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Abstract

Neutron stars (NSs) are the densest known objects which are gravitationally

stable (unlike, e.g., black holes, which have undergone gravitational collapse).

This makes NSs ideal sites for studying how matter behaves under extreme

conditions, in particular a state known as cold dense matter. Since cold dense

matter cannot be produced on Earth, its equation of state (EOS) is one of the

most highly sought after equations in physics. Measuring the exact radius R of

a NS with mass M will impose significant constraints on the EOS. One method

of calculating NS radii involves measuring the variations in light emitted from

the surface of a NS as it rotates; this allows us to determine a parameter

known as its compactness (M/R). The value of this ratio can be used to rule

out possible EOS. By simulating the spectral flux from a NS, we examine how

this light is altered by relativistic bending from the star’s surface, as well as by

spin effects and atmospheric composition.
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“Try not to agonize over this, but you need a cool quote.”

Sharon Morsink

iii



Acknowledgements

Thank you to my supervisor, Sharon Morsink, for your support and guid-

ance; to Gregory Sivakoff for much needed pep-talks during my first year in

this program; to Craig Heinke for our discussions of hydrogen atmosphere

physics; to my undergraduate professor Nicole Ackerman for your encourag-

ing Skype talks; to the Agnes Scott College Department of Physics; to

the University of Alberta Department of Physics and the astrophysics

group within that department; to Kenny Van and Cory Zhao especially for

your eternal willingness to help debug my code; to my parents, Lee and Tia

Amason, who drove a U-haul all the way from Atlanta to get me here; to

my friends, especially Ashton Freed, who kept me sane; to the NSERC for

the funding and travel opportunities which allowed me to present this research

at CASCA in June of 2019, and to the Faculty of Graduate Studies and

Research and the Graduate Student Association for providing a system

of support. Finally, a special thanks to my cat, Nerys, without whose invalu-

able insight into the nature of the universe this thesis would never have been

finished.

iv



Contents

1 Introduction 1

1.1 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The NS Equation of State . . . . . . . . . . . . . . . . . 2

1.1.2 Neutron Degeneracy . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Superfluidity and Superconduction . . . . . . . . . . . . 3

1.2 Pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Other Sources of NS Emission . . . . . . . . . . . . . . . 5

1.3 Relevant Observations . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 General Relativistic Effects . . . . . . . . . . . . . . . . . . . . . 7

1.5 Spin Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Hydrogen Atmospheres . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mathematical Theory 11

2.1 Spin-Aligned Geometry . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Flux From a Static NS in Newtonian Gravity . . . . . . . . . . 15

2.3 Flux From a Static NS in GR . . . . . . . . . . . . . . . . . . . 18

2.4 Flux From a Rotating Star . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Doppler Boosting . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Oblateness . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Numerical Methods 30

v



3.1 flux-angles (C++ Code) . . . . . . . . . . . . . . . . . . . . . . 30

3.2 H-flux (Python Code) . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Interpolation Algorithm . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 find closest and get nearest pair . . . . . . . . . . . . . . 36

3.3.2 get nearest uneven . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 interp T and g . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 interp zeta . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 interp E . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.6 lookup alpha . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.7 lookup alpha MR . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 39

4.1 Error and Convergence . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 General Relativistic Effects . . . . . . . . . . . . . . . . . . . . . 45

4.3 Effects of Compactness . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Spin Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Effects of Hydrogen Atmosphere . . . . . . . . . . . . . . . . . . 54

5 Conclusions and Future Work 58

Bibliography 60

vi



List of Tables

2.1 Angles used in this thesis. . . . . . . . . . . . . . . . . . . . . . 29

3.1 Example output files produced for each run of the flux-angles

program. The definitions of η, β, and dΩ are given by equations

2.39, 2.47, and 2.48, respectively. . . . . . . . . . . . . . . . . . 31

3.2 Example output files produced for each run of H-flux. Each file

contains the same 3 columns of information. Format is .npz,

which is used for numpy arrays. . . . . . . . . . . . . . . . . . . 34

4.1 Stationary Newtonian NS with blackbody surface. Observed

bolometric converges toward the correct value with 30 θ bins. . . 41

4.2 Stationary NS in GR with blackbody surface. Observed bolo-

metric converges toward the correct value with 120 θ bins. . . . 42

4.3 Stationary NS in GR with a H atmosphere. Observed bolometric

starts to converge with 120 θ bins. . . . . . . . . . . . . . . . . . 43

vii



List of Figures

2.1 A NS in a spherical, spin-aligned coordinate system. . . . . . . . 12

2.2 Gravity will alter path of a photon from initial direction k̂ to

new direction k̂0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Geometry of NS when observer is in direction k̂. . . . . . . . . . 14

2.4 Observer-aligned view of NS with impact parameter b. . . . . . 14

2.5 Definition of the angle ξ. . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The relationship between the azimuthal angle φ, the Doppler

boost factor η, and the observer. . . . . . . . . . . . . . . . . . . 24

2.7 Doppler boost factor η and η4 as a function of the azimuthal

angle φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Shadow of the black hole M87 taken by the Event Horizon Tele-

scope in 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 The radial vector and normal vector are different for oblate NS. 28

3.1 Flowchart describing the process by which we obtain the spectral

and bolometric fluxes using our codes. . . . . . . . . . . . . . . 31

3.2 Flowchart describing the H-flux python code. . . . . . . . . . . . 35

3.3 Visualization of two iterations of linear interpolation . . . . . . 37

4.1 Bolometric fluxes for different resolutions for a Newtonian NS . 41

4.2 Bolometric fluxes for different resolutions for blackbody NSs in

GR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



4.3 Bolometric fluxes for different resolutions for both blackbody

and H atmosphere NSs in GR. . . . . . . . . . . . . . . . . . . . 43

4.4 Blackbody spectral flux compared to H atmosphere model spec-

tral flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Static, blackbody NS with Newtonian gravity compared with

the same NS in GR. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Spectral flux with different values of compactness for a spherical

blackbody NS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Change in solid angle for different inclinations. . . . . . . . . . . 49

4.8 Bolometric flux produced by a blackbody NS. . . . . . . . . . . 50

4.9 Bolometric flux produced by both spherical and oblate NSs with

a H atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Spectral flux at varying inclinations for an oblate NS using a

blackbody model with spin fixed at 300 Hz. . . . . . . . . . . . 51

4.11 Spectral flux at varying inclinations for an oblate NS using a

blackbody model with spin fixed at 600 Hz. . . . . . . . . . . . 52

4.12 Spectral flux at varying inclinations for both spherical and oblate

NSs using a blackbody model with spin fixed at 600 Hz. . . . . 53

4.13 Spectral flux at varying inclinations for an oblate NS using a H

atmosphere model with spin fixed at 300 Hz. . . . . . . . . . . . 55

4.14 Spectral flux at varying inclinations for an oblate NS using a H

atmosphere model with spin fixed at 600 Hz. . . . . . . . . . . . 56

4.15 Spectral flux at varying inclinations for both spherical and oblate

NSs using a H atmosphere model with spin fixed at 600 Hz. . . 57

ix



Chapter 1

Introduction

1.1 Neutron Stars

Neutron stars (NSs) are some of the most interesting objects in the universe.

First hypothesized by Baade & Zwicky (1934) and observed by Hewish et al.

(1968), a NS is an extremely dense remnant left behind after the death of a

massive star. A typical NS is slightly more massive than the sun (1.4 M�)

with a radius the size of a small city (about 12 km). As the name suggests,

NSs contain a considerable fraction of neutron matter; however, NS structure

is much more complicated than a ball of inert neutrons. NSs are composed of

a thin atmosphere (Rajagopal & Romani, 1996), an iron lattice crust (Chen

et al., 1974), and a form of matter known as “nuclear pasta,” which acts as

a transitional phase between the inner crust and nuclear matter deeper inside

the star (Watanabe et al., 2000) (see section 1.1.2 for more on nuclear matter).

The composition of the NS core is unknown; it may contain ultradense nuclear

matter, or the atoms may have decayed into their constituent quarks (Anand

et al., 1980; Baym & Chin, 1976). The nature of the matter in the core, and

NS structure in general, is determined by its equation of state (EOS).
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1.1.1 The NS Equation of State

An EOS describes the relationship between pressure, density, and temperature

(P , ρ, and T ) for a given phase of matter. One of the simplest and most

familiar equations of state is the ideal gas law,

P =
ρkT

m̄
, (1.1)

where m̄ is average mass of particles in the gas and k is the Boltzmann constant.

The ideal gas law is often used in simplified models of stars. Because NSs are

so dense, however, neutron degeneracy supplies a pressure much larger than

the pressure from thermal motion (such as the ideal gas law) and the pressure

is independent of temperature. A NS EOS can be approximated by a piecewise

polytrope

P (ρ) = Kργ, (1.2)

where K is a constant and γ is the adiabatic index. This is a piecewise func-

tion because there are three different adiabatic indices and subsequently three

different density intervals (Read et al., 2009).

The NS EOS is one of the most highly sought equations in astrophysics.

Measuring the mass and radius of a NS exactly would allow us to strongly

constrain this equation, but the relatively small sizes of NSs and the great dis-

tances involved in astrophysics make direct measurement of these properties

exceedingly difficult. Sometimes mass can be measured directly through ob-

servation of a NS in a binary, but without sufficient resolving power it is more

difficult to measure the radius. Due to this comparative difficulty, methods

used for measuring radii are more prone to systematic uncertainties than those

used for measuring mass. These various methods of indirect measurement are

vital in the effort to constrain the NS EOS (Degenaar & Suleimanov, 2018).
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1.1.2 Neutron Degeneracy

If a gas becomes sufficiently dense, the electrons in that gas will be forced

to occupy the lowest available energy levels. Because of the Pauli exclusion

principle, electrons cannot occupy the same quantum state; as electrons fill up

higher energy states, the pressure of the gas will increasingly depend on the

nonthermal motions of the electrons instead of temperature (Carroll & Ostlie,

2007). This is known as an electron degenerate gas, or Fermi gas. A star

comprised of degenerate matter has many interesting properties—for example,

a star with more mass will have a smaller radius compared to a star with less

mass. White dwarf (WD) stars are supported by electron degeneracy pressure.

Neutron stars are supported by a different kind of degeneracy pressure known

as neutron degeneracy pressure.

Inside a NS, densities are even higher than in WDs; a typical NS will have an

average density on par with that of an atomic nucleus (∼ 1014 g/cm3) (Carroll

& Ostlie, 2007). In these conditions, it is favorable for protons and electrons to

form neutrons through a process known as inverse beta decay. Though some of

these new neutrons will attach to existing nuclei to form neutron-heavy isotopes

(a process known as neutronization), others will exist in the NS as a fluid of free

neutrons in the inner crust (Carroll & Ostlie, 2007). Like electrons, neutrons

must also occupy particular quantum states. NSs are supported against gravity

by this neutron degeneracy pressure.

1.1.3 Superfluidity and Superconduction

Free neutrons in a degenerate neutron fluid may spontaneously pair, such that

they act as one boson instead of two fermions. These paired neutrons will not

be subject to the Pauli exclusion principle, and can thus fill the lowest energy

state without limit. This means that the fluid flows without friction, so it can-

not lose energy via friction. A fluid with this property is known as a superfluid.
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Motion inside of a superfluid NS interior will continue indefinitely, as there is

no viscosity to slow it down (Carroll & Ostlie, 2007).

Deeper inside the neutron star, where the density approaches nuclear den-

sities, the barrier between individual nuclei and the superfluid becomes in-

distinguishable. When protons pair to form bosons, the resulting fluid is

superconducting—i.e., it has no electrical resistance (Carroll & Ostlie, 2007).

The superfluid portion of the NS interior is thus a perfect conductor of elec-

tricity, which has important implications for the strength of its magnetic field.

1.2 Pulsars

As massive stars collapse to form compact objects, the concentration of mag-

netic field lines increases tremendously. Subsequently, many NSs have very

strong magnetic fields—some as high as 1014 G (Harding & Lai, 2006). Due to

the conservation of angular momentum, NSs also rotate rapidly, with some NSs

having spin periods on the order of milliseconds (Alpar et al., 1982). Charged

particles (free electrons and positrons) accelerated along the NS magnetic field

lines produce radiation which is visible at radio wavelengths. Since this radi-

ation is only seen when it is directed at us (like the beam from a lighthouse),

and the magnetic field axis is not aligned with the spin axis, this light appears

as regular “pulses” instead of a constant beam. We call these sources pulsars.

Though first observed at radio wavelengths, radiation from pulsars spans the

whole electromagnetic spectrum; young pulsars like the Crab emit most of their

energy in the X-ray (Andrew Lyne & Graham-Smith, 1998). This X-ray emis-

sion can be beamed, like the radio emission, or thermal (e.g., from a heated

spot on the NS surface). These “hot spots” form when charged particles (elec-

trons and positrons) in the magnetosphere accelerate along the magnetic field

lines and collide with the NS surface at the poles. Hot spots can emit very

bright X-rays which are thermal in origin, especially when the NS is accreting
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material from a companion. Whether or not it has a companion, a NS with

pulsed X-ray accretion is sometimes called an X-ray pulsar (Nagase, 1989).

Pulsar emission provides an incredibly accurate method of measuring the NS

spin frequency. Repeated measurements can reveal frequency changes, which

in turn yields information about the magnetic field, since magnetic dipole ra-

diation is the dominant cause of decreasing spin frequency (“spin down”) for

rotation-powered pulsars (Ostriker & Gunn, 1969; Gold, 1968). Increases in

pulsar frequency have also been observed (“spin up”). For binary systems

where the NS is accreting, this may be caused by torque from the accretion

disk (Alpar et al., 1982). Isolated systems generally spin down, but “glitches,”

where the frequency sharply changes before resuming its gradual decrease (or

increase), have been observed. These glitches are likely a result of the fact that

the solid NS crust and fluid interior do not always rotate at the same rate.

If the interior is spinning faster than the crust, and the two regions suddenly

become coupled, the frequency will appear to change while the crust catches up

with the interior (or vice versa) (Andrew Lyne & Graham-Smith, 1998). This

phenomenon is often attributed to superfluidity in the NS (see section 1.1.3).

1.2.1 Other Sources of NS Emission

Neutron stars are associated with many other observable phenomena. X-rays

are produced when an accreting NS undergoes an explosion of nucleosynthesis,

known as a Type I X-ray burst (Bildsten, 1998). Young neutron stars with

very strong magnetic fields may produce soft gamma ray bursts (Duncan &

Thompson, 1992). Recently, a NS-NS collision has been observed via gravita-

tional radiation (Abbott et al., 2018); gravitational waves from single NSs are

considerably weaker and have not yet been observed. In this work, we are pri-

marily interested in emission from the NS surface, which can be used to deduce

the NS radius using the method described in Rutledge et al. (2002). When X-

ray binaries are not accreting material, most of the observed emission is from
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the NS surface itself. Quiescent low mass X-ray binaries (henceforth qLMXBs)

are thus ideal for our purposes. Observations of qLMXBs and the constraints

placed on potential NS masses and radii as a result of those observations are

described in section 1.3.

1.3 Relevant Observations

qLMXBs have been observed both inside our galaxy and in galactic globu-

lar clusters (GCs). Because our calculations require accurate distances, and

because there are ∼ 100 times more LMXBs per unit mass in GCs (Clark,

1975), we focus on the latter population. The Chandra and XMM-Newton X-

ray observatories have allowed for detailed observations of hundreds of X-ray

sources in GCs. Compared to other X-ray sources (such as millisecond pulsars),

qLMXB have similar colors—where color here describes the difference between

the number of flux counts in two specific frequency ranges, akin to, e.g., the

B-V color index in optical astronomy. This color measurement serves as a very

rough estimate of temperature. Despite this similarity, qLMXBs are much

more luminous than millisecond pulsars (MSPs); this makes sense, because

qLMXBs emit from the entire NS surface, whilst MSPs only emit from small

hot spots. qLMXB luminosities are on order 1032−34 erg/s, and the spectra

have a thermal component which implies a radius of the expected magnitude

(∼ 10 km). Sometimes a harder, nonthermal component can be seen as well,

particularly for qLMXBs in the galactic field (Heinke et al., 2003). The exact

origin of the X-ray emission is unknown—it might be heat from deep within

the NS crust (Brown & Bildsten, 1998), or residual accretion of material from

prior outbursts. The nature of the nonthermal component is also unknown,

but, as the nonthermal component is less prominent in GC qLMXBs, this is

not a major concern. (Note that the relative lack of a nonthermal component

is likely a selection effect—due to their abundance, GC qLMXBs are the only
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qLMXBs which have been identified during quiescence.)

A sphere with radius R at a distance d that emits as a blackbody with

temperature T will have bolometric flux

F =

(
R

d

)2

σT 4, (1.3)

where σ is the Stefan-Boltzmann constant. Measurement of the spectrum gives

T , so if flux and distance are known, the radius of the star can be determined.

When the thermal component is fit using a blackbody, the inferred radii are

much smaller than anticipated (on order of 3 km) (Rutledge et al., 1999).

This is likely due to the presence of a hydrogen atmosphere, which forms after

the gravitational settling of accreted material. Hydrogen atmosphere models

applied to a NS inside a qLMXB yield radii in line with theoretical expectations

(Heinke et al., 2006; Zavlin et al., 1996; Rajagopal & Romani, 1996). The

magnetic field strength of NSs in qLMXBs is low enough (B . 108 G) that the

temperature distribution and opacity on the star’s surface remain unaffected

(Heinke et al., 2006). This allows us to omit magnetic fields from models of

qLMXBs and still obtain values in line with observed fluxes. The effect of

hydrogen atmospheres on observed spectral and bolometric flux is discussed in

detail in section 1.6.

1.4 General Relativistic Effects

Due to their incredible densities, NSs have very high surface gravities (on order

log10 g ∼ 14.4 cm/s2). The escape velocity from the surface of a NS can thus

be a large fraction of the speed of light. This makes Newtonian gravity a poor

approximation, since we need to consider the bending of spacetime in order to

properly trace the paths of the photons which reach our detector. A general

relativistic (GR) model is thus required. The Schwarzschild solution to Ein-

stein’s field equations provides the simplest possible GR model; although the
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Schwarzschild solution assumes a stationary, spherical object, spin effects can

be added in after the metric has been calculated (see section 1.5). This widely

used model is known as the Schwarzschild + Doppler (S + D) approximation.

Cadeau et al. (2005, 2007) and others have used the S + D model to calculate

NS fluxes. The Kerr solution, which allows for a spinning object, does not sig-

nificantly improve upon the S + D approximation (Cadeau et al., 2007). Since

the correct rotating neutron star solution is computationally intensive, using S

+ D is preferred.

When a photon leaves the surface of a NS, its path is bent by the star’s

gravity. This results in an increase in observed flux, since some light from the

back of the star, which would be invisible under Newtonian gravity, becomes

visible in GR. Fu & Taam (1990) found that, aside from gravitational redshift

(which is by far the largest effect), light bending is the most important effect

when computing GR light curves. The mathematical details of these effects,

and the S + D model generally, are discussed in section 2.3.

1.5 Spin Effects

When considering a spinning NS, both Doppler effects and the deformation of

the NS shape must be taken into account. Baubock et al. (2015) found that

assuming a stationary, spherical NS can result in an underestimate of the radius

by as much as 4%. This is because, under the assumption of a fixed equatorial

radius, a spinning NS will have a smaller observed flux than a stationary NS.

This is primarily because of oblateness (a rapidly rotating star will “flatten

out” along the spin axis, resulting in a smaller surface area for an observers

at high inclinations). Therefore, the (purely theoretical) spherical, stationary

NS required to produce a certain amount of flux will have a smaller equatorial

radius compared to an oblate, spinning NS required to produce the same flux.

Accurate radii are of vital importance to finding the correct NS EOS, so it is
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necessary to include spin effects in our flux model. Baubock et al. (2015) make

use of a modified Schwarzschild metric developed by Morsink et al. (2007),

appropriately called the Oblate Schwarzschild (OS) approximation, in their

flux calculations. Doppler boosting and oblateness are discussed in more detail

in sections 2.4.1 and 2.4.2, respectively.

1.6 Hydrogen Atmospheres

Neutron stars have thin atmospheres (on the order of ∼ 10 cm), the composi-

tion of which is a source of interest for many astrophysicists. If a donor star

has no hydrogen (e.g., a helium white dwarf), then the NS may develop a he-

lium atmosphere (Catuneanu et al., 2013). Some NSs may also have carbon

atmospheres (Ho & Heinke, 2009). Since heavier nuclei tend to settle to the

bottom of the atmosphere, however, most NS atmospheres are predominantly

hydrogen; a pure H atmosphere is therefore a good approximation.

A H atmosphere model will have a harder spectrum than a blackbody model

with the same effective temperature. This is because free-free absorption has

a strong dependence on frequency—i.e., because the H atmosphere absorbs

photons at lower frequencies (Rajagopal & Romani, 1996; Zavlin et al., 1996).

Although for individual directions of photon emission (e.g., perpendicular to

the surface), atmospheric scattering may result in a different value of flux, the

H atmosphere and blackbody produce roughly the same bolometric flux when

summed over all possible directions of photon emission. The H atmosphere

model used in Zavlin et al. (2002) changes radii estimates of NS polar caps

by a factor greater than 3 when compared to a blackbody model. The radius

inferred by the H atmosphere agrees with theoretical expectations, while the

blackbody radius is unrealistically small.

Gonzalez-Caniulef et al. (2019) have found that, for colder NSs (T ∼ 105

K), plasma effects become important in the UV range. These effects have the
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result of increasing opacity and subsequently blocking photons below a certain

frequency. Because we are primarily concerned with energies & 50 eV, we do

not take these effects into account.

In this thesis, we use a fully ionized H atmosphere as described in Ho & Lai

(2001). For the temperature we are considering (T = 106 K), full ionization is

a reasonable assumption.

1.7 Thesis Organization

Chapter 2 delves into the mathematics on which this thesis is based, primar-

ily the calculation of spectral and bolometric flux. This calculation includes

Doppler spin effects, gravitational light bending, and gravitational redshift.

The spacetime metric used in determining photon paths and the oblateness

model for rapidly rotating NSs are also considered. Chapter 3 describes the

main work of this thesis, a python program which calculates the flux using

the mathematics described in Chapter 2. Chapter 4 describes the results of

our simulations. Chapter 5 discusses our conclusions and intentions for future

work.

10



Chapter 2

Mathematical Theory

This chapter details the mathematical background upon which the work of this

thesis is based. Section 2.1 describes the geometry used in our calculations;

section 2.2 describes how flux from a static star is calculated in Newtonian

gravity; section 2.3 describes how flux from a static star is calculated in general

relativity; section 2.4 describes the most important spin effects for rotating stars

(Doppler boosting and oblateness, in 2.4.1 and 2.4.2, respectively).

2.1 Spin-Aligned Geometry

In this work we use spin-aligned geometry, such that the spin axis is aligned

with the z axis in Cartesian space. The spherical coordinate transformations

are given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ,

(2.1)

where θ is the polar angle, φ is the azimuthal angle, and r is the radial coor-

dinate (See Figure 2.1). Due to light bending, the direction k̂0 at which the

photon leaves the surface of the NS is not necessarily the same as the direction

at which it reaches our detector k̂ (Figure 2.2).
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Figure 2.1: A neutron star in spherical coordinates. This is a spin-aligned
coordinate system, where the polar angle (θ) is measured from the spin axis
(z), such that θ = 0 aligns with the spin axis and θ = π/2 aligns with the
equator.

The vector k̂, which describes the direction of the observer, can be expressed

k̂ = sin i x̂+ cos i ẑ, (2.2)

which, using the spherical coordinate transformations and the definition of the

radial vector r̂ = (x, y, z) (note that the radial vector r̂ coincides with the

normal vector n̂ for a spherical surface), yields

k̂ · r̂ = cos θ cos i+ sin θ cosφ sin i

= cos Ψ.
(2.3)

This relationship is apparent in Figure 2.3, which also includes the inclination

angle i, and the zenith angle r̂ · k̂0 = cosα. The impact parameter is given by
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Figure 2.2: A photon leaving the surface of a gravitationally lensed NS in the
k̂0 direction will appear to be emitted at a different angle k to an observer at
infinity.

(Pechenick et al., 1983a)

b =
R sinα√
1− 2M/R

, (2.4)

where R is the NS equatorial radius (which is the same as the radius everywhere

on the star for a spherical star) and G = c = 1. In this case the impact

parameter describes the orthogonal distance between the path of our photon

and the centre of the gravitational potential (i.e., the centre of our neutron

star). The relationship between α and Ψ is described by (Pechenick et al.,

1983a)

Ψ =

∫ ∞
R

dr

r2

[ 1

b2
− 1

r2

(
1− M

r

)]−1/2
, (2.5)

where the impact parameter b is a function of α as described above. The

Newtonian limit corresponds to the limit M → 0 in the equation above, i.e.,

Ψ = α.
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Figure 2.3: Geometry of a neutron star with an observer at infinity in direction
k̂ and a photon emitted in direction k̂0.

Figure 2.4: A different view of our NS. The vector k̂ points out of the page at
the centre of the figure, % describes the rotation around the vector k̂, and b is
the impact parameter. Photons emitted from the star on the circle defined by
r appear to the observer to originate from the circle defined by b.
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2.2 Flux From a Static NS in Newtonian Grav-

ity

In a Newtonian system, there is no gravitational bending of light from the NS

surface (k̂ = k̂0). It follows that the impact parameter b is simply

b = R sinα, (2.6)

where R is again the NS radius and α is the zenith angle. In Newtonian gravity,

it is equivalent to say

b = R sin Ψ, (2.7)

since the zenith angle is the same as the bending angle. An infinitesimal section

of surface area, dS, is given by

dS = R2 sin θdθdφ. (2.8)

The observed solid angle, dΩ, is therefore

dΩ =
dS cosα

d2
, (2.9)

where d is the distance between the NS and our detector on Earth. The value of

the projection term cosα will determine whether a photon will be visible from

our detector, or if, e.g., it will be emitted from the back of the NS and will

therefore be invisible. As stated previously, α = Ψ in Newtonian physics; this

means that the available surface for photon emission is equivalent to the NS

cross-sectional area πR2. We will see later this is not the case for a relativistic

15



star. Taking cosα = cos Ψ, the differential solid angle becomes

dΩ =
dS cos Ψ

d2

=
R2

d2
sin θ cos Ψdθdφ

=
R2

d2
(

sin θ cos θ cos i+ sin2 θ cosφ sin i
)
dθdφ.

(2.10)

For uniform emission from a spherically symmetric star we can choose i = 0

without loss of generality. In this case, the differential solid angle is simply

dΩ =
R2

d2
sin θ cos θ dθdφ. (2.11)

We assume a blackbody for simplicity. Using a form of Planck’s law, we can

calculate the specific intensity

IE,em =
2

c2h2
E3
em

(
eEem/kT − 1)−1, (2.12)

where c is the speed of light, h is Planck’s constant, k is the Boltzmann constant,

Eem is the energy of the photon emitted from the surface of the NS, and T is

the temperature of the NS, which is assumed to be homogeneous. The value

of the integral of IE,em over the energy range 0 to ∞ is known to be (Carroll

& Ostlie, 2007) ∫ ∞
0

IE,emdEE,em =
2

c2h2
k4T 4

h

π4

15
. (2.13)

The flux dF from a small surface element dS is (Carroll & Ostlie, 2007)

dF = IE,obsdΩ, (2.14)

where IE,obs is the observed specific intensity of the radiation. Note that the

observed and emitted frequencies are the same in the Newtonian case, i.e.,
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(Rybicki & Lightman, 1979)

IE,em = IE,obs. (2.15)

With subscripts omitted for simplicity, the spectral flux can be expressed

FE =
R2

d2
IE

∫∫
sin θ cos θ dθdφ. (2.16)

The limits of integration are determined by the geometry of the system; but,

since all inclinations are identical for a spherical star, it is sufficient to examine

i = 0◦. The spectral flux is thus

FE =
R2

d2
IE

∫ 2π

0

∫ π/2

0

sin θ cos θ dθdφ

=
R2

d2
πIE.

(2.17)

For the same geometry, bolometric flux over the energy range 0 to ∞ is

Fbolo =
R2

d2
π

∫ ∞
0

IE dE. (2.18)

Using the known value of the specific intensity integral (equation 2.13), this

becomes

Fbolo =
R2

d2
2

c2h2
k4T 4

h

π4

15
π

=
R2

d2
2π5k4

15c2h3
T 4,

(2.19)

which, allowing σ = 2π5k4/15c2h3 and the addition of the distance term R2/d2,

gives the familiar Stefan-Boltzmann law

Fbolo =
R2

d2
σT 4. (2.20)

For an archetypal NS with M = 1.4 M� and R = 12 km, with a tem-

perature of T = 106.0 K, at a distance of 200 pc, this yields a value of
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Fbolo = 2.13× 10−10 erg/cm2/s.

2.3 Flux From a Static NS in GR

Gravitational lensing will make a surface element appear larger, as demon-

strated by Figure 2.4. An infinitesimal section of area on the NS surface as

viewed by an observer at infinity can be described in terms of the impact pa-

rameter such that

dSobs = b dbd% (2.21)

where % describes rotation around the vector k (See Figure 2.4) (Pechenick

et al., 1983a). The impact parameter is given by equation 2.4, and its derivative

is simply

db =
R cosα√
1− 2M/R

dα. (2.22)

The observed surface element is thus

dSobs =
R2 cosα

1− 2M/R
sinα dαd%, (2.23)

or, since sinα dα = d cosα,

dSobs =
R2 cosα

1− 2M/R
d cosα d%. (2.24)

The observed solid angle is subsequently

dΩobs =
dSobs
d2

=
R2

d2
cosα

1− 2M/R
d cosα d%.

(2.25)

Since the emission received by our detector will be redshifted due to the star’s

gravity—a phenomenon known as gravitational redshift—we must consider the
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difference between the observed and emitted intensity in the GR case. The

observed intensity is given by (Shu, 2010)

IE,obs =
IE,em

(1 + z)3
η, (2.26)

where z is the gravitational redshift

z =
∆λ

λem

=
1

(1− 2M/R)1/2
− 1,

(2.27)

and η is the Doppler boosting term (discussed in section 2.4.1), which is just

η = 1 for a static star. The emitted and observed energies are related by

Eobs =
Eem
1 + z

, (2.28)

where z is again the gravitational redshift. Making use of the relativistic trans-

formation law for the specific intensity, the observed flux of photons with ob-

served energy Eobs from a small surface element is

dFE,obs =
IE,em

(1 + z)3
dΩ. (2.29)

For the case of an isotropic, homogeneous NS with i = 0◦, the spectral flux can

be written

FE,em =
R2

d2

∫ 2π

0

∫ 0

1

IE,em
(1 + z)3

cosα

1− 2M/R
d cosα d%

=
R2

d2

∫ 2π

0

∫ π/2

0

(
1− 2M

R

)1/2

IE,em cosα sinα dα d%,

=
R2

d2

(
1− 2M

R

)1/2

πIE,em,

(2.30)
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which is almost the same as the Newtonian expression for spectral flux, except

for the additional gravitational redshift factor. Using the relationship between

Eobs and Eem given by equation 2.28, we can set up the observed energy integral

Fbolo =
R2

d2
π

∫ ∞
0

IE,em
(1 + z)3

dEem
1 + z

=
R2

d2
π

(
1− 2M

R

)∫ ∞
0

IE,emdEem.

(2.31)

Integrating this as we did in 2.19, the observed bolometric flux in GR gives

Fbolo =
R2

d2

(
1− 2M

R

)
2π5k4

15c2h3
T 4. (2.32)

Flux calculated using the Schwarzschild solution is thus related to its Newto-

nian equivalent by

FSch =

(
1− 2M

R

)
FNewt. (2.33)

It is apparent that the GR flux FSch. will always be less than the Newtonian

flux FNewt.; this is because although gravitational lensing increases the number

of photons visible at infinity, gravitational redshift, which decreases the energy

of photons leaving the surface of the NS, is the dominant effect.

For a real NS, the bending angle is not equal to the zenith angle (cos Ψ 6=

cosα). We can rewrite the solid angle in terms of the bending angle, Ψ, such

that

dΩobs =
R2

d2
cosα

1− 2M/R

d cosα

d cos Ψ
d cos Ψ d%. (2.34)

We also want to define the solid angle with respect to the spin axis. For a

spherically symmetrical object,

sin Ψ dΨd% = sin θ dθdφ

d cos Ψ d% = sin θ dθdφ,
(2.35)
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so the expression

dΩ =
R2

d2
cosα sin θ

1− 2M/R

d cosα

d cos Ψ
dθdφ (2.36)

is geometrically equivalent. Allowing µ = cosα and ζ = cos Ψ, this becomes

dΩ =
R2

d2
µ sin θ

1− 2M/R

dµ

dζ
dθdφ. (2.37)

The bolometric flux can therefore be written

Fbolo =

∫∫
IE,em

(1 + z)4
dΩdEem

=
R2

d2

∫∫∫
IE,em

(1 + z)4
µ sin θ

(1− 2M/R)

dµ

dζ
dθdφdEem,

(2.38)

where the limits of integration are determined by the inclination angle i. Solv-

ing for µ given some value of ζ is accomplished using lookup tables, since solving

equation 2.5 analytically is computationally intensive.

For the same archetypal NS described in the previous section, the bolo-

metric flux will be Fbolo = 1.41 × 10−10 erg/cm2/s using a relativistic model

of gravity. For a spinning star, however, the degree of gravitational redshift

will be dependent upon the location of the emission on the star, the angle of

emission α, and the location of the observer relative to the spin axis. This is

discussed in more detail in section 2.4.

2.4 Flux From a Rotating Star

2.4.1 Doppler Boosting

The fastest known spinning NS rotates at a speed of 716 Hz (Hessels et al.,

2006). There is a large population of NSs spinning at a rate of 600 Hz (about

15% of the speed of light) (Lorimer, 2008; Papitto et al., 2014). For these

rapidly spinning stars, Doppler effects must be taken into account to accurately

determine the emitted flux. For high inclinations (where the spin axis ẑ is nearly
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orthogonal to the observer axis k̂), light from the side of the star moving toward

the observer will be blueshifted, while light on the other side will be redshifted.

These frequency changes are what is generally meant when referring to the

Doppler shifting of light. There is a second order effect, however, known as

the transverse Doppler shift, which is non-negligible at low inclinations. For

rapid motion perpendicular to the observer’s line of sight, the wavelength of

light from the surface appears larger due to disparate reference frames (the NS

surface is travelling much more quickly than a comparatively static detector on

Earth). This results in a slight redshifting of light from the surface. Both of

these effects are contained in the Doppler boost function (Rindler, 1991)

η =

√
1− v2

1− v cos ξ
, (2.39)

where v is the linear speed of an arbitrary infinitesimal piece of the NS surface

as a fraction of the speed of light, and ξ is the angle between the photon’s

initial direction in the frame of the observer and the photon’s velocity vector

(See Figure 2.5). Note that different sign conventions are used by different

authors; in our notation, the velocity v is positive when the fluid is moving

toward the observer.

Figure 2.5: For some small area of surface on the NS, ξ describes the angle
between the velocity vector and the direction of photon emission.
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The speed v can be written (Morsink et al., 2007; Poutanen & Gierlinski,

2003)

v =
2πνR sin θ√
1− 2M/R

(2.40)

where ν is the frequency of the NS as measured by an observer on Earth (at

infinity). The denominator represents the gravitational redshift, such that the

speed is local to the NS. This has been defined explicitly in section 2.3. The

cosine of the angle ξ is given by (Poutanen & Gierlinski, 2003)

cos ξ =
sinα sin i sinφ

sinψ
. (2.41)

Implicit in this expression is the dependency of Doppler boosting on the phase

angle φ, the inclination i, and the relationship between the zenith angles α

and ψ. This geometry is shown in Figure 2.6. The α and ψ relationship is

dependent on the mass and radius of the NS, so the degree of Doppler boosting

may yield information about the star’s compactness. To calculate the flux of a

Doppler boosted star, we consider how rotation will shift the observed energies.

Light emitted with energy Eem will be observed at energy Eobs (see equation

2.28). The Doppler shifted, observed energy is simply

Eobs =
Eem
1 + z

η. (2.42)

The conservation of specific intensity can be expressed

Iobs
(Eobs)3

=
Iem

(Eem)3
, (2.43)

so the Doppler boosted, observed intensity is

Iobs = Iem

(
Eobs
Eem

)3

= Iem

(
η

1 + z

)3

.

(2.44)
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Figure 2.6: A visualization of the relationship between the azimuthal angle φ,
the Doppler boost factor η, and the observer. When η > 1, the observer sees
blueshifted light; when η < 1, she sees redshifted light.

Keeping this in terms of the Newtonian flux integral, the Doppler boosted,

bolometric flux from a differential surface element can be written

dFSch,Dopp =

(
η

1 + z

)3
η

1 + z

dFNewt
(1− 2M/R)

, (2.45)

where the first term comes from the intensity (equation 2.44), the second term

comes from the observed energy (equation 2.42), and the final 1−2M/R comes

from the solid angle. The Doppler boosted, bolometric flux from a differential

surface element is thus

dFSch,Dopp = η4
(

1− 2M

R

)
dFNewt. (2.46)

The Doppler boost factor will change with both spin frequency and position

on the star. Figure 2.7 demonstrates the latter by showing variation along
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Figure 2.7: Doppler boost factor η and η4 as a function of the azimuthal angle
φ for a fixed θ value near the equator. Star is spherical and rotating at 600 Hz.
Inclination is fixed at i = 45◦ and compactness is fixed at M/R = 0.22.

the azimuthal angle φ. The curves peak near the edge of the star where the

velocity vector is pointed directly at the observer; the trough is, likewise, where

the vector is pointed directly away. For our archetypal NS with an inclination

of i = π/2 with respect to the spin axis, this yields a value of F = 1.43 ×

10−10erg/cm2/s for a spin frequency of 600 Hz, which is slightly larger than

our unboosted GR flux. For an inclination of i = 0, the flux becomes F =

1.36× 10−10erg/cm2/s for the same spin frequency. This value is smaller than

the flux from a stationary star in GR (1.41 × 10−10erg/cm2/s). This decrease

occurs because, at low inclinations, the motion of the NS is orthogonal to the

line of sight; relative to the observer, the time between successive light wave

crests will appear to be dilated due to the transverse Doppler effect.

It is interesting to note that, because of the relationship between observed

intensity and photon energy, a photon with a larger energy (and therefore a

higher frequency) will necessarily have a higher intensity. The blueshifted side
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of a rapidly rotating object will thus appear brighter than the redshifted side.

This has been observed many times—recently, the first ever image of a black

hole (taken by the Event Horizon Telescope in 2019) demonstrates this effect

via the BH accretion disk, which is clearly brighter on one side (See Figure

2.8) (Akiyama et al., 2019). Cadeau et al. (2007) note that the asymmetry in

the light curve due to Doppler boosting can be used to measure the velocity v;

if the spin frequency is known, this provides one method of measuring the NS

radius R.

Figure 2.8: Image of the shadow of the black hole M87 taken by the Event
Horizon Telescope in 2019 (Akiyama et al., 2019). The lower half appears
brighter due to Doppler boosting.

2.4.2 Oblateness

A rapidly rotating NS is not perfectly spherical. The more rapidly a NS is

rotating, the more oblate it becomes—its equatorial radius grows significantly

larger than its radius as measured from the centre to the pole. This has notice-

able effects on the measured flux, particularly for very rapidly rotating stars

(Morsink et al., 2007). A light curve simulation code, based on theory described
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in Poutanen & Gierlinski (2003), is used to calculate the solid angle of oblate

stars. This code is described in more detail in section 3.1.

For an oblate NS, the radial vector at a given location on the surface is

different from the normal vector at the same location. We therefore define an

oblate zenith angle β so that

cos β = k̂0 · n̂, (2.47)

where n̂ is the normal vector at the surface and k̂0 is the direction of emission

(See Figure 2.9). The solid angle is therefore

dΩ =
R2

d2
sin θ cos β

1− 2M/R

d cos β

d cos Ψ
dθdφ, (2.48)

which is the same as the solid angle in the spherical case, with the new angle

cos β in place of cosα. Because the star’s radius is now a function of θ, the value

of the radius R and the surface gravity g must be calculated at each location

on the star. The empirically derived equations used in these calculations are

taken from AlGendy & Morsink (2014). Values of cos β are generated by the

light curve simulation code flux-angles.

To determine the light curve of a star in general relativity, one must first

describe the shape of the gravitational field outside the compact object. This

takes the form of a solution to the Einstein field equations, also known as

the metric. After the metric has been defined, the paths of the photons in

spacetime (also known as geodesics) can be computed. For nonrotating stars,

the Schwarzschild metric is sufficient (Pechenick et al., 1983b). This metric is

given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (2.49)
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Figure 2.9: For an oblate NS, the radial vector r̂ and normal vector n̂ are not
the same.

where G = c = 1 and r = R(θ). For slowly (< 300 Hz) rotating stars, the most

common metric used for compact objects is the Schwarzschild-Doppler (S + D)

approximation (Miller & Lamb, 1998; Poutanen & Gierlinski, 2003). The S +

D approximation uses the Schwarzschild metric, then adds the Doppler terms

as if the star were a rotating object with no gravitational field. This method

was found to be inadequate for rapidly rotating stars, however; the increasingly

oblate NS surface alters the direction in which photons are scattered, such that

some locations on the NS surface which are invisible for a spherical star become

visible for an oblate star, and vice versa. Morsink et al. (2007) developed the

Oblate Schwarzschild (OS) approximation to resolve this discrepancy. It is the

OS approximation which is used in our simulation of NS light curves.

We have used a great many angles in this chapter, and we will use many

of them throughout this thesis. For ease of reference, each angle has been

catalogued in Table 2.1.
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Angle Definition First Shown
i inclination angle Figure 2.3
θ polar angle Figure 2.1
φ azimuthal angle Figure 2.1
α zenith angle (spherical) Figure 2.3
β zenith angle (oblate) Figure 2.9
µ cosα (spherical) or cos β (oblate)

ξ
angle between velocity vector &
direction of photon emission

Figure 2.5

Ψ bending angle Figure 2.3
ζ cos Ψ

% rotation around k̂ Figure 2.4

Table 2.1: Angles used in this thesis.
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Chapter 3

Numerical Methods

3.1 flux-angles (C++ Code)

To begin with, the NS is divided into a grid of co-latitudes θ and azimuthal

angles φ. It is necessary to specify the number of θ bins (nθ) and φ bins (nφ),

as well as the NS mass, radius, spin frequency, surface temperature, inclination,

and distance from the observer. Because θ is only defined for one hemisphere, it

is prudent to double the φ bins so that dθ and dφ are the same size (e.g., if there

are 10 θ bins there should be 20 φ bins). The star can be spherical or oblate.

For each location on the NS surface, we must calculate the solid angle, photon

emission angles, and Doppler boost value. This is accomplished using the C++

code flux-angles, which was developed using theoretical methods described in

Poutanen & Gierlinski (2003) and Morsink et al. (2007). An earlier version of

the code was used to compute light curves for oblate stars in Morsink et al.

(2007); detailed documentation of this version of the code can be found on

GitHub1. The relevant files generated by flux-angles are described in table 3.1.

1https://github.com/charleeamason/2019thesis
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Example Filename Contents
angles sph spin300 MR17 incl90.txt θ coordinates, φ coordinates, cumu-

lative value of dΩ, size of θ bin (dθ)
cosbeta obl spin600 MR17 incl0.txt value of cos β for each (θ, φ).
dOmega sph spin0 MR22 incl30.txt value of dΩ for each (θ, φ).
boost obl spin300 MR17 incl0.txt value of Doppler boost (η) for each

(θ, φ).

Table 3.1: Example output files produced for each run of the flux-angles pro-
gram. The definitions of η, β, and dΩ are given by equations 2.39, 2.47, and
2.48, respectively.

‘Sph’ or ‘obl’ denotes whether the star is spherical or oblate; number after
‘spin’ denotes the spin frequency in Hz; number after ‘MR’ denotes the
compactness, rounded to two decimal places and multiplied by 100; number
after ‘incl’ denotes the inclination in degrees.

Figure 3.1: Flowchart describing the process by which we obtain the spectral
and bolometric fluxes using the flux-angles C++ code and H-flux python code.
In the spherical case cos β = cosα. The H-flux algorithm is described in detail
in figure 3.2.
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3.2 H-flux (Python Code)

The python functions which calculate the spectral and bolometric fluxes are

located in flux GR oblate.py, flux GR sphere.py, and flux Newton.py. Each

file contains two functions: one which determines the flux for a NS using a

simple blackbody (get flux BB), and another (get flux H) which uses hydrogen

atmosphere tables from Ho et al. (private communication, 2018). As these ta-

bles use fixed values of temperature T and gravitational acceleration g, it was

necessary to write an interpolation function so that the hydrogen atmosphere

model could be applied to NSs with a range of temperatures and gravitational

accelerations. In the tables, specific intensity is normalized by the temperature

cubed (Iν/T
3) and evaluated for E/kT ; to facilitate easier interpolation, we

converted all of our energies to these dimensionless units. The structure of our

interpolation algorithm is discussed in 3.3.7. For oblate stars, it is necessary

to calculate the radius and gravitational acceleration at each point on the NS.

This is accomplished using the programs get R theta.py and get g.py, respec-

tively.

To determine which function is appropriate, the input described in Figure

3.1 is required. This input will determine which text files from flux-angles

will be called upon in the function. If the relevant flux-angles files have not

been generated yet, the code will not run, so it is advisable to run the flux-

angles code for all desired inclinations, spin frequencies, etc. before running

the python code.

Due to the structure of the interpolation algorithm, the length of the en-

ergy list must match the number of photon energies in the hydrogen tables;

as the tables from Wynn Ho et al. use 166 energies, our energy list has 166

entries. (Note these do not have to be the exact same energies, but the length

of the lists must be the same.) Substituting 166 for the length of an alternative

atmosphere model file should allow the use of models with different numbers
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of photon energies.

Though the flux-angles code must run one inclination at a time, the H-flux

python code allows for an inclination array of any length. The default is set

to five inclinations (0◦, 30◦, 45◦, 60◦, 90◦). Inclinations less than 0◦ and greater

than 90◦ will trigger an error due to the limitations of the numpy arccos func-

tion, but this is not an issue due to the symmetrical nature of the hemispheres

of both spherical and oblate stars.

The files generated by H-flux will automatically be saved into a folder named

ntheta# where ‘#’ is the number of θ bins (e.g. ntheta30 for 30 θ bins). The

names and contents of the output files are described in more detail in table 3.2.

The overall structure of the H-flux code is outlined in Figure 3.2.

The data used in this research was generated with a 1.16 GHz Intel Core m3

processor. For a single inclination in the simplest GR case (spherical, black-

body), our code takes on the order of minutes to run. For the most complicated

GR case (oblate, H atmosphere), a single inclination takes many hours. Inter-

polating from the Ho tables is the most time consuming part of this process, and

the interpolation algorithm could certainly be optimized. A faster processor

would also ameliorate run times.
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Example Filename Contents (by column)
BB bolo newt MR17 incl0.npz 1: Photon Energies (E/kT)
BB spectra obl spin300 MR22 incl30.npz 2: Spectral Flux (erg/cm2/s)
H spectra sph spin0 MR17 incl45.npz 3: Spectral Intensity (erg/cm2)

Table 3.2: Example output files produced for each run of H-flux. Each file
contains the same 3 columns of information. Format is .npz, which is used for
numpy arrays.

‘BB’ or ‘H’ denotes whether the flux is from a blackbody or hydrogen
atmosphere; ‘bolo’ or ‘spectra’ denotes whether the file contains the
bolometric or spectral flux; ‘obl’ or ‘sph’ denotes whether the star is oblate or
spherical (not included for Newtonian model, which is only spherical); the
number after ‘spin’ denotes the spin frequency in Hz (also not included for
Newtonian model); the number after ‘MR’ denotes the compactness, rounded
to two decimal places and multiplied by 100; the number after ‘incl’ denotes
the inclination in degrees.

34



Figure 3.2: Description of the H-flux python code.
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3.3 Interpolation Algorithm

Due to the variety of input used when calculating the flux—some arrays are

evenly spaced, some are not—it was prudent to use more than one function

to accomplish linear interpolation. Each of these functions contained in the

master interpolation file interp g T zeta.py is described in this section.

3.3.1 find closest and get nearest pair

The function find closest finds the closest value given a pair of test values and

a target value. The function get nearest pair returns the two integers closest

to a target integer in an array. The spacing between integers must be even for

this function; this limitation was fine for the evenly spaced temperature and

gravitational acceleration arrays, but for other parameters a function capable

of dealing with unevenly spaced arrays was needed. Both find closest and

get nearest pair were modified from code found on stackexchange 2.

3.3.2 get nearest uneven

This function finds the closest pair of values in an array to a given target value.

The array does not need to be evenly spaced. (The function get nearest pair is

slightly faster, and is therefore still preferred for evenly spaced arrays.) If the

target value is larger than any in the array, the pair of numbers returned will

both be the maximum value in the array. If the target value is smaller than

any in the array, the pair of numbers will, likewise, both be the minimum value

in the array.

2https://codereview.stackexchange.com/questions/190145/find-the-closest-number-in-a-
sorted-list-to-a-given-target-number/190180#190180
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Figure 3.3: Two iterations of linear interpolation are required to get the desired
intensity array.

3.3.3 interp T and g

Since the temperature and gravitational acceleration arrays from Ho et al. are

evenly spaced, interp T and g makes use of the get nearest pair function to ac-

complish simple linear interpolation. The hydrogen tables have previously been

divided into text files based on temperature and stored as ‘/logT files/logT #.txt’

where ‘#’ is the logT value multiplied by 100 (e.g., a temperature 106 K yields

a filename logT 600.txt). The closest temperature values are selected based on

the number in this filename. The data is then divided into arrays as shown in

Figure 3.3 and linearly interpolated twice to get the intensity array associated

with the target temperature and gravitational acceleration.

3.3.4 interp zeta

This function interpolates the angle ζ = cos Ψ(= cosα) in the Newtonian case,

or µ = cosα in the GR case, such that it matches the angles given by the tables
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in Ho et al. To make matters more confusing, this angle is called µ = cos θ

in the Ho table README file, where Ho et al. define θ in the same way we

have defined α. The function interp zeta takes the output of interp T and g as

input, and returns the intensity and energy array with properly interpolated

angles.

3.3.5 interp E

This function is the final step in acquiring the spectral intensity for a NS with a

hydrogen atmosphere. The energy list defined in main.py is interpolated using

get nearest uneven and the photon energies in Ho et al. The final intensity

array is returned.

3.3.6 lookup alpha

A preliminary version of lookup alpha MR which assumed that the exact value

of compactness was in the lookup table.

3.3.7 lookup alpha MR

Before the cos β angles were taken from flux-angles, it was necessary to use

lookup tables (lookup alpha.txt) to get the proper β(= α) values for an oblate

star. This function is capable of reading in any M/R value and ζ value and

returning α(= β) and dµ/dζ. As reading in the flux-angles text files is faster

than interpolating each angle one at a time, this function is not in use for the

final version of our code.

38



Chapter 4

Results

4.1 Error and Convergence

To test the accuracy of our code, it is necessary to ensure the calculated flux

converges to the correct value. For the blackbody model, this is straightfor-

ward, since the theoretical value can be determined analytically (as described

in chapter 2). The percent error is simply calculated using

%ErrorBB =
|code value− theoretical value|

theoretical value
× 100. (4.1)

The convergence of the blackbody model with decreasing stepsize is catalogued

in tables 4.1 and 4.2. Figure 4.1 shows how both the blackbody and H at-

mosphere bolometric flux behaves in Newtonian gravity; the error for the H

model is on par with the blackbody model, with the inclination i = 0◦ having

the highest error and i = 90◦ having the smallest error for both models. We

think the i = 0◦ error is disproportionately large because of the way the grid

is defined, resulting in higher computational error near the poles. Using a dif-

ferent grid, or a different method of dividing up the NS surface, may alleviate

this issue.

Figure 4.2 shows how the blackbody model behaves in general relativity. It
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is interesting that the Newtonian flux varies with inclination considerably more

than the GR flux. We are unsure why this is so.

Determining error for the H atmosphere model is somewhat more compli-

cated, because the theoretical flux value is unknown. Flux should be constant

at all inclinations for a spherical star, however; we use this fact to estimate error

for the H model. The percent error is thus the flux range over the inclination

averaged flux, i.e.,

%ErrorH =
|Fincl=90 − Fincl=0|

Favg
× 100. (4.2)

Figure 4.3 shows both blackbody and H models at different resolutions in gen-

eral relativity. In GR, the blackbody error is considerably lower than the H

atmosphere error, with percent error on order of 0.18% for the blackbody at

nθ = 120, and 0.4% for the H atmosphere at the same resolution. For all error

calculations a NS with M = 1.4 M�, R = 9.37 km, and T = 106.0 K, at a

distance of 200 pc, is used. We use this atypically small value of R because

it yields a more typical value of compactness (M/R = 0.22) than R = 12 km

(M/R = 0.17) for M = 1.4 M�. This is necessary since we are keeping the

mass fixed; a real NS with a this compactness would have a higher mass.

It is important to compare the size of our error with the expected size of

the effects we are measuring. Spin effects can change observed flux by 1−12%,

depending on the size of the NS, the inclination of the observer, and the mag-

nitude of the spin frequency (Baubock et al., 2015). H atmospheres do not

significantly change the bolometric flux when compared to a blackbody model,

but the change in the spectral flux can impact inferred radii measurements by

a factor of 3 (Zavlin et al., 2002) (see Figure 4.4).
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Figure 4.1: Bolometric fluxes for different resolutions (values of nθ). Percent
error measured at i = 0◦ is on order of 1.5% for the blackbody model with
nθ = 30, 0.8% for the blackbody model with nθ = 60, 1.4% for the H model
with nθ = 30, and 0.8% for the H model with nθ = 60.

Incl.(deg) Flux (erg/cm2/s), nθ = 10 % Err. Flux , nθ = 30 % Err.
0 1.35741× 10−10 4.1% 1.32358× 10−10 1.54%
30 1.29735× 10−10 0.47% 1.30807× 10−10 0.35%
45 1.29652× 10−10 0.54% 1.30446× 10−10 0.074%
60 1.29333× 10−10 0.78% 1.30238× 10−10 0.086%
90 1.30428× 10−10 0.060% 1.30294× 10−10 0.043%

Table 4.1: Stationary Newtonian NS with blackbody surface. Observed bolo-
metric converges toward the correct value with 30 θ bins.

Observed bolometric flux for a spherical, stationary NS under Newtonian
gravity. The nθ and nφ describe the size of the θ and φ bins, respectively; the
energy stepsize is held constant at Edx = 0.2. Flux converges toward the
correct value, 1.3035× 10−10erg/cm2/s, with decreasing stepsize.
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Figure 4.2: Bolometric fluxes for different resolutions (values of nθ). Blackbody
only. At i = 0◦, percent error is on order 0.26% for the lower resolution and
0.18% for the higher resolution.

Incl. Flux Flux Flux
(deg) (erg/cm2/s) % Err. (erg/cm2/s) % Err. (erg/cm2/s) % Err.

nθ = 10 nθ = 30 nθ = 120
0 7.3387× 10−11 0.54% 7.3185× 10−11 0.26% 7.3129× 10−11

30 7.3464× 10−11 0.64% 7.3171× 10−11 0.24% 7.3129× 10−11

45 7.3432× 10−11 0.60% 7.3164× 10−11 0.23% 7.3129× 10−11 0.18%
60 7.3409× 10−11 0.57% 7.3171× 10−11 0.24% 7.3129× 10−11

90 7.3435× 10−11 0.60% 7.3168× 10−11 0.24% 7.3129× 10−11

Table 4.2: Stationary NS in GR with blackbody surface. Observed bolometric
converges toward the correct value with 120 θ bins.

Observed bolometric flux for a spherical, stationary NS in general relativity.
The nθ and nφ describe the size of the θ and φ bins, respectively; the energy
stepsize is held constant at Edx = 0.2. Flux converges toward the correct
value, 7.2996× 10−11erg/cm2/s, with decreasing stepsize.
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Figure 4.3: Bolometric fluxes for different resolutions (values of nθ). Blackbody
and H. For H atmosphere, percent error is on order 1.6% for the lower resolution
and 0.4% for the higher resolution. Blackbody percent error is same as in Figure
4.2.

Incl. Flux Flux Flux
(deg) (erg/cm2/s) % Err. (erg/cm2/s) % Err. (erg/cm2/s) % Err.

nθ = 10 nθ = 30 nθ = 120
0 7.01535× 10−11 7.22065× 10−11 7.3070× 10−11

30 7.20674× 10−11 7.28692× 10−11 7.3238× 10−11

45 7.26810× 10−11 4.5% 7.30871× 10−11 1.6% 7.3294× 10−11 0.40%
60 7.30856× 10−11 7.32335× 10−11 7.3332× 10−11

90 7.33872× 10−11 7.33412× 10−11 7.3360× 10−11

Table 4.3: Stationary NS in GR with a H atmosphere. Observed bolometric
starts to converge with 120 θ bins.

Observed bolometric flux for a spherical, stationary NS in general relativity.
The nθ and nφ describe the size of the θ and φ bins, respectively; the energy
stepsize is held constant at Edx = 0.2. Percent error applies to all inclinations,
not only i = 45◦.
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Figure 4.4: A blackbody compared to a hydrogen atmosphere model. The
hydrogen atmosphere shifts the peak to higher frequencies.
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4.2 General Relativistic Effects

The salient difference between GR and Newtonian gravity from a calculation

standpoint is that for GR, ψ 6= α. Calculating α analytically using equation 2.5

is computationally intensive; instead, we interpolate between values in a lookup

table compiled by Sharon Morsink to determine the appropriate α (private

communication, 2019). Calculated analytically for i = 0◦, the bolometric flux

is 7.2996× 10−11erg/cm2/s for the archetypal NS described at the beginning of

this chapter; the numerical integral begins to converge to this value regardless

of inclination (see table 4.2). The GR and Newtonian fluxes are compared in

Figure 4.5.

The range of each integral depends on which parts of the NS are visible,

which in turn depends on the inclination i. Visibility conditions are calculated

at each step such that only light the observer will see is added to the flux.

The bolometric flux of a star with gravitational redshift is calculated using our

numerical integrator for the same range of inclinations as in the previous section

(e.g., i = 0◦, 30◦, 45◦, 60◦, 90◦). These results are given in Table 4.2. Note that

for Figure 4.4 and all subsequent blackbody spectral flux plots, the peak is

located at approximately 3 E/kT units, or about 0.26 keV. The hydrogen

atmosphere spectral flux peak is a bit higher energy than this. Both of these

peak values are within the Chandra telescope’s observing capabilities, which

can detect light in the range 0.2− 10 keV1.

1See https://chandra.harvard.edu/about/specs.html for Chandra specifications
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Figure 4.5: Static, blackbody NS with Newtonian gravity compared with the
same NS in GR. Gravitational redshift results in less flux.

4.3 Effects of Compactness

The effect of compactness on flux can be seen in Figure 4.6. Three values of

compactness are examined, with mass fixed at M = 1.4 M�. Higher compact-

ness results in a smaller star, which in turn results in less flux. Though the radii

used (R = 12 km for M/R = 0.17, R = 9.37 km for M/R = 0.22, and R = 7.64

km for M/R = 0.27), particularly the smallest radius R = 7.64 km, are not

necessarily realistic for a M = 1.4 M� star, it is the overall compactness value

which we are concerned with, not the M and R values individually. A more

realistic NS with a compactness M/R = 0.27 would have a higher mass and a

radius closer to the archetypal value of 10 km; but the difficulty of determin-

ing the exact radius from M/R is part of what makes finding the NS EOS so

difficult. It is important to keep this in mind when considering compactness.
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Figure 4.6: Spectral flux with different values of compactness for a spherical
blackbody NS. Spin and inclination are fixed.

4.4 Spin Effects

The change in solid angle for different inclinations and two spin frequencies

is shown in Figure 4.7. At high inclinations, a spinning star appears smaller

compared to a static, spherical star with the same equatorial radius. This is

because the cross-sectional area of an oblate star is smaller than that of a spher-

ical star with the same equatorial radius. At low inclinations, a spinning star

has similar surface area (or exactly the same surface area in the i = 0◦ case) as

a spherical star. The NS appears larger, however, since light bends differently

around an oblate star compared to a static, spherical star (an observer can see

a little further around the equator in the oblate case (Morsink et al., 2007)).

Figures 4.8 and 4.9 show how bolometric flux changes with inclination for

a blackbody and H atmosphere model, respectively. Flux is plotted for two

different spin values (300 and 600 Hz), and for oblate and spherical stars in

both cases. Looking at the spherical, spinning stars in both plots, Doppler
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effects are readily apparent; Doppler boosting at high inclinations results in

more flux, while the transverse Doppler shift at low inclinations decreases flux.

Adding oblateness to the equation, we see that flux dramatically decreases at

high inclinations due to smaller surface area. At low inclinations, the spherical

and oblate curves are similar (and nearly identical for the blackbody plot).

Oblateness thus has the largest impact on flux at high inclinations. Note that,

in the blackbody plot, there is a location (at i = 25◦) where the spherical and

oblate fluxes are the same for the 600 Hz case. As the blackbody and H atmo-

sphere plots have similar overall behavior, it is likely that this feature is also

present in the H atmosphere plot, but due to computational limitations, it is

not currently resolvable.

Figures 4.10, 4.11, and 4.12 show spectral flux for a blackbody at different

inclinations. For each of these plots, we include a residual plot so that differ-

ences between curves can be easily seen. Figure 4.10 shows a NS spinning at

300 Hz; for the three inclinations shown (i = 0◦, 45◦, 90◦) the differences be-

tween spectral fluxes are negligible, with the i = 45◦ case having only a 0.60%

difference with the i = 0◦ case, and the i = 90◦ case having only a 0.74% differ-

ence with the i = 0◦ case. This suggests that spin effects are negligible for stars

spinning at this frequency. Figure 4.11 shows the same star as Figure 4.10, but

spinning at a higher frequency (600 Hz). The inclination differences are more

apparent here, with the i = 45◦ case having a 1.87% difference compared to the

i = 0◦ case, and the i = 90◦ case having a 2.29% difference compared to the

i = 0◦ case. These differences are small but potentially measurable by future

instruments (e.g., by the Advanced Telescope for High-ENergy Astrophysics2,

abbreviated ‘ATHENA’). Compared to Chandra, ATHENA will have an ex-

panded range in both higher and lower energies, with the wide field imager

capable of detecting emission in the range 0.1− 15 keV.

Figure 4.12 allows the comparison of spherical and oblate spectral fluxes

2http://sci.esa.int/athena/
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at two inclinations. The two oblate curves are the same as on the previous

plot (Figure 4.11), with the spherical NS now included for comparison. Note

that the two spherical inclinations are nearly identical, but the two oblate in-

clinations are different; this suggests that oblateness is of similar or greater

importance compared to Doppler boosting. These results agree qualitatively

with Baubock et al. (2015).

Figure 4.7: Change in solid angle for different inclinations. Stationary, spherical
star shown for comparison.
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Figure 4.8: Bolometric flux produced by a blackbody NS (using 30 θ bins).
Shape (spherical vs. oblate) and spin frequency is varied while compactness is
held constant.

Figure 4.9: Bolometric flux produced by both spherical and oblate NSs with a
H atmosphere (120 θ bins). Spin frequency is varied while compactness is held
constant.
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Figure 4.10: Top: Spectral flux at varying inclinations for an oblate NS using a
blackbody model with spin fixed at 300 Hz (nθ = 30). Differences are negligible
at this spin frequency. Bottom: Difference between the i = 0◦ and i = 90◦

curves.
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Figure 4.11: Top: Spectral flux at varying inclinations for an oblate NS using
a blackbody model with spin fixed at 600 Hz (nθ = 30). High inclinations
(i = 90◦) have larger observed fluxes than low inclinations (i = 0◦). Bottom:
Difference between the i = 0◦ and i = 90◦ curves.
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Figure 4.12: Top: Spectral flux at varying inclinations for both spherical and
oblate NSs using a blackbody model with spin fixed at 600 Hz (nθ = 30). High
inclinations (i = 90◦) have larger observed fluxes than low inclinations (i = 0◦).
For high inclinations, spherical stars have larger fluxes than oblate stars; they
are nearly identical at low inclinations. Bottom: Difference as measured from
the spherical i = 0◦ curve.
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4.5 Effects of Hydrogen Atmosphere

As anticipated, the H atmosphere model shifts the spectral flux to higher fre-

quencies (again refer to Figure 4.4). Figures 4.13 and 4.14 show spectral flux

for a H atmosphere model at different inclinations (with residuals again shown

to highlight inclination difference). For a NS spinning at 300 Hz, an observer

at i = 45◦ will measure only a 1.87% difference compared with the i = 0 case;

an observer at i = 90◦ will measure a 2.29% difference. For a NS spinning

at 600 Hz, these percent differences become 3.77% and 4.31%, respectively.

These differences should be smaller with a hydrogen atmosphere, compared

to a blackbody; H atmosphere emission is anisotropic due to electron scat-

tering in the atmosphere (Rybicki & Lightman, 1979). This anisotropy causes

increased limb darkening, which in turn reduces the effects of relativistic boost-

ing and oblateness. However, the opposite seems to be happening, with the H

atmosphere model having larger variation with inclination than the blackbody

model. This is likely due to the larger error in the H atmosphere results. Higher

grid resolution will enable us to determine whether error is the culprit, or if

this is a real effect.

Like Figure 4.12, Figure 4.15 allows the comparison of spherical and oblate

spectral fluxes at two inclinations. The two oblate curves are the same as in

Figure 4.14, with the spherical NS now included for comparison. Note that,

just as in the blackbody case, the two spherical inclinations are nearly identical,

but the two oblate inclinations are quite different. Oblateness effects, though

small, are still evident in the presence of a H atmosphere.
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Figure 4.13: Top: Spectral flux at varying inclinations for an oblate NS using
a hydrogen atmosphere model with spin fixed at 300 Hz (nθ = 30). High
inclinations (i = 90◦) have larger observed fluxes than low inclinations (i = 0◦).
Bottom: Difference between the i = 0◦ and i = 90◦ curves.
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Figure 4.14: Top: Spectral flux at varying inclinations for an oblate NS using
a hydrogen atmosphere model with spin fixed at 600 Hz (nθ = 30). High
inclinations (i = 90) have larger observed fluxes than low inclinations (i = 0).
Bottom: Difference between the i = 0◦ and i = 90◦ curves.
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Figure 4.15: Top: Spectral flux at varying inclinations for both spherical and
oblate NSs using a hydrogen atmosphere model with spin fixed at 600 Hz
(nθ = 30). For high inclinations, spherical stars have larger fluxes than oblate
stars; they are nearly identical at low inclinations. Bottom: Difference as
measured from the spherical i = 0◦ curve.
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Chapter 5

Conclusions and Future Work

We have designed a code which simulates bolometric and spectral flux for (in

the most complex case) a rapidly rotating, oblate, relativistic NS with a hy-

drogen atmosphere. Preliminary tests of static, spherical NSs with blackbody

emission agree with theoretical expectations. Although Doppler boosting (see

Figure 2.7) and gravitational redshift (see Figure 4.5—also includes light bend-

ing) are by far the dominant effects, oblateness has a significant impact on flux

(see Figures 4.8 and 4.9). H atmosphere models are vital as well; although the

bolometric fluxes of blackbody and H atmosphere models are very nearly the

same, the spectra are completely different (see Figure 4.4).

Considering these effects together is important because interactions exist

between them—scattering in the H atmosphere should reduce oblateness and

Doppler boosting effects through increased limb darkening, for example. If the

variation in inclination continues to be larger with an H atmosphere even with

improved grid resolution, then more investigation will be necessary to explain

this behavior. Other interactions may also exist, which could become apparent

at higher resolutions in future work.

Our code simulates a NS spectra given (among other inputs) a particu-

lar radius. Learning about NSs from real data involves working in the other

direction—taking a spectral flux and using it to estimate the compactness ra-
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tio (M/R). Potential EOS can be excluded based on this ratio, with the ulti-

mate goal being to find the single EOS which describes NS matter. Although

surface emission from NSs in qLMXBs has been observed using the Chandra

and XMM-Newton X-ray telescopes, the limited resolution of these telescopes

makes it difficult to calculate NS radii with the precision required to rule out

all incorrect EOS. Many such accurate measurements of NS parameters will be

required to deduce the correct NS EOS.

In the future, we will examine how flux changes with different values of

compactness (M/R). It would also be interesting to use different atmosphere

models (perhaps a helium atmosphere), since the composition of the atmo-

sphere changes the spectral flux significantly. We will continue to work on

optimizing the interpolation algorithm to ensure reasonable run times. We

may also alter the grid on which the integration over the NS surface is per-

formed, to avoid the increasing error near the poles.

The proposed X-ray telescope ATHENA will have considerably higher res-

olution, making future measurements more lucrative. ATHENA’s increased

sensitivity in the lower range will be particularly advantageous, since NS tem-

peratures tend to be close to our chosen value of 106 K/0.26 keV (though

they can vary by ±10%). ATHENA’s larger effective area will also allow for

the detection of fainter NSs, as well as reducing error in flux measurements.

Including all effects—including second order (transverse) Doppler effects and

oblateness—will become increasingly important in the new era of higher reso-

lution X-ray astronomy.
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