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Abstract

Logic programining languages offer appealing features for solving constraint
satisfaction problems (CSPs); their relational form and support of non-determinism
~ allow CSPs to be expressed naturally as logic programs. Yet this natural expression
often leads to the use of inefficient search strategies. So far, logic programming
languages are seldom used to solve real-life CSPs. In contrast, many consistency tech-
niques (CTs) are developed to solve CSPs efficiently. In these techniques, constraints
can be used actively to prune the search space in an a priori fashion. That is, combina-
tions of values that cannot appear in a solution are removed as early as possible so that
failures are largely avoided. Therefore, a viable solution to solve CSPs efficiently in a

natural formulation is to embed CTs into logic programming.

CHIP (Constraint Handling in Prolog) is the first logic programming language
that supports CTs. It can solve real-life CSPs with efficiency comparable to that of some
specially coded programs. On the other hand, this language is built around a modified
Mu-Prolog which (in turn) relies heavily on a sophisticated delay mechanism not found
in most conventional Prolog systems. The question of how to incorporate CTs into
these systems is still much unanswered. This research tries to tackle this problem with
a particular example; we have incorporated CTs into a conventional Prolog interpreter

— the Waterloo UNIXt Prolog(WUP). This thesis discusses our findings.

t Registered trademark of AT&T in the USA and other countries.
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- Chapter One
Introduction

This chapter explains the motivation and objectives of the research described in

this thesis. It also describes the organization of this dissertation and provides a general

overview of logic programming.
1.1. Motivation and Objectives

Constraint satisfaction problems (CSPs) are an important class of problems in
Computing Science. Problems such as planning, vision, and scheduling can be easily
expressed as CSPs. A CSP can be defined in the following way [vaD86]:

Assume the existence of a finite set J of variables Xy, . . . , X, . Suppose

each variable X; takes its values from a finite set U; called the domain

of the variable. A constraint C can be seen as a relation on a nonempty

subset I ={(Y, ...,Y,} of J which defines a set of tuples

<Uy, ..., Uy,>. A constraint satisfaction problem is to determine all

the possible arrangements f of values to variables such that the

corresponding value assignment satisfies the constraints.

This class of problems is theoretically decidable because the domain of each variable is
finite[van87]. Nevertheless, due to the complexity of these problems, a general algo-
rithm that solves the whole class of problems will require exponential time in problem
size [van87]. Although several techniques can be combined to solve a particular

instance of a CSP, backtracking is by far the most commonly used technique.

Logic programming offers appealing features for solving CSPs. In this para-
digm, constraints can be expressed easily in two ways: by means of predicates which

enforce relationships among their parameters and by means of the unification mechan-
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ism which creates (and solves) equality constraints between Herbrand terms A[vaD86].
Moreover, its support of non-determinism allows natural formulation of backtracking
programs: a CSP can be expressed naturally as a logic program using either the gen-
erate and test approach or the standard backrracking approach. These formulations,
however, often lead to inefficient logic programs because they are oriented to recover-
ing from failures rather than avoiding them. The search space is pruned only after
failures are encountered. This approach is generally considered as the a posteriori

approach.

Consistency techniques(CTs), on the other hand, support the a priori approach:
constraints are used to prune the search space before failures are encountered. The main
idea is to spend more time in each node of the search tree to remove combinations of
values that would never appear in a solution. Thus, failures are detected earlier so that
useless generations can be avoided. Moreover, the amount of backtracking and number

of constraint checks is reduced [van87].

Naturally, a practical approach is to embed CTs in logic programming. CHIP
represents such an effort [van87]. It supports g priori pruning. Furthermore, its imple-
mentation of CTs is in the form of special inference rules and a number of built-in
predicates. These extra features are based on Mu-Prolog's special computation rule
which is not found in most Prolog systems. If CTs are to be used widely in logic pro-
gramming, it should be incorporated into conventional Prolog systems. The work in
‘this thesis represents such an effort; we have successfully integrated CTs into the
Waterloo Unix Prolog (WUP). An appropriate delay mechanism for subgoals, in which
CTs can be implemented, has been identified. In addition, a performance analysis on
our implementation is carried out. Findings of these aspects are discussed in the

__remainder of this thesis.




1.2. Organization or the Thesis

The organization of the thesis is as follows. The rest of this chapter describes
the basic concepts in logic programming. In Chapter Two, constraint satisfaction tech-
niques are examined. Some of the basic approaches are evaluated. In Chapter Three,
the overall structure and the various features of CHIP are described in detail. In
Chapter Four, the implementation developed by the author, called WUP3.F, is dis-
cussed. Then, the result of a performance analysis of WUP3.F is explained in Chapter

Five. Finally, Chapter Six concludes this research with a summary of the findings.
1.3. Overview of Logic Programming

1.3.1. Background

Logic programming originated from advances in automatic theorem proving. It
has a short history. In 1965, Robinson introduced the resolution principle [Rob65].
This principle provided a sound and complete proof procedure for first-order logic that
can be efficiently implemented on a computer [L1o84]. In 1972, the first Logic Pro-
gramming Language was implemented in ALGOL-W by Roussel at Marseille; this
interpreter was named PROLOG (PROgramming in LOGic) [L1084]. It was only after
Kowalski's formulation of the procedural interpretation in 1974 did logic programming
become better understood as a practical ptogramming paradigm [Kow?74]. Since then,
there have been numerous implementations (e.g., [CIM80,Rob77, War77]). The
Japanese Fifth Generation Computer Systems Project, which was announced in 1981,
further stimulated world-wide interest in logic programming. Indeed, there are many
active research areas: some of them are parallel processing of logic program, Prolog

compilers, intelligent backtracking, and constraint logic programming [Hog84].



1.3.2, Syntax

Logic programming has a simple syntax in which several constructs are defined.
A term is either a variable or an expression f(ty, ...,t,) where f is a function symbol
and t's are terms. O-ary functions are constants. An atom is an atomic formula
p(ty, . . . o ty) Where p is a n-ary predicate symbol. A literal is an atom or the negation of
an atom and a clause is a conjunction of literals. All variables occurring in a clause are
universally quantified. A program clause is a clause of the following form:

A<B;& - &B,;!

It contains precisely one positive literal A which is called the head. The remaining
B; & - - - & B, is called the body of the program clause. A logic program is a finite set
of nrogram clauses. A goal clause, or simply a goal, is a clause without the head; i.e.,
¢« B; & - - - & B, where each B, is called a subgoal. A Horn clause is a clause which is

either a program clause or a goal clause.

In Kowalski's procedural interpretation, three types of Horn clauses have
specific meanings in a logic program. First, a program clause represents a procedure
declaration. Its head is the procedure name and its body is the body of the procedure.
Second, a unit clause is a program clause that has an empty body; i.e., A« . It
represents an empty procedure: a call to the procedure always returns true. Third, an
empty clause, denoted by [], is a clause that does not have a head nor a body. It

represents a contradiction.

! For the rest of this thesis, the syntactic convention of WUP is followed: first, a variablc begins
with an uppercase leter; second, an identifier begins with a lowercase letter; third, the ampersand’
is the conjunction symbol; and fourth, the semicolon is the end of clause symbol.




1.3.3. Semantics

It is possible to assign an informal meaning to a program clause. For instance,
A~ B; & &B, can be interpreted as "if By & -+ & B, are true, then A is true
[Llo84)." Nevertheless, one of the prominent features of logic programming is its
well-defined semantics. van Emden and Kowalski investigated the formal semantics of
logic programming languages and described three types of semantics [vaK76]. First,
operational semantics defines the denotation of a n-ary 'predi‘cate p as the set of all
tuples <ty, ..., t,> such that p(t;, .. .,t,) is derivable from the set of program clauses
P. Second, model-theoretic semantics defines the denotation of p as the set of all tuples
<ty, ..., ty> such that p(ty, ..., t,) is logically implied by P. Third, fixpoint semantics
defines the denotation of a recursively defined procedure to be the minimal fixpoint of a
functional transformation associated with the procedure definition. That is, the denota-
tion of p is the set of all tuples <t,, ..., t;> such that p(ty,...,t,) is a member of the
least Herbrand Model. These three types of semantics were shown to be equivalent by

van Emden and Kowalski.

1.3.4. Unification

Unification is a uniform mechanism for parameter passing, data selection, and
data construction in logic programming [Llo84]. In procedural languages, one is
interested in the output of a program; whereas in logic programming, one is interested

in the variable bindings computed during the execution of a logic program.

Basically, a binding is of the form v/t where v is a variable and t is a term dis-
tinct from v. A substitution 0 is a finite set of bindings usually denoted as

{vilty, . . ., vpfty} where vy, ..., Vv, are distinct. Every occurrence of the variable v; is

__replaced by t; when a substitution @ is applied to an atom G, denoted as G8. Two atoms




G and H are unifiable if there exists a unifier (i.e. a unifying substitution) p such that
Gp =Hp. For example, consider two atoms p(X,b) and p(a,Y). If they are unified, the
unifier is p = { X/b, Y/a } because Gp = Hp =p(a,b). A unifier p is the most general
unifier (mgu) if for any unifier v, it is possible to find a substitution & such that y=pd.
A unification algorithm is an algorithm that computes the mgu of a set. of atoms

[Rob6S]).
1.3.5. Computation Model

Computation in logic programming is based on a proof procedure called SLD-
resolution [Kow74]; it is a refinement of Robinson's resolution principle [Rob65). The
procedure is similar to proof by contradiction: the negative of the formula to be proved
is included as axioms with those defined in a logic program, and SLD-resolution is used

to prove that the inclusion leads to a contradiction.

Specifically, the proof procedure consists of a sequence of goal reduction cycles.
Each cycle involves three steps as follows:

1) Subgoal selection: a subgoal A, is arbitrarily selected from the current goal G; of
theforme A & - & A

2) Procedure selection: a program clause C of the foom A« B, & - - & B,, is
chosen, and the unification algorithm computes 0 as the mgu of A; and A.

3) Goal reduction: G; will be reduced to a new goal G;,, by replacing A; with the
body of C and applying 6 throughout the entire new goal. Thus, G;,, becomes
A1 & &A1 &B & - &B,, & A, & - & A G, is called the
resolvent of C and G;.

This cycle is repeated until either a failure occurs (when there are no more procedures

to be selected) or an empty goal is reached. For example, consider the following logic

program:

__ father(ab), ,
s - A




grandfather(X,Y) & father(X,Z) & father(Z,Y);
with the goal « grandfather(X,Y). The following steps are observed if the left-most
subgoal is always chosen to be reduced:

- ?randfather(x Y);

« fatherX'.Z") & fathcr(Z' Y)R{X=X,Y=Y")
« father(®,Y"); (X'=a,2'=b, Y'=Y"}
O{Y"=c}

The computation can also be depicted as an SLD-tree. For example, the SLD-tree for

the above execution is:

& grandfathern(X,Y)

« father(X,2) & fathern(Z,Y)

« father(b,Y) « father(c,Y)

|

a failure
{Y/c}

Figurel.l: An SLD-tree

In fig 1.1, each branch of the tree represents a derivation.

From the execution, two sources of non-determinism in the execution are

observed: first, any subgoal in a goal can be selected; second, any procedure whose

.- head_is unifiable with the selected subgoal can be chosen... The strategy-of choosing-a- -



subgoal is called a computation rule whereas the strategy of selecting a suitable pro-

cedure for matching is called a search rule.

1.3.6. Prolog

Prolog was the first successful, and is still the most widely-used, implementa-
tion of logic programming. It uses the standard computation rule which always selects
the left-most subgoal from a goal and the standard depth-first search rule which tries
procedure declarations in their textual order. This scheme allows Prolog to be imple-
mented efficiently in the von Neumann architecture of a computer because a stack can
be used to implement the depth-first search. Basically, each record on the stack
represents the current resolvent. An instance of the stack represents the branch of the
search tree that is currently being investigated. Whenever there is a match between the
current selected subgoal and the head of a program clause, the new resolvent is pushed
onto the stack. If, however, there is no such match, the top of the stack is popped. The
matching, then, continues with the selected subgoal of the current top of the stack.
Thus, the computation essentially becomes an interleaved sequence of pushes and pops
on the stack [Llo84]. Although this stack implementation allows efficient execution, it
introduces incompleteness into the system. For instance, solutions to the right of an

infinite branch of the search tree may never be found [L1084]:
1.3.7. Overview of A Prolog Interpreter

A conventional Prolog interpreter accesses two important data areas in memory.
The first area is the input heap (or the pure code area). It contains the compacted and
codified form of an input logic program. Before program execution, all clauses of the

program are loaded into the input heap. They are then linked together and aﬁangcd by

----their-names-and arities, yet-the textual order of the original program is-preserved.--With ——-—



clauses arranged in this fashion, the interpreter can locate a candidate clause quickly

during unification.

The second area is the runtime environment, Its structure depends largely on the
strategy used to represent a structured term that contains variables. In fact, there are
two common strategies [Bru82]. The first strategy is called structure sharing which
allows pure code to be shared among instances of a term. A term is represented by two
pointers: the skeleton pointer and the environment poinier. The former points to a
skeleton which defines the "shape" for the term and the latter points to a variable
environment in which the values of the variables in the term can be accessed. Using
this scheme, the interpreter can construct new terms with little cost. Yet acessing to
the content of a term is slow because much dereferencing is required. Tiie second stra-
tegy is called structure copying [Mel82). According to this strategy, a new copy of the
term has to be created when a variable is bound to a term that contains variables. Thus,
term construction is slow while accessing a term is fast because less dereferencing is

required. Since our investigation is on WUP, the following description is based on this

structure copying interpreter.

There are three stacks in the runtime environment of WUP. The first stack is the
trail stack. It records the addresses of the variables that are bound during unificatin.
Upon backtracking, these variables are reset to "undefined”. The second stack is the
copy (or global) stack. It serves as a heap for structures that are created during program
execution. Every time that a variable is bound to a term containing variable, a new
copy of the term is created on the copy stack. The third stack is the runtime (local)
stack. A frame is created on this stack after a candidate clause has been selected to be

unified with the current goal. Each frame is divided into two areas: environment and

__control areas. The environment area keeps track of variable bindings. It contains a
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number of memory slots; one for each unique variable in the current program clause.
The control area keeps track of the flow of control. It contains several pointers and the
number of pointers depends on whether the current computation is a deterministic one
or a non-deterministic one. A computation is deterministic if there is only one candi-
date clause for the current subgoal. Otherwise, the computation is non-deterministic. A

deterministic computation requires the following pointers:

FATHER a pointer to the parent goal of the current subgoal. I: links up all the
ancestors of the current subgoal; it maintains the structure of the
proof tree;

RETURN a pointer to the next subgoal which is to be solved upon successful

completion of the current one.

A non-deterministic computation, on the other hand, requires several additional pointers
as follows:

NEXT CLAUSE a pointer to the next candidate clause for the current subgoal. Upon
backtracking, the pointer is used to locate this clause.

BACK a pointer to the most recent backtracking point. It helps to locate the
last backtracking point. Upon backtracking, the segment of the run-
time stack above this point is discarded.

RESET a pointer to the trail that records the top of the trail at the time of
creation of the current frame. Upon backtracking, the segment of
trail above? this point is discarded. Varizble bindings recorded in this
portion are reset to "undefined”.

COoPY a pointer to the copy stack that records the top of the copy stack at
the time of creation of the current frame. Upon backtracking, the
segment of copy stack above this point is discarded.

Most Prolog implementations allow built-in predicates to be defined. These
predicates serve two functions. First, they allow the use of non-logical constructs such
as cut and negation as failure [L1o84]. Second, they help to speed up execution of the

interpreter in some domains such as arithmetic and strings manipulation,

.- 2_In this thesis, it is assumed that all stacks grow upwards.. - -



Chapter Two
Techniques for Solving CSPs

This chapter describes some of the techniques for solving CSPs. It first
discusses the general technique and some of its variants; backtracking is the basis of
this technique. Then, similar techniques in logic proWhg are examined. Lastly, a
few techniques developed in the field of Artificial Intelligence are explained.

2.1. General Technique

Backtracking is the most often used method in solving CSPs. Basically, back-
tracking can solve a problem that can be transformed into the assignment of values to a
tuple of variables of the form (v, . . .,v,) so that a certain property, say P(vy,...,vp),
is satisfied. Each of the variables v; has a finite domain D, of constants. Backtracking
will instantiate the variables sequentially, and each partial solution (ey,...,ep) is
checked to see if it satisfies a criterion function P,. If Pr(ey, - . . ,¢) does not hold, a
new value from Dy is selected to instantiate v,. If all the values from Dy have been
used, the system backtracks, and a new value will be given to'irk_,. Otherwise, if
Py(ey, ..., €) holds, the system will instantiate the next variable, i.e. Vi+1- The main
advantage of backtracking is that it is possible to explore the entire search without
enumerating all the tuples even though in the worst case, all tuples have to be checked.
For instance, a partial assignment of variables may falsify a criterion function and back-

tracking will generate a new partial assignment instead of expanding the partial assign-

ment.

11
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As the criterion function Py is not defined in the general backtracking procedure,
it is possible to have variants for the procedure. In fact, four variants of backtracking
have been proposed to solve CSPs: generate and test, standard backtracking, forward
checking, and looking ahead [van87). Each approach has a different criterion function.
Basically, generate and test requires that the variables v, , ..., v, are insiantiated; that
is, a complete assignment is made. Standard backtracking, in addition to a complete
assignment, requires that the newly instantiated variable must be consistent with all
other instantiated variables. For example, if the problem is to find a sorted list of ele-
ments among the domains, Py(ey, . . . , &) will require thate; < - - <e,. Similarly, for-
ward checking requires that each variable which has not yet been assigned has at lcast
one consistent value with other assigned variables. Lastly, for looking ahead, each vari-
able that has not yet been assigned must have at least one consistent value with other

variables that have not been assigned.

Informally, the relative efficiency of the four approaches can be compared by
studying their criterion functions. First, in the generate and test approach, every possi-
ble tuple is tested because the search space is not pruned. As the size of the program
grows, this approach becomes extremely inefficient. Second, in the standard backtrack-
ing approach, pruning of the search space occurs only after a failure is detected, a kind
of a posteriori pruning. Even though the approach already represents a significamt
improvement over the generate and test approach (i.e. pruning is performed passively),
it suffers from the thrashing problem which has the following symptoms [Mac77] :

1) repeat useless generation: this situation occurs when there is a certain value in
the domain of a variable which always falsifies the criterion function. For
instance, if v, = c always falsifies the criterion Py, 3 new instantiation of any of

the variables v,, .. ., vy_; will eventually make the procedure reinstantiate v, to
¢ and cause a failure again.

-=2)-—-—bad-backtracking-point:-this-situation-accurs when-the-instantiation-of v, causes——==—

the failure of P; where j 2 i. The system should backtrack to give a new valuc
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for v; instead of assigning different values for the variables Viyq, .. ., Ve

3) late detection of failure: this situation occurs when the values of two variables v;
and v; lead to the failure of P, where i < j < k. The system will needlessly
assign different values to the variables v;,p, .. ., Vg
With these drawbacks, the standard backtracking approach is not efficient for

solving CSPs, Consequently, the forward checking approach and the looking ahead

approach are proposed to avoid the inefficiency which plagues the first two approaches.

The main idea behind these lookahead approaches is that more time is spent on the
effect of instantiating a new variable. Inconsistent values are removed from domains of
the variables that have not yet been assigned so that failures are detected as soon as pos-
sible. Thus, each instantiated variable will not cause any unnecessary failure, especially

those related to the three symptoms of thrashing.

However, it is difficult to compare the efficiencies of different approaches
without actually writing and running the programs [Knu75]. van Hentenryck, therefore,
used a statistical model to compare the standard backtracking approach with the for-
ward checking approach [van87]. The purpose of the comparison is to "give a
mathematical explanation of the greater efficiency of lookahead schemes over standard
backtracking and to define the conditions under which this explanation holds" [van87].
The number of constraint checks is used as 2 measure of the time complexity of the
algorithms. Without going into the full detail of this analysis, the findings are summar-

ized as follows:

1)) the standard backtracking approach is more efficient than the forward checking
approach only when the probability of success of a constraint is small (i.e. <
30%); in all other cases, the latter is more efficient.

2) spending more time in the beginning of the tree search pays off rather quickly
and achieves an overall improvement.

_.-.3)._.._the forward checking approach.is always more efficient than the standard back-..__.__

tracking approach for difficult problems, such as those that require a lot of
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constraint checks.

The findings of the analysis support the proposition that lookahead approaches are more

efficient.
2.2. Techniques in Logic Programming

Logic programming has much to offer in constraint solving. First, unification
solves equalities among terms. Second, the lack of orientation of parameters provides a
mechanism whose expressive power is similar to that of equations. Third, the non-
determinism of the search procedure accommodates the generations of labelling, i.c.
instantiation of variables [Gal87]. Fourth, simple constraints can easily be implemented
as built-in predicates, e.g. the inequality constraint X # Y. Lastly, composite con-
straints can be expressed as logic programs [van87]. For instance, in a problem that
requires all the variables to have distinct values, the all_different([X,, . .., X,]) predi-
cate can be implemented as a logic program which makes sure that X, » X; for all i and

IRE SR

The most commonly used approach to express a CSP as a logic program is the
generate and test approach. Basically, a program written in this approach can be
divided into two modules: the generate module and the test module. The gencrate
module computes the value assignment for all the variables, and the test module checks
if the assignment satisfies the given set of constraints. However, the gencrate and teat
approach is not efficient because it does not prune the search space (see section 2.1).
Even though more efficient approaches, such as standard backtracking, forwand check-
ing. and looking ahead can be used, the resulting program, on one hand, requires maore

__programming effort and, on the other hand, becomes more difficult 10 undenstand and 1o

maintain {van87]. Furthermore, the resulting program still uses Prolog's chionnlogical
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backtracking which suffers from all three symptoms of the thrashing problem.

Nevertheless, much research has been devoted to the improvement of the
efficiency of Prolog. Some deal with the overall improvement of program execution
such as compilation of Prolog programs {War77] and parallel processing. Others deal
specifically with Prolog's control strategies. In the following, two pieces of research
that belong to the latter category are reviewed: intelligent backtracking [Won88] and
~ coroutining [CIM80]. Moreover, Constraint Logic Progmxﬁmiug [HIMS87], which is the
aim of this research, becomes an increasingly active area. The work in CLP(R) is com-

pared with the approach of embedding CTs in logic programming.
2.2.1. Intelligent Backtracking

Intelligent backtracking is a refinement of the chronological backtracking of
Prolog that aims to alleviate the problem of thrashing. In chronological backtracking,
the system will backtrack to the most recent backtracking point. One of the problems
with chronological backtracking is related to bad backtracking points. Consider the fol-
lowing program and goal:

p(@.b);

p(.c);

q(a);
q(b);

r(c);

«pX,Y) & q(Z) & r(Y).
After the first two subgoals have been proved, the system obtains the substitution (X/a,
Y/b, Z/a} and tries to prove r(b). It fails. Tie system then backtracks to q(Z) and
reproves q(Z) to get a new binding for Z, i.e. { Z/b }. After this, it proves r(b) and,
obviously, it fails once again. Clearly, the failure of r(Y) has nothing to do with the

binding of Z. Instead, the system should backtrack to p(X,Y) so that a new binding for

Y can be obtained. The system, however, backtracks needlessly to obtain all the new =~ —
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bindings for Z. In sum, q(Z) is a bad backtracking point.

In intelligent backtracking, the source of failures is analyzed. When the system
backtracks, it always backtracks to a productive choice point. There are many methods
to locate these choice points such as static data dependency analysis, generator-
consumer analysis, and deduction analysis [Won88]. Unfortunately, the problem of
finding the best possible backtrack points is intractable; that is, the complexity of the
algorithm for finding these points is t:xpom:miall [Wol86]. Usually, heuristics are used
instead. The overhead involved in finding backtracking points may slow down program

execution.

Even though intelligent backtracking is able to give Prolog a better performance,
it does not eliminate the problem of thrashing [van87]. The search space is still pruned
only after a failure is encountered. Thus, the overall strategy is still the a posteriori
approach. Lee Naish commented about this approach: "It is better to avoid failures than

to react to them intelligently [Nai85]."
2.2.2. Coroutining

Another improvement on Prolog’s control strategy is the coroutining mechan-
ism. It enables sophisticated computation rules to be defined. In coroutining, a gen-
erate and test program can be written in a way such that the test module is placed before
the generate module. If there is insufficient information for a test to be carried out, it is
delayed. As soon as sufficient information is available, the test is rcactivated and cxe-
cuted. In other words, the test can be used as soon as possible without waiting for the

end of the generation of values [DSv87]. Thus, standard backtracking can be realized in

! According to {(Wol86], the problem of finding all maximal umﬁablc subscts o those o( cerin
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the gensrate and ¢St spproach.

Theie are wany approaches for adding the coroutining mechanism to Prolog.
The basic idea is to enhance the computation rule so that more processing is carried out
to decide whether a selected subgoal should be executed or delayed. The following two

examples illustrate this point. First, in Prologll [Col82], an instance of the freeze

predicate, say freeze(X,p(X,Y,Z)), contains the control information that X must be '

instantiated before p(X,Y,Z) can be executed. Second, in Mu-Prolog, a wait declara-
tion, say wait p(+,+,-), means that the first two arguments must be constructed before p
can be executed [Nai85)]. Usually, different criteria for execution are used for different
implementations. Coroutini;ug. therefore, allows the natural formulation of generate

and test to be implemented with the efficiency of siandard backtracking.

It is not difficult to see that constraints are still used passively; that is, the search
space cannot be pruned until failures are encountered. These failures are due to the
instantiation of inconsistent values of variables. Thus, coroutining does not produce any
improvement beyond the standard backiracking approach [van87]. In addition, it does
not handle the interaction among constraints [DSv87]. For instance, assume that the
coroutining mechanism is used in two built-in predicates, = and <, so that these two
predicates can be executed only if all the parameters are ground. Consider the following
program and the two goals G1 and G2:

pPXY)eX25&Y<5;

81:.2§Z§§ 8&Ys2;

G2: «q(Z2,2); .

During the execution of G1, the system suspends the resolvent Z 2 5 & Z < 5; but, obvi-
ously, Z should get the value 5. On the other hand, during the execution of G2, the sys-

tem suspends the resolvent Z > 8 & Z < 2; but, the resolvent contains an inconsistency.
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Indeed, coroutining alone is not sufficient for constraint solving.

2.2.3. CLP

Among the many extensions of Prolog, CLP is the cloSést to the approach of
embedding CTs in logic programming where unification in CLP is replaced by the con-
cept of constraint solving. CLP has its origin in the Logic Programming Language
Scheme(or simply the Scheme) which represents an effort to preserve the unique
semantic properties of logic programming among its extensions. Basically, the syntax
of the Scheme is the syntax of Definite Clause. Its domain of computation is left
unspecified but it is assumed to be definable by a unification complete equality theory;
that is, an equality theory E dictates that equality holds only if E-unification is possible
[JLM86]. Furthermore, its interpreter is based on SLD resolution and an appropriate,
generalized unification algorithm [JaL87]). One of the advantages of the Scheme is that
the programmer who uses an instance of the Scheme can work directly in the intended
domain of discourse while the semantics of the instance is being taken care of [van87).
Moreover, efficiency is greatly improved by the use of constraint solving techniques

over specific domains.

CLP is an extension of the Scheme. Its interpreter is based on SLD resolution
and an appropriate constraint-solver which can handle constraints in the given computa-
tion domains. There are three characteristics for the constraint-solver [van87): first, it is
a decision procedure for the class of constraints in the given computation domain — it
can always decide if there is a solution for a set of constraints or not; second, it is a
blackbox to the user — the user has no control and knowledge about it; and third, it has

to be incremental.
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CLP(R) [HIM87, JaL87] is an instance of CLP. Its cof:aputation domain is real
numbers; and its constraint-solver can handle constraints in the form of linear equations
and inequations. In CLP(R), equations are handled by the Gaussian Elimination
method whereas inequalities are solved by a modified Simplex method [Las87]. Yet

non-linear constraints are delayed until they become linear.

The approach of CLP is quite similar to the approach of embedding CTs in logic
programming (the CTs approach) because both of them afe based on the idea of using
constraints in an a priori way. However, there are some fundamental differences
between the two approaches, and van Hentenryck has the following arguments [van87].
Firstly, the CTs approach attempts to solve discrete combinatorial problems which
require a combination of backtracking and constraint manipulation techniques. Each
problem in this class requires specific handling. Yet CLP is not designed to solve a
specific class of programs. Secondly, the CTs approach does not require a complete
constraint-solver because discrete combinatorial problems are best regarded as searches.
A complete problem solver for these problems is inefficient, e.g. [Fre78]. Thirdly, the
CTs approach enables a programmer to use any strategies and representations he likes
to exploit the specific nature of his problem. This freedom is not available in CLP
because the constraint solver is a black box to the users. Lastly, the CTs approach pro-
vides general mechanisms such as forward checking and looking ahead for those con-
straints that can be expressed as logic programs. In sum, it should be reasonable to say

that CT's can provide better support for discrete combinatorial problems.

Besides CLP(R), Prolog I [Col87] (an improved extension of Prolog II

[Col82]) can also be viewed as an instance of the scheme even though it is not

presented in this way.2 Its computation domain is rational numbers. The constraint-

2 In [JLM86), Prolog II is shown to be an instance of the Scheme.
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solver of Prolog IIT has two submodules: one for processing Boolean Algebra and the

other for processing inequalities. The latter module is based on a modified simplex

algorithm.
2.3. Techniques in Artificial Intelligence

In many Al systems, constraints are used to reason about quantities. There are
many techniques for constraint solving. In this section, two general techniques are
explained and the problem solver ALICE is also mentioned. Lastly, a programming

language that can solve a class of CSPs is reviewed.
2.3.1. Label Inference

In label inference, each variable is associated with a set of possible values, and
constraints are used to restrict these values. Suppose that there is a constraint applied to
a particular variable. It requires that the variable must be even. In label inference, all

the odd values in set of possible values of the variable will be eliminated.

The first significant work was introduced by Mackworth [Mac77] in which he
proposed three notions — node, arc, and path — of consistency and devised algorithms
to enforce them. In fact, these notions are remedies for the three causes of the thrashing
problem described in section 2.1. The main idea is to eliminate local inconsistencies
before any real processing is carried out to find the complete solution. Even though
these algorithms cannot find the solution, they can reduce the search space. Thus, they

are best viewed as preprocessing techniques.

Expanding on Mackworth's work, Freuder proposed the notion of k-consistency

utilizes both local and global propagation; however, it is inefficient for solving
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problems that have larger number of constraints.

2.3.2. Value Inference

In value inference, constraints are used to' assign values for variables from those
that are already assigned. Each constraint is nsually defined as a set of rules. For
| instance, given a constra.in; that represents an AND gate with inputs X,Y, and output Z,
the following set of rules defines the constraint [van87]:
ifZ=1,thenX=Y=1; |

] ifX=00rY=0,thenZ=0;

. ifX=landY=1,thenZ=1;
. ifZ=0and X=1,thenY=0;
. ifZ=0andY=1,thenX=0;

ifX=1thenZ=Y;
ifY=1,thenZ=X;

Notice that some of the rules are redundant and each rule identifies a particular use of
the constraint. As soon as the condition of a rule is satisfied, the rule can be applied.
Such an application may instantiate other variatles and will lead to possible applica-

tions of other rules. This cycle of instantiation of variables and application of rules

introduces a data-driven computation.

It is not difficult to realize that the search space is reduced in an g priori way
because values are propagated as soon as they are generated. However, value inference
is only applicable for constraints which can be expressed as equations [van87]. This res-

triction makes the technique insufficient for solving combinatorial problems.

2.3.3. ALICE

ALICE [Lau78] represents a class of problem solvers which relies on a general

search procedure that utilizes domain specific knowledge. In each of these solvers, a

..—.specification language. is used to formulate problems.. Using the given specificationas ... .
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input, the system will search for a solution using the @ priori approach. For instance,
ALICE has a mathematical language that incorporates knowledge in algebra, set theory,
first order logic, and graph theory. It uses a depth-first search procedure which is
equipped with a sophisticated constraints manipulation mechanism to find the solution.
The search is also assisted by a large set of general heuristics. The outcome of the

search is a function from one finite set to another which satisfies the given set of con-

straints [Lau78].

A major advantage of such a system is that the user is relieved from writing an
algorithm to solve a particular problem. He only needs to write a specification for the
problem. However, to take full advantage of the system, he has to learn every detail of
the specification language. Yet these solvers have two disadvantages. First, the system
is a black-box [van87] to the user. He has no control in the representation of his prob-
lem and the strategy that solves it. Second, the application range of the system is res-
tricted by both the specification language as well as the amount of domain specific

knowledge inside the system.
2.3.4. Bernard

Bernard [Lel88] is a general-purpose specification language. It uses an extended
form of term writing called augmented term rewriting which has the ability to bind
values to variables and to define abstract data types. These extensions make the
language expressive enough to be used for general constraint satisfaction [Lel88).
Unfortunately, Bernard is primarily used for systems that handle numeric constraints;

that is, its computation domain is real numbers.

In Bernard, constraints are expressed as rewriting rules, and consistency tech-

niques can be implemented as libraries of rules. Moreover, a user can specify a specific
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constraint-satisfaction system by composing a set of rewriting rules. The major
strengths of Bernard are: first, it is expressive enough to handle systems of nonlineas
equations; second, it is extensible; and third, it inherits computational completexiess
from term rewriting. However, when used as a constraint-satisfaction problem solver,
Bernard has two crippling weaknesses: first, it cannot give multiple solutions since the
term rewriting system is not capable of dealing with multiple values for a single vari-

able. ; second, it cannot handle inequalities.

2.4. Summary

In this chapter, several techniques for constraint solving are discussed. In partic-
ular, four approaches of backtracking have been described. One can argue that the loo-
kahead approaches provide better pruning than both the generate and test approach and
the standard backtracking approach do. On the other hand, even with intelligent back-
tracking and coroutining, Prolog is unable to allow efficient formulations of CSPs.
Furthermore, techniques developed in Al are shown to be insufficient for solving CSPs.
Therefore, a possible approach is to embed CTs in logic programming. CHIP, which is

the topic of the next chapter, is the first attempt along this line.



Chapter Three
CHIP

This chapter discusses the implementation of the CHIP language ! in detail. It
contains five sections. Section one describes Mu-Prolog which is the backbone of
CHIP's implementation. Section two examines the concépt of finite domains which
allows CTs to be integrated into logic programming. Section three discusses the three
inference rules in CHIP. Section four shows the built-in predicates that constitute the

CTs in CHIP. Finally, some concluding remarks are given in section five.

Before going on to discuss the CHIP implementation, it is important to point out

its three design principles: .
. minimize overhead: extra overhead should not be incurred for those programs

that do not use CTs;

’ avoid intermediate variables: these variables cause many problems in a structure
sharing interpreter;

¢ achieve data-driven selection of subgoals: as soon as there is enough informa-

tion to execute a subgoal, it should be selected immediately.

These principles are followed in CHIP's implementation. In the following discussion,

the areas where CHIP observes these rules are indicated.
3.1. Mu-Prolog

Mu-Prolog is a Prolog interpreter developed by Lee Naish at the University of

! The discussion here is based on [van87). Besides constraints in finite domain, the CHIP

--|anguage can-handle constraints-in-Baolean Algebrs and rational numbers.- {DvS8R)-gives 8 good ===

summary of the current status of CHIP. Qur research concentrates on finite domains only.

24
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Melbourne, Australia. It is used to test the feasibility of the wait declaration and its
automatic generation. The wait declaration is actually a sophisticated control mechan-

ism that allows preconditions to be defined for selection of a subgoal [Nai85).

Mu-Prolog is a simple interpreter. It has a straightforward memory organiza-
tion: it uses only one stack and does not implement any memory saving techniques. Yet
the novelty of Mu-Prolog is found in its computation rule. In Mu-Prolog, a subgoal can
be delayed and invoked later and the scenario can be depicted as follows. After a
subgoal is selected, a test is carried out to determine wiether the subgoal satisfies its -
preconditions or not. If it does, the execution continues in the normal way. Otherwise,
the subgoal is delayed. This means that the subgoal is removed from the current resol-
vent and a link is created between the subgoal and each of the variables that falsifies the
preconditions. Later on, if one of these variables get bound, the delayed subgoal will be
checked again to determine if it satisfies its preconditions. If it does, the delayed call is

put back into the resolvent and is ready to be selected again.

In Mu-Prolog, the computation rule is slightly different in that the test for
preconditions is carried out during unification. Moreover, whenever a subgoal is
invoked, it is immediately placed back to the resolvent. This scheme will cause quite a
few activations and delays of the same subgoal. It is, however, difficult to improve on

this matter given the generality of the scheme [Car88, van87].

3.2. Finite Domains

The mechanism of finite domains was introduced into logic programming in

[vaD86]. It allows the active use of constraints and the implementation of consistency

_techniques. The main idea is to associate a variable with a set of possible values. The

variable can take up only one element from the set as its value. Hence, the
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interpretation of a logic program is more confined. A variable that has a finite domain

is called a d-variable (or simply d-var) whereas one that does not is called an h-variable

(or simply h-var).

In CHIP, the domain for a d-var is characterized by three entities. The first
entity is the cardinality of the domain. The second entity is a boolean array that indi-
cates whether a particular element of the domain is removed. The third entity is a map-
ping between the elements of the boolean array and the elements of the domain. Gen-
erally speaking, the mapping can be any quick access method such as a binary search or
a hash-table. But for specialized domains, the mapping function can be more specific.

For instance, for a domain of consecutive integers, the mapping can be as follows:

B=V-L+1
where B is the index for the boolean array, V is the value of an element, and L is the
lower bound. Consider V=9and L =S. The Sth (i.e. S =9 - § + 1) entry in the boolean

array tells whether the integer 9 is removed from the set or not.

In actual implementation, a domain is represented as a record. The memory
used for the record is allocated from the local stack. Upon backtracking, the memory
can be reclaimed. This strategy helps to minimize memory usage and, thus, the over-

head.

The domain declaration of the form
domain p(d;,...,d,)
is used to introduce finite domains in a logic program. d; is a domain specification

which can be a constant 'h’, a set of constants (3;,...,a, ], or an expression l..u. The

~——first- specification means-that the ith-argument-of predicate p ranges over the Herbrand

universe. The second one means that the ith argument is a set of natural numbers or
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character strings. The third one means that the argument is a set of consecutive natural

number with lower bound | and upper bound u.

Since d-variables are treated as a distinct type of objects, the unification algo-

rithm has to be modified to allow unification between a d-var and a term, Three possi-

ble cases are observed:
+ . thetermis a simple variable: it is bound to the d-var;
. the term is ground (i.e. it contains no variable): if it is & member of the domain

of the d-var, the d-var will be bound to the term; otherwise, the unification fails;
. the term is a d-var: the intersection of the domains of the two d-vars is com-

puted. If the intersection is not empty, a new d-var with domain as the intersec-
tion is created. The two d-vars become pointers to the new d-var; otherwise,

unification fails.

It is not difficult to see that equalities among d-variables can be solved in the third case.

3.3. New Inference Rules

Three inference rules are introduced into CHIP. They are forward checking
inference rule (FCIR), looking ahead inference rule (LAIR), and partial looking ahead
inference rule (PLAIR). These rules provide a formal basis for their own control
mechanisms and the implementation of some specialized predicates. From a practical
point of view, they are best viewed as general methods [van87]. They allow a user to
specify not only which inference rule is used for a given constraint, but also what kind
of preconditions must be satisfied before the constraint can be used. These rules are
used when there is insufficient knowledge concerning a particular constraint. If there is
sufficient knowledge, specific methods can be applied (see next section). In most appli-

cations, these rules are more effective than resolution in terms of pruning of the search

space.
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These inference rules can only be used in constraints which are defined as fol-

lows:
Definition 3.1: Let p be an u-ary predicate. p is a constraint {ff for any ground
terms ty,..., ty, Cither p v+ &) has either a successful refutation or
p(ty ... t,,) ha.vﬁnmfailca} dcrivauans [van87).

Yet there is no mechanism to guarantee that an atom which uses an inference rule is a

constraint. This remains as a user's responsibility.
3.3.1. Forward Checking Inference Rule

Forward Checking Inference Rule (FCIR) introduces the forward checking stra-
tegy of solving constraints into logic programming. The idea is that a constraint can be
solved when there is only one uninstantiated variable left. Actually, if the constraint is
solved using this rule, only consistent values will remain in the domain of the variable.
To apply FCIR, a constraint must be forward-checkable. The definition of forward-
checkable is given as follows:

Definition 3.2: Anatomp(t,, ..., t,) is forward-checkable {ff p is a constraint

and there exists one and only one t; which is a d-variable, with all the others

being ground. This last variable ($t sub i$) is called the forward-variable

[van87).

FCIR 2 is defined as follows [van87] :

Definition 3.3: Let P be a program and G; =« A, e Ay Ay be a
goal. G;,, is derived by the FCIR from G; and P u.tmg 'the substitution 0,
the following conditions hold

(11 A, isforward-checkable and x? is the forward-variable;

2] e=faed|Pi=A,(x%a}}+O.

Bl 6Giyis

(3a) (x%Ic}ife={c}:

2 The soundness and completeness results are shown in [(van87).
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[3b] {x%/2*) where 2 is a new d-variable otherwise.
(4] Giisthegoal ~(A) & & Ay & Ay & -+ & A6,
There are three observations from the above definition of FCIR. First, the inference
rule solves the constraint completely. According to [4], A, is removed from the resol-
vent. Second, this rule achieves a priori pruning. In [2], e is always a subset of d -
because all the inconsistent values in d are removed. Third, if there is only one value

left in the domain of the forward-variable ([3a]), the forward-variable will be bound to

that value.

To use FCIR, a constraint must be associated with a forward declaration which

is defined as follows:

Definition 3.4: Given an n-ary predicate p, a forward declaration, unique for
this predicate, is an expression of the following form

forwardp(a,y, ..., a,)

where the a;’s are either the character 'g’ or the character 'd’. p is a con-
straint and all the atoms having p as predicate are said to be submitted to this
Sforward declaration [van87).

Forward declarations are separated from the logic part of the program and do not

influence the declarative semantics. They provide a general method for using forward

checking in logic programming.

The semantics of the rule is encapsulated in the definition of a forward-
consistent proof-procedure. The following definitions are given [van87].

Definition 3.5: An atom P submitted to a forward declaration is forward-
available iff all the arguments of P corresponding to a g in the forward declara-
tion are ground, and P is forward-checkable.

Definition 3.6: A computation rule R is forward-consistent iff an atom submitted
to a forward declaration is selected by R only when it is either ground or
Sforward-available.
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Definition 3.7: A proof-procedure is forward-consisient {ff

’ it uses a forward-consistent computation rule R;

' when a forward-available atom P is selected by R, the FCIR is used to
solve P;

. when an atom P that is not forward-available is selected by R, normal

derivation is used.
The forward consistent computation rule is provided by the system so that the design of
program can be simplified [van87). For instance, constraints can be stated before the

generators and will be selected only when they are forward-available or ground.

To make the proof procedure more efficient, the concept of forward-efficient
computation rule is introduced as follows:

Definition 3.8: A computation rule R is forward-efficient {ff R is forward-

o are grownd of forwaredvatlable, one of them i slected by R lvang Ty,
A forward-efficient computation rule enables the pruning of the search space as soon as
possible and introduces a data-directed computatioﬁ [van87]. Since FCIR can instan-
tiate the forward variable, the binding can cause other predicates to be forward-
available. These predicates can then be used to further reduce the search space. This

may lead to further instantiation of variables.

Nevertheless, the use of forward-consistent and forward-efficient rules intro-
duces incompleteness into the language [van87]. It is possible that the computation ter-
minates with a non-empty goal while some of the subgoals may not be selected. For
instance, an inequality constraint that uses the FCIR may never be executed if both of
its arguments are not instantiated during the entire execution. The system in this situa-
tion is said to be floundering [Nai85]. The user is therefore responsible for the provi-

sion of gcneratoxs of values for the vanablcs. thcse generators make sure that any con-

straint wxll bc sclectcd by computauon mlc sooner or lalcr Thls approach not only
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simplifies the implementation but also allows the user to use specific knowledge about

the problem to define the generators.

FCIR is implemented as recursive calls to the interpreter. Basically, whenever a
predicate submitted to a forward declaration is selected, a test is carried out to deter-
mine if it is forward-available (which is the precondition for selection of a constraint
submitted of forward declaration). If it is not forward-available, the constraint is
delayed. Otherwise, the current state of the interpreter is saved to provide a clean
environment for recursive calls to the interpreter. In each call, an element of the
domain of the forward-variable in the constraint is used to bind the forward-variable.
Then the ground constraint is proved. If it can be solved, the picked element is con-
sistent and will not be removed from the domain. Otherwise, the element is removed.
After all the elements are tested, there are three possible outcomes. First, several values
are consistent. They form the new domain for the forward-variable. Second, there is
only one value left. The forward-variable will be bound to that value. Third, there is no

value left. This implies that the constraint cannot be solved.

It is not difficult to see that the number of recursive calls is equal to the cardinal-
ity of the domain of the forward-variable. For each call, it is possible to eliminate a

value from the domain. In this sense, FCIR is a useful inference rule.

3.3.2. Looking Ahead Inference Rule

Looking Ahead Inference Rule (LAIR) is used when more than one variable is
left uninstantiated. It reduces the set of possible values of these variables. The
definition of lookahead-checkable is given below:

Definition 3.9: Anatomp(t,, ..., t,) is lookahead-checkable iff
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. p is aconstant;

. ~ there exists at least one t; which is a d-variable and each of the other
arguments is either ground or a d-variable. The d-variables in
11 - . - 1 by are called the lookahead-variables [van87].

LAIR? is defined as follows [van87] :

Definition 3.10: Let P be a program, G; = « A, v Am . Ay be a goal.

Gi,y is derived by the LAIR from G; and P usmg the substitution 6,4 if the fol-

lowing conditions hold:

(1} A, islookahead-checkable and x, . .., x, are the lookahead-variables
ofA which range respectivelyond, , ..., d,;

21 for each xj,ej={vied; | there exist vie d,, Vi1 € dj_y,

ig1 s+« 0 Vn € dy such that A is a lagccal cansequence of P
w&t}tﬂ {xlltl,...,x,,/:,,}}at@

Bl zis the constant c if e; = {c} or a new variable ranging over ¢; other-
wise;

[4] 6 ={(xylzy, ..., %502, };
[S] G, iseither

[Sa] (A, ..., Ap_1 Amero--.. Ap)B;yy if at most one z; is a d-
variable or

[Sb] (A, ...,A,)B;,, otherwise;
LAIR is a generalization of FCIR [van87]. When there is only one lookahead-variable,
as in [Sa], it behaves like FCIR. Otherwise, it cannot solve the constraint in most cases,
as in [5b]. LAIR can be seen as a general mechanism for enforcing k-consistency

between lookahead variables.

A lookahead declaration is used to introduce LAIR into logic programming and
is defined as:

Definition 3.11: Given a n-ary predicate P, a lookahead declaration, which is
unique for this predicate, is an expression of the following form:

3 In (van87], the soundness of LAIR is proven. However, there is no result for complamm
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lookahead p(ay, . . . ,a,)

where a;'s are either 'g’ or 'd’. p is a constraint and all the atoms having p as
predicate are said to be submitted to this lookahead declaration [van87].

The semantics of the rule can be captured by a lookahead-consistent computa-

tion rule, given by the following definitions:
Definition 3.12: An atom P submitted to a lookahead declaration is lookahead-

available {ff
. all the arguments of P corresponding to a g in the lookahead declaration
are ground;

. P is lookahead-checkable [van&7].

Definition 3.13: A carzutau'an rule R is lookahead-consistent iff an atom sub-
mitted to a lookahead declaration is selected by R only when it is either ground
or lookahead-available [van87].

Definition 3.14: A proof-procedure is lookahead-consistent iff

. it uses a lookahead-consistent computation rule R;

. when a lookahead-available atom P is selected by R, the LAIR is used to
solve P;

. when an atom P that is not lookahead-available is selected by R, normal
derivation is used [van87].

An efficient computation rule is even more important for lookahead declarations
than for forward declarations because an arbitrary selection of atoms can induce a lot of
redundancy. As a result, the atoms that are submitted to a lookahead declaration are
grouped into two sets [van87]. Set Y is a set of all atoms which, if selected, will bring
about new information like instantiations of variables. Set N is the set of all other
atoms. Therefore, a goal can now be denoted as «-<Y,N> where Y is called the Y-part
of the goal and N the N-part. Using this notation, a lookahead-cheap computation rule

is defined as follows:

Definition 3.15: A computation rule R is lookahead-cheap iff R is lookahead-

e CONSIStENt and.if R selects.only atoms.-in.the.Y-part.of the goal. A computation...............

rule R is lookahead-efficient iff R is lookahead-cheap; and if each time one or
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several atoms submitted to a lookahead declaration in the Y-part are
lookahead-available or ground, R selects one of them [van87).
Definition 3.16: Let <Y N> be the goal. Let P be the atom selected by a
lookahead-cheap computation rule. Let © be the substitution resulting from the
resolution of P by the normal derivation, by.the FCIR or by the LAIR. Let [ be
the set of atoms introduced by the resolution of P. 1 is the empty set when the
LAIR or the FCIR are used and is the body of the selected clause otherwise. Let
yi ble'Y W7 \{P} and NY be the set of atoms Q in N such that Q0 + Q. The new
goal is

1. « <YI UNY, {P} U N\NY>0 if P is lookahead-available and P8 con-
tains more than one d-variable; :

2. ¢« <Yl UNY, N\ NY>0 otherwise;

where <X,Y>0 is the application of the substitution 0 to all the atoms of X and Y

4 [van87).

The implementation of LAIR is quite similar to that of FCIR. However, several
recursive calls to the interpreter may be necessary in order to eliminate a single value.
Moreover, if the constraint is not solved by LAIR it is delayed again to wait for more
information. The pruning of search space in LAIR can be achieved in two ways: first,
to restart the computation from scratch to determine which value can be kept in each
domain;and second, to compute all the compatible tuples at the first call and in subse-
quent call to the same predicate, a new tuple is selected as the next answer. Both tech-

niques are implemented in CHIP. Users can choose either of the two by changing a

specific parameter in the interpreter.
3.3.3. Partial Looking Ahead Inference Rule

Partial Looking Ahead Inference Rule (PLAIR) provides a formal basis for the
implementation of some built-in predicates. It is not used in the same way as FCIR and
LAIR in the sense that it does not solve a constraint completely. Hence, it is not imple-

mented as a general method. Nevertheless, the rule is formulated to justify the

¢ See [van87] for the justification of this rale
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implementation techniques of some built-in predicates.

Definition 3.17: PLAIR is defined similarly as LAIR except point 2 to 5 of LAIR
have been changed:

1. A, is lookahead-checkable and xy, . . . ,x, are the lookahead-variables
which range respectivelyondy, . .. ,dy;

2. for each xj,e;>(vjed; | there exist vi€dy,..., Vj€djy
Vit € djgy s o1 Vo Edy Such that A0 is a logical consequence of
with 0= 1xylty, . . . Xnltn)} # B;

3. z; is the constant c if e; = {c} or a new variable ranging over ¢;;

4. Ga=lxyizy, ..., Xplzghs

5. Giyis «(Ay,...,A;)0;4; [van8T7).

The set ¢; is not defined in this inference rule and is dependent on the implemen-
tation of each particular constraint. The soundness of the PLAIR follows from the
soundness of LAIR. Pldokahcad declarations are introduced for the sake of complete-
ness. They are defined as follows:

Definition 3.18: Given n-ary predicate p, a plookahead declaration, which is
unique for this predicate, is an expression of the following form

plookahead p(A,, . ..,A,)

where the A;'s are either g, da, or dp. p is a constraint and all the atoms having
p as predicate are said to be submitted to this plookahead declaration [van87].

The semantics of the rule is given by the following definitions:

Definition 3.19: An atom P submitted to a plookahead declaration is

plookahead-available iff
1. all the arguments of P corresponding to a g in the plookahead declara-
tion are ground.

2. P is lookahead-checkable [van87).

Definition 3.20: A computation rule R is plookahead-consistent iff an atom sub-
mitted to a plookahead declaration is selected by R only when it is either ground
or plookahead-available [van87].

~Definition 3.21: A proof-procedure is plookahead-consistent iff ——- e
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’ it uses a plookahead-consistent computation rule R.

J When an plookahead-available atom P is selected by R, the PLAIR is
used to solve P. For each lookahead variable x;, the e; in the definition
of the PLAIR is defined as the domains of x; wien this variable
corresponds to a dp in the declaration and as the set obtained for this
variable if the LAIR would have been used when this variable
corresponds to a da in the declaration. da corresponds to active d-
variables while dp corresponds to passive d-variable;

L When an atom P that is not .;:loakahead-available is selected by R, nor-
mal derivation is used [van87).

A significant portion of CTs in CHIP appears as built-in predicates. These
predicates perform many functions such as instantiation of variables and solving con-
straints using specialized methods. In this section, all of CHIP's built-in predicates are
discussed. They are grouped together according to their functions.

3.4.1. Variables Instantiation

This category of predicates allows a user to use different strategies to instantiate
variables. Several of them are implemented in CHIP: indomain(X), deleteff(X,L,Lr),
and deleteffc(X,L,Lr).

The indomain(X) predicate generates values for domain variables. It behaves
like the predicate member(X,Lx) where Lx is the list of elements in the domain of X.
Each call to indomain(X) gets X bound to a value in its domain. The deleteff(X,L,Lr)
predicate selects a variable from the list of variables L. Lr is L with X removed. The
critcrion for selection is that X has the smallest domain among other variables in L.
This kind of implementation follows the first fail principle. Using this predicate in the

generator of values, the interpreter can detect failures earlier because the selected vani-

able is more constrained than the others. The deleteffc(X,L.Lr) predicate is an cnhanced
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version of deleteff(X,L,Lr). The only difference between them is that when the domain

sizes of two variables are the same, deleteffc will select the one that involves more con-

straints,
3.4.2. Specializations Of Inference Rules

Contrary to the three general inference rules, specializations of inference rules
allow the user to utilize stronger methods. The idea is to implement a constraint more
efficiently by making use of additional knowledge about the constraint. The inequality
serves well to illustrate this point. In conventional Prolog systems, the inequality con-

straint is usually defined as follows:
XtYeenot(X=Y);

However, this implementation requires that both X and Y are ground for the predicate
to be executed correctly. Hence, it can serve as a test only. In CHIP, the constraint can
be implemented as a predicate submitted to forward checking:

forward d #d.

X£Yenot(X=Y),

If X and Y are d-variables, the declaration imposes the precondition that either X or Y
is ground before it can be executed. It is possible to use the general method of FCIR. It
is, however, obvious that the constraint can be solved by removing the value of the
ground term from the domain of the forward variable. Hence, the following three cases
should be used to implement the constraint:

1. If X is a domain variable ranging over D and Y is a natural number, then let

Dnew be D\ {Y}. If Dnew = {e}, then X is bound to ¢; otherwise, X is bound to
a new variable Z ranging over Dnew. In both cases, the constraint succeeds;

—--2.——The case where-Y-is a d-variable and X is an integer can be handled similarly; -
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3. If both X and Y are natural numbers, the constraint succeeds if X and Y are
different integers and fails otherwise.

In fact, there are quite a few built-in predicates that are implemented as speciali-

zation of special inference rules. Their discussion is deferred to the next chapter.

3.4.3. Branch And Bound

ﬁranch and bound is a common technique for solving combinatorial optimiza-
tion problems over natural numbers. A problem using Branch and bound consists of
two processes [van87]:
. a branching process that splits the problem into several subproblems;
. a bounding process that finds an evaluation bound of a problem.
This approach avoids explicit enumeration of the entire search space. As soon as a
solution has been found, all the problems with an evaluation bound not as good as the
cost of the solution will not be considered for the branchirg process. Two built-in
predicates are implemented in CHIP to provide a kind of depth-first branch and bound
in logic programming [van87]: minimize(Term, Function) and

minimize_maximum(Term, List).

minimize(Term, Function) instantiates Term such that the value of Function is

minimized. The algorithm consists of several steps.

L. A feasible solution is found; otherwise, failure is reported.

2. The new constraint of the form Function < C is added to the problem. Cis the
value of Function in the current solution. All future solution must have 2 cost
which is less than C.

3. Step 2 is repeated until the solution space has Seen searched through.

A similar predicate, minimize(Term, Function, Lower, Upper), is also defined. The

- third parameter, Lower, is a natural number representing the lower bound of any solu-
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tion. It sets a lower bound for the search in that as soon as a solution of this cost is
found, the search can terminate since no better solution can be found. The value of
Lower is given by the user. There are many methods that can be used to compute such
value. For instance, relaxation is a commonly used method. The fourth parameter,
Upper, is a natural number representing an upper bound of all solutions. Any solution

must have a cost less than this bound and can be used to restrict the search.

minimize_maximum(Term, List) instantiates List in such a way that the value of
the largest element of List is minimized. The constraints that will be generated dynami-
cally are of the form x; < C( 1 £isn) where x; is the ith element of List which is of
size n and C is the value of the largest element in the list. In other words, these new

constraints require that the new solutioi ivill give a smaller value forC. -

3.4.4. The Delay Predicate

The implementation has a simplified delay mechanism to facilitate some prob-
lems that involve subgoals which have to be delayed. A predicate that uses the delay

mechanism has to be submitted to a delay declaration which is defined as

delay p(ay, . . . ,ay)

where a; can be either '+' or *-'. The predicate p can only be selected for execution .

when each of the arguments that has a '+’ in the delay declaration is ground.

3.5. Summary

This chapter has described the implementation of CHIP. We are now in the

position to evaluate this implementation. First, CHIP is based on a largely modified

Mu-Prolog which has a built-in delay mechanism that allows the implementation of

special inference rules. Such a mechanism is not usually found in conventional Prolog
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systems. Although there are several limited forms of delay mechanism in some Prolog
systems, such as the freeze predicate in Prologll, they are inadequate for the special
inference rules. For CTs to be more easily available in logic programming, they should -
be implemented in conventional Prolog systems. Unfortunately, the kind of data struc-
ture that are required to embed CTs into a conventional system is not yet known.
Second, CHIP does not use any memory saving technique such as Last Call Optimiza-
tion. It is possible to incorporate these techniques into an interpreter that use CTs so
that the overall efficiency is improved. An implementation of CTs in a conventional
Prolog interpreter will provide some insight in this context. In the following chapter,
we attempt to answer these questions with a detailed description of our implementation

— WUP3.F.



Chapter Four
WUPJF

This chapter discusses WUP3.F, an implementation of consistency techniques in

WUP. It begins with an averview of WUP and proceeds to explain various features of

WUP3.F,
4.1. Overview of WUP

WUP is a logic programming environment developed at University of Waterloo
[Che84]. It supports the concept of modules and incorporates several memory saving -

features in its interpreter. These features are highlighted in the following subsections.

4.1.1. Memory Organization

An object in WUP is represented by a PC_WORD which is a record of the fol-

lowing form:

Type Value

Figure 4.1: A PC_WORD

The first field, Type, indicates the type of the object. The second field, Value, contains

either the value of a constant or a pointer which references a block of PC_WORD:s that

represents a structured object.!

! A diagram showing all types of objects in WUP is given in Appendix Al.

41
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Similar to most Prolog interpreters, WUP uges three stacks to maintain its exe-
cution state: the runtime stack, the copy stack, and the trail stack. It differentiates deter-
ministic computations from non-deterministic ones; therefore, there are two types of

stack frames in the runtime stack, as shown in Figure 4.2.

Deterministic ‘ Non-Deterministic
CALL | —sPure Code CALL | —Pure Code
FATHER | —Stack Frame | FATHER | —Stack Frame
MODULE| —Module MODULE| —Moadule

CL_GEN | —Pure Code

BACK | —Stack Frame

RESET | —Tril Stack

COPY —Copy Stack

Figure 4.2.: Two Types of Stack Frames

The module pointer is used to remember the module that contains thé matched clause of
the current subgoal. This pointer is used in the managemzat of modules. The CL_GEN
pointer is similar to the NEXT CLAUSE pointer in section 1.&. It points to the next
available candidate clause for the current subgoal. Moreover, the runtime stack is

placed above the copy stack so as to avoid dangling pointers [Hog84].2

Since WP uses the structure copying strategy, the copy stack is mainly used to

72 Another measure to avoid dangling pointers is that whenever two variables are bound ogcth”

cr, a pointer always originates from the higher one to the lower one. These two measures ensure
that pointers in the runtime stack always point downwards.
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store dynamically constructed terms at runtime.3 A new object is created on the copy

stack under the following circumstances [Che84]:

’ during unification: whenever a free variable binds to a structured object that
contains variables, a new copy of the object is created on the copy stack and the
free variable binds to a pointer that points to the new object;

. whenever there is a structural conversion, e.g. functor to list, the final object is
temporarily saved on the copy stack;

. execution of some meta predicates requires that some internal objects be created
on the copy stack. ’

Upon failure of a subgoal, its stack node and the portion of copy stack that are above

the COPY pointer of the stack frame are popped.

The trail stack stores pointers that reference the runtime or copy stack. During
unification, the addresses of newly bounded variables are recorded on the trail stack.
Upon backtracking, these variables are reset to "undefined”. Because of Prolog’s left-
to-right depth-first execution order and its stack-based organization, only those variable
bindings in the environment that are below the most recent backtracking node’s

environment are reset [Che84].

4.1.2. Unification Algorithm

The unification algorithm of WUP is based on [Rob65]. It does not perform the
occur check for the sake of efficiency. When infinite structures are unified, the algo-
rithm will loop until all the available storage is exhausted [CheX4}. Moreover, the algo-
rithm is table-driven. This feature allows WUP to accommodate new types of objects
easily. A new type of objects can be added into WUP by expanding the unification

table. The expansion involves only those cases for the unification between an instance

3 WUP uses structure copying strategy instead of structure sharing strategy as its earlier ver-
sions used the latter strategy [Che84].




44

of the new object and a term.*

4.1.3. The Interpreting Algorithm

The interpreting algorithm of WUP is a modified ABC algorithm [van82]. The
latter performs a depth-first, left-to-right traverse of a tree to locate a terminal node
which has property P. Similarly, the interpreter algorithm of WUP performs a depth-
first, left-to-right traverse of the SLD tree to locate a terminal node which is an empty

goal. A simplified version of the algorithm [van82] is given below:

4 The unification table is given in appendix A2.
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initialize the stack as empty

curr-proc := initial goal statement

{ disguised as procedure goal « ... }

curr-env := create-env(cur-proc)

ush curr-frame
A: if select(curr-call)

then { the current goal statement is non-empty;
curr-call is the selected goal }
next-clause := create-cg(curr-call)
goto B

glse halt with success

B: i}t; son(next-clause, curr-call, curr-env, new-frame, curr-proc)
then
push curr-frame
curr-env = ENV(new-frame)
goto A
:ilsc goto C

C: if stack has only one frame

then halt with failure

else top-frame := top of stack
curr-frame := FATHER(top-frame)
curr-env := ENV(curr-frame)
curr-call := CALL(top-frame)
curr-proc := PROC(curr-frame)
next-clause := NEXT-CLAUSE(top-frame)
undo bindings of RESET(top-frame)
pop stack; goto B

The algorithm consists of three sections. Section A deals with the selection of the
current subgoal. The computation rule is defined in the function select. Section B
deals with the matching of the selected goal with the head of a program clause. If there
is a successful match, a new stack node is pushed on top of the current one and the com-

putation continues; that is, it will g0 back to section A. Section C deals with backtrack-

ing.
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4.1.4. Modules

In WUP, the source code of a logic program can be distributed into different
modules. Each module usually contains a collection of deﬁnitiohs of predicates that
provides a particular problem-solving technique or supports a specific data structure.
For instance, the module tree may contain predicates to traverse a tree or (o insert a
node. This scheme not only allows separate compilation of different modules but also
keeps large programming projects manageable as diﬁ'cmnf sections of the source code

are stored in different modules.
4.1.5. Memory Saving Techniques

Besides differentiating deterministic computations from non-deterministic onss,
WUP uses three memory saving techniques. First, upon backtracking, all the stack
frames above the current backtracking point are popped, as all of them are determinis-
tic. Second, WUP performs Last Call Optimization(LCO) [Hog84], ‘The basic idea of
LCO is to detect situations in which recursion can be turned into iteration. LCO will

reuse the same stack node of the last call. Three conditions must be satisfied before

LCO is applied [Che84]:

’ the call involved must be the last call in the clause to which it belongs;

. in the same clause, there must not be any backtracking point between the first
call and the call involved;

. the size of the new environment is the same as the old one.

Third, program clauses are indexed on the first arguments of their heads. Given a
subgoal, its first argument is used to locate the first and the next candidate clauses.
There are three possible outcomes: first, if both clauses are found, thc computation is

non-deterministic; second, if only one candidate clausc is found, the computation is
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deterministic; and third, if no candidate clause is found, failure is reported. The scheme

avoids a lot of shallow backtrackings and detects deterministic computations earlier.

4.2. Finite Domains

In WUP3/F, only finite domains of integers are defined. We believe that the
implementation of domains of integer is sufficient to illustrate the impact of adding con-
sistency techniques into a conventional Prolog system because these techniques are

used for discrete combinatorial problems, which are involved mostly with sets of

integers.
4.2.1. Internal Representation

A domain is implemented as a set which is represented by a record containing
four fields:
* lower - the lower bound of the set;
¢+ upper - the upper bound of the set;
«count - the cardinality of the set;’

» setmask- the boolean array that tells which elements are in the set.

The setmask is implemented as a sequence of bytes. Each bit in the sequence acts as a
marker that indicates whether the corresponding element is in the set or not. The map-

ping between the elements of the domain and the setmask is similar to the one men-

tioned in section 3.2.

To facilitate efficient computation of the intersection of two domains, each set-

mask is aligned. By alignment, it means that a setmask always starts at the greatest

5 The cardinality of a sct is always greater than one. A d-variables whose domain is of cardinal-
ity 1 will be instantiated as the value of the remaining element.
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multiple of 8(i.e. the size of a byte) that is less than the lower bound of the set, and ends
at one less than the least multiple of 8 that is greater than the upper bound of the set. -
For instance, if a domain ranges over from § to 102, its setmask should start at 0 and
end at 103(i.e. 1 less than 104). Thus, the intersection of two sets can be computed
using the hinary AND for each corresponding pair of bits in the setmasks. For instance,
given two sets {1, 3, 5, 7} and {2, 3, 4, 5}, their setmasks will be

01010101 and
00111100

and the intersection will have the setmask
00010100

which represents the set {3, 5}.
4.2.2. Domain Declaration

The domain declaration is implemented as a built-in predicate of the following
form:
?domain @Dp(ay,...,a,)
@D is a tag which indicates that predicate p has a domain declaration. Each a; is a

domain specification (see section 3.2).

A domain declaration is usually included in the source file of a logic program.
When consulting the file, the interpreter will execute this domain declaration as a built-
in predicate. It first checks whether each domain specification is valid or not; an invalid
specification will cause the entire declaration to be ignored. Then, the interpreter

asserts the predicate @Dp(a,, . . ., a,) into the module domain.

At runtime, whenever a subgoal with the tag @D in its name is sclected, the

__ interpreter searches the domain module to locate the subgoal's domain declaration.
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Then, the arguments of the subgoal and those of the declaration will be compared in a
pairwise fashion. If the domain specification of the current argument is 'h’, nothing is
done because 'h’ is compatible with any term. Otherwise, the specification defines a
domain. The interpreter will construct the domain using the given specification, and
every free variable in the subgoal's argument is instantiated to be a d-var with the con-
structed domain.b For every non-variable term, the interpreter checks whether it is a

member of the domain; if any one of them is not a member of the domain, failure is

reported and backtracking occurs.
4.2.3. Unification of Finite Domains

The unification table of WUP is expanded in order to handle the unification
between a d-variable and a term. Assume that X is a d-var; the unification between X
and a term Y can be summarized in three cases:

’ If Y is a d-var, the intersection of the domains of both variables is computed. If
the intersection is not empty, both X and Y will be bound to a new d-var whose
domain is the intersection. Otherwise, unification fails.

. If Y is an integer, X is bound with Y if Y is a member of the domain of X. Oth-
erwise, unification fails.

. If Y is a free variable, Y is instantiated to be a pointer to X.

4.3. A Model for the Delay Mechanism

The implementation of the special inference rules in a conventional Prolog sys-
tem requires a computation rule that is similar to that of Mu-Prolog. This computation

rule must ensure the followings:

’ if the precondition for exccution of a selected subgoal is not satisfied, the
subgoal is delayed;

6 Every variable gets an independent copy of the domain.
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o once its precondition for execution is satisfied, a delayed subgoal should be
activated;
. each delayed subgoal should only be executed once because multiple executions

cause incorrect computations.

In section 4.2, the computation rule of WUP3.F is discussed. It is based on the work of

Boizumault [Boi86] though there are quite a few modifications.

4.3.1. Boizumault's Model

The model of Boizumault explains the structure of a conventional Prolog inter-
preter that can execute the freeze predicate [Boi86]. This predicate gives the interpreter
the ability to postpone the execution of a subgoal when one of its arguments is not
instantiated. In short, the model allows a restricted form of delay mechanism to be

defined.

To implement the freeze predicate, the interpreter is modified in four aspects.
First, a new type of variables, called the frozen variable, has to be defined. These vari-
ables are free variables and each of them associates with a list of frozen subgoals, i.c.
those delayed subgoals. When a subgoal is delayed, it is linked to the frozen variable
that causes the delay. Second, a new stack, called the frozen goals stack, is added. Itis
used to store delayed subgoals which are maintained in the form of push-down lists
[Boi86). Third, a value trail’ must be used to manage the push-down lists of frozen
subgoals. If the trail stack of the current system is not a value trail, it has to be
modified. Finally, the unification must be expanded to allow unification between a term
and a frozen variable. Assuming that X is a frozen variable and Y is a term, unify(X,Y)

covers the following cases:

7 Each node in the trai! contains two values: the address of a term that gets the new binding and

- the value of the old binding.--Upon backtracking, the term is assigned the value of the old binding... ..
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. if Y is a non-variable term, then X is bound to Y and the list of waiting goals of
X is activated;
’ if Y is a free variable, Y is bound to a pointer that references X;

. if Y is also a frozen variable, both lists of waiting goals (of X and Y) are merged
to form a new list. The two variables are bound to a new frozen variable which

is associated with the new list.

Moreover, the algorithm of the freeze predicate, i.c. freeze(X,Y), is defined as follows

[Boig6):

t = the dereferenced value of X
if (t is a non-variable term)
Y is proved in the normal way

else if (t is a free variable) {
X binds to a frozen variable whose list of frozen goals

contains Y as the only element

|
else /* t is also a frozen variable ¥/
Y is appended to X's list of frozen goals list

This model is simple because each frozen subgoal associates with one frozen
variable. Once the variable gets instantiated, the associated subgoals can be executed.
Because of this .bnc-to-one relationship, the data structure that manipulates frozen
subgoals can just be a simple linked list. In addition, no extra code is needed as the
above algorithm can be implemented as a built-in predicate. In other words, the
modification that is required of an interpreter to use freeze is rather small. However,
this model is not sufficient to be used as a general delay mechanism because of two rea-
sons. Firstly, the freeze predicate defines a restricted form of preconditions which allow
only the delay of a subgoal when one of its argument is not instantiated. It is not general
enough to define more sophisticated preconditions such as the condition of forward
available for forward constraints. Secondly, the model does not use any declaration. A

predicate, for example p(X), that uses the freeze predicate must make an explicit call,

i freeze(X,p(X))... Yet the use of declarations allows different preconditions.to.be . ..
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defined for predicates that use the same inference rule. In view of the deficiencies of

this model, a general model is proposed and developed.

4.3.2. A New Model

The model proposed here is an extension of Boizumault's model. It allows
more scphistiéatcd preconditions to be defined. Moreover, it can handle different types
of declarations. The model is implemented in WUP3.F to provide a computation rule
that is very similar to the computation rule in CHIP. It consists of three major com-
ponents: a checking routine, an expanded unification algorithm, and an activation

mechanism.
4.3.2.1. The Checking Routine

The checking routine determines if a subgoal should be delayed or not. It locates
the declaration of the subgoal and checks whether the subgoal is compatible® with its
declaration. The subgoal will not be delayed if it does not have a declaration or if it is
compatible with its declaration. The algorithm of the checking routine, called Check-

Delay, is defined as follows:

/* cur_goal is the current subgoal */

d = GetDeclaration(cur_goal)
if (d is nil) then retum(FAILURE) /* if no declaration, don’t delay*/
if (! Compatible(cur_goal,d)) {

Delay(cur_goal)

retum(SUCCESS)

else
retum(FAILURE)

8 A subgoal is compatible with its declaration if it satisfies the precondition of exccution
_ defined by its declaration.
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The data structure used in the algorithm is a linked list of delayed calls shown in figure
4.3:

A List Node

T4 -~

_GS__[NA - GS__[NA
—  [FuncTol ——

A Delayed Call
Figure 4.3: A Linked List of Delayed Calls

Each element in the linked list is called a list node. It has two pointers: one points to
the next node in the list and the other points to a delayed call, A delayed call contains a
FUNCTOR field and a STATUS field. The FUNCTOR field contains a copy of the
subgoal that is being delayed. The STATUS field is a flag that indicates whether the
delayed call has been activated or not. It is used in the activation mechanism (see sec-

tion 4.3.2.3.).

When a subgoal is delayed, a delayed call is created in the copy stack. The
STATUS field will be marked NOT_ACTIVATED to .indicatc that this delayed call is
not activated. For each variable in the subgoal that falsifies the precondition defined in
the declaration, a list node is allocated in the frozen goal stack and a link is created
between the node and the delayed call. For instance, if two variables falsify the precon-

dition, two links will be set up. An example will best illustrate how this component

works.

Consider the goal 7p(X,Y), q(X,Y,Z) ... where X, Y, and Z are free variables.
Furthermore, p(X,Y) and q(X,Y.Z) have the delay declarations p(+.+) and q(-,+,+),

- respectively. -This means that p can be executed if X and Y are ground and thatqcanbe
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executed if Y and Z are ground. In"thc beginning of the execution.'p(X.Y) is selected as
the current goal. The checking routine then detects that p(X,Y) should be delayed
because both X and Y - re not instantiated. A delayed call is allocated in the copystack
for p(X,Y); and two list nodes are allocated in the frozen goal stack, one for each of the
variables. In addition, two links are set up, each between the delayed call and a list
node. X and Y become frozen variables and each of them has the delayed call, p(X,Y).

In the runtime storage, the following scenario is observed: .

GS pX.¥)

Conceptual View

Y r p NIL

X ' Gs

—— [
M

Runtime Stack Copy Stack Goal Stack

Intemal Representation

Figure 4.4: Two Views of the Delay of p(X,Y)

After p(X,Y) is delayed, q(X,Y,Z) will be selected as the current subgoal. The checking
routine detects that q should be delayed as both Y and Z are not instantiated. A delayed

“call forq(X,Y,Z) and two list nodes are created, one for Y ‘and the other for Z.” More-
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over, appropriate links are established between the two nodes and the delayed call.
Since Y already has a list of delayed calls, i.e. p(X,Y), the new list node must be
inserted to the existing list to form a new list. The new list contain two delayed calls:

q(X,Y,Z) and p(X,Y). The following scenario is observed:

Conceptual View
Q NIL
GS —9
z ul
@ —— NIL,
O R
Y ) NIL
X GS "'—] B——
Runtime Stack Copy Stack Goal Stack
Internal Representation

Figure 4.5: Two Views of the Delay of p(X,Y) and q(X,Y,Z)

4.3.2.2. The Expanded Unification Algorithm

= The second component of the delay mechanism is the modified unification algo-—="
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rithm. The modification required is very similar to that of Boizumault's model. One
major difference lies in the use of‘t.he GoalList stack. Whenever a frozen variable get
instantiated, the address of its list of delayed subgoals is pushed onto this stack. These '
subgoals are not activated until an inference? is successt'ully completed because it is
possible that failure may occur before the inference is completed, Moreover, there may
be more than one frozen variables being instantiated during the inference. The GoalList

stack keeps track of the addresses of all these variables.

4.3.2.3. The Activation Mechanism

The third component of the modifie¢ model is the activation mechanism. A
delayed call may link to more than one of its variables. The use of the STATUS flag can
eliminate the chance of activating the same delayed call more than once. Whenever a
delayed cail is activated, the status flag is assigned the value ACTIVATED and this
change is trailed. Later on, if the interpreter has to activate the same delayed call again,
the flag will tell whether the activation is necessary or not. Therefore, even if two of the

variables of a delayed call get instantiated, the delayed call will be activated only once.

When a frozen variable gets instantiated, some of the subgbals in its list of
delayed calls may satisfy their preconditions for execution. These subgoals should be
checked again. However, this step is very expensive. A feasible way is to reactivate
every waiting goal (i.e., to insert them into the current resolvent) and let the execution
continue. Thus, the interpreter will eventually select one of these goals and will check
its precondition. This method involves a lot of repeated delays and activations but it is

difficult to have greater efficiency with the generality of wait declaration [van87).'0

% An inference refers 1o the unification between a selccted goal and the head of a program
—Clause._Usually, the unification is recursively performed for each pair of corresponding arguments
of the two atoms.
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WUP3.F uses this method.

After an inference is successfully completed, the: entries in the GoalList stac
are used to locate all the subgoals that are pending for activation. These subgoals are
linked together to form a conjunction. The conjunction is then inserted into the current

resolvent. After this, the execution is continued.

The activation mechanism must be ircorporated into the interpreting algorithm.

In the case of WUP3.F, the szction A of the ABC algorithm is modified to:

select_again:
if ( GoalListStack <> nil ) /* there are goals to be activated ¥/
curr_call = Ac. ateGoals(GoalListStack)
while (curr_call = nil) {
curr_frame = FATHER(curr_frame)
if ( curr_frame =nil )
retum(SUCCESS)

| curr_call = next_call(CALL(curr_frame))

if ( CheckDelay(curr_call) ) { /* if curr_call is delayed */
curr_call = next_call(curr_call) /* go to next subgoal */
goto select_again

}
curr_proc = PROC(curr_frame)
curr_env = ENV(curr_frame)

else

The function ActivateGoals inserts all the delayed subgoals that have to be activated

into the current resolvent. To understand how the activation mechanism works, con-

sider the following program:

10 The general model actually implements a variation of the wait declaration.
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Assume that B and D are delayed after A and C are executed and that if E is executed,
A and C can be activated again. So before the execution of E, the resolvent is 7E. How-
ever, the resolvent becomes 7B & D & F & G & H just after an inference on E is made,

i.e. B and D are inserted before F.
4.4. Special Inference Rules

This section discusses the implementation of both Forward Checking Inference
Rule (FCIR) and Looking Ahead Inference Rule (LAIR) in WUP3.F. It first shows the
declaration and the proof procedure of each rule. Then, it explains how the rules,
together with the delay predicate, are integrated into WUP. The Partial Looking Ahead
Inference Rule (PLAIR) is not discussed here because the rule does not have a general
proof procedure, and each predicate submitted to PLAIR has to perform its own prun-

ing.
4.4.1. Forward Checking Inference Rule

In WUP3.F, a constraint that uses FCIR must be submitted to a forward declara-
tion of the following form:

?forward @Fp(a,,..., a,)
where a; are either 'g’ or 'd’. When the interpreter executes a domain declaration, the

declaration @Fp(a, , . .., a,) is asserted into the module forward. The tag @F is used

_to indicate that predicate p has a forward declaration. This reduces the time requiredto
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search for the deci.ration.

The proof procedure of FCIR is summarized as in the following algorithm:

Vf = forward variable
S = DomainOf(Vf)
Snew =@
SavelnterpreterState()

/¥ test each value of the domain to see if it is consistent ¥/

foreachke S {
bind(Vf, k)
if prove(p) Snew = Snew (j (k}
reset(Vf)

RestoreInterpreterState(Q)
if (Snew < @) {
S = Snew
return(SUCCESS)

else
retum(FAILURE)

This algorithm follows closely the description in section 3.3.1. prove(p) is a recursive
call to the interpreter and it has to use a clean interpreter. Therefore, the function
SavelnterpreterState() is called before prove(p) is exccuted. It saves the values of all
the important variables in the interpreter temporarily. After the proof is done, the origi-
nal state of the interpreter can be restored by calling RestorelnterpreterState() which

restores the variables whose values are saved previously.

The proof procedure of FCIR is not used to solve all forward constraints. In
particular, two types of forward constraint use other methods. First, if the constraints
are built-in predicates, they will use more efficient methods to perform the pruning (see

section 4.5.). Second, a ground constraint does not have any d-variable; consequently,

“no pruning is required and normal derivation is used. e
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4.4.2. Looking Ahead Inference Rule

LAIR is a generalization of FCIR [van87]. When it is used, all the inconsistent
values in all d-variables of a lookahead constraint can be climinated. However, the
proof procedure is more complicated than that of FCIR. Usually, several calls are
required to eliminate a single value from the domain of a d-variable. As the sizes of

domains and number of variables increase, LAIR becomes very expensive.

To use LAIR, a constraint must be submitted to a lookahead declaration of the
following form:

ookahead @Lp(ay, . . .,a,)
where each of a; can be either a 'g' or a 'd’. The tag @L indicates the predicate p has a
lookahead declaration. When the interpreter executes a lookahead declaration, it asserts
the declaration @Lp(ay, . . . ,8,) into the module lookahead. If a subgoal with the tag
@L is selected, the interpreter will search for its declaration in the lookahead module.

The checking routine will then determine whether it is lookahead available or not.

There are two methods to perform the pruning in LAIR [van87]. The first one is
to generate all the tuples that are valid for the constraint and store them in the form of a
list in the copy stack. When the interpreter backtracks to the same predicate, the next
element to the right of the current tuple can be selected as the new solution. The second
method is to do the computation from scratch each time the constraint is executed.
Inconsistent values in the d-variables are deleted during the computation. This method
does not keep track of all the valid tuples for the predicate. As there are no definite
advantage and disadvantage between these two method, WUP3.F uses the second
method because it is easier to be implemented. The algorithm for the second method is

__described as follows:
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/#
P(tys -+ « s V1o « - « 1 Vi) iS5 the constraint to be solved;

tys . .+ o i Are ground terms in p; vy, . . .y Vi 87 d-variables in p;
Dy, ... » Dy are domains of v;'s: .

Xy, « - - + Xy F€ temporary vanables, one for each v;

o Ey, . . . » Ey are the temporary domains for v;'s;
SavelnterpreterState()

forifromltom E;=@

forifromltom { /¥ i.e. for each d-variable v;¥/
while (Instantiate([D;], [x;])) ( /* instantiate x; from its domain */

if (x; € E;) continue; /* skip this value of x; */
solved = false
/* instantiate other d-variables */

while ( not solved and
Instantiate( [El, ) .Ei_l,Di+" ) ,Dm],[x1' oo vxi—lvxi+lv LI vxm])) {
solved = prove(p(ty, . - « +teXqs « - « s Xm))

if (solved)
forjfromitom /*rememberall x;'s ¥/
) E;=x;\UE; /*andkeep theminE;’s ¥
}
}

RestorelnterpreterState()
forifromltom {
1f(E‘<>Q) Di=Ei
else
return(FAILURE)

)
retum(SUCCESS)

The Instantiate(DL,VL) function used in the above algorithm is a generator of values
for variables in VL. When Instantiate(DL,VL) is executed, it assigns a new combina-
tion of values for the variables in VL. Each v; is assigned an element in D;. When all

the combinations are tried, the function will fail. For example, Instantiate(

TTHL2),(1,2)], [Vva]) will generate [1,1], (1,2]; (2,17 and [2,2] for [vy,val-—
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Similar to FCIR, LAIR is not used for two types of predicates: ground predi-
cates and built-in predicates. However, after the proof procedure is applied once, those
constraints that are not solved completely have to be delayed again until more informa-

tion is available. Those partially solved built-in predicates are also delayed.

For lookahead constraints, a modification in the domain of a d-variable may pro-
vide some useful information for further pruning [van87]. These constraints should be
activated immediately. However, a d-variable may assoéiate with some constraints
other than lookahead constraints. The interpreter should activate only the lookahead
constraints. Therefore, two separate lists of delayed subgoal in a frozen variable are
kept: one list for lookahead constraints and the other for non-lookahead constraints.
When only lookahead constraints have to be activated, the first list of delayed subgoals

can be activated.
4.4.3. Integration with the Interpreter

To put finite domains, special inference rules, and the delay declarations
together, the interpreter of WUP has to be modified in two ways, in addition to the
modifications mentioned in the new model. Firstly, a new type of variables called
frozen domain variables must be added into WUP. A frozen domain variable references
three objects: its domain and two lists of delayed goals. Each variable of this type is a
pointer that references a block of three PC_WORDSs; each of which is a pointer to one
of the three objects. This design of the frozen domain variables also affects the struc-
tures of the domain variables and the frozen variables. Figure 4.6 shows the structures

of these three types of variables.
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D_VAR D
A Domain Variable
[ Fvar| - DPR | @
NG_LIST| —y—>
G _LIST
A Frozen Variable
DPIR| —1—*
NG LISy -~
LG LIST| ——y—"
A Frozen Domain Variable

Figure 4.6: Three Types of Variables in WUP3.F

Since a frozen variable has just one list of delayed subgoals, the normal list pointer is

used to reference the list and the lookahead list pointer is always assigned nil.

Secondly, the section A of the ABC algorithm must be expanded to allow the
use of FCIR, LAIR, and the delay predicate. The following algorithm represents the

final version of section A of the algorithm:



select_again:

if ((GoalListStack <> nil) or (LookaheadGoalListStack < nil) )

curr_call = ActivateGoals(LookaheadGoalListStack, GoalListStack)
while (curr_call = nil) {

curr_frame = FATHER (curr_frame)

if (curr_frame =nil )

: retumn(SUCCESS)
else
curr_call = next_call(CALL(curr_frame))

n = name(cur_call) :
if (n[1] ="@") { /* check if there is a tag in the name ¥/
switch (n[2)]) {
case 'F': /* for forward constraints ¥/
if ( decl = GetDeclaration(ForwardModule, cur-call)) (
status = ProcessForwardCall(cur-call, decl)
switch (status) {
case SUCCESS:
cur-call = NextCall(cur-call)
goto select_again

case FAILURE:
goto_next_proc
case CO :
break
)
}
break

case 'L’: /* for lookahead constraints */
if ( decl = GetDeclaration(LookaheadModule, cur-call)) {
status = ProcessLookaheadCall(cur-call, decl)
switch (status) {
case SUCCESS:
cur-call = NextCall(cur-call)
goto select_again
case FAILURE:
goto_next_proc
case CONTINUE:
break
)
}
break;
case 'E': /* for the delay predicate whose tag is @E*/ »
if ( decl = GetDeclaration(LookaheadModule, cur-call)) {
status = ProcessDelayCall(cur-call, decl)
if ( status = SUCCESS ) {
cur-call = NextCall(cur-call)
goto select_again
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break
default: /* ignore other tags such as @D ¥/
} break

)
curr_proc = PROC(curr_frame)
curr_env = ENV(curr_frame)

This algorithm can be described as follows. Whenever a subgoal is selected as the
current subgoal, the interpreter detects whether the subgoal has a tag or not. If a predi-
cate has no tag, nothing is done (i.e., the predicate is a normal one). Otherwise, depend-
ing on the type of tag, the interpreter will pass control to a special routine which

processes the constraint. There are three possible outcomes after the processing:

SUCCESS
the constraint is either solved completely or delayed. Execution will continue.

CONTINUE
this case is for those ground predicates or for those built-in predicates that per-

form their own pruning.

FAILURE
the proof procedure fails to prove the predicate and backtracking is needed.

4.5. Built-in Predicates

A large collection of built-in predicates of CHIP are implemented in WUP3.F.
These predicates provide efficient means to solve a variety of constraints. As men-
tioned in section 3.4, they are grouped into three categories: variables instantiation, spe-

cialization of inference rules, and the branch and bound method.

4.5.1. Variables Instantiation

The indomain predicate is a generator of values for d-variables. It is imple-

mented like the predicate member(Element, List). In WUP3.F, indomain is defined as
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indomain(X) « /¥ if X is instantiated, retum true ¥/
is_int(X) &
cut;
indomain(X) « /* otherwise, locate an element from its domain ¥/
pick_elementy(X,_,N) &
?(wk _next(X,N,L) &

pick_next(D,L,L);

pick_next(D,L,E) &
pick_element(D,L,L1) &
pick_next(D,L1,E) ;

where pick_element(D,L,E) is defined as:

. if L is a free variable, pick_element will assign the smallest (i.e. the first) ele-
ment of d-variable D to E;

. otherwise, E will be assigned the element which is the least element in D that is
larger than L.

The major function of this predicate is to instantiate d-variables. The order of instantia-
tion is defined arbitrarily by the user; however, if extra information about a particular
problem is available, the order of instantiation can be defined to allow faster pruning of

the search space.

The deleteff predicate and deleteffc predicate of CHIP are implemented in
WUP3.F. In the implementation of deleteffc, the interpreter has to count explicitly the

number of delayed calls that a d-variable has.
4.5.2. Specialization of Infe-ence Rules

This group of predicates utilizes additional iuowlcige about the constraints it

repmsents md uses more dxrect me!hods to solve them ’Ihey do not use thc proof pro-

cedures deﬁned by the inference rules.
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4.8.2.1. Specializations of FCIR

Inequality constraints appear in lots of CSPs and efficient implementation of
them is desirable. In WUP3.F, an inequality constraint is denoted as X # Y. It has the
forward declaration @FBw(d,d). When an instance of the constraint is forward avail-
able, it can be proved in two ways:

. if the constraint is ground, the common definition of inequality is used;

e v of e e o T i e T e
Constraints that represent binary relational operators, such as >=, <= , > and <, ¢an be
defined similarly. For instance, when the constraint X > § is executed, all the elements

in the domain of X that are less than or equal to § are removed.
4.8.2.2. Specialization of LAIR

The element(N,L,V) predicate is a very useful symbolic constraint [DSv88]. It
holds when the Nth element of the list of constants L is V; both N and V are d-
variables. The interesting feature of this constraint is that it can be viewed as an adirec-
tional constraint that makes a correspondence between V and N. This means that a con-

straint on one of them will have effect on the other (see the example in [DSv88)).

The predicate is implemented as a specialization of LAIR. When either N or V
is an integer, the constraint becomes trial. The difficult case occurs when both N and V
are d-variables as correspondence between the elements in the domain of V and that of

N must be established. The following algorithm is used in WUP3.F:
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/* '

N, and V,, are the original domains of N and V;

N¢ and V¢ are the domains of N and V after execution;
L [i] is the ith element of the list L.

while (Instantiate( [N,], [index])) {
N,=N, - {index}
element = [, [index)
if (elemente V, ) {
N¢ =Ny {index}
Vi=Vq (element)
}
}

Beside element(N, L, V), two specializations of LAIR, i.e. min(X, Y, Z) and max(X, Y,
Z), are also implemented in WUP3.F.

4.5.2.3. Specialization of PLAIR

Linear equations and linear inequations are solved as a specialization of PLAIR.
In WUP3/F, a built-in predicate, reduce(X op Y), is implemented. The arguments X
and Y are arithmetic terms and op is one of the operatcrs: =, >, <, 2 and <. The first
step to solve a constraint expressed in this fashion is to standardize the expression X op
Y. Letx,...,x, be d-variables and let ag, ... » &, be non-zero integers. It is possible
transform an inequation or an equation into the standard form:

Bp+ax+ o +ax,0©0
where © is either >= or =. For example, X > Y can be transformed as X - Y + 1 2 0.

The second step is to perform the pruning in the domains of d-variables. An
algorithm in [Lau78) provides the method of pruning and no new constraints are

created dynamically [van87]. When a reduce predicate is selected as the curreht

 subgoal, the pruning of d-variables is computed from scratch. A description of the
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algorithm is given in appendix A3,

Like those lookahead constraints that are implemented as built-in predicates, a
reduce predicate may not be solved completely even after pruning is performed. In this

case, the predicate has to be delayed to wait for more information.

4.8.3, Branch and Bound

As mentioned in 3.4, the branch and bound method is a well-known technique
for solving concrete combinatorial problems. In WUP3.F, two predicates that employ
this  particular technique are implemented, ie. minimize(T, E) and
maximum_minimize(T, L). Since both predicates require that new constraints be added
during runtime, it is more appropriate to implement them as prolog programs. The

simplified listing of minimize(T,E) is shown below:

minimize(T,E) «
generate_solution(T,E) ; /* find subsequent solutions */

generate_solution(T,E) &
last_solution(LE) &  /* get previous solution */

reduce(LE>E) & /¥ enforce minimum condition */
m_prove(T,E) & /* find the next solution */
fail ; /* try again ¥/

generate_solution(T,E) «
last_solution(E);

m_prove(T,E) «
prove(T) &
assert_solution(E) & /* remember the new solution */
cut;

The implementation of the minimum(T,E) is similar to that of the setof predicate in that

both predicates remember the solutions obtained during runtime. However, in

_ minimuny(T, E), new constraints are added to strengthen the condition LE > E.. ——voovccen
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4.6. Conclusion

In this chapter, WUP3.F has been discussed in detail. The major components
that allow CTs to be implemented in WUP are finite domains and the modified model
for the delay of subgoals. These two allow the implementation of special inference
rules such as FCIR, LAIR, and some powerful built-in predicates. It is also shown that
niany of the built-in predicates can be implemented in WUP without much difficulty. In
the next chapter, a performance analysis is carried out to show that WUP3.F is of com-

parable efficiency.



Chapter Five
Performance Analysis

This chapter shows the results of a performance analysis of WUP3.F. These
results are obtained from five examples solved in WUP3.F. Several criteria for the
interpretation of the result are given. Then, each cxamplé is briefly explained and the

results are interpreted.

§.1. Interpretation Criteria

To interpret the performance statistics of WUP3.F correctly, several criteria
must be used. They are execution time, memory usage, strategies employed and the
environment. Since the author does not have access to CHIP, it is not possible to run
CHIP! on the same machine (i.e. SUN 3/50) that WUP3.F is running on. Nevertheless,
according to the technical personnel in Digital Equipment and the Department of Com-
puting Science in this university, the speed of a VAX-11/785 and that of a SUN 3/50
are relatively the same — both of them are 1.5 times as fast as a VAX-11/780. There-

fore, one can compare the results from WUP3.F directly with those from CHIP which

are reported in {van87].

§.1.1. Execution Time

Execution time is used as the major performance indicator. The standard meas-
ure LIPS (Logical Inference per Second) is not used because it is an inadequate measure

for WUP3.F. There are three reasons for that. First, in each inference, the selected

| CHIP runs on a VAX-11/785.
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subgoal has to be checked to see if it has a domain declaration or a declaration of a spe-
cial inference rule. This check requires a definite amount of CPU time. Therefore, an
inference in WUP3.F usually requires more time than that of a conventional Prolog sys-
tem. Second, when a selected goal does not satisfy its precondition for execution, it has
to be delayed. The subgoal right next to the selected subgoal is selected then. Such a
delay is not counted as an inference in WUP3.F. Third, much of the solving power for
combinatorial problems lies on the implementation of finite domains and various built-
in predicates. These predicates not only provide a direct means to solve constraints, but
also perform pruning for d-variables effectively. Some of these predicates can be
viewed as logic programs. If a call to a built-in predicate is treated as a single infer-
_ence, the performance statistics will always give a small number of inferences. In short,
if LIPS (Logical Inferences per Second) is used, all the performance statistics shown

here will be too low to justify CTs in logic programming as a worthwhile approach.
5.1.2. Memory Usage

Normally, a performance analysis of a compiler or an interpreter will consider
its memory usage. In WUP3.F, additional memory has to be allocated for the Frozen
Goal Stack, the value trail, and the expanded copy stack. Other than these three areas,
there is no major memory increase or overhead. Moreover, declarations for domains
and special inference rules are stored in four separate internal modules. For a program
of average size, the number of clauses in each of these modules is small and the amount
of extra memory used is negligible. Therefore, memory usage is not used as a perfor-

mance statistic.

5.1.3. Strategies Employed
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The execution time of a Prolog program depends largely on the strategy used to
tackle the problem. Obviously, the more efficient the strategy, the less the execution
time. It is improper to compare directly the execution times of two Prolog programs
that are written in the same system but use different strategies. In the examples used in

this chapter, when different strategies are used, they are explicitly stated.

§.1.4. The Environment

The word "Environment" refers tb the Prolog system that is used to solve an
example. Several programs, each written in a different Prolog system, are always used
to solve a particular problem. This allows a better comparison among WUP3.F and
other systems. Besides WUP3.F, three Prolog systems are used in the examples. They
are WUP3.1, CLP(R), and SICSTUS [CaW88]. WUP3.1, as mentioned in the previous
chapter, is a conventional Prolog interpreter. Programs written in WUP3.1 are always
the slowest. This indicates why the CT's approach should be used in logic programming.
CLP(R) [HIM87] has been described in chapter two; it is used here to write programs
that involve equations as well as inequations. SICSTUS Prolog is a Prolog compiler; it
is used to show how well WUP3.F compares to a Prolog compiler in terms of execu-
tion time. Even though a Prolog compiler is almost one order of magnitude faster than
a Prolog interpreter, in some examples where forward checking greatly reduces the

search space, WUP3.F outperforms SICSTUS.

In order to provide a fair comparison among the four Prolog systems, it is neces-
sary to find out the relative speed of each system. Therefore, a calibration is carried to
determine the relative speeds of the four different Prolog systems. The N-queens prob-
lem is used in the calibration. Only standard Prolog features are used so that any special

features that would help to speed up the execution are eliminated. Three programs are
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written — one for both WUP3.1 and WUP3.F, one for CLP(R) and one for SICSTUS.
These programs are run on the four Prolog systems in a VAX-11/780 and a SUN 3/50.
The speed of WUP3.F on a SUN 3/50 is assumed to be unity. Table 5.1 shows the rela-

tive speed of each system.
VAX-117780 T SUN3/50
WUPSF 0.49 1.00
WUP3.1 0.65 1.22
 CLP(R) N/A 1.59
[ SICSTUS 20.0 35.3

Table §.1: Relative Speeds for Different Prolog Systems

It is clear from Table S.1 that WUP3.F is the slowest while SICSTUS Prolog is the
fastest. The entries in this table is used to adjust all the results. Since the results are

produced on a SUN 3/50, only the entries in the rightmost column of the table are used

to scale the results obtained in the performance test.

5.2, Examples

In each of the following examples, the problem is first briefly introduced. Then,
the execution times of various versions of logic programs are compared. Execution
times are in term of seconds unless otherwise specified and only scaled values are
reported. The listing of all the programs written for the examples are included in appen-

dix A4.
5.2.1. The N-queens Problem

The N-queens problem ‘is to place n queens on a n x n chess board. It can be
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reduced to the assignment of a row in each column of the board. Nd two queens should

be on a diagonal or a horizontal line. Let x; be the row of the ith column The problem is

to find a list of [y, ...,X,] such that:

’ 1sx;SNfor(1sisN);

’ xi#x;for(1sisj<N);

v xi#x;+(j-1)for(1<isj<N);
. x;#x;—(j-1)for(isisjsN)

The purpose of this problem is to illustrate how forward checking and the first fail prin-
ciples can be utilized in WUP3.F. Four different programs are written to solve the prob- '

lem in three Prolog systems as shown in Table 5.2.

Program Name | System Strategy
stan acktracking
[ ST2 | SICSTUS | standard backtracking
FC WUP3.F | forward checking
[ FCF WUP3.F [ forward checking + first fail principle

Table 5.2: Programs Written for the N-queen Problem

All the programs are tested for S < N £20. Since WUP3.1's timing mechanism

overflows when N 2 16, execution time for ST1 is not available for N 2 16. Figure 5.1

shows the results of the test.
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Figure 5.1: Results of the N-Queens Problem for SSN <20

Several observations can be obtained from Figure S.1. First, ST1 is always the slowest
among the four. This is due to the fact that standard backtracking is always infcrioi' to
forward checking for solving this problem. Second, ST2 is faster than ST1. This is due
to the speed-up obtained from using a Prolog compiler. Third, FC and FCF outperform
ST1 and ST2. This clearly indicates that forward checking, as used in FC and FCF, is a
superior strategy than standard backtracking. Moreover, for large N (i.e. N > 14), there
is a further speed-up when the first fail principle is used. The possible explanaticn is
that in this range of N, the first fail principle helps to further eliminate part of the search

ipace by irstantiating first those more constrained d-variables.

The statistics of FC and FCF are compared with that of CHIP in the following

table:



7

Table 5.3: Results of the N-Queen Problem

The programs CC and CCF are the equivalences of FC and FCF. FC and FCF are
always twice as fast as CC and CCF. The difference may be accounted for by the fol-
lowing reason. WUP3.F does not implement finite domains of constants. CHIP may
require some computation to distinguish different types of domains when built-in predi-

cates are used.

5.2.2. A Logic Puzzle

This example is to solve the famous puzzie "SEND + MORE = MONEY". The
purpose of the puzzle is to assign each letter a distinct digit such that the equation can
be satisfied. Linear equations are used as active constraints in this example. Since
WUP3.1 and SICSTUS cannot handle linear equations, only WUP3.F and CLP(R) are

used to solve the puzzle.

The puzzle involves two types of constraints. The first type of constraints
ensures that each letter represents a distinct digit. The alldifferent predicate can be used

for this purpose. It defines an inequality constraint between each pair of letters.



78

The second type of constraints solves the equdtion "SEND + MORE =
MONEY". Itis not difficult to see that both S and M cannot be zero. Two methods can
be used to represent the equation as constraints. First, the equation can be defined as
follows: |

Rl1=M
R2+S+M=0+10xRl
R3+E+O=N+10xR2
R4+N+R=E+10xR3

D+E=Y+10xR4

R1, R2, R3, and R4 are carries involved in the calculation. Each of them must be either
O or 1 except that R1 must be 1. Second, a more natural expression can be used:
1000*S+100*E+10*N+D
+1000*M+100*O+10*R+E

=10000*M+1000*O+100*N+10*E+Y

Four programs are written: W1 is written in WUP3.F using the first method; W2
is written in WUP3.F using the second method; C1 and C2 are written in CLP(R) in a
similar fashion. W1 and W2 use forward checking and the first fail principle in
WUP3.F whereas C1 and C2 must be the standard backtracking approach. Yet CLP(R)
allows coroutining: it will delay any unsolved constraint until more is known about the

constraint.

To make the comparison complete, E1 and E2, two programs written in CHIP,

are included in the following table which shows the results of all six programs:



’Table §.4: Results of the "SEND + MORE = MONEY" Puzzle
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Table 5.4 shows that the execution times for El, E2, W1, and W2 are quite close

whereas the execution times for Cl and C2 are much higher. Since CLP(R) uses a

built-in constraint solver, the efficiency of the solver increases as the number of con-

straints increases. This is the reason why C1 is much faster than C2,

§.2.3. The Mastermind Game

This example illustrates the ability of using constraints as choices. The problem

itself is used as an example to see how the efficiency of Prolog can be improved

[van88]. Basically, the purpose of the game is to guess a secret code which is a 4-digit -

number. Each digit is dis‘inct. Based on the source code of this example given in

[van88], four programs are written for this example:

Program System Approach Time
FWMT | WOBS.T | genemsieandiest | 121536

STI1 SICSTUS | standard backtracking + coroutining 26.33
WM2~ | WUP3.F | forward checking 0.27

WM3 WUP3.F | forward checking + first fail principle | 0.35

The first thing observed from Table 5.5 is that WM1 has the largest value in its
execution time. This is due to the use of the generate and test approach. A 4-digit

number must be generated before it can be tcsted whether it is consistent with the

Table 5.5: Results of the Mastermind Game
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previous guesses. Secondly, for ST1, standard backtracking can be utilized by using the
dif(X,Y) predicate which tests the inequality of X and Y. The dif(X,Y) predicate is a
form of coroutining mechanism because if any of its arguments is not ground, the predi-
cate will be delayed until both of them are ground. Even implemented in SICSTUS,
ST1 has a longer execution time than those of WM2 and WM3. Thirdly, first fail prin-
ciple does not help as the execution of WM3 is larger than WM2. In other words, the
overhead involved in using the first fail principle is more than the speed-up gained. A

similar program written in CHIP requires 0.7 sec. [van88].
§.2.4. Map Coloring

This example is to solve an instance of the well-known map coloring problem.
It concerns the assignment of the least number of colors fo the vertices of a given graph
so that no two adjacent vertices get the same color. It also illustrates how the branch
and bound techniques are used inside WUP3.F. The minimize_maximum predicate is
used to solve the problem. It minimizes the maximum number of colors that are used in
the coloring process. The program is basically given as follows [van87]:

A ey &

minimize_maximum(labelling(Res),Res);

where state_constraint(Res) is used to create a list of d-variables that represent the ver-
tices. It also states the inequality constraints between two adjacent vertices while
labelling(Res) serves as a generator of values for the d-variables. A program WCl is
written in WUP3.F using the above representation to solve the coloring problem for a
graph that has 110 vertices and 318 edges [Gar7S]. Besides, SC1 is written in
SICSTUS Prolog to solve the same problem. Since the branch and bound techniques

cannot be used in SICSTUS, the following program is written:
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color_graph(Res) «
state_constraint(Res) &
labelling(Res);

state_constraint(Res) )<-
difRI,R2) & ... & dif RIRN) & ... &
labelling([R1,...., RN]);

labelling({1);
labelling([XIY])) &
member(X,[1,2,34]) &
labelling(Y);
Notice that the above program already narrows down the possible number of colors.

EC1 denotes the equivalent program that is written in CHIP. The results are shown as

follows:

Name [ Is | 10 P | It

ECI 0.37 —2—@_ 25 |55
[SCT N/A~ [ NJA | N/A| 68567

Table 5.6: Results for the Map Coloring Problem

In Table 5.6, Ts is the set-up time for the problem, To is the time to give the first
appearance of the optimal solution, Tp is the time between the first appearance of the
optimal solution and the end of the proof (a branch and bound search has tc complete
the search to verify the optimal solution), and Tt is the totai time. Several observations
can be obtained from the table. First, since SC1 does not use the branch and bound
technique, Ts, To and Tp are irrelevant. Second, Ts for WCI1 is large. This is due to the
restriction in WUP: a clause can have at most thirty variables. Some extra program-
ming is needed to circumvent the restriction. WCI is better than EC1 in To and Tp.

Third, the total execution time of WCI (i.e. 2.25) is better than that of SC1 which is a
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compiled program with coroutining using the dif predicate.
§.2,5. A Scheduling Problem

This example is to show thit WUP3.F can be used to solve a real-life scheduling
problem. The description of the problem is given in-[van87]. The problem concerns
the scheduling of a construction project that erects a five-segment bridge. The project
consists of a set of 46 tasks. There are several constraints between these tasks, For
example, there are six excavations which require the use of a excavator. Since there is
only one excavator, it is not possible for two excavation tasks to proceed simultane-
ously. The major feature of this problem is the use-of disjunctive constraints as choice
points; it also shows the representation required for this kind of constraints. A program
called WS1 is written in WUP3.F to solve this problem. The execution time 6f WS1 is
as follows. WS1 gets the first solution 110 at 11.38 seconds. The optimal solution is .
obtained at 26.55 seconds. The proof of optimality finishes at 281.33 seconds (i.e. 4.7
minutes). A similar program written in CHIP gets the first solution at 20.0 seconds. It
obtains the optimal solution at cbout 1 minute. The proof of optimality requires 6
minutes. With redundant constraints [van87], the optimal solution and its proof finish

at about 4.5 minutes.

5.3. Summary

This chapter has shown the performance analysis of WUP3.F using five exam-
ples. WUP3.F is able to provide the best approach to solve these examples. In several
examplies, it outperforms WUP3.1, CLP(R) and SICSTUS. The execution times of pro-
grams written in WUP3.F are either very close to or smaller than that of programs writ-

ten in CHIP. In addition, for large problems, such as the N-queens problem for N 2 14,



the speed-up gained through the use of consistency techniques is significant.
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Chapter Six
.Conclusion

In this chapter, the results of this research are summarized. Several future
research directions are discussed. Moreaver, some of the latest developments in con-

straint logic programming are explained briefly.
6.1. Summaries of Results

The major result of this research is that it is possible to embed consistency tech-
niques in a conventional Prolog system. WUP3.F is-an implementation of CTs in
WUP3.1. This thesis has shown the necessary modifications in a Prolog interpreter to

put the CTs in use.

Moreover, the requirements of an appropriate goal delay mechanism for a con-
ventional Prolog system that can handle the arbitrary delays and activations of subgoals
are identified. The model proposed by Boizumault is modified to implement the delay
mechanism. One of the major requirements is to check whether a selected subgoal
meets its precondition for execution or not, sam... .s in the wait declaration in Mu-

Prolog. All the necessary data structures used by the delay mechanism are explained.

Last but not least, most of the built-in predicates have been successfully imple-
mented. Two of the more significant categories are the branch and bound technique and
the handling of linear equations and inequations. All these predicates provide an

efficient means to solve a constraint and to prune the search space as soon as possible.
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6.2. Further Directions

The main concem of this thesis is to provide a logic programming language that
can handle CSPs effectively. Since compilation reduces the execution times of logic
programs, a compiler for logic programs that use CTs should be investigated. One of

the difficult problems is the management of finite domains[van87].

On the other hand, it is very difficult to debug programs written in WUP3.F.
The problem is due to the fact that a goal can be delayed and activated later according
to the bindings of variables. Building a debugger that can monitor program execution
should be considered. The management of activated goal presents a difficult problem.
The debugger must have some knowledge of the delay mechanism in order to keep

track of the control flow of the program.
6.3. New Developments in Constraint Logic Programming
6.3.1. CAL

Constrainte Avec Logique (CAL) [ASS88] has been developed by Institution for
New Generation Computer Technology, Tokyo, Japan (ICOT). It is actually a family of
languages where each language is itself an instance of CLP. The semantics of CAL is
similar to that of CLP except that in CAL, constraint symbols are distinct from predi-
cate symbols. Similar to CLP, the constraint solver in CAL not only will detcrmine the

satisfiability of a set of constraints but also will compute its canonical form.

Currently, CAL has been implemented on DEC 2060 and PSI. A pre-processor
is used to translate CAL source program into an equivalent Prolog program which
replaces each constraint with a special built-in predicate that invokes the constraint

solver explicitly. At this moment, there are three different CALs implemented at ICOT.
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The first one is the Algebraic CAL whose algorithm for its constraint solver is based on
the Buchberger algorithm that computes Gribner bases of polynomials. It is used in

computer algebra and geometrical theorem proving,

The second one is the Boolean CAL. Its constraint solver is based on the
approach of Boolean Grbner-bases. Its computation domain is the set of truth-values.
The third one is the Linear CAL in which linear equations and inequations can be used

as constraints. A simplex-based algorithm is under devcldpment as the core of its con-

straint solver.

A further attempt to combine these three systems together is under way. Typed
CAL is proposed so that users can use multiplc constraint solvers simultaneously in a
single instance of CAL. Each parameter is typed so that during the execuﬁon of a pro-
gram, a suitable constraint solver can be selected according to the type of each con-
straint. Moreover, a new constraint solver th.t deals with real closed field is being
developed. The ultimate goal of the current research in CAL is the parallelization of

both the inference engine and the constraint solver that may lead to the design of a

parallel CLP language.

6.3.2. CHIP

In a recent overview [DvS88], a new computation domain is added into CHIP.
The language can now handle systems of linear equations and inequations as con-
straints. The constraint solver uses a simplex a'gorithm that is based on variable elimi-
nation. This particular constraint solver is very similar to that of CLP(R) in that it does

not only determine the satisfiability of a set of constraints but also computes its solving

form.
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Moreover, there are two new constructs developed in CHIP. The first one is the
demon declaration. Predicates that are subjected to a demon declaration are used as
rewriting rules. However, they are deterministic in that a goal can only match with the
head of its set of definition clauses. The other construct is the if_then_else construct

which is an extension of the if_then_else of Mu-Prolog. Itis of the following form:

if CONDITION then GOAL-1 else GOAL-2
A special procedure is used to determine the truth value of all instances of CONDI-
TION. If it can be determined, either GOAL-1 or GOAL-2 will be proved according to

the truth value. Otherwise, the entire construct is delayed to wait for more information.

6.3.3. Others

There are two systems — BNR Prolog and Trilogy — that represent other direc-
tions in approaching constraint logic programming. BNR Prolog [OVF88] supports
relational arithmetic operations on closed intervals. All arithmetic terms are defined as
closed intervals. Constraints can be expressed as arithmetic operations between these
terms. Local propagation is the main technique used to solve constraints. The idea is to
narrow the intervals of all the involved variables. Since arithmetic operations are rela-
tional, inversion functions are defined implicitly. Since local propagation is a weak

method, it is inadequate to handle large problems that involve lots of constraints.

Trilogy [Vod88] is a constraint based logic programming language. It is based
on first order predicate calculus. Constraints are mapped into the decidable theorics of
logic. The semantics of the language is based on the "theory of pairs”. The computation
rule of Trilogy can be summarized as

Keep substituting for the predicate calls while transforming the right

hand side formula to the disjunctive normal form, performing at the
same time simplifications on the constraints and eliminating the



existential quantifiers [Vod88].

The language has been fully implemented as a native-code compiler for the IBM-PCs.
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Appendix Al

Pure Code Representation of WUP

Pure Cods Word

TAG VALUE

GOAL_CALL

——————— GOAL_CALL

-+ Next Gozl

CALL_SKEL

. = First Call

NUM_VAR

- Integer

Euusu_mo

CLAUSE_HEAD | -+ Nest Clause

CALL_SKEL

= First Call

NUM_VAR

~+ Integer

ATOM/FUNCTOR

[mu._sm.

~——3{ CLAUSE_HEAD | -+ Matched Proc

CALL_SKEL

= Next Call

ATOM/FUNCTOR

FUNCTOR

————1——3 ATOM

— String

NUM_ARG

Integer
.

Argument |

Argument N

(o |

_;}_.

Term

LIST_TAIL

] —Lin

lvux_me Jon-‘sar J

rConsum Type

]
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Unification Table of WUP

CALL || Free | Void Int. Atom | Oher | End | Const | Var. | Const | Var. |
HEAD Var. | Var. | Const | Const { Const | List List List { Func | Func
Free lev ] s | an | an | an A e | an | on
Variable
Void
veise | S s S S s s s S S s
eger | pcl's {sc| ¢ | F |F | F | F| F|F
Constant
Atem I e | s F | sc| r | F F F F F
Constant
Character .
Consumt || A€ S F F sC F F F F F
Erdliss el s | F L F | F |sc] F | F ] F | ¢
Character
Constant | ¢ | g F F FlFrju | F | F
List
Variable (0 1 s F F Flr | u ol r F
List
Comsunt J el s | F |l F | Fle | ¥ | F | ur | ur
Functor
Varisble || o | g F F F F & £l our | our
Functor

F - slways fai} uL unify lists

S - alwsys sucoeed UF urfy functors

FV . {ree varishles CH copy to head

AH azsign 1o head cc cupy to call

AC - assigntocell sC simple comparison




Appendix A3

An Algorithm for the Reduce Predicate

This algorithm is simplified from the one given in [Lau78):

Y

2)

3)

Express the constraint as T* + T~ © 0 where T is the set of positive terms in the
constraint, T~ is the set of negative terms and © is the connective.

Calculate the intervals [P,PP], [N, NN] and [A,B] where

P= 3 miny, PP= ¥ maxt,
ieT ieT

N= ¥ mint, NN= ¥ maxt,and
ieT ieT

Depending on the values of the intervals, the following cases are possible:

i)ifA>B
ifA=P&©is2
the constraint is trivially true

else L ]
the constraint is never satisfied

ii)ifA=B
ifA=P=NN&O®is>
the constraint is trivially true
else .
two extra constraints can be observed:

Tt=A and Y 4=A

ieT ieT
iii)if A<B
ifP<N
2 %2 A isinferred as a new constraint
ieT

elseif P>N ©is =

Y 42 A isinferred as a new constraint
ieT

ifPP>NN& Ois=
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2 ' s Bisinferred as a new constraint
ieT

else if PP > NN

Y, 4 S Bis inferred as a new constraint
ieT

Process the new constraints obtained in step 3). Each new constraint has o spe-
cial property: either IT* = 1 or IT™! = 1. For a constraint with IT71 = 1, the fol-
lowing constraint can be applied to reduce the domain of the term L.

tL,2NN- ¥ maxy

i€ Tiwi,
and if @ is =, a further constraint can be applied:

thSN- E minti

i€ T iwi,

For a constraint with IT*l = 1, the following constraint can be applied to reduce
the domain of the term ¢, :

t,2PP- ¥ maxy
i€ T i,

and if © is =, a further constraint can be applied:

ti, <P- Z min 19
1€ T in,



Appendix A4
Program Listings of Examples in Chapter Five

The N-queens Problem

1) ST1 - wrinten in WUP3.1 using the standard backtracking approach. ST! is based on
the code described in [van87].
solution([],Q,Q);
solution(L,TL.Q) <-
del(A,L,L1) &
append(TL,[A],TL1) &
safe(TL]) &

solution(L1,TL1,Q);

del(A,[AIL],L);
del(A,[BIL],[BIL1)) <-
del(A,L,L1);

safe([]);

safe([QIO)) <-
safe(O) &
noattack(Q,0,1);

noattack(_,[],.);

noattack(Y,[Y1IL),D) <-
TlisY-Y1 &
TloD&
T2isY1-Y&
TRoD&
DlisD +1&
noattack(Y,L,D1);

2) ST2 - is written in SICSTUS using the standard backtracking approach. ST2 is
modified from ST1.
solution((],Q,Q).
solution(L,TL,Q) :-
del(A,L,L1),
agjpend(‘l‘L J[A],TLD),

solunon(Ll ,TL1,Q).

del(A,[AIL],L).
del(A,[BIL],[BIL1)) :-
del(A,L,L1).

safe([]).

safe([QIO)) :-
safe(0),
noattack(Q,0,1).
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noattack(_,[],_).
noattack(Y,[Y1IL],D) :-
TlisY-Y1,
Tl ==D,
TRisY!l-Y,
T2 ==D,
DlisD +1,
noattack(Y,L,D1).

append([1,X,X).
append([X1Y],Z,[XIL]) :-
append(Y,Z,L).

3) FC - written in WUP3.F using the forward approach. FC is based on the code
described in [van87).
@Dqueen(X) <-

safe(X) &

labelling(X);

safe([]);

safe([FIT)) <-
noattack(F,T) &
safe(T);

labelling({]):

labelling([X1Y]) <-
indomain(X) &
labelling(Y);

noattack(X,Y) <-
noattack(X,Y,1);

noattack(X,[],Nb);

noattack(X,[ YIYT].Nb) <-
Y!=-@ X &
Xo@Y +Nb&
Xo@Y-Nb&
NblisNb+1 &
noattack(X,YT,Nb1);

/* for a 5-queens problem ¢/

?domain @Dqueen(1 .. S);
?7eq(X.[X1.X2.X3,X4,XS]) & @Dqueen(X) & cut,

4) FCF - it is written in WUP3.F using the forward approach and the first {al pminciple.
The program is similar 1o FC except that the definition of the labelling predicate i
different:
labelling({]);
labelling({ XIY]) «-

deleteT(V [XIY].Ls) &
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indomain(V) &
labelling(Ls);

The "SEND + MORE = MONEY" Puzzle

1) C1 - written in CLP(R) using the standard backtracking approach. The equation is -
expiessed in term of five equalities. C1 is a sample program in the CLP(R) interpreter
package.
p(S,E,N,D,M,0O,R, Y) :-
§>0,E>=0,N>=0,D>=0,M>0,0>=0,R>=0,Y>=0,
S<=9,E<=9,N<=9,D<=9,M<=9,0<=9,R<=9,Y <=9,
D+E=Y +10%C],
Cl+N+R=E+10*C2,
C2+E+0O=N+10%C3,
C3+S+M=0+10*M,
carry(C1,C2,C3), _ , ,
gl}g(S)). dig(E), dig(N), dig(D), digM), dig(0), dig(R),

1g(Y),
dlﬂlist([S, E,N,D,M, O,R, YD.

carry(1, 1, 1). carry(l, 1, 0). carry(1,0, 1). carry(l, 0, 0).
c:rr;yy(o, 1, 1). cm(o, 1,0). cm(o, 0, 1). cg(o, 0, 0).

del(X.[XIL).L).
del(X,[YIL],L.1) :-
del(X,L,L1).

dig(9). dig(8). dig(7). dig(6). dig(5).
dig(4). dig(3). dig(2). dig(1). dig(0).

difflist((X 1 T)) :-
notmem(X, T),
difflist(T).

difflist([]).

notmem(X, [Y | Z]) :-
X<Y,

notmem(X, Z).
notmem(X, [Y | Z)) :-

X>Y,

notmem(X, Z).
notmem(X, []).

go:-
pS,E,N,D,M,O,R, Y),
printf("\nAns:\n",[]),
printf("S = %d, E = %d, N = %d, D = %d, M = %d, O = %d,
R=%d, Y =%d\n", [S,E,N,DM,0,R,Y)).

2) C2 - written in CLP(R) using the standard backtracking approach. The equation is
expressed in term of one equality. C2 is similar to C1 except that the carry predicate is
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not used and the definition of the predicate p is different. C2 is modified from C1.
pGS,E,N,D,M,O,R, Y) :-
§>0,E>=0,N>=0,D>=0,M>0,0>=0,R>=0, Y >=0,
$¢=9,E<=9,N<=9,D<=9,M<=9,0<=9,R<=9, Y <=9,
1000*S+100*E+10*N+D+ ‘
1000¥*M+100*O+10*R+E =
10000*M +1000* O +100*N+10*E + Y,
ﬁgg()), dig(E), dig(N), dig(D), digM), dig(O), dig(R),

glx),
difflist([S, E,N, D, M, O, R, Y]).

3) W1 - written in WUP3.F using forward checking and the first fail principle. The
gq;:atio:l lis expressed in term of five equalities. W1 is based on [van87]. ‘
‘clear_all; '

?domain @Dsendmory(0..9,0.. 1);

test(X,Y) <-
@Dsendmory(X,Y);

@Dsendmory([S,E,N,.D,M,0,R.Y], [R1,R2,R3,R4)) <-
alldifferent([S,E,N,D,M,O,R,Y]) &
SI=@0&
MI=@0&
Rl1=M&
reduceD+E=Y+10*R4) &
reduce(R2+S+M=0+[0*R]) &
reduce(RI+E+O=N+10*R2) &
reduce(R4+N+R=E+10*R3) &
labelling([S,E,N.D,M,O,R,Y,R1,R2,R3,R4)) &
write([_,S,E,N.D]) & nl &
write((_M,ORE]) & nl &
write([M,O,N,E,Y)) ;

alldifferent([]);

alldifferent([XIY]) <-
outof(X,Y) &
alldifferent(Y);

outof(X,[Y!Ls)) <-
X's@Y&
outof(X,Ls);

outof(X,[]);

labelling([X1Y]) <-
deleteff(V,(XIY],L) &
indomain(V) &
labelling(L);

labelling([]); -

4) W2 - written in WUP3.F using forward checking and the first fail principle. The
equation is expressed in term of one equality. W1 is modified from W1.
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2clear_all;
?domain @Dsendmory(0 .. 9);

test(X) <-
@Dsendmory(X);

@Dsendmory([D.B.M,N,O,R,S,Y]) <-
alldifferent([D,E,M,N,0,R,5,Y]) &
Sl=@0&

M=@0&

mduclcéaogo*g+loo*5+ I0*N+D+1000*M+ 100*O +
+E=

10000 * M + 1000 * O + 100 * N + 10*E+Y)&

labelling([D,E,M,N,0O,R,S,Y]) &

write([_,S,E.N,D]) & nl &

write([_,M,O,R,E]) & nl &

write({M,O,N,E,Y]) & nl;

alldifferent([]);

alldifferent([XIY]) <-
outof(X,Y) &
alldifferent(Y);

outof(X,[1);

outof(X,[YILs]) <-
X=@Y&
outof(X,Ls);

labelling([1);

labelling(IX1Y)) <-
deleteff(V,[XIY],L) &
indomain(V) &
labelling(L);

The Mastermind Game

1) ST1 - written in SICSTUS using the standard backtracking approach with coroutin-
ing. ST1 is modified from WM2.
mastermind(Code,Prev) ;-

guess_code(Guess,Prev) ,

ask_the_user(Guess, Score),

mastermind_aux(Code,Prev,Score).

mastermind_aux(Code,Prev.[Code,4,_]).
mast%m}lind_agx(Code,Prev,[Guess,BulIs.Cows]) -
ulls ==4,
mastennind(Code,[[Guess,Bulls,Cows]IPrcv]).

guess_code([X1,X2,X3,X4],Prev) :-
alldifferent([X1,X2,X3,X4]),
consistent([X1,X2,X3,X4],Prev),



labelling([X1,X2,X3,X4)).

fabelling i)
a 1) -
meginber(x.[o,l,2,3,4.5,6,7,8.9]),
labelling(Y).
alldiﬁ'emm([?).
alldifferent([XILs]) :-
outof(X,Ls) ,
alldifferent(Ls).

outof(X,[).
outof(X,[YILs)) :-
dif(X.

outof(X. Ls).

consistent(Guess, []).

consistent(Guess,Prev) :-
consistent_bulls(Guess,Prev) ,
consistent_cows(Guess,Prev).

consistent_bulls(Guess.[]).

consistent_bulls(Guess,[[Prev,Bulls,Cows]IPs]) :-
exact_matches(Guess,Prev,Bulls) ,
consistent_bulls(Guess,Ps).

consistent_cows(Guess,[]).

consistent_cows(Guess,[[Prev,Bulls,Cows]IPs]) :-
BullsCows is Bulls + Cows ,
common_members(Guess,Prev,BullsCows) ,
consistent_cows(Guess,Ps).

exact_matches(Xs,Ys,N) :-
exact_matches(Xs,Ys,0,N).

exact_matches([],{],N,N).

exact_matches([X1Xs],[XIYs],K,N) :-
KlisK+1,
exact_matches(Xs,Ys,K1,N).

cxactaizfnatches([Xle],[Yle],K.N) :-

exact'_tna’tches(Xs.Ys,K,N).

common_members(Xs,Ys,N) :-
common_members_g(Xs,Ys,0,N).

common_members_g([X(Xs],Ys,K,N) :-
member(X,Ys) ,
KlisK+1,
common_members_g(Xs,Ys,KI,N).
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common_members_g([X1Xs],Ys,K,N) :-
outof(X,Ys) ,
common_members_g(Xs,Ys,K,N).

common_members_g([],Ys,N,N).

ask_the_user(Guess,[Guess,Bulls,Cows]) :-
write('Guess is *) , write(Guess) , nl ,
write('Bulls =7") ,
read(Bulls) ,
nl,
write("Cows = 7"),
read(Cows) ,
-

write({Guess,Bulls,Cows]) , nl.

append([X!Y),Z,[XIL]) :-
append(Y,Z,L).

member(X,[XI_]).
member(X,[YIL]) :-
member(X,L).

2) WML - written in WUP3.1 using the generate and test approach. WM1 is modified

from WM2.
2clear_all;

mastermind(Code,Prev) <-
guess_code(Guess,Prev) &
cut &
ask_the_user(Guess, Score) &
mastermind_aux(Code,Prev,Score);

mastermind_aux(Code,Prev,[Code,4._]);

mastermind_aux(Code,Prev,[Guess,Bulls,Cows]) <-
Bulls<4&
mastermind(Code,[[Guess,Bulls,Cows]IPrev]);

guess_code(Guess,Prev) <-
generatelist(Guess) &
consistent(Guess,Prev) ;

generatelist(G) <-
generatelist([X1,X2,X3,X4], [1, G);
generatelist([], G, G);
generatelist([XIXs],L, G ) <-
member(X,[0,1,2,3,4,5,6,7,8,9)) &
outof(X,L) &
append(L,[X],NL) &



generatelist(Xs,NL, G);

consistent(Guess, [1);

consistent(Guess,Prev) <-
consistent_bulls(Guess,Prev) &
consistent_cows(Guess,Prev);

consistent_bulls(Guess,[]);

consistent_bulls(Guess,[[Prev,Bulls,Cows]IPs]) <-
exact_matches(Guess,Prev,Bulls) &
consistent_bulls(Guess,Ps);

consistent_cows(Guess,[]);

consistent_cows(Guess,[[Prev,Bulls,Cows]!Ps]) <-
BullsCows is Bulls + Cows &
common_members(Guess,Prev,BullsCows) &
consistent_cows(Guess,Ps);

exact_matches(Xs,Ys,N) <-
exact_matches(Xs,Ys,0,N);

exact_matches((],[J,N,N);
exact_matches([XIXs],[XIYs],K,N) <-
cut &
KlisK+1&
exact_matches(Xs,Ys,K1,N);
exact_matches([XIXs],[YIYs],K,N) <-
XoY&
exact_matches(Xs,Ys,K,N);

common_members(Xs,Ys,N) <-
common_members_g(Xs,Ys,0,N);

common_members_g([XIXs],Ys,K,N) <-
member(X,Ys) &
cut &
KlisK+1&
common_members_g(Xs,Ys,K1,N);

common_mernbers_g([XIXs],Ys,K,N) <-
outof(X,Ys) &
common_members_g(Xs,Ys,K,N);

common_mcthbcrs_g([],Ys,N,N);

ask_the_user(Guess,[Guess,Bulls,Cows])) <-
write("Guess is ") & write(Guess) & nl &
write("Bulls = 7") &
read_num(Bulls) &
nl&
write("Cows =7") &
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read_num(Cows) &

n&

cut&

write([Guess,Bulls,Cows]) & nl;
read_num(N) <-

read_term(N) &

cut&

is_int(N) ;

outof(X.,[1);
outof(X,[YILs]) <-

outof(X,Ls);

[3) Wsl_vlilz - written in WUP3.F using the forward checking approach. WM2 is based on
van87].

clear_all;

?domain @Dalldistinct(0 .. 9);

mastermind(Code,Prev) <-
guess_code(Guess,Prev) &
ask_the_user(Guess, Score) &
mastermind_aux(Code,Prev,Score);

mastermind_aux(Code,Prev,[Guess,Bulls,Cows])) <-
Bullsco4 &
mastermind(Code,[[Guess,Bulls,Cows]IPrev]);

mastermind_aux(Code,Prev,[Code,4,_]);

guess_code(Guess,Prev) <-
@Dalldistinct(Guess) &
consistent(Guess, Prev) &
labelling(Guess);

@Dalldistinct([X1,X2,X3,X4)) <-
alldifferent([X1,X2,X3,X4));

alldifferent([XILs]) <-
outof(X,Ls) &
alldifferent(Ls);

alldifferent([]);

outof(X,[YILs]) <-
X'=@Y&
outof(X,Ls);

outof(X,[1);

consistent(Guess,Prev) <-
consistent_bulls(Guess,Prev) &



consistent_cows(Guess,Prev);
consistent(Guess, []);

consistent_bulls(Guess,[[Prev,Bulls,Cows]IPs]) <-
exact_matches(Guess,Prev,Bulls) &
consistent_bulls(Guess,Ps);

consistent_bulls(Guess,[]);

consistent_cows(Guess,[[Prev,Bulls,Cows]IPs]) <-
BullsCows is Bulls + Cows &
common_members(Gues.,’rev,BullsCows) &
consistent_cows(Guess,Ps);

consistent_cows(Guess,[]);

exact_matches(Xs,Ys,0) <-
pair_dif(Xs,Ys);

exact_matches([XIXs],[XIYs],N) <-
N>0& '

NlisN-1&
exact_matches(Xs,Ys,N1);
exactﬁma(t)cgces([Xle].[Yle],N) <-

>
X'-@Y&
exact_matches(Xs,Ys,N);

pair_dif([XIXs],[YIYs]) <-
X-@Y&

pair_dif(Xs,Ys);
pair_dif([],0);

common_members(Xs,Ys,0) <-
allnotmember(Xs,Ys) ;

common_members([X1Xs],Ys,N) <-
N>0&
member(X,Ys) &
NlisN-1&
common_members(Xs,Ys,N1);
common_members([X1Xs],Ys,N) <-
N>0&
outof(X,Ys) &
common_members(Xs,Ys,N);

allnotmember([XIXs),Ys) <-
outof(X,Ys) &
allnotmember(Xs,Ys);

allnotmember([],Ys) ;

ask_the_user(Guess,[Guess,Bulls,Cows]) <-
write("Guess is ") & write(Guess) & nl &
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write("Bulls = 7") &
read_num(Bulls) &
write("Cows = ?") &
read_num(Cows) &

’

labelling([X1Y]) <-
indomain(X) &
labelling(Y);

labelling({]);

read_num(N) <-
read_term(N) &
cut &

is_int(N) ;

4) WM3 - written in WUP3.F using the forward checking approach and the first fail
principle. WM3 is very similar to WM2. The only differences between the two is the
definition of the labelling predicate. In WM3, it is defined as follows:
labellin?([XIY]) <-

deleteff(V,{XIY],Ls) &

indomain(V) &

labelling(Ls);
labelling([]);

The Map Coloring Problem
1) SCI - written in SICSTUS using the standard backtracking approach and coroutin-

ing:
start( [R1,R2,R3,R4,RS5,R6,R7,R8,RO,R10,R11,R12,
R13,R14,R15R16,R17,R18,R19,R20,R21,R22,R23,R24,
R25,R26,R27,R28,R29,R30,R31,R32,R33,R34,R35,R 36,
R37,R38,R39,R40,R4]1 R42,R43,R44,R45R46,R47 R4S,
R49,R50,R51,R52,R53,R54,R55,R56,R57,R58,RS9,R60,
R61,R62,R63,R64,R65,R66,R67,R68,R69,R70,R71,R72,
R73,R74,R75,R76,R77,R78,R79,R80,R81, R82,R83, R84,
R85,R86,R87,R88,R89,R90,R91,R92,R93,R94,R95,R96,
R97,R98,R99,R100,R101,R102,R103,R104,R105,R106,
R107,R108,R109,R110]) :-

dif(R1, R2)dif(R1, R3)dif(R1, R4),dif(R1, RS),

dif(R2, R3),dif(R2, RS),dif(R2, R6),dif(R2, R7),

dif(R2, R11), dif(R3, R4),dif(R3, R7),dif(R3, R8),

dif(R3, R9),dif(R4, RS).dif(R4, R9),dif(R4, R10),

dif(RS, R10),dif(RS, R11),dif(R6, R7),dif(R6, R11),
dif(R6, R12),dif(R6, R13),dif(R6, R19),dif(R7, R8),
dif(R7, R13),dif(R7, R14),dif(R8, R9),dif(R8, R14),
dif(R8, R15),dif(R8, R16),dif(R9, R10),dif(R9, R16),
dif(R9, R17), dif(R10, R11),dif(R10, R17),dif(R10, R18),
dif(R11, R18),dif(R11, R19),dif(R12, R13),dif(R12, R19),
dif(R12, R20),dif(R12, R21)dif(R12, R29),dif(R13, R14),
dif(R13, R21),dif(R13, R22),dif(R14, R15),dif(R14, R22),



dif(R14, R23),dif(R1S, R16),dif(R1S, R23),dif(R1S5, R24),
dif(R1S, R25),dif(R16, R17),dif(R16, R2S),dif(R16, R26),
dif(R17, R18),difR17, R26),dif(R17, R27),dif(R18, R19),
dif(R18, R27),dif(R18, R28), dif(R19, R28),dif(R19, R29),
dif(R20, R21),dif(R20, R29),dif(R20, R30),dif(R20, R31),
dif(R20, R41),dif(R21, R22),dif(R21, R31),dif(R21, R32),
dif(R22, R23),dif(R22, R32),dif(R22, R33),dif(R23, R24),
dif(R23, R33),dif(R23, R34),dif(R24, R2S),dif(R24, R34),
dif(R24, R3S),dif(R24, R36)dif(R2S, R26),dif(R2S, R36),
dif(R2S, R37),dif(R26, R27).dif(R26, R37),dif(R26, R38),
dif(R27, R28),dif(R27, R38),dif(R27, R39),dif(R28, R29),
dif(R28, R39),dif(R28, R40),dif(R29, R40),dif(R29, R41),
dif(R30, R31),dif(R30, R41)dif(R30, R42),dif(R30, R43),

dif(R30, RSS), dif(R31, R32),dif(R31, R43),dif(R31, R44), -

dif(R32, R33),dif(R32, R44) dif(R32, R4S),dif(R33, R34),
dif(R33, R4S),dif(R33, R46)dif(R34, R35)dif(R34, R46),
dif(R34, R47), dif(R3S, R36),dif(R3S, R47),dif(R3S, R48),
dif(R3S, R49), dif(R36, R37),dif(R36, R49),dif(R36, RSO),
dif(R37, R38),dif(R37, R50)dif(R37, RS1),dif(R38, R39),
dif(R38, RS1),dif(R38, RS2)dif(R39, R40),dif(R39, RS2),
dif(R39, RS3), dif(R40, R41),dif(R40, RS3),dif(R40, RS4),
dif(R41, R54),dif(R41, RSS)dif(R42, R43),dif(R42, RSS),
dif(R42, R56),dif(R42, RS7)dif(R42, R71),dif(R43, R44),
dif(R43, R57),dif(R43, RS8) dif(R44, R45),dif(R44, RSS),
dif(R44, RS9), dif(R4S, R46),dif(R4S, RS9),dif(R4S, RGD),
dif(R46, R47),dif(R46, R60) dif(R46, R61),dif(R47, R48),
dif(R47, R61),dif(R47, R62),dif(R48, R49),dif(R48, R62),
dif(R48, R63),dif(R48, R64),dif(R49, RS0),dif(R49, R64),
dif(R49, R6S5),dif(RS0, RS1),dif(RSO, R6S),dif(RSO, R66),
dif(RS1, R52),dif(RS!, R66),dif(RS1, R67),dif(RS2, RS3),
dif(R52, R67),dif(RS2, R68),dif(RS3, R54),dif(RS3, R68),
dif(R53, R69),dif(RS4, RSS),dif(RS54, R69),dif(RS4, R70),
dif(RS55, R70),dif(RSS, R71),dif(RS6, RS7),dif(RS6, R71),
dif(R56, R72),dif(RS6, R73),dif(RS6, R89),dif(RS7, RS8),
dif(R57, R73),dif(RS7, R74),dif(RS8, R59),dif(RS8, R74),
dif(RS8, R75),dif(RS9, R60),dif(RS9, R75),dif(R59, R76),
dif(R60, R61),dif(R60, R76),dif(R60, R77),dif(R61, R62),
dif(R61, R77),dif(R61, R78),dif(R62, R63),dif(R62, R78),
dif(R62, R79),dif(R63, R64),dif(R63, R79),dif(R63, R80),
dif(R63, R81),dif(R64, R6S),dif(R64, R81),dif(R64, R82),
dif(R65, R66),dif(R6S, R82),dif(R6S, R83),dif(R66, R67),
dif(R66, R83),dif(R66, R84)dif(R67, R68),dif(R67, R84),
dif(R67, R8S),dif(R68, R69),dif(R68, R8S),dif(R68, R86),
dif(R69, R70),dif(R69, R86),dif(R69, R87),dif(R70, R71),
dif(R70, R87),dif(R70, R88)dif(R71, R88),dif(R71, R89),
dif(R72, R73),dif(R72, R89),dif(R72, R90),dif(R72, R91),
dif(R72, R109),dif(R73, R74),dif(R73, R91),dif(R73, R92),
dif(R74, R7S5),dif(R74, R92) dif(R74, R93),dif(R7S, R76),
dif(R75, R93),dif(R7S, R94),dif(R76, R77),dif(R76, R94),
dif(R76, R95).dif(R77, R78) dif(R77, R95).dif(R77, R96),
dif(R78, R79),dif(R78, R96),dif(R78, R97),dif(R79, R80),
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dif(R79, R97),dif(R79, R98),dif(R80, R81),dif(R8O, R9S),

dif(R80, R99),dif(R80, R100) dif(R81, R82),dif(R81, R100),
dif(R81, R101),dif(R82, R83)dif(R82, R101),dif(R82, R102),
dif(R83, R84),dif(R83, R102) dif(R83, R103),dif(R84, RSS),
dif(R84, R103),dif(R84, R104),dif(R8S, R86),dif(RSS, R104),
dif(R8S, R10S),dif(R86, R87),dif(R86, R105),dif(R86, R106),
dif(R87, R88),dif(R87, R106),dif(R87, R107),dif(R88, R89),
dif(R88, R107),dif(R88, R108),dif(R89, R108),dif(R89, R109),
dif(R90, R91),dif(R90, R100),dif(R90, R110),dif(R91, R92),
dif(R91, R100),dif(R92, R93),dif(R92, R100),dif(R93, R94),
dif(R93, R100),dif(R94, R9S),dif(R94, R100),dif(R9S, R96),
dif(R9S, R100),dif(R96, R97),dif(R96, R100),dif(R97, R9S),
dif(R97, R100),dif(R98, R99),dif(R98, R100),dif(R99, R100),
dif(R100, R101),dif(R100, R110),dif(R101, R102),dif(R101, R110),
dif(R102, R103),dif(R102, R110),dif(R103, R104),dif(R103, R110),
dif(R104, R105),dif(R104, R110),dif(R10S, R106),dif(R106, R107),
dif(R107, R108),dif(R108, R109),

labelling( [R1,R2,R3,R4,R5,R6,R7,R8,RI,RI0,R11,RI2,R13,R14,R1S,R16,
R17,R18,R19,R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,R30,R31,R32,
R33,R34,R35,R36,R3I7,RI8,R39,R40,R41,R42,R43,R44,R45,R46, R47.R48,
R49,R50,RS1,R52,R53,R54,R55,RS6,R57,RS8,R59,R60, R61,R62,R63,R64,
R65,R66,R67,R68,RE9,R70,R71,R72,R73,R74,R7S,R76,R77,R78,R79,R80,
R81,R82,R.83,R84,R8S,R86,R87,RA8,R89,R90,R91,R92,R93,R94,ROS,RO6,
R97,R98,R99,R100,R101,R102,R103,R104,R105,R106,R107,R108,R 109,R1 10D).

labelling([XIY)) :-
member(X,[1,2,3,4)),
labelling(Y).
labelling([]).

member(X,[XIL].
member(X,[YIL]) :-
member(X,L).

2) WCI - written in WUP3.F using the branch and bound method and the first fail prin-
ciple. WC1 is modified from the source described in [van87].

?domain @Dnode(1 .. 110);

@Dnode(X);

connection( [

[rl,r2,r3,r4,r5], [r2,r6,r7,13,r5,r11], [r3,r7.r8,19,r4],
[r4,r9,r10,rS), [r5,r10,r11], [r6,+7.r1 1,r12,r13,r19],
[r7,r8,r13,r14], [r8,r9,r14,r15,r16], [r9,r10,r16,r17],
[r10,r11,r17,r18], [r11,r18,r19), [r12,r13,r19,120,r21,r29),
[r13,r14,r21,r22], [r14,r15,r22,r23], [r15,r16,123,r24,r25],
[r16,r17,r25,r26], [r17,r18,r26,r27], [r18,r19,r27,r28],
[r19,r28,r29], [r20,r21,r29,r30,r31,141], [r21,r22,r31,r32),
[r22,r23,r32,r33], (r23,r24,r33,r34], [r24,r25,r34,r35,r36],
[r25,r26,r36,r37], {r26,r27,r37,r38], [r27,r28,r38,r39],
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[r28,r29,r39,r40], [r29,r40,r41), [r30,r31,741,742,r43,rSS),
r31,r32,r43,r44], [r32,r33,r44,r4S), [r33,r34,r45,146),
r34,r35,r4€,r47], [r35,r36,r47,v48,r49], [r36,r37,r49,r50], -
[r37,38,¢50,r51], [r38,r39,r51,¢52], [r39,r40,r52,r53],
r40,r41,r53,r54], [r41,r54,rSS), [r42,r43,r55,r56,r57,r71),
r43,r44,r57,r58], [r44,r48,r58,r59), [r4S,r46,r59,r60),
r46,r47,v50,r61], [r47,r48,061,762), [r48,r49,v62,r63,r64],
r49,r50,r64,r65], [rS0,rS1,r65,r66], [rS1,r52,Y66,r67],
[r52,r53,67,r68], [rS3,r54,768,r69], [r54,r55,169,r70],
[r55,670,171], [rS56,r57,r71,572,173,r89)], [r57,r58,r73,r74),
r58,r59,174,r75], [r59,560,r78,176), [r60,61,r76,r77],
v61,r62,r77,178], [r62,r63,r78,r79], [r63,164,r79,r80,r81],
[164.r65,r81,782], [r65,r66,r82,r83], [r66,167,r83,r84),
[r67,168,r84,r85], [r68,r69,r85,r86), [r69,r70,r86,r87],
r70,:71,r87,r88], [171,r88,r89], [¢72,r73,r89,190,r91,r109],
¥73,r74,191,192], [r74,175.192,193], [r75,r76,193,r94),
r76,177,194,195], [r77.,r78,195,196], [r78,179,r96,197],
r79,r80,r97,r98], [r80,r81,598,r99,r100), [r81,r82,r,100,r101],
r82,r83,r101,r102), [r83,r84,r102,r103], [r84,r85,r103,r104],
r85,r86,r104,r108), [r86,r87,r108,r106], [r87,r88,r106,r107],
r88,r89,r107,r108], [r89,r108,r109], [r90,r91,r100,r1 10),
¥91,r92,r100], [r92,r93,r100), [r93,194,r100], [r94,r9S,r100],
r95,r96,r100], [r96,r97,r100], [r97,r98,r100], [r98,199,r100],
199,r100], [r100,r101,r110), (r101,,102,r110], [r102,r103,r110],
r103,r104,r110], [r104,r108,r110), [r105,r106], [r106,r107],
[r107,r108), [r108,r109] I;

nodes( [r1,r2,r3,r4,r5,r6,17,r8,19,r10,r11,r12,r13,r14,r15,r16,
r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,127,r28,r29,r30,r31,r32,
r33,r34,r35,r36,r37,r38,r39,r40,r41,r42,r43,144,r4S,r46,r47 148,
r49,r50,r51,r52,r53,r54,r55,r56,r57,r58,r59,r60,r61,r62,r63,164,
r65,r66,r67,r68,r69,170,r71,r72,r73.r74 175.r76,r77.1r7 8,r79,r80,
r81,r82,r83;84;85;86,:87,:88;89,:90,191;92.:93.:94,:95.:96,
r97.t98,x99.rlOO.rlOl.r102.r103.r104.rlos.rl06;107:108.r109,r1 10));

make_data([],[]);

make_data([NILn],[[N,V]ILv]) <-
@Dnode(V) &
make_data(Ln,Lv);

make_connection(Lv) <-
connection(Lc) &
make_connection(Lc,Lv);
make_connection([),Lv);
make_connection({[NIL]ILc],Lv) <-
member(IN,V],.Lv) &
cut &
get_connection(V,L,Lv) &
make_connection(lc,Lv);

get_connection(V,[],Lv);



get_connection(V,[NEIL],Lv) <-
member([NE,VE],Lv) &
cut &
V!i=@ VE &
get_connection(V,L,Lv);

graph(G) <-
nodes(Ln) &
make_data(Ln,Lv) &
make_connection(Lv) &
write("gmﬁh construction completed™) & nl &
v

get_node(Lv,G);

get_node([[_,V]IL],[VIG]) <-
get_node(L,G);
get_node([1.0);

labelling(IX!Y]) <-
deleteffc(V,[XIY],L) &
indomain(V) &
labelling(L);
labelling([]);

start(G) <-
graph(G) &
stats &
' minimize_maximum(labelling(G),G);

The Scheduling Problem

The following program is written in WUP3.F.
clear_all;
?domain @Dtask(0 .. 200);

@Dtask(X);
job([pa,al,a2,a3,a4,a5,a6,p1,p2,ue,s1,52,53,54,55,56,
bl,b2,b3,b4,b5,b6,abl,ab2,ab3,ab4,abS,ab6,m1,m2,m3,m4,mS,m6,me,

1,t1,82,t3,t4,t5,ua,v1,v2,k1,k2,pe]);

duration(pa,0); duration(al,4); duration(a2,2); duration(a3,2);
duration(ad,2); duration(as$,2); duration(a6,5); duration(p1,20);
duration(p2,13); duration(ue,10); duration(s1,8); duration(s2,4);
duration(s3,4); duration(s4,4); duration(s$,4); duration(s6, 10);
duration(b1,1); duration(b2,1); duration(b3,1); duration(b4,1);
duration(bS, 1); duration(b6,1); duration(ab1,1); duration(ab2,1);
duration(ab3,1); duration(ab4,1); duration(ab$,1); duration(ab6,1);
duration(m1,16); duration(m2,8); duration(m3,8); duration(mé4,8);
duration(ms,8); duration(mé,20); duration(me,0); duration(l,2);
duration(tl,12); duration(t2,12); duration(t3,12); duration(t4,12);
duration(tS,12); duration(ua, 10); duration(v1,15); duration(v2,10);
duration(k1,0); duration(k2,0); duration(pe,0);
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precedence([ [pa,all, n.aZ],[ a,a3]. a,a4), [pa,as), [ '86]'
pa.ue]. al,s [ 82}, [a3,p1], [a4,p2 [as.ss [a6,s6), [p1,s3],
p2,54], g [p2,k1 ]. [s] bl]. sz.bz [s3, 3]. s4, fss bS],
s6 6], [ l.abl]. bz.abzl. [b3,ab3], [bd,aM]. [bS.abS]. [b6.ab6].
abl.ml]. [ab2,m2], [ab3,m3], [ab4,md], [abS,mS], [ab6,m6), [m]1,t1],
m2,tl], [m2,2], [m:‘ 2], [ t3]. [md,13], [md,14], [mS5,t4], [mS,1S],
m6.t5]. [m1,me], [m2,me], [m3,me], [m4,me], [ms.me]. [m6.me], [me,k2],
.tl]. [1.12], [123], [1,14), [1,18), [t1.v1), [tS,v2], [v ge
12,pe], [k2,pe], [t3,pe], (k1,pe), [ua.pe]. [t4.pe]. [v2,pe] 1)

Enax _nf([ [al.sl 3], [02,82,3], [Pl,sS 3], [p2,54,3], [a$,s5,3],
26,56,3

Enax eg(][ ][sl b1,4), [82,b2,4], [$3,b3,4], [s4,b4,4], [sS,bS,4],
s6,b

min_nf([ [me,ua,-2] ]);

min_af([ [ue.s1,6], [ue,s2,6]), [ue,s3,6), [us,s4,6], [ve,sS,6],
[ue,s6,6] ]);

resource([ [excavator, [a1,a2,a3,24,a5,36)],
[pile_driver, [p1,p2]], [carpentry, [sl.s2 §3,54,55,56]),
[concrete_mixer, [bl,b2,b3,b4,bS,b6])],

[bricklaying, [m1,m2 m3.m4.m5.m6]],

[crane, (] tl 2 +3,t4,15]], [caterpillar,[v1,v2]] ]);

make_data(Lt, Ld) <-
job(Lt) &
mk(Lt,[],Ld);

mk((],Ld,Ld);

mk([JIL],CL,Ld) <-
duration(J,D) &
@Dtask(S) &
append(CL. [U ,S.D]],NL) &
mk(L,NL,Ld);

make_disj(R,Ld,Disj) <-
resource(R) &
md(R,Ld.[].Disj) ;

md({].Ld,CL,CL);

md({RIL},Ld,CL,Dis;j) <-
md1(R,Ld [l.AL) &
form_dis é(AL J{].BL) &
append(CL,BL,DL) &
md(L,Ld,DL,Disj);

mdI{[RIL]].L4,CL,NL) <-
md2(L,Ld.CL,NL)
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md2([],_,NL,NL);

md2([HIL),Ld,CL.NL) <-
X=[HSD]&
delete(X,Ld,Ls) &
append(CL,[X],AL) &
md2(L,Ls,AL,NL);

form_disj([],NL,NL);
form_disj([[_,S,D]iL],CL,NL) <-
fm L&

append(CL,AL,BL) &
form_disj(L,BL,NL);

fm1([]),S,D,NL,NL);

fm1([[_,Sh,Dh] IL][.S.D,CL,NL) <-
append(CL,[[S,D,Sh,Dh]],BL) &
fm1(L.,S,D,BL.NL);

data_structure(Ld,Disj,End) <-
make_data(Lt,Ld) &
make_disj(R,Ld,Disj) &
member([pe.End,_],Ld);

constraint(Ld) <-
p_constraint(Ld) &
d_constraint(Ld);

p_constraint(Ld) <-
precedence(Lp) &
pcl(Lp,Ld);

pel(().Ld);

pel([[Ti, Tj]IL],Ld) <-
member([Ti,Si,Di],Ld) &
member([Tj,Sj,_].Ld) &
Sj>==@8Si+Di&
pel(L,Ld);

d_constraint(Ld) <-
member([pa,Spa,_],Ld) &
member([],S1,_],Ld) &
Spa=0&
Sl=30&
pdl(Ld) &
pd2(Ld) &
pd3(ld) &
pd4(Ld) ;

pd1(Ld) <-
max_nf(Lc) &
pd1_aux(Lc,Ld);
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aux([[Ti, <-

d member([‘i'x,Sn,Dl JLd) &
member([Tj,Sj,_1,Ld) &
Dlis D +Di&
Sj<==@8i+D1 &
pd1_aux(L,Ld);

pd2(Ld) <-
min_af(Lc) &
pd2_aux(Le,Ld);

pd2_aux([],Ld);

pd2_aux([[Ti,Tj,D]IL],Ld) <-
member([Ti,Si,_],ld) &
member([Tj, SJ.__] Jd) &
Sj>==@ S1+D &
pd2_aux(L,Ld);

pd3(d) <-
max_ef(lc) &
pd3_aux(Le,Ld);

pd3_aux([],Ld);

pd3_aux([[Ti,Tj,D]IL],Ld) <-
member([Ti,Si,Di],Ld) &
member([Tj,S;j,Dj],Ld) &
DlisD+Di-Dj &
Sj<==@ Si+D1 &
pd3_aux(L,Ld);

pd4(Ld) <-
min_nf(Lc) &
pd4_aux(Lc,Ld);

pd4_aux([],Ld);

pd4_aux([[Ti,Tj,D]IL],Ld) <-
member([Ti,Si,Di),Ld) &
member([T},Sj,Dj].Ld) &
DlisD+Di &
Sj>==@Si+D1 &
pd4_aux(L,Ld);

choice(Disj,List,End) <-
reverse(Disj,D) &
disj_con(D) &
labelling(List) ;

label_tI(L,NL) <-
iabel_tl_aux(L,NL) ;
label_t1_aux([],[));
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label_tl_aux([{_,S,. JIL).[SILV]) <-
label_tl_aux(L,Lv);

disj_con([[Si,Di,Sj,Dj]IL]) <-
disjunctive(S1,D1,85.Dj) &
disj_con(l.);

disj_con({});

disjunctive(S133,55, 5y <«
Sj>==@ Si+Di;

disjunctive(Si, Dz, 8j,Di) <-
Si>==@ Sj + Dj;

bridge(Ld, End) <-
data_structure(Ld,Disj,End) &
constraint(Ld) &
label_ti(Ld,List) &

minimize_maximum(choice(Disj,List,End) , List) ;

labelling([X1Y]) <-
deleteff(V,[XIY],Ls) &
indomain(V) &
labelling(Ls);
labelling({]);
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Appendix AS
A Mini-manual of WUP3.F

-I) Introduction

WUP3.F employs a collection of consistency techniques(CTs) to solve discrete
combinatorial problems, a class of constraint satisfaction problems. It is based on a
conventional Prolog intex;:reter called WUP3.1; if CTs is not used, WUP3.F behaves
the same way as WUPS3.1. In this manual, the special features of WUP3.F are
ggh‘ligbted. or a more detail description of the system, please refer to body of this

esis.

) Special Features
A. Finite Domains

In WUPA.F, a variable can be associated with a domain which is a finite set of
natural numbers. This type of variables are called d-variables. They allow early detec-
tion of failures and facilitate the implementation of special inference rules. To use d-
variables, a predicate, for example pred, must be submitted to 8 domain declaration of
the following form:

domain @Dpred(a,, . . . ,a,);
where each a; can have one of the following values: |
. h - the ith argument can be any term in the Herbrand universe;

. 1 .. u - the domain of the ith argument is a set of consecutive natural numbers
with Jower bound 1 and upper bound u;

. [e1, . . ., €] - the domain of the ith argument is a set that contains all ¢;'s.

A domain declaration is usually included in the source code of a Prolog. When the code
is consulted, the domain declaration is executed as a built-in predicate. Finite domains
are seldom used independently; they are usually combined with other features of the
interpreter. '

B. Special Inference Rules

Two inference rules are implemented in WUP3.F: Forward Checking Inference
Rule(FCIR) and Looking Ahead Inference Rule(LAIR). They allow the users to use
either the forward checking approach or the looking ahead approach to solve a general
constraint. In most cases, these rules are better alternatives than resolution. To use
FCIR, a constraint must be submitted to a forward declaration of the form:

forward @Fpred(a,, . . . ,a,);

where each a; has the value of either 'g’ or 'd’. A 'g’ indicates that the corresponding
.argument in the constraint must be ground before the constraint can be executed. A 'd’
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indicates that the argument must be a d-variable. FCIR is used to solve a constraint
submitted to a forward declaration when there is only one uninstantiated d-variable.

6 To use LAIR, a constraint must be submitted to a lookahead declaration of the
orm:

IOOkahcad @Lpl'ed(al. oy aﬁ);

where each g, is either a 'd’ or a 'g’, similar to that of a forward declaration. LAIR will
be used to solve a constraint when all arguments that have 'g’’s in the declaration are
ground and at least one of the arguments that has a 'd’ in the declaration is an uninstan-
tiated variable with a finite domain. LAIR may not be able to solve the constraint com-
pletely. The constraint in this case will be delayed to wait for more information.

C. Built-in predicates

WUPS.F contains a collection of built-in predicates that implements CTs. Some
of these predicates are used to instantiate d-variables. Some are implemented as spe-
cializations of the three inference rules (i.e. including the Partial Looking Ahead Infer-

ence Rule); and some employ the branch and bound method to solve combinatorial
problems. The next section of the manual gives a list of all these predicates. :

) List of built-in predicates:
delay X
a delay declaration for predicate X;

deleteff(V,L,RL)
deleteffc(V,L,RL)

V is a d-var chosen form the list of d-vars L using the first fail principle. RL is
the remaining list. deleteffc uses also the number of constraints in which V is
involved as a selection criterion;

domain X

a domain declaration for predicate X;
element(I,L,E)

the Ith element of list L is E. Its lookahéad declaration is element(d,g,d);
first_assertion(Head)

geag is the head of the first instance of an assertion whose head unifies with
cad,

forward X
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a forward declaration for predicate X;
indomain(X)

if X is a d-var, it will be instantiated with an element in its domain;if X is an
integer, the predicate succeeds; otherwise, the predicate fails;

list_hidden(X)

this predicate lists the content of a hidden module which is either domain, for-
ward, lookahead or delay;

lookahead X

a lookahead declaration for predicate X;
max@(X,Y,2)

Z is the maximum of X and Z. Its lookahead declaration is max@(d.d.d);
minimize_maximum(T,L)

the branch and bound method is used to solve T so that the maximum element of
L is minimized;

minimize(T,C)

_t?:d branch and bound method is used to solve T so that the value of C is minim-
1zeq;

min@(X,Y,2Z)
Z is the minimum of X and Z. Its lookahead declaration is min@(d.d.d);
reduce(X)

a linear equation or inequation is solved;

~ stats

print a snapshot of the runtime statistics of the current execution:
Xo@Y+C

X is not equal to the sum of Y and C. Its forward declaration is d <>@ d + '8
Xo@Y-C |

X is not equal to Y minus C. Its forward declaration.is d <@ d - g



118

X=@Y
X is not equal to Y. Its forward declaration is d !=@ d;
X <@ Y <-@FB_t(X,Y);
X is less than Y, Its forward declaration is d <@ d;
X<=@Y
X is less than or equal to Y. Its forward declaration is d <=@ d;
Each of the following predicates are expressed in term of one of the above predicates:

X>@0Y<-Y<@X;
X>=@ Y < Y<=@X;

The following predicates are implemented specially for the N-queens problem and the
scheduling problem:

Xis@Y+C
Xis the sumof Y + C, Its forward declaration is d is@ d + g;
X>==@Y+C

X is greater than or equal to the sum of Y + C. Its lookahead declaration is d
>==@d +C;

X<==@Y +C

;( iséess than or equal to the sum of Y + C. Its lookahead declaration is d <==@
+G

IV)A Sample Session

The following is a sample session of using WUP3.F. In the session, the 5-queens
problem is solved and All solutions are shown:

> wupF
Waterloo Unix Prolog [Version 3.F August 1989]
ﬁr: 2consult(queen);

usr: ?cat(queen);

@Dqueen(X) <-
safe(X) &
labelling(X);

safe((]);



safe([FIT)) <-
noattack(F,T) &
safe(T);

labelling([]);

labelling(X1Y]) <-
indomain(X) &
labelling(Y);

noattack(X,Y) <-
noattack(X,Y,1);

noattack(X,[],Nb);

noattack(X,[YIYT],Nb) <-
YI-@X&
XOo@Y+Nb &
X<@Y-Nb&
NblisNb+1 &
noattack(X,YT,Nbl);

% domain declaration for the @ Dqueen predicate
‘ 'ﬁomain @Dqueen(1 .. 5);

usr: 7@Dqueen([X1,X2,X3,X4,X5));
{ X1=1, X2=3, X3=§, X4=2, X5=4 );

{ X1=1, X2=4, X3=2, X4=5, X5=3 };
{ X1=2, X2=4, X3=1, X4=3, X5=5 };
{ X1=2, X2=5, X3=3, X4=1, X5=4 };
{ X1=3, X2=1, X3=4, X4=2, X5=5 };
{ X1=3, X2=5, X3=2, X4=4, X5=1 };
{ X1=4, X2=1, X3=3, X4=5, X5=2 };
{ X1=4, X2=2, X3=5, X4=3, X5=1 };
{ X1=5, X2=2, X3=4, X4=1,X5=3 };
{ X1=5, X2=3, X3=], X4=4, X5=2 );
- no (more) answers

usr: 7quit;
>
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