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Abstract

In Geostatistical modelling of the spatial distrilmn of rock attributes, the multivariate
distribution of a Random Function defines the ranfgossible values and the spatial
relationships among them. Under a decision of etatiity, the Random Function
distribution and its statistics are inferred fromatd within a spatial domain deemed
statistically homogenous. Assuming stationary r@altissianity allows spatial prediction
techniques to take advantage of this simple pammetistribution model. These
techniques compute the local distributions withreunding data and global spatially
invariant statistics. They often fail to reprodulceal changes in the mean, variability
and, particularly, the spatial continuity, that amequired for geologically realistic
modelling of rock attributes. The proposed alteiveais to build local Random Function
models that are deemed stationary only in relationthe locations where they are
defined. The corresponding location-dependent ibistions and statistics are inferred
by weighting the samples inversely proportionaltheir distance to anchor locations.
These distributions are locally Gaussian transfadm€&he transformation models carry
information on the local histogram. The distanceighieed experimental measures of
spatial correlation are able to adapt to local clyggs in the spatial continuity and are
semi-automatically fitted by locally defined vaniamm models. The fields of local
variogram and transformation parameters are used latally stationary spatial
prediction algorithms. The resulting attribute mtsdare rich in non-stationary spatial
features. This process implies a higher computatiotlemand than the traditional
techniques, but, if data is abundant enough tovall reliable inference of the local
statistics, the proposed locally stationary teclus outperform their stationary
counterparts in terms of accuracy and precisionedéh improved models have the

potential of providing better decision support érgineering design.



Acknowledgements

First of all, | would like to thank my supervisorr.BClayton V. Deutsch for all of his
guidance and support, as well as for all of theiadale things that | learned from him,
which in many cases are well beyond the boundafi€eostatistics.

I'm also very thankful to the industrial sponsoffstiee Centre for Computational
Geostatistics for providing the funding that all@ee to pursue this research.

Among my fellow students and friends | would lilkeethank Dr. Olena Babak, Dr.
Jeff Boisvert , Miguel Cuba and Mike Munroe for tingitful discussions and exchange
of ideas that | had with them during the time | wieeloping my research. | also
appreciate the help | received from John Manchuk @n Steven Lyster with solving
programming problems.

Epicurus used to say that the first ingredientaftiappy life is friendship. The friends
I met during my time as a graduate student filledse years with happy memories.
Thanks Ali, A.J., Adriana, Alex, Alison, Ander, Omggang, Deepak, Hagop, Xiaolei
(Julia), Julieta (Sol), Lisa, Magda, Marina, MohaednMoho), Prado, Rosa, Russell,
Sabujkoli, Sawa, Serge, Steve, Talal, Taras, Tdoya, and all the members of my
dragon boat team, the United International Dragémsong my friends | would like to
particularly thank Alison Turner for her help iropfreading my thesis and Dr. Alexander
Pswarayi for his pertinent suggestions on my prasiens.

Special thanks also to Jaron and Kate Summers &king my long stay at their
house most agreeable. And if someone has to beebldon this, blame Tony Wain, for
he was the one who initially facilitated my retuongraduate school. Besides that, thank

you very much Tony and Arda for your generosity hodpitality.



Table of Contents

(@4 aF=T o] (=3 g I 1 01 o Yo [1 [ £ o S 1
1.1. Problem Setting .......cooiiiiiiiiiiiiiiie e 2
1.2. The Decision of Local Stationarity .........cooeeeveeiiiiiiiiiiiiiiee e 4
1.3. Dissertation OULIINE............oooiiiiiit e 5.

Chapter 2: Theoretical Background ............coeeeiiiiiiiiiieeeeeeeeein 7..
2.1. The Random Function Model .............ooiiiieeceemriiiiiiiee s 8
S - 110 = ] 9

2.2.1. StriCt StatiONAIItY ......cceeeeeeeeeeiiree e e e e e e e e e e e e 10
2.2.2. Second Order StationNarity ...............eee e eeevvernnnnnnnanee e eeeeaens 11
2.2.3. INtrinSiC StatiONANLY ........ccceeeiieeeeeit e e e e e e e e e e e e e e 12
2.3. Spatial ModelliNg ......couvvueeiiiiiiiie e 13
2.3.1. Identification of Domains and Boundary Modelling................. 13
2.3.2. Trend MOdeling .......ccooviiiiiiiiiiii e e e e e 14
2.3.3. Inference of the RF Distribution Parameters ...........cccccccvveeenn. 15
2.3.4. Spatial PrediCtion ...........cooiiiiiiiiiiiicmmmme e 18
2.4. Standard Geostatistical Techniques for SpatialiBtied. ................... 20
2.4.1. Estimation TECNNIQUES .........cceeiiiiiieiseeeeeemccee e e e e e e 21
2.4.2. SIMUIALION e 25
2.5, NON-StAtiONANLY .....ccevvveeeiiiiiicee e 26
2.5.1. Some Considerations for Non-Stationary Modelling................ 26
2.5.2. Types of NON-Stationarity..........ccooviiiimmmmmreceeeiiiiiiiiee e 27
2.6. Current Approaches for Non-stationary Geostatistics..................... 29
2.6.1. Local APProaches .........cccccceeiiiiiiiiieeceeeceeeeee e 29
2.6.2. Global APProaches.......cccoooiiiiiiiiiiiieeeeeee e 32
2.7, DISCUSSION ...ttt ettt sttt e e e e e e e e e e e e e e e e e e s sans 33

Chapter 3: Location Dependent Distributions and StasticS ............ccceeeeennn. 34
3.1. The Assumption of Local Stationarity ........ceoeeeeeeeiiiiiiiiiiiiiiiinnnes 35
3.2. A Distance Weighting Approach ...........ooviceeeeerveevviicceieee e, 36

3.2.1. Properties of WeightS..........cccooviiiiiiiiiiiiiiie e, 37
3.2.2. Distance Weighting FUNCLIONS ............ccoieiiiimiiiiiiiiiiiiiicieee e 38

3.2.3. Selection of Distance Weighting Parameters ... .....ccccvvveenn.. 40



3.2.4. Anisotropy, Declustering and Local Adaptation....................... 44
3.2.5. From 1-Point to 2-Point WeightS...........ccccceeeii i, 51
3.2.6. Choosing the Anchor Point Locations .........cm.ceeeeeeeeeeeeennnnnn. 53

3.3. Location-Dependent Distributions and StatistiCS.............ccceeeeeeneenn. 55
3.3.1. Location-Dependent DistributionsS............ccccevviiiieieieeeeeeeeeeee, 55
3.3.2. Local Normal Scores Transformations ........ccccccvvvvvvvivnnennnee. 56
3.3.3. Location-Dependent 1-Point StatistiCs ......ccueumeeeereeviiiiieeerennnnn. 58
3.3.4. Location-Dependent 2-Point StatistiCs ......comeeeeeeeeerrinnnnnnnnn. 60
3.3.5. Behaviour of the Location-Dependent 2-Point Stasst............. 65

3.4. Modelling the Location-Dependent ParameterS . ....cccceevevveeennns 15
3.4.1. Modelling the Local Normal Scores Transformation............... 76
3.4.2. Location-Dependent Variogram Models ........cmmmeeeeeeeeeennnnn.. 78
3.4.3. Semi-Automating Fitting of Location-Dependent Variams ...... 80

3.5, DISCUSSION ...ttt ettt bbbt r e e e e e e e e e e e e e e e e e s nnas 89

Chapter 4: Spatial Prediction under the Decision of.ocal Stationarity ....... 90

4.1. Locally Stationary EStimation ............oooieeeeeiiiiie e 90
4.1.1. Simple and Ordinary Kriging............eoeiiieeeeeriiiieeeeeeeeeeeeeeeeeeennnnns 91
4.1.2. MultiGaussian KrigiNg.........ccouuuuruuuuummmmmmmennaeeeeeeeeeeeeeeeeeeennennnnnn. 95

4.2, SIMUIALION oo e e e 103
4.2.1. Sequential Gaussian Simulation .............cceeeeviiiiiiiiiiiiiiinnnnn. 103
4.2.2. Sequential Indicator Simulation.............cccccceeeeii e 106
4.2.3. Checking the Realizations..................emmmmmeereennniiiinnneeeeeeeeeeee 107

4.3. Criteria for the Validation of Locally Stationaryddeis. ................... 110
4.3.1. Accuracy of EStIMates .........coevveviiiiiiiiiiiiiiee e eeeeeee e 111
4.3.2. Accuracy and Precision of Uncertainty Distributions............. 113
4.3.3. Other Relevant Criteria .........ccceeeiiiiieee e 115

4.4, DISCUSSION ..cceiiiiiiiiiiiiiiiiii ittt emmmm e e e e e e e e e e e e e s s s bbb bbb e e e eees 116

Chapter 5: Case StUAY .......uuuuuuuiiiiis e e e e eeee e 118

5.1. 2-D Case Study: The Ventersdorp Contact Reef......................... 118
5.1.1. TRE DAASEL ...ceviiiiiiiieeiiiieee e eeeeemr ettt 119
5.1.2. Calculation and Modelling of the Location-Depend8tutistics 121
5.1.3. Locally Stationary EStimation.............cooeeeeeeiiiiiieeeiiieeieeeeiiiienes 128

5.2, DISCUSSION ..ttt sttt e e e e e e e e e e e 133

Chapter 6: Conclusions and Future Work .........cccccoveeiiiiiiiiieeiieiiceeeeeeeeinn, 135



6.1. Concluding REMArKS .........cooiiiiiiiiiiiiiimcc e 135

6.2, FULUIE WOIK ...ttt 140
7] 0] oo = o] 1) 228U 145
Appendix A: Software Implementation .............ccoouuuiiiiiiiii s 155
A.1l. Generation of Distance Weighted DatasdtE\Wjen........................ 155
A.2. Local Normal Scores Transformation and Modelling.................... 158
A.2.1. Local Normal Scores Transformatiamscore_| oc................. 158
A.2.2. Modelling the Local Normal Scores Transformatiomé&tion with
Hermite Polynomialsher co_| 0C ..., 159
A.3. Location-Dependent Variograms .............. o eeeeeeeeeeeseeeseeeennnnnnns 160
A.3.1. Calculation of Location-Dependent Experimentalivgrams:
(o = 100V o Yo Y S UUUURSRR 160
A.3.2. Location-Dependent Variogram Mapsar map_| oc ............... 163
A.3.3. Joint Fitting of Location-Dependent Variogram Maigjl obf i t
165
A.4. Spatial Prediction with Location-Dependent Statsti...................... 171
A.4.1. Locally Stationary MultiGaussian Krigingt 3d_LMG.............. 172
A.4.2. Locally Stationary Sequential Gaussian Simulation:
UL TT Bt @SGSI M V. 2. 0 i 175
A.4.3. Locally Stationary Sequential Indicator Simulatisin:si m | oc
177
AppendiX B: NOMENCIATUIe............ovviiiiiiimmme e 179
B.1. List of ADDreviations..........coooiiiiiiiiiiceeee e 179

B.2. List of Most Important SymboIS ............oouciiieiiiiiiii e 180



List of Tables

Table 4-1: Comparative statistics for declusterdd @ata values, MGK and LSMGK

ESHMALION TESUILS ..eiieiiie e e et e e e s e na e e s e s e e s saaaeeees 115
Table 5-1: Indicator statistics for the Faciesiadiie ..................cccooeeevveiiiiiiniiieeeees 119
Table 5-2: Model parameters for the stationaryadograms.................ccoeeeeeeeeeeen.. 271

Table 5-3: Classification errors above the medarttfe accumulated gold estimates . 131

Table 5-4: Classification errors above the medarttfie reef width estimates............. 133



List of Figures

Figure 2-1: Strict and Second Order Gaussian Si@yOPrOCESS. .........c.ovvveuvvrrrreeeeenss 1.1

Figure 2-2: A simple 1D example of an intrinsictstaary Gaussian process with a linear

Figure 3-1: Walker Lake clustered data set (daipgemposed on the exhaustive data set
(BACKGIrOUNd). ... 35
Figure 3-2: Schematic illustration of spatial potidn with location-dependent
distributions and parameters. ..........ccccicceeeeeri e 36
Figure 3-3: Inverse Distance (left) and Gaussiamkl (right) weighting functions..... 40
Figure 3-4: Trend modelling of silver grades (datsp drillhole using Inverse Distance
(left) and Gaussian Kernel (right) weighting fucts. .....................cccs e 42
Figure 3-5: Progression of trend and data variaatie (dashed lines) and the coefficient
of correlation between data and the trend (contisubnes) according the power
parameter of IDW (left) and the GK bandwidth (right............ccccoiiiiin 43
Figure 3-6: Background value effect on the locahnsefor inverse distance (left) and the
Gaussian kernel (right) Weighting. .........ccouueeiiiiiiiiiii e 43
Figure 3-7: Geological image sampled in a 7 x &lgixgrid (top left), local means model
produced using Gaussian kernels with anisotropy dt1 (top right), 1.5 (bottom left)
= Lo IR 0 A oTo]  o 3 T T | o ) P 45
Figure 3-8: Effect of the distance weighting amnigpy ratio on the coefficient of
correlation between trend and data (left) and erttbnd/data variance ratio (right)...... 45
Figure 3-9: Left, declustering weights and aver@geissian kernel weights assigned to
each sample for different bandwidths. Right, ageraample weights after declustering
(o]0 ¢=Tox 1 (0] o PP PP 48
Figure 3-10: Left, effect of declustering correation the local means model. Right,
weight profiles at three anchor points before ditet @eclustering weights correction.. 49
Figure 3-11: Distance weights assigned to threévithaal samples before and after

correction by declustering Weights. ........cccccceeiiir e 49



Figure 3-12: Left, local data density calculatedhwa moving window and local kernel
denominator value. Right, local Gaussian kerneldbagiths after regularization of the
kernel denominator value for different original dandths........................coo oo 50
Figure 3-13: Effect of the dynamic bandwidth in tbeal means model (left). Weights
profiles for three anchor points before and afégjutarization of the kernel denominator
A V2= LU T (4 T | 1 T 51
Figure 3-14: Weighting schema for sample PairS cccc......veeeveeeiiiiiiiiiiiiiiiieeeee 52
Figure 3-15: 2-Point weight profiles for differemalues of the power in the mixture
rule. The tail sample location has been fixed adhgin and has a weight of 1, while the
head sample is allowed t0 MOVE. .........oiieeeeeee e 53
Figure 3-16: Interpolated local mean models betwesmchor points of different
separations (left). Mean square errors betweerexhaustively inferred local statistics
and the interpolated statistics for different sapans of anchor points (right). A
Gaussian Kernel with 40m bandwidth of 40m was ugedhe inference of the local
means and standard deVIatioNS. ..........oiceeeeeeriiiiiiiie s 54
Figure 3-17: Local mean and local standard deoriatields inferred for the elevation
attribute in the 2-D dataset. The circles markitiwation of the anchor points............... 55
Figure 3-18: Location-dependent cdfs obtained uGagssian Kernel distance weights at
anchor points located at elevations of -50, -200 €850 along the drillhole presented
PIrEVIOUSIY. ... 56
Figure 3-19: Local normal scores transformatiorctioms at three different anchor points
and their corresponding transformed distributidn®(dataset).....................c.oee 57..
Figure 3-20: Left, three locally transformed cdffotfed without incorporating the

distance weights used in the construction of thespective transformation functions.

Right, 400 locally weighted transformed cdfs (1-@abet). .........ccoviiiiiiiieiineennnnnd 58
Figure 3-21: Location-dependent mean and varialefd @nd location-dependent p25,
p50 and p75 quartiles (right) for the 1-D dataset............ccoeeeeeeieeieeee, 59

Figure 3-22: Location-dependent experimental vadots before (left) and after (right)
standardization by the local sill. These variogrameye calculated on locally normal
scores transformed values of the silver gradelsaritD dataset. ..........cccccceeeeinnnns B1..
Figure 3-23: Location-dependent correlograms ahanpoints located at elevations of -
50, -200 and -350 along the drillhole presentediptesly. ...........ccccceeeiiiiiiiiiiiiieeeen 64



Figure 3-24: Product of tail and head local med#afs) @nd geometric average of tail and
head local variances (right) for the first thregsl@l-D dataset)................coeeeeeieiiiceee 64
Figure 3-25: Location-dependent variograms usingradified Gaussian kernel weights
and weights modified by declustering correction aydamic kernel bandwidths (1-D
JAtASEL). oo 66
Figure 3-26: Non-standardized (left) and standadliz(right) location-dependent
variograms for the anchor point located at z =-85idig different exponential parameters
for the mixture rule (1-D datasert). .........ccccerriiiiieeeiiiii e 67
Figure 3-27: Location-dependent variance and samagram sill calculated for the
locally normal scores transformed Ag values in 1hB® dataset and using different
exponential parameters for the miXture rule............ccccveeeiiiiii e 67
Figure 3-28: Location-dependent correlograms udiffgrent exponential parameters for
the mixture rule (1-D dataSet). .........ueuummmmmiiiiiiiiieeeeeeeeeeeeeeeee e 68
Figure 3-29: Values of non-standardized (left) astdndardized (right) location-
dependent semivariograms for the first three lagd @ataset). ....................l 69..
Figure 3-30: Values of location-dependent corredatg for the first three lags (1-D
JAtASEL). oo 69
Figure 3-31: Local variances and sill for globdllgft) and locally (right) normal scores
transformed values of Ag grades in the 1-D dataset................cccccvvvvvivviiieviiiiieeen. 70
Figure 3-32: Location-dependent semivariograms t)(lefnd correlograms (right)
calculated on globally and locally normal scorem$formed values of Ag grades in the
D R0 F= L= L= PP PRRPP PP 70
Figure 3-33: Synthetic image with two anisotropiocnes at the extremes and one
isotropic zone inthe Middle. ... 71
Figure 3-34: Experimental location-dependent dograms (dashed lines) along with
the “true” experimental correlograms calculatecedily from the exhaustive image at
each region (continuous lines), and the global exmntal variograms calculated from
the gridded dataset (black dotS). .....ooovivveeeeeiiii 72
Figure 3-35: Average absolute errors of the locatlependent semivariograms and
correlograms in function of the kernel bandwidth.................cccoiieeeen, 73
Figure 3-36: Experimental location-dependent cogelms (dashed lines) along with the

“true” experimental correlograms calculated dingdtbm the exhaustive image at each



region (continuous lines), and the global experitmlerariograms calculated from the
gridded dataset (black dots) at different sampdip@&CING. .........vvvvvvvvviiviiiiiiiiiiiiiiiaean. 74
Figure 3-37: Average absolute errors of the locatlependent semivariograms and
correlograms in function of the sampling grid SpaCi................cooovviiiiiiiiiieice e 75
Figure 3-38: Left, Hermite polynomials fitting tolacal normal score transformation
function. Right, values of the local coefficientseoto five resulting from the Hermite

polynomials fitting of the local NS transformati@umctions defined for the 1-D dataset.

Figure 3-39: Stable model shape according to diffepower values. .............ccccccoeenne 80
Figure 3-40: left, resulting local variogram mogwrameters fitted separately to the
location-dependent experimental correlograms caledl at each anchor point using the
1-D dataset. Right, least square error of the leaabgram fitting. ..........cccccceevviiiii 81
Figure 3-41: Tabulated Q’ values and approximaligm@ power function. .................... 87
Figure 3-42: Left, local nugget effect and rangetlnd local exponential variogram
models fitted on the location-dependent experimerterelograms of the 1-D dataset.
Right, final values of the local variogram fittigpjective function. ................cc.vvven.d 38
Figure 3-43: Location-dependent exponential vadogmodel parameters fitted on the

local experimental correlograms from the localgnsformed values of the 2-D dataset.

Figure 4-1: 2-D comparison between SK (left) an@KSright) elevation estimates. ... 92
Figure 4-2: SK and LSSK variances obtained usiegith grades in the 1-D dataset.. .. 93
Figure 4-3: SK (left) and LSSK (right) variancegaibed using the elevation attribute in

tNE 2-D AASEL. ....eeeiiiiieeii e et e e e e e e e e 93
Figure 4-4: MultiGaussian point estimates (leftf astimation variances (right) for the
L1-D AALASEL. .eeeeeiieiiiei et a e e e e 97

Figure 4-5: Traditional (left) and locally statiogamultiGaussian (right) kriging
elevation estimates for the 2-D dataSet. ... .ceeeeiiriiiiiiiiieieeee e 98
Figure 4-6: Traditional (left) and locally statiogamultiGaussian (right) conditional
variances for the 2-D dataSet. ..........oeevieiiiiiiiiiee e 98
Figure 4-7: Point and block support prior local iaaces (left) and local change of

support coefficients (right) inferred on the drilla silver grades...........cccccceeeennee. 101



Figure 4-8: MGK and LSMGK block estimates (left).G¥ and LSMGK block
conditional variances (right) for the 1-D datasetf.............ccccvvvvvvvivvvviiiiiinininieeennne.. 101
Figure 4-9: Locally stationary multiGaussian bloektimates and variances for the
elevation attribute in the 2-D dataset. ....ccccoiiiiiiiiiiiii e 102
Figure 4-10: Grade tonnage curves for the elevatittribute in the 2-D dataset at a

10x10 units block support. The reference curved) (neere obtained from the averages of

the exhaustive values (see Figure 3-1) in blockKEO&O units. ............eeveeeiennennnnnnns 021

Figure 4-11: Example realizations of SGS (left) &ffeiSGS (right) using the terrain
roughness attribute in the 2-D dataSet. ... ccceeeeeeererrimmiiiiiie e 104

Figure 4-12: Posterior local means obtained byagiag 100 realizations of SGS (left)
ANA LSSGS (MGNT). .t e e e e 105
Figure 4-13: Conditional variances obtained fron® D® SGS (left) and LSSGS (right)
FEAIIZATIONS. ...ttt ettt et e e e e e e e e e e e e e e s 105

Figure 4-14: Example realizations of SIS (left) &rf8iSIS (right) using the categorical

variable in the 2-D dataSet. ............. . cummm e e eeeeiiiie e 106
Figure 4-15: Global cdf reproduction of 100 LSS&&lizations performed on the 1-D
(0 o LT =] PP PP PPPTPPPPPPRPPP 107

Figure 4-16: Reproduction of the non-standardizedtion-dependent variograms at two
Anchor points for 100 LSSGS realizations generatadg the 1-D dataset.................. 108
Figure 4-17: Anisotropy directions of the 2-D dattadocal variogram models
superimposed on the resulting e-type estimate®@1LE5SGS realizations. ................. 109
Figure 4-18: Reproduction of the global cdf forvelton values (left) and category
proportions (right) after LSSGS and LSSIS using2He datset.......................ooo. 109
Figure 4-19: True vs. estimated scatterplots fordM@&ft) and LSSMGK (right) of the
2-D dataserl. ...coooieeieee 113
Figure 4-20: Accuracy plots comparing the uncetyadistributions obtained with MGK
and LSMGK of the 1-D dataset (left), and the 2-Badat (right). ...........cccccviiieenneennn. 115
Figure 4-21: Left, E-type estimates of 100 LSSI&irations indicating the probability of
being within the category A of the 2-D dataset. RRighistogram of the number of
connected cells between points A and B for 100 &8 LSSIS realizations of the

categorical variable in the 2-D dataset. .......ccccoeiiiiii e 116



Figure 5-1: Gold grades (left) and reef width (t)gimaps obtained by the interpolation of
the complete dataset. .........ooooiiiii i 120
Figure 5-2: Facies locations obtained from the detepdataset (left) and locations of the
simulated ddh samples (FGNL) .........o.eei e, 120
Figure 5-3: Accumulated gold (left) and reef widtlght) probability plots in Facies 1

Figure 5-4: Scatterplot between the accumulated gold the reef width attributes in
FaCIES 2 i 121
Figure 5-5: Local means obtained with differentdaitiths of the Gaussian kernel.... 122
Figure 5-6: Data versus local mean model variarate r(left) and coefficient of
(odo ] g1 F=UiTo ] o I (4T | 1 PP 122
Figure 5-7: Interpolation errors of the local meand standard deviation of the
accumulated gold for different separations of thehar point grid (left). Locations of the
anchor points in the 200m x 200m grid (right)-........ccoooeeiiee e, 124
Figure 5-8: Interpolated local means (left) andalogtandard deviation (right) between
anchor point locations for the accumulated gold..............cccccvvviiiiiiiiiiiieeiienne. 125
Figure 5-9: Interpolated local means (left) andalogtandard deviation (right) between
anchor point locations for the reef width. ..., 125

Figure 5-10: Location dependent cdfs for the acdatad gold and reef width attributes

obtained using a Gaussian kernel with 400m bantivatiB17 anchor points. ............. 126
Figure 5-11: Local exponential variogram model paters for the accumulated gold.
.............................................................................................................................. 127
Figure 5-12: Local exponential variogram model paaters for the reef width ........... 128

Figure 5-13: Cross-validation results for accumadagold in Facies 2 of stationary
multiGaussian kriging (top) and locally stationamltiGaussian kriging (bottom). One
true value above 20000 cm x g/t has been trimmad this figure.............cccviieeenn. 129
Figure 5-14: Estimates maps of the accumulated gobbdained for stationary
multiGaussian kriging (left) and locally stationanultiGaussian kriging (right).......... 130
Figure 5-15: histogram of differences between LSM&K MGK estimates (left) and
location of the four classes defined by the questdf the histogram of differences. .... 131
Figure 5-16: Cross-validation results for the redfith in Facies 2 of stationary

multiGaussian kriging (top) and locally stationamyltiGaussian kriging (bottom) ..... 132



Figure 5-17: Estimates maps of the reef width oladifor stationary multiGaussian

kriging (left) and locally stationary multiGaussilarging (right)............cccccoooeeee 133
Figure A-1: An example parameter file for LDWgen.............ovvvvvivvvvvevvieniinnininnnns 156
Figure A-2: An example parameter file f@score_ | 0C.......ccccvvvvviiiiiiiiiiiiiiiiiiinas 158
Figure A-3: An example parameter file foer co_1 oC.........cccc, 160
Figure A-4: An example parameter file fgarmvl ocal ....................cc, 161
Figure A-5: an example parameter file Y@r map_| 0C......cccooeeeiiiiiiiiiiiiiiieeiee e, 165
Figure A-6: Example of the main block of paramefergl obfit. .........cccccccvvnnnis 167

Figure A-7: An example of the experimental variogsablock of parameters for
[0 0 o) T PP 167
Figure A-8: An example of the variogram model blatiparameters fogl obfit. 168
Figure A-9: An example of the anchor points blo€lparameters fogl obfit ......... 168
Figure A-10: Example of the advanced options bloickarameters fagl obfit ...... 171
Figure A-11: An example parameter file far3d_LMG ........ccoiviiiiieieeeiiieeeeeeen 175
Figure A-12: An example of the location-dependdatistics block of parameters for
ULTT ML ESGSI M V. 2. 0. oo 177

Figure A-13: An example parameter file ®Irsi m| 0C. .....cccccooiiiiiiiiiiii 178



Chapter 1
Introduction

In the geosciences there is concern for the spdisatibution of physical properties.
These physical properties, also known as attribuelsibit spatial continuity. They can
be continuous within an interval or may take a gatigal outcome among several
possible states. Beyond the available data, anusklia spatial description of these
attributes is often required for engineering desighis is accomplished by numerical
models that represent the current knowledge, hjbhlthe most relevant aspects and
predict the spatial behaviour of the attributesirdampled locations. These models are
often used to assess the possible responses afjtdikferent decisions, and thus for
selecting the best option regarding an engineddsk. For example, in mining, a model
of the distribution of metal concentrations is regd for assessing the viability of the
exploitation of a mineral deposit and planninget$raction. Models of the petrophysical
properties of petroleum reservoirs are used foidieg the placement of wells and
forecasting their production. In environmental tethapplications, models of the spatial
dispersion of a contaminant are used for identifyinigh-risk areas and for planning
remediation. These are a few examples of the niégest modelling the spatial
distribution of attributes.

The challenge is to build such models from spaeta dnd incomplete knowledge of
the geological setting at a scale suitable foliritsnded uses. Geological knowledge is
used for delimiting domains where the attributesdaemed reasonably homogeneous.

Deterministic approaches regard this problem amtnpolation of scattered values
between the sampled locations. This is often dgndisgtance weighting or surface fitting
approaches.

As an alternative, Geostatistics considers thatrilee, but unknown, attribute value
at each unsampled location is one of a range ddilplesvalues. The probability of the
true attribute value being within different intelwvais modelled by the probability
distribution of a Random Variable (RVZ(u), whereu denotes the unsampled location.

The values of an attribute show some spatial caityintherefore the RVs at different
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locations may be dependent. An ensemble of RVsiff&reht locations within a
homogeneous domain is known as a Random Functign e multivariate probability
distribution of the RF is inferred by pooling theadlable data within the domain and
assuming a mathematical model. This pooling of dataes at different locations is one
aspect of the decision of stationarity.

In Geostatistics, the goal is not just to obtaia best interpolated value at every
unsampled location, but to infer the local prohabdlistributions of the attribute values.
This gives Geostatistics an advantage over deteticirmethods, since it provides a
distribution of uncertainty. Such characterizatanthe uncertainty is preferred since it
provides a basis to make robust decisions withe@spo departures from a single
deterministic estimate.

As mentioned above, one aspect of the decisiortatibearity is the pooling of all
data within a deemed homogeneous domain. The ghbatdtical properties, such as the
histogram and the measures of spatial continury,estimated from the entire pool of
data. A second aspect is the invariance by traoslaf the global statistical properties of
the RF and the mathematical model assumed foristakilition. This allows the spatial
inference of the local probability distributionsuetsampled locations.

In this context, the main question that this thesldresses is: can the prediction of
the distributions of uncertainty be improved byngsiocal, rather than global, definitions
of the RF? This improvement is measured in termim@iased accuracy and precision,
and reduced uncertainty. To answer this questiomethodology for obtaining these
prior local RF distributions and their statisticaish be devised. Then, algorithms for

using them in spatial prediction must be developed.

1.1. Problem Setting

Since the beginnings of Geostatistics several ndetlogies have been developed for
dealing with variations of the local expected vabfethe attribute (Matheron 1969;
Matheron 1970). Nowadays, this aspect of non-statity is well understood and the
techniques for adressing it are well developed. dureent approach of modelling can be
summarized in two main components (McLennan 200@) identification of

homogenous domains and modelling of its boundagied, (2) if required, modelling of



a locally varying mean or trend within these dorsaiffhe subsequent estimation
accounts for this structured trend component.

The inclusion of a locally varying mean in modedlimay be insufficient to depict all
the spatial features in a domain when the inforomaivailable indicates local changes in
the histogram shape, the variance, or the spatiigirwmity of an attribute. The effect of
considering a global model of spatial continuityilisstrated in Figure 1-1. At the left
side of this Figure an exhaustive image of anhatte is presented, that shows changing
directions of the attribute’s spatial continuityhi§ exhaustive image is seldom available
in real life cases; instead, scattered samplesheawailable, as presented at the centre of
Figure 1-1. In this case, the geostatistical tepimmicalled Ordinary Kriging is often used
for estimating the values of the attribute betwsamples. This technique incorporates a
global definition of the spatial continuity for dutask. At the right side of the Figure, the
resulting numerical model fails to reproduce thealochanges in the spatial continuity
and the curvilinear features observed in the exhausnage.

Examples of geological settings where the spat@etiing of attributes may require
locally changing measures of spatial continuitylude those altered by processes like
folding, meandering, or shearing. Attributes tehbw a decreasing tendency from a
source may require a locally changing definitionttoté mean and variance. A locally
changing bivariate correlation between attributesy nbe required when they show
changing linear dependency at different locatiofisis is observed, for instance, in
mineral deposits were the ratios between certaémehts change from location to
location, often in response to the temperature ignadaway from the mineralization
focus (Evans 1997, pp.77-79).

Clustered dala set Ordinary Kriging Estimates
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Figure 1-1: Exhaustive data set (left), clusteredasnples (centre) and Ordinary Kriging estimates
obtained from the clustered samples (right)



There are several geostatistical techniques tisgisaghese different aspects of non-
stationarity; however, there is no comprehensive aractical methodology for dealing
with them all together. The most relevant currgmpraaches for non-stationarity are

presented in Chapter 2.

1.2. The Decision of Local Stationarity

In its strictest form the decision of stationargitfates that the multivariate probability
distribution of the RF remains invariant if trarsld by any vectoh (Matheron 1970;
Deutsch & Journel 1998). This decision is assodiatih the adoption of a distribution
model for the RF, which is often the multivariatauSsian distribution after univariate
transformation. This decision may be too rigid tcammodate local changes in the
lower order distributions and their statistics, tigatarly when they depart from the
assumed distribution model. A greater flexibiligncbe gained if only a few statistics of
the RF are required to be invariant by translatiBelaxed forms of the desicion of
stationarity used in geostatistics are thecond-order stationarityand theintrinsic
stationarity The first stationarity form requires only the @amance by translation of the
mean and the covariance between sample pairs segdmgh (Chilés & Delfiner 1999,
p.16). In the second, and weaker, stationarity favnly the variance of the difference
between sample pairs separated Hyyi.e. the variogram, is deemed invariant by
translation (Chiles & Delfiner 1999, p.17). Botlpés of weak stationarity are discussed
with more detail in Chapter 2.

The strict assumption of an invariant RF probapititstribution is relaxed by these
milder decisions of stationary; however there i lgnitations and concerns: these
types of weak stationarity do not allow local chesgn the covariance, the variogram
and other statistics relevant for spatial predictido overcome the limitations of the
traditional forms of stationarity @ecision of local stationarityis proposed for the
definition of the RF. This amounts to strict staiaty of the RF, but only in relation to
an anchor poinb. Thus, the shape of the multivariate probabilistribution of the RF
and all its statistics depend of the location vitbre distribution is defined.

The flexibility offered by the local stationary deion comes with the price of
rebuilding the statistics of the RF at many loaasioMoreover, these local statistics can

be reliably inferred only in presence of abundaatiad Despite the increased effort that
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this represents, the resultant models should imcatp more local information. This
thesis demonstrates that the models built with nhocal information reflect better the
local spatial features of the attribute under stuidhyese models provide a more realistic

assessment of the uncertainty and the potentianforoved decisions.

1.3. Dissertation Outline

The central theme of this thesis is the decisiolocdl stationarity. The chapters in this
thesis develops from the reasons for proposingoitthe methodologies devised for
obtaining the required location-dependent statistiod distributions and using them in
spatial prediction. These chapters are outlined. nex

Chapter 2 presents the concept of Random Functions and ifferetht types of
stationarity decisions in greater detail within aosgtatistical context. The current
methodology and techniques based on these statiomi@cisions are reviewed. Their
limitations are discussed and several of the ctlyrarsed approaches for overcoming
them are presented.

Chapter 3 develops a methodology based on distance weightsbtaining location
dependent statistics and cdfs. The desirable deaistaccs and optimality criteria for
those weights are developed and discussed. Thesi@ausansformation of the local cdfs
is presented. Locally weighted measures of spatialinuity are proposed and the issues
concerning their inference and modelling are diseds

Chapter 4 covers the methodology and algorithms devisedjpglying the location
dependent statistics and distributions in estimmaéind simulation under the decision of
local stationarity. The criteria for assessing pleeformance of these new algorithms in
comparison to traditional techniques are presented.

Chapter 5illustrates and tests the proposed methodologygusitual examples. The
practical details of the application of the develdpalgorithms are discussed. The
resulting models are compared with those produgeaddditional techniques.

Chapter 6 evaluates the advantages and disadvantages of ptbposed
methodologies. Issues in their practical implemiéoaare highlighted. The place of
locally stationary techniques in geostatistical mitdg is discussed. The future

developments related to this approach are conteetpla



Finally, an appendix containing the descriptiontleé programs developed for the
implementation of the proposed methodology is ideth These programs are tools for
the practical application of the techniques preszbint this thesis.

An integrated approach for dealing with the différaspects of non-stationarity is
developed on the basis of the decision of locaiostarity. This approach exploits the
idea of distance weighted statistics obtained friva available samples. Smoothly
changing local means and variances are able tectd®ndencies in the attribute, while
locally weighted measures of spatial correlatiom @apt to local changes in the
anisotropy. Local Gaussian transformations fatdit&aussian based spatial prediction
techniques taking into account local changes imtkan, the variance and the histogram
shape. The automatic model fitting of the local sugas of correlation produce locally
changing parameters of spatial continuity.

The current estimation and simulation algorithme arodified to work under the
locally stationary decision by allowing them to apel the required parameters at every
location. The resulting models are richer in spd#iatures and they reflect better the real
spatial distribution of the attribute.



Chapter 2
Theoretical Background

The decision of modelling the spatial distributioh an attribute deterministically or
stochastically depends on the degree of uncertaintthe studied phenomena. The
characterization of uncertainty would be unnecgs#fathe values of an attribute are
known at every location. This may be true in certzases, where the spatial distribution
of an attribute can be derived with great precisioom a physical law (Isaaks &
Srivastava 1989, pp.195-200). However, the compleai phenomena studied in the
earth sciences makes it difficult to derive suctvslaand their initial and boundary
conditions for different geological settings. Moveq, the processes that controlled the
spatial distribution of the attributes are not céetgly known and the attribute values are
affected by minor fluctuations in boundary condigo(Christakos et al. 2001, p.24;
Isaaks & Srivastava 1989, p.197). Finally, sampleswidely spaced in relation of the
volume of study and they contain inevitable meawerrg errors (Chiles & Delfiner 1999,
pp.1-2). To account for these sources of uncegtaintthe spatial prediction of a
geological attribute, a probabilistic approach égjuired (Isaaks & Srivastava 1989,
pp.200-202; Christakos 2005, p.1). Thus, a prolsigilframework for modelling in the
earth sciences is carried out by means of RandamalMas and Random Functions.

This chapter begins with an overview of the Randlamction model concept and the
types of stationarity considered by classical gestics. The process of probabilistic
spatial modelling under a Random Function framewsaed on the standard stationarity
decisions is reviewed. This process covers the cehaf statistical homogeneous
domains, the inference of the Random Functionssiedi from data within these domains
and the spatial prediction at unsampled locatioffse most common geostatistical
techniques for estimation and simulation are byigilesented. The limitations of these
techniques in face of realistic non-stationaritg discussed. This chapter finishes with a

brief overview of the recent research in non-stetiy geostatistics.



2.1. The Random Function Model

The uncertainty at an unsampled locatioris modelled by a Random Variable (RV)
Z(u). The probability of the RV taking particular oatoes within a range of possible
values can be characterized by its cumulativeibigion function (cdf) (Goovaerts 1997,
pp.63,64):

F(u;2) =Prob{Z(u)< 2 (2.2)

The RVs at different locations are often spatidipendent. An ensemble of spatially
correlated RVs is called a Random Function (RFRandom Field (Christakos 2005,
p.5). ForK locationsu,, k=1,...K, the RF multivariate cdf is defined as (Deutsch &
Journel 1998, p.12) :

Fug,...Uc;z,...% )= ProbZ0 x 3,....2¢x ¥ %z }0[0,1 (2.2)

Local randomness and spatial dependence are thehamcteristics identified by
Matheron for a Regionalized Variable (Matheron 19@®). This is a mathematical
conceptualization of the spatial distribution of attribute, whose value depends of the
location u. Since the outcomes of the Regionalized Variablpresented by mj), are
unknown for most locations, it can only be studiedirectly by probabilistic methods
(Journel & Huijbregts 1978, p.27) . The set of easluhatZ(u) takes in a domain can be
regarded as one realization within a range of pésgutcomes of the RF (Journel &
Huijbregts 1978, p.30).

A probability distribution model must be chosen floe RF. Due to its mathematical
simplicity and flexibility, a common choice is tHgaussian distribution (Deutsch &
Journel 1998, p.12). Although other probabilitytdizition models can be used (Diggle
& Ribeiro 2007; Emery & Kremer 2008), in this wattke focus is on Gaussian Random
Fields.

A Gaussian distributed RV, denoted B{u) in order to differentiate it from the

original variableZ(u), has a univariate distribution function complgteefined by its
meanmy and variancaﬁ. Its univariate probability density function (pd§) given by

the well known expression:

O, 0, (V) == glly-m)/on T2 (2.3)
270y

Wherey, -o < y<o, is a realization o¥(u) . If a RF is Gaussian, the relationship

between two or more of its constituent RVs is déscr by a multivariate Gaussian pdf.
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For K RVs in the vectoy' =[Y(u,),...,Yu,)], this is expressed as (Johnson & Wichern
2007, p.150):

_ 1 _y-myz 7ty -m)
Omx(Y) = WGXP{ 5 } (2.4)

wherey' =[y(u,),..., y(u,)], with -0 <y(u,) <o, a =1,..n, is the vector containing
the realizations of tha RVs, X is a positive definite(nx n) variance-covariance matrix,
andm is the expected valugnx1)vector. A RF with multivariate Gaussian distributio

has some key properties that can be summarize@eggch & Journel 1998, pp.139-
140; Johnson & Wichern 2007, pp.156-167): (1) tgksubsets of the RF or linearly
combining its RV components results in new (multis®) Gaussian distributions; (2) if
the covariance is zero between two RV componermtg #ne mutually independent; and
(3) when a subset of the RF is conditioned by raéibhins of another subset, the resulting
distribution is also (multivariate) Gaussian.

In classical Geostatistics, the bivariate distiifnutis of special interest. For two
standard Gaussian RV¥(u) and Y(u+h), separated by a vectbor the bivariate, or 2-

point, cdf is defined by the covariance functid@ (h)and evaluated numerically

(Goovaerts 1997, p.265; Deutsch & Journel 199812).1

Since the values of a geological attribute vefgi@a follow a Gaussian distribution,
a normal score transformation is usually perfornmedonform the variable to this model
(Deutsch & Journel 1998, p.141). This univariaengformation does not assure that the
bivariate distribution will be bi-Gaussian; howeyvthis is frequently assumed (Chilés &
Delfiner 1999, p.17). This assumption is allowedtliere is no evidence that the
transformed distributions violate the (bivariategguSsian distribution properties specified
above (Deutsch & Journel 1998, p.144).

Defining the RF probability distribution and itarsmary statistics within a domain
of study corresponds to the decisions of statibpariThese are presented in the next

section.

2.2. Stationarity

In classical statistics, the probability distritmutiof a RV can be approximated by the

statistics calculated from a number of repeatectmiasions (Isaaks & Srivastava 1989,
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pp.206-208). In a geological framework, where titeibaite values can be considered
invariant in time, repeating observations at thmesdocation would provide information
only about the sampling and measurement errorildigion. Besides being impractical,
such measurements would not be useful for infertiregunivariate RV distribution and
the spatial correlation between the RV componeiitthe RF. Instead, the required
observations are collected from the samples takdiffarent locations within a region or
domain,D, assumed statistically homogeneous (Myers 1989néb & Huijbregts 1978,
p.30). This choice of the population of samplesng aspect of stationarity. A related
aspect is the invariance by translation of the REltiwariate distribution and the
parameters inferred from these samples. This iamad by translation is required for
statistical inference at locations where thereagdimect information about its true value
(Journel 1989, p.24). Depending on the parametetsare deemed invariant in space, the

stationarity decision is called Strict, Second @ufelntrinsic.

2.2.1.Strict Stationarity

Under this form of stationarity the multivariateopability distribution (2.2), is assumed
invariant under the translation by any vector(Journel & Huijbregts 1978, p.30).

Therefore, the lower order distributions and al ffarameters are also invariant by
translation. This can be written as follows (Goat@&997, p.70):

F(ug,...ug:z,...% )= FUi+h,.u+hiz ,..% ¥ F@,...g

2.5)
O iuid' D k:].,...,K

In classical Geostatistics the concern is mosththenbivariate form of the RF cdf.
Thus, the hypothesis of strict stationarity caditméted to:

Prof{Zu) < 3 Zu+h) < 3 = Prgb(@) < z(Z'+h < Iz .
O ,uu « ,h's [HD
Shifting the vector translatidm from the second term of (2.1) to both terms i3 %
made on purpose. This allows presenting the idea timder the decision of strict
stationarity the RF bivariate distribution, and perameters, depends only lonand not

on the locatioru. This is the basis of Second Order Stationarity.

10



2.2.2.Second Order Stationarity

A milder form of stationarity is defined by not tag any assumption about the spatial
invariance of the multivariate distribution, butlpwf the mean and the covariance. The
first is considered constant within the domain #relsecond is a function bf(Chilés &
Delfiner 1999, p.16):
E{Z(u)} = E{ Zu+h)} = m
{E{[Z(U)—ﬂ][ Zu+h - = €h (2.7)
O uw D

This form of stationarity implies that the variariseeonstant (Myers 1989), since:
C(0)=E{[Z(u)- n{*} = va{ Zu)} =0  Dud D (2.8)
Therefore, the semivariograp(h), and the correlogranm(h) only depend orh.

Thus, the following relationships between thesesnees of spatial continuity can be
established (Journel & Huijbregts 1978, pp.32-33):

y(h) =%E{[Z(u) -Z(u+h))’}=Qo)- Qh),  Du,u+ hOD (2.9)
_Ch _, v
o(h) = o) 1 o) (2.10)

If a Gaussian model is adopted for the RF multatericdf, second order stationarity
is equivalent to strict stationarity; however thare cases where strict stationarity implies
second order stationarity (Myers 1989). The revesseond order stationarity implies
strict stationarity, is possible only if the firahd second order moments exist and are
finite. For Earth Science attributes the mean dral wariance are normally assumed
existent and finite. Figure 2-1 shows a 1D Gauspiacess that is both strict and second

order stationary.
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Figure 2-1: Strict and Second Order Gaussian statitary process.
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2.2.3.Intrinsic Stationarity

In the intrinsic form, the stationarity of the pareters of the RF Zi is replaced by the
stationarity of the increment§Z(u+h) —Z(u)} (Myers 1989). Thus, the intrinsic
stationarity decision is expressed as (Matheron919642; Chilés & Delfiner 1999,
pp.17,31):
E{ Z(u+h)- Z(u)} = nih)
{Var{ Z(u+h) = Z(u)} =2y(h) (2.11)
Ouyw HID

The drift m(h) is a linear function of the vectdr =(h,,...,h) with a gradient vector
a=(ay,...an) . A second order stationary RF is also an initisgationary RF withm(h) =
0. A simple form of the drift isn(h) = a; h;, which correspond to a linearly changing
mean in the direction ofihsuch asm(u) = ag + a;u. This is illustrated in Figure 2-2. The
stationarity of the increments can be extendedgben orders; in this case it is denoted
k-order intrinsic stationarity (Matheron 1973). $hallows modelling both a non-
stationary mean and a non-stationary variance ¢€1&il Delfiner 1999, p.247).

Another way to incorporating a non-stationary digfin of the mean is to decompose
the RF by a local mean(u) plus the residudR(u) (Myers 1989).

Z(u) = m(u) + Ru) (2.12)

WhereR(u) is a intrinsic stationary RF with{ R(u)}=0. While m(u) can be modelled

parametrically or estimated from available data.
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Figure 2-2: A simple 1D example of an intrinsic stonary Gaussian process with a linear drift.
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2.3. Spatial Modelling

Under the decisions of stationarity described abdhe standard methodology for
geostatistical modelling of the spatial distribatiaf a continuous attribute is summarized
by (McLennan 2007): (1) identification of domaim&t can be considered homogeneous
and modelling of the geometry and nature of thenblades between domains, (2)
modelling of trends if deemed necessary, (3) imfeecof the RFs parameters from data
within each domain, and (4) spatial prediction.haligh the methodologies presented in
this thesis can be applied to the stage of modgltile geometry of the domains
boundaries, the focus is on the inference of tohallRF's distribution parameters and the
spatial prediction using them. The four stages wherical modelling of a continuous

geological attribute are briefly explained below.

2.3.1.ldentification of Domains and Boundary Modelling

Since the RF distribution and its parameters derred from samples taken at different
locations it is reasonable to select those sanfpbas a region deemed statistically and
geologically homogeneous. This subdivision is pened mainly on the basis of
geological knowledge. If the geological knowledgenot enough to choose the domains,
different sub-populations can be statistically cangol in order to decide if they can be
merged or should be kept separate. A common peaictithe mining industry is to define
domains based on grade cut-offs, however, thigipeamay exacerbate estimation errors
and introduce bias in the resource estimates (Egaédytiz 2005).

Boundaries between domains delimit the zones inntm@erical model where a
stationary RF has validity. The boundary modellstgge has two aspects, first, the
modelling of the geometry of the limits between @&ims, and second, the definition of

the nature of the transitions between those domain.

Boundary Geometry Modelling

Boundary modelling can be performed by various rietgstic or stochastic methods. A
popular deterministic boundary modelling methodsists in the wireframing between
sections of interpreted boundary contours (Hould2@O, pp.60-71). Deterministic
surface interpolation techniques based on radigisbfanctions are becoming common

(Cowan et al. 2002). These deterministic methodsatoaccount for the uncertainty in
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the geometry of the boundaries. Uncertainty is hahdby drawing alternative
interpretations of the domains geometry or by chrapghe parameters of modelling
within a range of plausible values (Bardossy & Fa2{a01).

Probabilistic boundary modelling techniques consiakeltiple possible geometries
providing a measure of geological uncertainty. Savheéhe most used methods are
categorical indicator sequential simulation (Ro2680D4), indicator p-field simulation
(Srivastava 2005), object based simulation (Deu@®2, pp.223-244), and truncated
Gaussian simulation (Emery 2007a; Langlais et@082 Riquelme Tapia et al. 2008).

Definition of the Nature of Boundaries and their déding

The transition of the spatial dependence betweeiiRiis on each side of a boundary can
be a completely seamless transition, an abrupbdiswity, or somewhere between these
extremes. If the boundary allows a smooth transitbthe attribute's spatial continuity
between domains it is denoted asoftboundary. If an abrupt discontinuity in the sphti
continuity is defined along the boundary, thiseterred asard (Ortiz & Emery 2006).
The soft or hard nature of a boundary is definetherbasis of the geological knowledge
of the properties of adjacent domains and withhbl of contact analysis techniques.
These techniques can be divided on two groupsethased on the local expected value,
and those based on measures of spatial correlation

Contact analysis consists in the analysis of tikallmean of the attribute values in a
one-dimensional space defined by the distanceeo$dimples to the boundary. If the local
mean changes gradually from one side to anoth#reoboundary, this would indicate a
soft transition. An abrupt change would indicateaad boundary (McLennan 2007, pp.5-
2, 5-3).

Alternatively, measures of spatial correlation sastthe cross-variogram can be used
to identify the presence or absence of spatialicoity across the boundary (Ortiz &
Emery 2006; McLennan 2007). Thus, if spatial catieh is observed between values on

each side of the boundary, it would indicate a bofindary.

2.3.2.Trend Modeling

Once the domains and their boundaries have beenedednd modelled, the attribute

spatial distribution may show a large scale tengeac trend (Chiles & Delfiner 1999,
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p.165). A trend can be identified from geologicalowledge or directly from data
(Deutsch 2002, p.180). Unless the trend can beribesc by a physical law or by
knowledge of the underlying process (Christakoale2001, pp.33-36), the exact shape
remains mostly unknown and thus, subject to unicgytaThis is usually the case in
geological applications due to the complexity of fsthenomena studied. Despite its
uncertainty, the trend is usually modelled as amehistic drift (Chiles & Delfiner 1999,
p.233). The decision to model the trend determuoaly allows separating the complex
and highly uncertain local fluctuations from a sletpand more continuous large scale
tendency. The RF is decomposed into a determirdsificm(u), usually equivalent to the
local expectation of the RF, plus the stochast&dieal R(u) as presented in Equation
(2.12). Therefore, the remaining uncertainty asgedi to the lack of knowledge of the
trend is assimilated to the stochastic part of Rfe This decision comes with an
unavoidable degree of subjectivity, in the sensd the amount of spatial variability
attributed to each component of the RF cannot lerméned uniquely (Cressie 1986).
Thus, the separation of the RFu) into deterministic and stochastic components is
defined by the practitioner and is dependent ofstede of modelling and the available
data (Chiles & Delfiner 1999, p.165; Deutsch 2062179-180)

Methodologies for modelling the trend determinisii¢ include hand contouring,
moving window averages, distance based interpaolatemd kriging (Deutsch 2002,
p.182; McLennan 2007). From a practical point @wit is desirable that any technique
used for trend modelling be relatively simple, siritis the large scale variability that
should be reproduced. The geological knowledge theddata rarely justify a highly
variable trend. Despite this smoothness, the tmandel must be consistent with the

available geological knowledge (McLennan 2007)

2.3.3.Inference of the RF Distribution Parameters

A decision of stationarity allows inference of tR&'s global probabilistic (multivariate)
distribution, and its parameters. If the Bfu) has been decomposed in a deterministic
drift m(u) and a probabilistic residuB(u) the focus is on the inference of the parameters
of the residual RF. In the following notation, tharameters to be estimated refer to the
whole RFZ(u), unless otherwise specified.

Available data can be used in the inference ofRRedistribution and its parameters

(Goovaerts 1997, p.75). Sampling may be concewtrateareas deemed interesting
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because of their high values or in areas wheresatitikty is not limited by logistics and
other practical reasons (Borradaile 2003, p.2)sTgreferential sampling may lead to
parameters more representative of the densely sangkas than of the entire domain.
This is translated to a bias when estimating thedi®fibution. Spatial declustering
techniques are used to remove this bias, theydeclpolygonal declustering (Isaaks &
Srivastava 1989, pp.238-241; Goovaerts 1997, pp07Peutsch 2002, pp.50-51), cell
declustering , (Isaaks & Srivastava 1989, pp.243:-Zdeutsch 1989; Goovaerts 1997,
p.81; Deutsch & Journel 1998, p.213) and globajikg weights declustering (Deutsch
1989).

By incorporating the declustering weights obtairgdany of these methods, the

univariate RF cdf can be inferred from weighted observationsz(u,) at different

locations ¢=1,...n) within the domain, and foK different thresholds by (Goovaerts
1997, p.81):

F(z)= Pro Zu) < ;}:i wlu; 2 0041], Iki,..., k (2.13)

a=1

The superscript ~ indicates that this is a sampd¢issic. The weightsw, are the

declustering weights assigned to each sample,m@t::lwa =1, andl(u,;z) is the

binary indicator function that transforms each datlue according if it exceeds or not a
thresholdz, k=1,...K (Journel 1989, p.22):

1, if z(u,)< %
l(u,;z)= i Ou, OD 2.14
(Uai2) {O, otherwise a (2.14)

The mean and the variance are estimated from tberadtions that are considered to
be a sample of a realization of the RF, as (Gotsd&97, pp.81-82):

m=> w, 4u,) , (2.15)
a=1

and

? :iwa[z(ua)— i, (2.16)
a=1

Among the multiple 2-point statistics available (Bsch & Journel 1998, pp.43-46),

the most relevant for this thesis are the sampt®ogam, y(h), covarianceé(h) and
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correlogram, p(h) . The sample or experimental semivariogram is ¢afed by (David
1977, p.74):
y(h) = 2N(h) az_l[ 2(uy) - Au, +h)]? (2.17)
Where N(h) denotes the number of sample pairs approximaeparated by the
vector h. Since sampling locations often follow irregulaatterns, it is necessary to
consider tolerances to the magnitude and directiogles of this vector in order to
include enough number of pairs (Deutsch & Journ@®8l pp.47-50). The sample

covariance is calculated by (Goovaerts 1997, p.86):
N(h)

E(h) = Nih) 3. 2lug) Tty +h) = oy (2.18)
with
N(h)
Z Au,) .
o (2.19)
my, —W az_:l Au, +

In practice, these measures of spatial correlatrercalculated for different directions
and distances. Most geological processes have degree of spatial continuity. That is,
the values observed at small distances tend to dre similar than those observed at
large distances (Tobler 1970). Thus, in presencspatfial correlation the experimental
variogram increases &y jncreases, while the covariance decreasdy axfeases. The
directional variograms and covariances carry infiion about different aspects of the
spatial continuity of the attribute. These includestructured and short scale random
variation, known asugget effectdirections where the decrease of correlation with
distance is less marked, knowngeometric anisotropya direction with systematically
lower long scale variability, known asonal anisotropy and geologically induced
cyclicity (Gringarten & Deutsch 2001).

The experimental measures of continuity in diffeéréinections are jointly fitted by
continuous functions defined as variogram modefe fieason for doing so is mainly the
necessity of defining the spatial correlation fihidéstances and orientations. The process
of fitting the experimental variograms is helped dmological knowledge and allows
filtering artifacts and other fluctuations (Goovisel997, p.87; Gringarten & Deutsch
2001). Only allowable covariance and variogram nf®dan be used. These covariances
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share the mathematical propertypafsitive definitenesghat is, under the assumption of
second order stationarity the covaria@) in the right side of the Expression 2.9 must
be such that any linear combination of RVs hassitipe variance (Armstrong & Jabin
1981; Goovaerts 1997, p.87):

Var{zn: AaZ(ua)} = Zn: Zn: AgAgClug —Ug)z0 (2.20)

a=1 a=18=1
The most used allowable variogram models linkedctwariances include the
spherical exponentialand Gaussian(Chilés & Delfiner 1999, pp.81-85)These are
bounded functions in the sense that they reachxamman value called thsill. These

models have a covariance counterpart that can tagnel from Expression 2.9.

2.3.4.Spatial Prediction

The idea of spatial prediction in Geostatistics sistis in locally conditioning the RF
global cdf to neighbouring data at an unsampledation u (Journel 1989, p.22;
Goovaerts 2000). The local conditional cumulatienglty function (ccdf) is expressed
as:
F(u;z | n(u))=Prob{Zu)< z | nu)} k=1,.., K (2.21)
Where n(u) is the number of samples surrounding the predidooationu . It may

range from a quantity limited by a local neighbaoti centred atito all the samples
within the domain. Samples at locations where theogram model indicates a higher
spatial dependency in relation to the predictiogatmn get more weight in the
construction of the local ccdf. Thus, beginningiira global prior cdf corresponding to a
RF model within a domain, the aim is to obtain guesterior ccdf at each unsampled
location (Goovaerts 1997, p.264). This is accorhglisusing the punctual information
provided by data, the information on spatial depeog provided by the variogram
model, and the information on large scale trendsvided by the trend model.
Background information, such as the knowledge & tfeological setting, can be
incorporated in the variogram and trend models,wadl as during the domain
identification and boundary modelling stages. Thecess of spatial prediction, from
inference of the global prior cdf and ending witled! ccdfs, is schematically illustrated
in Figure 2-3. That figure shows a 1-D set of sam@luesz(u,), o=1, 2, 4, 7, 8, and
10, with the corresponding global pdf at the extemght. Commonly, a trendh(u) is
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fitted to the data values, and a pdf of the RW)R¢ inferred from the residual values. A
normal score transformation of the uR(cdf may be performed at this point. The
variogram is also calculated from the (transfornmedjduals. The fitted variogram model

is used for obtaining the residual estimatégu,) and the conditional pdfs fa=3, 5,

6, 9 and 11. A backtransformation of the ccdfs Rgu) is performed at this point if
required. The estimates and the ccdf in originatsure*(u,) , can be obtained by
restoring the trend. The most notable drawbackshisf common approach and some

alternatives to it are discussed in Subsectiond 24dd 2.5.2.
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Figure 2-3: Schematic 1D representation of the Getagistical spatial prediction process. The black
curve at the right represents the global prior pdfof the RF Z(u) obtained from scattered values (bldc
dots). The blue curve at the right represents the ¢f of residuals after trend modelling. The trend
model is represented as a blue solid line. The rezlrves represent the posterior conditional pdfs at
each estimated location (red squares). The dashedd line represents the exhaustive estimation of the
posterior local mean.

There are a number of techniques for spatial ptiedicThese can be classified as
estimation or simulation technigques. Roughly spegkithe focus of estimation
techniques is on the single best estimate of thi center of mass, while simulation
techniques are focused on providing alternate zai@dins within the ccdfs spread. The
most relevant prediction techniques for the presemk are described in the next section.

Spatial prediction is commonly performed on a raggjrid discretizing the area or
volume of study. Usually, for estimation techniquése grid cell size is determined
relative to the sample spacing (David 1977, p.2&3)/or the goals of the attribute
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numerical model (Deutsch 2002, p.84). Whereassifoulation techniques, the cell size
is constrained by the consistency requirementsdmvthe samples and predicted values
supports (Journel & Kyriakidis 2004, p.24). Thedgis intersected with the domain
boundaries and the cell centroids coded accordiegdbmain they belong. During the
spatial prediction process, the grid centroids ased to store the parameters of the
posterior ccdfs (Houlding 2000, p.32).

2.4. Standard Geostatistical Techniques for Spatial
Prediction.

The main goal of an estimation technique is to gl@the closest approximation to the
unknown true values at unsampled locations. Thed gb local accuracy comes at the
expense of reduced spatial variability, which ieited in smooth estimated maps and a
reduced variance in the histogram of estimates y@exts 1997, pp.369-370). The
histogram of estimates underestimates the frequehlayge values while overestimating
the frequency of small values, this is known asdtional Bias (Goovaerts 1997, p.182).
Simulation techniques try to reproduce the spatiatiability and the probability
distribution informed by the data. Although simidat techniques reproduce the data
values, they provide less locally accurate prealiti than estimation (Journel &
Kyriakidis 2004, pp.14-15)

In estimation techniques, the criterion of optinyalicommonly consists in
minimizing the mean of the square error betweerutti@own true values af(u), and its
estimator Z*(u) (Journel 1989, p.27; Goovaerts 2000):

2 2
E{[e(u)] }= E{[ Zu)- (U] } (2.22)
Other optimality criteria for estimation could bbosen, such as the mean of the
minimum absolute error (Christakos 2005, pp.342)y34®wever, only the least squares
criterion assures the estimator is unbiased, $E{Z*(u)} = E{ Zu)} (Journel 1989,

p.27; Christakos 2005, p.344).
The goal of simulation techniques is not the mimmtion of a measure of the
prediction error, but the reproduction of the globtatistics informed by the global

histogram and variogram model.
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Estimation optimality criterion is satisfied by angle estimated value at each
location. The reproduction of the global statistitsimulation, however, can be satisfied
by a range of possible realizations, at least apprately within ergodic fluctuations
(Goovaerts 1997, pp.426-429). While the estimatigtimality criteria are local, the
simulation goodness criteria are global in the setimt they involve all simulated

locations simultaneously.

2.4.1.Estimation Techniques

In linear estimation, the attribute value at anamngled locatioru is obtained as a linear
combination oin sampled values at locationg a=1,...n. The numben may correspond
to all the samples within the domain or may be transed to those that fall within a
neighbourhood centred at In such case, it is denotefl). Thus, the Kriging estimator,
Z*(u), is a RV built by the linear combination ofu) RVs Z(u,), a=1,...n(u) (Journel
1989, p.10; Goovaerts 1997, p.126; Deutsch & Jourd@8, p.64). The general form of

this estimator is given by:
n(u)
[Z' )= mw) =) A (W] Zug) - )] (2.23)
a=1

Wherem(u) andm(u,) are the expected values ofu) andZ(u,), respectively, and
A, (u) are the weights assigned to each data vAlug considered as realizations of the
RVs Z(u,). The various forms of kriging differ accordingetiiorm of the RV expected
values (Goovaerts 1997, p.126). For all krigingrfsy the weightsi, (u) are such that
they minimize the estimation variance (Matheron9,9.44-45):

o (u)=Var{Z'(u - Zu} (2.24)

The unbiasedness condition is fulfilled for allrfee of kriging:

E{Z (W) - Zu} 0 (2.25)

For Simple Kriging the fulfillment of this conditinis assured by the form of its
estimator (Expression 2.29). For other types ofgikg, such as Ordinary kriging
(Expressions 2.32 and 2.33), the Condition 2.25 tmbis enforced during the
minimization of the estimation variance.

The minimization of the estimation variance is &glént to the minimization of the

mean square error in Equation 2.22. If the RF idistion is modelled as Gaussian, the
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best estimator in Gaussian unit)éf(u), under the minimum square error criterion

coincides with the mean of the Gaussian ccdf at éamationu (Goovaerts 1997, p.276;
Chiles & Delfiner 1999, pp.163-164):

E{Y(W (N} = Y(Y =j yidu W n) d (2.26)
and the Gaussian ccdf varianaé(u) is equivalent to the estimation variance:
E{(Y(u)—wu))zm}:a%(u): [[y Y@ qu vy d (2.27)

The minimization of the mean square error in ofdeobtainZ*(u), in the general
case, ol¥*(u) in the Gaussian case, under different assumpléaus to different kriging
types. In the kriging types described next, theseimptions are related to the model used
for accommodating non-stationarity or data transfoin the RF mean (Goovaerts 1997,
p.126).

Simple Kriging

For the stationary form of the Simple Kriging (S&yorithm, the local mean is assumed

known and constant within the entire domain (Ddut&dournel 1998, p.64)

E{Z(u} =y =m Oud D (2.28)
In this case, the stationary SK estimator takegdira:
. n(u) S n(u) s
Zek (W)=Y A7 (W) Z(u,y)] +[1- DA K(U)} m (2.29)
a=1 a=1

This form of kriging is adequate under the decisiai strict and second order
stationarity. A locally varying mean can be incagted in the general form of SK. In
this case, the estimator is similar to the Expms4d.23. For both, the stationary and
general SK, the weights are obtained from the sygt@oovaerts 1997, p.128; Chiles &
Delfiner 1999, p.155):

n(u)
> AZ4U)C(u, —up) = Cu, —u) a=1,..,n(u) (2.30)
B=1

The corresponding estimation variance is:
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o) =C(0)—n(ZU)/‘§’K )C(uy —u) (2.31)

a=1
The difference between the stationary and gendfa$y&tems is that in the second
the RFZ(u) is decomposed in a local meanju) plus a residualR(u), as shown in
Expression 2.12. Therefore in the general SK theudances ofZ(u) are replaced by the

covariances of residual§z (h) (Goovaerts 1997, p.128).

Ordinary Kriging

Ordinary kriging (OK) bypasses the requirement &hawn local or global mean by re-

estimating it at each locatian (Deutsch & Journel 1998, p.65). The mean is &iteby

the unbiasedness constrai@::;:l/lg*( (u)=1. The OK system of equations is given by

(Journel & Huijbregts 1978, pp.33-34):
n(u)
D A W)C(u, —u,) + uu)=C(u-u,), a=1..,n0)
"(j (2.32)
/II?K (=1
B=1
With ASK(u)as the OK weights ang(u)is the Lagrange parameter required to

enforce the unbiasedness constraint. By re-estignahe local mean and assuming it
constant within a neighbourhood, OK allows locakstricting the decision of second
order stationarity. Due to this increased flexiiliOK is a commonly used geostatistical

method. It can also be expressed in terms of veaing (Goovaerts 1997, pp.134-135):

n(u)

Z/\}?K(U)V(up -u,)+u(u)=yu-u,), a=1..n@)
ﬁ(j (2.33)

AEK (u)=1
B=1
The weights obtained from the equivalent OK systexgressed in 2.32 and 2.33

lead to the formulation of the OK estimator as (Beb & Journel 1998, p.65):

n(u)
Zok ()= Y. A2 (W) Z(u,) (2.34)

a=1

And the OK estimation variance is given by:
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n(u)
T4k (U)=C(0)- Y A2X (u)C(u, —u)- u(u) (2.35)

a=1

Kriging with a Trend Model

When the mean cannot be obtained with enough poacfsom data or when it is not
appropriate to consider it as invariant even wiinimall search neighbourhoods. The local
mean can be provided by a trend model defined esnéinuous function of the form
(Goovaerts 1997, p.127; Deutsch & Journel 1998)p.6
K
m(u) = kZé) g (u) f(u) (2.36)

Where f, (u) are often chosen by the user as polynomial funstadrthe coordinates,
or they can take other forms, such as trigonoméinctions. The coefficients, (u) are

assumed constant within each search neighbourfide®l; are unknown and, under the
constraints imposed by Kriging with a trend modi€IT), they are filtered. The KT

system is expressed as (Goovaerts 1997, p.141):

n(u) K
> AT (U)CRUg —U,) + D 1T () fi(ug) =Crlu-u,) @ =1,..n()
£=1 k=0

n(u)

Z /]ET (u)=1 (2.37)
B=1
n

(u)
AFTU) fi(ug) = fi(u) k=1,..K
B=1

Where the Lagrange paramete;@fT (u), account for theK+1 constraints on the

weights. KT can be used under the decision ofngiti stationarity. In this case, the
covariance of the residuas;(h), is required. Since the coefficients (u) remain

unknown it is not straightforward to estimate thesiduals and their variogram. One
option for obtaining the covariance of the residual from semivariogram of residuals
calculated in directions unaffected by the trenddq@erts 1997, p.142). KT also can be

used for explicitly estimating the trend componeaggu) as linear combinations of the

original data values (Goovaerts 1997, pp.145-147).
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2.4.2. Simulation

A direct and widely used way to build maps that duumthe data histogram and spatial
correlation is by using Monte Carlo Simulation fdrawing random values from
correlated conditional distributions at every légat For such purpose, the adoption of
the Gaussian distribution model in geostatistidgalutation of continuous attributes is
widespread since it allows a straightforward cargton of the correlated ccdfs. This is

particularly advantageous for the sequential sitrariaalgorithm explained next.

Sequential Gaussian Simulation

For a multigaussian RF, the conditional expectatind variance is equivalent to the SK
estimate and variance, respectively (Chiles & Delfi1999, pp.163-164). Due to this,
SK is used at each node to obtain the local Gaussihiconditioned to surrounding data
and previously simulated values. For each noderamdomly generated path, a random
value is drawn from its corresponding ccdf and adte the data set. This sequence
continues until all nodes have been simulated kisd891, pp.15-16)

Including previously simulated values for constimgtthe subsequent ccdfs assures
the preservation of the spatial correlation infodm®y the global variogram. Different
realizations can be obtained by executing the gemenultiple times using different
random paths. Using a single random path for allizations has the advantage that the
SK weights need to be calculated only once; howetaray result in similar realizations
(Deutsch & Journel 1998, pp.145,154). This is beeathe single path may enforce
artificial spatial continuity when only neighbougidata are considered in the inference
of the local ccdfs (Goovaerts 1997, p.379). Thisbfgm may avoided by using all
previously simulated nodes in the local cdf cowdiing, but this would require the
handling of excessively large matrices.

Sequential Gaussian simulation (SGS) relies oma#isaimption of strict stationarity.
Although, this algorithm can accommodate a norniestaty trend by using SK with prior
local means. Whatever form of kriging is used fbtaining the local ccdf means, the

corresponding variance to be used must alwaysé8khvariance (Journel 1980).
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2.5. Non-Stationarity

Stationarity is a modelling assumption and not apprty of the geological attribute
(Myers 1989). This assumption allows groupingdhta and spatial prediction; however,
the spatial distribution of virtually every attriteustudied in the earth sciences exhibits
features that can be regarded as dependent oniolocdtor example, contaminant
concentrations fade far from the pollution sourdhe,geometry of geological structures
is altered by various depositional and structunaicpsses, and minerals and metals
precipitate at different stages of the deposit ftfion resulting in zoning patterns.
Therefore, it is reasonable to incorporate diffefénds of non-stationary statistics in the
modelling process. Some modelling aspects musbhsidered before proceeding in this

way.

2.5.1.Some Considerations for Non-Stationary Modelling

The main aspects to be considered for incorporatiog-stationary statistics in
Geostatistical Modelling are the purpose of the ehotthe information available, and the

scale of modelling.

Purpose

Depending on the goal of the model the reproductibsome non-stationary features
may be important. For example, in mining, the repition of the curvilinear features of
the mineralization, such as those that appearim aefolded deposits, can be important
for mine design, production scheduling and ore/evatdssification. However, for global
resources estimates required in a pre-feasibilages the reproduction of non-stationary
features in the model may not be necessary. Iroithiedustry, the correct reproduction
of connectivity of a particular facies can be intpat for evaluating the oil recovery and
deciding a well location. While in terrain modetlinthe correct reproduction of the
continuity of high and low areas may require of 1stationary statistics that are able to

adapt to changes in the orientation of valleysmodntain ranges.

26



Information

When sampling is scarce and no background geoldigicaviedge is available to support
the incorporation of non-stationary statistics iaymbe advisable to proceed under a

stationary framework.

Scale

In some cases, the spatial features of an attriag appear non-stationary within a
small area, but in a larger context, they may appegart of a repetitive pattern that can
be modelled as stationary. In other instancespnegjivariations in the spatial continuity
and tendencies in the attribute values may betelan sub-regions within which they
can be modelled as stationary.

The scale of modelling is closely related to thedeiopurpose. If the goal is to
estimate the attribute ccdf on large scale volurttes,reproduction of small scale non-

stationary patterns may not be critical.

2.5.2.Types of Non-Stationarity

In classical Geostatistics, non-stationarity nofynagfers to the mean. However, local
variations of other statistics can also be incanpet in Geostatistical modelling. A
classification of non-stationarity types basedha statistics involved, along with some

examples, are presented next.

Non-Stationarity in the Mean and the Variance

Non-stationarity of the mean may be handled by ifginsic assumption or by
decomposing the RF in a local mean and a residdahumber of techniques for
incorporating this kind of non-stationarity existome of them have been presented
above. For earth sciences attributes, it is comthah zones of high values also show
higher variability. This translates in a positiverelation between the local mean and
local variance, which is known as proportional effdMatheron 1974; Isaaks &
Srivastava 1989, pp.49-50). This positive propodiidy between the local mean and

variance is typical of positively skewed distritmts, while increasing local variances
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related to lower local means is observed in neghtigkewed distributions (Journel &
Huijbregts 1978, pp.186-187).

By transforming the original distribution to a nahdistribution, the proportional
effect is mitigated (Krige 1978, p.24), since tbedl fluctuations are equalized thanks to
the homoscedasticity of the normal distributionowéver, this direct transformation does
not account for the trend in the mean. Decompo#iiegRF in a trend and a residual
component, as in Expression 2.12, and subsequéathsforming the residuals may
result in violations of original attribute’s coraints when back-transforming to original
units. Using Stepwise Conditional Transformatioeyangthong 2003) allows to obtain
residual transforms with constant mean and variaand when back transformation is
applied, the attribute constrains are respectedlantieteroscedasticity restored. This is
accomplished by applying normal scores transfoiwnatand back-transformation, of the
residuals conditioned on the probability classhef bbcal mean component (Leuangthong
& Deutsch 2004)

Non-Stationarity in the Spatial Continuity

Changes in the orientation of the spatial continaite induced by diverse structural and
depositional processes such as folding, shearimgl @meandering. Moreover, the
magnitude of the anisotropy of the spatial distiithu of an attribute may vary locally.
Most of the non-stationary techniques describedth@ next section are aimed to
incorporate local variations in the anisotropy ot&ion and ratio. However, other
aspects of the spatial continuity models, suchhasnugget effect and variogram shape,
may also be considered as locally varying.

The discontinuity at the origin of the variograrmokvn as nugget effect, can be
attributed to two sources: (1) sampling relate@rsirand (2) the geological variability
between samples at close to zero separation (De@882, p.116; Platten & Dominy
2001). While the first component may be independéftie location, the geological short
scale variability may be location-dependent. Inckteork deposits, for example, local
changes in the density and the pattern of minedlizeinlets could induce local
variations in the nugget effect.

A locally changing variogram shape may be requirkm, example, in terrain
modelling, where local changes in surface roughaessobserved (Shepard et al. 2001;

Lloyd & Atkinson 2002). Thus, a variogram model hihigh continuity at short
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distances, such as the Gaussian model, can bearseddelling the smooth topography

of hills, while an exponential model may reflecttbethe roughness of mountain areas.

Non-Stationarity in the Bivariate Correlation

Locally changing correlation patterns between \des have been incorporated in the
multivariate modelling of a nickel laterite depoflityall & Deutsch 2000). Similarly,

when modelling a primary variable conditioned bgoarelated secondary variable, such
as porosity and seismic amplitude in a heavy aereoir (Ren 2007), or between field

and satellite measurements of tree species coatiens (Pereira et al. 2000).

2.6. Current Approaches for Non-stationary
Geostatistics.

Recently, particular attention has been paid torthe-stationarity of the variogram and
covariance functions. The current methodologiesdiesling with non-stationary spatial
correlation can be grouped into local and glob@ragches. Local approaches restrict the
stationarity of the RF locally, while global appcbas deal with the spatial correlation
non-stationarity at the level of the entire dom#@Bchabenberger & Gotway 2005,
pp.421-430)

2.6.1.Local Approaches

Among the local approaches for dealing with the -stationarity of the spatial
correlation are the moving window method (Haas #%aas 1990b), segment-based
variograms (Atkinson & Lloyd 2007), convolution rhetds (Higdon 1998; Higdon et al.
1998) and weighted stationary processes (Fuent&k) 20

Moving Windows and Segment-Based Variograms

The moving window approach calculate the experialdntal variograms or covariances
with only the samples that fall within a window ¢@d on the location to be estimated.
At each location, the window size is adjusted awatically in order to contain a

minimum number of samples necessary for calculaimgerimental semivariograms that

allow the convergence of its fully automatic fisinKriging is then applied using the
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fitted local variogram model and considering onhode samples within the moving
window.

The required automatic fitting of local variograms each estimated location may
increase considerably the computer requirements.riiain advantage of this method is
the local variability information reflected by tlestimation variance (Walter et al. 2001);
however this approach has some important drawbagkst, the fully automatic fitting
does not allow the input of geological knowledged ahe supervision of the fitted
variogram models by the user. Second, when dateaisce or highly variable, the local
variograms may prove difficult to fit reliably. Adtnally, artifacts may be produced by
including or excluding individual samples from oestimation location to the next one
(Schabenberger & Gotway 2005, pp.425-426)

A related methodology based in the segmentatioth@fspatial variation (Lloyd &
Atkinson 2000). Under this approach, the domaindided in smaller regions, or
segments, within which the variogram is assumetiosi@ry. The segmentation may be
achieved on the basis of the fractal dimensionvedrirom the slope of the local double-
log variograms (Burrough 1981). These local va@ogmodels are obtained in a moving
window process similar to the explained above, Usihg much smaller window sizes
(Lloyd & Atkinson 2002)

Convolution Methods

The process convolution-approach proposed by Higd®88) decomposes the RZFu)
as a Gaussian proceds) plus an independent error proc&ga):
Z(u) =Y(u) +E(u) (2.38)
Y(u) is defined as a convolution of a zero-mean whitese X (0) with a Gaussian

convolution kernelK , (0) centred at:

Y(u) = [ K, (0)X(0) do (2.39)
D

The local Gaussian kernel parameters are obtaireed focal Gaussian variogram
models fitted to experimental variograms calculdten data within a neighbourhood.
For the sake of efficiency, these local Gaussiaiogeams, and the kernels derived from
them, are obtained only for a few locations. Thenkkparameters at other location are
obtained by a weighted average of the first fewnpriy kernels. The corresponding

covariance is given by:
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Cov{Z(u), Z(u +h)} = [var[ X(9] K,(a T(Y) K.p( 0 T(u+ ) do (2.40)
D

Where T(u) =[o3(u), 0,(u),8(u)] control the local anisotropic shape and orientatio

of the Gaussian kernel. Consequently, the covagiafunction can be made non-

stationary by changing the kernel parameters dt kmation.

Weighted Stationary Processes

In this method it is assumed that the non-statipf&t Z(u) can be represented as a linear

combination ok stationary RF<Z,(u),...,Z, (u):

2 =13 K u-0)7 W) (2.41)
k
i=1

The stationary RFs are defined lapartitions of the domain and are uncorrelated
outside each partition. This is:
C(h;6,) ifi=]j

2.42
0 ifiz] (242)

Co\{ Z(u), Z(u+hy} ={

With 0, as the parameters vector of the stationary covegiamodel defined for each
partitioni=1,..k. The kernel& (u —-0,) , are anchored at the centref each partition. As

these stationary RF are defined locally and areomwmlated, the non-stationary

covariance can be expressed as (Fuentes 2002;ehtimaber & Gotway 2005, p.428):
K

Coy Zu), Zu+h} = K> €h 6) OKy OKu+h (2.43)
i=1

The global non-stationary covariance is constructad weighting the local
covariances by a Gaussian kernel as a functioheoflistance betweanand the centre
of each partition. Different from the convolutiorethod explained above, in this method
the kernel parameters are kept constant from ontitipa to another. Therefore, non-
stationarity in the covariance is not derived frtm locally changing kernels, but from
the differences of the stationary covariances eéefimt each domain partition. This
approach is affected by some of the same issué® anoving window approach, such as
the determination of the partitions size and tH&bdity of the covariances estimated
within them when data are scarce.

A different adaptive approach is to use an imagalysis gradient algorithm to

iteratively and progressively tune the local anigpy ranges and directions (Stroet &
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Snepvangers 2005). Beginning with traditional Krggiestimation results and a global
search radius, the gradient algorithm is able émiifly locally the directions of maximum
continuity. These directions are used to modifyahesotropy of a local linear variogram
model. Then, at successive iterations shorter stetigls in the anisotropy are tuned by
decreasing the search radii. This approach appeaverk very well in presence of dense
sampling. It can be used for the modelling of 2Bvdinear structures of categorical data
using indicator kriging, and for estimating contms variables within these structures.
Additionally, no local variogram fitting is requitesince the single parameter needed for
the linear variogram model is derived from the gead algorithm. This approach is
limited to the use of the linear variogram modedl anis not suitable when the local
modelling of the nugget effect, the variogram shapd sills is required. Moreover, the

gradient algorithm may become unreliable if daeswarce.

2.6.2.Global Approaches

Global approaches for dealing with the non-statibyaf the spatial continuity can be

classified as parametric and spatial deformatiothounlogies.

Parametric Derivation of the Non-Stationary Spattarrelation Structure

A non-stationary covariance structure can be pattéca#ly modelled using physical laws
controlling the spatial dispersion of the attributdhe model parameters are estimated
from available data by maximum likelihood. Thesedels usually involve the spatial
dispersion of the attribute as controlled by fewrses, such as a pollutant emitting focus
(Hughes-Oliver et al. 1998). In most applicatiomdated to geosciences, the major
limitation of this approach is the difficulty ofriiling a parametric model of the spatial

behaviour of a rock property.

Spatial Deformation

In this method originally proposed by Sampson antt@sp (1992), the coordinate space
is transformed by a functioh in such a way that the covariance structure besome

stationary and isotropic in the transformed spate space transformation function can

be obtained using multidimensional scaling of tipatsl dispersionﬁljz. These are
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defined as the variance of the differences betwsample pair values measured
repetitively in time:
& =var{Z(u,, 1) - Z(u; , )} (2.44)
Since the dispersions can only be calculated frorapgated measurement at each

sampling location, this approach can be only usedpatiotemporal problems under an

assumption of temporal stationarity.

2.7. Discussion

A considerable portion of the development of geaasieal modelling techniques can be
viewed as a struggle between the necessity of asgwsome kind of stationarity and the
requirement of mimicking the complex spatial featuof the geological phenomena.
Most of the methodologies reviewed in this chapi@n be effective in dealing with a
particular aspect of non-stationarity, while otlstatistics and parameters are considered
as stationary. The methodology proposed in thisishiakes a local approach for defining
the complete set of statistics and parameters nedjfior spatial prediction as specific of
each location. The underlying idea is to obtain libeal prior distributions and their
statistics by applying distance weights to avadaddhta. The next chapter develops this

methodology.
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Chapter 3
Location Dependent Distributions and
Statistics

The standard geostatistical approach for unceytaimidelling relies on a domain-wide
stationary RF model that is conditioned locallydata during spatial prediction (Journel
1986; 1989, pp.8-9). In order to account for thpesy of non-stationarity discussed in
Chapter 2, a locally defined prior RF model is mregd. This requires an assumption of
local stationarity. This chapter presents the dfim of a locally stationary RF. A
distance weighting approach is proposed for ther@rfce of the RF prior local cdf and
statistics. The criteria for choosing the distamegighting function is discussed. The
inference of weighted location-dependent cdfs dralr tcorresponding 1-point and 2-
point statistics are presented and discussed. lycstakionary spatial prediction under the
multiGaussian assumption requires the modellingpcdl normal scores transformation.
The fitting of location-dependent variograms regdiby locally stationary simulation
and estimation techniques is also described.

Two main datasets are used for illustrating theppsed methodologies and
algorithms and for comparing them with the traditib techniques. The first dataset
consists of a 1-D silver grades profile corresppngdio a single hole drilled during the
exploration campaign of a hydrothermal deposithie Peruvian Andes. This dataset is
used when the location-dependent statistics andntpact of applying them in spatial
prediction are better appreciated in one dimensitie. second dataset is the well known
Walker Lake 2-D dataset presented by Isaaks anvdSava (1989). This data is derived
from surface elevation measurements. This secotadsda is used mainly for illustrating
the 2-point statistics and their capability to kabe non-stationarity features of the
spatial continuity. The units for the Walker Lak®Zare set as generic. An image of this
2-D dataset is shown in Figure 3-1. Additional data obtained by simulation or by

image processing are also used for particular elesnp
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Figure 3-1: Walker Lake clustered data set (dots) uperimposed on the exhaustive data set
(background). The color scale indicates the elevain in meters.

3.1. The Assumption of Local Stationarity

The proposed assumption of local stationarity artewe strict stationarity defined in
relation to a reference point. Thus, the RF mutiata distribution is invariant by
translation within the domaid when anchored to a reference paint
Prob{ Z(u,) < %,.... ZU,)< %0} = Prob Zu, +h)< z.., A, +h)< o}
O 4 gt BD,andonlyifi j=
(3.1)
Or, expressed only for the bivariate cdf:
Prob{ Zu) < z, Zu+h) < g0} = Prdb(@) < z (A +h < 2o} (3.2
O ,uu + ,h'# [MD,andonlyifi j=
Anchoring the definition of the bivariate cdf allewthe local inference of the
univariate and bivariate parameters directly frohe tstatistics calculated with all
available data. In the assumption of local statibpaas in the standard stationary
framework, every sample is taken into account m itiference of the local cdf and its
statistics; however, the individual contributionezfch datum depends on its closeness to
the anchor poinb. Thus, the assumption of local stationarity carrdgarded as a local
adaptation of the stationary RF. A way to achiewimg local adaptation is using distance
weighting functions. The alternative of restrictintge stationarity decision to a
neighbourhood makes the inference of the RF cdfi@nghrameters in areas with scarce

data quite difficult and unstable.
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Spatial prediction under the decision of localistadrity is an extension of the trend
modelling idea to the RF cdf and all its statistaosd parameters. Figure 3-3 shows a

schematic 1-D representation of the idea thatathmeters can be varied locally.

mi(u)

Attribute Values =z

Prob|Z(u)=:]

iz,

f

u coordinates

Figure 3-2: Schematic illustration of spatial predction with location-dependent distributions and
parameters. The black curve at the right represers the global prior pdf of the RF Z(u) obtained from
scattered values (black dots). The blue curves aheh sample location represent the local prior pdf's
with local means represented by the straight blugre. At each location a variogram model is specédd.
The red curves represent the posterior conditionapdfs at each estimated location (red squares). The
dashed red line represents the exhaustive estimati@f the posterior local mean.

3.2. A Distance Weighting Approach

The idea of using distance weights for the caltaabf local statistics has appeared in
spatial statistics as the methodology of Geogragblyic Weighted Regression
(Fotheringham 1997; Brunsdon et al. 1998; 2002h&atgham et al. 2002). A similar
approach within a geostatistical framework is depetl below.

Several aspects must be considered in the desigmlistance weighting approach for
location-dependent cdfs and their statistics. Tledeade: (1) the desirable mathematical
properties of distance-based weights, (2) weightimgtions that fulfill these properties,
(3) the inclusion of other desirable features, swh anisotropic distances and
declustering, (4) the combination of 1-point weglim order to obtain higher order

weights, and (5) the criteria for selecting therargoint locations.
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3.2.1.Properties of Weights

The weights assigned to samples at locatign&=1,...,n) in relation to an anchor point
located ato are intended to allow the unbiased inference oall@tatistics. They also
should be inversely proportional to distance, stiyotchanging, strictly positive,
globally consistent for all statistics, and indegemnt of units. These desirable properties

are discussed next.

Smooth Distance-Decay

Within a domain, and in absence of discontinuitwesights should decay continuously as
the distance to the anchor point increases. Thisesents the idea that closer samples
should have a greater contribution to the corredpmncdf and its statistics.

This decay should be smooth, that is, if the sdjmardetween two samples is very
small,de, the weights assigned to each of them shouldrbiesi

w(u, +deg;0)=aw(u,,0) Ouy,0OD,a=1...n (3.3)

A weighting function with a steep decay or that®ida discontinuity may produce
abrupt changes in the weights assigned to adjdoeations. This would result in
instability of the local statistics. Smooth deaiag functions that are differentiable in

[0,00] are preferred.

The weights assigned to a sample in relation tdhh@ngpoints separated by a very
small distanceds’, should be similar:
@(u;0;) =a(u,0; +de) OqUD,i=1..P (3.4)

Properties 3.3 and 3.4 are fulfilled simultaneou$ha constant smooth distance-
decaying function is used at all anchor points. @ifference between the two properties
becomes relevant when varying distance functioesuaed at each anchor point. Locally

varying distance functions are presented in Sulmsest2.4.

Strict Positivity and Unbiasedness

The distance based weights assigned to each samgplaroportional to their probability
contribution to the local cdf. Therefore, the suhtantributions from all samples should
add to 1. Additionally, all probability contribothis must be positive within a domain.

These two properties, unbiasedness and strictiibsitaire expressed as:
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w(u,;0)>0

n Oo, Ou, OD, a=1,... 3.5
Y u,;0)=1 a n (3.5)
a=1

The strict positivity property ensures licit logalobabilities and allows the inclusion
of all data in the calculation of location dependstatistics. Considering all samples
avoids the artifacts caused by using only the clesenples to an anchor point and
decreases the instability of local statistics ot#diat areas with low sampling density.
Moreover, giving positive weight to the sampleshivita window and zero weight to
those outside of it would preclude the inferencetlod local 2-point statistics for

separation distances larger than the window size.

Global Consistency and Independence of Units

The weights should be the same for 1-point and i@tdocation-dependent statistics.
This global consistency of weights allows using tleal 1-point statistics in the
calculation of 2-point statistics. Moreover, whém tseparation distance in the 2-point
statistics becomes zero, the resulting statistieseguivalent to the 1-point statistics.
Additionally, the weights should be independenthef distance units used, but dependent

only on the relative distances.

3.2.2.Distance Weighting Functions

Two functions that produce weights fulfilling alt most of the specified properties are
inverse distance weighting and the Gaussian Kef#er kernel functions commonly
used in nonparametric statistics, such as Unifdrrigngle, Epanechnikov, and Cosine
(Li & Racine 2007) are not considered here becdlieg are discontinuous when they
reach a bandwidth distance. This may cause agifaotl unwarranted fluctuations in the
calculation of location-dependent statistics; paittrly in areas were samples are very
sparse.

Inverse distance and Gaussian kernel are two aanisly decreasing functions of

the Euclidean norm of the vectaio formed by an anchor poiotand a sample location

u:
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d(u;0)=[ud = (u - 0 + (- )+ (4~ )% =/ &+ g+ ¢ (36)

Inverse Distance Weighting

The inverse distance weighting (IDW) method (Shed868) is very popular in spatial
interpolation. The weights decay according the iisgeof a power of distance, The
higher theb value, the less smooth are the estimates. Thesewdistance weighting
function is expressed as:

1

—=
Wpw (Ug;0) = n(d(umol"' C)

7=i(d(ug;0) +¢)°

a=1..n (3.7)

Where the offset, is a constant that avoids computational problednsn d(u,;0)
is very small. If thec value is comparable or larger than the sample spadi also
influences the smoothness of the estimates; thdlesntae c offset, the closer the
interpolated surface approaches the data valued(wg};0)=0. For smallb power
values, particularly fob<1, the estimated values vary smoothly; whereds,isf higher,

the interpolation shows a steep gradient near\dstees.

Gaussian Kernel

Gaussian kernels are used in non-parametric regressd spatial statistics (Hardle
1992, p.36; Schabenberger & Gotway 2005, p.111yd 007, p.80). The well known

shape of the Gaussian function allows a gentleydfwathe weights assigned to samples
located near the anchor point (see Figure 3-3})idthe distance-decay is controlled by
the bandwidth, or standard deviation, vakieThe Gaussian kernel (GK) weighting

function is given by:

Y
£+ exp{—(d(u"'zo)) }
2s
a=1..n (3.8)

This is similar to the Nadaraya-Watson estimatoraggérman 2006, p.71). The

background constantis included here in order to avoid computationabtems when
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d(u,;0)is large and also for controlling the smoothnesshef estimated statistics (see
Figure 3-3). The denominator in Expression 3.8 radizas the weights to sum to one and
allows adapting the weights to the local data dgn@iardle 1992, p.32). Thus, d is

located in a low density area the weights givennttividual samples are higher than

those in densely sampled areas.
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] 0.008_]
0.03 ] ]

0.006_]

0.02_]

Weight
Weight

0.004_]

0.002_]

e — 0000 b

-200 -100 0 100 200 -200 -100 0 100 200
Distance Distance

Figure 3-3: Inverse Distance (left) and Gaussian &nel (right) weighting functions. The IDW profiles

were calculated using a power of 1 and different \raes for offsetc. The GK profiles were calculated

using a bandwidth of 40 and for different backgrounl & values.

3.2.3.Selection of Distance Weighting Parameters

The distance functions used for location-depend&atistics should not be exact
interpolators; there is no necessity to reprodune data exactly. Location-dependent
weights should reflect the local trend variatiom®imed by the data without overfitting.
Therefore, the minimization of an average squangdreds not a good criterion for
selecting the optimal distance weighting parametgirce the resulting local estimates
will match the data. Instead, subjective criterém de used for choosing the distance
function parameters that yield to smoothly varystgtistics. Trend modelling criteria
incorporates such subjectivity (McLennan 2007).

A basic requirement to assure the unbiasednesxaf statistics is that the expected

value of the local meanms(0) over the domailD must approach the RF global mean
1 _
Slomo)do= B2y} = n (3.9)

Once this is verified, the total varianag?, of the decomposed RF in the local mean,
m(u), and the residualR(u) (see Equation 2.12) , is expressed as the sutheof
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variance of the local meangar{ n{u)} , the variance of residual¥ar{ Ru)} , and the

covariance between the local means and the residual{ niu), Ru)} :

Va{Z(u)} =Vaf g} +Var(R} 2 dJo(nu (B (3.10)

If the trend is smooth, the variance of the locabms represents a limited fraction of
the total variance. It has been suggested that,rate of thumb, this fraction should not
exceed 50% (McLennan 2007, pp.6-4,6-5). Additionathe absolute value of the
covariance between the local means and the residiauld be minimized. While the
coefficient of correlation betwee£(u) and the local means should be maximized. These

three criteria can be summarized as:

Var{m(u)} /Vaf 20} 9.5 (3.11)
min{Coy 1), R} (3.12)
Coy nu), Zu) 13
ax{war{ntu» SCAT) } 519

The first criterion (3.11) avoids overfitting of tdaby the local mean. As this ratio
approaches 1, the local mean more closely matt¢teeddta. Criterion 3.12 is important
when treating the residuals as independent of thanmlf the covariance between the
local means and the residuals is significant,aotff, such as values exceeding the natural
limits of the attribute, may appear when the trenmcestored after spatial prediction with
the residuals (Deutsch 2002, p.186). For the pwrpddocally stationary modelling, this
correlation is irrelevant, since the RF is not deposed, but locally modified by the
distance function weights. Criterion 3.13 is aimeddjust the local mean to the local
data variations. The practitioner, guided by thepegpance of resulting location-
dependent statistics maps, must find a reasonalbd@de between these measures.

These criteria involve only the local mean; howewbe weights must fulfil the
property of global consistency. Those weights dekneasonable for the local mean are
also considered adequate for other location-depersdatistics.

Figure 3-4 shows an example for modelling the trehslilver grades mean in a drill
hole using IDW (left) with a background value o&Bd different power parameters, and
GK (right) with a background value of 0.01 and &hfferent bandwidths. The trends
modelled by IDW show a higher sensitivity to exteralues and appears less smooth
than the ones obtained from GK, even when the poware is as small as 0.5. The

spikes in the IDW trend model are not a matterpgfesrance only, but they may translate
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in unwarranted fluctuations of the location dependeoments. GK weighting, instead,
produces smooth trends models. In this examplenawidth of 40m can be reasonably
chosen between the excessively smooth trends pedduging an 80m bandwidth and the
fluctuating trend obtained with a 5m bandwidth.

o_Inverse distance weighting o_Gaussian kernel weighting
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Figure 3-4: Trend modelling of silver grades (dots)in a drillhole using Inverse Distance (left) and
Gaussian Kernel (right) weighting functions.

Using GK bandwidth of 40m, the trend-data variarei®o is just 0.085, the trend -
residuals covariance is 0.967, and the trend- datalation is 0.40. Figure 3-5 shows the
progression of the variance ratios and the coefiitcof correlation between the data and
the trend for different parameters in IDW and GKigiing. For IDW, power values
below 1 yield very flat trends when using a backgab value comparable to the samples
separation, 3m in this case. This is reflectechenvtery low trend variance /data variance
ratio for the low power parameters in Figure 3€i.lIncreasing the power parameter
increases the correlation between the trend matkkldata but at the price of the spikes
observed at Figure 3-4. For the GK (Figure 3-5ht)iga reasonable choice lies between
closely fitting the data using a narrow bandwidtid dhe quasi-flat trends produced by
excessively wide bandwidths.

The choice of an offset equivalent or larger tHas sample separation in IDW has a
considerable smoothing effect (See Figure 3-6).left GK weighting, the background
constant represents the major part of the weigdigasd to distant samples (see Figure 3-
3). The smoothing effect of this constant becon@ie@able when it is higher than 0.01

(see Figure 3-6, left).
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Figure 3-5: Progression of trend and data varianceratio (dashed lines) and the coefficient of
correlation between data and the trend (continuousines) according the power parameter of IDW (left)
and the GK bandwidth (right).
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Figure 3-6: Background value effect on the local mans for inverse distance (left) and the Gaussian
kernel (right) weighting.

Additional considerations for choosing the distamgsighting function parameters
are the data density and the scale of modellingaifipling is dense it is possible to use
smaller bandwidths in order to resolve the localistics. In this sense, another advantage
of the kernel distance methods is that the bandwidin be selected in relation to the
sampling separation and the scale of modelling. ddeer, if the scale of the non-
stationary features can be obtained from seconidémymation or abundant data, it can
also be used for tuning the distance function patars. An example of this is when the
spatial distribution of an attribute may be conedl by topography and exhaustive
topographical information is available. In this eashe parameters of the weighting

function can be selected in relation to the spédialures observed in the terrain model.
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3.2.4.Anisotropy, Declustering and Local Adaptation

Distance weights can be modified to account forghesence of a dominant anisotropy
orientation, preferential sampling and change®aall data density. These modifications
are achieved by changing the distance function eshapby correcting the distance

weights making them inversely proportional to theal data density.

Use of Anisotropic Distances in the Weighting Fiong

Strong anisotropy can be present within many gecédglomains. This anisotropy is
related to the geologic processes and may be cmmesidThe anisotropy definition used
for distance weighting function should likely be aker than the true anisotropy of the
attribute. A very strong anisotropy for the distarianction may mask the local changes
in the anisotropy of the true spatial distributittsing anisotropic distances is equivalent
to modifying the amplitude of the weighting funcation a particular direction. This
translates in an increased variability of the tremthe minor anisotropic direction.

The small example presented in Figure 3-7 illusgahis idea using samples on a
quasi-regular 7 by 7 pixels grid. The geologicahg® has a strong anisotropy parallel to
the X-axis. The global variogram of this image hasanisotropy ratio of 2.3 for the short
scale structure, and about 4.4 for the long rartgectsire. The three trend models
presented in Figure 3-7 were built applying différ@anisotropy ratios in the distance
weighting. In this figure (top right), it can be s#yved that, isotropic distances in the
weighting function may induce isotropic featuresha trend model. Contrarily, imposing
an anisotropy ratio similar or higher to that shomnthe variogram model inhibits the
depiction of local anisotropic features that defiiamin the global anisotropy (see bottom
right map in Figure 3-7). A mildly anisotropic disice weighting function can be used to
avoid these two extremes, particularly when dealiity sparse data.

Figure 3-8 shows the coefficient of correlationvibetn the trend and data, and the
trend variance/data variance ratio for differensatmopy ratios applied on the Gaussian
kernel bandwidth. Both statistics increases as ahisotropy of distance weighting
function gets stronger. This indicates a reducedashing in the direction of the minor
kernel bandwidth.
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Figure 3-7: Geological image sampled in a 7 x 7 pls grid (top left), local means model produced usg
Gaussian kernels with anisotropy ratio of 1 (top rjht), 1.5 (bottom left) and 4.4 (bottom right)
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Figure 3-8: Effect of the distance weighting anisobpy ratio on the coefficient of correlation betwea
trend and data (left) and on the trend/data variane ratio (right)

Geometric anisotropy is modelled as a tri-axiapebid defined by 3 radii and three
rotation angles (Gendzwill & Stauffer 1981). Incorgting an anisotropic definition in
distance weighting is equivalent to enlarge the moments of the vectouo parallel to
the two shorter anisotropy radii, while fixing theamponent parallel to the major
anisotropy radius. A coordinate rotation can alsacbnsidered if the axes of anisotropy
ellipsoid are not parallel to the coordinate axdse following transformation matrix is

used for this purpose (Leuangthong et al. 20082369)
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aqla, 0 0 codd; 0-sif;| | 1 0 0 c - sty |
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(3.14)

The angles and radii that define the anisotropypssid follow the GSLIB
convention (Deutsch & Journel 1998, pp.27-28). THR,]is the rotation matrix
corresponding to the clockwise angle of rotatioaround the z axiR ] corresponds to
the rotation angl®, around rotated X-axis and positive upwarf8g] corresponds to a
rotation of 6; degrees around the rotated Y-axis, which is pasitiockwise.[S] is the

scaling matrix where,, a,anda; are the radii of the ellipsoid parallel to theated Y, X

and Z axes, respectively.

The vectoruo = (dy,dy,d,) presented in Expression 3.6 is modified by:

dy dy
dy | =[T] d, (319
d, d,

Thus, the anisotropic distance between the anabiotpand the data becomes:

d'(u;0) =/ + dy >+ d,? (3.16)

Correction by Declustering Weights

Due to sampling design or logistical reasons, ehssbf data are common in diverse
spatial datasets related to the earth sciencesi{2802, p.299; Borradaile 2003, p.14;
Sinclair & Blackwell 2002, pp.81-83; Webster & Qdiv2007, p.32). For the purpose of
increasing the information in interesting areas thustering is practical;, however, these
practices may introduce bias in the global statistfDeutsch 2002, p.50), as well as in the
distance weighted location-dependent statisticsorder to remove this bias in the

location-dependent statistics, the set of distdrased weights should fulfil the following

property:

E)(ua)=%zpzw(ua;oj)=wa Oa=1..n (3.17)
j=1
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That is, the average of the distance weights asdigm a sample in relation to all
P anchor points must be equal to its correspondeajudtering weighw,, . A correction

is required because distance weighting functionsndd necessarily yield weights
fulfilling this property.

Common declustering methods include cell declusge(Deutsch & Journel 1998,
pp.213-214; Isaaks & Srivastava 1989, pp.241-248)ygonal declustering (Isaaks &
Srivastava 1989, pp.238-239; Deutsch 2002, p.51),ghobal kriging weights (Deutsch
1989). The declustering weights obtained from thesthods can be imposed on the
distance weights by a correction factor:

WO'
uy)
Therefore, the Property 3.17 is fulfilled:

@(u,;0) =a(u,;0) Oa=1..n (3.18)

P
%Z&)(ua;oj):wa Oa=1,..,n (3.19)
=1

A new regularization of the weights is requireceathis operation in order to make
the sum of weights to be equal to one. The 1-Dsdaitpresented in Figure 3-4 is used to
illustrate the effect of the correction by decluistg weights on the distance weights and
the modeled trend. For each datum, the correspgraténlustering weight is proportional
to the distance between the midpoints of the adjfasampled segments. This is akin to
polygonal declustering in 1-D. The left side of trig 3-9 shows that, for narrow
bandwidths, the average GK weight assigned to esample approximates the
corresponding declustering weight. Wider bandwiddihs less sensitive to changes in
local data density. In mining exploration it is cmwn not to assay the intervals that do
not show visual evidence of mineralization. Thisalso the case for the 1-D dataset
corresponding to a single drill hole consideredehefhus, the section outside the
mineralized structure at the centre of the drillehbas a lower sample density, and the

declustering weights are much higher for the sagblere.
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Declustering weights Declustering weights
gangw!gm = io ............ Before correction
] andwi = 1 After correction
00 (% Bandwidth = 80 -100
E ] E ]
 -200] < -200 ]
5 o
[0) 1 (7]
0 [a]
-300 | -300 ]
'400-\|\| T T T T T T T T T T '400-\u"|\|\|||||\||‘|||\|
0.00 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04
Weight value Weight value

Figure 3-9: Left, declustering weights and averag&aussian kernel weights assigned to each sample
for different bandwidths. Right, average sample wights after declustering correction.

After the correction, the average distance weigisigmed to each sample matches
corresponding declustering weight, thiscxu,)=w,, a =1,...,n (see Figure 3-9, right).
The resulting trend model after correction by dstting weights is slightly shifted to
the low grade values (see Figure 3-10, left). Bhit is consistent with the correction of
the bias caused by dense sampling in the high gimatéevals of the drillhole. The
correction for declustering comes with the pricadisicontinuous weight profiles around
the anchor points (see Figure 3-10, right). Coneetly, condition 3-3 is no longer
satisfied. These discontinuities are caused bystlading of original distance weights by
the declustering weights. Thus, the contributiosafples located in low density areas is
increased for the inference of local statisticgl #re continuity of the weights assigned to
contiguous samples in relation to the same anchiont pnay be broken. However, the
weights assigned to each individual sample in iatato contiguous anchor points still
varies smoothly (see Figure 3-11), fulfilling theoperty 3.4. The preservation of this
property after the correction by declustering wesghllows generating smoothly varying
local statistics. The sum of corrected weightstegldo an anchor point may not be equal
to one, thus a new standardization is requiredraeroto fulfill Property 3.5. These

standardized 1-point weights will be denoted ed(u,;0), a=1..n,

Zinzlai(ua;o) =1.
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o_Effect of corrected weights on the local mean o_Profiles of corrected weights
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Figure 3-10: Left, effect of declustering correctia on the local means model. Right, weight profileat

three anchor points before and after declustering wights correction.
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Figure 3-11: Distance weights assigned to three iiidual samples before and after correction by
declustering weights. The selected samples correspbto the highest spikes in the weights profiles of
Figure 3-10.

Dynamic Kernel Bandwidth

In areas with low sample density, the inferencéooél statistics may become difficult.
This may cause unwarranted fluctuations in the ll@tatistics in such areas. While
densely sampled areas may contain enough informatoprovide a more detailed
description of the local statistics. The idea igrtorease the bandwidth in low sample
density areas and to narrow it in highly samplegiaes.

The denominator of Expression 3.8 is directly prtipoal to the data density, note
Figure 3-12, left. The local data density calcudatdth a moving window is presented

along with the Gaussian kernel denominator valutaally changing bandwidths, can

be obtained by approximating the denominator of rEggion 3.8 to the average
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denominator obtained from all anchor points usingoastant bandwidtls. Thus, the

locally adapting Gaussian kernel becomes:

2 2
d(u,; d(u,;
£+ex _(d(Ugi0)” 20)) £+ ex _(d(Us:9)° 20))
. 2s, 28
gy (Ug;0) = — (3.20)
£+Zex —7( (u",'zo)) iznl _(d(ua;oﬁ))
25, P 28
Data density and kernel denominator Dynamic bandwidths

Data densny (samples / m)
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0. .. |||
| L
-100_|
E ]
£ -200_]
o
o |
a
-300_]
Data density ~ ---eeeeeee &
GK denominator sum
1 =
0 10 20 30

GK denominator value

Depth (m)

-100_]
-200_]
-300_]

-400_]

Or|g|n§| bandwidth = 5
Originat-bandwidth = 40
Original bandw|dth 8Qrmrmmmeees

o 40 80 ‘1'20‘
GK bandwidth (m)

Figure 3-12: Left, local data density calculated vih a moving window and local kernel denominator
value. Right, local Gaussian kernel bandwidths afteregularization of the kernel denominator value

for different original bandwidths.

Figure 3-13, right shows the resulting local bardthé widened in low density areas

and narrowed in highly sampled areas. This traeslea smoother local statistics in low

density areas, while the statistics in highly sadpareas show more local detail (see

Figure 3-13, left). In Figure 3-13, right, the weligorofiles at three separated anchor

points for the silver drillhole assays are showifote and after the use of a locally

changing bandwidth.
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o_Local means with dynamic bandwidths o_Weights with dynamic bandwidths
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Figure 3-13: Effect of the dynamic bandwidth in thelocal means model (left). Weights profiles for thee
anchor points before and after regularization of tle kernel denominator value (right).

3.2.5.From 1-Point to 2-Point Weights

Calculation of 2-point statistics requires weightsrresponding to a pair of samples
simultaneously. The resulting 2-point weights aoéamed by applying a mixture rule to
the weights corresponding to the individual samgese Figure 3-14). Mixture rules
have been defined by Korvin (1982) for obtaining talue of a composite material
attribute formed by two different components or gg#®m Given two phases with
corresponding property valugs andg,, and volume fractiongh, and 1¢, respectively,

the general mixture rule is expressed as:

M (g4, gz,¢,t)=[qog‘l+ (1—;0)g‘2]]/t , witht# 0, IR (3.21)

For obtaining 2-point weights, it can be assumet the volume fractions of each
sample are equivalent, thatgs= 0.5, and the individual sample weights are tlaperty
values:g; =a(u,;0), ¢ = u, +h;0). Thus, the mixture rule for combining the weights
corresponding to a sample pair separated by thenebecomes:

W0+ (U, +ho)

; (3.22)

WU, U, +hi0) =

51



Figure 3-14: Weighting schema for sample pairs
For t=1, the mixture rule is the arithmetic average efghts:

a)(ua;o)+;)(ua +h;0) (3.23)

Whereas, it approaches 0, the expression converges to theaejgoraverage:

U Ug +h;0) =

W(Ug,Ug +h;0) = [w(u,;0) (U, + h; o) (3.24)
These two particular cases of the mixture rulesargle. Neverthelesscan take any

real value. Fort D(—OO,+00), Expression 3.22 is bounded by the tail and headpte

weights:

Min(a(ug;0), alu, +h;0)) < alu,, U, + 1y 0) s Max(afy, ; 9,4y, + h )

As t increases the 2-point weights approach the clsammple weight, while the 2-
point weights is lowered closer to the farther slempeight ast decreases. This is
illustrated in Figure 3-15, where the tail sampledtion has been fixed at the origin and
its weight standardized to 1, while the head sartgaation is changing according to the
red curve.

The value of the exponential parameter in the métule has little impact in the 2-
point statistics for small separationsHowever, for longer separations, the increasing of
the value of inferred statistics when a positivalue is used, and its reduction whea
negative, becomes noticeable. As discussed in Stise3.3.5, a choice of thevalue

that avoids these extremes in the inference of lImeasures of spatial continuity is O.
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Figure 3-15: 2-Point weight profiles for different values of the powert in the mixture rule. The tail
sample location has been fixed in the origin and Isaa weight of 1, while the head sample is allowed t
move.

It is important to remark that whatever thealue is, if the sample separatibns 0,
the 2-point weight reverts to a 1-point weight.eéglained in Section 3.3.4, this property
allows consistency between 1-point and 2-poinisites. These 2-point weights fulfil the

properties specified for 1-point weights, excep tinbiasedness property. This can be

achieved by:
(U, u, +h;0)= N(ﬁ‘;(u”’u”+h;°) (3.25)
> @ug,ug +h;o)
i=1

WhereN(h) is the number of sample pairs separated by thox.
If the corrected weightsé(u,;0), a=1,...n, are used for building the 2-point

weights, these also will be able to minimize thasbcaused by preferential sampling.
Thus, for sample pairs located at similar distartoehe anchor point, those located in

scarcely sampled areas will be associated withenigkpoint weights.

3.2.6.Choosing the Anchor Point Locations

Ideally, the location-dependent statistics shoddnerred at every location in the model.
For 1-point statistics this can be accomplishedigitforwardly. However, for 2-point

statistics, this would be very demanding in compuésources. Additionally, checking
the local statistics and the models fitted to theauld be tedious if it is done at every
location. Alternatively, the 1-point and 2-pointcéd statistics obtained for a limited

number of anchor points can be interpolated foro#ler locations. Any interpolation
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method that honours the data values at their logatand is able to produce smoothly
varying maps is adequate for this task. The spaairtge anchor points must be such that
the interpolated statistics and parameters clofmlgw those that would be inferred
directly at every location. Since the local mead eariance are relatively straightforward
to infer at every location, these statistics aredufor finding an adequate anchor point
separation. Normally, the error between the intied statistics and those inferred at
every location increases with the anchor point s#jmn, particularly when this exceeds
the kernel bandwidth. Thus, the practitioner mirsdl 2 balance between computational
efficiency and the minimization of the error inttmetd by the interpolation of local
parameters.

For example, in Figure 3-16, left, it can be obedrthat the exhaustively inferred
local mean model can be closely reconstructed Brpolating the values obtained at
anchor points separated up to a distance equivdterthe kernel bandwidth. The
difference is negligible at such separation (segifé 3-16, right). For larger separations
between anchor points, this difference grows qyicrdinary kriging with a spherical
variogram with isotropic range equal to the anchoint separation and zero nugget

effect was used for interpolating the local statssin this case.

o_Exhaustive and interpolated local means 1.0_Errors in interpolated local statistics
LI
—+—— Inthe local mean model
1 5 0] — - Inthe local std. dev. model
100 o
4 c
S
: ' S 6]
€ :-f/ Exhaustive local mean model .- 3 A
= 200" Interpolated local means. AP sep.= 40m: 3 1
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Figure 3-16: Interpolated local mean models betweeanchor points of different separations (left).
Mean square errors between the exhaustively infergelocal statistics and the interpolated statistic$or
different separations of anchor points (right). A Gaussian Kernel with 40m bandwidth of 40m was used
for the inference of the local means and standardeviations.

In the case of the 2-D dataset, the location-depeinstatistics were obtained using a
Gaussian kernel with 20m bandwidth and 0.1 backgtouwith calibration by
declustering weights. A 20m x 20m anchor pointstme&as used for the local inference
of the local statistics. Figure 3-17 shows therjptéated values of these local statistics
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between the anchor points. The interpolation metbodised this case was also ordinary
kriging with a spherical variogram model with 208vtropic range and zero nugget

effect.
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Figure 3-17: Local mean and local standard deviatin fields inferred for the elevation attribute in the
2-D dataset. The circles mark the location of therachor points.

3.3. Location-Dependent Distributions and Statistics

Once a set of 1-point and 2-point distance weightsobtained, these can be used for the
inference of locally varying 1-point and 2-poinatstics. The expressions of location-
dependent statistics are such that they reverdo stationary form when the distance
weights are constant. The normal scores transfasmat the local cdf by incorporating
the distance weights is presented in this Sectidrere is a trade-off between the
capability of experimental location-dependent measwf spatial continuity to capture
the local anisotropy and the stability of thesealo2-point statistics. This trade-off is
controlled by the choice of the distance weightingction parameters. The availability
of closely spaced samples is critical for the odrieference of the location-dependent 2-
point statistics. These issues are also discusstm ipresent Section.

The fact that the location dependent statisticssaraple statistics is emphasized by

the use of the notation » on them.

3.3.1.Location-Dependent Distributions

The Expression 2.13 is used for building the stetrg cdf from the values obtained at
different locationsu« (a=1,...n). The local univariate cdf anchoredatan be inferred

from a similar expression by incorporating the dtdized weight «J(u,;0) :
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Pro{ZW < /3 =Ku 9= alu; 900y, 0,1

a=1

0 40D, k=1,..K

(3.26)

Where the indicator functiotl (u,;z)is defined by the expression (2.14), and

zinzlcd(ua;o) =1. Similarly, the location dependent bivariate cdfde inferred from:

ProfZ (1)< 7 .ZG+h)< g = FOu+h;z.z p)

N(h) (3.27)
= d( M M hal( uz)O( u h)
a=1

This is equivalent to the location-dependent notered indicator (cross) covariance
(Deutsch & Journel 1998, p.11), w Z:iz)a}(ua,ua +h;0)=1.

Figure 3-18 shows the global univariate cdf for thiélhole silver assays presented

before, along with the local cdfs at three différanchor points.
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Figure 3-18: Location-dependent cdfs obtained usingsaussian Kernel distance weights at anchor
points located at elevations of -50, -200 and -3@lbng the drillhole presented previously.

3.3.2.Local Normal Scores Transformations

In order to conform to the multiGaussian model, ltheation-dependent univariate cdfs
must be transformed to univariate normal cdfs. Théguires a normal scores
transformation (Goovaerts 1997, pp.266-271; Deut&chournel 1998, p.141) at each
location. This methodology allows accounting fanils in the mean and local variations

of the variance and histogram shape (McLennan &$xu2008).
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Given G(y) as the standard Gaussian normal cdf, with= 0 andoy = 1, and a

location-dependent cfF (u; z,0) of arbitrary shape, the local normal scores tramsfo
Yp =G F(U, 25:0)) = 4y ( 2;0) , (3.28)
allows matching the values with y,, such as:
F(u.2;0)=G(y,)= p D01 (3.29)

At each anchor point, the n ordered paiy;f are stored in a transformation lookup
table (Deutsch & Journel 1998, pp.223-226). Theddes can be used for the non-
parametric modelling of the local back transformatiunction:

z, = IA:_l(G(yj);o):qﬁz(y;o) j=1,...,n (3.30)

Figure 3-19 shows examples of local normal scamsstormation functions built by
local transformation lookup tables at the sameettargchor points considered in Figure 3-
18. As it can be observed, the transformed valoeikdase tables do not lead to a standard
normal distribution. If the transformation is perfeed in a low value region, the
distribution of transformed values is shifted te ffositive side, and vice versa. Only with
the application of distance weights, the local $farmed distributions become standard

Gaussian.
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Figure 3-19: Local normal scores transformation fumtions at three different anchor points and their
corresponding transformed distributions (1-D datas#8.

In Figure 3-20, left, the cdfs of locally transfagthvalues appear different from the
Gaussian cdf and in inverse order when comparel Rigure 3-18. Local transforms

closely conform to the normal Gaussian distributishen weighted by the distance

57



weights (Figure 3-20, right). However, deviatiomenhi the standard Gaussian cdf are
common in the tails of locally transformed cdfs.e$b are caused by the presence of
isolated very low or very high values that causscaintinuities at the extremes of the

original local cdfs.
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Figure 3-20: Left, three locally transformed cdfs potted without incorporating the distance weights
used in the construction of their respective trangfrmation functions. Right, 400 locally weighted
transformed cdfs (1-D dataset).

3.3.3.Location-Dependent 1-Point Statistics

The use of local means, variances and other 1-gtatistics calculated by distance based
weights has been proposed for the exploratory aisalyf spatial data (Brunsdon et al.
2002). Here, the location-dependent 1-point stesisire presented within a geostatistical

framework as quantities summarizing the prior dééin of the locally stationary RF cdf.

Location-Dependent Mean and Quantiles
The location-dependent mean is estimated as thandis weighted average of sample

values (C. Brunsdon et al. 2002; Borradaile 20039)p

0) =3 (Uy; ) ) (3.31)

a=1
Any Iocation-dependentp-quantile,ip(o), can be obtained by finding the

corresponding threshold in the inferred local dsition, such as:

If(u,zp;o):Zn:a}(ua;o)El(ua;zp): p 0[0,1] (3.32)

a=1
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Location-Dependent Measures of Spread

The location-dependent variance is estimated aeighted average of the square of
differences between the values and the locatiommggnt mean (Brunsdon et al. 2002).

This is obtained from:
52(0)= Y, (g O 2(y) - O (3.33)
a=1

Another measure of spread is the location-deperidearguartile range (LDIQR). As
in the stationary case (Ilsaaks & Srivastava 1982Q)p it is given by the difference
between the upper and lower location-dependentitpsar

LDIQR(0) = % 75(0) = 224 0 (3.34)

At the left side of Figure 3-21 an example of loséhndard deviation model is
presented along with the local mean model. In padjt skewed distributions, the
location-dependent standard deviation tends torbpagptional to the location-dependent
mean, as observed in this figure. An example ddition-dependent quartiles is presented

for the same dataset in Figure 3-21, right.
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Figure 3-21: Location-dependent mean and variancdgft) and location-dependent p25, p50 and p75
quartiles (right) for the 1-D dataset.

Location-Dependent Coefficient of Bivariate Corteda

Local changes in the linear correlation between tifferent RVsX and Z may be
important The location-dependent coefficient of correlatcan be estimated by (Ren
2007, p.43)
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Cyr(0)  _ ;‘J(”a;o) [X(ug) (U, ) = firy (0) O (0)

g (0) [F(0) Gx(9F(9

Pxz(0) = O[-1,1]

(3.35)

For this local statistic it is important to noteatithe weighting function parameters
must be chosen in regard to both variables. Intjp@ however, these parameters can be

chosen considering the most important or the mogtifated of the two variables.

3.3.4.Location-Dependent 2-Point Statistics

The idea of using smoothly changing distance wsighbtaining the local statistics can
be extended to the 2-point measures of spatialiragtyt. In this case, the 2-point
distance weights defined in Subsection 3.2.5 aeal uis weighted measures of spatial
continuity. The forms used under the standard apsans of stationarity can be regarded
as a particular case of the locally weighted messwf spatial continuity where the
distance weights are similar for all samples wittiie domain. The locally weighted or
location-dependent semivariogram, covariance anglogram are presented below.

The same one-dimensional single drillhole datasased for illustrating the location-
dependent measures of spatial continuity. Althaihhghnotation for the attribute values in

original units, z(u) , is used for the sake of generality in the expoessof these 2-point

measures, most of the examples shown next uset¢herormal scores transforms of the
drillhole silver grades. Globally or locally normsdores transformed values are preferred
in the inference of location-dependent 2-pointistias since these minimize the effect of
extreme values and their corresponding models aedad as the input of locally
stationary multiGaussian estimation and simulatehniques.

Samples are not always located in perfectly reggiafs, thus when calculating the
experimental 2-point statistics for a given lagtali€e and orientation, distance and
angular tolerances must be specified in order tleaoenough sample pairs (Deutsch &
Journel 1998, p.49). The lag distances, directiand tolerances parameters can be
chosen in relation to the global experimental \gnaon. These chosen parameters are

assumed to be suitable for the inference of thatioo-dependent 2-point statistics.
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Location-Dependent Variogram

The location-dependent experimental variogram findd as the weighted semi average
of the squared difference between valugs,)and z(u, +h)separated by a vectdr,

such as:

N(h)
y(h;0) =% > @(u,,u, +h0)[z(u,) - Zu, + h)]2 (3.36)
a=1

Where «(u,,u, +h;0) is the standardized 2-point distance weight, agrgiin
Expression 3.25, for the samples at locatiapgnd u, +h, and in relation to the anchor

point 0. The experimental location-dependent variogramshege anchor points in a
single drillhole are shown in Figure 3-22. Althougiey were calculated on locally
normal scores transformed values, these local gios exhibit different sills (Figure 3-
22, left). Dividing the calculated experimental iegram values by the local sill
standardizes the location-dependent variogramaf€ig-22, right).

The sill of the location-dependent variogram temalsthe 2-point weighted semi

average of all combinations of pair squares difiees:

1 N N 2
TRT > wug, ugi0) fz(u,) - Aup) ] (3.37)

23" > wlu, ,ug;0)7=tA

a=15=1

S(0) =

This is not equal to the location-dependent vagapresented in Expression 3.33.
Figure 3-27 shows that while the local variancelamfally normal scores transformed
values is very close to 1 everywhere, the variogsdlnmay vary considerably from one

place to another.

L-D Semivariograms (non-standardized) L.-D. Semivariograms (standardized)
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Figure 3-22: Location-dependent experimental variogams before (left) and after (right)
standardization by the local sill. These variogramswere calculated on locally normal scores
transformed values of the silver grades in the 1-[dataset.
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Location-Dependent Covariance

Similarly, the experimental location-dependent c@rece is calculated as:

R (h)
C(h;0) = NZ a(u,,u, +h;0)2(u,) A u, + h)- My, (0) Ty, (0

a=1
") (3.38)

=> Wy, g+ ho[z(y)-m,(9][ 4 y+ h- Ty, (9
a=1

With m,, (o) and m,,, (0) being the location-dependent tail and head meahighvare

obtained from:

N (h)
My, (0) = > &(u,,u, +h;0)Au,) ,

a=1
) (3.39)

M (0) = Y w(Uy, Uy +h;0) U, + )

a=1

The use of 2-point weights for calculating the lma&dependent 2-point tail and
head means allows the equivalence expressed bytiggquz38. Moreover, ith = 0,
W(u,,u, +h;0)=d(u,;0), thus, m, (o) =m,(0)= Mo, and the location-dependent
covariance becomes the 1-point location-dependanmdrnce:

N(h)

A 2 A N
C(0;0)= > & (u,;0)fiz(u,)]” - f (0)=6%(0) (3.40)
a=1
The local tail and head mean values filter theatans in the local mean at different
distances. This allows the location-dependent ¢amee to be a more robust measure of
spatial continuity than the location-dependent agnam. Figure 3-23, left, shows the

experimental location-dependent covariances ofllipcarmal scores transformed values

at the same anchor points as the location-dependengrams in Figure 3-22.

Location-Dependent Correlogram

The location-dependent covariance accounts for rtlees of location-dependent lag
means from the local mean inferred from the Expoes8.31. The location-dependent
correlogram also takes into account the depariréise lag variances. This is calculated
as:

C(h;0)

6%,(0) 65,0

p(h;0) = O[-1,+1] (3.41)
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Where oAfh(o) and 5fh(o) are the tail and head variances, respectivelyfoAshe

location-dependent tail and head means, the lotakipendent tail and head variances

are calculated using 2-point weights, such as:

5%,(0) = NZ(I],)M(UO,-% +h;0)fiz(u,) - i, (9) |7
;’(hl) (3.42)

62,(0)= Y @(uy, U, +h;0) fiz(u, + h) - i, (9]

a=1

The use of the 2-point weights in the location-defsnt head and tail variances is in
concordance with the weighting of the location-degent head and tail means.

Among the three location-dependent measures ofasgaintinuity presented so far,
the location-dependent correlograms are the mdmisto This is due to the incorporation
of the local means and variances in its calculatioMoreover, its interpretation is
straightforward. Figure 3-23 shows the experimemb@ition-dependent covariances
(left) and correlograms (right) at the same angdmints as considered before. As it can
be observed in this figure, when calculated onllpcgormal scores transformed values,
the location-dependent correlograms are very simia the location-dependent
covariances.

The product of tail and head local means tend fwrageh the square of the local
mean as the lag distance increases (see Figurel@f§4in the same way, the geometric
average of the tail and head local variances appasathe location-dependent variance
for long lag separations (see Figure 3-24, righbhese fluctuations of the experimental
head and tail local means and variances at stpdifdances are contrary to the expected
from Expressions 3.39, 3.40 and 3.42. In theorg, ldcal head and tail means and
variances should approach the local 1-point meanvanances as the modulus of vector
h tends to zero. However, the lack of sample p&pmsated by short distances causes the
fluctuations observed for the short lags in Fig8+24, particularly in the less sampled

areas.
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Figure 3-23: Location-dependent correlograms at arftor points located at elevations of -50, -200 and -

350 along the drillhole presented previously.
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Figure 3-24: Product of tail and head local meanddft) and geometric average of tail and head local
variances (right) for the first three lags (1-D dahset).

Location-Dependent Indicator 2-Point Statistics

The formulation of location-dependent indicator iegrams, covariances and
correlograms is focused on categorical variablésces categorical attributes can be
defined in a very limited number of states. These loe coded by a categorical indicator
function of the form:

1 if z(u,) =5

. (3.43)
0, otherwise

I (Ug:sk) ={

This indicator function replaces(u,)and z(u, +h)in the calculation of the

location-dependent indicator semivariogram and dawae. In the last, the location-
dependent lag means in Expression 3.39 are replagethe location-dependent lag

proportions:
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£ (500)= Y a(u,.u, +ho)0(u,is)
a= (3.44)

. N(h)

Fin(8:0) = Y, (U, u, +h;0)0(y, + hig)
=1

While, in the calculation of the location-dependadrrelogram, the indicator

variances are calculated as:
6%(50) = (80| 1= Fn(5:0)]

2 . . (3.45)
G7n(5:0) = Fin(8:0)[ 1= R (3:0)]

3.3.5.Behaviour of the Location-Dependent 2-Point Statists

The location-dependent 2-point statistics are ableapture the local changes in the
spatial continuity; however, they are sensitivéh® parameters of the distance weighting
function, the mixture rule used to obtain the 2Apaveights and data density. As for the
1-point statistics, narrow kernel bandwidths casulein highly fluctuating 2-point

statistics, but very wide bandwidths can resulttlie oversmoothing of the local

variations of the spatial continuity. The choicexture rule parameter impacts the height
at which the variogram stabilizes. A value of 0 fhis parameter is suggested to
minimize the underestimation or overestimation bé tlocal sill height. Location-

dependent correlograms can be more resilient theatibn-dependent variograms to the
choice of the distance function parameters andniheéure rule, as well as the use of
locally vs. globally transformed values. Data sitgriginders the inference of the local 2-

point statistics, particularly at short lag distasicThis subsection discussed these issues.

Effect of Incorporating Declustering Weights andBsnic Bandwidths

The correction of distance weights by declustenmgights and the use of locally

adapting bandwidths can modify the shape of looshsares of spatial continuity. The
experimental location-dependent variograms in gharsampled areas are particularly
sensitive to these modifications. As shown on FgB+25, when distance weights are
corrected by declustering weights, the experimelozdl variograms are mainly altered
by the effect of the distance weights modificatiamsthe local sill. Generally, location-

dependent correlograms prove to be less sensdivieese modifications of the distance
weights.

65



1.2_L-D Variograms _L-D correlograms

1.0] 1 —« Stationary correlogram
1 ) 451 Original ?v,eighls ¢
0.8 [ _e— X 1 s After declustering correction
©4 r,,/;" 1 - With dynamic kernel bandwidth
1 /) 0.4
Ymos| 4f Py
04] / _ - ] W
1 —e— Stationary semivariogram 0.0 Y
— Original weights ’ e
o24 After declustering correction 1 R Ve
1 With dynamic kernel bandwidth 1
O'OL""l“"\"“l‘<"\""| “0'4"‘\“"\""\"‘|“"\
0 10 20 30 40 50 0 10 20 30 40 50
Distance (m) Distance (m)

Figure 3-25: Location-dependent variograms using umodified Gaussian kernel weights and weights
modified by declustering correction and dynamic kenel bandwidths (1-D dataset).

Effect of the Mixture Rule Parameter

Location-dependent semivariograms calculated udifigrent values of the mixture rule
parametet (see Expression 3.23) are very similar at shgrdiatances. As the separation
given by the norm of vectoh increases, the experimental location-dependent
semivariograms calculated with different valueg afcreasingly diverge (see Figure 3-
26, left). This divergence can be explained by mering that, as explained in
Subsection 3.2.5, for positiievalues the 2-point weights approach the closeasipka
weight. Thus, when the norm bfincreases the contribution of pairs formed by damp
located at very dissimilar distances to the angbmint also increases. This normally
translates in higher values of the location-depandariogram, and also of the local sill
calculated by Expression 3.37, since samples Iddareaway tend to have very different
values. Contrarily, when a negativparameter is used, the contribution of pairs fatrme
by samples at very dissimilar distances to the angoint is diminished. This may
translate in a lower local sill, which approacheshe local 1-point variance. Figure 3-27
shows the effect of theparameter on the local sill. When these locas sille used to
standardize the location-dependent variogram, thay overestimate the standardized
local sill if t is lower than zero, and underestimate it i§ positive (see Figure 3-26,
right). At value of zero, which corresponds to the geometean of the tail and head
sample weights, is a balanced choice that minimi#es issues related to the

overestimation or underestimation of the 2-poicalovariability.
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1.2_Non-standardized L-D variogram.

1.2_Standardized L-D variograms
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Figure 3-26: Non-standardized (left) and standardied (right) location-dependent variograms for the
anchor point located at z =-350 using different exgnential parameters for the mixture rule (1-D

dataset).
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Figure 3-27: Location-dependent variance and semaviogram sill calculated for the locally normal
scores transformed Ag values in the 1-D dataset angsing different exponential parameters for the

mixture rule.

The location dependent correlograms are not higffgcted by the choice of the mixture
rule parameter choice in the local sill (see Figg#28). This is because the correlogram
value is standardized at every lag by its corredpmntail and head variances, while the
standardization of location-dependent variogranpgeiformed with the average of all lag

values.
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Figure 3-28: Location-dependent correlograms usinglifferent exponential parameters for the mixture

rule (1-D dataset).
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Behaviour at Short Distances

Local changes in the short scale spatial varigbilite reflected in the shorter lag
distances. Aspects like the discontinuity at th@inrand the slope are crucial for
choosing variogram model parameters (Isaaks & Stawvea 1989, p.376; Sinclair &
Blackwell 2002, p.199). Due to the importance af #hort distance experimental points
in the fitting of the variogram model (Deutsch 2002134) a closer look to these in the
location-dependent 2-point statistics is considdreldw.

The nugget effect is usually inferred in relation the discontinuity of the
experimental variogram close to the origin. Thiscdntinuity is calculated from very
closely spaced sample pairs. Usually dense samdipgrformed preferentially in high
grade zones. In that case, the short lag valuéscafion-dependent 2-point statistics are
not representative locally. If additionally, thewovalue areas exhibit a continuous
behaviour while the high values areas present mar@bility, the bias is increased and
the local 2-point statistics may appear excessivalyable at short distances. This issue
is illustrated on the same single drillhole datasstpresented before, which shows
densely sampled high grade intervals at the bo#inthtop, and a sparsely sampled low
grade interval at the middle. Figure 3-29, lefip\sh that the shorter scale lag values at
this section are excessively high in relation te tow local sill at the middle of the
drillhole. Thus, when the location-dependent vaidogs are standardized, anomalously
high short scale experimental variogram values apjpethe mid region (see Figure 3-29,
right).
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Figure 3-29: Values of non-standardized (left) andstandardized (right) location-dependent
semivariograms for the first three lags (1-D datagg

In the location-dependent covariances and corratogr the shortest lag bias caused
by the local absence of closely spaced data isfasad as anomalously low short-scale
values. The slope of the local covariances andetamrams becomes positive for this
example (see Figure 3-30). When fitting the logaii@pendent variograms, a way to take
into account this issue is to neglect or diminikle relevance of the locally biased

experimental values. This idea is developed in Sciien 3.4.2.
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Figure 3-30: Values of location-dependent correlogmms for the first three lags (1-D dataset).

Measures of Spatial Continuity on Globally and Ubcaransformed Values

Location-dependent semivariograms calculated orbadly transformed values differ
from those calculate on locally transformed valmesstly in the sill. The local variances
and sills calculated on globally transformed valaes not necessarily close to 1 (see

Figure 3-31, left). For locally transformed valudghg local variance approaches 1

69



everywhere, but this is not necessarily the cas¢hf® local sill (see Figure 3-31, right).
The local sill values can be standardized, doingnémimizes the difference between
location-dependent variograms obtained from localhd globally transformed values
(see Figure 3-32, left).

In the case of location-dependent correlogramsutse of local or global normal

scores normally yields to very similar results (Bagure 3-32, right).
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Figure 3-31: Local variances and sill for globally(left) and locally (right) normal scores transformed
values of Ag grades in the 1-D dataset.
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Figure 3-32: Location-dependent semivariograms (I&f and correlograms (right) calculated on globally
and locally normal scores transformed values of Agrades in the 1-D dataset.

Capability for Identifying the Local Anisotropy

As shown above, in presence of closely spaced tatal, 2-point statistics are sensitive

to local changes in the spatial continuity of afrilatite. Here, the capability of the

location-dependent measures of spatial continuity detect changes in the local

anisotropy of the attribute’s spatial distributits assessed with the help of a small

synthetic example of 100 x 250 pixels size. Thigmagle was generated using Sequential
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Gaussian Simulation and contains two anisotropgasirat the east and west, and an
isotropic transition area at the middle (see Figg#&3). The anisotropy ratio of the east
and west areas is 2.5/1. The orientation of the@nejisotropic axis is NS in the east area
and EW in the west area. The image was sampledsimna regular grid of 5x5 pixels.
The resulting dataset was used for calculating tlosadependent variograms and

correlograms weighted by Gaussian kernel functadrdifferent bandwidth.
3.0

B
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(1.2
[0.6
1 0.0
0.6
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| 1.8
East -2.4

-3.0
Figure 3-33: Synthetic image with two anisotropic anes at the extremes and one isotropic zone in the
middle. The dots in the image correspond to data tations, while the vertical lines delimit the three
zones.

North

Figure 3-34 shows the local correlograms calculateidg three different Gaussian
kernel bandwidths. These experimental location-ddpat correlograms appear as
dashed lines coloured by the X-location of theirresponding anchor point. When a
narrow bandwidth is used (Figure 3-34, top), thealocorrelograms exhibit great
versatility to adapt to local changes, fluctuatiagound the “true” experimental
correlograms in each region (shown as continucwes)i But this versatility comes with
the price of increased noise. A wide bandwidth (Fég3-34, bottom), leads to local
correlograms that approach to the global experiadardrrelogram (black dots in Figure
3-34). An intermediate bandwidth allows flexibledasmoothly changing correlograms
(Figure 3-34, middle).

Figure 3-35 shows the average absolute errors etwbke location-dependent
correlograms and semivariograms obtained at diffelndwidths from the gridded
dataset and the “true” correlograms and semivaaimgrcalculated on each region of the
exhaustive image. The u-shape of the curves predéntlicate that the precision of the
location-dependent 2-point statistics is diminiskdten narrow bandwidths are used due
the increased noise, while for very wide bandwidtihe precision is lost due to the

increased homogenization. A bandwidth wide endiaghllow accommodating roughly
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50% to 75% of the Gaussian kernel function withaithe anisotropic region yields the

lowest errors.
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Figure 3-34: Experimental location-dependent corrlvgrams (dashed lines) along with the “true”
experimental correlograms calculated directly fromthe exhaustive image at each region (continuous
lines), and the global experimental variograms caldated from the gridded dataset (black dots).
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Figure 3-35: Average absolute errors of the locativdependent semivariograms and correlograms in
function of the kernel bandwidth.

Impact of Data Density on the Capability for Idéyitig the Local Anisotropy

Data density is critical in the reliable infererafdocation-dependent statistics. If data are
too sparse, the local statistics may reflect thvidual values of nearby samples rather
than local tendencies. The ideal case is when sngue close enough to inform the local
features with certain redundancy, but their nunmbdimited by a reasonable sampling
cost. For 2-point statistics, the impact of low gderdensity is twofold: first, it precludes
the inference of these statistics at short semarsitisecond, it increases the variability of
these statistics due to the increased relativeribortion of individual samples in the total
value of the inferred statistics. This is illusg@twith the help of the synthetic image
presented in Figure 3-33, which was sampled in segular grids of size 1 x 1, 2.5 x 2.5,
5x5,75x7.5, and 10 x 10 pixels. The correslion location-dependent experimental
correlograms and variograms were calculated usin@aassian kernel of 50 pixels
bandwidth. Figure 3-36 shows the location-depehderrelograms in the East-West and
North-South directions obtained from the datasetapded in grids of size 1 x 1, 5 x 5
and 10 x 10 pixels. The location-dependent corralmg for the sparsest dataset (Figure
3-36, bottom) show the difficulties in identifyirtbe local spatial correlation mentioned

above.
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Figure 3-36: Experimental location-dependent corradgrams (dashed lines) along with the “true”
experimental correlograms calculated directly fromthe exhaustive image at each region (continuous
lines), and the global experimental variograms caldated from the gridded dataset (black dots) at

different sampling spacing.

Figure 3-37 show the average absolute errors betwlee experimental location-
dependent variograms and correlograms obtained fiteengridded datasets and the
experimental stationary variograms and correlograaisulated within each of the three
zones in Figure 3-33. The increase in the errdh@grid size increases may be relatively
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small, particularly if sampling spacing is stillah enough to allow redundancy in the
inference of the local measures of spatial cori@atNote also that for the 1x1 grid size
dataset, which is equivalent to the exhaustive amiagglf, there is still an error in the
reproduction of the local variograms and correlatgaThis is because the samples in the
three anisotropy zones in the image were treatedoebmging to a single domain. The
resulting transitional local correlograms obserwedrigure 3-36, and their variogram
counterparts, lead to this error even with densa. da real world cases, the best practice,
if the information is abundant enough to identifffetent domains, is to delimit them and
treat them separately. Locally weighted statiséce best used when non-stationary
changes occur gradually within a rather homogemomsain or when transitions between

domains are not clear and can be assumed to basmoo
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o 2 4 6 & 10

Sampling grid size (pixels)
Figure 3-37: Average absolute errors of the locativdependent semivariograms and correlograms in
function of the sampling grid spacing.

3.4. Modelling the Location-Dependent Parameters

Models of location-dependent statistics allow digseg different non-stationary features.

Instead of storing the local Gaussian transformsagh data value, only a limited number
of local Hermite coefficients are required for mitidg the location-dependent Gaussian
transformations. For location-dependent variograims,local anisotropy, the short scale
variability and other local features of the spatiantinuity are described by a few
variogram model parameters. The local normal scdrassformation models must

minimize the introduction of any bias in the locdfs, while the local variogram models

must produce non-negative variances for any 2-pmintbination.
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The modelling of local normal scores transformatios performed automatically
using Hermite polynomial series with location-degemt coefficients. Fully automatic
modelling of variograms has been normally discoedam favour of manual techniques
that allow the incorporation of geological sensdhmy practitioner (Gringarten & Deutsch
2001; Webster & Oliver 2007, pp.101-102). Howevehen dealing with location-
dependent variograms calculated at multiple anpleant locations the efficient option is
to resort to a semiautomatic algorithm for fittinge variograms under parameter
constraints and guides imposed by the user.

As mentioned in Section 3.2.6, the local cdfs arhsnres of spatial continuity are
inferred and modelled at a limited number of ancpoints for the sake of increased
efficiency. The local parameters required for locatationary spatial prediction

techniques are subsequently interpolated betwegmoapoints.

3.4.1.Modelling the Local Normal Scores Transformation

The local nonparametric modelling of the normalresotransformation and back-
transformation tables requires the Gaussian eanvalalues for alh samples in the
dataset at each anchor point. This requires afi&ignt amount of computer memory,
particularly for large datasets. A more efficieraynis to store the equivalent Gaussian

values for a limited number of locally inferrgg(o) quantiles. Usually, between 100 and

200 quantiles are adequate for nonparametric mindebf the local transformation
functions.

Another efficient way is to approximate these fimts by a series of Hermite
polynomials. At each anchor point a numid@rof local quantiles is normal scores
transformed. This transformation is approximate@Jasirnel & Huijbregts 1978, pp.472-
478; Wackernagel 2003, pp.238-249):

Q
2,(0) =¢2( Yy 0 = Z;]%(O) H{ yd (3.46)
q:

The reasons for using the local quantiles instelath® actual data values in the
modelling of the local transformation are twofdkrst, the local quantiles already embed
information about the local cdf shape without neddapplying the distance weights
again, and second, since the quantiles in Gaussigndo not change, there is no need of

recalculating the Hermite polynomial at each angiaint. Only the Hermite coefficients,
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%(0), change . Thus, the location-dependent coeffisigq(o) are obtained from the sum

(Oz et al. 2002):
P
@ (0) = pZ::Z(ip_l(O) =~ 7,(9) E—'\% Hea( Yo Od YD) (3.47)

Whereg (0) =m(0), and g(Y,) is the Gaussian probability density function. The

Hermite polynomials are developed as (RivoirardQ.$027):

Ho(y) =1
Hi(y)=-y (3.48)

Hoea(Y) :—ﬁ yHc1(>o-1/qi+1 Hat()

The Hermite polynomials are independent of thetlooa For any integeq>0, and
if Y(0)is a standard Gaussian distributed variable, theyezero mean and variance
equal to one (Rivoirard 1990, p.28):
E{H{(Y(9)} =[ H{ ¥ ¢ ¥ dy®
Var{Hy(Y(O)} = E H{ ¥D | % O

The number of polynomial§), must be chosen in order to model the variabdfty:

(3.49)

Q
G2(0)=> & (0) (3.50)
g=1

Figure 3-38, left, shows the Hermite polynomialsirfg to the location-dependent
transformation function at one anchor point in dnd hole profile previously presented.
A higher number of polynomials yields to a closeof the nonparametric transformation
function, but, unwarranted fluctuations may appe€Binese are common when the
transformation function shows spikes and breakss T¢sue is akin to the problems
encountered when fitting the indicator functionHbgrmite polynomials series (Chiles &
Delfiner 1999, pp.416-417). Thus, the practical lenpentation of the modeling of
location-dependent normal scores transformationHeymite polynomials require the
incorporation of the correction of order relatioavihtions. This procedure is similar to
the one applied for the correction of order relatdeviations in cdfs built by indicator
kriging (Deutsch & Journel 1998, pp.81-86). In nebto these issues, and depending of
the histogram smoothness, a good practice is to heteeen 20 and 40 Hermite

polynomials (Vann & Sans 1995; Wackernagel 20034 p). Thus, the transformation
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function can be closely fitted and the order relatproblems are minimized, with the
additional benefit of limiting the storage requiremis for the complete set of location-
dependent Hermite coefficients. Figure 3-38, righipw the values of the local Hermite
coefficients one to five. The values of the locadriite coefficients at two adjacent
anchor points are very similar despite small flations. The continuous change of the
Hermite coefficients between very closely separatechor points suggest this variation
can be reconstructed by interpolation if the angbmints are located within reasonable

separations from each other.
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Figure 3-38: Left, Hermite polynomials fitting to a local normal score transformation function. Note
the difficulty to fit the spikes in the transformation function. Right, values of the local coefficiets one
to five resulting from the Hermite polynomials fitting of the local NS transformation functions defind
for the 1-D dataset.

3.4.2.Location-Dependent Variogram Models

Location-dependent experimental measures of spatigklation must be modelled. As
with their stationary counterparts, the reasongfis include (1) the need of a complete
definition of the spatial correlation for all disses and orientations, and (2) the
requirement of positive definiteness for the comace used in estimation and simulation
(Gringarten & Deutsch 2001). Variogram models cam useful for incorporating

geological information related to the spatial dimition of the attribute. While fitting the

local variograms models, this geological knowledggn be incorporated as locally
changing orientations of the spatial continuityided from geological interpretations or
field measurements. If available, this informatman be used to guide the fitting of the

local anisotropy parameters.
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The list of permissible models for fitting the |dica-dependent measures of spatial
correlation is the same as for stationary expertaievariograms. The only difference
with the stationary variograms is that local varaog models incorporate locally
changing parameters.

A common choice is the spherical model (Mather®69l p.41); its local adaptation

is given by:

c(©) J1.8n| - 0.8n]* |, if|H|< 1
), ] o1

y(h;0) =y (h;0) = (3.51)

Where ) (h’;0) is the local isotropic and dimensionless variograodel with range

equal to 1 and(o) is its sill contribution. The vectdi’ = (h,, h,, h, ) is obtained from a

X' 1
transformation ofh = (h,, h,, h,)’ with components in the original coordinate system.

This transformation is similar to the given by BEagsions 3.14 and 3.15, but in this case

the scaling matriXS] is replaced by:

1/a, (0) 0 0
[S]=| 0 1l/a,(0 0O (3.52)
0 0 1/a, ©0)

Where a, (0) and a, (o) are the local range parameters parallel to theedtg and x

directions, anda, (0) is the local range in the rotated vertical directiMoreover, the
rotation matrices in Expression 3.14 are modifigdie local anisotropy angled (o) ,
6,(0) andd;(o) .

Greater flexibility in the fitting of location-depdent measures of correlation can be

achieved by using a model that is able to chargeshape. The stable model (Chiles &
Delfiner 1999, pp.88-90) offers this capability:

Hhio)=c(0)| 1-exd~( 3r))"")|  o<b o 2 (3.53)

This variogram model contains the exponential aadsSian models, whelp(0) =1
and b(o) =2, respectively (see Figure 3-39). In areas wheatiapcontinuity is smooth a

higher value for the parametbfo), would be reasonable. Highly discontinuous region

would require lowemb(o) values. Since the major shape change of theestalsiogram
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model function occurs at short lags, a good lodtihg of this model requires many

closely spaced pairs of samples.

1.0 ]

0.8_: |
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T ]
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0.0 0.4 0.8 1.2 1.6
Distance

Figure 3-39: Stable model shape according to diffent power values.

Other models that can be considered for locallynghey variogram shapes are the
Matérn model (Stein 1999, pp.31-32; Minasny & MdBey 2005) and the generalized
Cauchy model (Chiles & Delfiner 1999, pp.85-86; I[€/i2004, p.5).

A locally changing nugget effec@,(o) may also be considered. The nugget effect is

related to spatial variation at a scale shortentti®e smallest sampling separations
(Journel & Huijbregts 1978, p.39). Some of thersea of this variation, such as
measurement errors, may not be spatially correlatbdrefore, the fitting of location-

dependent nugget effect must be controlled or &eptconstant value.

3.4.3.Semi-Automating Fitting of Location-Dependent
Variograms

The local spatial correlation is required for alp@nt separation distances, orientations,
and all locations where locally-stationary spapigddiction is performed. Thus, the fitting
of local variogram models must produce fields afalty changing variogram parameters
at the resolution required for spatial predicti8imce the number of prediction locations
may range from the thousands to millions, the Imemlogram models are fitted only for
a limited number of anchor points. The resultingalovariogram parameters are
interpolated between those anchor points. Nevassekeven the number of anchor points
can be too large to consider a manual fitting. &@e, a semiautomatic variogram
fitting algorithm is required to fit the local vadram models at the anchor points.
Currently available semi-automatic fitting algorite based on the minimization of the

square errors can be used for this task.
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In absence of geologically supported discontingittee local variogram model
parameters should vary smoothly with the locatiepahdent statistics and within
reasonable limits. Smoothly changing local variogrparameters allow a consistent
reconstruction of the local parameters by interjiata between the anchor point
locations. However, the semiautomatic and indepenfitting of local variogram models
from one anchor point to the next may result inessively low or high parameters values
or in unwarranted abrupt changes in the local patara. Abruptly changing local
variogram parameters may occur when the local éxjetal variogram points are
highly discontinuous, particularly at short lagsondover, if the values of the local
experimental variogram points at the shorter lagshégh, this may result in geologically
unrealistic local nugget effect values. The presesfadhe hole effect (Isaaks & Srivastava
1989, p.156; Pyrcz & Deutsch 2001) in the localezkpental variograms can also result
in excessively high and abruptly fluctuating locariogram parameters when fitting
monotonic models, such as the spherical or thdestabthese cases, a model with a high
nugget effect and very long range can yield a simiéast square fitting error as a model
with a low nugget effect and short range. Figu031eft, shows the local nugget effect
and variogram range values fitted to the local exrpental correlograms using the 1-D
dataset. The very high local nugget effect valused the abrupt changes in both local
parameters are due to the issues discussed akiguee B-40, right, shows the minimized

average square error of the local variogram madtteld.

Local variogram model parameters Final objective function value
Range (m)
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Figure 3-40: left, resulting local variogram model parameters fitted separately to the location-
dependent experimental correlograms calculated ataeh anchor point using the 1-D dataset. Right,
least square error of the local variogram fitting.
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When data is abundant and dense enough in relatitime scale of the true spatial
continuity within the domain, the issues discusaldve may occur only at a few anchor
point locations. In such case, a manual fitting tbé local variogram models at
problematic locations may suffice.

Another option is to use a fitting algorithm thatf@ces the consistency between
local variogram models and allows an increasedrobwof the parameter values. Thus,
the main criteria for a proposed fitting algorittiar series of local variogram models is
twofold: (1) the minimization of the mean squardfatences between the local
experimental variograms and their correspondingp@psed models, and (2) the
consistency between model parameters fitted atiguoyus anchor points. Both criteria
must be achieved while respecting the limits ofitable parameter values imposed by the
user and honouring the local anisotropies deriveainfthe background geological
knowledge, if they are available.

Starting from the global variogram model, the fii¢tialgorithm adds small random
deviations to the parameters at each anchor poing. is repeated many iterations. If the
average square error between the local variogrardemand the local experimental
variogram points diminishes, the corresponding ligaameters are kept for the next
iteration. Penalty functions are used to contrel dieparture of the local parameters from
the intervals imposed by the user and to enforagosimy changing local parameters. The

main aspects of the proposed algorithm are desthbw.

Least-Squares Criteria for Fitting the Location-[2gplent Variogram Models

The least-squares criterion for the fitting of waiam models has been proposed since
the initial years of computational Geostatisticayld 1977, p.119). Since each of the
experimental variogram points carry different amtsumf information and those
calculated at the shorter lags distances are mguertant, weighted least-squares criteria
has been commonly adopted (Goovaerts 1997, p.10%)e weights assigned to the
experimental variogram points can be directly prapoal to the number of sample pairs
involved in the calculation of these points, andeirsely proportional to the squared
model value at the corresponding lags (Cressie 1@85to the corresponding lag
distances (Zhang et al. 1995).
Direct supervision of the variogram models obtainesing this criterion is

straightforward when fitting a few global variogramodels, but not with many local
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variogram models. In this case, the fitted locatap#eter values can be constrained
within intervals defined by the user. These intenaan be absolute or relative to values
predefined from geological background knowledge.

In a series of iterations, the optimization aldumit slightly and randomly alters the
variogram model parameters in order to provide Hesst fit to the experimental
variogram. After each iteration, the goodness @ fit is assessed by the weighted
average of the square differences between the pecbmodel and the experimental
points calculated at multiple directions and lagjalces. The weighting is proportional to
the importance given to the experimental points taedquantity of information used for
their inference. Since the experimental valueshattsr lags are the most important for
depicting the local changes in spatial continuitys the weights assigned to these points

can be set inversely proportional to their lagatisgh|=h (Larrondo et al. 2003):

1

rash) =5k — (354)

k1 M
The number of experimental point$y,, ,oine IS €qual to the total number of

experimental points calculated at different direxcsi and for different lag distances. If the
same directions and lags separations are usechéocdlculation of the experimental
measures of spatial continuity at all anchor poititese weights are independent of the
anchor point locations.

At different anchor points, the experimental looatdependent variogram points at
the same lag distance and orientation can havsaime number of sample pairs involved
in their calculation; however, the availability ofbse sample pairs change from anchor
point to anchor point. Those experimental poinferired with a greater number of close
samples should have higher relevance during ttiegfiof local variograms. Therefore, it
is reasonable to weight the experimental pointsth®y sum of the 2-points weights
assigned to the sample pairs involved in theirudaton. This weighting criterion based

on the information availablé; , is expressed as:
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N(h;)
Z Mua!ua +hj;0)

— =1
Mot (05,0) = o NGy (3.55)

D @ug,,u, +hy;0)
a=1

j=1
With N(h;)as the number of pairs used to calculate the exjgertial point at the
distance and orientation corresponding tt¢. Notice that these are 2-point weights

before the normalization performed by Expressi@b 3.
In order to prevent the parameters from taking eslthat largely exceed the limits
judged as reasonable by the user a penalty funiiaonsidered. The penalty function

can take different forms; this one is a simple gatd function. Thus if a numbeny,, of

local variogram parameter$y;(0), £=1,..n is to be controlled rather than fixed, a

par 1
penalty is applied to those values, that exceednge (Dg min: 5 max) iMposed by the

user:
kbs(0) = s, min)” if (0 < Iy i
W; (Is(0)) =40 i By in < 05 ()& By (3.56)
kbs(0) = By ma)” i (9 2 by e

The factork controls the strength of the penalty. The highés value is, the harder is
for the algorithm to produce local variogram parterethat exceed the predefined range.

Usually, a penalty factor higher than one avoids ¢itcurrence of parameter values

beyond the rangébg in, 05 max) - A penalty factor smaller than one can be usettief

practitioner decides to allow some flexibility ihet parameter limits, and thus, to avoid
the hard capping of the parameter values.

The minimum and maximum allowable parameter vatiggsbe set as absolute or as
relative tolerances to previously defined localuesl. The second form can be useful for
allowing a certain degree of flexibility in thetfitg of local anisotropy angles guided by
values taken from field measurements or the gecébgnterpretation of the deposit.

Thus, given an experimental spatial correlation snes, j(h;0), and the proposed
model value at the same l&g y(h;0), the optimization criterion for semi-automatic
fitting of the local variogram at an anchor pomtis to minimize the next objective

function:
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n,

nexp.poims par
o)=—*+— > x(hj,o)(y(hj;o)—f/(hj;o))2+ 1 > W, (bs(9) (3.57)
exp.points  j=1 par =1

The weightsi(h;,0) can take the form of either Expression 3.54 or 3d63hey can

be built as the product of both. The penalWE( bﬁ(o))are as in Expression 3.56. This

minimization criterion does not assure that theapaaters of the variogram models fitted
at contiguous anchor point will be consistent withch other. Thus, it needs to be
complemented with criterions that enforce smootbhanging variogram parameter

values.

Consistency Between Variogram Models Fitted at {@Qapus Anchor Points

If a wide enough kernel bandwidth is used to obthi@ distance weights, the local
experimental variograms change smoothly from or@hanpoint to another (see Figure
3-34); therefore, the models fitted on them shaléd vary smoothly. In order to enforce
the consistency between the models fitted at coatig anchor points two measures are
implemented in the iterative fitting algorithm: (penalization of locally anomalous
parameter values, and (2) control of the local abje function convergence.

A way to impose continuity in the variation of ttezal parameters is by penalizing
their departure from a local mean. Thus, a penaltyction for locally anomalous

parameter values is proposed as:
W; (15(0)) = KT by(0) - B(9)* (3.58)
The constank’ controls the strength of the penalty, aJE};(o) is the average local
parameter value within a small moving neighbourhdg@), of anchor points centered at
0. This neighbourhood, defined by the user, shoit#t pnly a limited number of the
closest anchor points, included the one locateal at order to avoid oversmoothing of

the local variogram parameters. This penalty i®iporated in the minimization of the

local objective function, such as:
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min{O(o)} =

mm{n; S ;.0 vy 0~ 7y 0 + D [y (By(9) + W *2:(0)]}

Xp.points  j=1 £=1

(3.59)

Additionally, as it can be observed in Figure 3-&brupt changes in the local
parameters are reflected by abrupt variations eavhlues towards the local objective
functions converge. Since the aim is to minimize tipjective function, a procedure for
identifying and correcting local extremely high gengence values is implemented. A
simple outlier detection criterion is used to idignthose values. This criterion is based in
the Q test for small datasets (Wellmer 1998, pe.BP-After a number of iterations, the
updated values of the local objective functionshimita moving neighbourhood are

assembled and ordered in decreasing order. THRstatistic is obtained from:

=
Where O(0,) is the maximum current value of the objective tiorT within the

neighbourhood W), O(0,) is the second highest value, a®¢o,) is the minimum value

within the same neighbourhood. @f(o,) = O(0,) it means that the convergence values of

the objective function are the same for all anghmints in the neighbourhood; therefore,
no outlier detection procedure is needed. Otherwitehe Q statistic exceeds a
predefined threshold, the maximum value is considieas an outlier. Dean and Dixon
(1951) tabulated the values of this threshold iatien to the number of observations. For
the sake of simplicity and versatility the next v@irprovides a close fit to these
thresholds:

Q'=1.9622h, 1% (3.61)

With n, as the number the anchor points in the neighbourhé@). Thus, if

Q> Q' , the parameter values fitted at the anchor poirgtre replaced by the local

averages of the parameters fitted at surroundirp@npoints. Figure 3-41 shows the

tabulated and fitted values.
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Figure 3-41: Tabulated Q’ values and approximatiorby a power function.

Figure 3-42, left, shows the local nugget effectl dmcal range parameters of the
exponential models fitted on the location-dependecal variograms obtained from the
single drill hole dataset. The nugget effect valalbsve 0.45 where penalized during the
iterative fitting using a strength factor of 0.1y penalization for abrupt changes in the
local parameter values was applied. The final \&loé the final objective function
presented at the right side of Figure 3-42, aresidemably lower than those presented at
the left side of Figure 3-40. This is explainedtbg weighting of the local experimental
points by the sum of the 2-point distance weighdeduin their calculation, while no
weighting was considered in the results presemtdeigure 3-40. The global exponential
variogram model parameters fitted to the normaftest@nsformed values of 1-D dataset
are 0.41 and 21.1m for the nugget effect and thgearespectively.

Figure 3-43 shows the interpolated local exponem@aiogram model parameters
fitted to the experimental correlograms obtainamrfrthe locally transformed values of
the 2-D dataset. In this case, the local variognamdels were fitted individually at each
anchor point. Inverse lag distance weighted wasdiegpo the experimental points. The
few abrupt variations in the parameters were cteteby manual fitting. It is interesting
to note the correspondence between the featurébeofocation-dependent variogram

model parameters and the spatial features of thatestive image in Figure 3-1.
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Local variecgram model parameters
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Figure 3-42: Left, local nugget effect and range ahe local exponential variogram models fitted onhe
location-dependent experimental correlograms of thel-D dataset. The nugget effect was penalized
above the threshold of 0.45 during the iterative fting. Right, final values of the local variogram ftting
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3.5. Discussion

A methodology for the inference of location-depentdedfs and their statistics based on
distance weighting functions has been developdfignchapter. These statistics provide
prior definitions of the locally stationary RFsatery location. The local accuracy and
precision of the location-dependent cdfs are exquedb be higher than the global
stationary cdf, but lower than what should be otdi after spatial prediction. The
parameters of the local RF cdfs are expected tagghamoothly. The variation of local
statistics should respond to tendencies in the data scale larger than the samples
separation. Choosing the degree of smoothnessisghtial variation of local statistics
remains mostly a subjective exercise. Numerica¢da, such as the maximization of the
correlation between the trend and the data, arsidered as secondary to the visual
assessment of the local statistics models. Howehesse criteria are central in the
subsequent stage of spatial prediction with locatiependent statistics.

Location-dependent variograms and correlogramshble to adapt to local changes
in the spatial continuity. Nevertheless, any abreipdnge unrelated to the presence of
domain boundaries or previously defined discontiesiis suspicious. It may be caused
by the presence of local outliers, by the overfgtdf the local statistics, or by artifacts in
the inference and modelling of the local statisti€snoothly varying local 1-point
statistics are relatively straightforward to obtdinthe case of local 2-point statistics, that
require the fitting of a model, the inference adittcorresponding model parameters may
be problematic. Location-dependent correlograms ramee robust than other local
measures of spatial continuity, but still, modétid on them by the method of least
squares may result in locally anomalous variograrameter models. In such cases,
close checking is required. Additionally, applyipgnalties in the semiautomatic fitting
algorithm for anomalous variogram parameters cdaae the occurrence of anomalous
fits. However, beyond these improvements to thetlsguares method, a more robust
method for variogram modelling is required.

The use of the location-dependent statistics andietsan spatial prediction under the

assumption of local stationarity is developed ia tiext chapter.
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Chapter 4
Spatial Prediction under the Decision of
Local Stationarity

Locally varying statistics and distributions allamtroducing a local, rather than global
basis for the spatial prediction of an attributbeTinferred statistics and their parameters
are required at each prediction location. Estinmaéind simulation techniques are applied
in the same fashion as standard techniques, bhttht locally varying parameters. The
variogram model and prior cdf change from locatmiocation.

The first two sections of this chapter cover thagdtion of the traditional estimation
and simulation techniques to local stationarity.e Timpact of incorporating locally
changing statistics in the estimates and postenmertainty distributions is analysed.
Locally stationary techniques can be applied withthe assumption of any type of
distribution. Nevertheless, particular attentiongigen to the stationary multiGaussian
model. This is due to the congenial propertieshi$ model, see Chapter 2, and the
capability of the local normal scores transformatto embed changes in not only the
local cdf mean, but also in its variance and sh&pe.locally stationary approach can be
extended to indicator based techniques. Its apitdo the simulation of categorical
variables is presented. The last section discussess validation, accuracy plots and
other methodologies for validating the locally &taary models in relation to the input

data and parameters.

4.1. Locally Stationary Estimation

The assumption of local stationarity amounts tériatsstationarity assumption restricted
to each prediction point. Therefore, locally statioy Simple Kriging becomes the main
estimation algorithm. Ordinary kriging could als@ ladapted to work under the
assumption of local stationarity. Simple Kriging iequired for Gaussian based
estimation and simulation, since it yields the eotrmoments for the conditional

distributions. Locally multiGaussian estimation performed on locally transformed
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values. As shown in Chapter 3, an efficient wayntadel and store the local normal score
transformation table is by means of Hermite polyradsn Another advantage of the
Hermitian modeling is that it allows a straightfamd implementation of a local change

of support model for providing block estimates with multiGaussian framework.

4.1.1.Simple and Ordinary Kriging

Under the assumption of local stationarity the ikiggestimator becomes:
* O s W@ (s
Zissk(0) = ), A% (0 Z(ug) +| 1= 3 AL ¥ (0) | m(9 (4.)
a=1 a=1
The meanm(o), is specific to the estimated poimt The notation of the estimated

point location is changed fromto o, this is done to stress thats the estimated location
and also the point where all the location-dependtattstics and parameters are defined.
The locally stationary simple kriging (LSSK) systesh equations allows the use of

location-dependent means and covarianCéso):

n(zol)/];;ssm (0)C(ug —U,;0=C(0-u,; 9 a=1,..,n(9 (4.2)
£=1

This can also be expressed in terms of correlogf{@usvaerts 1997, p.129):

n(o)
D AFS(O)p(up ~ugi0) = p(0- Ui 9 @=1...n(9 (43)
p=1

The impact of using location-dependent variogrambaétter appreciated in a 2-D
example. Figure 4-1 shows the local surface rougghrestimates using SK and LSSK on
the clustered samples of Walker Lake dataset (ts@&aBrivastava 1989). The location-
dependent exponential model parameters shown ird-ig-43 were used for generating
the LSSK estimates plotted at right side of Figdrg. The traditional SK estimates,
shown at the left side of Figure 4-1, show cled#ly uniform spatial continuity tendency
imprinted by the use of a global variogram mod&SK estimates, on the contrary, show
changing orientations of spatial continuity moreénato the terrain morphology (see
Figure 4-1, right).
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Figure 4-1: 2-D comparison between SK (left) and LSK (right) elevation estimates.

While the stationary SK estimates tend to the dlobean away from the samples,
the LSSK estimates tend to the local-dependent sa€lmis use of the local mean can
also be achieved by traditional SK with local meahise same set of distance based
weights modifies all the required statistics athebization, including the local variance,
which is incorporated in the estimation varianckee TSSK estimation variance is given
by:

n(o)

0tssk(0) =C(0,0)| 1- Y A9 (0)p (0~ 4y 1 9 (4.4)

a=1

Where C(0;0)is the location-dependent variance (see Equatid®)3.Thus, the
LSSK variance is locally conditioned not only byettata availability and arrangement
around the estimated point, but also by the loaakbility.

The capability of the LSSK variance to take intccamt the local variance is
illustrated in Figure 4-2 by the estimation variesdor the 1-D dataset presented in
Chapter 3. The impact of incorporating the locati@pendent variogram models on the
estimation variance is illustrated in Figure 4-%heTdifferences between the SK and
LSSK estimation variances are pronounced. Areagevtiee SK variance (Figure 4-3,
left) is low due to high sampling density may shawincreased LSSK variance due to
high local data variability (Figure 4-3, right), Wé areas where the values are very
continuous show much lower LSSK variances (comparth Figure 3-17, left).
Moreover the pattern of the LSSK variance spatistrithution changes locally not only
in relation to data configuration but also in reatto the local variogram. Thus, the
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LSSK variance becomes richer in information thaa $K variance that is defined only

by the global variogram model and by the data cuméition.
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Figure 4-2: SK and LSSK variances obtained using # Ag grades in the 1-D dataset. For the sake of
clarity, the estimation variances at data locationsre not plotted.
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Figure 4-3: SK (left) and LSSK (right) variances oltained using the elevation attribute in the 2-D
dataset.

The locally stationary ordinary kriging (LSOK) esfitor is similar to the traditional

ordinary kriging estimator:

n(o)
Z! sok(0) = Y. AL-599 (0)Z(u,) (4.5)

a=1

And the correlograms in the LSOK system are locatiependent:
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%A,‘;Lsom(o)p(uﬁ-ua:o>+y(o> =p(o-y:9 a=1..n(9
e (4.6)

n(o)

Z /]/(?LSOK) (0) =1
B=1

As in the case of LSSK, the LSOK variance is enkdriay the incorporation of the
location-dependent variance and correlograms:
2 © | Lsox
0tsok(0) =C(0;0)| 1~ 3, AT (@)Lp(0- U, 09) |- (9 4.7)
a=1
The extension to block estimation of these two peistimators is straightforward;

this is explained below.

Locally Stationary Simple and Ordinary Block Krigin

Usually the block volumeg(o) is small compared to the domain voluBgeso the changes
of the location-dependent moments within blocks rhayconsidered negligible. So, the
assumption is that the location-dependent cdf satistcs centered &t correspond to all
points withinv(o). This amounts to extending the locally stationdecision from the
point support to the entire block volume:

Prob{ Z(u)) < 3,..., ZUu, )< % 0.} = PI’O{J 4u +h)< zZ.., 4, +h)< Kz;oj}

0 4 p+ HBD,andonlyif joand ;alv ( p
(4.8)

A straightforward way to obtain the block estimateto discretize the block volume,
perform point estimation using the same locatiopeshelent parameters for all the
discretization points, and average the estimatelliesa (Goovaerts 1997, p.153).
Alternatively, the block values may be estimategkatly. In this case, the only change
required in the LSSK and LSOK systems is to repldbe location-dependent
covariances, or correlograms, between the datatgoémd the estimated point,

C(o—-u,;0), by an approximation of the location-dependennptm-block covariance

(Journel & Huijbregts 1978, p.54) of the form:
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C(u,,V(0);0) = i C(oj-u,;0 0qOY9 (4.9)
j=1

Where M is the number of discretization pointsted volumev(o). In the same way,
for calculating the LSSK and LSOK estimation vades, the location-dependent

covariance at lag 02(0;0), may be replaced by the average:

_ M M
C(VO). M) 9=3"Y C(d-¢:9 O p PO P (4.10)

i=1j=1

Selection of the Estimation Neighbourhood

In practice, kriging is performed within a seardighbourhood centred on the estimate
location and using only a limited number of surrdimg samples. Two of the reasons for
doing so respond to computational efficiency aral Itk of reliable knowledge on the
large scale spatial continuity (Deutsch & Journ@b8, p.32). There is no rigorous
methodology for defining the optimum dimensionstbé search boundaries and the
number of data to consider (Chiles & Delfiner 199$®.201-202). Proposed criteria
include the minimization of parameters such ascthitional bias, the weight assigned
to the mean in simple kriging (Rivoirard 1987), veportion and magnitude of negative
weights, and the kriging variances (Vann et al.30Gor locally stationary estimation,
these criteria would require the design and implaatéeon of locally changing search
neighbourhoods. This may be demanding in profeasiime and computer effort. An ad
hoc alternative consists in using a uniform searitfdow with radii equivalent to at most
three times the bandwidth parameter of the Gaus&nel used for the inference of the
local statistics and to consider all the sampled fall within such window. The logic
behind such decision is to include in the estinmatid the samples that had an important
contribution in the inference of the correspondiagal statistics. Another option is to
select the maximum number of conditioning data @ ahd 60, for 2-D and 3-D
estimation, respectively. Those numbers have beepoped to assure robust kriging

results at a reasonable computational effort (Gudegitsch 2008).

4.1.2.MultiGaussian Kriging

Locally Stationary MutiGaussian Kriging (LSMGK) csiders not only location-

dependent measures of spatial correlation, butlatstd changes in the distribution shape.
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This is accomplished with local normal scores timmss. These transformation functions
are modelled by a series of Hermite polynomialddtcal coefficients, as explained in
Section 3.4.1. By smoothly interpolating these ficiehts, the transformation function
can be defined over the entire domain.

LSMGK is equivalent to LSSK using the local nornsziores transforms and the
location-dependent correlograms obtained from theskies. As in the stationary

multiGaussian kriging, the LSSK estimate and varadefine the posterior local ccdf in

Gaussian space. The posterior ccdf in originalsy F (0;z,(0) | n(0))is built, by back-
transforming P local quantiley, (o) of the posterior ccdf in Gaussian units,

G'(0; yp(0)| n(0)) with mean equal to the LSSK estimiY, gsx and standard deviation

equal to the square root of LSSK variar o ggx(0) :
Q Q
25(0) =2 (Yp(0): 0= D @(OHJ YL 91 = D 0§ O H| Yissk P+0 LsdPlt],
gq=0 q=0

(4.112)
And: F(0;z,(0)|n(0))= G(a y,(9| N(9)= A {)= [, where G(-)and t, are the

standard Gaussian cdf and quantile, respectivéig. |[dcation-dependent coefficients are
obtained from the approximation of local Gaussiamsformation by series of Hermite

polynomials, as shown in section 3.4.1. The estimah original units can be

approximated by the average of the local quantz,(o), given that their numbe? is

big enough, in practice between 100 and 200:

P Q
Z, smck(0) = E[20] = B A y§ 9; 9] :%Z D 04 ¥ HE YisdkP+o (kP01

p=1g=0
(4.12)

Besides the reproduction of the piecewise lineatuiees informed by location-
dependent variograms, LSMGK estimates show the éinpfathe incorporation of local
prior cdfs (see Figure 4-4, left, for the 1-D dataand Figure 4-5, right, for the 2-D
dataset). The differentiation between low and higade values is more marked. This
higher differentiation results in an improved aemyr of the model only if the prior
location-dependent cdfs and its statistics folldw tocal changes in attribute values. If

the local statistics are inferred with few neightiog samples with an excessive
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contribution of local outliers, their incorporatiam locally stationary kriging may result

in diminished accuracy.

o_MultiGaussian point estimates o_MultiGaussian conditional variances
o | = = . . 4 =y
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Figure 4-4: MultiGaussian point estimates (left) ad estimation variances (right) for the 1-D dataset.

The backtransformation of the ccdfs obtained by ti@alussian kriging allows
imposing the data variability on the conditionatigaces by restoring the proportional
effect. Thus, high values areas will show highanditional variances if the distribution
in original units is positively skewed, and vicerse if it is negatively skewed. In
LSMGK instead, the incorporation of the local vaiiigy in the conditional variances is
due mainly to the use of local backtransformatiansl local variogram models. The
restitution of the proportional effect is still amportant component of the final
conditional variance, but this is controlled by gpread and shape of the local prior cdf.
This can be observed in Figure 4-4, right, wheme tB8MGK conditional variance in
original units seldom exceeds the local prior vac&a Figure 4-6 show the conditional
variances for the 2-D dataset after the backtramsftion of the ccdfs obtained with
stationary MGK (left) and LSMGK (right). The impaat the local variogram models on

the structure of the conditional variances is ciedhe right of Figure 4-6.
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Figure 4-5: Traditional (left) and locally stationary multiGaussian (right) kriging elevation estimates
for the 2-D dataset.
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Figure 4-6: Traditional (left) and locally stationary multiGaussian (right) conditional variances for the
2-D dataset.
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MultiGaussian Block Kriging

When working with a multiGaussian model, block msties in original units require a
change of support model. The local normal scorassformation function can be
assumed constant within the block voluwe), if it is relatively small compared with the
entire domain. Thus, any randomly located sampliwithe volume centred at is
transformed by the same function:
2(0)=¢,(Y(q);0 UelU 9 (4.13)
The block grade can be estimated as the averadé pbint estimates within the
block. Therefore, the posterior block support azath be built folP cut-offsz, p=1,... P,

from (Chiles & Delfiner 1999, p.435):
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M
=Prob > ¢(Y (©0); p< MOz, [Y( ) =1,.., n(t} (4.14)
i=1

:E{{iqﬁ(\(( 9; pM szjw( ‘y):azl,...,n(o)]

Where I[+] is the indicator function presented in Section£.$ Gaussian space, the

ccdfs at the locationg are fully defined by the SK estimate and variafideerefore, the

posterior block support ccdf can be expressed meE2007b):
M
Fy(0:2, | n(0) = | I{Z¢(YLSSK(09+U Lss€0) T g Mz % q) d (4.15)
i=1

This expression is approximated numerically by dngwa large numbeN of

standard Gaussian distributed random numbers, &1dg@ing the results (Verly 1984):
1N [M

R (02| n(O))=NJZ,l I|:§;L¢(YLSSK(OD+J LsskO0 )X i(); MDZ% (4.16)

Building the complete block support ccdf requiréss tnumerical calculation for
different cut-offs. Thus, this approach may be cotaponally demanding if the block
support ccdf is required in detalil.

A more efficient approach is given by the Discr&@ussian Model. For this change
of support model, the point support RVs are considleandomly located at points
within the blocks. The point and block support Gaas transformed RV$Y(0) and
Y, (o) are assumed bigaussian with location-dependentelation r (o). The Gaussian

transformation functions for both variables areegivby (Emery 2005):

Q
Z(0)=¢(Y(0);0 =), %(9 Hq(Y(_Q)
a=0 (4.17)

Q
Z,(0)=9,(Y(0;9 =Y 2,91 (IH4(Y(9)
g=0

Where the location-dependent change of supportficeeft r(o) is obtained from

(Rivoirard 1990, p.64):
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M M Q
var[Z, (0)] = yz(«; 0) —%ZZyz(oi ~0;0=Y ¢Z(9r*(9 (4.18)
q=1

i=1j=1
With y, (h;0) as the non-standardized variogram in original ufatsthe locationo.

Working with correlograms instead of variogramsdésirable for greater stability and

more direct interpretation. In this case the Exgies4.18 is equivalent to:
1 MM Q 5
var(z, (0)] = C, (0;0) 1_WZZ[1_:02 ©-0;;9]|=> & (™ (9 (419
i=1j=1 q=1

The experimental location-dependent variogramsgasrelograms, calculated from
normal scores transformed values are more stahble tthose in original units, and thus
easier to model. Thus it is preferred to calcukae model these measures of spatial
correlation on the transformed values and then Hasisform them to original units.
This assures the consistency between the variogiesed in LSMGK and those in
original units. The back-transformation of the natrecores correlograms is achieved by

considering the relationship between the covarignoenormal score§, (h;0), and

original units,C, (h;0). This is given by (Guibal 1987):

o q

C,(h;0) =) & (0)[Cy(h; 0] (4.20)
g=1

Or if location-dependent variograms are used itstea
S q

V2 (0:0) = (0)| 1-(1-yy ;o))" | (4.21)
q=1

In practice, the location-dependent change of suppefficient is calculated only at

the anchor point locations and subsequently intated between them. The block

support posterior ccdf is built for different loaplantiles z,(\(0)) , by:
Q
25(M0)) =@y (Yp(0)); 9 = D" ¢,(9 TP (9 OHJ v ¥ 9)]
q=0

Q
= ()P () B[V ssdU )00 sk ) T ],

q=0
(4.22)
As in Expression 4.12, the estimate at block supigaapproximated numerically by

the average of th® local quantiles z,(\0)), provided thatP is big enough; this is

between 100 and 200 quantiles.
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Figure 4-7, left, shows the prior local point-sugpariances approximated from the
sum of square local Hermite coefficients and thHergulock-support variances obtained
from Expression 4.19. The global and local chanfgeupport coefficients are presented
in the right side of Figure 4-7. Given a block sitke greater the spatial continuity
specified by the location-dependent variogram n&dile closer the change of support
coefficient will be to one. Figure 4-8 presents M&K and LSMGK block support
estimates for the 1-D dataset at the left, andctreesponding block support conditional

variances at the right.

ofPoinI‘ and block support variances o_Change of support coefﬁcignts
-100 ] -100 ]
= | Local block support variance T 1 Local
= 200]1f 0 0 ee--- Global block support variance = _200_| Global
T ] | Local point support variance a | T
[0 ' . N Q 1
o —— Gilobal point support variance A
-300_] -300 ]
'400-\\.\“...\"\..\‘||\||\||\‘||\|‘ '400-\||‘|\|||||‘||\|||\|
0 10 20 30 40 50 60 0.0 0.2 0.4 0.6 0.8 1.0

Variance value Coefficient value

Figure 4-7: Point and block support prior local variances (left) and local change of support coeffiais
(right) inferred on the drillhole silver grades.
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Figure 4-8: MGK and LSMGK block estimates (left). MGK and LSMGK block conditional variances
(right) for the 1-D dataset.

Figure 4-9 shows the locally stationary multiGaasséstimates and variances at a
block support of 10x10 units for the elevation iatite in the 2-D dataset. The block

estimates are very similar to the point estimaresgnted at the left side of Figure 4-5.
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The conditional block variances, however, are \different from the obtained for point

estimates (Figure 4-6, left). The reference graxhedge curves in Figure 4-10 were
calculated by averaging the elevation attributéhefexhaustive 2-D dataset within 10x10
units blocks. In the same figure and for the samgpsrt the resulting-grade tonnage
curves for block MGK and LSMGK are shown. The agera&levation above cut-off

appears to be closer to the reference curve for GEMstimates. The locally stationary
method also yield to an improved reproduction @& tlaction of total blocks above the
lower cut-offs. For higher cut-off this fractionegemparable for MGK and LSMGK.

LSMGK block estimates LSMGK block variances
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Figure 4-9: Locally stationary multiGaussian blockestimates and variances for the elevation attribute
in the 2-D dataset.
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Figure 4-10: Grade tonnage curves for the elevatioattribute in the 2-D dataset at a 10x10 units bldc
support. The reference curves (red) were obtainedrdm the averages of the exhaustive values (see
Figure 3-1) in blocks of 10x10 units.
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4.2. Simulation

Locally stationary simulation algorithms based ba multiGaussian assumption use the
local normal scores transformation modelled by Hernpolynomials. Similarly to
multiGaussian kriging, the local transformationge@mt for non-stationarity of the RF
parameters. In the case of locally stationary iaigic simulation the local categorical pdf
is required. Non-stationarity in the spatial caatigin is informed by the location-

dependent variogram models.

4.2.1.Sequential Gaussian Simulation

Local normal scores transformation of inverse distaweighted cdfs have been already
proposed to account for trends in Sequential GansSimulation (McLennan & Deutsch
2008). The idea is to modify the global cdf by theerse distance weights at each
simulated location, perform the normal score tramsftion of the weighted cdf keeping
the transformation table, draw a simulated valuettmn conditional distribution, and
backtransform it using the local transformationlgabrhe algorithm proposed here
requires that the Gaussian transformation fundielefined prior to the simulation. This
is done to decrease the processing demand of délithe complete transformation
tables at each location and because the weightsfasécally weighting the cdf are also

used for inferring the local measures of spatiaticity.

Locally Stationary Sequential Gaussian SimulatidgoAthm

The algorithm of Locally Stationary Sequential Gaas simulation (LSSGS) proceeds

in the following steps:

a) Read and store the local Hermite coefficients dadldcation-dependent variogram
parameters for every simulation node.

b) Visit each simulation node in a random path. Se&oclthe surrounding conditioning
data and previously simulated grid nodes.

c) Construct the location-dependent transformationction with the local Hermite
coefficients. Perform the local Gaussian transfdiomaof surrounding data and

previously simulated nodes.
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d) Obtain the mean and variance of the local ccdfdmally stationary Simple Kriging
with the location-dependent variogram model infadniyy the corresponding local
variogram parameters.

e) Perform Monte Carlo simulation to obtain a simutatalue from that ccdf.

f) Back transform the simulated value according toltioal Gaussian transformation
function. Add the simulated value in original urtibsthe data set.

g) Go to the next node in the random path and loomfatep ¢ until all nodes are
simulated.

The impact of using locally changing variogram mede clear when comparing a
map produced by LSSGS (Figure 4-11, right) withegoivalent map obtained using the
traditional SGS (Figure 4-11, left). Figure 4-12wls the E-type estimates obtained from
100 SGS and LSSGS realizations performed on thedziset. The locally stationary
SGS e-type map (Figure 4-12, right) clearly showes ¢hanging anisotropic orientations
informed by the location-dependent variogram models a sharper differentiation of the
zones of low and high values. As for the locallwatisinary kriging variances, the
conditional variances obtained from the LSSGS za#tins (Figure 4-13, right) show the
strong influence of the local prior variances ameé tocation-dependent variogram

models.
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Figure 4-11: Example realizations of SGS (left) and.SSGS (right) using the terrain roughness
attribute in the 2-D dataset.
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Figure 4-12: Posterior local means obtained by avaging 100 realizations of SGS (left) and LSSGS
(right).
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Figure 4-13: Conditional variances obtained from 10 of SGS (left) and LSSGS (right) realizations.

LSSGS demands more computer resources in termswfony and processing time
than SGS. The increase in memory demand is bethedeSSGS algorithm requires all
the location-dependent variogram parameters aral lermite coefficients to be stored
in the RAM for each node. The increase in compaoitatime is due to the reconstruction
of the covariance matrix at each node in the rangmath. For this example, the
generation of 100 realizations with LSSGS requitedk 2.5 times longer than the

generation of the same number of realizations &#S.
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4.2.2.Sequential Indicator Simulation

The Locally Stationary Sequential Indicator Simigiat(LSSIS) algorithm uses local
proportions of categorical values, which can beaimtetd by Equation 3.24, and location-
dependent indicator variograms. As in LSSGS, a icanee lookup table is no longer
used and the covariances are updated locally &t eanulation node used in the
construction of the local ccdf. Figure 4-14 showsoanparison between simulated maps
obtained stationary and locally stationary SIS. Témcond map shows a better
reproduction of curvilinear features. This oftenta@is increased connectivity within
categories.

SIS with local proportions Locally stationary SIS
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300/
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Figure 4-14: Example realizations of SIS (left) and.SSIS (right) using the categorical variable in tle 2-
D dataset.

A single set of location dependent indicator varamgs is required for the simulation
of two categories, as presented in Figure 4-14hé&ory, more than two categories or
thresholds can be simulated using the locally atatly algorithm. In practice, this
demands the inference and modelling of locatioreddpnt indicator variograms for all
categories or thresholds at all anchor point loceti This can be a tedious process in
traditional Geostatistics; it can be even moredesliin locally stationary modelling.

As for LSSGS, the LSSIS algorithm requires more gotational resources than its
stationary counterpart. For this example, the gaimr of 100 LSSIS realizations took

4.3 times longer than the generation of the samabeu of realizations with SIS.
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4.2.3.Checking the Realizations

Traditional simulation techniques must fulfill tiereninimal criteria of validity. These
criteria consist in the reproduction of (1) datdues, (2) the input variogram model and
(3) the declustered global cdf (Delfiner 1976; Legthong et al. 2004). Similar criteria
are valid for locally stationary simulation. If spla values are assigned to the closest
node, data reproduction is normally satisfied unlegrticular circumstances, such as the
presence of multiple samples within a cell, orhi¢ tsamples are flagged as outliers, or
they fall outside the grid model.

Although the input of locally stationary simulatigs the set of locally transformed
cdfs rather than the global cdf, the reproductidnttee latter is still the aim. A
considerable divergence between the global cdfeealizations and the global cdf of
original data may indicate a bias introduced by lheation-dependent distributions.
These local distributions, instead, do not neebetseproduced, since they are used only
as prior models of local uncertainty, which are ated by the surrounding data and the
location-dependent variogram models. Figure 4-Xdwshthe histogram reproduction for
the 1-D dataset in Gaussian (left) and originataufright) after backtransformation. The
histogram shape and the global mean are closetpdaped by the realizations. However
the modelling of the transformation function catraduce slight bias, particularly if the

original cdf contains spikes and outliers (seei8n@.3.1).
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Figure 4-15: Global cdf reproduction of 100 LSSGS ealizations performed on the 1-D dataset. The
realizations cdfs in Gaussian units are presented ithe left figure, and the backtransformed cdfs irthe
right figure. The black curves correspond to the dea cdf, while the grey curves correspond to the
realizations cdfs.

The local variogram models, rather than the globalst be reproduced. However,
due to their locally stationary nature, the repathin of these models can only be

verified for short lag distances. As shown in Fegdr16, the average of non-standardized
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variograms calculated on the realizations closeliofvs the variogram model and the
experimental local variogram at short lags. At leintags, the mismatch between these
measures increases.
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Figure 4-16: Reproduction of the non-standardized dcation-dependent variograms at two Anchor

points for 100 LSSGS realizations generated usingp¢ 1-D dataset.

In a very large domain, the local variations of iated values compensate variations
in other areas, allowing the convergence of théza#on statistics to the stationary RF
statistics. This property of the RF model is cakedodicity (Luster 1985, p.205). When
inferring the locally weighted statistics of realiions any fluctuation of the simulated
values in the vicinity of an anchor point will haaehigh impact on the local statistics.
Due to higher weight assigned to the closer loaatithe effect of such fluctuations may
not be compensated by fluctuations in other pdrthe domain. Thus, in the same way
as ergodic fluctuations in the statistics of triadial SGS realizations increase as the
domain size decreases (Deutsch 1995, pp.243-2B8),etgodic fluctuations of the
location-dependent statistics of realizations afeeeted to be higher due to the areal
restrictions imposed by the weighting function baiath.

Checking the local variogram reproduction may l@ices, since the experimental
variograms must be calculated at different anchmntp for multiple realizations and
directions. Alternatively, the visual verificatioof the reproduction of the anisotropic
features of local variogram models in realizationaps can be performed as a quick
check. Figure 4-17 shows the E-type estimates md® realizations performed using
the 2-D dataset superimposed by the directionsniso&ropy of the location-dependent

variograms.
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Figure 4-17: Anisotropy directions of the 2-D datast local variogram models superimposed on the
resulting e-type estimates of 100 LSSGS realizatien

The criteria for checking LSSIS realizations armikir to the locally stationary
Gaussian simulation. Categories must be honourdideat sampled locations. The local
spatial continuity informed by the local variograneed to be reproduced, as well as the
global categorical cdf. For the 2-D dataset, the@ 18SGS realizations show a reasonable
reproduction of the global cdf (Figure 4-18, letowever, for the lower cut-offs, the
cumulative frequencies are systematically highehérealizations cdfs than in the global
cdf. This bias may have different possible caubesccuracies introduced by the Hermite
transformation function modelling or the excessiueght given to low value samples,
among others. This small bias does not appear anrglalizations of the 1-D dataset
(Figure 4-15). The reproduction of the categoricabbal proportions by LSSIS

realization is presented in Figure 4-18, right.
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Figure 4-18: Reproduction of the global cdf for eleation values (left) and category proportions (righ)
after LSSGS and LSSIS using the 2-D datset. The ik curves correspond to the data cdf, while the
grey curves correspond to the realizations cdfs.
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4.3. Criteria for the Validation of Locally Stationary
Models.

A numerical model is valid if it is consistent witthe data, the parameters, the
assumptions and the background knowledge that ussd for building it (Oreskes et al.
1994). Simulated locally stationary models are meglto honour data values, the global
data cdf and reflect the local spatial continuiifjormed by local variogram models.
Estimated locally stationary models are expectebdetainbiased in relation to the input
data mean, to reproduce the data values at theititms, and also to reflect the general
features of the local spatial continuity informegthe local variogram models. Beyond
these checks for internal consistency, the locsiftionary techniques are required to
provide accurate and precise probabilistic moddls a/fair uncertainty.

Accuracy is defined as the closeness of predicttorthe true values. For estimates
of the ccdf mean, accuracy can be checked by ttenrequare error and other statistics
between estimates and true values. The accuralcaf probabilistic models provided
by the ccdfs can be assessed by their capabilipctommodate the true values within
symmetric probability intervals (Deutsch 2002, @B@Precision of ccdfs is only relevant
if they are accurate (Deutsch 1996). This can kesa®d by the capability of the ccdf to
reproduce the proportions of true values for dédfgrsymmetric probability intervals.
Local uncertainty is assessed by the width of tdf.cGenerally, a narrow uncertainty
model is preferred, but only if it can accommodaltehe possible outcomes in relation to
the data, the model assumptions and parameterthartthckground information. If it is
too narrow, it may not be able to cover the ranigallqossible realizations. At the other
extreme, if the ccdf spread is too large, it caadldéo useless, although accurate,
uncertainty models (Taylor 1997, pp.5-6). Thusaia fincertainty model is one that can
provide useful information about the range of palgsoutcomes in regard to the available
information and model assumptions.

As discussed in Section 2.4, estimation technigaes for local accuracy by
minimizing the mean square estimation error, and thay come with the price of
smoothing. Although the main aim of simulated meda& to reproduce the input
statistics, it is also desirable to improve theusacy and precision of simulated models
while the local uncertainty is kept within reasoleallimits. In this section some
numerical criteria for checking the accuracy ofdogredictions, and the accuracy,

precision and fairness of uncertainty distributi@me discussed. These are presented as
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means to validate the input parameters with avieilalata; however, they can also be
used to confirm the models with additional datadi®idnal quantitative and qualitative
criteria for checking the consistency of the logadtationary models with the input

parameters and the geological knowledge base soal@cussed.

4.3.1.Accuracy of Estimates

Cross Validation is traditionally used to assess tmpact of the use of different
stationary models and kriging parameters in themesés (Davis 1987). In this
methodology, each datum is removed one at a tintk the value at its location is
estimated using the remaining samples within ahimgrhood (Goovaerts 1997, p.105).
In the Jackknife, a dataset is divided in differanh-overlapping subsets, the statistics
and parameters are inferred for one of these stibset subsequently used to re-estimate
the values of the other subset (Deutsch 2002, Bp229). For both Cross Validation and
the Jackknife the error is calculated as the difiee between the re-estimated values and

the true values:
&u,)=Z(U,)- 4u,)  a=1..r (4.23)
In order to fulfill the condition of global unbiadeess (see Expression 2.25), the

average of this error is expected to be close to.4eocal accuracy is assessed by the

mean square error:

MSE= Y é(uy) (4.24)

a=1

The MSE should be minimized. The covariance betwempstimated and true

values, CO\/{Z,Z}, should be maximized. Commonly, the correlatiorefficient

between the true and the re-estimated values tosassess cross-validation results:
Cov{ Z, Z}
Po=——— (4.25)
UZ*O-Z
Where ando,. and g, are the standard deviations of the re-estimateti tare

values, respectively. However, this metric can bgleadingly high if the estimates are
oversmoothed and, consequently, their variance i@mgy A simple way to assess the
magnitude of the conditional bias is by considerihg slope of the linear regression
model adjusted to the cloud (Olea 1999, pp.141,145)
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In Gaussian space, local confidence intervals faging estimates can be derived
from the square root of SK variances;, (Delhomme 1978; Journel 1986; Chiles &

Delfiner 1999, p.164). Narrow confidence intervatgy indicate higher precision of
estimates, but only if the ccdfs tend to contamm tfue values (Deutsch 1996; Goovaerts
2001). In traditional Geostatistics confidence rvaé¢s cannot be derived from SK
variances in original units, since they do not depen conditioning values. However,
they are consistent with the homoscedastic propeftythe multiGaussian model.
Contrarily, LSSK variances are affected by the afaifity of neighbouring data; hence,
they have the potential to provide more meaningfoihfidence intervals than those
provided by traditional kriging variances in origlrunits.

Additionally, in original units, an increase in tleerage of variance of estimates
indicates a reduction of the smoothing of the estiiom. The variance of the estimated
values can be checked considering all estimateésodthe model, rather than only for
the re-estimated values in cross validation.

When cross validating locally stationary models tbcal cdf and statistics should
carry more information than in the case of statipmaodels. This should result in a
reduced estimation error in areas where the Idagisics are robustly inferred. Higher
errors appear in highly variable areas that, fositpaly skewed distributions, are
commonly associated to high grade zones. If thesex are preferentially sampled, the
local prior cdf in scarcely sampled low grade zom&B be biased, resulting in an
increased cross validation error. Moreover, if Hpatial continuity changes, increased
cross validation errors can also arise because ooél | variograms that are not
representative. Location-dependent statistics ceflehe non-stationary variations
informed by data. If the available data is not egioto provide reliable information about
underlying trends of the attribute, cross-validatioay yield optimistic results that could
not be necessarily confirmed by additional sampling

Due to these issues, cross validation statisticsildhbe taken with caution. These
statistics can be used to detect areas in thelyostdtionary models where the poor
definition of the local statistics is likely to waen the estimates. Cross validation results
can also be used to compare the locally statiomapdels with their stationary
equivalents and decide if the incorporation of logtatistics improves the estimates.
Locally stationary models built on scarce data anthout the backing of geological

knowledge are likely to perform worse than modelsitbwith traditional stationary
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techniques. Figure 4-19 shows the scatterplotsuaf values versus the conditional cdf
means obtained from MGK and LSMGK on the terraingtiness attribute of the 2-D

dataset. LSMGK cross validation estimates showghéri correlation with the true values
compared with the stationary multiGaussian Krigihbis is due to the higher covariance
between the true values and the estimates, andteléisp reduced smoothing evidenced
by the higher variance of LSMGK conditional meavsreover a substantial reduction in
the mean squared error is observed for the crokdatian results obtained with the

locally stationary technique.
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Figure 4-19: True vs. estimated scatterplots for M& (left) and LSSMGK (right) of the 2-D dataset.
Declustering weights not considered. Values on tHaack 45° slope line are predicted with zero error.
The red line is the linear regression model adjusteto the estimates vs. true values cloud.

The Jackknife of locally stationary models is feésionly for large datasets, since
the diminished number of samples in each subseesmtie inference of local statistics
difficult. If data are abundant, this validatiorclh@ique can be used for assessing the
robustness of the location-dependent statistics thadparameters of models fitted on
them prior to the estimation. This approach is @eldused due to its high demand of
computational and professional effort. In the ca$docally stationary models, this

demand is even higher.

4.3.2.Accuracy and Precision of Uncertainty Distributions

Local distributions of uncertainty are accuratthéy are centered close to the true values,
while they are precise if their spread is narroweB different symmetric intervals of the
local distributions of uncertainty, if the true wab fall within them in a proportion equal

or higher than the width of these intervals, thealadistributions are considered to be
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accurate. The closer these proportions are toribleapility intervals width, the higher is
the precision of the local uncertainty distribusoriDeutsch 1996). Accuracy and
precision are checked on the local uncertaintyrilligtions at cross validated locations.
These distributions can be obtained from multiGeumssodels or from indicator based
models. Accuracy plots (Deutsch 1996; 2002, pp.2@9) are useful for checking the
data proportions versus the widths defined on tleedainty distributions.

Figure 4-20 shows the accuracy plots for the 1D2Ddlatasets obtained from MGK
and LSMGK cross validation. An increased accurddye local uncertainty distributions
is expected if the local prior cdfs and the logadtfal continuity are reliably inferred. The
precision of the posterior local distributionsiisgreat measure, inversely proportional to
the width of the prior local cdfs and directly posponal to the continuity of the local
variogram models. Areas with high local spatial toority will result in narrower
posterior distributions. Thus, although desiradiecally stationary models do not
necessarily provide higher precision than theiti@tary equivalents. However, as
observed in Figure 4-20, left, the spread of theewainty distributions may reflect better
the local variability of grades.

An overall measure of the uncertainty of a stodhasbdel can be obtained from the
average of the variances of all local ccdfs in tloenain. Between two accurate and
precise models, the one with lower average ccdiamae is preferred (Deutsch 2002,
p.302).

Table 4-1 presents the comparative statistics efMGK and LSMGK estimation
using the 2-D dataset along the declustered dat#stits. For this particular dataset,
LSMGK shows practically no bias in the average sfireates. The variance of the
LSMGK estimates is higher than the obtained fromK@his indicates less smoothing
in the locally stationary maps. In Gaussian urth®, average ccdf variance is slightly
higher after LSMGK, but after backtransformationaieginal units the average locally
stationary ccdf variances is decreased considerablglation to those obtained with
MGK.
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Figure 4-20: Accuracy plots comparing the uncertaity distributions obtained with MGK and LSMGK
of the 1-D dataset (left), and the 2-D dataset (rid).

Table 4-1: Comparative statistics for declustered-D data values, MGK and LSMGK estimation
results

Average ccdf Average of ccdf
Mean variances in Gaussian variances in original
(Elevation) Variance units units
Data 290.09 64562
MGK 306.01 33263 0.6 39444
LSMGK 290.47 35794 0.63 29592

4.3.3.0ther Relevant Criteria

Beyond the important requirements of accuracy,igi@t and fair uncertainty, which can
be checked in relation to the input data, it is amgnt to check the conformity of the
resulting models with geological knowledge. Locadrisgrams models may be
reasonably reproduced within the limitations diseasin Section 4.2.3, but the non-
stationary features of the spatial continuity ir tlesulting models should follow the
changes indicated by geological knowledge.

In some cases, such as vein and facies modelligg2tpoint spatial connectivity
(Journel & Alabert 1989) within a given class otegry can be reliably recognized
within certain distances during the interpretatiminthe geological setting. A desired
property of locally stationary indicator based mledés the improvement in the
reproduction of such connectivity, particularlhitifis curvilinear and it can be described
at a scale larger than the sample separation.
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Figure 4-21, left, shows an E-type map indicatimg probability of being within the
category A obtained from 100 LSSIS realizationsggshe categorical variable in the 2-
D dataset (see Figure 4-14). The points A and Beqdaat the north and east limits of this
map are known to be connected; a path can be deliebveen them within the same
domain. Figure 4-21, right, shows the histograncarfinected cells between A and B for
the SIS and LSSIS realizations. Only 2 out of 108 ®alizations present connectivity
between A and B. Contrarily, 50% of the LSSIS m=&tions result in connected regions
of different size between those points. The numifecells in each of the connected

regions within category A was calculated usingalgrithmgeo_obj (Deutsch 1998).
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Figure 4-21: Left, E-type estimates of 100 LSSIS adizations indicating the probability of being within
the category A of the 2-D dataset. Right, histogramf the number of connected cells between points A
and B (see left side of the Figure) for 100 SIS arldSSIS realizations of the categorical variable irthe
2-D dataset.

4.4. Discussion

The implementation of location-dependent statistiosstimation and simulation requires
relatively minor modifications to the traditionalgarithms. The necessary changes are
mostly related to changing the histogram and canae model from location to location.
This may require an increase in computational effor

The local normal scores transformations accountldoal changes in the mean,
variance and histogram shape. Their modelling byntite polynomials allows an
efficient storage of the required transformationdtions at the scale of estimation and
simulation. This also allows a straightforward iewplentation of local discrete Gaussian

change of support model. A change of support madlél locally changing parameters
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allows adapting the block support variance reductimthe changes in spatial continuity
informed by the local variogram models. Howeveg Hermitian modelling of the local
transformation functions may introduce small dduia in the reproduction of the
transformation tables, particularly when spikes andliers are present in the local
distributions.

Cross validation can be used to compare the pegfiocen of locally stationary
estimation versus traditional algorithms. If thedton-dependent statistics are robustly
inferred and effectively reflect the different astseof non-stationarity within a domain,
estimates are expected to be more accurate. Howiéthe local statistics are inferred
with scarce data, or if the local outliers have ighhcontribution, locally stationary
estimation may yield worse results. Cross validagoror maps can be used to identify
problem areas and check possible localized biases.

The reproduction of the global input cdf by redii@as of locally stationary
simulation can be achieved within ergodic fluctoasi. The averages of local variograms
of realizations should match closely the input losariogram models and the
experimental local variograms at short lag distat@wever, ergodic fluctuations are
increased due to the much higher weights assignddcations in the vicinity of the
anchor points. If the local statistics are reliabiferred, locally stationary sequential
simulation can provide accurate posterior distidng of uncertainty. Local precision
will depend on the width of the prior local cdfsdate spatial continuity informed by the
local variograms. The latter can show a shortertigpa&ontinuity than the global
variogram model at certain locations, causing aloprecision.

Other criterion for assessing the goodness of p&ahtionary numerical models is
the reproduction of curvilinear features in agreemeith geological knowledge.
Additionally, the capability of location-dependerdriograms to follow changes in the
orientation and degree of anisotropy can be tréels an improved reproduction of the
curvilinear connectivity informed by the geologitaterpretation of drillhole intercepts.

In the next chapter, the complete process, fromirtfegzence to the use of location-
dependent statistics in estimation and simulatisrdeveloped using datasets from the
mining industry. The performance of local statignagstimation and simulation

techniques is compared with their traditional egilénts.
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Chapter 5
Case Study

This case study shows the predictive performandedaflly stationary numerical models
in a realistic scenario where the attributes oér@st are highly variable and data are
scarce. A 2-D dataset of more than 160,000 undengtochannel samples of the
Ventersdorp contact reef is considered. In ordemimic the limited information
available in a typical drillhole exploration camgiaj only a few hundred samples are
used for the inference of the location-dependeatissics and for locally stationary
prediction.

After a brief description of the Ventersdorp data#ieis chapter continues with the
selection of the Gaussian kernel parameters andribleor point locations. The location-
dependent 1-point and 2-point statistics are iefifor the accumulated gold and the reef
width. These statistics are used into the localigtienary multiGaussian kriging
algorithm. The performance of the locally statignéechnique is compared with the
traditional multiGaussian kriging. The complete ad®tt is used for comparing the

prediction capability between both locally statipnand traditional methodologies.

5.1. 2-D Case Study: The Ventersdorp Contact Reef

The Ventersdorp Contact Reef (VCR) is one of thifgglds located at the northern
fringes of the West Rand Group in the Witwatersr&adin. This is mainly formed by
mineralized conglomerates arranged in well defideg@nnels (Moon et al. 2006, pp.320-
322). Sedimentological factors control the spadatribution of gold grades in the
conglomerates; however, a detailed geological pmé&tation of this reef is not available.
This case study relies on the information providsd samples collected from the

underground operations in the reef.
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5.1.1.The Dataset

The complete VCR dataset consist of the registemgsponding to 161176 underground
channel samples. These contain the 2-D coordirditdse sample locations, the assayed
gold grades, the reef width and the Facies indic&tour different facies are present in
the dataset; however, the geological descriptiothe$e was not provided. Only Facies 1
and 2, located at the centre of the lease, areidamesl in this case study. Figure 5-1
shows the accumulated gold values and the reethvabtained from interpolating the
samples in Facies 1 and 2. As for the width magu(fé 5-1, right), the reef appears to be
wider at the West and North of the domain. Thesdigltrends are also observable in the
accumulated gold map. Figure 5-2, left, shows tis&idution of Facies 1 and 2 within
the domain obtained from the complete dataset.

The complete underground sampling dataset is sahiplea 200m x 200m quasi
regular grid simulating drillhole intercepts in tineef. This grid spacing is within the
typical range for exploration drilling meshes oé ttieep gold reefs in the Witwatersrand
(du Pisani & Vogt 2004). Figure 5-2, right, showsdyothe intercepts located in Facies 1
and 2, these correspond to 181 simulated drillndléss number is comparable to the
number of holes drilled at other properties in heiguring goldfields (Rance et al. 2006).
The closest four samples around each drillhole wellected. This was done to simulate
the wedge deflections commonly drilled in ordeirtcrease the number of reef intercepts
with a minimum number of additional drilling (Magti987). The number of samples
corresponding to the simulated ddh is 782, inclgdhose obtained in the deflections.

The complete dataset contains 143445 samples tbgatéacies 1 and 2. Table 5-1
summarizes the declustered indicator statisticshferacies attribute in the drillhole and

the complete datasets.

Table 5-1: Indicator statistics for the Facies attibute

Dataset: Drillhole Complete
Number: 782 143445
Proportion of facies 1 0.236 0.240
Indicator variance: 0.180 0.182

Figure 5-3 shows the cumulative probability grafiivdhe accumulated gold and reef
width obtained from the simulated ddh samples ioigsal and 2. The reef tends to be
wider and the accumulated gold content higher icidsa2. Due to this reason and for the

sake of brevity the analysis of the continuoustaites, accumulated gold and reef width,
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are performed only for Facies 2. A scatterplot leetwthe values of both attributes in

Facies 2 is presented in Figure 5-4.The correlatafficient is 0.44.

Accumulated gold (cm x g/t) Reef width (cm)
8000 3400 _| 250
7200 1 225
6400 200
5600 2400_| 175
4800 150
4000 -E
z° 1400
400_]
: -600_| & ‘
2850 3850 4850 2850 3850 4850
East East

Figure 5-1: Gold grades (left) and reef width (righ) maps obtained by the interpolation of the comple
dataset.
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Figure 5-2: Facies locations obtained from the conigte dataset (left) and locations of the simulated
ddh samples (right)

Accumulated Gold Channel Width
Facies 1 Facies 1
99.9 No. of Data 171 5 99.9 No. of Data 171
99 mean 563.9 3 99 mean i
> std. dev. 789.4 > std. dev. 39.¢
= 95(Facies 2 = 95 Facies 2
® 90| No.of Data 611 | 90| No. of Data
2 mean 2527.6 2 mean
& 70 std. dev. 2859.3 & 70 std. dev.
o 90 o 50
-% 30 / .% 30
= 10 = 10
g 1] . e g 5
¢ 4 K3 2 1
0.1 0.1
10 100 1000 10000 100000 10 100 1000
Accumulated Au (cm x g/tm) Width (cm)

Figure 5-3: Accumulated gold (left) and reef width(right) probability plots in Facies 1 and 2
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Figure 5-4: Scatterplot between the accumulated gland the reef width attributes in Facies 2

5.1.2.Calculation and Modelling of the Location-Dependent
Statistics

Selection of the Distance Weighting Function Parianse

As discussed in Chapter 3, the distance weightimgtion parameters are chosen by
judging the smoothness of the resulting local stiag maps. If these maps show features
that are controlled by very few samples, this magidate the overfitting of the local
statistics. Figure 5-5 shows the local mean modeilt using Gaussian kernels of
different bandwidth. For a 200m bandwidth, the hirsgt map shows several details
constrained to the proximity of few drillhole lo@ats. 500m and higher bandwidth
produce excessively smooth maps. The maps obtaisied) bandwidths of 300m and
400m look very similar and they present continudeatures spreading to several
drillhole locations. While the zoning of values g8ll distinguishable in the statistics,
maps with a larger bandwidth will be preferred sinbey yield more stable local
statistics.

As for the bandwidth value, the choice of the backgd value is done mainly
visually, although it can be backed by checking thedel /data variance ratio and
coefficient of correlation statistics. The variameg¢io of the local means vs. data values
drops considerably from background values highan #.001 (see Figure 5-6, left). The
coefficient of correlation of the local mean mods! data values is more resilient to the

background value, except for smaller bandwidthe fSgure 5-6, right). A background of
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0.001 is chosen to avoid over smoothing while altmwthe contribution of farther

samples in the inference of the location-depensiatistics.
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Figure 5-5: Local means obtained with different badwidths of the Gaussian kernel.
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Figure 5-6: Data versus local mean model varianceatio (left) and coefficient of correlation (right)
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Selection of the Anchor Point Number and Separation

As discussed in Chapter 2, the anchor points aeraegt is designed for the sake of
computational efficiency. A very narrow anchor peirgrid yields a more complete
definition of the inferred location-dependent &tits, but at the price of high
computational effort, specially for the calculati@md fitting of location-dependent
measures of spatial continuity. Thus, the numberlaoations of anchor points must be
such that they allow the interpolation of the lopalameters to approach the parameters
directly inferred at every location. The local ligostatistics for accumulated gold
attribute in Facies 2 were used as referent foosimg the anchor point separations.
Since this attribute is obtained from the produdthe gold grade and the reef width, the
anchor points separation chosen for the accumulgaddl attribute is also used for the
inference of the reef width local statistics.

The left side of Figure 5-7 shows the absoluteresfahe interpolated local means
and standard deviations in relation of the anclmntpseparation. These errors increase
quickly when the anchor points mesh has a separajieater than 200m. At this
separation distance 317 anchor points are requiigdn the domain. Increasing the
anchor point separation to 300m allows reducingniimaber of required anchor points to
189, but at the price of increasing the interpolaterror by more than four times. The
errors are still relatively very low for a 300m &c point separation; they amount for
around 2% of the global mean and standard deviatitmwever, since the number of
anchor points required for a 200m x 200m meshiilsmanageable, this separation is
preferred. For this anchor point mesh, the intexfjoh errors for the local means and
standard deviations are around 0.5% of the glolmand standard deviation. The right
side of Figure 5-7 shows the selected anchor paortdigurations in a 200m x 200m
mesh. As it can be observed in this figure, thefigaration of the anchor points mesh is

such that collocation with sampling points is awsid
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Figure 5-7: Interpolation errors of the local meanand standard deviation of the accumulated gold for
different separations of the anchor point grid (lef). Locations of the anchor points in the 200m x ZIm
grid (right). The anchor point locations are repregnted as red squares, while the data points are shin
as circles.

Location-Dependent Distributions and Normal Scoresnsformation

A set of distance weights for each anchor point gexgerated using a Gaussian kernel of
400m bandwidth and 0.001 background value. The sdistance weights obtained for
the accumulated gold attribute were used to irfferlbcation dependent statistics for the
width attribute at each anchor point. The main eaafr doing this is that since the
accumulated gold and reef width are related atiefuit is desirable to keep mutual
consistency between their location-dependent statis

Figure 5-8 shows the interpolated local means)(lafitd local standard deviations
(right) for the accumulated gold value. A region togher local means and standard
deviations of the accumulated gold attribute app&athe west side of the domain. The
interpolated local statistics for this last atttdbare shown in Figure 5-9. The interpolated
local statistics of the width attribute reflecte tiider reef regions on the west and north
areas of the domain. The grid for the interpolatibthe location-dependent statistics has
the same resolution as the grid that is used feregtimation of the attributes. This is a

5m x 5m grid.
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Figure 5-8: Interpolated local means (left) and loal standard deviation (right) between anchor point

locations for the accumulated gold.
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Figure 5-9: Interpolated local means (left) and loal standard deviation (right) between anchor point
locations for the reef width.

Figure 5-10 shows the local cdfs obtained at eawtha point using the same
distance weights as for the location dependentidtptatistics. For each of these cdfs,
200 percentiles were used to build the local norsealres transformation tables. These
tables were used for fitting the Gaussian transftion functions using a series of
Hermite polynomials with 36 terms. Although a higmeimber of Hermite coefficients
could be used to improve the fitting of the Gaussiensformation functions, that
number was judged as a reasonable trade-off bettheditting precision and the storage
and processing requirements of the Hermite coefiisi at every location. As for the
other location-dependent parameters, the 36 Heroedficients were interpolated at the

resolution of the final numerical model.

125



GLAccumulated Gold Width
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Summary Stalisitics
# of Realizations 317
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Figure 5-10: Location dependent cdfs for the accumated gold and reef width attributes obtained
using a Gaussian kernel with 400m bandwidth at 31@nchor points.

Location-Dependent Correlograms Fitting

The experimental location-dependent correlogranestiis locally transformed Gaussian
values of both accumulated gold and width attrisuf& each anchor point 6 directions
and 12 lag distances were considered. The angeparations and angular tolerances are
30 and 20 degrees, respectively, and the lag distaand distance tolerances are 200m
and 150m, respectively.

The fitting of the location dependent correlogramas performed semi-automatically
at 317 anchor point locations giving higher weitghthe experimental correlogram points
at shorter lags. A single exponential structure wsed as the variogram model at every
anchor point. Local variogram models with anomalbigh values for the fitted nugget
effect and the anisotropy ratio were identified &ittéd manually or automatically using
different criteria. For the accumulated gold, tlwoaatic local variogram fitting at 14%
of anchor points yielded locally anomalous or abyuphanging parameters, particularly
for the anisotropy orientation and the ranges. Wdse locations the original fit was
replaced by alternative fits obtained by weightthg experimental correlograms points
proportionally to the sum of the involved 2-poingights, or by those obtained without
applying any weights to the experimental pointse Thiteria for choosing between these
alternate fits were the minimization of the squareor and the coherence with the
parameters fitted at neighbouring locations. Fdew anchor point locations, manual
variogram modelling was required. Only 5% of thedlovariogram models for the reef
with attribute yielded locally anomalous and ablyjpghanging parameters and required

fitting by alternate criteria or manual fitting.
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Figure 5-11shows the location-dependent variograsdehparameters fitted for the
accumulated gold attribute, while Figure 5-12 shdke same local parameters for the
width attribute. These graphs represent the logabgram parameter fields that are used
in locally stationary estimation and simulation.

The global experimental correlograms for both bittiés were calculated for the
same orientations and lag distances and usingaime @ngular and distance tolerance
parameters as for the locally stationary ones. &dbP presents the fitted model
parameters for both attributes
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Figure 5-11: Local exponential variogram model paraeters for the accumulated gold.

Table 5-2: Model parameters for the global correlogams

Attribute Nugget Sill Anisotropy Maximum Minimum
Effect Contribution Orientation Range (m) Range (m)
Accumulated | 5 0.5 130 730 230
gold
. 0.25 0.75 125 880 290
Width
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Local nugget effect
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Figure 5-12: Local exponential variogram model paraneters for the reef width

5.1.3.Locally Stationary Estimation

As described in Chapter 4, locally stationary ntdtiissian kriging (LSMGK) uses the
gridded local variogram model parameters and Hernaibefficients to modify the
covariance matrix and the normal scores transfoomable at each estimation location.
The performance of the LSMGK algorithm in point iesttion with its stationary
counterpart is assessed by comparing the crosdatiain results and the classification
errors on the confirmatory dataset. Each samplapyomrresponding to a simulated ddh
and its deflections was taken out and their locatiee-estimated during cross-validation.
The high variability of the attribute values an@ tlow sample density of the simulated
ddh intercepts results in poor Cross-validationigtias for both, the accumulated gold
and the width attributes.
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Estimation of Accumulated Gold Values

As it is shown in Figure 5-13, LSMGK yields a nei@bly lower mean squared error, a
much higher covariance, and a higher coefficientafrelation between estimated and
true values than the equivalent stationary algorithoreover, the incorporation of local
variogram models and locally transformed resulteesiuced smoothing of the estimates;
this is evidenced by the larger standard deviatiotained for LSMGK. Underestimation
of extreme values are slightly less pronouncechelbcally stationary cross-validation
results. The absolute average of the four worstestgnations is 3779 cm x g/t for MGK
while it is 3865 cm x g/t for LSMGK. The absoluteresages of the four worst

underestimations are 12711 cm x g/t and 11281 cgitxfor MGK and LSMGK,
respectively.
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Figure 5-13: Cross-validation results for accumulatd gold in Facies 2 of stationary multiGaussian

kriging (top) and locally stationary multiGaussian kriging (bottom). One true value above 20000 cm X
g/t has been trimmed from this figure.
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The slope of the regression in the MGK cross-véiliaiaresults (also in Figure 5-13,
top) is lower than one, 0.575. This relatively Islepe value is due to the sensitivity to
outliers in the regression. For LSMGK the slopéahaf regression is slightly higher than
1. Figure 5-14 shows the resulting maps for MGK a&®#8MGK estimates of the
accumulated gold values. The map produced by #tmsary algorithm shows a uniform
pattern of spatial continuity, while the impactlo€ally changing variogram models is
clearly visible in the LSMGK map.

LSMGK

1850 2850 3850 4850
East East

1850 2850 3850 4850

Figure 5-14: Estimates maps of the accumulated goldbtained for stationary multiGaussian kriging
(left) and locally stationary multiGaussian kriging (right)

Figure 5-15, left, presents a histogram of theed@hces between LSMKG and MGK
estimates of the accumulated gold. These diffeienoe due not only to the incorporation
of local variogram model parameters but also to tise of locally normal score
transformed cdfs. The quartiles in the histograndiferences between estimates define
four classes whose extend is shown in Figure Srigfht. The upper class, where the
LSMGK are much larger than the MGK estimates, isvplent in the west side of the
domain, where the local means are higher than ltflsamean. By contrasts, the lower
class of estimates differences is prevalent atethst side, where the local means are
smaller than the global mean. Thus, while the mtatiy MGK estimates fluctuate around
the global mean, spatial prediction with LSMGK al®incorporating the trend in the

mean.
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Distribution of LSMGK - MGK differences LSMGK - MGK differences map
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Figure 5-15: histogram of differences between LSMGKand MGK estimates (left) and location of the
four classes defined by the quartiles of the histogm of differences.

The performance of the stationary and locally statry estimation techniques in the
correct classification of estimates as being abmvielow a given threshold is assessed
by comparing the estimates with the complete datdsdle 5-3 shows the classification
errors taking the median of the sample values,ithis722 cm x g/t, for ore and waste
selection. There is a noticeable increase (33%th@ correct identification of waste
locations for the LSMGK estimates in comparisonhwihe MGK estimates, but the
locations correctly identified as ore decreasehslljg(-2%). The number of locations
misclassified as ore is reduced in 7%, but thelocations misclassified as waste are

increased in 16%. Overall, a reduction of 3.8%hmmisclassified locations is observed.

Table 5-3: Classification errors above the mediandf the accumulated gold estimates

MGK LSMGK
ESTIMATES (cm x g/t) ESTIMATES (cm x g/t)
= Waste  Ore = Waste  Ore
W ap W op
E < Waste | 9665 46487 E < Waste | 12833 43319
£ Ore 6986 45854 £ Ore 8115 44725

Estimation of the Reef Width

Cross-validation results for the reef width atttdoshow an increased accuracy for the

LSMGK technique (see Figure 5-16). This is showrth®y lower mean square error and

increased covariance between the true values andbtally stationary estimates. The

higher covariance and the slightly lower standagdiation translate to a coefficient of

correlation higher than the observed for the MGl¢ssrvalidation. The slope of the

estimates versus true values regression line ®rstationary technique is around 0.81,
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while for LSMGK it is slightly greater than one. ditionally, the averages of the worst
overestimation and underestimation are slightly Iemafor the locally stationary
technique. Figure 5-17 presents the maps of MGK IeBBIGK estimates. The locally
changing anisotropic directions informed by thealo@riogram model parameters can be
observed in the right side of this figure.

As for the accumulated gold estimation, the coneptidtaset is used to compare the
classification performance of the stationary arahlly stationary methods. As presented
in Table 5-4, the second results in a small redaadf the misclassification (3.3%) above

the median value (80cm).
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Figure 5-16: Cross-validation results for the reefvidth in Facies 2 of stationary multiGaussian krighg
(top) and locally stationary multiGaussian kriging (bottom)

132



MGK LSMGK
3400 | B‘ s _ 3400; i & P
& © cv (Fi o “li: 7 & u“ “ W\

400

-600

—
2850
East

T —T T
850 1850

T T
3850 4850

400 _

600 | %

850

e
2850 3850 4850

East

T
1850

Figure 5-17: Estimates maps of the reef width obtaied for stationary multiGaussian kriging (left) and
locally stationary multiGaussian kriging (right)

Table 5-4: Classification errors above the medianof the reef width estimates

MGK LSMGK
ESTIMATES (cm) ESTIMATES (cm)
Waste  Ore Waste  Ore
W - W —~
2 5§ Waste | 30252 20412 2 5§ Waste | 29128 21536

Ore 17915 40413 Ore 15524 42804

5.2. Discussion

The impact of incorporating location dependentistias is clearly visible in the resulting
estimates maps. The piecewise linear featuresraataiontrast with the uniform patterns
produced by stationary techniques. These non-getjofeatures can be validated in
relation to the geological background knowledgeif it available. Beyond the locally
changing patterns of spatial continuity that caragessed visually, the locally stationary
numerical models can offer improved performanciéaccuracy of estimates and in the
correct classification above a given cut-off. Hoe tlataset used in the present case study,
these improvements are rather modest, particularlge ore/waste classification. This is
due to data scarcity and the high variability oé thttributes values. This makes the
inference of location-dependent statistics difficil is worthwhile to note that for this
particular dataset the improvements of the locsttionary estimation are much clearer
in the cross-validation results than in the conéition of the estimates with true values.
This indicates that the location-dependent statisidapt well to the changes informed by
available samples, but they do not necessarilgcethe true non-stationary features of

the attribute.
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Although the improvements obtained by the applicatiof locally stationary
techniques may seem rather modest, even a smalttied of misclassification may

result in substantial profits when translated i@ framework of a mining operation.
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Chapter 6
Conclusions and Future Work

The idea of conditioning the statistics by distanegghting functions in order to capture

different aspects of non-stationarity has appearatifferent contexts and for separated
applications (Fotheringham et al. 2002; Ren 200¢L.&hnan 2007). This thesis proposes
to use it under the assumption of local statiopddt a comprehensive treatment of the
non-stationarity of the RF cdf and its paramet@ther techniques focus on particular
aspects of non-stationarity, such as the trendherltcal anisotropy. The proposed
methodology is demonstrated to be a viable commste alternative for non-stationary

geostatistical modelling.

The methodology for locally stationary modellingepented in this thesis spans from
the inference and modelling of the local statistectheir use in spatial prediction. Several
algorithms were developed to implement the differstages of this approach (see
Appendix). These algorithms are ready to be usedptactitioners; however, their
application must be undertaken keeping in mind irgyd remarks on the proposed
methodology. Several areas related to this metloggalequire further research. This last

chapter discusses these remarks and presentafatge research.

6.1. Concluding Remarks

The local stationarity assumption is the basishef proposed methodology. Under this
assumption, the Random Function cdf and all theired statistics are assumed invariant
by translation only in relation to an anchor polhthe anchor point location changes the
Random Function cdf changes.

This methodology can be subdivided into differemb-processes: selection of the
distance weighting functions, inference of the tmradependent cdfs and its statistics,
modelling of the local cdfs and variograms, locatrmal scores transformation, spatial

prediction and model validation. The following rekeare grouped accordingly.
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On the Selection of the Distance Weighting Funcaod the Inference of the

Location-Dependent Statistics

A key aspect of locally stationary modelling undlee locally stationary assumption is
the inference of the anchored RF cdf and its siedisThese local statistics are intended
to model the different aspects of non-stationariitye approach explored in this thesis for
the inference of the local statistics is based hanuse of anchored distance weighting
kernel functions applied to the available data. riical aspect is the choice of the
distance weighting function parameters. Althougls tbhoice can be supported by
numerical measures, it is mostly left to the ptamtier's judgement. When choosing
these parameters the practitioner must be awatleeofelated variance/bias trade-off. A
narrow bandwidth and very low background constaay wapture smaller non-stationary
features but they may render the local statistitstable and cause overfitting. On the
other hand, a very wide bandwidth could result xcessive smoothing of the local
statistics that may mask non-stationary featurdw 3election of the bandwidth also
depends on data density. The distance weightingtifum must capture local trends
informed by groups of samples rather than refleetlocal influence of a few individual
values. Therefore, if data is sparse, using a wededwidth would be preferred.

The Gaussian kernel was shown to be a reasonadiknde weighting function for
the inference of the local statistics. This allaws inference of smoothly changing local
statistics using all available data, while fulfilj desirable properties, such as strict
positivity, unbiasedness, continuous decrease #igtance, and independence of units.
Other forms of smoothly decreasing kernel functiaiih the same properties could be
considered. A correction by declustering weight®ved correcting for preferential
sampling in the inference of the location-dependéatistics.

At each anchor point location the same distancghteiare used for inferring the
local cdf and the 2-point statistics. Proceedingthis way assures the consistency
between all the required statistics. 1-point distaweights are used for the inference of
the local marginal cdf and the 1-point statistitbese 1-point weights are combined in
pairs to form 2-point weights that are used for thference of location-dependent
measures of spatial continuity. The geometric ayeraf pairs of 1-point weights is
preferred for obtaining the 2-point weights becatiée avoids possible biases caused by
other mixture rules in the inference of the locakasures of spatial continuity,
particularly for large 2-point separations. Additadly, the 2-point weights revert to 1-
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point weights when the distance between them goe=eto, allowing the consistency
between thel-point and 2-point statistics.

The locally weighted measures of spatial continaity able to adapt to changes in
the anisotropy range and orientation informed by data. The capability of location-
dependent 2-point statistics to adapt to the chamgéhe local anisotropy is diminished
when the distance kernel bandwidth is too narrowoar wide. When a very narrow
kernel bandwidth is used, only a few samples in vienity of the anchor point
contribute significantly to the inference of thepexsmental local measures of spatial
continuity. This translates to high fluctuations tbé experimental values, particularly
when local outliers are present in data. When g wede bandwidth is used instead, the
local changes in the anisotropy are not capturkdegitly. The practitioner must judge a
suitable kernel bandwidth based on visual inspactid the experimental location-
dependent measures of spatial continuity. Thesaldh@ry smoothly from one anchor
point to another. Among these experimental stafistiocation-dependent correlograms
appear to be more robust than location-dependeitgrams when data presents high

variability and local outliers.

On the Modelling of the Location-Dependent Variogsaand the Local Normal

Scores Transformation

At the different anchor points the experimental sugas of spatial continuity are fitted
using one of the allowable variogram models. Theallorariogram model parameters
identify local changes in the anisotropy rangeem@ation, and short scale continuity. If
sampling is dense enough in relation to the logagjes of spatial continuity, a model that
allows a locally varying shape, such as the Stifudel can be considered.

Since the experimental 2-point statistics are ndéiymaferred for multiple anchor
point locations, it is necessary to employ a setoraatic variogram fitting algorithm.
However, several factors, such as the high vaiighilf data values, the presence of
locally anomalous values and local data scarcity mause abrupt fluctuations and
unwarranted anomalies in the fitted variogram maadeameters. When data is dense and
continuous the occasional abrupt fluctuations amebalistic parameter values obtained
from currently available variogram fitting algonitis can be fixed by manual fitting. In
other cases, a robust methodology for semiautomatally stationary variogram
modelling that allows more control by the usereaguired. The algorithm proposed is
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based in the iterative joint minimization of the iglged square errors between the
variogram model and the experimental points at ipleltanchor points. The weights for
variogram fitting can be set inversely proportional the lag distance, directly
proportional to the amount of information usedriter the experimental points, or both.
A penalty function allows the user to minimize thecurrence of local parameters that
exceed previously defined thresholds. Another pggnainction penalizes the local
parameters that strongly depart from the paramditéesl at surrounding anchor points
within a previously defined neighbourhood. Additdly, the fitting of local variogram
model parameters such as the anisotropy anglesatind can be improved by geological
knowledge, if available.

Gaussian-based estimation and simulation technigeggre the transformation of
the original distribution into a standard Gaussilistribution. The local normal scores
transformation incorporates locally changing measmsiances and distribution shapes.
The Hermite modelling of the local normal scoremsformation is more efficient than
storing the local transformation tables for all lamicpoints, particularly for large datasets.
Nevertheless, the Hermitian models can introducallsmaccuracies in the reproduction
of the backtransformed cdfs. These are caused bgtuitions of the Hermitian
transformation function model, this particularly cacs when the experimental
transformation function has gaps or spikes.

The processes of location-dependent variogramenfar and modelling, and local
normal scores transformation and modelling candrg demanding in time and computer
resources if performed at all the locations to &tinwated or simulated. Therefore, this is
performed only at a limited number of anchor paifitse locations of these anchor points
are chosen in order to allow the reconstructiomthef smoothly changing local statistics
and parameters by interpolating their inferred galbbetween those points. The local
variogram parameters and local Hermite coefficielttsiot necessarily average linearly,
but it is reasonable to reconstruct their variatetween anchor points by interpolation if
they change smoothly from one anchor point to asmotlhn adequate anchor point
separation minimizes the number of required angbmints while keeping the error
introduced by the interpolation within tolerableniis. Since local 1-points statistics are
relatively straightforward to infer, these are udedassess the trade-off between the

number of anchor points and the error introducetht®rpolation.
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On Locally Stationary Spatial Prediction

The madified estimation and simulation algorithnse uhe interpolated local variogram
parameter values and Hermite polynomials underafgmption of local stationarity.
The normal scores transformation and the covariamedrix are updated at every
location. The local normal scores transformatidaves the incorporation of the trend in
the mean and other local changes in the distributio locally stationary Gaussian
estimation and simulation. Additionally, the useHdérmite polynomials for modelling
the local normal scores transformation allows aightforward implementation of a local
change of support model for block support estinmatio

The incorporation of locally changing variogram ratsdresults in numerical models
that are richer in local features of spatial camtyn The resulting changing patterns of
spatial continuity contrast with the uniform patteobserved in models built by
traditional methods. Moreover, the variances olgigifrom locally stationary estimation
respond not only to the data availability and cgumfation, but they are also enriched with
information on the local variability. These localihanging features should be validated

by geological interpretation if it is available.

On the Validation of Resulting Models

Beyond the richer spatial features resulting framally stationary modeling, it has the
potential of improved accuracy, precision and dalitg, and also in increased

connectivity. This occurs between the extreme stenaf having very low or very high

sampling density. If samples are very scarce, theation-dependent statistics are
unreliable because they are highly affected byviddial sample values rather than by
local trends. If samples are very dense, they maeee influence than the statistics and
parameters used in the spatial prediction algorit®&m, in the first case, the locally
stationary methods may actually perform worse tiir stationary counterparts due to
the poor definition of the local moments, particlyaif supporting geological or

secondary information is missing. In the seconce casthough the location-dependent
statistics can be robustly inferred, stationary kowdlly stationary methods will tend to
perform similarly. It is between these two extremma&ses where locally stationary
techniques based on distance weighted statistitsngarove the numerical modelling of

geological attributes.
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When comparing cross validation results betweeditiomal and locally stationary
estimation techniques, the latter can show impraesdlts in terms of the minimization
of the mean square error and the increase of threlation between true and estimated
values, among other metrics. However, when thetieglestimated maps are confirmed
against exhaustively sampled values, the locallgtistary estimation does not
necessarily outperform the traditional kriging. §imay occur when data is not abundant
enough to allow the robust inference of the lotatistics.

A practical disadvantage of the locally stationaapproach is the increased
computational effort that its application requiréEhese algorithms demand higher

memory storage and processing time than theiosiaty counterparts.

6.2. Future Work

Several possible avenues of future research relatdde different components of the

proposed methodology are delineated in this section

Assessment of the Location-Dependent Statistics

The ability of location-dependent statistics to ioye the modelling of rock attributes is
assessed after locally stationary estimation omkition and with the help of cross-
validation and accuracy plots. An a priori evaloatof the location-dependent statistics
without the need to complete the spatial predicéind the required previous steps would
be useful for highlighting areas with different degs of robustness. Metrics like local
data density, cross-validation and bootstrappingrer during the inference of the
location-dependent statistics could be used foh suopose. These metrics may lead to
uncertainty measures for the local statistics @t be translated to a more complete

uncertainty assessment of the attribute.

Use of Non-Euclidean Distances

The weighting kernels presented for the infererfct® location-dependent statistics are
based on straight-line Euclidean distances. Albldiinference of the location-dependent
statistics becomes difficult if samples are separdiy distances that exceed the non-
linear features of the geological setting. In saymelogical settings where the non linear

patterns can be recognized from the knowledge baseay be reasonable to use non-
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Euclidean distance measures (Christakos et al.,28019-24; Curriero 2006) for the
kernel weighting function. The non-Euclidean metriould also be used to transform the
original space to an Euclidean space. Since tlissformation may filter out local
variations in the anisotropy orientation, the weig kernel would be mainly used for
inferring the cdf and the remaining local paraneterthe transformed space. Locally
stationary spatial prediction would be performed time transformed space, and
subsequently backtransformed to original space.s Thiternative contrasts with
approaches that use a dissimilarity distance tosfomm a non-Euclidean space into a
high-dimensional Euclidean isotropic space (Samp&d@uttorp 1992; Boisvert et al.
2009).

Alternatives to the Direct Inference of the Locatidependent Statistics

Alternative ways to obtain the location-dependematistics that require further
development include their inference with the suppbrexhaustively sampled secondary
information and their inference from representatraning images. In this second idea, a
training image containing patterns that are deemgdepresentative of a particular
geological setting is used to extract the locatlependent statistics and parameters,
particularly those required for local variogram rathithg. The resulting histograms of
these local parameters are used for co-simulatiffgreint possible scenarios of the
regionalized spatial distribution of the parametefhese parameter maps are
subsequently used in locally stationary estimatiorsimulation with the available data
values. Proceeding in this way could allow for tie@roduction of the non-stationary
patterns of the attribute, but the resulting modetsild not necessarily be more precise

or accurate.

Relation with Multiple Point Statistics

The mixture rules used for obtaining the weight®eoused in the inference of the local
2-point statistics can also be used to obtain coatlnins of weights assigned to multiple
samples. These multiple point weights could be dsedhe inference of local higher
order measures of spatial continuity (Christako@2@p.107-108; Dimitrakopoulos et al.
2010; Mustapha & Dimitrakopoulos 2010). A relateataa of future research is to
compare the results of locally stationary simulatigth those obtained using algorithms

based on multiple point statistics (Strebelle 200&ter 2009).
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Robust Inference of the Local 2-point Statistics

A robust estimation of the location-dependent expental measures of continuity is a
key aspect of the proposed methodology. So fas,tdsk has been accomplished by the
standard practice of grouping the data pairs adogrh the lag and angular separations
and their respective distance and angular tolesantke parameters that define these
groups are chosen in relation to the global expemiad variogram and used at all anchor
points. In the locally stationary framework thisgtice may yield unreliable estimates of
the local variograms in scarcely sampled areasalf@rnative may be to obtain the local
experimental variograms by smoothing the local agnam cloud directly rather than
within bins defined by lag distances and orientaidOne way to achieve this is by using

Bernstein polynomials (Manchuk & Leuangthong 2008).

Improved Modelling of the Local Variograms

The proposed joint local variogram fitting algonthstill requires further testing and
debugging with complex 2-D and 3-D datasets. Coaisisrariogram modelling in 3-D is
still a difficult task, particularly when no geolicgl knowledge is available for guiding
the fitting of anisotropy orientations and rangédternatives to the weighted least
squares criterion for parametric variogram modgllisuch as the use of Fourier-Bessel
matrices (Genton & Gorsich 2002), should be comsidleThese could provide a more
flexible option than the modelling of local variagns by imposing a unique variogram
model for all anchor point locations.

Several other aspects of local variogram modelteguire further research. Among
them are the fitting of local variogram models five tpresence of locally varying short
scale anisotropies but global large scale zonalgaminetric anisotropies, and the effect

of cyclicity on the attribute values.

Multivariate Location-Dependent Statistics

Multivariate variogram modelling can be a complézhtask in stationary Geostatistics,
particularly when multiple variables are involvekis could be much more challenging in
the proposed locally stationary framework. Therefdine integration of local multivariate
statistics with the locally stationary frameworkquires further development and

research. The difficulties related to the infereaoce modelling of the locally stationary
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cross variograms or covariances can be alleviatedeburring to the Markov-type
approximation (Journel 1999). With this model thecdtion-dependent cross
correlograms between the primary and collocatedorstary variables can be
approximated by the product between the local tatiom coefficients and the local
correlograms. A known problem with the use of therkbv-type assumption in
collocated cokriging is the resulting variance atitin, which hinders the histogram
reproduction in simulated realizations. The develept of locally stationary Gaussian
cosimulation should consider alternatives capablesdlve this problem, such as the
intrinsic model of coregionalization (WackernagéD3, pp.154-157; Babak & Deutsch
2009).

Locally changing correlation coefficients have bdmplemented by Ren (2007,
pp.39-47) for the enhanced integration of differscale data by Bayesian updating. This
technique could be further improved by the incoation of location-dependent

variograms and cdfs.

Validation of the Locally Stationary Models

Checking the global histogram reproduction by llycatationary simulation results is
straightforward. Contrarily, verifying the reasoteleproduction of the local spatial
continuity informed by the local variogram modelayrbe difficult. This is not only
because it can be tedious to plot and check thalyostationary variograms for multiple
realizations, anchor points and directions, bub dlscause of the difficulty to reproduce
the local variogram beyond the closer lags andribeeased ergodic fluctuations. These
aspects require further research; practical caitdar checking the local variogram
reproduction are required. A related issue to tlaidation of locally stationary
simulations is the mathematical consistency ofupéated RF. The locally stationary RF
may be well defined in relation to the location whet is anchored, but its global
consistency requires further investigation.

The locally stationary estimation variances arbaidn spatial information than their
traditional counterparts (see Figure 4-3). Furtedies are required to determine if the
locally stationary variances can be used as reliabkasures of the uncertainty of
estimates.

The incorporation of local cdfs and variograms da always result in a reduced

updated local uncertainty when compared with thasiained from traditional methods
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(see Figure 4-20). More testing with different data is required to determine under
which conditions the locally stationary ccdfs aegrower or wider and establish if these
differences yield a more realistic characterizatiointhe uncertainty. Some related
subjects to be investigated involve the impacthef lbcation-dependent statistics on the
optimum sample location and in the resource classibn based in the quantification of
uncertainty.

Although the proposed locally stationary approaelquires more research and
testing, the set of methodologies and tools preskint this thesis are ready to be applied

on real case studies.
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Appendix A
Software Implementation

This appendix covers the algorithms needed for phectical application of spatial
prediction under the assumption of local statidgariThese algorithms have been
implemented as FORTRAN programs and most of themeveeveloped from their
equivalents already used in stationary modellinthe output of the distance weights
generator LDWjen, provides the basis for the algorithms used initfierence of the
location-dependent statistidsDWgen output consists of the matrix of distance weights
assigned to the samples in relation to each onth@fanchor points. The program
nscor e_| oc uses these weights to build the local normal sctensformation tables.
The programher co_I oc is used to model the local transformation functioescribed
by these tables by a series of Hermite polynomikti® prograngamv| ocal takes the
matrix of weights and the local normal scores tiamss to produce location-dependent
experimental variograms, covariances and correfograt each anchor point location,
either in original units or in Gaussian units. Tgregramgl obf i t is used for the joint
fitting of all the experimental local measures afrrelation by allowable variogram
models. The resulting coefficients of the local tHite models and parameters of the
local variogram models can be interpolated at #selution of the final numerical model
using any interpolation algorithm capable of prddgcsmoothly changing maps.
kt 3d_LM5 program reads these maps for locally stationarytpmi block estimation,
while ultimateSGSim v.2 and SI Sim| oc use them for locally stationary

sequential Gaussian simulation and sequential @alicsimulation, respectively.

A.1l. Generation of Distance Weighted Datasets:

LDWjen
The LDWjen program is used for generating a matrix of weidbtsall samples in a
dataset in relation to multiple anchor points lara. It can operate in parameter

calibration mode or in distance weights generatinade. In calibration mode the
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program can be used to assess the smoothness lot#henean and variance models in

relation to the original sample values. In distamezighting mode, the program will

produce énx P matrix of distance weights, witihas the number of samples dnds the

number of anchor points. Although the Gaussian deis preferred as a weighting

function, the program also allows inverse distaneeighting and uniform kernel

weighting. Figure A-1 shows an example of the patamfile for this program, the

details of which are below.

Parameters for LDUgen

START OF PARAMETERS:

DDH?73 .dat file with data
2 3 4 5 6 columns for X, ¥. Z coordinates wariable and weight
0 1.0e21 trimming limits

1
1]
1]
4
4
1

APddh?3 . dat

1
2
a0

LDW-DDH?3 . out
LDW-DLH?3 . dbg
LDW-DDH?3 . sum

including declustering weights by 0O==caling l=s=elf calibration
parameter calibration mode? O=no. l=ye=

anchor points in file =0, in grid =1

nx, XN, XS1Z

ny, ¥, y=1z

ne ., Znh, Zsiz

file with anchor points locations

columns for X, ¥, Z anchor point coordinates
weigting function (1=ID, 2=GK. 3=UK) and paransters
dinamic kernel bandwidth: O=no., 1l=ves

anizotropic search angles

aniz=otropic search radius

file for output

file for weights output

file for debugging

25 B85S 10.0
75 —-845 10.0
0.0 1.0

2 3
20 0.01

o0 oo a0
400.0 400.0 400.0

Figure A-1: An example parameter file for LDWgen

datfl: a data file in GSLIB format.

ixl, iyl, izl, ivr, andiwt: the column numbers for the x, y and z coordinataies
and declustering weights of the samples in the filata

tmin andtmax: values smaller thatmin and greater thatmax are ignored.

idecinc. form of including the declustering weights. itfecinc is set to zero, the
distance weights are scaled by the declusteringht®i If idecincis set to one, the
distance weights are corrected by the methodologygnted in Section 3.2.4.

ical: the output, debugging and summary files below wilange depending on
wheterical = 0, i.e. weights generation mode, ioal = 1, i.e. weights calibration
mode.

iapgrid: anchor points can be located arbitrarily or ingutar grid. In the first case,
iapgrid = 0, a file in GSLIB format containing their caimates and identification
numbers must be provided. In the second dapgyrid = 1, the specifications of the

anchor point grid must be entered.
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apxn, apxmn, and apxsiz the number of anchor points in the x directidm &
coordinate of the anchor point located in the sewe#t corner at the bottom of the
grid, and the anchor points separation parallgh¢oX axis.

apyn, apymn, andapysiz the number of anchor points in the y directidm ty
coordinate of the anchor point located in the see#t corner at the bottom of the
grid, and the anchor points separation parallgh¢oY axis.

apzn, apzmn, and apzsiz the number of anchor points in the z directidme ¢
coordinate of the anchor point located in the sewe#t corner at the bottom of the
grid, and the anchor points separation parallgh¢aZ axis.

apfl: a file in GSLIB format containing the coordinatgfsanchor point locations.

uxl, uyl, anduzl: the column numbers for the anchor points x, y andordinates.
wfunc, para, and parb: type of distance weighting function and its paesans. If
wfunc = 1, an inverse distance function is used pach andparb are the power and
offset parameters, respectivelywfunc = 2, a Gaussian kernel is usedwftinc = 3,

a uniform kernel is used. In the last two casasa andparb are the bandwidth and
background parameters, respectively.

idyn: this parameter is set as 1 for allowing a dynakaimel bandwidth.

angl, ang2andang3 the rotation angles for an anisotropic kerneldveidth.

aa, aal and aa2 the anisotropic kernel ellipsoid radii. Their @it lengths are
irrelevant, but what is taken into account is thesatropy ratiosa/aal andaa/aa2
outfl: the output file. If parameter calibration modes&ected, i.eicv =1, this file
will contain the local mean values at the data esllocations. Otherwise, the output
file contains the matrix of distance weights ass@yo the individual samples in
relation to all anchor points.

dbgfl: this debugging output file contains the local m®astandard deviations,
quartiles and other 1-point local statistics. Auhially, it provides the sum of
distance weights at each anchor point for contuoppses. It also contains the size of
the dynamic kernel bandwidth.

sumfl: this file stores the summary statistics of thiatren between data values and

the local mean model.
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A.2. Local Normal Scores Transformation and Modelling

nscore_l oc is constructs the local normal scores transfoimnatiables using the
distance weights provided in the output of tH&\gen program.her co_| oc is used
for modelling the local normal scores transformatfanction by Hermite polynomial
series. This is done for the sake of efficiencgriag normal scores transformation tables
for large datasets and feeding them to Gaussiamagtin and simulation algorithms can

be very demanding in computer memory and storage.

A.2.1. Local Normal Scores Transformation:nscore_| oc

This program was developed from the FORTRAN progn@mor e (Deutsch & Journel
1998, pp.223-226). The nawscor e_| oc uses the data values and the distance weights
from the LDWjen output file to build the local cdfs. At each anchpoint, the
contribution of each sample in the local cdf isgmdional to its corresponding distance
weight. The normal scores transformation procedurehe local cdfs results in local
transformation lookup tables. Figure A-2 shows tlerameter file required for the

nscor e_| oc program and the parameters are detailed below.

Farameters for NSCORE Loc

START OF PARAMETERS:

.. #LDWgen-LOW-DDH? 3 . out
2 3 4 5 6

400
1]

file with data and distance weights

colunns for ¥, Y. Z coordinates wariable and weight
number anchor points

trimming limit=s

l=transform according to specified ref . dist.

file with reference dist.

1 column=s for wariable and weight

n=LDW-DDH? 3 out file for output

n=lDW-DDHY3  trn — file for output transformation table

Figure A-2: An example parameter file fornscore_| oc.

1.0=21

a

..“histsnth-histsmth.out
2

» datfl: this is aLDWjen output file. It must contai nx P entries.

e ixl, iyl, izl, ivr, andiwt: the column numbers for the x, y and z coordinaesl the
values and declustering weights of the samplelBahDWWjen output file.

* nap: P, this is the number of anchor points

* tmin andtmax: sample values smaller thamin and greater thatmax are ignored.

» ismooth: if this parameter is set to 1 a smoothed distidmuwill be considered,

otherwise the distribution is built directly fromaw@. In its current version
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nscore_l oc allows a smoothed distribution only if operatingr fsingle
distributions, i.eP = 1.

» ismoothfl: the file containing the smoothed distribution.

* icolvr andicolwt: the column numbers corresponding to the valuesvegights in
the smoothed distribution file.

» outfl: the file containing sample coordinates, originalues and locally normal
scores transformed values for all anchor pointss Daitput file can be used as an
input forganvl ocal in order to generate the experimental local messaf spatial
correlation in local Gaussian space.

» transfl: this file contains the transformation lookup &®for all anchor points. The
first column in the file corresponds to the oridimalues and the second to the locally
normal scores transformed values. The prognamco_| oc uses this file to model

the local Gaussian transformation function.

A.2.2. Modelling the Local Normal Scores Transformation
Function with Hermite Polynomials: her co_| oc

The progranher co_| oc was developed from the discrete Gaussian changappfort

program DGM (Ortiz 2000). It uses the transformation lookupléafile produced by

nscore_l oc to model the local Gaussian transformation fumcti®@he output file

contains the Hermite coefficients of the polynonfitd of the Gaussian transformation

functions at all the required anchor point locasiomhe fitting of the local normal score

transformation function is improved when the inpst the local normal scores

transformation table obtained from a few hundretlguantiles obtained from the local

distributions. These local quantiles can be catedlausing thehi spl t si m program

(Deutsch 2005). The parameters required for thigllgpnogram are described below and

the file containing them is shown in Figure A-3.

» transfl: this is the file containing the Gaussian locansformation lookup tables
produced bynscore_| oc.

» aplfl: a file containing the coordinates of the anchain{s locations.

e uxl, uyl, anduzl: the column numbers for the anchor points x, y aosdordinates.

* nherco number of Hermite polynomials and coefficientsb® considered in the

fitting of the local normal scores transformatiomdtion.
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» outfl: This file is generated for checking purposesolttains the original values and
their approximated values after the Hermite polyradenfitting. It also contains the
locally normal scores transformed values.

» dbgfl: This file contains the coordinates of the anghaint locations and all the local
Hermite coefficients used at such locations. ltoat®ntains the local variances

approached by the Hermite polynomial series.

Parameter=s for HERCO loc

START OF PARAWETERS:
n=QLDT-DDHT 3. trn
aploc.dat

1 2 3

40

herco locd0. out
herco locdl . dbg

file with input transformation table

file with anchor point coordinates

X.¥,Z coordinates for anchor points=

nunber of Hermite polynomials to use (e.g. np=20)
file for point scale output to checlk the ananorpho=sis
file with Hermite Coefficients, phi{p)

Figure A-3: An example parameter file forher co_| oc.

A.3. Location-Dependent Variograms

The set of programs for location dependent varimgrancludes a calculator of location-
dependent measures of correlatigayvl ocal , a generator of local variogram maps,
varmap_| oc and an algorithm for semiautomatic fitting of tlecation-dependent

measures of correlatiog| obfit.

A.3.1. Calculation of Location-Dependent Experimental
Variograms: ganvl ocal

The ganvl ocal program was developed frogamv2004 program (Deutsch 2007),
which is a modified version of the GSLIB progranr the calculation of experimental
measures of correlation with irregularly spacedadganv (Deutsch & Journel 1998,
pp.53-54). The program reads and stores the satopl@inates, the sample values, and
the distance weights assigned to each sample atiaelto all anchor points from a file
produced either by D\Wjen or nscores_| oc programs. The weights assigned to
individual samples are combined for the pairs fhitwithin the tolerances specified for
different lag distances and directions. The progimable to generate location-dependent
variograms, covariances or correlograms for cowotirsuand categorical variables. The

output file contains the experimental values of thwsen local measure of spatial
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continuity for the selected directions and lag safens. An example of the required

parameter file is presented in Figure A-4. The petars in this file are described below.

Paransters for GAMVLOCAL

START OF PARAMETERS:
LDWG—wloc—g2ldes . out
2 3 4 3

output file from LDWgen or from Hscores loc
column=s for ¥, ¥, Z coordinates and weight

1 [ a nunber of wariables.column numnbers
-1.0ez21 1.0=e21 trimming limits

0 local HS transformation 0 = no., 1 = yes
1 anchor point= in file = 0, in grid = 1
50 5.0 10.0 NE.ENN. XS1Z

=1 5.0 0.0 nY. VI, ¥S1Z

1 1.0 1.0 ne,.Zmn, z=1z

apoints. dat file with anchor points location

1 2 3 columns for X, ¥, Z coordinates

0
lv—wlo—gildes . out
lv—wloc—gZldes . dbg
4

Hizmture rule exponent: 0= geometric, l=arithmetic
file for variogram output

file for debugging

numnber of directions

0 20 500 0 15 500 Dir 01: azm,.atol, bandh.dip.dtol.bandw

12 10 & nlag.=xlag. ztaol

45 20 500 0 15 500 Dir 0Z2: azm,atol bandh.dip,dtol, bandw
12 10 & nlag.xlag. xtol

a0 20 500 0 15 500 Dir 03: azm.atol bandh.dip.dtol . bandwv
1z 10 & nlag,xlag, xtol

135 20 500 0 15 500 Dir 03: azm,atol bandh.dip,dtol, bandw
12 10 & nlag.=xlag. ztol

1 standardize sills? (O=no. l=yes)

1 1 1 tail wvar., head war., wariogram tvpe

Figure A-4: An example parameter file forganv| ocal

» datfl: This is aLDWjen ornscor es_| oc output file. It must contai nx P entries.

e ixl, iyl, izl, andiwt: the column numbers for the X, y and z coordinates distance
weights assigned to the valuegdeufl.

e nvar andivar(l) ... ivar(nvar): The number of variables and their column order in
datfl. In the current version @fanv| ocal the maximum value fanvar is 2.

* tmin andtmax: values smaller thaimin and greater thatmax are ignored.

» itrans: if this parameter is set to 1, extra memory lIscated for the locally normal
scores transformed values.

» iapgrid: if this parameter is set to 0, the program wil to read the anchor point
coordinates from the filapfl. Otherwise it will take the anchor point coordegt
from the grid specification.

e apxn, apxmn, andapxsiz the number of anchor points in the x directidme
coordinate of the anchor point located in the sewe#t corner at the bottom of the
grid, and the anchor points separation parallgh¢oX axis.

e apyn, apymn, andapysiz the number of anchor points in tlyedirection, the y
coordinate of the anchor point located in the see#t corner at the bottom of the

grid, and the anchor points separation parallgh¢oY axis.

161



e apzn, apzmn, and apzsiz the number of anchor points in the z directidme &
coordinate of the anchor point located in the see#t corner at the bottom of the
grid, and the anchor points separation parallgh¢aZ axis.

» apfl: afile in GSLIB format containing the coordinat#fsanchor point locations.

e uxl, uyl, anduzl: the column numbers for the anchor points x, y aondordinates.

* mrexp: the value for the exponential in the mixture rfite building the 2-point
weights. If this parameter is set to 0, a geometvierage of the weights assigned to
the individual samples in each pair is performed.

» outfl: a file containing the output for the experimemtadasure of correlation ordered
by anchor point number and then by direction. Famheanchor point there is a line
containing the anchor point number and coordindtes.each direction four heading
lines are included containing the azimuth and digles and its angular tolerances,
the number of lags, the lag distances and theolagance, and the type of variogram.
The followingnlag lines contain the fields:

Lag number.

Average separation distance for the current lag.

Value of the measure of spatial correlation.

Number of pairs involved in the calculation of swetue.

Sum of the 2-point weights assigned to the pawslired.

Variance of the variogram cloud.

No o b~ w0 Dd P

Locally weighted mean of the data contributingtte tail.
8. Locally weighted mean of the data contributinghe head
When the location-dependent correlograms is choten,following columns are
added:
9. Locally weighted variance of the data contributinghe tail.
10. Locally weighted variance of the data contributinghe head
« dbgfl: a file containing local statistics of the valuaad weights for checking
purposes.
» ndir: the number of directions for the calculation bé tchosen experimental local
measure of spatial correlation. The following tweek of parameters are repeated for

thendir directions.
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e azm, atol, bandwh, dip, dtol, andbandwd: the azimuth angle, the azimuth angular
tolerance, the azimuth bandwidth, the dip angle dip angular tolerance, and the dip
bandwidth.

* nlag, xlag, xtol: the number of lags to compute, the unit lag sspar distance, and
the lag distance tolerance.

» sill: if set to 1, the local semivariogram values Ww#l divided by the local sill.

e ivtail, ivhead, andivtype: the tail and head variable numbers, and the geain type
to compute. For direct variograms thdail is the same as iivhead, for cross
variograms they are different. The parameter numlber the location-dependent
variogram types allowed are:

1. Variogram

Cross Variogram

Covariance

Correlogram

© > WD

Indicator variogram for a continuous variable
10. Indicator variogram for a categorical variable.
e cut: This parameter must be added at the end of teeiqurs line when thévtype
value corresponds to an indicator variogram. Itkievds a cut-off for continuous

variables or a category code for discrete variables

A.3.2. Location-Dependent Variogram Maps:var map_| oc

This program generates locally weighted variograapsnfor multiple anchor points.

Additionally, it calculates an anisotropy ellipsda such local variogram maps using the

moments of inertia tensor method presented by Mataahassanpour (2007, pp.45-53).

This program was developed fromar map (Deutsch & Journel 1998, pp.55-57). The

parameters required forar map_| oc are separated into three blocks: the data file

parameters, the anchor point parameters, and ttiegvam parameters. The following

are the parameters in the first block:

o datfl: This is aLDWjen ornscor es_| oc output file.

e nvar andivar(l) ... ivar(nvar): The number of variables and their column order in
datfl. In the current version @fanv| ocal the maximum value famvar is 2.

e tmin andtmax: values smaller thaimin and greater thatmax are ignored.
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itrans: if this parameter is set to 1, extra memory Iscated for the locally normal
scores transformed values.

igrid : this parameter is set to O if tl&atfl contains the coordinates of scattered
samples. If itis set to 1, then the data mustrtenged in a grid.

nx, ny, nz: if igrid is 1 then these are the number of cells in theand z directions.
Xsiz, ysiz, zsiz if igrid is 1 then these are the size of the cells paralléie x, y and
z directions.

ixl, iyl, izl, andiwt: if igrid is O, these are the column numbers for the x,d/ an
coordinates and distance weights assigned to thesandatfl.

The parameters for the block specifying the angloimt locations are listed next:
iapgrid: if this parameter is set to 0, the program wil to read the anchor point
coordinates from the filapfl. Otherwise it will take the anchor point coordest
from the grid specification.

apxn, apxmn, andapxsiz the number of anchor points in the x directidm «&
coordinate of the anchor point located in the swe#t corner at the bottom of the
grid, and the anchor points separation parall&h¢oX axis.

apyn, apymn, and apysiz the number of anchor points in tlyedirection, the y
coordinate of the anchor point located in the sewe#t corner at the bottom of the
grid, and the anchor points separation parallgh¢oY axis.

apzn, apzmn, apzsiz the number of anchor points in théirection, thez coordinate
of the anchor point located in the southwest coatehe bottom of the grid, and the
anchor points separation parallel to the Z axis.

apfl: a file in GSLIB format containing the coordinat#fsanchor point locations.

uxl, uyl, anduzl: the column numbers for the anchor points x, y andordinates.
The parameters in the variogram specification blrekthe following:

outfl: This output file contains the 2-D o 3-D mappedalovariogram values, local
head and tail means and local head and tail vaafior all anchor points. These
values are written sequentially and sorted by tighar point number first, followed
by the z direction, then thedjrection and, finally, the x direction.

angfl: the output file for the angles and radii of thesatropy ellipsoid fitted to the
local variogram maps or volumes at each anchortpoin

wmass if set to 1, the variogram values close to thginmwill have a higher weight

for the calculation of moments of inertia.
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nxlag, nylag, andnzlag: the number of lags to compute in the x, y anérections.
dxlag, dylag, anddzlag: the lag tolerances or variogram map/volume “sgdes” in
the x, y and z directions.

minpairs: the minimum number of values to calculate a valithe variogram map.
mrexp: the value for the exponential in the mixture rfte building the 2-point
weights. If this parameter is set to 0, a geometvierage of the weights assigned to
the individual samples in each pair is performed.

isill: if set to 1, the local semivariogram values Ww#l divided by the local sill.

ivtail, ivhead, andivtype: the tail and head variable numbers, and variogsgra to
compute. For a correct calculation of the localsattbpy parameters using the
moments of inertia method, tiheype value must be 3 or 4. These values indicate the
calculation of covariances or correlograms.

An example of the parameter file fear nap_| oc is presented in Figure A-5.

Faramnsters for VAREMAP loc

START OF DATA PARAMETERS:

LDW-wl-G20-0-40.cut

1
-1

5
1
7
3
1
a
2

pllzalta. dat

output file from LDWgenerator or ns=cores—loc

5 number of variables: column numbers

ezl 1.0e21 — trimming limits
— local HS transformation 0 = no, 1 = yes
— l=regular grid, O=scattered wvalues
] 5o 1 - 1f =1:  n=. ny, nz
0 1.0 1.0 - ®siz, ysiz., zsiz
3 4 [3 — columns for X, ¥, Z coordinates and weight

TART OF ANCHOR POINTS FARAMETERS:

— anchor points in file = 0, in grid = 1
10 40.0 — if =1: n=.=nn.=siz
10 40.0 ny.vnn, ysiz
o.o0 1.0 nz.Zmn,==1z
if =0 file with anchor point=s locations
columns for X, ¥, Z coordinates and weight

3 4

START OF VARIOGRAM PARAMETERS:

varmap loc.out
varmap loc—1lh . ang

1
5.
15
0
1
1

file for wvariogram output
file for angles output
Weighting the VARMAP mass by lag distance? 0= no, 1= ves

0 10 0 — nxlag, nylag, nzlag
0 5.0 1.0 — d=zlag. dylag. d=zlag
— mininumn nunbsr of pairs
— Weights averaging: 0= geometric, l=arithmetic
— standardize =ill? (0=no, l=wes)
1 4 — tai1l, head. wariogram type

Figure A-5: an example parameter file forvar map_| oc

A.3.3. Joint Fitting of Location-Dependent Variogram Models:

gl obfit

The programgl obf it was developed from the FORTRAN program for senoianattic

fitting of experimental variogramgar fi t (Larrondo et al. 2003; Neufeld & Deutsch

2004).gl obfit is intended for the conjoint semiautomatic fittingder user defined
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constraints of local variogram models for the eipental local measures of spatial

continuity. The required parameter file is orgadize five main blocks: the main

parameters, the experimental local variogram fisgecification, the global model

parameters, the anchor point location parameteis tlde advanced options parameters.

The parameters in the first block are the following

nvario: the number of experimental variograms to consider

nst: the number of nested structures to include invéli@ogram model. A maximum
of two structures is allowed for location-dependeariogram models.

conang if set to 1 the same rotation angles are usedh®ranisotropic ellipsoid of
all structures. If it is 0, the anisotropy definiti of each structure is independent from
the others.

idiswt: if set to 1, the experimental variogram point®e aveighted inversely
proportional to their lag distance.

inpwt: if set to 1, each experimental variogram pointveighted by the sum of all
the 2-point weights of the pairs involved in itdocdation.

ivwwt: if set to 1, each experimental variogram point weighted inversely
proportional to the variance of the variogram cladts corresponding lag.

npmin: the experimental variogram points calculated éts than npmin pairs are
not considered during the variogram fitting.

penfac and penpow. the value of the coefficient and the power of fhenalty
function for extreme variogram model parameters.

penfit: the coefficient of the quadratic penalty functiéor locally anomalous
variogram parameters.

psfl: the prefix for the names of the postscript fitemtaining the graphic output of
the fitted local variogram models. The program wifid the corresponding anchor
point number and the extension .ps at the rightaditide prefix.

varfl : the output file for the local variogram model @aweters. These are ordered
sequentially according the anchor point number.

sumfl: a summary output file containing the anchor painbrdinates, the local
variogram model parameters and the fitting meamusgarror.

pagetitle: a character string containing the title in thépot postscript files.

An example of the main block of parameters is pregkin Figure A-6.
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Paransters for GLOEFIT

START OF MAIN FPARAMETERS:

3 — number of variograms

nunber of nested structures

constant angle between structures

inverse distance weighting {(0=no, l=sye=)
pair= weighting (0=no. l=vye=s)

variogram variance weighting (0=no. l=ves)
minimumn number of pairs to use

penalty constant and exponent for extrens paramster wvalues
penalty factor for local odd fits

file for PostScript output

file for variogram model

file for summarv file

project title

1]

.0 0.0

.o
.sgraphs-corfit
corrfit . war
corrfit. sum
Local variograms

oo OoOOoO

Figure A-6: Example of the main block of parametergor gl obfit.

The parameters specifying the experimental localogeam files and the related
options are listed next:

» iytoz: if setto 1, the experimental location dependaaasure of spatial continuity
must be calculated using locally normal scoressfiamed values. In this case the
program will back-transform the experimental poitdsoriginal units and use them
for variogram fitting.

» |hercofl: a file containing the Hermite coefficients ob&infrom the modelling of
the normal scores transformation function.

* npol, ipol: the number of Hermite coefficients and initiallwan number in the file
specified bylhercofl.

» datfl: an output file generated lgjamvl ocal containing the experimental values of
the location-dependent measure of spatial corogladt different lags, directions and
for all anchor points.

* ivario: the order of the variogram to be pickedlatfl.

The last two parameters must be repeated for thdeauof variograms specified by

nvario. Figure A-7 shows an example of this blotparameters.

START OF EXPERIMENTAL WARIOGRAMS SPECIFICATICN:

0 — Fitting Z wariograms from Y walues? (no=0, ye=s=1)
file with Hernite cosfficients

number of hermite polynomials and column for phi(0)
variogramn #1 file

wariogram number in file

variogram #1 file

wariogram number in file

variogram #1 file

wariogram number in file

herpol dat

01

1-rDDH?E5_lns 40 out
1

1-rDDH7E_lrn= 40 out
2

1-rDDH7E_lrn= 40 out
3

Figure A-7: An example of the experimental variograns block of parameters forgl obfi t.

The parameters for the specification of the glalamiogram model are listed next:

cOgandalfag: the nugget effect value, and the exponent oktable model.
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e itg, ccg anglg ang2g andang3g the type of the structure, the sill contributioh
the structures, and the angles defining the gearatisotropy.

* aag a2g anda3g the maximum horizontal range, the minimum hortabnange and
the vertical range.
The last two parameter lines must be repeatednmumber of nested structures

specified bynst. An example of this block of parameters is showRigure A-8.

START OF GLOBAL VARIOGRAM MODEL SFECIFICATION:

0.123 0.439 — nugget effect, =xp
2 0.877 0.0 0.0 0.0 — it.cc.angl.ang?. angl
7.6 7.6 7.6 — a_hnax. a_hmin. a_vert

Figure A-8: An example of the variogram model blockof parameters forgl obfi t.

The parameter lines below define the neighbourtadaahchor points for comparing
the local variogram model parameter. Figure A-Qxshan example of these parameters.
* nap: the number of anchor points where the experimhdatal measures of spatial

continuity were calculated.
 napmax the maximum number of anchor points to be comsillein a

neighbourhood.
* radius, radiusl, and radius2: the radii of the ellipsoid used for searching the
neighbouring anchor points.

* sangl sang2 andsang3 angles that define the orientation of the seatlipsoid.

START OF ANCHOR POINTS DEFINITION

400 — nunber of anchor points
4 — mazimum number of anchor points for parameter comparison
2000 20.0 20.0 — maximum search radii

o.n 0.0 o.n — angles for search ellipsoid

Figure A-9: An example of the anchor points block bparameters for gl obfi t .

The advanced options specify the constraints on ltoal variogram model
parameters to be fitted at the multiple anchor ploications. The corresponding block in
the parameter file is described below, and an el@uoft is presented in Figure A-10.

e izonal, izonall, andizonal2: if any of these indicator parameters is set tthd
program will automatically add one structure fonabanisotropy modelling.

* cychmax cychmin, andcycvert: if any of these indicator parameters is set thel
program will automatically add one structure for daling the cyclicity in the
corresponding direction. Only one direction is a#al for cyclicity modelling.

» flexcc, ccmin, andccmax indicator for allowing a variable initial sill Wee and the
lower and upper limits for local sill values.fléxcc is set to O the initial sill value is

taken from the global variogram definition. If & $et to 1, the initial local sill will be
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calculated as the average of the local experimeragbgram points at the three
longest lag distances minus the initial local nuggféect. If ccmin andccmax have
the same value, the total sill is fixed to thatuweaduring optimization for all local
variograms, with any value f@iexcc.

flexcO, cOmin, andcOmax the indicator for allowing a variable initial nget effect
and the lower and upper limits for the local nugggéct. If flexcO is set to O the
initial nugget effect value is taken from the glblariogram definition. If it is set to
1, this will be calculated as the projection to tirvggin of the local experimental
variogram points at the three shortest lag distenfecOmin and cOmax have the
same value, the total nugget effect is fixed td tl@ue during optimization for all
local variograms, with any value fiéxcc.

nfixit : the number of structures to fix during optiminati The same number of lines
is required below for specifying the order and tgpéhe fixed structure.

fixit , andit: the structure number and structure type code.cbdes for the structure
types are: 1 for Spherical, 2 for Exponential, B@aussian, 5 for Hole Effect, and 6
for the Stable Model. The last structure type lisveéd only for the first structure.
alfamin, alfamax: the lower and upper limits for the local exponéntthe stable
variogram models. If these parameter values arsdhee the exponent of the stable
structure is fixed for all anchor point locationgrithg optimization.

nhmax: the number of maximum horizontal ranges to camstror fix during
optimization for all anchor points. The same numbérlines must be included
beneath, specifying the ranges to be controlled.

fixhmax, hmaxmin, and hmaxmax the structure number for the maximum
horizontal range to be controlled or fixed, and tbwer and upper limits for the
range value. lhmaxmin is equal tohmaxmax, the maximum horizontal range will
be fixed to that value for all anchor points.

nhmin: the number of minimum horizontal ranges to castror fix during
optimization for all anchor points. The same numbérlines must be included
beneath, specifying the ranges to be controlled.

fixhmin, hminmin, andhminmax: the structure number for the minimum horizontal
range to be controlled or fixed, and the lower apder limits for the range value. If
hminmin is equal tothminmax, the minimum horizontal range will be fixed to tha

value for all anchor points.

169



nhver: the number of vertical ranges to constrain ordixing optimization for all
anchor points. The same number of lines must bleided beneath, specifying the
ranges to be controlled.

fixhver, hvermin, andhvermax: the structure number for the vertical range to be
controlled or fixed, and the lower and upper linfdsthe range value. Hivermin is
equal tohvermax, the vertical range will be fixed to that value &l anchor points.
angfl: a file containing the previously defined localsaropy angles. The data order
in this file must be the same as the order in whibke location-dependent
experimental variograms were calculategy@amv| ocal .

iangl, iang2, andiang3: the column numbers in filengfl for the previously defined
azimuth, dip and plunge angles of the anisotrofigsalid.

nangl number of anisotropic structures with a contml@ fixed azimuth angle.
The next line must be repeated nangl times.

ivarl, anglmin, andanglmax the number of the structure to be controlledixed,
and the minimum and maximum azimuth angles. If anigland anglmax are equal,
the corresponding azimuth angle is fixed.

nang2 the number of anisotropic structures with a cafed or fixed dip angle. The
next line must be repeatedng2times.

ivar2, ang2min, and ang2max the number of the structures to be controlled or
fixed, and the minimum and maximum dip angles. ifjlamin and anglmax are
equal, the corresponding dip angle is fixed.

nang3 the number of anisotropic structures with a cafed or fixed plunge angle.
The next line must be repeateang3times.

ivar3, ang3min, and ang3max the number of the structures to be controlled or
fixed, minimum and maximum plunge angles. If anglamd anglmax are equal, the
corresponding dip plunge is fixed.

npref: the number of variogram directions with prefeerior the minimization of
the mean square error.

ipref, andrpref: the number of the preferred variogram and prefeweighting
factor.

nhvanis. the number of structures with fa ixed or conrdlnisotropic ratio between

the maximum horizontal and vertical ranges.
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» ihvanis, hvanismin, and hvanismax the number of the structure to be fixed or
controlled, and lower and upper limits for the colied anisotropy ratio. If
hvanismin value is equal tdwvanismax the ratio between the maximum horizontal
and vertical ranges is fixed.

* nhhanis: the number of structures with a fixed or congdllanisotropic ratio
between the maximum and minimum horizontal ranges.

» ihhanis, hhanismin, and hhanismax the number of the structure to be fixed or
controlled, and lower and upper limits for the colied anisotropy ratio. If
hhanismin value is equal tchhanismax the ratio between the maximum and

minimum horizontal ranges is fixed.

START OF ADVANCED OPTIONS:

— zonal Anis: Hmax., Hmin., Vert (O=no, l=ye=)

cyclicity: Hmaz, Hmin, Vert (O=no, l=yes)

Variable initial Sill (0= no., 1 = wyes). lower and upper tolerance
Yariable initial nugget effect {(0=no., l=yes), lower and upper linits
numnber of structure types to fix

structure number and structure type (6=stable variogram model)
Lower and upper limits for stable variogram sxponent

numnber of Hmax ranges to control-fix

structure number, lower and upper limits

number of Hmin ranges to fix

structure number. lower and upper linits

number of Vert ranges to fix

structure number, lower and upper limits

file with prior local anisotropic angles

column=s for local angl, ang? and angl3

nunber of azimuth angles to control-fix

structure number, lower and upper limits

number of dip angle=s to control-fix

structure number. lower and upper linits

numnber of plunge angles to control-siix

=tructure number, lower and upper limit=

number of variogram preferences

number of Hmaz-Vert ani=. to control-fix

structure numnber, lower and upper limits

number of Hmin-Hmax anis. to control-fix

0.5 1.0 =tructure number, lower and upper limit=

Figure A-10: Example of the advanced options blockf parameters forgl obfi t .
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A.4. Spatial Prediction with Location-Dependent
Statistics

The estimation and simulation programs for spair@diction with location-dependent
statistics are modified versions of previously &lale programs for kriging and
sequential simulation with global statistics. Amahg different techniques that could be
adapted for locally stationary estimation, only giey ordinary kriging and locally
stationary multiGaussian kriging have been implemm&nso far. Locally stationary
indicator kriging has not been developed mainly thu¢he difficulty of modelling the
location-dependent indicator variograms at multlpteations and for several cut-off’'s. A

locally stationary co-kriging program is also pergli Two programs are available for
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locally stationary simulatiorSGSi m_| oc for continuous variables ar&1 Si m | oc for

categorical variables.

A.4.1. Locally Stationary MultiGaussian Kriging: kt 3d_LMG

This program for locally stationary point and bloskpport estimation was developed
form the GSLIB progrankt 3d (Deutsch & Journel 1998, pp.96-100). It is able to
perform locally stationary simple and ordinary knigg and locally stationary
multiGaussian kriging with local normal score tfamsations. For multiGaussian block
support estimation, the program performs changsupport using the discrete Gaussian
model with local variograms. If none of the locatidependent parameters required for
locally stationary estimation is provided, tké3d_LMG will perform exactly as the
kt 3d program with globally stationary parameters. Theads of the required parameter
file are given below. Figure A-11shows an examplthis file.

» datfl: This is the original data file, the same as Used D\Wjen.

e idhl, ixl, iyl, izl, ivr, andiextv: the column numbers for the x, y, and z coordisate
the variable used in estimation and the collocatad stationary mean.

e tmin andtmax: all values indatfl smaller thantmin and greater thatmax are
ignored.

» |hercofl: a file containing the Hermite coefficients intelated at the resolution of
the estimation grid defined below. If this filenst provided then local normal score
transformation is not performed and the programkadam original units.

* npol andipol: the number of expansions used in the Hermite nmtyal fitting of
the local normal score transformation functions] #re column number for the first
local coefficient.

» acerr: the acceptable error in the block variance whaildimg the change of support
model.

* zmin and zmax the minimum and maximum values in the back tramséd
distributions.

» koption: if set to 0, point or block kriging of all nodesthe grid is performed. If set
to 1, cross-validation with the data datfl is performed. If set to 2, jackknifing is
performed.

» jackfl: a file with locations to perform jackknife.
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icoljx, icoljy, icoljz, icoljvr, andicoljsec the column numbers for the x, y, and z
coordinates, the variable and the collocated natiestary mean ifackfl .

idbg: indicates the debugging output level. Level @oisno debugging output. The
maximum level, 3, provides the kriging matricegetry estimated location.

dbgfl: the file for debugging output.

outfl: the file for the estimation or crossvalidationtput. If koption is set to 0, the
output is a grid file containing the estimates astimation variances in original and
Gaussian units, the p-value for the threshold $igelcby cut-off, the local change of
support coefficient and the local block supportiaace. If koption is set to 0, the
output file contains the sample x, y, and z coat#is, the true and estimated sample
values, the estimation error, the percentiles spwading to the true and estimated
values in the local distribution and some signifitcB-values of the local distribution.
nx, xmn, andxsiz. the number of blocks, the coordinate of the firlsick centre and
the size of the blocks in thedirection.

ny, ymn, andysiz: the number of blocks, the coordinate of the firlsick centre and
the size of the blocks in thedirection.

nz, zmn, andzsiz the number of blocks, the coordinate of the fioleick centre and
the size of the blocks in tledirection.

nxdis, nydis, andnzdis: the number of blocks discretization points patalb each
direction. In all these parameter values are sif pwint kriging is performed.

ndmin andndmax: the minimum and maximum number of data pointshinithe
search neighbourhood used in estimation .

noct: the maximum number of data points to considehiwiain octant of the search
ellipsoid. Octants are not used if this parameteset to 0.

radius, radiusl, and radius: the radii of the search ellipsoid in the maximum
horizontal direction, minimum horizontal directiand vertical direction.

sang sang2andsang3 the azimuth, dip and plunge angles describingtientation

of the search ellipsoid.

ikrige andskmean the kriging type and global mean valueiklige parameter is set
to 0, then simple kriging with constant mean spedibyskmeanwill be performed.

If ikrige is set to 1, then ordinary kriging will be perfarth Anikrige value of 2 is
used for non-stationary simple kriging with thedbmeans irsecfl If ikrige is set to

3, then kriging with external drift will be perfoed. If ikrige is set to 4, locally
173



stationary simple kriging with local means takeonifrsecfl is performed. When
performing locally stationary multiGaussian krigingith local normal scores
transformations, thikrige value must be set to 0.

idrift(i) , i=1,...,9: the parameters indicating the driftmie that will be used in the
trend model (Deutsch & Journel, 1998, p. 99).

itrend: if set to O, a variable trend is consideredgeift® 1, the trend is estimated. A
value of 0 must be used if performing locally statry kriging.

secft the file containing the gridded external driftriegdole or the local means at all
the locations to be estimated. This file is reqiifekrige is 2, 3 or 4.

iseccol the number of the column ecfl containing the external drift or the local
mean.

cutoff: the threshold value for reporting its correspagdd-value if locally stationary
multiGaussian kriging is performed.

nst, cOg andalfag: the number of structures, the nugget effect dedetxponent of
the stable model for the global variogram modele Rumber of structures defined
for the global variogram model also defines the bemof structures of the local
variogram models. The next two lines must be reguhadt times.

itg, ccg anglg ang2g andang3g the global variogram parameters for the type of
the structure, sill contribution of the structuraed the angles defining the geometric
anisotropy. The types of structures of the glokaiogram model are the same as
those for the local variogram models.

aag a2g, anda3g the global variogram parameters for the maximumizontal
range, the minimum horizontal range and the vdrtarage.

locvarfl: a grid file containing the location-dependentiegram model parameters.
The grid definition of this file must be the same the grid definition of the
estimation.

icOl, andialfal: the column numbers itocvarfl for the local nugget effect and the
local exponent if the stable model in the firstivgram structure is used. If any of
these column numbers is set to 0 the program alik the corresponding parameter
value from the definition of the global variogranode!.

The following two lines must be repeated for thenber of structures indicated in

the specification of the global variogram model:
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* iccl, iangll, iang2l, andiang3l: the column numbers ilocvarfl for the contribution
in the local sill, and the angles defining the laggometric anisotropy. If any of these
column numbers is set to 0, the program will tdie ¢orresponding parameter value
from the definition of the global variogram model.

e jaal, ia2l, andia3l: the column numbers in locvarfl for the local nmayim horizontal
range, the local minimum horizontal range, and ld@l vertical range. If any of
these column numbers is set to 0, the programtaklt the corresponding parameter

value from the definition of the global variogranodel.

Parameters for KT3ID 1HG

START OF FARAMETERS:
exanple. dat

o 2z 3 4 12 10
-10.0 1. 0e2l
LocalHerpol .dbg

file with data

columns for DH X, T.Z, var. =ec war

trimming limits

file with local Hermite polynomials (in columns)

36 7 nunber of hermite polynomials and column for phi{0}
0.1 acceptable error for block wariance

1 26 ninimumn and maximum value in original units

a option: 0O=grid, l=cro==, Z=jackknife

=k dat file with jackknife data

1 2 a 3 ]
1
MGkt 3d—1loc—blk . dbg
MGkt 3d-1loc-blk . out
100 2.0 4.0
1a0n 2.0 4.0
100 —398 4.0

columnns for X.¥Y.2.vr and sec war
debugging level: 0.1.2.3

file for debugging output

file for kriged ocutput

nH, KN, ES1Z

ny, ymn, yE1z

Nz . Znh, =Sl

=.v and =z block discretization
2 16 min, max data for kriging
a nax per octant {(0-3 not used)
65 .0 65.0 5.0 nagimnum =earch radii
0.0 o.o 0.0 angles for search ellipsoid
1] 0.ooo 0=5K,k1=0K, 2=non—=st 5K, 3=emdrift, d=locally =tationary

goooooooo0aD drift: %.¥.2.22.¥¥.ZE.EV.H2. 2V
0. wariable: 1. estimate tren

1}
extdrift dat gridded file with drift-mean

i
i
ra

I T T T Y Y Y T Y Y Y Y I O A A |

a column number in gridded file
] threshold for reporting local p-valus
1 0.41 1.0 nst, nugget sffect
2 0.59 0.0 o.o 0.0 it,cc,angl, ang?, angld
21.0 21.0 21.0 a_hmax. a_hmin. a_vert
locvar . out file for variogram paramseters (=ame grid)
5 columns: nugget effect, exp
g 9 i} i oo, angl, angl, angl
12 13 ] a_hma=z, a_hmin, a_wert

Figure A-11: An example parameter file forkt 3d_LMG

A.4.2. Locally Stationary Sequential Gaussian Simulation:
ultimteSGSIMv. 2.0

This new version oful ti mat eSGSI M program (Deutsch & Zanon 2002) is able to
perform sequential Gaussian simulation with localbyrmal scores transformed values
and local variogram models. A new block of paramgeter taking into account the local
normal score transformation and the local variograndels has been added at the end of
the parameter file. If this block does not existloe parameters in it are erroneous, then

ul ti mat eSGSI Mwill perform global normal score transformationdamse the global
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variogram model parameters. The other blocks ddrpaters in this file remain the same

as those for the previous version. This new versibal ti mat eSGSI M accepts only

location-dependent direct variograms. The detathef parameters in this new block for

location-dependent statistics and local normal exdransformations is given below.

Figure A-12 presents an example for this module.

ilds: if set to 0, global normal scores transformatidh be performed and the global
variogram model will be used.

ivr andivl: the rock type and variable number for which theation-dependent
parameters specified below will be used. This lamed the following lines of
parameters can be repeated for the combinationllofagiables and rock types
specified in the main parameter block. If any camakibn is missing, the program
will perform the simulation of the missing variablamber at the missing rock type
with the global parameters indicated in the tramafdion and variogram blocks.
Ihercofl: the file containing the Hermite coefficients irgelated at the resolution of
the estimation grid defined in the main block ofgraeters. If this file is not provided
then global normal score transformation is perfatraecording to the parameters in
the transformation block.

npol andipol: the number of expansions used in the Hermite rpotyial fitting of
the local normal score transformation functions] #re column number for the first
local coefficient.

locvarfl: a grid file containing the parameters of the tmradependent variogram
model. The grid definition of this file must be tkame as the grid defined in the
main block.

icOl, andialfal: the column numbers itocvarfl for the local nugget effect and the
local exponent if the stable model in the firstivgram structure is used. If any of
these column numbers is set to 0, the programtaklt the corresponding parameter
value from the definition of the global variogranode!.

The following two lines must be repeated for thenber of structures indicated in

the block of global variogram model parameterstii@ corresponding variable and rock

type.

iccl, iang1l, iang?2l, andiang3l: the column numbers ilocvarfl for the contribution

in the local sill, and the angles defining the laggometric anisotropy. If any of these
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column numbers is set to 0, the program will tdie ¢orresponding parameter value
from the definition of the global variogram model.

* iaal, ia2l, andia3l: the column numbers iocvarfl for the local maximum horizontal
range, the local minimum horizontal range, and lgeal vertical range. If any of
these column numbers is set to O, the programtakl the corresponding parameter

value from the definition of the global variogranode!.

START OF LDS
1 use location dependent statistics? (0=no. l=ye=)
roclk type., variable nunber
file with local Hermite polynomial= (in columnns)
nunber of hermite polynomials and column for phii0}
file for variogram paramsters (=ame grid)
columns : nugget effect, exp

oo, angl, angl, angl

a_hmaz, a_hmin, a_wert
rock type, wariable number
file with local Hermite polynomials (in columnns)

11

Herpol Rocll-wl dat
36 1

locvar Rockl-vl. out
5

a 9 10 11

12 13 14

21

Herpol_ RockZ-vl . dat

36 1 number of hermite polynomials and column for phii{l}
locvar RockZ—vl . out file for wariogram paramnseters (=ame grid)

5 7 columnns : nugget effect. exp

g 9 10 11 oo, angl, angd. angl

12 13 14 a_hmax, a_hmin, a wvert

Figure A-12: An example of the location-dependent tatistics block of parameters for
ultinmateSGSIMv. 2. 0.

A.4.3. Locally Stationary Sequential Indicator Simulation:
sisiml oc
This program for sequential indicator simulationthwilocal proportions and local
variogram models is a modification of teesi m_| mprogram (Deutsch & Journel 1998,
pp.175-180). The parameters of the new versiorabmest the same as fer si m I m
The only difference is that the new block of partarefor specifying the files containing
the location dependent indicator variogram models heen added at the end of the
parameter file. An example of the complete paramfieeis shown in Figure A-13. The
following parameter lines in the block for the ldoa-dependent variogram models must
be repeated for the number of categories spedtfi¢gide second line of the parameter file.
» locvarfl: the grid file containing the parameters of theakion-dependent variogram
model. The grid definition of this file must be tisame as the grid defined for
simulation. If this file is missing, the global idtor variogram model parameters
will be used for the corresponding category.
e icOl, andialfal: the column numbers ilocvarfl for the local nugget effect and the
local exponent if the stable model in the firstivgram structure is used. If any of
these column numbers is set to 0, the programtaklt the corresponding parameter

value from the definition of the global variogranodel.
177



Parameters for SISIM_ loc

START OF PARAMETERS:
i] l=continuous{cdf ). O=categorical(pdf)
number thresholds-categories
thresholds ~ categories
global cdf -~ pdf
file with data
columnns for X,.Y.Z., and wariable
file with gridded indicator prior mean
trimming limits
ninimun and mazimum data value
lower tail option and paramster
niddle option and parameter
upper tail option and paramnseter
file with data
colunns for wariable, weight
debugging level: 0.1,2.32
file for debugging output
file for simulation output
numnber of realizations
n¥, ¥nn, = s1=
ny.ynn, vEiz
nz.Znn, Zsiz
randomn numnber seed
naxZimum original data for sach kriging
mnaZimum previous nodes for sach kriging
az=lgn data to nodes? (0=no, l=syes)
nultiple grid search? (0=no,l=yes), num
nazimumn per octant (0=not use=d)
naximun search radii
angle=s for search ellip=oid
z=ize of cowvariance lockup table
O0=full IK. l=median approx. (cutoff)
One n=t, nugget effect, =stable model exp
it,cc.angl,ang2, angl
a_hmax, a_hmin. a_vert
One n=t, nugget effect, =stable model exp
it,cc.angl,ang2, angl
a_hmax, a_hmin. a_vert

2

o1

0.7813 02187

rdcDH=200 . cut

2 3 08

LDH_TIFac.dbg
1. 021

.0 1.0

[ e e )
[
oo o

rdcDH=200 . out
a 9

3
=i=im_loc. dbg
zisim_loc. out

22 300.0 200.0
24 —gono.0 200.0
1 1.0 10.0
69069

3

oo o T

goo.o0 0 25000 2.0

130.0 0.0 0.0

50 25 1

] 1.0

1 0.o0 1.0

2 1.00 130.0 0.0 0.0
E00.0 200.0 10.0

0.o0 1.0

1.00 130.0 0.0 0.0
E00.0 200.0 10.0

1
2

START OF LDVs

vELICO . sum — Cat 0: file for wariogramn paramncsters (same grid)
5 7 — columnns: nugget effect, esxzp

g 9 10 11 - cc,angl,ang?, ang3

12 13 14 - a_hmax. a_hmin, a_vert
wiLlICl =un — Cat 1: file for variogram paramnsters (=same grid)
5 7 - columns: nugget effect, sxp

a 9 10 11 - oo, angl, ang?, angd

12 13 14 - a_hmaz, a_hmin. a_vert

Figure A-13: An example parameter file forsi si m | oc.

The following two lines must be repeated for thenber of structures indicated in
the definition of the global indicator variogram daeb parameters for the corresponding
category.

* iccl, iangll, iang2l, andiang3l: the column numbers ilocvarfl for the contribution

in the local sill, and the angles defining the laggometric anisotropy. If any of these

column numbers is set to 0, the program will tdie ¢orresponding parameter value

from the definition of the global variogram model.

» iaal, ia2l, andia3l: the column numbers iocvarfl for the local maximum horizontal
range, the local minimum horizontal range, and ltd@l vertical range. If any of
these column numbers is set to O, the programtakl the corresponding parameter

value from the definition of the global variogranode!.
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Appendix B
Nomenclature

B.1. List of Abbreviations

cdf
ccdf

KT
LDIQR
LSMGK
LSOK
LSSGS
LSSIS
LSSK
MSE
MGK
RAM
OK

pdf

RV

RF

SK
SGS
SIS

cumulative distribution function

conditional cumulative distribution function
kriging with a trend model
location-dependent interquantile range
locally stationary multiGaussian kriging
locally stationary ordinary kriging

locally stationary sequential Gaussian sitron
locally stationary sequential indicator diaions
locally stationary simple kriging

mean square error
traditional multiGaussian kriging
random access memory
traditional ordinary kriging

probability distribution function

random variable

random function

traditional simple kriging

traditional sequential Gaussian simulation

traditional sequential indicator simulation
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B.2. List of Most Important Symbols

C(h)
C(h)
C(h;0)
Cov

D
d(u;0)

E

exp

&

F(u;2)
F(u; z| n(u))
= (u;z0)
F(2)

G(y)

g(u; yI(m)
y(h)

y(h)

y(h;0)
y(h;0)

h

Hq(Y)

I (u;2)

Ag (1)

/]L(YLSOK) (0)

global covariance of the RF
experimental global covariance

experimental location-dependent covariance

covariance function
adomain in space

Euclidean distance between a sample at locatiand an anchor point at

locationo.

expected value

exponentiation function

Gaussian kernel background value

cumulative distribution function &f(u) for a cutoffz

ccdf at a locatiomn givenn(u)

experimental univariate location-dependent priirfor a cutoffz
experimental univariate global cdf for a cutoff

standard normal Gaussian cdf

conditional pdf in Gaussian units

global variogram of the RF

experimental global variogram

location-dependent variogram model

experimental location-dependent variogram

2-pointdistance or lag vector in Euclidean space

g Hermite polynomial

binary indicator for a cutoff z

estimation weight assigned to a sampie relation tou

locally stationary ordinary kriging weights assgnto sample to sample

o in relation to locatiom
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A% (0)

A9 ()

()

m,, (0)
Max
max
Min
min
N(h)

n(u)

Prob

R(u)
p(h)
A(h)
p(h;o)
S(0)

locally stationary simple kriging weights assignedample to sample
in relation to locatior

ordinary kriging weight assigned to sampli relation to locatiom

simple kriging weight assigned to samgplin relation to locatiom

global mean of the RF
experimental global mean

experimental global tail mean

experimental global head mean

local mean

experimental location-dependent mean
experimental location-dependent tail mean
experimental location-dependent head mean

maximum function

maximization

minimum function

minimization

number of sample pairs separated by veutor

total number of samples within a domain

number of samples within a neighbourhood cedtatdocatioru
a coordinate vector corresponding to an anchort pogation in 1-D, 2-D
or 3-D Euclidean space

number of anchor points within a domain

probability value

probability function

number of Hermite polynomials

residual RF
global correlogram of the RF
experimental global correlograms

experimental location-dependent correlograms

experimental location-dependent variogram sill

Gaussian kernel bandwidth or standard deviation
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0.2

e
%(0)
4%,(0)
62,(0)
oz ()
0tso(0)
)
Tk (U)
a8 (U)

t

u

uo

¢y (z,0)
¢, (y;0)
%(0)
Wa

Var
v(0)
Y(u)

Y *(u)
y(u)
y*(u)
Z(u)
Z*(u)
z(u)

z*(u)

ZzSMGK(O)

global variance of the RF

experimental global variance

experimental location-dependent variance
experimental location-dependent tail variance
experimental location-dependent head variance
variance of the estimation error

locally stationary ordinary kriging variance
locally stationary simple kriging variance
ordinary kriging estimation variance

simple kriging estimation variance

mixture rule exponential
a coordinate vector corresponding to a locationlib, 2-D or 3-D

Euclidean space

vector that joins a sample at locatisand an anchor point at location
location-dependent normal scores transformatiostfan
location-dependent normal scores back-transfoondtinction

g location-dependent Hermite coefficient

declustering weight assigned to the sanaple
variance function

block centered i

a random variable in Gaussian units

RV estimator in original units

a Gaussian transformed attribute value at looati
estimated value in original units at a location
a random variable in original units

RV estimator in original units

an attribute value at locatianin original units
estimated value in original units at a location

locally stationary multiGaussian kriging estimator
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Z{ 50k (0)
Z(5sx(0)
Zok (U)
2,(0)
2,(0)
Zsk ()
@(u;0)

a(u)
@(u;0)
a(u;0)

i (U;0)

a(u,u+h;0)

locally stationary ordinary kriging estimator
locally stationary simple kriging estimator

ordinary kriging estimator

location-dependent p-quantile in original units

experimental location-dependent p-quantile igiagl units

simple kriging estimator
distance based 1-point weight assigned to a samiplecationu in

relation to the anchor point at location

average of distance weights assigned to a sarhjpbeation u in relation

to all anchor points

distance based 1-point weight after correctioni®égiustering weights
distance based 1-point weight after standardizatio
distance based 1-point weight obtained with a Ganskernel with

dynamic bandwidth

distance based 2-point weights assigned to a sapgil separated by

vectorh and in relation to an anchor point at location

«(u,u+h;o0) standardized distance based 2-point weights
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