually gaining access

to the circulatory system. There are a number of steps involved in EMT, where

one of the main steps involved is the reorganization of the cytoskeleton [33].

In particular, studies have shown that MTs (and not actin) are necessary for

basement membrane stabilization. When MT dynamics are altered, so that

they move from their bundled configuration as in polarized epithelial cells, the

basement membrane becomes unstabilized and the cells become motile.

1.6 The Thesis Overview

The goal of this research project will be to address the topic of MT organiza-

tion. In particular, we develop an integro-partial differential equation (PDE)

model to describe how MTs and motor proteins evolve through space and time

as they interact with one another.

As stated above in Section 1.2, there are many proteins that interact with

MTs. However, in this project, we will only look at the behavior of MTs as they

interact with motor proteins. We do this for a number of reasons, the first being

that it is easier to construct a model with only two interacting components

as opposed to many interacting components. Also, from the experiments of

Nédélec et al. [58], it is known that MTs can reorganize into many different

varieties of patterns in systems comprised of only MTs and motors. Finally, it

is interesting to focus on the importance of motors in the reorganization process

since motors have been found to be a key contributor to MT reorganization

in vivo, as described in Section 1.3.2.

We will develop our model by assuming that MT pattern formation (or-

ganization) is governed by one of two mechanisms: treadmilling and motor
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protein action. Recall from the sections above that treadmilling accounts for

movement of a MT along its axis, with constant speed, and motor proteins

can reorient MTs when they crosslink two MTs simultaneously and walk along

them. Later, in the future work section of Chapter 8, we will describe some

modeling ideas to incorporate MT dynamic instability into our model.

To begin addressing the question of how MTs reorganize in the presence of

motor proteins, we give a detailed description of previous modeling efforts in

Chapter 2. Such modeling efforts will be useful tools when constructing our

model, which is outlined in Chapter 3. In particular, for our model, we will

make use of some of the older models that have been developed, as well as

make some novel extensions of our own.

In Chapters 4 and 5, we describe results of a simplified version of our model.

In particular, we study the evolution of MTs under the influence of stationary

distributions of motors. In this case, the model is simplified to a well-studied

transport type (Bolzmann) equation for MT movement, and is analogous to

gliding assays [63] (experiments where motors are absorbed to slides).

In Chapter 4, we describe results of the transport model under further

simplifications. In particular, we describe long-term MT patterning when MTs

do not treadmill, and show how MT patterns evolve when influenced solely by

motor cross-linking capability. When MT cross-linking capability is high, MTs

form bundles, and when it is low, MTs form asters. Also, in this Chapter, we

describe the parabolic scaling of the transport model. Such a model describes

the types of MT patterns that form when MT treadmilling is slow, but MTs

switch orientation (due to their interactions with motor proteins) very quickly,

and results in a diffusion-type equation for MT movement.

In Chapter 5, we describe results of the full transport model using either

periodic boundary conditions or a novel bounce back boundary condition (de-

scribed in detail in Section 3.4). Here, directed MT transport is not only a

function of MT treadmilling, but is also a function of MT sliding. We show

that, for non-processive motors (when directed motion is only a function of

MT treadmilling, and not sliding), MTs form vortices when MT cross-linking

capability is low and motors are located on the boundaries. MTs can only

change orientation on the boundaries if motors are located there. If there are

no motors on the boundaries, all MTs eventually end up on the boundaries.
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For non-processive motors, we also show that MTs are able to form bundles

when cross-linking is high. For one type of negative-directed processive mo-

tor, we find similar results (negative-directed motors cause sliding to occur in

the same direction as treadmilling). When we include two types of processive

motors (motors with opposite directionality), we find a larger variety of pat-

terns are able to form. In particular, using periodic boundary conditions, in

systems of slow moving, negative-directed motors, and fast moving, positive-

directed motors, if cross-linking capability is high, a single aster forms. If

cross-linking capability is low, arrays of vortices form. Also, using bounce

back boundary conditions, and two types of opposing processive motors, we

find arrays of anti-parallel bundles. This result is similar to that found in

gliding assays [63, 59, 19]

In Chapters 6 and 7, we show results for the full model for MT evolution.

Here, motors are able to move. First, in Chapter 6, we develop a novel ex-

istence and uniqueness result for the full model, which is based on Banach’s

Fixed Point Theorem [52]. Then, in Chapter 7, we describe numerical results

for the full model. Here we show that the MT patterns found are different

from those that are found in Chapter 5. We consider three classes of motors:

processive, weakly processive, and non-processive, and use model parameters

that represent each motor type when running simulations. We find for fast

moving, processive, negative-directed motors, arrays of asters form in low to

high motor density systems, similar to results found from experiment [58].

Also, for slower moving, processive, positive-directed motors, arrays of vor-

tices are able to form in low density motor systems. This result is also similar

to that found in experiment [58].

Finally, in Chapter 8, we discuss the conclusions of our model, as well as

give a description of interesting ideas and questions that can be explored in

future studies. In particular, we discuss not only the successes of our model,

but we also examine limitations and describe how we can go about making

our model better at predicting MT patterns.
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Chapter 2

Previous Modelling Efforts

In the previous chapter, we gave an introduction to many of the important

concepts regarding MTs and their organization. We described MT structure,

as well as organization, and described briefly how MT structure and orga-

nization are related to their function. One of the important questions that

arose from this discussion was how MTs reorganize within cells. In particular,

what are the contributing mechanisms involved in reorganizing MTs from one

configuration to another during the cell-cycle stages and within various cell

types?

In this chapter, we describe an overview of present literature that provides

an explanation of some of the mechanisms that contribute to MT pattern-

ing both in vitro and in vivo. Such literature describes a variety of models

including experimental, computational, as well as theoretical. Many of these

models have been successful in capturing important qualitative features of MT

patterning. However, many models are overly simplified and do not provide

detailed insights into the underlying biology of how MT dynamics and motor

proteins affect MT organization. The goal of this chapter will be to describe

some of the previous modelling efforts, and to outline the successes and lim-

itations of these past models. In the next Chapter, Chapter 3, we use this

information to piece together a framework for the development of our own

theoretical model.
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2.1 Models of dynamic instability

It is well known that MT dynamic instability plays a role in MT pattern-

ing [10, 16]. The first experiment to capture the unique behavior of dynamical

instability was completed by Mitchinson and Kirschner in 1984 [31, 39]. In

this experiment, the authors examined MTs nucleating from the centrosomes

of fibroblastic-type cells (cells that take on a centrosomal configuration in in-

terphase as in Figure 1.5(a)) and found that two distinct populations of MTs

co-existed. In particular, they found that below a critical concentration of

free tubulin (∼= 14µM) some MTs were found to shrink while others grew, al-

though the total MT polymer mass decreased. Above this critical value, they

found that MTs grew and that the total polymer mass increased. The type

of behavior exhibited by MTs at low free tubulin concentration has only been

observed in MTs. They coined this behavior dynamic instability (see Figure

1.2).

Not only are populations of growing and shrinking MTs found in cells that

take on a centrosomal configuration in interphase (as in the Mitchinson and

Kirschner experiment), but they are also found during other cell-cycle stages,

where MTs are not in a centrosomal configuration. An example of this is during

cell division, when astral MTs (those MTs that are centered at the spindle

poles, radiating out towards the cell periphery) elongate, while MTs of the

mitotic spindle attach to the cell’s kinetochores and shorten [36]. Kinetochores

are centromere-based protein complexes that attach to MT positive ends at

the center of the mitotic spindle. As the spindle MTs shorten, the kinetochores

help to capture and transport chromosomes to opposite cell ends [36].

One of the first computational models developed to describe dynamic insta-

bility of MTs was developed by Hill and Chen [20]. Hill and Chen used Monte

Carlo kinetic simulations to describe dynamic instability at the extreme tip of

a MT. They called their model the ‘cap’ model. The word ‘cap’ comes from

the resulting behavior found from simulations. In particular, they found that

below a critical concentration for tubulin (∼= 2µM), MTs exist in either one

of two phases, capped (by GTP) or uncapped. In the capped phase, the MT

grows (with a fluctuating size in cap), and in the uncapped phase the MT

quickly collapses. Although this model is useful at capturing the qualitative
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description of MT dynamic instability found in experiment, it does not give

a realistic quantitative description. In particular, from these simulations, a

critical concentration of ∼= 2µM was found, as compared to the experimental

value of ∼= 14µM found by Mitchinson and Kirschner [31].

One of the first theoretical models describing the importance of dynamic

instability in MT patterning was proposed by Dogterom and Leibler [10]. The

goal of the authors was to describe how the length distributions of MTs evolved

in systems of non-interacting, growing and shrinking, MTs. An example of

such a system found in vivo is one where MTs are organized radially (as in

Figure 1.5 (a)). In this configuration, MTs remain static at their negative

ends and dynamic at their positive ends. The model describing the evolution

of growing and shrinking MT densities of length x at time t, given by G(x, t)

and S(x, t), respectively, is

∂G

∂t
+ γg

∂G

∂x
= νRS − νCG, (2.1)

∂S

∂t
− γs

∂S

∂x
= νCG− νRS. (2.2)

The parameter γg is the MT growth rate, γs is the MT shortening rate, νC is

the frequency of catastrophe, and νR is the frequency of recovery for a MT.

Through numerical simulation of the model, using semi-infinite boundary

conditions, Dogterom and Leibler found that the resulting system displays un-

bounded growth of MTs for certain parameter ranges, as well as bounded, ex-

ponentially decreasing MT length distributions for other parameter ranges [10].

Other models, such as that by Bolterauer et al., have also shown exponen-

tially decreasing length distributions [6]. Also, recent extensions to Dogterom’s

model, that include a more biologically realistic bounded domain (i.e., us-

ing closed boundary conditions), show similar results [16]. In particular, like

Dogterom, the model of Govindan et al. describes exponentially increasing

length distributions for certain parameter ranges, and exponentially decreasing

length distributions for other parameter ranges. The only difference between

the models of Dogterom and Govindan is that distributions always remain

bounded when using closed boundary conditions, as in Govindan’s model.
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2.2 Models of MT treadmilling

Other experiments show that MTs, like many other polymers, undergo tread-

milling both in vivo and in vitro (see Figure 1.2) [38], and that treadmilling

can play a major role in MT patterning. In particular, in studies of fish

melanophor fragments, short MTs, nucleated by pigment granules, are found

to be transported through the cytoplasm of cells by treadmilling leading to as-

tral configurations [53]. Also, as epithelial cells polarize, MTs move between a

centrosomal configuration, to one where MTs align parallel to the apico-basal

surface of the cell (described in Figure 1.5(c)). It has been hypothesized that

MT reorganization during polarization is aided by MT treadmilling [29].

Recently, Allard et al. have developed a computational model to describe

the spatial and temporal organization of cortical MTs in plant cells [1]. In

such systems, many MTs have free negative ends so that they can treadmill at

the cell cortex. During cell elongation, MTs predominantly orient transverse

to the elongation axis (as in Figure 1.5(d)). Using the key assumption that

MTs treadmill, Allard was able to predict MT patterns that are similar to

those found in real plant cells. In particular, Allard showed that MTs form

parallel (and dispersed) arrays of MTs that align transverse to the axis of

elongation of the plant. Also, computational studies completed to describe the

astral patterns of MTs found is fish melanophore, have found that nucleation

of MTs and MT treadmilling is sufficient to form asters within a confined

geometry [37].

In fish melanophore cells, pigment granules aggregate to the center of cells

via dynein motor transport along MTs. As stated above, MTs are organized in

a centrosomal fashion (as in Figure 1.5(a)), so that when granules aggregate to

the center of a cell along MTs, only a single spot of color is found at the center

of each cell. Pigment granules are signalled to aggregate to the center of cells

along MTs when a fish requires camouflage from predators [42]. Recently,

a 1-dimensional theoretical model (−L < x < L), given by equations (2.3)

through (2.6), has been developed to describe how these aggregates form in

melanophore fragments (such fragments do not contain a centrosome) [9].
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∂pr,l
∂t

= ±vp
∂pr,l
∂x

+ n(g) (2.3)

∂mr,l

∂t
= ±∂(v(g)mr,l)

∂x
+ n(g) (2.4)

∂gr,l
∂t

= −koffgr,l + konNr,l ∓ vg
∂gr,l
∂x

(2.5)

∂gs
∂t

= koff (gr + gl)− kon(Nr +Nl)gs. (2.6)

Such equations are used to track the spatial and temporal evolution of right

and left moving positive densities pr,l(x, t), and right and left moving negative

densities mr,l(x, t) of MTs through space x and time t. Here, right (left) ori-

entations correspond to negative ends located to the right (left) of the positive

ends. The variable gr,l is the local concentration of the right- and left- moving

granules, respectively, and gs is the local concentration of the static granules

(those that are not attached to MTs). The first term on the right-hand side

of the equations (2.3) and (2.4) describes advection of positive ends at a con-

stant rate vp and of negative ends at a rate v(g) (and is thus used to describe

treadmilling). The second terms describe nucleation with a rate n(g). Equa-

tions (2.5) and (2.6) are used to keep track of the density of pigment granules

g(x, t) at each point in space and time (here, g = gs + gr + gl). The last term

in equation (2.5) describes the gliding of the granules along MTs with speed

vg. The first terms in the equations (2.5) and (2.6) are responsible for the

dissociation of the granules from the MTs with the constant rate koff , while

the second terms describe the attachment of the static granules to the MTs

at a rate kon. The rates of attachment to the right- and left-oriented MTs are

proportional to the corresponding MT polymer densities, Nr,l(x, t).

2.3 Models of MT-motor interaction

In the last two sections, we described how MT dynamic instability, as well as

MT treadmilling, contribute to MT organization. Both these mechanisms are

important in describing how MTs can change length, as well as how they can

be transported in one direction through a cell, respectively. However, they do
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not explain how MTs can change orientation within a cell. Here we describe

the mechanism of motor protein action on MTs. Such a mechanism provides

an explanation for how MTs can change orientation within cells.

Recent experiments have provided evidence that simple systems consisting

of only motor proteins and MTs are enough to construct patterns such as

asters, bundles, and vortices (see Figure 1.6) [44, 43, 58]. Recall from the

previous section, that asters are found in dividing cells, as well as cells in

interphase (Figures 1.5(a) and (b)). Also, bundles are found in dividing cells

(i.e., the mitotic spindle shown in Figure 1.5(b)). However, vortices are not

found in nature.

In vitro experiments show that MT patterning is dependent on motor type.

In particular, MT orientation can be affected by motor directionality [63, 59],

processivity [19], motor speed [19], as well as the time a motor spends at the

MT end. Also, MT patterning is affected by motor concentration [58].

Studies highlighting MT patterning in systems of MTs and motors, where

motors have different directionality, date back to the early 1990s [63]. During

this time, gliding assays were completed to better understand the overlap

of antiparallel MTs in the mitotic spindle. These experiments involve using

immobilized motors (absorbed on a coverslip), where it is proposed (from lose-

of-function experiments) that the anti-parallel structure is a result of balanced

activities of motors with opposite directionality. In particular, such structures

require two types of motors (each with different directionality). For example,

in an early gliding assay completed by Vale et al. [63], the author uses an

artificially constructed kinesin-1 motor (positive-directed), and cytoplasmic

dynein. To test whether or not naturally occurring motors could be used to

obtain more biologically realistic results, a recent study by Tao et al. [59] use

both naturally occurring mitotic motors kinesin-14 (negative-directed motor

also referred to as NCD) and kinesin-5 (positive-directed). In both studies,

anti-parallel structures form, however, these structures are not stable.

In the gliding experiments described above, motors are immobile. In real

cells, motors are able to move freely within the cell. To test whether new

MT patterns would be observed with moving motors, a recent study involving

the naturally occurring mitotic motors kinesin-14 and kinesin-5 was completed

by Hentrich and Surrey [19]. Such results show how motor processivity and
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motor speed affect MT patterning. Similar to the gliding assays described

above, results show that anti-parallel MT patterns do exist in such a system.

However, results also show that kinesin-14 is able to focus MTs into asters,

whereas the kinesin-5 is not [19]. The reason for this has to do with the

different properties of each motor. In particular, kinesin-5 moves at rates

between 0.01− 0.04 µm/s, while kinesin-14 moves much more quickly at rates

approximate to 0.1 µm/s [59]. Also, the kinetics of kinesin-14 are found to be

very fast, whereas those of kinesin-5 are not [19]. That is, kinesin-14 attaches

and detaches from MTs very quickly, and as a result is not processive (kinesin-5

is found to be weakly processive).

Before the studies of Hentrich and Surrey [19], similar studies describing

MT patterning in the presence of freely moving motor proteins were com-

pleted using artificially constructed motors [44, 58]. In these studies, it was

found that artificially constructed NCD was able to form negative-focused

asters at medium and high motor concentrations, whereas a positive-directed

oligomeric kinesin was able to form vortices at moderate motor concentrations,

and positive-focused asters at higher concentrations. In this experiment, the

motors forming only asters were highly processive and had long residence times

at MT ends.

Over the past few decades, both local and non-local theoretical models have

been proposed to describe how MT patterning occurs in systems comprised of

motor proteins and MTs. In general, MT gliding can be described by advection

(directed movement), placing these models in the category of transport-type

models. Transport type models are defined as models where the particles of

interest are defined by their position in space, time, and velocity [49]. Defining

a model as local or non-local generally has do to with the redistribution part

of the model, in our case this corresponds to MT reorientation (governed

by motor proteins). Most models of MT evolution describe MT reorientation

using local diffusion-type terms [30, 32, 24]. For example, the model of Lee and

Kardar [32] suggests that MTs undergo small reorientations in the presence

of motor proteins. However, we know from recent in vitro studies that large

reorientations are possible [44, 43], and so non-local models (models that use

integral terms to describe MT angular redistribution) are more desirable from

a biological perspective. Such non-local models that describe redistribution in
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terms of probabilities are referred to as velocity-jump models [45], and have a

rich history in the study of large-scale animal movement governed by certain

cues that can exist over large distances [46]. More recently, such models have

been used to describe the evolution of cellular systems [21]. An interesting

example of such a model used in MT/motor systems is a recent study by

Aranson and Tsimring [2]. This model uses a diffusion term (to describe small

scale fluctuations of MTs in the absence of motors), but also includes a non-

local term to describe alignment of MTs as they collide with one another. The

action of the motor proteins is implicit here, and suggests that motors are

dispersed uniformly throughout space, so that when two MTs interact they

instantaneously align due to motor protein action. Below we describe the

model of Lee and Kardar [32] and Aranson and Tsimring [2] in detail.

Model 1: A first model that describes MT patterns formed by interacting

MTs and motors is a partial differential equation (PDE) model by Lee and

Kardar [32]. Such a model, given by equations (2.7) and (2.8), describes the

time and spatial evolution of MT orientations (~T (x, t)) in the presence of motor

proteins (m(x, t)).

∂m

∂t
= ∇2m− ~∇ · (m~T ), (2.7)

∂ ~T

∂t
= C ~T (1− T 2) + ~∇ · (m~∇~T ). (2.8)

The equation for motor protein evolution, given by equation (2.7), states that

motors diffuse freely in the absence of MTs, but are transported along the

orientation of MTs (at a density dependent rate) when in the presence of

MTs. The first term in equation (2.8) states that, in the absence of motors,

MTs grow at a constant rate C when they are short, but are then stabilized at

unit length (potentially representing their stabilization by the MT stabilizing

drug Taxol [71]). The last term in equation (2.8) describes the reorientation

of MTs by motor proteins. It is a diffusion-like term and describes random

fluctuations of the MT orientation in the presence of motor proteins.

An important feature of this model is that it qualitatively describes MT

patterns such as vortices, asters, as well as combinations of asters and vortices.

In particular, at low motor densities, combinations of asters and vortices are
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formed, while at slightly higher motor densities, asters dominate the system.

These results are consistent with in vitro experimental results [44]. However,

at high motor densities, the model predicts only a single large vortex. This

result is not observed experimentally. In particular, in experiments, MTs tend

to form tight bundles at high motor densities [44]. A second important feature

of this model is that it describes how MTs move into configurations such as

asters and vortices starting from other configurations. In particular, initially,

MTs are dispersed uniformly in space and given random orientations, and over

time they form more complex configurations.

Although this model is very useful in describing some of the MT patterns

that are found in experiment, it also has limitations. One limitation is that

reorientations of MTs are described using a diffusion-like term. Diffusion is lo-

cal, meaning that only small perturbations of MT orientation occur over time.

In other words, this model does not take into account larger reorientations that

could potentially occur. For example, experiments suggest that MTs can be

reoriented over large angular distances in the presence of motor proteins, not

just the angles that are closest to its present orientation. To take all possible

reorientations into account, it may be useful to use non-local models, such as

those involving integral terms [45, 46].

A second limitation of the above model is the description for MT growth.

In real cells, MTs are able to grow and shrink (and may or may not be sta-

bilized). Also, in some cases, MTs may undergo dynamic instability and may

also treadmill. To make this model more biologically realistic, it might be

important to use a different description for MT growth and to include terms

that account for MT treadmilling. In this thesis, we include MT treadmilling

into our new model. However, we do not include MT growth dynamics (for

ease in the mathematical analysis of the model). However, in the last chapter,

Chapter 8, we describe a method for including MT growth into our model.

Model 2: A second model that describes MT organization in systems of

MTs and motors is that of Aranson and Tsimring [2]. This model is different

from the above model because it uses non-local terms to help describe large

reorientations of MTs. This is an important feature that is lacking in the

previous model of Lee and Kardar. This newer model, given by equation
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(2.9), describes the temporal and angular evolution of MT densities p(t, θ).

∂p

∂t
=
∂2p

∂θ2
+ g

∫
p(θ1)p(θ2)[k(θ, θ1, θ2)]dθ1dθ2. (2.9)

Here, p is a function of angle θ and time t and so describes the density of

MTs that are located at an orientation θ at time t. The angles θ1 and θ2 are

orientations of MTs before interaction, and k(θ, θ1, θ2), called an interaction

kernel, is the probability that MTs interacting at the angles θ1 and θ2 will

align to an angle θ.

The first term (a diffusion term with diffusion coefficient equal to 1) in

equation (2.9) represents small reorientations due to thermal fluctuations, and

the second, non-local term represents alignment of MTs caused by a “collision”

between MTs that occurs at a rate g. In particular, this model suggests that

the interaction between two MTs is described as an inelastic collision that in-

stantaneously aligns two MTs to some mean orientation. The author suggests

that it is not actually the collision between MTs that causes realignment, but

rather the simultaneous connection between two MTs by motor proteins. In

particular, the author is describing the alignment of MTs by motor proteins

using physical equations that describe inelastic collisions of particles (like the

Bolztmann equation that describes inelastic collisions of gas molecules used in

physics (reference)).

Like the model of Lee and Kardar, simulation of this model produces qual-

itatively similar results to that found in experiment. In particular, the model

shows different parameter regimes in which asters and vortices, as well as com-

binations of the two, are found. Unlike the previous model, this model predicts

MT bundling for some parameter regimes. A primary difference between this

model and the last is that it does not include spatial variations in MT densi-

ties. As well, MT length variation is not taken into account. Also, unlike the

previous model, the action of motor proteins is not explicit in the model (they

do not consider spatial and temporal changes in motor proteins, but rather

consider the action of a homogenous density of motors). Some of these limi-

tations are removed in a later extension of the model completed by Aranson

and Tsimring [3]. Such an extension includes spatial variation in MT density,

as well as a model that describes the time evolution for bound and unbound
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motor densities. When space is included into the model, the only changes to

equation (2.9) include a translational diffusion term (MTs can diffuse parallel

or perpendicular to their axis), as well as a different reorientation kernel k,

which depends on the spatial location of MTs relative to one another, as well

as the angular displacement of MTs relative to one another. Inclusion of the

motor density evolution (m(t, x)) results in equation (2.10),

∂m

∂t
= D∇2m− ν∇m. (2.10)

Here, the first term corresponds to motor diffusion at a constant rate D in

the absence of MTs, and the second term corresponds to motor advection at a

constant rate ν, along the direction of the MTs. The extended model is more

realistic because it accounts for MT location and motor evolution. Analysis

of the new model qualitatively describes aster, vortex, and bundling patterns

that are found in experiment.

This newer extension to the model given by equation (2.10) is more realistic,

because it is able to capture MT patterning found in experiments. However, it

still lacks biological realism due to its description of the interaction kernel k.

Here, MT interaction is treated as a binary inelastic collision such that only

two interacting MTs align along a common axis. In reality, MT reorientation

will depend on the interactions of many MTs within a cluster. Also, this

model does not describe how patterns can be affected by MT length variation

(dynamic instability), as well as MT treadmilling. Both of these dynamics

are commonly found in cells and most likely play a role in how MTs are

organized [38, 65].

2.4 Summary of successes and limitations in

past theoretical modelling efforts

The theoretical models described in the last section do not completely describe

MT reorganization in cells. However, each model is successful in capturing

some of the important features involved in this process.

For example, the model of Dogterom and Leibler, given by equations (2.1)

and (2.2), describe the qualitative length distributions for MTs found in some
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cells. In particular, for certain values of the MT growth parameters, exponen-

tially decreasing MT length distributions were found. Also, results for MT

organizations found in fish malanophore cells (described by equations (2.3)

through (2.6)), show the potential for MT treadmilling as a major contributor

in MT organization. Finally, the non-local models for MT organization, de-

scribed by equations (2.9) and (2.10), were successful in describing the more

complex patterns that are found in systems of motors and MTs (patterns like

asters, vortices, and bundles).

Although there have been successes in previous modeling efforts, there is

no single model that was able to fully describe MT organization. In particular,

there is no model that describes how MT patterning is influenced by all three

contributions: dynamic instability, treadmilling, and MT/motor interactions,

as well as by motor properties such as motor speed, motor directionality, motor

processivity, and motor concentration. In the next Chapter, Chapter 3, we

develop a model that takes MT treadmilling, MT/motor interactions, and

specific motor properties into consideration. In the final Chapter, Chapter

8, we show how to incorporate MT dynamics into the model developed in

Chapter 3.
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Chapter 3

A New Model for MT

Organization

In this chapter, we describe the development of our model for MT organization,

which extends and improves on the previously proposed models of Chapter 2.

The model components we consider from previous models include

(A) the use of non-local terms to describe large angular displacements of

MTs as in equation (2.9),

(B) an explicit description for motor density movement as in equation (2.10),

and

(C) an advection-type term to describe MT treadmilling as in equations (2.3)

and (2.4).

Later, in Chapter 8 we will also consider

(D) a term that describes MT length variation, similar to the MT growth

term from equation (2.8).

In this chapter, we will develop a model that incorporates (A), (B), and (C),

as well as adding some new components. The new components we introduce

include two equations for motor movement, one for bound motors, and one for

unbound motors. These terms are used to describe the two possible states that

motors can be in. As well, we introduce an advection term for MTs which de-

pends on the MT direction in 2D (equations (2.3) and (2.4) describe advection
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Figure 3.1: Schematic of microtubules in a 2D square domain of length L. Microtubules are
shown in black, where the arrow represents the positive end. Also, microtubule orientation
is measured from the horizontal of the negative end of the microtubule. Bound motors are
red, and unbound motors are blue.

in only 1D). This advection term not only describes MT treadmilling, but also

describes MT sliding (in the case where motors are stationary, as described in

Chapter 4). Also, we introduce a probability distribution to describe how MTs

reorient in the presence of motors. This distribution is based on biological in-

teractions between MTs and motors, and will be incorporated into a non-local

term that will describe large angular variations in MTs. Finally, other models

have used either parallel or perpendicular type boundary conditions, forcing

MTs to take on particular orientations at the boundary of the domain [30]. In

our model, a novel bounce back boundary condition is used that allows MTs

to reorient more naturally at the boundary. The goal of building such a model

is to not only describe MT patterns, but to do so in a way that is biologically

reasonable and mathematically tractable.

First, in Section 3.1, we describe the model set-up and assumptions and in

Section 3.2 we describe the model variables, parameters, and functions. Then,

in Section 3.3 we describe the model equations. Finally, in Section 3.4, we

describe the numerical details of our modelling efforts.

3.1 Model set-up and assumptions

To start developing our model, we first provide a schematic of the set up (shown

in Figure 3.1). Here, we consider a square domain (where Ω = (0, L)× (0, L))

to represent a simplification of the cross section through a cell. The cross

section of most cells is circular, however, here we choose a rectangle domain
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since it easiest to run simulations on such a domain. However, such a domain

would work well to describe the cross section of a columnar epithelial cell

(shown in Figure 1.5(c)) [13].

From Figure 3.1, we show that each MT has a positive end and a negative

end, where its orientation θ is measured from the horizontal of the negative

end to the positive end. We also consider time t > 0 and −π < θ < π.

Also, we consider one type of motor protein. In particular, we consider

modeling the interaction of MTs in the presence of either negative-directed

motors (like dynein) or positive-directed motors (like kinesin). Here, we show

a modelling framework for negative-directed motors, although, it could just as

easily be done for positive-directed motors. From Figure 3.1, we see that each

motor is in one of two states, bound or unbound. Since we are considering

negative-directed motors, motors that are attached to MTs move towards the

MTs negative end.

The following assumptions will be made regarding the dynamics of inter-

acting as well as non-interacting MTs and motors:

(1) In the absence of MTs, motors are free to diffuse in the cytoplasm.

(2) Bound motors move with constant velocity along MTs. Bound motors

become unbound by falling off MTs at a constant rate.

(3) Treadmilling accounts for directed motion of MTs along their axis. In

particular, the positive end of a MT grows at the same rate as the nega-

tive end of a MT shrinks. Another means of directed transport includes

sliding (in the presence of stationary motors).

(4) We assume that the diffusion process for MTs is much slower than the

time it takes for MT rearrangement (hence we neglect MT diffusion).

(5) MTs can be aligned with one another in the presence of motors. The

more motors that are present, the more likely alignment occurs.

(7) Alignment tends to the mean MT orientation µ (described below by

equation (3.9)).
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3.2 Model variables, parameters, and functions

Next, we give a list of the independent and dependent model variables (with

units in brackets).

• t [s]: time.

• ~x [µm× µm]: space.

• θ [rad]: angular orientation.

• mb(~x, t) [mass/µ2]: the density of bound motors at time t and position

~x.

• mu(~x, t) [mass/µ2] : the density of unbound motors at time t and posi-

tion ~x.

• p(~x, t, θ) [mass/µ2]: the density of MTs at time t, and at position ~x, and

orientation θ.

As well, we give a list of other model parameters and functions (with units in

brackets). The values of each parameter are summarized in Table 3.1.

• vb [µm/s] : Represents the velocity of bound motors. In particular,

bound motors move with a constant speed ||vb||, along the mean MT

orientation µ (described in equation (3.9)).

• kon(p) [1/s] : Represents the rate at which an unbound motor becomes

a bound motor. This rate depends on the MT density p.

• kmaxon [1/s] : Represents the maximum rate at which an unbound motor

becomes a bound motor.

• koff [1/s] : Represents the constant rate at which a bound motor be-

comes an unbound motor.

• Du [µm2/s]: The diffusion constant for unbound motors.

• SMT [µm/s]: Constant treadmilling speed.
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• k(θ, θ̃,mb) : A probability density function describing the probability

that a MT at an angle θ̃ will be recruited to have angle θ. This probability

depends on mb, as described later.

• λ(mb) [1/s]: The rate at which a MT switches orientation. This rate

depends on bound motors mb.

• λmax [1/s]: The maximum rate at which a MT switches orientation.

• α(mb): Alignment function. This rate depends on bound motors mb.

• C: Motor activity parameter.

• µ [rad]: mean angular orientation.

• µ̂: mean angular orientation unit vector.

• θ̂: angular orientation unit vector.
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3.3 Model equations

Equations (3.1), (3.2), and (3.3) describe the dynamic interaction between

bound motors mb (motors attached to MTs), unbound motors mu (motors not

attached to MTs), and MTs p, respectively

∂mb(~x, t)

∂t
+∇~x · (vbmb(~x, t)) = kon(p̃)mu(~x, t)− koffmb(~x, t) (3.1)

∂mu(~x, t)

∂t
−Du∆~xmu(~x, t) = −kon(p̃)mu(~x, t) + koffmb(~x, t) (3.2)

∂p(~x, t, θ)

∂t
+ SMT θ̂ · ∇~xp(~x, t, θ) = −λ(mb)p(~x, t, θ)

+ λ(mb)

∫ π

−π
k(θ, θ̃,mb)p(~x, t, θ)dθ̃.

(3.3)

Here, we consider either periodic boundary conditions,

mb(0, y, t) = mb(L, y, t)

mu(0, y, t) = mu(L, y, t)

p(0, y, t, θ) = p(L, y, t, θ); p(x, 0, t, θ) = p(x, L, t, θ),

(3.4)

or no-flux (Neumann) boundary conditions for motors and a novel bounce back

boundary condition for MTs. The numerical implementation of the bounce

back condition for MTs is described in detail in Section 3.4 by equations 3.18

and 3.19. An explicit mathematical expression for this new boundary condition

is still work in progress.

For simplicity in reading, we write p(~x, t, θ) = p(x, y, t, θ) in the above

boundary conditions. Here, p̃(~x, t) =
∫
S1 p(~x, t, θ)dθ is to total MT density at

each point in space ~x and time t. Equations (3.1) and (3.2) describe motor

movement. Like the model of Aranson and Tsimring (from equation (2.10)),

we are explicitly describing the movement of motors within our domain.

Equation (3.1) states that bound motors move with constant speed ‖ vb ‖
along the mean orientation of the MT network µ. Also, bound motors fall off

of MTs at a rate koff and unbound motors become bound motors by attaching

to MTs at a rate kon(p̃). Here, the rate koff is constant, whereas the rate kon(p̃)

may depend on the MT density p̃ (the more MTs present the more likely it is
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for a motor to attach). For simplicity, we assume that kon is a Hill function of

the second kind with respect to the total MT negative-end density p̃. That is,

kon(p̃) = kmaxon

p̃

1 + p̃
(3.5)

where kmaxon is the max rate of attachment and its value is found in Table 3.1.

It has been found that motor speed depends on whether the motor is car-

rying a light or heavy load (i.e., the smaller the load the faster the motor) [43].

Also, it has been found that motor speed may be dependent on the number

of motors present (i.e., the more motors present the slower the speed) [SMB

reference]. However, for now we will neglect load mass and motor density and

write the velocity vb in the following way,

vb = −||vb||µ̂ = −||vb||

(
µ̂x

µ̂y

)
. (3.6)

Here, the speed ||vb|| is constant, where the negative sign accounts for

the fact that motors move in a direction that is opposite to the mean MT

orientation vector µ̂ (the ‘hat’ symbol represents the unit vector). If we were

to consider positive-directed motors (like kinesins), we change this sign to

positive. The x and y components of this vector, µ̂x and µ̂y, are given in

equations (3.7) and (3.8), respectively, and describe the integral mean of the

x and y components of the orientation, where x = cos(θ) and y = sin(θ). The

mean orientation µ can then be written as an angle using the equation (3.9).

µ̂x =

∫ π
−π cos(θ)p(~x, t, θ)dθ∫ π
−π p(~x, t, θ)dθ

(3.7)

µ̂y =

∫ π
−π sin(θ)p(~x, t, θ)dθ∫ π
−π p(~x, t, θ)dθ

(3.8)

µ = arctan(µx/µy) + jπ (3.9)

Here j = 0 if µ̂x > 0, j = −1 if µ̂x < 0 and µ̂y < 0, and j = 1 if µ̂x < 0 and

µ̂y > 0.

The second equation for motor movement, equation (3.2) states that un-
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bound motors diffuse freely in the absence of MTs with diffusion constant Du.

In the presence of MTs, we have similar switching terms as the bound motors

in equation (3.1). That is, unbound motors attach to MTs at rate kon(p̃) and

bound motors become unbound motors at rate koff . Switching terms such as

these are used in many types of models where an object (e.g., proteins) can

be in one of two states. For example, recall the switching terms in equations

(2.5) and (2.6), used to describe static and moving pigment granules in fish

melanophores.

Finally, the equation for MT movement given by equation (3.3), describes

the time evolution of MTs due to the fact that MTs can treadmill and realign.

The expression on the left side of equation (3.3) accounts for directed MT mo-

tion along the axis of the MT θ̂, where θ̂ =

(
cos(θ)

sin(θ)

)
, due to MT treadmilling.

It is an advection-type term, similar to the term used in equations (2.3) and

(2.4) to describe treadmilling of MTs in fish melanophores. In our model, such

a term is also used to describe MT treadmilling. In particular, it describes

MT movement along its axis with constant speed SMT .

The last terms on the right-hand side of equation (3.3) represent non-local

interactions between MTs. In particular, it is the stochastic part of the model

and describes a velocity jump process [45, 46] for MT reorientation. Such

processes are commonly used to describe systems that exhibit a sequence of

‘runs’ (directed motion) separated by reorientations. As stated above, we

want to incorporate a non-local term, similar to that of equation (2.9), since

in many cell types MT motion is directed for variable lengths of time (due

to treadmilling). However, at any instance the MT can change its orientation

when in the presence of motor proteins, and does so at the rate λ(mb). Here

we choose λ(mb) to be a Hill function of the second kind with respect to the

bound motor density mb. That is,

λ(mb) = λmax
mb

1 +mb

(3.10)

where λmax is given in Table 3.1. We choose this type of function since it is

a saturating function, and we expect the switching rate to saturate at some

maximum value.

Each random orientation switch is the result of a Poisson process of inten-
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sity λ (where λ is described above by equation (3.10)) [25]. A Poisson process

is characterized by its parameter λ, which is the expected number of events

that occur per unit time (in our case each event is a switch in MT orienta-

tion). Such a process has the property that each event does not depend on

the previous state of the system. In particular, the process is independent in

increments, meaning that the number of events that happen within a small

interval of time are independent from one another. A Poisson process follows

a Poisson distribution given by equation (3.11).

P (k) =
exp(−λτ)(−λτ)k

k!
(3.11)

Here, k is the number of events (number of MT switches) that occur within

a small time interval [t, t + τ ]. As stated above, λ describes the rate of MT

switching. Here, we will define λ to be a linear function of the bound mo-

tor density mb, so that when the bound motor density in zero, there is no

switching, and when the bound motor density is high, λ is high.

The term k(θ, ˜θ),mb is a probability density function for a reorientation of

a MT from the angle θ̃ to θ (and depends on mb). If Θ(t) is a random variable

giving the MTs orientation at time t, then given that a reorientation occurs

at T ,

k(θ, θ̃,mb)dθ = Pr{θ ≤ Θ(T+) ≤ θ + dθ | Θ(T−) = θ̃}.

We assume that the probability of recruitment of a MT at a point ~x to an

angle θ depends only on how close that angle is to the mean MT orientation

µ (described in equation (3.9)). In particular, the probability of recruitment

does not depend on the angle from which the MT came, θ̃. This assumption

can be better understood from Figure 3.2 and suggests that, at every time

step, the MT network tends to align towards its mean µ.

Since we would like the MT network to align towards the mean µ, we

would like k to have the property that if the difference θ − µ is large, then

the probability of recruitment is small, whereas if this difference is small, the

probability of recruitment is large. Also, since k is a probability distribution

over θ, it must have the property that∫ π

−π
k(θ)dθ = 1. (3.12)
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Figure 3.2: (a) MTs centered at a point. (b) The mean orientation of MTs µ in (a)
is shown in black and a possible angle of reorientation θ is shown in red. (c) The mean
orientation of MTs µ in (a) is shown in black and a second possible angle of reorientation θ
is shown in red. From (b) and (c) we see that it is more likely for MTs to be reoriented to
the angle θ in (b).

Figure 3.3: MT redistribution kernel k1 centered at mean µ=0 for different values of α.

One choice for k, which we denote as k1, is the Von Mises distribution [25, 46],

k1(θ, θ̃,mb)
1

2πI0(α(mb))
exp(α(mb) cos(θ − µ)). (3.13)

where I0(α(mb)) is the modified Bessel function of order 0 and parameter

α(mb), and µ and 1/α are the mean and variance of the distribution, respec-

tively. Figure 3.3 shows a description of k1(θ) centered at mean µ = 0 for

various values of the variance 1/α.

Since we have assumed that MTs tend to align to the mean MT orienta-

tion µ in the presence of bound motors mb (and that there is no alignment
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Figure 3.4: The solid line represents a sigmoidal response function of order 2 (with sat-
urating max at α = 10), the dashed line represents the arc tangent function (with max
reached at α = 6.5), and the dotted line is an example of a linear function.

when there are no motors present), we choose α(mb) to be some monotonically

increasing function of mb, so that when many bound motors are present, the

distribution is concentrated about the mean µ, and alignment is more likely.

Also, if mb is very small, the distribution is close to uniform, and alignment is

less likely. We call α(mb) the alignment function, where Figure 3.4 describes

several possible choices for this monotonically increasing function α(mb). For

simplicity we choose the alignment function α(mb) to be a linear function with

respect to mb so that,

α(mb) = Cmb, (3.14)

where we call C the motor activity parameter. Here, we see that for fixed C,

by increasing mb alignment is more likely, and by decreasing mb alignment is

less likely. However, we can also consider fixing mb, and changing C, where

the higher the motor activity C, the more likely alignment is (and vice versa).

A second choice for k, which we denote as k2, is similar to that of equation

(3.9). In particular, we choose k2 to also be a circular normal distribution such

that

k2(θ, θ̃,mb) =
1

2πI0(α(mb))
exp(α(mb) cos(θ̃ − θ)). (3.15)
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In this case, MTs that have a small angular displacement from one another

are more likely to align than MTs that have a larger angular displacement from

one another (in the presence of motors).

As stated above, the model given by equation (3.3) is in a class of models

that are derived from a velocity jump process. Such a process is described

in earlier works by Othmer [46]. In particular, such processes describe how

a population evolves in time due to changes in an individuals velocity. The

general form for such a process, as stated by Othmer [46], is given by

∂p

∂t
+∇x · vp+∇v · Fp = R, (3.16)

where F denotes the external force acting on the individuals and R is the

rate of change of the population p due to reaction, random choices in velocity,

etc. The velocity jump process is analogous to the Bolztmann equation in the

kinetic theory of gases, which describes how a gas or fluid transports physical

quantities such as heat or momentum.

Assuming that there are no external forces acting on the individuals (F =

0), and that the only process that contributes to changes in the right-hand

side of equation (3.16) is due to random changes in velocity (i.e., a stochastic

process), equation (3.16) can be rewritten as

∂p

∂t
+∇x · vp = −λp+ λ

∫
k(v, ṽ)p(x, ṽ, t)dṽ, (3.17)

which is of the same form as our model in equation (3.3). Here, it is assumed

that the random velocity changes are due to a Poisson process [25] of intensity

λ. Also, k(v, ṽ) gives the probability for a change in velocity from ṽ to v and

so satisfies the normalization condition∫
k(v, ṽ)dv = 1.

Besides our model in equation (3.3) and the model of Aranson and Tsim-

ring in equation (2.9), there are also many other non-local models that have

been used extensively in the literature to describe pattern formation in other

biological systems. Examples of such models include animal movement models,

developed to describe the movement of animals in relation to their interactions

with other animals over large length scales and/or large angular scales [14, 46].
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Patterns formed by changes in angular distributions include flocks of flying

birds and schools of fish. Also, patterns arising from angular and spatial in-

teractions of rod-like molecules (liquid crystals) have been extensively studied

in physics [12].

3.4 Details of numerical scheme

We discretize the space-time plane choosing an equal space step in the x and

y-direction ∆x = ∆y = h, and a time step ∆t = k. We discretize angular

space by choosing an angle step ∆θ = w. Also, we define the discrete mesh

points (xj, yl, tn, θτ ) = (jh, lh, nk, τw), j, l, n, τ ∈ N.

To simulate the advection part of the model (the left-hand side of equation

(3.3)), we use a first order upwind scheme at each location. The direction

of the unwind velocity at each point depends on the MT direction θ. For

example, if θ = 3π/4, the direction vector θ̂ =

(
cos(θ)

sin(θ)

)
=

(
−0.7071

0.7071

)
, and

so we perform upwinding in the negative x direction and upwinding in the

positive y direction.

To simulate the integral term on the right-hand side of equation (3.3), we

use the trapazoid method. In particular, we use the trapz command in Matlab.

Such a method is fine to use because of the nice properties of our kernel k.

There is a single type of instability associated with this numerical scheme.

In particular, for the advection part of the model, when the Courant-Friedrichs

Lewy (CFL) condition is not satisfied, the scheme becomes unstable. Since we

have advection in both the x and y directions, this condition must be satisfied

for both directions. In particular, we must have SMT |cos(θ)|k/h < 1 for the

x direction, and SMT |sin(θ)|k/h < 1 for the y direction. Throughout each

simulation we use a space step size h = 0.016 and a time step k = 0.25.

Also, we use an angle step size of w = 2π/64. Choosing smaller step sizes

than this does not change the outcome of solutions. It is computationally

faster to choose a larger angle step size, and so this is the step size we choose.

As stated in the previous section, we study equations (3.1) through (3.3)

first using periodic boundary conditions, given by equation (3.4). Periodic

boundary conditions in two-dimensions are not biologically realistic, since the
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N-2 N-1 N N+1

t0

t1/2

t1/2

Figure 3.5: An example of how no-flux boundary conditions work in 1-D for an upwind
scheme. Red line represents the boundary. (a) We start with zero MTs at the last two mesh
points (N and N+1). For simplicity we choose only one MT per mesh point, however in
simulations we can have many MTs at each mesh point. At each time step, the following
two operations are performed: (b) MTs move forward according to the upwind scheme and
fill all mesh points except N+1 (since that is the boundary), (b) MTs at the N mesh point
are moved back one mesh point (to N-1), leaving zero MTs at the last two mesh points once
again.

domain we are affectively simulating the movement of MTs on is a torus.

However, these boundary conditions are generally used for simulating mod-

els similar to equation (3.3) because they are relatively easy to simulate. We

also simulate our model using a no-flux boundary condition for motors and

a novel bounce back condition for MTs. Such a condition in two-dimensions

in more biologically realistic, since MT movement at the domain boundary is

treated similar to how MTs might behave at a cell boundary. No-flux type

boundary conditions can be difficult to simulate for integral equations such

as ours, and so often either parallel or normal boundary conditions are used

instead [30]. For these conditions, when a MT (a fixed length rod at a particu-

lar orientation) reaches the boundary, it is instantaneously oriented parallel or

perpendicular with respect to the boundary. This boundary condition, though

easier to simulate, does not allow for a natural (smooth) movement of MTs

along boundaries. Here, we use a new approach to calculate the orientation of

MTs once the reach the boundary, which allows for a more natural movement

of the MT. Such a method can be described by Figure 3.5.

Let us just consider the 1-dimensional case where we look at only the last
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few mesh points near the right boundary. Initially, as shown in Figure 3.5(a),

we start with zero MTs on the boundary and one mesh point behind the

boundary. During the first half of each time step, we move all MTs according

to the appropriate upwind scheme. For simplicity, we just consider the upwind

scheme and so all MTs move forward as in Figure 3.5(b). In Figure 3.5(c),

we show how MTs in second last mesh point, N, are moved back into the N-1

mesh point during the second half of each time step. Now there are zero MTs

again at the last two mesh points. If we let pj,t,θ represent the density of MTs

at location j, at time t, and orientation θ, we can describe movement of MTs

at the boundary during the second half of each time step by,

pN−1,t+1,θ = pN−1,t+1/2,θ + pN,t+1/2,θ, (3.18)

pN,t+1,θ = 0. (3.19)

If motors are located at the mesh points defined above, the next step would

be to perform reorientation of the MTs according to the integral part of the

equation (3.3). However, if motors are not located at these points, the process

described in Figure 3.5 would be repeated, and the two MTs that are at the

N-1 mesh point will move to the N mesh point, but will be moved back into

the N-1 mesh point with the MTs that have moved forward from the N-2 mesh

point. In affect, we have a build up of MTs on the boundary, since MTs keep

being bounced back and forth between the last two mesh points with new MTs

coming in from the N-2 mesh point.
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Chapter 4

The Transport Model: Part 1

In this chapter, we describe MT patterns formed when motors are stationary.

In this case, the equations (3.1) to (3.3) are reduced to the following,

mb =
kon
koff

mu, (4.1)

∂p(~x, t, θ)

∂t
+ SMT θ̂ · ∇~xp(~x, t, θ) = −λ(mb)p(~x, t, θ)

+λ(mb)

∫ π

−π
k(θ, θ̃,mb)p(~x, t, θ̃)dθ̃.

(4.2)

Here, motors are fixed in space ~x and time t, and so we look at the different

types of MT patterns that are formed by fixing motors in different configura-

tions and allowing only MTs to move. This situation can be experimentally

reproduced by absorbing (sticking) motors to a two-dimensional surface (like

a slide) at their cargo domain [69, 15], where its free legs are able to attach to

a MT. Since the motor remains stationary, when a negative (positive)-directed

motor moves along a MT, the motor pushes the MT along the MTs own axis

towards its positive (negative) end. Here, SMT is not only a treadmilling rate,

but it also incorporates MT sliding. A mathematical description of sliding

is similar to MT treadmilling in that both types of motion describe directed

movement of MTs along their axis. The only difference is that MT treadmilling

can occur when motors are not present (MT sliding requires motors).

In this chapter, we will focus on three simplifications of the above model.
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In particular, in Section 4.1, we describe analytical and numerical results for a

Fredholm model that is derived under the assumption that MTs do not glide

(SMT = 0), and that the MT distribution is at steady state (∂/∂t = 0). In

Section 4.2, we describe numerical results for an equation which we call the

turning equation. This equation is derived under the assumption that MTs do

not glide (SMT = 0). Finally, in Section 4.3 we consider a limiting case to the

full non-local integro-differential equation model for MT movement so that we

can rewrite it as a local diffusion model. Later, in Chapter 5, we will consider

results of the full model given by equations (4.1) and (4.2).

4.1 The Fredholm Model

Here we describe the results for the Fredholm Model. That is, we describe

results for the model given by equation (4.1) and (4.2) in the case when SMT =

0 and the system is at steady state. The model is given by

mb =
kon
koff

mu, (4.3)

p(θ) =

∫ π

−π
k(θ, θ̃,mb)p(θ̃)dθ̃. (4.4)

Here the bound and unbound motor populations, mb and mu, are constant

with respect to space ~x and time t, and the MT density p only depends on

orientation θ. Such an equation is classified as a Fredholm Equation of the

Second Kind [50]. In particular, this equation is of the form

p(θ)− γ
∫ b

a

k(θ, θ̃)p(θ̃)dθ̃ = f(θ), (4.5)

with f(θ) = 0 and γ = 1. Also, a and b (which must be finite), are given by

a = −π and b = π. Recall from Chapter 3 that one choice for the reorientation

kernel k is given by

k(θ,mb) =
1

2πI0(α(mb))
exp(α(mb) cos(θ − µ)),
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where µ is the mean MT orientation and α(mb) = Cmb, where C is the motor

activity parameter. For this particular choice of k, we can pull k outside the

integral sign since it is not a function of θ̃ and so equation (4.4) can be written

as

p(θ) = k(θ,mb)

∫ π

−π
p(θ̃)dθ̃, (4.6)

where
∫ π
−π p(θ̃)dθ̃ is constant and without loss of generality we can let this

constant equal to 1. Thus, solutions to equation (4.6) are given by

p(θ) = k(θ,mb). (4.7)

In the limits of α going to zero and infinity we get,

lim
α→0

p(θ) =
1

2π
(4.8)

lim
α→∞

p(θ) = δ(µ), (4.9)

Where δ(µ) is the dirac delta functional and can loosely be defined by

δ(θ) =

{
∞ if θ = µ

0 if θ 6= µ.

}

Since α(mb) = Cmb and mb is constant, the limits above show that if the

motor activity C is low (0 < C � 1), we have a uniform distribution of MTs,

and if C is high (C � 1), we have alignment of MTs towards some mean angle

µ. Figure 4.1 shows solution curves for the equation (4.7) for various values of

α.

From Figure 4.1 we see that higher values of α correspond to sharper peaked

solutions, whereas if α is low we have flatter solutions.

4.2 The Turning Equation

Here we describe the results for the Turning Equation. That is, we describe

results for the model given by equation (4.1) and (4.2) in the case when SMT =

0 . The model is given by
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Figure 4.1: p(θ) = k(θ,mb) with mean µ=0 and α = 0, 1, 10, and 100

mb =
kon
koff

mu, (4.10)

∂p(θ, t)

∂t
= −λp(θ, t) + λ

∫ π

−π
k(θ, θ̃,mb)p(θ̃, t)dθ̃. (4.11)

Figure 4.2 describes numerical simulations for the equation (4.11). Figure

4.2(top row) describes the MT distribution p(θ, t) at four different time steps

when the motor activity parameter C is low (C = 0.1). In particular, Figure

4.2(top row)(a) shows the initial distribution p(θ, 0), which is chosen at ran-

dom. Figure 4.2(top row)(d) shows distribution at large time t, in particular

it shows p(θ, 50). These results show that the distribution eventually becomes

uniform and is consistent with the results of Section 4.1. In particular, from

4.8, we have that the steady-state of the equation (4.11) for very low alpha is

a uniform distribution.

Figure 4.2(bottom row) describes the MT distribution p(θ, t) for different

time steps when the motor activity parameter C is high (C = 25). Figure

4.2(bottom row)(a) shows the initial distribution p(θ, 0), which is again chosen

at random, and Figure 4.2(bottom row)(d) shows the distribution after long

time t, p(θ, 50). The results show that the distribution is eventually centered

about mean µ (here, µ ∼= −1.9 radians). The angle µ is determined by the
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Figure 4.2: Top row: Evolution of the MT distribution p(θ, t) for C low (C = 0.1). (a)
Initial distribution of MTs p(θ, 0) is random, (b) p(θ, 5); (c) p(θ, 15); (d) p(θ, 50). Bottom
row: Evolution of the MT distribution p(θ, t) for C high (C = 25). (a) Initial distribution
of MTs p(θ, 0) is random, (b) p(θ, 5); (c) p(θ, 15); (d) p(θ, 50).

initial conditions; it is the angle at which the majority of MTs are located at

time t = 0 (see Figure 4.2(bottom row)(a)). Again, this result is consistent

with the results of Section 4.1. In particular, from 4.9, we have that the steady-

state of the equation (4.11) for very high alpha is the Dirac Delta Functional,

centered around the mean MT orientation µ.

4.3 The Diffusion Limit

When working with transport equations such as equation (4.2), it is often

useful to consider different scalings. In particular, under certain assumptions,

such an equation can be scaled in a way that makes it easier to analyze.

The three most popular types of scalings include the parabolic scaling, the

hyperbolic scaling, and the moment closure method. A nice description of

each method can be found in a recent paper by Hillen and Painter [34].

The parabolic scaling, which we outline in detail below, refers to the case

where we consider slow velocities (in our case this refers to slow treadmilling
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speed SMT ), and very fast switching rates (in our case this refers to fast MT

switching rate λmax). This scaling leads to an isotropic diffusion equation,

where orientation is an implicit part of the model, being radial at each point

in space (i.e., the mean orientation is necessarily zero in this case, as will be

discussed in detail below). The other scalings (hyperbolic and moment closure)

will not be considered here.

We outline the steps taken to re-scale the equation for MT movement given

by (3.3) using the parabolic scaling method, so that we can reformulate the

integro-differential model as a diffusion model. Again, this method is outlined

in [34].

First, we scale the variables in the equation for MT minus-end density p

in the following way:

θ̃ =
θ

θ∗
,

x̃ =
x

l∗
,

t̃ =
t

σ∗
.

Here, θ∗ is the characteristic speed (≈ 0.01µm/s), l∗ is the characteristic length

(≈ 1µm), and σ∗ is the macroscopic time of observation (≈ 1 → 10 hrs or

≈ 103 → 104s). By substituting these scalings into equation (3.3) we obtain

1

σ∗
∂p(~x, t, θ)

∂t̃
+
θ̃∗

l∗
θ∗ · ∇~̃xp(~x, t, θ) = Lp(~x, t, θ), (4.12)

where L is the turning operator defined by

We define the turning operator L as

L(p(θ)) = λp(θ) + λK(p(θ)), (4.13)

and its adjoint as

L∗(p(θ)) = λp(θ) + λK∗(p(θ)), (4.14)
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where the linear operator K : L2([−π, π])−→ L2([−π, π]) is defined as

K(p(θ)) =

∫
S1

k(θ, θ̃,mb)p(θ̃)dθ̃. (4.15)

The kernel of L is given by the linear space 〈k(θ)〉 (i.e., Lφ(θ) = 0 for φ(θ) ∈
〈k(θ)〉). Also, we define

θ∗

l∗
= ε, and so 1

σ∗
= ε2.

Substituting for ε in equation (4.12) and removing the ˜ signs we obtain a

singular perturbation problem

ε2pt(~x, t, θ) + εθ · ∇xp(~x, t, θ) = Lp(~x, t, θ). (4.16)

For ε small, we study a perturbation expansion of the solution p so that

p(~x, t, θ) = p0(~x, t, θ) + εp1(~x, t, θ) + ε2p2(~x, t, θ) + ..... (4.17)

The leading term of the expansion is p0(~x, t, θ), and the higher-order terms

are small deviations (perturbations) from the exact solution (since ε is a very

small parameter). Here we study the perturbation expansion up to second

order. In particular,

p(~x, t, θ) = p0(~x, t, θ) + εp1(~x, t, θ) + ε2p2(~x, t, θ). (4.18)

By substituting (4.18) into (4.16) and comparing order ε0, ε1, and ε2 terms,

we will approximate (4.16), which is an equation for p(~x, t, θ) in terms of ~x, t

and θ, by an equation for p(~x, t) in terms of ~x and t (thus reducing the number

of independent variables).

ε0 : 0 = Lp0(~x, t, θ), (4.19)

ε1 : θ̂ · ∇p0(~x, t, θ) = Lp1(~x, t, θ), (4.20)

ε2 :
∂p0(~x, t, θ)

∂t
+ θ̂ · ∇p1(~x, t, θ) = Lp2(~x, t, θ). (4.21)
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The order ε0 equation (4.19) reads

0 = λp0(~x, t, θ)− λk(θ)
∫
S1 p0(~x, t, θ̃)dθ̃.

Here, we arrive at p0(~x, t, θ) = k(θ)
∫
S1 p0(~x, t, θ)dθ. We define p0(~x, t) =∫

S1 p0(~x, t, θ)dθ, and so

p0(~x, t, θ) = k(θ)p0(~x, t). (4.22)

Next we look at the order ε1 equation (4.20). This equation can be solved on

〈k〉⊥ if the right-hand side of (4.20) satisfies the solvability condition

θ̂ · ∇p0(~x, t, θ) ∈ 〈k〉⊥. That is, if∫
S1(θ̂ · ∇)p0(~x, t, θ)dθ = 0.

From equation (4.22), we find that the above simplifies to∫
S1(θ̂ · ∇)k(θ)p0(~x, t)dθ = p0(~x, t)∇ ·

∫
S1 θ̂k(θ)dθ.

This term will only equal zero for arbitrary p0 if∫
S1

θ̂k(θ)dθ = 0. (4.23)

In other words, equation (4.23) states that the mean orientation is zero (and

so the probability of moving in any direction at each spatial location is equal).

Now, since θ̂ · ∇p0(x, t, θ) ∈ 〈k〉⊥, we say that L |〈k〉⊥ has a linear inverse F

such that

p1(~x, t, θ) = F (θ̂ · ∇p0(~x, t, θ)).

Finally, we look at the ε2 equation (4.21). Integrating the order ε2 equation

over θ we arrive at the equation∫
S1

∂p0(~x, t, θ)

∂t
dθ +

∫
S1

θ̂ · ∇p1(~x, t, θ)dθ =

∫
S1

Lp2(~x, t, θ)dθ.

Since the right-hand side of this equation gives us∫
S1 Lp2(~x, t, θ)dθ = −λ

∫
p2(~x, t, θ)dθ + λ

∫
S1 k(θ)dθ

∫
S1 p2(~x, t, θ)dθ̃ = 0,
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we have that ∫
S1

∂p0(~x, t, θ)

∂t
dθ +

∫
S1

θ̂ · ∇p1(~x, t, θ)dθ = 0.

Substituting equation (4.22) and p1(~x, t, θ) = F (θ̂ · ∇p0(~x, t, θ)) we can write

this equation as

∂

∂t

∫
S1

p0(~x, t, θ)dθ +

∫
S1

θ̂ · ∇(F (θ̂ · ∇p0(~x, t, θ)))dθ = 0,

which simplifies to

∂p0(~x, t)

∂t
+

∫
S1

θ̂ · ∇(F (θ̂ · ∇p0(~x, t, θ)))dθ = 0. (4.24)

Before we move further, we will determine the inverse function F of the

turning operator L. To do this we must solve the following problem:

Given some function φ ∈ 〈k〉⊥, find p ∈ 〈k〉⊥ such that Lp = φ ⇒ p = Fφ.

We start by considering Lp(θ) = φ(θ).

Lp(θ) = −λp(θ) + λ

∫
S1

k(θ)p(θ̃)dθ̃

= −λp(θ) + 0.

Here
∫
S1 k(θ)p(θ̃)dθ̃ = 0 since p ∈ 〈k〉⊥. Now, since we assumed−λp(θ) = φ(θ),

rearranging we get p(θ) = −1
λ
φ(θ), and so F = −1

λ
.

Substituting F and equation (4.22) into equation (4.24), we arrive at

∂p0(~x, t)

∂t
− 1

λ

∫
S1

(θ̂ · ∇)θ̂ · ∇(k(θ)p0(~x, t))dθ

=
∂p0(~x, t)

∂t
− 1

λ
∇ ·
∫
S1

θ̂θ̂T∇(k(θ)p0(~x, t))dθ

=
∂p0(~x, t)

∂t
−∇∇(D(~x)p0(~x, t))

= 0.
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Thus we arrive at a diffusion-type equation for the MT density p0 that can be

written as,

∂p0(~x, t)

∂t
= ∇∇(D(~x)p0(~x, t)), (4.25)

with diffusion tensor

D(~x) = −1

λ

∫
S1

θ̂θ̂Tk(~x, θ)dθ. (4.26)
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Chapter 5

The Transport Model: Part 2

In this section, we consider the case where MTs are free to glide (SMT 6= 0).

Here we simplify the full model given by equations (3.1), (3.2), and (3.3) to

the following system of equations:

mb =
kon
koff

mu (5.1)

∂p(~x, t, θ)

∂t
+ SMT θ̂ · ∇~xp(~x, t, θ) = −λ(mb)p(~x, t, θ)

+λ(mb)

∫ π

−π
k(θ, θ̃,mb)p(~x, t, θ̃)dθ̃.

(5.2)

where we use periodic boundary conditions given by,

p(0, y, t, θ) = p(L, y, t, θ); p(x, 0, t, θ) = p(x, L, t, θ), (5.3)

or we use bounce back boundary conditions (described in detail at the end of

Section 3.4), where ~x ∈ R2, t > 0, and θ ∈ S1 = [−π, π]. In Section 5.1, we

state an existence and uniqueness result for the transport equation (5.2) in R2,

and in Section 5.2 we describe the numerics used to simulate equation (5.2).

Then, in Section 5.3, we show results of simulations for the case where SMT =

constant everywhere in the domain. In this case, we consider a non-processive

motor type (one that does not walk along MTs), but is able to cross-link MTs,

aiding in MT realignment. Finally, in Section 5.4, we show results for the case
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where MT sliding and treadmilling occur at different rates. Here, we consider

the case where we have either one type of processive motor, or two types of

processive motors (motors with opposite directionality). In both sections 5.3

and 5.4, we run simulations using either periodic boundary conditions as in

equation (5.3) (representing a very large domain), or bounce back boundary

conditions, as described by equations (3.18) and (3.19)(representing a smaller

domain with boundary).

5.1 Existence and uniqueness result for the

transport model in R2

We begin by defining the shift operator (also referred to as the advection

operator) as

A = SMT (θ̂ · ∇),

where the domain of A is defined by

D(A) = {ϕ ∈ L2(R2 × θ̂) : ϕ(·, θ̂) ∈ H1(R2)},

and consider the transport equation (5.2) without the turning terms (i.e.,

λ(mb) = 0),
∂p(~x, t, θ)

∂t
= Ap(~x, t, θ). (5.4)

Equation (5.4) is called an advection equation, and the following theorem

(taken from Pazy [48]) is an existence and uniqueness result based on semi-

group methods for such an equation.

Theorem 5.1: (Existence and Uniqueness of Solutions to Advection Equation)

The operator A generates a strongly continuous semigroup on L2(R2 × θ̂)

which solves the advection model ∂p
∂t

= Ap (i.e., pt + θ̂ · ∇p = 0). The

semi-group (solution for positive time) is given by S(~x, t; f(~x)) = f(~x− θ̂t).

Recall that L and K are defined in the previous chapter by equations (4.13)

and (4.15), respectively. Since the turning operator L is linear and bounded,

a perturbation result (method outlined in Appendix A) can be applied to
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pt = Ap + Lp to determine an existence and uniqueness result for the full

transport model in equation (5.2). The result is given by a second theorem by

Pazy [48] (Chapter 3, Theorem 1.1).

Theorem 5.2: (Existence and Uniqueness of Solutions to Transport Equation)

Assume k(θ, θ̃) ≥ 0 (k is a positive function),
∫
S1 k(θ, θ̃)dθ̃ = 1 (k has

the normalization property), and
∫
S1

∫
S1 k(θ, θ̃)2dθdθ̃ = ||K||L2

L2(S1×S1)< ∞
(K is a Hilbert-Schmidt operator), then for each initial condition p(0) ∈
D(A) ∃ a unique solution of the transport equation given (5.2) in the space

X = C1([0,∞), L2(R2 × θ̂)) ∩ C([0,∞), D(A)).

Recall that our choice for k is

k(θ, θ̃) =
1

2πI0(α(mb))
exp(α(mb) cos(θ − µ)). (5.5)

Showing that k is positive, and that k has the normalization property is trivial,

and so we are left to show that k is a Hilbert Schmidt Operator. That is,

∫
S1

∫
S1

[
1

2πI0(α(mb))
exp(α(mb) cos(θ − µ))]2dθdθ̃

=

∫
S1

dθ̃

∫
S1

[
1

2πI0(α(mb))
exp(α(mb) cos(θ − µ))]2dθ

= 2π[
1

2πI0(α(mb))
]2
∫
S1

exp(2α(mb) cos(θ − µ))dθ

<∞.

5.2 Set-up for numerical simulations of the trans-

port model

Here we describe the numerical set-up for simulation of the transport equation

given by equation (5.2). Table 5.1 gives a list of model parameters used in

simulation of this simplified model. Here, we fix the maximum MT switching

parameter λmax (see Table 5.1 for value), and describe MT patterns formed

for high and low motor activity parameter C, as well as for varying gliding

speeds SMT . In this case, the gliding speed is comprised of treadmilling and
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sliding speeds, Streadmill and Sslide, respectively. In particular, where motors

are not present, SMT = Streadmill, and where motors are present (and they are

processive motors), SMT = Streadmill + Sslide (again, see Table 5.1 for these

values).

Table 5.1: Table of model parameters for stationary motors.

Model parameter value source

high treadmilling speed Streadmill (in vivo) 0.12µ/sec [54]
low treadmilling speed Streadmill (in vitro) 0.04µ/sec [54]
low sliding speed Sslide (by kinesin-5) 0.04µ/sec [59]
medium sliding speed Sslide 0.08µ/sec took ≈ average
high sliding speed Sslide (by NCD) 0.1µ/sec [59]
High activity parameter C 25 This paper
Low activity parameter C 0.1 This paper
Max switching rate λmax 0.05/sec This paper

Figure 5.1 represents different types of motor distributions, where red rep-

resents the presence of motors (at a density of 1.0µm−2), and blue represents

the absence of motors. Figures 5.1(a) and (b) illustrate different cytoplas-

mic motor distributions, while Figure 5.1(c) illustrates motors only at the cell

center, Figure 5.1(d) illustrates motors at the boundary, and Figure 5.1(e) il-

lustrates motors at the center and at the boundary. The reason why we choose

distributions is that, in certain cells and for various cell-cycle stages, motors

are found to be distributed throughout the cell cytoplasm (as shown in Figures

5.1(a) and (b)). However, for other cell types (and during particular cell-cycle

stages), certain motors are found to reside primarily at the centrosome (the

center of the cell) [8] and/or at the cell boundary [27] (as shown in Figures

5.1(c), (d), and (e)). Note that if there are no motors on the boundary, MTs

will stick to the boundary once they reach it because they are not able to

change orientation.

For MTs, we consider the initial condition as shown in Figure 5.2. This ini-

tial condition for MTs will be used in all simulations. Figure 5.2(a) illustrates

the initial MT density, which is chosen to be approximately uniform through-

out the entire domain (≈ 5 µm−2), Figure 5.2(b) illustrates the initial mean

MT orientation at each spatial location, and Figure 5.2(c) illustrates the ori-

entational distribution at each spatial location (each MT is assigned a random

60



(a)               (b)              (c)              (d)              (e) 

Figure 5.1: Schematic of different configurations for motors. Red describes the presence
of motors and blue describes the absence of motors. (a) A uniform distribution of motors
throughout the entire domain, (b) MTs absent at the boundaries, (c) MTs at the center of
the domain, (d) MTs only at the boundaries, and (e) MTs at the boundary and center of
the domain.

(a)                                  (b)                                 (c)

Figure 5.2: A schematic of the initial condition for MTs. (a) MT density (approximately
uniform), (b) mean MT orientation at each point in space, (c) and the full MT orientation
distribution at each point in space (only two spatial locations chosen as an example).

orientation between π and −π). Each color represents a different orientation,

and the length of the vector is proportional to the density of MTs oriented

along that direction. To keep the schematic less clustered, we only show four

possible orientations, and 20 spatial locations. However, for our simulations,

we allow a total of 64 possible orientations for MTs at each spatial location

(each unit is 1.0 µm, so we are looking at a typical cell of size 60× 60µm2).

5.3 Transport with constant gliding speed SMT

Here we describe results for MT density and alignment patterns that result

from large-time simulations of equation (5.2) for constant gliding speed SMT .

Recall that MT gliding corresponds to directed transport of MTs along their

own axis, and is comprised of two mechanisms, that is, MT treadmilling and

MT sliding (caused by motors that are ‘stuck’ to the domain). We first consider

a motor that is not processive, but is still able to crosslink MTs. In this case,

the gliding speed is equal to the treadmilling speed everywhere and is constant.
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Here, we fix λmax for all simulations, and change the parameters C, SMT , as

well as the motor configuration, for each simulation.

We give an illustration, shown in Figure 5.3, of the types of MT patterns

that can be observed by simulation of equation (5.2) when SMT is constant.

Figure 5.3 Row 1 describes the MT density patterns. In particular MTs can

form tight clusters (Row 1(a)), can spread out uniformly in space (Row 1(b)),

can form fingering patterns (Row 1(c)), can accumulate completely on the

boundary (Row 1(d)), or can accumulate almost completely on the boundary,

where some MTs spread out uniformly on the interior (Row 1(e)).

Also, six different global MT alignment patterns are observed, as shown

in Figure 5.3 Row 2. MTs can align towards the same angle everywhere in

space (Row 2(a)), MTs can align to the zero angle everywhere in space (Row

2(b)), MTs can form patches of alignment (Row 2(c)), they can have mixed

orientation (Row 2(d)), can form astral patterns (Row 2(e))(arrows correspond

to positive ends), and they can form vortices (Row 2(f)).

Only two different local patterns are found (see Figure 5.3 Row 3). That

is, MTs can be bundled, or MTs can form asters at each spatial location (in

all results, local alignment is not shown).

All results of simulations for SMT constant are summarized in Tables 5.2

and 5.3. Table 5.2 describes results for periodic MT boundary conditions, and

Table 5.3 describes results for bounce back MT boundary conditions. Again,

results differ according to variations in the MT treadmilling speed SMT , the

alignment parameter C, and the type of motor configuration.

5.3.1 Periodic Boundary Conditions

We first describe results for simulation of equation (5.2) using periodic bound-

ary conditions, described in equation (5.3). Results are shown in Figure 5.4

and 5.5. In this situation, we only consider motor configurations given by

Figure 5.1(a) and (c). That is, we consider motors everywhere in the domain,

or at a small patch in the domain.

We first investigate the effect of the motor activity C on MT patterning

(when treadmilling speed is low). In Figures 5.4(a1) and (b1), we show MT

patterns found for low motor activity C and low gliding speed SMT using
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        (a) (b) (c) (d) (e) 

 Cluster Uniform Fingering MTs on boundary MTs on Boundary
 (none in interior) (less on interior) 

Row 1

Alignment Alignment Patches of Mixed Aster Vortex
 to 0 degree Alignment
 

Row 2

(a)                  (b)                  (c)                      (d)                       (e)                           (f) 

(a) (b)

Alignment Aster
 (bundle)

Row 3

Figure 5.3: Schematic of final MT density patterns (Row 1), global alignment (Row 2),
and local alignment (Row 3). Row 1: (a) A single MT cluster, (b) uniform density of
MTs, (c) fingering of MTs, (d) all MTs on boundary, and (e) most MTs on boundary, but
some MTs on the inside. Row 2: (a) Global alignment of MTs (b) Global alignment to 0
radians (c) patches of alignment, (d) mixed alignment, (e) global aster (all vectors pointing
to boundary), and (f) vortices. Row 3: (a) local alignment (bundles), and (b) local asters
(uniform distribution).

the motor configuration given by Figure 5.1(a). Here, MTs are located in

stationary patches, where they form bundles at high MT density locations

and vortices in low MT density locations. This result is consistent with the

idea that where more MTs are located, crosslinking (and thus alignment) is

able to occur. In Figures 5.4(a2) and (b2), we show results for an increase

in C to its high value, keeping all other model inputs the same. Here the

patches of alignment become more defined forming what we call ‘fingers’. If we

increase motor activity, we increase the alignment function α, thus increasing

the probability that bundles, such as the fingers seen in Figures 5.4(a2) and

(b2), form. This result is similar to that found by Painter in [47].
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C low
S low

C high
S low

(a2)                                  (b2)

(a1)                                  (b1) 

Figure 5.4: (a1) and (b1): Patchy vortex patterns formed for low C, low SMT and motor
configuration Figure 5.1(a). (a2) and (b2): Fingering patterns formed for high C, low SMT

and motor configuration Figure 5.1(a). Red represents high density and blue represents low
density in (a1) and (a2).

Next, we investigate the effect of an increase in gliding speed (treadmilling)

on MT pattering, comparing Figure 5.5 (results with high SMT ), to the previ-

ous Figure 5.4 (results with low SMT ). In Figures 5.5(a1) and (b1), we show

results for high MT gliding speed SMT and high motor activity parameter

C. MTs move quickly, and so stationary patterns like those found in Figure

5.4 are not observed. Instead, MTs group together into a single cluster and

travel together along a single direction. This result shows that MT movement

(whether MTs are stationary or not) depends on the MT gliding speed (for

the motor configuration in Figure 5.1(a)). That is, for high gliding speeds the

MTs move, and for low gliding speeds they remain stationary.

Finally, we investigate the effect of motor configuration on MT patterning,

comparing Figures 5.5(a1) and (b1) (where motors are distributed throughout
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CC high
S high

C high

(a2)                                      (b2)

(a1)                                      (b1)

S high

Figure 5.5: (a1) and (b1): Moving cluster formed for high C, high SMT and motor
configuration Figure 5.1(a). (a2) and (b2): Stationary cluster formed for high C, high SMT

and motor configuration Figure 5.1(c).

the entire domain) with Figures 5.5(a2) and (b2) (where motors are distributed

in a small patch at the center of the domain). In Figures 5.5(a2) and (b2),

we observe MT patterns for high C, high gliding speed SMT , and using the

motor configuration given by Figure 5.1(c). We observe a single stationary

MT cluster that is correlated with the location of the motor patch. If we

increase the size of this patch, so that it is closer to the patch size shown in

Figure 5.1(b), we lose the stability of the stationary cluster, and again have a

moving MT cluster similar to that shown in Figures 5.5(a1) and (b1) (results

not shown).
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C low
S low

C low
S high

(a1)                                         (b1)

(a2)                                           (b2)

Figure 5.6: (a1) and (b1): Uniform distribution of MTs forming vortex patterns for low
C, low SMT and motor configuration Figure 5.1(a). (a2) and (b2): Global vortex formed
for low C, high SMT and motor configuration Figure 5.1(c).

5.3.2 Bounce Back Boundary Conditions

In Figures 5.6 and 5.7, we describe long-time patterns found using bounce back

boundary conditions described by equations (3.18) and (3.19). First, in Figure

5.6, we explore the effect of gliding (treadmilling) speed on MT patterning.

In Figures 5.6(a1) and (b1), we show results for low motor activity C and low

gliding speed SMT , using the motor configuration in Figure 5.1(a). Here, a

uniform distribution of MTs is found throughout the interior of the domain and

these MTs form vortex patterns, where a slightly higher MT density is found on

the boundary. In fact, using any of the motor configurations found in Figure

5.1, we find similar results. That is, we find vortex patterns, where vortex

location corresponds to motor location (results not shown). If we increase

the gliding speed SMT , and place motors at the center of the domain and on

the boundary (as shown in Figure 5.1(e)), we produce results as shown in
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C low
S high
 
 

C moderate
S high

  
  
  
  

(a1)                                         (b1)

(a2)                                         (b2)

Figure 5.7: (a1) and (b1): Global vortex formed for low C, high SMT and motor configu-
ration Figure 5.1(e). (a2) and (b2): Moving patches of MTs with mixed orientation formed
for moderate C, high SMT and motor configuration Figure 5.1(a).

Figures 5.6(a2) and (b2). That is, we find that MTs distribute uniformly on

the interior of the domain (with more MTs located on the boundary), and

form a global vortex.

Next, in Figures 5.7(a1) and (b1), we show the effect of motor distribution

on MT patterning. Here, we show results for low C, high SMT , and the motor

configuration described by Figure 5.1(b). In this case, all MTs are found on

the boundaries, and the global orientation is an aster. That is, all MTs point

towards the boundary. This resulting pattern is found whenever SMT is high

and when there are no motors on the boundary of the domain. Also, for any

combination of C and SMT , MTs always end up on the boundaries, however

the overall orientation may not be an aster (results not shown). When there

are no motors on the boundary, MTs are unable to reorient.

Finally, in Figures 5.7(a2) and (b2), we show the effect of motor activity
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of MT patterning. In the results shown by Figures 5.6(a1,a2), (b1,b2), and

5.7(a1,b1), we find uniform distributions of MTs located on the interior of the

domain. In some cases the MT density is high (as in Figure 5.6(a1)), and in

some cases it is very low, even close to zero (as in Figure 5.7(a1)). In fact, for

any combination of C and SMT summarized in Table 5.1, and for any motor

configuration, we find similar results. To test whether different MT distribu-

tions can be observed, we use different motor activity parameters C. In Figures

5.7(a2) and (b2), we choose a moderate value for the motor activity, C = 10,

high gliding speed, and motor configuration 5.1(a). Here, MTs form transient

patches with mixed orientation. These patches are continuously moving, never

reaching stability.
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5.4 Transport with spatially dependent glid-

ing speed SMT (x)

Here we discuss the effect of a spatially dependent gliding speed on MT pat-

terning, as compared to the case where SMT is constant everywhere. That is,

we describe MT patterning in systems where processive motors are present.

In this case, MT gliding is a function of MT treadmilling and MT sliding.

Similar to the last section, in all cases we show long-time patterns, which refer

to steady-state patterns, patterns that are stable and do not change with time.

We first consider the case where we have a single type of processive motor.

Here, we assume that the type of motor used is a negative-directed motor (m−)

so that both treadmilling and sliding occur in the same direction (towards the

positive end). For this case, we can write the gliding speed SMT (x) as

SMT (x) = Streadmill + Sslide ∗ ID(x), (5.6)

where ID(x) is the indicator function on the motor domain D, defined by

ID(x) =

{
1 if m−(x) 6= 0

0 if m−(x) = 0
,

Streadmill is the constant treadmilling speed, and Sslide is the constant speed at

which motors slide MTs. Values for possible sliding speeds and the treadmilling

speed are found in Table 5.1. For simplicity, we only consider the cases where

we have motors distributed throughout the entire domain (either randomly,

as shown in Figure 5.8(c), or in a checkerboard fashion, as shown in Figure

5.8(a)). Here, the motor density is 1.0µm−2 where motors are located, and

there is an equal ratio of motors to no motors.

As a second example, we consider the case where we have two types of pro-

cessive motors present (positive- (m+) and negative- (m−) directed motors).

Here, we consider the gliding speed function given by

SMT (x) = Streadmill − Sslide ∗ ID+(x) + Sslide ∗ ID−(x), (5.7)

where Sslide is the sliding speed of each motor (either can be low, moderate, or

high), and the minus sign accounts for positive-directed motors. Here, ID−(x)
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(a)                                      (b)

(c)                                       (d)

Figure 5.8: Schematic of different configurations for motors. Each square represents one
grid point. Here, only 42 grid points are shown (for ease in reading), but in simulations we
have 1200. (a) One motor type distributed in a checkerboard fashion. Red describes the
presence of motors and blue describes the absence of motors. Each grid point has a constant
value. (b) Two motor types distributed in a checkerboard fashion. Red describes one motor
type and yellow describes a second motor type with the opposite directionality. (c) One
motor type distributed in a random fashion, with an equal ratio of motors to no motors.
Red describes the presence of motors and blue describes the absence of motors. (d) Two
motor types distributed in a random fashion, with an equal number of each motor type.
Red describes one motor type and yellow describes a second motor type with the opposite
directionality.

and ID+(x) are defined by,

ID+(x) =

{
1 if m+(x) 6= 0

0 if m+(x) = 0
,

and

ID−(x) =

{
1 if m−(x) 6= 0

0 if m−(x) = 0
.

Again, for simplicity, we only consider the cases where we have each motor

distributed throughout the entire domain (either randomly, as shown in Figure

5.8(b), or in a checkerboard fashion, as shown in Figure 5.8(d)). Again, the

motor density is 1.0µm−2, and there is an equal number of each type of motor.

5.4.1 Periodic Boundary Conditions

We first select one motor type (i.e., a negative-directed motor) and distribute

motors according to either Figure 5.8(a) or (c). Here, we find that the results
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(a1)                                           (b1)

(a2)                                          (b2)

C high
1 slow minus-
end motor
1 fast plus-
end motor

C low
1 slow minus-
end motor
1 fast plus-
end motor

Figure 5.9: (a1) and (b1): Global aster for high C, and fast positive-directed motors and
slow negative-directed motors, under the influence of motor configuration Figure 5.8(d).
(a2) and (b2): vortices for low C, fast positive-directed motors and slow negative-directed
motors, under the influence of motor configuration Figure 5.8(d).

are almost identical to those found in Section 5.3.1. For low C and low sliding

speed Sslide, we obtain vortices (as in Figures 5.4(a1) and (b1)) (results not

shown). For high C and moderate sliding speed, we obtain fingering patterns

(as in Figures 5.5(a1) and (b1)) (results not shown). Finally, for a moderate

sliding speed, and motors located randomly throughout just the center of the

domain (similar to the motor configuration in 5.1(c))), and obtain a result

similar to that found in Figure 5.5(a2) and (b2) (results not shown).

When we choose two types of motors with different directionality, we obtain

results that are very different from those found in Section 5.3.1. In Figure 5.9,

we show results for two types of motors distributed according to either Figures

5.8(b) or (d). Here, using either type of distribution gives similar results, and

so we use the motor configuration Figure 5.8(d) for all results illustrated in
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C low
1 medium
minus-
end motor

(a1)                                           (b1)

(a2)                                           (b2)

Figure 5.10: (a1) and (b1): Global Vortex for low C, low treadmilling, and one motor
type moving MTs at a slow sliding speed under the influence of motor configuration Figure
5.8(a). (a2) and (b2): Global Vortex for low C, low treadmilling, and one motor type moving
MTs at a slow sliding speed under the influence of motor configuration Figure 5.8(c).

Figure 5.9. In particular, we obtain asters, or arrays of vortices. When we

choose a high motor activity C, a high sliding speed Sslide for the positive-

directed motors, and a low sliding speed Sslide for the negative-directed motors,

we get a single stable aster, as shown by Figures 5.9(a1) and (b1). If we choose

a fast positive-directed motor type and a slow minus-directed motor type, but

this time choose a low motor activity C, we get an array of vortices, as shown in

Figure 5.9(a2) and (b2). Also, the results found here are qualitatively similar

if we choose two opposite directed motors with the same sliding speed Sslide,

either low or moderate (results not shown).
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C low
2 opposite
directionality
motors of
same speed

(a1)                                          (b1)

(a2)                                           (b2)  

Figure 5.11: (a1) and (b1): Anti-parallel bundling for low C, low treadmilling and two
motors (as in Figure 5.8(b)) moving MTs at the same moderate sliding speeds but with
opposite directionality. (a2) and (b2): Anti-parallel bundling for low C, low treadmilling
and two motors (as in Figure 5.8(d)) moving MTs at the same moderate sliding speeds but
with opposite directionality.

5.4.2 Bounce Back Boundary Conditions

We first show results for when one type of motor is present (minus-end directed

motors, so that sliding occurs in the positive direction) as in Figure 11(a) or

11(c). Using either motor distribution gives us similar results, so it does not

matter which one we choose (results not shown). Figures 5.10(a1) and (b1)

show results for when the motor activity C is low, the motor speed is low,

and the motor distribution corresponds to a checkerboard pattern as in Figure

5.8(a). Figures 5.10(a2) and (b2) show results for when the motor activity is

low, the motor speed is moderate, and motors are distributed at random as

described in Figure 5.8(c). Here, we see that as you increase the motor speed

the global pattern changes from a stable vortex to a stable aster.
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In Figure 5.11, we show results for simulations on domains that have two

motor types. We first choose two motors of the same sliding speed (here we

choose moderate sliding speeds), but with different directionality. Figures

5.11(a1) and (b1) show results for low motor activity C, using a checkerboard

motor distribution as in Figure 5.8(b). We obtain MT distributions where

anti-parallel bundles exist close to the boundary of the domain (and a mixed

orientation of MTs exists on the interior). Experiments have shown similar

results. In particular, gliding assays comprised of two motors with opposing di-

rectionality have shown that similar patterns of MTs exist [63, 59, 19]. Figures

5.11 (a2) and (b2) show similar results. Here, we use the same model parame-

ters, but choose a random motor distribution as in Figure 5.8(d). Again, this

shows that results are not dependent on the exact organization of the motors.

In Figure 5.12, we show results for simulations on domains with two types

of motors that have different speeds. In particular, we choose fast positive-

directed motors and slow negative-directed motors. From Figures 5.12 (a1)

and (b1), we see that when the motor activity C is low, MTs form astral

arrays and are distributed uniformly throughout the interior of domain, where

more are located at the boundaries. These results are independent of whether

a checkerboard (Figure 5.8(c)) or random motor distribution (Figure 5.8(d))

are used. In Figures 5.12(a2) and (b2), we choose a high motor activity. Here,

we see that MTs form mixed distributions of MTs with random orientations.
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C low
1 slow minus-
end motor
1 fast plus-
end motor

C high
1 slow minus-
end motor
1 fast minus-
end motor

(a1)                                            (b1)

(a2)                                            (b2)

Figure 5.12: (a1) and (b1): Array of asters formed by two motors (as in Figure 5.8(b))
with low C and low treadmilling. Positive-directed motors are moving MTs at high sliding
speeds and negative-directed motors are moving MTs at low sliding speeds. (a2) and (b2):
Mixed MTs for high C, low treadmilling and two motors (as in Figure 5.8(b)). Similar to
above case, positive-directed motors are moving MTs at high sliding speeds and negative-
directed motors are moving MTs at low sliding speeds.
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Chapter 6

Existence and Uniqueness

Result for the Full Model

In this section, we describe an existence and uniqueness result for the full

model (described in detail in Chapter 3) given by equations

∂mb(~x, t)

∂t
+∇~x · (vbmb(~x, t)) = kon(p̃)mu(~x, t)− koffmb(~x, t), (6.1)

∂mu(~x, t)

∂t
−Du∆~xmu(~x, t) = −kon(p̃)mu(~x, t) + koffmb(~x, t), (6.2)

∂p(~x, t, θ)

∂t
+ sMT θ̂ · ∇~xp(~x, t, θ) = −λ(mb)p(~x, t, θ)

+ λ(mb)

∫ π

−π
k(mb, θ, θ̃)p(~x, t, θ)dθ̃,

(6.3)

where function vb = ||vb||
∫
S1 θp(~x, t, θ)dθ is the bound motor velocity, kon(p̃) =

kmaxon
p̃

1+p̃
is the density dependent attachment rate of motors to MTs (kmaxon > 0

is the max attachment rate), p̃(~x, t) =
∫
S1 p(~x, t, θ)dθ is the total MT density

at each point in space ~x at time t, and λ(mb) = λmax
mb

1+mb
is the MT switch-

ing rate (λmax > 0 is the max switching rate). The constant koff > 0 is the

detachment rate of motors from MTs, Du > 0 is the diffusion rate of unbound

motors, and SMT > 0 is the constant treadmilling rate.
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Here, we consider only periodic boundary conditions on [0, L]× [0, L],

mb(0, y, t) = mb(L, y, t),

mu(0, y, t) = mu(L, y, t),

p(0, y, t, θ) = p(L, y, t, θ); p(x, 0, t, θ) = p(x, L, t, θ).

(6.4)

The following Theorem 6.1 is a statement of the existence and uniqueness

result.

Theorem 6.1: Consider the model given by equations (6.1) through (6.3) with

boundary condition (6.4). If kon(p̃) is Lipschitz continuous in p̃, λ(mb) is

Lipschitz continuous in mb, and if k(θ, θ,mb) is Lipschitz in mb, there exists

a T > 0 such that we have a unique solution for mb ∈ L∞(D), mu ∈ L∞(D),

and p ∈ C1((0, T ], L∞(Ω)) where D = (R2 × (0, T ]) and Ω = R2.

In Section 6.1 we give a brief outline of the proof of Theorem 6.1, and in

Sections 6.2 to 6.5 we give a detailed sketch of the proof. For a review of

important function spaces, as well as theorems and lemmas used throughout

this chapter, please see Appendix A.

6.1 Outline of proof of Theorem 6.1

The coupling of a hyperbolic equation (6.1), a parabolic equation (6.2), and

a transport equation (6.3) leads to interesting mathematical challenges. We

address those by using the appropriate estimates for each type of equation

separately. We define three maps between the Banach spaces

X = L∞(D) and Y = C1([0, T ], L∞(Ω))
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where D = (R2 × (0, T ]) and Ω = R2, as follows:

A : X × Y−→ X

(mu, p̃) 7 −→ mb,

B : X × Y−→ X

(mb, p̃) 7 −→ mu, and

C : X−→ Y

mb 7 −→ p̃.

We write

A(mu, p̃) = mb,

B(mb, p̃) = mu, and

C(mb) = p̃.

The composition T(mb) = A(B(mb,C(mb)),C(mb)) will be a contraction in

X for t small enough (t > 0), which leads to existence of a unique solution.

The following Sections 6.2 through 6.5 present an outline of the necessary

estimates. For all sections that follow, we use the common symbol c for all

bounded constants that arise in the estimates. Also, it is important to note

that we require slightly higher regularity in the initial condition for p. That

is, we consider following initial conditions:

mb(x, 0) ∈ L∞(Ω), (6.5)

mu(x, 0) ∈ L∞(Ω), and (6.6)

p(x, 0, θ) ∈ C1(Ω× S1). (6.7)

6.2 An estimate for mb

As a first step, we derive an expression for mb. We begin by considering the

case where we are given an mu ∈ X and p̃ ∈ Y , and assume that m∗b is a
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solution to the equation (6.1). In particular,

∂m∗b(~x, t)

∂t
+∇ · (vbm

∗
b(~x, t)) = kon(p̃)mu(~x, t)− koffm∗b(~x, t). (6.8)

Since ∇ · (vbm
∗
b) = vb · ∇m∗b + (∇ · vb)m∗b , we can rewrite equation (6.8) as

∂m∗b(~x, t)

∂t
+vb ·∇m∗b(~x, t) = −(∇·vb)m∗b(~x, t)+kon(p̃)mu(~x, t)−koffm∗b(~x, t).

(6.9)

The left-hand side of equation (6.9) is an advection term and the right-hand

side of equation (6.9) is a reaction term. Such an equation is classified as

a hyperbolic equation and so the method of characteristics can be used as

a method for describing solutions along characteristics. The characteristic

equation is given by
d~x

dt
= vb = vb(~x, t). (6.10)

This equation is a non-autonomous ordinary differential equation (ODE) (an

ODE where the right-hand side is a function of the independent variable, in

this case t). From local existence results for ODEs, it is sufficient that the

right-hand side, vb(~x, t), be Lipschitz in not only the dependent variable ~x,

but also the independent variable t. Since the motor velocity vb is a function

of p, as long as p(~x, t, θ) is Lipschitz in ~x and t, vb(~x, t) is too.

From the general theory of ODEs, we can define a unique solution operator

(sometimes referred to as a flow operator) Φ for the equation (6.10) that takes

every initial condition ~x0 to a new spatial position ~x. The initial value problem

(IVP) for such a solution operator is given by

Φ′(~x0) = vb, Φ(~x0, 0) = ~x0 (6.11)

We substitute the solution Φ( ~x0, t) of the IVP (6.11) into equation (6.9) to

obtain

dm∗b(Φ( ~x0, t), t)

dt
= −(∇ · vb(Φ(~x0, t), t))m

∗
b(Φ( ~x0, t), t)

+kon(p̃(Φ( ~x0, t), t)mu(Φ( ~x0, t), t)− koffm∗b(Φ( ~x0, t), t).

(6.12)
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The left-hand side of equation (6.12) is called the material derivative

(i.e.,
dm∗b (Φ( ~x0,t),t)

dt
=

∂m∗b (Φ( ~x0,t),t)

∂t
+vb(Φ(~x0, t), t)) ·∇m∗b(Φ( ~x0, t), t)). Reorganiz-

ing this equation, by bringing together m∗b(Φ( ~x0, t), t) terms, we obtain

dm∗b(Φ( ~x0, t), t)

dt
+ [koff + (∇ · vb(Φ(~x0, t), t))]m

∗
b(Φ( ~x0, t), t)

= kon(p̃(Φ( ~x0, t), t))mu(Φ( ~x0, t), t).

(6.13)

From equation (6.13) we define

A(Φ( ~x0, t), t) = exp(
∫ t

0
(koff + (∇ · vb(Φ(~x0, t), t)))dτ ,

which is uniformly bounded in L∞. Multiplying the equation (6.13) through

by A(Φ( ~x0, t), t) we arrive at

dm∗b(Φ( ~x0, t), t)

dt
A(Φ( ~x0, t), t) + [koff − (∇ · vb(Φ(~x0, t), t)))]

×m∗b(Φ( ~x0, t), t)A(Φ( ~x0, t), t)

= kon(p̃(Φ( ~x0, t), t))mu(Φ( ~x0, t), t)A(Φ( ~x0, t), t),

(6.14)

which can be simplified to

d[m∗b(Φ( ~x0, t), t)A(Φ( ~x0, t), t)]

dt
= kon(p̃(Φ( ~x0, t), t))mu(Φ( ~x0, t), t)A(Φ( ~x0, t), t),

(6.15)

a linear equation for m∗b . Solving the above equation by integrating both sides

with respect to t we obtain

m∗b(Φ( ~x0, t), t)A(Φ( ~x0, t), t)−m∗b(Φ( ~x0, 0), 0)A(Φ( ~x0, 0), 0)

=

∫ t

0

kon(p̃(Φ( ~x0, s), s))mu(Φ( ~x0, s), s)A(Φ( ~x0, s), s)ds,
(6.16)

and, after dividing through by A(Φ( ~x0, t), t), equation (6.16) simplifies to

m∗b(Φ( ~x0, t), t) = m∗b(Φ( ~x0, 0), 0)
1

A(Φ( ~x0, t), t)

+

∫ t

0

kon(p̃(Φ( ~x0, s), s))mu(Φ( ~x0, s), s)
A(Φ( ~x0, s), s)

A(Φ( ~x0, t), t)
ds,

(6.17)
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the solution m∗b along characteristics (here, A(Φ( ~x0, 0), 0) = 1 and t ∈ (0, T ]).

We write (6.17) as

m∗b(~x, t) = m∗b(Φ( ~x0, 0), 0)
1

A(Φ( ~x0, t), t)

+

∫ t

0

kon(p̃(Φ( ~x0, s), s))mu(Φ( ~x0, s), s)
A(Φ( ~x0, s), s)

A(Φ( ~x0, t), t)
ds,

(6.18)

,

where Φ( ~x0, 0) denotes the characteristic through (~x, t), which starts at ~x0.

Equation (6.18) defines a continuous map

A : L∞(D)× C1((0, T ], L∞(Ω))−→ L∞(D)

(mu, p̃) 7 −→ mb.

To simplify notation, in what follows we let m
(i)
b = m

(i)
b (~x, t),

m
(i)
u = m

(i)
u (Φ(i)(t), t), p̃(i) = p̃(i)(Φ(i)(t), t), A(i)(t) = A(Φ(i)(t), t), and k

(i)
on =

kon(Φ(i)(t), t), for i = 1, and 2. To apply a contraction argument later, we

first need a contraction-like estimate for mb. For that we assume two pairs

of functions (m
(1)
u , p̃(1)) and (m

(2)
u , p̃(2)) and denote by m

(i)
b the corresponding

solution of equation (6.18), for i = 1 and 2, respectively. Notice that, since

vb depends on p̃(i), the characteristics will differ. We denote them by Φ(1) =

Φ(1)(~x0, t) and Φ(2) = Φ(2)(~y0, t). These two characteristics will stay close, as

shown by following:

Integrating both sides of the IVP (6.11) with respect to t from 0 to Tcross

gives

Φ(Tcross)− Φ(0) =‖ vb ‖
∫ Tcross

0

p̃(Φ(s), s)ds. (6.19)

We define Tcross to be the location where the characteristics Φ(1)(~x0, t) and

Φ(2)(~y0, t) cross (see Figure 6.1).

Now,

Φ(i)(Tcross)− Φ(i)(0) =‖ vb ‖
∫ Tcross

0

p̃(i)ds,

for i = 1 and 2, and so,
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x

t

Figure 6.1: Characteristics Φ(1)(t) and Φ(2)(t), starting at Φ(1)(0) and Φ(2)(0), respec-
tively, cross at time Tcross at location Φ(Tcross).

Φ(1)(Tcross)− Φ(2)(Tcross) = Φ(1)(0)− Φ(2)(0)+ ‖ vb ‖
∫ Tcross

0

(
p̃(1) − p̃(2)

)
ds.

Since Φ(1)(Tcross) = Φ(2)(Tcross),

0 = Φ(1)(0)− Φ(2)(0)+ ‖ vb ‖
∫ Tcross

0

(
p̃(1) − p̃(2)

)
ds.

and so,

−(Φ(1)(0)− Φ(2)(0)) =‖ vb ‖
∫ Tcross

0

(
p̃(1) − p̃(2)

)
ds,

or,

Φ(1)(0)− Φ(2)(0) = − ‖ vb ‖
∫ Tcross

0

(
p̃(1) − p̃(2)

)
ds.

Thus,

|Φ(1)(0)− Φ(2)(0)|≤‖ vb ‖ t|p̃(1) − p̃(2)|L∞ . (6.20)

Now, we estimate the distance between two solutions m
(1)
b and m

(2)
b given

m
(i)
u ∈ L∞(D) and p̃(i) ∈ C1((0, T ], L∞(Ω)), for i = 1 and 2, using the initial

conditions m
(1)
b (~x, 0) = m

(2)
b (~x, 0) = b(~x) (each solution shares the same initial
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data), which we assume to be Lipschitz continuous and bounded, where

m
(1)
b (~x, t) =

b(Φ(1)(0))

A(1)(t)

+
1

A(1)(t)

∫ t

0

A(1)(s)k(1)
onm

(1)
u ds

(6.21)

and

m
(2)
b (~x, t) =

b(Φ(2)(0))

A(2)(t)

+
1

A(2)(t)

∫ t

0

A(2)(s)k(2)
onm

(2)
u ds.

(6.22)
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That is, we estimate |m(1)
b (~x, t)−m(2)

b (~x, t)| as,

∣∣∣m(1)
b (~x, t)−m(2)

b (~x, t)
∣∣∣
L∞

=

∣∣∣∣b(Φ(1)(0))

A(1)(t)
− b(Φ(2)(0))

A(2)(t)

∣∣∣∣
L∞

+

∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds

=

∣∣∣∣b(Φ(1)(0))

A(1)(t)
+
b(Φ(2)(0))

A(1)(t)
− b(Φ(2)(0))

A(1)(t)
− b(Φ(2)(0))

A(2)(t)

∣∣∣∣
L∞

+

∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds

=

∣∣∣∣ 1

A(1)(t)
[b(Φ(1)(0))− b(Φ(2)(0))] + b(Φ(2)(0))[

1

A(1)(t)
− 1

A(2)(t)
]

∣∣∣∣
L∞

+

∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds

≤ 1

min|A(1)(t)|
∣∣b(Φ(1)(0))− b(Φ(2)(0))

∣∣
L∞

+ b(Φ(2)(0))

∣∣∣∣ 1

A(1)(t)
− 1

A(2)(t)

∣∣∣∣
L∞

+

∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds

≤ 1

A
(1)
min

Lb
∣∣Φ(1)(0)− Φ(2)(0)

∣∣︸ ︷︷ ︸
I

+
|b(Φ(2)(0))|L∞

min|A(1)(t)A(2)(t)|
∣∣A(1)(t)− A(2)(t)

∣∣
L∞︸ ︷︷ ︸

II

+

∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds︸ ︷︷ ︸
III

,

where Lb is the Lipschitz constant for b, and A(i)(t) is bounded so that A(i)(t) ∈
[A

(i)
min, A

(i)
max].

Simplifying I : Substitution of estimate (6.20) into I we obtain,

Lb

A
(1)
min

∣∣Φ(1)(0)− Φ(2)(0)
∣∣ ≤ Lb

A
(1)
min

||vb||t
∣∣p̃(1) − p̃(2)

∣∣
L∞

= c1t
∣∣p̃(1) − p̃(2)

∣∣
L∞

.

(6.23)
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Simplifying II : The term
∣∣A(1)(t)− A(2)(t)

∣∣ from II can be simplified as

∣∣A(1)(t)− A(2)(t)
∣∣
L∞

=

∣∣∣∣exp(

∫ t

0

[koff +∇ · vb
(1)(Φ(1)(s))]ds)

− exp(

∫ t

0

[koff +∇ · vb
(2)(Φ(2)(s))]ds)

∣∣∣∣
≤ c

∫ t

0

∣∣koff +∇ · vb
(1)(Φ(1)(s))

− (koff +∇ · vb
(2)(Φ(2)(s)))

∣∣
L∞

ds

≤ ct
∣∣∇(vb

(1)(Φ(1)(s))− vb
(1)(Φ(1)(s)))

∣∣
L∞

To finish this estimate, we need to integrate equation (6.3) over S1. Doing

this we obtain

∂

∂t
p̃ = −SMT∇vb.

Now, since

∣∣∇(vb
(1)(Φ(1)(s))− vb

(1)(Φ(1)(s)))
∣∣
L∞
≤ 1

SMT

∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞

,

then II becomes

|b|L∞
min |A(1)(t)A(2)(t)|

∣∣A(1)(t)− A(2)(t)
∣∣
L∞
≤ c2t

∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞

. (6.24)
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Simplifying III :∫ t

0

∣∣∣∣A(1)(s)

A(1)(t)
k(1)
onm

(1)
u −

A(2)(s)

A(2)(t)
k(2)
onm

(2)
u

∣∣∣∣
L∞

ds

≤ c3t
∣∣A(1)(t)− A(2)(t)

∣∣
L∞

+ c4t
∣∣k(1)
on − k(2)

on

∣∣
L∞

+ c5t
∣∣m(1)

u −m(2)
u

∣∣
L∞

≤ c1t
2
∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞︸ ︷︷ ︸

from estimate (6.24)

+ c4Lkont
∣∣p̃(1) − p̃(2)

∣∣
L∞︸ ︷︷ ︸

kon is Lipschitz continous and bounded w.r.t p̃

+ c5t
∣∣m(1)

u −m(2)
u

∣∣
L∞

.

Putting I, II, and III together we get

∣∣∣m(1)
b (~x, t)−m(2)

b (~x, t)
∣∣∣
L∞
≤ c1t

∣∣p̃(1) − p̃(2)
∣∣
L∞

+ c2t
∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞

c3t
∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞

+ c4t
∣∣p̃(1) − p̃(2)

∣∣
L∞

+ c5t
∣∣m(1)

u −m(2)
u

∣∣
L∞

,

and so, ∣∣∣m(1)
b (~x, t)−m(2)

b (~x, t)
∣∣∣
L∞
≤

ct
(∣∣∣p̃(1)

t − p̃
(2)
t

∣∣∣
L∞

+
∣∣p̃(1) − p̃(2)

∣∣
L∞

+
∣∣m(1)

u −m(2)
u

∣∣
L∞

)
.

(6.25)

6.3 An estimate for mu

Next, we derive an expression for mu. We begin by considering the case where

we are given an mb ∈ X and p̃ ∈ Y , and assume that m∗u satisfies the equation

(6.2), That is,

∂m∗u(~x, t)

∂t
−Du∆m

∗
u(~x, t) = −kon(p̃)m∗u(~x, t) + koffmb(~x, t). (6.26)

The general form of solutions to such a parabolic equation is known [60] and
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is given by

m∗u(~x, t) = exp(tDu∆)m∗u(~x, 0) +

∫ t

0

exp((t− s)Du∆)[kon(p̃(~x, s))m∗u(~x, s)

+koffmb(~x, s)]ds.

(6.27)

Again, we estimate the distance between two solutions m
(1)
u (~x, t) and m

(2)
u (~x, t),

for given m
(i)
b ∈ X and p̃(i) ∈ Y , and initial conditions m

(1)
u (~x, 0) = m

(2)
u (~x, 0) =

a(~x).

∣∣m(1)
u (~x, t)−m(2)

u (~x, t)
∣∣
L∞

=

|exp(tDu∆)a(~x)− exp(tDu∆)a(~x)

+

∫ t

0

exp((t− s)Du∆)(k(1)
onm

(1)
u + koffm

(1)
b − k

(2)
onm

(2)
u + koffm

(2)
b )ds

∣∣∣
≤
∫ t

0

∣∣∣exp((t− s)Du∆)(k(1)
onm

(1)
u + koffm

(1)
b − k

(2)
onm

(2)
u + koffm

(2)
b )
∣∣∣
L∞

ds.

Now, if we apply the estimate (6.28) (from Taylor [60])

|exp(t∆)f |L∞≤ c|f |L∞ , (6.28)

where c is a constant, we obtain

∣∣m(1)
u (~x, t)−m(2)

u (~x, t)
∣∣
L∞
≤

c

∫ t

0

(c1|k(1)
on − k(2)

on |L∞+c2|m(1)
u −m(2)

u |L∞+c3koff |m(1)
b −m

(2)
b |L∞)ds

ctLkon|p̃(1) − p̃(2)|L∞︸ ︷︷ ︸
kon is Lipschitz w.r.t p̃

+ctkoff |m(1)
b −m

(2)
b |L∞+c

∫ t

0

|m(1)
u −m(2)

u |L∞ds.
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Gronwall’s Lemma [52] then implies,

∣∣m(1)
u (~x, t)−m(2)

u (~x, t)
∣∣
L∞
≤ (ctLkon|p̃(1)−p̃(2)|L∞+ctkoff |m(1)

b −m
(2)
b |L∞) exp(ct).

(6.29)

Thus, we have our mapping B defined by

B : L∞(D)× C1((0, T ], L∞(Ω))−→ L∞(D)

(mb, p̃) 7 −→ mu.

6.4 An estimate for p

We derive an expression for p using the equation (6.3). Here, we follow a

similar method to that used by Hillen et al. [22] Similar to the equation (6.1)

for bound motorsmb, this equation is hyperbolic, and so we can use the method

of characteristics to determine an expression for p, given amb ∈ X. For a given

θ, we have the characteristic equation

dXv(t)

dt
= ~v, Xv(~x0, 0) = ~x0, (6.30)

where ~v = SMT θ̂.

Substituting the characteristic Xv(t) into equation (6.3) and writing in terms

of the material derivative we arrive at

dp(Xv(t), t, ~v)

dt
+ λ(mb(Xv(t), t))p(X(t), t, ~v) = λ(mb(Xv(t), t))

× k(mb(Xv(t), t), ~v)p̃(X(t), t, ~v).

(6.31)

Since the characteristics depend on ~v ∈ V = [SlowMT , S
high
MT ] × S1, we cannot

simply integrate over S1. However, we can solve the equation (6.31) by using

an integrating factor,∧
(t) = exp(

∫ t
0
λ(mb(Xv(s), s))ds).
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Multiplying the equation (6.31) through by this integrating factor and reor-

ganising we arrive at,

d

dt

[
p(Xv(t), t, ~v)

∧
(t)
]

=
∧

(t)λ(mb(Xv(t), t))k(mb(Xv(t), t), ~v)p̃(Xv(t), t).

(6.32)

Integrating with respect to time and multiplying through by
∧−1(t), we arrive

at

p(Xv(t), t, ~v) =
−1∧

(t)p(Xv(0), 0)

+

∫ t

0

∧
(s)

−1∧
(s)λ(mb(Xv(s), s))k(mb(Xv(s), s), v)p̃(Xv(s), s)ds.

(6.33)

Now, we assume that (~x, t) is given, and that Xv(t) = ~x0 + ~vt denotes the

characteristic through (~x, t). Then, ~x0 = Xv(t)−~vt andXv(s) = Xv(t)−~vt+~vs,
and so our integrating factor is written as∧

(t) = exp(
∫ t

0
λ(mb(Xv − ~vt+ ~vs, s))ds).

and

p(~x, t, ~v) =
−1∧
p0(~x− ~vt)+∫ t

0

λ(mb(~x− ~vt+ ~vs, s))k(mb(~x− ~vt+ ~vs, s), ~v)p̃(~x− ~vt+ ~vs, s)ds.

(6.34)

This equation describes a continuous map

C̃ : L∞(D)−→ C1((0, T ], L∞(Ω)× L1(S1))

mb 7 −→ p,

provided the initial condition is C1, which we have assumed (from equation

(6.8)). Integrating p to p̃ =
∫
V
p(~x, t, ~v)d~v, we obtain a map

C : L∞(D)−→ C1((0, T ], L∞(Ω))

mb 7 −→ p̃.
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Before obtaining a contraction, we estimate the difference between p̃(1) and

p̃(2), and between p̃
(1)
t and p̃

(2)
t , for a given m

(1)
b and m

(2)
b ∈ X. We denote

λ(i) = λ(m
(i)
b ), k(i) = k(m

(i)
b ), and

∧(i) = exp(
∫ t

0
λ(m

(i)
b )ds), for i = 1 and 2,

and we write
∧−1(t)

∧
(s) =

∧
(s− t).

Estimating p̃ first (remember we will need an estimate for p̃t, too) we

obtain,

∣∣p̃(1) − p̃(2)
∣∣
L∞
≤
∫
V

∣∣p(1) − p(2)
∣∣
L∞

dv

≤
∫
V

|p0|L∞

∣∣∣∣∣∣
(1)−1∧
−

(2)−1∧ ∣∣∣∣∣∣
L∞

+

∫ t

0

∣∣∣∣∣∣
(1)∧
λ(1)k(1)p̃(1) −

(2)∧
λ(2)k(2)p̃(2)

∣∣∣∣∣∣
L∞

ds

 dv
≤
∫
V

[
ct|m(1)

b −m
(2)
b |L∞ +

∫ t

0

c
∣∣∣∣∣∣

(1)∧
−

(2)∧∣∣∣∣∣∣
L∞

+ c|λ(1) − λ(2)|L∞ +c|k(1) − k(2)|L∞+c|p̃(1) − p̃(2)|L∞
]
ds
]
dv

[by repeated insertion and subtraction and the use of

bounds for |
∧(i)|, |λ(i)|, |k(i)|, and |p(i)| < ∞.]

≤
∫
V

[
ct|m(1)

b −m
(2)
b |L∞ + ct2|m(1)

b −m
(2)
b |L∞+ct|m(1)

b −m
(2)
b |L∞

+ct|m(1)
b −m

(2)
b |L∞+c

∫ t

0

|p̃(1) − p̃(2)|L∞ds
]
dθ

[using Lipschitz continuity of λ and k]

≤ c1t|m(1)
b −m

(2)
b |L∞+c2

∫ t

0

|p̃(1) − p̃(2)|L∞ds

[where
∫
V
dv = |V |<∞ was added to each constant].

Now, Gronwall’s Lemma applies and

|p̃(1) − p̃(2)|L∞≤ c1t|m(1)
b −m

(2)
b |L∞exp(c2t). (6.35)

Next we estimate the time derivative p̃t
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∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣ ≤ ∫
V

|p(1)
t − p

(2)
t |dv

≤
∫
V

|p0|c1

∣∣∣∣∣∣
(1)∧
−

(2)∧∣∣∣∣∣∣
L∞

+ |p0|L
∞

∣∣∣∣∣∣
(1)∧
t

−
(2)∧
t

∣∣∣∣∣∣
L∞

 dv
+

∫
V

∣∣[λ(1)k(1)p̃(1) − λ(2)k(2)p̃(2)
]∣∣ dv.

Since
∧

:= exp(
∫ t

0
λ(mb(s))ds), and sincemb ∈ L∞, we have that

∫ t
0
λ(mb(s))ds

is differentiable. Thus
∧

(t) is differentiable with Lipschitz constant derivative

and

∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞
≤ ct|m(1)

b −m
(2)
b |L∞+c|m(1)

b −m
(2)
b |L∞+

c|λ(1) − λ(2)|+c|k(1) − k(2)|L∞+c|p̃(1) − p̃(2)|L∞

where again, |V | is added to each constant. We finally arrive at

∣∣∣p̃(1)
t − p̃

(2)
t

∣∣∣
L∞
≤ (c3t+ c4)|m(1)

b −m
(2)
b |L∞+ cc1t|m(1)

b −m
(2)
b |L∞exp(c2t)︸ ︷︷ ︸

from equation (6.35)

.

(6.36)

6.5 Defining a contraction mapping T

In this section, we define a contraction map T. first, we summarize the

maps we have found in the previous sections. For X = L∞(D) and Y :=

C1((0, T ], L∞(Ω)) we have
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A : X × Y−→ X

(mu, p̃) 7 −→ mb,

B : X × Y−→ X

(mb, p̃) 7 −→ mu, and

C : X−→ Y

mb 7 −→ p̃,

and we write

A(mu, p̃) = mb,

B(mb, p̃) = mu, and

C(mb) = p̃.

Given mb we define

T(mb) = A(B(mb,C(mb)),C(mb)).

Theorem 6.2: For t > 0 small enough, the map T : X → X is a contraction.
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∣∣∣Tm(1)
b −Tm

(2)
b

∣∣∣
L∞
≤ ct

[
|C(m1

b)−C(m2
b)|L∞ + (c3t+ c4)|m(1)

b −m
(2)
b |L∞

+ c1t|m(1)
b −m

(2)
b |L∞exp(c2t) + |B(m

(1)
b ,C(m

(1)
b ))−B(m

(2)
b ,C(m

(2)
b ))|L∞

]
[from equation (6.26) and (6.37)]

≤ ct
[
c1t|m(1)

b −m
(2)
b |L∞exp(c2t) + (c3t+ c4)|m(1)

b −m
(2)
b |L∞

+ c5t|m(1)
b −m

(2)
b |L∞exp(c2t)

+ ct
[
Lkonc1t|m(1)

b −m
(2)
b |L∞exp(c2t) + ctkoff |m(1)

b −m
(2)
b |L∞

]]
[from equation (6.36)]

≤ (c1t
2 + c2t) exp(c3t)|m(1)

b −m
(2)
b |L∞

= C(t)|m(1)
b −m

(2)
b |L∞

[from equation (6.30)],

where C(t) < 1 for t small enough. Since T is a contraction, by Banach’s fixed

point theorem [52] we have proved Theorem 6.1. That is, there is a unique

local solution for (mb, mb, p̃) ∈ X ×X × Y for t small enough.
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Chapter 7

Numerical Results for the Full

Model

In this chapter, we describe numerical results for the full model given by

equations (3.1), (3.2), and (3.3). We describe MT patterns that are observed

from simulation of these equations using parameter values that represent motor

proteins used in MT patterning experiments in vitro [58, 19]. The parameters

specific to motors are bound motor speed ||vb||, the max attachment rate kmaxon ,

and the detachment rate koff . Values for these parameters are found in Table

3.1. Recall from Chapter 3 that the attachment rate kon(p̃) is a function of

the total MT density p̃ =
∫
S1 p(~x, t, θ)dθ. From the previous chapter, Chapter

6, we found that kon(p̃) must be bounded with respect to p̃, and we choose

kon(p̃) = kmaxon

p̃

p̃+ 1
. (7.1)

The values choosen for kmaxon and koff are based on parameters used in simu-

lations by Nedéléc and Surrey [58]. The parameters in the study of Nedéléc

and Surrey are higher than that allowed for stability of solutions (with the

numerical scheme that we use), and so we scale them down (by a factor of 5)

from their original values kmaxon = 50 s−1 and koff = 1 s−1, keeping their ratio

the same (50:1). All other values for koff and kmaxon are based on these values

(for processive motors). For non-processive motors we reverse the values of

kmaxon and koff , and for weakly processive motors we choose values that are

roughly the average of the rates for processive and non-processive motors.
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For MT dynamics, we choose the max switching rate λmax to be constant,

the treadmilling speed SMT to be low, and the motor activity C to be low

(values found in Table 3.1). The reason we choose a low C is that we describe

MT patterns formed for various values of the motor density (low, moderate,

and high), and since the alignment function α(mb) depends directly on both

C and mb (alignment function given by equation (3.15)), an increase in mb has

a similar effect as an increase in C. Also, we simulate equations (3.1), (3.2),

and (3.3) using periodic boundary conditions. The reason for this is that we

wish to describe MT patterns in large domains (experiments we compare our

simulation results to are completed in large domains). Also, when we describe

patterns as being at steady-state, this means that patterns are stable and do

not change with time. Such stability is verified by inspection of images after

large time simulations.

In Section 7.1, we show results for processive motors. That is, we describe

patterns found by simulating equations (3.1) through (3.3) using parameters

specific to processive, fast moving, minus-end directed motors and processive,

slow moving, positive-end directed motors. We then compare these results to

in vitro experiments completed by Nedéléc and Surrey [58]. In Section 7.2, we

show results for non-processive motors. In particular, we simulate our model

using parameters specific to non-processive, fast moving, minus-end directed

motors, and we compare these results to experiments completed by Hentrich

and Surrey [19]. Finally, in Section 7.3, we show results for weakly proces-

sive motors. In particular, we simulate our model using parameters specific

to weakly processive, slow moving, positive-end directed motors, and we com-

pare these results to experiments completed by Hentrich and Surrey [19]. A

summary of the chapter results is found in Table 7.1.

7.1 Processive motors

In this section, we investigate MT patterning under the influence of processive

motors. We choose model parameters such that the bound motor speed ||vb|| is
either high or low, the max attachment rate kmaxon is high, and the detachment

rate koff is low.

Figures 7.1 and 7.2 show results for fast, processive, minus-end directed
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motors. Figure 7.1 illustrates steady-state results for a low density of motors,

and Figure 7.2 illustrates steady-state results for a high density of motors.

Here we find that, for low or high motor density, MTs form stable, minus-

focused asters at steady state, where motors are located at the center of the

asters. As we increase the motor density, the number of asters is increased.

These results are similar to the experiments of Surrey and Nedéléc [58, 43].

In these experiments, a particular NCD construct is used that is relatively

fast (0.2 µ/s) [43] and processive. In these experiments, MTs form minus-

end asters and motor proteins are located at the aster centers. Similar to

these experimental results, simulated motors are located at the aster centers.

However, in Figures 7.1 (a) and 7.2 (a), MT density is lowest at the aster

centers. Our simulations produce such results due to the treadmilling term.

In particular, MTs treadmill outwards from the aster centers, in the direction

of their positive ends.

Similarly, we find that simulations for fast, processive, positive-directed

motors produce stable positive-focused asters at steady state, where motors

are located at the centers of the asters (results not shown). Again, as we

increase motor density, the number of asters is increased, and the aster pattern

is stable.

If we reduce motor speed ||vb|| to its low value, choose a positive-directed

motor, keeping kmaxon and koff to be the same (high, and low, respectively, cor-

responding to a processive motor), we find that at small motor densities, MTs

form vortex patterns at steady state (see Figure 7.3(b)), and at higher motor

densities stable clusters form at steady state (see Figure 7.4(b)). From experi-

ments by Nedéléc and Surrey [58], in systems comprised of a positive-directed

kinesin motor, vortices are found at low motor densities, while positive-focused

asters are found at higher densities. In this experiment, such a motor is de-

scribed as being processive and fast. However, we find that vortex patterns

are not formed unless the motor is relatively slow. Also, we do not find asters

at high motor densities.
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7.2 Non-processive motors

A common motor construct that moves very fast in the negative direction,

but is not processive, is kinesin-14. We choose parameter values such that the

bound motor speed ||vb|| is high, the max attachment rate kmaxon is low, and

the detachment rate koff is high.

Figures 7.5 through 7.7 show results for a moderate density of kinesin-14

motors at short (50 time steps), medium (100 time steps), and large time (200

time steps), respectively. Here we see that minus-end focused asters form after

short time (see Figure 7.5). At medium time, many of the asters merge to form

fewer, larger asters (see Figure 7.6), and finally for large time the asters break

down until there are no asters left in the system (see Figure 7.7).

Our simulation results are similar at higher motor densities (results not

shown), and are consistent with results by Hentrich and Surrey [19]. The

authors show how asters form in systems comprised of kinesin-14 and MTs.

At short time there are many asters and, as time advances,the asters merge and

so there are fewer of them (see Figure 7.8). It is unclear from this experiment

whether the aster pattern becomes stabilized, or if it breaks down completely,

as in our simulations.

7.3 Weakly processive motors

Motors that are found to be weakly processive include kinesin-5. Kinesin-5 is

a slow moving, positive-directed motor [26, 19]. We choose parameters such

that the bound motor speed ||vb|| is low, the max attachment rate kmaxon is

moderate, and the detachment rate koff is moderate (parameter values are

found in Table 3.1).

Figure 7.9 shows steady-state results for slow moving, weakly processive,

positive-directed motors. We find that, for high motor density, motors are able

to organize MTs into clusters as shown in Figure 7.9(a). Such clusters do not

correspond to asters or vortices. Also, we find that motors correlate to MT

location (as shown in Figures 7.9(c) and (d)).

Similar to our results, experiments of MT pattering in the presence of

kinesin-5 show that motors are able to organize MTs into tight clusters, where
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MTs take on an undefined organization (see Figure 7.10) [19]. In the exper-

iment described in [19], motors correlate with MT location, similar to what

we find in our simulations (again, see Figure 7.10).

In our simulations, we found that these clusters become very large, forming

wide patches, if we decrease the motor density. Such a result has not been

tested experimentally, but would be interesting to verify.
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(a)                                  (b)                                    (c)                                  (d)       

Figure 7.1: Steady-state asters for fast moving, processive, minus-directed motors. Here,
kmax
on = 10/s, koff = 0.1/s, and ||vb||= 0.12 µm/s and total motor density is 0.5µm−2. (a)

MT density, (b) MT orientation. (c) bound motor density, and (d) unbound motor density.
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Figure 7.2: Steady-state asters for fast moving, processive, minus-directed motors. Here,
kmax
on = 10/s, koff = 0.1/s, and ||vb||= 0.12µm/s and total motor density is 5µm−2. (a)

MT density. MTs are located everywhere in the domain, except at aster centers. (a) MT
density, (b) MT orientation. (c) bound motor density, and (d) unbound motor density.
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Figure 7.3: MTs form vortices in systems comprised of processive, slow moving, positive-
directed motors at low motor density. Here, kmax

on = 10/s, koff = 0.1/s, and ||vb||=
0.04µm/s and total motor density is 0.5µm−2. (a) MT density, (b) MT orientation. (c)
bound motor density, and (d) unbound motor density.
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Figure 7.4: MTs form tight clusters in systems comprised of processive, slow moving,
positive-directed motors at high motor density. Here, kmax

on = 10/s, koff = 0.1/s, and
||vb||= 0.04µm/s and total motor density is 5µm−2. (a) MT density, (b) MT orientation.
(c) bound motor density, and (d) unbound motor density.
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(a)                                   (b)                                     (c)                                    (d)

Figure 7.5: MTs form asters at short time (50 time steps) in systems comprised of non-
processive, fast moving, negative-directed motors at moderate motor density. Here, kmax

on =
0.1/s, koff = 10/s, and ||vb||= 0.12µm/s and total motor density is 1µm−2. (a) MT
density, (b) MT orientation. (c) bound motor density, and (d) unbound motor density.
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Figure 7.6: MT asters merge and form fewer asters at medium time (100 time steps)
in systems comprised of non-processive, fast moving, negative-directed motors at moderate
motor density. Here, kmax

on = 0.1/s, koff = 10/s, and ||vb||= 0.12µm/s and total motor
density is 1µm−2. (a) MT density, (b) MT orientation. (c) bound motor density, and (d)
unbound motor density.
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Figure 7.7: MTs disperse from aster configuration after long time (200 time steps) in
systems comprised of non-processive, fast moving, negative-directed motors at moderate
motor density. Here, kmax

on = 0.1/s, koff = 10/s, and ||vb||= 0.12µm/s and total motor
density is 1µm−2. (a) MT density, (b) MT orientation. (c) bound motor density, and (d)
unbound motor density.

Figure 7.8: Experimental results of MTs form asters in the presence of kinesin-14, a fast
moving, non-processive, negative-directed motor [19]. As time elapses, MTs merge, forming
larger and fewer asters. Images created using epifluorescence microscopy.
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Figure 7.9: Clusters of MTs form at steady-state for slow-moving, weakly processive,
plus-end directed motors. Circles highlight locations of MT and motor patches. Here,
kmax
on = 1.2/s, koff = 1.2/s, and ||vb||= 0.04µm/s and total motor density is 10µm−2. (a)

MT density, (b) MT orientation. (c) bound motor density, and (d) unbound motor density.

Figure 7.10: Experiments showing how MTs form clusters (with motors at cluster center)
in the presence of kinesin-5, a slow moving, weakly processive, positive-directed motor at
short time t1 and long time t2 [19]. Images for MTs and motors are merged and created
using fluorescence microscopy.
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7.4 Advantages of modelling

In this chapter, we have shown that our mathematical model, describing MT

evolution in the presence of motor proteins, can describe MT patterns found

in vitro. Now that we have made comparisons between our simulation results

and experimental results, we can make further predictions for MT pattern

formation in the presence of a variety of different motor proteins. Making

such predictions takes a relatively short amount of time, and so we have the

advantage of being able to come up with a very precise set of conditions under

which certain MT patterns will form. Once a desired prediction is made, we

can then run experiments to validate our model results. Not only is mathe-

matical modeling time effective, it is also cost effective, as it takes little money

to run simulations.

Besides cost and time effectiveness, there are also other advantages to

mathematical modelling. One advantage is the ability to track each model

variable (in our case MT density p, bound motors mb, and unbound motors

mu) through space and time. Although imaging techniques have advanced to

the point where individual MTs, as well as motor proteins, can be tracked

through space and time, it is still very difficult to distinguish between the

two different states that a motor can take on (bound or unbound). Using our

model, it is easy to describe the locations of bound and unbound motors.
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Chapter 8

Conclusion and Discussion

In this thesis, we develop a mathematical model to describe the movement of

MTs in 2-dimensions as they interact with motor proteins. Motor proteins

are either stationary, or are free to move. In Section 8.1 we outline results of

our model when motor proteins are stationary, and in Section 8.2 we outline

results corresponding to when motors are moving. Finally, in Section 8.3 we

discuss limitations of our modeling approach and discuss future work.

8.1 Interactions of MTs with stationary dis-

tributions of motors

In the first part of this study (in Chapter 5), we consider the types of MT pat-

terns that can be observed through simulation of the integro-differential equa-

tion (5.2) under the influence of either periodic boundary conditions (equation

(5.3)) or bounce back boundary conditions (equations (3.18) and (3.19)), de-

scribing the evolution of MTs as they interact with stationary distributions of

motor proteins. Such an equation describes how MTs glide, by a combination

of MT treadmilling and sliding, and how they reorient in space due to their

interactions with motor proteins.

Periodic boundary conditions, though not entirely biologically realistic in

two dimensions on small domains, can give some insight into pattern forma-

tion on large domains. In the case when we have one motor type (negative

directed) that is distributed throughout the entire domain, or is distributed in
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a checkerboard or random fashion (as in Figure 5.8(a) or (c), respectively), if

the motor activity C is low, and the gliding speed is low, we find MTs organized

in wide patches forming arrays of vortices. In contrast, if the motor activity

is high, we find fingering patterns. This result suggests that MTs can form

stationary long bundles of MTs in large domains when the gliding speed of

MTs is small, and the activity of the motor is high. In vivo, stationary bundles

of MTs are found in systems such as plant cells and neurons [11]. For example,

in neurons, the axon of the cell is very long, and along this axon, the majority

of MTs are stationary and bundled parallel to one another. In addition to any

geometric constraints imposed by the cell membrane, our results indicate that

this bundling can occur in a number of ways. The first (described in Section

5.3.1) being through a combination of MT cross-linking by non-processive mo-

tors, the second (described in Section 5.4.1) being through a combination of

MT sliding where motors are present, and treadmilling where motors are not

present. There are a number of types of motors found in neurons, including

the mitotic motor kinesin-5. This motor is weakly processive and is able to

crosslink MTs, aiding in MT sliding and bundling [26], suggesting that the sec-

ond mechanism (that described in Section 5.4.1) may be a reasonable theory

to explain how MTs bundle in axons.

When periodic boundary conditions are used, it is only when two motor

types of opposite directionality are used that an aster pattern, such as that

described by Figures 5.9(a1) and (b1), is obtained. When only one motor type

is included, only bundles or vortices can be found. This result suggests that a

global aster may only form in a large domain if two opposing processive motor

types are present.

In the case where bounce back boundary conditions are used, we find that

for a single non-processive motor type, where motors are located on the bound-

ary and the motor activity C is low, vortices develop. These vortices exist at

low MT density locations. These results can be explained by our choice of the

alignment function α(m). This function is directly dependent on MT cross-

linking. That is, the higher the cross-linking capability, the more likely it is

that MTs align. If fewer MTs are available, then less cross-linking occurs and

MTs may move about more freely, being able to form vortex patterns. Also,

we find that when a single type of processive negative-directed motor is used,
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and motor activity is low, a global vortex forms for low sliding speeds and

a global aster forms for moderate sliding speeds. In experiments by Nedéléc

et al. [44], in constrained domains (of different shapes), vortex patterns arise

(aster patterns first develop, but due to MT buckling at the boundary, MTs

eventually form vortices).

Also, under no conditions do MTs form anti-parallel bundles of MTs when

periodic boundary conditions are used. However, we are able to obtain anti-

parallel bundles using bounce back boundary conditions and two motor types

that move in opposite directions. For our simulations, we chose two motors of

similar speed, where MTs treadmill everywhere in space. Anti-parallel bundles

do not exist if MT treadmilling is removed from the MT gliding term SMT (x)

(results not shown). However, since the treadmilling speed is added to the MT

sliding speeds everywhere in space, this result is identical to the result where

a fast moving negative-directed motor and a slow positive-directed motor in-

teract and treadmilling does not occur anywhere in space. Thus, our results

suggest that there may be at least two possible mechanisms by which anti-

parallel bundles form in constrained domains. The first possible mechanism is

through the interaction of opposing equal-speed motors in combination with

MT treadmilling. The second possible mechanism is through the interaction

of fast negative-directed motors and slow positive-directed motors.

Anti-parallel bundles have been observed in in vitro gliding assays, where

two directionally different motors are used [63, 19, 59]. Such studies are used to

determine how the overlap of anti-parallel MTs in the mitotic spindle is formed.

It is proposed (from loss-of-function experiments) that the anti-parallel bun-

dles are a result of balanced activities of motors with opposite directionality. In

each of these studies, anti-parallel bundles have been formed but not stabilized.

Perhaps a reason for this could be that their domain size was too large (re-

member our simulations show that the boundary is necessary). Also, in vivo,

anti-parallel bundles form the mitotic spindle as a cell prepares to divide. A

number of mitotic motors have been discovered to act on MTs during mitosis.

However, it is believed that the slow moving, positive-directed, weakly proces-

sive motor kinesin-5, as well as an opposing negative-directed motor type, act

between overlapping MTs to form these anti-parallel arrays [55]. Kinesin-5 is

able to form crosslinks and has been found to slide MTs relative to one another,
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as well as bundle MTs. A possible candidate for the opposing negative-directed

motor is kinesin-14 (commonly referred to NCD). Such a motor is very fast,

but not processive. However, such a motor stably anchors itself along one MT

and is able to generate force (non-processively) along a second MT, aiding in

MT bundling. Similar to these experimental findings, our results suggest that

systems comprised of an equal number of slow moving positive-directed motors

and fast moving negative-directed motors are able to form stable anti-parallel

bundles.

8.2 Interactions of MTs with moving motors

In the second part of this study (in Chapter 7), we consider the types of MT

patterns that can be observed through simulation of the integro-differential

equations (3.1) through (3.3) under the influence of periodic boundary condi-

tions (equation (3.4)), describing the evolution of MTs as they interact with

moving distributions of motor proteins. Such a system of equations describes

how MTs treadmill, and how they reorient in space due to their interactions

with either positive- or negative-directed motor proteins.

Other models have looked at long-term MT patterns that can be observed

in systems of moving MTs and moving motors. However, these models dif-

fer from ours in that they do not account for motor processivity [2, 3, 24].

Also, the equations for motor movement are non-dimensionalized and do not

take into account motor speed. From experiments, we know that processivity,

speed, and directionality are important variables to consider [44, 58, 19]. Past

theoretical models are similar to ours in that they do take motor density into

account [2, 3, 24]. In particular, in such theoretical studies, results have shown

that low motor density systems result in vortex patterning, while higher motor

density systems result in asters. Also, for very high motor densities, bundled

patterns of MTs exist. These results are consistent with past experimental

studies in MT systems comprised of varying densities of a single kinesin motor

type [44].

However, from other experimental studies of MT patterning, it has been

observed that some motor types are not able to organize MTs into vortices

at any reasonable motor density, while other motor types are able to orga-
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nize MTs into vortices at low motor densities [58]. From our simulations, we

show that motor directionality, motor speed, and motor processivity play an

important role in determining what types of patterns are able to form.

For processive, fast moving, negative (positive)-directed motors, we find

that MTs form stable negative (positive)- focused asters at low and high motor

densities. Specifically, we find that such motors are not able to form vortices

at any motor density. These results are consistent with those by Surrey and

Nedéléc [58], who showed that, for low and high (negative-directed) motor

densities, MTs form negative-focused asters (as in Figure 1.7). Similar to our

simulation results, the motor type used in the experiments described in [58] is

a fast moving, processive, negative-directed motor. Also, in this experiment,

results show that motors are located at aster centers, which is consistent with

our simulation results.

For processive, slow moving, positive-directed motors, we find that vortices

can form at low motor densities. At higher densities, we find that MTs form

tight clusters (and not aster patterns). This result is consistent with results by

Surrey and Nedéléc [58]. In their experiments, MTs are able to form vortices

at low motor densities, but form asters at higher motor densities (as in Figure

1.8). Interestingly, the motor type used in their experiment is a fast moving

(and not slow), processive, positive-directed kinesin motor. Also, unlike our

simulations, experiments show that asters form at high motor densities, and

not clusters (as we show in our simulations).

For non-processive, fast moving, negative-directed motors, we find at mod-

erate to high motor densities, MTs form asters at short time. As time elapses,

asters merge, forming larger and fewer asters. Eventually, the aster pattern

breaks down for large time. These results are similar to experiments by Hen-

trich and Surrey [19]. In their experiments, the fast moving, non-processive,

negative-directed motor kinesin-14 is able to organize MTs into asters, and as

time elapses the asters merge, forming larger and fewer asters (see Figure 7.8).

The authors do not suggest whether aster patterns are stable or not for large

time. However, our results suggest that such a motor would form similar aster

patterns, but after large time these patterns would become unstable.

Finally, for weakly processive, slow moving, positive-directed motors, we

find that motors form tight clusters that are correlated with motor location

111



at moderate to high motor density. Such results are similar to experiments of

MT patterning in systems comprised of the weakly processive, slow-moving,

positive directed motor kinesin-5 (see Figure 7.10).

8.3 Limitations and future work

One of the limitations of our investigation is that the numerical scheme used

to simulate our model is an explicit upwinding scheme for advection (tread-

milling), and an explicit central difference scheme for diffusion. Such a scheme

puts limitations on the values for motor velocity and motor diffusion that can

be tested using our model. For motor velocity, we are able to test motor speeds

up to ≈ 0.3µm/s. Such restrictions on speeds are reasonable for slow motors

like kinesin-5 and faster motors like kinesin-14 (values recorded in Table 3.1).

However, we are unable to test very fast motors such as cytoplasmic dynein

(which moves at speeds up to 1.2 µm/s. Such motors have been found to

contribute to MT organization. Also, the diffusion speed must be very small

for our model. In reality, motors are able to diffuse much more quickly than

represented in our simulations. In future work, it would be a good idea to use

an implicit scheme that puts less restrictions on such model parameters.

In this thesis, we consider constant length MTs. In reality, MT are able to

grow and shrink, and such dynamics are an important consideration, as it has

been shown to alter MT organization. An extension to this model could be

to incorporate MT growth and shortening (dynamic instability). To do so, we

could include a new independent variable, r, to our model that accounts for

the length of each MT. To describe growth and shortening, we could include

an advection-type term into the equation for MT movement so that equation

(3.3) would read as follows:

∂p(~x, t, r, θ)

∂t
+SMT θ̂ · ∇~xp(~x, t, r, θ) +

∂

∂r
(G(p, r)p(~x, t, r, θ)) =

− λ(mb)p(~x, t, r, θ) + λ(mb)

∫ π

−π
k(θ, θ̃,mb)p(~x, t, r, θ)dθ̃,

(8.1)

where G(p, r) represents the growth rate for MTs so that if G(p, r) < 0 the
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Figure 8.1: An example of G(p). Here, MTs are motor likely to growth when less MTs
are present (due to availability of free tubulin) and shrink when more MTs are present (due
to overcrowding effects).

MT shrinks and if G(p, r) > 0 the MT grows. In general, it has been shown

that longer MTs (MTs with larger r) tend to shrink, while shorter MTs (MTs

with smaller r) tend to grow. Also, in locations where the MT density p is

high, MTs tend to shrink, due to overcrowding affects, whereas if p is low,

MTs grow, due to the availability of free tubulin. For simplicity, if we were to

choose a growth function that only depends on p, it could be described as in

Figure 8.1.
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Appendix A

Important Mathematical
Concepts

1.1 The spaces of continuous functions

We first introduce the space of continuous functions on Ω, C0(Ω). In particular,

C0(Ω) := {f : Ω→ R,Ω ⊂ Rn is bounded and open with smooth boundary}
(1.1)

The standard norm on C0(Ω) is the supremum norm,

‖f‖∞= sup
x∈Ω
|f(x)|. (1.2)

Such a space defined by (1.1) and equipped with the norm given in (1.2) is
complete, and so is a Banach space. Other spaces of continuous functions
require higher orders of differentiability. We define the following:

|α|= α1 + α2 + ...+ αm,

where α is a multi-index vector consisting of m nonnegative integers.

xα = xα1
1 x

α2
2 ...x

αm
m ,

where x is any vector.

Dα = Dα1
1 Dα2

2 ...Dαm
m ,

where D is the vector, and finally

Dαf =
∂|α|f

∂xα1
1 ∂x

α2
2 ...∂x

αm
m

.

Now, we define the space of functions f , for which all derivatives up to (and

120



including) the order r are continuous, Cr(Ω).

Cr(Ω) := {f : Dαf ∈ C0(Ω) ∀ |α|≤ r}. (1.3)

For C1(Ω), the space of continuously differentiable functions, the standard
norm is the supremum norm on both f and the derivative of f . In particular,

‖f‖C1 := ‖f‖∞+‖f ′‖∞. (1.4)

The space of smooth functions C∞(Ω), that are infinitely differentiable on Ω
is defined by,

C∞(Ω) := ∩∞r=0C
r(Ω). (1.5)

1.2 Lebesgue Spaces Lp and L∞

We now define the spaces of Lebesque integrable functions, Lp(Ω), where 1 ≤
p ≤ ∞. First, the Lp norm is given by

‖f‖Lp=

(∫
Ω

|f(x)|pdx
)1/p

. (1.6)

A function is in Lp(Ω) if (∫
Ω

|f(x)|pdx
)1/p

<∞.

The Lebesgue space L2(Ω) is of importance to our analysis in Chapter 4. In
particular, L2(Ω) is a complete inner product space, or Hilbert space (L2(Ω) =
H(Ω)), when equipped with the inner product < ·, · >: L2(Ω)× L2(Ω)−→ R.
And so, for f and g ∈ L2(Ω)

< f, g >=

∫
Ω

f(x), g(x)dx.

In Chapter 5, we will make use of a special “Lebesgue” space that is not
defined in terms of the Lebesgue integral. This space is L∞(Ω), the space of
“essentially bounded” functions. A function f is in L∞(Ω) if

ess sup
Ω
|f(x)|<∞,

where

ess sup
Ω
|f(x)|= inf{sup

x∈S
|f(x)|: S ⊂ Ω,with Ω \ S of measure zero}.

That is, |f(x)|≤ ‖f‖∞ almost everywhere.
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1.3 Banach space valued functions

For evolution problems (those depending on time t), we often deal with Banach
space valued functions. For an interval on the real line, I, and a Banach space
X, we define the space of continuous functions from I to X as,

C0(I,X) := {u(t) : I → X|u(t)→ u(t0) in X as t→ t0}. (1.7)

On this space, we define the functional

‖u‖Lp(I,X):=

(∫
I

‖ u(t)|pXdt
)1/p

. (1.8)

1.4 Properties of integral operators

We define the integral operator K : X → Y as

K(f)(x) :=

∫
k(x, y)f(y)dy, f ∈ X. (1.9)

The mapping k : Y ×X → R is called the kernel of K.

Definition: (adjoint operator) K is a self-adjoint operator if K = K∗.

Definition: (Hilbert-Schmidt integral operator) The operator K : X → Y
given by

K(f)(x) :=
∫
k(x, y)f(y)dy, f ∈ X,

is a Hilbert-Schmidt integral operator if the norm

‖k‖L2(Ω×Ω)=
∫

Ω

∫
Ω
|k(x, y)|2dxdy <∞.

This norm is called the Hilbert-Schmidt norm where, ‖K‖HS= ‖k‖L2(Ω×Ω).

Lemma A.1: (Compactness of Hilbert-Schmidt Operators) Hilbert-Schmidt
integral operators are continuous and compact.

1.5 Banach’s Fixed Point Theorem

In Chapter 6 of this thesis, we make use of the following fixed point result.

Theorem A.1: (Banach Fixed Point Theorem) Let X be a closed subset of a
Banach space (Y ,‖·‖), and h : X → X a function satisfying
‖h(x)− h(y)‖≤ k‖x− y‖, for all x, y ∈ X,
where k < 1 (we say that h is a contraction, or contraction mapping, on
X): Then h has a unique fixed point in X.
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1.6 Gronwall’s Inequality

In Chapter 6 of this thesis, we make use of Gronwall’s Inequality

Lemma A.2: Let x(t) ∈ R satisfy the differential inequality

d
dt+
≤ g(t)x+ h(t).

Then

x(t) ≤ x(0) exp[G(t)] +
∫ t

0
exp[G(t)−G(s)]h(s)ds,

where

G(t) =
∫ t

0
g(r)dr.

In particular, if a and b are constants and

d
dt+
≤ ax+ b,

Then

x(t) ≤ (x0 + b/a) exp(at)− b/a.
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