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Abstract

Optimal resource allocation is an important industrial problem. In the mining
industry where the truck-and-shovel technology is used, allocating an optimal
number of haul trucks is essential in reducing the overall mining cost. The
objective of this thesis is to investigate the use of stochastic programming
techniques in the truck allocation problem. Two stochastic methods were
considered: recourse-based and chance-constrained based. The recourse method
is not suitable because the truck allocation is not a two-stage problem and
requires heavy computation. The thesis also studies the benefits of the
implementation of the chance-constrained method with parameter update. These
benefits include meeting production with a specified degree of confidence and

the ability to recover from negative changes in mining environment.
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1. Introduction

The aim of the thesis is to investigate methods to find an *“optimal” solution
to the truck allocation' problem, while recognizing the uncertainty that is
present in the data supplied to the optimizer. Current truck allocation methods
presume certainty in the data supplied to the decision system (e.g. truck
productivity report, haul distance, etc.) and the inefficiency of the truck
allocation is due to the conservatism of the mine planners in dealing with

various uncertainties in the allocation problem.

1.1. Syncrude Operation

In Syncrude, or in any open-pit mine operation, the truck and shovel
technology is predominantly used to mine ore and transport it to other locations
for further processing. Shovels are deployed to load materials onto large trucks,
which haul the material to various destinations. These large mobile pieces of
equipment operate continuously to feed ore to the plant. Figure 1.1 illustrates the
process of moving the ore in the Syncrude mine operation. The figure does not
show the hauling of waste material, which is identical to the ore except that

there is no restriction on the receiving capacity.

i - Sw_
Ore Plts ﬁ w%

D™ 5

Ore Crushers

‘Te Extraction

Surge Pile with restricted cupuacity

Figure 1.1 - Ore handling operation with trucks and shovels



Syncrude mine materials are categorized into two types: ore and waste.
Waste material can be further sub-divided into inter-burden® and over-burden’.
Overburden resides on top of the ore body and it must be removed to make way
for the ore to be mined. Inter-burden layers lie close to the ore body below the
overburden and they too have to be moved away before the ore can be retrieved.
However, due to the location of the inter-burden, the ore shovel can also act as a
waste shovel. Except when used as the construction material to build haul road,
all waste material is transported to dumping areas while ore is transported to the

ore crusher.

Ore usually has higher hauling priority than waste because it is required as a
continuous feed into the Extraction plant for the running operation. This priority
difference will be reflected in the truck allocation process in that the production

constraint is placed on the rate of ore delivered by trucks.

Efficient use of haul trucks translates to fewer trucks being required for the
hauling operation, resulting in lower maintenance cost as well as deployment
cost, thus reducing overall mining costs. Current truck allocation is not always
optimized, as it is calculated based on the production targets and an estimate of
truck productivity for a given haul distance. Extra truck capacity is incorporated
to account for uncertainty (e.g. truckload, truck cycle time) and upsets. The
solutions obtained this way, work well when they are derived by an experienced
planner, but as the operation becomes more integrated and the surge* capacity is

decreased the truck allocation task will become more difficult. Experience

! Truck allocation is the process of determining a number of trucks required to haul mine material.

* This oil sand layer contains ore material with low bitumen content. They are either used to build hauling
roads or hauled to the waste dump.

3 The layers of sand. gravel and shale. which overlie the oil sands

* The location where the delivered ore is accumulated before it is sent to the Extraction plant, and the
bitumer: is extracted from the oil sand. Bitumen is a molasses-like substance. which comprises 6-14% of oil
sand. Even after extraction. bitumen is still too thick for any practical purpose and must be upgraded to
synthetic crude oil.

W



combined with appropriate decision support tools could provide more efficient

truck allocation and cost reduction.

The mine operation can be divided into two main stages: planning stage and
operating stage. The planning stage can be further broken down into long-term
plan and short-term plan. Mine planning is done on an annual, quarterly,
monthly or daily basis. The mine planners are responsible for determining the
total number of trucks needed for a given production requirement. The number
of trucks is determined using a special formula, which is derived with the curve-
fitting method using historical data and operation experience. During the
operation, the truck dispatcher only uses this truck solution as a guide and is free
to alter the truck solution appropriately.

The focus of this study will be on the daily plan, which includes the
identification of the working shovels and the allocation of haul trucks to these
shovels. Top priority is to allocate enough trucks to satisfy the ore demand, i.e.,
rate of ore (tph) to Extraction. Hauling waste is a secondary but also important
task, since the waste must be moved eventually. In general, the daily plan
identifies the amount of material to be moved in the mine for that day and

allocates resources to fulfill this hauling requirement.

An optimization study on the truck fleet was performed in 1991 [Coward,
1991), which reported the benefit of optimizing the truck fleet deployment using
linear programming. The truck-hauling problem was implemented as a linear
deterministic network flow model, in which shovels and dumps were source and
destination nodes respectively. The objective was to maximize the amount of
material moved. This material included rejects, ore and overburden in
decreasing order of importance. The optimal solution reported by Coward
[1991] was associated with the total number of trucks allocated, but rather with
the real time deployment of a fixed number of trucks in a specific road network.
In contrast, this thesis work focuses on the task of allocation truck resource to
haul ore. The desired optimal solution corresponds to a minimum number of

trucks required to satisfy the ore-hauling requirement.



1.2. Thesis Objective

The objective of this thesis is to formulate an appropriate optimization
model and investigate the solution techniques that can be used for the truck

allocation problem with uncertainty in the Syncrude mining operation.

1.3. Thesis Scope

This thesis is concemed with applying a stochastic solution method to
solving an optimization problem for the truck allocation. Current allocation
methods are not optimized and rely mostly on certain informatiorn such as
average haul distance, average truck productivity information, etc. The number
of trucks, which is found as fractional numbers are approximated and deployed
as discrete numbers. Inefficiency in the truck deployment is tolerated in
exchange for the assurance of the absolute satisfaction of the production
constraint. Planners are more willing to accept inefficiency in truck deployment
than to face the risk of not meeting the ore production constraint due to the

uncertainty in the process.

It is important to work with a deterministic optimization model of the
truck allocation problem to establish the basic understanding of the problem as
well as to build a baseline for the subsequent comparison to the stochastic
model. The deterministic model, as presented in Chapter 2, will lay an important
framework of the truck allocation problem as a whole. The optimal truck
solution will be determined. In addition, the sensitivity of the solution to some
model parameters will be examined, with a focus on the most likely uncertain

parameters in the model.

Solving optimization problems with uncertain parameters requires the
application of stochastic programming. The field of stochastic programming is
based on the theory of probability and has been applied successfully in many
industrial applications. Chapter 3 will present a brief introduction to stochastic
programming and two primary stochastic methods that are used to solve

optimization problems with uncertainty. Since each of the two methods will

4



have both strengths and weaknesses, the decision to use either technique will be
driven by the nature of the application. Comparison of these two techniques will
be made in the context of the truck allocation problem and the selected

technique will be used consistently for the remainder of the thesis work.

The work in both Chapters 2 and 3 is based on a simplified model. In these
chapters, the main production constraint is to meet the minimum required ore
rate to Extraction. The truck models here do not include the surge pile from

which the ore stream to Extraction actually originates.

Chapter 4 studies the truck allocation problem in the context of a parameter
update approach. In this study, the multi-period optimization problem will be
solved for a truck allocation solution, which in tum, will be implemented in a
simulated environment. Statistical information gathered during a simulation
period will be used as input to the optimization problem in the next period. The
aim of the study is to investigate the mechanism with which uncertain
information, as it is revealed with time, can be used in the decision-making
process in the future. Modification is made to the model to include the effects of
the surge pile, whose function is to regulate the ore rate flowing to Extraction.
This addition of the surge pile will make this model more realistic and

representative of the actual operation.

Chapter 5 contains the summary of the study and concludes with the
suggestion of what method that is most appropriate for the truck allocation

problem in Syncrude.

Although the scope of thesis is limited to the optimization problem for the
truck allocation task, the stochastic programming technique being covered can
be used in many industrial optimization applications, which are characterized
with uncertainty. While Stochastic Programming have been used successfully in
many industrial problems, optimization practitioners must still investigate
individual problem and decide if the stochastic technique is more beneficial than

the commonly used deterministic programming technique.



1.4. Thesis Contribution

The main contribution of this study includes the formulation of an

appropriate model for the truck allocation problem. Other important contribution

is to determine a suitable stochastic formulation for this class of allocation

problems. Additional benefits can also be gained from leaming the common

problems, often encountered in the process of finding for the optimal solution,

and methods that can be used to overcome such problems.

1.5. Thesis Conventions

240T, 320T,
360T

Tph

J

Short form reflecting the capacity-based category of
trucks, e.g., 240T trucks, 320T trucks, or 360T trucks

Tonnes per hour

Truck category index based on truck capacity: j = 1 for
240-Tonne trucks, j = 2 for 320-Tonne trucks, j = 3 for
360-Tonne trucks

Time period (hours)

cycle time of the waste trucks of type j (minutes)
cycle time of the ore trucks of type j (minutes)
waste truckload of truck of type j (Tonnes)

ore truckload of truck of type j (Tonnes)

Minimum amount of waste required to be moved over the
time period

Truck resource limitation of type j

Part of the solution variables: number of ore trucks per
hour for truck of type j.

Part of the solution variables: number of waste trucks per
hour for truck of type j.

Left-hand side coefficient matrix in the linear model
Right-hand side matrix term in the linear model
Cost coefficient matrix term in the objective function

Vector of confidence limit used in the chance constrained

6



model

c Matrix of standard deviations of the associated uncertain
parameters in the chance constrained model
F(z) Cumulative  distribution  function  (monotonically
increasing)
PL] Probability of [.]
Nu.o?) Normal distribution with mean ux and standard deviation
o



2. Deterministic Truck Allocation

Linear programming has a long history in the field of mathematical
programming, and is widely applied to many industrial applications due to its
simplicity. An optimization application usually starts with the formulation of the
linear model, which is then solved for desired decision variables. The
application results are then analyzed to determine if the model truly reflects the
behavior of the actual process. This chapter deals mainly with the formulation of
the linear deterministic model for the truck allocation problem, while leaving the
discussion beyond the linear deterministic model for later chapters. A brief

theoretical background on linear programming concept is given in Appendix A.

2.1. Truck Allocation Model Development

Shovels Ore
OO = = = = = === Dump/Crusher
Pit Ore delivered by Trucks

(discontinuous feed)

Extraction via conveyor beft
Plant transport
(continuous feed)
contraied by Surge pile
Extracton (6000 Tonnes)
Figure 2.1 - Typical Ore Flow

Ore shovels at various locations throughout the mine load oil sand onto
trucks to be hauled to the crusher, whose job is to crush the ore into smaller
pieces (Figure 2.1). The ore is then moved via the conveyor belt to the surge pile
and on to the Extraction plant. The surge pile is an intermediate storage of oil
sand and acts as a buffer between the Extraction plant and the Mine. In the Base
Mine, the surge pile was large and able to supply enough oil sand to Extraction
so that the Mine and Extraction could act relatively independently. The current

8



surge pile in the North Mine is much smaller and can supply ore to Extraction
for about 20 minutes at the maximum rates of 12000 tph from the normal
operating point of 80% with no feed from the Mine. As a result, in the North

Mine, the Extraction operation is more closely coupled with the mining process.

Parallel with the ore delivery to Extraction is the removal of waste material
(over-burden and inter-burden). Waste material is loaded by shovels onto trucks
and hauled to dump locations. Waste hauling requires the same valuable truck
resources and is therefore, a major cost component in the hauling process
(approximately one volume unit of waste must be moved to recover one volume
unit of ore). While the timing for the removal of the waste material is not as
important as the timing of the delivery of oil sand, it still needs to be removed so

that the ore can be mined.

Due to the flexibility in waste removal, this operation acts as a buffer for the
ore delivery by releasing trucks when they are needed to ensure production and
making profitable use of equipment when production is constrained upstream of
Mining. Since the ore is processed by a continuous system with only a limited
surge capacity, the ore delivery must be at relatively constant rate. For this
reason the production constraints used in this formulation are based on an hourly

ore target which is set and controlled by Extraction.

The waste is deposited in dumps and the goal is to move as much waste
with the remaining trucks as possible. No constraints on rates or variability are
imposed on a shift basis. However, there will be delays at dumps as they are

leveled and prepared.

For the allocation of trucks for upcoming shifts, the best estimate for the
demand of Extraction is a constant hourly rate for the entire shift. Unforeseen
changes from this estimate cannot be predicted and will need to be
accommodated by the dispatcher and the panel operators. If there are planned
changes in the extraction demand then the demand constraint can be easily
modified.



Ore Showis: 01,02,03
Waste Showels: W1, W2

Dump |

Figure 2.2 - A Simple Mine Layout

A simplified representation of the mine plan information is presented in
Figure 2.2. This figure shows that ore is brought to the crusher from different
locations over varying distances. Four shovels are designated to mine material
either ore or waste (Ol, 02, O3, W2) while one shovel (O4/W1) handles both
materials. Ore trucks will be allocated to haul ore between this ore shovel group

and the crusher. The remaining trucks are used for waste transport.

Ore Ore Trucks
Shovel

Production Constraints:
Ore: Hourty Ore Rate > Min. rate
Waste: Total Waste > Min. Amount
Resource Constraint:
Sum of all trucks < fleet size

Goal: Allocate trucks to haul matenal to
meet constraints but at a minimum cost

Truck operating cost is caiculated dy the hours

Figure 2.3 - Elements of a Truck Cycle
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Figure 2.3 shows the states of a haul truck for a complete cycle and it is
applied to both ore trucks and waste trucks. The model of the cycle is
appropriate for trucks moving between a single shovel and crusher or between
multiple shovels and a single crusher depending on the configuration specified
by the dispatcher. For simplicity of presentation the model is shown with only
one shovel in each cycle with two groups of shovels: ore shovel group and waste

shovel group.

2.1.1. Model Simpilification & Limitations

This chapter is focused on the formulation of a simple truck allocation
model so that a quick assessment of the optimization application can be
established. This model follows the simplified structure outlined previously and
while it does not reflect all the complexity of the actual mine haulage operation,
it is representative and its simplicity allows clear demonstration of the
optimization problem. The simple deterministic optimization problem presented
here will serve as a good base for the subsequent stochastic formulation, which
will be considered in the future work. The goal is not to construct the model that
matches the exact operation, but rather to show the benefits of solving the
optimization problem, to indicate why it is important to account for uncertainty,
and finally to identify the additional benefits that can be gained by applying

stochastic solution methods.

The objective of the truck allocation problem is to determine the optimal
number of trucks to haul oil sand and waste materials for a given mine plan such
that ore production is satisfied and waste removal maximized. This is not the
only possible formulation for the optimization objective that could be used;
however, such an objective matches the current truck allocation practice
reasonably well. Trucks contribute to the cost of producing Syncrude Sweet
Blend whether or not they are actually being used. The first priority is to
allocate truck to haul ore to meet the production demand specified by the
downstream Extraction plant. The remaining trucks are allocated to haul waste.

One possible truck allocation solution corresponds to a maximum truck resource

11



left to haul waste material. This resource quantity is measured as the amount of
waste material (in Tonnes) that can be hauled by the remaining trucks after the
required number of trucks are sent to haul ore. The constraints of this problem

can be generally classified into production constraints and resource constraints.

The Extraction plant controls the rate at which ore is pulled from the surge
pile. This hourly rate (Tph) as specified by Extraction is the main ore constraint
that the mining operation must satisfy. The goal of the truck allocation group is
to assign just enough trucks to deliver the required ore tonnage. Extra trucks will
provide greater assurance of meeting the ore constraint at the expense of the

higher overall cost.

In this model, truck resource is subdivided into 3 fleets of trucks based on
their loading capacity: 360T, 320T and 240T trucks. The 240T truck fleet is the
oldest but also the largest while the 360T fleet is newest but smallest. These
types of trucks are different in the cost of maintenance, mechanical
performance, and loading capacity. But for the purpose of simplicity, only the

difference in their loading capacity is considered in this thesis work.

One of the most important elements in the allocation problem is the time
component, which is modeled as the truck cycle time. This cycle time is the
summation of all elapsed time periods of the stages in a complete truck cycle.
Figure 2.3 enumerates all the stages that a truck has to go through in a cycle.
The truck cycle time typically includes the loading time at the shovel, traveling
time (empty and full), dumping time, queuing time (both at shovel locations and
at dump locations). The loading time depends on the capacity and efficiency of
the operating shovels as well as the truck capacity. The traveling time depends
on a number of parameters such as the driving habits of the driver, the truck
speed. the road distance, the road condition, the weather, the weight of the
payload, and the health condition of the truck. The queuing time depends on the
number of deployed trucks and truck payload. All of these elements combine to

determine the ultimate truck cycle time.

In the first simplification, the truck cycle time is modeled as a constant

parameter, which is extracted from the online truck dispatch system. Average
12



truck cycle times were collected from the WENCO?® database during a selected
time period and used as a representative cycle time in this model. Although
truck cycle time varies among the trips for every single truck in the fleet, only an
average cycle time is modeled and used in the allocation problem. One cycle

value is used for the ore trucks and one for the waste trucks.

2.1.2. Production Constraints

The most important production constraint in the problem is to satisfy the
hourly ore demand (tph) specified by the Extraction. Trucks are allocated to
ensure consistent satisfaction of this demand. To some extent, the surge pile can
help maintain a steady feed of ore; but due to its small size, the effect is
negligible. Any disruption in the amount of ore delivered by haul trucks will

quickly translate to operational problems in the Extraction plant.

The second production constraint, with lower order of importance, is the
waste handling and movement. While the ore constraint is hourly based, this
waste constraint is usually given over a longer time period (e.g., 12-hour shift or
days). As a result, this waste production constraint is more flexible with respect
to truck requirements. This is particularly helpful when truck allocation is done
over a period time where there is a shortage of truck resources. As such, trucks
can be temporarily used for ore hauling to meet the ore demand while the waste
movement can be fulfilled at a later time when the problem of truck resources is

resolved.

2.1.3. Resource Constraints

The haul trucks are allocated from a fixed pool of trucks. In practice, truck
shortages can be resolved through renting of additional trucks from contracting

companies. However, the work of this thesis does not include this renting

> WENCO dispatching software system is designed by Wenco International Inc. Further information about
the product and company can be found at http://www. wencomine.com
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option, but rather imposes an upper bound limit on the truck resources that can
be allocated.

2.2. Formulation of Objective Function

The objective function can be formulated in many ways: minimize costs,
maximize profit, maximize production, maximize truck utilization, etc. Each
formulation has its advantages and drawbacks. The objective of the allocation
problem is to maximize the waste removal while satisfying the ore requirement
set by Extraction. Adoption of such an objective is based on the fact that the ore
cannot be overproduced and stored and moreover, this objective closely reflects
current operating practice. Objectives based on cost were investigated but it was

difficult to formulate the waste constraint using this criterion.

2.3. Linear Programming

A simple formulation of the truck allocation problem is:

.. 60
maximize H Z — Ly, xy; (Tonnes)
7 Tw
Subject to
60
Ore Constraint —_ 2 Lyxy 2T Tph
To 7
Minimum Waste z 6—0-Lw\' >W Tonnes/Period
Constraint T Ty, 17w " evle
Resource Constraint Xo; T Xy; <R ] For j=1,23

where H denotes the time period (hours); 7,7, ,L,;,L, represent the truck

cycle time (minutes) and the truckloads (Tonnes) of the waste trucks and ore

trucks respectively. W_corresponds to the minimum amount of waste material
required to be moved over the period while R, is the truck resource constraint
for trucks of type j. Finally, the non-negative decision variables Xg, » Xy; denote

the number of trucks per hour that are required. Three different types of trucks

14



are considered in the model with j being the index reflecting the truck type (e.g.,
1,2,3 corresponds 240T, 320T, 360T trucks respectively).

The presented linear optimization model, which has 6 degrees of freedom,
is based on all deterministic parameters. The Simplex method [Dantzig, 1955]
can be used to solve this problem and has been widely implemented in computer

software.

2.4. Deterministic Results

The numerical truck solution is obtained by solving the linear optimization
problem in the GAMS® software environment. While the number of trucks,
which is the decision variables in this problem, does not reflect the actual
mining operation, it helps establish a useful basis for subsequent optimization

studies.

2.4.1. Model Parameters

Table 2.1 summarizes the data used to solve the simplified deterministic
optimization problem. The truck cycle times are assumed to be constant over the
time period of interest. Truckload is assumed to be equal to the rated capacity
and constant throughout the period. The case data being used in this study also
assumes an over-trucking condition, that is more than enough trucks are

available to satisfy the ore requirement.

® The General Algebraic Modeling System (GAMS) is specifically designed for modeling linear. nonlinear
and mixed integer optimization problems. The GAMS software provides users with a programming
environment where they can construct optimization models and solve for them using a number of well-
known mathematical solvers. The GAMS system is equipped. by default. with a certain number of standard
solvers. which are capable of solving linear and nonlinear models. One of the main strength is its
adaptability to work with new solvers. Further detailed information about GAMS can be found at

hitp://www.gams.com
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Ore Truck Cycle Time Ty = 25 minutes

Waste Truck Cycle Time 7, = {35’30,25},,,,',,,,,“
Deterministic truckload (in order of 240T, L, ={220,290,327) Tonnes

320T. 360T trucks)
Ly, ={220,290,327} Tonnes
Hourly Ore Constraint (Tph) T = 7,000 Tonnes
Minimum Waste Constraint during the W =60000 Tonnes
riod m
Time Period H = 12 hours
Truck Fleet Size (240T. 320T, 360T) R, ={18,9,5}

Table 2.1 - Model Parameters (Deterministic Linear Model)

2.4.2. Resuits

The optimal solution of the linear deterministic truck problem is shown in
Table 2.2. It is noted that the number of trucks is found as a continuous number.
Although this optimal solution is not deployable due to the fractional number of
trucks, this continuous, but “relaxed™ solution does reveal approximately where
the discrete truck solution lies. The corresponding GAMS program that
generated the results in Table 2.2, 2.3, and 2.4 is listed in Appendix G1.

240T Trucks 320T Trucks 360T Trucks
Ore Trucks 13.26 0.0 0.0
Production Ore Rate 7.000 Tph
Maximizing waste 131,191 Tonnes

(240T: 4.74. 320T: 9.00, 360T: 5.00)

Table 2.2 - Continuous Seolution

The optimal solution to the truck allocation problem, as shown in Table 2.2,
is not realistic because it allocates fractional trucks. Another simplifying
assumption is the fact that the truck cycle time is constant in this optimization
run. Constant truck cycle time does not account for realistic events and
conditions that occur during a complete truck cycle. These components include
the effect of the road conditions, road distance, mechanical condition of the
trucks, which all affect travel time. The truck cycle time is also affected by other
time components such as the time trucks are queuing at the shovels, at the

dumps, etc. This truck allocation model does not fully reflect the actual process
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as the current truck allocation also takes into account other issues such as shovel
capacity, ore grade requirement, etc. Yet, it still can be used as a good basic

model for future studies with added realistic components.

Table 2.3 shows a more realistic solution with the addition of rounding to
the fractional solution found in Table 2.2. The corresponding remaining truck
resource is 127,831 Tonnes. However the values in Table 2.3 are more practical
than those in Table 2.2. The difference between the results in Table 2.2 and 2.3
does not appear to be significant. This suggests that it is possible to solve the

problem with continuous variables and to round up the fractional solutions as

required.
240T Trucks 320T Trucks 360T Trucks
Ore Trucks 14 0 0
Actual Ore Rate 7.392 Tph
.. 127.831Tonnes
Maximizing waste (240T: 4, 320T: 9, 306T: 5)

Table 2.3 - Discrete Solution (Continuous optimizer + Rounding)

The same model can be resolved using a mixed-integer’ solver to obtain a
more efficient result (Table 2.4) compared to the rounding method, which is

easy but inefficient. The drawback is an increased computational requirement.

240T Trucks 320T Trucks 360T Trucks
Ore Trucks 12 1 0
Resulted Ore Rate 7.032 tph
Maximizing waste 129.922 Tonnes

(240T: 6, 320T: 8. 360T: 5)

Table 2.4 - Discrete Solution (Discrete Optimizer)

The truck allocation based on the results from solving the continuous
problem yields the highest efficiency of truck usage. This allocation is
impractical since a fractional number of trucks cannot be allocated. In practice,
these fractional numbers are rounded up to the next closest integer, reflecting the
actual, practical number of trucks to be allocated for the ore hauling
requirement. Table 2.4 clearly shows that it is more efficient to implement the

solution obtained by solving the discrete optimization problem directly.

7 Mixed-Integer optimizer involves both continuous and discrete quantities in the calculation.
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However, the focus of the current chapter is on the initial deterministic truck
model with continuous truck solution and the benefit of working with discrete
model is briefly mentioned without further investigation. The discussion on the
formulation of the discrete truck model and its corresponding solution methods

will be covered in Chapter 4.

127.831 Tonnes 129,922 Tonnes 131,191 Tonnes

L
Direction of maximum truck
alfficiency (WasteTonnes)

Solving Continuous Solving integer Solving continuous

problem + Rounding problem (Table 2.4) problem (Table 2.2)
method (Table 2.3)

Bractical, but least Practical & efficient Impractical
efficient & currently but currentiy not
applied used

Figure 2.4 - Solution Summary of The Allocation Problem

2.5. Sensitivity Analysis Results

The remaining part of this section will focus on the sensitivity analysis
based on the deterministic linear allocation truck model that corresponds to the
results in Table 2.2. The sensitivity data, which is obtained as part of the GAMS
results, is shown in Table 2.5. The marginal values show how sensitive the

optimal solution is to certain model parameters.
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240T Trucks 320T Trucks 360T Trucks
(x<18) (x<9) (x <8)

Ore Trucks 13.26 0.00 0.00

Max Amount of waste 131,191 Tonnes

that can be moved (4.74 240T. 9.0 320T. 5.0 360T)

Active Constraints Marginal Values®

240T truck Resource 4,526 Tonnes/truck (upper limit)

320T truck resource 6.960 Tonnes/truck (upper limit)

360T truck resource 9.4 18 Tonnes/truck (upper limit)

g:urly Ore Production -8.571 Tonnes/Ore Tons (lower limit)

mand

Table 2.5 — Optimal Truck Solution (Linear Det. Model)

Since changes are assumed to be small enough that no new constraints
become active. it is possible to predict the effect of these changes to the overall
objective function value without solving the optimization problem. At the
optimal solution, the truck resource constraint, and the hourly ore demand
constraint are active. Therefore, the addition of one more 240T truck to the
operating fleet results in an extra 4,526 Tonnes of waste material that can be
handled in the hauling operation. Similarly, 1 320T truck and 1 360T truck
correspond to an extra 6,960 Tonnes, and 9,418 Tonnes respectively. Also, if the

hourly ore demand is increased, fewer trucks are available to haul waste.

It is found that each one-tonne increase of the hourly ore demand will
translate in an amount of 8.57 Tonnes of waste material that is not hauled by
waste trucks. An increase in ore demand corresponds to more truck resource
required to haul ore, leaving less truck resource for waste hauling. (Caution
should be exercised in interpreting these values as they correspond only to the

model in this study).

% These marginal values are often generated as the output of the optimizer. They provide some indications
of how sensitive the objective function value is to the certain model parameters. In linear models. the
marginal values are only meaningful for active constraints (on the constraint boundary).
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Changes to the ore

Solution:
(240T.320T.360T}

truckload in tons 200 Toanes | 210 Tonnes 220 Tonnes | 230 Tonnes | 240 Tonnes

(240T7) l;':ta_r

Truck resource left ”;‘ =

for waste handlin

(T yand T gk 123.785 127,488 131.191 134.894 138,597 ?‘“‘kﬁ |

S ‘l’“l'_‘es and 1ruck | (1458.00) | [13.89.00] | [13.2600] | (126800 | (12.1500] | TrUe
olution :

[240T,320T.360T)

Changes to the ore

truckload in tons 270 Tonnes | 280 Tonnes 290 Tonnes | 300 Tonnes | 310 Tonnes

(320T) Linear

Truck resource left 3:;‘ =

for waste handlin I

(T yand T gk 126.871 129,031 131,191 133.351 135511 }"’"“ﬁ‘o; 4

S ‘l’“l'_‘es and 1ruck | 13.26.00) | (13.26.00] | [13.26001 | (13.2600) | (13.2600) | True
olution:

[240T.320T,360T])

Changes to the ore

truckload in tons 297 Tonnes | 317 Tonnes 327 Tonnes | 337 Toanes | 347 Tonnes

(3607 Linea:

Truck resource left '::;‘ =

for waste handlin

(Waste Tons) ndg 126.871 129,751 131,191 132,631 134,071 I“‘“:Is ’d

T “skes :"‘ls a (13.260.0] | [13.2600] | [13.26.001 | (13.26.00] | [13.26.00] | Truckloa
ruck Solution:

[240T.320T.360T)

Changes to the ore

truck cycle time 23 28 s 26 27

(minutes) Linear

Truck resource left ';:.‘:.: -

for waste handlin

(T ) and Tmik 135.991 133.591 131.191 128,791 126.391 :}3""‘5’

onnes [122000] | (12.713.001 | (13.2600] | (13.79.001 | (143200 inute

Table 2.6 - Effect of Changes in Truckload and Cycle Time

Other changes to the model parameters such as truckload or truck cycle

time are not readily obtained without solving the optimization problem. Table

2.6 tabulates the results found by repeatedly solving the problem with different

values of the model parameters in question (only one single change can be

examined at a time). It must be pointed out that the efficiency of the truck

allocation is measured as the amount of waste material that can be handled with

the remaining truck resource. Therefore, high efficiency of truck allocation

corresponds to a high amount of waste material hauled.
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Available Waste Removal Resources (Tonnes) Available Wmtssﬂa'rmal Resources (Tonnes)
. Vs 240T truckioad . 320T truckioad

-] T =1

- ,m/
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! n -} 20 a0 3
200 210 220 2% 260 0T T o
2407 Truckiosd (Tonnes)
a) b)
Available Waste Removal Resources Available Waste Removal Resources (Tonnes)
(Tonnes) vs 360T truckload vs Truck Cycle Time
140000 140000

—

130000 / 130000 \\

125000 125000
120000
120000
300 310 320 390 340 350 2 0'"2‘ i L a
360-T Truchiosd (Tonnes) Tuck Cycie Tims (minutes)
c) d)

Figure 2.5 — Remaining Truck Resource vs. Truckload and Truck Cycle

Time

It should be noted that the truck resources remaining is directly
proportional to the changes in truckload of the ore truck (Figure 2.5-a,b,c).
Changes in the 240T truckloads have the most impact on the overall remaining
truck resource (e.g., an one-Tonne increase of the truckload of 240T trucks
results in an extra amount of 370 Tonnes of waste that can be hauled, 216
Tonnes for 320T trucks and 144 Tonnes for 360T trucks). This result agrees
with the fact the 240T trucks belong to the largest fleet in the overall truck

resource pool.

Of all the changes, ore truck cycle time shows the highest degree of

influence on the final outcome. As shown in Table 2.6, a change of 1 minute in
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the cycle time of the ore truck results in the change of 2,400 Tonnes of waste.
Based on the current model, a -minute reduction of the cycle time of the ore
truck will add an equivalent of ~0.9 240T trucks back to the resource pool

2400 Tons
220 Tonnes | 240T Truck

=0.9 240T Truck ).

In summary, this discussion has thus far laid out the framework for the
optimization study of the truck allocation problem in the mine operation. The
linear deterministic model has shown to be simple in the formulation as well as
in the solution effort, but it does represent a numerical approach of determining
the optimal number of trucks to be deployed at the mine site. However, the
allocation method currently used during the planning stage is predominantly a
heuristic approach, e.g., truck is allocated based on a formula that was
developed using historical data, leaving ample opportunity for the optimization
effort.

Despite good initial results, the linear deterministic model is still based on
continuous variables. As a result, the continuous truck solution must be rounded
to the nearest feasible, discrete solution before it can be implemented. This step
of rounding the non-discrete solution leads to a sub-optimal truck solution. A
direct method of obtaining the discrete truck solution requires formulating a
model with discrete numbers of trucks and solving for the solution using an
integer solver. The formulation of such a model is omitted because the basic
model is unchanged except an added restriction on the domain of the variables.
Implementing the solution obtained from the integer solver was shown to
provide a better solution than the rounded continuous solution. The treatment of
discrete truck solution will be discussed in more detail in Chapter 4 with the

parameter update approach.

The sensitivity analysis being studied so far is only valid in the model with
continuous variables. Therefore, for the purpose of the performing the analysis,
the model has been relaxed to involve only continuous variables. Full sensitivity
analysis study involving discrete variables is outside of the scope of the thesis,

and thus is omitted.



3. Stochastic Programming

In Chapter 2, the truck allocation problem was formulated as a simple linear
deterministic optimization model, which was easily solved for the optimal
solutions. Unfortunately, the parameters used in the model are not constant and
well-known, but rather can vary randomly according to some distribution.
Random changes in the model parameters can make the deterministic optimal
solution non-optimal, and in the worst case, can cause the original optimal
solution to become infeasible. This weakness of the deterministic solution gives
rise to the need of applying Stochastic Programming where random variations of
parameters are accounted for in the formulation of the optimization model. Since
the 1950’s, the field of Stochastic Programming has grown and has witnessed
many new contributions in terms of theory and solution techniques from many
operations research scientists. The material in this chapter will contain only a
brief introduction to the stochastic optimization problems, focusing on two types
of optimization problems: two-stage problems with simple recourse and chance-

constrained problems.

3.1. Introduction to Stochastic Programming

Stochastic Programming is a branch of mathematical programming that
deals with theory and methods that incorporates stochastic variations into a
mathematical problem. Here, the study of Stochastic Programming is based on a

class of underlying linear problem as



minimize h(x.Q)
subject to g(x.§)20 3.1.1)
wherex=>20

or in special form:

minimize h(x.()
subject 1o Tx2(
Ax=b
wherex20.xe R",Te R™ A€ R"™ .be R™.[e R"
The symbol {designates a random vector and all elements of T are also random.

3.1.2)

The stochastic behavior is then introduced into components embedded in the

objective function h(x.{) or in the constraints g(x.5)20.

Generally, uncertainty occurs in either the constraints or the objective
function (or both). Uncertainty in the objective function appears in the price
coefficients in many problems. Uncertainty on the right-hand-side of the
constraints is often encountered in economic models where the demand or
availability of either a particular resource or product is uncertain. Uncertainty in
the parameters on the left-hand side of the constraints relates to uncertainty in

model parameters.

3.2. Uncertainty in Constraints

This class of stochastic programming problems involves uncertainty in the
constraints of the model. The first type of model involves the formulation of the

probabilistic constrained stochastic programming problems:

minimize h(x)
8,(x.0)20

subject to P : 2a 3.2.1)
8. (.20

where x20.xe R"



minimize h(x)
subject to P{Tx 2 C}Z a.i=12,...r (3.22)
Ax=b,. j=12...m

where x20,xe R". A€ R", TeR"

The probability a reflects the reliability of the system, especially for engineering
type problems. Reliability, or safety, is a well-known and important concept in
other applied problems such as finance, inventory control, resource allocation,

etc.

Problem (3.2.1) corresponds to the joint-probabilistic chance-constrained
model and is more difficult than problem (3.2.2) where the probabilistic
constraints are imposed individually. Problem (3.2.1) can be replaced with a

simpler problem, which contains individual probabilistic constraint:

minimize h(x)
subject 10 P{g, (x.0)20}2a,. i=12...r (3.2.3)
where x20.xe R"

As long as the individual operations, each of which corresponds to the

constraint, g, (x,{) 20, are independent, such replacement is justified.

It is important to determine the individual a; (with respect toa ) such that
Problem (3.2.3) is equivalent with Problem (3.2.1). If for every x, the random
variables g, (x,8). 8,(x,0)..... 8,(x,8) are independent of each other, then the

probabilistic constraint in (3.2.1) can be simplified

Plg,(x,8)20.8,(x,5) 20..... g, (x,§) 20}=
P{g,(x,8)20}P{g.(x,8) 20}..P{g, (x,0) 20}2

If a,.a,.....a,can be chosen such that Er:(l-a, )<1-a, then any x that satisfies

i=l
(3.2.3) also satisfies the probabilistic constraint in problem (3.2.1) (based on

Boole’s inequality’)

? Boole’s inequality: P(A; U A, U ... U A, ) = P(A;) + P(Ap) + ... + P(A,)
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The common method of solving these problems (individual probabilistic
constraints) involves the conversion of the probabilistic constraint into the
deterministic equivalent. The solution technique is derived based on Theorem
3.2.1 [Prékopas, 1995], which was first proved by Kataoka [1963], and van de
Panne and Popp [1963].

Theorem 3.2.1

If £,.¢,.....0, have a joint Normal distribution, then the set of x€ R" vectors

satisfying

P{x.{, +x.{5 +.. 4 x,{, SO}2a (329)
is the same as those satisfying

p’x+F (@Wx Cx <0 (3.2.5)
where u, =E({,).i=12...n.p=(, .. u,) .C is the covariance matrix of
the random vector §=({, {. .. ). F is the cumulative distribution

function of the uncertainty, and a is a fixed probability, O<a<|.

Programming under probabilistic constraints as a decision model under
uncertainty has been introduced by Chames, Cooper, and Symonds [1958].
These chance-constrained models are based on individual chance constraints.
Many types of chance-constrained optimization models exist in the class of
problems observed by Thompson et al. [1963]. They are categorized according
to the objective function, namely E-model, V-model, and P-model. The E-model
involves maximizing the expected value of the objective function, the V-model
aims to minimize the variance of the objective function and the P-model’s
objective is to maximize the probability of the objective function. For example,
the problem can be formulated to maximize the expected value of the amount of
truck resource remaining (E-model); to minimize the expected value of the
variance of the ore throughput (V-model); or to maximize the probability of

meeting the specified ore throughput (P-model).



E - model : maximize z = E |¢"x|

V - model : minimize z = E L:Tx-cf x,]:

P — model : maximize z = Pl¢"x 2 c.rx.]

subjectto P[AXx 2 b] 2a

The common characteristic of these types of models is the fact that they

are all chance-constrained based. The chance constraint method implicitly
allows violation of the constraints up to a prescribed frequency (a ), which is
typically specified as a managerial input. However, the choice of a is frequently
arbitrary [Prékopa, 1995] and was criticized as a point of weakness due to the
difficulty in determining its appropriate value [Hogan ez al., 1981].

The second class of optimization models with uncertainty in the
constraints involves conditional expectation to ensure safety [Prékopa, 1970,
1973]. With the assumption of the existence of the conditional expectations, the

problem with this type of constraint is written as

minimize h(x)

subject 10 E { -g(x,0) | g(%L) <0 } <d,.t=12.....,r s
(3.2.6)

wherex >0

The " inequality constraint means that the average measure of violation of the
inequality g,(x,§)=0, which is defined as - g,(x,5), is limited by d, where this
average is taken only for those cases in which violations exist.

If Problem (3.1.2) is used as the underlying problem and the rows of

matrix T is denoted by T,.T-.....T,, the constraints in (3.2.6) are rewritten as

E{L-Tx|[{L-Tx>0}<d,.i=l2....r (327

Let L, (1) denote E {{; - Tix | {{;— Tx >0 } where ¢ =T,x, the inequality (3.2.7)

becomes



L(Tx)<d,;, i=12....r (3.2.8)
or Tx2L'(d,) i=12..r (3.2.9)

The inequality (3.2.9) is equivalent to (3.2.8) if L.(r) is a decreasing function

with respect to t. This condition can be established with the help of Theorem

If { has continuous probability distribution in R', its probability density
function is logconcave, and E{S} exists, then E {{; - Tix | {{ - Tix > 0}

where i=12,...r also exists and is a decreasing function of Txe R'
[Prékopas, 1995].

Two types of constraints with uncertainty have been introduced: the
probabilistic (chance) constraints and the expectation-based constraints. While
both types of models are formulated to ensure safety (reliability) of the
constraint satisfaction, each model approaches the problem differently. In
chance-constrained models, the degree of the reliability is more important than
the degree of the violation itself. On the other hand, expectation-based
constrained models do not concern the degree of the reliability, but rather focus

on limiting the average amount of violation, if any.

3.3. Uncertainty in Objective Function

Uncertainty in the objective functions is found in economic problems where
prices of products or cost of building materials fluctuate. The company profit is
affected by the change of the selling price of the product and the cost to building
materials. Uncertainty in these prices can cause random changes in the overall
profit of a company. Problems with uncertainty in the objective function can be

handled in different methods. Let A(x,l) be the objective function to be

minimized, the following three methods can be used to handle uncertainty
[Prekopas, 1995].



3.3.1. Method |

This method involves the conversion of the original objective
function, (x,{), into a new objective function using the expectation of the
objective function, Ef{h(x,5)}. For example, if h(x,f) is linear in x (e.g.,
h(x,5) =E"x), its expectation is also linear in x i.e., E{h(x,0)}=[EE)[ x. This
method can only be used under two conditions (self-explanatory):

e The system performance has to be repeated in a large number of cases to

ensure that the average of the outcomes is close to the expectation.

e The magnitude of the variation of the outcomes is not large.

3.3.2. Method Il

Conceptually similar to Method I, this method also accounts for the
variance of the outcomes in addition to the use of the expectation. The objective
function equivalent is a linear combination of the expectation and the standard

deviation:

pE{R(x,0)}+ qVarlh(x,0)]

where p > 0.4 >0are constants. The choice of p and g is arbitrary and depends

on the actual problems.

3.3.3. Method il

This method introduces a new constraint and a new objective function.
Here, the uncertainty is now moved into the constraint:

Minimize d

Subjectto P{h(x,5)<d}= p. xe D [Kataoka, 1963]
where p is a prescribed probability,0 < p < 1, and D is a set determined by the

remaining constraints in the problem. The new problem is equivalent to the

original problem when p is large.



3.4. Chance-Constrained Programming

The chance-constrained programming models are used in various fields
ranging from economic to engineering. Chames, Cooper, and Symonds [1958]
first introduced the chance-constrained concept while working on the problem of
scheduling heating oil production where the uncertainties were in the weather
and the demand for oil. It was established early that the solution method
generally involved constructing a deterministic equivalent constraint [Symond,
1966). In these early days, uncertainty was limited the right-hand-side matrix (b)
even though the same analysis can be applied to cases where uncertainty occurs
in the left-hand-side matrix (A). Almost exclusively, the objective function,
which involves uncertain elements, was also optimized as an expected value of
the return (minimizing cost or maximizing profit). In the problem of minimum-
cost cattle feed under probabilistic protein constraint, Pann and Popp [1963]
relied on the CCP method to solve for an optimal cattle feed product mix under
the uncertainty of the nutritive content of various inputs. Rao [1980] and
Fozwiak [1985] successfully applied the CCP method in their work related to
structural optimization. Most of these original CCP problems contain the

random components in the right-hand-side vector b.

Regardless of where uncertainty is located in the model, the main goal is
to convert the probabilistic constraint into an equivalent deterministic constraint.
This conversion usually results in a non-linear deterministic model, which can
be solved easily with many nonlinear solvers. For a given linear probabilistic
constraint, such as P[Ax > b] 2a, (0<a<1x20), the conversion results in
different equivalent nonlinear constraints, subject to the location of uncertainty.

In the general form of the chance-constrained problem shown in (3.41), the
probabilistic constraints ensures that the inequality Ax2b will be satisfied no
less than a% of the times. The probability a is also considered the reliability of

the system. Other literature refers (1—-a)as the limit of the constraint violation

(i.e. violation of the respected constraint cannot exceed (1 ~a) of the times).
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For linear stochastic problem, problem (3.2.3) can be rewritten as in
Problem (3.4.1). The probabilistic constraints are considered individually
independent (as opposed to jointly probabilistic based). The objective function
h(x) is assumed to be free from the uncertain components at this time, whereas

A, b both are dependent on random parameters.

minimize h( x )
subject to P{[Ax=>b}>a (3.4.1)
where A€ R™ be R™.xeR".aeR"0<a<lx20
At row i, the probabilistic constraint can be written as
P{A x2b,}2¢,
Common solution technique has been to convert this probabilistic inequality into

a deterministic equivalent, based on the principle in the derivation of (3.2.5).

Two cases are considered:
Case 1: Uncertainty in the left-hand side of the constraint

The deterministic equivalent:
Ax+F ' (1-a Wx"Cx 2b,

where A, denotes the i row vector that contains the mean values of the

uncertain parameters, F(t) the accumulative distribution function, a, the

degree of confidence of meeting the constraint, b the right-hand-side

coefficient, and C the covariance matrix related to the uncertain parameters.
Case 2: Uncertainty in the right-hand side of the constraint

The deterministic equivalent:
Ax+F ' (a,Wx'Cx 2b,

where b; denotes the mean value of the uncertain parameter on row i.

In special cases, where the uncertain parameters are considered independently

distributed, the covariance matrix can be omitted in the conversion process.
Recourse-based programming is another type of Stochastic Programming
method, and receives much attention in the field of Operations Research. While
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most of the discussion so far involved probabilistic (chance) constraints, some
problems involve decisions, which are made at different times. In these
problems, first-stage decisions are made before the uncertain events become
realized and subsequent decisions must be made appropriately to offset any
negative impact caused by the first decision given the realized events. Simple
recourse problem with two-stage decisions is the main focus in this thesis and

will be further investigated in the next section.

3.5. Two-Stage Recourse Programming

Two-stage recourse stochastic models are used widely in the industry. They
are applied in economic problems [Dantzig et al., 1994], production planning
problems [Jagannathan, 1991], capacity planning [Eppen er al., 1989; Dantzig et
al., 1992] and resource allocation problems. In these problems, first-stage
decisions are made without the knowledge of the outcome of future events.
These future events are uncertain, but the distribution of the uncertainty may be
known or guessed. For example, when a decision is made to produce a given
quantity of product G while the demand for G in the market is uncertain,
managers are taking a certain amount of risk in the decision process. A low
demand for G will result in either higher inventory cost or the loss of selling
below cost. High demand for G will result in high sale and potentially a supply
shortage of G. When the production level is lower than the demand level, the
company is losing the chance to maximize the profit, and incurs an opportunity
cost. If the distribution of the demand uncertainty is known and the cost of the
altemmatives like inventory or opportunity costs can be estimated, then the
company can work with a recourse-based stochastic mode!l to determine the

optimal production level of product G to maximize the expected profit.

The first-stage decision is a single solution while the second-stage decision
does not correspond to a unique realization but rather an expected value over the
range of all possibilities. Each second-stage decision corresponds to a recourse
action that is taken after the uncertainty is realized. The core of the recourse

algorithm is to examine as many realizations as possible to determine the most
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appropriate first-stage decision that corresponds to the optimal objective.

Uncertain model parameters are modeled as random variables with known

distributions.
First Stage Second Stage
Decision based on [
——» scenario O, y (wl )
——» scenaro o, y (w a )
+——» scenario @, y(w , )
[ B NN N N}
&+ scenaro o, y(,)
1st-stage Decsion x 2st-stage Decsion y(w)

Figure 3.1 - Two-Stage Recourse Formulation

The two-stage recourse problems involve two distinctive stages and
decisions. The first-stage decisions are made in the first period and the second-
stage decisions, or recourse actions, are made in the second period after the
uncertainty is realized. Figure 3.1 represents a classical two-stage recourse
model. The objective of solving the stochastic two-stage problem is to determine
the optimal first-stage decision. The second-stage decisions vary and are only

important during the model formulation.

In a classical two-stage recourse problem such as the farmer problem [Birge
and Louveaux, 1997], the farmer needs to make the planning decision on the
sizes of the crops (wheat, sugar beet, corn) he plants at the beginning of the
year. Since the crop yields are not known until harvest time, the farmer will face
either crop shortages, which require him to buy additional crops at a higher
purchase price, or an oversupply of crops, which he has to sell at a lower price.
Further, a selling quota is imposed on sugar beets such that selling an amount,
which is beyond the specified quota, will be done at a much lower price.

Unfortunately, since he does not know the yield ahead of time, he may have to
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resolve to recourse actions such as buying what he needs and selling the extra
crop.

The objective of the recourse-based program is to determine the optimal
first-stage decision while minimizing the total cost, which includes the basic
cost and the recourse cost. The basic cost in the farmer problem involves the
first-stage costs such as fertilizer cost, labor cost, seed cost, etc. The recourse
costs include the purchasing cost of buying needed crops and loss of selling the
over-quota amount at a lower price. Figure 3.2 shows the farmer problem
formulated as a two-stage recourse model. If three yields are assumed to happen
with equal probability: good yield, average yield and poor yield. The farmer can
apply the two-recourse stochastic technique to solve for the optimal crop size
such that he can minimize the overall expected cost. In Figure 3.2,

o, ,w, 0, represent three equally likely yield cases: good, average, poor (each

with a probability of 0.33). The objective is to determine the optimal first-stage

decision on the crop sizes that would maximize the expected profit for the

farmer.
The Farmer irge of &/, 1
First Stage Second Stage
The 2nd-stage decision includes the amount of crops 10
purchase as required or t0 sefl.
+——» Good Yield ¢ (P=0.33) Ya)
» Ave.Yield @, (P=0.33) ylew,)
1st-stage Decsion: ¢—>Poor vies @ (P=033) ya)
(v, cormesponds 10 yieid scenano
WheatCropSze

¢ where g is the linear plant cost related to the crop size
First-stagecost € X

1
Recourse cost: Esqty(w) . .
- Expected recourse cost that the farmer will have to incur

x=| ComnCropSte
SugarBeatGopSize

qis the coefficients related to the recourse decisions:
amount of crops (tons) can be sold or has to be purchased

Figure 3.2 - Two-Stage Recourse Farmer Problem
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Recourse-based stochastic programming traditionally demands heavy
computer resources, particularly if there are many realizations to be evaluated.
This computation problem limits the use of the recourse-based technique in
many industrial optimizing applications [Hogan er al., 1981]. While it is simple
to model the recourse actions, the constraints and the objective function,
complete analysis of the problem requires that recourse strategies be modeled
and computed for all possible realizations of the random variables. This can
make the model computationally intractable. Yet, much progress has been made
in solving large stochastic programming problems. Huang er al. [1977] devised
a method to approximate solutions to large-scale problems. This method could
be applied in simple linear recourse problems to solve realistically sized
problems easily [Wets, 1979]. Many recourse techniques were derived to
overcome the resource limitation and approximate solutions were obtained
[Birge and Wets, 1987], [Kall et al., 1988].

Advances in computer technology have led to more widespread use of the
recourse technique in many industrial and commercial applications [Dantzig and
Infanger, 1993), [Dantzig and Infanger, 1994]. Continuing increase in computer
power helps alleviate much of the resource limitation previously encountered by
recourse-based problems. Further discussion on the two-stage recourse solution

technique can be found in Appendix B.

In summary, the two-stage simple recourse model involves making
decisions in two stages. The first-stage decision can be regarded as proactive, as
it is made before the uncertainty is revealed. The second-stage decision is
reactive, serves as the recourse actions, and is made after the uncertain events
are realized. The second-stage decision is governed by the recourse policy,
which must be set up for a practical problem. It is also dependent on the first-
stage decision as well as the random events being realized. The two-stage
recourse problem, though simple in principle, can be difficult to model,
particularly on the recourse policy side and the appropriate penalty function in
the objective function. The combination of this modeling difficulty and the
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intensive demand of computation all make the approach less attractive to general

practitioners.

3.6. EVPI, VSS & Stochastic Programming

An important question that needs to be answered in most industrial
problems is whether working with stochastic programming will provide an
appreciable benefit as a worthwhile trade-off for its complexity. It is intuitive
that when there are large random changes in the variables to which the
deterministic optimal solution is highly sensitive, stochastic programming may
provide added benefit, since it can account for the uncertainty. Theoretically,
many scientists have studied the concept of Expected Value of Perfect
Information, or EVPI, ([Raiffa and Schiaifer, 1961] and the Value of Stochastic
Solution, or VSS, [Birge and Louveaux, 1997]) and used these values as the
measures of the value of stochastic solutions over their deterministic

counterparts.

3.6.1. EVPI and VSS in Truck Allocation

All calculations for the EVPI and VSS values are based on a similar, but
simpler, problem of allocating trucks to haul ore. Ore truckloads and ore truck
cycle-times are two uncertain parameters that are assumed to vary
independently’®, and according to a Normal distribution with known standard
deviations (Table 3.1). These random variations are considered to be
independent. To reduce the heavy demand of the computer resource required to
solve the problem the allocation problem involves only one truck type (320T
trucks).

'® Truck cycle time and truckload are not correlated. Refer Appendix H for their correlation data.
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Uncertainty Parameters Independent Normal Distributions’”

Mean truckload of 320T ore Lo =290 tonnes
trucks o = 25 tonnes
Mean cycle time of 320T ore To = 24 minutes
trucks

O = 5 minutes

Table 3.1 - Distribution Characteristics of Uncertain Parameters

EVPI and VSS are calculated from the wair-and-see (WS) solution
{Madansky, 1960], the Recourse value (RP), and the expected results of using
the EV solution, EEV. A brief introduction on how to determine these values is
presented in the following section (a more thorough development of the EVPI
and VSS values is provided by Birge and Louveaux [1997]).

First, let ¢be the random variable whose realizations correspond to the

various scenarios. Define

min 2(x,¢) =¢'x+min{q"y | Wy =h-Tx.y 20} } (G4.1)
as the optimization problem associated with one particular scenario &. The wait-
and-see solution is defined as the expected value of the optimal solution, i.e.
WS =E, [mxm 2(x.8)|. The wait-and-see solution is rather theoretical because the
decision is not made until the uncertainty becomes realized.

On the other hand, the recourse solution corresponds to the solution to the

recourse problem (RP) and it is defined as

RP =min E, 2(x,§). 34.2

In practice, it is common to simplify the problem by replacing all the
random variables with their mean values and solve the problem using the
deterministic approach. Such problem is called the expected value (EV)
problem,

EV =min z(x.5) (3.4.3)

" Uniform distributions and triangular distributions are possible. but not used since. in practice. normal
distributions remain as the most popular distribution.
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where £ = E() denotes the expectation of &. Let x(£) be an optimal solution to
(3.4.3), also called the expected value solution. The expected result of using the
EV solution is defined as EEV =E, (z(;(f).é).

Now, the Expected Value of Perfect Information and the Value of Stochastic
Solution' can be determined as

EVPI = RP -WS

VSS = EEV —RP
The parameters of the model for the truck allocation problem are summarized in
Table 3.2.

2 The concept of EVPI and VSS is more suitable for the recourse-based programming approach. where the
amount of constraint violation is measurable. On the other hand. pure chance-constrained approach only
controls the frequency of the constraint violation. not the extent of the violation.
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Optimization Models used to evaluate the WS, RP, and EEV values

60
Objective Maximize Z(s,,s,) = [R - x] L, t_
w
WS | Production constraint (Tph) Ly(s)x 2D
To(s,)
Resource Constraint X<R
Result WS = E(JlJ:){Z(x(sl vsz))}
.. 60 1
Objective (Waste Tonnes) Maximize Z =[R - x]L, —~ EFQ(SI 'S3)
W 5.5
RP | production Constraint (Tph) L,(s))x p +Q(s,,s5,)2D
ASH
Resource Constraint xX<R
Result RP=2
. 60
Objective (Waste Tonnes) Maximize Z = [R - x] L, -
w
- 60
Production Constraint (Tph) Lox=—2D
To
Resource Constraint xX<R
EE
v EEV =E, , {Z -20(s,.s,)}
where
.=~ 60
Resuit 0 ifLox=—2D
0(s,,s.) = To
- - 60 .- 60
D-Lox=— ifLox=—<D
To To

Table 3.2 - Models Used to Determine WS, RP, and EEV

Parameters used in Table 3.2 include:

VA Truck resource remaining to be maximized
x20 Number of trucks to be allocated

R Size of truck fleet in use

L, Truckload of waste truck

Zo Mean truckload of ore trucks (tonnes)

s, Realization of the ore truckload

5 Realization of the ore truck cycle-time
L,(s,) Truckload of ore trucks at realization s,

T, Mean cycle time of waste trucks (minutes)
;0 Mean cycle time of ore trucks (minutes)
7,(s,) Mean cycle time of ore truck at realization s ,
o(s,,s,) Extra ore to added as a recourse action at realization ( 5, , 5, )
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D Ore rate (Tph)
N Total number of realizations (Number of unique pair of L, (s,) and
7,(s.))
e Maximized TruckRes
* Number of 320T Trucks
Lol).To)) I Allocation
Optimize

Lo(2),To(2) :
> Allocation

Optimize

Expectation of
Trg_ckRes

ams
Lo(n).Te(n) [Afliocation
Optimize

Uncertain parameters: 320T ore truck load normal(220,25)
.{JZOT ore truck cycle normai(24,5)

Figure 3.3 - Calculating the WS value

Calculating the wait-and-see value (WS) is determined as the expectation
of the objective function values found by repeatedly solving the optimization
problem. The number of times the model is solved is equal to the total number
of realizations being considered. If s,, s, are the numbers of realizations of the
ore truckload and the ore truck cycle-time respectively, the total number of
realizations is the product: s,s,. Figure 3.3 illustrates the process of finding the
WS value. Corresponding GAMS program to calculate the WS value can be
found in Appendix G3. The GAMS calculation is done based on 100" Normal
samples of ore truckload and 100 Normal samples of the ore truck cycle-time.

The number of times the model is solved to determine the WS value is as high as
10,000.



The RP value is obtained as the optimal solution to the recourse-based
problem. Table 3.2 shows the extensive form of the stochastic model in which
all realizations of the uncertainty are accounted for. Because of the existence of
uncertainty in the ore truckload and ore truck cycle-time, the amount of ore
delivered by 320T trucks will fluctuate causing a shortage in the ore throughput.
It is assumed that this shortage can be overcome by bringing ore from another
source at a certain cost. This cost is twice' as high as the one that would have
been incurred if the appropriate number of trucks were assigned for the task.
This high penalty is embedded into the objective function so that the optimal

solution is such that the need of the recourse actions is minimized.

The factor of 2 is chosen to add some weight to the recourse-based ore
amount. This factor is chosen just high enough to ensure that the penalty of
adding extra ore from an imaginary source is higher than the cost to haul ore
from the mine. Too high a value for this factor can cause the EEV value to be

insensitive to the objective value Z in the EEV problem (Table 3.2).

Figure 3.4 shows the process of determining the RP value. The model
contains a high number of ore throughput constraints, each of which corresponds

to a unique scenario (Number of constraints: 1+s,s, ).

'3 The population size should be chosen large enough (n > 30) so that the sample set is representative of the

population. while too large a sample size will make the problem computing intensive.

" This recourse-based component should carry such weight that original truck allocation is a controlling
factor in the optimal direction of the objective function. In this truck allocation problem. this recourse-
based component is somewhat fictitious. and not a realistic option. However. this factor should be greater
than 1 to fulfill this purpose.
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Ore truckioad Lo(sy ) —————— Allocation
Optimizer | » RP

over (&,
Ore truck cycle time To(s, ) (S8
ExtraOreTQ(s 1,82)
as required
Uncertain parameters: 320T ore truck load normak220,20)

320 T ore truck cycle time: normak(24,5)

Figure 3.4 - Calculating the RP value

The EEV value corresponds to the worst case scenario where the truck
allocation is done based on the mean value of the ore demand (Tph). This
condition is very close to reality, where trucks are assigned to haul ore to satisfy
an average ore rate. Any shortfall of the ore due to the uncertainty of the amount
of ore delivered is made up by an extra ore amount. This amount, as in the RP-
case, comes from the additional haul trucks that are added to the route. This
results in a reduced amount of the overall truck resource remaining. The EEV
value is calculated as the expectation of the truck resource remaining over the

domain of all realizations (Figure 3.5).



Optimizer Fesults:
e Number of assigned 320T trucks

Truck Resource Remaining (A)
Mean Loand T Ore Demand
an o p| Allocation 2 7000 Tonn:
Optimizer [Ore delivered by the + esg-l
assigned 320T trucks
B(s)
ExtraOre(s) as required

EEV value =E{A - 28(s)} over all realizations, each of which isdenoted bys
where

A represents the amount of truck resource remaining based on the the optimization resuit
B(s)represents the amount of ore needed o ensure the demand satisfaction
As additional ore is needed, less truck resourceremains for waste movement

Figure 3.5 - Calculating the EEV value

Figure 3.6 shows that the expected value of the perfect information is
equivalent to 8460 Tonnes/shift of truck resource remaining for waste and that
the value of the stochastic solution is 840 Tonnes/shift. In other words, the price
of knowing the perfection information is the savings of ~19 truckloads/shift, and
the benefit of using stochastic solution is ~3 truckloads/shift. When either
number is large enough to represent worthwhile economic benefit, the
application of the Stochastic Programming approach is recommended.

EVPI and VSS in the Simple Truck Allocation Problem

-—-Maximizing Direction—»

EEV RP ws
Model is based on: ' ’
- 100 sampies of Ore TrucklLoad: Normal(290,25)
- 100 samples of Ore Truck Cycle Time Normal(24,5)
- Independent uncertain parameters
- 12-hour shift 117,732
- One type of trucks: 320T with Max. 30 trucks 118,572 127.032

EVPi= WS - RP = 8460 Tonnes/shift - 19 Truckioads/Shift
VSS = RP -EEV = 840 Tonnes/shift - 3 Truckicads/Shit

Figure 3.6 — The EVPI and VSS values
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Figure 3.7 — VSS vs. Std. Dev. of Truckload and Cycle Time

For the distributions used in this calculation (i.e., Normal with a specified
standard deviation) the value of perfect information is 10 times as high as the
solution from a better (more complicated) algorithm. If the standard deviation of
the mean were larger, then the factor would be greater. This strongly points to
the value of better information for problems with Normally distributed errors.
Recourse algorithms will provide greater value for skewed distributions or
skewed penalties, where taking this into account will provide a first stage

answer which will minimize the cost of expensive recourse actions.

Both graphs in Figure 3.7 show that as the uncertainty becomes smaller,
the value of stochastic solution decreases. These effects were investigated by
repeating these calculations while the standard deviations of the ore truck cycle-
time and the ore truckload are changed one at a time. These two charts
consistently show the decreasing trend of the effect of the uncertainty as the

standard deviations are reduced.

3.7. Two-Stage Recourse Results

The following section includes optimization results, obtained from solving
the truck allocation model using two different methods (two-stage recourse and
chance-constrained). While GAMS was selected as the main software

environment solving the truck allocation problem, the numerical results obtained
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from using a different software tool are also presented. Comparison between the
results using two different software programs will be done to draw further

insight into the stochastic approach.

3.7.1. Two-Stage with Simple Recourse Model

The basis of recourse algorithm is to ensure a complete satisfaction of the
constraints by relying on appropriate recourse actions. In the first stage, the
trucks must be allocated to haul ore. This allocation decision, when made, will
stay in effect for the whole 12-hour shift. Due to the variations in the ore
truckload and the cycle times, the overall shift average may be different from
that used in the original allocation and it is possible that the ore constraint
cannot be met. Therefore, the second stage decision involves an addition of the
ore amount of Q (Tonnes), which is needed at the end of shift (Figure 3.8). Such
a recourse action is not suitable in practice since the ore rate must be maintained
throughout the period and actions must be taken to avoid any ore shortfall. The
recourse formulation allows users to calculate how much ore would need to be
made up over the length of the shift and calculate an equivalent number of
trucks, which need to be shifted from other duties to satisfy the ore constraint. In
effect, extra trucks would be moved to the route to satisfy the ore demand as

soon as it became apparent that they were needed.

1st-stage dedsion: # of
trucks to haul ore

12th hour

T

+Q

2nd-stage decision to add ore to the surge pile (Tonnes)

Figure 3.8 — Two-Stage Recourse Timing Diagram
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The objective function used in the recourse-based formulation of the truck
allocation problem is to maximize the total truck resource remaining after the
production constraint has been satisfied. This truck resource is measured as the
amount of waste that would be hauled if all remaining truck resources are
devoted to the movement of waste. The stochastic recourse-based model is
derived from the deterministic model in Chapter 2. The two differences are the
introduction of uncertain variables and the second-stage variable Q, which
represents the amount of ore that is required to make up the shortfall. Thus the

recourse-based model is
3
maximize Z = E[R; —.rj]ij ;ﬂ-nQ
7=t w
subject to the following constraints:
5 60
Production constraint: H Ex ,Lo,—+Q 2 HD (Tonnes/Shift)
T

=l o

Truck Resource constraint on truck type j: x , SR,
Non-negativity constraints: x, 20 forall j, Q=0

where H represents the number of hours in a shift, n reflects the weight of the

penalty or increased cost of the recourse action and D denotes the hourly ore

demand (Tonnes/Hour)

Adding extra trucks or moving them from another service during the shift

comes at an additional cost. This additional cost is represented by n “*(»n is equal

to 2 for this example). The overall effect is to ensure that the optimal solution
relies more on a proper initial truck allocation than more on recourse actions to

satisfy the ore constraint.

The uncertainty being modeled is in the truckload and the truck cycle-
time. It is reasonable to model this variability as random and independent from

each other. The total number of random parameters in the model is dependent on

'3 This factor is the same factor as that found in previous section where the EEV value is determined.
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the number of truck types being considered, e.g. 3 types of trucks correspond to
6 independent random parameters. These uncertain parameters are Normally
distributed with given mean values and given standard deviations (Table 3.3)

while the remaining deterministic parameters are shown in Table 3.4.

Normal Distribution
Uncertain parameters Characteristics
Mean Standard
Deviation
240T Ore Truckload (Tonnes) 220 20
320T Ore Truckload (Tonnes) 290 25
360T Ore Truckload (Tonnes) 327 35
240T Ore Truck Cycle-time (Minutes) 24 5
320T Ore Truck Cycle-time (Minutes) 24 5
360T Ore Truck Cycle-time (Minutes) 24 5

Table 3.3 - Deterministic, Uncertain Model Parameters

Deterministic parameters Values

Constant waste truck cycle-time 30 minutes

The number of hours in the period 12 hours

Production Constraint OreRate 27,000 Tonnes/Hour
Truck Total Resource Available 240T truck fleet: 18 trucks

320T truck fleet: 9 trucks
360T truck fleet: 3 trucks
Waste constraint per period Waste per period

2 60,000 Tonnes
Table 3.4 - Deterministic Model Parameters

The two-stage recourse-based program for the truck allocation problem is
developed in the GAMS modeling language and solved with the
GAMS/DECIS'" solver [Infanger, 1999], which was developed to solve large-
scale stochastic programs that include uncertain parameters in the coefficients
and in the demand. With the exception of some modification to the stochastic
model, DECIS solver can work with the same GAMS program that was

developed for the deterministic model, making an easy transition from the

'® The DECIS solver is developed by Dr. Infanger to solve large-scale stochastic optimization problems
that include parameters that are not known with certainty. It employs Benders decomposition and uses
advanced Monte Carlo sampling techniques. The distribution characteristic of the uncertain parameters is
not required as advanced Monte Carlo sampling technique is used to generate realizations that are mapped

47



deterministic model to the two-stage recourse model. The DECIS solver relies
heavily on the probability information supplied in the GAMS input file. The
probabilistic data is expected in a model file named model.stg, which is to be
created from within the GAMS program. Since DECIS solver can only work
with discrete probability, continuous probability information must be converted
to discrete data. Table 3.5 contains distribution characteristics with means and
standard deviations for the uncertain parameters (3 types of truckloads and 1|

truck cycle-time).

240T truckload 320T truckload 360T truckload Ore Truck Cycle-
=22 =2 =32 time
u=220 (Tonnes) H=29 (Tonnes) u =321 (Tonnes) u=2
o=20 o=25 o=35 = (Tonnes)
Truckload | Prob. Truckioa | Prob. Truckioad | Prob. | Cycle- | Prob.
(Tonnes) d (Tonnes) time
(Tonnes) (mins)
135 0.0001 185 0.0002 177 0.0001 | 4 0.0003
152 0.0015 206 0.0017 207 0.0014 | 8 0.0025
169 0.015 227 0.0159 237 0.0144 | 12 0.0198
186 0.0846 248 0.0862 267 0.0834 | 16 0.0927
203 0.2339 269 0.2331 297 0.2345 | 20 0.2291
220 0.3296 290 0.3259 327 0.3322 | 24 0.3112
237 0.2339 311 0.2331 357 0.2345 | 28 0.2291
254 0.0846 332 0.0862 387 0.0834 | 32 0.0927
271 0.015 353 0.0159 117 0.0144 | 36 0.0198
288 0.0015 374 0.0017 447 0.0014 | 40 0.0025
305 0.0001 395 0.0002 477 0.0001 | 44 0.0003

Table 3.5 ~ Probability data'’ (used in GAMS Program)

Table 3.6 presents the truck solution found from solving the recourse-
based truck model". The remaining trucks can be used to move waste with the
mean amount of 129,002 Tonnes moved in a 12-hour shift. The recourse amount
Q is not considered as a part of the solution suggested by the optimizer because

the recourse amount also varies as a random quantity. The main aim is not to

to the specified discrete probability. However. this solver is limited to the recourse-based stochastic
problems and is designed currently to handle only 2-stage stochastic linear programs.

" It is essential that the 10 probabilities add up to 1 (1o ensure the correct execution of GAMS/DECIS
program)
18 Corresponding GAMS program is listed in Appendix F2
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determine Q, but rather to determine the first-stage decision, the initial truck
allocation in this case, such that the expected value of the remaining truck

resource is maximized.

Truck Solution Maximized Objective Function Value

240T Trucks: 2.28

320T Trucks: 4.15 Truck Resource Remaining: 129.002 Tonnes
360T Trucks: 4

Table 3.6 — Recourse-Based Optimal Result

240T ore truckdoad

g Ome Fate
lm%l.l..lll’ (T ". )

Calcuation model f——

namal 27,39
a gsﬂrr%%.?m aee ’
namal4.5)

Number of assigned trucks
Truck fleet sizes
* Waste truck cyde Time

Figure 3.9 - Calculation Model Using Allocation Results

It is important to validate the performance of the truck solution that is
found from using the stochastic methods. Figure 3.9 illustrates the process of
determining the effectiveness of the truck solutions. The results of this
calculation will provide additional insight into the performance of the allocation
solution. The hourly ore rate, OreRate (Tph), and the truck resource remaining
that can be devoted completely to the waste hauling are determined according to

the following equations

e Lo,
OreRate = 602 ——— (Tph)

7=l o

TruckLeft = 60i —————Lwi (Rj B )

J=t tW

(Waste Tonnes)
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The calculation scheme, which is equivalent to the stochastic truck models, is
implemented in Microsoft Excel with the Crystal Ball'® add-on software. The
uncertain data is simulated via the Crystal Ball software using known
distribution characteristics. Under the calculation scheme, the hourly ore
throughput is the forecast quantity. Frequency data of the ore rate and the
remaining truck resource are summarized in Figure 3.10 while the graphical

output from Crystal Ball is captured in Figures 3.11 and 3.12.

240T ore trucikioad

el 22020

¥ . . Ore Rate:
20T ore truckoad Simulation Mean = 7441 Tonnes/Hour
e G > Std Dev = 1,179 Tornes/Hour
4240T trucks == 80.85%0f the times Rate > 7,000

380T ore truckoad 415 3207 trucks

noma7.39 > 228 380T trucks Remaining Truck Resource

Mean = 129,019 Tonnes
Qre Truck Cycle Time Ore rate > 7,000 Tonnea/Hour Standard Deviation = 7,698 Tonnes
L1 ] :u

Figure 3.10 — Ore Throughput Using Recourse-Based Solution

' Crystal Ball is a user-friendly. graphically oriented forecasting and risk analysis program that
takes the uncertainty out of decision-making. Since it is implemented as an Excel Add-on.
Crystal Ball can leverage the power of visual calculation offered in Microsoft Excel spreadsheet
software. As it relies on the Monte Carlo simulation. Crystal Ball forecasts the entire range of
results possible for a given situation as well as provides abundance statistical information
accompanying the forecasted results. Further product information is available at

http://www decisioneering.com

(The software used in the thesis work: Crystal Ball 2000 with Microsoft Excel 97 running on a Pentium I
personal computer)
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Forecast: Total Hourly Ore Rate (Tons/Hour)
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Figure 3.11- Frequency chart of ore rate (with truck solution in Table 3.6)

Forecast: Total Truck Resource (Tons)
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Figure 3.12 - Remaining Truck Resource Simulation (Table 3.6 Solution)

Using the model data in Table 3.3 & 3.4 and Normally distributed data
generated according to Table 3.5 data, the distribution of the average rate of ore
is obtained as shown in Figure 3.11. It is found that the ore is delivered with a
mean rate of 7,441 Tph and with a standard deviation of 1,179 Tph. This rate of
ore will only satisfy the ore production requirement 61% of the time. As the
result, this implementation relies on the recourse action to offset the shortfall.
This source of ore can come from additional trucks that are assigned to the route
as time goes by. In the actual operation, it is impractical to assign trucks to

deliver the shortfall at the end of any period. In reality trucks are shifted as
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necessary to maintain the desired throughput. The amount of recourse can
simply be thought of as a measure of how much reallocation needs to be done. If
we do not reallocate during the shift but retain the original allocation, the two-
stage recourse will measure the size of the production shortfall. The second
issue is that 7,441 Tph cannot be delivered to the surge facility if only 7000 Tph
are withdrawn by Extraction. The dump control will create truck queues that

will lower the truck productivity and maintain 7000 Tph delivery rate.

3.7.2. Chance-Constrained Model

Chance-constrained model allows a certain frequency of violation of the
model constraint, in this example, the ore production. It can also be interpreted
as the degree of confidence in which the ore production is met. For example, a
value of @ =0.95 means that the ore production constraint will be met 95% of

the time.

The production is primarily affected by the ore truck cycle time and ore
truckload. Other model parameters such as the waste truck cycle-time, waste
truckload, truck fleet sizes are assumed to be constant as they are considered to
contribute less to the overall uncertainty of the problem when compared to the
primary uncertain parameters discussed above. However, the truck fleet size can
also play a major role in the stochastic model as an important uncertain
parameter, e.g. uncertain overall truck resource. But the fleet size is kept
constant to reduce the problem complexity. (This assumption corresponds to the

over-trucking condition in the operation).

The optimization problem is formulated using the chance-constrained

method as:
2. 60
Maximize Z = Z[RI —.r,.]ij = where j=1, 2, 3 (Waste
=1 w
Tonnes)
Subject to

Production constraint



3 60
P E.thojr—ZD >a (Tph)
j=l

o
Truck Resource constraint on truck type j:
X, <R,
In the chance-constrained programming, it is important to convert the
probabilistic constraint into a deterministic equivalent constraint since after this

step is complete, a nonlinear solving technique can be applied to solve the

problem. The following analysis is based on one of the two probabilistic

constraints:
2 60
P xL,—2Dza
{§ 1770; 7, }
P{[mix, +60 Lo x, +60 Los x,] > D} >
z.Ol to: 103

L

New variables, g s, are introduced such that, g, = — wherej =123
T
]

The probabilistic constraint becomes:
P{[60glx, +60g,x, +60g;x, ] 2 D}Z a

In the constraint, the only uncertain variables are g,,g,.8,. These uncertain

quantities will vary with Normal distributions because the truckloads and truck
cycle-times vary with a Normal distributions, and independently from each
other. Their Normal distribution characteristics, i.e. their means and standard
deviations can be derived based on those of L and 7. According to Kotz et al.

[1982] these standard deviations can be approximated using a Taylor expansion.

Using only the first term in the expansion,

and g, =% where j = 1,2.3

NL T i
The probabilistic constraint can be rewritten as
P{v=D}za
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whereV =60g,x, +60g.x, +60g,x,
Since V is linearly dependent upon g,,g.,8;, it is also Normally distributed
with the mean V , and the standard deviation o,

V= 60Elxl + Gngx2 + 60§3x3

hl 2 32 22
o, =60\[xl 0, + X0, +X0,

Following the general development presented earlier, one can derive the

equivalent inequality

-v -v
where F(D ]= P{:V < b V] represents the cumulative

distribution function

or
V2D-o,F'(l-a)

The equivalent deterministic model now becomes

3
Maximize z=2[R, —x,]ij;ﬂ, where j=1, 2, 3 (Waste
=t

w

Tonnes)

Production constraint:

60g,x, +60g,x, +60g,x, -{—60\/1:;0’;l +x;0, +x;0, F'(1-a)2D

(Tph)
where
Zl Lj 0'2[ arlt
J T 0, Tt
7, LYk T
j=123

Truck resource constraint:



<
xj_Rj

where x, 20, for j=123

Table 3.7 shows the solution obtained from solving the quadratic
deterministic truck optimization problem converted from the stochastic problem
with 95% confidence on the ore constraint. The result is a total of 111,052

Tonnes of waste material being moved.

Optimization Result (95% confidence level on the ore production constraint)
Number of Ore trucks to be allocated

240T trucks (Fleet Size) 5.498 (18)
320T trucks (Fleet Size) 4.239 (9)
360T trucks (Fleet Size) 3.483 (5)

Maximum amount of truck resource remaining for waste
movement (Waste Tonnes)

Table 3.7 - CCP Optimal Results (o =0.95)

111.052

While in practice, a truck solution is often sought to guarantee a high
degree of confidence, e.g. > 90%, it is sometimes important to know what the
results would be for lower ranges of confidence level. The chanced-constrained
model is then solved with a number of different confident levels and the
corresponding results are shown in Table 3.8. Each truck solution is subject to a
large number of simulation runs with the results of the realized ore rates being
gathered and presented in Table 3.6. The difference between the expected ore

rate and the realized ore rates is graphically illustrated in Figure 3.13.
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Optimal Remaining Truck Resource
(KTonnes vs % Confidence)
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Figure 3.13 - Optimal Truck Remaining Resource vs. % Confidence

Confidenc | Optimal Truck Solution from | Maximum Simulation Result:
e Limit GAMS Truck Degree of confidence that
a as Resource OreRate = 7000 (Tph)
input to 240 320T 3eor Remaining is satisfied and mean ore
GAMS (Waste rate
Tonnes)

50 11.38 1.03 0.00 129720 51.7 7.354

51 4.32 3.33 2.74 129497 59.4 7.387

52 4.33 3.34 2.74 129,273 60.1 7.400

55 4.38 4.37 3.77 128.591 62.7 7472

60 4.39 3.39 2.78 128.352 67.7 7612

65 4.40 3.39 2.79 128,222 72.3 7.751

70 4.41 3.40 2.79 128.120 77.3 7,903

75 4.72 3.64 2.99 123.140 82.2 8.073

80 4.84 3.73 3.07 121,275 86.8 8.278

85 4.98 3.84 3.16 119,073 90.1 8,518

90 5.18 4.00 3.28 115974 95.3 8.858

95 5.50 4.24 3.48 111.053 98.4 9.397

96 5.60 4.32 3.55 109.429 99.0 9.578

97 5.73 4.42 3.63 107.420 99.4 9.799

98 5.91 4.55 3.74 104.665 99.8 10,101

99 6.21 4.79 3.94 99913 100 10.623

Table 3.8 - GAMS Allocation Results vs. Independent Caiculated Results

The optimal solution found appears conservative. The calculated result
suggests that, as compared to the optimal allocation result, fewer trucks can be
used to achieve the same degree of confidence while still satisfying the

production constraint. The difference may be attributed to the inaccuracy of the
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deterministic equivalent non-linear constraint (e.g., the approximation of the

standard deviation a(,]' where Y and 7 are Normally distributed). The other

4

reason may be the fact that the combined distribution is not a Normal
distribution, especially the distribution of the ratio of the two Normally
distributed independent parameters. Yet, the formulation assumes that the
overall distribution is Normal with mean and standard deviation that can be
approximately derived from the means and standard deviations of the individual

uncertain parameters.

3.8. Stochastic Method Conclusions

Table 3.7 summaries the truck solutions found using three different

methods: one deterministic solution and two stochastic solutions.

The chance-constrained result appears most conservative and thus corresponds
to more truck queuing at either end. The effective ore rate will have to be
reduced to avoid the overflow of the surge pile (in the real operation trucks line
up in the queue waiting for authorization to dump when the surge pile is full,
making overall truck cycle time longer). The chance-constrained method
generates solution that guarantees a given degree of confidence that the ore
demand will be met while the recourse solution is the expected optimal value

given that constraint satisfaction relies on the recourse actions.

The recourse method provides the results, which tend to satisfy the ore
production requirement at the mean (7,000 Tph). As previously mentioned, this
method relies on the establishment of a good recourse policy, which must be
simple to assess and formulate in a mathematical model. Unfortunately, the
formulation completed earlier for the single-period truck allocation problem was
not realistic and thus not representative of the actual recourse policy. This
problem coupled with the heavy requirement for computing resource makes it

less suitable for the truck allocation problem.
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Deterministic Stochastic Formulation
Formulation Two-Stage Chance
Recourse Constraint (95%)

Truck Solution:

240T Trucks 14 2.28 3.5

320T Trucks 0 4.15 4.24

360T Trucks 0 4.0 3.48

Maximizing Truck

Resource Remaining 127,831 129.002 111,052

(Tonnes)

Ore Rate (Tph) 7,000 uH=7441 u=9397
EVPI = 8460 Tonnes/shift ~ 29 320T-
truckloads/shift

EVPL& VSS VSS = 840 Tonnes/shift ~ 3 320T-
truckloads/shift

Table 3.9 - Summary Truck Solutions (Det.,Recourse,CCP)

The deterministic solution is very close to the two-stage recourse solution.

Although the EVPI value is large, but since all distributions are considered

Normal, e.g., symmetrical about the mean, the expected optimal recourse

solution will be similar to the deterministic solution using the mean values for

all uncertain parameters. Moreover, the small value of VSS (840 Tonnes/Shift)

shows that the stochastic solution is not much of an improvement from the
deterministic solution. The EVPI value (8460 Tonnes/Shift) is about 10 times as
high as the VSS value, making the truck problem closely resemble the problem
case with large EVPI and small VSS (Figure 3.14).

Smail EVPI Large EVPI
Smali VSS Large VSS Small VSS Large VSS
Deterministic Stochastic Deterministic model Stochastic model
model model (depends with better
on how large information
VSS is)

Figure 3.14 - Different Scenarios of EVPI and VSS values

A modest amount of nonnegative VSS value shows that it is still beneficial

to implement the truck allocation problem using the stochastic approach. The
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recourse method is viable only if the recourse action can be accurately modeled;
moreover, the method requires an intensive computer resource for its
calculation, which is directly dependent on the number of realizations (even at a
high number with discrete realization). As a result, the two-stage recourse
method was not recommended as the method of choice for the truck allocation

problem.

On the other hand, while the chance-constrained method is viable and
simple to formulate, it tends to provide results, which are more conservative
than they should be, making the truck solution impractical. The conservatism of
the truck solution could be attributed to the inaccuracy of the distribution of the
uncertain events. Indeed, the Normal distribution will tend to have a long tail at
each end of the spectrum, while in reality, the distributions of the uncertain
event (truckload and truck cycle time) do not possess a long tail. One way to
correct this deficiency is to repeat the allocation process, each time with an
improved distribution characteristic. An “update’ process, which will use recent
data to determine and provide a more appropriate distribution characteristic to

the next allocation run. The body of this work will be presented in Chapter 4.
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4. Real-Time Truck Allocation

The key focus of this chapter is to investigate parameter updates (Figure
4.1). Updates to the parameters used in the model such as truck cycle time and
truckload are important because they allow the allocation process to adapt to
their changes with respect to time. Both models, chance-constrained and
deterministic, will be implemented in a real-time system that incorporates the
parameter update approach. The comparison of the two results will be made to
illustrate the important difference between two models. In Chapter 4, the truck
allocation model is enhanced with the addition of the surge pile, which acts as a

buffer and helps regulate the ore stream flowing to Extraction.

Realizations of uncertain parameters

Allocation Truck \
Planner Input Solution X, Plant

~—~——————+ Optimizer (Plant Simulation)

Statistical Information on
Truckioad, Cycle Time

Updater

Figure 4.1 - Optimization and Plant Simulation with Updates

In Figure 4.1, the plant input consists of information such as the required
ore rate to Extraction, the truck resource limitation, the number of shovels, the
number of dumps, etc. These pieces of information are considered as static
parameters in the truck model while other pieces of data on truck cyzcle time and
truck payload, provided by the updater, change from one period to the next
period.



The main issue in the real-time truck allocation is to investigate the
potential benefit of using the parameter update approach in the real-time
implementation. The parameter update not only allows the allocation process to
adapt to the changes of the parameters, but also helps reduce any crude
approximations of the characteristics of the distributions of the uncertain

parameters.

In this chapter, trucks are allocated based on route. They are deployed in a
simulated” hauling operation over a 3-hour period during which statistical data
on truckloads and truck cycle times is gathered. This data is then used in the
next optimization calculation and the allocation is modified to adapt to any
changes. Figure 4.2 shows how successive optimal truck solutions are obtained

every 3-hour period.

3 hrs 3hrs 3hrs 3hrs

v

Rerun the optimizer using revised
information from updater

i+l

Figure 4.2 - Consecutive Simulation Periods

The ‘updater’ module relies on a simple rule to update the mean and
standard deviation for truckload and cycle time. A simple averaging rule,

essentially a simple form of low-pass filter, is used. The primary goal of the

 Refer to Appendix D for logical details of the simulator
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low-pass filter is to eliminate high-frequency components, which correspond to
short-term changes or pikes of the parameters such as truck cycle time and

truckload. Let P, represent the parameter vector used in the optimization

process at time ¢ and P represent the parameter vector that is used during the

operation between ¢ and 1+ 1, the updated parameter vector for the optimization

process at t+/ is defined as P, =AP, +(1-4)P,, where 0<4<1 (for our case

study, 4=0.5). The value of Agovems how quickly the system reacts to
changes. For A>-0.5, the system is designed to respond more slowly to the

changes while for 4<0.5, the system reacts more quickly to uncertain events
occurring. P = [u L OL M, 0’,]7 is the parameter vector that contains the four

statistical model parameters: mean truckload, standard deviation of truckload,

mean cycle time, standard deviation of cycle time respectively.

A number of simulated scenarios were carried out to study the behavior of
the parameter update model. In each scenario, the ore hauling operation was
simulated based on the truck allocation, which existed at the beginning of the 3-
hour period. Scenario 1 corresponds to the base case, where trucks are driven at
regular speeds, and without unexpected events. Scenario 2 involves the
simulation with a reduction of the mean truck speed due to worsen driving
condition caused by rain, fog, etc. The simulation of Scenario 3 corresponds to
an increase in the variance of the truck speed and as well as the average truck
speed. An increase in the variance of the truck speed can result from widespread

difference of truck operators’ responses to the worsening driving condition.

While various truck allocation models were already formulated in previous
chapters, a slightly different model is formulated for the purpose of this study. It
is believed that the model in this chapter reflects the truck allocation problem
more closely. The two key additions are the inclusion of the surge pile and the
integer requirement for the number of allocated trucks. Figure 4.3 illustrates of
trucks hauling ore from three mine locations to two ore crushers, which is the

basis for the truck allocation model in this chapter.
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Figure 4.3 - Ore-Hauling Operation in The Mine

4.1. Chance-Constrained Truck Allocation

The truck allocation problem depends on a number of parameters, some of
which are not perfectly known or constant, and is stochastic rather than
deterministic. Uncertainty and unexpected upsets are part of life in the mining
operation and cause difficulty in determining the correct number of trucks. For
this reason, extra trucks are allocated at the planning stage and all truck
allocation is left to the dispatcher. To get a more accurate, realistic allocation at
the planning stage, it becomes necessary to work with the truck allocation
problem as a stochastic optimization problem. In this section, a stochastic
optimization model is formulated and solved using the chance-constrained
method. The critical constraint is to maintain the flow of ore to Extraction. The
surge pile is the demarcation between ore delivery and processing and the level
is used by the dispatcher to monitor compliance with their production constraint.
The probabilistic constraint is developed for the level of the surge pile. The
allocation process determines the optimal number of trucks to ensure that the
surge pile is higher than a prescribed level with a 95% confidence level. This
constraint is probabilistic due to random parameters affecting ore delivery, such

as the loading on individual trucks and truck cycle times.
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Previously truck models were developed to satisfy the rate of ore delivered
by trucks at the crushers, the current truck model is extended to the surge pile. In
reality, truck dispatchers do not steward to the ore rate delivered by the haul
trucks, instead they try to maintain the volume of the surge pile at an acceptable
level (for example, 80% full). There are also automatic controls in place to
prevent both overflow and emptying of the surge pile (these controls are also

implemented in the simulator in this study).

Moreover, truck allocation can only be implemented using a discrete
number of trucks. Therefore, the truck allocation optimization model must be
solved using a mixed-integer solver. The stochastic truck allocation problem
was solved via the chance-constrained method; however, the equivalent
nonlinear mixed-integer model is very difficult to solve directly because the
problem is not guaranteed to converge. The approach taken in this study is to
work with the problem as a two-step model. In the first step a chance-
constrained problem with number of trucks of each type taken as continuous
variables was formulated. In Step 2, the solution of the ‘relaxed’ problem (Step
1) is used as input to solve the mixed-integer linear problem for the ultimate

truck solution (discrete number of trucks).

The main motivation for the two-step approach is to guarantee a
convergence of the discrete truck solution. Adopting the single-step approach
would require one to work with a linear mixed-integer chanced-constrained
problem, which is difficult to solve. In the two-step approach, the uncertainty of
the parameters is accounted for in the first step, where the problem was relaxed
with continuous number of trucks. However, uncertainty is not included in the
second step, which corresponds to a mixed-integer linear deterministic problem.
The primary goal in the second step is to determine the ‘approximate’ optimal
solution that is closest to the relaxed solution found in the first step of the

problem.

The truck allocation model is formulated based on the following

assumptions:

e Trucks are allocated to routes, which link ore shovels to crushers.
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e Ore shovels cannot be used as waste shovels and vice versa.

® Trucks are not allowed to switch routes within a time segment (3

hours).
e Every effort is made to minimize the truck waiting time at shovels.

e The average values of truck cycle time and of the truckload of the
waste trucks are deterministic and are considered constant for a given
truck type. These are used to quantify the amount of waste moved by

the remaining trucks.

e The average values of truck cycle times and truckload are assumed to
be Normally distributed and independent. While it is possible for
trucks with heavy loads to be driven at slower speeds, experience
shows that this covariance is negligible and can be ignored in the

formulation.

4.1.1. Relaxed Truck Model

In the first step, the chance-constrained model includes the number of
trucks of each type as the continuous variables (i.e., in this problem the integer

variable condition of truck number has been relaxed).

Objective function

As in previous chapters, the objective function is to maximize the waste
moved given a limited equipment resource mine layout and production target.
This effectively minimizes the usage of truck resource for the ore movement and
avoids having to set a hard constraint on the waste as would otherwise be
necessary for maximizing profit or revenue. This also accurately reflects the way
both the planners and dispatchers view the problem. That is, to meet the
production targets as efficiently as possible and use the remaining trucks to

remove waste.
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Ore production constraints

Since the model has been extended to include the surge pile, the ore
production constraint is now imposed on the level of the surge pile. The
dispatcher monitors surge height to determine compliance with production
targets from Extraction. While the surge pile is small, it still takes approximately
30 minutes to empty a full pile at full production rates (12000 tph) with no feed.
It is large enough that it can offset short interruptions and small shortfalls of
truck-delivered ore. As a result, the truck allocation solution does not need to be

as conservative as previously reported.

Due to the variability in the truckload and the truck cycle time, the amount
of ore delivered by trucks to the crushers also vary. The variability in the
truckload and truck cycle time can be modeled by a Normal distribution.
Historical data has shown that the truckload distribution characteristic is very
close to the Normal distribution, and the truck cycle time close to either Weibull
or Lognormal characteristic. However, for the purpose of simplicity, both
parameters are assumed to vary with a Normal characteristic. Thus the

probabilistic ore production constraint is

P{Surge Pile Volume after H hours = Minimum Valume}z a,where 0<a<l.

The value ais the degree of confidence that the constraint on the surge pile is
satisfied and the value, 1-a, is called the tolerable extent to which the
probabilistic constraint can be violated. The study in this report is based on the
95% degree of confidence, or @ =095 (This convenient, high value of
confidence is chosen as it is close to the value that corresponds to twice the
standard deviation in the Normal distribution. Also, this value is often used in

engineering problems).

This constraint can be rewritten as follows

P {lnitSurge Vol + H [TruckVal - ExtraclionRate] 2 MinSurgeVol }2 a
The initial surge volume (Tonnes), InitSurgeVol, is the amount of ore in the
surge pile at the beginning of the allocation. Each allocation time period (.e.g., H

hours) corresponds to a different initial surge volume. The production ore rate to
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Extraction is constant throughout the entire implementation. The volume of ore
delivered by trucks, TruckVol, depends on many parameters (e.g., truckload,
truck cycle time, number of trucks) and is the only term in the constraint that
embeds the process uncertainty.
Truck resource constraint

A hard limit is imposed on the total number of trucks that can be
deployed. Currently, this truck resource limit is fixed.

Shovel constraint

The amount of ore that can be obtained from a shovel is ultimately limited

by the shovel capacity, not the number of trucks assigned,

Total Amount of ore loaded on trucks at shovel < Shovel Capacity (tph)

The overall mathematical form is

Maximize HZ[R(g Zx s.d, g)] " )Lw(g) (Tonnes)

subject to:

P {InitSurge Vol + H [TmckVol - Ertracn'onRare] 2 MinSurgeVol }2 a

TruckVol = 2 2 2

L o(s.d,g)X(s,d,g) (tph)
r(s, .8

LI

Lo (s.d.g)X(s.d, g)< ShovelCap(s) (tph)
e fo (S

> Y X(s,d.g)< Rlg)
s d

X(x,d,g)20

where: g represents the truck groups (e.g., 240T, 320T, 360T), s the shovel
index and d the dump index. L,(s,d,g)is the ore truckload and

L,(s.d, g), L, (g) is the waste truckload. It is noted that, since the problem is
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focused only on the delivery of ore, it is not necessary to consider the
dependence of waste truckload on the routes. R(g) represents the truck resource

limit of truck type g and ShovelCap(s) denotes the capacity of shovel s (tph).

4.1.2. Deterministic Mixed-Integer Model

In current practice, when estimating the number of trucks needed for a
specific shovel or route, an initial fractional value is calculated. It is then
rounded up to an integer number. These trucks are allocated and deployed on
routes, and the rounding process is applied to individual routes. For example, if
the continuous solution calls for 5.3 and 6.6 trucks to be deployed on two routes,
6 and 7 trucks will be deployed on these routes, respectively. On simple models
with few routes such as given in the example, such heuristic methods can be
used to select a satisfactory solution that is close to the optimal solution.
However, more complicated models (with many different possible combinations
of discrete solutions) requires an integer model to be formulated and solved in
order to obtain the optimal integer solution. The following discrete model is
added as the second step in the optimization process so that the optimal truck
solution can be directly deployed in the ore hauling process. In this second

model, the truck solution variables are integer values.

Alternately, a single discrete probabilistic model could be formulated such
that the discrete truck solution can be obtained in one step. However this
approach yields a nonlinear mixed-integer problem that is not guaranteed to
converge. In the two-step approach, the ‘optimal’ discrete solution is to be
searched in the vicinity of the continuous solution. To ensure that this discrete
solution is an optimal discrete solution, the discrete linear model must be
formulated such that the discrete solution is close to the relaxed continuous
solution, which is the true optimal solution to the optimization model (convex

programming is assumed).
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Objective function

The objective of the model is to minimize the difference in the ore amount
delivered by a fractional number of trucks and by a discrete number of trucks. In
effect, the optimization converges to the discrete truck solution that is closest to

the relaxed continuous truck solution.
Minimize
number of trucks

. Ore delivered by discrete Ore delivered by continuous
Ore Difference = -

number of trucks

Ore Difference >0

The non-negative constraint on the objective function value is imposed to ensure
that the discrete truck solution still belongs in the space of the feasible

(continuous) solutions.

Shovel constraint

This constraint places an upper limit on the total number of trucks, which
is equal to the rounding-up total number of the continuous truck numbers for a

given shovel.

On every shovel:

Y #of discrete trucks on the shovel < ceiling[ Y. # of continous trucks on the shovel ]

Routes Routes

This constraint helps reduce the feasible space of the continuous solutions in

which the discrete solution is to be determined.

Truck limitation constraint
This resource constraint is the same as that in the first-stage model. It is included

to provide the upper bound on the truck resource.

The overall second-step model is mathematically expressed as
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Minimize
OreDifference = 2 Z ZLLO (s,d,g)[Y(s,d, g)— X(s,d, g)]
L & 1(s.d, g)

OreDifference > 0
Subject to

On each shovel s:

>y % 7 (s.d,g)Y(s.d,g)= ShovelCap(s)
FE, to(s.d,g)

On each shovel s, truck type g: Z Y(s.d,g) <ceil |:2 X(s.,d, g)]
d d

On each truck type g: ZEX(s,d.g)SR(g)
s d

Y(s.d.g)>0

Refer Appendix GS for the GAMS program for the overall chance-constrained
model.

Also, further information about the solution method that can be used to solve

linear integer optimization problems can found in Appendix D.

4.1.3. Sensitivity Analysis

As discussed in chapter 3, the sensitivity analysis involves the study of how
sensitive an optimal solution is to model parameters. The parameters on which
the sensitivity of the truck solution is to be found are the means and the standard

deviations of the truck cycle time and truckload.

The sensitivity analysis is mostly limited to linear programming and its data
can be readily obtained together with the optimal solution for linear problem.
However, nonlinear problems often pose difficulty in finding such data. In this
chapter, the degree of the sensitivity of the solution with respect to various

parameter changes is carried out using the perturbation method.
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4.2. Deterministic Truck Allocation with the Surge Pile

In an attempt to evaluate the appropriateness of the deterministic truck
allocation model in the real-time allocation context, a deterministic truck
allocation model is formulated based on the same constraints used in the chance-
constrained case. This deterministic model is an enhanced version compared to
the allocation model in Chapter 2. The primary difference is the addition of the

surge pile. Mathematically, the deterministic model can be represented as

Maximize HZ[R(g ZY(s d, g)] " )lw(g)

(Tonnes)
Subject to:

InitSurgeVol + H [TruckVol - Ertracn'onRaIe] 2 MinSurgeVol

(Tonnes)
TruckVol = 222—60——1,0 (s.d.g)Y(s.d.g) (Tph)
o tlsd.g)
60 —_
2 Z_——Lo (s.d,g)Y(s.d,g) < ShovelCap(s) (Tph)
7 % tols.d.g)

2. Y Y(s.d.g)<R(g)

where Y(x,d,g) is the non-negative integer number of trucks

In comparison to the formulation of the chance-constrained model, two
key differences are noted. First, the deterministic model is formulated in a single
stage where the solution variables are integer numbers of trucks. Second, the
probabilistic constraint on the surge level is now deterministic in the current
model. The resulting model is a simple linear deterministic model that can be

easily solved with any standard linear solver.
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4.3. Results and Discussions

Table 4.1 lists the data used for the model parameters.

Minimum level of surge pile 7000 Tonnes

Ore Rate to Extraction 6000 tph

Degree of confidence to maintain the surge above the 95%

minimum level

Number of shovels 3

Number of dumps 2

240T truckload M =220.0 =20 Tonnes

240T truck cycle time M =24,0 =5 minutes

Shovel capacity (Tonnes/h) (same for 3 shovels) 6000 tph

Maximum truck resources {240T.320T.3607’} ={50,0,0}
Table 4.1 - Model Parameters

4.3.1. Sensitivity Results of the Chance-Constrained Model

Sensitivity data is obtained via the perturbation method. Truck solutions are
gathered and accumulated from repeated optimization runs changing one
parameter at a time. Since the study is related to the stochastic truck allocation
model, the parameters involved in the sensitivity work are all related to the first
two moments* for the distribution of the two key parameters: truck cycle times
and truckload. The charts in Figure 4.4 show the sensitivity result of the truck
solution with respect to changes in model parameters. The results are collected

from repetitive optimization runs based on the overall model with discrete truck

variables.

2 . . . .
*! Mean is the first moment and standard deviation is the second moment
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Figure 4.4 - Sensitivity Results (CCP model)

Figure 4.4a shows that as the truckload increases, the optimal number of
trucks required decreases. This is an expected result. It also shows that as the
average truckload increases, the effect of the discrete solution is more evident.
Also as expected, at higher truckloads the change is proportionally smaller and
thus may not influence the solution. While the standard deviation of the 240T
truckload is small, Figure 4.4b illustrates a high degree of insensitivity of the
truck solution to this standard deviation. However, larger changes in the
standard deviations than in the mean of truckloads are necessary to affect the
result. Figure 4.4c and 4.4d show similar behavior. The discrete solution tracks

the continuous truck solution more closely than in 4.4a and 4.4b
The remaining results presented in this section pertain to a mining operation
consisting of 3 shovels and 2 dumps. These three shovels are designated to load
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ore into haul trucks at three pit locations. Despite travelling at different speeds,
each truck is considered to travel with two average speeds, one on the haul
segment and one on the empty segment. A simulator is used in place of the
actual ore hauling process in the mine. The simulator relies on two separate
groups of data. Common data such as the distances between ore shovels and
dumps, ore rate requirement, loading information, etc. are shown in Table 4.2.
Data concerning changes in road conditions is scenario-specific and is thus

presented in the appropriate sections.

Parameters Values Comments

Upper limit of the When the surge pile reaches this limit, dumping is
surge pile volume 11.500 disallowed. Trucks loaded with ore have to queue and
(Tonnes) wait at the dump site until dumping is allowed.

Low limit of the When the surge pile is below this limit, the process
surge pile Limit 4000 forces a reallocation. This can happen before the end
(Tonnes) of the 3-hour period.

Ore Dumps (2) NB6. NB7

Trucks are allocated to individual routes and are not
0078.0079. allowed to switch routes between the period.

Ore Shovels (3) 0080

Loading time for N@G3.0.2 ;) »» | The loading time at the shovel is considered to vary
240T trucks = with a Normal distribution of a mean of 3 minutes
(minutes) and standard deviation of 0.2 minutes.

Route (0078 NB6) 2km
Route (0078.NB7) 2km
Route (0079.NB6) 3km
Route (0079.NB7) 3 km
Route (0080.NB6) 3km
Route (0080.NB7) 2 km

Table 4.2 -~ Layout Data in The Simulator

In the real-time allocation framework, the truck problem is formulated using
the chance-constrained approach as well as the deterministic approach. The
results from both models will allow planners to recognize the fundamental
difference between using the two methods so that they can decide on which is

suitable for the problem at hand.

2 N(u.0") : normal distribution with specified mean and standard deviation
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The simulation runs are carried out in two main sets. The first set involves
only one type of truck for simplicity. The second set of simulations represents a

more realistic allocation problem as it involves all three types of trucks.

4.3.2. Simulation with Single Truck Type

Under a given production constraint, 240T trucks would be required in
higher number than the 320T trucks or 360T trucks. Therefore, 240T trucks are
most appropriate for the study as compared to trucks with larger capacity since
high number of truck units is very useful in building a statistically

representative data set to be used in the update procedure.

Scenario 1

This scenario corresponds to a base case where the 240T trucks are driven
with speeds that vary according to a specified Normal distribution (Table 4.3).
Truckloads are Normally distributed with constant means and standard

deviations throughout the scenario.

240T Hauling speed 240T Empty speed
(km/hour) (km/hour)
Period | Norm(15.3) Norm(20.3)
Period 2 Norm(15.3) Norm(20.3)
Period 3 Norm(15.3) Norm(20.3)
Period 4 Norm(15.3) Norm(20.3)
Period § Norm(15.3) Norm(20.3)
Period 6 Norm(15.3) Norm(20.3)

Table 4.3 — Speed Data in Base Case (Scenario 1)

The simulated result in Figure 4.5 clearly illustrates how the surge pile
level changes with time as variation in truck speeds affects the amount
delivered. The graph corresponds to the ore hauling operation over twelve
consecutive 3-hour periods. With the initial surge level of 8,000 Tonnes, the
surge level remains stable between 8000 Tonnes and 10000 Tonnes during the
entire period. Despite obvious increases in the sixth and the seventh period, the
surge level can still be considered as stable because the graph represents only

one instance of the run. The allocation algorithm will always attempt to
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minimize the number of trucks to haul ore as lor:g as the production constraint is
satisfied. When the surge level is higher than the required amount, fewer trucks
are required. In the eighth period, one less truck is required to haul ore since the
surge is at an all-time high level. This corresponds to the truck-delivered ore rate
below the required 6000 tph.

14000 T—Brop [ it Surge ievel + 3 { TRIkOreRae - E0veRate ) > 7000 3 0.95

Ore Rate = 8000 Th Updase Rule an truck Cycle Sme and truck load:

e o T New Mean = 0.5 Incurmed Maan + 0.5 Last Period Mean
12000} — Surge el - B0 Tomnes ... NewSxDev=0.5incumed SxDev.+ OS5 Last Penod SkDe

oerme PS8 6035 6050 6008 5681 6113 5720 5413 5063 S8T6 ST sgom

#240T Tk, | 13 12 12 12 2 2 1 12 12 12 12
Sim OreRae| 635 5918 8070 g7  sous 6266 6099 5446 6084 6900 sy 6O
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Figure 4.5 — Surge Level vs. Time (Scenario 1, CCP, 240T Trucks)

A short rise of the surge level at the beginning of the run in the first period
is due to a short delay of the ore extraction from the surge pile. This artificial
delay is introduced to compensate the inaccuracy created by the simulation
concerning the initial condition as compared to the real operation. In practice,
this behavior does not occur because trucks are not brought to a central location
at the end of a shift, instead drivers are brought to the trucks. Further, newly
allocated trucks are added to the fleet and trucks are taken away from the fleet
gradually, resulting in smooth fluctuations in the surge pile. While the behavior
in the study is not realistic, it is a good trade-off for the simple implementation

of the simulation. It only affects the very beginning of the simulation.
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Figure 4.6 shows the same diagram for the surge level versus time under
the deterministic truck model. Since the deterministic model is formulated based
on the mean values, given a large enough sample size, the surge level will vary
around its corresponding mean level. However, since trucks are allocated as
integer numbers, the result will be more conservative as compared to the
continuous truck numbers. It means that, strictly speaking, the surge level will
vary slightly above the mean surge level. However, this effect is not easily

recognized in the chart in Figure 4.6.

Even though the model parameters are updated every 3 hours, the system
is still an open-loop model within the 3-hour period and this applies regardless
of the method being used in the model formulation. Therefore, it is inevitable
that the system will exhibit a certain degree of fluctuation in the surge level.
This effect can be magnified if trucks are allocated based on the deterministic
model, which is formulated using the historic mean values of the parameters and

if there are large swings in the uncertain parameters.
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Figure 4.6 - Surge Level vs. Time (Scenario 1, Det., 240T Trucks)
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A quick drop of the surge level in the first period in Figure 4.6 is evidence
of the lack of trucks being allocated for the task. This is caused by the
incompatible data of the model parameters used in the initial truck allocation.
This problem is seen throughout the study with varying extents. One way to
compensate for it is to start the process with a near-full surge pile such that any
shortfall of ore can be ofiset by the amount of ore in the surge. In this study,
another measure being implemented in the simulator is to initiate an early truck
allocation when the surge pile is below a minimum threshold (4000 Tonnes as

the current parameter).

Scenario 2

In this scenario, a change in the mean cycle time is modeled. Due to the
poor driving condition caused by weather conditions such as fog or rain, trucks
are driven at lower speeds, causing a drop of the mean cycle time. The
simulation scenario involves 7 simulation periods (3-hour each). Table 4.5
shows the parameter data that is used to simulate the changes of truck speeds

due to the road condition being considered.

240T Haul | 240T Empty
speed V, speed V, Comments
(km/hour) (km/hour)

Period | Norm(15.3) | Norm(20.3) | Normal condition.

. Driving conditions worsen causing trucks to be
P;:)Od Norm(10.3) | Norm(15.3) driven more slowly. However. the change only
2 happens on the mean value and the speed variance

is the same as before.

Table 4.4 - Speed Data in Scenario 2

Figure 4.7 illustrates the behavior of the system when a drop in truck
speed is experienced. In the first 4 periods, the operation is similar to Scenario 1
and trucks are allocated to ensure that the surge pile constraint is met 95% of the
times. Since the surge level is above the minimum required level, minimum
number of trucks are allocated. Starting with Period 5, the surge pile becomes
quickly depleted when truck speeds are reduced unexpectedly. At the end of the

period the update recognizes that conditions have changed and more accurate
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information is used in the optimization and the surge pile level recovers over the

subsequent periods.
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Figure 4.7 - Surge Level vs. Time (Scenario 2, CCP, 240T Trucks)

Although trucks are allocated to ensure that the constraint on the surge pile
level is met 95% of the time, when an unexpected change occurs, it is possible
that this probabilistic constraint is not satisfied. The main reason for this
behavior is due to the difference between the distribution characteristics of the
parameters used in the allocation algorithm and those, which are experienced.
Even though uncertain information becomes known as time progresses, the slow
reaction in the current update rule contributes to this discrepancy. This reasoning
can be used to explain what happens to the run instance shown in Figure 4.7,
especially in the sixth period. In the fifth period, a sharp reduction of the ore
amount in the surge pile is realized due to the effect of the poor road condition.
However, the effect of the sharp decrease is not fully accounted for in the next
allocation process (for Period 6) because of the effect of the low-pass filter in
the current update rule. As a result, not quite enough trucks are allocated to
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offset the low level of the surge pile, and therefore, the level of the surge pile
does not fully recover to the level that was prescribed in the probabilistic

constraint.

One of the important issues in choosing an updating algorithm is to decide
on the balance between using new information and discarding the old. Putting a
strong weight on the newest information allows the fastest response but may
cause over compensation if the upset is large and of a short duration.
Conversely, if not enough weight is given to current information the process
may drift too far from the desired values before the updater takes action. In this
study the update is based equally on the past two 3-hour periods. This is a

reasonable compromise for the upsets considered here, since they last several

time periods.
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Figure 4.8 — Surge Level vs. Time (Scenario 2, Det., 240T trucks)

Correspondingly, Figure 4.8 shows the same diagram for the deterministic
truck model. Once again, the surge quickly depletes in Period 5 where the road

condition worsens and similar behavior of the surge pile is shown. However, it
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is clearly shown that, in the case of deterministic model, it takes longer for the
surge level to recover to desired level. This is due to the fundamental difference
between the two models. The chance-constrained based truck model is more
conservative in the allocation of trucks such that the surge level is always 95%
higher than the required minimum level. Thus, it allows for fast recovery after

any upset.

Scenario 3

This scenario simulates changes in both the mean and the standard
deviation of the truck speed. When the road condition worsens due to weather
conditions drivers will not all slow down by the same amount, they will operate
trucks differently. Cautious drivers tend to drive more slowly. This results in a
larger varniation of the truck speeds. In this scenario, the road condition affects
both the average value and the dispersion of truck speeds. Table 4.6 summarizes
the parameter data that is used to simulate Scenario 3 while Figure 4.9 shows the

simulation results.

240T Haul 240T Empty
speed V, speed V, Comments
(km/hour) (kmvhour)

l:i:?‘d N(15.3%) N(20.3%) Normal driving condition
Period s , Wider variance of speed due to the effect of
510 12 N(12.4°) N(14.4°) the weather causing different drivers to

- operate trucks at different speeds.

Table 4.5 - Speed Data in Scenario 3
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Figure 4.9 - Surge Level vs. Time (Scenario 3, CCP, 240T Trucks)

The effect of the greater variance in the truck cycle time and the slower
speeds is felt during the third period. During this time, long cycle times are
incurred, resulting in a sharp reduction of the surge pile. The effect of the poor
road conditions is taken into account in the next truck allocation (based on the
average update rule). Higher number of trucks in Period 4 helps offset the
shortfall in the ore supply and the surge pile starts to recover to the desired level
(above 7000 Tonnes).
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Figure 4.10 - Surge Level vs. Time (Scenario 3, Det., 240T Trucks)

Figure 4.10 shows the result corresponding to the deterministic model.
The slow recovery of the surge pile causes the surge level to remain at a very
low level, often triggering the truck allocation process before the end of the 3-
hour period. In this case, as soon as the surge pile dips below 4000 Tonnes (the
value is set in the simulator), the truck allocation process is triggered. But
frequent activation of the truck allocation is undesirable since it often results in
operational inefficiencies (a requirement of truck resource could be temporary
and adding truck resource in such condition can result in truck inefficiency, e.g.

increasing waiting time, after the demand disappears).

4.3.3. Simulation with Three Truck Types

Trucks are categorized according to their loading capacity. Three main
types of trucks are considered in this thesis: 240T, 320T and 360T. While it is
easier for a shovel operator to work with one type of truck consistently during

the loading work, it is common to see different types of trucks allocated to haul
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ore from the same shovel. Therefore, it is practical to include all three types of
trucks in the operation. The following simulation is again carried out based on
two different truck allocation models: linear chance-constrained model and

linear deterministic model.

Results Based on the Chance-Constrained Truck Model

These simulation runs are identical to the first set of the simulation where
only 240T trucks were used. The only difference is that different types of trucks
are used in the allocation. These trucks are categorized based on their loading
capacity. Since trucks are different in size, their loading times are also different

correspondingly. Figure 4.11, 4.12, and 4.13 show the simulation results under 3

scenanos as discussed above.
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Figure 4.11 - Surge Level vs. Time (Scenario 1, CCP, 3 Truck Types)
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Figure 4.13 - Surge Level vs. Time (Scenario 3, CCP, 3 Truck Types)

85



Except when there are unpredictable changes in the road condition causing
slow truck speeds, the surge is maintained a high, stable level in the case of the
chance-constrained model. Since the surge is operating most of the time at high
levels, it is capable of absorbing ore shortfalls in the supply stream, making the

process suitable for the operation with frequent unpredicted upsets.

Intuitively, the availability of different truck types helps make the truck
allocation more flexible, and thus more efficient. However, this benefit of using
3 different truck types versusl truck type is not quantitatively gathered for the
purpose of this comparison. The only concrete conclusion that can be made
about this difference is that involving 3 truck types in the calculation increases

the level of complexity, causing the final optimal solution longer to converge.

Results Based on the Deterministic Truck Model

Figure 4.14 to 4.16 again show the simulation results corresponding to the
deterministic truck model. Figure 4.14 shows a very smooth ore hauling
operation with a very stable surge level. The surge level is varying about the
specified level of 7000 Tonnes in normal condition. This result shows that,
under ideal normal condition, the truck allocation problem based on the
deterministic model is equally good as compared to the chance-constrained
model. However, when there are unfavorable operating condition as simulated in
Scenario 2 and 3, the surge reduces to a low level and is slow to recover to the

desired level in subsequent periods (Figure 4.15, 4.16).
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Figure 4.16 - Surge Level vs. Time (Scenario 3, Det., 3 Truck Types)

In general, when truck cycle time increases as driving conditions worsen,
the surge pile depletes quickly. The ability to react to these changes greatly
depends on the update rule being used. Since the average rule is being
implemented in this context, only 50% of the effect of the change will be
adapted and reflected in the subsequent reallocation. It is possible to increase the
weight of the change in the update rule such that the system reacts more quickly
to the change. But if these changes are short-lived, such a rule could cause

instability in the level of the surge.

Aside from the fact that the surge level is always at a level higher than the
required level more than 95% of the time, the chance-constrained model appears
to handle the negative effect of the unfavorable driving condition better than the
deterministic model. This fact is easily recognized because, at most times, the
chance-constrained based solution is always more conservative than the
deterministic counterpart. The surge level is always maintained close to 2

standard deviations higher than the required level. Therefore, the system under
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the chance-constrained model has a better capability to recover from upsets of

ore shortfalls.

The parameter update method is a valuable tool in the process of
allocating trucks in the mine. The online approach allows the uncertain process
information to be updated and used in the future allocation decision. This
implementation allows the allocation process to adjust to the changes of the
operation. It can be used as a valuable online tool to aid the operator in making

dispatching decisions in the mine.
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5. Summary and Conclusions

Successful truck allocation can have a significant impact on the overall
performance of the mine. The current allocation method relies largely on a
heuristic approach where trucks are allocated based on historical data, as well as

the experiences of the planner and dispatcher.

Chapter 2 presented an initial attempt to formally model the truck
allocation problem using a linear programming approach. In spite of the
vanability in truck cycle time and truckload, the model was formulated as a
deterministic model using the mean values. The deterministic simplification
results in a simple linear model, which can be solved easily for the optimal
solution. The benefit of the study in this chapter is not about the actual solution
to the problem, but rather about laying a valuable groundwork for subsequent

studies in later chapters.

Chapter 3 presented an overview of the two primary methods to stochastic
programming: recourse-based and chance-constrained. Recourse-based method
is characterized by the fact that violation is associated with penalty. Two main
drawbacks of the method are the heavy computing resource required to carry out
the calculation and the difficulty in assessing the penalty value associated with
the constraint violation. The first drawback is somewhat alleviated by the
advancement of computer technology. The second drawback exists on most
models where it is difficult to assess the constraint violation. In the truck
allocation problem, it is very difficult to quantify the appropriate penalty for the

violation of the ore constraint.

Given the variability of the truckload and truck cycle time, it becomes
necessary to formulate the truck allocation model using the stochastic
programming approach. Motivation for the adoption of the stochastic approach
is illustrated in findings of the Expected Value of the Perfect Information
(EVPD) and the Value of Stochastic Solution (VSS). Studies have shown that
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when either of these two values is large, working with stochastic model may
provide a benefit. But since calculating these values requires the formulation of
the recourse-based model, it can be complicated to determine these values when

chance-constrained programming is adopted as the stochastic technique.

The formulation of the chance-constrained model is characterized with the
probabilistic constraints. In contrast to the recourse-based mode, chance-
constrained model allows a certain degree of the violation in some constraints.
This degree of violation is often specified as the confidence level with which the
constraint is satisfied. In most industrial applications, where chance-constrained
methods are used, this confidence value often lies above 90%. In the truck
model in Chapter 3, the probabilistic constraint is to satisfy the required rate of
ore 95% of the time. The chance-constrained result appears too conservative to
be practical (over-trucked). But this shortcoming is corrected in Chapter 4 with

the addition of the surge pile in the model.

Nevertheless, the results found in Chapter 3 point to the adoption of the
chance-constrained method as the stochastic method for the truck allocation
problem. The recourse-based method was not selected mainly due to fact that
the truck allocation problem is appropriate to be broken into distinct stages. The
chance-constrained method is simpler to formulate and the probabilistic
constraint is easy to comprehend, especially by plant staff. The model is exactly
the same as the deterministic model with the exception of the probabilistic

constraints. Moreover, the solution method is well-established and simple to use.

The concept of the parameter update model is introduced in Chapter 4.
This is an important concept in the implementation, because the overall model
allows the truck allocation model to be adapted to changes in operating
conditions such as driving conditions on the roads. In this context, the ‘updater’
model is an important component because it provides the allocation model with
information reflecting the real environment. This thesis is limited to a simple

update rule and leaves more complex rules to further research.

The combination of the effect of the surge pile inclusion and the parameter

update approach has made the deterministic model as viable as the chance-
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constrained model. This conclusion is based on two key factors. First, since the
distribution of the uncertain parameters is symmetrical (i.e. truck cycle time and
truckload are Normally distributed), the problem can be formulated as a
deterministic model using the mean values of the uncertain parameters. Second,
thanks to the parameter update approach, any shortfall of the ore level below a
minimum threshold can quickly trigger the reallocation of trucks, which is
designed to account for the change in the operating environment that caused the
original shortfall. The benefit of the deterministic approach comes from the

simplicity of the formulation and a quick conversion to the optimal solution.

However, the chance-constrained method is more suitable when a high
degree confidence in the constraint satisfaction is required. Given the same level
of the surge pile, the chance-constrained model results in a truck solution that is
more conservative than the deterministic model. The deterministic model is
formulated using the mean values of the uncertain parameters, which vary
according to a symmetrical distribution, its truck solution corresponds to the
surge level that varies around the target mean surge level. Equivalently, the
constraint on the surge level is violated around 50% of the times. In other words,
the chance-constrained method guarantees the lower bound of the surge level

while the deterministic method guarantees the mean level of the surge.

The chance-constrained method used in this thesis relies on the
assumption that all uncertain parameters are independent. In practice, this
assumption may not be true since there is always a certain degree of correlation
among the changes of the parameters. An extensive data gathering process is
required to fully establish the characteristics of the uncertainty and the
correlation among the uncertain parameters. The correlation information is
required in the process to convert the probabilistic constraints into their
deterministic equivalents. Although some correlation does exist between
truckload and truck cycle time in the truck allocation problem, it is felt this
assumption does not greatly affect the study, and more importantly does not

skew the results of the study extensively.
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The size of the surge pile has a direct impact on the truck allocation
process as well as the length of the parameter update approach. A large surge
pile allows a longer ore shortfall by the truck delivery system, while a small
surge makes the process highly sensitive to these shortfalls. Therefore, in the
parameter update approach, it is important to select a proper time period such
that it is long enough to gather sufficient data, and at the same time it is short
enough to allow the system to be able to recover from potentially low surge
levels. The discussion of the ideal size of the surge pile is beyond the scope of
the thesis because the designed size of the surge depends on many practical
factors not considered, such as the mixing requirement, or the minimum size

required due to potential breakdowns of crushers, and other equipment.

Another complexity in obtaining the solution arises due to the integer
requirement on the truck solution. This requirement does not cause as many
problems to the deterministic model as it does to the chance-constrained model.
It is commonly found in many industrial applications that a nonlinear discrete
model has difficulty converging to an optimal solution. While this convergence
problem does not occur on the chance-constrained based truck model, the
integer requirement has some effect on the relative accuracy of the integer
solution. That is, the problem does not converge to an integer solution within a

reasonable number of calculation iterations.

This integer requirement on the truck solution also causes difficulty in
obtaining the sensitivity of the truck solution. It is found that the degree of the
sensitivity of the truck solution to various model parameters is a non-continuous
function with respect to the location of the optimal solution within the feasible
space of the solutions. Therefore it is important to quantitatively determine the
model parameter to which the solution is most sensitive and to identify the
component in the model to be used to offset the negative effect. In the truck
allocation problem, in order to negate the effect of the ore shortfall due to the
high sensitivity of the truck solution to parameters i.e. the mean of the ore
truckload and truck cycle times, the process should start with a full surge and

consistently maintain it at a high level.
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The main contribution of this thesis is that formal stochastic methods can
be used to deal with process uncertainty in the allocation of haul truck resource
in mining industry where the truck-and-shovel technology is implemented.
Particularly in the oil sand industry where trucks haul ore to the surge pile, the

chance-constrained method is more suitable than the recourse-based method.

It was also found that when the distribution of the uncertain parameters is
symmetrical and the cost of the constraint violation is not high, it is more
appropriate to use the deterministic method because its formulation is simpler.
Moreover, the solution to the resulting linear mixed-integer model converges
very quickly.

However, in a general truck allocation problem, it is recommended that
the chance-constrained method be used in the model formulation so that
uncertainty can be handled in a structured manner. The resulting nonlinear
model is not overly complicated and small enough that an integer solution can
be obtained without extensive computer resource. While the deterministic
approach can be considered an equally efficient method in the context of a
parameter update approach, especially when the uncertain distribution is
symmetric, the chance-constrained approach is still preferable since it does
provide an additional level of comfort in meeting the ore production constraint

as compared to the deterministic counterpart.

Many opportunities exist to improve the allocation model. One of the
possible improvements is to expand the probabilistic production constraint from
one constraint into many constraints, one for every hour during the time period.
This modification imposes additional constraints in the model, thereby reducing
the feasible space of the solutions. The problem is more difficult to solve since
the model involves joint-probabilistic constraints. However, since more
constraints are added to the model, it is possible that it takes less time for the

solution to converge, if a solution exists.

Another critical addition to the truck allocation model is to include the
grade requirement as a constraint. While being seen and used as the buffer to

help regulate the flow of ore to Extraction, the surge pile also has to fulfil the
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role of a mixer. Since ore comes from different pits in the mine with different
ore grades, it is important that proper mixing be done in the surge pile to
guarantee a certain level of grade in the ore flowing to Extraction. This
requirement leads to an additional constraint pertaining to the material grade in
the truck model. This constraint is best expressed in a probabilistic form since
there is also variability in the grade.

While not as critical as the study of the formulation methods and their
associated solution methods, the simulator plays an important role to show the
feasibility of the methods being proposed. The current simulator can be
improved to model more closely the actual ore hauling operation regarding the
initial state of the simulating period. Different types of distributions such as
triangle, binomial, or uniform can be used to investigate the appropriateness of
the optimization model and also to study the sensitivity of the truck model with

respect to these distribution charactenistics.
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Appendix A - Linear programming

A linear programming model involves the optimization of a linear function
subject to linear constraints on the variables. Since linear functions arise
frequently in economics, networks, scheduling, etc. and are very easy to work
with, linear models are often constructed to represent the real world. A linear

model has the form
minimize ¢Tx
st.Ax2b,where x20,xe R", A€ R™ ,be R",ce R"

In a deterministic model, the parameters A, ¢, and b are known and constant.
Such an optimization model can be solved easily via the Simplex method
[Dantzig, 1947]. The solution always lies at a comer of the feasible region,
which is defined by the linear constraints. Figure Al illustrates a simple
example of a 2-variable optimization linear model with one degree of freedom.

The optimal solution can be easily seen at the comer A in the graph.

X (C2)

Figure A 1 - Graphical Solution in Linear Model

The feasible region in this case is the area bounded by the four segment AB, BC,
CD, and DA (segment AB and AD correspond to constraints C2 and Cl
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respectively, the other two segments BC and CD correspond to the non-

negativity constraints on the variables x,and x,).

The simplex method has been an effective solution method for solving
linear programs and enhancements to this method have made it the method of
choice for solving linear problems for many years. Examples of these
enhancements can be found in the work of Lemke [1954] and Beal [1954] on the
Dual Simplex Method where the concept of duality is being appled. Other
enhancements include using the Product Form of the inverse by Dantzig and
Orchard-Hays [1954], the Column Generation [Eisemann, 1957], and the
Decomposition principle [Dantzig & Wolfe, 1960].

Another important method, namely the interior-point method, has been
proposed to solve linear problems by Karmarkar [1984]). Karmarmar’s new
algorithm was later thought to be closely related to a group of algorithms known
as barrier methods (Fiacco & McCormick, 1968]. A key feature of this new
method is the fact that the iterates are strictly feasible. In contrast to the simplex
algorithm where the movement is along the boundary of the feasible region, the
points generated in this new approach lie in the interior of the feasible region.

Interior-point remains one of the most active research areas in optimization.

While both techniques can be used to solve the linear problems effectively,
the interior-point method is more effective with very large linear models (many
variables and constraints) and the Simplex method is simple and effective with
small to medium models. Another key feature of the Simplex method is the fact
that the optimal solution is obtained along with the sensitivity information. Since
the model parameters in reality are not always constant, but can fluctuate with
time or with different scenarios, it is extremely important to know the extent of

the effect of these changes on the optimal solution.

Sensitivity in Linear Programming

In the field of operation research, post-optimality study is equally important
as the determination of the optimal solution. The post-optimality study mainly

involves the study of the sensitivity of the optimal solution to the model
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parameters. The decision to implement the optimal solution in practical
problems rests on the validity of the solution in light of possible changes that
often happen to many model parameters. A small change in a parameter can
make the original optimal solution no longer optimal or in the worse case, the
optimal solution is no longer feasible. Therefore, it is important to study both the

stability and the sensitivity of the optimal solution to the model parameter.

The important goals of a sensitivity study are to identify the sensitive
parameters (i.e. the parameters whose values cannot be changed without
changing the optimal solution) and, for the less sensitive parameters, to
determine the range of values over which the optimal solution will remain
unchanged. This range of value can also be called the allowable range 1o stay
feasible. The worst scenario corresponds to the change that makes the
optimization problem infeasible. Knowing the sensitive parameters is important
because special care must be taken in estimating or selecting these values to

obtain the most accurate optimal solution.

The sensitivity study can also help predict the effect of a small change to
the parameter to the objective function of the model. It is beneficial to be able to
predict the effect of the change because the problem does not need to be
resolved for a new objective. However, this ability is subject to two conditions:
a) the model must be linear, and b) the change is considered small enough that it
does not cause other non-active constraints to become active. When these
conditions are not met, it is required that the problem be resolved for a new

optimal solution.

In practice, since model parameters always represent actual physical
quantities or real-world events, it is inevitable that they change and ultimately
affect the final optimal solution. Therefore, it is important to account for these
changes after the optimal solution is found. Figure A2 shows a graphical
solution to a general linear optimization problem (optimal solution lies on point
D). The feasible region is bounded by the two axes, line CI and line C2 (the area
with 4 comers A, B, C, D). However, lines Cl1 and C2 are moved to other
locations shown as the dotted lines due to the changes of some parameters such
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that the optimal solution now moves from D to E. Therefore, it is important to

know how sensitive the solution is to each parameter in the model.

—_—
A A
8 c " 8 g
Changes to the right-hand side Changes to the coefficient matrix
a) b)

Figure A 2 - Effect of Parameters Changes in Linear Model

Parameters can appear at three different locations: the right-hand-side
matrix b, the coefficient matrix A, the reduced cost ¢ in a linear optimization
model, such as optimize z=c¢"x subject to Ax=>b, x>0. Figure A2-a
corresponds to the changes to the right-hand-side parameters in the linear model
while Figure A2-b corresponds to the changes that happen in the coefficient
matrix A. Either of these two cases will result in a different optimal solution. It
is necessary to perform the sensitivity study on all parameters. Most solvers can
readily provide the optimal solution along with the sensitivity data in the form of
marginal values of the right-hand-side vector b. The sensitivity with respect to
the reduced cost, or the objective function coefficients, can also be obtained
easily by solving the corresponding dual problem. However, changes to the
coefficient matrix A present the most challenging task in the sensitivity work
since it is not possible to obtain the marginal values of the parameters in this

coefficient matrix easily from the solver output. The other altemative is to
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obtain these sensitivity data by numerical method that is to perform the

calculation after each step change.

The key benefit of the sensitivity analysis is the ability to predict the new
optimal solution without resolving the optimization problem. This benefit is
clearly recognized with the large-scale problem that involves thousands of
variables and thousands of constraints. However, it is also important to
understand the limitation in the interpretation of the sensitivity data. For
example, the correctness in the predicted optimal solution in linear models is
guaranteed only when the original optimal basis® remains optimal after the
changes, that is when new variables enter the basis or existing variables leave

basis, a full recalculation is typically required.

- Being associated with the Simplex method as a linear solver {Dantzig. [963]. Optimal basis includes a
set of non-zero decision variables. which is said to leave the basis when it becomes zero and it is said to

enter the basis when it becomes non-zero.
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Appendix B - Stochastic Programming: Two-
Stage Recourse

Many researchers have studied recourse problems and have developed
valuable formulations for two-stage recourse problems and have recommended
various solution techniques. Dantzig [1955] and Beale [1955] among other
operation research scientists have built a good theoretical foundation for
stochastic models for many industrial applications. Many algorithms were
suggested [Huang et al., 1977] to solve for approximate solutions to large-scale
problems. The formulation of a generic two-stage recourse problem, developed
below and shown in Figure Bl, generally involves a large number of
realizations. In this problem, the main objective is to determine an optimal first-
stage decision x which leads to the lowest overall cost. The first-stage cost is
directly proportional to the first-stage decision vector (constant cost vector ¢).

The second-stage cost is the expectation of the product of the second-stage
decision vector y and the second-stage cost coefficient vector q(w)" .

minimize z =¢"x + E, {min q(w)T y(w)}

subjectto Ax =Db,

T(w)x + Wy(w) = h(w) (B.1)
where x>0,y 20, Z Plw. }=1

E, {a(@)} represents the expectation of a over the random vector § while @
denotes individual realization. Familiar parameters often encountered in the
linear model include x, ¢',A,b. These parameters belong to the group of first-

stage parameters whereas the remaining parameters fall under the group of
second-stage parameters, all of which are dependent on @ with the exception of

W, which denotes the coefficient matrix. These second-stage @ -dependent
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parameters include y(®),q(@)",T(®), h(w). y(w)represents the second-stage

decision vector; q(w)"the cost vector and T(w),h(w) both represent the

coefficient matrices.

First Stage Second Stage

I:: scenario @, y@)
scenario @, y@,)

+—» Scenario 0 y(@,)

&—— scenario @, y@,)

1st-stage Decsion: X 2nd-stage Decsion:  y(@3),y(@,),y(&),...y(@,)
1st-stage Constraint: Ax2b 2nd-stage Constraint: T(w)x+ Wy(w) =h(w)

The overall prolemis  Z=¢"x+Q(x)
to minimize s1. Ax 2 b, T(w)x+ Wy(w) =h(w)

xy =20

Figure B 1 - Two-Stage Problem with Fixed Recourse

If the second term, E; {min q(a))T y(a))}. can be written or expressed in a

deterministic manner. The stochastic problem can be reformulated as a

deterministic problem. The second stage decision vector y(w)depends on
@ and x because a unique vector y(@) can be found for a given pair(w, x) by
solving the following sub-optimization problem

min Q(x.£(@)) = ¢(@)" y(@)

5.t. T(w)x+ Wy(w) =h(w), y 20
Let ¥(x)=E {Q(x.£(@))} and substituting'¥(x) into the general two-stage

recourse model yields the following deterministic equivalent problem
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minimize z = ¢"x + ¥(x)
st.Ax=b, x20

The difficulty of the recourse-based program lies in the computation burden
of calculating W(x) for all x. If ¥(x) were convex and differentiable, classical
nonlinear programming techniques could be applied to solve for the optimal
solution. In the farmer’s case, the corresponding second-stage function, ¥(x), is
constructed analytically and its optimal solution can be determined easily.

For most practical problems with small random vectors, one can
determine ¥(x) by numerically integrating Q(x,&(w)) for a given value of x. In
addition, most nonlinear optimization techniques would also require the
calculation of the gradient of W(x), which in turn relies on numerical
integration. Numerical integration has become an effective computation
technique for problems with small number of realizations.

The distribution of the uncertainty plays an important role in the feasibility
of the solution to the recourse-based problems. Let K, denote the set of solutions
that are determined by the fixed constraints and K,denote the second-stage
feasibility set, i.e. K, ={x|Ax=b,x>0} and K, ={x|¥(x) <o}, the above
deterministic equivalent model can be rewritten as

minimize z =¢"X + ‘P(x)

st.xe K,NK,
Wheng has finite second moments, Birge and Louveaux [1997] proved that
K, will be closed and convex and that'¥W(x)will be Lipschitz convex, and is
finite on K,. The convexity requirement is essential because it can guarantee a
conversion to a global optimal solution. Complete analysis on the properties and

characteristics of the function ¥(x) is beyond the scope of this study.

Intensive computation requirement is the main characteristic of the
recourse-based program due to the complexity of determining the equivalent

deterministic function, ¥(x). In deed, the size of the optimization problem
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(number of constraints and number of unknown second-stage variables)
increases when the number of realizations increases. The complexity of the
problem combined with the heavy computing demand has been the main

obstacle for the adoption of the method in the industry.

Fortunately, in recent years new solution techniques coupled with the
advancement in computer technology have reduced the computational burden.
When distribution characteristics of the uncertain parameters are known,
powerful sampling techniques can be used in conjunction with an efficient
calculation algorithm to solve for the stochastic solution with modest computer
resources. Powerful stochastic-based commercial software packages have
appeared within the past 10 years, not only on time-shared based computers but
also on personal computers, and are successfully used to solve many industrial

problems.

The concept of multistage recourse problems is a natural expansion of the
two-stage recourse problem. The resulting recourse model with three or more
stages will be more complex and requires higher computer resources. In some
applications, it is better to work on models that involve three or more stages,
especially when meaningful corresponding recourse actions can be modeled.
However, since adding more stages increases the problem complexity and the
degree of difficulty, detailed assessment is required to ensure that the benefit
outweighs the added complexity. In the farmer problem, if the farmer can react
to certain crop conditions due to the uncertain effect of the weather (e.g. to add
water or fertilizer) he can potentially reduce the negative effect of the weather
condition to the final yield. Figure B2 illustrates the three-stage recourse model
that the farmer would use to formulate his crop allocation problem. The first
stage involves the decision on the crop size, the second stage involves possible
correction, as needed in the case of the low yield, and the last stage involves the
amount of extra crops purchased due to crop shortages and the amount of crops
sold. However, the addition of the extra stage in the farmer problem only makes
sense if the farmer can quantify the effect of the recourse and whether by taking

this recourse action he can maintain the yield at the target level.
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It is important to recognize the difference between stage and period of
time in recourse-based stochastic problems. It is common to formulate the multi-
period stochastic applications using the multi-stage recourse method, while in
most cases, the two-stage recourse method is sufficient. The context of the
actual problem will control the pertinent relationship between stage and time
period. In the farmer case, with a 4-month crop, the outcome of the crop
condition after the first two months and the farmer’s experience are used to
determine the appropriate recourse actions in Stage 2 of the 3-stage problem. It
is also possible to map a stage to a 1-month period instead of the 2-month period
as long as the stage is long enough for the recourse action to influence the value
of the objective function. The length of the time in each stage is clearly problem

specific; in this case, the farmer should know when to start the second stage.

Stage 1: Allocate the Stage 2: Add water Stage 3: Buy or sell
crop size and fertilizer as product according to need,
required quota, etc.
Midpoint .
Uncertainty: Crop mid-point Uncertainty: Crop yield
condition due to weather Actions after yield out :
i idpoi Buy more due to shortage
ﬁ%ﬁ?: mm Sell product at prices based on
Add water ) amount (selling price is controlied
Add fertilizer by quota and amount soid)

Figure B 2 - Farmer Problem with 3-stage Recourse
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Appendix C - Stochastic Programming:
Chance-Constrained

In the following section, deterministic equivalent constraints are derived
under different cases of the location of the uncertainty. The analysis is focused

on the study of linear probabilistic model having the general form as

minimize h{ X )
subject 1o P{[Ax 2 b} 2 a.
O0<acs<lx20

where A€ R™ ,be R" ,xe R",a€ R"

The approach to solve such a model relies mainly on the conversion of the

probabilistic constraint into a deterministic counterpart.

Uncertainty on the right-hand side: b

The task is to convert the probabilistic constraint into the deterministic

equivalent. Consider the general probabilistic constraint

P[Ax=b]|>a, 0<a<1x20

where b randomly varies according to a known Normal distribution.
At row i, the constraint is written as

P[A,x 2 b, ] 2a,, where x20, and A, is the row vector that corresponds to
row i

or

P, <Ax|2e

Let 5.,0’, represent the mean value and the standard deviation of the random

parameter b, , subtracting both sides of the constraint by b: and dividing by o,

yields the following probabilistic constraint
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—D;

O'b'

Define z; = b as a new variable, which is a random variable of Normal

distribution N(0,1). The probabilistic constraint can then be rewritten as

' ab' i

By definition, the probability P[Z.- < A, x-b;

G'b'

j|is the area defined by the

Aix—-b.;

b’

:| (Figure

distribution function f{.) and the interval of z, where z, € [0,

Cli).

Probability Density
Function

0

Cumulative Probability AF(2)

Function
1
; Flzol=a, = P[22 5,1
= Tf(x)dr
_____/ Z

»

Figure C 1 - Probability Density Function and Cumulative Probability

Function

Let F{(z) be the cumulative probability function
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F(2)= I f(x)dx<1, where f{x) is the corresponding probability density

function

It can be written that

- SA,X—E:' =F A,X—Bi >a
' ab' a,b. i

Since the cumulative distribution function F(z) is monotonically increasing with

2. the probabilistic constraint can be converted to a deterministic equivalent as

A,X—b. >F [a‘]
o,
oo  Ax-o0,F'[a]2b.
This deterministic inequality at row i can be generalized into a matrix form:

Ax-o,F'[a]>b

a, 0 0 F'l@,) o o by
where a, =0 "-. 0 |F'la]J=| o 0 |b=|:
0 0 « 0 0 F “(ab_) ba

In principle, any cumulative probability distribution function can be
inverted. When the distribution function is available in an analytical format, it is
simple to obtain the corresponding inverted function. But without this analytical

function, one would have to rely on computing a table of the inverse function.
The decision variables in x, now depend on the distribution characteristic of
the uncertain parameters. The original probabilistic constraint P[Ax>b]>a is
equivalent to the deterministic constraint Ax ?.E-l-o,,F" [a] in which the term
in the right-hand side represents an additional demand term that increases the
value of the decision variables in x, as compared to the constraint Ax>b.
Large values of a (high degree of confidence) or of @, (flat distributions) will

require large values for the decision variable (x) to satisfy the deterministic
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equivalent constraint. This implies that when either high confidence is required
or there is a substantial lack of good information, one must choose a solution

that is often costly and conservative.

Problems with uncertainty in the right-hand side are very common and
remain the simplest to solve among all chance-constrained problems. The
deterministic equivalent constraint is again a linear constraint, which makes the
equivalent deterministic optimization problem very easy to solve.

Uncertainty on the left-hand side: A

The uncentainty in the left-hand-side parameters of stochastic linear models is
more complicated. Not only is the derivation more involved, the resulting

deterministic equivalent is subject to more assumptions and approximations.

Consider the same probabilistic constraint P[Ax 2 b] za

where x =[x, x, - x,J.x=0
ay ap a1,
a- [ a-
A= 21 = 2n i
Ay Q> 0 Ay

each( a, )canvary according to distribution Normal (;,-, N-M
b,a are deterministic column vectors with size m
The probabilistic constraint can also be written as
P[Ax<b]<1-a
Let Y = Ax, where y, =Ax=[a, a, -- a, }is a linear function of x and
rewriting the constraint yields
PY <b]<1-a
or at row |/,

Py, <b]<1-aq,
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The following development is based on row i. Since (a,,j=12....m)
varies according to a Normal distribution, y, will also vary with a Normal

distribution with mean ;, and standard deviation &,

— n —
_V' =Za.,x!
=1

.- SEn

Subtracting ;, from both sides of the inequality and dividing the resuit

by o, yields following probabilistic constraint

Pl ——<

or Plzs—— ‘]S I -, , where : is the uncertain variate with mean 0 and

standard deviation /

P{:Sb' ‘y'}=F{——b“y‘:l$1—a,
o’,". a.":

Similar derivation leads to the following equality constraint:

b, -v,
o

s,

<SF'(-a)

or
v, +0, F'(-a,) 2},

At row i, the constraint A x2b, corresponds to the base deterministic case
with A, as the mean coefficient vector. The second term on the left-hand side,
o.F(1-a), accounts for the effect of uncertainty. As developed in the
previous case with the uncertain parameter, b;, this term will cause the solution

variables x to increase (o, F "'(1-a)<0). Similarly, when either a high degree of
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confidence is required or the extent of the uncertainty is significant, the solution

will be very conservative and undoubtedly costly.

Uncertainty on both sides of the constraint: A, b
In the general case, the uncertainty occurs in both sides of the constraints.
Consider the same probabilistic constraint P{Ax>b}> a where both A and b

contain parameters that vary with Normal distributions.

The probabilistic constraint can also be written as P{Ax-b>0}>a

- - - -

W X
a,, Q a,, —b,

a d. -b Y2 X3

2 n 2 2 . .

Let A’= : ) ool y= o =l ot
-vn 'tn

aml aml amn-bm l
_ynol_ L J

The probabilistic constraint becomes P{A’y 20}>a, where y 20, =1

s n+l
(ye R™), and A’is the matrix with uncertain coefficients (A’ R™"™"). The
derivation of the deterministic equivalent for this case is omitted as it has been
shown earlier.

Since many algorithms and software tools are now available to solve
nonlinear deterministic optimization problems, the later step of solving the
deterministic model becomes routine and is not as important as the initial step,
which involves the determination of the deterministic equivalent constraint. The
correctness of the final solution depends on the degree of accuracy with which
the deterministic equivalent constraint is derived. For example, consider the
probabilistic constraint, P{a,x, + a,x, 2 b}> @ where a, and a, vary according
to some distribution (b, @ are constant), if @, and a, are Normally distributed
with known characteristics the dependent function y (y =a,x, +a.x,) will also
be Normally distributed with characteristics that can be easily derived from the
characteristics of a, and a,. However, when a, and a, do not vary according
to the same distribution characteristics or they are similar but not necessarily

Normal, it will become difficult to determine the distribution of y, making it
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hard to determine the deterministic equivalent constraint. The derivation

becomes more complicated if the random events are not independent.
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Appendix D - Mixed-Integer Programming

Many approaches are available to solve mixed-integer programming
problems. They include (a) cutting plane techniques, (b) enumerative methods,
(c) partitioning algorithms, and (d) group theoretic approaches. Only the first
two methods are discussed in this report. Details on partitioning techniques can
be found in Benders [1962] and information on the group theoretic algorithms is
available in Gomory [1965, 1967].

The main idea behind the cutting plane technique is to deduce
supplementary inequalities from the integrality and constraint requirements,
which ultimately produces a linear program that can then be solved for the
integer values. This constraint generation idea was proposed by Dantzig et al.
(1954] in their work to solve the travelling salesman problem and then by
Markowitz and Manne [1957]. The first cutting plane algorithm was developed
in 1958 [Gomory, 1963] to solve integer programs, and then generalized by
Gomory [1960] for the mixed-integer case. Contributions to the cutting plane
algorithm also came from Glover [1968] and Young [1971] on integer programs

that are primal feasible.

Cutting plane technique is very computing efficient as much computing
time is saved by adding the new constraint in every program iteration (with a
reduced feasible region). The Gomory cut algorithm may not converge, but

when it does, the algorithm converges reasonably quickly.

The branch-and-bound technique basically applies an efficient
enumeration technique to search for an integer solution in the space of the
feasible solutions. The branch-and-bound algorithm was developed by Little er
al. [1963] to solve the traveling salesman problem. Since then, it has been used
widely to solve both pure and mixed-integer programming problems and has

been implemented in many commercial software systems. Further details of the
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algorithm can be found in many textbooks such as those by Salkin [1975], or by
Ravindran et al. [1987].

It was found that the solution depends greatly on the way the integer
problem is formulated. In general, the number of integer variables should be
kept as small as possible because problems with more integer variables take
longer to solve. In contrast, the addition of new constraints reduces the time
required to solve the problem since the feasible solution space is reduced when
more constraints are added. In addition, good (tight) lower and upper bounds on
the integer variables speeds up the solution process. Further information about
guidelines for problem formulation using the branch-and-bound technique can
be found in the IBM reference manual [1972].

Between the two methods — cutting plane technique and the branch-and-
bound technique — that are available to solve integer or mixed-integer
programming problems, the branch-and-bound technique is newer, and is used
more widely among practitioners. In this study, the linear discrete truck model is
solved using GAMS/BDMLP, which is an LP, MIP* solver that is included in
the GAMS software system. It is developed based on the branch-and-bound
algorithm and can be used to solve reasonably large linear models, which are

non-degenerate® and well-scaled™®.

** LP: Linear programming: MIP: Mixed-integer linear programming

* When one or more of the basic variables in a basic feasible solution is zero, this solution is said to be
located at a degenerate vertex. the linear program is said to be degenerate. Degeneracy arises when a linear

program contains a redundant constraint.

6 Poorly scaled models can occur when many constraints are measured in inconsistent units leading to

poor calculation performance.
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Appendix E - Discrete-Time Truck Simulator

The simulation does not include the process of the crusher, which is a major
component in the mining loop. As ore must be crushed into smaller sizes before
it is sent to the surge pile, any breakdown in the crusher can potentially disrupt
the flow of the ore. Although this is a common problem often encountered

during the operation, it is omitted to reduce the complexity of the problem.

As this simulator was developed around the operation of the trucks, it is
necessary to define possible truck states and the order of the state change. The
diagram in Figure El illustrates how an ore truck operates with regards to these
states. States missing from the diagram, though existing in practice, include the
parking state, the breakdown state and lube state. The parking state corresponds
to the condition when the operator is on lunch or coffee break. The breakdown
state occurs due to an actual mechanical breakdown of the truck and the lube
state corresponds to the condition where truck is required to leave for refueling.

Table El outlines the condition logic for the state changes in a truck cycle.

Loading at .
shovel Dumping
ore

Spotting at
shovet pit

Figure E 1 - Truck State Transitional Diagram
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Source State

Destination
State

Logic conditions (all conditions must be met)

Hauling

Spotting at
Dump

Spent enough time during the hauling state:

> 60 * Distance

A, 2 (minutes), v, is Normally

Vi
distributed with mean and variance V4,0,

Dumping is allowed (the surge pile is not full and the crusher
is operating)
Less than two trucks are at the dump®’

Hauling

Queue at
Dump

Spent enough time during the hauling state:

> 60 * Distance

Ar, 2 (minutes), v, is Normally

Vi
distributed with mean and variance V1,0,

Dumping is not allowed (either the surge pile is full or the
crusher is down)
Two trucks are already at the dump

Queue at
Dump

Spotting at
Dump

Dumping is allowed
Less than two trucks are at the dump.

Spotting at
Dump

Dumping

Spent enough time spotting at the dump 1.5 minutes
(currently fixed)
Dumping is allowed

Dumping

Travel
Empty

The truck has already spent longer than the specified
dumping time (specified in the parameter file)

Travel
Empty

Spotting at
Shovel

Spent enough time during travel empty state:
60 * Distance
AT, >————

vt

(minutes), v

. is Normally

distributed with mean and variance V ., 0,

Loading is allowed
- - »
Less than two trucks are in service at the shovel®®

Travel
Empty

Queue at
Shovel

Spent enough time during travel empty state:

60* Distance

AT, 22—
v

[ 4

(minutes), v, is Normally

distributed with mean and variance V. s d‘i

Loading is not allowed
Two trucks are already in service at the shovel

Spotting at
Shovel

Loading

Spent enough time spotting at the shovel (the spotting time is
currently fixed at 2 minutes)

Loading is allowed

Less than two trucks are in service at the shovel

7 A truck is defined in service at the dump when it is in either one of the two states: Spotting at dump.

Dumping

* A truck is defined in service at the shovel when it is in either one of the two states: Spotting at Shovel.

Loading
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Loading

Hauling

Spent enough time loading at the shovel:
At > normallz .0, ). g € {240T 3207 ,360T}

The information on the means and the variances is provided
in the parameter file

Table E 1 - Transition of Truck State (Simulator)

The simulation uses a random number generator to obtain values for the

truck speeds, truckloads, spotting time at shovels and dumps, loading times at

the shovels. While the truckload is generated directly using this random number

generator, the truck cycle time is determined as a linear function of the time-

based parameters associated with various states in a truck cycle. Table E2 shows

the quantities that rely on this random number generator.

States Quantities Random generator :’—napr%:ncters
Truck hauling speeds (for | Ve <= normal (V"' s e ) km/h |
Hauling different truck groups: Vie,O
240T, 320T. 360T) g € {2401 3207 360T } "o e
Truck travel-empty V,, < normal (ch N ) km/h
Traveling- { speeds (for different truck vV c
Empty | groups: 240T. 320T, g € {240T,320T, 360T} «Cer
360T)
The elapsed time required - -
Spotting | 10 spot the truck (getthe | AT, <= normal(Tyx .0, ) | Typx,0,,
at Dump truck into the dump depending on the dump
position)
The elapsed time during Atls & normal(T, o, ) Ti,0
Loading loading (mins) —
The truckload (Tonnes) L, < normal (Zx 'O e ) L;,o,
The elapsed time required - -
Spotting to spot the truck (get the At <=normal(tyx.0,,) | Tspo, O
at shovel truck into the loading depending on the shovel
position) (mins)

Table E 2 - Random-Generated Parameters

The simulator was designed to work with multiple dumps and muitiple

shovels with each route uniquely connecting a shovel to a dump. The trucks are

assigned to individual routes and their number remains fixed during the

simulation period, which is measured in hours. The case studies involve the

120




simulation of the ore handling process with 3 ore shovels and 2 ore dumps
(Figure 4.3). The two dumps feed the crushed ore in the surge pile, which has a
restricted capacity. When this surge pile is full, these loaded trucks have to stay

in the queue and wait for the signal to dump.

The simulator can run in two modes: stand-alone mode and GAMS-
coupling mode. In the stand-alone mode, the simulator works with a parameter
file, which is the only input source. This file contains the parameters that
describe the simulated conditions and the simulation time period. When running
in GAMS-coupling mode, the simulator uses GAMS result data in addition to
the regular parameter data. For common parameter information, GAMS data

will take precedent over the data from the regular parameter file.

The simulator was developed in Visual C++ (Visual Studio 6.0) and
operated in the Microsoft Windows NT 4.0 environment. The simulator and the
GAMS program were integrated and controlled with a command file. The

following illustrates a typical command file that was used for the simulation test.

rem Scenario 1:

rem To simulate the change of road condition which affects
rem truck speed.

rem For example, the fog in the morning reduces the truck
speed

rem however as the sun rises, trucks can be driven faster
and

rem the truck speeds gradually increase during the time
period.

Rem

Rem levelminlp.gms

Rem This is the Gams program as shown in Appendix G4
Rem MinePar.dat

Rem This file contains parameter data for the
simulator

Rem The logical flag ‘'1°’

Rem is the indicator for the Gams-coupled mode

Rem MineSim2.exe

Rem is the simulator executable program

Rem Init.cmd

Rem is the miscellaneous bat file used to initialize
the
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Rem simulating environment and set up initial data

Rem the Gams program (such as initial surge volume,

call init

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp

d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
1f errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

gams levelminlp
d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1

if errorlevel 1 goto end

gams levelminlp



d:\truck\MIneSim2\Release\MineSim2 MinePar.dat 1
if errorlevel 1 goto end

del level.dat

type level*.dat > AllLevel%l.dat
rename Summary.csv Summary$l.csv
rename MineSim.out MineSim%l.out
rename SurgeVol.csv SurgeVol%l.csv
:end



Appendix F — Chapter-4 Result Data

. GAMS-
. Total number of | Truck-delivered
Period 240T trucks ore rate (tph) ::::‘::;:’;’ ore
1 13 6335 6688
2 12 5918 6035
3 12 6070 6069
4 12 5979 6096
5 12 5945 5881
6 12 6266 6113
7 12 6099 5720
8 11 5446 5413
9 12 6084 5963
10 12 6900 5876
11 12 6007 5774
12 12 6082 5928

Table F 1 - Results (Scenario 1, CCP, Single Truck Type)

. GAMS-
. Total number of | Truck-delivered
Period 240T trucks ore rate (tph) ::tl:l(':::'e;i ore
1 15 6830 6495
2 12 5521 5336
3 13 6291 5975
4 13 6345 5920
5 11 4353 5129
6 15 6017 6887
7 17 6419 7018
8 17 6716 6753
9 16 6292 5997
10 15 5891 5660
11 15 5855 5816
12 16 6382 6123

Table F 2 - Results (Scenario 2, CCP, 1 Truck Type)
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. GAMS-
Period I:(lya'r ::‘:kt: rof I;lcr:: ‘(::::)red calculated ore
- rate (tph)
1 13 6454 6688
2 11 5462 5759
3 12 6378 6190
4 11 5835 5793
5 12 5090 6066
6 15 6010 6831
7 16 6993 7303
8 15 5875 6205
9 15 5684 6341
10 16 6480 6605
11 15 6262 6086
12 15 5792 5907

Table F 3 - Results (Scenario 3, CCP, Single Truck Type)

. GAMS-
Period I:(()'a[! :‘r:':kb: v of :::i::: ?:;;md calculated ore
N rate (tph)

1 11 4982 6050
2 13 6020 6934
3 14 6786 7083
4 13 6531 6467
5 12 5906 6077
6 12 5823 5975
7 13 6209 6209
8 12 6343 6060
9 12 5851 5739
10 12 5954 5887
11 12 6033 5883
12 12 6038 6036
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. GAMS-
Period I:(?ll. ;‘::: rof er:i;-:?:;;e)red calculated ore
- rate (tph)
1 13 6392 5720
2 12 5671 5472
3 12 6019 5653
4 12 6024 5782
5 12 4810 5846
6 16 5666 7072
7 17 6611 7186
8 17 6420 7060
9 17 6456 6679
10 17 6404 6630
11 16 6256 6127
12 16 6077 5859

Table F 5 - Results (Scenario 2, Deterministic, Single Truck Type)

. GAMS-
Period I:(‘# :‘:::]?: rof Z:ﬂ‘:?:;;r“ calculated ore
- rate (tph)
1 1 5265 6050
2 12 6085 6543
3 12 6459 6502
4 12 6155 6187
5 11 4742 5904
6 15 6173 7185
7 16 5919 7355
8 16 5923 7048
9 17 6938 7152
10 15 6422 6253
11 14 5985 5902
12 14 5639 5769

Table F 6 - Results (Scenario 3, Deterministic, Single Truck Type)
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Total number of Truck-delivered GAMS-
Period trucks required ore rate (tph) calculated ore
240T | 320T | 360T rate (tph)
1 2 5 2 6706 6230
2 4 1 3 5546 5427
3 2 1 5 6417 6174
4 1 2 4 5683 5713
5 | 1 5 6274 6092
6 | 1 5 6055 5908
7 0 3 4 6088 5805
8 0 3 4 6053 5891
9 0 2 5 5931 5961
10 0 2 5 6280 6165

Table F 7 - Results (Scenario 1, CCP, 3 Truck Types)

Total number of Truck-delivered GAMS-
Period trucks required ore rate (tph) calculated ore
240T | 320T | 360T rate (tph)
1 2 5 2 6421 6230
2 3 4 2 6105 5916
3 0 2 5 5991 5722
4 3 2 3 5353 5758
5 3 1 5 6042 6623
6 3 2 4 5961 6416
7 2 2 5 6297 6635
8 0 3 5 5887 6239
9 1 4 4 5807 6508
10 1 4 4 6291 6368

Table F 8 - Results (Scenario 2, CCP, 3 Truck Types)

Total number of Truck-delivered GAMS-
Period trucks required ore rate (tph) caiculated ore
240T | 320T | 360T rate (tph)
1 2 5 2 6764 5728
2 1 3 3 5975 5616
3 1 4 2 5948 5835
4 1 3 3 5848 5518
5 1 2 4 4494 6184
6 3 3 4 5783 7139
7 3 4 4 6774 7076
8 4 3 4 6092 7568
9 2 4 4 6247 7025
10 1 4 5 5919 7317

Table F 9 - Results (Scenario 3, CCP, 3 truck types)
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Total number of . GAMS-
Period trucks required er:cr:t-:?:;‘e)red calculated ore
240T | 320T | 360T rate (tph)

1 2 2 4 5917 5728
2 2 3 3 6300 5770
3 3 2 3 6050 5708
4 4 1 3 5527 5583
5 4 2 3 6552 6222
6 3 3 2 5701 5907
7 0 4 3 5965 6052
8 2 3 3 6072 6106
9 0 4 3 6106 6113
10 1 2 4 6048 5887

Table F 10 — Results (Scenario 1, Deterministic, 3 Truck Types)

Total number of Truck-delivered GAMS-
Period trucks required ore rate (tph) calculated ore
240T | 320T | 360T rate (tph)
1 2 2 4 5938 5728
2 4 2 3 6209 6043
3 3 2 3 5781 5653
4 2 3 3 5935 6100
5 | 4 3 5401 6328
6 0 3 5 6041 6690
7 4 0 5 5671 6473
8 2 3 5 6596 7014
9 1 3 5 6512 6541
10 3 1 5 5683 6184

Table F 11 — Results (Scenario 2, Deterministic, 3 Truck Types)

Total number of Truck-delivered GAMS-
Period trucks required calculated ore
330T | 320T | 360T | OFC e (toh) rate (tph)
1 2 2 4 6364 5728
2 4 1 3 5618 5570
3 3 2 3 6257 5968
4 3 3 2 5740 5609
5 1 2 4 4695 5876
6 3 4 3 5840 6914
7 6 0 5 5812 7279
8 0 6 4 6792 7475
9 3 4 3 5511 6656
10 6 0 5 6357 7003

Table F 12 - Results (Scenario 3, Deterministic, 3 Truck Types)
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Appendix G - GAMS Programs

Appendix G1 - Deterministic Linear Program (Chapter 1)

* Truck Allocation optimization problem

* Ore trucks are allocated at the beginning of the 12-hour shift
* to haul ore.

* Deterministic model with one ore shovel and one crusher

* Ore truck cycle time is constant

* Waste truck cycle time is also constant but different for each

* truck type. Truckload is kept constant (Trucks are categorized
based

* on its loading capacity.
* The time period calculated in the model: 12 hours
* (single-peiod problem)

Sets
m ‘Mine material’/‘o’, ‘w’/
3 *truck type" /°360T°, 3207, 2401’/
Parameter Cap(j) /3607’ 360, °'320T" 320, '240T* 240/;

Table L(m,3j) "Truckload (tons)"
*360T* 320T" r240T’
‘o’ 327 290 220
‘w’ 327 290 220;

Parameter R(j) "Resource Truck limitc"
/*'360T’ 5, °320T’ 9, 240T’ 18/;

Parameter Tw(j) /°360T’ 25, ’320T’ 30, ‘240T* 35/;
Scalars

Hours /12/
To "Ore Truck Cycle Time based on shovel (minutes)®* /25/
D "Ore rate extracted by the Extraction plant* /7000/
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WasteMin "Minimum amount of waste to be moved"
/60000/

.

Variables

TotalWastel "Total amount of waste moved as the maximized
number"

TotalWaste2 "Total amount of waste moved as the maximized
number*

Xo(3) "Number of Ore production trucks required"

iXo(3) "Integer Number of Ore production trucks required"
Xw(j) "Number of Waste production trucks required"
iXw(3) "Number of Waste production trucks required”

Positive Variable Xo, Xw;
Integer Variable iXo, iXw;

Equations
ew "Waste requirement for the whole time"
eW_int "Waste requirement for the whole time"
eTL(]) *Truck Resource limit on second half of period"
eTL_int(3) "Truck Resource limit on second half of
period"
eDemand

eDemand_int
eWasteMin
eWasteMin_int

.

ew .. TotalWastel =e= sum(j,Hours * L{‘'w’,Jj) * Xw(j) *
60/Tw(3j)) :

eW_int .. TotalWaste2 =e= sum(j,Hours * L('w’,3j) * iXw(j) =~
60/Tw(j)) ;

eDemanrd .. sum(j, Xo(j) * L(’o’,j) * 60/To) =g= D;

eDemand_int .. sum(j, iXo(3j) * L(’o’,j) * 60/To) =g= D;

eWasteMin .. Hours*sum(j,Xw(j) * L('w’,j)* 60/Tw(j)) =g=
WasteMin;

eWasteMin_int .. Hours*sum(j,iXw(j) * L('w’,j)* 60/Tw(j)) =g=
WasteMin;

eTL(j) .. Xo(j)+Xw(j) =1= R(3):
eTL_int(j) .. iXo(j)+iXw(j) =1= R(J):

Model transport /eW, eDemand,eWasteMin,eTL/:
Model transport_int /eW_int,eDemand_int,eWasteMin_int,eTL_int/;
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solve transport using lp maximizing TotalWastel;

Option OptCR = 0.01;
solve transport_int using mip maximizing TotalWaste2;

scalar ActOreRate;
scalar CalcWaste;

file out /sdetlpw3.dat/:;
put out;

put /’'Input’ /;

put ° Truck fleet
(240T,320T,360T):',R("240T’):4:0,R(*320T7’):4:0,R('360T'):4:0 //;
put ° Ore Truck cycle Time: *, To:4:0,’ minutes‘/;

put ‘' Waste Truck cycle Time: ’,
TwW(’'360T’):5:0,Tw(°320T°):5:0,Tw(’240T’):5:0,’ minutes’/;

put * Ore Truckload: ‘. L(’0’,’360T’):5:0,
L('o’,*320T’):5:0,L{(’'0", "240T"):5:0 /;

put ‘' Waste Truckload: ', L('w’,’360T’):5:0,
L('w","320T’):5:0,L(’w’,"240T"):5:0 //;

put ‘ Number of hours in the period: ’, Hours:3:0/;

PUL ' ——mmem e e mr e m e m e
*//;

put “Continuous Result"//;

ActOreRate = sum(j, Xo.l(j) * L(’o’,j)*60/To)

~e

put ‘Deterministic Solution: (solution status

', transport.modelstat:2:0,")"'//;

put Ore 240T Trucks: °, Xo0.1(’'240T'):6:2 /;
put Ore 320T Trucks: ', Xo0.1(’'320T’'):6:2 /;
put ’ Ore 360T Trucks: ‘', Xo0.1(’360T’'):6:2 //;
put Waste 240T Trucks: ‘, Xw.1l(°'240T'):6:2 /;
put “ Waste 320T Trucks: ‘', Xw.1(’320T"):6:2 /;
put Waste 360T Trucks: ’, Xw.1(’360T"):6:2 //;
put Marginal Values: ‘/;

put Ore Hourly Demand -> ‘, eDemand.m:6:3, °
(WTons/OTon) ' //;

put Truck Resource -> *; loop(j.put
eTL.m(j) :6:0); put ° (WTons/OTon)’//;

put ’ (Order: 360T,320T.240T)°//;
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put ‘Actual Ore Rate (Tons/hour): ‘, ActOreRate:12:0,°’
(Tons) '/ /;

put 'Maximum waste moved: ‘, TotalWastel.l:12:0, * (WTons)‘'//:
PUL =t - v

put "Discrete Result"//;

ActOreRate = sum{j, iXo.l(j) * L(’o’,j)*60/To);
put ’‘Deterministic Solution: (solution status =

‘,transport_int.modelstat:2:0,")"//;

put Ore 240T Trucks: ‘, iXo0.1l(°240T7'):6:2 /;

put ’ Ore 320T Trucks: ’, iXo.1(°320T’'):6:2 /:

put Ore 360T Trucks: ‘', iXo.l(’'360T'):6:2 //;

put ’ Waste 240T Trucks: ', iXw.1(°2407T’):6:2 /;

put Waste 320T Trucks: °*, iXw.1(’'320T’'):6:2 /;

put Waste 360T Trucks: *, iXw.1l(°360T’):6:2 //:

put ‘Actual Ore Rate (Tons/hour): ‘', ActOreRate:12:0,°
(Tons) ' //;

put ‘Maximum waste moved: ‘, TotalWaste2.1:12:0, ’ (WTons)'//;
PUL ‘m—m e e e e e e e e~
'/

put ‘Results as being rounded up from the continuous solution’/;
ActOreRate = sum(j, ceil(Xo.l(j)) * L(’0’,j)*60/To);

CalcWaste = Hours*sum(j, (R(j) -
ceil(Xo.1(J)))*L('w’,J)*60/Tw(3j));

put Ore 240T Trucks: ‘, ceil(Xo.1(’'2407')):6:2 /;

put ’ Ore 3207 Trucks: ’, ceil(Xo.1('320T')):6:2 /;

put Ore 360T Trucks: ’, ceil(Xo.1l(’'360T")):6:2 //:
put ‘Actual Ore Rate (Tons/hour): ’, ActOreRate:12:0,°
(Tons) ' //;

put ‘Maximum waste moved: ’, CalcWaste:12:0, * (WTons)'//:
putclose;

Appendix G2 - Two-Stage Recourse Program (Chapter 2)

Sontext
Truck allocation optimization problem as a stochastic model via
2-stage recourse programming (DECIS solver)

Uncertain parameters (assumed independent to one another)
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Truckload for 240-Ton truck normal (220, 20)

Truckload for 320-Ton truck normal (290, 25)

Truckload for 360-Ton truck normal(327,30)

Ore Truck cycle time for 240-Ton trucknormal(24,5)

Ore Truck cycle time for 320-Ton trucknormal(24,5)

Ore Truck cycle time for 360-Ton trucknormal(24,5)
Sofftext

Sets

m ‘Mine material’/’o’, 'w’/

j *truck type" /'360T’, "320T’, '240T"'/

h "hours in the shift" /1+*12/

stoch "Stochatic set data®" /‘out’,’'pro’/

wl "truckload scenario for 240-Ton truck® /w-1l*w-11/

w2 "truckload scenario for 320-Ton truck" /w-1l*w-11/

w3 “"truckload scenario for 360-Ton truck" /w-l*w-11/

tl "scenario for cycle time of 240-Ton ore truck" /t-1+t-
11/

t2 "scenario for cycle time of 320-Ton ore truck" /t-1*t-
11/

t3 "scenario for cycle time of 360-Ton ore truck" /t-1*t-
11/

Table L0O240(stoch,wl) "Ore Truckload for 240-Ton truck"

w-1 w=-2 w-3 w-4 w-5 w-6 w-7 w-8
w-9 w-10 w-11

out 135.00 152.00 169.00 186.00 203.00 220.00 237.00
254.00 271.00 288.00 305.00

pro 0.0001 0.0015 0.0150 0.0846 0.2339 0.3296 0.2339
0.0846 0.0150 0.0015 0.0001;

Table L0320(stoch,w2) "Ore Truckload for 320-Ton truck"

w-1 w-2 w-3 w-4 w-5 w-6 w-7 w-8
w-9 w-10 w-11

out 185.00 206.00 227.00 248.00 269.00 290.00 311.00
332.00 353.00 374.00 395.00

pro 0.0002 0.0017 0.0159 0.0862 0.2331 0.3259 0.2331
0.0862 0.0159 0.0017 0.0002;

Table LO360(stoch,w3) "Ore Truckload for 360-Ton truck"
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w-1 w-2 w-3 w-4 w-5 w-6 w-7 w-8
w-9 w-10 w-11

out 177.00 207.00 237.00 267.00 297.00 327.00 357.00
387.00 417.00 447.00 477.00

pro 0.0001 0.0014 0.0144 0.0834 0.2345 0.3322 0.2345
0.0834 0.0144 0.0014 0.0001;

Table T240(stoch,tl) "Ore Truck cycle Time for 240-Ton trucks"
t-1 -oe-2 t-3 t-4 t-5 t-6 t-7 t-8
t-9 t-10 t-11

out 4.00 8.00 12.00 16.00 20.00 24.00 28.00
32.00 36.00 40.00 44.00

pro 0.0003 0.0025 0.0198 0.0927 0.2291 0.3112 0.2291
0.0927 0.0198 0.0025 0.0003;

Table T320(stoch, t2) "Ore Truck cycle Time for 320-Ton trucks"

t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8
t-9 t-10 t-11

out 4.00 8.00 12.00 16.00 20.00 24.00 28.00
32.00 36.00 40.00 44 .00

pro 0.0003 0.0025 0.0198 0.0927 0.2291 0.3112 0.2291
0.0927 0.0198 0.0025 0.0003;

Table T360(stoch,t3) "Ore Truck cycle Time for 360-Ton trucks"

t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8
t-9 t-10 t-11

out 4.00 8.00 12.00 16.00 20.00 24.00 28.00
32.00 36.00 40.00 44 .00

pro 0.0003 0.0025 0.0198 0.0927 0.2291 0.3112 0.2291
0.0927 0.0198 0.0025 0.0003;

Parameter Cap(3j) /°360T* 360,°320T' 320, °240T" 240/;

Table L(m,3j) "Truckload (tons)"
*360T° 3207’ r240T’

‘o’ 327 290 220

‘w’ 327 290 220;

Parameter mL(j) /°'360T* 327, °320T’ 290, °240T" 220/;
Parameter sL(j) /°360T‘ 35,°320T" 25, °240T' 20/:

Scalar mTo "mean ore truck cycle time"* /24/;
Scalar sTo “standard deviation of ore truck cycle time" /5/:;
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Parameter R(j) "Resource Truck limit"
/°360T’ 5, 320T" 9, 240T’ 18/;

Scalars
Hours /127

OTime "Ore Truck Cycle Time based on shovel (minutes)"
/24/

Tw "Waste Truck Cycle Time based on shovel (minutes)*" /30/
D "Ore rate extracted by the Extraction plant"” /7000/

WasteMin "Minimum amount of waste to be moved®
/60000/

’

Variables

TotalWaste "Total amount of waste moved as the maximized
number”

Xo(3) "Number of Ore production trucks required"
Q

Positive Variable Xo, Q;

Equations
ew "Waste requirement for the whole time"
eTL(j) "Truck Resource limit on second half of period"
eDemand "“Hourly Ore demand specified by Extraction*
eWasteMin "Minimum Waste amount to be moved"
eW .. TotalWaste =e= Hours*sum(j, L(’'w’,3j)* (R(j)-Xo(3j)) *
(60/Tw)) - 2*Q:

eDemand .. Hours*sum(j, Xo(j)*(60/0Time) * L(’0’,j)) + Q =g=
Hours*D;

eWasteMin .. Hours*sum(j, (R(j)-Xo(j))*(60/Tw) * L('w’,3j)) =g=
WasteMin;

eTL(j) .. Xo(j) =1= R(J);

Model transport /all/;

Xo.stage(j) = 1;
Q.stage = 2;
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eTL.stage(j) = 2;
eWasteMin.stage = 2;
eDemand.stage = 2;

parameter LT0240(stoch,tl.wl):
parameter LT0320(stoch,t2,w2);
parameter LTO0360(stoch,t3,w3);

loop(tl,
loop(wl,

LT0240(’ocut’,tl,wl) = Hours*60 * L0240(‘out’,wl) /
T240('ocut’,tl);

LT0240(’'pro’,tl,wl) = L0240(’'pro’,wl) * T240(’'pro’,tl);
)
)

loop(t2,
loop (w2,
LTO320('out’,t2,w2) = Hours*60 * LO320(’out’,w2) /
T320('out’,t2);
LTO0320('pro’,t2,w2) = LO320(’pro’,w2) * T320('pro’,t2);
)
)
loop(t3.
loop (w2,
LTO360('out’,t3,w3) = Hours*60 * LO360(’out’,w3) /
T360(’'out’,t3);
LTO360('pro’,t3,w3) = LO360(’'pro’,w3) * T360(’pro’,t3);

file stg /MODEL.STG/
put stg;

scalar temp;

put "INDEP DISCRETE" /;

loop((tl,wl),

put ‘Xo 240T eDemand -,LT0240(‘out’,tl,wl), ’ period2
LT0240(’'pro’,tl,wl) /;

I
put ‘**/;

.

loop((t2,w2),
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put ‘Xo 320T eDemand ’,LT0320(‘out’,t2,w2), ’' period2 ',
LTO320(’pro’.,t2,w2) /;

)
put '*'/;

loop((t3,w3),

put ‘Xo 360T eDemand ‘,LTO360(‘’out‘,t3,w3), ‘ period2 -,
LTO360(’'pro’,t3,w3) /;

) I
put ‘*‘’/;

put "*"/;
putclose stg;

file mopt /MINOS.SPC/;
put mopt;

put "“begin"/:

put "rows 250"/;

put "columns 250"/;
put "elements 10000"/;
put "end"/;

putclose mopt;

option lp=decism;
solve transport using lp maximizing TotalWaste;

file out /reclpwd.dat/;
put out;

put /’Output’ /;

put ° Recourse-based Stochastic Solution:(solution status =
*,transport.modelstat:2:0,’)"//;

put ° Ore trucks:'/:

loop(j., put -’ ',Cap(j):3:0, 'T: ", Xo0.1l(j):5:2;);put /;
scalar wastemoved;

wastemoved = Hours*sum(3j, (R(j)-Xo.l(j))*L(’'w’,j)*60/Tw);

put ‘ Actual Truck Resource Remaining: ‘, wastemoved:12:0, *
(WTons) " //;

*put * Objective function value: ’, TotalWaste.l:12:0/;

PUL /o oo e
I/;
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putclose;

Appendix G3 - Programs to Determine WS, RP, EEV Values
(Chapter 3)

* Program to determine the WS value

*
* Assume that the planner can afford to wait for the uncertainty
to

* reveal itself before trucks are assigned to the hauling tasks.
* Therefore, it is possible that exact number of trucks can be

* assigned

* to transport ore. The resulting effect is that the hauling
process

* will be done with the highest effiency possible.

* The model is run many times. The number of running times is
equal

* to the number of realizations being considered as part of the
* uncertainty. The available resource will be averaged over this

* domain of results and it will be the best possible truck
resource * remaining.

S$offlisting
Soffsymlist
Soffsymxref
Sets
sl /1*100/
s2 /1+*100/
Scalars
LoSTD "Standard deviation of ore truckload* /25/
ToSTD "Standard deviation of ore cycle time®™ /4/
WasteL "Waste Truckload in tonnes"® /2%0/
OreL *Ore Truckload in tonnes"® /290/
R "Total number of 320T trucks" /30/
WTime "Waste cycle time in minutes* /30/
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OTime "Waste cycle time in minutes® 730/
H *Number of hours in a shift" /12/
D "Houre ore demand tph" 77000/

Parameter To(sl), Lo(s2):

To(sl)
Lo(s2)

normal (OTime, ToSTD) ;
normal (OrelL,LoSTD) ;

Variables AvailRes, X;
Positive variable X:
Equations

Obj

OreProd
TruckLm

Obj .. AvailRes =e= (R-X) * WasteL * (60/WTime) ;
OreProd .. X * OreL * 60/0Time =g= D;

TruckLm .. X =1= R;

Model Alloc rall/;

Scalar RunTotal, AveAvailRes;;

file out /ws.dat/:;

put out;

put * To(sl) = normal(’,0Time:2:0,‘,’,ToSTD:2:0, )
(’,card(sl) :4:0, ' samples)’'/;

put ‘ Lo(s2) = normal(’,OreL:3:0,’,’,LoSTD:2:0,")

(‘.,card(s2):4:0,’ samples) ‘/;

RunTotal = 0;
loop((sl,s2),

OTime = To(sl);
OreL = Lo(s2):;

Solve Alloc using lp maximizing AvailRes;
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)

RunTotal = RunTotal + AvailRes.l;

.
’

AveAvailRes = RunTotal/( card(sl)*card(s2));
put WS = ’, AveAvailRes::0//;

putclose;

t 4

Gams Program to determine the Recourse solution value (RP)

The stochastic model is solved as a recourse-based method.
Due to the variations of the truck cycle time and the ore

truck

L 4

-

load
the hourly ore demand is not guaranteed to be met. Any

shortfall

-

»

will be
made up by adding an amount of ore, which is assumed to come

from

-

-

-

fictitious recourse supply.
However, penalty will be added to the objective function to
account for the addition of this fictituous source of ore

supply.

-

The fictituous amount of ore will be determined also as part

of the

-

decision variables.

$offlisting
Soffsymlist
Soffsymxref

option iterlim = 100000

reslim = 10000;

Sets
sl /1~100/
s2 /1*100/
Scalars
LoSTD "Standard deviation of Lo" /25/
ToSTD *Standard deviation for To" /4/
WasteL "Waste Truckload in tonnes® /290/
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OrelL "Ore Truckload in tonnes*" /290/
R *Total number of 320T trucks" /30/
WTime "Waste cycle time in minutes®* /30/
OTime *Waste cycle time in minutes®" /30/
H *Number of hours in a shift" /127
D "Houre ore demand tph" /7000/

Parameter To(sl), Lo(s2);

To(sl) normal (OTime, ToSTD) ;
Lo(s2) = normal(OreL, LoSTD);

Variables AvailRes, X, ExtraOre(sl,s2);

Positive variable X, ExtraOre;

Equations
Obj
OreProd(sl, s2)
TruckLm

.

Obj .. AvailRes =e= (R-X) * WasteL * (60/WTime) -
2*sum( (sl,s2),ExtraOre(sl,s2))/(card(sl) *card(s2));

OreProd(sl, s2) .. X * Lo(s2) * (60/To{sl)) +
ExtraQOre(sl,s2) =g= D;

TruckLm .. X =l= R;

Model Alloc /all/;

file out /RP.dat/;
put out;

put ‘ To(sl) = normal(’,0Time:2:0,’,’,ToSTD:2:0, ")
(’,card(sl):4:0,’ samples)’/;

put ° Lo(s2) = normal(’.OreL:3:0,°‘,’,LoSTD:2:0,")
(’,card(s2):4:0, " samples)’/;

Solve Alloc using lp maximizing AvailRes;

display AvailRes.l;
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put ’ RP = ’, AvailRes.l::0;
put (Solution status: ‘, Alloc.modelstat:3:0,°’)'//;

putclose;

* This pgoram determines the EEV value

»

* The number of trucks is first allocated to satisfy the
expected ore

* production (that is >= 7000 tons/hour).

* However, as the ore truckload and truck cycle time vary
according

* to Normal distributions (assumed to be independent
distributions)

-

* Once the # of trucks is allocated, due to the change in the
ore

* demand the amount of truck resource remaining will also
fluctuate.

* The fluctuation is measured and averaged as the EEV value.

Sofflisting
Soffsymlist
Soffsymxref

Sets
sl /1*100/
s2 /1*100/

Scalars

LoSTD *Standard Deviation of Truckload*
/25/

ToSTD "Standard Deviation of Ore Truck cycle time"
/4/

WasteL "Waste Truckload in tonnes*
7290/

OreL *"Ore Truckload in tonnes"
/290/

R "Total number of 320T trucks"
730/

WTime "Waste cycle time in minutes*
/30/
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OTime "Waste cycle time in minutes"®

/30/

H *Number of hours in a shift*"
/12/

D "Houre ore demand tph®"
/7000/

Parameter To(sl), Lo(s2):
To(sl) normal (OTime, ToSTD) ;
Lo(s2) normal (OreL, LoSTD) ;

Variables MeanAvailRes, X;
Positive variable X;

Equations
Obj
OreProd
TruckLm

Obj .. MeanAvailRes =e= (R-X) * WasteL
OreProd .. X * OreL * 60/0Time =g= D;
TruckLm .. X =1l= R;

Model Alloc /all/;

Solve Alloc using lp maximizing MeanAvailRes;

Scalar OreMoved, RunTotal, RegExtraOre;
scalar EEV, count;

file out /EEV.dat/;
put out;

put ’ To(sl) = normal(’,OTime:2:0,’,’,ToSTD:2:0, ")

(,card(sl):4:0,’ samples)’/;

put ’ Lo(s2) = normal(’,OreL:3:0,’,’,L0oSTD:2:0, "

(’,card(s2):4:0,’ samples)‘/;

RunTotal = 0;
count = 0;
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loop((sl,s2),

* Determine the actual ore moved using the number of trucks
assigned

* while taking into account fluctuation of the ore truckload and
* ore cycle time

OreMoved = X.1 * Lo(s2) * 60/To(sl);

if (OreMoved > D,

ReqExtraOre = 0;
else
ReqExtraOre = D - OreMoved;

RunTotal = RunTotal + ( MeanAvailRes.l - 2*ReqExtraOre);
count = count + 1;
)
EEV = RunTotal /count;
Display EEV;

put EEV = ’, EEV::0//;

putclose;

Appendix G4 — Chance-Constrained Program (Chapter 4)

* Chance Constrained based Truck Allocation mcdel

Model 1 is a quadratic deterministic equivalent model
that is solved for the relaxed truck solution (continuous)

* Model 2 uses the solution from Model 1 to solve for the
* the discrete solution which lies in the proximity of the
* the relaxed optimal solution

-

* Chung Ta

= Jul 2001



Sets

t *Domain for all the hours®™ /1*3/
Sets
1 "Domain for the first two moments® / mean, std /
g *Truck group™ /240T, 320T, 360T/
] "Shovel® /sl*s3/
d *Crusher® /dl+*d2/

Table Load(s,d,g,1l)
$include ’'Truckload.dat’

’

Table CycTime(s,d,g,l)
$include ‘CycTime.dat’

’

scalar ORate /

Sinclude 'OreRate.dat’
/:

scalar InitSurgeVol /
Sinclude ’'SurgeVol.dat’
/;

scalar MinSurgevVol /
$include ‘'MinSurgeVol.dat’

/;
Scalars
Kmin *"Coefficient corresponds to 95% confidence" /-
1.645/
Tw "Cycle time of waste truck" 125/
MaxSurgeVol "Maximum allowed surge level® /12000/
MinTrucksPerShovel *Minimum number of trucks pershovel*
/37
AvgLoadTime "Average Loadtime in minutes*
/3/

.
v

Parameter Capacity(s) /sl 6000, s2 6000, s3 6000/;

Parameter TruckLm(g);

TruckLm(’240T’) = 25;
TruckLm(’320T’) = 10;
TruckLm(°360T’) = 5;
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Parameter WastelLoad(g) "Truckload of waste truck"®
/°'2407T° 220, *320T’ 290, ‘360T’ 327/;

Variables

TotalResLeft "Total truck resource left for waste movement
in Tonnes"

X(s.,d,g) “"Number of 240T trucks allocated for the segment"
iX(s,d.g) "Number of 240T trucks allocated for the segment"

TV "The amount of ore delivered every hour by trucks"

stdTVv "Std. Dev. of TV"

varLT(s,d, g) "Variance of the ration of load and cycle
time for each truck type"

Diff

.

Positive Variable X;
Integer variable iX;

X.1l(s,d, 240T’) =
X.1l(s,d, 320T")
X.1l(s,d,’360T")

il
o O
~

* Initialize the mean hourly ore amount delivered
V.1 =

60*sum((s,d,qg),X.1(s,d,g) *Load(s,d,qg, 'mean’) /CycTime(s,d, g, ‘mean
“));

* Initialize the std. dev. of the ratio of load over cycle time
varLT.l(s,d.,g) = sqgr( Load(s.d.g, ‘mean’)/CycTime(s,d,g, 'mean’))

*

( sqr( Load(s,d,qg, ‘std’)/Load(s,d,qg, 'mean’)) +
sqr (CycTime(s,d,qg, ‘std’) /CycTime(s.d,g, ‘mean’)) );

* Initialize the std. dev. of the hourly ore amount delivered

stdTv.l = 60*sqgrt( sum((s,d,g), varLT.l(s,d,g) * sqr(X.l(s.d,qg))
)y )

Equations
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RemTruckRes *Maximizing remaining truck resource"
LowerSurgeCons "Ore production constraint”®

ResCons{(g) "Truck Resource constraint”®
eTVv "Mean Ore Volume delivered by trucks"
estdTV "Std. Dev. of the mean ore volume delivered

by trucks*

evVarLT(s,d,qg) "Variance of the quotient of truckload over
cycle time"

ShovelCons(s) "Upper bound constraint of the shovel"®

MinTrucks(s) *lower constraint on number of trucks on each
shovel-"

MaxTrucks(s) "upper constraint on number of trucks on each
shovel*

.

RemTruckRes .. TotalResLeft =e= sum(g, (TruckLm(g) -
sum((s,d),X(s.d,g))}

* WasteLoad(g) * (60/Tw));
evVarlT(s.d,g) .. VarLT(s,d.g) =e= sqr(

Load(s,d.g, ‘'mean’) /CycTime(s,d,g, ‘mean’)) *
( sqr( Load(s,d.,g,’std’)/Load(s,d,g, 'mean’})

sqr (CycTime(s,d,g, ‘std’) /CycTime(s,d,qg, ‘mean’)) };

eTv .. TV =e=
60*sum((s.,d.g) .X(s.d,g)*Load(s,d,qg, ‘'mean’) /CycTime(s,d,g, ‘mean’)
)

estdTV .. stdTV =e= 60*sqgrt( sum((s,d,g), VarLT(s,d,g) *
sqr(X(s,d,qg)))):

LowerSurgeCons .. InitSurgeVol + (TV - ORate)*3 + Kmin * 3 =
stdTV =g= MinSurgeVol;

ResCons(g) .. sum({s.d).X(s,d,qg)) =1l= TruckLmi(g):;

ShovelCons(s) ..
sum((d,g).60*X(s.d.g)*Load(s,d,qg, ‘mean’) /CycTime(s,d,g, 'mean’))
=1= Capacityl(s);

MinTrucks(s) .. sum((d.g), X(s,d,g)) =g= MinTrucksPerShovel;
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MaxTrucks(s) .. sum((d,g), X(s.d,g) * 60 /
CycTime(s.d,g, ‘'mean’)) =1= 60 / AvgLoadTime;

Solve TruckaAlloc using nlp maximizing TotalResLeft;

LA A A SRSl lS S ASR Sl AllSl Rl sl sl lllllllllldl Rl Rl ldllllElllldl SR S

* Mixed-integer truck model
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loop((s.d,qg).
iX.lo(s,d,qg) = floor(X.1l(s,d,g)};
)

Diff.lo = 0;
Equations
IntObj "Minimizing objective”

IntTruckLm(g) "Resource constraint on each truck group”

DistCons(s,g) "Constraint to narrow the interval of the
variable space"

’

IntObj .. Diff =e= sum((s,d,g), (iX(s,d,g) - X.1l(s.d.qg)) *
Load(s,d.g, ‘mean’) *60/CycTime(s,d,g, 'mean’)):;

IntTrucklm(g) .. sum{(s,d),iX(s,d,g)) =l= TruckLm(g):

DistCons(s.g) .. sum(d, iX(s,d,g)) =1l= ceil(sum(d.X.l(s.d.g))):

model IntTruckAlloc / IntObj, IntTruckLm, DistCons/;

option iterlim = 800;

Solve IntTruckAlloc using Mip minimizing Diff;

Display X.1l, iX.1;

parameter TotalContTrucks(g), TotalIntTrucks(g);

loopl(g,

TotalConcTrucks(g) = sum((s,d), X.1l(s.d,q9)):;
TotalIntTrucks(g) = sum((s,d), iX.l(s,d.q)):
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parameter cTrucks(s,g), iTrucks(s.g):

file out /level.dat/;

put out;

put ‘*‘/;

put ‘* Rate delivered by trucks: ‘; put TV.1l::0 /;
loop(s,

put ’'* Shovel, ‘, ord(s):6:0;
loopl(g,
cTrucks(s,g) = sum(d,X.l(s,d,qg}));
iTrucks(s,g) = sum(d,iX.1l(s.,d.g));:
put iTrucks(s,g):6:0, * (’,cTrucks(s,g):5:2,")";
)
put /;
):
put ‘*'/;
put ‘Hourly Ore Rate, ‘, ORate::0/;
put ’'Initial surge Volume,’, InitSurgeVol::0/;
put ‘Truck-delivered rate,’, TV.1::0/;

put ‘Hours of simulation, 3’ /;
put °'NLP Model Status, ’,TruckAlloc.modelstat:2:0 /;

put °'MIP Model Status, ’,IntTruckAlloc.modelstat:2:0 /;
loop((s,d),
put ’'Route, ‘', ord(s):2:0,°, ,ord(d):2:0;
put ©,240T,, iX.1l(s,d, '240T");
put r,320T,, 1iX.1l(s,d, "320T’");
put *,360T,, iX.l(s,d, 360T") /;
):
putclose;

Appendix G5 - Deterministic Program (Chapter 4)

* Deterministic linear Truck Allocation model
* Chung Ta

* Jul 2001
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t "domain for all the hours* /1*3/
Sets
1 *domain for the first two moments" / mean, std /
g *truck group” /240T, 320T, 360T/
s *Shovel" /sl*s3/
d *Crusher" /di*d2/

Table Load(s.,d,g,1l)
$include ’'Truckload.dat’

v

Table CycTime(s,d,g,1l)
Sinclude ’'CycTime.dat’

.

scalar ORate /
$include ’‘OreRate.dat’
/:

scalar InitSurgevVol /
Sinclude ‘Surgevol.dat’

/;

scalar MinSurgeVol /
Sinclude ‘MinSurgeVol.dat’
/;

Parameter Capacity(s) /sl 3000, s2 3000, s3 3000/;

Parameter TruckLm(g):;

TruckLm(240T’) = 25;
TruckLm(’320T") = 10;
TruckLm(*360T’) = 5;

Parameter WasteLoad(g) *Truckload of waste truck"
/°'240T’ 220, 3207 290, '360T’ 327/;

Scalars

T™w *"Waste Truck cycle time" /730/
LoadTime "Longest loading time (for 360T) in minutes" /3/
MinTrucksPerShovel "Minimum number of trucks per shovel® /2/
AvgLoadTime “"Average Load time per truck* /37
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Variables

TotalResLeft "Total truck resource left for waste movement
in Tonnes"

X(s,d,g) "Number of 240T trucks allocated for the segment"
™V
integer variable X;

X.1l(s,d,240T") = 4
X.1l(s,d, 320T") = 1;
X.1l(s,d,'360T') =1

Equations

RemTruckRes "Maximizing remaining truck resource"
SurgeCons "Ore production constraint”

ResCons(g) "Truck Resource constraint"

eTv "Mean Ore Volume delivered by trucks per hour"®

ShovelCons(s) "Shovel constraint"

MaxTrucks(s) "Upper constraint on number of trucks on each
shovel"

MinTrucks(s) "lower constraint on number of trucks on each
shovel"

’

RemTruckRes .. TotalResLeft =e= sum(g, (Trucklm(g) -
sum((s,d) ,X(s,d,g)))* WasteLoad(g) * (60/Tw)):;

eTV .. TV =e=
sum((s,d,g),X(s,d.qg)*60*Load(s.d,g, ‘'mean’) /Cyctime(s,d.g, ‘'mean’)
y:

SurgeCons .. InitSurgeVol + (TV - ORate)* 3 =g= MinSurgeVol;
ResCons(g) .. sum((s,d).X(s,d.g)) =1= TruckLm(q):

ShovelCons(s) ..

sum((d,g),60*X(s,d,g) *Load(s,d,qg, ‘mean’) /CycTime(s.d,g, 'mean’))
=l=

Capacity(s);
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MaxTrucks(s) .. sum((d.g), X(s,d,g) * 60 /
CycTime(s,d,g, ‘mean’)) =1= ceil(60 / AvgLoadTime);

MinTrucks(s) .. sum((d,g), X(s,d,g)) =g= MinTrucksPerShovel;

Solve TruckAlloc using mip maximizing TotalResLeft;

file out /level.dat/;
put out;
put ‘*

put ‘* Minimum required surge level at the end: °’,
MinSurgeVol::0/;

put ‘* Truck delivered rate: ‘, TV.1::0/;

put ’'* MIP Solver Status = ’, TruckAlloc.solvestat:2:0 /;
put ‘'*’/;
put ‘Hourly Ore Rate, ’, ORate::0/;

put ‘Initial surge Volume,’, InitSurgeVol::0/:
put ‘Hours of simulation, 3’ /;
put ’'MIP Model Status, ’,TruckAlloc.modelstat:2:0 /;

loop((s,d),

put ’‘Route, ‘, ord(s):2:0,’,’,ord(d):2:0;
put ',240T,’, X.1(s,d, '240T");
put *,320T,', X.1(s,d,’320T’);
put *,360T,’, X.1(s,d,360T") /:

);
putclose;



Appendix H - CycleTime & Truckload Data
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Figure H 2 - Truckload and Cycle Time Correlation (320T)
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Figure H 3 - Truckload and Cycle Time Correlation (360T)
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