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Abstract

One way of ‘restricting linguistic theory’ is the L-view: place sufficient
restrictions on the allowable rules of grammars so as to reduce their
generative power. Another way is the G-view: disallow certain grammars,
regardless of whether this results in a reduction of generative capacity. The
present paper adopts the L-view and, consequently, investigates the gener-
ative power of various theories.

One area in linguistics where restrictions on linguistic theory have been
advocated is in the ordering (within the cycle) of the application of the rules
which generate the language. We consider eight proposals: Total Ordering;
Partial Ordering (= Total Ordering plus iterative application); Semi
Ordering (= Anderson’s ‘local ordering’ without iterative application);
Semi Partial Ordering (= Semi Ordering plus iterative application);
Unorderings (= Ringen ‘Condition V1, unmodified’); Quasi Orderings
(= Ringen ‘Condition VI, modified’); Random Orderings;, and
Simultaneous Application.

If, for any grammar obeying rule ordering conditions A there is a grammar
obeying rule ordering conditions B which contains exactly the same class of
derivations, then rule ordering theory B is at least as powerful in strong
generative capacity as rule ordering theory A. Similar considerations are
used to define the notions of equivalent, more powerful, and non-
comparable in strong generative capacity. A series of theorems are proved
showing the relative strength of the eight rule ordering theories.

Some linguists who advocate ‘random ordering’ actually have in mind
random ordering plus some ‘universal principles’. We investigate the effect of
Sfour of these principles from the standpoint of the L-view, showing that two
of them are strongly equivalent to total orderings and that two of them are
intermediate between total and partial orderings.

We close with an indication of what the role of mathematical linguistics
should be for the ordinary working linguist.
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18 F. J. Pelletier
1. Introduction

This paper is an essay in the philosophy of linguistics. It combines
elements from the study of formal grammars (standard references are
Hopcroft and Ullman, 1968; Gross and Lentin, 1970) with elements from
standard linguistic theory (particularly Chomsky, 1965, as formalized by
Peters and Ritchie, 1973a; or Ginsburg and Partee, 1969), and elements
from recent discussions of the effects of rule orderings in linguistics
(Pullum, 1979, is a definitive source, we shall also discuss such authors as
Ringen, 1972; Levine, 1976; and Koutsoudas et al., 1974), and finally with
more theoretical discussions of such issues as simplicity of a (linguistic)
theory, the possibility of language learning, and so on (we shall look at
Derwing, 1973; Chomsky, 1971, 1975, 1977; Lasnik and Kupin, 1977; and
Wasow, 1978, among others).

We start (Section 2) with a very brief explanation of the major methods
and results of the study of formal grammars, and follow this with a brief
discussion of “standard” linguistic theory (Section 3). Readers familiar
with one (or both) of these areas can skip it (them) and go directly to
Section 4, which is a discussion of the notions of grammar, theory of
grammar, and generative power of a grammar or theory of grammar. This
is followed by a statement of various results known about the generative
power of linguistic grammatical theories, and then (Section 5) by an
outline of the precise topic of this paper and a survey of what others have
said about it. Section 6 is devoted to defining some requisite preliminary
notions before we present (Section 7) a series of ‘theorems’ concerning the
generative power of various kinds of rule orderings. We then discuss
(Section 8) some actual linguistic proposals that have been made about
‘conditions upon application of rules’ as a replacement for ordering rules.
Various theorems are proved to show that these ‘conditions’ have no real
empirical consequences. We close (Section 9) with a suggestion about
what the role of mathematical linguistics should be for linguists.

2. Formal grammars

One way to study a language is to view it as a set of strings (consisting of
words or of letters, etc.) which is produced in accordance with a set of
rules. The strings are said to be composed of terminal symbols, which
comprises the alphabet or terminal vocabulary and is denoted Vt. A
sentence then is a concatenation of members of Vt. We shall let e denote
the ‘empty string’; *Vt is the set of all possible strings not containing e,
and *Vt is the set of all possible strings (which may include e).
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The generative power of rule orderings 19

The sentences of languages (at least of natural languages) also have
structure, in addition to being merely members of *Vt or *Vt. In natural
languages, we typically call some subsequences of *Vt ‘noun phrases’
(NPs) or ‘verb phrases’ (VPs), for example; and we traditionally call an
entire terminal string a ‘sentence’ (S). Such symbols are part of our non-
terminal vocabulary, Vn. The entire vocabulary we denote by V, that is the
union of Vn and Vt (and we add the requirement that Vn and Vt are
disjoint); *V is the set of all strings of V (including e).

The grammar of a language is a way of organizing all of the potentially
infinite members of *V into some finite mode of representation. Toward
this end, we introduce the set of rules of the grammar, which we denote by
(=). The relation (—) holds between members of *V; if (o, B> € (=), we
shall write o« —f. We shall use S as our ‘initial symbol’. A sentence
generated by the grammar G, then, will be an x € *Vt such that there is a
sequence S—a, a— f, ..., y— x. The language generated by G is the set of
all sentences generated by G.

It is quite easy to show that placing certain kinds of restrictions on the
(—) relation will result in different languages. For example, if every
member of (—) has the property that it is of one of the two forms

A —-xB
A-y

where A, Be Vnand x, y € *Vt, then the language being generated will be
a Kleene-regular set. It can furthermore be shown that every Kleene-
regular set is generated by some such grammar (called ‘right linear
grammars’ or ‘type 3 grammars’).

If the rules are required to be of the form

A—-B

where A € Vn and Bs#e, then the grammar is ‘context free’ or alter-
natively a ‘type 2’ grammar.! If the rules are required to be of the form

oaAf—aBp

where «, fe*V and A € Vn and B #e, then the grammar is ‘context
sensitive’ or a ‘type 1’ grammar. It is common practice in linguistics to
write these context sensitive rules in this way:

A->B Ja---B

If the rules have no restrictions on them, the grammar is said to be a
‘unrestricted rewrite system’ or a ‘type 0’ grammar. It is straightforward to
prove that type 0 grammars give the recursively enumerable (r.e.) sets.
Early results of Chomsky’s show that L, (the class of languages that can
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20 F. J. Pelletier

be generated by a type 3 grammar) is properly included in L, which is
properly included in L, which is properly included in L, (see Hopcroft
and Ullman, 1968).

Intuitively speaking, a r.e. set is any set producible by some rule(s) or
other. If one adds the further requirement that one is able to determine, in
some finite time, whether an arbitrary string is or isn’t in the set, then the
set is said to be recursive. The r.e. sets properly include the recursive sets,
which properly include those produced by context-free grammars. We
shall have occasion to return to recursive sets (and the grammars that
produce them) below.

We can mirror the structure of terminal strings by adding a convention
so that each rule introduces an appropriate pair of brackets corresponding
to non-terminal symbols altered or rewritten in the derivation of a
terminal string by the rules of the grammar. Thus, for a rule like:

oA —aBp

for example, the convention would have the effect of surrounding B by
brackets labelled A. Alternatively, we could write this directly into the
rule:

aAB —a[ BB
A A

It is then trivial to induce a ‘bracketization’ function on terminal strings
which will yield their (surface-) structural descriptions, and a ‘de-
bracketization’ function which will yield the terminal string without the
brackets. This is in fact the method proposed in Peters and Ritchie
(1973a), in Langendoen (1979), and in Crespi-Reghizzi (1971). When
looked at this way, it is tempting to say that the labelled brackets are part
of the terminal string itself, that is, part of the language being generated.
In the sections that follow, we shall in fact view the matter in precisely this
way.

It should perhaps be mentioned that the interpretation of formal
grammars presented here is the ‘orthodox interpretation’, where rules like
A—B C are string-mapping rules: it maps a string containing an
occurrence of the symbol A into a string containing the substring BC in
place of the occurrence of A. However, rules can be viewed otherwise.
McCawley (1968) proposed that one look at rules as ‘node admissibility
conditions’ which admit fragments of a parse tree. That is, they tell one
whether a given parse tree is legitimate. Besides McCawley’s remark that
this is more true to linguistic practice, various formal benefits have been
claimed to follow from this way of looking at rules. It has been proved in
Peters and Ritchie (1973c), Joshi and Levy (1977), and Gazdar (1979a)
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The generative power of rule orderings 21

that, under various different interpretations of ‘analyze’ and ‘parse’, a
language is context free if and only if there is a finite set of context
sensitive rules that parse the language; i.e. if and only if there is a
collection of trees whose terminal symbols are the sentences of the
language and a finite set of context sensitive(!) rules which exactly analyze
these trees. Thus node admissibility rules can be stated as context sensitive,
but nonetheless the language ‘generated’ (= analyzed) will be only context
free. Furthermore, as Gazdar has pointed out (personal communication),
such an interpretation obviates any question about rule ordering, since
rules cease to be the kind of things that can be ordered. In particular, this
obviates the difficulties discussed below (Section 6) concerning the
possibility of ‘simultaneous application’ of rules that dictate ‘contradic-
tory changes’. Similar remarks from an informal point of view can be
found in Derwing (1973). Peters and Ritchie (1973c:333) claim:

. all sets of context-sensitive rules which have been used as a part of
transformational grammars describe the same set of labeled bracketings whether
interpreted as rewriting rules or immediate constituent analysis rules. These rule
sets therefore describe only context-free languages. This means that the power to
describe non-contextfree languages has not been used by linguists, although it is
implicit in the use of context-sensitive rules as rewriting rules.

Gazdar (personal communication) urges this as a clear case where
eliminating the possibility of rule ordering from a type of grammar (viz.,
context sensitive grammars) results in a constraint on weak generative
capacity. This is relevant to the general issue to be developed in this paper:
the effect of rule orderings on the generative power of grammatical
theories. But nonetheless it will not be considered, and in fact this paper is
exclusively concerned with the ‘orthodox interpretation’ of rules as string-
mappings. The reasons for this are mainly ones concerning the fact that
the ‘orthodox interpretation’ is standard in linguistic theory, and the
discussions in the literature concerning rule ordering presuppose it.

3. ‘Standard’ linguistic theory

‘Standard’ linguistic theory is whatever is proposed in Chomsky (1965) for
syntax and Chomsky and Halle (1968) for phonology. This is, to be sure,
not current linguistic theory; but it does contain all the resources necessary
to reconstruct current theory.? We concentrate here on explaining syntax.
In-‘standard’ linguistic theory, grammars of natural languages are said to
be structured in the following way.

(1) There is a set of Phrase Structure Rules (PS rules), with initial
symbol S. Such rules might look like the following, where the parenthe-
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22 F. J. Pelletier

sized elements amount to an abbreviatory convention which ‘collapses’
two rules — one which has the unparenthesized element in it and one
which has no such element in it at all. (In linguistic terminology such
parenthesized elements are said to be ‘optional’.)

S— NP Aux VP
NP — (Det) N Num (S)
N-CS

..etc....

These rules have the effect of yielding a set of sentences (and their
structure) which look like:

[[ [CSI[CSIPY]L....
SNPDet N NumAux

(As we said in Section 2, we can treat the labelled bracketing as a part of
the terminal vocabulary, so that the above string is composed entirely of
terminal symbols; but we can also induce the B (‘bracketing’) function on
it so as to recover just the structure if we so desire). When looked at this
way, PS rules form a context-free grammar with initial symbol S. It is
common in linguistics to represent the bracketing by the equivalent means
of labelled trees.

(2) There is a Lexicon which contains elements that are ordered pairs.
The first member of these ordered pairs is an ‘underlying phonological
shape’ of some morpheme of the natural language. This is generally given
by stating the ‘non-redundant distinctive features’ of the morpheme, e.g.
we might have:

+nasal + vocalic + strident

+coronal +coronal +apical
The second member of the ordered pair is a statement of a ‘context’, for
instance:

([+Det])___[+VP]
+N
+Common

The relevant rule regarding ‘lexical insertion’ is that the symbol CS in the
terminal strings of the PS rules may be replaced by the first member of the
ordered pair if the context of this terminal string does not violate the
context as stated by the second member of the ordered pair. It will be
noted that, when done this way, such ‘lexical insertion’ is a kind of
context-sensitive rule. The language which is the output of this lexical
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The generative power of rule orderings 23

insertion into the terminal strings of the PS rules is often called the ‘deep
structure’ or the ‘base language’ of the natural language which is to be
generated.

(3) Given the base language as input, transformational rules alter the
structure and linear order of the terminal strings of the base language. For
example, there might be a rule (‘there-insertion’) which does the following
(where W, X, and Y are variables over (possibly empty) strings).

[ [WIIXbeY—fthereXbe+[ [WI]]Y]
SNPN S NPN
—Def — Def

which would alter sentences like:

[ [ [a boy]][past-be[on[the dock]]]]

SNPN VP PP NP
—Def
to
[there[past-be+[ [a boy]][on[the dock]]]]
S VP NP N PP NP
—Def

(i.e. alters A boy was on the dock to there was a boy on the dock and
suitably alters structure).

These transformational rules apply cyclically: they start with a most
deeply embedded S and work outwards, only considering the structure
within the particular S part of the entire string that is being generated.3
Within any given cycle there are sufficient restrictions on deletion that
transformational rules are not unrestricted re-write rules (see Peters and
Ritchie, 1973b), but with the addition of the principle of cyclic application
they are equivalent to Turing machine rules (see Peters and Ritchie,
1973a). This is discussed in more detail in the next section.

(4) The Phonological Rules apply to the terminal symbols of the output
of the transformational rules. That is, they apply to the symbols which
were introduced by the lexical insertion rules, and they convert them into a
representation of a pronounceable word of the natural language. The usual
formulation of phonological rules makes them be context-sensitive rules.

4. Grammars, theories of grammar, generative capacity and constraints

A grammar is a particular set of rules. A theory of grammar is a set of
principles that picks out a certain group of grammars as being legitimate
grammars. Thus, for example, the sample grammars mentioned in Section
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24 F. J. Pelletier

2 are each grammars. The context-free theory of grammars picks some of
them out as being legitimate (legitimate context free, that is). More
generally, a theory of grammar is a statement of what is in principle
permissible in a grammar.

A grammar produces (or generates) a language (set of terminal strings)
from a given input. A theory of grammar produces a set of languages from
a certain kind of input. As indicated in Section 2, some theories of
grammar allow this set of languages to be characterized in alternative
ways (e.g. ‘all regular expressions’, ‘all recursively enumerable sets’). That
is, the terminal strings of any grammar of the theory also obey some
alternative characterization. The ability of a theory of grammar to
produce a certain class of languages (terminal strings) from a given kind of
input is called its weak generative capacity. Traditional studies in formal
grammar and in the formal properties of linguistic theories of grammars
have concentrated exclusively on the weak generative capacity of the
grammatical theories, i.e. on the sets of terminal strings produced by the
grammars, and have not consciously investigated the linguistically more
interesting issue of the ‘structural descriptions’ (= labelled bracketing) of
the terminal strings.* The ability of a theory of grammar to produce a
certain class of languages and associated structural descriptions from a
given kind of input is traditionally called its strong generative capacity.
The distinction between strong and weak generative capacity of a
grammar has been characterized by Chomsky (1965:60):

Given a theory of language structure, we can distinguish weak generative capacity
from its strong generative capacity in the following way. Let us say that a grammar
weakly generates a set of sentences and that it strongly generates a set of structural
descriptions (recall that each structural description uniquely specifies a sentence,
but not necessarily conversely) .... The study of strong generative capacity is
related to the study of descriptive adequacy ... A grammar is descriptively
adequate if it strongly generates the correct set of structural descriptions. A theory
[of grammar] is descriptively adequate if its strong generative capacity includes the
system of structural descriptions for each natural language ...

It is clear from Chomsky’s discussion that a descriptively adequate
grammar has to assign the appropriate constituent structure to strings of
terminal symbols. (Appropriate in the sense of being in.accord with native
speakers’ intuitions, at least when they have any). But as we indicated
above, both in Section 2 and Section 3, such a desideratum can be
accomplished within the output language itself when augmented by our
bracketization function. Thus for example, the allegedly ambiguous
string:

(1) We are visiting scholars
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The generative power of rule orderings 25

is to be distinguished on the grounds that our grammar outputs both:

(2) [ [Wellare][ [visiting][scholars]]]
SNP Aux NPAJj N

3) [ [We]ll [are[ [wvisiting][ [scholars]]]]
SNP VP Aux VPV NPN

(These structures are not to be taken too seriously, we use them only as
examples. The point is that this kind of ambiguity could be handled as
being different terminal strings of our grammar, and that the bracketi-
zation function would associate two distinct structural descriptions for
(1). And if it is treated in this manner, the detection of such ambiguity
should be called part of the weak generative capacity of the theory of
grammar.) Chomsky (1965:89-90) approves of this method of under-
standing rules, although he mysteriously claims that the addition of such
an understanding of the PS rules no longer constitutes a PS grammar,
even though the two are equivalent in weak generative capacity.

However, the surface-structural ambiguity illustrated by (1) is not the
only kind of ambiguity countenenced in linguistics.3 Sentence (4) seems to
have only one bracketization, namely something like (5), even though it
(arguably) is syntactically ambiguous; the ambiguity having to do with
whether the when refers to the time Mary said something or the time of
Mary’s departure.®

(4) When did Mary say she would go?
(5) [ [When][did][Mary][ [say]
SAdv  Aux NP VPV

[ [she][ [would][go]]]]]
SNP VP Aux A%

It is common practice to regard this ambiguity as arising from ‘different
deep structure, same surface structure’. This too (the ability to make such
assertions) is apparently to be called part of the strong generative capacity
of a theory of grammar. As Chomsky says (1965:140-141):

... the grammar defines the relation “the deep structure M underlies the well-
formed surface structure M’ of the sentence S” and, derivatively, it defines the
notions “M is a deep structure,” ““M’ is a well-formed surface structure”, “S is a
well-formed sentence”, and many others (such as ““S is structurally ambiguous”,
“S and S’ are paraphrases”, *‘S is a deviant sentence formed by violating rule R or
condition C”).

So it would seem that in addition to including facts about the surface
structure, the concept of strong generative capacity is to include all the
facets relevant to determining whether a grammar is descriptively ade-
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26 F. J. Pelletier

quate, even those which invoke the notion of a derivational history.
Similarly, Wall’s (1972:290) interpretation of ‘strong generative capacity’
seems to include derivational history:

... nearly all the work on formal grammars deals exclusively with the sets of strings
they generate (called the weak generative capacity of the grammar) and little has
been said about the kinds of structural descriptions (constituent-structure trees)
assigned to the grammatical strings (strong generative capacity). A natural
language grammar must, of course, not only generate the correct set of strings but
it must also specify correct structural descriptions — “‘correct” in the sense that
they agree with the speaker’s intuitions in marking a sentence as n-ways
ambiguous, marking two sentences as paraphrases of each other, specifying the
grammatical relations that hold between parts of a sentence etc.

However, we diverge from Chomsky and Wall in that the structural
descriptions of a sentence that we can induce by the bracketization
function will be considered by us to be part of the weak generative
capacity of a grammar. Since weak generative capacity is properly
included in strong generative capacity, this makes no real difference when
one is investigating strong generative capacity.” But we do wish to
emphasize the sometimes-neglected point that some overall properties of a
grammar cannot be included in its weak generative capacity (such as
relations between deep structure and surface structure), and any such
properties shall be treated here as part of the grammar’s strong generative
capacity. Even though the point is sometimes neglected, it clearly is
nascent in both the Chomsky and Wall quotes just given, for some of the
empirical relations mentioned by them in describing strong generative
capacity are defined in terms of derivational history of sentences.
Paraphrase is: derived from same deep structure. Ambiguity is: same
surface structure derived from distinct deep structures. Grammatical
relations holding between parts of a sentence is: being related in specified
ways to the same underlying segment. Thus an investigation of strong
generative capacity will be concerned with the derivational histories of the
output sentences.® More generally, it is said that a comparison of two
theories of grammar in terms of their weak generative capacity has only
one empirical reflex: grammaticality. In other words, it amounts to asking
the question, if one theory can call a certain (kind of) sentence grammati-
cal (= generate it with some grammar obeying the theory) can the other?
Even with our strengthened notion of weak generative capacity, gram-
maticality only amounts to: can the theories generate it and its structural
description? Strong generative capacity is supposed to compare theories of
grammar in respect to all their empirical reflexes: in addition to gram-
maticality, can the two theories give identical paraphrase claims? Can they
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The generative power of rule orderings 27

give identical ambiguity claims? Can they relate the structural descriptions
of the members of the output language to the intermediate stages of
derivation in the same way?, etc. Strong generative capacity is not a totally
defined notion — there are too many things someone might want to call
‘an empirical reflex’. We here shall consider any feature of the surface
structure of a sentence and any feature of the derivational history of a
sentence to be included as an empirical reflex; and we consider all such
features to be under discussion when we talk about the strong generative
capacity of a theory of grammar. If two theories of grammar are
equivalent in strong generative capacity, there is no way to empirically
distinguish them; they are, in the strictest and most pure sense, notational
variants of one another.®

Bearing in mind what we include in weak generative capacity versus
strong generative capacity, we shall define various relative notions of
‘strength of a theory of grammar’. One theory of grammar (i.e. a statement
of what is in principle permissible in a grammar subsumed under the
theory) is at least as strong in weak generative capacity as another if, given
an input, every language produced by some grammar obeying the
strictures of the latter can also be produced by some grammar obeying the
strictures of the former. If the converse can also be established, the two
theories of grammar are equivalent in weak generative capacity. If one
direction can be established, and they are not equivalent, then the first is
stronger (or: more powerful) in weak generative capacity then the second. If
they each can be shown to be able to produce languages the other cannot,
then they are non-comparable in weak generative capacity. Substituting
‘strong’ for ‘weak’ and ‘empirical reflex’ for ‘language’ in the preceding
definitions gives us analogous characterizations of the notion of relative
strong generative capacity of theories of grammar.

Peters and Ritchie (1973a: Section 2) define a transformation as the
mapping induced on an n-term structural condition by an n-term
transformational mapping. The transformational mapping is a com-
position of four elementary rules (deletion, substitution, left-adjunction,
and right-adjuction) and must satisfy ‘the principle of recoverability of
deletions’ (roughly: one can delete some non-terminal of a string if there is
a copy of it somewhere still left in the structural change, and one can
delete a specified terminal symbol). A transformational grammar G is a
pair <L, T) where L, is a base or input language (e.g. a PS grammar’s
output) and T is a sequence of transformations. The language, L(G),
output by the transformational grammar is the set of (labelled) strings of
terminal symbols generated in accordance with a cycling principle (see
their Definitions 4.1, 4.2, 4.3). Applying the ‘de-bracketization’ function
to these labelled strings in order to get the unlabelled strings (call these
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L'(G)), one can prove the following theorem remarkably easily:!°

(Peters and Ritchie 5.1): Every recursively enumerable language is the
language L'(G) of some transformational grammar G with a context-
sensitive base language.

The proof of 5.1 procedes by noting that an arbritrary r.e. language R can
be generated by a grammar with all rules of the formaXb—aYb (X and Y
elements of *Vn) or A—a (A element of Vn, a of Vt). So take this
grammar, and for every rule A — B in which B is n elements shorter than
A, replace it by the rule A—BC(n). (C is a new non-terminal, here
repeated n times). Add these two sorts of rules: CB — BC, for all the old
non-terminals B, and C — ¢ (¢ a new terminal symbol). First note that this
new grammar G’ is a context sensitive grammar. Note next that this new
language R’ generated by this grammar is identical to R except for
occurrences of ¢ as rightmost symbols of a cyclic node. The principle of
recoverability of deletions does not prevent the addition of a rule to delete
this terminal symbol (since we delete specified terminal symbols in
specified contexts). Thus for any r.e. language R, there is a context
sensitive base language G’ (the rules we constructed) and a transfor-
mational component (the deletion transformation) which generates R.!!
Peters and Ritchie (1971) also show that there is a context-free base
language which will generate R, but that such a proof has the transfor-
mational grammar make heavy use of ‘filter functions’.

These results are widely thought to show there to be something
drastically amiss in linguistics. First, during the period when the ‘stan-
dard’ theory was in vogue, it was hoped that linguistics could find a
Universal Base Language — a deep structure language that every natural
language shared, and to which one merely added (1) a lexicon approp-
riate to a given language, and (2) some particular subset of all the
permissible transformational rules, in order to generate the given lan-
guage. As Peters (1970) points out, the hope of finding such a universal
base language is too easy to satisfy, since transformations could be found
for any proposed base which will do the trick. The hope for a universal
base language has not been prominent in recent discussions, possibly due
to this result. The second fault with ‘standard’ linguistic theory was
thought to be that if linguistic theory could describe or generate any r.e.
language, then it was too powerful a theory for describing the (supposed)
underlying mental reality of learners (speakers) of the language. For, it
was said, a child learns language on the basis of a small amount of data
and in a short period of time; hence, the mental realities underlying a
child’s linguistic ability must be tightly constrained so that he comes up
with the correct grammar easily and quickly. But doesn’t this result show,
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it was asked, that this underlying mental reality isn’t correctly character-
ized by a transformational grammar? For, if it were, the child could never-
learn the proper grammar, there being simply too many of them which
would do the job. Furthermore, it was alleged,? the fact that people can
classify arbitrary strings as being grammatical or ungrammatical shows
that natural languages must be recursive sets, and not arbitrary r.e. sets.
Thus transformational grammar is too powerful a theory, and must be
restricted in some way to generate only recursive sets.

How is a theory of grammar to be restricted or constrained? In a very
interesting paper, Wasow (1978) considered two ways of applying con-
straints on a theory. The direct way, which Wasow calls the ‘L-view’, is to
place sufficient constraints on the theory so that the class of languages
generated by the grammar is smaller. In the terminology of above, this
would be to alter the grammars allowed so that the weak generative power
of the theory is lessened. An alternative view, which Wasow calls the ‘G-
view’, would be to place restrictions on the theory which will limit the
kinds of grammars thereby allowed, regardless of whether such limitations
affect the weak generative capacity of the theory. As Wasow points out,
these are not equivalent types of limitations. A restriction on a theory of
grammar to the effect ithat no terminal symbol could be immediately
dominated by a branching node would restrict the permissible grammars
that theory allows. But since a grammar that obeys this restriction (but is
otherwise identical to one that doesn’t) could be trivially defined from any
grammar which doesn’t, it follows that the class of languages generated by
these two theories of grammar is identical. Of course limiting the class of
languages produced entails a limitation on the forms of grammars, but as
this example shows, the converse is not true.

According to the G-view, the point of putting constraints on theories of
grammars is not to limit the class of languages that can in principle be
generated by some grammar obeying the theory, but rather to constrain
the kinds of descriptions available to the linguist in describing the
language. And the reason for desiring this kind of constraint is the hope
that such constraints will sufficiently circumscribe what it is that a speaker
has learned so that it is reasonable to claim that a child could learn that.
This point has been put by Lasnik and Kupin (1977):

We follow Chomsky (1965) in the belief that children acquire their grammar from
an environment that seriously underdetermines it, and that some evaluation metric
is employed to select the appropriate grammar for any particular language.
Certainly if the class of possible grammars is smaller, the evaluation task becomes
simpler. By restricting the class of allowable grammars, we thus approach an
explanation of how language can be acquired. (p. 174).
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They then develop such a restricted theory of grammar and conclude with
the following remarks:

It seems clear to us that our theory shares the defect of the Aspects [Chomsky 1965]
theory noted by Peters and Ritchie [1973a] .... our theory provides a grammar for
every r.e. set .... In comparing two theories, it is reasonable to abstract away from
their common virtues and shortcomings. In the present instance, such an
abstraction leaves our theory much less powerful .... Notice that we use the term
“powerful”” not with respect to the character of the languages generated but rather
with respect to the relative size of the classes of grammars allowed. (p. 195).

Chomsky (1965:62) puts the G-view as follows:

It is important to keep the requirements of explanatory adequacy and feasibility in
mind when weak and strong generative capacities of theories are studied as
mathematical questions. Thus one can construct hierarchies of grammatical
theories in terms of weak and strong generative capacity, but it is important to
bear in mind that these hierarchies do not necessarily correspond to what is
probably the empirically most significant dimension of increasing power of
linguistic theory ... Along this empirically significant dimension, we should like to
accept the least “powerful” theory that is empirically adequate. It might
conceivably turn out that this theory is extremely powerful (perhaps even
universal, that is, equivalent in generative capacity to the theory of Turing
machines) along the dimension of weak generative capacity, and even along the
dimension of strong generative capacity. It will not necessarily follow that it is very
powerful (and hence to be discounted) in the dimension which is ultimately of real
empirical significance.

The G-view is thus making a certain kind of claim about ‘psychological
reality’: The constraints put on a theory of grammar are, in some intimate
sense, mirrors of the actual states of mind of a speaker -of the language.
One is tempted to ask whether the methodology embraced by the G-view
is sufficient for the task it sets itself. Let us briefly indicate why it seems to
hold little promise in the form in which it is actually practiced.!® In
practice, the methodology of the G-view runs like this: A corpus of
linguistic data can be ‘economically’ and ‘revealingly’ described by using a
certain descriptive device D than it can without using it. (Such a device
might be some abbreviatory convention, or some ordering statement on
rules, or a more esoteric constraint like ‘the heavy NP constraint’, ‘the
strict cycle condition’, ‘the structure preserving constraint’, ‘the A-over-A
principle’; etc.) The claim is then made that the ‘psychological, in-
ternalized grammar’ of language users embodies this constraint. It is
usually added that this is an empirical hypothesis — speakers do not have
to use this constraint, but they in fact do. Of course, the fact that data can
be ‘economically’ and ‘revealingly’ described by the theory does not by
itself support the claim about psychological reality; to argue in this
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manner would be the most blatent circularity imaginable. We therefore
wish to have some other method of checking on the predictions made by
these constraints.!4 But it is here, we think, that insuperable difficulties
attend the G-view; for the G-view must now define some measure which
maps their proposed constraint onto speaker psychology, and then a
function which maps this proposed speaker psychology onto some
observable correlate (since it is, after all, to be an empirical hypothesis).
Straightforward attempts to do this (such as: transformationally-defined
complexity is mapped onto length of time to understand, or ease of
making errors, or difficulty in memorizing, or time of child-acquisition, or
slips of the tongue, or aphasic difficulties, etc.) have all been shown not to
be well-correlated.!® The standard reply to this lack of straightforward
correlation is to reply that other factors ‘of a performance nature’ (short-
term memory limitations, etc.) interfere with the predictions of the
proposed grammar, which (it is claimed) is supposed to describe the
speaker’s competence, not his performance. But this reply simply rein-
forces the claim that the G-view can have no empirical support until these
psychological or ‘performance’ factors are first brought under some
theory so that one knows what the function mapping the linguistic theory
onto the observable correlate is. None of this, of course, is to say that the
proposed constraints are not in principle empirical; it is rather to say that
it is premature to propose such constraints without there being any hope
of evaluating them in the foreseeable future.

Transformational grammarians have, for the most part, been advocates
of the G-view. This is (no doubt) in part because Chomsky, still the
leading linguist in the world, is an exponent of the G-view. However,
agreeing with Wasow (1978), we think a better approach is embodied in
the L-view. The view of constraints here is to limit the class of possible
human languages, thereby making claims about the limitations of human
language acquisition. As Wasow points out (1978:85), such limitations
make predictions (at least about boundary conditions) on such notions as
parsing time and other processing features, since the exclusion of certain
classes of languages also excludes certain classes of grammars.

There have always been exponents of the L-view since the beginnings of
transformational grammar. Putnam (1961) made various suggestions
about constraining the theory of transformational grammar so that the
class of languages it generates is some subset of the r.e. languages. One
method, he notes, would be to demand that no transformational rule ever
yield an output shorter than its input. Another method would be to
establish two upper limits x and v on any transformational grammar so
that at most x terminal symbols can be deleted by any one transformation
and at most v such transformations can be applied in any derivation. Such
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restrictions amount to constraining the class of languages generated to
being recursive. Another suggestion be made was to restrict the grammars
in such a way that the length of the derivation of any sentence’s deep
structure is less than x (some specified constant) times the length of its
terminal string (his ‘cut elimination’ theorem). Peters and Ritchie (1973a)
show that such a restriction generates the context sensitive languages.
Peters and Ritchie (1973a) take a somewhat different tack. Let f(x) be
the maximal number of cyclic nodes!® on any branch of the smallest base
tree from which x can be derived (if x is in the language, otherwise
f(x) = 0). If this function (the cycling function) is bounded by a recursive
function, then the language is recursive. (For details, see Peters and
Ritchie, 1973; Peters, 1973). One way to make f(x) recursive is via Peter’s
(1973) ‘survivor property’: the output of any cycle has more terminal
nodes than any of its subparts on which the transformational cycle
operated earlier in the derivation. Wasow (1978) suggests that this is
inadequate for certain standard transformational derivations, and recom-
mends replacing it by the ‘subsistence property’ (which is the survivor
property with ‘more’ replaced by ‘at least as many’), which continues to
make f(x) recursive. Wasow gives various conditions on individual
transformations which guarantee that the whole grammar obeys the
subsistence property, e.g. that no specified deletion may effect more than
one terminal node. In a similar vein, Lapointe (1977) gives a set of
restrictions on deletion rules which guarantee the subsistence property.
One final example of the L-view is in Peters and Ritchie (1973b). In their
(1971) they proved that every r.e. language could be generated from a
context-free base language plus transformations. ‘In proving [this] result
we made heavy use of filtering, however’ (1973b:180-181). A filter
predicate is a symbol which may occur in the base language and be altered
(moved, deleted, etc.) during the course of a transformational derivation.
If such a symbol is still present at the end of the derivation, the sentence is
‘filtered out’ (said not to be generated by the grammar). In (1973b) they
introduce ‘local filtering’: if the filter predicate is present at the end of any
cycle, the sentence is not part of the language. The set of languages C
produced by local-filtering transformational grammars from a context-
free base is shown to contain all the context free languages, some but not
all the context sensitive languages, and some non-recursive languages.
‘Hence, C does not fit into well-known hierarchies of languages’
(1973b:186). We have offered the above examples to emphasize our view
that on the L-view, the goal of restricting the power of grammatical
theories (and hence placing constraints on the permissible forms of
grammars) is realistic, and to be preferred to the G-view. In the following
sections we shall consider another kind of constraint, that of rule
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ordering, and investigate the generative capacity of grammars which
invoke one or another rule ordering restriction. For example, one might
insist that once a rule is applied in a given derivation it cannot be applied
again. Or one might wish to require that there be a unique first rule that
every output of the base language must go through first (if it can), and
then this result is sent into a unique second rule, etc.

The question we wish to ask is: What effect does placing requirements
(or restrictions) on the order of rule applicability have on the theory of
grammar? Does it alter the class of languages produced? Does it alter the
empirical predictions of the theory?

5. Rule orderings

In the earliest days of transformational grammar (Chomsky, 1955, 1957),
the statement that the transformational rules of a grammar were ordered
was a matter of definition. As late as 1962 Chomsky, in defending
transformational grammars from the charge that they are ‘merely taxo-
nomic’, says:

In some sufficiently vague and general sense of the word ‘“‘taxonomic”, I have no
doubt that this label can be applied to a transformational grammar. But I
suggested “taxonomic” rather as a technical term to apply to a class of grammars
based exclusively on segmentation and classification, without ordering of rules,
and assigning only a single Phrase-Marker as full structural description on the
syntactic level .... In this technical (and, I think, both useful and accurate) sense, a
transformational grammar is not taxonomic. (p. 1002).

In more recent discussions, the status of the question of whether rules
should be ordered by the linguist in describing the data (and if so, how
ordered) has arisen from within transformational linguistics. Following
standard linguistic usage, we shall call any theory of grammar which
advocates (or allows) that rules of its grammars are to be ordered by the
linguist, an ‘extrinsically ordered theory’, and any theory of grammar
which advocates that rules of its grammars not have any order imposed on
them by the linguist (although it may advocate certain principles which —
in looking at some very general properties of the rules — dictate that some
kinds of rules must apply before others in every derivation!?) we shall call
an ‘intrinsically ordered theory’.!8

We can distinguish three sorts of reasons offered in support of the view
that rules of a grammar should (or should not) be ordered by the linguist
in describing linguistic phenomena. All of these reasons, it seems to us,
embody the G-view of constraints discussed in Section 4. The first reason
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we dub ‘the aesthetics of rule ordering’. Arguing what seems to be the
aesthetics of the matter, Koutsoudas et al. (1974) say:

Predictions generated [within extrinsic ordered theories] by diachronic rule
reordering were shown to follow simply from the more general, independently
well-motivated principles of rule generalization and rule loss over time [in a non-
extrinsic ordered theory). (p. 26).

In a similar vein, Newton (1971) says ‘if simplicity is the prime aim, then
rules do not form ordered sets’. Pullum (1979:100) says ‘an enormously
strengthened theory is obtained if parochial [=extrinsic] ordering is
completely forbidden’, and that a theory with extrinsic ordering con-
straints ‘contains a wholly unnecessary excrescence’ (1979:27).

The same aesthetic taste can be found amongst advocates of extrinsic
ordering, although they seem to think that extrinsic ordering is simpler.
Dinnsen (1974) says:

[Non-extrinsic orderings allow a wider class of grammars consistent with linguistic
data.] Given two competing models of linguistic description where one model is
more powerful than the other, in the sense that it has the effect of widening the
class of grammars consistent with a given body of data, the burden of proof rests
with the proponents of the more powerful model. (p. 33).

Soames (1974) says:

If ... one’s theory of grammar requires that every transformation be ordered with
respect to every other transformation, then, since the two independently motivated
transformations would have to be ordered with respect to each other anyway,
selection of the rule ordering solution would be preferred because it gives us a
chance to save ourselves the postulation of an extra grammatical device.

It would seem that we are well-advised not to base any of our theories on
this aspect of the G-view. It is simply the case that no one knows what it is
for a theory to be ‘stronger’ or ‘simpler’ when it comes to the issue of rule
ordering. As we indicated in note 9, we think that responsible linguistics
should not tolerate such a priori embracing or dismissal of linguistic
theories.

The second sort of reason we find for advocating one or another (or no)
ordering of the rules is avowedly psychological. Derwing (1973:212) calls
ordering the rules ‘a constraint-loosening strategem’ in attempting to
describe the actual psychological processes a speaker goes through.
According to Derwing this is so because with ordering the linguist can
write not only the (more ‘complicated’) intrinsically-ordered rules he
advocates, but also could write ‘simpler’ rules in which the ‘complications’
are taken care of by ordering constraints. For similar remarks on how
children ‘really’ only learn generalizations based on surface-data, and
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nowhere do they learn the ‘very abstract representations which rule
ordering constraints can give rise to’ (see Skousen, 1975). Another trend
along these same lines, apparently started by Perlmutter (1973) — as
reported by Wasow (1975:375fn., 376fn.) — says that if two theories of
grammar have a different number ways to order » rules, the one with the
larger number ‘invokes a wider class of grammars’ and is therefore ‘less
preferable, a priori, all other things being equal’. Given a set of rules with
n members, a theory of grammar which says that in any grammar the rules
are not to be ordered will given rise to only one grammar, since there is but
one way not to order » rules.!®* However, given a set of # rules, a theory of
grammar which says that every grammar ‘linearly orders’ the rules will
allow there to be n! distinct grammars. On the grounds of its ‘invoking a
narrower class of grammars’, Perlmutter opts for no ordering restrictions.
Wasow (1975) appears to follow Perlmutter in thinking that this is a good
reason for rejecting certain theories of grammar, but nonetheless opts for
‘linear ordering’. (Perhaps because he thinks the ‘facts’ dictate this, and so
it is not true that ‘all other things are equal’?) This argument reaches its
culmination, at least in rhetorical force, in Pullum (1979:28-29), which we
quote here in full. [The ‘UDRA hypothesis’ is the claim that rules are not
to be ordered, except possibly by the above-mentioned ‘universal prin-
ciples’ — see note 16].

The number of distinct well orderings that can be imposed on a set of n elements is
n!. Consider the question of how many grammars are defined as permissible by
linguistic theory for a given set of n rules. Under the UDRA hypothesis the number
is one. The interaction of the rules is universally determined, and given the n rules
the nature of the corresponding grammar is fully determined. But under the
hypothesis that parochial [=extrinsic] ordering constraints are admissible in
grammars the number begins to rise rapidly, and attains its MAXIMUM under
the “restrictive” strict linear ordering hypothesis: the number of grammars defined
as permissible is n!. It is worth emphasizing the enormous extent to which this
weakens linguistic theory. Burt (1971) provides a partial grammar for English
which has 27 transformational rules. The UDRA hypothesis defines one grammar
as the only one containing only these rules that is well-formed. (If the rules
provided for any ungrammatical outputs, the claim would be that some of the
rules must be wrongly formulated.) But the linear ordering hypothesis defines 27!
(i.e. 27 x 26 x 25 ... x 1) grammars as well-formed for the same set of rules. This
number is approximately ten thousand quadrillion.

Such facts seem to me to justify the view that the linear ordering hypothesis
should be regarded as an absurd one to adopt as a starting point. It should only be
taken up under the most compelling evidence that no stronger hypothesis has a
chance of success. It clearly does not provide a tough enough constraint on the
formulation of rules; testing the claim “These rules R generate the language L”
would involve, in the case of Burt’s grammar, checking through ten thousand
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quadrillion orders of applications to see what approximations to English were
obtained. It makes an absurdly weak claim about language acquisition: that even
if Burt’s rules were correct, and infants were born knowing the complete set of
rules as well as all universal constraints defined by linguistic theory, they would
still face the task of isolating the correct grammar for English from among a set of
possible grammars of cardinality 200,000 million times greater than the number of
seconds in the estimated age of the universe. What I am suggesting is that the same
considerations that may be used to ridicule, quite correctly, the hypothesis that
languages are learned by memorizing lists of sentences, also make the linear order
hypothesis risible from an a priori standpoint.

As we said in Section 4, the rhetorical force of this kind of argument is
diminished because it is hard to evaluate such psychological claims in the
total absence of any theory of language acquisition. The rhetorical force is
further dampened when one realizes that under the UDRA hypothesis,
the child, in trying to evaluate whether he has the correct 27 rules will have
to perform 27! possible derivations from each underlying structure. And
finally, it should be pointed out that different theories will no doubt
invoke different numbers of different rules in their grammars. It is far
from obvious that a ‘linear ordered theory of grammar’ with 5 rules is 120
(=15!) times worse than a ‘UDRA theory of grammar’ with 27 rules, if
they both yield the same output.2°
" The third and final reason we find (both in the writings of the pro-
extrinsic ordering linguists and in those of the anti-extrinsic ordering
linguists) for preferring an ordering (or no ordering) of the rules is that
there are actual cases of pairs of rules where, if one is ordered first, the
grammar would produce ill-formed strings or else not produce all the
possible strings (by not allowing the second rule to operate prior to the
operation of the first rule). For a simple example, if we are given the string
ab as an input to the two rules (1) a —»d/__b, (2) b — d, the order {1, 2) will
yield the derivation ab—db— dd, while the order {2, 1) will yield the
derivation ab — ad. The language which is output from an input language
containing only ab which linearly orders the two rules will therefore be
either dd or ad (depending on which extrinsic order is chosen) but not
both. Allowing these rules to be unordered will produce a language
containing two strings, dd and ad from the input language ab. This is the
strategy of many writers in linguistics on the topic (whether pro or con
extrinsic ordering): they try to demonstrate that ordering (or not ordering)
the rules of the linguistic theory won’t give the correct output language
(the natural language under discussion) and so the other option must be
taken. Examples of this can be found in many writers, but see for example
Ringen, Postal, Koutsoudas e¢ al., Dinnsen.

Now, many writers seem to think that such a demonstration is
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conclusive in determining whether the rules should be ordered and in
which way, since presumably we know what the output is supposed to be
(the well-formed sentences of the natural language). Unfortunately, the
matter is not so simple as some of these writers seem to believe. For, not
only is the ordering of the rules up for grabs, but so are the precise rules
themselves and the input language. It would intuitively seem that one
could make up for shortcomings of one of these by changing the others
appropriately. For instance, in the preceding example of rules giving
different languages, if we wanted the {2, 1) extrinsically ordered set to
give us the same output as the intrinsically ordered rules do, we might
make the input to the rules be the two strings ab and dd. Now, in actual
linguistic cases it is seldom so simple to change the input or the rules, since
a change in one place will have its effect in other areas of the grammar, but
it is not implausible to believe that it can always be done by suitably
changing the rules or input. And similarly, it is not implausible to believe
that for any set of extrinsically ordered rules, there is a set of non-
extrinsically ordered rules which yield the same language as output.?! In
any case, all of the writers canvassed above (except Chomsky in 1962)
believe that the question of which theory of rule ordering should be
adopted is ‘empirical’. As Koutsoudas ez al. (1974) put it:

By showing that there is neither synchronic nor diachronic support for the
hypothesis of extrinsic ordering, we have provided empirical support for the more
restrictive hypothesis that all constraints on the relative application of phonologi-
cal rules are determined by universal rather than language-specific principles of
grammar. (p. 26).

Similar remarks can be found in writers from both sides of the dispute. We
intend to investigate whether this is really an empirical dispute by
investigating whether any of these theories differ in their strong generative
capacity from any of the others. But first some preliminaries.

6. Some preliminary concepts

The question we wish to ask and answer is: what is the effect of ordering
the rules of a grammar on its strong generative capacity? In spite of the
enormous amount of writing on rule ordering recently, we can find only
one writer who has even asked the questions; are any types of rule
orderings stronger in either weak or strong generative capacity than any
others? And, as we shall show below, there are some severe problems with
that answer.22

One might wonder whether there is really any point in this exercise,
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since as we noted above (Section 4) transformational grammars can
generate any r.e. set from any (context free) base; and this has been shown
to hold regardless of whether the rules are ordered (as assumed by Peters
and Ritchie?3) or unordered (as assumed by SalomaaZ?#). This remark is
well-motivated, but the crucial thing to note about these proofs is that it is
the principle of cyclic application which really does the work in these
proofs. Our remarks here shall concern intra-cyclic ordering. Of course,
even without cyclic application, theories of grammar with unlimited
deletion rules and no requirements on the order of application of the rules
can generate all r.e. sets. We therefore generally restrict our attention to
those properties of theories of grammar which do not involve these
factors. In fact, our discussion will often be concerned with grammars that
have ‘bounded’ deletions (an upper limit on deletion for any one
sentence). In the general case though, such factors will not enter into our
discussion. The proofs we shall present hold for any non-cyclic sets of rule
application. We shall be interested in proofs of the form: given an
arbitrary (non-cyclic) grammar which obeys such-and-so rule ordering
constraint, is there a (non-cyclic) grammar which obeys such-and-so other
rule ordering constraint and which will produce the identical output if
given the same input? That is, we shall be investigating the relative
generative powers of theories of grammar that are otherwise identical but
which invoke different rule orderings. This is, we believe, the most
straightforward way to investigate the power of rule orderings per se, and
not be investigating the power of the interaction of rule orderings with
some other differing features of the grammars.

(One of these ‘differing features’ we shall not investigate is the effect of
rules that are called (in linguistics) ‘optional’. An optional rule would be
one that needn’t apply, but could. We could extend our treatment to cover
optional rules (but won'’t here, see Pelletier and Fletcher, in preparation)
by treating a grammar with an optional rule as though it were the union of
two grammars: one with the rule (obligatorily) and one without the rule.
Our study here is confined to ‘obligatory’ rules, for which we shall shortly
give a precise definition.)

The ‘preliminary notions’ we are about to mention are given a rather
‘formal’ characterization. This is done so that those who wish to formally
reconstruct our purposefully informal proofs of the ‘theorems’ in the next
section will have the necessary tools at their disposal. Furthermore, such
definitions give a precise, formal sense to our characterizations of the
various types of rule orderings. For readers not interested in this formal
sense, the informal characterizations given at the end of this section will
afford sufficient content to understand the informal proofs of the next
section. It should, however, be borne in mind that the rule ordering
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theories presented here are ‘pure’ theories which do not make recourse to
any ‘universal principles’ on the application of the rules. Such ‘universal
principles’ will be considered in Section 8.

We consider any structure in which there is a set of input, a set of
output, a set of ‘rules’, and a statement of the ‘legitimate application of the
rules’, to be a grammar. For ‘set of input’ we intend a set containing at
least one symbol member (e.g. S for some PS grammars) or perhaps an
infinite set of strings and their structure (e.g. the input the transfor-
mational component is the infinite set of structures generated by the base
language). For ‘set of output’ we mean the strings of the language and
their structure generated from the input by means of the ‘rules’ when
‘applied properly’. We shall use 7 and L for ‘input’ and ‘output language’
respectively. Following Section 2, we say a rule is a certain kind of relation
from strings and their structure to strings and their structure. We use P
for sets of rules; and use p;, p;, ... for the members of P. We consider all
sets of rules to be finite. A rule is said to be ‘applied to a string X and
immediately result in string Y’ if X is in the domain of the rule and Y is the
value of the production when applied to X.

We start by characterizing a very general theory of grammar. In this
theory, a derivation from I to L according to P is a (possibly infinite)
sequence of strings and structures such that (a) the first member of the
sequence is a member of 7, (b) if X is the n-th member of the sequence and
Y is the (n + 1)st member, then there is some member of P such that it is
applied to X and immediately results in Y, (c) if there is a last member of
the sequence, there is no rule which it is in the domain of, (d) if there is a
last member of the sequence, it is a member of L, and (e) if there is no last
member of the sequence, the union of all partial initial segments of the
sequence is a member of L.25 We use PD!, PD2 ... to designate these
sequences (derivations); we use 2 to designate the set of these sequences
(the set of derivations from / to L according to P); and we use "d’, Pdi, ...
to designate, in order, the members of the sequence PD' (that is, to
designate the stages of the i-th sequence). The order of application of the
rules in any particular PD' is defined in the obvious way.

The class 2 of all derivations from I to L according to P is a well-
defined set, as the remarks of the last paragraph indicate. Intuitively
speaking, any rule is a candidate for application at any point in any
derivation (whether or not it will actually apply depends on whether the
other condition for a rule’s applicability — its structural description — is
met). This implies that there might be two distinct derivations PD' and F D
such that they are identical sequences up to their k-th member but where
- their (k + 1)st members are different. This will happen when the structural
description of two distinct rules is simultaneously met by Fdi (="d}). For
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every such case there will be two distinct derivations: one employing the
one rule, one the other. And as we stated above, we restrict our attention
to rules which would intuitively be called obligatory. In this general notion
of grammar this restriction amounts to nothing more than our condition
(c) of the last paragraph.

Given this characterization, we say that any rule is a candidate to
immediately follow any rule. We shall call this theory of grammar which
imposes no ordering restrictions a random ordering of the rules. (This is
what Koutsoudas, 1976b, calls ‘The Random Sequential Hypothesis®). In
linguistics, which rules are candidates for application at a given stage of a
derivation are often restricted in some way. For example, given a set P of
rules, certain pairs may be selected to form a set % (P), the set of ordered
pairs of rules where one rule (the second) may immediately follow the
other. Such sets of pairs of rules can be used to formulate a class of ‘first
rules” — those rules which are candidates for application to the first stage
of any derivation. Given that p; € P we say:

p; is a first rule of & (P) iff:
either (1) p; is the only rule of P or (2) if there is any rule in P that is
allowed to precede p;, p; can also precede it. Le. for any p;, if {p;,
piyeZ (P) then {p;, p;>eZ (P).

There are many kinds of % (P) sets that could be constructed from a set P
of rules; we shall restrict our attention to two — (a) those sets which
impose an asymmetric relation on P and (b) those which impose an
antisymmetric relation on P.2% We shall denote then by & (P) and & 2(P)
respectively; when no superscript is used, we mean the claim to be true of
each. Intuitively, proponents of theories which invoke such restrictions
want to say that all legitimate derivations are such that at any stage, the
only way to get to the next stage is to use a ‘next rule’ after the one just
previously used, or, if that state doesn’t meet the structural description of
that ‘next rule’, then use the very ‘next’ one, ... etc. We formalize this
intuition with help of the ‘immediately applicability ancestral with respect
to Pd2’, symbolized o/(Pd"):

1. if p, is a first rule of #(P), then p, € «(°d})

2. if Pdy_ | immediately results in "d}, by application of p; and <{p;,
P;> € #(P), then p; e (°dy)

3. if p;e #(°d}) and <p;, p;> € #(P) and *d;, does not meet the
structural description of p;, then p; € & (PdR).

All derivations from I to L according to P are said to be legitimatized by
& and « if and only if (1) the first member is a member of I, (2) if X is the
n-th member and Y is the (n + 1)st member, then there is some member of
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&/ (X) which is applied to X and immediately results in Y, (3) if p; € &(X)
and X meets the structural description of p, then no PD* has X as its final
stage.

While there are various kinds of procedures one might use to set up an
ordering of the rules, the discussion of the preceding paragraph naturally
lends itself to orderings of the rules which have these two features: (1) the
order of application {p;, p; is legitimate in one derivation if and only if it
is legitimate in all derivations (a “‘transderivational constraint” on rule
orderings), (2) given that p; has applied in a derivation yielding stage "d?,
one knows what the next rule(s) permitted to apply is (are) — viz., any rule
which is an element of «/(*d2) — a ‘local’, ‘derivational constraint’.

In addition to the random ordering discussed above (which vacuously
fits these conditions), there are two natural types of rule orderings which
fit this picture: total orderings — where there is a unique first rule, a unique
second rule, etc.; and partial orderings — where there is a unique first rule,
but thereafter there are two rules which are candidates for application at
that stage, the one which just applied and the (unique) next different one.
(So partial orderings are like total orderings except that at any point in a
derivation one is allowed to apply again the same rule which just got
applied.) The formal difference between the two is whether & !(P) or
ZF2(P) is used in defining «/(*d2). Total orderings are by far the most
common presentation in the literature on transformational syntax and
phonology, especially in introductory textbook exposition. Partial order-
ings are not so well represented in the literature, but it is argued for by
Anderson (1969:85-87), Kenstowicz and Kisseberth (1973), Johnson
(1972) and Palacas (1971) as a way of showing shortcomings in an
opposing theory of application (which we shall discuss in Section 8) put
forward by Chomsky and Halle (1968:344). In this literature this kind of
rule is called ‘iterative’.

We might relax condition (2) of two paragraphs ago and allow ordering
restrictions to be stated as a non-local, but still ‘derivational’, constraint.
That is, we may be interested in eliminating or retaining derivations on the
basis of restrictions which are not stated merely in terms of rules that
relate adjacent stages of a derivation, but rather impose a restriction which
relates non-adjacent stages (a ‘global derivational constraint’). For ex-
ample, we might want to impose the restriction of asymmetry: if some
derivation allows the rules to apply in the order {p;, p;,>, then no
derivation allows the order <p;, p;>, although p; might be applied without
applying p,. We call this a semi ordering of the rules. Or we might want to
impose the restriction that if some derivation allows the rules to be applied
{p;» P;>, then no derivation allows the rules to be applied <p;, p;> unless
i=], although p; can be applied without applying p;. We call this a semi
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partial ordering of the rules. Anderson’s (1969:12) definition of ‘local
ordering’ theories is a way of stating our semi partial or semi orderings
(depending on whether one allows rules to apply ‘iteratively’ to their own
output or not, respectively).

There are various equivalent ways of formally stating the class of
derivations legitimatized according to this intuitive characterization. One
simple way, making use of the concepts already developed, is to slightly
alter the ‘immediately applicability ancestral’ so that derivations need not
start with a “first rule” of & (P), nor need it always use a “‘next” rule of
Z (P). This new ancestral we indicate as %(°d?).

1. if p; € P, then p, € Z(°d?)
if Pdy _ | immediately results in *d, by application of p; and (p;,
pi> € Z(P), then p, € B(°d])

3. if p;e#(°d}) and <p;, p>, (P P--.-{Py P;> are all elements of
Z (P), then p; e B(°d™).

The characterization of all derivations from / to L according to P which
are legitimatized by & and 2 is just as before except that £(°d?) replaces
s/(Fd"). Again, the difference between semi orderings and semi partial
orderings is whether % 1(P) or #2(P) is used in defining %(*d?).

We also want to consider a relaxation of condition (1), and not force
ordering restrictions to be transderivational constraints. For example, we
may want to require that each derivation apply the rules asymmetrically,
but permit different derivations to do it in a different order, so long as
each one applies them asymmetrically. We call such ordering restrictions
unorderings of the rules. An unordering of the rules is what Koutsoudas
(1976b) calls “The Arbitrary Ordering Hypothesis’ and what is implied by
Ringen’s (1976) PRINCIPLE VI (unrevised). Or we may want to impose
the condition of antisymmetry on individual derivations. We call this a
quasi ordering of the rules. This sort of ordering is implied by Ringen’s
(1976) PRINCIPLE VI (revised). These two restrictions are not easily
stated in terms of the concepts already developed, since #(P), and hence
the immediate applicability ancestral, are stated as giving a condition
which holds for all derivations. We shall here forego stating the formal
apparatus necessary to define unorderings and quasi orderings — their
intuitive content is clear enough. (See the end of this section for a
statement of them.)

A final kind of condition on application of a set of rules we wish to
consider is what has been called simultaneous application of the rules. (See
Chomsky and Halle 1968:19 footnote 5. Koutsoudas, 1976b, calls this
“The Direct Mapping Hypothesis’. It asserts that there are no intermediate
representations between an underlying form and its corresponding surface
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form in any derivation.) This conception of rule application is very ill-
understood, in spite of the fact that it is commonly invoked, especially in
the phonological literature. One problem is that two rules which are
supposed to be applied simultaneously may both have their structural
description met by X and each rule require a change in X which cannot
simultaneously be done (i.e. require contradictory changes).?” We shall
charitably assume, for the rest of this paper, that either the sets of rules are
chosen so as to never have this happen or for such cases to have an output
defined for them. (We shall shortly give a criterion for non-
contradictoriness.) The idea behind simultaneous application of the rules
is to have all the rules ‘apply at once’, so as not to have structure created
or destroyed (which would otherwise affect how the rules operate).
Consider, for example, this set of rules:

. c-»b /_a
2. a-b [c_
3. b->d /b_

With the input cab we should arrive at bbb by simultaneous application.
But no order of 1-3 will give it. (For example, the order {1, 2, 3> gives
bab). The intuitive content of ‘simultaneous application’ is clear, at least if
the rules do not require contradictory changes. One way of ensuring non-
contradictoriness of simultaneously applied rules would be to require it
always to be possible to apply the rules to any input string by using any
order of the rules and constructing a piece-by-piece ‘copy’ of the output,
and that the final output of such a derivation will be the same for any
order of the rules. For our simple example above, such a process would
look like this (choosing the order {1, 2, 3)):

input temporary copy final
rule 1: cab—b--
rule 2: cab— -b- bbb

rule 3: cab— --- (doesn’t apply)

The idea is that every rule operates on the same input, namely the relevant
member of I, but we build up the output piece-by-piece as a temporary
copy. We keep adding to the temporary copy until we have tested all the
rules. If every order of application of the rules yields the same final output,
then the simultaneously applied rules are nct contradictory. (Reflection
will show that different orders yield different results in the examples of
contradictory rules given in the previous footnote.)

We close this section with an informal description of the eight types of
rule ordering constraints which might be imposed on otherwise identical
theories of grammar, thus yielding us eight distinct theories of grammar.
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We use the terminology that a theory invokes a rule ordering if it would

deny legitimacy to certain derivations because of the order in which the

rules of that derivation applied. (We vacuously include random ordering
as one of these theories; we also include simultaneous application of
rules.)

Total Orderings: there is a unique first rule, a unique second, ... a unique
last rule. (See standard texts for examples.)

Partial Orderings: there is a unique first rule, but thereafter at every stage
of a derivation there are two rules which are candidates for application:
the rule which was just applied and the (unique) next different rule. (See
Johnson’s 1972 definition of ‘iterative rule’.)

Semi Orderings: the rules are given a total ordering, but differént
derivations may start at different places in the ordering (and choose any
‘later’ rule as the next rule applied). (Anderson’s 1969 ‘local ordering’
without ‘iterative rules’.)

Semi Partial Orderings: the rules are given a partial ordering, but different
derivations may start at different places in the ordering (and choose any
‘later’ rule as the next rule to be applied). (Anderson’s 1969 ‘local
ordering’ with ‘iterative rules’.)

Unorderings: any derivation can apply the rules in any order, subject only
to the constraint that once a rule has been applied in a derivation, it is
no longer eligible for application at a later stage. (Koutsoudas’s 1976b
‘arbitrary order hypothesis’ and Ringen’s 1976 PRINCIPLE VI,
unrevised.)

Quasi Orderings: any derivation can apply the rules in any order, subject
only to the constraint that once a rule has been applied in a derivation,
the only other time it may be applied is to its own output. (Ringen’s
1976 PRINCIPLE VI, revised.)

Random Ordering: there is no order imposed on the rules; any derivation
can apply the rules in any order. (Koutsoudas’s 1976b ‘random
sequential hypothesis’.)

Simultaneous Application: the entire set of rules is applied to an input ‘all
at once’; this prevents some of the rules from creating or destroying part
of the input in such a way as to affect the applicability of other rules.
(Koutsoudas’s 1976b ‘direct mapping hypothesis’.) (The text above
discusses the notion of ‘contradictory rules’ in the context of simul-
taneous application, and gives a condition which guarantees the non-
contradictoriness [for simultaneous application] of a set of rules).

In passing, we should note one further feature of our definitions. If, for
example, P is randomly ordered, no member of F9 is illegitimate because
of an ordering restriction. However, this is not to say that there will be
members of *2 which have, say, p; actually apply before p; in one
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derivation and p; actually apply before p; in another. For it may be the
case that, given I and P, every derivation in 2 happens to apply the rules
in the same order (because of the structural descriptions of the rules and
the nature of the members of I). That is, the rules might be intrinsically
ordered to behave as if they were totally ordered. Or, they might be
intrinsically ordered to behave as if they were semi-partially ordered. We
emphasize this point because we want to be certain that it is clear that this
is still a random ordering of the rules: no restrictions have been placed on
the appropriate order of application of rules in any derivation. No
possible member of P2 will be ruled out by an ordering restriction.

Finally, we remind the reader that we are concerned only with intra-
cyclic strength of grammars — that is, we have no cyclic application of
rules; and furthermore, we are concerned only with ‘obligatory rules’. (See
above for discussion of ‘optional rules’.)?8

The strong generative capacity of the eight rule ordering theories

We shall now state a series of theorems which are summarized in Figure 1.
These theorems tell us the relative strong generative capacity of the ‘pure’
theories of rule ordering defined in Section 6. (‘Pure’ in the sense of
involving no interaction between the rule ordering principles and any
other principles.) We shall postpone the proofs of most of the theorems
(or rather: the instructions for constructing proofs) to the Appendix.
These proofs are all ‘constructive’ in the sense of giving a method for
actually exhibiting a grammar having certain (rule ordering) properties.
While we postpone proofs of most, we illustrate the general procedure in
the text by showing how Theorem 1 is to be proved. In the following
Section 8, we consider some ‘impure theories’ which have been proposed
in the linguistic literature.

Our strategy in these proofs is this: We start with a theory of grammar
which says that all grammars X-order the rules. We shall try to construct a
grammar which Y-orders the rules yet gives all the identical empirical
predictions as any X-ordered grammar (because it gives exactly the same
derivations). This will prove that Y-orderings are at least as strong in
strong generative power as X-ordering theories of grammar. We then will
show in what cases the converse cannot be established. The intuitive fact
which allows the proofs to go through is that every derivation of a weaker
theory is the initial segment of some derivation of the stronger theory. We
therefore need only a method of ‘stopping derivations appropriately’, and
a method of preventing other derivations from getting started. We
illustrate Theorem 1 in some detail and make comments about the proof
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to show that the grammar exhibited as constructed from the totally
ordered grammar actually obeys standard linguistic conventions on the
form of rules, etc. The strategy for proving Theorems 2-7 is essentially
that of Theorem 1 with suitable alterations in the technique of ‘keeping
track of the rules’ to account for the different kinds of rule orderings.

Theorem I: Partial orderings, semi orderings, semi-partial orderings, quasi
orderings, unorderings, and random orderings are all at least as strong
as total orderings.

We start by showing that, for every L generated from an [ according to
some P in accordance with % (P) and &/, there is a random ordering of
some set of rules such that L and only L can be generated from / according
to that set of rules. Suppose we have a totally ordered set of n rules. Then
there is a unique first rule which, for illustration, let us suppose is the
following phonological rule.?°

1. +high ] - [+ round:| /[+back]___[+high]
—round + front

Since this is the first rule, every member of the input must first be checked
to see if this rule applies, before any other rule can be considered. In
constructing a randomly ordered set of rules which will have the same
effect as this first rule, we give two rules which involve one new (terminal)
symbol. For simplicity we call the symbol [+ 1]. One of the new rules will
tell us the effect of the rule’s applying non-vacuously:

la. +high +round
—round | —» | +front /[+back]___[+high]
+1

The other rule gives us the effect of the rule’s not ‘really’ applying (when
either the structural description or the context requirements are not
met).30

1b. A-[ A} /a B cond: either a # [+ back]
+1 or f # [+high] or A # [+high }
—round

To construct the randomly ordered analogue of the second rule of the
total ordering we again construct two rules: one for ‘real’ and one for
‘non-real’ application of the rule to the string going through them. The
structural description of these rules will have to specify that the string has
gone through one of the previously-constructed two rules. We insure this
by adding to the structural description of the two new rules the symbol
[+ 1]; the structural change of these rules will change [+1] to [+2]. In
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other respects they resemble what la and 1b did to rule 1. For example,
suppose the second rule of the totally ordered grammar were:

2. [+back]—>[—back] /[+front]____
Our pair of rules of the randomly ordered grammar would be:

2a. |:+back] - [—back] J[+front]____

+1 +2
2b. { A} - [ Al /o cond: either A # [+ back]
+1 +2 or a # [+front]

Every rule of the totally ordered set is replaced by two such rules as these.
We claim that this randomly ordered set of rules will, given the same I,
generate the same L as the totally ordered set. The output of the rules
corresponding to the n-th (last) ordered rule will have (among other
things) the feature [+n]. Note that we cannot simply delete this symbol,
since then the output would be eligible to ‘start the rule-sequence over
again’ because the structural descriptions of the rules corresponding to the
first totally ordered rule will be met. Levine (1976:119) is wrong at this
point. His method amounts to dropping the ‘method of keeping track’ at
the end of the randomly ordered derivation; therefore, there will be cases
where the end product will be eligible to ‘start the rule sequence all over
again’ or to start somewhere in the ‘middle’ of the rules. So his conversion
procedure will not yield the identical language, and is therefore incorrect.
There are three ways to avoid this difficulty (all of which amount to the
same thing) to convince one that the output here is the same output as the
totally ordered rules gave: (1) if one’s interest is purely formal this will
suffice: define the language produced by the rules to be those
strings/structures without the [+n] markers; (2) if one’s interest is in
phonology, this will sound more familiar: introduce a convention to the
effect that [+ n] is not phonetically realized; (3) if one is a syntactician, this
will be familiar: replace [+ n] by the null element and distinguish sentences
where some non-terminal node dominates nul/l from sentences without
that non-terminal node. (This course is not so familiar in phonology, but
see Dinnsen, 1972, 1974 for an example of it.)

This proves that random orderings are at least as strong as total
orderings in strong generative capacity. Now note that this newly-
constructed set of rules could have been required to be quasi ordered,
unordered, semi-partially ordered, semi ordered or partially ordered, and
still their intrinsic ordering will be the same as the original total ordering.
Hence Theorem 1 is proved.

Let us make a few remarks on the conversion procedure. First we note

Brought to you by | University of Alberta Library
Authenticated
Download Date | 2/16/17 10:00 PM



48 F. J. Pelletier

that these new rules are all legitimate rules of linguistics if the totally
ordered ones we started from were. What we have done is add a series of
[+ i] markers; but the [+ i] markers are here employed only for mnemonic
convenience. What we have done is show that there is some randomly
ordered set of rules for the language. In fact there are an infinite number.
In particular, some of these sets of rules will have ordinary-looking
symbols in place of our [+i] markers. These ordinary-looking symbols
may even be used elsewhere in the language, if it so happens that their
effect in the rules is exactly what the [ +i] markers’ effect is — to make sure
that segments go through the rules ‘in the right order’. In fact, since in
most of the totally ordered grammars which have been given in the
literature, many rules could be placed in various positions in the ordering,
and since most other rules are already intrinsically ordered with respect to
one another (for illustration of these facts, see Pullum, 1979, for syntax
and Derwing, 1973, for phonology), the ordinary-looking markers men-
tioned in the last sentence don’t even have to do a perfect job. Just ‘keep
track’ where it’s important. Examples of this happening are provided by
many syntactic transformations. Consider PASS in the formulation given
by Bach (1974): the application of PASS is the only way to get by in
precisely the position it occupies in the structural change of that rule — no
other transformation or base rule will do it. In this transformation,
by plays the role of one of the [+ i] markers. Consider also his for-
mulation of AFFIX SHIFT: this rule introduces word boundry symbols,
@, into the output. Since this is the only rule which introduces @, any
string with @ in it must have gone through AFFIX SHIFT, and therefore
any rule with @ in its structural description is intrinsically ordered after
AFFIX SHIFT. Postal’s [+ doom] markers provide another example, as
do certain formulations of trace theory (see, e.g. Lightfoot, 1977; Fiengo,
1977; Chomsky and Lesnik, 1977). Similar remarks can be made about

many transformations — so it’s certainly not ‘violating the form of
transformational rules’ to talk about [+i] markers.
Now consider the ‘b’ rules of the random ordering — the ones

corresponding to non-application of the totally ordered rules. The method
we have given is general in the sense that it will apply to any totally-
ordered-randomly-ordered conversion. In a particular grammar there are
various ways the statement of the ‘b’ rules, expecially the ‘condition’ part,
might be simplified and retain the same effect. (See also note 29 for other
remarks on the statement of conditions.) For example, the non-identities
there might be replaced by an identity to some other feature or element.
The possibility of doing this depends upon whether the grammar of the
language under consideration has a way of specifying ‘what it is to be non-
identical with [+ high, — round]’ (for our rule 1b). If there is such a feature

Brought to you by | University of Alberta Library
Authenticated
Download Date | 2/16/17 10:00 PM



The generative power of rule orderings 49

or element in the grammar, say for example 7, then the condition on our
rule 1b could be put in terms of ‘A =9’. This would make the condition
look more like actually proposed conditions on transformations. The
point here is that, given a condition like ‘A = y’, one doesn’t know whether
it ‘performs merely a keeping track function’ or ‘really does some work in
the way any ordinary rule does’. More generally, we would say that there
is no way for an outside linguist to tell, given only the ‘form of the rules’,
whether a certain grammar was constructed by a linguist whose aim was
to have a ‘genuinely’ randomly ordered set of rules or was constructed by
a linguist who intended to have a totally ordered set of rules but had
someone alter them along the lines here stated.

Finally we note that this conversion preserves strong generative ca-
pacity — any empirical claim (paraphrase, synonymy, surface ambiguity,
deep ambiguity, etc.) made by totally ordered grammars is also made by
this randomly (or quasi, or un-, or semi, ...) ordered set of rules. This is
because the derivations in the two theories are almost identical. We note
that at any stage in a derivation in the randomly ordered set of rules,
exactly one rule will apply. Every stage of the totally ordered derivation
has an identical stage (but for the presence of [+i] markers) in the
randomly ordered derivation. There are perhaps a few extra stages in the
randomly ordered grammar, ones which ‘mark time’ until the next rule
which applies comes up. But this is not to alter any empirical claim that
the totally ordered grammar made. Indeed, it’s not to make any empirical
claim at all; it is merely an artifact of the grammar. In every respect the
two grammars generate the same surface structure from the same
members of /, and they are related to intermediate stages in the identical
way. So any claim which can be made about surface strings, surface
structure, or derivational history in the one can be made in the other. Thus
for any totally ordered grammar there is a randomly ordered (quasi
ordered, semi ordered, etc.) grammar which will make precisely the same
empirical claims about the language.

We trust therefore, that we have convinced the reader that our use of
markers like [+1i] is not only permitted by the conditions placed upon
linguistic rules, but that they are in fact indistinguishable from actual
linguistic practice. The comments of Ringen, Koutsoudas et al., and
Pullum (1979b:185, footnote) to the effect that this ‘indexing of rules’ is
somehow a trick which can always be spotted (and that it is ‘really’ the
same as totally ordering the rules), is thus shown to be false.

Theorem 2: Random orderings, quasi orderings, and semi partial order-
ings are all at least as strong as partial orderings.

Theorem 3: Random orderings, quasi orderings, unorderings, and semi
partial orderings are all at least as strong as semi orderings.
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Theorem 4. Random orderings and quasi orderings are each at least as
strong as unorderings.

Theorem 5: Random orderings and quasi orderings are each at least as
strong as semi partial orderings.

Theorem 6: Random orderings are at least as strong as quasi orderings.

Theorem 7: Total orderings are at least as strong as simultaneous
application.

We now turn our attention to the question of whether the ‘at least as
strong’ in Theorems 1-7 can be replaced by ‘stronger’. We sketch a proof
of Theorem 8 and merely state the others; their proofs are in the
Appendix.

Theorem 8: Random orderings, quasi orderings, unorderings, semi
orderings, semi-partial orderings, and partial orderings are all stronger
than total orderings.

All total orderings have the property that there are no more members of
the output language than there are in /; and this is independent of which
rules are chosen. Except for partial orderings, each of the other orderings
mentioned have more than one ‘first rule’, and so for each of them it is
possible to give a set of rules which will generate from a given input
member, more than one output. Partial orderings have a unique ‘first
rule’, but thereafter there are two rules which are candidates for appli-
cation. Thus two distinct derivations can start from the same member of /.
But this can never be done in a total ordering (with obligatory rules).
Hence, all of these orderings can produce languages from some / that total
orderings cannot, and can make differing claims about the relation
between members of L and I from what total orderings can claim.
Together with Theorem 1, this proves Theorem 8.

Levine (1976:120f) says that random and total orderings are equivalent
because ‘every derivation follows some order or other’. He gives this
example (p. 121):

... let us look at an unordered [=our random] system consisting of three
transformations, A, B, C. The only possible orders of application for these
transformations are

1. ABC 2. ACB 3. BCA 4 BAC 5 CAB 6. CBA

These choices can be accounted for by having an ordered system with the
following indexed list of transformations [ = method of keeping track of the rules,
analogues to the present [+i] markers]:

;I‘l X)ATZZB T,=CT,=A(=A)T,=B(=B) T,=C(=C)T,=A"
Then we can rewrite 1-6 above as follows:

LTTT, 27TT,7T, 37T,7T7T 4T, TT, S5 T,TT, 6 T,T,T,etc
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However, this is incorrect. No order can be given to these seven T-rules.
For, suppose every member of the input language happens to meet the
structural description of rule A (=T)). It is still the case, in the randomly
ordered grammar, that (say) option 3 is open — after all, not all
derivations have to start with rule A, even if all members of I meet its
structural description. However, in Levine’s totally ordered grammar
every member of the input will meet the conditions for T, and therefore
will be changed. Such a change might prevent anything from going
through rule B (=T,) at all, much less going through it first. So this
portion of Levine’s ‘equivalence proof’ is totally incorrect; randomly
ordered grammars are stronger than totally ordered ones.

Theorem 9: Semi partial orderings are stronger than semi orderings.
Theorem 10: Quasi orderings are stronger than unorderings.

Theorem 11: Random orderings are stronger than quasi orderings.
Theorem 12: Semi partial orderings are stronger than partial orderings.
Theorem 13: Unorderings are stronger than semi orderings.

Theorem 14: Quasi orderings are stronger than semi partial orderings.

RANDOM ORDERINGS

QUASI ORDERINGS

/N

SEMI PARTIAL ORDERINGS

UNORDERINGS M
SEMI ORDERINGS PARTIAL ORDERINGS

AN ©Z

TOTAL ORDERINGS
(=‘NON-CONTRADICTORY’
SIMULTANEOUS APPLICATION)

Figure 1. Relative Strong Generative Capacities of Various Theories of Rule Orderings.
X — Y means that theory X is stronger than theory Y. (—is transitive)
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Theorem 15: Total ordering is equivalent to simultaneous application.

Theorem 16: Neither unorderings nor semi orderings are comparable to
partial orderings.

Theorem 17: Unorderings and semi partial orderings are not
comparable.

Theorems 1-17 give us the relationships illustrated in Figure 1. We take
these theorems to show that Chomsky and Halle are wrong when they say
(1968:18):

It is always possible to order the rules in a sequence and to adhere strictly to this
ordering in constructing derivations without any loss of generality as compared to
an unordered set of rules or a set ordered on a different principle.

Or, wrong at least if they are talking about the strong generative capacity
of theories of rule ordering.

8. ‘“Universal principles’ on rule application

Many linguists would be unhappy with our characterization of a de-
rivation. In particular, they would be unhappy with the possibility of a
derivation not having a last member (and our decree that in this case the
member of the output language be the union of all initial sequences of the
derivation), and they might try to eliminate this possibility in various
ways. The most popular way would doubtless be to try to restrict the
‘form of the rules’ in some way or other. (After all, they might point out,
one way a randomly ordered derivation might not have a final member
would be to have rules like a — ab.) However, merely disallowing rules like
this would not solve the difficulty, for we can also exhibit pairs like
a—bcib—ad. And the ‘circle’ exhibited here could be expanded to
whatever size the set of rules is. So we think that merely arguing about ‘the
form of rules’ is inadequate. And in any case, it would not touch the
proofs of the previous section, since restricting the ‘forms of rules’ would
no longer have us just investigating the strong generative capacity of
various types of rule orderings, but rather what effect this restriction
would have on rule ordering strength. We can think of two ways of
invoking our rule orderings in such a way that it will extricate advocates of
(what they call) ‘random ordering’ from this difficulty. We don’t think
many such advocates have ever done this, but we attribute this to their
lack of thought on the possibility of having derivations without last
members; for, their theories of grammar do not rule this out.3! Levine
(1976:121f) discusses some possible constraint to the effect that the output
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of any sequence of transformations cannot be identical to any part of its
input — a constraint which seems to him to solve the problem. However,
he seems not to notice either that (a) this shows that his earlier equivalence
proof must be wrong (since this restriction on random ordering is
necessary), nor (b) that the addition of such a constraint really is a
constraint, which powerfully restricts the class of grammars permitted by
‘random ordering’. In any case, it is still inadequate unless some caveat
about variables is added, for in both of our examples of troublesome rules,
a— ab and the pair a - bc, b — ad, the rules do not have outputs identical
to the input nor to part of the input. Various of the obvious things to say
about stating rules with variables seem to rule out standard formulations
of many transformations like AFFIX SHIFT, and most phonological
rules. Such a condition would therefore seem to be not acceptable to
advocates of ‘random ordering’.

One way to avoid this difficulty would be to claim that for every rule
there is a finite number of times it is to be considered available for
application in any derivation. Other than this restriction, anything
legitimate in a derivation of a random ordering is legitimate here also.
Note that the effect of this is to invoke an unordering of the rules except
that each rule is allowed to apply (not just once but) some finite number of
times.3? We shall want to say that this is still an unordering of the rules,
and we subsume it to our original definition by adding, for each rule, the
appropriate number of copies. (And now each copy is allowed to apply
only once, as in an unordering.) We imagine also that we have some
marker to distinguish different occurrences of what is otherwise the ‘same’
rule. We call adding ‘copies’ of rules already in P, the forming of a *P set
of rules. And we shall call this kind of unordering a * P-unordering of the
rules P. Proposal A is one way of understanding what linguists who
advocate (what they call) ‘random ordering’ of P must have in mind to
avoid the above-noted difficulties. This seems to be the position advocated
in Koutsoudas et al. (1974) and Ringen (1972).

Proposal A: Theories of grammar should be (equivalent to) *P-
unorderings of the rules.

A second way these writers who advocate ‘random ordering’ might restrict
their rules in order to avoid having derivations with no last member would
be to invoke quasi orderings and decree that no rule is allowed to create
(any part of) its own structure. So, we eliminate rules of the form a— ab,
etc., and impose a quasi ordering. This seems to be advocated by Ringen
(1976) in her revised PRINCIPLE VI (and surrounding discussion). We
call sets of rules that have the form + P sets, and take these theorists to be
advocating
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Proposal B: Theories of grammar should be (equivalent to) + P quasi
orderings of the rules.

We now investigate two linguistic proposals for ‘universal principles of
rule application’ which have been made by advocates of ‘random
ordering’; we show that each of them, when added to a * P-unordering is
equivalent in strong generative capacity to total ordering. And then we
show that each of them, when added to a +P quasi ordering is
intermediate between total and partial orderings. (The proofs of
Theorems 18-23 are in the Appendix.)

The first proposal, Universal Principle I, appears in Ringen (1972) who
claims that every ‘genuine’ set of (what she calls) ‘randomly ordered rules’
will never be such that some stage of a derivation can simultaneously meet
the structural description of two distinct obligatory rules. That is to say,
she thinks it is somehow contained in the concept of ‘obligatory rule’ that
such a state of affairs never be permitted. (See also her 1976 and the
discussion in Hastings, 1976.) We call Ringen’s condition:

Universal Principle I: No stage of a derivation can simultaneously meet
the structural descriptions of more than one obligatory rule.

Another proposal, as a condition on rule application in a ‘randomly
ordered theory’, has been made by Koutsoudas et al. and by Derwing
(1973).33 It is the position that a stage of a derivation can simultaneously
meet the structural description of more than one obligatory rule, but that
when it does, all these rules are simultaneously applied to reach the next
stage. We call this KSN/Derwing condition on rule application:

Universal Principle II: 1f a stage of a derivation simultaneously meets the
structural descriptions of more than one rule, the rules are to be applied
simultaneously.

Theorem 18: Theories of grammar obeying Proposal A and Universal
Principle I are equivalent to total orderings.

Theorem 19: Theories of grammar obeying Proposal A and Universal
Principle II are equivalent to total orderings.

Theorem 20: Theories of grammar obeying Proposal B and Universal
Principle I are stronger than total orderings and weaker than partial
orderings.

Theorem 21: Theories of grammar obeying Proposal B and Universal
Principle II are stronger than total orderings and weaker than partial
orderings.

In order to empirically support a + P quasi ordering as preferable to or
necessary over and above a total ordering (even with the addition of one
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of the Universal Principles to the quasi ordering), one needs to find some
phenomenon which requires that rules be applied an unbounded number
of times (this is why they cannot be totally ordered). It is difficult to believe
that there is any such phenomenon. It would be the kind of phenomenon
where, say, there is a finite but unlimited number of a’s before a b in
members of I, and all but the last need to be deleted. The relevant + P
quasi ordered rule is a—null | ab. Note that if there is an upper limit
on the number of occurrences of a, there will be some totally ordered set of
rules which will do the job. Two possible types of linguistic examples come
to mind. (1) There might be phonological reasons for postulating
underlying forms which have an unbounded number of contiguous
consonants, or for postulating rules which have the effect of adding an
unbounded number of contiguous consonants. However, for pronoun-
ciation, we want to delete all but (say) the last one. (Ringen discusses
similar examples in 1976:60-61, and seems to find this extra power
desirable.) (2) A syntactic rule of ‘tree pruning’, which says that if an NP
node immediately dominates an NP node which has no sister nodes, delete
it. That is, the rule:

[ [X]]=[X]
NPNP NP

If there are reasons to suppose that this rule must operate an unbounded
number of times on the same cycle,34 then the added power of + P rules is
required. However, the far-fetchedness of these examples should make
one wary of postulating such rules unless the phenomenon cannot be
analyzed any other way.

Theorems 22 and 23 show just how much of the ‘reduction’ in power
mentioned in Theorems 20 and 21 is due to the fact that the rules are + P
type rules which have been quasi ordered and how much is due to the
Universal Principles. Note that Theorems 22 and 23 guarantee that we
needn’t hold Position B at all, nor need we mention both of the Universal
Principles.

Theorem 22: Theories of grammar obeying Proposal B and Universal
Principle I are equivalent to + P partially ordered rules.

Theorem 23: Theories of grammar obeying Proposal B and Universal
Principle II are equivalent to + P partially ordered rules.

Corollary: Given either Proposal A or Proposal B, Universal Principle I
is equivalent to Universal Principle II.
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9. Some concluding remarks

We take the theorems of the previous section to show that most of the
discussions concerning rule ordering in the literature are drastically
misguided. A number of linguistics try to show ‘on empirical grounds’ that
one rule ordering theory is preferable to another, mostly by showing that
their rules cannot be given any other ordering. We find it amazing that
writers think they know, independently of knowing what the proper rule
ordering is, what the exact rules describing any phenomenon are. After all,
if one knew this (and knew the input /) one would automatically know the
proper rule ordering. Surely, if two linguists are going to describe some
phenomenon, their different attitudes on rule ordering will affect the exact
form the rules take. Yet writers blithely argue for one and against another
theory of rule ordering on the grounds that their(!) rules cannot give the
right output unless ordered in such-and-so way, or that the opposition’s
rules are not ‘formulated naturally’. Equally as bad, we submit, is that
other writers will even bother to look for ‘universal principles’ whose use
will allow those very rules to be subsumed under some other rule ordering.
Calling one’s aesthesic tastes ‘linguistically significant generalizations’ and
then calling that an ‘empirical matter’ and then appealing to these
supposed ‘facts’ as an ‘empirical condition’ to be imposed on the general
form of rules, strikes us as an incredible case of either self-aggrandizement
or self-deception. Before writers attempt to ‘demonstrate that one theory
of rule ordering is empirically preferable to another’, or before they even
treat it as an ‘hypothesis’ to be tested, they should investigate the logical
properties of these theories, to see if it is possible for there to be any
differences which can be empirically tested.

For example, Koutsoudas et al. (who seem to endorse Proposal A and
Universal Principle II) say, in summary of their work:

It was shown that, for representative facts which have been accounted for by each
of the logically possible types of rule ordering relations determined by extrinsic
ordering constraints, there are alternative explanations in which the order of
application of rules is either entirely unrestricted, or else fully predictable from the
forms of the rules by universal principles. (p. 26).

(By “extrinsic ordering constraints” they mean some total order or other
of the rules.) Koutsoudas et al. could have saved themselves a lot of effort
by noting that this result is guaranteed by Theorem 19. There is absolutely
no empirical difference between their position and some theory of total
ordering. Koutsoudas et al. also use a ‘universal principle’ which they call
The Proper Inclusion Precedence, to help input members go through the
‘randomly ordered’ rules in the ‘correct order’ (See note 17 for further
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discussion.) Theorems 18-23 prove as a corollary that (given their other
condition) there is never need for such other principles, because an
appropriate set of rules which does not require it can always be
constructed. This ‘principle’ (and various others suggested by members of
this ‘school’) are simply not hypotheses in any straightforward sense of the
term — they have no empirical consequences unless one already knows
precisely what the rules are and what [/ is.

Chomsky (as quoted by Wall, 1971:686) once said that mathematical
linguistics needs to wait for empirical linguistics to set problems for it; that
it should wait

until further empirical work on language structure manages once again to
formulate concepts which are amenable to mathematical study, more intricate and
complex concepts that are more well-motivated empirically.

In this paper we hope to have shown that this is not true; and that, in fact,
if linguists would pay more attention to the formal nature of some of the
theories they propose, they could save themselves considerable effort in
futile attempts to ‘empirically justify’ one ‘hypothesis’ over another
‘hypothesis’, when it could have been mathematically shown that the two
give rise to identical empirical claims.
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Appendix

This appendix contains proofs for most of the theorems. The proofs are
(a) instructions for constructing a grammar which X-orders its rules given
a grammar which Y-orders its rules (and which, given the same 7, will
produce the same L), or (b) features about some X-ordered grammar
which no Y-ordered grammar can have (e.g. produce a language with
such-and-so property). It is assumed that the reader has followed the
proofs of Theorems 1 and 8; we therefore restrict our attention to showing
how the rules can be ‘coded up’ so that the desired order for every
derivations obtained. '

In the discussion of constructed rules, we shall use the notation ‘p} to
indicate a rule which has [+ 1] in its structural description and a [+j] in its
output, but which is otherwise identical with the (antecedently-specified)
rule p,. We use ‘] for rules like our (b) rules in the proof of Theorem 1:
where the input and output are identical (except for [ +i] being replaced by
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[+jD) and the structural description of it is that either the structural
description or the context of p, is not met. When we want to indicate some
specific rule, we use its “‘name”’. Thus, for instance, in Theorem 1 we might
have said: If n is the name of p, (and p is not a first rule) construct two
rules, " !'pland "~ ’ﬁ;‘. (Since rules are uniquely ordered in total orders,
the proof of Theorem 1 just used integers, and relied on their properties.
However, in the grammars to be discussed here we need some other way of
keeping track of what rule is allowed to feed what rule. Thus, our
‘names’.)

Theorem 2. Semi-partial orderings, quasi orderings, and random orderings
are all at least as strong as partial orderings.

If P is partially ordered, there is a unique first rule against which every
member of 7 must be checked to see if it applies, before any other rule can
be ‘looked at’. Call this rule p,. After p, has been ‘looked at’ for
applicability, two things might happen: (a) p, might have applied to the
first stage and is once again a candidate for application, as is p, (the
‘second rule’ of the partial ordering), or (b) p, might not have applied and
hence we move on to p,. We intrinsically mirror these two possibilities like
this: We first construct a rule which takes any member of I and adds a
[+ 1] marker to it. For the unique first rule of the partial ordering, p,, we
construct two rules — one for the case where the member of I (plus its
[+1] marker) meets the structural description, and one for when it
doesn’t. The randomly ordered rule for the first case will be p‘!-2? (the
structural description of p, has [+ 1] added to it, and the output has both
[+ 1] and [+ 2] added to it). The randomly ordered rule for the second case
will be 1f§§ For every rule p; of the partial ordering we construct two rules:
npm*1) and "Bn* 1. All derivations start with an element of 7 and are
finished when no rule applies to them. If there were n partially ordered
rules, this will be when a stage has [+(n+ 1)] but not [+n] in it. We may
add a final rule which replaces these by the null string, as discussed in
Theorem 1. All arguments about the legitimacy of these rules and about
the preservation of strong generative power which were given in Theorem
1 carry over to Theorem 2. Note that this set of rules could also be
required to be quasi or semi-partially ordered and these results hold.
(Note also that these rules could not be un-, semi, or totally ordered and
still give this result.)

Theorem 3: Random orderings, quasi orderings, unorderings and semi
partial orderings are all at least as strong as semi orderings.

A semi ordering will tell us in advance, for pairs of rules, which one of the
pair must be applied first in any derivation in which they are both applied.

Brought to you by | University of Alberta Library
Authenticated
Download Date | 2/16/17 10:00 PM



The generative power of rule orderings 59
As remarked in note 28, there are "22_ " such pairs on a set of n rules. In the
randomly ordered grammar, have a rule which will add to any member of
I all the markers of the form [+ {m, n)] where m is the name of p, and n is
the name of p; if and only if {p;, p;> € #'(P). That is, it adds “22‘“
markers to every member of 1. Now, every rule of the semi ordering is a
potential “first rule’’; the idea is that when one is applied, then no rule
which it has to come after (according to % !}(P) and %) can be applied in
that derivation. We mirror this by slightly altering the rules given by the
semi ordering: If n is the name of p,, then we add to the output a [—m] for
every m that is in a marker of the form [+ {m, n)] of the string (as added
by the previously-mentioned rule). In addition, we add [ —n] to insure that
p; will not reapply. We did this condition on the application of any rule p;:
any string (structure) to which it applies cannot contain [ —n] (where n is
the name of p;). This provides a randomly ordered grammar; now note
that these rules could have been quasi ordered, unordered, or semi
partially ordered and the result would have been the same.

Theorem 4: Random orderings and quasi orderings are each at least as
strong as unorderings.

The conversion to random orderings is as follows. If n is the name of the
rule p; of the unordering, add the rule p; ™ to the randomly ordered rules:
p; does not apply to any string (structure) with [—n] in it (where n is the
name of p;). This set of randomly ordered rules could also have been
required to be quasi ordered.

Theorem 5: Random orderings and quasi orderings are each at least as
strong as semi partial orderings.

The proof of this is identical to that of Theorem 3 with the exception that
p; can be applied after (but only immediately after) p,. For this aspect, see
Theorem 6.

Theorem 6: Random orderings are at least as strong as quasi orderings.

If n is the name of p, of the quasi ordering, consider the rule p; " (this is
not quite the rule to construct). The actual rule we want to construct to
correspond to p; also has the following feature (where n is the name of p,):
if the input has [+n], the output continues to have [+ n]; if the input has
[+ m] for m # n, then the output contains [—m] and [+n]. The condition
on application of any rule p; is that it cannot apply to a string (structure)
with [—n] in it, if n is p;’s name.

Theorem 7: Total orderings are at least as strong as simultaneous
application.

Brought to you by | University of Alberta Library
Authenticated
Download Date | 2/16/17 10:00 PM



60 F. J. Pelletier

Given that our simultaneously applied rules are not “contradictory”, they
could be given any ordering and the same input would result in the same
output, but for two obstacles: necessary environments might be destroyed
and unwanted ones might be created. We eliminate these possibilities by
means of ‘tags’ and creation of a few new rules. Starting with some
ordering of the original rules, we ‘tag’ the output of each rule with a
special symbol — different symbols for the different rules. Already this
guarantees that the second difficulty, that of creating unwanted environ-
ments, is eliminated (since the structural descriptions and contexts of none
of the rules is met by the output of any of them now). So all we need to
worry about is when necessary structure is destroyed. We correct this by
adding an appropriate rule. Such rules are constructed whenever the
structural descriptions and contexts of two rules overlap one another.
Consider these three rules to be applied simultaneously:

1. a-b Je¢ d
2. c¢c—-e |/ a
3. b-f |/ d

We can replace these three rules by the following four (where the
superscripts serve as the ‘tags’ mentioned above).

1.* a-b! [c d
2.* c—e? | a
3* b-of3 | d

4* coer [__b

These four rules, when applied in the order 1-4, will give exactly the
output that the original three did when applied simultaneously, except for
occurences of the ‘tags’. If desired, one can add the appropriate deletion
rules to the end of the totally ordered list of rules, following the method
outlined in Theorem 1. It should be noted that this total ordering gives
exactly the same statements about relationships between members of 7 and
L as did the simultaneously applied set.

Theorem 9: Semi partial orderings are stronger than semi orderings.

At the first stage of any derivation of a semi ordering, a finite number of
rules are candidates for application. At any other stage of that derivation,
a lesser number of rules are candidates for application than were at the
immediately previous stage. Hence, all derivations end after a finite
number of stages. This is not the case with a semi partial ordering, which
allows ‘infinite’ derivations by means of rules like a — ab. Hence languages
can be produced by semi partial orderings which cannot be produced by
any semi ordering. Together with Theorem 3, this proves Theorem 9.
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Theorem 10: Quasi orderings are stronger than unorderings.

The proof of this is identical to that of Theorem 9, except that Theorem 4
1s used.

Theorem 11. Random orderings are stronger than quasi orderings.

Suppose I = {a} and P = {a > ab, a—ca}. If P is randomly ordered, every
derivation will be ‘infinitely long’. Note that at every stage of derivation,
each of the two rules is a candidate for application. Therefore, there are
280 derivations. Now consider any finite set P’ of rules which are quasi
ordered. We can indeed construct these rules so that every derivation is
‘infinitely long’, but we cannot construct so many derivations. For, given
any m > 0, the number of derivations that have m + 1 stages is no greater
than (m-n) (where » is the number of rules in the set). Thus the number of
derivations with an infinite number of stages is no greater than
n* Ro= No, which is less than 28°. Hence there are languages which
random orderings can produce that quasi orderings can’t. together with
Theorem 6, this proves Theorem 11.

We now turn our attention to proofs which do not show that there is
any difference in weak generative capacity of the rule orderings involved,
but rather attend to other aspects of strong generative power, in particular
output relatedness. By this we understand: given an /, a P, and a rule
ordering theory of type Y, two members of the output language L are P-
related according to theory Y if and only if PDf and PD/ are identical for
their first k stages. (A special case is where they only have the first stage —
a member of / — in common.) We shall show that there are members of L
which, given I, can be P!-related according to theory Y but which cannot
be P2-related according to theory X, for any P2, without also producing
outputs which are not members of L.

Theorem 12: Semi partial orderings are stronger than partial orderings.

In any partial ordering there is a unique ‘first’ rule. Semi partial orderings
do not have this feature; therefore, there can be ’PD", D', and D’ of a semi
partial ordering of P which are identical in their first stage but all other
stages are different. This can happen with no partial ordering; for, either
this first stage meets the structural description of the ‘first’ rule or it
doesn’t. If the first stage does meet the structural description of the ‘first’
rule, then all these derivations will apply it and hence they all have identical
second stages. If it doesn’t meet the structural description of this rule, than
the ‘second’ rule can be treated as if it were the ‘first’ rule. Together with
Theorem 2, this proves Theorem 12.
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Theorem 13: Unorderings are stronger than semi orderings.

To prove this, we give a partially specific example. Let p, be the rule
a—ab. In an unordering this rule cannot be reapplied once it has been
applied. Note that unorderings allow us to use p, and some p, in different
orders in different derivations. Now, while this cannot be done in a semi
ordering, we can do something having a similar effect; we can give a
different set of rules, say p}, p}, P, such that one derivation of a semi
ordering uses the rules and order <{p/, p,) to achieve the effect of the
unordering’s using {p,, p,, and another derivation of the semi ordering
uses the rules and order {p}, p3) in order to achieve the effect of the
unordering’s {p,, p,. Let us now consider the case where in the output
language L of the unordering, the {p,, p,»> and <{p,, p, ) derivations yield
the same string. Now note that the semi ordering is unable to mirror this. It
requires that {p}, p,)> be a member of its L and that {p/,, p;) be a member
of its L. But given our example of p, (it creates its own input), and the
definition of semi orderings (they are connected, so that either {p}, p,) or
{pj;, P} > is a member of #1), it follows that the semi ordering will generate
a sentence ruled out by the unordering. Such an example can always be
constructed for any semi ordering which is attempting to match an
unordering.

Theorem 14: Quasi orderings are stronger than semi partial orderings.

The proof of this theorem parallels that of Theorem 13, except that rules
are allowed to apply immediately after themselves. So the precise string
that would be generated in addition to the members of L would be
different. (In other words, the analogue of the new derivation to {pj, p/,>
would already be present in the quasi ordering. One needs a similar
example with one more intervening rule.)

Theorem 15:  Total ordering and simultaneous application are equivalent.

If the simultaneously applied rules are not ‘contradictory’, then they can
be totally ordered following the method of Theorem 7. And again, so long
as the rules are not ‘contradictory’, the totally ordered rules will not say to
do ‘contradictory things’ to any part of the input — such as generate
intermediate representations which get collapsed onto other ones from
other parts of the input — any such totally ordered set of rules can simply
be required to be simultaneously applied without even changing the rules.
(As an example, consider the case of only two rules which are totally
ordered. If neither rule ‘feeds’ the other in such a way that an intermediate
representation will ‘get lost’, it is obvious that this direction is proved. Yet
this is precisely what happens in the case that the rules are not
‘contradictory’.)3%
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Theorem 16: Semi orderings and partial orderings are not comparable.

(a) As remarked in the proof of Theorem 9, all derivations of a semi
ordering are finite. Partial orderings, however, can generate ‘infinite’
derivations.

(b) In a semi ordering of n rules, there might be as many as » derivations
whose first members are identical but all other stages are different. This
cannot be done in a partial ordering; for even if one has sufficient rules so
that there are exactly n distinct derivations whose first members are
identical, to this first stage only one rule can apply and so it is not the case
that all these derivations are identical only in their first stage.

Theorem 17: Unorderings and semi partial orderings are not comparable.

The proof of this follows that of Theorem 16.
Theorem 18: Theories of grammar obeying Proposal A and Universal
Principle I are equivalent to total orderings.

(a) That total orderings can be converted into *P sets of unordered rules
follows from Theorem 1. (The set of rules actually constructed there
obeyed the Ringen condition and could be required to be unordered.
(b) *P sets of rules contain ‘copies’ of some rules. For simplicity, assume
that each rule has the same number of ‘copies’; that there are n rules in *P
and there are m ‘distinct’ ones of them (call the set containing only the
‘distinct’ rules P.) A total ordering which has the same power as *P if the
rules obey the Ringen condition is: First, list the rules P in any order,
adding [+ 1] to the output of each. Then list them again in any order,
adding [+ 1] to their structural descriptions and [+ 2] to their output, and
so on n times (= number of members of *P). This set of rules will contain
m-n rules, which is finite. Now, if the rules obey Ringen conditions, the
first stage of any derivation will meet the structural description of at most
one of the first m rules. If it is altered, it will get a [+ 1] in its structure.
Again, this structure will meet the structural description of at most one of
the rules numbered between m + 1 and 2m; and so on. Note that every
derivation here is identical with a derivation in the Ringen *P rules.

Theorem 19: Theories of grammar obeying Proposal A and Universal
Principle 11 are equivalent to total orderings.

(a) That total orderings can be converted to *P rules obeying the
Derwing/KSN principle follows from Theorem 1.

(b) The other direction follows from the remarks in part (b) of the proof of
Theorem 18, together with Theorem 15. The conversion goes like this. The
first stage of any derivation is some member of I, each succeeding stage
was to come from simultaneously applying all the rules in P (the set from
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which *P was constructed). The simultaneous application of this set is
continued for some finite number of times (guaranteed by the fact that they
are *P rules). Each individual time the rules are simultaneously applied
can be totally ordered, as Theorem 7 showed; and this preserves strong
generative capacity, as Theorem 15 shows. This set of rules is repeated for
each stage of any derivation (we use the method of Theorem 18 to keep
these sets ‘separated’). By the argument of part (b) of Theorem 18, we
know that we need n sets of these rules, so the total number of rules in the
total ordering will be finite.

Theorem 20: Theories of grammar obeying Proposal B and Universal
Principle I are stronger than total orderings and weaker than partial
orderings.

We divide the proof into four parts.
(a) That they are at least as strong as total orderings follows from Theorem
1.
(b) That they are stronger than total orderings follows from (a) and the
comments of part (b) of the proof of Theorem 21.
(c) The proof that partial orderings are at least as strong as these is similar
to that of part (b) of Theorem 18. The differences are (1) every rule of +P
is listed in each of the ‘groups’ (rather than merely listing the ‘distinct’
ones), (2) in order to preserve antisymmetry, we add to the output of every
rule of each group another marker [+ n], where n is the name of that rule.
(These markers are different from, and in addition to, the markers we used
in Theorem 18.) We furthermore add that if the input to a rule whose
name is m has a [+n] marker, and m # n, then [+n] becomes [—n].
Finally a condition on application of any rule whose name is n is that its
input cannot contain [ —n]. Note that since the set of rules we here have
constructed is partially ordered, if a rule has applied, it is a candidate to
reapply immediately; but once some other rule has applied it is no longer a
candidate. We take it to be part of the Ringen condition (when we talk of
quasi orders) that if a stage is the result of applying rule p,, and this stage
continues to meet the structural description of p;, then it will not also meet
the structural description of any other rule. Note that every derivation
legitimatized by this partial ordering was also legitimatized by the +P quasi
ordering obeying Ringen conditions, and conversely.

(d) Partial orderings allow ‘infinite derivations’, which no *P unordered set

of rules can.

Theorem 21: Theories of grammar obeying Proposal B and Universal
Principle II are stronger than total orderings and weaker than partial
orderings.

(a) Follows from Theorem 1.
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(b) As discussed in the text, +P quasi ordered rules allow a rule to apply
an unbounded number of times to its own output. Since they are + P rules,
this will not lead to ‘infinite derivations’; and so given a particular 7, for
every set of quasi ordered +P rules, there is some set of totally ordered
rules (say P’) yielding the same L from this /. But any constructed set of
rules will be inadequate because a different / will yield distinct L’s from
the quasi ordered + P set and the P’ totally ordered set. Hence it is not true
that they are equivalent in the sense of always yielding the same L from the
same I.

(c)—(d) See discussion in Theorem 20.

Theorem 22: Theories of grammar obeying Proposal B and Universal
Principle I are equivalent to + P partially ordered rules.

Follows from part (c) of Theorem 20. (Note that the effect of using +P
rules instead of just any legitimate rule is what caused the difference in
Theorem 20.)

Theorem 23: Theories of grammar obeying Proposal B and Universal
Principle II are equivalent to +P partially ordered rules.

Follows from part (c) of Theorem 21.

Notes

*  Catherine M. Fletcher was essential in the preparation of this paper. It was she who first
interested me in the topic; and we have had numerous conversations concerning
especially the matters of Sections 5-9. In fact, earlier versions of this paper were
presented as jointly authored. Stan Peters has generously shared his time and his
knowledge of mathematical linguistics with us. A considerable part of Section 6 is due
to discussions with him. For their comments on earlier versions, we would like to thank
Noam Chomsky, Kit Fine, John Heintz, Gerald Gazdar, C. G. Morgan, Geoff Pullum,
Helmut Schnelle, Len Schubert, and Steve Thomason. Earlier versions of this paper
were read to the Canadian Linguistics Association, 1975; Dept. Linguistics, Univ.
Washington; and the Society for Exact Philosophy, 1977.

1. We include the B # e condition even though it is not strictly necessary. If one allows
ee Vt, then for any language which is generated by a grammar which is otherwise
context free except that it allows rules of the form A —e, there is a grammar that is
otherwise context free except that it has one rule S — e, where S is the start symbol and S
does not appear on the right of any production. (For proof see Hopcroft and Ullman,
1968:62—63.) We wish, however, to keep context free languages a proper subset of
context sensitive languages, and this is not true using the revised definition of context
free grammars with our definition of context sensitive grammars. (The reason is that
context sensitive languages are not closed under arbitrary substitution mappings, but
they are if the language is e-free. See Hopcroft and Ullman, 1968:124f¥.).

2. Current linguistic theory, at least of the sort of interest here, has evolved from Chomsky
(1965) through Chomsky’s (1973, 1975) ‘trace theory’ to the more current Chomsky
(1977). The mechanisms used in these later works can all be defined in the (1965)
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14.
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framework. The ‘constraints’ introduced in the later works will be discussed below in
Section 4. Other competing linguistic theories have been developed which do not seem
to be compatible with Chomsky (1965): generative semantics and Montague grammars
in particular. For discussion see Newmeyer (1980) or Pelletier (1977). For the view that
they are equivalent see Cooper and Parsons (1976).

For more detailed statements of the restrictions imposed on transformational gram-
mars, see Peters and Ritchie (1973a). It should be noted that many, more modern,
treatments have more than just S as a cyclic node — usually NP is also added.

The few studies that have implications for strong generative capacity are Chomsky
(1955: Chapters 6—7), Chomsky (1963), Chomsky and Schiitzenberger (1963), Crespi-
Reghizzi (1971), and Langendoen (1979).

There is, of course, lexical ambiguity — a word or other lexical item having more than
one sense. We are not here concerned with that kind of ambiguity at all.

We thank Gerald Gazdar for this example, although he doesn’t approve of the analysis
of it as having one surface structure. See Gazdar (1979a, 1979b).

For reasons that we do not fully understand, Peters and Ritchie (1973a) state their
results in terms of weak generative capacity after elimination of the bracketization,
leaving themselves open to the charge of eliminating what is linguistically interesting,
namely what they call (1973a:69) the strong generative capacity of transformational
grammars (where this is taken to be such matters as surface structural ambiguity,
constituent structure, etc.). The results could have been stated as well in terms of what
we are calling weak generative capacity, which includes all these notions that can be
defined on surface structure. Peters (1969) points out that the strong generative
capacity of transformational grammars is equivalent to turning machines so long as the
functions defining the relevant features of strong generative capacity are recursive. He
does not there note that the definition of the function which removes brackets to form
the terminal string in Peters and Ritchie (1973a) guarantees that (surface structural)
ambiguity is'a recursive function.

Langendoen’s (1979) ‘direct generation’ of labelled phrase markers (his ‘bracket
diagrams’) appears to neglect this. His method will give a final phrase marker for every
sentence, but in the cases like (4) above, it will not suffice for disambiguation. He
nonetheless calls this mirroring of structure in the final phrase marker ‘the strong
generative capacity’ of a grammar.

Some linguists insist on including as empirical reflexes such features as simplicity or
elegance of rules and the ability to conflate apparently distinct concepts by one symbol
in the statement of rules. (The latter is often called a case of ‘finding linguistically
significant generalizations’). Following what we think is more responsible linguistics,
we treat these kinds of things as ‘matters of aesthetics’.

The result had already been proved in Kimball (1967), but in a somewhat more
complicated way.

Of course, this proves that there is at least one such grammar. There may be infinitely
many of them, so it is not sufficient merely to disallow the deletion transformation
mentioned. (Such a mistaken suggestion can be found in Skousen, 1972, under the guise
‘empirically based rule’).

The earliest of these sorts of criticisms appears to be Putnam (1961), but they have
become quite common in the intervening years.

More detailed discussions can be found in Derwing (1973), Seidenberg et al. (1977),
Levelt (1974).

Too many linguists, it seems, rely on this kind of ‘internal-to-the-theory’ evidence. Such
reliance is akin to claiming that there is a sense in which baseball outfielders have
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‘internalized’” Newtonian Laws of Motion on the grounds that their position after a
baseball is hit can be computed ‘in an economical manner’ from facts like the speed of
the pitch, the angle of the bat, etc. plus the Newtonian Laws. Any such inferences are
ill-founded unless there is a method for independent psychological checking.

See Watt (1970), Fodor et al. (1975), Marslen-Wilson (1975) for detailed documen-
tation of the lack of correlation.

Peters and Ritchie only consider S to be a cyclic node.

Some examples of such -general principles are Koutsoudas et al. ‘proper inclusion
precedence principle’, Ringen ‘obligatory precedence principle’, and so on. The kind of
thing claimed (for the former principle) is that if an input simultaneously meets the
structural description of two distinct rules, the rule that has a structural description
which properly includes the other will apply first.

(This ‘proper inclusion precedence’ is unfortunately ambiguous. Following Pullum
(1979) we take ‘has a structural description which properly includes the other’s’ to
mean ‘applies to a proper subset of structures of the other’. Consider Pullum’s
(1979:50) two rules EXTRAP and ITDEL which have the following structural
descriptions:

EXTRAP: X [it [that/for Y] 1Z

NP S S NP
ITDEL: X [Y ] 1z
NP S S NP

It is claimed that EXTRAP applies first, when the principle is followed, since the
structural description of EXTRAP has the symbol that [for which ITDEL doesn’t have.
Note, however, that in another sense of ‘proper inclusion’, the structural description of
ITDEL properly includes that of EXTRAP, since the former is satisfied by any input
which the latter is satisfied by.) '
The original idea behind intrinsically ordered rules was that one needn’t state an order
when (say) one rule creates a structure that the other will use. We broaden this some-
what to mean any theory that does not claim an explicit order on the application of the
rules, regardless of whether the rules end up ‘ordering themselves’ by always creating
the input for another.
However, as we shall show below, there are many theories of grammar other than this
‘no-order’ theory that have this feature.
A further flaw is Pullum’s italicized claim that linear ordering theories allow the
maximum number of grammars. Below we consider theories which are similar to ones
presented in the literature under the heading ‘local ordering’ that allow many more
numbers of grammars. See note 28.
Some arguments for rule orderings are simply invalid, even on their own terms. See the
sections in Chapter I of Pullum (1979) on ‘the fallacy of ignoring cyclicity’, ‘the strict
order fallacy’, ‘the fallacy of insufficiency’, and so on. See also Koutsoudas (1978).
Levine (1976).
Their official statement (see, e.g. 1971:483) makes them be ordered and in (1971) they
are applied in that order to give the result. In (1973), only one transformation was
required when the base language was context sensitive, and the rule was applied
‘iteratively’ (see below for definition).
Salomaa (1971) proved the result for the Ginsburg and Partee formulation of
transformational grammar.
We are aware of the uneasiness that might be caused by our allowing the possibility of
non-terminating derivations. The ‘pure’ theories here considered do allow this
possibility. In Section 8 we consider possible remedies for this possibility. We should
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26.

27.

28.

also mention here the possibility of ‘vacuous’ application of rules, i.e. where some input
meets the structural description of a rule but the application of the rule yields no change
in the input. In a totally ordered theory this is harmless, since the input will simply go
on to the next rule; but in some of the theories we are considering here, where a rule can
be reapplied, this could raise severe difficulties. We therefore adopt the convention that
there is some mechanism for discovering this and preventing a rule from reapplying if
there was no change from the time it previously was applied. (See Ringen, 1976:
PRINCIPLE V). .
It is to be understood by these conditions that ‘the relation imposed on P’ is imposed on
the transitive closure of P, and the restrictions mentioned are that this transitive closure
be either asymmetric or antisymmetric. It is further understood that if there is more
than one rule in P, every rule occurs as either the first or the last element of #(P) — i.e.
the transitive closure is connected.
Besides obvious cases for context free rules, such as a— b and a — ¢ not being available
for simultaneous application to any string containing a, there are less obvious cases.
Rules such as ab—ba/d__c and bc—ch/a__e cannot be simultaneously applied to
dabce. In the case of transformations (letting X and Y be variables), XaY —2 13 and
XbY -2 1 3 cannot be simultaneously applied to the string cabd. Another example is a
rule which is to de-stress syllables that are surrounded on each side by stressed syllables.
It is difficult to see how to formulate this rule to apply to sequences of four or more
consecutive stressed syllables (or even what the output should be for ordered rules).
Some rules obviously do not dictate these ‘contradictory changes’, and it is to sets of
these non-contradictory rules we refer when discussing simultaneous application. Our
condition below is intended to pick these sets out. Although we call this phenomenon
‘contradictory rules’, it is not so much that the rules are contradictory as it is that
perfectly normal-appearing rules might have input to which they cannot coherently be
simultaneously applied.
As we mentioned above in notes 19-20, Pullum’s claim that a theory of grammar
invoking random ordering is preferable because it ‘allows the minimum number of
grammars consistent with it’, viz, one, and his claim that a theory of grammar invoking
linear (= our total) ordering is worst because it allows the ‘maximum’ number of
grammars consistent with it, viz. n! (when n is the number of rules), are deficient. In this
regard, a theory of grammar which says that in any grammar the rules are to be quasi
ordered, or a theory that says they are to be unordered, or a theory that says they are to
be simultaneously applied, also have the property that they ‘allow only one grammar’.
Pullum’s claim about total orderings is mirrored by us as follows: if there are n rules in
P, there are n! distinct ways to state % '(P) or #2(P), and since in total and partial
orderings there are unique ‘first rules’, it follows that a theory of grammar which says
that every grammar must be totally (or partially) ordered can give rise to n! distinct
grammars from a given set of n rules. With respect to semi and semi-partial orderings of
n rules, there are also n! grammars (since there are that many % !'(P) or #3(P)).
However, a given derivation is allowed to ‘start anywhere in the ordering’, and so there
is a sense in which these theories of grammars ‘invoke a wider class of grammars’ than
total or partial orderings — namg:ly that for every n! derivations allowed by the latter
ne—n
types, the former types allow Z(T) derivations. (In this regard compare the slightly
misleading remarks in Wasow, 1975:376 footnote, and see also Pullum’s remarks in his
1979b:180-181.) It is not as obvious to us as it is to Pullum that a semi partial ordering
invoking six rules is three times as bad an explanation of some phenomenon as a total
ordering invoking eight rules, nor 32,768 times as bad as a quasi ordering invoking 100
rules. We think that a more central notion of ‘stronger theory’ is to be put in terms of
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strong generative capacity, since it is here that we capture all empirical differences
between theories.

29. The ‘features’ mentioned in this rule — high, back, round, etc. — are binary: a linguistic
form is marked + or — for a particular feature. If a rule mentions a feature, then the
form must have the value for that feature mentioned in the rule. This example is a
complex rule with deletion, alternation, and addition of features. The change indicated
by the rule takes place in a context.

30. A’ here is a variable. The statement of the condition is in full accord with ‘standard’
linguistic practice. The careful reader of Langendoen (1979:footnote 6) might also note
that the statement of the condition can be put as part of the structural description,
when we use his ‘direct generation’ method. As he notes, this has the effect of ‘removing
from linguistic theory the artificial distinction between conditions on form and
conditions on applicability’ which standard linguistic theory seems to embody.

31. Ringen (1976) seems to be the only exception.

32. Thus a particular version of this proposal will be our unorderings, where the ‘finite
number’ is one.

33. They may seem different, but reflection will show that Koutsoudas et al. ‘apply the rules
sequentially but in no particular order until no more rules apply, but whenever the
structural description of more than one rule is met apply them simultaneously’ is the
same as Derwing’s ‘apply all rules simultaneously over and over until no more apply’.

34. So this extra power would not be necessary for

[ [X])-[X]
SS s
This deletion need be stated but once, and it would work on each S cycle. Similarly, the

extra power would not be necessary if NP were a cyclic node.

35. Thisis not to say that any total ordering can be converted into a simultaneously applied
set of non-contradictory rules. It is rather to say that, if the rules are non-contradictory,
then a total ordering can be converted into a simultaneously applied set of rules by
using this method. For the actual use we shall make of Theorem 15, namely in
Theorems 19 and 21, our weaker proof is exactly what is needed.
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