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Abstract

The game of poker offers a clean well-defined domain in which to investigate some 

truly fundamental issues in computing science, such as how to handle deliberate 

misinformation, and how to make intelligent guesses based on partial knowledge. 

In the taxonomy of games, poker lies at the opposite end of the spectrum from 

well-studied board games like checkers and chess. Poker is a multi-player game 

with stochasticity (random events occurring over a known probability distribution), 

imperfect information (some information is hidden from each player), and partially 

observable outcomes (some information might never be known). Consequently, 

the use of deception, opponent modeling, and coping with uncertainty are indis­

pensable elements of high-level strategic play. Traditional methods for computer 

game-playing are incapable of handling these properties.

Writing a program to play a skillful game of poker is a challenging proposition 

from an engineering perspective as well, since each decision must be made quickly 

(typically about one second). A major theme of this dissertation is the evolution of 

architectures for poker-playing programs that has occurred since the research be­

gan in 1992. Four distinct approaches we address are: knowledge-based systems, 

simulation, game-theoretic methods, and adaptive imperfect information game-tree 

search. Each phase of the research explored the strengths and weaknesses of the 

corresponding architectures, both in theory and in practice. The important problem 

of obtaining an accurate assessment of performance is also addressed. The creation 

of a powerful tool for this purpose, called DIVAT, is discussed in detail. The aca­
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demic papers arising from each of these studies constitute the core chapters of this 

thesis. The conclusion discusses some of the advantages and shortcomings of each 

approach, along with the most valuable lessons learned in the process.

Although the goal of surpassing all human players has not yet been attained, 

the path has been cleared. The best poker programs are beginning to pose a serious 

threat, even in this most “human” of games. As programs continue to improve, they 

provide new insights into poker strategy, and valuable lessons on how to handle 

various forms of uncertainty.
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Chapter 1 

Introduction

1.1 Motivation and Historical Development

Games have played an important role in Artificial Intelligence (AI) research since 

the beginning of the computer era. Many pioneers in computer science spent time 

on algorithms for chess, checkers, and other games of strategy. A partial list in­

cludes such luminaries as Alan Turing, John von Neumann, Claude Shannon, Her­

bert Simon, Alan Newell, John McCarthy, Arthur Samuel, Donald Knuth, Donald 

Michie, and Ken Thompson [1],

The study of board games, card games, and other mathematical games of strat­

egy is desirable for a number of reasons. In general, they have some or all of the 

following properties:

•  Games have well-defined rules and simple logistics, making it relatively 

easy to implement a complete player, allowing more time and effort to be 

spent on the actual topics of scientific interest.

•  Games have complex strategies, and are among the hardest problems known 

in computational complexity and theoretical computer science.

• Games have a clear specific goal, providing an unambiguous definition of 

success, and efforts can be focused on achieving that goal.

•  Games allow measurable results, either by the degree of success in playing 

the game against other opponents, or in the solutions to related subtasks.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Apart from the establishment of game theory by John von Neumann, the strate­

gic aspects of poker were not studied in detail by computer scientists prior to 

1992 [1], Poker features many attributes not found in previously studied games 

(such as checkers and chess), making it an excellent domain for the study of chal­

lenging new problems. In terms of the underlying mathematical structure and tax­

onomy of games, some of the most important properties include the following:

•  Poker is a game of imperfect information. Various forms of uncertainty 

are a natural consequence. This property creates a necessity for using and 

coping with deception (specifically, bluffing and trapping),1 and ensures a 

theoretical advantage for the use of randomized mixed strategies.

•  Poker has stochastic outcomes. The element of chance (the random dealing 

of cards) at several stages of the game introduces uncertainty and uncontrol­

lable outcomes. Among other things, this adds a high degree of variance to 

the results, and makes accurate assessment of performance difficult.

•  Hidden states in poker are partially observable. A player can win a game 

uncontested when all opponents fo ld , in which case no private information 

(i.e., the cards held by any of the players) is revealed. Partial observability 

makes it much more difficult to learn about an opponent’s strategy over the 

course of many games, both in theory and in practice.

•  Poker is a non-cooperative multi-player game. A wealth of challenging 

problems exist in multi-player games that do not exist in two-player games. 

Multi-player games are inherently unstable, due in part to the possibility 

of coalitions (i.e., teams), but those complexities are minimized in a non- 

cooperative game [60, 63].

As a general class, stochastic imperfect information games with partial observ­

ability are among the hardest problems known in theoretical computer science. This

1 Technical terms and jargon from poker theory appear in bold face italics throughout this dis­
sertation, and are defined in Appendix A: Glossary of Poker Terms.

2
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class includes many problems that are easy to express but are computationally un- 

decidable [20, 38],

In practice, writing a program to play a legal game of poker is trivial, but de­

signing and implementing a competent poker player (for example, the strength of 

an intermediate human player) is a challenging task. Writing a program that also 

adapts smoothly to exploit each opponent’s particular playing style, betting patterns, 

biases and tendencies is a difficult learning problem.

1.2 Major Influences

Since there was no specific research on poker game-playing in the computer science 

literature prior to 1992, the mathematical models and scientific methodology for the 

research project were based on other available sources of knowledge. Three major 

influences were:

1. Classic books on poker strategy,

2. Fundamental principles of game theory, and

3. Traditional game-playing programs based on game-tree search.

1.2.1 Classic Books on Poker Strategy

The single most important book to date for understanding poker strategy is “The 

Theory of Poker” by David Sklansky [55], Other books by Sklansky and frequent 

co-author Mason Malmuth also provide valuable insights [56, 57]. Additional re­

sources, and their utility for scientific research, are discussed in Billings [1].

Although written for human students of the game, the clear exposition in these 

texts allows a mathematically inclined reader to gain an appreciation for the under­

lying logical structure of the game. This insight suggests a wealth of algorithmic 

possibilities to be explored for knowledge-based approaches. Incorporating prob­

abilistic knowledge into a formula-based architecture was the topic of our early 

research, and is discussed in Chapter 2. The serious limitations of that approach 

and lessons learned from the research are discussed in Chapter 6.

3
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1.2.2 Fundamental Principles of Game Theory

The game of poker was used as a model of adversarial conflict in the develop­

ment of mathematical game theory by John von Neumann in the 1920s [69], The 

(general probabilistic) Minimax Theorem proves that for any two-player zero-sum 

game, there always exists an equilibrium strategy. Using such a strategy ensures (at 

least) the game-theoretic value of the game, regardless of the opponent’s strategy. 

Thus, playing an equilibrium strategy would guarantee not losing in the long run 

(assuming the players alternate positions over many games).2

John Nash extended the idea of equilibrium strategies to non-zero-sum games 

and multi-player games, again using poker as an example [41]. A set of strategies 

are said to be equilibrium when no player can benefit from unilaterally changing 

their style or strategy [25, 24, 70], The 1972 book “Winning Poker Systems” by 

Norman Zadeh attempted to apply game theoretic strategies to a variety of real 

poker variants, with some degree of success [71, 72, 1],

There are serious limitations to equilibrium strategies in practice, because they 

are static, are oblivious to the opponent’s strategy, and have implicit assumptions 

that generally give the opponent far too much credit. These inherent limitations 

have been clearly demonstrated in the simpler imperfect information games of 

Rock-Paper-Scissors [4, 2] and Oshi-Zumo [17].

Finding an approximation of an equilibrium strategy for real poker is discussed 

in Chapter 3. Further insights and limitations of applying game-theoretic methods 

in general are discussed in Chapter 6.

1.2.3 Traditional Game-Tree Search

Many lessons have been learned from traditional high-performance game-playing 

programs. Research from 1970 to 1990 focused primarily on chess, and other two- 

player zero-sum games with perfect information. As these programs improved, a 

recurring theme was an increasing emphasis on computer-oriented solutions, and

2 In practice, poker is normally a negative constant sum game, because the host (e.g., casino)
charges the players a rake or a time charge. Nevertheless, an equilibrium strategy (or approxima­
tions thereof) would be highly useful for playing the real game.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



diminishing reliance on human knowledge [46, 34].

In many games with relatively simple logistics but complex strategy, computer 

programs have now surpassed the best human players by a vast margin. In each 

case, the formula for success has been the same: deep look-ahead search of the 

game tree using the highly efficient alpha-beta search algorithm, combined with a 

domain-specific evaluation function applied at the nominal leaf nodes of the search 

frontier [47],

•  In 1990, the checkers program C h i n o o k  earned the right to challenge the 

human world champion, Marion Tinsley, in a title match. CHINOOK lost nar­

rowly in 1992, but won the return match in 1994, becoming the first computer 

program to win an official world championship in a game of skill [48], An 

effort is now underway to solve the game of checkers, with two of the official 

tournament openings now proven to be drawn [50],

• In 1997, the Othello program L o g i s t e l l o  defeated the human world cham­

pion, Takeshi Murakami, in a six game exhibition match, winning all six 

games [15, 16].

• In 2000, the Lines of Action program MONA won the de facto  world cham­

pionship, defeating all of the top human players, and winning every game it 

ever played against human opposition [5, 3],

•  In 2002, the ancient game of Awari was strongly solved, computing the exact 

minimax value for every reachable position in the game [68, 45]. Although 

the best programs already played at a level far beyond any human player, 

the difference between super-human play and perfect play was shown to be 

enormous [44],

• In 1997, the chess machine DEEP BLUE won a short exhibition match against 

the human world champion, Garry Kasparov, scoring two wins, one loss, and 

three draws [18]. This led to a widely held but premature belief that chess 

programs had surpassed all human players. Several years later, the programs 

S h r e d d e r , F r i t z , and J u n io r  demonstrated performances on par with the
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best human players. In 2005, the program H y d r a  convincingly defeated 

one of the strongest human players, Michael Adams, scoring five wins, zero 

losses, and one draw, providing a strong argument for the dominance of chess 

programs [23],

Similar successes continue to be obtained for this general class of games, usu­

ally with the same architecture of alpha-beta search combined with a good heuristic 

evaluation. The approach has not been successful for the game of Go, however, 

owing to the high branching factor and vast search space (for 19x19), and the fact 

that goals and subgoals are very difficult to assess with heuristic evaluation [40].

1.3 Extending Game Tree Representations

Many games admit some element of random chance. The traditional game tree rep­

resentation can be extended to handle stochastic outcomes by incorporating chance 

nodes. Each branch from a chance node represents one of the finite number of 

random outcomes. From a search perspective, all of these branches must be con­

sidered, and combined to obtain an overall expected value (EV), so the size of the 

game tree grows multiplicatively with each subsequent chance node. The alpha- 

beta search algorithm is not applicable to this class of problems, but other search 

algorithms such as *-Minimax [28, 27] and simulation methods [67, 54] are able to 

contend with this form of uncertainty adequately. The property of stochasticity has 

not been a major impediment to world-class computer performance in practice.

The game of backgammon is a classic example of a perfect information game 

with an element of stochasticity (the roll of the dice). Excellent evaluation func­

tions have been learned automatically from self-play [66, 67], resulting in several 

programs that are at least on par with the best human players, without requiring 

deep search [27].

Multi-player games are much more challenging, both in theory and in practice; 

but to date they have not received a lot of attention in AI research. Several search 

algorithms for multi-player game trees are known in the literature, but the potential 

for guaranteed safe pruning of the search space is much lower than that enjoyed by

6
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the alpha-beta algorithm [59, 61, 64], This fact, combined with the larger branch­

ing factor resulting from many players, means that deep search is less feasible, in 

general.

Moreover, multi-player games are inherently unstable, being subject to possi­

ble collusion between players.3 In practice, minor differences in search algorithms 

for multi-player game trees can produce radically different results. For example, 

two different move choices could be exactly equal in value for Player A, but could 

dictate whether Player B or Player C wins the game. Due to these volatile con­

ditions, good opponent modeling (for example, knowing each player’s method of 

tie-breaking between equal moves) is necessary to obtain robust and reliable re­

sults [60, 62, 63, 65],

However, the major distinguishing factor between poker and other games is the 

property of imperfect information, the effects of which can range from obvious 

to subtle, from inconsequential to profound. One important consequence is that 

a complete strategy in poker must include a certain degree of deception, such as 

bluffing (betting or raising with a weak hand) and trapping (playing a strong hand as 

though it were weak). This fact was one of the earliest results in game theory [69]. 

The objective of these deception tactics is to disguise the strength of one’s hand 

(called information hiding), and to create uncertainty in the beliefs of the opponent, 

resulting in greater profitability overall.

The relative balance of these deceptive plays (and of responses to the oppo­

nent’s actions) is of critical importance. Any inappropriate imbalances necessarily 

imply the existence of statistical biases, patterns, or other weaknesses that are vul­

nerable to exploitation. Since there may be many ways of obtaining the desired 

balance of plays in poker, the players have some discretion in how they actually 

achieve that balance. For example, a particular situation might call for a 10% bluff 

frequency, but the player is otherwise free to decide when to bluff or not bluff. As 

a result, there is in general no single best move in a given poker situation.

This is in stark contrast to a perfect information game, where there is a single

3 This is true even for ostensibly non-cooperative games, like poker, since that ethic cannot be
enforced, in general. John von Neumann showed that multi-player games become stable only when
they devolve into a two-player game between two coalitions [69].
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move, or small set of moves, that preserves the game-theoretic value of the game. 

In backgammon, for example, there is typically only one move in a given position 

that will maximize the expected value against perfect play.

Furthermore, theoretically correct play in an imperfect information game re­

quires probabilistic mixed strategies, where different moves are chosen some frac­

tion of the time in identical circumstances. In contrast, a deterministic pure strat­

egy (always playing one particular move in a given situation) is sufficient to obtain 

the game-theoretic value in a perfect information game (although the player may 

choose randomly from a set of equal-valued moves).

Game trees can be further extended to handle imperfect information games, with 

the inclusion of information sets. An information set is a set of decision nodes in the 

game tree that cannot be distinguished from the perspective of a given player. Since 

the opponent’s cards are hidden in poker, this corresponds to the complete set of all 

possible opponent holdings in a given situation. Obviously, the same policy (such 

as a particular mixed strategy) must be applied identically to all of the nodes in the 

information set, since it is not possible to know precisely which of those states we 

are in.

The immediate consequence is that nodes of an imperfect information game tree 

are not independent, in general.4 Thus, a divide-and-conquer search algorithm, such 

as the alpha-beta minimax technique, is not applicable to this class of problems, 

since sub-trees cannot be handled independently.

Another characteristic that distinguishes poker from perfect information board 

games is that it is not enough to simply “play well”, while largely ignoring the exis­

tence of the opponent. To maximize results, it is absolutely essential to understand 

the opponent’s style, and the nature of their errors (such as patterns or tendencies in 

their play).

As a simple demonstration, consider two opponents, one of whom bluffs far too 

often, the other of whom seldom bluffs. Both are “weak players”, in an objective 

sense. To maximize our profit against the former, we call (or perhaps raise) more

4 A perfect information game tree can be thought of as a special case in which all decision nodes 
belong to their own unique information set.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( 3  decision nodes (move r.hnirpst

| | leaf (terminal) nodes

chance nodes

Figure 1.1: A portion of a poker game tree, with chance nodes.

often with mediocre hands. To maximize against the latter, we fold more often with 

marginal hands. Our strategy adjustments are diametrically opposite, depending on 

the nature of the opponent’s predictable weaknesses.

In perfect information games, simply playing strong moves will naturally punish 

weaker moves, and it is not necessary to understand why an opponent is weak. 

Opponent modeling has been investigated in chess and other two-player perfect 

information games, but has not led to significant improvements in performance [33, 

31,32, 19].

An interesting case study is the game of Scrabble. Although Scrabble is tech­

nically a game of imperfect information, that property plays a relatively minor role 

in strategy. Super-human performance has been attained for the two-player game 

without special consideration for opponent modeling. Relatively simple techniques, 

such as Monte Carlo simulation and selective sampling, can be used to account 

for the unknown information adequately [52, 54], Moreover, the strengths of the 

computer player, including perfect knowledge of the dictionary and the ability to 

consider every legal play, are sufficient to surpass all human players in skill [53].

Figure 1.1 shows a small portion of the imperfect information game tree for 

any Limit poker variant, featuring decision nodes for each player during a betting 

round. In general, a player will choose one of three possible actions: fold (f), call

9
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+3

+4

Figure 1.2: A complete betting round in 2-player Limit poker.

(c), or raise (r). By convention, capital letters are used to indicate the actions of the 

second player.

When the betting round is complete, the game is either over (one player folded, 

leading to a terminal node), or the game continues with the next chance event (cards 

being dealt). Figure 1.2 shows the game tree for a complete betting round of 2- 

player Limit poker (with a maximum of three raises per round).

Figure 1.3 illustrates the notion of information sets in the game of 2-player 

Limit Texas Hold’em. Only three of the 1,624,350 branches from the initial chance 

node (i.e., the dealing of the hole cards) are shown. For any given hand, a player 

will have 1225 indistinguishable states, since the opponent’s cards are not known. 

Naturally, the same decision policy will apply to all states in that information set.

Figure 1.4 shows a high-level view of the structure of Texas Hold’em. Each bet­

ting round is depicted with a triangle, and corresponding chance nodes are collected 

to indicate the stage of the hand. The numbers on the left indicate the branching fac­

tors at each stage, leading to more than a quintillion (1,179,000,604,565,715,751)

10
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Figure 1.3: Information sets in an imperfect information game tree.
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Figure 1.4: The overall structure of the Texas Hold’em game tree.
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nodes of all types.

Defining appropriate search algorithms for this fundamentally different mathe­

matical structure of game tree is discussed in Chapter 4. The problems encountered 

and the necessary modifications for future research are discussed in Chapter 6.

1.4 The University of Alberta Computer Poker Re­
search Group

The University of Alberta Computer Poker Research Group (CPRG) is the major 

contributor to the academic literature on poker game-playing AI. The purpose of 

this section is to explain the structure of the research group and the roles of the 

members. Since it is a collaborative team effort, it is necessary to identify the 

specific contributions made by this author, distinguishing them from the work of 

other members, and the group as a whole. All conceptual designs, architectures, 

and specific component algorithms discussed in this dissertation are attributable to 

the author unless noted otherwise. The use of the words “our” and “we” in this 

document refer to the group as a whole.

The research began in 1992 with scientific foundations, methodologies, and 

research philosophy [1], This included a complete basic implementation, along with 

computer-oriented algorithms (rather than knowledge-based methods) for advanced 

hand assessment, simulation techniques, and other essential functions. The CPRG 

was formed in 1997 to follow up on this work. The author is the lead architect for 

the group, and the domain expert.5

Dr. Jonathan Schaeffer is a co-founder, scientific advisor, and the adminis­

trative head of the CPRG. Dr. Duane Szafron is also a co-founder and scientific 

advisor. Dr. Robert Holte joined the group in 2001, contributing expertise in ma­

chine learning and linear programming. Dr. Michael Bowling joined the group 

in 2004, adding more knowledge in game theory and learning algorithms. Sev­

eral M.Sc. students, summer students, and one full-time programmer/analyst have 

contributed to implementations and experimentation of the resulting systems.

5 The author played poker professionally from 1996 to 1999, after several years of studying and 
extending poker theory.
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•  Denis Papp (M.Sc. student) constructed the original LOKI system, in C++, 

re-implementing the author’s Monte Carlo simulation and weighted enumera­

tion algorithms for hand assessment, along with numerous other components 

(discussed in Chapter 2) [42], He incorporated the GNU poker library high­

speed hand comparators as a core function [39], He implemented all of the 

communication protocols to enable Loki to participate in poker games on 

the IRC Online Poker Server [14].

•  Lourdes Pena (M.Sc. student) built on top of the existing system (L o k i  II) 

for the first implementation of selective simulation techniques and the subse­

quent experiments [43, 11],

•  Aaron Davidson (M.Sc. student) re-wrote the entire codebase (re-christened 

Poki), in Java, using native methods where necessary to maintain high­

speed performance. He performed code reviews with the author, discover­

ing and correcting numerous errors, and made significant improvements to 

many components. The neural network approach for opponent modeling was 

entirely his own design [22, 7, 21]. Aaron developed test suites for conduct­

ing experiments, and wrote the University of Alberta online poker server, 

allowing extensive empirical testing. He also proposed new simulation meth­

ods to reduce the problem of compounding errors with sequential actions. 

Those ideas were refined and reformulated by the author as the Miximax and 

Miximix algorithms for imperfect information game-tree search (discussed in 

Chapter 4). Aaron then implemented and co-developed refinements for those 

systems [8].

•  Neil Burch (programmer/analyst) implemented numerous algorithms and sup­

port routines, and performed many of the scientific experiments reported in 

CPRG publications. He developed a system for specifying general poker 

game definitions and converting them into the sequence form  linear program 

encoding described by Roller et al. [36, 37]. Neil oversaw all related com­

putations, using a commercial linear program engine (CPLEX) to produce 

the game-theoretic equilibrium solutions (discussed in Chapter 3) [6]. He
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also wrote alternate implementations of adaptive architectures (discussed in 

Chapter 4), for the purposes of testing and comparison [8],

•  Terence Schauenberg (M.Sc. student) implemented the adaptive Miximax 

algorithm; co-developed the data structures, parameters, and abstractions used 

in V e x b o t ; and performed related experiments (discussed in Chapter 4) [8, 

51], He implemented the author’s Expected Value Assessment Tool (EVAT) 

and Luck Filtering Assessment Tool (LFAT), which were precursors to the 

Ignorant Value Assessment Tool (DIVAT) performance metric (discussed in 

Chapter 5) [10]. Terence has also investigated a variety of methods for learn­

ing approximations of Nash-equilibrium solutions by means of fictitious play.

•  Bret Hoehn (M.Sc. student) performed an independent study of opponent 

modeling, under the direction of Dr. Holte. He used the tiny game of Kuhn 

poker to reduce the complexity of learning an opponent’s weaknesses and 

quickly adopting an appropriate counter-strategy [30,29]. Serious limitations 

are encountered despite the large reduction in pertinent variables, demonstrat­

ing some of the fundamental impediments to rapid learning and adaptation in 

partially observable stochastic domains.

•  Morgan Kan (M.Sc. student) implemented the author’s DIVAT method for 

direct assessment of poker decision quality, and performed numerous exper­

iments during its development that led to deeper insights into the problem 

(discussed in detail in Chapter 5) [10].

The research group has expanded rapidly in recent years, with the addition of 

post-doctoral fellows Finnegan Southey and Martin Zinkevich; M.Sc. students 

Chris Rayner, Nolan Bard, and Mike Johanson; and research associate Carmelo 

Piccione.

The research has also branched out with several new topics (which are outside 

of the scope of this thesis), including development of the author’s pdf-cutting algo­

rithm for creating parameterized probabilistic profiles of the poker strategy space, 

and new methods for rapid learning using Bayesian inference methods [58],
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1.5 Summary of Contents

This thesis identifies four distinct approaches to computer poker-playing, with a 

corresponding program architecture designed for each technique. Each approach 

has proven to be highly successful, despite the inherent theoretical limitations. Each 

generation has superseded the previous one by addressing the most important lim­

itations discovered during the extensive empirical testing, which includes millions 

of games played. The core chapters of this paper-based thesis are comprised of the 

academic papers that stemmed from each of these studies.

1.5.1 Knowledge-based Methods and Simulation (1997-2001)

The first two approaches, discussed in Chapter 2, me, formula-based strategies and 

simulation. Formula-based methods are a generalization of the somewhat intuitive 

but overly-simplistic method of deterministic rule-based systems. Various forms of 

simulation are an important technique for enhancing the performance of established 

programs, or for playing the game directly.

The representative paper for the formula-based and simulation methodology is 

“The Challenge of Poker”, published in the journal Artificial Intelligence [7]. The 

paper subsumes most of the previous work by the CPRG [13, 12,42, 14, 11,43,49, 

22]. Some of the most important contributions of this work include:

•  Expert systems for the (relatively uncomplicated) strategy of the first betting 

round (the pre-flop), based on values determined by Monte Carlo roll-out 

simulations.

• Exhaustive enumeration algorithms for the assessment of hand quality (hand 

strength and hand potential).

•  Selective simulation techniques for enhancing and refining expected value 

estimates.

•  Statistical opponent modeling, and routines for the utilization, maintenance, 

and updating of relevant belief states.
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• Procedures and advanced modules for post-flop betting strategy, incorporat­

ing general and specific opponent modeling, and including occasional decep­

tive plays (bluffing and trapping).

•  The only poker programs (POKI and its derivatives) that are known to play 

better than an average human player who plays in low-lim it casino games.

In recent years, numerous hobbyists and researchers have referred to these early 

publications, and based their poker programs on those architectures. They have 

invariably discovered the advantages and the inherent limitations of knowledge- 

based systems for themselves.

1.5.2 Game-Theoretic Methods (2002-2003)

The third approach, discussed in Chapter 3, is based on game theory. This ad­

dresses the serious short-comings of the formula-based approach in achieving a 

well-balanced betting strategy, with an appropriate ratio of deceptive plays (bluffs 

and traps) in relation to the frequency of legitimate bets, calls, and folds.

The corresponding paper “Approximating Game-Theoretic Optimal Strategies 

for Full-scale Poker”, won the Distinguished Paper Award at the International Joint 

Conference on Artificial Intelligence in 2003 [6]. Some of the most important con­

tributions of this work include:

•  Abstraction techniques for exact and near-exact reformulation of defined poker 

games, yielding reductions of the problem size by about two orders of mag­

nitude.

• Crude but powerful abstraction techniques, capable of reductions of the prob­

lem size by more than ten orders of magnitude (from 1018 states to less than 

108 states), but with no guarantees on error bounds. These severe abstractions 

nevertheless maintain the key properties and relationships of the game, such 

that exact solutions to the abstract game provide reasonable approximations 

for use in the full-scale game.
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•  Poker programs (known collectively as P s O pti or Spa r b o t ) that exhibit a 

vast improvement in skill for two-player Limit Texas Hold’em.

•  The first demonstration of a program that could be competitive with a world- 

class player.

Several other researchers have recently built on this work, including Andrew 

Gilpin and Tuomas Sandholm at Carnegie Mellon University [26].

1.5.3 Adaptive Imperfect Information Game-Tree Search (2004)

The fourth approach, discussed in Chapter 4, is based on imperfect information 

game-tree search, with built-in data structures for opponent modeling and adaptive 

play. This addresses the serious short-comings of the game-theoretic and formula- 

based approaches in rapidly adapting to the opponent’s style of play, exploiting bi­

ases and predictable patterns, and making it much more challenging to learn against 

the program. The Miximax and Miximix algorithms accommodate the more general 

class of game trees where some domain information is hidden from one or more 

players, and where each decision node may be associated with a randomized mixed 

strategy, rather than a single action.

The related paper is “Game-Tree Search with Adaptation in Stochastic Imper­

fect Information Games”, from the 2004 Computers and Games conference [8], 

Some of the most important contributions of this work include:

• A generalized framework for stochastic imperfect information games based 

on generalizations of the (perfect information) Expectimax algorithm.

• Refined methods for opponent modeling, with direct applicability to expected 

value calculations for each available action.

•  Abstraction techniques for partitioning distinct betting sequences into a man­

ageable number of highly correlated situations.

•  The experimental poker program V e x b o t , which eventually learns to defeat 

all known programs by a large margin, and can provide a serious threat to 

world-class players.
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1.5.4 Assessment of Performance (2005)

Chapter 5 addresses the difficult issue of performance assessment in poker. Unfor­

tunately, measuring the performance of a poker program simply by playing games 

requires many thousands of trials to produce a single data point, which is then only 

relevant to that one narrow set of preconditions. Moreover, performance in poker 

is decidedly non-transitive: “A beats B” and “B beats C” does not imply that “A 

beats C”, nor does it say anything about the relative magnitude of win rates against 

future opponents. The outcome of any particular match may be governed by a clash 

of styles, rather than the objective strengths of the players. Testing against a wide 

variety of opponents is essential, but is not guaranteed to be sufficient.

To combat these serious obstacles, the author invented the Ignorant Value As­

sessment Tool (DIVAT).6 Similar metrics (called EVAT and LFAT) were devel­

oped previously for analyzing experiments and matches, but they had serious short­

comings. DIVAT provides an objective means of accurately assessing decision qual­

ity, with a large reduction in the natural variance of outcomes. The tool is based on 

a hindsight expected value assessment of each decision, comparing the actual eq­

uities against a theoretically motivated baseline [9, 35], The paper “A Tool for the 

Direct Assessment of Poker Decisions” has been accepted for publication in the 

International Computer Games Association Journal [10].

1.5.5 Conclusion

Chapter 6 concludes the thesis with a retrospective look at some of the most impor­

tant lessons that have been learned over the years. A major theme that ties these 

publications together is the evolution of architectures for poker programs. Each ap­

proach has both theoretical and practical limitations. Some of these limitations were 

known before the system was built, but the full implications can only be understood 

after many implementations and refinements are tested. Recurring themes include 

the need for well-balanced betting strategies, better opponent modeling, and faster 

learning and adaptation.

6 The ‘D’ refers to the author’s first initial.
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For each architecture, program development is often a cyclic process, with each 

iteration introducing an improved method for handling a particular aspect of the 

game that had become the limiting factor to performance. In some cases, the cycle 

was very long and arduous, with some “temporary” components not being re-visited 

again for years.

There has always been a healthy interplay between theory and practice. Di­

minishing returns from these refinements help identify fundamental limitations that 

necessitate a revolutionary change -  a new approach and new architecture that does 

a much better job of addressing some critical strategic aspect of the game. Ulti­

mately, we seek unifying methods that reduce the complexity of the system, and 

eliminate human intervention, allowing the program to “think for itself”.

Although much work remains to be done, poker programs have evolved from 

very weak players to programs that are a serious threat to world-class players. The 

past successes and failures suggest what types of solutions are the most viable in 

general, and which directions of research will be most fruitful in the future.
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Chapter 2

Knowledge-based Methods and 
Simulation (1997-2001)

The Challenge of Poker 1

2.1 Introduction

The artificial intelligence community has recently benefited from the positive pub­

licity generated by chess, checkers, backgammon, and Othello programs that are 

capable of defeating the best human players. However, there is an important differ­

ence between these board games and popular card games like bridge and poker. In 

the board games, players have complete knowledge of the entire game state, since 

everything is visible to both participants. In contrast, bridge and poker involve im­

perfect information, since the other players’ cards are not known. Traditional meth­

ods like deep search have not been sufficient to play these games well, and dealing 

with imperfect information is the main reason that progress on strong bridge and 

poker programs has lagged behind the advances in other games. However, it is also 

the reason these games promise greater potential research benefits.

Poker has a rich history of study in other academic fields. Economists and 

mathematicians have applied a variety of analytical techniques to poker-related 

problems. For example, the earliest investigations in game theory, by luminaries 

such as John von Neumann and John Nash, used simplified poker to illustrate the

1 The contents of this chapter originally appeared in the journal Artificial Intelligence. Copy­
right 2001 Elsevier Science B.V. All rights reserved. D. Billings, A. Davidson, J. Schaeffer, and 
D. Szafron. The challenge of poker. Artificial Intelligence, 134( 1—2):201-240, January 2002.
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fundamental principles [41, 24, 25].

Until recently, the computing science community has largely ignored poker. 

However, the game has a number of attributes that make it an interesting domain 

for artificial intelligence research. These properties include incomplete knowledge, 

multiple competing agents, risk management, opponent modeling, deception, and 

dealing with unreliable information. All of these are challenging dimensions to a 

difficult problem.

We are attempting to build a program that is capable of playing poker at a world- 

class level. We have chosen to study the game of Texas Hold’em, which is one of the 

most strategically complex and popular variants of poker. Our experiences with our 

first program, called LO K I, were positive [6, 8], In 1999, we rewrote the program, 

christening the new system P o k i .

These programs have been playing on Internet poker servers since 1997, and 

have accrued an impressive winning record, albeit against weak opponents. Early 

versions of the program were only able to break even against better opposition, but 

recent improvements have made the program substantially stronger, and it is now 

winning comfortably in the more difficult games. Although most of these Internet 

games simulate real game conditions quite well, it would be premature to extrap­

olate that degree of success to games where real money is at stake. Regardless, 

analysis of POKl’s play indicates that it is not yet ready to challenge the best human 

players. Ongoing research is attempting to bridge that gap.

Section 2.2 reviews previous work and related research on poker. Section 2.3 

provides an overview of Texas Hold’em, including an illustrative example of strate­

gic concepts, and a minimal set of requirements necessary to achieve world-class 

play. An overview of POKl’s architecture is described in Section 2.4. Section 2.5 

discusses the program’s betting strategy, detailing some of the components of the 

system. The special problem of opponent modeling is addressed in Section 2.6. 

Experimental methods and the performance of the program are assessed in Section 

2.7. Section 2.8 provides a generalized framework for stochastic games, based on 

P o k i’s simulation search strategy. Section 2.9 discusses the challenges that remain 

for building a world-class poker-playing program.
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2.2 Other Research

There are several ways that poker can be used for artificial intelligence research. 

One approach is to study simplified variants that are easier to analyze. We have 

already mentioned some of the founding work in game theory, which could only 

handle extremely simple poker games. An example is Kuhn’s game for two players, 

using a three-card deck, one-card hands, and one betting round, with at most two 

betting decisions [23]. While this was sufficient to demonstrate certain fundamental 

principles of game theory, it bears little resemblance to normal competitive poker 

variations.

Mathematicians have also explored many interesting problems related to poker, 

and highly simplified variations are again sufficient to provide complex problems 

(Sakaguchi and Sakai [28] for example).

Another way to reduce the complexity of the problem is to look at a subset of 

the game, and try to address each sub-problem in isolation. Several attempts have 

been made to apply machine learning techniques to a particular aspect of poker 

(some examples include [11, 22,37,42]). Similarly, many studies only look at two- 

player poker games. Multi-player games are vastly more complicated in general, 

even with the usual assumption of no co-operative behavior between players. One 

danger with any type of simplification is that it can destroy the most challenging 

and interesting aspects of the problem.

An alternate approach, which we advocate, is to tackle the entire problem: 

choose a real variant of poker and address all of the considerations necessary to 

build a program that performs at a level comparable to or beyond the best human 

players. Clearly, this is a most ambitious undertaking, but also the one that promises 

the most exciting research contributions if successful.

Nicholas Findler worked on and off for 20 years on a poker-playing program 

for 5-card Draw poker [14]. His primary objective was to model human cognitive 

processes, and he developed a program that could learn. While successful to a 

degree, the program itself was not reported to be a strong player. Furthermore, the 

game of 5-card Draw, although quite popular at that time, is not as strategically
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complex as other poker games, such as 7-card Stud and Texas Hold’em.

Some success in analyzing larger scale poker variants was achieved by Norman 

Zadeh in the 1970s, and much of this work is still of value today [43, 44], Other in­

dividuals, including expert players with a background in mathematics, have gained 

considerable insight into “real” poker by using partial mathematical analyses, sim­

ulation, and ad hoc expert experience (Sklansky [36] is a popular example).

There is a viable middle-ground between the theoretical and empirical approaches. 

Recently, Daphne Koller and Avi Pfeffer have revived the possibility of investigat­

ing poker from a game-theoretic point of view [21]. They presented an algorithm 

for finding randomized equilibrium strategies in two-player imperfect information 

games, which avoids the usual exponential blow-up of the problem size when con­

verting it to normal form. This algorithm is used in their GALA system, a tool 

for specifying and solving a greatly extended range of such problems. However, 

the size of the translated problems is still proportional to the size of the game tree, 

which is prohibitively large for most common variations of poker. For this reason, 

the authors concluded “...we are nowhere close to being able to solve huge games 

such as full-scale poker, and it is unlikely that we will ever be able to do so.”

Nevertheless, this does raise the interesting possibility of computing near-optimal 

equilibrium solutions for real poker variants, which might require far less compu­

tation to obtain a satisfactory answer. This is analogous to efficient approximation 

algorithms for certain combinatorial optimization problems that are known to be 

intractable (NP-hard).

One obvious technique for simplifying the problem is to use abstraction, col­

lecting many instances of similar sub-problems into a single class. There are many 

states in the poker game tree that are isomorphic to each other (for example, a hand 

where all relevant cards are hearts and diamonds is isomorphic to two correspond­

ing hands with all spades and clubs). Beyond this, strictly distinct cases might be 

so similar that the appropriate strategy is essentially identical. For example, the 

smallest card of a hand being a deuce instead of a trey may have no bearing on 

the outcome. This is analogous to the approach used by Matt Ginsberg in parti­

tion search, where he defined equivalence classes for the smallest cards of each suit
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in a bridge hand [16]. Jiefu Shi and Michael Littman have made some prelimi­

nary attempts along these lines to produce near-optimal equilibrium solutions for a 

scaled-down version of Texas Hold’em [34].

A second method is aimed at constructing a shallower game tree, using expected 

value estimates to effectively truncate subtrees. This is similar to the method used 

so successfully in most perfect information games, where an evaluation function 

is applied to the leaves of a depth-limited search. However, it is not as easy to 

accomplish because, unlike perfect information games, the states of a poker game 

tree are not independent of each other (specifically, we cannot distinguish states 

where the opponent has different possible hidden cards). Ken Takusagawa, a former 

student of Koller and Pfeffer, has extended their work by combining this method 

with abstraction, to produce some approximate equilibrium solutions for particular 

scenarios of Texas Hold’em [38], Alex Selby has applied the Simplex algorithm 

directly to two-player Pre-flop Hold’em, and has computed equilibrium solutions 

for that re-defined game, using expected values in place of the post-flop phase [30],

Our own empirical studies over the past few years have used similar methods of 

abstraction and expected value estimation to reduce the computational complexity 

of the problem, so the approaches are not as different as they may at first appear. 

It will be interesting to see if these theoretical “hybrid techniques” can be applied 

directly to a competitive poker program in the future.

2.3 Texas Hold’em

We have chosen to study the game of Texas Hold’em, the poker variation used to 

determine the world champion in the annual World Series of Poker. Hold’em is gen­

erally considered to be the most strategically complex poker variant that is widely 

played in casinos and card clubs. It is also convenient because it has particularly 

simple rules and logistics.

We assume the reader is familiar with the ranking of poker hands (if not, many 

good introductions to poker can be found on the Internet). As mentioned, bold face 

italics are used to highlight common poker terms, which are defined in Appendix
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A: Glossary of Poker Terms.

2.3.1 Rules of Play

A game2 of Texas Hold’em begins with the pre-flop. Each player is dealt two 

hole cards face down, followed by the first round of betting, which is started with 

two forced hets called the small blind and the big blind. Three community cards, 

collectively called the flop, are then dealt face up on the table, and the second round 

of betting occurs. On the turn, a fourth community card is dealt face up and another 

round of betting ensues. Finally, on the river, a fifth community card is dealt face 

up and the final round of betting occurs. The players still active in the game at that 

time reveal their two hole cards for the showdown. The best five-card poker hand 

formed from each player’s two private hole cards and the five public community 

cards wins the pot. If a tie occurs, the pot is split.

Texas Hold’em is typically played with 8 to 10 players. Limit Texas Hold’em 

uses a structured betting system, where the amount of each bet is strictly controlled 

in each betting round.3 There are two denominations of bets, called a small bet 

and a big bet, which will be $10 and $20 in this paper. In the first two betting 

rounds, all bets and raises are $10, while in the last two rounds, they are always 

$20. In general, when it is a player’s turn to act, one of three betting options is 

available: fold, check/call, or bet/raise.4 There is normally a maximum of three 

raises allowed per betting round. The betting option rotates clockwise until each 

player has matched the current bet, or folded. If there is only one player remaining 

(all others having folded) that player is the winner and is awarded the pot, without 

having to reveal their cards.

2 The term “hand” is often used in place of “game”. Thus, the word “hand” is used in two ways: 
to denote a player’s private cards, and to refer to one complete deal, or game. We have tried to 
avoid the possible ambiguity by using “game” whenever appropriate (although that term also carries 
some ambiguities of its own). Regardless, the intended meaning of “hand” should be clear from the 
context.

3 In No-Limit Texas Hold’em, there are no restrictions on the size of bets; a player may wager 
any amount, up to their entire stack, at any time.

4 A check and a call are logically equivalent, in that the betting level is not increased. The term 
check is used when the current betting level is zero, and call when there has been a wager in the 
current betting round. Similarly, a bet and a raise are logically equivalent, but the term bet is used 
for the first wager of a betting round.
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2.3.2 Poker Strategy

To illustrate some of the decisions one must face in Texas Hold’em, we will present 

a sample game, with some typical reasoning a good player might go through. This 

game is relatively basic, in order to make the example easier to follow. Many com­

plex interactions can contribute to much more difficult situations, but it is hoped 

that this example will suffice to demonstrate some of the strategic richness of the 

game.

The game is $10-$20 Limit Hold’em with ten players. We “have the button”, 

meaning that we will be the last to act in each betting round, which is an advantage. 

The two players to the left of us post the small blind ($5) and the big blind ($10), 

and the cards are dealt. The action begins with the player to the left of the big 

blind, who calls $10 (we will refer to this player as “EP”, for “early position”). The 

next three players fold (throwing their cards into the discard pile), a middle position 

player (MP) calls $10, and the next two players fold.

We are next to act and have 7<C>-6<C>. A strong poker player would know that this 

is a reasonably good drawing hand, which should be profitable to play for one bet 

from late position against several players. This would not be a good hand to call 

a raise with, or to play against only one or two opponents. From previous games 

played, we know that EP is a tight (conservative) player. We expect that EP prob­

ably has two big cards, since he called in early position (but did not raise, making 

large pairs highly unlikely for this particular player). Our opponent modeling has 

concluded that MP is a loose player, who sees the flop about 70% of the time, so he 

could have almost anything (e.g., any pair, any two cards of the same suit, or even 

a hand like 6-4 of different suits). The small blind is an extremely tight player who 

will probably fold most hands rather than calling another $5. The big blind almost 

always defends her blind (i.e., she will call a raise).

A raise in this situation, for deceptive purposes, is not completely out of the 

question. However, it would be inappropriate against this particular set of oppo­

nents (it might be more suitable in a game with higher limits). We call the $10, the 

small blind calls, and the big blind checks.

The flop  is -7(v,-4<0>. We have second pair  (connecting with the second
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largest card on the board) for a hand of moderate strength and moderate potential 

for improvement. If we do not currently have the best hand, there are five direct 

outs (outcomes) that can immediately improve our hand (74, 7 4 , 6 4 , 6 4 , 69). 

We also have some indirect flush and straight potential, which will come in about 

7% of the time,5 and can be treated as roughly three direct outs. The board texture 

is fairly dry, with only a few possible straight draws, and no direct flush draws. 

Therefore, any bets by the opponents are likely to indicate a made hand (e.g., a 

pair) rather than a draw (a hand where additional cards are needed), unless they 

are a chronic bluffer. An expert player would not actually need to go through this 

thought process -  it would simply be known the moment the flop hits the table, 

through experience and pattern recognition.

Both blinds check, EP bets, and MP folds (see Figure 2.1). There is $60 in the 

pot, and it will cost us $10 to call. We believe the bettor seldom bluffs, and almost 

certainly has a Queen, given his early position pre-flop call.6 The small blind is 

known to check-raise on occasion, and might also have a Queen, but is more likely 

to have a poor match with the board cards, because he is highly selective before the 

flop. We have never observed the big blind check-raising in the past, so the danger 

of being trapped for an extra bet is not too high.

If we play, we must decide whether to raise, trying to drive the other players 

out of the game, or call, inviting others to call also. If there was a good chance of 

currently having the best hand, we would be much more inclined to raise. However, 

we feel that chance is relatively small in the current situation. We might also want 

to drive out other players who are looking to hit the same cards we want, such as 

5-3, which needs a 6 to make a straight against our two pair. However, the added 

equity from having an extra bet in the pot is normally greater than the risk of shared 

outs, so we are happy to let the blinds draw with us against the bettor.

From our previous study and experience, we know that calling in this situation 

is a small positive expectation play, but we still cannot rule out the possibility of 

raising fo r  a free-card. If we raise now, we may induce the bettor to call and then

5 73 out of 990 outcomes (43 flushes and 30 straights).
6 Ironically, reasonably good players are often the most predictable, whereas very good players 

are not.
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Figure 2.1: Sample game after the flop.
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check to us next round, when we can also check and get a second card for “free” 

(actually for half-price). We need to assess the likelihood that EP will re-raise 

immediately (costing us two extra bets, which is a very bad result), or will call but 

then bet into us again on the turn anyway (costing us one extra bet). Since we do 

not feel we have much control over this particular player, we reject the fancy raise 

maneuver, and just call the $10. Both of the blinds fold, so we are now one-on-one 

with the bettor. Despite the many factors to consider, our decision is made quickly 

(normally within one second when it is our turn).

The turn card is the 5 9  and EP bets. The 5 9  gives us an open-ended draw to a 

straight, in addition to our other outs. In terms of expected value, this is essentially 

a “free pass” to the river, as we now have a clearly correct call of $20 to win $90. 

Flowever, we again need to consider raising. This opponent will probably give us 

credit for having a very strong hand, since the 5 9  connects for several plausible two 

pair hands or straights. We could also be slow-playing a very strong hand, like a set 

(three of a kind using a pocket pair, such as 44-4J|k). Since we are quite certain he
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has only one pair, this particular opponent might even fold the best hand, especially 

if his kicker (side-card) is weak. At the very least, he will probably check to us on 

the river, when we can also check, unless we improve our hand. Thus, we would be 

investing the same amount of money as calling twice to reach the showdown, and 

we would be earning an extra big bet whenever we make our draw. On the other 

hand, we do not necessarily have to call that last bet on the river (although if we fold 

too often, we will become vulnerable to bluffing). We decide to make the expert 

play in this situation, confidently raising immediately after his bet. He thinks about 

his decision for a long time, and reluctantly calls.

The river card is the 5 * , and our opponent immediately checks. We know that 

he is not comfortable with his hand, so we can consider bluffing with what we 

believe is the second-best hand. From our past sessions we know that once this 

player goes to the river, he will usually see the hand through to the end. In effect, 

his decision after our raise was whether to fold, or to call two more bets. Since a 

bluff in this situation is unlikely to be profitable, we stick to our plan and check. He 

shows we say “good hand”, and throw our cards into the discard pile.7

Now we consider what effect this game has had on our table image, in antic­

ipation of how the players at the table will react to our future actions. The better 

players might have a pretty good idea of what we had (a small pair that picked up a 

good draw on the turn), and will not make any major adjustments to their perception 

of our play. Our opponent, EP, is more likely to call us down if a similar situation 

arises, so we might earn an extra bet on a strong hand later. Weaker players may 

think we are a somewhat wild gambler, so we expect them to call even more liber­

ally against us. This reinforces our plan of seldom bluffing against them, but betting 

for value with more marginal hands.

7 The rules for conducting the showdown vary depending on where the game is being played. 
In games played at casinos, it is standard practice to discard losing hands at the showdown, without 
revealing them. Players may demand to see a hand that has gone to the showdown if they suspect 
something suspicious (such as collusion), but it is otherwise considered to be a form of “needling” 
(harassment), and is socially unacceptable.

In most online games, hands at the showdown are revealed in playing order, one at a time. If a 
hand cannot beat the best hand shown so far, it is folded without being shown, just as in a live game. 
However, players have access to a full transcript of the game that includes all hands that went to 
the showdown. Thus, the common practice for online games is full disclosure of all cards at the 
showdown. This will be the standard assumption made for games between computer programs.
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2.3.3 Requirements for a World-Class Poker Player

We have identified several necessary attributes for an algorithm to play poker at 

a world-class level. A system may handle some of these requirements indirectly, 

rather than by explicit design, but all of them must be solved at least satisfactorily if 

a program is to compete with the best human players. We present one or more ways 

of solving each requirement, but there are many different approaches that could 

be just as viable, or possibly much better. Furthermore, these components are not 

independent of each other. They must be continually refined and integrated as new 

capabilities are added to the system.

Hand Strength assesses the strength of a hand in relation to the other hands. 

A simple hand strength computation is a function of the cards held and the current 

community cards. A better evaluation takes into account the number of players still 

in the game, the relative position of the player at the table, and the history of betting 

for the current game. An even more accurate calculation considers the probabilities 

for each possible opponent hand, based on the likelihood of each hand being played 

to the current point in the game.

Hand Potential computes the probability that a hand will improve to win, or 

that a leading hand will lose, after future community cards appear. For example, 

a hand that contains four cards in the same suit may have a low hand strength, but 

has good potential to win with a flush as additional community cards are dealt. 

Conversely, a hand with a high pair might be expected to decrease in strength if 

many draws are available for opposing hands. At a minimum, hand potential is 

a function of the cards in the hand and the current community cards. However, 

a better calculation would use all of the additional factors described in the hand 

strength computation.

Bluffing makes it possible to win with a weak hand,8 and creates doubt on 

the part of the opponent, thereby increasing the amount won on subsequent strong 

hands. Bluffing is essential for successful play. Game theory can be used to com­

pute a theoretically optimal bluffing frequency in certain situations. A minimal

8 Other forms of deception such as slow-playing (only calling with a strong hand) are not con­
sidered here.
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bluffing system would bluff this percentage of hands, indiscriminately. In practice, 

other factors (such as hand potential) should also considered. A better system would 

identify profitable bluffing opportunities by deducing the opponent’s approximate 

hand strength and predicting the probability of a fold.

Unpredictability makes it difficult for opponents to form an accurate model of 

our strategy. Mixing strategies (occasionally handling a given situation in different 

ways) hides information about the nature of our current hand. By varying our play­

ing style over time, opponents may be induced to make mistakes based on incorrect 

beliefs.

Opponent modeling determines a likely probability distribution of the oppo­

nent’s hand. Minimal opponent modeling might use a single generic model for all 

opponents. This can be improved by modifying those probabilities based on the 

personal betting history and collected statistics of each opponent.

Certain fundamental principles of poker, such as pot odds, are taken as a given. 

There are several other identifiable characteristics that might not be necessary to 

play reasonably strong poker, but may eventually be required for world-class play. 

Collectively, these concepts are part of an overall betting strategy, which determines 

whether we fold, call, or raise in any particular situation. The most important of 

these attributes for poker-playing programs are discussed in greater detail in the 

following sections.

2.4 P o k i ’s Architecture

A poker game consists of a dealer together with multiple players that represent ei­

ther human players or computer players. In our Java implementation, these players 

are defined as objects. The dealer handles the addition and removal of players from 

the game, deals the cards to each player at the start of a new game, prompts the 

players for an appropriate action when it is their turn, broadcasts player actions to 

other players, and updates a public game context as the game progresses. The game 

context contains all of the public information about the game, including the names 

and relative locations of the players, and the board cards.
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Poki Program Architecture
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Figure 2.2: The architecture o f POKI.

We have implemented several different dealer interfaces: an IRC-Dealer for 

playing against other players on the Internet Relay Chat poker server, a Tournament- 

Dealer for internal experiments, and a TCP/IP-Dealer that allows POKI to play 

against humans using a web browser, and against other programs using a published 

protocol (see h t t p  : / /www. c s  . u a l b e r t a  . c a /  " g a m e s / p o k e r / ) .

An overview o f P o k i’s architecture is shown in Figure 2.2. Although each 

version o f the program represents and uses the available information in a different 

way, all versions share a common high-level architecture.

In addition to the public game context, P o k i stores private information: its cur­

rent hand, and a collection of statistical opponent models. The assessment of the 

initial two-card hand is explained in Section 2.5.1, and the first-round betting deci­

sions are made with a simple rule-based system. The opponent model (essentially 

a probability distribution over all possible hands) is maintained for each player par­

ticipating in the game, including P o k i itself, as detailed in Section 2.6. The Op-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ponent Modeler uses the Hand Evaluator, a simplified rule-based Betting Strategy, 

and learned parameters about each player to update the current model after each 

opponent action, as described in Section 2.5.2.4.

After the flop, the Hand Evaluator in turn uses the opponent model and the 

game-state information to assess the value of P o k i ’s hand in the current context, 

as explained in Sections 2.5.2.1 and 2.5.2.2. Thus, there is a certain amount of 

cyclic feedback among the core components of the system. The evaluation is used 

by a more sophisticated rule-based Betting Strategy to determine a plan (how of­

ten to fold, call, or raise in the current situation), and a specific action is chosen, 

as discussed in Section 2.5.2.5 and throughout Section 2.5. The entire process is 

repeated each time it is our turn to act. For a more advanced decision procedure, 

the Simulator iterates this process using different instantiations of opponent hands, 

as discussed in Section 2.5.3.

2.5 Betting Strategy

Betting strategies before the flop and after the flop are significantly different. Be­

fore the flop there is little information available to influence the betting decision 

(only two hole cards and the previous player actions), and a relatively simple ex­

pert system is sufficient for competent play. After the flop the program can analyze 

how all possible opponent holdings combine with the given public cards, and many 

other factors are relevant to each decision. A post-flop betting strategy uses the full 

game context, the private hand, and the applicable opponent models to generate an 

action. Three betting strategies will be described in this paper, one for the pre-flop 

and two for the post-flop.

2.5.1 Pre-flop Betting Strategy

There are {52 choose 2} = 1326 possible hands prior to the flop. The value of one of 

these hands is called an income rate, and is based on a simple technique that we will 

call a roll-out simulation.9 This is an off-line computation that consists of playing

9 The term “roll-out” originates from the game of backgammon (rolling the dice). In the past, 
strong players would re-play a given position dozens of times in order to obtain a better estimate of
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several million games (trials) where all players call the first bet (i.e., the big blind), 

and then all the remaining cards are dealt out without any further betting. This 

highly unrealistic always call assumption does not necessarily reflect an accurate 

estimate for the expected value of the hand. However, it does provide a first-order 

approximation, and the relative values of the hands are reasonably accurate for the 

given situation.

More generally, this method is referred to as the all-in equity. It is a calculation 

of the percentage expectation for the current hand assuming the player is all-in ,10 

and all active hands proceed to the showdown. It can be applied at any phase of the 

game, and serves as a baseline estimate of the expected value of a hand in any given 

situation.

2.5.1.1 Comparing Pre-flop Strategies

The best known and most widely respected expert opinion on pre-flop play is that 

of David Sklansky, a professional poker player and author of the most important 

books on the game [35, 36], In “Hold’em Poker for the Advanced Player” [36] he 

prescribes a hand classification scheme to be used in typical middle-limit games 

(e.g., $20-$40 Limit Hold’em). There is a strong correlation between his rankings 

and the results of the roll-out simulations.

Before proceeding to a closer comparison of the two ranking systems, a few 

caveats should be mentioned. First, there is no single ranking of starting hands that 

applies to all situations. An expert player will make adjustments based on the pre­

vailing conditions (for example, a loose game (many players seeing the flop), a wild 

game (lots of gambling), etc.). Furthermore, the true expectation of each hand will 

depend on the precise context at the time of each betting decision. For example, a 

hand is assessed very differently after all previous players have folded than it would 

be after one or more players have called. The general guidelines must cover a wide 

variety of situations, so naturally there will be exceptions. Sklansky’s recommen­

the true equity. With the advent of strong programs, computer roll-outs (re-playing the game to the 
end thousands of times) have become the definitive authority on the value of a given position.

10 Under normal table stakes rules, a player who does not have enough money on the table to 
meet the outstanding bet can go all-in, and remains eligible to win the portion of the pot contributed 
to. The betting continues (toward a side-pot) for the remaining active hands.
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dations are also intended for a full game of ten players. A completely different set 

of hand rankings are necessary for short-handed games (e.g. five players or less), 

and this is reflected in the different income rates computed by roll-out simulations 

with fewer players in the hand.

Table 2.1 shows how the roll-out simulations compare to Sklansky’s rankings. 

In the tables, ‘s’ refers to a suited hand (two cards of the same suit), ‘o’ refers to 

an off suit hand (two cards of different suits, also called unsuited), and ‘*’ indicates 

a pocket pair  (two cards of the same rank). Table 2.1 is divided into eight groups, 

corresponding to Sklansky’s rating system, with Group 1 being the best hands, and 

Group 8 being weak hands that should only be played under special circumstances 

(e.g., for one bet after many players have called). In general, there is a strong 

correlation between Sklansky’s rankings and the income rates obtained from roll­

out simulations.

The simulation values demonstrate a bias in favor of certain hands that play 

well against many players, known as “good multi-way hands”. These are cards 

that can easily draw to a very strong hand, such as a flush (e.g., suited hands like 

A ^-2 'v1), a straight (e.g., connectors like 89-7X), or three of a kind (e.g., a pocket 

pair  like 2^-2^). Since all ten players proceed to the showdown in a roll-out sim­

ulation, the average winning hand needs to be considerably stronger than in a real 

ten-player game (where typically half of the players will fold before the flop, and 

many games are won uncontested before the showdown). By the same reasoning, 

large pairs may be undervalued, because of the unaccounted potential of winning 

without improvement against a smaller number of opponents.

Conversely, Sklansky’s rankings show evidence of a bias in favor of unsuited 

connectors, where suited hands should be preferred.11 Certain small-card combina­

tions, such as 74-64k, may have been given a higher ranking by Sklansky because 

they add a good balance of deception to the overall play list (for example, one does 

not want the opposition to conclude that we cannot have a 7 when the flop is 7C*- 

7<0-3Jfr). However, the hands intended for information hiding purposes should not 

extend to the unsuited connectors like 7Jfr-6^, which have a much lower overall

11 The highest valued hands not in Sklansky’s rankings are T7s (+231) and Q7s (+209).
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Group 1 Group 2 Group 3 Group 4
+2112 AA* +714 'p'p* +553 99* +481 T9s [1]
+1615 KK* +915 AQs +657 JTs +515 KQo
+1224 QQ* +813 AJs +720 QJs +450 OO OO *

+935 JJ* +858 KQs +767 KJs +655 QTs
+1071 AKs +718 AKo +736 ATs +338 98s [1]

+555 AQo +449 J9s
+430 AJo
+694 KTs

Group 5 Group 6 Group 7 Group 8
+364 77* +304 66* +214 44* -75 87o [2]
+270 87s [1] +335 ATo +92 J9o [2] +87 53s [3] (>  43s)
+452 Q9s +238 55* +41 43s [3] +119 A9o
+353 T8s [1] +185 86s +141 75s +65 Q9o
+391 KJo +306 KTo +127 T9o -129 76o [2]
+359 QJo +287 QTo +199 33* -42 42s [3] (<  52s)
+305 JTo +167 54s -15 98o [2] -83 32s [3] (<  52s)
+222 76s [1] +485 K9s +106 64s +144 96s
+245 97s [1] +327 J8s +196 22* +85 85s
+538 A9s +356 K8s -51 J8o [2]
+469 A8s +309 K7s +206 J7s
+427 A7s +278 K6s -158 65o [2]
+386 A6s +245 K5s -181 54o [2]
+448 A5s +227 K4s +41 74s
+422 A4s +211 K3s +85 K9o
+392 A3s +192 K2s -10 T8o
+356 A2s +317 Q8s
+191 65s [1]

Three possible explanations for the differences: [1] small card balancing, [2] bias 
for unsuited connectors, and [3] logical error (inconsistent).

Table 2.1: Income Rate values versus Sklansky groupings.
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expectation.

There are also a few instances of small logical errors in Sklansky’s rankings. 

For example, 43 s is ranked in Group 7, ahead of 53 s in Group 8, but it can be 

shown that 53s logically dominates 43 s, because it has the same straight and flush 

potential, with better high-card strength. Similarly, 52s dominates 42s and 32s, but 

52s is not ranked in any of the eight groups, whereas the latter are members of 

Group 8.

Since the differences are not large, it is clear that roll-out simulations provide an 

acceptable means of quantifying the pre-flop value of each hand. This information 

is currently used as part of a formula-based expert system for playing before the 

flop, which is not unlike the guidelines given by Sklansky in the aforementioned 

text. We prefer to use the computed results, rather than transcribing the Sklansky 

rules, because (a) we wish to eliminate the use of human knowledge whenever pos­

sible, (b) the roll-out simulation information is quantitative rather than qualitative, 

and (c) the algorithmic approach can be applied to many different specific situations 

(such as having exactly six players in the game), whereas Sklansky gives only a few 

recommendations for atypical circumstances.

Future versions of the program should be even more autonomous, adapting to 

the observed game conditions and making context-sensitive decisions on its own.

2.5.1.2 Iterated Roll-Out Simulations

An interesting refinement to roll-out simulation is to use repeated iterations of the 

technique, where the previous results govern the betting decision for each player. In 

the ten-player case, a negative value in the previous simulation would dictate that 

the hand be folded, rather than calling the big blind. This drastically reduces the 

number of active players in each game, producing a more realistic distribution of 

opponents and probable hands. The result is a reduction in the bias toward multi­

way hands, and a much better estimation of the hands that can be played profitably 

when ten players are originally dealt in.

After each round of simulations has reached a reasonable degree of stability, 

another iteration is performed. This process eventually reaches an equilibrium,
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Hand IR-10 Iterated Hand IR-10 Iterated Hand IR-10 Iterated
AA* +2112 +2920 ATs +736 +640 KQo +515 +310
KK* +1615 +2180 99* +553 +630 QTs +655 +280
QQ* +1224 +1700 KQs +858 +620 QJs +720 +270
JJ* +935 +1270 AQo +555 +560 A9s +538 +220
'J’P* +714 +920 KJs +767 +480 ATo +335 +200
AKs +1071 +860 88* +450 +450 KTs +694 +190
AKo +718 +850 77* +364 +390 KJo +391 +160
AQs +915 +780 A Jo +430 +380 A8s +469 +110
AJs +813 +680 JTs +657 +360 66* +304 +40

Table 2.2: Iterated income rate (profitable hands).

defining a set of hands that can be played profitably against the blinds and the 

other unknown hands. The results are most applicable to the “play or don’t play” 

decision for each player. Although much better than a simple roll-out simulation, 

this technique is still far from perfect, because other important considerations such 

as betting position and known opponent actions have not been accounted for.

In our experiments, each iteration lasted for 50,000 trials. A diminishing noise 

factor was added to each income rate, analogous to the cooling factor used in sim­

ulated annealing. This gives negative expectation hands a chance to recover as the 

prevailing context changes. After ten generations, the remaining positive expecta­

tion hands were played for another 500,000 trials, to ensure stability. The resulting 

set of profitable hands, shown in Table 2.2, is in strong agreement with expert opin­

ion on this matter. The table shows a comparison of the income rates for 10-player 

roll-out simulations (IR-10) and the results refined by iterating (Iterated). The val­

ues shown are in milli-bets {e.g., a hand with an income rate o f+1000 should win an 

average of one small bet each time it is played). The iterated values are reasonable 

estimates of actual income rates, unlike the simple roll-out values, which are only 

used as relative measures.

One of the factors used by Sklansky and other experts is the possibility of a hand 

being dominated. For example, AQ is said to dominate AJ, because the AQ has a 

tremendous advantage if they are in a game against each other (an Ace on board 

does not help the AJ). In contrast, AQ does not dominate the inferior holding of KJ,
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because they are striving to hit different cards. The role of domination is clearly 

demonstrated in the results of the iterated roll-out simulations. Examples include 

the increased value of large pairs and AK unsuited, and the diminished value of KQ 

(which is dominated by AA, KK, QQ, AK, and AQ).

Iterated roll-out simulations have also been used to compute accurate expected 

values for two-player Pre-flop Hold’em. The resulting betting decisions are in very 

good agreement with Alex Selby’s computation of the game-theoretic equilibrium 

strategy, in which he used an adaptation of the Simplex algorithm for solving this 

game directly [30].12 The small number of cases where the strategies differ are 

all near the boundary conditions between raise and call, or call and fold. Further­

more, the expected values are always close to the threshold for making the alternate 

choice, with a difference usually less than 0.1 small bets (100 milli-bets).

2.5.2 Basic Betting Strategy

The basic betting strategy after the flop chooses an action using three steps:

1. Compute the hand strength (HS), positive potential (PPot), negative poten­

tial (NPot), and effective hand strength (EHS) of POKl’s hand relative to the 

board.

2. Use the game context, a set of betting rules, and formulas to translate the EHS 

into a probability triple: {Pr(fold), Pr(call), Pr(raise)}.

3. Generate a random number in the range zero to one, and use it to choose an 

action from the probability distribution. This contributes to the unpredictabil­

ity of the program.

EHS is a measure of how well the program’s hand stands in relationship to the 

remaining active opponents in the game. It is a combination of the current hand 

strength and positive potential for the hand to improve. These are discussed in the 

following sections.

12 We are assuming that an optimal equilibrium solution to the re-defined game of Pre-flop 
Hold’em will serve as a near-optimal equilibrium solution to the pre-flop phase of real Hold’em 
(i.e., that a “perfect” solution to a simpler game will be a “good” solution to the full-scale version).
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HandStrength(ourcards,boardcards)
{

ahead = tied = behind = 0 
ourrank = Rank(ourcards,boardcards)
/* Consider all two-card combinations 

of the remaining cards. */ 
for each case(oppcards)
{

opprank = Rank(oppcards,boardcards) 
if(ourrank>opprank) ahead += 1
else if(ourrank==opprank) tied += 1 
else /* < */ behind += 1

}
handstrength = (ahead+tied/2) / (ahead+tied+behind) 
return (handstrength)

}

Figure 2.3: Hand Strength calculation.

2.5.2.1 Hand Strength

The hand strength (HS) is the probability that a given hand is better than that of an 

active opponent. Suppose an opponent is equally likely to have any possible two 

hole card combination.13 All of these opponent hands can be enumerated, identify­

ing when POKl’s hand is better (+1), tied (+ |) , or worse (0). Taking the summation 

and dividing by the total number of possible opponent hands gives the (unweighted) 

hand strength. Figure 2.3 gives the algorithm for a simple hand strength calculation.

Suppose our hand is A<0>-QJ|k and the flop is JQ-4J|k-3Q. There are 47 remaining 

unknown cards and therefore {47 choose 2} = 1,081 possible hands an opponent 

might hold. In this example, any three of a kind, two pair, one pair, or AK is better 

(444 cases), the remaining AQ combinations are equal (9 cases), and the rest of 

the hands are worse (628 cases). Counting ties as one half, this corresponds to a 

percentile ranking, or hand strength, of 0.585. In other words, there is a 58.5% 

chance that A<0-Q^ is better than a random hand.

The hand strength calculation is with respect to one opponent, but can be ex-

13 This is not true, in general, but simplifies the presentation of the algorithm. This form of un­
weighted hand strength is also called hand, rank (HR). We eliminate this assumption and generalize 
the algorithm in the next section.
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A<C>-QX hole cards 1 9 -4 ^ -3 9  board cards
5 Cards 7 Cards

Ahead Tied Behind Sum
Ahead
Tied

Behind

449,005
0

91,981

3,211
8,370
1,036

169,504
540

346,543

628x990= 621,720 
9x990= 8,910 

444x990 = 439,560
Sum 540,986 12,617 516,587 1,081x990= 1,070,190

Table 2.3: Hand Potential example.

trapolated to multiple opponents by raising it to the power of the number of ac­

tive opponents.14 Against five opponents with random hands, the adjusted hand 

strength, HS5, is 0.5855 = 0.069. Hence, the presence of the additional opponents 

has reduced the likelihood of A<0>-QX being the best hand to only 6.9%.

2.S.2.2 Hand Potential

After the flop, there are still two more board cards to be revealed. On the turn, there 

is one more card to be dealt. We want to determine the potential impact of these 

cards. The positive potential (PPot) is the chance that a hand that is not currently 

the best improves to win at the showdown. The negative potential (NPot) is the 

chance that a currently leading hand ends up losing.

PPot and NPot are calculated by enumerating over all possible hole cards for 

the opponent, like the hand strength calculation, and also over all possible board 

cards. For all combinations of opponent hands and future cards, we count the num­

ber of times POKl’s hand is behind, but ends up ahead (PPot), and the number of 

times P o k i ’s hand is ahead but ends up behind (NPot). The algorithm is given in 

Figure 2.4, and the results for the preceding example are shown in Table 2.3. In this 

example, if the hand AO-QJfr is ahead against one opponent after five cards, then 

after 7 cards there is a 449,005 / 621,720 = 72% chance of still being ahead.

Computing the potential on the flop can be expensive, given the real-time con-

14 This assumes that all of the opponent hands are independent of each other. Strictly speaking, 
this is not true. To be a useful estimate for the multi-player case, the error from this assumption must 
be less than the error introduced from other approximations made by the system. More accurate 
means are available, but we defer that discussion in the interest of clarity.
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HandPotential(ourcards,boardcards)
{

/* Hand Potential array, each index represents 
ahead, tied, and behind. */ 

integer array HP[3][3] /* initialize to 0 */
integer array HPTotal[3] /* initialize to 0 */

ourrank = Rank(ourcards,boardcards)
/* Consider all two-card combinations of the 

remaining cards for the opponent. */ 
for each case(oppcards)
{

opprank = Rank(oppcards,boardcards) 
if (ourrank>opprank) index = ahead
else if(ourrank=opprank) index = tied 
else /* < */ index = behind
HPTotal[index] += 1

/* All possible board cards to come. */ 
for each case (turn)
{

for each case(river)
{ /* Final 5-card board */

board = [boardcards,turn, river] 
ourbest = Rank(ourcards,board) 
oppbest = Rank(oppcards,board)
if (ourbest>oppbest) HP[index] [ahead] += 1
else if(ourbest==oppbest) HP[index][tied] += 1 
else /* < */ HP[index][behind] += 1

}
}

}

/* PPot: were behind but moved ahead. */
PPot = (HP[behind][ahead] + HP[behind][tied]/2

+ HP[tied][ahead]/2) / (HPTotal[behind]+HPTotal[tied]/2)
/* NPot: were ahead but fell behind. */
NPot = (HP[ahead][behind] + HP[tied][behind]/2

+ HP[ahead][tied]/2) / (HPTotal[ahead]+HPTotal[tied]/2)
return(PPot,NPot)

}
Figure 2.4: Hand Potential calculation.
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straints of the game (about one second per decision). There are {45 choose 2} = 990  

possible turn and river cards to consider for each possible two-card holding by the 

opponent. In practice, a fast approximation of the PPot calculation may be used, 

such as considering only the next one card to come. Previous implementations have 

used a fast function to produce a crude estimate of PPot, which was within 5% of 

the actual value about 95% of the time.

2.5.2.3 Effective Hand Strength

The effective hand strength (EHS) combines hand strength and potential to give a 

single measure of the relative strength of POKl’s hand against an active opponent. 

One simple formula for computing the probability of winning at the showdown15 

is:

P r ( w i n )  =  P r ( a h e a d )  x  P r ( o p p o n e n t  do es  n o t  i m p r o v e )

+  P r ( b e h i n d ) x  P r { w e  i m p r o v e )

=  H S  x (1 -  N P o t )  +  (1 -  H S )  x  P P o t

In practice, we generally want to bet when we currently have the best hand, 

regardless of negative potential, so that an opponent with a marginal hand must 

either fold, or pay to draw. Hence, NPot is not as important as PPot for betting 

purposes. Since we are interested in the probability that our hand is either currently 

the best, or will improve to become the best, one possible formula for EHS sets 

NPot =  0, giving:

E H S  =  H S  +  ( 1 -  H S )  x  P P o t  (2.1)

This has the effect of betting a hand aggressively despite good draws being possible 

for opponent hands, which is a desirable behavior.

For n  active opponents, this can be generalized to:

E H S  =  H S n +  (1 -  H S n ) x P P o t  (2.2)

15 The formula can be made more precise by accounting for ties, but becomes less readable.
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assuming that the same EHS calculation suffices for all opponents. This is not a 

good assumption, since each opponent has a different style (and thus a different 

distribution over possible hands). A better generalization is to have a different HS 

and PPot for each opponent i. EHS with respect to each opponent can then be 

defined as:

E H  Si = H Si +  (1 -  H S i) x PPoU  (2.3)

Modifying these calculations based on individual opponents is the subject of Sec­

tion 2.6.

2.5.2.4 Weighting the Enumerations

The calculations of hand strength and hand potential in Figures 2.3 and 2.4 assume 

that all two-card combinations are equally likely. However, the probability of each 

hand being played to a particular point in the game will vary. For example, the 

probability that an active opponent holds Ace-King is much higher than 7-2 after 

the flop, because most players will fold 7-2 before the flop.

To account for this, POKI maintains a weight table for each opponent. The table 

has an entry for every possible two-card hand, where each value is the conditional 

probability of the opponent having played those cards to the current point in the 

game. To get a better estimate of hand strength, each hand in the enumeration is 

multiplied by its corresponding probability in the weight table.

In practice, the weights have a value in the range zero to one, rather than abso­

lute probabilities (summing to one), because only the relative sizes of the weights 

affect the later calculations. When a new game begins, all entries are initialized to 

a weight of one. As cards become known (P o k i ’s private cards or the public board 

cards), many hands become impossible, and the weight is set to zero.

After each betting action, the weight table for that opponent is updated in a 

process called re-weighting. For example, suppose an opponent calls before the 

flop. The updated weight for the hand 7-2 might be 0.01, since it should normally be 

folded. The probability of Ace-King might be 0.40, since it would seldom be folded 

before the flop, but is often raised. The relative value for each hand is increased or
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UpdateWeightTable(Action A, WeightTable WT,
GameContext GC, OpponentModel OM)

{
foreach (entry E in WT)
{

ProbabilityDistribution PT[FOLD,CALL,RAISE]

PT = PredictOpponentAction(OM, E, GC)
WT[E] = WT[E] * PT[A]

}
}

Figure 2.5: Updating the weight table.

decreased to be consistent with every opponent action.

The strength of each possible hand is assessed, and a mixed strategy (a proba­

bility distribution over available actions) is determined by a formula-based betting 

strategy. These values are then used to update the weight table after each opponent 

action. The algorithm is shown in Figure 2.5.

For example, assume that the observed player action is a bet, and that the weight 

table currently has entries:

[A *-K *, 0.40],..., [Q 0-20 , 0.20],...

Further assume that in the given situation, the PredictOpponentAction procedure 

(Figure 2.5) generates probability distributions {Pr(fold), Pr(check/call), Pr(bet/raise)} 

of (0.0, 0.7, 0.3} for the hand A * -K * , and {0.0, 0.1, 0.9} for the hand Q0-2<>. 

After re-weighting, the new weight table entry for A<jfc-KJ|k will be 0.4 x 0.3 =  0.12, 

and 0.2 x 0.9 =  0.18 for Q<>-2<£>. Had the opponent checked in this situation, 

the weights would be 0.28 and 0.02, respectively.16

Table 2.4 shows a possible game scenario based on the example given in Sec­

tion 2.3.2 (with the five players that immediately folded in the pre-flop removed). In 

this game, player EP is assumed to be a default player rather than the well-modeled 

tight opponent described previously. Figure 2.6 shows POKl’s weight table for EP 

at three stages of the game (pre-flop, flop, and river). In each figure, darker cells

16 In the parlance of Bayesian (conditional) probabilities, the old weight table represents the prior 
distribution of the opponent’s cards, and the new weight table is the posterior distribution.
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SB BB EP MP Poki
Pre-flop

small blind big blind call call call
call check

Flop Q *  7 9  4<0
check check bet fold call
fold fold

Turn 5 9
bet raise
call

River 5d(k
check check

Table 2.4: Betting scenario for the example game in Section 2.3.2.

Figure 2.6: Progressive weight tables for opponent EP in the example game.

correspond to higher relative weights. Suited hands are shown in the upper right 

portion of the grid, and unsuited hands are on the lower left. The program gathers 

more information as the game is played, refining the distribution of hands that are 

consistent with the betting actions of EP.17

2.5.2.S Probability Triples and Evaluation Functions

A probability triple is an ordered triple of values, P T  = { /, c, r} , such that

f  + c + r = 1.0, representing the probability distribution that the next betting

action in a given context is a fold, call, or raise, respectively. This representation of

17 The weight table for the turn is not shown, but is similar to that of the flop (the continuation 
bet provides little new information).
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future actions (analogous to a randomized mixed strategy in game theory) is used 

in three places in Poki:

1. The basic betting strategy uses a probability triple to decide on a course of 

action (fold, call, or raise).

2. The opponent modeling component (Section 2.6) uses an array of probability 

triples to update the opponent weight tables.

3. In a simulation-based betting strategy (Section 2.5.3) probability triples are 

used to choose actions for simulated opponent hands.

Hand strength, hand potential, and effective hand strength are simple algorithms 

for capturing some of the probabilistic information needed to make a good decision. 

However, there are many other factors that influence the betting decision. These 

include things like pot odds, implied odds, relative betting position, betting history 

of the current game, etc. Hence, the probability triple generation routine consists 

of ad hoc rules and formulas that use EHS, the opponent model, game conditions, 

and probability estimates to assess the likelihood of each possible betting action. A 

professional poker player (Billings) defined this system based on crude estimates 

of the return on investment for each betting decision. We refer to this as either a 

rule-based or formula-based betting strategy. The precise details of this procedure 

will not be discussed, as they are of limited scientific interest.

An important advantage of the probability triple abstraction is that most of 

the expert-defined knowledge in Poki has been gathered together into the triple­

generation routines. This is similar to the way that external knowledge is restricted 

to the evaluation function in alpha-beta search. The probability triple framework al­

lows the “messy” elements of the program to be amalgamated into one component, 

which can then be treated as a black box by the rest of the system. Thus, aspects 

like Hold’em-specific knowledge, complex expert-defined rule systems, and knowl­

edge of human behavior are all separated from the engine that uses this input for its 

calculations. The essential algorithms should be applicable to other poker variants 

with little or no modification, and perhaps to substantially different domains.
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2.5.3 Selective Sampling and Simulation-based Betting Strategy

Having an expert identify all the betting rales necessary to play poker is time con­

suming and difficult. The game is strategically complex, and decisions must be 

based on the exact context of the current game and historical information of past 

sessions. A system based on expert rules is unlikely to produce a world-class level 

of play, because covering every relevant situation in sufficient detail is not feasible. 

We believe that dynamic, adaptive, computer-oriented techniques will be essential 

to compete with the best human players.

As mentioned above, a knowledge-based betting strategy is analogous to a static 

evaluation function in deterministic perfect information games. Given the current 

state of the game, it attempts to determine the action that yields the best result. The 

corresponding analogue would be to add search to the evaluation function. While 

this is easy to achieve in a game such as chess (consider all possible moves as deeply 

as resources permit), the same approach is not directly applicable to poker. There 

are fundamental differences in the structure of imperfect information game trees, 

and the total number of possibilities to consider is prohibitive.

Toward this end, P o k i  supports a simulation-based betting strategy. It consists 

of playing out many likely scenarios, keeping track of how much money each de­

cision will win or lose. Every time it faces a decision, POKI invokes the Simulator 

to get an estimate of the expected value of each betting action (see the dashed box 

in Figure 2.2, with the Simulator replacing the Action Selector). A single trial con­

sists of playing out the game from the current state through to the end. Many trials 

produce a full-information simulation (which is not to be confused with the simpler 

roll-out simulations mentioned in Section 2.5.1).

Each trial is played out twice -  once to consider the consequences of a check 

or call, and once to consider a bet or raise. In each trial, a hand is assigned to 

each opponent, based on the probabilities maintained in their weight table. The 

resulting instance is simulated to the end, and the amount of money won or lost is 

determined. Probability triples are used to determine the future actions of P o k i  and 

the opponents, based on the two cards they are assigned for that trial and threshold 

values determined by the specific opponent model. The average over all trials in
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which we check or call is the call EV, and the average for the matching trials where 

we bet or raise is the raise EV. The fo ld  EV  can be calculated without simulation, 

since there is no future profit or loss.

In the current implementation, we simply choose the action with the greatest 

expectation. If two actions have the same expectation, we opt for the most aggres­

sive one (prefer a raise, then a call, then a fold). To increase the program’s unpre­

dictability, we can randomize the selection between betting actions whose EVs are 

close in value, but the level of noise in the simulation already provides some natural 

variation for close decisions.18

Enumerating all possible opponent hands and future community cards would be 

analogous to exhaustive game-tree search, and is impractical for poker. Simulation 

is analogous to a selective expansion of some branches of a game tree. To get a 

good approximation of the expected value of each betting action, one must have a 

preference for expanding and evaluating the nodes that are most likely to occur. To 

obtain a correctly weighted average, all of the possibilities must be considered in 

proportion to the underlying non-uniform probability distribution of the opponent 

hands and future community cards. We use the term selective sampling to indi­

cate that the assignment of probable hands to each opponent is consistent with this 

distribution.

At each betting decision, a player must choose a single action. The choice is 

strongly correlated to the quality of the cards that they have, and we can use the 

opponent model and formula-based betting strategy to compute the likelihood that 

the player will fold, call, or raise in each instance. The player’s action is then ran­

domly selected based on this probability distribution, and the simulation proceeds. 

As shown in Figure 2.2, the Simulator calls the opponent model to obtain each of 

our opponent’s betting actions and our own actions. Where two or three alterna­

tives are equally viable, the resulting EVs should be nearly equal, so there is little 

consequence if the “wrong” action is chosen.

18 Unfortunately, this simple approach does convey some useful information to observant op­
ponents, in that the strength of our hand and the betting level are too closely correlated. Moving 
toward a mixed equilibrium strategy would provide better information-hiding, and may be neces­
sary to reach the world-class level.
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It is reasonable to expect that the simulation approach will be better than the 

static approach, because it essentially uses a selective search to augment and refine 

a static evaluation function. Barring serious misconceptions, or bad luck on a lim­

ited sample size, playing out many relevant scenarios will improve the estimates 

obtained by heuristics alone, resulting in a more accurate assessment overall.

As seen in other domains, we find that the search itself contains implicit knowl­

edge. A simulation contains inherent information that improves the basic evalua­

tion, such as:

•  hand strength (fraction of trials where our hand is better than the one assigned 

to the opponent),

•  hand potential (fraction of trials where our hand improves to the best, or is 

overtaken), and

•  subtle considerations that are not addressed in the simplistic betting strategy 

(e.g., implied odds, extra bets won after a successful draw).

It also allows complex strategies to be uncovered without providing additional 

expert knowledge. For example, simulations produce advanced betting tactics like 

check-raising as an emergent property, even if the basic strategy used within each 

trial is incapable of this play.

At the heart of the simulation is the evaluation function, discussed in Sec­

tion 2.5.2.5. The better the quality of the evaluation function, the better the sim­

ulation results will be. Furthermore, the evaluation system must be compatible and 

harmonious with the nature of the simulations. Since the formula-based betting 

strategy was developed and tuned for the original system, it may not be entirely 

consistent or appropriate for use in the simulation-based version. It is possible 

that built-in biases that were useful (or compensated for) in the original version are 

sources of serious systemic error when used as the evaluation function for simula­

tions. It may be the case that a simpler function would be more balanced, producing 

better results.

One of the interesting results of work on alpha-beta search is that even a simple 

evaluation function can result in a powerful program. We see a similar situation
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in poker. The implicit knowledge contained in the search itself improves the basic 

evaluation, refining the quality of the approximation. As with alpha-beta, there 

are important trade-offs to consider. A more sophisticated evaluation function can 

reduce the size of the tree, at the cost of more time spent on each node. In simulation 

analysis, we can improve the accuracy of each trial, but at the expense of reducing 

the total number of trials performed in real-time.

Variations of selective sampling have been used in other games, including Scrab­

ble [33, 32], backgammon [39], and bridge [17]. Likelihood weighting is another 

method of biasing stochastic simulations [15, 31]. In our case, the goal is different 

because we need to differentiate between EVs (for call/check, bet/raise) instead of 

counting events. Poker also imposes tight real-time constraints (typically a maxi­

mum of a few seconds per decision). This forces us to maximize the information 

gained from a limited number of samples. The problem of handling unlikely events 

(which is a concern for any sampling-based result) is smoothly handled by the re­

weighting system (Section 2.5.2.4), allowing P oki to dynamically adjust the likeli­

hood of an event based on observed actions. An unlikely event with a large payoff 

figures naturally into the EV calculations.

2.6 Opponent Modeling

No poker strategy is complete without a good opponent modeling system. A strong 

poker player must develop a dynamically changing (adaptive) model of each oppo­

nent, to identify potential weaknesses.

In traditional games, such as chess, this aspect of strategy is not required to 

achieve a world-class level of play. In perfect information games, it has been suf­

ficient to play an objectively best move, without special regard for the opponent. 

If the opponent plays sub-optimally, then continuing to play good objective moves 

will naturally exploit those errors. Opponent modeling has been studied in the 

context of two-player games, but the research has not translated into significant 

performance benefits [10, 19, 20],

In poker, the situation is different. Two opponents can make opposite kinds
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of errors -  both can be exploited, but it requires a different response for each. For 

example, one opponent may bluff too much, the other too little. We adjust by calling 

more frequently against the former, and less frequently against the latter. To simply 

call with the optimal frequency would decline an opportunity for increased profit, 

which is how the game is scored. Even very strong players can employ radically 

different styles, so it is essential to try to deduce each opponent’s basic approach to 

the game, regardless of how well they play.

2.6.1 RoShamBo

The necessity of modeling the opponent is nicely illustrated in the game of RoShamBo 

(also known as Rock-Paper-Scissors). This is a well-known “kid’s game”, where 

each player chooses an action simultaneously, and there is a cyclic set of outcomes: 

scissors beats paper, paper beats rock, and rock beats scissors (choosing the same 

action results in a tie). The game-theoretic equilibrium strategy for this zero-sum 

game is also well known: one chooses any of the three actions uniformly at random. 

However, the equilibrium strategy is oblivious to opponent actions, and is not ex­

ploitive. The best one can do using the equilibrium strategy is to break even in the 

long run (an expected value of zero, even if the opponent always goes rock). Con­

trary to popular belief, the game is actually very complex when trying to out-guess 

an intelligent opponent.

The International RoShamBo Programming Competition19 is a contest for pro­

grams that play Rock-Paper-Scissors [3]. More than 50 entries were submitted from 

all over the world for each competition. Every program plays every other program 

in a round-robin tournament, with each match consisting of 1,000 games. Scores 

are based on total games won, and on the match results (with the match declared 

a draw if the scores are not different by a statistically significant margin). Since 

the equilibrium strategy can only draw each match, it consistently finishes in the 

middle of the pack, and has no chance of winning the tournament.

The authors of the top entries, including some well-known AI researchers, have 

commented that writing a strong RoShamBo program was much more challenging

19 See http://www.cs.ualberta.ca/"games.
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than they initially expected [4, 13]. The best programs do sophisticated analysis of 

the full history of the current match in order to predict the opponent’s next action, 

while avoiding being predictable themselves. Programs that used a simple rule-base 

for making their decisions consistently finished near the bottom of the standings. 

All of the top programs define completely general methods for pattern detection, 

some of which are remarkably elegant. Given the simple nature of RoShamBo, 

some of these nice ideas might be applicable to the much more complex problems 

faced by a poker playing system.

2.6.2 Statistics-based Opponent Modeling

In poker, opponent modeling is used in at least two different ways. We want a gen­

eral method of deducing the strength of the opponent’s hand, based on the betting 

actions. We also want to predict their specific action in a given situation.

At the heart of an opponent modeling system is a predictor. The predictor’s 

job is to map any given game context into a probability distribution over the oppo­

nent’s potential actions. In Limit poker, this distribution can be represented by a 

probability triple {Pr(fold), Pr(call), Pr(raise)}.

One way to predict an opponent action would be to use our own betting strat­

egy, or some other set of rules, to make a rational choice on behalf of the opponent. 

When we use this type of fixed strategy as a predictor, we are assuming the player 

will play in one particular “reasonable” manner, and we refer to it as generic oppo­

nent modeling (GOM).

Another obvious method for predicting opponent actions is to expect them to 

continue to behave as they have done in the past. For example, if an opponent is ob­

served to bet 40% of the time immediately after the flop, we can infer that they will 

normally bet with the top 40% of their hands in that situation (including a certain 

percentage of weak hands that have a good draw). When we use an opponent’s per­

sonal history of actions to make predictions, we call it specific opponent modeling 

(SOM).

Our first opponent modeling effort was based on the collection of simple sta­

tistical information, primarily on the betting frequencies in a variety of contexts.
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For example, a basic system distinguishes twelve contexts, based on the betting 

round (pre-flop, flop, turn, or river), and the betting level (zero, one, or two or more 

bets). For any particular situation, we use the historical frequencies to determine 

the opponent’s normal requirements {i.e., the average effective hand strength) for 

the observed action. This threshold is used as input into a formula-based betting 

strategy that generates a mixed strategy of rational actions for the given game con­

text (see Section 2.5.2.5).

However, this is a limited definition of distinct contexts, since it does not ac­

count for many relevant properties, such as the number of active opponents, the rel­

ative betting position, or the texture of the board cards {e.g., whether many draws 

are possible). Establishing a suitable set of conditions for defining the various situa­

tions is not an easy task. There are important trade-offs that determine how quickly 

the algorithm can learn and apply its empirically discovered knowledge. If a context 

is defined too broadly, it will fail to capture relevant information from very differ­

ent circumstances. If it is too narrow, it will take too long to experience enough 

examples of each scenario, and spotting general trends becomes increasingly diffi­

cult. Equally important to deciding how many equivalence classes to use is knowing 

what kinds of contextual information are most relevant in practice.

Furthermore, there are many considerations that are specific to each player. For 

example, some players will have a strong affinity for flush draws, and will raise or 

re-raise on the flop with only a draw. Knowing these kinds of personality-specific 

characteristics can certainly improve the program’s performance against typical hu­

man players, but this type of modeling has not yet been fully explored.

Opponent modeling in poker appears to have many of the characteristics of the 

most difficult problems in machine learning -  noise, uncertainty, an unbounded 

number of dimensions to explore, and a need to quickly learn and generalize from 

relatively small number of heterogeneous training examples.20 As well, the real­

time nature of poker (a few seconds per betting decision) limits the effectiveness of 

most popular learning algorithms.

20 By “heterogeneous” we mean that not all games and actions reveal the same type or amount 
of information. For example, if a player folds a hand, we do not get to see the cards.
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2.6.3 Neural Networks-based Opponent Modeling

To create a more general system for opponent modeling, we implemented a neural 

network for predicting the opponent’s next action in any given context. Guess­

ing the next action is useful for planning advanced betting strategies, such as a 

check-raise, and is also used in each trial of a full-information simulation (see Sec­

tion 2.5.3).

A standard feed-forward neural net was trained on contextual data collected 

from online games against real human opponents. The networks contain a set of 

nineteen inputs corresponding to properties of the game context, such as the number 

of active players, texture o f  the board, opponent’s position, and so on. These are 

easily identified factors that may either influence, or are correlated with a player’s 

next action.

The output layer consists of three nodes corresponding to the fold, call, and 

raise probabilities. Given a set of inputs, the network will produce a probability 

distribution of the opponent’s next action in that context (by normalizing the values 

of the three output nodes).

By graphically displaying the relative connection strengths, we are able to deter­

mine which input parameters have the largest effects on the output. After observing 

networks trained on many different opponents, it is clear that certain factors are 

dominant in predicting the actions of most opponents, while other variables are al­

most completely irrelevant. The accuracy of these networks (and other prediction 

methods) is measured by cross-validating with the real data collected from past 

games with each opponent. Details are available in a previous paper [12].

Figure 2.7 shows a typical neural network after being trained on a few hundred 

games played by a particular opponent. The inputs are the on the top row, with the 

activation level ranging from zero (fully white) to one (fully black). The thickness 

of the lines represent the magnitude of the weights (black being positive, grey being 

negative). In this example, the connections from input node number twelve (true if 

the opponent’s last action was a raise) are very strong, indicating that it is highly 

correlated with what the opponent will do next. The bottom row shows the network 

predicting that the opponent will probably fold, with a small chance of calling.
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0)  F o ld

Figure 2.7: A neural network predicting an opponent’s future action.

The first result of this study was the identification of new features to focus on 

when modeling common opponents. This produced a relatively small set of context 

equivalence classes that significantly improved the statistical opponent modeling 

reported previously [12]. We are currently experimenting with using a real-time 

neural network system to replace the frequency table method entirely. Preliminary 

results from games with both human and computer opponents suggest that this may 

lead to a dramatic improvement.

2.7 Performance Evaluation

Measuring the performance of a poker-playing program is difficult. P oki is a com­

plex system of interacting components, and changing a single component often 

has cascading effects, leading to unpredictable and unforeseen behavior. We have 

employed a variety of methods for assessing the program, but none of them is com­

pletely adequate.
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2.7.1 Experimental Methodology

Poker is a game of high variance, and the element of luck dominates the outcome of 

any one game. Among evenly matched players, the effects of good or bad fortune 

are still significant even after several thousand games. Measurements are always 

susceptible to high levels of noise and anomalous games. Furthermore, players 

are constantly adapting during this time, improving their understanding of each 

opponent, or changing styles to make it more difficult for others to form an accurate 

model of them.

Internal experiments are a simple way to test new features, by playing older 

versions of the program against newer versions. This provides an easily controlled 

closed environment, where many thousands of games can be played quickly.

To reduce variance we use a duplicate tournament system similar to that used 

in duplicate bridge. Since each game can be played with no memory of preceding 

games, in a ten-player game, each deal of the cards can be replayed ten times, 

shuffling the seating arrangement each time so that every player holds each hand 

once. This reduces the amount of noise considerably, and also reduces the effects 

of relative seating position (for example, it would be advantageous to always act 

immediately after a particularly aggressive or unpredictable player). However, this 

method still admits a lot of variance. For example, one player might choose to fold a 

marginal hand whereas another might play in that same situation, possibly winning 

or losing many bets.

Another assessment method attempts to compute an objective measurement of 

the expected value for each decision, using the perfect information of the actual 

situation. For example, a weak looking hand might actually win 20% of the time 

against the current field, and the expected value for making a “loose call” in that 

situation might be +0.6 bets, compared to —0.6 bets for a more conservative fold, 

or —0.2 bets for a raise. When comparing two or more players, this kind of specific 

evaluation of an action can be applied to the first differing decision of each deal, 

since the subsequent betting actions are not comparable (being different contexts). 

While this method is attractive in principle, it is somewhat difficult to define a 

reliable expected value measure for all situations, and consequently it has not been
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used extensively to date.21

The major drawback of internal experiments is that they lack the wide variety of 

styles and game conditions exhibited by real players. Other researchers have pre­

viously commented on the “myopia” of self-play games in chess [2]. The problem 

is much more acute and limiting for the development of a poker-playing system, 

because the style of the opponent is of paramount importance to correct play. A 

program that does very well against normal opponents may be vulnerable to a par­

ticular type of erratic or irrational player, even if the play is objectively worse. 

Although we try to create a variety of computer opponents by varying parameter 

settings of the players (e.g., percentage of hands played, aggressiveness, advanced 

betting strategies, etc.), the range of styles is still much more restricted than that of 

human opponents.

Even with a carefully selected, well-balanced field of artificial opponents, it is 

important to not over-interpret the results of any one experiment. Often all that can 

be concluded is the relative ranking of the algorithms amongst themselves. One 

particular strategy may dominate in an internal experiment, even though another 

approach is more robust in real games against human opponents.

A good demonstration of this limitation was seen in the testing of early simulation- 

based betting strategies. The results of internal experiments were very encouraging, 

and occasionally spectacular. However, this was largely due to the pure aggressive­

ness of the new strategy, which was particularly effective at exploiting the overly 

conservative nature of its computer opponents at that time. When testing the new 

betting strategy in online games, it was much less successful against reasonably 

strong human opposition, who were able to adapt quickly.

For this reason, playing games against real human opponents is still indispens­

able for proper evaluation. Unfortunately, this entails other sources of inaccuracy.

A poker program can participate in a real game with willing participants, using 

a laptop computer on the table. This turns out to be surprisingly difficult, due to the 

fast pace of a real game and the amount of information to be entered. Even with

21 Many of these issues were resolved after the publication of this paper, when DIVAT replaced 
EVAT, as discussed in detail in Chapter 5.
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numerous single-character accelerators, text entry is a bottleneck to the process. A 

well-designed graphical interface might help considerably, and an automatic card- 

reader (e.g., a bar-code scanner) could prevent the operator from giving away useful 

information, since only the program would know its hand. However, it may always 

be more practical to have human players participate in a virtual game, rather than 

having programs compete in the physical world.

For more than three years, our programs have regularly participated in online 

poker games against human opposition on the Internet Relay Chat (IRC). Players 

connect to the IRC poker server and participate in numerous games that are con­

ducted by dedicated software. No real money is at stake, but the accumulated bank­

roll for each player is preserved between sessions, and a variety of statistics are 

maintained. There is a hierarchy of games for Limit Hold’em, and a player must 

win a specified amount in the introductory level games to qualify for the higher 

tiered games.

These lowest level games (open to everyone) vary from wild to fairly normal, 

offering a wide variety of game conditions to test the program. The second and third 

tier games resemble typical games in a casino or card room. Most of these players 

take the game seriously, and some are very strong (including some professionals). 

Since P o k i  has been a consistent winner in these higher tiered games (and is in the 

top 10% of all players on the server), we believe the program plays better than the 

average player in a low-limit casino game.

Recently, several online poker servers have begun offering real-money games 

played over the Internet. The response has been very favorable, and it is normal to 

have more than 1,000 players logged into a virtual card room at any given time. 

With the agreement of the entrepreneurs, this might provide a future venue for 

testing programs in a completely realistic setting.

Another form of online poker is a free Java web applet, where users can play at 

a table with poker programs and other people. P o k i  currently hosts such a facil­

ity, which provides an interesting hybrid between internal experiments and games 

against humans.22

22 See http://www.cs.ualberta.ca/'games.
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While online poker is useful for measuring the progress of a program, it is not a 

controlled environment. The game is constantly changing, and positive results over 

a given time-frame can easily be due to playing against a weaker set of opponents, 

rather than actual improvements to the algorithm. Considering that it may take 

thousands of games to measure small improvements, it is difficult to obtain precise 

quantified results. There is also no guarantee that an objectively stronger program 

will be more successful in this particular style of game. Certain plays that might be 

good against master players could be inappropriate for the more common opponents 

in these games. Moreover, regular players may have acquired a lot of experience 

against previous versions of P o k i, making it difficult to achieve the same level of 

performance.

As a result, it is still beneficial to have a master poker player review hundreds 

of games played by the program, looking for errors or dubious decisions. Needless 

to say, this is a slow and laborious method of assessment. A human master can 

also play against one or more versions of the program, probing for weaknesses 

or unbalanced strategy. Based on these direct encounters, we believe POKI is an 

intermediate level player, but has not yet reached the master level.

2.7.2 Experimental Results

The unit of measurement for program performance is the average number of small 

bets won per game (sb/g). For example, in a game of $10/$20 Hold’em with 40 

games per hour, an income rate of +0.05 sb/g translates into $20 per hour. Human 

players sometimes use this metric in preference to dollars per hour, since it is not 

dependent on the speed of play, which can vary from 20 to 60 games per hour.

Since no variance reduction methods are available for online games, we gen­

erally test new algorithms for a minimum of 20,000 games before interpreting the 

results. On this scale, the trends are usually clear and stable amid the noise. Un­

fortunately, it can take several weeks to accumulate this data, depending on the 

popularity of the online game in question.

Any embellishment resulting in an improvement of +0.05 sb/g in internal exper­

iments against previous versions is considered to be significant. However, this does
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Figure 2.8: POKl’s performance on the IRC poker server (introductory level).

not always translate into comparable gains in actual games, as many factors affect 

the ultimate win rate. Nevertheless, the program has made steady progress over the 

course of the project. In recent play on the IRC poker server, P o k i  has consistently 

performed between +0.10 and +0.20 sb/g in the lowest level games, and between 

+0.07 and +0.10 sb/g in the higher tiered games against stronger opposition.

The results of simulation-based betting strategies have so far been inconsistent. 

Despite some programming errors that were discovered later, the earliest (1998) 

versions of simulation-based L ok i outperformed the regular formula-based ver­

sion in both internal experiments (+0.10 ±  0.04 sb/g), and in the introductory level 

games of IRC (+0.13 sb/g vs +0.08 sb/g). However, it lost slowly in the more ad­

vanced IRC games, whereas the regular version would at least break even.

The more recent versions are substantially stronger, but a similar pattern is ap­

parent. Figure 2.8 shows that both the regular betting strategy (labeled “poki”) and 

the simulation-based betting strategy (labeled “pokisim-S”) win at about +0.20 sb/g

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in the introductory level games on the IRC poker server. It is quite likely that dif­

ferences in playing strength cannot be demonstrated against this particular level of 

opposition, since both may be close to their maximum income rate for this game. 

In other words, there are diminishing returns after achieving a very high win rate, 

and further improvement becomes increasingly difficult. However, there is a clear 

difference in the more advanced games, where the regular betting strategy routinely 

wins at about +0.09 sb/g, but the simulation-based version could only break even 

(peaking at +0.01 sb/g after 5,000 games, but returning to zero after 10,000 games.

When the simulation-based versions were introduced, some of the credit for 

their success was probably due to the solid reputation that the more conservative 

versions of P oki had previously established. Many opponents required several 

hundred games to adjust to the more aggressive style resulting from the simulations. 

However, the stronger opposition was able to adapt much more quickly, and learned 

to exploit certain weaknesses that had not been detrimental against weaker players.

Figure 2.9 shows some recent results using the online web applet. This game 

consists of several computer players (some of which are intentionally weaker than 

the most recent versions of Poki), and at least one human opponent at all times. 

Since the artificial players are quite conservative, this game is quite a bit tighter 

than most IRC games, and the win rate for the regular formula-based betting strat­

egy is +0.13 sb/g. The simulation-based betting strategy performs at +0.08 sb/g, 

indicating that this particular set of opponents are much less vulnerable to its strat­

egy differences than the players in the introductory IRC games.

A new simulation-based player (labeled “pokisim-A”) maintains three different 

methods for opponent modeling (statistical frequencies, the rule-based method used 

by Poki, and a real-time neural network predictor), and uses whichever one has 

been most successful for each opponent in the past. Not surprisingly, it outperforms 

the single approach, earning +0.12 sb/g, for a 50% overall improvement in this 

particular game. This is roughly the same degree of success as the formula-based 

strategy (“poki”), despite the fact that the original system has benefited from much 

more tuning, and that the underlying evaluation function was not designed for this 

fundamentally different approach.
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Figure 2.9: POKl’s performance on the web applet.

We note that the variance is quite a bit higher in this experiment, which is the 

more common situation.23 The results could be quite misleading if interpreted after 

only 5,000, or even after 15,000 games. The two bottom lines cross over at 15,000 

games, but “pokisim-S” is lower before and after that point.

There have been hundreds of internal experiments over the last few years, testing 

individual enhancements, and the effects of different game conditions. We refer the 

reader to our previous publications for further details [7, 6, 26, 8, 5, 27, 29, 9, 12].

2.8 A Framework for Stochastic Game-Playing Pro­
grams

Using simulations for stochastic games is not new. Consider the following three 

games:

1. In Scrabble, the opponent’s tiles are unknown, so the outcome of future turns

must be determined probabilistically. A simulation consists of repeatedly

23 The relatively low variance in the previous figure may again be a result of both programs being 
close to maximal gains against that particular level of opposition.
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generating a plausible set of tiles for the opponent. Each trial might involve a 

two ply or four ply search of the game tree, to determine which initial move 

leads to the maximum gain in points for the program. A simulation-based ap­

proach has been used for a long time in Scrabble programs. Brian Sheppard, 

the author of the Scrabble program M a v e n , coined the term “simulator” for 

this type of game-playing program structure [33, 32],

2. In backgammon, simulation is used for “roll-outs” of the remainder of a 

game, and are now generally regarded to be the best available estimates for 

the equity of a given position. A simulation consists of generating a series 

of dice rolls, and playing through to the end of the game with a strong pro­

gram choosing moves for both sides. Gerry Tesauro has shown that relatively 

simple roll-outs can achieve a level of play comparable to the original neural 

network evaluation function of TD _Ga m m o n  [39,40],

3. In bridge, the cards of other players are hidden information. A simulation 

consists of assigning cards to the opponents in a manner that is consistent with 

the bidding. The game is then played out and the result determined. Repeated 

deals are played out to decide which play produces the highest probability of 

success. Matt Ginsberg has used this technique in GIB to achieve a world- 

class level for play of the hand [17].

In the above examples, the programs are not using traditional Monte Carlo sim­

ulation to generate the unknown information. They use selective sampling, biased 

to take advantage of all the available information. In each case, and in poker, we are 

using information about the game state to skew the underlying probability distribu­

tion, rather than assuming a uniform or other fixed probability distribution. Monte 

Carlo techniques might eventually converge on the right answer, but selective sam­

pling allows reduced variance and faster convergence.

In the Scrabble example, M a v en  does not assign tiles for the opponent by 

choosing from the remaining unknown tiles uniformly at random. It biases its 

choice to give the opponent a “nice” hand, because strong players usually make 

plays that leave them with good tiles for future turns (such as letters that may score
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the 50 point bonus for using all tiles). It also samples without replacement, to en­

sure that every remaining tile is selected equally often, thereby reducing the natural 

variance [33]. In backgammon, future dice rolls are generated randomly, but the 

choice of moves is made by an external player agent. In bridge, the assignment of 

cards to an opponent is subject to the information obtained from the bidding. If 

one opponent has indicated high point strength, then the assignment of cards to that 

opponent reflects this information [17].

The alpha-beta framework has proven to be an effective tool for the design of 

two-player, zero-sum, deterministic games with perfect information. It has been 

around for more than 30 years, and in that time the basic structure has not changed 

much (although there have been numerous algorithmic enhancements to improve 

the search efficiency). The search technique usually has the following properties:

1. The search is full breadth, but limited depth. That is, all move alternatives are 

considered, except those that can be logically eliminated (such as alpha-beta 

cutoffs).

2. Heuristic evaluation occurs at the leaf nodes of the search tree, which are 

interior nodes of the game tree.

3. The search gets progressively deeper (iterative deepening), until real-time 

constraints dictate that a choice be made.

The alpha-beta algorithm typically uses integer values for positions and is de­

signed to identify a single “best” move, not differentiating between other moves. 

The selection of the best move may be brittle, in that a single node mis-evaluation 

can propagate to the root of the search and alter the move choice. As the search 

progresses, the bounds on the value of each move are narrowed, and the certainty of 

the best move choice increases. The deeper the search, the greater the confidence in 

the selected move, and after a certain point there are diminishing returns for further 

search.

In an imperfect information game of respectable size, it is impossible to examine 

the entire game tree of possibilities [21], This is especially true for poker because of
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SimulationFramework()
{

obviousjnove = NO 
trials = 0
while ( ( trials <= MAX_TRIALS ) and ( obvious_move == NO ) )
{

trials = trials + 1
position = current_state_of_the_game +

( selective.sampling to generate_missing_information ) 
for ( each legal move m )
{

value[m] += PlayOut( position.m, info )
}
if ( exists i such that value [i] >> value [j] ( f o r a l l  j / i  ) )
{

obviousjnove = YES
}

}
■ select move based on value []

}

Figure 2.10: Framework for two-player, zero-sum, imperfect information games.

the many opponents, each making independent decisions. The pseudo-code for the 

proposed method of selective sampling is shown in Figure 2.10 [5]. This approach 

has the following properties:

1. The search is full depth, but limited breadth. That is, each line is played out 

to the end of the game (in poker, to the showdown or until one player wins 

uncontested).

2. Heuristic evaluation occurs at the interior nodes of the search tree to decide 

on future moves by the players. Outcomes are determined at the leaf nodes 

of the game tree, and are 100% accurate.

3. The search gets progressively wider, performing trials consistent with the 

probability distribution of hidden information, until real-time constraints dic­

tate that a choice be made.
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Figure 2.11: Comparing two search frameworks.

The expected values of all move alternatives are computed, and the resulting 

choice may be a randomized mixed strategy. As the search progresses, the values 

for each move become more precise, and the certainty of the highest expected value 

choice increases.24 The more trials performed, the greater the confidence in the 

selected move, and after a certain point there are diminishing returns for performing 

additional trials.

Although the move sequences examined during an alpha-beta search are sys­

tematic and non-random, it can be viewed as a sampling of related positions, used 

as evidence to support the choice of best move. In the case of selective sampling, 

the evidence is statistical, and the confidence can be measured precisely. The two 

contrasting methods are depicted in Figure 2.11, with alpha-beta search on the left 

and simulation-based search on the right.

As noted previously, it is not essential to continue each trial to the end of the 

game. In stochastic games, the expected value of internal game tree nodes can also 

be heuristically estimated with a score (as in Scrabble), an evaluation function (as 

in backgammon), or other methods (such as the roll-out simulations described in 

Section 2.5.1).

An important feature of the simulation-based framework is the notion of an 

obvious move. Although some alpha-beta programs try to incorporate an obvious

24 The “best” move is highly subjective. Here we do not consider deceptive plays that misrepre­
sent the strength of the hand.
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move feature, the technique is usually ad hoc and based on programmer experience, 

rather than a sound analytic technique (an exception is the B* proof procedure [1]). 

In the simulation-based framework, an obvious move is well-defined. If one choice 

exceeds the alternatives by a statistically significant margin, we can stop the simula­

tion early and take that action, with precise knowledge of the mathematical validity 

of the decision. Like alpha-beta pruning, this early cut-off may prove to be an ef­

fective means for reducing the required amount of search effort, especially if it is 

applied at all levels of the imperfect information game tree.

The proposed framework is not a complete ready-made solution for stochas­

tic games, any more than alpha-beta search is the only thing required for high- 

performance in a particular deterministic game. As discussed in Section 2.5.3, there 

are many trade-offs to be considered and explored. One must find a good balance 

between the amount of effort spent on each trial, and the total number of trials com­

pleted in the allotted time. There are many different ways to create an evaluation 

function, and as with other strong game programs, speed and consistency may be 

more important than explicit knowledge and complexity.

2.9 Conclusions and Future Work

Poker is a complex game, with many different aspects, from mathematics and hid­

den information to human psychology and motivation. To master the game, a player 

must handle all of them at least adequately, and excel in most. Strong play also re­

quires a player to be adaptive and unpredictable -  any form of fixed recipe can and 

will be exploited by a good opponent. Good players must dynamically alter their 

style, based on the current game conditions and on historical knowledge (including 

past sessions). In contrast, traditional games like chess are somewhat homogeneous 

in nature, where one can focus very deeply on one particular type of strategy.

Like other computer game-playing research, poker has a well-defined goal, and 

the relative degree of success is measurable -  whether the program plays the game 

well, or does not. We have resisted the temptation of focusing only on the clearly 

tractable problems, in favor of grounding the research on those topics that actually
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affect the bottom line the most. As a result, developing Poki has been a cyclic pro­

cess. We improve one ability of the program until it becomes apparent that another 

property is the performance bottleneck. Some of the components in the current 

system are extremely simplistic (such as a constant where a formula or an adaptive 

method would be better), but do not yet appear to limit overall performance. Others 

have received much more attention, but are still woefully inadequate.

Human poker players are very good at understanding their opponent, often 

forming an accurate model based on a single data point (and occasionally before 

the first hand is dealt!). Programs may never be able to match the best players in 

this area, but they must at least try to reduce the gap, since they can clearly be su­

perior in other aspects o f  the game. Although POKI has successfully used opponent 

modeling to improve its level o f  play, it is abundantly clear that these are only the 

first steps, and there are numerous opportunities for improvement.

For example, the current system becomes slower to adjust as more information 

is collected on a particular opponent. This “build-up of inertia” after thousands of 

data points have been observed can be detrimental if the player happens to be in an 

uncommon mood that day. Moreover, past success may have largely been due to 

opponents staying with a fixed style that does not vary over time (most computer 

opponents certainly have this property). It is much more difficult to track good 

players who constantly “change gears” for a relatively brief time. Although recent 

actions are mixed with the long-term record, a superior historical decay function 

could allow the system to keep up with current events better.

It is easy to gather lots of data on each opponent, but it is difficult to discern the 

most useful features. It is possible that simpler metrics may be better predictors of 

an opponent’s future behavior. There are also several techniques in the literature for 

learning in noisy domains where one must make inferences based on limited data, 

which have not yet been explored.

For the simulations, the major problem is the high variance in the results. Even 

with noise-reduction techniques, the standard deviation can still be high. Faster 

machines and parallel computations might help to base decisions on a larger sample 

size. This eventually has diminishing returns, and our empirical results suggest
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that the benefits may be small beyond a necessary minimum number of data points 

(roughly 500). Once the critical minimum can be attained in real-time, the more 

important issue is whether the trials are fair and representative of the situation being 

modeled.

For the game of bridge, simulations have successfully allowed computer pro­

grams to play hands at a world-class level [17]. Nevertheless, limitations in the 

simulation-based approach and the high variance have prompted Matt Ginsberg, 

the author of GIB, to look at other solutions, including building the entire search 

tree [18]. We, too, may have to look for new approaches to overcome the limitations 

of simulations.

The poker project is rich in research opportunities, and there is no shortage of 

new ideas to investigate. Having explored some fairly straightforward techniques 

to accomplish a reasonable level of play, we are now contemplating re-formulations 

that might produce a breakthrough to a world-class level of play. Toward this end, 

some of our current research has moved toward empirical techniques for deriving 

game-theoretic equilibrium solutions for betting strategies. We have also given 

more attention to two-player Hold’em, in which many of the flaws of the current 

system are emphasized.

However, it is not clear if a single unifying framework is possible for poker pro­

grams. Certain abilities, such as the accurate estimation of expected values in real 

time, will eventually be well solved. However other aspects, like opponent model­

ing, are impossible to solve perfectly, since even the opponents may not understand 

what drives their actions!
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Chapter 3

Game-Theoretic Methods 
(2002-2003)

Approximating Game-Theoretic Optimal 
Strategies for Full-scale Poker 1

3.1 Introduction

Mathematical game theory was introduced by John von Neumann in the 1940s, and 

has since become one of the foundations of modern economics [14]. Von Neumann 

used the game of poker as a basic model for 2-player zero-sum adversarial games, 

and proved the first fundamental result, the famous Minimax Theorem. A few years 

later, John Nash added results for N '-player non-cooperative games, for which he 

later won the Bank of Sweden Prize in Economic Sciences in Memory of Alfred 

Nobel [8], Many decision problems can be modeled using game theory, and it has 

been employed in a wide variety of domains in recent years.

Of particular interest is the existence of optimal solutions, or Nash equilibria.2

1 The contents of this chapter originally appeared in the proceedings of IJCAI’03. Copyright 
2003 International Joint Conferences on Artificial Intelligence, Inc. All rights reserved. D. Billings, 
N. Burch, A. Davidson, T. Schauenberg, R. Holte, J. Schaeffer, and D. Szafron. Approximating 
game-theoretic optimal strategies for full-scale poker. In The Proceedings of the Eighteenth Inter­
national Joint Conference on Artificial Intelligence, IJCAI’03, pages 661-668, 2003.

2 The term “optimal” is over-loaded in computer science, and is highly misleading (overly flatter­
ing) in this particular context. The more neutral terms “equilibrium strategy” or “Nash equilibrium” 
are now preferred. An equilibrium strategy is optimal only in the sense of not being exploitable by 
a perfect opponent; but since it fails to exploit imperfect opponents, it can perform much worse than 
a maximal strategy in practice. The term “equilibrium” is used in several places where “optimal” 
appeared in the original publication. However, the term “pseudo-optimal” has been retained.
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An equilibrium solution provides a randomized mixed strategy, which is basically 

a recipe of how to play in each possible situation. Using this strategy ensures that 

an agent will obtain at least the game-theoretic value of the game, regardless of the 

opponent’s strategy. Unfortunately, finding exact equilibrium solutions is limited to 

relatively small problem sizes, and is not practical for most real domains.

This paper explores the use of highly abstracted mathematical models which 

capture the most essential properties of the real domain, such that an exact solution 

to the smaller problem provides a useful approximation of an equilibrium strategy 

for the real domain. The application domain used is Limit Texas Hold’em.

Due to the computational limitations involved, only simplified poker variations 

have been solved in the past (e.g., [7, 9]). While these are of theoretical interest, the 

same methods are not feasible for real games, which are too large by many orders 

of magnitude [6].

Selby [10] computed an equilibrium solution for the abbreviated game of Pre­

flop Hold’em. Shi and Littman [11] investigated abstraction techniques to reduce 

the large search space and complexity of the problem, using a simplified variant of 

poker. Takusagawa [13] created approximate equilibrium strategies for the play of 

three specific Hold’em flops and betting sequences.

Using new abstraction techniques, we have produced viable “pseudo-optimal” 

strategies for the game of 2-player Texas Hold’em. The resulting poker-playing pro­

grams have demonstrated a tremendous improvement in performance. Whereas the 

previous best poker programs were easily beaten by any competent human player, 

the new programs are capable of defeating very strong players, and can hold their 

own against world-class opposition.

Although some domain-specific knowledge is an asset when creating accurate 

reduced-scale models, analogous methods can be developed for many other im­

perfect information domains and generalized game trees. We describe a general 

method of problem reformulation that permits the independent solution of sub-trees 

by estimating the conditional probabilities needed as input for each computation.

This paper makes the following contributions:

1. Abstraction techniques that can reduce a 0(1O18) poker search space to a
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manageable ©( 107), without losing the most important properties of the game.

2. A poker-playing program that is a major improvement over previous efforts, 

and is capable of competing with world-class opposition.

3.2 Game Theory

Game theory encompasses all forms of competition between two or more agents. 

Unlike chess or checkers, poker is a game of imperfect information and chance 

outcomes. It can be represented with an imperfect information game tree having 

chance nodes and decision nodes, which are grouped into information sets.

Since the nodes in this game tree are not independent, divide-and-conquer meth­

ods for computing sub-trees (such as the alpha-beta search algorithm) are not ap­

plicable. More detailed descriptions of imperfect information game tree structure 

are available elsewhere {e.g., [4]).

A strategy is a set of rules for choosing an action at every decision node of the 

game tree. In general, this will be a randomized mixed strategy, which is a proba­

bility distribution over the various alternatives. A player must use the same policy 

across all nodes in the same information set, since from that player’s perspective 

they are indistinguishable from each other (differing only in the hidden information 

component).

The conventional method for solving such a problem is to convert the descriptive 

representation, or extensive form , into a system of linear equations, which is then 

solved by a linear programming (LP) system such as the Simplex algorithm. The 

equilibrium solutions are computed simultaneously for all players, ensuring the best 

worst-case outcome for each player.

Traditionally, the conversion to normal form  was accompanied by an exponen­

tial blow-up in the size of the problem, meaning that only very small problem in­

stances could be solved in practice. Koller [5] described an alternate LP represen­

tation, called sequence form, which exploits the property of perfect recall (wherein 

all players know the preceding history of the game), to obtain a system of equations 

and unknowns that is only linear in the size of the game tree. This exponential
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reduction in representation has re-opened the possibility of using game-theoretic 

analysis for many domains. However, since the game tree itself can be very large, 

the LP solution method is still limited to moderate problem sizes (normally less 

than a billion nodes).

3.3 Texas Hold’em

A game (or hand) of Texas Hold’em consists of four stages, each followed by a 

round of betting:

1. Pre-flop: Each player is dealt two private cards face down (the hole cards).

2. Flop: Three community cards (shared by all players) are dealt face up.

3. Turn: A single community card is dealt face up.

4. River: A  final community card is dealt face up.

After the betting, all active players reveal their hole cards for the showdown. 

The player with the best five-card poker hand formed from their two private cards 

and the five public cards wins all the money wagered (ties are possible).

The game starts off with two forced bets (the blinds) put into the pot. When 

it is a player’s turn to act, they must either bet/raise (increase their investment in 

the pot), check/call (match what the opponent has bet or raised), or fold  (quit and 

surrender all money contributed to the pot).

The best-known non-commercial Texas Hold’em program is P o k i . It has been 

playing online since 1997 and has earned an impressive winning record, albeit 

against generally weak opposition [3], The system’s abilities are based on enu­

meration and simulation techniques, expert knowledge, and opponent modeling. 

The program’s weaknesses are easily exploited by strong players, especially in the 

2-player game.
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Figure 3.1: Branching factors for Hold’em and abstractions.

3.4 Abstractions

Texas Hold’em has an easily identifiable structure, alternating between chance nodes 

and betting rounds in four distinct stages. A high-level view of the imperfect infor­

mation game tree is shown in Figure 3.1.

Hold’em can be reformulated to produce similar but much smaller games. The 

objective is to reduce the scale of the problem without severely altering the fun­

damental structure of the game, or the resulting equilibrium strategies. There are 

many ways of doing this, varying in the overall reduction and in the accuracy of the 

resulting approximation.

Some of the most accurate abstractions include suit equivalence isomorphisms 

(offering a reduction of at most a factor of 4! =  24), rank equivalence (only under 

certain conditions), and rank near-equivalence. The equilibrium solutions to these 

abstracted problems will either be exactly the same or will have a small bounded 

error, which we refer to as near-optimal solutions. Unfortunately, the abstractions 

that produce an exact or near-exact reformulation do not produce the very large
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reductions required to make full-scale poker tractable.

A common method for controlling the game size is deck reduction. Using less 

than the standard 52-card deck greatly reduces the branching factor at chance nodes. 

Other methods include reducing the number of cards in a player’s hand (e.g., from 

a 2-card hand to a 1-card hand), and reducing the number of board cards (e.g., a

1-card flop), as was done by Shi and Littman [11] for the game of Rhode Island 

Hold’em? Koller and Pfeifer [6] used such parameters to generate a wide variety 

of tractable games to solve with their Gala system.

We have used a number of small and intermediate sized games, ranging from 

eight cards (two suits, four ranks) to 24 cards (three suits, eight ranks) for the pur­

pose of studying abstraction methods, comparing the results with known exact or 

near-optimal solutions. However, these smaller games are not suitable for use as 

an approximation for Texas Hold’em, as the underlying structures of the games 

are different. To produce good playing strategies for full-scale poker, we look for 

abstractions of the real game which do not alter that basic structure.

The abstraction techniques used in practice are powerful in terms of reducing 

the problem size, and subsume those previously mentioned. However, since they 

are also much cruder, we call their solutions pseudo-optimal, to emphasize that 

there is no guarantee that the resulting approximations will be accurate, or even 

reasonable. Some will be low-risk propositions, while others will require empirical 

testing to determine if they have merit.

3.4.1 Betting Round Reduction

The standard rules of Limit Hold’em allow for a maximum of four bets per player 

per round.4 Thus, in 2-player Limit poker there are 19 possible betting sequences, of 

which two do not occur in practice.5 Of the remaining 17 sequences, 8 end in a fold 

(leading to a terminal node in the game tree), and 9 end in a call (carrying forward

3 Recently, Gilpin and Sandholm introduced an automated abstraction technique called 
gameshrink, which was used to solve the game of Rhode Island Hold’em (see Chapter 6).

4 Some rules allow unlimited raises when only two players are involved. However, occasions 
with more than three legitimate raises are rare, and do not greatly alter an equilibrium strategy.

5 Technically, a player may fold even though there is no outstanding bet. This is logically 
dominated, and therefore does not occur in an equilibrium strategy, and is seldom seen in practice.
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to the next chance node). Using k = check, b = bet, f  = fold, c = call, r = raise, and 

capital letters for the second player, the tree of possible betting sequences for each 

round is:

kK kBf kBc kBrF kBrC kBrRf kBrRc kBrRrF kBrRrC 
bF bC bRf bRc bRrF bRrC bRrRf bRrRc

We call this local collection of decision nodes a betting tree, and represent it 

diagramatically with a triangle (see Chapter 1 Figure 1.2).

With betting round reduction, each player is allowed a maximum of three bets 

per round, thereby eliminating the last two sequences in each line. The effective 

branching factor of the betting tree is reduced from nine to seven. This does not 

appear to have a substantial effect on play, or on the expected value (EV) for each 

player. This observation has been verified experimentally. In contrast, we computed 

the corresponding post-flop models with a maximum of two bets per player per 

round, and found radical changes to the equilibrium strategies, strongly suggesting 

that that level of abstraction is not safe.

3.4.2 Elimination of Betting Rounds

Large reductions in the size of a poker game tree can be obtained by elimination 

o f betting rounds. There are several ways to do this, and they generally have a 

significant impact on the nature of the game. First, the game may be truncated, 

by eliminating the last round or rounds. In Hold’em, ignoring the last board card 

and the final betting round produces a 3-round model of the actual 4-round game. 

The solution to the 3-round model loses some of the subtlety involved in the true 

equilibrium strategy, but the degradation applies primarily to advanced tactics on 

the turn. There is a smaller effect on the flop strategy, and the strategy for the 

first betting round may have no significant changes, since it incorporates all the 

outcomes of two future betting rounds. We use this particular abstraction to define 

an appropriate strategy for play in the first round, and thus call it a pre-flop model 

(see Figure 3.2).

The effect of truncation can be lessened through the use of expected value leaf 

nodes. Instead of ending the game abruptly and awarding the pot to the strongest
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hand at that moment, we compute an average conclusion over all possible chance 

outcomes. For a 3-round model ending on the turn, we roll-out all 44 possible river 

cards, assuming no further betting (or alternately, assuming one bet per player for 

the last round). Each player is awarded a fraction of the pot, corresponding to the 

probability of winning the game. In a 2-round pre-flop model, we roll-out all 990

2-card combinations of the turn and river.

The most extreme form of truncation results in a 1-round model, with no fore­

sight of future betting rounds. Since each future round provides a refinement to the 

approximation, this will not reflect a correct strategy for the real game. In particu­

lar, betting plans that extend over more than one round, such as deferring the raise 

of a very strong hand, are lost entirely. Nevertheless, even these simplistic models 

can be useful when combined with expected value leaf nodes.

Alex Selby computed an equilibrium solution for the game of Pre-flop Hold’em, 

which consists of only the first betting round followed by an EV roll-out of the 

five board cards to determine the winner [10]. Although there are some serious 

limitations in the strategy based on this 1-round model, we have incorporated the 

Selby pre-flop system into one of our programs, P s O pti 1, as described later in this 

section.

In contrast to truncating rounds, we can bypass certain early stages of the game. 

We frequently use post-flop models, which ignore the pre-flop betting round, and 

use a single fixed flop of three cards (see Figure 3.2).

It is natural to consider the idea of independent betting rounds, where each 

phase of the game is treated in isolation. Unfortunately, the betting history from 

previous rounds will almost always contain contextual information that is critical 

to making appropriate decisions. The probability distribution over the hands for 

each player is strongly dependent on the path that led to that decision point, so it 

cannot be ignored without risking a considerable loss of information. However, the 

naive independence assumption can be viable in certain circumstances, and we do 

implicitly use it in the design of P s O pti 1 to bridge the gap between the 1-round 

pre-flop model and the 3-round post-flop model.

Another possible abstraction we explored was merging two or more rounds into
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a single round, such as creating a combined 2-card turn/river. However, it is not 

clear what the appropriate bet size should be for this composite round. In any case, 

the solutions for these models (over a full range of possible bet sizes), all turned out 

to be substantially different from their 3-round counterparts, and the method was 

therefore rejected.

3.4.3 Composition of Pre-flop and Post-flop models

Although the nodes of an imperfect information game tree are not independent in 

general, some decomposition is possible. For example, the sub-trees resulting from 

different pre-flop betting sequences can no longer have nodes that belong to the 

same information set.6 The sub-trees for our post-flop models can be computed in 

isolation, provided that the appropriate preconditions are given as input. Unfortu­

nately, knowing the correct conditional probabilities would normally entail solving 

the whole game, so there would be no advantage to the decomposition.

For simple post-flop models, we dispense with the prior probabilities. For the 

post-flop models used in P s O p t iO and P s O pti 1, we simply ignore the implications 

of the pre-flop betting actions, and assume a uniform distribution over all possible 

hands for each player. Different post-flop solutions were computed for initial pot 

sizes of two, four, six, and eight bets (corresponding to pre-flop sequences with 

zero, one, two, or three raises, but ignoring which player initially made each raise). 

In P s O pti 1, the four post-flop solutions are simply appended to the Selby pre­

flop strategy (Figure 3.2). Although these simplifying assumptions are technically 

wrong, the resulting play is still surprisingly effective.

A better way to compose post-flop models is to estimate a set of conditional 

probabilities, using the solution to a pre-flop model. With a tractable pre-flop 

model, we have a means of estimating an appropriate strategy at the root, and 

thereby determine the consequent probability distributions.

In Ps O p t i2, a 3-round pre-flop model was designed and solved. The resulting

6 To see this, each decision node of the game tree can be labeled with all the cards known to that 
player, and the full path that led to that node. Nodes with identical labels differ only in the hidden 
information, and are therefore in the same information set. Since the betting history is different for 
these sub-trees, none of the nodes are inter-dependent.
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Figure 3.2: Composition o f  Ps O pti 1 and PSOPTI2.

pseudo-optimal strategy for the pre-flop (which was significantly different from the 

Selby strategy) was used to determine the corresponding distribution of hands for 

each player in each context. This provided the necessary input parameters for each 

of the seven pre-flop betting sequences that carry over to the flop stage. Since 

each of these post-flop models has been given (an approximation of) the perfect 

recall knowledge of the full game, they are fully compatible with each other, and 

are properly integrated under the umbrella of the pre-flop model (Figure 3.2). In 

theory, this should be equivalent to computing the much larger tree, but it is limited 

by the accuracy and appropriateness of the proposed pre-flop betting model.7

7 Actually, this is only true if there is a unique equilibrium strategy, whereas most interesting 
games have an infinite number of equilibria. This caveat has serious implications on the theoretical 
and practical value of this approach. Please see Chapter Endnote 3.7.1 for more information on this 
important limitation.
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3.4.4 Abstraction by Bucketing

The most important method of abstraction for the computation of our pseudo- 

optimal strategies is called bucketing. This is an extension of the natural and in­

tuitive concept that has been applied many times in previous research (e.g., [12, 13, 

11]). The set of all possible hands is partitioned into equivalence classes (also called 

buckets or bins). A  many-to-one mapping function determines which hands will be 

grouped together. Ideally, the hands should be grouped according to strategic sim­

ilarity, meaning that they can all be played in a similar manner without much loss 

inEV.

If every hand was played with a particular pure strategy (i.e., only one of the 

available choices), then a perfect mapping function would group all hands that 

follow the same plan, and 17 equivalence classes for each player would be suffi­

cient for each betting round. However, since a mixed strategy may be indicated for 

equilibrium play in some cases, we would like to group hands that have a similar 

probability distribution over action plans.

One obvious but rather crude bucketing function is to group all hands according 

to strength (i.e., its rank with respect to all possible hands, or the probability of 

currently being in the lead). This can be improved by considering the roll-out of all 

future cards, giving an (unweighted) estimate of the chance of winning the game.

However, this is only a one-dimensional view of hand types, in what can be con­

sidered to be an iV-dimensional space of strategies, with a vast number of different 

ways to classify them. A superior practical method would be to project the set of 

all hands onto a two-dimensional space consisting of (roll-out) hand strength and 

hand potential (similar to the hand assessment used in P oki [3]). Clusters in the 

resulting scattergram suggest reasonable groups of hands to be treated similarly.

We eventually settled on a simple compromise. With n  available buckets, we 

allocate n  — 1 to roll-out hand strength. The number of hand types in each class is 

not uniform; the classes for the strongest hands are smaller than those for mediocre 

and weak hands, allowing for better discrimination of the smaller fractions of hands 

that should be raised or re-raised.

One special bucket is designated for hands that are low in strength but have high
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potential, such as good draws to a flush or straight. This plays an important role in 

identifying good hands to use for bluffing (known as semi-bluffs [12]). Comparing 

post-flop solutions that use six strength buckets to solutions with live strength plus 

one high-potential bucket, we see that most bluffs in the latter are taken from the 

special bucket, which is sometimes played in the same way as the strongest bucket. 

This confirmed our expectations that the high-potential bucket would improve the 

selection of hands for various betting tactics, and increase the overall EV.

The number of buckets that can be used in conjunction with a 3-round model 

is very small, typically six or seven for each player {i.e., 36 or 49 pairs of bucket 

assignments). Obviously this results in a very coarse-grained abstract game, but 

it may not be substantially different from the number of distinctions an average 

human player might make. Regardless, it is the best we can currently do given the 

computational constraints of this approach.

The final requirement to sever the abstract game from the underlying real game 

tree are the transition probabilities. The chance node between the flop and turn 

represents a particular card being dealt from the remaining stock of 45 cards. In 

the abstract game, there are no cards, only buckets. The effect of the turn card in 

the abstract game is to dictate the probability of moving from one pair of buck­

ets on the flop to any pair of buckets on the turn. Thus, the collection of chance 

nodes in the game tree is represented by an (n x n) to (n x n) transition network 

as shown in Figure 3.3. For post-flop models, this can be estimated by walking the 

entire tree, enumerating all transitions for a small number of characteristic flops. 

For pre-flop models, the full enumeration is more expensive (encompassing all 

{48 choose 3} =  17296 possible flops), so it is estimated either by sampling, or 

by (parallel) enumeration of a truncated tree.

For a 3-round post-flop model, we can comfortably solve abstract games with 

up to seven buckets for each player in each round. Changing the distribution of 

buckets, such as six for the flop, seven for the turn, and eight for the river, does not 

appear to significantly affect the quality of the solutions, better or worse.

The final linear programming solution produces a large table of mixed strategies 

(probabilities for fold, call, or raise) for every reachable scenario in the abstract
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game. To use this, the poker-playing program looks for the corresponding situation 

based on the same hand strength and potential measures, and randomly selects an 

action from the mixed strategy.

The large LP computations typically take less than a day (using CPLEX with 

the barrier method), and use up to two Gigabytes of RAM. Larger problems will 

exceed available memory, which is common for large LP systems. Certain LP tech­

niques such as constraint generation could potentially extend the range of solvable 

instances considerably, but this would probably only allow the use of one or two 

additional buckets per player.

3.5 Experiments

3.5.1 Testing Against Computer Players

A series of matches between computer programs was conducted, with the results 

shown in Table 3.1. Win rates are measured in small bets per game (sb/g). Each 

match was run for at least 20,000 games (and over 100,000 games in some cases). 

The variance per game depends greatly on the styles of the two players involved, but 

is typically +/- 6 sb. The standard deviation for each match outcome is not shown, 

but is normally less than +/- 0.03 sb/g.

The “bot players” were:

P s O p t i2, composed o f  a hand-crafted pre-flop model, which was solved by 

linear programming to provide conditional probability distributions to each o f seven
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Program 1 2 3 4 5 6 7 8
1 PsOpti 1 +0.090 +0.091 +0.251 +0.156 +0.047 +0.546 +0.635
2 PsOpti2 -0.090 +0.069 +0.118 +0.054 +0.045 +0.505 +0.319
3 PsOptiO -0.091 -0.069 +0.163 +0.135 +0.001 +0.418 +0.118
4 Aadapti -0.251 -0.118 -0.163 +0.178 +0.550 +0.905 +2.615
5 Anti-Poki -0.156 -0.054 -0.135 -0.178 +0.385 +0.143 +0.541
6 Poki -0.047 -0.045 -0.001 -0.550 -0.385 +0.537 +2.285
7 Always Call -0.546 -0.505 -0.418 -0.905 -0.143 -0.537 =0.000
8 Always Raise -0.635 -0.319 -0.118 -2.615 -0.541 -2.285 =0.000

Table 3.1: Computer vs computer matches (small bets per game).

3-round post-flop models (Figure 3.2). All models in this prototype used six buckets 

per player per round.

P s O p t i I , composed of four 3-round post-flop models under the naive uniform 

distribution assumption, with seven buckets per player per round. Selby’s equilib­

rium solution for Pre-flop Hold’em is used to play the pre-flop [10].

P sO p t iO, composed of a single 3-round post-flop model, wrongly assuming 

uniform distributions and an initial pot size of two bets, with seven buckets per 

player per round. This program used an always-call policy for the pre-flop betting 

round.

POKI, the University of Alberta poker program. This older version of P oki 

was not designed to play the 2-player game, and can be defeated rather easily, but 

is a useful benchmark.

A n t i -P o k i , a rule-based program designed to beat P oki by exploiting its 

weaknesses and vulnerabilities in the 2-player game. Any specific counter-strategy 

can be even more vulnerable to exploitation by adaptive players.

A a d a p t i , a relatively simple adaptive player, capable o f  slow ly learning and 

exploiting persistent patterns in play.

A l w a y s_Ca l l , a very weak benchmark strategy.

ALWAYS_RAISE, a very weak benchmark strategy.

It is important to understand that a game-theoretic equilibrium player is, in prin­

ciple, not designed to win. Its purpose is to not lose. An implicit assumption is that 

the opponent is also playing an equilibrium, and nothing can be gained by observing
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the opponent for patterns or weaknesses.

In a simple game like RoShamBo (also known as Rock-Paper-Scissors), playing 

the equilibrium strategy ensures a break-even result, regardless of what the oppo­

nent does, and is therefore insufficient to defeat weak opponents, or to win a tour­

nament ([2, 1]). Poker is more complex, and in theory an equilibrium player can 

win, but only if the opponent makes dominated errors. Any time a player makes 

any choice that is part of a randomized mixed strategy of any game-theoretic equi­

librium policy, that decision is not dominated. In other words, it is possible to play 

in a highly sub-optimal manner, but still break even against an equilibrium player, 

because those choices are not strictly dominated.

Since the pseudo-optimal strategies do no opponent modeling, there is no guar­

antee that they will be especially effective against very bad or highly predictable 

players. They must rely only on these fundamental strategic errors, and the margin 

of victory might be relatively modest as a result.

The critical question is whether such errors are common in practice. There is no 

definitive answer to this question yet, but preliminary evidence suggests that dom­

inated errors occur often enough to gain a measurable EV advantage over weaker 

players, but may not be very common in the play of very good players.

The first tests of the pseudo-optimal solutions were done with P sO pt iO playing 

Post-flop Hold’em, where both players agree to simply call in the pre-flop (thereby 

matching the exact pre-conditions for the post-flop solution). In those preliminary 

tests, the author played more than 2000 games, and was unable to defeat the pseudo- 

optimal strategy. In contrast, P oki had been beaten consistently at a rate of over 

0.8 sb/g (which is more than would be lost by simply folding every hand).

Using the same no-bet pre-flop policy, P sOpt iO was able to defeat P oki at a 

rate of +0.144 sb/g (compared to +0.001 sb/g for the full game including pre-flop), 

and defeated A adapti at +0.410 sb/g (compared to +0.163 sb/g for the full game).

All of the pseudo-optimal players play substantially better than any previously 

existing computer programs. Even PsOp t iO, which is not designed to play the full 

game, earns enough from the post-flop betting rounds to offset the EV losses from 

the pre-flop round (where it never raises good hands, nor folds bad ones).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Player Games Posn 1 Posn 2 sb/g
Master-1 early 1147 -0.324 +0.360 +0.017
Master-1 late 2880 -0.054 +0.396 +0.170

Experienced-1 803 +0.175 +0.002 +0.088
Experienced-2 1001 -0.166 -0.168 -0.167
Experienced-3 1378 +0.119 -0.016 +0.052
Experienced-4 1086 +0.042 -0.039 +0.002
Intermediate-1 2448 +0.031 +0.203 +0.117

Novice-1 1277 -0.159 -0.154 -0.156
All Opponents 15125 -0.015

Table 3.2: Human vs PSOPTI2 matches.

It is suspicious that P sO pti 1 outperformed P sOpt i2, which in principle should 

be a better approximation. Subsequent analysis of the play of PsOp t i2 revealed 

some programming errors, and also suggested that the bucket assignments for the 

pre-flop model were flawed. This may have resulted in an inaccurate pseudo- 

optimal pre-flop strategy, and consequent imbalances in the prior distributions used 

as input for the post-flop models. We expect that this will be rectified in future 

versions, and that the Ps Opt i2 design will surpass P sOpti 1 in performance.8

3.5.2 Testing Against Human Players

While these results are encouraging, none of the non-pseudo-optimal computer op­

ponents are better than intermediate strength at 2-player Texas Hold’em. Therefore, 

matches were conducted against human opponents.

More than 100 participants volunteered to play against the pseudo-optimal play­

ers on our public web applet (w w w . c s  . u a l b e r t a  . c a / ~  g a m e s / p o k e r / ) ,  in­

cluding many experienced players, a few masters, and one world-class player. The 

programs provided some fun opposition, and ended up with a winning record over­

all. The results are summarized in Table 3.2 and Table 3.3.9 (Master-1 is author

8 Although the overlayed architecture did overtake Ps Opti 1 in later incarnations, the side- 
effects o f having a specific pre-flop model are a serious impediment to top-level play, as discussed 
in Chapter Endnote 3.7.1.

9 Note that the overall averages in these two tables should not be compared directly to each other, 
as they are based on a different mixture of opponents and different circumstances. For example, 
some players may have played against Ps Opti2 only after gaining experience against Ps Opti 1, 
thus playing better.
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Player Games Posn 1 Posn 2 sb/g
thecount 7030 -0.006 +0.103 +0.048
Master-1 2872 +0.141 +0.314 +0.228
Master-2 569 -0.007 +0.035 +0.014
Master-3 425 +0.047 +0.373 +0.209

Experienced-1 4078 -0.058 +0.164 +0.053
Experienced-2 511 +0.152 +0.369 +0.260
Experienced-3 2303 -0.252 +0.128 -0.062
Experienced-5 610 -0.250 -0.229 -0.239
Intermediate-1 16288 -0.145 +0.048 -0.049
Intermediate-2 478 -0.182 +0.402 +0.110

Novice-1 5045 -0.222 -0.010 -0.116
Novice-2 485 -0.255 -0.139 -0.197
Novice-3 1017 -0.369 -0.051 -0.210
Novice-4 583 -0.053 -0.384 -0.219
Novice-5 425 -0.571 -0.296 -0.433

All Opponents 46479 -0.057

Table 3.3: Human vs P sO pti 1 matches.

Darse Billings, Experienced-1 is Aaron Davidson).

In most cases, the relatively short length of the match leaves a high degree of 

uncertainty in the outcome, limiting how much can be safely concluded. Never­

theless, some players did appear to have a definite edge, while others were clearly 

losing.

A number of interesting observations were made over the course of these games. 

It was obvious that most people had a lot of difficulty learning and adjusting to the 

computer’s style of play. In poker, knowing the basic approach of the opponent 

is essential, since it will dictate how to properly handle many situations that arise. 

Some players wrongly attributed intelligence where none was present. After losing 

a 1000-game match, one experienced player commented “the bot has me figured 

out now”, indicating that its opponent model was accurate, when in fact the pseudo- 

optimal player is oblivious and does no modeling at all.

It was also evident that these programs do considerably better in practice than 

might be expected, due to the emotional frailty of their human opponents. Many 

players commented that playing against the pseudo-optimal opponent was an ex­

asperating experience. The bot routinely makes unconventional plays that confuse
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and confound humans. Invariably, some of these “bizarre” plays happen to coincide 

with a lucky escape, and several of these bad beats in quick succession will often 

cause strong emotional reactions (sometimes referred to as “going on tilt”). The 

level of play generally goes down sharply in these circumstances.

This suggests that a perfect game-theoretic equilibrium poker player could per­

haps beat even the best humans in the long run, because any EV lost in moments of 

weakness would never be regained. However, the win rate for such a program could 

still be quite small, giving it only a slight advantage. Thus, it would be unable to ex­

ert its superiority convincingly over the short term, such as the few hundred games 

of one session, or over the course of a world championship tournament. Since even 

the best human players are known to have biases and weaknesses, opponent mod­

eling will almost certainly be necessary to produce a program that surpasses all 

human players.

3.5.3 Testing Against a World-class Player

The elite poker expert was Gautam Rao, who is known as “thecount” or “Count- 

Dracula” in the world of popular online poker rooms. Mr. Rao is the #1 all-time 

winner in the history of the oldest online game, by an enormous margin over all 

other players, both in total earnings and in dollar-per-game rate. His particular spe­

cialty is in short-handed games with five or fewer players. He is recognized as one 

of the best players in the world in these games, and is also exceptional at 2-player 

Hold’em. Like many top-flight players, he has a dynamic ultra-aggressive style.

Mr. Rao agreed to play an exhibition match against Ps O pti 1, playing more 

than 7000 games over the course of several days. The graph in Figure 3.4 shows 

the progression of the match.

The pseudo-optimal player started with some good fortune, but lost at a rate 

of about —0.2 sb/g over the next 2000 games. Then, there was a sudden reversal, 

following a series of fortuitous outcomes for the program. Although “thecount” 

is renown for his mental toughness, an uncommon run of bad luck can be very 

frustrating even for the most experienced players. Mr. Rao believes he played below 

his best level during that stage, which contributed to a dramatic drop where he lost
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Figure 3.4: Progress of the “thecount” vs PsOPTI 1.

300 sb in less than 400 games. Mr. Rao resumed play the following day, but was 

unable to recover the losses, slipping further to —200 sb after 3700 games. At this 

point, he stopped play and did a careful reassessment.

It was clear that his normal style for maximizing income against typical human 

opponents was not effective against the pseudo-optimal player. Whereas human 

players would normally succumb to a lot of pressure from aggressive betting, the 

bot was willing to call all the way to the showdown with as little as a Jack or 

Queen high card. That kind of play would be folly against most opponents, but is 

appropriate against an extremely aggressive opponent. Most human players fail to 

make the necessary adjustment under these atypical conditions, but the program has 

no sense of fear.

Mr. Rao changed his approach to be less aggressive, with immediate rewards, as 

shown by the +600 sb increase over the next 1100 games (some of which he credited 

to a good run of cards). Mr. Rao was able to utilize his knowledge that the computer 

player did not do any opponent modeling. Knowing this allows a human player to 

systematically probe for weaknesses, without any fear of being punished for playing
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in a methodical and highly predictable manner, since an oblivious opponent does 

not exploit those patterns and biases.

Although he enjoyed much more success in the match from that point forward, 

there were still some “adventures”, such as the sharp decline at 5400 games. Poker 

is a game of very high variance, especially between two opponents with sharp 

styles, as can be seen by the dramatic swings over the course of this match. Al­

though 7000 games may seem like a lot, Mr. Rao’s victory in this match was still 

not statistically conclusive.

We now believe that a human poker master can eventually gain a sizable ad­

vantage over these pseudo-optimal prototypes (perhaps +0.20 sb/g or more is sus­

tainable). However, it requires a good understanding of the design of the program 

and its resulting weaknesses. That knowledge is difficult to learn during normal 

play, due to the good information hiding provided by an appropriate mixture of 

plans and tactics. This “cloud of confusion” is a natural barrier to opponent learn­

ing. It would be even more difficult to learn against an adaptive program with good 

opponent modeling, since any methodical testing by the human would be easily 

exploited. This is in stark contrast to typical human opponents, who can often be 

accurately modeled after only a small number of games.

3.6 Conclusions and Future Work

The pseudo-optimal players presented in this paper are the first complete approx­

imations of a game-theoretic equilibrium strategy for a full-scale variation of real 

poker.

Several abstraction techniques were explored, resulting in the reasonably accu­

rate representation of a large imperfect information game tree having 0(1O18) nodes 

with a small collection of models of size G(107). Despite these massive reductions 

and simplifications, the resulting programs play respectably. For the first time ever, 

computer programs are not completely outclassed by strong human opposition in 

the game of 2-player Texas Hold’em.

Useful abstractions included betting tree reductions, truncation of betting rounds
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combined with EV leaf nodes, and bypassing betting rounds. A 3-round model an­

chored at the root provided a pseudo-optimal strategy for the pre-flop round, which 

in turn provided the proper contextual information needed to determine conditional 

probabilities for post-flop models. The most powerful abstractions for reducing the 

problem size were based on bucketing, a method for partitioning all possible hold­

ings according to strategic similarity. Although these methods exploit the particular 

structure of the Texas Hold’em game tree, the principles are general enough to be 

applied to a wide variety of imperfect information domains.

Many refinements and improvements will be made to the basic techniques in 

the coming months. Further testing will also continue, since accurate assessment in 

a high variance domain is always difficult.

The next stage of the research will be to apply these techniques to obtain ap­

proximations of Nash equilibria for iV-player Texas Hold’em. This promises to be 

a challenging extension, since multi-player games have many properties that do not 

exist in the 2-player game.

Finally, having reasonable approximations of equilibrium strategies does not 

lessen the importance of good opponent modeling. Teaming against an adaptive 

adversary in a stochastic game is a challenging problem, and there will be many 

ideas to explore in combining the two different forms of information. That will 

likely be the key difference between a program that can compete with the best, and 

a program that surpasses all human players.

Quoting “thecount”:

“You have a very strong program. Once you add opponent modeling to 

it, it will kill everyone.”
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3.7 Chapter 3 Endnotes

3.7.1 Overlaying Models

Following the original publication of this paper, a serious flaw was discovered with 

the proposition of overlaying a 3-round pre-flop model with a 3-round post-flop 

model, as in the architecture of PsOp t i2. Although this technique can produce 

systems that play reasonably well in practice, it is not well-grounded in theory.

In general there are an infinite number of possible equilibrium solutions to a 

complex game. This is certainly true in Texas Hold’em poker, which gives rise to 

the wide variety of playing styles that are completely viable.

The equilibrium solution to any one pre-flop model may be inappropriate for use 

as a model of any specific opponent, or as a generic opponent model. Combining a 

pre-flop equilibrium strategy with a post-flop equilibrium strategy is not guaranteed 

to produce an equilibrium strategy to the whole game, because the two strategies 

may not be consistent with each other.10 In general, there is no reason to assume 

that two independently derived approximations will be harmonious with each other. 

Moreover, using any particular pre-flop strategy as a rigid model of one specific 

opponent can lead to seriously incorrect beliefs about the distribution of possible 

hands they can hold after the flop.

This inconsistency creates a noticeable “schism” or “gap” between the pre-flop 

and post-flop play in the pseudo-optimal players. For example, the program may re­

raise in the pre-flop, building a large pot, but then fold on the flop to a single small 

bet. This is almost always incorrect, even if the flop was of no help whatsoever. 

In practice, the play in the pre-flop often provides key clues that make it easier to 

accurately deduce the computer player’s range of hands later in the game.

10 This observation was formally proven by Neil Burch, using much simpler imperfect informa­
tion domains to generate counterexamples.
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In our experience with both game-theoretic and adaptive poker algorithms, it has 

repeatedly been demonstrated that assuming one particular model of the opponent’s 

play can be far worse than having no model at all. That is, the naive assumption of 

a uniform distribution over opponent holdings is often safer and superior to having 

a plausible but counter-indicated model of the opponent.

3.7.2 Reverse-Mapping Strategies

Once an equilibrium strategy for an abstracted game has been obtained, there are 

many ways it can be used to play the real game. The most obvious is to simply do 

the reverse mapping of the abstraction to translate the strategy back onto the full 

game. However, numerous embellishments are worth consideration. One method 

in particular, called bucket splitting, was implemented but was not discussed in the 

original paper, due to space limitations.

Suppose that for a particular context we have a bucket 4 hand, and the equilib­

rium strategy gives us a mixed strategy of {0.00,0.60,0.40} for fold, call, and raise, 

respectively. The straightforward way to use this information is to spin a spinner 

(i.e., generate a random number in the range 0.0 - 1.0) and play the corresponding 

action. However, this treats all hands in the bucket identically. That was a necessary 

assumption for accomplishing the coarse-granularity abstraction, but when the time 

comes to choose an action for the real game, it might be advantageous to distinguish 

between hands within that wide bucket range.

In simple bucket splitting, we distinguish between the top half and the bottom 

half of the hands in the bucket, and then bias our actions in a way that should 

produce better results. In the given example, we might call 100% of the time with 

hands from the bottom half, and raise 80% of the time with hands from the top 

half. Thus, we maintain the same recommended game-theoretic frequency (ratio) 

of actions overall, but we improve our hand selection for those designated actions. 

More generally, we can split the class into as many subdivisions as we like, up to 

the total number of distinct hands in the class. We call this more general process 

bucket splintering. In the extreme case, almost all hands in the class can be assigned 

a pure strategy, while the mixed strategy is still maintained for the class as a whole.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Technically, aligning the actions with an ordering of hands by strength could vi­

olate the equilibrium, and could potentially leak information. However, in practice 

the differences might be almost impossible to detect. Ironically, we can take advan­

tage of the stochastic noise and partial observability of the game (which are usually 

impediments to us), to provide more than adequate obfuscation of our slightly bi­

ased actions. Moreover, in view of the crudeness of the entire approach, we can 

only claim that pseudo-optimal playing strategies are “in the spirit” of equilibrium 

strategies. Going to any length to preserve the integrity of the abstracted mixed 

strategies would almost certainly be needlessly pedantic.
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Chapter 4

Adaptive Imperfect Information 
Game-Tree Search (2004)

Game-Tree Search with Adaptation in 
Stochastic Imperfect Information Games 1

4.1 Introduction

Modeling the preferences and biases of users is an important topic in recent AI 

research. For example, this type of information can be used to anticipate user pro­

gram commands [14], predict web buying and access patterns [8], and automati­

cally generate customized interfaces [23], It is usually easy to gather a corpus of 

data on a user (e.g., web page accesses), but mining that data to predict future pat­

terns (e.g., the next web page request) is challenging. Predicting human strategies 

in a competitive environment is even more challenging.

The game of poker has become a popular domain for exploring challenging AI 

problems. This has led to the development of programs that are competitive with 

strong human players. The current best program, P s O pti (also known as S p a r - 

BOT), is based on approximating a game-theoretic Nash equilibrium solution [4]. 

However, there remains a significant obstacle to overcome before programs can

1 The contents of this chapter originally appeared in the proceedings of Computers and Games 
2004. Copyright 2004 Springer-Verlag GmbH. All rights reserved. D. Billings, A. Davidson, 
T. Schauenberg, N. Burch, M. Bowling, R. Holte, J. Schaeffer, and D. Szafron. Game-tree search 
with adaptation in stochastic imperfect-information games. In H. J. van den Herik, Y. Bjomsson, 
and N. Netanyahu, editors, Computers and Games: 4th International Conference, CG’04, volume 
3846 of Lecture Notes in Computer Science, pages 21-34. Springer-Verlag GmbH, 2004.
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play at a world-class level: opponent modeling. A s the world-class poker player 

who played against P s O pti insightfully recognized [4]:

“You have a very strong program. Once you add opponent modeling to 

it, it will kill everyone.”

This issue has been studied in two-player perfect information games (e.g., [16, 10, 

15]), but has not played a significant role in developing strong programs. In poker, 

however, opponent modeling is a critical facet of strong play. Since a player has 

imperfect information (does not know the opponent’s cards), any information that a 

player can glean from the opponent’s past history of play can be used to improve the 

quality of future decisions. Skillful opponent modeling is often the differentiating 

factor among world-class players.

Opponent modeling is a challenging learning problem, and there have been sev­

eral attempts to apply standard machine learning techniques to poker. Recent ef­

forts include: neural nets [5], reinforcement learning [11], and Bayesian nets [18], 

which have had only limited success. There are a number of key issues that make 

this problem difficult:

1. Learning must be rapid (within 100 games, preferably fewer). Matches with 

human players do not last for many thousands of games, but the information 

presented over a short term can provide valuable insights into the opponent’s 

strategy.

2. Strong players change their playing style during a session; a fixed style is 

predictable and exploitable.

3. There is only partial feedback on opponent decisions. When a player folds (a 

common scenario), their cards are not revealed. They might have had little 

choice with a very weak hand; or they might have made a very good play 

by folding a strong hand that was losing; or they might have made a mistake 

by folding the best hand. Moreover, understanding the betting decisions they 

made earlier in that game becomes a matter of speculation.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This paper presents a novel technique to automatically compute an exploitive 

counter-strategy in stochastic imperfect information domains like poker. The pro­

gram searches an imperfect information game tree, consulting an opponent model 

at all opponent decision nodes and all leaf nodes. The most challenging aspects to 

the computation are determining: 1) the probability that each branch will be taken 

at an opponent decision node, and 2) the expected value (EV) of a leaf node. These 

difficulties are due to the hidden information and partial observability of the do­

main, and opponent models are used to estimate the unknown probabilities. As 

more games are played, the opponent modeling information used by the game-tree 

search generally becomes more accurate, thus improving the quality of the evalu­

ations. Opponents can and will change their style during a playing session, so old 

data needs to be gradually phased out.

This paper makes the following contributions:

1. Miximax and Miximix, applications of the Expectimax search algorithm to 

stochastic imperfect information adversarial game domains.

2. Using opponent modeling to refine expected values in an imperfect informa­

tion game-tree search.

3. Abstractions for compressing the large set of observable poker situations into 

a small number of highly correlated classes.

4. The program V e x b o t , which convincingly defeats strong poker programs 

including P s O p t i, and is competitive with strong human players.

4.2 Texas Hold’em Poker

Texas Hold’em is generally regarded as the most strategically complex poker vari­

ant that is widely played in casinos and card clubs. It is the game used in the annual 

World Series of Poker to determine the world champion.

A good introduction to the rules of the game can be found in [5], The salient 

points needed for this paper are that each player has two private cards (hidden from
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the opponent), some public cards are revealed that are shared by all players (com­

munity cards), and each player is asked to make numerous betting decisions: either 

bet/raise (increase the stakes), check/call (match the current wager and stay in the 

game), or fo ld  (quit and lose all money invested thus far). A game ends when all but 

one player folds, or when all betting rounds are finished, in which case each player 

reveals their private cards and the best poker hand wins (the showdown). The work 

discussed in this paper concentrates on two-player Limit Texas Hold’em.

Computer Poker Programs

The history of computer poker programs goes back more than 30 years to the initial 

work by Findler [13]. Some of the mathematical foundations go back to the dawn of 

game theory [22, 19]. Recently, most of the AI literature has been produced by the 

Computer Poker Research Group at the University of Alberta. Those programs -  

L o k i, P o k i, and Ps O pti -  illustrate an evolution of ideas that has taken place in 

the quest to build a program capable of world-class play:

Rule-based [6]: Much of the program’s knowledge is explicit in the form of expert- 

defined rules, formulas, and procedures.

Simulations [7, 5]: Betting decisions are determined by simulating the rest of the 

game. Likely card holdings are dealt to the opponents and the game is played 

out to completion. A large sample of hands is played, and the betting decision 

with the highest expected value is chosen.

Game theory [4]: Two-player Texas Hold’em has a search space size of O(1018). 

This was abstracted down to a structurally similar game of size O(107). Lin­

ear programming was used to find a Nash equilibrium solution to that game 

(using techniques described in [17]), and the solution was then mapped back 

onto real poker. The resulting solution -  in effect, a strategy lookup table -  

has the advantage of containing no expert-defined knowledge. The resulting 

pseudo-optimal poker program, P s O p t i , plays reasonably strong poker and 

is competitive with strong players. However, the technique is only a crude 

approximation of equilibrium play. Strong players can eventually find the
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seams in the abstraction and exploit the resulting flaws in strategy. Never­

theless, this represented a large leap forward in the abilities of poker-playing 

programs.

As has been seen in many other game-playing domains, progressively stronger pro­

grams have resulted from better algorithms and less explicit knowledge.

4.3 Optimal versus Maximal Play

In the literature on game theory, a Nash equilibrium solution is often referred to as 

an optimal strategy. However, the adjective “optimal” is dangerously misleading 

when applied to a poker program, because there is an implication that an equilib­

rium strategy will perform better than any other possible solution. “Optimal” in the 

game theory sense has a specific technical meaning that is quite different, so the 

term equilibrium strategy is preferred.

A Nash equilibrium strategy is one in which no player has an incentive to de­

viate from the strategy, because the alternatives could lead to a worse result. This 

simply maximizes the minimum outcome (sometimes referred to as the minimax 

solution for two-player zero-sum games). This is essentially a defensive strategy 

that implicitly assumes the opponent is perfect in some sense (which is definitely 

not the case in real poker, where the opponents are highly fallible).

A Nash equilibrium player will not necessarily defeat a non-optimal opponent. 

For example, in the game of rock-paper-scissors, the equilibrium strategy is to select 

an action uniformly at random among the three choices. Using that strategy means 

that no one can defeat you in the long term, but it also means that you will not win, 

since you have an expected value of zero against any other strategy.

Unlike rock-paper-scissors, poker is a game in which some strategies are dom­

inated, and could potentially lose to an equilibrium player. Nevertheless, even a 

relatively weak and simplistic strategy might break even against a Nash equilibrium 

opponent, or not lose by very much over the long term. There are many concrete 

examples of this principle, but one of the clearest demonstrations was seen in the 

game of Oshi-Zumo [9],
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In contrast, a maximal player can make moves that are non-optimal (in the 

game-theoretic sense) when it believes that such a move has a higher expected 

value. The best response strategy, which computes the maximizing counter-strategy 

to a static strategy, is an example of a maximal player.

Consider the case of rock-paper-scissors where a opponent has played “rock” 

100 times in a row. A Nash equilibrium program is completely oblivious to the other 

player’s tendencies, and does not attempt to punish predictable play in any way. 

A maximal player, on the other hand, will attempt to exploit perceived patterns 

or biases. This always incurs some risk (the opponent might have been setting a 

trap with the intention of deviating on the 101st game). A maximal player would 

normally accept this small risk, playing “paper” with a belief of positive expectation 

[2, 1].

Similarly, a poker program can profitably deviate from an equilibrium strategy 

by observing the opponent’s play and biasing its decision-making process to exploit 

the perceived weaknesses.

If P s O pti was based on a true Nash equilibrium solution, then no human or 

computer player could expect to defeat it in the long run. However, P s O pti is only 

an approximation of an equilibrium strategy, and it will not be feasible to compute a 

true Nash equilibrium solution for Texas Hold’em in the foreseeable future. There 

is also an important practical limitation to this approach. Since P s O pti uses a 

fixed strategy, and is oblivious to the opponent’s strategy, a strong human player 

can systematically explore various options, probing for weaknesses without fear 

of being punished for using a highly predictable style. This kind of methodical 

exploration for the most effective counter-strategy is not possible against a rapidly 

adapting opponent.

Moreover, the key to defeating all human poker players is to exploit their highly 

non-optimal play. This requires a program that can observe an opponent’s play and 

adapt to dynamically changing conditions.
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4.4 Miximax and Miximix Search

Expectimax search is the counterpart of perfect information minimax search for 

domains with a stochastic element [20, 21]. Expectimax combines the minimiza­

tion and maximization nodes of minimax search with the addition of chance nodes, 

where a stochastic event happens (for example, a dice roll). The value of a chance 

node is the sum of the values of each of the children of that node, weighted by the 

probability of that event occurring (1/6 for each roll in the case of a die).

For perfect information stochastic games such as backgammon, an opponent de­

cision node is treated as a normal max (or min) node. However, this cannot be done 

for imperfect information games like poker, because the nodes of the tree are not 

independent. Several opponent decision nodes belong to the same information set, 

and are therefore indistinguishable from each other. In poker, the information set is 

comprised of all the possible opponent hands, and our policy must be the same for 

all of those cases, since we do not know the opponent’s cards. Furthermore, a player 

can, in general, use a randomized mixed strategy (a probability distribution over the 

possible actions), so taking the maximum (or minimum) value of the subtrees is not 

appropriate.

To extend Expectimax for poker, we handle all of the opponent decision nodes 

within a particular information set as a single node, implicitly maintaining a proba­

bility distribution over the range of possible hands they might hold. We cannot treat 

all possible combinations as having equal probability (for example, weak hands 

might be folded early and strong hands played through to the end). Imperfect infor­

mation adds an extra challenge in evaluating leaf nodes in the search, since we can 

only estimate the relative probabilities for the opponent’s possible holdings, rather 

than having exact values.

We have implemented two variants of Expectimax for search on poker game 

trees, which we call Miximax and Miximix. These algorithms compute the expected 

value at decision nodes of an imperfect information game tree by modeling them as 

chance nodes with probabilities based on the information known or estimated about 

the domain, and the specific opponent [12].
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The algorithm performs a full-width depth-first search to the leaf nodes of the 

imperfect information game tree. For two-player poker, the leaf nodes are terminal 

nodes that end the game -  either at a showdown, or when one of the players folds. 

The search tree is the set of all possible betting sequences from the current state 

to the end of the game, over all possible outcomes of future chance nodes. At 

the showdown leaf nodes, the probability of winning is estimated with a heuristic 

evaluation function, and the resulting EV is backed-up the tree. This tree can be 

a fairly large (millions of nodes), but with efficient data structures and caching of 

intermediate calculations, it can be computed in real-time (about one second). In 

general, the search can be stopped at any depth, and the evaluation function used to 

estimate the EV of that subtree, as is done in traditional game-playing programs.

The EV calculation is used to decide which action the program should perform: 

bet/raise, check/call, or fold. Given the EV for each of our three possible actions, 

one could simply select the option with the maximum value. In that case, the tree 

will contain mixed nodes for the opponent’s decisions and max nodes for our own 

decisions. Hence we call this algorithm Miximax.

However, always taking the maximum EV could lead to predictable play that 

might be exploited by an observant opponent. Instead, we could choose to use a 

mixed strategy ourselves. Although we (presumably) know the randomized policy 

we will use, it can be viewed as both players having mixed nodes, and we call this 

more general algorithm Miximix. (Thus, Miximax is a special case of Miximix in 

which all of our own decision nodes use a pure strategy, choosing one action 100% 

of the time).

There are two unresolved issues:

1. How to determine the relative probabilities of the opponent’s possible actions 

at each decision node. This is based on frequency counts of past actions at 

corresponding nodes (i.e., given the same betting sequence so far).

2. How to determine the expected value of a leaf node. At fold nodes, com­

puting the EV is easy -  it is the net amount won or lost during the game. 

At showdown nodes, a probability density function over the strength of the
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opponent’s hand is used to estimate our probability of winning. This his­

togram is an empirical model of the opponent, based on the hands shown in 

corresponding (identical or similar) situations in the past.

In summary, the search tree consists of four types of nodes, each with different 

properties:

Chance nodes: For chance nodes in the game tree, the EV of the node is the 

weighted sum of the EVs of the subtrees associated with each possible out­

come. In Texas Hold’em, chance outcomes correspond to the dealing of pub­

lic board cards. To be perfectly precise, the probability of each possible 

chance outcome is dependent on the cards that each player will likely hold 

at that point in the game tree. However, since that is difficult or impossible 

to determine, we currently make the simplifying (but technically incorrect) 

assumption that the chance outcomes occur uniformly at random.2 Thus, the 

EV of a chance node is simply the average EV over all of the expansions.

Let Pr(Ci) be the probability of each branch i of chance node C, and let n 

be the number of branches. The EV of node C is:

EV(C) = P ^Ci)  x EV(Ci) (4.1)
1 < % < n

Opponent decision nodes: Let Pr(Oi) be the estimated probability of each branch 

i (one of fold, call, or raise) at an opponent decision node O. The EV of node 

O is the weighted sum:

EV(0)  = J2 Pr (° i ) x EV{Oi) (4.2)
i  e { / ,c ,r }

Program decision nodes: At decision node U, we can use a mixed policy as 

above {Miximix), or we can always take the maximum EV action for ourselves 

(Miximax), in which case:

EV(U)  =  max(EV(Uf ), EV(UC), EV(Ur)) (4.3)

2 To see why the remaining deck does not have a uniform density over all cards, notice that 
the opponent has had previous opportunities to selectively fold with very weak cards. Since the 
opponent has elected to not fold, the cards in the opponent’s hand are stronger than the uniform 
average, and the deck is slightly richer in low-rank cards than in high-rank cards.
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Leaf nodes: Let L  be a leaf node, Pwin be the probability of winning the pot, 

L$Pot be the size of the pot, and L$cost be the cost of reaching the leaf node 

(normally half of L$pot). At terminal nodes resulting from a fold, PWin is 

either zero (if we folded) or one (if the opponent folded), so the EV is simply 

the amount won or lost during the game. The net EV of a showdown leaf 

node is:

E V (L ) =  (Pwin x L$pot) — L$cost (4.4)

4.5 EV Calculation Example

For each showdown leaf node of the game tree, we store a histogram of the hand 

rank (HR, a percentile ranking between 0.0 and 1.0, broken into 20 cells with a 

range of 0.05 each) that the opponent has shown in previous games with that exact 

betting sequence. We will use 10-cell histograms in this section to simplify the 

explanation.

For example, suppose we are Player 1 (PI), the opponent is Player 2 (P2), and 

the pot contains four small bets (sb) on the final betting round. We bet (2 sb) and are 

faced with a raise from P2. We want to know what distribution of hands P2 would 

have in this particular situation. Suppose that a corresponding 10-cell histogram 

has relative weights o f [ l  1 0 0 0 0 0 4 4  0], like that shown in Figure 4.1. This 

means that based on our past experience, there is a 20% chance that P2’s raise is a 

b lu ff  (a hand in the HR range 0.0-0.2), and an 80% chance that P2 has a hand in 

the HR range 0.7-0.9 (but not higher).

The histogram for the showdown node after we re-raise and P2 calls (bRrC) 

will be related, probably having a shape like [0 0 0 0 0 0 0 5 5  0], because P2 

will probably fold if he was bluffing, and call with all legitimate hands. The action 

frequency data we have on this opponent will be consistent, perhaps indicating that 

after we re-raise, P2 will fold 20% of the time, call 80%, and will not re-raise 

(because it is not profitable to do so). The probability triple of action frequencies is 

P r{F ,C , R) = {0.2, 0.8, 0.0}.

To decide what action to take in this situation, we compute the expected value
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{0.3, 0.5, 0.2}

{0 .2 , 0 .8 , 0 .0}+4
P2[bRc] 0.4

EV(bRc) E

0.5P2[bRrC]
EV(bRrC) A

Figure 4.1: Betting tree for the EV calculation example.
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HR Pr(w | c ) EV(c) Pr(w | rC) EV(r) Action
0.70 0.2 -3.6 0.0 -5.2 call
0.75 0.4 -1.2 0.25 -2.0 call
0.80 0.6 + 1.2 0.5 + 1.2 c orr
0.85 0.8 +3.6 0.75 +4.4 raise
0.90 1.0 +6.0 1.0 +7.6 raise

Table 4.1: Expected values for call or raise for selected hand ranks.

for each choice: EY(fold), EV(call), and EV(raise). EY(fold) is easily determined 

from the betting history -  the game will have cost us -4 small bets.

EV(call) depends on our probability of winning, which depends on the strength 

of our hand. If our hand rank is in the range 0.2-0.7, then we can only beat a bluff, 

and our chance of winning the showdown is Pr(w in\bRc) =  0.20. Since the final 

pot will contain 12 sb, of which we have contributed 6 sb, the net EV(call) = -3.6 

sb. Therefore, we would not fold a hand in the range 0.2-0.7, because we expect to 

lose less in the long run by calling (0.4 sb less).

If our hand rank is only HR = 0.1 (we were bluffing), then EV(call) = -4.8 sb, 

and we would be better off folding. If hand rank is HR = 0.8, then we can also 

beat half of P2’s legitimate hands, yielding an expected profit of EV(call) = +1.2 sb. 

Table 4.1 gives the EV for calling with selected hand ranks in the range 0.7-0.9.

To calculate the expected value for re-raising, we must compute the weighted 

average of all cases in that subtree, namely: bRrF, bRrC, bRrRf, and bRrRc. Since 

the probability assigned to a P2 re-raise is zero, the two latter cases will not affect 

the overall EV and can be ignored. The share from bRrF is 0.2 x 6 =  + 1 . 2

sb, and is independent of our hand strength. The probability of winning after bRrC 

is determined by the histogram for that case, as before. Thus, in this example 

EV(raise) =  1.2 +  0.8 x (16 * P r(w in \rC )  — 8), as shown in Table 4.1 for the 

same selected hand ranks.

As a consequence of this analysis, if we are playing a strictly maximizing strat­

egy, we would decide to fold if our hand is weaker than HR = 0.167, call if it is in 

the range 0.167 to 0.80, and re-raise if it is stronger than HR = 0.80. Computing the 

viability of a possible bluff re-raise is done similarly.
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4.6 Abstractions for Opponent Modeling

After each hand is played against a particular opponent, the observations made 

during that game are used to update our opponent model. The action decisions 

made by the opponent are used to update the betting frequencies corresponding to 

the sequence of actions during the game. When showdowns occur, the hand rank 

(HR) shown by the opponent is used to update a leaf node histogram, as illustrated 

in the previous section.

The context tree is an explicit representation of the imperfect information game 

tree, having the same skeletal structure with respect to decision nodes. Chance 

nodes in the tree are represented implicitly (all possible chance outcomes are ac­

counted for during the EY calculation).

A leaf node of the context tree corresponds to all of the leaves of the game 

tree with the same betting sequence (regardless of the preceding chance nodes). 

Associated with this is an efficient data structure for maintaining the empirically 

observed action frequencies and showdown histograms for the opponent. For this 

we use a trie, based on the natural prefix structure of related betting sequences. 

Hash tables were used for low-overhead indexing.

4.6.1 Motivation for Abstractions

The Miximax and Miximix search algorithms perform the type of mathematical 

computation that underlies a theoretically correct decision procedure for poker. For 

the game of two-player Limit Texas Hold’em, there are 94 =  6561 showdown nodes 

for each player, or 13122 leaf-level histograms to be maintained and considered. 

This fine level of granularity is desirable for distinguishing different contexts and 

ensuring a high correlation within each class of observations.

However, having so many distinct contexts also means that most betting se­

quences occur relatively rarely. As a result, many thousands of games may be 

required before enough data is collected to ensure reliable conclusions and effec­

tive learning. Moreover, by the time a sufficient number of observations have been 

made, the information may no longer be current.
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This formulation alone is not adequate for practical poker. It is common for top 

human players to radically change their style of play many times over the course of 

a match. A worthy adversary will Constantly use deception to disguise the strength 

of their hand, mask their intentions, and try to confuse our model of their overall 

strategy. To be effective, we need to accumulate knowledge very quickly, and have a 

preference toward more recent observations. Ideally, we would like to begin apply­

ing our experience (to some degree) immediately, and be basing decisions primarily 

on what we have learned over a scope of dozens or hundreds of recent games, rather 

than many thousands. This must be an ongoing process, since we may need to keep 

up with a rapidly changing opponent.

Theoretically, this is a more challenging learning task than most of the problems 

studied in the machine learning and AI literature. Unlike most Markov decision 

process (MDP) problems, we are not trying to determine a static property of the 

domain, but rather the dynamic characteristics of an adversarial opponent, where 

historical perspective is essential.

In order to give a preference toward more recent data, we gradually “forget” old 

observations using exponential history decay functions. Each time an observation 

is made in a given context, the previously accumulated data is diminished by a 

history decay factor, h, and the new data point is then added. Thus, for h = 0.95, 

the most recent event accounts for 5% of the total weight, the last 1/(1 — h) = 20 

observations account for approximately (1 — 1/e) =  0.63 of the total, and so on.3

4.6.2 Abstraction

In order to learn faster and base our inferences on more observations, we would 

like to combine contexts that we expect to have a high mutual correlation. This 

allows us to generalize the observations we have made, and apply that knowledge 

to other related situations. There are many possible ways of accomplishing these 

abstractions, and we will address only a few basic techniques.

An important consideration is how to handle the zero-frequency problem, when

3 The exact value for this case is 1 — h20 =  0.6415, but the approximation is true in general for 
1/(1 — h) observations.
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there has yet to be any observations for a given context; and more generally, how 

to initialize the trie with good default data. Early versions of the system employed 

somewhat simplistic defaults, which resulted in rather unbalanced play early in a 

match. More recent implementations use default data based on rational play for 

both players, derived in a manner analogous to Nash equilibrium strategies.

The finest level of granularity is the context tree itself, where every possible bet­

ting sequence is distinct, and a different histogram is used for each. The opponent 

action frequencies are determined from the number of times each action was chosen 

at each decision node (again using a history decay factor to favour recent events). 

Unfortunately, having little data in each class will result in unreliable inferences.

One coarse-grained abstraction groups all betting sequences where the opponent 

made an equal number of bets and raises throughout the game, ignoring what stage 

of the game they were made. A finer-grained version of the same idea maintains an 

ordered pair for the number of bets and raises by each player.

However, testing reveals that an even coarser-grained abstraction may be desir­

able. Summing the total number of raises by both players (no longer distinguish­

ing which player initiated the action) yields only nine distinct classes. Despite the 

crudeness of this abstraction, the favorable effects of grouping the data is often more 

important than the lower expected correlations between those lines of play.

Another similar type of coarse-grained abstraction considers only the final size 

of the pot, adjusting the resolution (i.e., the range of pot sizes) to provide whatever 

number of abstraction classes is desired.

An abstraction system can be hierarchical, in which case we also need to con­

sider how much weight should be assigned to each tier of abstraction. This is based 

on the number of actual observations covered at each level, striving for an effective 

balance, which will vary depending on the opponent.

Our method of combining different abstraction classes is based on an expo­

nential mixing parameter (say m  =  0.95) as follows. Let the lowest-level context 

tree (no abstraction) be called AO, a fine-grained abstraction be called A l, a cruder 

amalgam of those classes be called A2, and the broadest classification level be 

called A3. Suppose the showdown situation in question has five data points that
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match the context exactly, in AO. This data is given a weight of (1 — m 5) =  0.23  

of the total. If the next level of abstraction, A l, has 20 data points (including those 

from AO), it is assigned (1 — m 20) =  0.64 of the remaining weight, or about 50% 

of the total. The next abstraction level might cover 75 data points, and be given 

(1 — to75) =  0.98 of the remainder, or 26% of the total. The small remaining 

weight is given to the crudest level of abstraction. Thus, all levels contribute to the 

overall profile, depending on how relevant each is to the current situation.

4.7 Experiments

To evaluate the strength o f VEXBOT, w e conducted both computer vs human exper­

iments, and a round-robin tournament o f  computer vs computer matches.

The field of computer opponents consisted of:

1) S p a r b o t ,4 the publicly available version of P s O pt i4, which surpassed all 

previous programs for two-player Limit Hold’em by a large margin [4],

2) P O K I, a formula-based program that incorporates opponent modeling to ad­

just its hand evaluation. Although P oki is the strongest known program for the 

ten-player game, it was not designed to play the two-player game, and thus does 

not play that variation very w ell [5].

3) HO BBY BO T, a slow ly adapting program written by a hobbyist, specifically 

designed to exploit POKl’s flaws in the two-player game.

4) J a g b o t , a simple static formula-based program that plays a rational, but 

unadaptive game.

5) A lw a yS-C a l l  and

6) A l w a y s_Ra i s e , extreme cases o f  weak exploitable players, included as a 

sim ple benchmark.

The results of the computer vs computer matches are presented in Table 4.2. 

Each match consisted of at least 40,000 games of poker. The outcomes are statisti-

4 The name SPARBOT refers generally to any program in the PsO pti family of game-theoretic 
programs. P sO p ti4  through to the most recent version P sO pti7, are all based on the architecture of 
P sO pti2 , with overlaying 3-round models, described in Chapter 3. P sO pti4  is publicly available 
on the University of Alberta online poker server (www. cs . ualberta . ca/ 'games/), and in the 
commercial program POKER ACADEMY (w w w  . poker-academy. com/).
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Program Vexbot Sparbot Hobbot Poki Jagbot A.Call A.Raise
Vexbot +0.052 +0.349 +0.601 +0.477 + 1.042 +2.983
Sparbot -0.052 +0.033 +0.093 +0.059 +0.474 +1.354
Hobbybot -0.349 -0.033 +0.287 +0.099 +0.044 +0.463
Poki -0.601 -0.093 -0.287 +0.149 +0.510 +2.139
Jagbot -0.477 -0.059 -0.099 -0.149 +0.597 +1.599
Always Call -1.042 -0.474 -0.044 -0.510 -0.597 =0.000
Always Raise -2.983 -1.354 -0.463 -2.139 -1.599 =0.000

Table 4.2: Computer vs computer matches (small bets per game).

cally significant, with a standard deviation of approximately ±0.03 small bets per 

game (sb/g).

V exbot  won every match it played, and had the largest margin of victory over 

each opponent. V exbot  approaches the theoretical maximum exploitation against 

A lways_Call and A lways_Ra ise . N o other programs came close to this level, 

despite those opponents being perfectly predictable.

Against S p a rb o t, the strongest previous program for the two-player game, 

VEXBOT was able to find and exploit flaws in the pseudo-optimal strategy. The 

learning phase was much longer against S p a r b o t than any other program, typically 

requiring several thousand games. However, once an effective counter-strategy is 

discovered, VEXBOT will continue to win at that rate or higher, due to the oblivious 

nature of the game-theoretic player.

The testing against humans (Table 4.3) involves a smaller number of trials, and 

should therefore be taken only as anecdotal evidence (the outcomes being largely 

dominated by short-term swings in luck). Most humans players available for testing 

did not have the patience to play a statistically significant number of games (espe­

cially when frustrated by losing). However, it is safe to say that VEXBOT easily 

exploited weaker players, and was competitive against expert level players. The 

results also consistently showed a marked increase in its win rate after the first 200- 

400 games of the match, presumably due to the opponent-specific modeling coming 

into effect.

A more recent implementation of the Miximax algorithm was able to improve 

considerably on the V e x b o t  results against computer opponents. That version
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Num Rating sb/g Games
1 Expert -0.022 3739
2 Intermediate +0.136 1507
3 Intermediate +0.440 821
4 Intermediate +0.371 773

Table 4.3: V e x b o t  vs human matches.

defeated S p a r b o t by +0.145 sb/g -  three times the win rate of the previous ver­

sion.5 Moreover, its win rate against S p a r b o t was more than three times the win 

rate achieved by a world-class player [4], but still considerably less than that of the 

most successful human player (the author).

Revised versions of both programs competed in the 2003 Computer Olympiad, 

with V e x b o t  again dominating S p a r b o t, winning the gold and silver medals 

respectively [3],

4.8 Conclusions and Future Work

Limit poker is primarily a game of mathematics and opponent modeling. We have 

built a program that “does the math” in order to make its decisions. As a result, 

many sophisticated poker strategies emerge without any explicit encoding of expert 

knowledge. The adaptive and exploitive nature of the program produces a much 

more dangerous opponent than is possible with a purely game-theoretic approach.

One limitation not yet adequately addressed is the need for effective defaults, 

to ensure that the program does not lose too much while learning about a new (un­

known) opponent at the beginning of a match. If good default data is not easily 

derivable by direct means, there are several ways that existing programs can be 

combined to form hybrids that are less exploitable than any of the component pro­

grams in isolation.

With a smoothly adapting program and a good starting point, it may be possible 

to use self-play matches and automated machine learning to constantly refine the

5 Although all versions of V exbo t  can be challenging and dangerous opponents, the play can 
also be highly volatile and suspect, especially early in a match, when it must depend on the wholly 
inadequate default seeding as its model o f real play.
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default data. In principle, that process could eventually approach a game-theoretic 

near-optimal default that is much closer to a true Nash equilibrium strategy than has 

been obtained to date.

The performance of V exb  OT can be improved further in numerous ways. While 

we believe that the modeling framework is theoretically sound, the parameter set­

tings for the program could be improved considerably. Beyond that, there is a lot 

of room for improving the context tree abstractions, to obtain higher correlations 

among grouped sequences.

Only the two-player variant has been studied so far. Generalization of these 

techniques to handle the multi-player game should be more straightforward than 

with other approaches, such as those using approximations for game-theoretic so­

lutions.

Refinements to the architecture and algorithms described in this paper will un­

doubtedly produce increasingly strong computer players. It is our belief that these 

programs will have something to teach all human poker players, and that they will 

eventually surpass all human players in overall skill.
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Chapter 5 

Assessment of Performance (2005)

A Tool for the Direct Assessment 
of Poker Decisions 1

5.1 Introduction

The game of poker has many properties that present new challenges for Artificial 

Intelligence research, making it distinct from all previously studied games. Tra­

ditional games like chess and Go are two-player perfect information games with 

no element of random chance. Poker is at the opposite end of the spectrum: a 

multi-player imperfect information game with partial observability and stochastic 

outcomes. Deception, opponent modeling, and coping with uncertainty are indis­

pensable elements of high-level strategic play.

The property of stochasticity compounds many of the complex problems in the 

domain. It also has a highly detrimental effect on performance assessment: on 

quantifying how well a player is playing, or simply determining who the better 

players are. The “signal to noise ratio” is low -  a player can play extremely well 

and still lose over an extended period of time, just by bad luck. The normal vari­

ance in the game is so high that many thousands of games need to be played before 

obtaining even a modest degree of confidence in the result. Without reliable feed­

1 The contents of this chapter have been accepted for publication in The International Computer 
Games Association Journal. A previous version of this work appeared in Technical Report TR06-07, 
Copyright 2006 University of Alberta. All rights reserved. D. Billings and M. Kan. Development 
of a tool for the direct assessment of poker decisions. Technical Report TR06-07, University of 
Alberta Department of Computing Science, April 2006.
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back on how effective a solution is, it is difficult to identify problem areas and 

make steady forward progress. Moreover, the problem will become more serious 

over time. As programs become stronger, and closer to each other in skill level, 

the number of games, n, required to distinguish between them with a particular 

statistical confidence grows at a rate of 0 ( n 2).

Some techniques can help ameliorate the problem of high variance. For ex­

ample, duplicate tournament systems use independent tournaments with the same 

series of cards, shuffling the players to different positions for each replay [1]. Since 

games between computer programs can be re-played with no memory, the total 

number of good and bad situations is equalized, at least to some degree. However, 

once the players deviate in their corresponding actions (particularly if one player 

folds while another continues with the hand), the subsequent actions are no longer 

directly comparable, and are subject to random outcomes. The problem of accurate 

assessment persists, even if other sources of noise are kept under control. Further­

more, duplicate systems cannot be used for assessing an individual human player, 

since they will recognize previously played hands and outcomes. Developing a tool 

to perform an objective and insightful analysis of the decisions made by each player 

would be of great value, because the effects of randomness could largely be factored 

out. Unfortunately, this turns out to be difficult to construct, both in theory and in 

practice, due to the implications of imperfect information in poker.

It is useful to compare poker to perfect information games that have a stochastic 

element. Two well-studied examples are backgammon and blackjack. In backgam­

mon, both players have full access to the state of the game, but randomness is intro­

duced by the roll of the dice. In blackjack, the dealer’s face-down card has no effect 

on the player’s decision making, and is drawn from the same probability distribu­

tion as the rest of the unknown cards. Since the dealer’s decisions are completely 

determined by the rules of the game, blackjack can be viewed as a single-player 

stochastic game. In all perfect information games, whether stochastic or deter­

ministic, the notion of a best move, or set o f maximal actions is well-defined. In 

backgammon and blackjack, each choice has an objective game-theoretic expected 

value (EV), and usually there is exactly one choice that has a maximum EV. In
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deterministic perfect information games like chess and checkers, there is a set of 

moves that preserves the game-theoretic value of the game. Of these, there may 

be a “best practical move” that maximizes the probability of success in a contest 

between typical imperfect players.

For these games, the quality of each player decision can be compared to the 

best available choice, using an oracle or near-oracle to determine the quantitative 

value of every possible move. A perfect oracle is based on exact enumeration over 

all reachable game states. In blackjack, simulation or enumeration using the exact 

composition of the remaining deck provides a sound basis for direct assessment of 

EV decisions, as shown by Wolfe [15].

A near-oracle can be based on Monte Carlo simulations, using a strong program 

to provide accurate estimates of the objective value of each move. In backgammon, 

Monte Carlo roll-outs using a strong program like TD_GAMMON are considered 

to be the definitive assessment of game equity [13, 14]. In the game of Scrabble, 

the program M a ven  has surpassed all human players in skill level, and is used in a 

similar fashion [11, 10]. Again, these are good baselines for excellent play because 

they are strongly correlated with the maximum EV play available in each situation. 

Poker programs are not yet strong enough to serve as a near-oracle; but the problem 

goes much deeper than that, because the concept of a single maximum EV play is 

not applicable.

In contrast to perfect information games, there is generally no single best choice 

in a given poker situation. The concept of a perfect oracle is not well-defined (or at 

least, is not very discriminating between the possible options). A sound strategy is 

dependent on the relative balance of deceptive plays (such as bluffing  with a weak 

hand, or trapping with a strong hand). A balanced approach is essential, but the 

player has considerable flexibility in how to obtain that balance. In both theory and 

practice, radically different strategies can have the same objective EV and can be 

equally viable. Analogously, the notion of a best move is not meaningful in the 

imperfect information game of Rock-Paper-Scissors -  the most effective choice is 

entirely dependent on the preceding history between the players.

In practice, a good poker player’s strategy is strongly dependent on the be-
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liefs about the opponent’s weaknesses and vulnerabilities. For example, if Alice 

bluffs too much, an appropriate counter-strategy is to call (or raise) more often with 

mediocre holdings. If Bob seldom bluffs, the appropriate response is to fold more 

often with mediocre holdings. We see the opposite response depending on the per­

ception of the opponent’s style; and a player must continue to adapt as the opponent 

changes their strategy over time. In other words, in chess it is possible and appro­

priate to simply “play the board” (ignoring the opponent), whereas in poker it is 

necessary to “play the player” to maximize the win rate. Since there cannot be a 

“perfect” way to do this in general, it introduces a speculative element to the game 

that is not consistent with defining an objective assessment system.

For these and other reasons (some of which are outlined in the next section), 

it becomes evident that developing a “perfect” assessment tool is essentially im­

possible. In fact, an expert might argue that the assessment problem is “POKER- 

complete”, meaning that it is at least as hard as any other problem in the domain, 

including playing perfectly (if such a notion is even well-defined).

However, it is possible to design an imperfect assessment system that is con­

ceptually simple, objective, and highly effective at reducing the variance due to 

stochastic outcomes. The Ignorant Value Assessment Tool (DIVAT)2 is one such 

system. The term “ignorant” refers to the fact that it implicitly ignores much of 

the context in each situation. The expected value estimates may not be especially 

well-informed, but they are consistent, and are applied in an egalitarian fashion to 

all players. In the two-player case, the same criteria are applied equally to both 

players, with the intention of obtaining an unbiased assessment, even if the specific 

criteria could be criticized as being somewhat arbitrary. After we developed the 

tool empirically, it was formally proven to be statistically unbiased by Zinkevich et 

al. [16]. This means that the long-term expected value from the DIVAT assessment 

is guaranteed to match the long-term expected value of money earnings.

In Section 5.2, we examine the strengths and limitations of perfect information 

hindsight analysis, provide some background on previous attempts to use this ap­

proach, and present a concrete example of a game in order to ground the discussion.

2 The first letter of the acronym corresponds to the author’s first initial.
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In Section 5.3, we define the terminology and explain the metrics used in each of 

the components, and re-visit the example to perform a detailed quantitative analy­

sis using the DIVAT system. In Section 5.4, we illustrate some of the uses of the 

tool, and demonstrate its power in variance reduction, while providing an unbiased 

estimate of the difference in skill between two players playing a series of games. 

We conclude with a discussion of future work and generalization of the technique 

to other domains.

5.2 Motivation

In this section we will focus our attention on a specific example of a game of poker, 

in order to identify some of the considerations and obstacles an analysis tool will 

need to cope with. We examine the reasons that an imperfect information domain 

cannot simply be broken down into a collection of perfect information instances. 

Then, we look at our previous attempts to use perfect knowledge hindsight analysis 

and identify their major failings, which leads us to the design of the DIVAT system.

5.2.1 Example Game

We now look at an example of one complete game of Limit Texas Hold’em. We will 

call Player 1 (PI) Alfred, and Player 2 (P2) Betty. Although we will try to motivate 

some of their decisions, the objective analysis will, of course, be completely free of 

any such subjective interpretation.

A succinct summary of the game is:

Alfred: A * -K *  Betty: 79-69 Board: K*-59-3<0 T* 49 
Betting: SIRrC/kBrC/bC/bRc

All monetary units will be expressed in terms of small bets (sb), which is the 

size of all bets and raises in the first two rounds of play (the bet size doubles for the 

last two rounds of play). With the reverse-blinds format of two-player Limit Texas 

Hold’em, P2 posts a small blind bet of 0.5 sb, PI posts a big blind  bet of 1 sb, and 

P2 must make the first betting decision -  to either fold, call 0.5 sb, or raise another 

1 sb. The betting notation is: ‘s’ for small blind, ‘1’ for large blind, ‘k ’ for check,
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‘b ’ for bet, T  for fold, ‘c’ for call, ‘r’ for raise, and 7 ’ is used as a delimiter for 

the four betting rounds.3 Upper-case letters are used to more easily distinguish the 

actions of the second player (Betty).

Betty is dealt the 7 9 -6 9 , which is not a particularly strong hand, but is certainly 

worth calling to see the flop. In this game, Betty elects to raise with the hand, for 

purposes of deception (called a semi-bluff). Alfred has a very strong hand, the 

A £ -K £ , and re-raises, to Betty’s detriment. Betty calls.

The flop is the K 4 -5 9 -3 0 , giving Alfred a strong hand with a pair of Kings. 

Alfred decides to try for a check-raise trap, perhaps based on the belief that Betty 

bets too aggressively after a check (and is not as aggressive when it comes to raising 

a bet). Betty bets (another semi-bluff) and Alfred completes his plan by raising. 

Betty has a weak hand, but the pot is now large (nine small bets) so she calls in the 

hope of improving (with a 4, 6, or 7; or any heart, 8, or 9).

The turn  card is the T * , and Alfred simply bets his strong hand, since he be­

lieves that trying for another check-raise trap is unlikely to succeed. Betty still has 

nothing, and cannot be certain whether or not making a pair with a 6 or 7 will give 

her the best hand. If those outcomes will win (10/44 in total), then she has a correct 

call (2 sb to win 12 sb); if not, then she is better off folding. She elects to call, per­

haps because Alfred has frequently followed this betting pattern in previous games 

without having a strong hand.

The river is a perfect 4 9  for Betty, giving her the best possible hand (she could 

tie, but she cannot lose). Of course, Alfred has no way of knowing that this card 

was a disaster for him, and bets with what he believes to be the best hand. Betty 

raises, and Alfred elects to only call, perhaps based on his prior experience where 

Betty’s raises on the final betting round are usually meaningful. The final pot size 

is 22 sb, giving Betty a net of +11 sb, and Alfred a net of -11 sb.

As an outside observer, we would like to know if one of these players played 

better than the other. We would like to filter out the stochastic luck element, and 

have an objective means of quantifying the perceived difference in skill. For a

3 A check is functionally equivalent to a call, but “check” is used when the current amount to 
call is zero. Similarly, a bet is functionally equivalent to a raise, but “bet” is used when the current 
amount to call is zero.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rational and accurate assessment, we would like to know how each player played in 

general, not just in hindsight, with all of the cards known. In this example game, 

most poker players would agree that Alfred played his hand well. However, most of 

his decisions were relatively easy,4 so it is difficult to say how competent he is based 

on this one game. From the perspective of an average player, Betty might appear to 

be a wild gambler; but to an expert observer, she might appear to be either a world- 

class player or a weak player. Much of the assessment is subjective opinion, and is 

neither right nor wrong. Moreover, the opinions cannot be well-informed without a 

full historical context -  Betty’s decisions will depend very strongly on Alfred’s style 

of play, and vice-versa. Real poker is highly non-Markovian in nature {i.e., is not 

memoryless). A single game taken in isolation does not provide sufficient context 

for a well-informed assessment. However, for practical purposes, an analysis tool 

will likely have to ignore this fact (or temper it with some form of approximation).

5.2.2 EVAT and LFAT

Since 2001, we have used an assessment procedure called the Expected Value As­

sessment Tool (EVAT) to try to gain a more accurate picture of the results of short 

matches. The EVAT is based on hindsight analysis, where each player’s decisions 

are compared to what the maximal action would have been if all players had known 

all of the cards. Thus, we are comparing imperfect information decisions to the 

actions that would have been taken in the perfect information variant of the game. 

This provides a perspective that is quite distinct from the money line, and can oc­

casionally provide useful insights. Unfortunately, it also suffers from some serious 

drawbacks, and tends to be rather unreliable as a predictor of future outcomes. Be­

cause of these limitations, the tool has not found its way into regular use.

The EVAT view is analogous to what poker author David Sklansky [12] calls 

“The Fundamental Theorem of Poker” (FToP), which states:

Every time you play a hand differently from the way you would have 

played it if you could see all your opponents’ cards, they gain; and

4 In general, it is easier to make good decisions with a strong hand than it is with a hand near 
the borderline between fold and not fold.
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every time you play your hand the same way you would have played 

it if you could see all their cards, they lose. Conversely, every time 

opponents play their hands differently from the way they would have if 

they could see all your cards, you gain; and every time they play their 

hands the same way they would have played if they could see all your 

cards, you lose.

Sklansky is suggesting that the long-term expected value in poker is equivalent 

to the differences in perfect information decisions. Similar assertions have been 

made in the past for many domains involving imperfect or incomplete information. 

However, strictly speaking this is not true, and the FToP is not a theorem. An 

imperfect information game cannot be expressed merely as a collection of perfect 

information instances. Some of the key differences between these classes of prob­

lems were exemplified for the game of bridge by Frank and Basin [7], and by Gins­

berg [8].5 The FToP is also qualitative in nature, not quantitative.6 It is, however, a 

useful heuristic that can guide human players to formulating better decisions.

The EVAT is essentially a quantitative comparison between actual decisions 

and the ideal perfect information counterparts. Each time the actions are different, 

the player is assessed a penalty, equal in magnitude to the difference in expected 

value. The sum of all such “misplays” for each player are compared, yielding a 

quantitative estimate of the difference in skill.

Unfortunately, the EVAT is based on a highly unrealistic baseline for compar­

ison, because the players are implicitly expected to have omniscient knowledge, 

without regard to the actual conditions that exist in each instance. As an extreme 

example, a player with the second-best possible hand on the river would be ex­

pected to fo ld  whenever the opponent happens to hold the best possible hand, and 

raise otherwise. Conversely, a player with the second-worst possible hand would 

be expected to fold except when the opponent happens to hold the worst possible

5 A simple example is the case of a two-way finesse: the declarer can win a key trick and secure 
the contract in every perfect information lay of the cards (a 100% chance of success), but is forced 
to guess in the real imperfect information game (for a 50% chance of success).

6 As stated, the FToP is also untrue for a number of mundane reasons, nor does it hold for 
multi-player situations, but that is of little concern to this discussion.
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hand.

In the example game, Alfred’s entirely reasonable bet on the river is a technical 

misplay, incurring an EVAT penalty, since his action is different from what he would 

have done if he had known all the cards. Moreover, he is expected to play the hand 

differently in otherwise identical situations, based only on the hidden information. 

This goes against fundamental principles of imperfect information games, in that 

the same policy must be employed within the same information set of the game 

tree. The perfect hindsight view is largely irrelevant to the imperfect information 

reality of the situation, and illustrates one of the biggest flaws with the EVAT policy : 

when a player has a moderately strong second-best hand, then with reasonable play 

they should lose money, in expectation.

Another way of looking at the problem of variance is in terms of opportunities. 

An immediate consequence of a high-variance stochastic game is that it can take 

a very long time before each player has had their “fair share” of good and bad 

situations. One of the reasons that the money line is a weak estimator of the long­

term EV of the players is that the opportunities for each player do not balance out 

quickly.

To a large extent, the EVAT analysis suffers from the same limitation. In con­

trast, the DIVAT system will automatically account for certain imbalances in op­

portunities, by distinguishing between good and bad situations, and scaling the 

penalties accordingly. As a result, the DIVAT hindsight view converges much more 

rapidly than the comparatively naive EVAT assumptions.

The Luck Filtering Analysis Tool (LFAT) is a complementary system that was 

developed to address some of the shortcomings of the EVAT. Using the same meth­

ods to compute the expected value of each situation, the LFAT compares each 

player’s pot equity1 before and after each chance event (i.e., cards being dealt). 

Thus, the LFAT analysis occurs between the betting rounds, while EVAT occurs be­

tween the chance events, so the analysis is split into the natural alternating phases of 

chance outcomes and player actions. The LFAT quantifies the effects of the stochas­

tic outcomes alone, without regard to implications of betting decisions. Conversely,

7 The concept of equity is explained in Section 5.3.1.2.
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the EVAT method considers only the betting decisions themselves, and simply dis­

regards the fluctuations due to luck, which is a highly desirable feature for reducing 

variance. The DIVAT system is similar to EVAT in this regard.

However, the separation is not perfect. Although the stochastic luck has been 

eliminated from consideration, the situations that arise truly are a consequence of 

all previous chance events that have occurred. Thus, the two are not independent, 

and treating them as such introduces some degree of error.

5.3 Development

In this section, we define terminology and explain the components of the Ignorant 

Value Assessment Tool. We present specific details of how the DIVAT system is 

constructed, and then work through the concrete example, illustrating its use.

5.3.1 Definitions and Metrics

In order to analyze the play of poker games, we will need metrics to assess the 

value of a hand. This is a complex problem, and good methods are often multi­

dimensional. For example, adjusted hand strength is a combination of hand strength, 

which is a weighted probability of currently holding the best hand, and hand poten­

tial, which is a measurement of future outcomes [4]. For our purposes, we want to 

develop a one-dimensional metric o f hand goodness, on a scale from zero to one.

For a given situation in the middle of a game, it will be necessary to estimate 

the equity for each player -  the net amount that will be won or lost by the end of 

the game, on average. Most simplistic metrics do not consider the impact of future 

betting rounds (known as implied odds in the terminology of poker theory). While 

those methods tend to be easy to compute, and are sufficient for some purposes, 

we will also need to develop better-informed metrics that take future betting rounds 

into account.

5.3.1.1 IHR, 7cHR, and EHR

The Immediate Hand Rank (IHR) is the relative ranking of a hand, on a scale from 

zero to one, compared to all other possible holdings at the current point in a game.
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IHR considers only the number of opponent hands that are currently ahead, behind, 

or tied with the player’s hand, and ignores all future possibilities. For two-player 

games, the formula is: IHR = (ahead + tied/2) / (ahead + tied + behind). Before 

the flop, there are 1225 possible two-card combinations for opponent hands. Af­

ter the flop cards are known, there are 1081 possible opponent hands. There are 

1035 combinations on the turn, and 990 combinations on the river. No inferences 

or assumptions are made about the opponent’s cards, so all hands implicitly have 

uniform probability in hand rank calculations.

The 7-card Hand Rank (7cHR) performs a complete enumeration of all possible 

future board cards, computing the hand rank on the river for each instance, and 

reporting the overall average outcome. On the river, IHR and 7cHR are equivalent, 

since there are no future cards to be dealt. On the turn, there are 46 possible cases 

for the river card (before considering the possible opponent holdings). Thus, 7cHR 

is an enumerated average of one-card futures with respect to 6-card Hand Rank 

(6cHR). On the flop, there are 1081 two-card futures to consider (order is not im­

portant in this case, since no folds are possible with this metric). Thus, 6cHR is an 

enumerated average of one-card futures with respect to 5-card Hand Rank (5cHR), 

and 7cHR is an enumerated average of two-card futures with respect to 5cHR. Be­

fore the flop, there are 2118760 five-card boards (ignoring order) to reach the river 

stage.

7cHR amounts to an unweighted enumeration of unweighted hand ranks. It can 

be computed efficiently through the use of clever caching techniques [4], Much 

greater efficiency was obtained by pre-computing look-up tables for all pre-flop, 

flop, and turn possibilities, mapping to and from canonical representatives to take 

advantage of suit isomorphisms to reduce storage requirements.

Since 7cHR is an average over all possible future chance outcomes, it contains 

a mixture of positive potential (the chance of improving to the best hand when 

behind), and negative potential (the chance of falling behind when ahead). How­

ever, it is not a particularly good balance of the two, because it implicitly assumes 

that all hands will proceed to a showdown, which is patently false. In practice, 

7cHR tends to overestimate the value of weak no-pair hands. For example, PI: 3<fc-
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2 Jl> Board: K4k-T9-7<£>, has 7cHR = 0.1507, based on two chances of making a 

small pair. Since the hand could be forced to fold on the turn, it is incorrect to as­

sume a two-card future. In general, we should only be looking forward to the next 

decision point, which is a one-card future.8 One possibility is to use 6cHR as an 

estimate of hand value on the flop. In practice, a better measure for Limit Hold’em 

is to take the average of 5cHR and 7cHR, because that captures the extra value 

from good two-card combinations. For example, PI: 3 9 -2 9  Board: Kd|k-T9- 

7<0, has 6cHR = 0.0729, but 7cHR = 0.1893 due to the possibility of two running 

hearts. Since hitting the first heart will provide a flush draw that almost certainly 

has enough value to proceed to the river, these indirect combinations have definite 

value. With respect to the DIYAT folding policy on the flop, we define the Effective 

Hand Rank (EHR) to be the average of IHR and 7cHR: EHR = (IHR + 7cHR) / 2.

With respect to the DIYAT betting policies (when the hand is sufficiently strong), 

we define EHR to be the maximum of IHR and 7cHR: EHR = m ax  (IHR, 7cHR). 

The reason the maximum is a better measure of hand value for this purpose is that a 

hand with high negative potential generally has a greater urgency to bet. In the ter­

minology of poker theory, a hand that degrades in strength as the game progresses 

{i.e., 7cHR < IHR) is said to have a high free-card danger. This means that there is 

a relatively high risk in not betting (or raising), because allowing a free draw could 

be potentially disastrous in terms of EV (such as losing the pot when a bet would 

have forced the opponent to fold).

Since 7cHR does not distinguish cases where the opponent does or does not 

bet, the assessment is somewhat optimistic in practice, even for one-card futures 

from the turn forward. For example, PI: 3 £ -2 £  Board: K 4 -T 9 -7 0  4Jft, has 

7cHR = 0.0620, but could easily be drawing dead against a one-pair hand or better. 

Making a small pair on the river will not be strong enough to bet, but will be strong 

enough to warrant a call. Thus, the hand stands to lose an additional two small bets 

whenever the opponent has a strong hand, but gain nothing when it is the best. In 

the terminology of poker theory, 7cHR does not adequately account for the reverse

8 This is especially imperative in No-Limit poker, where the opponent can apply much greater 
leverage with a large subsequent bet.
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implied odds in most situations.

Despite these drawbacks, 7cHR is a convenient metric that is simple to compute, 

and the shortcomings can be dealt with easily enough. The use of these metrics is 

illustrated in the detailed example of Section 5.3.4.

5.3.1.2 AIE and ROE

The all-in equity (AIE) is measured with the fraction of all future outcomes each 

player will win, given perfect knowledge of the cards held by all players.9 This 

fraction can be multiplied by the current pot size as a simple measure of (gross) 

pot equity -  the “fair share” of the current pot that each player is entitled to, based 

on the complete enumeration of future outcomes. For two-player Texas Hold’em, 

there are 44 cases to consider for turn situations, 990 cases for the flop, and 1712304 

cases for the pre-flop.

To convert the gross amount to the net gain or loss, we subtract the total amount 

invested from the current pot equity: Net = (AIE * p o ts i z e ) - in v e s te d .  For exam­

ple, if the pot size after the turn betting is 10 sb (5 sb from each player), and 11 out 

of 44 outcomes will win, zero will tie, and 33 will lose (written as +11 =0 -33), then 

our current net pot equity is Net = 0.25 * 10 - 5 = -2.50 bets. All further discussion 

of equity will be in terms of net pot equity.10

In general, AIE is an unrealistic measure of true equity because it does not con­

sider the effects of future betting. For example, a pure drawing hand  like PI: 3 9 -  

2 9  P2: A * -T *  Board: K*-T9-7<> A 9 , has AIE = 0.2045 (9/44) for PI, but has 

very favourable implied odds, since it stands to win several bets if a heart lands, 

and need not lose any additional bets if it does not improve. Conversely, a hand that 

will be mediocre in most of the outcomes will have reverse implied odds, and the

9 With the normal (table stakes) rules of poker, a player is said to go all-in when they commit 
their last chips to the pot. The player cannot be forced to fold, and is eligible to win the portion of 
the pot they have contributed to if they win the showdown. (If more than one active player remains, 
betting continues toward a side pot). Hence, from the perspective of the all-in player, there is no 
future betting, and the AIE is an accurate calculation of their true equity.

10 Note that measures of equity require the perfect knowledge hindsight view to assess the fraction 
of future outcomes that are favourable. In contrast, measures of hand strength are with respect to 
a player’s imperfect information view, and are used for realistic assessment, such as establishing 
baseline betting sequences.
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true equity will be less than the AIE metric would indicate. In cases where a player 

may be forced to fold to a future bet, using AIE can result in a gross over-estimate 

of hand value.

In contrast, roll-out equity (ROE) is based on an explicit enumeration of each 

future outcome, accounting for the betting in each case according to some standard 

policy. A simple estimate might assume exactly one bet per round contributed by 

each player. A better measure would account for folding of the worst hands, and 

raising of the best hands. The tools we will develop in the following sections es­

tablish a more refined betting policy that can be used for all future betting rounds, 

providing a much more accurate estimate of the true equity of each situation. We re­

fer to the basic implementation as AIE DIVAT, whereas the well-informed roll-outs 

give rise to the superior ROE DIVAT system.

5.3.2 DIYAT Overview

Poker decisions are extremely context sensitive. Each decision depends on every 

decision that preceded it, throughout the history of previous games, and especially 

with respect to the previous actions in the current game. The scope of the DIVAT 

analysis is a single complete betting round, encompassing all of the player decisions 

made between chance events. Since it is essential to keep the frame of reference 

as simple as possible, we simply ignore much of the relevant context of each situ­

ation. This is not as serious a limiting factor as it might seem, as will be shown in 

Section 5.4.

In particular, each player’s betting actions (and responses to the opponent) in 

previous betting rounds are treated as being essentially information free, and no 

inferences are made with respect to their likely holdings. Since the EHR metric 

is based on unweighted hand rank calculations, the distribution of opponent hands 

is implicitly assumed to be uniform. In a sense, each new round is taken as an 

independent event, with no memory of how the current situation arose, apart from 

the current size of the pot. However, the implications of bets and raises within a 

single betting round are taken into account. By largely ignoring the history of how 

each situation arose, we lose some relevant context, and possibly introduce error
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to the assessment. Fortunately, this does not completely undermine the analysis, 

because those errors apply to both players in roughly equal proportions, and thus 

the effects largely cancel out.

The core component of the Ignorant Value Assessment Tool is the DIVAT base­

line betting sequence. The baseline sequence is determined by folding policies and 

betting policies, applied symmetrically to both players. Each of the DIVAT policies 

is designed to use the simple metrics, while also compensating for some of their 

liabilities.

To understand DIVAT on an intuitive level, we need to consider the implications 

of deviations between the baseline sequence and the sequence that actually took 

place in the game. The baseline sequence represents a sane line of play between 

two “honest players”, free of past context, and devoid of any deceptive plays. If the 

total number of bets that actually went into the pot was not equal to the baseline 

amount, then the net difference in the resulting equities can be measured.

For example, when Alfred decided to try for a check-raise trap on the flop, he 

was taking a calculated risk in the hope of a higher overall payoff. If his deceptive 

play is successful, then more money will go into the pot than in the baseline, and he 

is awarded the equity difference on that extra money. If the ploy fails, then he will 

receive a penalty based on the lost equity (which happens to be the same amount in 

this case). Thus, his judgement in attempting a non-standard play is immediately 

endorsed or criticized from the net difference in equities.11 Although the obvious 

limitations in measurement and scope can produce a somewhat uninformed view of 

the ideal play in some cases, the net difference in equities is a highly meaningful 

characteristic most of the time.

Figure 5.1 provides pseudo-code for how the DIVAT Difference is computed. 

A step-by-step example is provided in Section 5.3.4, using all-in equity. Figure 5.2 

gives a recursive definition of the alternative roll-out equity calculation.

11 Since the net difference is relative, there is actually no distinction between a bonus for one 
player and a penalty for the other. The assessment is symmetric and zero sum in this regard.
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/* map each hand strength onto Make level 0-4, 
return kK kBf kBc bF bC bRc bRrC or bRrRc */

Baseline = Derive_Baseline_Sequence (PlHS, P2HS)

/* play forward to the end of the betting round, 
using baseline sequence and actual sequence */

Play_Sequence (Current_State, Baseline)
Baseline_Equity = Rollout_Equity (Pl_hand, P2_hand,

Board, round, baseline_potsize)

Play_Sequence (Current_State, Actual)
Actual_Equity = Rollout_Equity (Pl_hand, P2_hand,

Board, round, actual_potsize)

DIVAX_Difference = Actual_Equity - Baseline_Equity
Figure 5.1: DIVAT Difference pseudo-code.

5.3.3 DIVAT Details and Parameter Settings

The DIVAT folding policy is used to decide when a player should fold to an oppo­

nent’s bet. The folding policy is based on a quasi-equilibrium strategy, motivated 

by game-theoretic equilibrium strategies. Since the 7cHR metric is in the range 

zero to one, and is roughly uniformly distributed across that range on the river, the 

7cHR is compared directly to the game-theoretic optimal frequency for folding. 

The game-theoretic equilibrium fold frequency is an invariant that depends only on 

the size of the bet in relation to the size of the pot. If the bet size is bs and the pot 

size is ps at the beginning of the river betting round, and the opponent then bets, 

the optimal fold frequency is bs/(ps + bs). For example, if the pot size on the river 

is 8 sb and the bet size is 2 sb, the DIVAT policy would fold all hands with 7cHR 

below 2/(8  +  2) =  0.20, as an estimate of the bottom 20% of all hands.12

Prior to the river round, this simple method is not applicable. First, some weak 

hands may be worth calling for their draw potential. One can imagine a situation 

where it is correct to call a bet with any hand, because the pot is much larger than the

12 Folding more often than this would be immediately exploitable by an opponent who always 
bluffs, showing a net profit overall. Conversely, folding less often than the equilibrium value would 
be exploitable by betting with slightly weaker hands. Employing the game-theoretic optimal fold 
policy makes a player indifferent to the opponent’s strategy.
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Rollout_Equity (Pl_hand, P2_hand, Board, round, potsize)

/* base case: game ended with a fold */

if (P2 folded) then
return (net_outcome) 

else if (PI folded) then 
return (-net_outcome)

/* base case: game ended with a showdown */

if (round == river) { 
net = potsize / 2 
if (Pl_hand > P2_hand) then 

return (net) 
else if (Pl_hand < P2_hand) then 

return (-net) 
else /* tie */ 

return (0)

/* general case: average future roll-out equity */

sum = 0 
cases = 0 
round+t
for each chance outcome { 

cases++
Update (Board)
P1HS = GetHandStrengh (Pl_Hand, Board)
P2HS = GetHandStrengh (P2_Hand, Board)
Baseline = Derive_Baseline_Sequence (P1HS, P2HS) 
Play_Sequence (Current_State, Baseline) 
value = Rollout_Equity (Pl_hand, P2_hand,

Board, round, baseline_potsize) 
sum += value

}

expected_value = sum / cases 
return (expected_value)

Figure 5.2: Roll-out Equity (ROE) pseudo-code.
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size of the bet (giving extremely high pot odds). Clearly it is not correct in principle 

to fold at the same rate when there are still cards to be dealt. Secondly, as an average 

of future outcomes, 7cHR does not have a uniform distribution. Very low values 

(e.g., below 7cHR = 0.15 on the flop) do not occur, due to the ubiquitous possibility 

of improvement. Very high values are also under-represented, being vulnerable to 

a certain fraction of unlucky outcomes. Thirdly, the 7cHR metric is not especially 

well-balanced with respect to the extra expense of mediocre hands (reverse implied 

odds), as mentioned previously.

To account for these factors, we add an offset to the game-theoretic folding 

frequency, and use that as a fold threshold for the EHR metric. Thus, the formula 

for pre-river fold policies is: Fold Threshold = b s / (ps  +  bs) +  offset. The offsets 

were first estimated on a theoretical basis, then verified and tuned empirically. The 

empirical data based on millions of simulated outcomes is omitted in the interest of 

brevity. On the turn, the normal offset is +0.10, so the fold threshold in the previous 

example would be increased to hands below 7cHR = 0.30. On the flop, the normal 

offset is +0.075, thus hands would be folded below 7cHR = 0.275 when the initial 

pot is four bets in size. Prior to the flop, all hands have sufficient draw odds to see 

the three-card flop, so no offset is required.13

The DIVAT betting policy is used to decide how many bets and raises a hand 

is worth. It is strictly a bet-for-value policy, meaning that all bets and raises are 

intended to be positive expected value actions, with no deceptive plays (i.e., no 

bluffing with a weak hand, nor trapping with a strong one). Betting in direct pro­

portion to hand strength is a very poor poker strategy in general, because it conveys 

far too much reliable information to the opponent. Nevertheless, it serves as a rea­

sonable guideline of how many bets each player should wager in a given situation, 

all else being equal.

Although bluffing is an absolutely essential component of any equilibrium strat­

egy, the benefits of bluffing are exhibited as a side-effect, increasing the profitability 

of strong hands. The actual bluffing plays themselves have a net EV of zero against

13 The pre-flop offset could be negative, but it would make little difference in practice, since 
almost all cases will proceed to the flop.
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an equilibrium strategy (neither gaining nor losing equity). Since the DIVAT fold 

policies and betting policies are applied in an oblivious manner, the highly pre­

dictable behavior of the bet-for-value policy is not being exploited. In effect, the 

deceptive information hiding plays are taken as a given, and all players simply em­

ploy the ideal bet-for-value policy without consideration to the opponent’s possible 

counter-strategies. Since the DIVAT policy provides a realistic estimate of how 

many bets should be invested by each player, and is applied in an unbiased fashion 

to all players, the weighted gains and losses in hindsight EV are a low-variance 

estimate of the long-term differentials in decision quality.

As an example, if Player 1 holds a hand of value EHR = 0.70 and Player 2 holds 

an EHR = 0.90 hand, then the bet-for-value betting sequence for the round would 

be bet-Raise-call (bRc), indicating that each player will normally invest two bets on 

that betting round. In the reverse case, with PI = 0.90 and P2 = 0.70, the expected 

sequence would be bet-Call (bC), an investment of one bet each, because the second 

player does not have a strong enough hand for a legitimate raise. This demonstrates 

a natural asymmetry of the game, and reflects the inherent advantage enjoyed by 

the player in second position.

The M akel threshold is the strength needed to warrant making the first bet of 

a betting round. The Make2 threshold specifies the strength required to raise after 

the opponent bets. The Make3 threshold is the strength required for a re-raise. The 

Make4 threshold governs re-re-raises (called capping the betting, because no more 

raises are allowed).14 The betting thresholds are derived from the equilibrium points 

ensuring positive expectation. On the river, the betting thresholds must account 

for the fact that the opponent will only call with a hand that has some minimum 

value. A bet cannot earn a profit if the opponent folds, and the hand must win more 

than half of the time when it is called to have positive expectation. For example, 

if the opponent will call at the game-theoretic optimal frequency, then the range 

above that point is the relevant interval. A Makel threshold of 0.64 approximately

14 Some Limit games permit a fifth level, or even unlimited raises in two-player (heads-up) 
competition. This does not greatly affect the analysis, as situations with more raises are increasingly 
uncommon, and can be handled if necessary, even for the infinite case.
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Fold Offset Makel Make2 Make3 Make4
Pre-flop 0.000 0.580 0.825 0.930 0.965
Flop 0.075 0.580 0.825 0.930 0.965
Turn 0.100 0.580 0.825 0.930 0.965
River 0.000 0.640 0.850 0.940 0.970

Table 5.1: Standard (moderate) DIVAT settings.

corresponds to a policy of betting with the top 41.4% of holdings in that interval.15 

Prior to the river, there is tangible value in forcing the opponent to correctly fold 

a hand that has a small chance of winning (sometimes called the fo ld  equity). We 

handle this case by considering the appropriate interval to be the entire window 

from zero to one, lowering the thresholds by the corresponding ratio. A Makel 

threshold of 0.58 approximately corresponds to a policy of betting the top 41.4% of 

all possible holdings.

The standard betting thresholds for each round of play are listed in Table 5.1.

5.3.4 Basic AIE DIVAT Analysis of the Example Game

We now re-visit the example game presented in section 5.2.1 to illustrate the quan­

titative DIVAT assessment of all the decisions made by each player. This analysis 

uses a basic version of DIVAT, based on immediate hand rank, seven-card hand 

rank, and all-in equity. Although roll-out equity is clearly superior (being better- 

informed and provably unbiased), the all-in equity is simpler to compute and easier 

to follow. Table 5.2 presents the pertinent values in the analysis of each round of 

betting.

In the first round of play, Betty chose to make a deceptive play by raising with a 

hand that is unlikely to be the best. She may not have done this with the expectation 

of Alfred folding immediately, but the raise could create a misrepresentation that 

will have lasting effects much later in the game. Moreover, if she never raised with 

weaker hands, she would potentially be conveying too much information to her 

opponent. If Alfred had only called the raise, then there would be no net difference

15 The zero EV equilibrium points for a 4-bet maximum are derived recursively. The fractions 
corresponding to the Makel - Make4 thresholds are the top 12/29, 5/12, 2/5, and 1/2 of the interval, 
respectively. For unlimited raises, the zero EV equilibrium point is the top \/2  — 1 at all levels. The 
derivations are omitted for brevity.
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Board: <none> Board: < K * -5 9 -3 < »
IHR 7cHR EHR IHR 7cHR EHR

PI: A * -K * 0.9376 0.6704 0.9376 PI: A * -K * 0.9685 0.8687 0.9685
P2: 7 9 - 6 9 0.1604 0.4537 0.4537 P2: 7 9 - 6 9 0.0634 0.3798 0.2216
AIE = 0.6036 (+1029832 =7525 -674947) AIE = 0.7636 (+756 =0 -234 of 990)
LFAT change = +0.2073 LFAT change = +0.9600
DIVAT Baseline = SICrC | Actual Seq = SIRrC DIVAT Baseline = bC Actual Seq = kBrC
Round EV = +0.2073 [SICrC] Round EV = +0.5273 [bC]
Actual Equity = +0.6218 [SIRrC] Actual Equity = +2.6364 [kBrC]
Baseline Equity = +0.4145 [SICrC] Baseline Equity = +2.1091 [bC]
DIVAT Difference = +0.2073 sb DIVAT Difference = +0.5273 sb

Pre-flop Analysis Flop Analysis

Board: < K * -5 9 -3 0  T *  > Board: <K*-59-3C> T *  4 9  >
IHR 7cHR EHR IHR 7cHR EHR

PI: A * -K * 0.9411 0.8902 0.9411 PI: A * -K * 0.8576 0.8576 0.8576
P2: 7 9 - 6 9 0.0662 0.2146 0.2146 P2: 7 9 - 6 9 0.9955 0.9955 0.9955
AIE = 0.9091 (+40 =0 -4 of 44) AIE = 0.0000 (+0 =0-1 of 1)
LFAT change = +1.4545 LFAT change = -12.7273
DIVAT Baseline = bF | Actual Seq = bC DIVAT Baseline = bRc | Actual Seq = bRc
Round EV = 0.0000 [bF] Round EV = -4.0000 [bRc]
Fold Equity = 0.9091 [bF]
Actual Equity = +5.7273 [bC] Actual Equity = -11.0000 [bRc]
Baseline Equity = +5.0000 [bF] Baseline Equity = -11.0000 [bRc]
DIVAT Difference = +0.7273 sb DIVAT Difference = +0.0000 sb

Turn Analysis River Analysis

Table 5.2: Round-by-round analysis of the example game.

in equity compared to the DIVAT baseline, since the same amount of money would 

be invested by the two players. In the actual game sequence, Alfred correctly re­

raised, and is thus awarded a skill credit for the round, at the expense of Betty. Since 

Alfred’s hand will win about 60% of the future outcomes, he earns a small fraction 

of the two extra bets that went into the pot (Net = 0.60 * 2 - 1 = +0.20 sb).16

The flop was favourable for Alfred, giving him a strong hand, and increasing 

his chance of winning a showdown to 76%. He tried for a check-raise trap, which 

was successful, netting him another 0.53 sb in equity. If Betty had simply checked, 

she would have earned that amount instead of Alfred, and his gamble would have 

backfired.

16 In reality, the equity difference is not that large, because Betty will usually not continue with 
the hand when it does not connect with the flop, but stands to win several extra bets in the future 
if the flop is favourable. These positive implied odds are reflected in the roll-out equity, which 
indicates that Alfred’s advantage in this situation is actually much smaller, as shown in Table 5.3.
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The turn brings another good card for Alfred, increasing his expected share of 

the pot to 91 %. Since his check-raise on the flop may have revealed the true strength 

of his hand, he opts for the straightforward play of betting. Now Betty is faced with 

a difficult decision between calling with a weak hand, or folding when the pot is 

relatively large. Betty might have supposed that there was still a chance that Alfred 

had no pair, and that she could perhaps win if a 6 or 7 landed. The necessity of 

making informed guesses is the very essence of poker. In this particular case, that 

belief would be wrong, and folding would have had a higher expected return for 

Betty. The magnitude of the resulting misplay is accurately reflected by the DIVAT 

Difference for the round. 17 When a fold is involved, the DIVAT Difference is not 

the same as the baseline EV for the round. Here Betty loses a net of 1.64 sb from 

the actions of the round (bet-Call), but calling only loses 0.73 sb more than folding. 

The difference is due to the fo ld  equity that Betty refused to abandon (1/11 of the 

pot prior to the betting), which gives her partial compensation for the calling error.

The perfect 4V  for Betty on the river erases all of the good luck Alfred enjoyed 

up to that point. The LFAT swing indicates that the card cost him 12.73 sb, based 

solely on his pot equity after the turn betting. However, the damage is actually 

much greater, because he naturally continues to bet his strong hand and walks into 

a raise, losing an additional 4 sb.

Here we witness the dramatic difference between the perfect knowledge hind­

sight view of EVAT, and the more realistic DIVAT view. The EVAT baseline se­

quence for the final round of betting would be check-Bet-fold, which is quite ab­

surd with respect to the imperfect information reality. The DIVAT baseline of bet- 

Raise-call is much more reflective of real play. Since Alfred did not compound the 

problem with a re-raise, he loses only the expected amount from the river betting, 

and thus does not receive any penalty. If he had chosen to play check-Bet-call (per­

haps based on a telling mannerism by Betty), he would in fact gain in the view of 

DIVAT, because he lost less than was expected.

Not only is the DIVAT baseline more reasonable, it is also clear that the EVAT

17 We again see the effects of favourable implied odds when a 4 lands, which out-weigh the 
reverse implied odds when a 6 or 7 lands. The slightly better prospects after the calling error are 
captured by the roll-out equity analysis.
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A * -K *  7 9 -6 9  K4-59-3<0 T *  4 9  
Bet sequence: SIRrC/kBrC/bC/bRc

Round LFAT RndEV DIVAT
Pre-flop +0.207 +0.207 +0.207

Flop +0.960 +0.527 +0.527
Turn +1.455 +0.909 +0.727

River -12.727 -4.000 0.000

Total DIVAT Difference = +1.462 sb

A * -K *  
Bet seqi

Round

7 9 -6 9  K 
lence: SIR

LFAT

♦ -5 9 -3 9
rC/kBrC/1

RndEV

T * 4 9
jC/bRc

DIVAT
Pre-flop

Flop
Turn

River

Total DI

+0.207
+0.960
+1.455

-12.727

VAT Diffe

+0.029
+0.523
+0.909
-4.000

rence = +1

+0.029
+0.523
+0.636

0.000

.189 sb

Example Game AIE DIVAT summary Example Game ROE DIVAT summary 

Table 5.3: Full-game analysis of the example game (AIE and ROE).

analysis is statistically biased, because it is preferential toward one particular style 

of play over another, apart from EV considerations. As we have seen, it is simply 

impossible to play the river betting round without frequent misplays, with respect 

to the EVAT perfect information baseline. This means that a player who employs 

a conservative style (folding in neutral or marginal EV situations) will be viewed 

more favourably than a player with a liberal style (calling in those same situations), 

simply because the conservative player gets to the river round with a marginal hand 

less often. In fact, if one wanted to maximize the EVAT opinion of one’s play, it 

would be wise to sacrifice slightly positive expectation situations on the flop and 

turn, simply to avoid being measured against an impossible standard on the river. 

The irrational EVAT baseline has the same undesirable effect on earlier rounds, but 

it is most pronounced on the river, where the effect is not dampened by averaging 

over future outcomes. In contrast, the DIVAT baseline provides one standard way to 

play the hand for all cases, without regard to the opponent’s actual (hidden) holding.

The round-by-round LFAT transitions cannot easily be combined to determine a 

net effect on the game as a whole. They cannot simply be summed, since instances 

of early good luck can be wiped out by a final reversal, as in the example game. 

The LFAT value can, however, provide some relevant context when interpreting the 

round-by-round analyses.
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The DIVAT analyses of each round are treated as being essentially independent 

of each other, and can be summed to give the net difference for the complete game. 

Indeed, the sum is generally more meaningful than the individual rounds in isola­

tion, because a player may make a deliberate misplay on an early betting round in 

order to induce larger errors on the turn or river. For example, a player may slow- 

play by only calling with a strong hand on the flop, intending to raise on the turn 

when the bet size is larger. Conversely, a player may raise fo r  a free-card  with a 

drawing hand, intending to check on the turn after the opponent checks. All else 

being equal, the success or failure of the tactic will be reflected in the total DIVAT 

Difference for the game.

Table 5.3 gives a summary for the complete example game. The corresponding 

summary for the better-informed and theoretically sound ROE DIVAT is given for 

direct comparison. The ROE DIVAT procedure has been formally proven to be 

statistically unbiased by Zinkevich et al. [16].

Overall, we can conclude that Alfred did better than expected with the cards and 

situations that arose in this game. In hindsight, he made better choices than Betty, 

worth a total of about +1.46 small bets in terms of long-term expected value. The 

fact that Alfred actually lost 11 sb on the hand is not particularly relevant, and only 

serves to occlude the most important considerations.

Of course, this is only a single game, and as previously noted, Alfred’s hand was 

somewhat easier to play well than Betty’s. The non-independence of consecutive 

games should also be kept in mind. In the wider scope, Betty’s play might have been 

entirely appropriate, and might earn some compensation in future games. Long­

term plans taking effect over many games are also captured by the running total of 

DIVAT Differences over the course of a match. Given many examples over a series 

of games, the accumulated DIVAT Differences provide a much more accurate, low- 

variance estimate of the eventual win rate for one player over another.

5.3.5 Smoothing and Using Equilibrium Baselines

Further refinement to DIVAT can be obtained by averaging the results of several 

runs, using different parameter settings for each. For this purpose, we defined nine
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sets of folding parameters that reflect styles of play ranging from very loose to very 

tight; and defined nine sets of betting parameters that reflect styles of play ranging 

from very aggressive to very conservative. In our experiments, we normally run a 

sweep of five settings from loose/aggressive to tight/conservative.18

This provides a natural smoothing of the DIVAT Differences over the short term. 

For example, a situation might arise that is close to the borderline between bet-Call 

and bet-Raise-call. Over the five separate runs, the baseline might be bet-Call four 

times and bet-Raise-call once. Thus, instead of a single threshold with a jump from

2.0 bets to 4.0 bets, we have a smoother transition with five smaller steps, yielding 

a jump of 2.4 bets on average.19

In effect, the average of several runs is a hedge, being less committal in situa­

tions where the best line of play is more debatable. This can be especially useful 

over the range of fold thresholds, because the difference in EV between folding 

and continuing with the hand can be very large (since the whole pot is at stake, 

rather than fractions of a bet). However, over the course of many games the average 

of several runs will simply converge on the DIVAT Difference line for the median 

(moderate style) parameter settings. Thus, smoothing is primarily useful for short 

matches.

In imperfect information games where an equilibrium solution is known (or 

can be accurately estimated), the ideas behind DIVAT can be used in a manner 

analogous to smoothing. For example, in the case of poker, suppose we have a 

weak hand on the final round of betting, which would be checked in the DIVAT 

baseline. If we know that the bluff frequency in this situation should be 10%, then 

the corresponding baselines for betting would be computed, and would contribute 

10% of the total weight for actions made with a weak hand. The pertinent regions

18 Although the fold parameters and betting parameters could be varied independently, the num­
ber of runs would grow multiplicatively, without much benefit. For the same reason, we keep the 
parameter settings for each of the four betting rounds consistent, and apply the same settings for 
the actions of both players, rather than mixing them. The intention is to aim for a range of dis­
tinct perspectives over a span of reasonable styles, rather than an exhaustive enumeration of many 
possibilities.

19 The weight of each run need not be equal. Since the median value is deemed to be the most 
reasonable, the weights for five runs could be 1-2-3-2-1 instead of 1-1-1-1-1; or could follow the 
binomial distribution 1-4-6-4-1 to reflect a Gaussian dispersion of styles over the specified range.
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of the strategy space are not continuous (unlike smoothing, which was done over 

a continuous range of values), but that is of no consequence for determining the 

average EV outcome for a given situation. Thus, knowing an equilibrium strategy 

provides us with an appropriate way to compute a weighted average of possible 

actions (or action sequences).

We have not attempted to use a full quasi-equilibrium strategy to obtain a col­

lection of DIVAT baselines to be averaged. However, it remains an interesting 

possibility for future work.

5.4 Experiments

The Ignorant Value Assessment Tool is based on relatively simple methods for hand 

strength measurement, betting policies, and folding policies. During development, 

each method was empirically tested and refined iteratively, since the components 

are mutually dependent to some degree.

For example, the folding policy was tuned to be consistent with the strengths 

and liabilities of the simplistic IHR and 7cHR hand strength metrics. In the case 

of 7cHR, it was observed that reverse implied odds were not being given enough 

consideration, resulting in folding policies that were too liberal when cards were 

still to be dealt. The correction was to add an offset to the game-theoretic threshold 

value.20 The value of this offset was determined empirically using roll-out simu­

lations to find the best practical setting for achieving a neutral outcome, thereby 

estimating the game-theoretic equilibrium point. The experimentally derived offset 

was consistent with the predicted offset based on expert calculations and intuition.

Each series of experiments was repeated on at least seven different matches, 

involving a wide range of playing styles and skill levels. This is necessary be­

cause the conditions of the match dictate the frequency and type of situations that 

will arise. The computer players ranged from simple rule-based algorithms to the 

strongest known game-theoretic and adaptive programs. The human players ranged 

from intermediate strength to world-class experts.

20 Actually, the linear adjustment involved both a multiplier and an offset (y  =  m x +  b), but a 
multiplier of 1.0 was found to be sufficient, leaving only the constant offset as a correction factor.
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Figure 5.3: High variance in two A lw a y s_Ca l l  v s  ALWAYS_RAISE matches.
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To make the presentation of experimental results easier to follow, we will limit 

ourselves to only five types of matches. The first type is between two extremely 

simple players: A l w a y s _Ca l l  and A l w a y s _Ra i s e . Although both algorithms 

are extremely weak as poker players, there are several advantages to studying this 

contest, because it holds many variables constant. The exact betting sequence is 

always known: if A l w a y s _Ra i s e  is the first player, the betting sequence is bet-Call 

(bC) for every round; if ALWAYS_CALL is the first player, the betting sequence is 

check-Bet-call (kBc) for every round. There is never a fold, so every betting round 

is involved in every game. The final pot size is always 14 sb, and the net outcome 

for one player is either +7 sb, -7 sb, or zero (a tie will occur approximately 4.06% 

of the time). The long-term expected value for each player is exactly zero, since 

neither player exhibits superior skill. The outcome of each game is similar to coin­

flipping, with occasional ties. The natural variance can easily be determined for 

these conditions. Simulation experiments were run for 25 million games, showing 

a variance of 47.010, for a standard deviation of ±  6.856 small bets per game (sb/g). 

The empirical variance for each 100,000-game match agreed, also showing ±  6.856 

sb/g.

This gives us a frame of reference for the natural fluctuations on the amount 

won or lost during the match (the “money line”, labeled as “Bankroll”). The 

±  6.856*x/sqrt(x) guide-curves indicate the one standard deviation boundary on 

the total outcome after x  games. The 95% confidence interval would correspond 

to roughly two standard deviations. The variance in real matches strongly depends 

on the styles of the two players involved, but ±  6 sb/g is typical.21 When complete 

data is available, we use the actual measured variance during the match for more 

accurate guide-curves.

Figure 5.3 shows two separate matches of 100,000 games between A l w a y s -C a l l  

and A l w a y s  .R a i s e . The money line in these two matches nicely illustrates just 

how pernicious the problem of variance can be. In the first match, there is every ap­

pearance that one player is outplaying the other, by an average of more than +0.025

21 Many games will end early when one player folds, but those frequent small net outcomes (rt) 
are offset by the occasional large outcomes, which carry greater weight toward total (n 2) variance.
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small bets per game (sb/g). Although there are some fluctuations along the way, 

they are small enough to give the impression of a steady increase. This is extremely 

misleading, since we know that the long-term average is exactly zero. With the aid 

of the guide-curves, we can see that the money line strays outside the boundary of 

one standard deviation, but is still easily within the realm of possibility. In other 

words, this is not a severely abnormal outcome, and it is not statistically significant 

at the 95% confidence interval.

In the second match (generated with an independent random number generator, 

due to our own suspicions), we again see a high-variance event with a potentially 

misleading conclusion.22 Another feature to notice about this second match is the 

dramatic rise from about -650 sb at 38,000 games, to almost +2000 sb by 48,000 

games. During that 10,000-game span (which is much longer than most competi­

tive matches) one player demonstrates an enormous win rate of +0.25 sb/g that is 

entirely due to random noise.

The second type of match we will examine is a self-play match, with the game- 

theoretic equilibrium-based program P s O p t i 4  playing both sides. This player is 

stationary {i.e., uses a strategy that is randomized but static, is oblivious to the 

opponent, and does no learning or adaptation), so clearly the long-term expectation 

is exactly zero. However, unlike the A l w a y s .C a l l  v s  ALWAYS_RAISE match, the 

play is realistic -  the player folds bad hands, raises good hands, bluffs, and attempts 

to trap the opponent.

The third match type is between P s O p t i4  and P s O p t i6 . The newer P s O p t i 6  

plays a substantially different style, but loses to the older version in head-to-head 

competition.23 Both players are static, so learning effects are eliminated. Since 

we want to compare the DIVAT estimate to the long-term EV, this match and the 

self-play match were extended to 400,000 games, concatenating the first 100,000-

22 These matches were not selected after the fact -  they were the first two matches generated.
23 Note that this does not mean that PsOpti4 is a better player than Ps Opti6. The result of any 

one match-up is not necessarily indicative of overall ability. By analogy, consider a pseudo-optimal 
Rock-Paper-Scissors player that chooses Rock 30% of the time, Paper 40%, and Scissors 30%. The 
maximum exploitation best response (+0.10 units per game) is achieved by Always_Scissors, but that 
is one of the worst possible strategies in general. Poker results are highly non-transitive (e.g., A beats 
B beats C beats A) in practice. Nor is there a simple cycle -  it is a complex wreath of dominance 
relationships between styles.
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game series above with three new 100,000-game series (each generated with a dif­

ferent random seed). The same series of cards was then used to play a duplicate 

match, with the players occupying the reverse seats (note that the self-play match is 

self-duplicate). Thus, 800,000 distinct games were played between P sO p ti4  and 

P sO pti6 , with each 400,000-game match being directly comparable to the other. 

The hand-by-hand results were averaged to obtain the Duplicate Money Average 

and the Duplicate DIVAT Average lower-variance estimators, for comparison with 

the single-sided DIYAT.

The fourth type of match we examine here is a man versus machine match be­

tween world-class expert “thecount” (Gautam Rao), and the first game-theoretic 

equilibrium-based program PsOp t iI. This match was featured in our 2003 pa­

per [3], The 7030-game contest again featured large swings, which we now know 

were almost entirely attributable to stochastic noise, with each player having alter­

nating phases of extreme luck.

A match involving real players is significantly different from a match played 

under the sanitized conditions of the laboratory. Here we witness a clash between 

radically different approaches to the game. Top-flight experts change their style 

rapidly and frequently, as the game conditions dictate. The human player avoids 

being predictable, explores new tactics, and learns over time how best to exploit 

the opponent. In this match, “thecount” started with a hyper-aggressive style that is 

highly effective against most human opponents, but was counter-indicated against 

the program. After shifting to a more patient approach, he enjoyed more success. 

Much of that was due to fortuitous cards and situations that coincidentally occurred 

at around the same time; but the DIVAT analysis is able to extract signal from the 

wash of noise, revealing the overall learning curve and the positive impact of that 

major shift in style.

The final match we will examine is between P s O p t i4  and the adaptive program 

V e x b o t . V e x b o t  is the strongest poker program to date, having defeated every 

computer opponent it has faced, and often provides a serious threat to top-flight 

human players [2, 5], However, the learning systems embedded in the V e x b o t  

architecture are slow and imperfect. They often require many thousands of games
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to train, and frequently lead to local minima that are well below the maximum 

exploitation level of the given opponent. The DIVAT analysis reveals much more 

about the changes of V e x b o t  over time, and again shows how misleading the basic 

money line can be.

The experiments shown in this section address: (1) the correctness and variance- 

reduction properties of DIVAT, (2) the ability to reveal learning curves and changes 

in style for non-stationary players, (3) the robustness of the DIVAT Difference line, 

and (4) the usefulness of the round-by-round analysis to gain extra insights into 

match results. Many other experiments were conducted during the development of 

the DIVAT system. In the interest of brevity and focus, we do not show experimen­

tal results pertaining to: (1) system components and parameter tuning (other than 

robustness), (2) the significant statistical bias of the (perfect information) EVAT 

view, (3) other reduced-variance estimators arising out of the DIVAT analysis (such 

as Money minus Dcash), (4) asymmetric assignments of credit and blame to each 

player (such as RedGreen points), (5) comparison of ROE and AIE formulations of 

DIVAT (ROE DIVAT is used throughout), and (6) smoothing by averaging over a 

range of parameter settings. Some of these experiments may be addressed in future 

updates of the full technical report [6], and the M.Sc. thesis of Morgan Kan [9].

5.4.1 Correctness and Variance Reduction

We now present a series of experiments to verify empirically that the DIVAT Differ­

ence is an unbiased estimate of the long-term expected value between two players. 

We will measure the overall reduction in variance in each case.

5.4.1.1 A l w a y sX a l l  versus A l w a y s_Ra is e  M atch

Figure 5.4 shows the ROE DIVAT Difference line for the two 100,000-game matches 

between A l w a y s X a l l  and A l w a y s _Ra i s e . In each case, the DIVAT Difference 

line hovers near the zero line, showing much better accuracy than the money line, 

and showing no apparent bias in favour of one player over the other. The standard 

deviation for the money line is ±  6.856 sb/g in each case (as expected), whereas the 

measured standard deviation for the DIVAT Difference lines are ±  2.934 sb/g and
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±  2.917 sb/g, respectively, for an overall reduction in variance by a factor of 5.50.

Figure 5.5 shows the results after extending the first match for an additional

300,000 games. Following the steady climb over the first 100,000 games, the 

money line displays a natural regression toward the mean, but later shows a re­

lentless down-swing, reaching about -1.4 standard deviations. This graphically 

demonstrates that the full statistical interval is indeed used over the course of nor­

mal stochastic events.

There appears to be a positive correlation between the money line and the DI­

VAT Difference line (particularly over the last half of the second 100,000-game 

match, and in the middle regions of the 400,000-game series). This is expected, 

because the two measures are not completely independent. In general, strong hands 

are easier to play correctly than weak hands, because the EV consequences of an 

incorrect raise (or lack thereof) are generally smaller than the EV consequences of 

an incorrect fold (or lack thereof).

In this match, A lways_Ra ise  makes frequent errors by betting instead of 

checking with weak hands. The Always_CALL player makes frequent errors by
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checking instead of betting strong hands (in first position), but those errors are ef­

fectively forgiven when the opponent bets. The A lways.C all  errors of calling 

instead of raising with especially strong hands are distinct, as are the large EV er­

rors of calling instead of folding with very weak hands. We know that the weighted 

sum of all misplays will exactly balance out, because the overall EV difference 

between these two players is zero.

Also in Figure 5.5, we show the DIVAT Cash (Dcash) baseline, which is the 

amount that would be won or lost if both players followed the DIVAT baseline 

policy for the entire game. Since Dcash is a reasonable estimate of the normal 

outcomes, we can see that Money minus Dcash would be a decent lower-variance 

estimator of the difference in skill, and is certainly much better than the money line 

alone. However, this estimate has a higher variance than the DIVAT Difference, is 

more strongly dependent on the stochastic luck of the card outcomes, and can only 

be applied to complete games. The Dcash line is also biased in favour of styles 

that are similar to the (overly honest) DIVAT baseline, whereas the ROE DIVAT 

Difference is a provably unbiased estimator.

The identical sequence of 400,000 deals was used for subsequent experiments, 

to eliminate sampling differences. We include the Dcash line in those graphs to 

provide a common frame of reference.

5.4.1.2 PsOp t i4 Self-play Match

Figure 5.6 shows the results for the P s Op t i4 self-play match. Here the Bankroll 

line represents the actual amount of money won or lost (in sb) when this particular 

player plays both sides of each hand. We can observe that the self-play money line is 

much closer to the Dcash line than it was for the essentially random A lw a y s-C all  

vs A lw ays_Ra ise  match, because the play is much more realistic. Nevertheless, 

the final Bankroll difference is about 35% greater in magnitude. This is also to be 

expected, because the baseline reflects a highly conservative “boring” style of play. 

Ps O pt i4 has a relatively low-variance style itself, as evidenced by the measured 

standard deviation of “only” ±  4.691 sb/g. The measured standard deviation of the 

Money minus Dcash estimator is ±  2.825 sb/g in this match. The measured standard
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Figure 5.6: DIVAT Difference analysis of P sOpt i4 self-play match.

deviation of the DIVAT Difference is ±  1.863 sb/g, which is a 6.34-fold reduction 

in variance from the self-play money line.24

In practical terms, this means that routine 40,000-game matches could be re­

placed with 6000-game matches having comparable variance. More to the point, 

the same 40,000-game matches can discern between two players who are nearly 

three times closer to each other in skill level, instead of requiring matches of more 

than a quarter million games. With 95% confidence, a 40,000-game match distin­

guishes differences of roughly 0.06 sb/g, which represents a substantial difference 

in skill (such as a professional player against a mediocre player). Being able to 

discern a difference of 0.02 sb/g (such as the difference between a good player and 

a very good player) is much more useful in practice.
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Figure 5.7: DIVAT Difference analysis of P s Op t i4 vs Ps O p t i6 duplicate match.
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5.4.1.3 P s O p t i4 versus P s O p t i6 Duplicate Match

Figure 5.7 shows the results for the duplicate match between P s O pt i4 and P s Op t i6 

over the same 400,000 deals. All graphs are shown from the perspective of the 

player in the North seat,25 so Ps O pt i4 wins both sides of this duel by a convincing 

margin of +0.112 sb/g. In both passes, the money line dips below the DIVAT Dif­

ference line at about the 300,000-game mark, because of the huge swing of luck in 

South’s favour at that stage in the match.

The Bankroll difference is not a very accurate measure of skill difference even 

after 400,000 games. On the North side of the cards P sO p t i4 wins at +0.104  

sb/g, compared to +0.120 on the (stronger) South side; whereas the DIVAT estimate 

is within ±  0.0012 sb/g in either case. Using the Dcash line as a correction of 

the money line would considerably improve the accuracy. However, the DIVAT 

Difference is strictly more powerful for predicting future outcomes.

The measured standard deviations for Bankroll are ±  4.750 and ±  4.747 sb/g 

respectively. For Money minus Dcash they are ±  2.948 and ±  2.945 sb/g. For the 

DIVAT Difference, they are ±  1.929 and ±  1.932 sb/g respectively, for an overall 

reduction in variance by a factor of 6.05.

Note that the measurements for the two halves of this duplicate match are very 

consistent, because 400,000 games is sufficiently large for the number and variety 

of opportunities to be reasonably well balanced. Over a shorter duration, one side 

could enjoy more good opportunities, while facing relatively few difficult situations.

Figure 5.8 shows the results after combining the outcomes of each North and 

South pair of duplicate games. Both the Duplicate Money Average and the Du­

plicate DIVAT Average are good low-variance predictors of future outcomes, and 

match each other almost exactly over the long term.26 The measured standard de-

24 The DIVAT Difference line does not cling tightly to the zero line in this graph, but the meaning­
ful indicator of EV correctness and low variance is simply the levelness (i.e., horizontal flatness) of 
the line. Once it drifts away from zero, it should persist at the same constant difference. Obviously 
the DIVAT Difference line is much flatter than the money line overall.

25 The North seat still alternates between first and second position (large and small blind). By 
convention, the first named player is North, having the big blind on all odd numbered hands and the 
small blind on all even numbered hands.

26 The duplicate Dcash line shown in the figure is not exactly zero because of the way it is 
computed. In cases where a player folds, the roll-out equity is computed by applying the DIVAT
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Figure 5.8: Duplicate Money Average and Duplicate DIVAT Average.

viation for Duplicate Money Average is ±  1.643, for a reduction in the normal 

variance between these two (fairly conservative) players by a factor of 8.36. The 

measured standard deviation for Duplicate DIVAT Average is ±  1.178, for a 16.25- 

fold reduction in variance, making it the lowest variance estimator we currently 

have.

Figure 5.9 zooms in on the first 1000 games of the pairwise duplicate games in 

Figure 5.8. Here, we can see the limits of the discrimination power for each metric. 

The guide-curves show the one standard deviation bound for the Duplicate Money 

Average (at ±  1.643), and the narrower bound for the Duplicate DIVAT Average (at 

±  1.178).

After 200 games, neither technique has detected a difference in skill between  

the players, with a net difference close to zero. It is fair to say that P s O p t i6 had 

som e “luck”, in that the most telling skill differences were not yet exposed during 

that phase.

After 300 games, the Duplicate DIVAT Average is beginning to favour P s O p t i4

baseline to all future chance outcomes, and taking the average. Thus, if one player folds while the 
other continues with the hand, their Dcash lines will usually be slightly different.
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Figure 5.9: Duplicate Money Average and Duplicate DIVAT Average over the first 
1000 games.

(about +1.5 standard deviations), whereas the Duplicate Money Average is still 

inconclusive. There is a sharp increase in both metrics between 300 and 400 games, 

where P s Opt i4 is able to exhibit its superior skill quite a bit faster than usual. The 

non-zero duplicate Dcash line gives us a hint that some of that difference may be 

due to the folding behaviors of the two players (either PsOp t i6 folds too easily to 

bluffs, or does not fold correctly when it is behind).

After 400 games, the Duplicate DIVAT Average is at about +3.4 standard de­

viations, and would conclude with more than 99% confidence that PsOpt i4 is the 

better player heads-up against P sOpt i6. The Duplicate Money Average cannot 

make the same conclusion even at the 95% confidence level. The same statements 

are still true after 1000 games.

This example happened to be quite favourable to the DIVAT method. In gen­

eral, to reach the 95% confidence interval for this highly unbalanced (+0.112 sb/g) 

contest, the Duplicate Money Average would require about 870 games, while the 

Duplicate DIVAT Average would need about 450 games. For a live match, the nor­

mal single-sided DIVAT Difference would require about 1200 games, whereas the
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simple Bankroll difference would need about 7260 games on average.

A natural question is whether the two approaches are somewhat orthogonal to 

each other, and could be combined for an even sharper resolution. Unfortunately, 

we can easily deduce that there must be a substantial amount of overlap between 

the two techniques. As mentioned previously, the single-sided DIVAT baseline is 

especially useful for discerning the “normal” outcome when a strong second-best 

hand loses many bets to an even stronger hand. The Duplicate Money Average 

achieves a similar neutralization, because both players are given the opportunity to 

play the weak side and strong side of that situation.

Moreover, if one player gained on the DIVAT scale by losing less on the weaker 

side, that superior skill could also be reflected in the Duplicate Money Average by 

showing a net profit over the pair of duplicate games. In the case of a successful or 

unsuccessful bluff, we can see that the player is given full credit or full blame with 

either the DIVAT measure or the duplicate result.

For a pair of duplicate games, noise is introduced into the result after the actions 

of the two players diverge. In particular, when one player folds while the other 

continues with the hand, all chance outcomes from that point forward are subject to 

the usual effects of stochastic noise.27 Directly measuring the loss or gain of equity 

from each decision yields a more stable estimate.

5.4.2 Learning Curves for Non-stationary Players

We now show how the DIVAT analysis can provide powerful insights into the 

changing behavior of non-stationary players, which includes virtually all strong 

human players, and the most advanced programs.

5.4.2.1 T he 2003 “thecount”  versus P s O p t i I  M atch

Figure 5.10 compares the money line to the ROE DIVAT Difference line for the 

2003 match between “thecount” and P sO p t iI .28 We observe a similar improve-

27 We see a similar source of variance in the Money minus Dcash estimator, whenever the assumed 
fold policy differs from actual events.

28 Note that a complete-knowledge log is required for this analysis, including all cards folded 
by either player. The match was played on our online poker server, which maintains complete- 
knowledge logs of all games played.
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Figure 5.10: DIVAT Difference analysis of “thecount” vx Ps O p t iI.

ment from ±  5.756 sb/g standard deviation for the money line to ±  2.109 sb/g for 

the DIVAT Difference, for a 7.45-fold reduction in variance. The Money minus 

Dcash estimate had a standard deviation of ±  3.417 sb/g.

Overall, the DIVAT Difference line indicates that “thecount” exhibited a small 

advantage against Ps O pti 1 over the course of this match. However, it also suggests 

that the actual win rate should have been less than one quarter of what the money 

line indicates. In view of the high noise element, and given the estimated difference 

of only +0.01 sb/g, it is not difficult to imagine that the final result could have been 

dominated by short-term luck.

If we trust the DIVAT analysis, it tells a very different story of how the match 

progressed. First, it appears that P s O p t i I held a slight advantage in play early in 

the match. This is consistent with the comments “thecount” made after the match. 

He used an extremely aggressive style, which is effective against most human op­

ponents (who can be intimidated), but turned out to be counter-indicated against 

this program. P s O pti 1 won many games during that phase by calling to the end 

with relatively weak hands, frequently beating a bluff.

The human expert then went on an extended winning streak, but the DIVAT
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line suggests that the play was actually close to break-even during that phase. The 

dramatic collapse that occurred before game 3000 was almost entirely due to bad 

luck. However, that turnaround did cause “thecount” to stop playing, and do a 

complete reassessment of the opponent. He changed tactics at this point of the 

match, toward a more conservative style.

The DIVAT analysis indicates that this was a good decision, despite the fact that 

he continued to lose due to bad luck. Then the cards broke in favour of the human 

again, but his true advantage does not appear to have changed by much. Toward 

the end of the match, the two players appear to be playing roughly on par with each 

other. Regardless of whether this is a perfectly accurate synopsis of the true long­

term expected values, one point is irrefutable: that it is almost impossible to discern 

the truth from the money line alone.

Interestingly, the DIVAT Difference line also appears to reveal the learning 

curve of “thecount” as the match progresses. The general upward bend of the DI­

VAT win rate suggests that the human expert was continuously adapting to the pro­

gram’s style, and learning how to exploit certain weaknesses. Ps Opti 1 is not an 

easy opponent to learn against, because it employs a healthy mixture of deceptive 

plays (bluffing and trapping). Nevertheless, it is a static strategy that is oblivious to 

the opponent, and is vulnerable to systematic probing and increasing exploitation 

rates over time.29 The exposition of learning curves is one of several unplanned 

bonuses from the DIVAT analysis technique.

5A.2.2 The VEXBOT versus P sO p ti4  Match

Figure 5.11 shows the DIVAT Difference line for the match between V exbot  and 

Ps Opti4. The measured standard deviation is ±  5.611 sb/g for the money line, 

±  3.671 sb/g for Money minus Dcash, and ±  2.696 sb/g for the DIVAT Difference, 

reducing variance by a factor of 4.33.

In this experiment, the adaptive program took a particularly long time to find a 

winning counter-strategy, and the strategy it finally adopted secured only a modest

29 As a point of reference, the author’s win rate was approximately +0.3 sb/g against Ps Op t iI, 
after extensive experience. Against subsequent pseudo-optimal computer opponents, the author’s 
win rate has been in excess of +0.4 sb/g.
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Figure 5.11: DIVAT Difference analysis of VEXBOT v.s P s O p t i4.

win rate. In other runs, V e x b o t  discovered a much more effective exploitation 

much more quickly (often after only a few thousand hands).30

After 300,000 games, the money line is inconclusive (a little over one standard 

deviation), and close to meaningless (having come from minus one standard devia­

tion, which could be due to normal drift, as we have seen in previous matches). In 

contrast, the DIVAT analysis is quite certain that VEXBOT is exhibiting an advan­

tage. Moreover, the DIVAT line indicates that V e x b o t  found the counter-strategy 

after about 80,000 games, whereas the money line does not start to run parallel until 

about 130,000 games. The 50,000-game lag phase is yet another demonstration of 

the misleading nature of high-variance stochastic outcomes.

Figure 5.12 ignores the early learning phase of V e x b o t  by removing the first 

130,000 games of the match. This re-calibrated view overlays the two lines, and 

shows that the win rate was over +0.03 sb/g from that point forward, while the

30 This illustrates another limitation of the duplicate match system. VEXBOT is capable of dis­
playing many different personalities, from wildly aggressive and over-optimistic to passive and 
sullen. Since the sequence of cards on the opposing side provides a very different learning ex­
perience, there is no way of predicting which V exbot  will show up in each run, thus nullifying 
some of the beneficial effects o f opportunity equalization.
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Figure 5.12: DIVAT Difference analysis over the last 170,000 games.

DIVAT total was over +0.04 sb/g.31 Furthermore, there is evidence of a reversal at 

about 80,000 games (210,000 games in total), where V e x b o t  appears to slip into 

a less effective counter-strategy.32 V e x b o t  continues to learn throughout a match, 

albeit at a decreasing rate because of “inertia” from the full match history. We can 

see from the slope of the DIVAT line that V e x b o t  was winning at about +0.05 

sb/g during the middle stages, but fell off to about +0.033 sb/g over the final 90,000 

games.

5.4.3 Robustness of DIVAT Difference

Over the course of many experiments, it was observed that even radical changes 

to the underlying policies and parameters had relatively little effect on the DIVAT 

Difference line. This indicates that it is a robust measurement -  it is not overly 

sensitive to the exact construction of each component, nor to the precise settings of

31 Note that we have committed the statistical crime of selecting our endpoints, but only to serve 
an illustrative purpose.

32 As pointed out by Martin Muller, this speculation could be verified by taking snapshots of 
V ex bo t’s complete strategy at various points in the match, and running them against the static 
P sOpti strategy to determine the actual win rate.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



parameters.

Figure 5.13(a) shows three runs of DIVAT, holding all parameters constant ex­

cept for the fold policy on the turn. These are varied to reflect a loose style (calling 

with rather weak hands that may or may not have any chance of winning), a tight 

style (surrendering in all borderline cases), and a normal well-balanced style be­

tween the two extremes. Simulations of 100,000 complete roll-out turn scenarios 

indicate that each increment increases the fold frequency by approximately 6.9% 

absolute {e.g., for a pot-size of 4 sb: from 36.3% folds for tight, to 29.3% folds for 

normal, to 22.5% folds for loose).

Figure 5.13(b) shows three runs of DIVAT, holding all parameters constant ex­

cept for the betting and raising thresholds on the turn. These are varied to reflect an 

aggressive style (having rather low standards for betting and raising), a conserva­

tive style (requiring a very solid holding), and a normal well-balanced style between 

the two extremes. Simulations of 100,000 complete roll-out turn scenarios indicate 

that each increment decreases the bet frequency by approximately 7.2% absolute 

{e.g., from 45.0% betting for aggressive, to 37.2% betting for normal, to 30.5% 

betting for conservative).

The lines are all close together, so clearly these settings did not have a significant 

impact on the overall DIVAT Difference in this match. This is not too surprising, 

in view of how the metric is being used. Even if the absolute measurements are 

somewhat inaccurate in certain cases, the same objective standards are always be­

ing applied equally to both players. To put it more colloquially, even a “crooked 

measuring stick” can be used to compare the relative lengths of two objects (and 

using a hockey stick or a driftwood walking stick could work equally well for that 

particular purpose).

If certain kinds of inaccuracies are common, they will tend to cancel each other 

out fairly quickly. Relatively infrequent opportunities might not balance out as 

quickly, but those sources of inaccuracy might not occur at all over the short term, 

or might not have much impact on the overall score in any case.

Similar robustness results were observed for broad ranges of all parameters, 

over a large variety of match conditions. Even under extreme settings, the over-
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all assessment appears to degrade gracefully. For example, there is relatively little 

change in the DIVAT Difference line until using fold policies that are obviously 

much too liberal, or much too restrictive (well outside the normal behavior of strong 

players). In some cases, the settings might be inconsistent with the actual styles of 

the players involved, such as very aggressive betting parameters for a match be­

tween very conservative players, but this does not appear to lead to serious conse­

quences or suspicious evaluations.

As previously mentioned, it has been shown that roll-out equity DIVAT is a sta­

tistically unbiased estimator of long-term expected value. Although this is certainly 

a desirable theoretical property, it is not absolutely essential for the assessment tool 

to have practical value. We have seen that stochastic noise can have disastrous con­

sequences on evaluation, occluding the true averages even for very long matches. In 

practice, an assessment technique that has a lot of variance reduction power can be 

highly valuable, even if it cannot be formally proven to be unbiased. By design, the 

DIVAT Difference is largely insensitive to the fluctuations incurred from stochastic 

outcomes, imbuing it with considerable power for variance reduction, regardless of 

the precise formulation.

5.4.4 Round-By-Round DIVAT Analysis

The DIVAT system is designed for round-by-round analysis of each game, with 

the sum of all rounds characterizing the game as a whole. However, viewing the 

cumulative results for each round independently can be very enlightening.

Figure 5.14 shows the breakdown of DIVAT Differences for the pre-flop, flop, 

turn, and river in the P s O p t i4  v .v P s O p t i 6  duplicate match. The difference in pre­

flop skill is shown to be minuscule, which is correct because both programs use 

the same (randomized) pre-flop expert system. The remaining rounds all contribute 

roughly equal portions to the total DIVAT Difference, meaning that P s O p t i 4  con­

sistently outplayed P s O p t i 6  in every phase of the game.

The EV magnitude of decisions on the flop is generally much smaller than deci­

sions in the last two rounds, because (1) the bet size is half as much (so the pot odds 

are roughly double), (2) pot equities are usually closer to 50%, meaning less EV is
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at stake, and (3) large implied odds further equalize the true equities. On the other 

hand, the flop occurs more frequently than the later rounds.33 Similarly, decisions 

on the river usually count for a full big bet in equity, which is somewhat larger than 

decisions on the turn, but they are also somewhat less frequent.

Figure 5.15 shows the round-by-round breakdown for the match between “the­

count” and P s O p t i I ,  with some fascinating revelations. Of immediate note is the 

pre-flop DIVAT Difference line, which indicates that “thecount” was being badly 

outplayed before the flop. The loss rate of -0.08 sb/g is substantial, exceeding the 

standard per game win rate for most professional players. This is quite surprising, 

because the EV magnitude of pre-flop decisions is normally very small,34 making 

it the least important round in two-player Limit Hold’em.

In reviewing the match log, the reason for the difference became apparent: “the­

count” was folding too frequently before the flop (about 16% of the time). By re­

fusing to fight with weak hands, he was sacrificing the 0.5 sb small blind (or 1.0 sb

33 The graphs show the total (absolute) effect of each round, rather than the average (relative) 
magnitude of the differences.

34 Most of the time one player is no more than a 60-40 favourite, and the small fraction of a bet 
in EV advantage is further diminished by the effects of implied odds.
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big blind) too often, incurring a large net loss. With this kind of objective analysis, 

even good players can identify weaknesses or “leaks” in their strategy, and make 

appropriate adjustments.

On the flop betting round, the situation is reversed, with “thecount” holding a 

large edge in play. Although it has not been verified, it is possible that P s O pti 1 

was surrendering excessive amounts of equity by folding too easily after the flop. It 

is also possible that “thecount” was exhibiting a superior understanding of certain 

strategic aspects, such as the effects of implied odds. There could also be some 

compensation for his pre-flop selectivity, in that he is more likely to have the better 

hand when both players connect with the flop. Whatever the reasons, the DIVAT 

analysis reveals a huge disparity in play, thereby identifying an area of weakness 

for researchers to investigate.

On the turn and river rounds, “thecount” maintained a small DIVAT advantage. 

Given the styles of the two players (folding many hands on the pre-flop and on the 

flop), the turn and river rounds occurred less often than usual, thus having a smaller 

effect on the final outcome. Again of interest is the fact that “thecount” appeared to 

improve his results on the turn as the match progressed, as he learned more about 

the opponent’s predictable style and weaknesses. In comparison, he did not appear 

to find additional ways to exploit the opponent on the river round. The full-game 

DIVAT summary simply indicates a slight playing advantage for “thecount”; but the 

round-by-round analysis goes well beyond that, providing many additional insights 

into the reasons for the differences in equity.

Figure 5.14 shows the round-by-round breakdown for the match between V e x b o t  

and P sO p ti4 , again with some surprising insights. VEXBOT held a negligible ad­

vantage from play on the turn, and was actually losing equity on the pre-flop and 

(especially) on the flop. However, those losses were more than offset by huge equity 

gains on the river.

To an expert observing the match, the meaning of this in terms of poker strat­

egy is clear. V exbot  was employing a hyper-aggressive “fast” style on the flop, 

putting in many raises and re-raises. This creates a false impression of strength, at 

a moderate expense in terms of EV, because the relative differences in pot equity on
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Figure 5.16: Round-by-round analysis of V e x b o t  v s  P sO p ti4 .

the flop are small. That false impression was then exploited with follow-up bluffs 

on the river, when P s Op t i4 folded too often based on its implicit beliefs about the 

strength o f the opponent’s hand. A  casual observer might conclude that VEXBOT is 

a “maniac” based on its play on the flop, but the DIVAT analysis clearly shows that 

there is a method to its madness.

Moreover, it is evident that V e x b o t  discovered this imbalance in the strategy 

of PSO PT I4  very early in the match, since the river DIVAT score maintains the 

same slope from the beginning. The change at 80,000 games was in fact due to a 

shift in style on the flop, where VEXBOT eventually learned that it did not need to 

put in as many extra raises to set-up the same exploitative plays on the river.

5.5 Conclusions

Stochasticity is a major impediment to the accurate assessment of player skill in 

poker. The simple money outcome of a short-term match is highly unreliable -  

many thousands of games are required to obtain statistically significant results. 

Some variance-reduction methods are available, such as duplicate tournaments, but
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they do not eliminate the problem of assessment in normal live play.

The Ignorant Value Assessment Tool provides an accurate unbiased estimate of 

the long-term expected value between two players. DIVAT is a practical system 

that provides a significant reduction in variance, thus extracting signal from the 

noise. DIVAT uses hindsight analysis to quantify the difference in value between the 

players’ actual actions and a standard benchmark betting sequence. The comparison 

sequence is based on game-theoretic invariant frequencies and quasi-equilibrium 

policies, reflecting an appropriate amount to be invested by each player in the given 

situation. Although much of the relevant context is largely ignored (the previous 

rounds of betting in particular), the most important aspects are estimated adequately 

enough for the system to be highly effective in practice.

DIVAT is versatile in its uses, and promises to be an important tool for all re­

searchers working in the domain of poker. The results from a match can be broken 

down in many ways and analyzed with DIVAT. For example, the player position can 

be isolated (separating the games played as the first player from those as the second 

player). We have also used a variation of the tool, called runtime DIVAT, to pro­

vide more meaningful feedback during matches (where special consideration must 

be given for the biases caused by the partial observability in live games). There are 

numerous other uses for the DIVAT analysis technique that have not been addressed 

here, in the interest of brevity.

The first extension to DIVAT will likely be for multi-player games of Limit 

Hold’em. In principle, this generalization should be much easier than other two- 

player to multi-player generalizations (such as game-theoretic Nash equilibria, or 

imperfect information game-tree search approaches). However, there will invari­

ably be some theoretical and practical issues that will need to be resolved.

Developing DIVAT systems for other betting structures (e.g., Pot Limit, No 

Limit), and other poker variants (e.g., Omaha, 7-card Stud) should be fairly straight­

forward. Imperfect information games with a known equilibrium strategy can em­

ploy similar methods, using a weighted mixture of baselines corresponding to the 

relative weights of actions in each mixed strategy.

Applying the general methods to other imperfect information domains is feasi-
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ble in principle, but might encounter new obstacles due to fundamental differences 

in the structure of the game trees. For example, games in which the chance nodes 

and decision nodes are intertwined and not easily separable could be problematic.
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Chapter 6 

Conclusion

A Retrospective on Computer Poker

6.1 Introduction

In this chapter, we review each of the major approaches we have addressed in this 

thesis for building a complete poker-playing system:

(1) simple deterministic rule-based methods,

(2) probabilistic formula-based methods,

(3) Monte Carlo and enhanced simulation methods,

(4) Nash equilibrium game-theoretic methods, and

(5) adaptive imperfect information game-tree search.

While many of the strengths of each system have been addressed in the core 

chapters, some of the most important short-comings did not become fully apparent 

until much later. We take this opportunity to re-visit some of the main issues in­

volved with each architecture, identifying some of the key lessons for developing 

improved systems in the future.

6.2 Rule-based Methods

A natural first step to building a computer program to play poker is to define a set 

of conditional if-then-else rules, specifying what action should be taken for each 

of a large set of situations that can arise. This approach is intuitively reasonable,
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being similar to how human experts would describe how they play, on a case-by- 

case basis. In domains with a small number of distinct cases to be handled, this 

type of “expert system” might be reasonably effective.

Unfortunately, this approach is dependent upon having a knowledgeable do­

main expert, who is also conversant with the principles and limitations of computer 

programming. Apart from this inherent “knowledge acquisition bottleneck”, the 

approach will normally be found to be inadequate for strategically rich domains, 

simply due to the vast number of distinct situations and consequent actions that can 

arise. It could also be argued that such an approach is of limited scientific interest, 

since there is little thinking or learning involved within the system itself. Neverthe­

less, the practical limitations of such an approach cannot be fully understood until 

it has actually been tried and tested.

A deterministic rule-based approach is a set of conditional rules that specify 

a pure strategy {i.e. exactly one move, or one betting action in poker) for each of 

the distinguished contexts. This method is strictly more rigid and restrictive than 

a probabilistic rule-based approach, where each identified context is assigned a 

randomized mixed strategy {i.e. a probability distribution over the set of available 

moves or actions).

It is well-known that deterministic rule-based strategies cannot obtain the same 

level of performance as probabilistic mixed strategies in general. A simple example 

would be the game of Rock-Paper-Scissors, where the game-theoretic equilibrium 

strategy is to choose each action randomly one-third of the time. Any pure strategy, 

such as always going Rock in a particular set of conditions, is subject to detection 

and exploitation by an intelligent opponent, both in theory and in practice [3, 2].

In poker, deterministic rule-based systems are overly simplistic in theory, and do 

not perform well in practice. The fundamental limitations of the approach severely 

hamper performance, regardless of the programmer’s diligence. This has been am­

ply demonstrated in the commercial poker program T u r b o  T e x a s  H o l d ’e m , 

written by Bob Wilson [45]. After more than 15 years of conscientious development 

and refinement, the program handles thousands of specific conditions, accounting 

for many important variables such as the cards held, the number of active oppo-
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nents, relative position, and so on. Nevertheless, it is easily defeated by players of 

average skill level after a short learning phase.

Moreover, any deterministic strategy for Texas Hold’em is necessarily wrong in 

many circumstances that commonly arise. This is simply a consequence of having 

trillions of specific contexts in the game.1 Furthermore, it is relatively easy to un­

derstand and learn an appropriate counter-strategy against an opponent who adopts 

only one rigid style of play. When an expert plays against a simplistic rule-based 

system, it is particularly easy to make correct inferences about the set of possible 

opponent holdings as the game progresses. This leads to highly profitable oppor­

tunities, such as correctly folding a hand that would normally be much too strong 

to abandon, or bluffing when it will succeed an inordinately high percentage of the 

time. It is much more difficult to adapt to players who vary their style over time.

It is not surprising that a small finite set of conditionals cannot capture the 

subtlety and nuance of a strategically complex game like poker. Distinguishing 

and handling thousands of distinct contexts in Texas Hold’em is not sufficient to 

produce an adequate approximation of excellent play, because superficially similar 

cases can have subtle but important distinctions. Two situations that are grouped 

together might require radically different actions, such as raising in one and folding 

in the other. Since a perfect partitioning of situations is unattainable, frequent errors 

are unavoidable, and are a fundamental limiting factor to performance.

6.3 Formula-based Methods

A formula-based approach is a more flexible generalization of rule-based approaches, 

where an arbitrarily complex formula or procedure is used as the criterion for dis­

tinguishing cases. For example, an exact weighted enumeration of subcases might 

be used to determine a hand assessment value in the range zero to one; with a con­

sequent probabilistic action based on predetermined thresholds for that value. The 

thresholds themselves might be determined by means of a simple constant, a linear

1 Two-player Limit Texas Hold’em has a relatively small search space compared to other 
real poker variants, but the imperfect information game tree has more than a quintillion states 
(1,179,000,604,565,715,751 nodes in total).
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formula, or a complex formula based on many parameters.

Probabilistic formula-based approaches can consider many more variables per­

taining to strategic elements in the game, effectively multiplying the number of 

distinct situations with each additional variable. The first versions of our formula- 

based programs, L o k i  and P o k i , easily out-performed T u r b o  T e x a s  H o l d ’e m , 

due to their more accurate context-sensitive hand assessment, flexible strategies, 

and gradual adaptation to each specific opponent’s biases and tendencies [10,9,29, 

11,8, 30, 33],

Nevertheless, formula-based approaches still rely on the principle of abstract­

ing trillions of specific cases onto a much smaller number of general circumstances, 

controlled by some particular parameterization of situations defined by the archi­

tect. As a result, they still run into many of the same liabilities as rule-based sys­

tems, albeit to a lesser extent. Even in the best case, there are inherent limitations 

on how well any such collection of components can perform.

There is also a serious practical limitation to this approach, in that the code 

becomes disjointed and difficult to maintain. Adding an additional feature to the 

“patchwork quilt” can produce unpredictable and undesirable side effects, requiring 

a complete re-tuning of the system. Eventually, the code base becomes cumbersome 

to embellish and maintain.

P oki has proven to be more skillful than average human poker players, based 

on empirical testing that includes tens of millions of games played against human 

opposition. Nevertheless, it became clear early on that this approach would be 

inadequate to achieve the goal of surpassing all human players [14, 5, 13].

Of particular concern is the lack of a well-balanced betting strategy. The formula- 

based systems are adequate for playing a straightforward style, but are much too 

predictable, in general. The instances of bluffing (including semi-bluffs) and trap­

p ing  (either check-raising or slow-playing) are generally not frequent enough to 

adequately mask the strength and nature of the program’s holding. This “informa­

tion leakage” is compounded as the game progresses, allowing an astute opponent to 

make correct inferences and superior decisions frequently enough to obtain signifi­

cant expected value gains. It is not sufficient to simply decrease the predictability of
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the program by bluffing and trapping more often, as that would lose equity against 

most typical opponents. We do not know what game conditions we will face in the 

future, and tuning the program for one particular set of circumstances means that it 

will not play well in other circumstances. Thus, it is not really a tunable parameter, 

because it is opponent dependent.

More generally, to reach the highest levels of poker skill, a player must be able 

to reason about the prevailing game conditions, and adjust to any specific circum­

stances. This ability is essential to mastering the game of poker, whether the player 

is a human or a program.

6.4 Simulation Methods

Simulation is simply the repetition of many instances in order to obtain a statistical 

average. In basic Monte Carlo simulation, each trial is simple and unbiased, such 

as sampling uniformly at random from the complete space of possibilities. Each in­

dividual outcome might be a rather poor indicator of the average, but that is of little 

consequence as long as the relative balance of instances is fair. One tremendous 

advantage of simulation is that it is conceptually simple, and easy to program.

In many computing science domains (not limited to games), Monte Carlo sim­

ulation has proven to be a powerful technique in practice. In backgammon, for 

example, simple roll-out evaluations can perform as well as the more famous neu­

ral network trained evaluation functions [41, 23].2

An example in poker is the cold roll-out of many pre-flop instances, in order to 

determine the relative values of starting hands. The resulting averages are not an 

accurate reflection of the true expected values, because all of the subsequent betting 

has been ignored. Nevertheless, it turns out that the resulting relative ranking of 

starting hands is reasonably accurate. These raw scores are the basis of the formula- 

based expert systems that the author designed for pre-flop play in L o k i ,  L o k i  II, 

and P o k i .

2 In the incomplete information domain of hockey pool drafting, the author used Monte Carlo 
simulations of a Poisson model of scoring to produce a computer program that apparently out­
performs expert humans (unpublished course project).
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With iterated roll-outs, described in Chapter 2, the results of a simple roll-out 

are used as the decision criteria for playing each hand in a subsequent generation of 

simulations. This quickly ameliorates the flawed always-call assumption built into 

each trial, and the results are remarkably good, despite the relative simplicity of 

the process. When applied to the two-player game of Pre-flop Texas Hold’em, the 

results were in excellent agreement with Selby’s direct linear programming solution 

using a modification of the Simplex algorithm [34], It is quite likely that much more 

could be done with this high-leverage methodology in the future.

Unfortunately, with purely random sampling, it can take a long time for the 

simulation to converge on accurate estimates. To accelerate the process, various 

methods of biased sampling have been introduced. The objective is to emphasize 

samples that provide the most information gain, without introducing a severe bias 

(or at least to maintain a measurable degree of bias) in the result.

In poker, we did this with selective sampling, where the opponent’s hand was 

selected from the weight table of current likelihoods for each possible holding, as 

explained in Chapter 2. An ad hoc method was used to quickly generate (random­

ized) future actions of all players, and the trial was played through to the end of 

the game to obtain a net value. Averaging the outcomes of many such trials pro­

duces a refined estimate of the expected value of each available action. In Scrabble, 

selective simulations have also been used to enhance the basic evaluations [36, 37].

As noted in Chapter 2, this method also resulted in new strategies, like check- 

raising, as an emergent behavior that was not part of any of the individual trials. 

Thus, the value of simulations is not limited to a refinement of basic evaluation.

A major drawback of this approach in practice is that it can be highly volatile, 

and result in extremely unbalanced play. For example, if the relative probability 

of the opponent folding to a future bet is slightly too high, the maximum expected 

value play could be to raise 100% of the time in the current situation. This form of 

instability was witnessed on many occasions, with the program raising constantly 

as a result. Similar instability of simulations was seen by Ginsberg in the game of 

Bridge [21, 22],

A more subtle but theoretically critical limitation is that repeated trials of perfect
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information instances cannot, in general, produce accurate results for an imperfect 

information situation [16, 15]. In Bridge, this is nicely illustrated by simulations 

of double finesse situations. The declarer has a choice of two tactical finesses, one 

through the left-hand opponent, the other through the right-hand opponent. In each 

perfect information instance, the declarer can win the finesse (one way or the other) 

and make the contract, thus the simulation returns a 100% chance of success. In the 

actual imperfect information situation, the declarer must choose which way to take 

the finesse, and the real chance of success is only 50%. In poker, this means that 

future actions must be determined in some objective manner that does not depend 

on explicit knowledge of the opponent’s cards in each simulated trial.3

Since future actions are based on some kind of heuristic speculation, there is 

also a problem with compounding errors. The relative frequencies for future actions 

have some degree of error, and that error is multiplied with each subsequent action. 

As a result, the generated sequence of actions leading to the end of the game could 

be rather unrealistic in a large fraction of the samples.

One work-around to this problem is to generate a sequence of actions leading to 

the end of the game first, according to the presumed probability distributions. The 

opponent hand is then assigned after the entire sequence has been determined, ac­

cording to some measure of consistency with the given sequence of actions. Aaron 

Davidson experimented with this technique, and found that it produced much more 

stable results for the simulation. Of course, it could also contain a huge amount of 

bias in the relative frequencies of possible opponent holdings, making the results 

arbitrarily inaccurate.

However, suppose one was to simulate all possible future action sequences, 

with an accurate estimate of the relative frequency for each, and combine that with 

a probabilistic estimate for the net outcome of each trial. The simulation would 

now be much better grounded, with only a single error term for each estimate, 

rather than compounding errors. In fact, we could eliminate the variance from

3 This fact has not been a serious impediment in Scrabble, because imperfect information does 
not play a critical role in the strategy of the game. Approximate methods are sufficient to account 
for the hidden information (i.e., the probability distribution of the opponent tiles), and selective 
simulation has produced a super-human level of play [35].
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running many trials, by running each action sequence exactly once and computing 

the weighted combination of expected values according to the relative probability 

for each sequence.

This reformulation of the problem was the basis of the author’s imperfect infor­

mation game-tree search algorithms, Miximax and Miximix, discussed in detail in 

Chapter 4. Since those direct expected value calculations essentially subsume the 

improved simulation method, with zero variance, the selective sampling techniques 

have largely been abandoned.

6.5 Game-Theoretic Methods

The major limitations of rule-based and formula-based approaches naturally lead 

to the study of architectures utilizing game-theoretic equilibrium strategies, or ap­

proximations of equilibrium solutions. Game-theoretic strategies for the full game 

are inherently well-balanced, and thus the leakage of information is automatically 

prevented.

In game theory, all two-player zero-sum games have at least one equilibrium 

strategy, where a randomized mixed strategy for every decision point can ensure 

the best worst-case outcome, regardless of the opponent’s strategy. This is known 

as the Minimax Theorem, and was proven in the foundational work by John von 

Neumann, who used poker as a model of all two-player adversarial contests [42], 

John Nash later proved the necessary existence of equilibrium strategies in multi­

player games [27, 28],

It has long been known that bluffing and trapping are an essential part of a 

sound poker strategy. Even in extremely simple poker games, equilibrium strate­

gies involve a mathematically determined frequency of bluffing and trapping, which 

accomplishes the task of information hiding  [26], Moreover, the game-theoretic 

value of the game cannot be guaranteed without these deceptive plays.

To apply game-theoretic principles to a practical poker-playing system, it greatly 

simplifies matters to study the two-player game first. Multi-player games are vastly 

more complex in theory, and should be considered after the pertinent lessons from
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the two-player game have been learned.

Interestingly, the two-player game of Limit Texas Hold’em has certain charac­

teristics that make it more difficult than the full ten-player game in practice. With 

more than one opponent, deceptive plays are less common, both in theory and in 

practice. Bluffing is less frequent because the chance of a successful bluff is greatly 

reduced against several opponents, and slow-playing a strong hand is more danger­

ous against multiple drawing hands. Thus, the play tends to be considerably more 

straightforward in the multi-player game, making it more amenable to formula- 

based systems than the two-player game.

The greater prevalence and necessity of tricky play in the two-player game dra­

matically exposes the serious imbalances of rule-based and formula-based betting 

strategies -  all programs to date have performed terribly in this variant. The best of 

this class of programs is Poki, but in the two-player game it is easily defeated by 

the author at a win rate exceeding +0.8 small bets per game (sb/g), meaning that the 

program would actually lose less by folding its blind every game.

In principle, an equilibrium strategy would never lose to any opponent over the 

long run (assuming a zero-sum game, with no rake), and might possibly win. In 

theory, an imperfect opponent can make dominated errors, losing expected value 

to an equilibrium strategy, thereby losing in the long run. For example, a highly 

sub-optimal player could fold very strong hands. In contrast, no dominated strate­

gies exist in the game of Rock-Paper-Scissors. This means that the game-theoretic 

equilibrium strategy (P r ( R , P, S)  = {1 /3 ,1 /3 ,1 /3} ) can only break even against 

any opponent strategy whatsoever.

Whether or not a perfect equilibrium strategy would win at a significant and sus­

tainable rate against top human poker players is an open question. In all likelihood 

it would win slowly in a zero-sum game, but might not overcome the overhead cost 

of the rake in a game played for real money. An equilibrium strategy can be viewed 

as a primarily defensive strategy, designed to not lose, as opposed to trying to win.

The game of Oshi-Zumo is similar to poker in that equilibrium strategies are 

complex, and might be a viable approach for practical play due to the existence of 

dominated strategies. However, an equilibrium strategy does not necessarily per-
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form well in practice. Michael Buro has demonstrated that very simplistic strate­

gies, which are sub-optimal and highly exploitable in general, can nevertheless 

break even or have a negligible losing rate against an equilibrium solution [12].

Regardless, an equilibrium strategy would still be highly useful in practice as 

a default strategy to use while observing an unknown opponent, since it cannot 

be exploited. Provided that a sufficient variety of strategies are naturally explored 

during this observation phase, the safe baseline could then be abandoned at any 

time in favour of positive expected value (+EV) exploitive play. Since this switch 

would be at the discretion of the program, it can be done with a controlled minimal 

level of risk.

Although game theory has been applied in a wide range of disciplines, it has 

always been severely limited by the size of problems that can be solved computa­

tionally. With the traditional normal form  representation, the number of combined 

strategies for two players is doubly exponential in the number of variables, thereby 

restricting its use to only tiny problems. However, the normal form ignores certain 

dependencies that may exist in the game.

For certain classes of problems, including poker, there exists an alternative 

representation called sequence form. This formulation was popularized in AI by 

Daphne Koller [24, 25], although it was apparently known to practitioners as early 

as the 1960s [31]. The method produces a linear program (LP) representation that 

is only singly exponential (i.e., linear in the size of the poker game tree). Thus, 

moderate-sized games (e.g., having more than one million nodes in the game tree) 

can be solved. This is still many orders of magnitude smaller than real poker vari­

ants, but it does open the possibility of solving small scale models of real games to 

be used as an approximation of an equilibrium strategy.

We used several methods of abstraction to define smaller poker variants that 

retain most of the key underlying probabilities and structural properties of Limit 

Texas Hold’em. The most powerful of these is the natural grouping of hands by 

relative strength, which we called bucketing. A very similar approach was used by 

Shi and Littman for the reduced game of Rhode Island Hold’em [38],

Linear programs for these abstracted games were generated automatically, and
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their solutions produced a reasonably well-balanced strategy for the real game. This 

class o f  programs, collectively called P s O pti or S pa r b o t , constituted a break­

through in playing performance for two-player H old’em. Despite reductions in the 

size o f  the game tree by a factor o f  more than 10 billion, the programs were able 

to defeat all previous computer programs, defeated average human players by a 

significant margin, and did not lose rapidly against very strong opposition [4].

A  major difference in the style of S pa r bo t  from most human players is the 

willingness of the program to make mathematically correct defensive calls with 

weak hands. Whereas sheer aggression is very successful against most human play­

ers, the computer opponent is not easily intimidated. This feature was a large factor 

in the program’s success in its 7030-game match against world-class player Gau- 

tam Rao. When Mr. Rao changed his approach to a less aggressive style half-way 

through the match, the effects were dramatically positive. However, recent analy­

sis indicates that much of that turn-around was due to the luck of the cards -  the 

program was simply destined to lose with reasonable play (as shown in Chapter 5). 

Overall, the objective quality of the program’s play was nearly on par with that of 

the opponent, thus the statistically inconclusive outcome was appropriate.

However, this approach only gives a crude approximation o f a true equilibrium  

strategy. Over time, a skilled player can eventually discover subtle tendencies and 

weaknesses in the program’s play, and exploit them. In particular, after studying 

Sp a r b o t ’s style for many thousands o f  games, the author is able to defeat it at a 

win rate more than ten times greater than any other human opponent the program  

has faced. Although there is unquestionably a lot o f  value in knowing the inti­

mate details o f  the program’s design and playing habits, this outcome cannot be 

dismissed as a special case, as it does indicate the level o f  exploitability that could 

be achieved by master strength opponents who play against the program continu­

ously over a long period o f time. Moreover, an effective counter-strategy could be 

communicated to another expert player in just a few sentences.

There are three notable liabilities in the play of S pa r b o t . One is a tendency 

for weak actions to indicate a weak holding (trapping plays with strong hands are 

relatively uncommon). In contrast, a strong action does not necessarily indicate a
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strong holding, as the program’s bluffing levels are high enough to create sufficient 

doubt. As a result of these biases, it is often possible to detect bluffing opportuni­

ties that have an inordinately high likelihood of success. Thus, the program could 

benefit from trapping more often.

Secondly, the program will usually bet in second position after the opponent 

checks, leaving itself vulnerable to frequent check-raises. The betting sequence 

check-Bet-raise-Fold (kBrF) implies that either the opponent earned an extra bet 

with a legitimate hand, or executed a successful check-raise bluff. The program 

could obtain a more effective balance by checking more often with mediocre hands, 

rather than only the weakest of hands.

Perhaps the most serious flaw is a disconnect between the betting actions be­

fore the flop, and subsequent play after the flop. This is likely due to the manner 

in which the abstract models are constructed. A 3-round abstracted model of the 

game is defined for the first three betting rounds (the pre-flop, flop, and turn), with 

expected values applied at the truncated leaf nodes to improve the approximation. 

The solutions to these pre-flop models are then used to estimate the relative distri­

bution of hand holdings for each of the pre-flop betting sequences. These distribu­

tions are then used as input priors for computing the 3-round post-flop models (flop, 

turn, and river). Unfortunately, overlaying these 3-round models is not seamless, 

and there are detectable inconsistencies in the resulting play. Although the prior 

distributions are not unreasonable in general, it has been repeatedly observed that 

applying any one particular pre-flop distribution as a specific model of the opponent 

can be counter-indicated for the post-flop equilibrium solutions.

In other words, the prior distributions might be appropriate for some post-flop 

equilibrium strategy, but there are infinitely many post-flop equilibrium strategies 

in general [18, 43]. There is no guarantee that the solution to the pre-flop model 

will be harmonious with the post-flop solution. In principle, combining two equilib­

rium strategies in this fashion can produce inconsistencies, and a non-equilibrium 

strategy overall.4

The same limitation is true for other methods of overlaying subtree solutions.

4 This observation was proven by Neil Burch, using counterexamples from simpler domains.
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Recently, Andrew Gilpin and Tuomas Sandholm at Carnegie Mellon University 

have repeated the P s O p t i  approach, using a powerful automated abstraction tech­

nique called gameshrink, which was used to solve Shi and Littman’s game of Rhode 

Island Hold’em [19]. To produce a program for the much larger game of Limit 

Texas Hold’em, they pre-compute solutions for the first two rounds, then generate 

and solve real-time LP problems for the turn and river. A very similar idea was 

tried by our group in 2003, but was abandoned because: (a) we had no satisfactory 

method for obtaining appropriate prior distributions for the turn and river LPs, and 

(b) the real-time LP generation and solving could not maintain the proper pace of 

Limit Hold’em (roughly one second per decision). The method Gilpin and Sand­

holm used for obtaining priors was to interpret the previous betting as a specific 

model of the distribution of opponent holdings [20], Unfortunately, this can leave 

the program highly susceptible to acquiring false beliefs when facing an opponent 

who uses a very different (but equally viable) strategy.5

To avoid these problems, it would be highly preferable to use a single 4-round 

model for the abstract game. Unfortunately, to date the results for 4-round models 

have been unsatisfactory because the size of the problem is prohibitive (or the ab­

stractions need to be so severe that the solutions suffer serious distortions, making 

them unsuitable as approximations of the real game).

The lack of harmony between the pre-flop and post-flop play of S p a r b o t  is 

quite obvious in practice. For example, when the pre-flop betting round has two 

or three raises, the program will frequently fold to a single small bet on the flop. 

Having built up a very large pot (getting 7-to-l pot odds, or better), it is seldom 

correct to fold, especially in second position. The probable explanation is that the 

prior distributions for those pre-flop sequences are too extreme in terms of assigning

5 A recent poker competition for computer programs was held at the annual conference of 
the American Association of Artificial Intelligence (AAAF06) [39]. The University of Alberta 
team won every match it played in both tournaments (using a simple combination of PSOPTI4 and 
PsOpti6, along with a performance feedback signal based on a runtime version of the DIVAT 
analysis technique) [1], The second place finisher in both tournaments was B luffbot , a Sparbot 
clone written by Teppo Salonen [32]. A slower-paced competition was held to accommodate the 
entry from Carnegie Mellon, GS2, which required extra time for decisions on the turn and river (for 
solving real-time LPs). GS2 used roughly 100 times as much time for the turn and river, but lost 
duplicate matches by a statistically significant margin to the University of Alberta program (-0.18 
sb/g), and to B luffbot (-0.12 sb/g).
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a strong hand to the opponent, and the bucketing function largely disregards the 

residual draw value of a hand (unless it belongs to the special bucket for high- 

potential hands).

Although the overall average strength of the opponent’s hand might be high in 

these cases, the specific context of the actual hand is ignored. In particular, if the 

flop board cards contain two or three low cards, there is a high likelihood that the 

flop failed to help either player, and the program either still has the best hand, or 

has sufficient chance of improvement to easily warrant a call.

The failure of SPARBOT to account for this type of context-sensitive information 

is actually the major liability of the method as a whole. To put it simply, it fails to 

grasp the specific meaning of certain chance outcomes, and the implications of 

certain board textures.

In the process of abstraction, most subtle forms of information have been sacri­

ficed. First, knowledge of the cards and any specific features of Texas Hold’em have 

been abstracted away, leaving only generic bucket classifications that are correlated 

with general hand strength (or a special case of a weak hand with high potential). 

While this might cause an acceptable amount of error (and is for the most part 

unavoidable), the abstraction over chance outcomes is far more limiting.

Between each betting round, a transition function is used to model the effect of 

dealing cards to the board. The function maps the probability of each pair of hand 

classes onto the set of subsequent class pairs. For example, with seven buckets for 

each player, each of the 49 pairs (P1,P2)  = (i , j ), 0 <  i. j  <  6, on the flop 

goes to 49 pairs (P1,P2)  = (x, y), 0 <  x,  y  < 6, on the turn, with edge weights 

summing to the parent.6

These transition networks are computed by averaging the changes of hand bucket 

classes over a large sample of representative examples, either by simulation or by 

exhaustive enumeration of all cases. This can provide an accurate estimate of the 

overall effect for “the turn happens”, but does nothing to account for the actual turn

6 Typically, changes to the matching bucket or next lower bucket have high probabilities; and 
jumps up to high buckets are more likely than jumps down to much weaker hands. The transition 
network from the pre-flop to the flop has a much flatter natural distribution, with all edges having a 
higher baseline probability.
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card that lands. The system cannot understand the card itself, since cards do not 

exist in the abstraction. More importantly, it has no means of distinguishing out­

comes that are generally favourable, unfavourable, or neutral. For example, if the 

program holds a medium pair, there is a huge difference between the turn card being 

a Deuce (good) or an Ace (bad). Apart from the small shift in hand value (which 

may or may not change the bucket classification), there is nothing to indicate that 

the Ace outcome is generally much more dangerous than the Deuce.

Using the grand aggregate average for a single transition function fails to ac­

count for the specific context of the game, resulting in relatively uninformed deci­

sions. Certain extreme boards, such as four cards in the same suit or four cards to a 

straight, are handled poorly by the program, because the general guidelines do not 

apply to those special circumstances.7

A significant improvement could be obtained by using a family of transition 

functions. For example, averages could be computed for turn cards that land in 

each of the four ranges around existing board cards, or that pair a board card (for 

instance, a flop of Q-8-5 would partition turn outcomes into sets {A,K}, {J,T,9}, 

{7,6}, {4,3,2}), and {Q,8,5}. The actual turn outcome would then be interpreted 

and used accordingly. With more computing power, each rank could have a distinct 

transition function; or even every legal turn card for a designated flop. Unfortu­

nately, the size of the LP problems generated is already as large as can be conve­

niently computed, so it is not an easy task to improve the existing method.

As it stands, Sparbot is a difficult opponent to learn against, due to its well- 

balanced mixture of bluffs, traps, and straightforward play. In comparison, the large 

majority of human players are much easier to categorize and exploit quickly. Nev­

ertheless, SPARBOT has the major liability of being a stationary player. Although 

it uses a randomized mixed strategy, it is a static strategy (does not change over 

time), and the program is completely oblivious to the opponent. Knowing this fact 

makes it much easier to play against the program in practice. A human player can

7 As an extreme example, if the board contained A-K-Q-J-T with four suits, then all hands would 
be equivalent -  a tie is guaranteed. Sparbot does not understand this, and could conceivably raise 
and then fold  with its “average hand”. This type of logically dominated behavior did actually occur, 
prompting the use of a wrapper program that could veto obviously bad decisions.
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systematically experiment, probing for weaknesses and statistical biases, without 

any fear of being punished for playing in a highly predictable fashion. Although it 

might take a fairly long time to discover the flaws in the program’s strategy, once 

they are learned they can be exploited forever after that time. Thus, the program is 

destined to be less and less successful as time goes by, and will be soundly defeated 

in the long run.

As pointed out by Michael Bowling, this is not actually a failing of game the­

ory itself, but is due to implicit simplifications in our application of game theory.

We are striving to find an approximation of the Nash equilibrium for the single­

shot game. In reality, the previous history cannot be ignored, and poker should be 

treated as a repeated game. In addition, there are numerous sub-classes of equilib­

ria that might be appropriate to look at, such as subgame perfect equilibria, perfect 

Bayesian equilibria, and trembling hand perfect equilibria [18, 17, 44]. Unfortu­

nately, there is no obvious way of accounting for the additional context, even if the 

already enormous scope of the problem somehow permitted the inclusion of thou­

sands of previous games. So, it seems that a crude estimate of a simple stationary 

equilibrium strategy is the best we can do in practice.

Much more could be said on the practical limitations of the game-theoretic ap­

proach, but even in the strongest case, there are clear motivations to investigate 

architectures that produce rapidly learning players. In particular, a computer op­

ponent that is constantly observing and adapting to the opponent does not allow 

such a relaxed approach to learning, because regular systematic play can and will 

be punished. Thus, a program that detects and exploits betting patterns should put 

up a much tougher fight against strong opposition in practice. In the final analysis, 

the surest way to win against the best human players is to actually try to win.

6.6 Adaptive Imperfect Information Game-Tree Search

A  major concern o f all previous poker programs is that they do not handle the im ­

portant task o f  opponent modeling particularly well. General and specific statistical 

m odels are maintained within the formula-based architectures (L oki and P o k i),
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but the manner in which they are maintained and updated is a limitation. Since 

those procedures are hard-coded, the process is inherently rigid, and presupposes 

many assumptions about the opponent’s approach to the game. To be completely 

flexible, the modeling system should not presume anything about the opponent’s 

understanding of the game, and should handle any arbitrary style fluidly.

There are many dimensions to the opponent modeling problem that have only 

been touched on to date. We have discussed the general necessity for deceptive 

plays (bluffing and trapping) for information hiding purposes. However, the spe­

cific opportunities for trick plays are not assessed very carefully, in regard to the 

opponent’s past behavior and tendencies. Normally these plays occur as part of 

an overall randomized mixed strategy, such as bluffing 10% of the time when we 

would otherwise check. A much more exploitive approach would try to deduce 

when a bluff will be relatively likely (or unlikely) to succeed, based on the prevail­

ing conditions of the game and opponent.

For these and other reasons, the most promising program architecture performs 

a detailed analysis of the expected value for each possible action, using an adaptive 

imperfect information game-tree search. Two algorithms have been developed for 

this purpose: Miximax and Miximix [13, 6], In essence, these algorithms “do the 

math” of poker. For every combination of future chance outcomes, the net loss or 

gain of every future betting sequence is considered, each weighted by its relative 

likelihood. This yields an overall expected value for each initial action available.

For example, suppose we face a bet on the turn. We can elect to fold, call, 

or raise. If we call, there are 46 possible river cards that could be dealt, and 19 

possible betting sequences that can occur afterward. In cases where one player 

folds, the outcome is known and exact. In cases that lead to a showdown, we 

will estimate our probability of winning given the particular sequence of actions 

to determine our equity. The linear combination of relative weights for each of 

those 874 cases produces an overall expected value for calling. The expected value 

for raising is computed similarly, but has more cases due to remaining possibilities 

for bet sequences on the turn. Having computed the expected values for fold, call, 

and raise, we can decide how to proceed (such as simply choosing the action with
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maximum expected value; or perhaps mixing actions when two alternatives are 

close in value).

This process mimics the type of calculations done by human poker players, 

albeit at a much finer level of granularity. The computation can be performed in 

real time, even for decisions after the flop with more than a million subcases. Thus, 

it can be very precise, but that does not guarantee that it is accurate. The accuracy 

is limited by the correctness of the relative weights assigned to each future action 

of the opponent, and to our equity estimates for each showdown outcome. These 

two properties form the heart of the adaptive modeling system. The data structures 

and update policies used to estimate these values will govern how successful this 

approach can be in practice.

This architecture has been implemented in the program V e x b o t . Although it 

is not yet fully refined, the results have been noteworthy. The program learns to ex­

ploit simplistic rule-based players, such as ALWAYS_CALL and ALWAYS_RAISE, 

at close to the maximum win rate possible. Against POKI (which was never specifi­

cally designed to play the two-player game), it wins at a rate comparable to this au­

thor, and occasionally better (approximately 1.0 sb/g). Against SPARBOT, it even­

tually learns to exploit the gaps in the equilibrium approximation, surpassing the 

win rate attained by any human player other than this author. In play against strong 

human players, it has proven to be a dangerous opponent, possessing many positive 

attributes not seen in previous programs [6]. However, despite these encouraging 

results there are numerous causes for concern and issues to be resolved.

In principle, we are computing a best response, based on our current beliefs 

about the opponent, which are subject to change over time. Although the best re­

sponse is a powerful counter-strategy for maximizing our exploitation of perceived 

weaknesses, it is not necessarily the best policy to follow in all cases, for a number 

of reasons.

First, as a poker-playing policy, pure best response without modifications repre­

sents a highly predictable reaction to the given circumstances. Good poker players 

can easily understand the resulting straightforward style and use it to their advan­

tage. In fact, any form of predictability is potentially vulnerable to exploitation
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(which is why mixed strategies are a good idea, in general).

With a best response player, bluffing and trapping plays are only executed if 

the calculation determines that they have the highest expected value. This tends 

to be exhibited as an “all or nothing” response, depending on the particular beliefs 

currently held about the opponent. Specifically, if the belief state suggests that the 

opponent folds slightly too often, there can be a sudden switch in behavior toward 

betting and raising very frequently. There is no moderation in its strategy adjust­

ments. Similarly, if the system believes that the opponent bluffs slightly below the 

optimal frequency, the reaction may be to fold all marginal situations. This latter 

case is particularly dangerous, since it prevents future observations that could revise 

that belief if it is mistaken (a situation we refer to as a “folding trap”). Against a 

player who is constantly changing styles, the over-reactive best response opponent 

may swing like a pendulum between belief states. Since the program’s beliefs are 

rather transparent and obvious, a master opponent can stay one step ahead, defeat­

ing it easily.

Even if those patterns were not an issue, it is not clear that maximum exploita­

tion would be desirable. A strong poker player will often consider not exploit­

ing a known opponent weakness too aggressively; because punishing an error too 

severely could make it easy for the opponent to identify the flaw in their strategy, 

forcing them to change behavior. When possible, it could be preferable to exploit 

the error at a slower sustainable rate, so that the known weakness will persist indef­

initely.

Another reason to deviate from a simple best response is for the purpose of ex­

ploration. Regardless of how well the current belief state may be performing, there 

is always the possibility that other untested lines might be more profitable. The 

“exploration / exploitation trade-off” is a well-known problem in machine learning, 

and is no less important in poker, with no ideal solution in general.

Although this architecture has numerous advantages over other approaches, it 

also has many practical limitations. More technical details will need to be addressed 

before the system can perform at its highest potential.

First, there is a desperate need for good default data. The frequentist model
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allows for essentially any belief to be held, regardless of how irrational it might 

be. If no default seeding is provided, the system can infer that a small number of 

repeated observations are indicative of what will continue to happen in the future. 

For example, if the opponent should happen to win with an Ace-high flush, the 

system may implicitly believe that the opponent will always produce an Ace-high 

flush in those circumstances, since it has no built-in knowledge of how often that 

outcome “should” happen.

The particular case of having no defaults whatsoever can lead to even more 

bizarre beliefs. Suppose there is no betting whatsoever through to the showdown, 

and the program wins, beating the opponent’s 32o. All else being equal, the pro­

gram will develop a bias in favour of checking, because of the chance of leading to 

the same favourable outcome. In a sense, the system believes that it can increase 

the likelihood of the opponent having 32o through the act of checking!

Although it is not proper to be ascribing causality relations, it should be clear 

that unconstrained belief systems can admit highly irrational beliefs. It could be 

argued that this is a good thing -  that the program should be free to hold any be­

lief whatsoever. For instance, the game could be rigged against us, such that the 

opponent really will produce the Ace-high flush every game. A purist would ar­

gue that there should be no impediment to forming any possible belief, since a 

seemingly strange belief might be entirely appropriate in response to some hy­

pothetical opponent. However, in practice, this uncontrolled range of beliefs is a 

major encumbrance, and often leads to embarrassing imbalances in play. In fact, 

the play of V e x b o t  can be compared to that of an overly emotional player, where 

the program’s “mood” can quickly swing from elated (hyper-aggressive and over- 

optimistic) to dejected (very passive and pessimistic).

By initializing the system with good default data, we implicitly provide a wealth 

of basic knowledge about how the game is played, what kind of outcomes are pos­

sible, and the relative likelihood of each. By mixing actual observations with a 

larger proportion of “normal” data, we temper the interpretation of noisy input and 

dampen the over-reactions, without eliminating the ability to learn and adapt. In­

deed, without good default seeding, it is impossible to determine just how well the
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program could potentially play.

Unfortunately, generating good defaults is a difficult task, and the current de­

fault data leaves much to be desired. The author’s current research is investigating 

methods for automatically generating good default data, and much more, by pro­

ducing a probabilistic map of the entire strategy space. Another interesting research 

topic would be to use data mining to determine good defaults empirically.

Another major issue with the current design is the problem of data sparsity. 

The structure of the imperfect information game tree provides a natural separation 

of contexts, providing a fine level of granularity that is both a strength and a lia­

bility. While it permits a more than adequate level of precision, it also partitions 

actual observations into thousands of subcases. To effect reasonable learning rates 

and to detect patterns with statistical significance, these distinct contexts must be 

combined according to greatest similarity, which is a difficult research problem in 

its own right. In fact, some aspects of opponent modeling are essentially impossi­

ble, in principle. On the other hand, a solution does not have to be perfect to be 

highly effective in practice. Indeed, it might be the case that a relatively simple 

system will end up out-performing all human players, possibly by a large margin.

There are many obstacles still to be overcome with this approach, some of which 

may be quite challenging. Nevertheless, this method for building adaptive poker 

players has already proven to be successful, with much greater promise for im­

proved implementations.

6.7 Conclusions and Future Work

The many years of study in poker AI has raised as many questions as it has an­

swered, which is a sure indication of its vitality. The domain offers many unique 

challenges of theoretical and practical importance to computer game-playing, and 

to computer science in general.

The evolution of architectures for poker programs has followed a natural pro­

gression over the past 14 years, with each new generation addressing some of the 

fundamental limitations encountered by the previous generation. The following
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summary highlights some of the main strengths and major limitations of each ap­

proach.

1. Deterministic rule-based methods

Exam ple: Wilson Software T u r b o  T e x a s  H o l d ’em .

Advantages: simple, intuitive, minimal CPU and memory requirements.

Limitations: requires extensive poker knowledge, creates unavoidable gaps, 

predictable play, easily exploited.

2. Probabilistic formula-based methods

Examples: L o k i, P o k i, P o k e r  A c a d e m y .

Advantages: intuitive, flexible, modest CPU and memory requirements.

Limitations: requires extensive knowledge, complicated multi-component 

systems, difficult to build on, produces a single playing style.

3. Monte Carlo and enhanced simulation methods

Examples: L o k i II, P o k i, P o k e r  A c a d e m y .

Advantages: conceptually simple, emergent strategies, less dependent on 

poker knowledge.

Limitations: perfect information instances are inadequate, volatile play, 

compounding errors over future actions.

4. Nash equilibrium game-theoretic methods

Examples: PsO ptiO  - P sO p ti7  (a.k.a. S p a r b o t) , B l u f f b o t ,  G S2

Advantages: well-balanced overall strategy with deception, requires mini­

mal poker knowledge.

Limitations: crude approximation, loss of relevant context, non-exploitive 

(oblivious), vulnerable to systematic probing, generalization to multi­

player will be difficult.
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5. Adaptive imperfect information game-tree search

Example: V e x b o t .

Advantages: theoretically correct EY calculation, adaptive, independent 

strategies, creative play.

Limitations: data sparsity, requires good abstractions, volatile learning, 

over-reactive style, deducible b elief states, gets stuck in local minima.

N ot surprisingly, deterministic rule-based systems have failed to produce strong 

poker-playing programs. The more flexible but still relatively simple formula-based 

approach produces much better practical results. Although still below the skill level 

o f  a human expert, the most recent version o f POKI (in the commercial software 

POKER A c a d e m y ) is the strongest known computer program for multi-player 

Limit Texas H old’em.

Simulation can be used to further refine an existing formula-based system, or 

to make independent betting decisions. However, the results have been somewhat 

mixed, and the resulting play can be quite volatile. More could be done with Monte 

Carlo or full-information selective simulations, but the method is largely subsumed 

by the EV calculations in adaptive imperfect information game-tree search.

Looking at the two-player game, crude approximations o f game-theoretic equi­

librium strategies have produced programs like the Ps O pti family, with a vast over­

all improvement in well-balanced strategies. These simple stationary players are 

able to defeat average players, and can hold their own against strong opposition, at 

least until their subtle flaws are discovered.

The Miximax and Miximix algorithms for adaptive imperfect information game- 

tree search address the critical principles o f  opponent modeling and strategy adjust­

ments. The program VEXBOT, based on this architecture, is currently the strongest 

computer program for two-player Limit Texas H old’em. Although still in the rela­

tively primitive stages o f  development, it eventually learns to defeat all other com ­

puter programs, and can provide a dangerous opponent for elite human players.

Many lessons have been learned through the course o f this research, and fu­

ture architectures w ill build upon these lessons. For instance, well-balanced quasi-
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equilibrium strategies can be obtained by alternate means, such as the author’s pdf- 

cutting algorithm, avoiding the crude abstractions that necessarily sacrifice valuable 

context.

Learning systems will need to be much faster and smoother. One method cur­

rently being investigated is to pre-define parameterized categories of player styles, 

and use Bayesian inference to classify opponents based on the limited observa­

tions [40], By jumping to a best guess about the opponent’s predilections, we hope 

to immediately find an appropriate (although not maximal) counter-strategy, and in­

crease the exploitation rate as the classification improves over time. As long as the 

early strategies are not seriously counter-indicated, this should be much more effec­

tive than trying to build a model of the opponent gradually from scratch, bridging 

over thousands of specific contexts.

It is also becoming apparent that there will always be a need for better abstrac­

tion techniques, partitioning distinct contexts into classes for collective treatment. 

Ideally, these would be based on abstract distance metrics that can be applied to 

automated learning, without requiring a great deal of poker-specific knowledge.

The problem of assessment will always be a concern, because of the high vari­

ance inherent in the game. The DIVAT analysis technique, discussed at length in 

Chapter 5, does a commendable job of separating the signal from the noise, but 

many improvements are possible. Tools of this kind will likely become indispens­

able, in view of the ever-increasing number of games required to statistically dis­

cern players of nearly equal skill. Moreover, DIVAT analysis can be used directly in 

competition, providing better feedback on our performance than the simple money 

outcome. However, since we do not gain knowledge of the opponent’s cards when 

a game is won uncontested, some care is needed to avoid introducing a significant 

bias.

There is a long way to go before poker programs surpass all human players. 

Current lines of research might be successful, or entirely new paths and new archi­

tectures might be necessary. It is clear that future systems must be able to adapt 

rapidly to maximize success. They must be able to cope with talented opponents 

who quickly and repeatedly change their style, adapting to us at the same time we
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are adapting to them. While these are very complex problems in principle, there is 

hope for pragmatic success, if only because humans are far from perfect themselves.

Many popular algorithms from other areas of AI and machine learning could 

be applied to poker. In fact, the game can provide a challenging test for those 

algorithms, because poker may not have certain “convenient” properties that make 

other domains considerably easier in practice. It is a worthwhile field of battle, 

where the best ideas can prove their worthiness in direct combat.

Regardless of the methods employed, poker will continue to provide a vibrant 

and demanding domain for Artificial Intelligence research for many years to come.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography
[1] D. Billings. The University of Alberta Computer Poker Research Group we- 

bage. World Wide Web, 1997.
http://www.cs.ualberta.ca/"games/poker/.

[2] D. Billings. The First International RoShamBo Programming Competition. 
The International Computer Games Association Journal, 23(l):42-50, 2000.

[3] D. Billings. Thoughts on RoShamBo. The International Computer Games 
Association Journal, 23(l):3-8, 2000.

[4] D. Billings, N. Burch, A. Davidson, T. Schauenberg, R. Holte, J. Schaeffer, 
and D. Szafron. Approximating game-theoretic optimal strategies for full- 
scale poker. In The Proceedings o f  the Eighteenth International Joint Confer­
ence on Artificial Intelligence, IJCAI’03, pages 661-668, 2003.

[5] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker. 
Artificial Intelligence, 134(l-2):201-240, January 2002.

[6] D. Billings, A. Davidson, T. Schauenberg, N. Burch, M. Bowling, R. Holte, 
J. Schaeffer, and D. Szafron. Game-tree search with adaptation in stochas­
tic imperfect-information games. In H. J. van den Herik, Y. Bjornsson, and 
N. Netanyahu, editors, Computers and Games: 4th International Conference, 
CG’04, LNCS 3846, pages 21-34. Springer-Verlag GmbH, 2004.

[7] D. Billings and M. Kan. A tool for the direct assessment of poker decisions. 
The International Computer Games Association Journal, 2006. To appear.

[8] D. Billings, D. Papp, L. Pena, J. Schaeffer, and D. Szafron. Using selective- 
sampling simulations in poker. In American Association o f  Artificial Intel­
ligence Spring Symposium on Search Techniques fo r  Problem Solving under 
Uncertainty and Incomplete Information, pages 13-18. American Association 
of Artificial Intelligence, 1999.

[9] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in 
poker. In American Association o f Artificial Intelligence National Conference, 
AAAI’98, pages 493^199, 1998.

[10] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Poker as a testbed for 
machine intelligence research. In R. Mercer and E. Neufeld, editors, Advances 
in Artificial Intelligence, AP98, pages 228-238. Springer-Verlag, 1998.

[11] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic knowl­
edge and simulation to play poker. In American Association o f  Artificial In­
telligence National Conference, AAAI’99, pages 697-703, 1999.

[12] M. Buro. Solving the Oshi-Zumo game. In H. J. van den Herik, H. Iida, and 
E. A. Heinz, editors, Advances in Computer Games 10: Many Games, Many 
Challenges, pages 361-366. Kluwer Academic, 2004.

[13] A. Davidson. Opponent modeling in poker. Master’s thesis, Department of 
Computing Science, University of Alberta, 2002.

[14] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved opponent 
modeling in poker. In International Conference on Artificial Intelligence, 
IC Al’00, pages 1467-1473, 2000.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/%22games/poker/


[15] I. Frank and D. A. Basin. A theoretical and empirical investigation of search 
in imperfect information games. Theoretical Computer Science, 252(11):217— 
256,2001.

[16] I. Frank, D. A. Basin, and H. Matsubara. Finding optimal strategies for im­
perfect information games. In American Association o f Artificial Intelligence 
National Conference, AAAT98, pages 500-507, 1998.

[17] D. Fudenberg and D. K. Levine. The Theory o f Learning in Games. MIT 
Press, May 1998.

[18] D. Fudenberg and J. Tirole. Game Theory. MIT Press, August 1991.

[19] A. Gilpin and T. Sandholm. Optimal Rhode Island Hold’em poker. In Ameri­
can Association o f Artificial Intelligence 20th National Conference, AAAI’05, 
pages 1684-1685,2005. Intelligent Systems Demonstration.

[20] A. Gilpin and T. Sandholm. A competitive Texas Hold’em poker player via 
automated abstraction and real-time equilibrium computation. In American 
Association o f Artificial Intelligence National Conference, AAAT06, pages 
1007-1013, July 2006.

[21] M. Ginsberg. GIB: Steps toward an expert-level bridge-playing program. In 
The International Joint Conference on Artificial Intelligence, 1JCAT99, pages 
584-589, 1999.

[22] M. Ginsberg. GIB: Imperfect information in a computationally challenging 
game. Journal o f  Artificial Intelligence Research, 14:303-358, 2001.

[23] T. Hauk, M. Buro, and J. Schaeffer. *-minimax performance in backgammon. 
In H. J. van den Herik, Y. Bjomsson, and N. Netanyahu, editors, Computers 
and Games: 4th International Conference, CG’04, Ramat-Gan, Israel, July 5- 
7, 2004. Revised Papers, volume 3846 of Lecture Notes in Computer Science, 
pages 51-66. Springer-Verlag GmbH, 2004.

[24] D. Koller and N. Megiddo. The complexity of two-person zero-sum games in 
extensive form. Games and Economic Behavior, 4(4):528-552, 1992.

[25] D. Roller and A. Pfeffer. Representations and solutions for game-theoretic 
problems. Artificial Intelligence, 94(1): 167-215, 1997.

[26] H. W. Ruhn. A simplified two-person poker. In H. W. Ruhn and A. W. 
Tucker, editors, Contributions to the Theory o f Games, volume 1, pages 97- 
103. Princeton University Press, 1950.

[27] J. F. Nash. Equilibrium points in N-person games. Proceedings o f  the National 
Academy o f Sciences, 36:48-49, 1950.

[28] J. F. Nash. Non-cooperative games. Annals o f Mathematics, 54:286-295, 
1951.

[29] D. Papp. Dealing with imperfect information in poker. Master’s thesis, De­
partment of Computing Science, University of Alberta, 1998.

[30] L. Pena. Probabilities and simulations in poker. Master’s thesis, Department 
of Computing Science, University of Alberta, 1999.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[31] I. Romanovskii. Reduction of a game with complete memory to a matrix 
game. Soviet Mathematics, 3:678-681, 1962.

[32] T. Salonen. The B luffbot webage. World Wide Web, 2006. 
h t t p : / / w w w . b l u f f b o t . c o m / .

[33] J. Schaeffer, D. Billings, L. Pena, and D. Szafron. Learning to play strong 
poker. In The International Conference on Machine Learning Workshop on 
Game Playing. J. Stefan Institute, 1999. Invited paper.

[34] A. Selby. Optimal heads-up pre-flop hold’em. WWW, 1999. 
h t t p : / / w w w . a r c h d u k e . d e m o n . c o . u k / s i m p l e x / .

[35] B. Sheppard. Toward Perfection o f Scrabble Play. PhD thesis, Computer 
Science, University of Maastricht, 2002.

[36] B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 
134(l-2):241-275, 2002.

[37] B. Sheppard. Efficient control of selective simulations. In H. J. van den Herik, 
Y. Bjomsson, and N. Netanyahu, editors, Computers and Games: 4th Interna­
tional Conference, CG’04, Ramat-Gan, Israel, July 5-7, 2004. Revised Papers, 
volume 3846 of Lecture Notes in Computer Science, pages 1-20. Springer- 
Yerlag GmbH, 2004.

[38] J. Shi and M. Littman. Abstraction methods for game theoretic poker. In T. A. 
Marsland and I. Frank, editors, Computers and Games 2000, LNCS 2063, 
pages 333-345. Springer-Verlag, 2002.

[39] C. Smith and M. Zinkevich. The AAAI’06 poker competition webage. World 
Wide Web, 2006. h t t p : / / w w w . c s  . u a l b e r t a  . c a /  ~ p o k e r t / .

[40] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and 
C. Rayner. Bayes’ bluff: Opponent modelling in poker. In 21st Conference 
on Uncertainty in Artificial Intelligence, UAI’05), pages 550-558, July 2005.

[41] G. Tesauro. Programming backgammon using self-teaching neural nets. Arti­
ficial Intelligence, 134(1—2): 181—199, 2002.

[42] J. von Neumann and O. Morgenstem. The Theory o f Games and Economic 
Behavior. Princeton University Press, 1944.

[43] Wikipedia. Game theory. Wikipedia: The Free Online Encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / G a m e _ t h e o r y .

[44] Wikipedia. Nash equilibrium. Wikipedia: The Free Online Encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / N a s h _ e q u i l i b r i u m .

[45] B. Wilson. Wilson software. WWW, 1993. w i l s o n s o f t w a r e  . com .

[46] M. Zinkevich, M. Bowling, N. Bard, M. Kan, and D. Billings. Optimal unbi­
ased estimators for evaluating agent performance. In American Association o f  
Artificial Intelligence National Conference, AAAI’06, pages 573-578, 2006.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bluffbot.com/
http://www.archduke.demon.co.uk/simplex/
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Nash_equilibrium


Appendix A: Glossary of Poker 
Terms

This appendix contains informal definitions of common poker terms used in this 
dissertation. More extensive and precise poker glossaries are available on the world 
wide web, such as h t t p : /  / w w w . s e r i o u s p o k e r . c o m / d i c t i o n a r y . h t m l ,  
h t t p : / / c o n j e l c o . c o m / p o k g l o s s a r y . h t m l , and the online Wikipedia, 
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / P o k e r _ j a r g o n .

•  All-in. To have one’s entire stake committed to the current pot. Action con­
tinues toward a side po t, with the all-in player being eligible to win only the 
main pot.

• All-in Equity. The expected value income of a hand assuming the game will 
proceed to the showdown with no further betting (i.e., a fraction of the current 
pot, based on all possible future outcomes).

•  Bad Beat. An unlucky loss. In particular, losing a game where the opponent 
probably should have folded, but instead got extremely lucky to win.

•  Bet. To make the first wager of a betting round (compare raise).

•  Bet for Value. To bet with the expectation of winning if called  (compare 
bluff).

•  Big Bet. The largest bet size in Limit poker (e.g., $20 in $10-$20 Hold’em).

•  Big Blind  (sometimes called the Large Blind). A  forced bet made before the 
deal of the cards (e.g., $10 in $10-$20 Hold’em, posted by the second player 
to the left of the button).

•  Blind. A  forced bet made before the deal of the cards (see small blind  and 
big blind).

•  Bluff. To play a weak hand as though it were strong, with the expectation of 
losing if called  (see also semi-bluff and pure bluff, compare bet fo r  value).

•  Board  (or Board Cards). The community cards shared by all players.

•  Board Texture. Classification of the type of board, such as having lots of 
high cards, or not having many draws (see dry).

•  Button. The last player to act in each betting round in Texas Hold’em. Also 
called the dealer button, representing the person who would be the dealer in 
a home game.
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•  Call. To match the current level of betting. If the current level of betting is 
zero, the term check is preferred.

•  Cap. (a) The maximum number of raises permitted in any single round of 
betting (typically four in Limit Hold’em, but occasionally unlimited), (b) (vt) 
To make the last permitted raise in the current betting round (e.g., after a bet, 
raise, and re-raise, a player caps the betting).

•  Check. To decline to make the first wager of a betting round (compare call).

•  Check-Raise. To check on the first action, with the intention of raising in the 
same betting round after an opponent bets.

•  Community Cards. The public cards shared by all players.

•  Connectors. Two cards differing by one in rank, such as 7-6. More likely to 
make a straight than other combinations.

•  Dominated. A Hold’em hand that has a greatly reduced chance of winning 
against another because one or both cards cannot make a useful pair (e.g., KQ 
is dominated by AK, AQ, AA, KK, and QQ, but not by AJ or JJ).

•  Draw. A  holding with high potential to make a strong hand, such as a straight 
draw or a flush draw (compare made hand).

•  Draw Potential. The relative likelihood of a hand improving to be the best if 
it is currently behind.

•  Drawing Dead. Playing a draw  to a hand that will only lose, such as drawing 
to a flush when the opponent already holds a full house.

•  Drawing Hand. A  hand  that has a good draw (compare made hand).

•  Dry. Lacking possible draws or betting action, as in a dry board or a dry 
game.

•  Equity (or Pot Equity). An estimate of the expected value income from a 
hand that accounts for future chance outcomes, and may or may not account 
for the effects of future betting (e.g., all-in equity).

•  Expected Value (EV) (also called mathematical expectation). The average 
amount one expects to win in a given game situation, based on the payoffs 
for each possible random outcome.

•  Flop. The first three community cards dealt in Hold’em, followed by the 
second betting round (compare board).

•  Fold. To discard a hand instead of matching the outstanding bet, thereby 
losing any chance of winning the pot.

•  Fold Equity. The equity gained by a player when an opponent folds. In 
particular, the positive equity gained despite the fact that the opponent’s fold 
was entirely correct.
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•  Forward Blinds. The logical extension of blinds for heads-up (two-player) 
games, where the first player posts the small blind  and the second player 
(ibutton) posts the big blind  (compare reverse blinds). (Both rules are seen in 
practice, with various casinos and online card rooms having different policies 
for multi-player games that have only two active players).

• Free-Card Danger. The risk associated with allowing an opponent to im­
prove and win the pot  without having to call a bet (in particular, when they 
would have folded).

•  Free-Card Raise. To raise on the flop  intending to check on the turn.

•  Game, (a) A competitive activity in which players contend with each other 
according to a set of rules (in poker, a contest with two or more players), (b) 
A single instance of such an activity (in poker, from the initial dealing of the 
cards to the showdown, or until one player wins uncontested).

•  Game Theory. Among serious poker players, game theory normally pertains 
to the optimal calling frequency (in response to a possible bluff), or the opti­
mal bluffing frequency. Both depend only on the size of the bet in relation to 
the size of the pot.

•  Hand, (a) A player’s private cards (e.g., two hole cards in Hold’em). (b) One 
complete game of poker (see game (b)).

•  Heads-up. A two-player (head-to-head) poker game.

• Hole Card. A private card in poker (Texas Hold’em, Omaha, 7-Stud, etc.).

•  Implied Odds, (a) The pot odds based on the probable future size of the 
pot instead of the current size of the pot (positive or negative adjustments), 
(b) The extra money a strong hand stands to win in future betting rounds 
(compare reverse implied odds).

• Kicker. A  side card, often deciding the winner when two hands are otherwise 
tied (e.g., a player holding Q-J when the board  is Q-7-4 has top pair  with a 
Jack kicker).

•  Large Blind  (usually called the Big Blind). A  forced bet made before the 
deal of the cards (e.g., $10 in $10-$20 Hold’em, posted by the second player 
to the left of the button).

• Loose Game. A  game having several loose players.

•  Loose Player. A  player who does not fold often (e.g., one who plays most 
hands at least to the flop  in Hold’em).

• Made Hand. A  hand  with a good chance of currently being the best, such as 
top pair  on the flop  in Hold’em (compare draw).

•  Mixed Strategy. Handling a particular type of situation in more than one way, 
such as to sometimes call, and sometimes raise.

•  Offsuit. Two cards of different suits (also called unsuited, compare suited).

•  Open-Ended Draw. A  draw  to a straight with eight cards to make the straight, 
such as 6-5 with a board  of Q-7-4 in Hold’em.
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• Outs. Cards that will improve a hand to a probable winner (compare draw).

•  Pocket Pair. Two cards of the same rank, such as 6-6. More likely to make 
three of a kind than other combinations (see set).

•  Post-flop. The actions after the flop  in Texas Hold’em, including the turn 
and river cards interleaved with the three betting rounds, and ending with the 
showdown.

•  Pot. The common pool of all collected wagers during a game.

•  Pot Equity (or simply Equity). An estimate of the expected value income 
from a hand that accounts for future chance outcomes, and may or may not 
account for the effects of future betting (e.g., all-in equity).

•  Pot Odds. The ratio of the size of the pot to the size of the outstanding bet, 
used to determine if a draw  will have a positive expected value.

•  Pre-flop. The first round of betting in Texas Hold’em before the flop , begin­
ning with the posting of the blinds and the dealing of the private hole cards.

•  Pure bluff. A  bluff  with a hand that can only win if the opponent folds 
(compare semi-bluff).

•  Pure Drawing Hand. A  weak hand  that can only win by completing a draw, 
or by a successful bluff.

•  Raise. To increase the current level of betting. If the current level of betting 
is zero, the term bet is preferred.

•  Raising for a Free-card. To raise on the flop  intending to check on the turn.

•  Rake. A  portion of the pot  withheld by the casino or host of a poker game, 
typically a percentage of the pot up to some maximum, such as 5% up to $3.

•  Re-raise. To increase to the third level of betting after a bet and a raise.

•  Reverse Blinds. A  special rule sometimes used for heads-up (two-player) 
games, where the second player (button) posts the small blind  and the first 
player posts the big blind  (compare forward blinds). (Both rules are seen in 
practice, with various casinos and online card rooms having different policies 
for multi-player games that have only two active players).

•  Reverse Implied Odds. The unaccounted (negative) money a mediocre hand 
stands to lose in future betting rounds (compare implied odds (b)).

•  River. The fifth community card  dealt in Hold’em, followed by the fourth 
(and final) betting round.

•  Semi-bluff. A  bluff  when there are still cards to be dealt, with a hand that 
might be the best, or that has a reasonable chance of improving to the best if 
it is called  (compare pure bluff).

•  Second pair. Matching the second highest community card  in Hold’em, such 
as having 7-6 with a board  of Q-7-4.

•  Session. A  series of games, typically lasting several hours in length.
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•  Set. Three of a kind, formed with a pocket pair  and one card of matching 
rank on the board. A very powerful and well-disguised hand (compare trips).

•  Short-handed Game. A  game with less than the full complement of players, 
such as a Texas Hold’em game with five or fewer players.

•  Showdown. The revealing of cards at the end of a game to determine the 
winner.

•  Side pot. A  second pot for the remaining active players after another player 
is all-in.

•  Slow-play. To check or call a strong hand as though it were weak, with the 
intention of raising in a later betting round (compare smooth-call and check- 
raise).

•  Small Bet. The smallest bet size in Limit poker (e.g., $10 in $10-$20 Hold’em).

•  Small Blind. A  forced bet made before the deal of the cards (e.g., $5 in 
$10-$20 Hold’em, posted by the first player to the left of the button).

•  Smooth-call. To only call a bet instead of raising  with a strong hand, for 
purposes of deception (as in a slow-play).

• Suited. Two cards of the same suit, such as both Hearts. More likely to make 
a flush than other combinations (compare offsuit or unsuited).

• Table Image. The general perception other players have of one’s play.

•  Table Stakes. A  poker rule allowing a player who cannot match the outstand­
ing bet to go all-in with his remaining money, and proceed to the showdown 
(also see side pot).

• Texture o f the Board. Classification of the type of board, such as having lots 
of high cards, or not having many draws (see dry).

•  Tight Player. A  player who usually folds unless the situation is clearly prof­
itable (e.g., one who folds most hands before the flop  in Hold’em).

•  Time Charge. A  fee charged to the players in a poker game by a casino or 
other host of the game, typically collected once every 30 minutes.

•  Top Pair. Matching the highest community card  in Hold’em, such as having 
Q-J with a board  of Q-7-4.

•  Trap. To play a strong hand as though it were weak, hoping to lure a weaker 
hand into betting. Usually a check-raise, or a slow-play.

•  Trips. Three of a kind, formed with one hole card  and two cards of matching 
rank on the board. A  strong hand, but not well-disguised (compare set).

•  Turn. The fourth community card  dealt in Hold’em, followed by the third 
betting round.

•  Unsuited. Two cards of different suits (also called offsuit, compare suited).

•  Value Bet. To bet with the expectation of winning if called  (compare bluff).

•  Wild Game. A  game with a lot of raising and re-raising. Also called an action 
game.
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