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Abstract

This thesis focuses on event-based state estimation problems in the context of cyber-

physical systems (CPSs), targeting at low-complexity event-based state estimators that

are optimal in a certain sense. The motivation stems from the resource limitations

in the applications of CPSs (e.g., wireless sensor networks) as well as the increased

computation burden in calculating the optimal state estimates caused by the event-

triggering conditions.

Several event-based estimation problems are formulated and solved using different

approaches, including the maximum likelihood estimation approach, the approximate

Gaussian filtering approach, the set-valued Kalman filtering approach and the change

of probability measure approach. For all these investigations, optimal state estimates

with simple structures that can be recursively calculated are obtained, which form the

major contributions of this thesis. Also, the performance improvements in the sense

of average estimation errors by exploiting the information contained in the event-

triggering conditions are addressed either by theoretical proofs or extensive numerical

simulations. Several results on communication rate analysis are proposed, which are

relevant and necessary for event-based estimation, considering the potential commu-

nication resource limitations in CPSs.

Based on the developed results, the outcome of the research attempts on event-

based estimation is encouraging, and a distinct and systematic approach to event-

based estimation seems on the horizon. The results are not only of theoretical value,

but are potentially implementable to a variety of applications in industrial processes,
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due to the practical considerations in both the problem formulations and the design

procedures.
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• D. Shi, T. Chen and L. Shi, “On set-valued Kalman filtering and its application
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development. Dr. Shi provided comments on the technical derivations and contributed

to manuscript edits.
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Chapter 1

Introduction

1.1 Cyber-physical systems and event-based con-

trol and estimation

With the overwhelming developments and advances in wireless communication,

micro-electromechanical systems and digital electronics, cyber-physical systems (CPSs)

now play a central role to the technological advancements in our life, from unmanned

automobiles to humanoid robots to smart grids, from GPS navigation to face recog-

nition to speech recognition, and from remote control to building automation and to

wireless systems [18].

According to US National Science Foundation [19], “CPSs are engineered systems

that are built from, and depend upon, the seamless integration of computational al-

gorithms and physical components”. One of the major problems that faces the ap-

plications of this type of systems, however, is the limitation of communication and

power resources. For instance, in wireless monitoring, the wireless sensors/actuators

are usually powered by batteries, some of which are not even replaceable [1]. Thus it is

important to maintain a reasonable battery life in wireless applications [31], e.g., power

saving mechanisms are included in ZigBee RF4CE standard [75]. Moreover, according

to IEEE 802.15.4 [31], the number of communication channels are normally limited,

which means only one or a subset of the sensors/actuators can transmit measurement

information or perform their control actions at each time instant.

In this context, the emerging event-based control and estimation strategies become

attractive to applications in CPSs, especially in wireless sensor networks (WSNs) as

well as systems with limited communication or computational resources, due to their

capability to maintain the system performance at reduced communication or com-

putation rates. The basic rationale of the event-based action strategies is that the
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sensors and actuators do not update their actions until certain events happen (e.g.,

the difference between the current measurement and the measurement at the previous

event time goes beyond a pre-specified level). The event-based control and estimation

problems are potentially related with a number of other topics in the literature, e.g.,

nonuniformly sampled-data systems [28, 49], set-membership identification and esti-

mation [3, 14, 36], quantized control systems [22, 40], just to name a few. However,

the presence of the event-triggers has introduced new and distinct challenges to con-

troller/estimator design, and performance guarantees (e.g., stability, optimality) are

more difficult to be determined theoretically compared with their periodic counter-

parts, which forms the basic motivation of our investigation in this thesis.

1.2 Literature review of event-based estimation

The scope of this thesis is concerned with the topic of event-based estimation for

discrete-time systems. This topic has received considerable attention during the last

few years, since the pioneer work of Åström and Bernhardsson on Lebesgue sampling

[9].

Earlier results mainly focused on the design of event-triggering strategies. The

optimal event-based finite-horizon sensor transmission scheduling problems were stud-

ied in [32, 55] for continuous-time and discrete-time scalar linear systems, respec-

tively. The results were extended to vector linear systems in [39] by relaxing the zero

mean initial conditions and considering measurement noises. The tradeoff between

performance and the average sampling period was analyzed in [38], and a sub-optimal

event-triggering scheme with a guaranteed least average sampling period was proposed.

Adaptive sampling for state estimation of continuous-time linear systems was consid-

ered in [54]. The authors in [61] proposed a hybrid sensor data scheduling method

by combining time and event-based methods with reduced computational complexity.

In [72], a distributed event-triggered estimation problem was considered and a global

event-triggered communication policy for state estimation was proposed by minimiz-

ing a weighted function of network energy consumption and communication cost while

considering estimation performance constraints. The joint design of event-trigger and

estimator for first-order stochastic systems with arbitrary distributions was considered

in [46], where a game-theoretic framework was utilized to analyze the optimal trade-off

between the mean squared estimation error and the expected transmission rate. These

results form the first line of research in event-based estimation.
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In addition to the scheduling issues, another important problem is to find the op-

timal estimate for a specified event-triggering scheme. Although the sensors measure

the state of the system at every sampling instant, they only send their measurements

to the estimator when certain pre-specified conditions are satisfied (e.g., the current

measurement value deviates the previous transmitted value by a specified level [44]).

As a result, the estimator has to handle combined point- and set-valued hybrid mea-

surement information at each time instant: when the measurement is received, the

estimator updates itself with the “point-valued” information; when the measurement

is not received, the estimator still knows the information that the event-triggering

conditions are satisfied by the current measurement (which we refer to as “set-valued”

information). The information pattern becomes even more complicated if the effect

of packet dropout is further taken into account, which is necessary when the mea-

surements are transmitted through wired or wireless communication networks. The

difficulty caused by the hybrid measurement information mainly affects the estimation

problems from the computational aspect, as in many cases the conditional distributions

of the states no longer have simple closed-form expressions, and need to be calculated

by numerically evaluating multi-dimensional integrals. This not only adds to the com-

putational burden but also inevitably leads to accumulative numerical errors.

To solve this problem, a number of interesting attempts have been made in the

literature, mostly for linear Gaussian systems, which form the second line of research

in event-based estimation. Based on Gaussian assumptions on the conditional distri-

butions of the states on the available hybrid measurement information, the minimum

mean square error (MMSE) estimators were derived for an event-triggering scheme

quantifying the magnitude of the innovation of the estimator in [73]. By approximat-

ing the uniform distribution with the sum of a finite number of Gaussian distributions,

an event-based estimator with a hybrid update was proposed in [62], based on a gen-

eral description of event-based sampling. In [26], a class of stochastic event-triggering

conditions were proposed, and closed-form MMSE estimates were obtained without in-

troducing additional approximations. In [63], an event-based estimate was obtained by

minimizing the worst-case mean squared error, treating the noises and event-triggering

conditions as stochastic and non-stochastic uncertainties, respectively. However, the

developments obtained so far are still at a relatively early stage, and systematic ap-

proaches to handling the hybrid set- and point-valued measurement information are

still missing in the literature.
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1.3 Summary of the contributions

The results presented in this thesis target at finding the optimal estimators for

given event-triggering schemes, which belong to the second line of research introduced

in the previous section. The event-based estimation problem is approached from a few

distinct perspectives, resulting in different event-based estimates that are optimal in a

certain sense, which form the major contents and contributions of this thesis.

In Chapter 2, the event-triggered state estimation problem for linear time-invariant

systems is considered in the framework of maximum likelihood (ML) estimation. We

show that the optimal estimate is parameterized by a special time-varying Riccati

equation, and the computational complexity increases exponentially with respect to

the time horizon. For ease in implementation, a one-step event-based ML estimation

problem is further formulated and solved, and the solution behaves like a Kalman

filter with intermittent observations. For the one-step problem, time-varying upper

and lower bounds on the expectation of the communication rate are provided. For

stable systems, time-invariant upper and lower bounds are derived as well. For scalar

sensors (namely, sensors with one measurement channel), the exact expression for the

expectation of the communication rate is obtained. Numerical examples are presented

and the benefits of the proposed one-step event-based estimator are demonstrated by

comparative simulations.

In Chapter 3, we consider state estimation based on information from multiple

sensors that provide their measurement updates according to separate event-triggering

conditions. An optimal sensor fusion problem based on hybrid measurement informa-

tion is formulated and explored. We show that under a commonly-accepted Gaussian

assumption, the optimal estimator depends on the conditional mean and covariance

of the measurement innovations, which applies to general event-triggering schemes.

For the case that each channel of the sensors has its own event-triggering condition,

closed-form representations are derived for the optimal estimate and the corresponding

error covariance matrix, and it is proved that the exploration of the set-valued infor-

mation provided by the event-triggering sets guarantees improvement of estimation

performance. The effectiveness of the proposed event-based estimator is demonstrated

by extensive Monte Carlo simulation experiments for different categories of systems

and comparative simulation with the classical Kalman filter.

In Chapter 4, the properties of the exact and approximate set-valued Kalman filters

with multiple sensor measurements for linear time-invariant systems are investigated.

First, we show that the exact and the proposed approximate set-valued filters are in-
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dependent of the fusion sequence at each time instant. Second, the boundedness of

the size of the set of estimation means is proved for the exact set-valued filter. For

the approximate set-valued filter, if the closed-loop matrix is contractive, then the

set of estimation means has a bounded size asymptotically; otherwise a nonsingu-

lar linear transform is constructed such that the size of the set of estimation means

for the transformed states is asymptotically bounded. Third, the effect of set-valued

measurements on the size of the set of estimation means is analyzed and conditions

for performance improvement in terms of smaller size of the set of estimation means

are proposed. Finally, the results are applied to event-based estimation, which allow

the event-triggering conditions to be designed by considering requirements on perfor-

mance and communication rates. The efficiency of the proposed results is illustrated

by examples and comparative simulation.

In Chapter 5, the state estimation problem for Hidden Markov Models (HMMs)

subject to event-based sensor measurement updates is considered, using the change of

probability approach. We assume the measurement updates are transmitted through

wired or wireless communication networks. For the scenarios of reliable and unreliable

communication channels, analytical expressions for the probability distributions of

the states conditioned on all the past measurement information are obtained. Also, we

show that the scenario of a lossy channel, but without the event-trigger, can be treated

as a special case of the reliable channel results. Based on these results, closed-form

expressions for the estimated communication rates are presented, which are shown to

be the ratio between a weighted 1-norm and the 1-norm of the conditional probability

distributions of the states. Implementation issues are discussed, and the effectiveness

of the results is illustrated by a numerical example and comparative simulations.
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Chapter 2

Event-triggered maximum
likelihood state estimation∗

∗

2.1 Introduction

In this chapter, the event-based state estimation problem is considered under the

maximum-likelihood estimation framework. We study the remote state estimation of

a process based on the measurements taken by a battery-powered smart-sensor on the

process side, the output of which is transmitted to the remote estimator through a

wireless channel. Comparison between standard ZigBee chips designed according to

[31] (e.g., CC2530 by [71]) and analog to digital converters (e.g., AD7988, 16-digit ADC

from [6]) indicates that the energy consumption of wireless transmission is at least one

magnitude greater than that of data acquisition and basic calculation. Consequently,

we assume wireless transmission consumes more energy than basic calculation, and

thus an event-based data-scheduler is proposed on the process side to prolong the

battery life (utilizing the limited calculation capacity of the smart sensor). The main

contributions of the work in this chapter are three-fold:

1. The structure of the event-based ML state estimator is provided. We show that

the optimal estimate is parameterized by a special time-varying Riccati equation,

and the computational complexity increases exponentially with the time horizon.

Note that the solution to the Riccati equation is not necessarily the covariance

matrix of the estimation error for event-based ML state estimation problems,

due to event-based data updating.

∗Parts of the results in this chapter appeared in Automatica, vol. 50, no. 1, pp. 247-254, 2014.
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2. For ease in implementation of the event-based ML estimator, a one-step event-

based ML estimation problem is formulated, and its solution is shown to behave

like the Kalman filter with intermittent observations [64] and only requires feed-

back communication when an event occurs at the smart sensor. This is different

from the results in [73], where feedback communication is always needed.

3. For the one-step event-based ML estimator, communication rate analysis is per-

formed from the process side. Two sets of time-varying upper and lower bounds

on the expectation of the communication rate are proposed in terms of incom-

plete Gamma functions, which can be iteratively calculated. For stable systems,

time-invariant upper and lower bounds are provided as well. For the case of

single-channel sensors, the exact expression of the expectation of communication

rate is obtained.

Notation: N and N+ denote the sets of nonnegative and positive integers, respectively.

For a, b ∈ N and a ≤ b, ua:b denotes {u(a), u(a + 1), ..., u(b)}. R denotes the set of

real numbers. For m, n ∈ N+, Rm×n denotes the set of m by n real-valued matrices,

whereas Rm is short for Rm×1. For Z ∈ Rm×n, Z> denotes the transpose of Z, whereas

Z−> denotes (Z>)−1 if Z is square and nonsingular. For a random variable x, E(x)

denotes its expectation, and x denotes its realization.

2.2 Problem formulation

Consider the system in Fig. 2.1. The process is Linear Time-Invariant (LTI) and

evolves in discrete time driven by white noise:

xk+1 = Axk + wk, (2.1)

where xk ∈ Rn is the state, and wk ∈ Rn is the noise input, which is zero-mean

Guassian with covariance Q > 0.

The initial state x0 is Gaussian with E(x0) = µ0 and covariance P0 > 0. Assume A

is nonsingular. Note that this assumption is not restrictive as (2.1) is typically a model

that comes from discretizing a stochastic differential equation dx = A1xdt + B1dw,

in which case A = eA1h, for a sampling period h, is clearly invertible. The state

information is measured by a battery-powered smart sensor, which communicates with

a remote state estimator through a wireless channel, and the measurement equation is

yk = Cxk + vk, (2.2)

7



Figure 2.1: Block diagram of the overall system.

where vk ∈ Rm is zero-mean Gaussian with covariance R > 0. In addition, x0, wk and

vk are uncorrelated with each other. We assume (C,A) is detectable. For consideration

of the limited sensor battery capacity and the communication cost, an event-based

data scheduler is integrated in the sensor. At each time instant k, the measurement

information yk is sent directly to the event-based scheduler; the estimator provides

a prediction x̂k|k−1 of the current state xk, and sends the prediction x̂k|k−1 to the

scheduler via the wireless channel. Based on yk and x̂k|k−1, the scheduler computes γk

according to the following event-triggered condition:

γk =

{
0, if ‖yk − Cx̂k|k−1‖∞ ≤ δ
1, otherwise

(2.3)

and decides whether to allow a data transmission, where δ is a tuning parameter

that determines the sensitivity of the event-based scheduler. Only when γk = 1, the

sensor transmits yk to the estimator. As a result, if γk = 1, the estimator knows the

exact value of yk; otherwise it only knows that the value of yk lies in a known region.

The ultimate goal of the estimator is to provide an estimate x̂k|k of xk based on the

known information. Notice that this type of feedback communication strategy is not

energy-saving itself and an alternative strategy is to include a copy of the estimator in

the scheduler, which instead adds to the computational burden of the scheduler. We

will show that the obtained result in this work in fact does not require the feedback

communication except when an event occurs.

In this work, the first objective is to determine, at time k, the optimal estimate

x̂k|k of xk that maximizes the joint probability distribution function of x0:k and y1:k:

fx0:k,y1:k
(x̂0|0, x1, ..., xk, ŷ1, ..., ŷk) (2.4)
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where x0:k and ŷ1:k are the optimization parameters. If γt = 1, ŷt = yt; otherwise the

value of ŷt lies in [y
t
, ȳt] at time instant t, where

y
t

= Cx̂t|t−1 − δ1m,
ȳt = Cx̂t|t−1 + δ1m,

1m = [1 1 ... 1︸ ︷︷ ︸
m times

]>, t = 1, 2, ..., k. Consequently, at time instant k, the estimator solves

the following optimization problem:

maxx1:k,ŷ1:k fx0:k,y1:k
(x̂0|0, x1, ..., xk, ŷ1, ..., ŷk)

s.t. xt = Axt−1 + wt−1,
yt = Cxt + vt.
ŷt = yt, if γt = 1;
ŷt ∈ [y

t
, ȳt], if γt = 0.

t ∈ {1, 2, ..., k}.

(2.5)

The objective function in (2.5) is the joint probability distribution function of x0:k and

y1:k, which is always Gaussian regardless of the event-driven communication. Therefore

the additional information introduced by the event-based scheduler is not reflected in

the objective function and is only exploited in the constraints in (2.5).

Based on the solution to (2.5), we further look into a simpler yet more interesting

one-step event-based ML estimate problem by taking the determined values of xt and

ŷt (at time instant t < k) into account, namely, by fixing the values of xt and ŷt to the

one determined at time instant t for t = 1, 2, ..., k − 1 and only considering xk and ŷk

as optimization variables:

maxxk,ŷk fx0:k,y1:k
(x̂0|0, ..., x̂k−1|k−1, xk, ŷ1, ..., ŷk)

s.t. xk = Ax̂k−1|k−1 + wk−1,
yk = Cxk + vk.
ŷk = yk, if γk = 1;
ŷk ∈ [y

k
, ȳk], if γk = 0.

(2.6)

For this problem, we show that the solution has a simple recursive form, and

communication rate is possible to be analyzed in terms of upper and lower bounds

from the process side.
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2.3 Solution to the event-based ML estimation prob-

lem

In this section, the solution to problem (2.5) is derived. From Lemma 9.3.1 of [25],

we have
fx0:k,y1:k

(x0:k, y1:k) = α · exp
{
−1

2

∑k−1
t=0 w

>
t Q
−1wt

}
· exp

{
−1

2

∑k
t=1 v

>
t R
−1vt

}
· exp

{
−1

2
(x0 − µ0)>P−1

0 (x0 − µ0)
} (2.7)

where α is a positive constant, and wt and vt satisfy wt = xt+1−Axt and vt = yt−Cxt,
respectively. As a result, the estimation problem that needs to be solved at time k is

equivalent to
min

w0:k−1,v1:k

∑k−1
t=0 w

>
t Q
−1wt +

∑k
t=1 v

>
t R
−1vt

+(x0 − µ0)>P−1
0 (x0 − µ0)

s.t. xt = Axt−1 + wt−1,
Cxt + vt = yt, if γt = 1;
Cxt + vt ≤ ȳt, if γt = 0;
−Cxt − vt ≤ −yt, if γt = 0.

t ∈ {1, 2, ..., k}.

(2.8)

Before continuing, let us define the value function V (w0:k−1, v1:k) as

V (w0:k−1, v1:k) :=
k−1∑
t=0

w>t Q
−1wt +

k∑
t=1

v>t R
−1vt

+ (x0 − µ0)>P−1
0 (x0 − µ0). (2.9)

For brevity, we use V ∗k to denote the optimal value function at time k, namely,

V ∗k := V (w∗0:k−1, v
∗
1:k). In the following, an active-set approach will be utilized to

characterize the structure of the optimal solution to (2.8). To maintain the simplicity

in the description and derivation of the results, we assume C and vt can be decomposed

as1

C =
[
C̃>t C̄>t

]>
(2.10)

and vt = [ṽ>t v̂>t ]>, where C̃t and ṽt correspond to the set of active constraints

ṽt + C̃tx̃t = ỹt (2.11)

1Notice that when this decomposition assumption does not hold, the results can be proved following
the same argument but at the cost of more complicated notations.
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at time t that lead to the optimal solution to (2.8). Correspondingly the covariance

matrix R is decomposed as

R =

[
R̃t R̂t

R̂>t R̄t

]−1

. (2.12)

Define R∗t := (R̃t − R̂tR̄
−1
t R̂>t )−1. Utilizing these notations, for the problem in (2.8),

we have the following results.

Theorem 2.1. The optimal solution to problem (2.8) has the following properties:

1. The optimal prediction satisfies

x̂t+1|t = Ax̂t|t;

The optimal estimation x̂t|t satisfies

x̂t|t =


x̂t|t−1 + Pt|t−1C

>(R + CPt|t−1C
>)−1

(yt − Cx̂t|t−1), if γt = 1;

x̂t|t−1 + Pt|t−1C̃
>
t (R∗t + C̃tPt|t−1C̃

>
t )−1

(ỹt − C̃tx̂t|t−1), if γt = 0.

(2.13)

with x̂0|0 = µ0, Pt|t−1 = APk−1|k−1A
> +Q, P0|0 = P0; if γt = 1,

Pt|t = Pt|t−1 − Pt|t−1C
>(R + CPt|t−1C

>)−1

CPt|t−1;
if γt = 0,

Pt|t = Pt|t−1 − Pt|t−1C̃
>
t (R∗t + C̃tPt|t−1C̃

>
t )−1

C̃tPt|t−1.

2. The optimal value function V ∗t satisfies

V ∗t = (xt − x̂t|t)>P−1
t|t (xt − x̂t|t) + Υt, (2.14)

with

V ∗0 = (x0 − x̂0|0)>P−1
0|0 (x0 − x̂0|0) + Υ0,

Υ0 = 0; if γt = 1,

Υt = Υt−1 + (yt − Cx̂t|t−1)>

(R + CPt|t−1C
>)−1(yt − Cx̂t|t−1);

if γt = 0,
Υt = Υt−1 + (ỹt − C̃tx̂t|t−1)>

(R∗t + C̃tPt|t−1C̃
>
t )−1(ỹt − C̃tx̂t|t−1).
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Proof. The problem in (2.8) is a quadratic optimization problem with linear equality

and inequality constraints. According to the first-order Karush-Kuhn-Tucker condi-

tions (which is necessary and sufficient for local optimality in this case) [10], the global

optimizer of this problem can be obtained by enumerating all sets of active constraints

and testing the feasibility with respect to problem (2.8) of the solution to the cor-

responding quadratic optimization problem with equality constraints. Therefore, to

characterize the structure of the optimal solution, it suffices to consider the set of

optimal active constraints given in (2.11).

Without loss of generality, we first claim that the optimal value function V ∗t−1 at

time instant k − 1 has the following form:

V ∗t−1 = Υt−1

+(xt−1 − x̂t−1|t−1)>P−1
t−1|t−1(xt−1 − x̂t−1|t−1),

(2.15)

and then we provide an inductive proof for it. Note that this is satisfied at k = 1 with

Υ0 = 0 and V ∗0 = (x0 − x̂0|0)>P−1
0|0 (x0 − x̂0|0) + Υ0, where x̂0|0 = µ0, P0|0 = P0.

If γt 6= 0, following a similar argument as that in the proof of Lemma 9.6.1 of [25],

we have
V ∗t = (xt − x̂t|t)>P−1

t|t (xt − x̂t|t) + Υt,

Υt = Υt−1 + (yt − Cx̂t|t−1)>(R + CPt|t−1C
>)−1

(yt − Cx̂t|t−1),
x̂t|t−1 = Ax̂t−1|t−1,
x̂t|t = x̂t|t−1 + Pt|t−1C

>(R + CPt|t−1C
>)−1

(yt − Cx̂t|t−1),
Pt|t−1 = APt−1|t−1A

> +Q,
Pt|t = Pt|t−1 − Pt|t−1C

>(R + CPt|t−1C
>)−1CPt|t−1.

(2.16)

If γt = 0, at time instant t, we solve

min
wt−1,vt

w>t−1Q
−1wt−1 + v>t R

−1vt

+(A−1xt − A−1Bwt−1)>P−1
t−1

(A−1xt − A−1Bwt−1)

s.t. ṽt + C̃tx̃t = ỹt,

(2.17)

where Υt−1 is independent of wt−1 and vt, and the relationship xt−1 = A−1xt−A−1wt−1

is used.

From (2.12), the resulting optimization problem with equality constraints can be

written as
min

wt−1,ṽt,v̂t
w>t−1Q

−1wt−1 + ṽ>t R̃tṽt + ṽ>t R̂tv̂t

+v̂>t R̂
>
t ṽt + v̂>t R̄tv̂t + Υt−1

+(A−1xt − A−1Bwt−1)>P−1
t−1

(A−1xt − A−1Bwt−1)

s.t. ṽt + C̃tx̃t = ỹt.

(2.18)

12



This problem can be solved in two steps:

1. Optimal prediction. In this step, we identify the optimal wt−1. Due to the

structure of the problem, we obtain the same result as that in the case γt = 1.

The optimizer is

w∗t−1 = (A−>P−1
t−1|t−1A

−1 +Q−1)−1

A−>P−1
t−1|t−1(A−1xt − x̂t−1|t−1),

(2.19)

and the optimal prediction and the corresponding value function are x̂t|t−1 =

Ax̂t−1|t−1 and

V ?
t = (xt − x̂t|t−1)>P−1

t|t−1(xt − x̂t|t−1)

+ ṽ>t R̃tṽt + ṽ>t R̂tv̂t + v̂>t R̂
>
t ṽt + v̂>t R̄tv̂t

+ Υt−1, (2.20)

respectively, where Pt|t−1 = APt−1|t−1A
> +Q.

2. Measurement update. In this step, we optimize V ?
t with respect to ṽt and v̂t

subject to the active constraints. To do this, we include the constraints into the

objective function and differentiate V ?
t with respect to xt and v̂t, respectively,

which leads to

P−1
t|t−1(xt − x̂t|t−1)− C̃>t R̃t(ỹt − C̃txt)− C̃tR̂tv̂t = 0,

R̂>t (ỹt − C̃txt) + R̄tv̂t = 0.
(2.21)

Some further matrix manipulations lead to

V ∗t =(xt − x̂t|t)>P−1
t|t (xt − x̂t|t) + Υt,

Υt =Υt−1 + (ỹt − C̃tx̂t|t−1)>

(R∗t + C̃tPt|t−1C̃
>
t )−1(ỹt − C̃tx̂t|t−1),

x̂t|t =x̂t|t−1 + Pt|t−1C̃
>
t (R∗t + C̃tPt|t−1C̃

>
t )−1

(ỹt − C̃tx̂t|t−1),

Pt|t =Pt|t−1 − Pt|t−1C̃
>
t (R∗t + C̃tPt|t−1C̃

>
t )−1

C̃tPt|t−1,

R∗t =(R̃t − R̂tR̄
−1
t R̂>t )−1. (2.22)

This completes the proof.
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Remark 2.1. The above result provides insights into the structure of the optimal

solution to (2.5). However, to find the optimal solution to (2.5) at time k, we need

to consider all possible (3mk) combinations of active constraint sets considering t =

1, 2, ..., k and compare the corresponding value functions according to (2.16) and (2.22).

As a result, the computation burden will increase exponentially with respect to the

time horizon. Alternatively, since the problem is a Quadratic Programming (QP)

problem subject to linear constraints, standard QP solvers can be applied to find the

optimal solution as well. However, the issue is that the dimension of the optimization

parameters in the QP problem increases linearly with respect to k, due to the lack of

a recursive structure of the optimal solution from time k to k + 1 (This follows from

the observation that the set of optimal active constraints for problem (2.5) at time k

may not be part of the set of optimal active constraints for the problem at time k+1).

2.4 One-step event-based ML state estimation

Motivated by the implementation issues of the optimal solution to problem (2.5)

discussed in Remark 2.1, we further look into the one-step event-based ML estimation

problem in (2.6) in this section. As will be shown later, this formulation allows us to

obtain a recursive solution, and is a consequence of the compromise between optimality

and implementability. The solution to this problem is first presented, and then a

communication rate analysis is delivered by deriving upper and lower bounds for the

communication rate from the process side.

2.4.1 Solution to the problem

In this case, the problem that needs to be solved at time k is equivalent to

V (w†k−1, v
†
k) :=

min
wk−1,vk

∑k−1
t=0 w

>
t Q
−1wt +

∑k
t=1 v

>
t R
−1vt

+(x0 − µ0)>P−1
0 (x0 − µ0)

s.t. xk = Axk−1 + wk−1,
Cxk + vk = yk, if γk = 1;
Cxk + vk ≤ ȳk, if γk = 0;
−Cxk − vk ≤ −yk, if γk = 0.

wt−1 = w†t−1, vt = v†t ,
t ∈ {1, 2, ..., k − 1}.

(2.23)

For notational simplicity, define V †k := V (w†k−1, v
†
k). For this problem, we have the

following result.
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Theorem 2.2. The optimal solution to problem (2.23) has the following properties:

1. The optimal prediction is unbiased and satisfies x̂k+1|k = Ax̂k|k; the optimal

estimation x̂k|k is also unbiased and satisfies

x̂k|k =


Ax̂k−1|k−1 + Pk|k−1C

>

(R + CPk|k−1C
>)−1(yk − CAx̂k−1|k−1),

if γk = 1;
Ax̂k−1|k−1, if γk = 0.

(2.24)

with x̂0|0 = µ0, Pk|k−1 = APk−1|k−1A
> +Q, P0|0 = P0; if γk = 1,

Pk|k = Pk|k−1 − Pk|k−1C
>(R + CPk|k−1C

>)−1

CPk|k−1;
if γk = 0,

Pk|k = APk−1|k−1A
> +Q.

2. The optimal value function V †k satisfies

V †k = (xk − x̂k|k)>P−1
k|k (xk − x̂k|k) + Υk, (2.25)

with

V †0 = (x0 − x̂0|0)>P−1
0|0 (x0 − x̂0|0) + Υ0,

Υ0 = 0; if γk = 1,

Υk = Υk−1 + (yk − Cx̂k|k−1)>

(R + CPk|k−1C
>)−1(yk − Cx̂k|k−1);

if γk = 0, Υk = Υk−1.

Proof. The proof of this result follows from a similar argument as that in Theorem 2.1.

In particular, when γk = 0 and no constraint is active, the counter-part of results in

(2.22) reduces to:

V †k = (xk − x̂k|k)>P−1
k|k (xk − x̂k|k) + Υk,

Υk = Υk−1,
x̂k|k = x̂k|k−1,
Pk|k = Pk|k−1.

(2.26)

The optimizer for this unconstrained case satisfies all constraints in (2.23). In addition,

since R > 0, by Schur complement, we have R∗k > 0 in (2.22), which further implies

Υk ≥ Υk−1 and thus the solution to the constrained case leads to a cost larger or equal

than the solution to the unconstrained case. Therefore, when γk = 0, the optimization

problem in (2.23) is solved by (2.26).

Finally, the unbiasedness of the optimal prediction and estimation follows directly

from their structure and the fact that x̂0|0 = E(x0), which completes the proof.
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The above result indicates that when the exact value of the measurement is un-

available and the information of the set-valued measurement ŷt ∈ [y
t
, ȳt] is exploited

instead, the one-step optimal state prediction also serves the optimal estimation in

the sense of one-step maximum likelihood. Note that this does not hold in general for

the event-based ML estimation problem in (2.5). Since the conditional distribution

fx1:k|y1:k
(x1:k|y1:k) is no longer Gaussian due to the additional information of the set-

valued measurement, the ML estimate does not necessarily coincide with the MMSE

estimate for event-based estimation, which is different from the case of periodic state

estimation of linear Gaussian systems.

Remark 2.2. In [73], when γk = 1, Pk|k has the same update equation; but when

γk = 0, Pk|k evolves rather differently. The resultant estimate here has a much simpler

form, which does not require to solve the integrations in [73]. Notice that for original

ML estimation problems in (2.5), Pk|k is not the estimation error covariance matrix

for the estimate x̂k|k, but rather a time-varying parameter that helps to generate the

ML estimate subject to the event-triggering rule. As a result, the obtained update

equations have essentially different meanings compared with those in [64].

2.4.2 Analysis of the communication rate

Based on the proposed state estimation strategy, the average communication rate

is analyzed in this section. Viewed from the process side, the resultant state estimator

behaves exactly like the standard Kalman filter with intermittent observations [45, 64]:

When γk = 1, the optimal estimator considers both time and measurement updates

of the Kalman filter; When γk = 0, the optimal estimator only performs the time

update. Therefore on the process side the resultant prediction error êk|k−1 := xk−x̂k|k−1

is zero-mean Gaussian with covariance Pk|k−1. Denote zk := yk − Cx̂k|k−1. Since

yk−Cx̂k|k−1 = Cêk|k−1 + vk, we have E(zk) = 0 and E(zkz
>
k ) := Φk = CPk|k−1C

>+R.

Define

Ω := {z ∈ Rm| ‖z‖∞ ≤ δ},

which is an m-dimensional cube with edge length 2δ. We have

E(γk) = 1−
∫

Ω

fzk(z)dz, (2.27)

where fzk(z) = (2π)−m/2(detΦk)
−1/2 exp (−1

2
z>Φ−1

k z). Note that due to the Gaussian

kernel and the structure of Ω, analytical calculation of the integration in (2.27) is not
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possible. In the following, we provide lower and upper bounds for E(γk) in terms of

incomplete Gamma functions.

We first focus on the calculation of integrals of the following form, which plays an

important part in the derivation of the bounds:∫
Ω0

fzk(z)dz,

where Ω0 := {z| z>Φ−1
k z ≤ r2}. Define Ω⊥0 := {z| z>Φ−1

k z > r2}. Since Ω0∪Ω⊥0 = Rm,∫
Ω0
fzk(z)dz = 1 −

∫
Ω⊥0
fzk(z)dz. For the integration over Ω⊥0 , we have the following

result.

Lemma 2.1.
∫

Ω⊥0
fzk(z)dz = Γ(m/2, r2/2)/Γ(m/2).

Proof. ∫
Ω⊥0
fzk(z)dz

=
∫
z>Φ−1

k z>r2
(2π)−

m
2 (det Φk)

− 1
2 exp(−1

2
z>Φ−1

k z)dz

= (2π)−
m
2

∫
p>p>r2

exp(−1
2
p>p)dp

= (2π)−
m
2

2πm/2

Γ(m/2)

∫∞
r
vm−1 exp(−v2/2)dv

= 1
Γ(m/2)

∫∞
r2/2

tm/2−1 exp(−t)dt
= Γ(m/2,r2/2)

Γ(m/2)
,

(2.28)

where the second equality is obtained by using p = Φ
−1/2
k z and

dp = (det Φk)
−1/2dz,

the third equality is obtained by converting the Cartesian coordinates p = [p1, p2, ..., pm]>

to polar coordinates [v, θ1, θ2, ..., θm−1]> and

dp = vm−1 sinm−2 θ1 sinm−3 θ2 · · · sin θm−2dvdθ1dθ2 · · · dθm−1,

the fourth one is obtained by using t = v2/2 and the surface area formula for an (m−1)-

dimensional unit sphere Sm−1 = 2πm/2/Γ(m/2), where Γ(m/2) :=
∫∞

0
tm/2−1 exp(−t)dt,

and the fifth one follows from the definition of the incomplete Gamma function Γ(a, b) :=∫∞
b
ta−1 exp(−t)dt.

Note that the Gamma functions and incomplete Gamma functions can be it-

eratively calculated according to Γ(z + 1) = zΓ(z), Γ(1/2) =
√
π and Γ(a, b) =

(a − 1)Γ(a − 1, b) + ba−1 exp(−b), Γ(1/2, b) = 2
√
π[1 − Q(

√
2b)], respectively, where

Q(z) :=
∫∞
z

1√
2π

exp (−t
2

2
)dt is the standard Q-function.
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Now we focus on the tightest inner and outer ellipsoidal approximations of Ω.

Define Ωk,1 as the largest ellipsoid that is contained in Ω and satisfies

Ωk,1 := {z ∈ Rm| z>Φ−1
k z ≤ δ2

k,1}. (2.29)

Define Ω̄k,1 as the smallest ellipsoid that contains Ω and satisfies

Ω̄k,1 := {z ∈ Rm| z>Φ−1
k z ≤ δ̄2

k,1}. (2.30)

The relationship of Ω̄k,1, Ωk,1 and Ω for the case of m = 2 is shown in Fig. 2.2. To

determine Ω̄k,1 and Ωk,1, the calculation of δk,1 and δ̄k,1 are presented in the following.

Figure 2.2: Relationship of inner and outer ellipsoidal approximations of Ω for the case
of m = 2.

Since Φk > 0, there exists an orthogonal matrix Uk such that U>k Φ−1
k Uk = Λk,

where

Λk := diag{λk,1, λk,2, ..., λk,m}
and 0 < λk,1 ≤ λk,2 ≤ ... ≤ λk,m. The value of δ̄k,1 is relatively easier to determine. By

convexity, at least two of the vertices of the m−dimensional cube Ω lie on the boundary

of Ω̄k,1, and the other vertices are either contained in Ω̄k,1 or on the boundary of Ω̄k,1

as well. Therefore, the value of δ̄k,1 can be calculated as

δ̄k,1 = max
zi∈{δ,−δ}, i∈{1,2,...,m}

√
z>Φ−1

k z, (2.31)
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where z = [z1, z2, ..., zm]>.

To calculate δk,1, the following bi-level optimization problem needs to be solved:

maxi z∗i
s.t. z∗i = maxz zi

s.t. z>(Φ−1
k )z = 1.

(2.32)

The major difficulty is in the lower level problem, namely,

maxz zi
s.t. z>(Φ−1

k )z = 1.
(2.33)

To solve this problem, we consider an alternative parameterization of z. For each

z ∈ Rm, there exists a unique pk = [pk,1, pk,2, ..., pk,m]> ∈ Rm such that z = Ukpk. For

z satisfies z>(Φ−1
k )z = 1, the corresponding pk satisfies

∑m
i=1 λk,i(pk,i)

2 = 1, and thus

an equivalent parameterization of pk is

pk =

[
sin θk,1√
λk,1

,
sin θk,2 cos θk,1√

λk,2
, ...,

sin θk,m−1
∏m−2

i=1 cos θk,i√
λk,m−1

,
∏m−1

i=1 cos θk,i√
λk,m

]>
. (2.34)

According to this parameterization, problem (2.33) is equivalent to

z∗i = max
θk,1,θk,2,...,θk,m−1

αk,i,m
∏m−1

t=1 cos θk,t

+
∑m−1

t=1 αk,i,t sin θk,t
∏t−1

j=1 cos θk,j
s.t. θk,t ∈ [0, 2π], t ∈ {1, 2, ...,m− 1},

(2.35)

where αk,i,j =
uk,i,j√
λk,j

, uk,i,j being the element in the ith row and jth column of Uk.

Notice that we allow all θk,i’s to take value in [0, 2π] in the above problem, which

would lead to redundant parameterization of the ellipsoid. However, this does not

affect the results presented here since each combination of θk,i ∈ [0, 2π] corresponds to

a unique point on the ellipsoid.

For the above problem, we have the following result.

Lemma 2.2. The optimal solution to problem (2.35) equals z∗i =
√∑m

j=1 α
2
k,i,j.
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Proof. First, for θk,m−1, we have∑m−2
t=1 αk,i,t sin θk,t

∏t−1
j=1 cos θk,j

+αk,i,m−1 sin θk,m−1

∏m−2
t=1 cos θk,t + αk,i,m

∏m−1
t=1 cos θk,t

=
∑m−2

t=1 αk,i,t sin θk,t
∏t−1

j=1 cos θk,j
+ (αk,i,m−1 sin θk,m−1 + αk,i,mcos θk,m−1)

∏m−2
t=1 cos θk,t

=
∑m−2

t=1 αk,i,t sin θk,t
∏t−1

j=1 cos θk,j

+
√
α2
k,i,m−1 + α2

k,i,m

(
αk,i,m−1√

α2
k,i,m−1+α2

k,i,m

sin θk,m−1

+
αk,i,m√

α2
k,i,m−1+α2

k,i,m

cos θk,m−1

)∏m−2
t=1 cos θk,t

≤∑m−2
t=1 αk,i,t sin θk,t

∏t−1
j=1 cos θk,j

+ sgn
(∏m−2

t=1 cos θk,t
)√
α2
k,i,m−1 + α2

k,i,m

∏m−2
t=1 cos θk,t,

(2.36)

where the last inequality holds with equality for the maximizing θk,m−1. The rest of

the proof follows recursively, which completes the proof.

Based on the above result, the optimal solution to problem (2.32) can be written

as maxi
√∑m

i=1 α
2
k,i,j. As a result, we have

δk,1 =
δ

maxi
√∑m

j=1 α
2
k,i,j

.

We are now in a position to present the first set of upper and lower bounds on the

expectation of the communication rates.

Theorem 2.3. For the state estimation scheme in Fig. 2.1 and the event-based sched-

uler in (2.3), the expected sensor to estimator communication rate E(γk) is bounded

by
Γ(m/2, δ̄2

k,1/2)

Γ(m/2)
≤ E(γk) ≤

Γ(m/2, δ2
k,1/2)

Γ(m/2)
, (2.37)

with δ̄k,1 = maxzi∈{δ,−δ}, i∈{1,2,...,m}

√
z>Φ−1

k z and δk,1 = δ

maxi∈{1,2,...,m}
√∑m

j=1 α
2
k,i,j

.

Proof. From Lemma 2.1, we have∫
Ω0

fzk(z)dz = 1− Γ(m/2, r2/2)/Γ(m/2).

Since Ωk,1 ⊂ Ω ⊂ Ω̄k,1,

1− Γ(m/2, δ2
k,1/2)

Γ(m/2)
≤
∫

Ω

fzk(z)dz ≤ 1−
Γ(m/2, δ̄2

k,1/2)

Γ(m/2)
.
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From (2.27), we have

Γ(m/2, δ̄2
k,1/2)

Γ(m/2)
≤ E(γk) ≤

Γ(m/2, δ2
k,1/2)

Γ(m/2)
.

Although the computation effort required to calculate the Gamma and incomplete

Gamma functions is small, the determination of δ̄k,1 and δk,1 can be computationally

expensive, especially for the case when m is large. In fact, the number of vertices

considered in computing δ̄k,1 equals 2m. In the following, upper and lower bounds with

lower computational burden are further explored.

Define S ⊂ Rm as the largest sphere contained in Ω:

S := {z ∈ Rm| z>z ≤ δ2}, (2.38)

and define S̄ ⊂ Rm as the smallest sphere that contains Ω:

S̄ := {z ∈ Rm| z>z ≤ δ2m}. (2.39)

Based on S̄ and S, we further define Ωk,2 ⊂ S as the largest ellipsoid that is contained

in S and satisfies

Ωk,2 := {z ∈ Rm| z>Φ−1
k z ≤ δ2

k,2}, (2.40)

and define Ω̄k,2 as the smallest ellipsoid that contains S̄ and satisfies:

Ω̄k,2 := {z ∈ Rm| z>Φ−1
k z ≤ δ̄2

k,2}. (2.41)

The relationship of S̄, S, Ω̄k,2, Ωk,2 and Ω for the case of m = 2 is shown in Fig. 2.3.

In the following, we show that δk,2 and δ̄k,2 can be analytically calculated based on the

eigenvalues of the prediction error covariance matrix. Since Ωk,2 and Ω̄k,2 are convex,

the major effort in determining δk,2 and δ̄k,2 is to calculate the maximal and minimal

values of z>z over the set {z ∈ Rm| z>Φ−1
k z = 1}, for which we have the following

result.

Lemma 2.3. For all z ∈ Rm satisfying z>Φ−1
k z = 1, 1/λ̄k ≤ z>z ≤ 1/λk holds, where

λk and λ̄k are the smallest and largest eigenvalues of Φ−1
k , respectively.

Proof. By the properties of the orthogonal matrices, we have z>z = p>k pk. From (2.34),

p>k pk =

∏m−1
i=1 cos2 θk,i
λk,m

+
m−1∑
i=1

sin2 θk,i
∏i−1

j=1 cos2 θk,j

λk,i
,
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Figure 2.3: Relationship of inner and outer ellipsoidal approximations of Ω for the case
of m = 2.

and we have

1
λk,m

= 1
λk,m

(∏m−1
i=1 cos2 θk,i +

∑m−1
i=1 sin2 θk,i

∏i−1
j=1 cos2 θk,j

)
≤

∏m−1
i=1 cos2 θk,i
λk,m

+
∑m−1

i=1

sin2 θk,i
∏i−1

j=1 cos2 θk,j

λk,i

≤ 1
λk,1

(∏m−1
i=1 cos2 θk,i +

∑m−1
i=1 sin2 θk,i

∏i−1
j=1 cos2 θk,j

)
= 1

λk,1
,

(2.42)

where equality is achieved in the first inequality for θk,1 = θk,2 = · · · = θk,m−1 = 0,

and strict equality holds for the second inequality if θk,1 = π/2, θk,2 = θk,3 = · · · =

θk,m−1 = 0. In conclusion, we have 1/λ̄k ≤ z>z ≤ 1/λk.

From the above lemma, it is straightforward to obtain that for z ∈ {z ∈ Rm|z>Φ−1
k z =

r2}, r2/λ̄k ≤ z>z ≤ r2/λk holds. Therefore we have δk,2 =
√
λkδ and δ̄k,2 =

√
λ̄kmδ.

Based on the above discussions, we have the following result on the bounds of the

communication rate.

Theorem 2.4. For the state estimation scheme in Fig. 2.1 and the event-based sched-

uler in (2.3), the expected sensor to estimator communication rate E(γk) is bounded
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by
Γ(m/2, δ̄2

k,2/2)

Γ(m/2)
≤ E(γk) ≤

Γ(m/2, δ2
k,2/2)

Γ(m/2)
, (2.43)

with δ̄k,2 =
√
mλ̄kδ and δk,2 =

√
λkδ.

Proof. The proof of this result is the same as that of Theorem 2.3 and thus is omitted.

Notice that when the sensor has only one measurement channel, i.e., m = 1, all

proposed upper and lower bounds in Theorems 2.3 and 2.4 coincide. In this case, the

exact value of E(γk) can be obtained by either of the results. The above results provide

time-varying lower and upper bounds on the communication rate, which depend on

the eigenvalues of the prediction error covariance matrices. If the system is stable,

uniform upper and lower bounds (with respect to k) can be provided as well.

Corollary 2.1. If the system in (2.1) is stable, the communication rate is bounded by

Γ(m/2, δ̄2/2)

Γ(m/2)
≤ E(γk) ≤

Γ(m/2, δ2/2)

Γ(m/2)
, (2.44)

as k →∞, where δ̄ =
√
mλ1δ, δ =

√
λ2δ, λ1 = max{eig[(CPC>+R)−1]}, P being the

stabilizing solution to the Riccati equation

P = APA> − APC>[CPC> +R]−1CPA> +Q,

and λ2 = min{eig[(CP̄C> + R)−1]}, P̄ being the stabilizing solution to the algebraic

Lyapunov equation

P = APA> +Q.

Proof. This result follows from Theorem 2.4 and the monotonicity properties of the

solutions to the time-varying Riccati difference equations [21].

In addition, due to the structure of the optimal estimate, the estimator does not need

to send the optimal prediction to the remote scheduler when no event occurs, since the

same prediction can be generated by the scheduler based on the previous prediction

(which is also the optimal estimation) with little additional computation cost. In

this way, the communication cost is further reduced by the proposed state estimation

method.
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Remark 2.3. Notice that viewed from the remote side (namely, the remote estimator),

the prediction error êk|k−1 is not Gaussian conditioned on the information provided by

the event-triggering set. This issue has been addressed in [73] and is one of the main

difficulties in event-triggered estimator design problems. On the other hand, for the

problem of communication-rate analysis, we need to move back to the process side and

study the problem from an unconditional perspective. The main reason of doing this

is that the constraints are introduced by the event-triggering conditions, which have

a different nature from the hard constraints that indeed restrict the supports of the

random processes (e.g., input/output saturation, logic mechanisms). Therefore, viewed

from the process side, xk and x̂k|k−1 still evolve as unconstrained random processes,

and are still Gaussian due to their linear dependence on the Gaussian noise and initial

states. The benefit of this choice is that the problem is slightly simplified and allows

us to derive upper and lower bounds on the communication rates, which coincide for

the case m = 1.

Remark 2.4. For the case of the ML estimation problem in (2.5), the communication

rate of the corresponding solution is difficult to analyze. The main problem lies in that

the unconditional distribution of the resultant prediction error is unknown, due to the

existence of the inequality constraints in (2.5). As a result, it is only possible to discuss

the communication rate by analyzing the distribution of the prediction error given the

condition ŷt = ỹt for the event time instants. However, we do not look into the details

of this issue since the calculation burden of determining the resultant estimate itself

goes beyond the limited calculation capability of the smart sensor.

2.5 Examples

In this section, simulation examples are presented to illustrate the proposed results.

Apart from the proposed one-step event-based estimator, three other estimators are

also implemented to compare the tradeoff between average communication rate and

estimation performance, including the Kalman filter with periodic packet dropouts2,

Kalman filter with intermittent observations [64], and the event-based MMSE estima-

tor [73].

2To implement this filter, we assume the first L measurement are lost in each period T ; when no
measurement is available, only prediction is performed.
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2.5.1 Example 1

Consider a third-order system of the form in (2.1) measured by a sensor with:

A =

0.6559 −0.1689 0.2196
0.0241 0.5864 −0.0379
0.0378 −0.0452 0.6206

 ,
Q =

2.2861 0 0
0 2.3106 0
0 0 2.2683

 ,
C =

[
0.0216 0.8383 0.0164
0.6359 0.0034 0.5174

]
,

R =

[
0.0312 0

0 0.0385

]
.

First, δ is set to 0.8. The proposed one-step event-based ML sensor data scheduling

and state estimation strategy is applied and the estimation performance is shown in

Fig. 2.4. The plot of γk is presented in Fig. 2.5, and the proposed bounds on E(γk) are

shown in Fig. 2.6. The shape of the time-varying bounds is due to the converging and

monotonic properties of the solutions to the Riccati equations. To further compare

the tightness of the different upper and lower bounds, the absolute distances between

the upper and lower bounds calculated according to Theorems 2.3 and 2.4 are shown

in Fig. 2.7. In addition, the actual average communication rate calculated according

to Fig. 2.5 is 51%.

Second, the tradeoff between estimation performance and communication rate is

further analyzed by changing the values of δ and compared with the three estimators

mentioned above, and the results are shown in Fig. 2.8, where the average communi-

cation rate is defined by

γ̃ :=
1

N

N∑
k=1

γk, (2.45)

N being the simulation horizon, and the average estimation error is defined by

ε :=
1

N

N∑
k=1

‖xk − x̂k|k‖2. (2.46)

It is shown that at the same average communication rate, the performance of the

Kalman filter with intermittent observations is better than that with periodic packet

dropouts, and the one-step event-based ML estimator achieves very close estimation

performance to the event-based MMSE estimator, which is much improved compared
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with the Kalman filter with periodic packet dropouts and intermittent observations.

On the other hand, at the same average communication rate γ̃, since the MMSE esti-

mator needs feedback communication (including the state prediction and normalizing

matrix) at each time instant, the amount of communication burden is much smaller

for the proposed one-step ML estimator.
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Figure 2.4: Performance of the state estimation strategy (xik denotes the trajectory of
the ith state at time instant k, and x̂ik denotes the estimate of the ith state at time
instant k).

2.5.2 Example 2: Sensorless event-based estimation of a DC
motor system

In this subsection, we further illustrate the proposed results with a sensorless remote

estimation problem involving a DC motor. The mechanical and electrical dynamics of

the DC motor system are given by [20]:

Jm
d2θm
dt2

+ b
dθm
dt

+ TL = Ktia,

La
dia
dt

+Raia = va −Ke
dθm
dt

,

where Jm is the rotor inertia, θm is the shaft rotational position, TL is the load torque, b

is the viscous friction coefficient, Kt is the torque constant, Ke is the electric constant,
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γ

Figure 2.5: Plot of γk.

La is the armature inductance, Ra is the armature resistance, and va is the DC voltage

input. The motor parameters are summarized in Tab. 2.1, which are obtained based

on experimental measurements of a 500W permanent magnet DC motor with rated

speed, current and voltage equal to 314.16rad/s, 3.5A and 180V, respectively [13].

The objective here is to estimate the shaft rotational position θm, shaft rotational

speed θ̇m and armature current ia with a current sensor (e.g., a Hall effect sensor).

This is called the sensorless control/estimation technique3 in the industrial electronics

community [29, 30, 67]. The estimation is performed by a remote estimator collecting

the measurement information through a battery-powered wireless channel. In this

work, we consider the load type to be piecewise constant, which can be provided by

a synchronous machine. Since both the load torque and DC voltage are only subject

to step changes, it is reasonable to assume that these signals are known/generated by

the remote estimator.

To implement the estimator, a state-space model is first derived. Since the direct

consideration of shaft rotational position will introduce an undetectable mode (in fact

the corresponding eigenvalue equals 1) to the system, we choose the state vector as

x := [θ̇m ia]
�, the input vector as u := [TL va]

�, and the measurement output as

3Here ‘sensorless’ means the elimination of the speed sensor.
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Figure 2.6: Bounds on E(γk) (UB1 and LB1 respectively denote the upper and lower
bounds derived in Theorem 2.3, UB2 and LB2 respectively denote the upper and
lower bounds derived in Theorem 2.4, and UB3 and LB3 respectively denote the
upper and lower bounds derived in Corollary 2.1).

y := ia, which lead to the state-space model:

ẋ(t) =

[− b
Jm

Kt

Jm

−Ke

La
−Ra

La

]
x(t) +

[− 1
Jm

0

0 1
La

]
u(t), (2.47)

y(t) =
[
0 1

]
x(t). (2.48)

Notice that based on the estimation of the rotational speed, the shaft rotational posi-

tion can be estimated as well. With these parameter settings, a discrete-time model is

obtained with sampling time chosen as Ts = 0.001s:

xk+1 =

[
0.9951 0.2289
−0.0177 0.8672

]
xk +

[
−0.4158 0.0038
0.0038 0.0301

]
uk

+ wk, (2.49)

yk =
[
0 1

]
xk + vk, (2.50)

where wk and vk are further introduced to model the noisy operating environment.

Specifically, wk := [w1
k w

2
k]
> with w1

k characterizing the mechanical noise that couples

into the speed-loop and w2
k modelling the electrical noise that couples into the voltage

input, and vk models the measurement noise. The covariance matrices of wk and vk are

assumed to be Q =

[
0.2013 0.0430
0.0430 0.0363

]
and R = 0.03, respectively. Since both inputs are
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Figure 2.7: Comparison of the relative tightness of different bounds (UB1-LB1 de-
notes the distance between the upper and lower bounds derived in Theorem 2.3, and
UB2-LB2 denotes the distance between the upper and lower bounds derived in The-
orem 2.4).

Table 2.1: Motor parameters
Parameter Value Unit

La 20.25 H
Ra 16.4 Ω
Ke 0.0233 V/(rad/sec)
Kt 0.0183 N·m/A
Jm 9 g·cm2

b 0.0064 N·m/(rad/sec)

known to the remote estimator, the proposed results can be applied by only modifying

the prediction as x̂k|k−1 = Ax̂k−1|k−1 +Buk, B being the discretized input matrix.

First, the event-triggering level is set to δ = 0.4A. The input signals utilized are

plotted in Fig. 2.9. The proposed event-based sensor data scheduling and state esti-

mation strategy is applied and the estimation performance is shown in Fig. 2.10. For

this case, the proposed upper and lower bounds on E(γk) in Theorems 2.3 and 2.4

coincide, and therefore the exact value of E(γk) can be determined, which is shown in

Fig. 2.11. In addition, the actual average communication rate is 19.35%.

Second, by varying the event-triggering threshold δ, the relationship between esti-

mation performance and average communication rate is further analyzed and compared

with the other three methods. The results are shown in Fig. 2.12, where the aver-
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Figure 2.8: Tradeoff between estimation performance and communication rate.

age estimation error and average communication rate are defined in (2.46) and (2.45),

respectively. Again it is shown that the performance of the one-step event-based ML

estimator is very close to that of the event-based MMSE estimator, at a much decreased

communication burden (due to the fact that no feedback communication is required for

predicted state when γk = 0 and no normalizing matrix needs to be transmitted to the

scheduler at all time instants). In this sense, the ML estimator has greater applicabil-

ity in this wireless communication scenario with satisfactory estimation performance

and potentially prolonged battery life.

2.6 Summary

In this chapter, an event-based state estimation problem is studied in the framework

of ML estimation. We show that the optimal estimator is parameterized by a time-

varying Riccati equation associated with an exponential computational complexity.

A one-step event-based estimation problem with reduced computation burden is also

studied and a recursive solution similar to the Kalman filter with intermittent obser-

vations is obtained. Results on the communication rate are obtained for this problem.

For the case of scalar sensors, the exact value of the expectation of the communica-

tion rate can be determined; for the case of sensors with vector-valued measurements,

upper and lower bounds are provided on the expectation of communication rate by ex-

ploring the inner and outer ellipsoidal approximations of the m-dimensional cube. An
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Figure 2.9: Plot of the input signals.

alternative approach to reduce the computational burden of the general event-based

ML estimation problems is to consider the formulation of receding horizon estimation

[4, 25, 48, 57], which points out the topic for possible future research.
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Figure 2.10: Performance of the state estimation strategy.

Figure 2.11: Plot of E(γk).
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Figure 2.12: Tradeoff between estimation performance and communication rate.
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Chapter 3

An approximate Gaussian approach
to event-triggered state estimation∗

∗

3.1 Introduction

In this chapter, we consider the scenario that the process is measured by a net-

work of sensors and that each sensor chooses to provide its latest measurement update

according to its own event-triggering condition. In this case, hybrid information is pro-

vided by the whole group of sensors as well as the event-triggering sets. For the sensors

whose event-triggering conditions are satisfied, the exact values of the sensor outputs

are known, providing “point-valued measurement information” to the estimator; for

sensors that the event-triggering conditions are not satisfied, some information con-

tained in the event-triggering sets is known to the estimator as well, to which we refer

as “set-valued measurement information” in this work. The basic goal is to find the

MMSE estimate given the hybrid measurement information. As will be addressed later,

the main issues arise from the computational aspect, due to the non-Gaussianity of

the a posteriori distributions. Therefore we focus on the derivation of an approximate

(due to the Gaussian assumption) MMSE estimate that possesses a simple structure

but still inherits the important properties of the exact optimal estimate. The main

contributions are summarized as follows:

1. An approximate MMSE estimate induced by the hybrid measurement informa-

tion provided by a sequence of sensors has been derived. We show that the

∗Parts of the results in this chapter appeared in Automatica, vol. 50, no. 6, pp. 1641-1648, 2014.
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estimate is determined by the conditional mean and covariance of the innova-

tions. The results are valid for general event-triggering schemes, and reduce to

the results obtained in [73] if only one sensor and the level-based event-triggering

conditions are considered.

2. Insights on the optimal estimate when each sensor has only one channel are

provided. In this case, closed-form recursive state estimate update equations

are obtained. Utilizing the recent results on the partial order of uncertainty

and information [12], we show that the exploration of the set-valued informa-

tion guarantees improved estimation performance in terms of smaller estimation

error covariance. The results are equally applicable to multiple-channel sensors

with uncorrelated/correlated measurement noises but separate event-triggering

conditions on each channel.

3. Extensive Monte Carlo experiments are performed to test the effectiveness of

the proposed estimator. Compared with the Kalman filter that only exploits the

received point-valued measurements, the proposed estimator provides almost-

guaranteed improved performance, which is not sensitive to the sensor sequence

used.

Notation: N and N+ denote the sets of nonnegative and positive integers, respectively.

Let i, j ∈ N. Denote Ni:j := {i, i + 1, ..., j}. R denotes the set of real numbers. For

m, n ∈ N+, Rm×n denotes the set of m by n real-valued matrices, whereas Rm is

short for Rm×1. B denotes the set {0, 1}. For a random variable x, E(x) denotes its

expectation, Cov(x) denotes its covariance; for a univariate random variable, Cov(·)
is also used to denote the variance.

3.2 System description and problem setup

Consider a linear time-invariant process that evolves in discrete time driven by

white noise:

xk+1 = Axk + wk, (3.1)

where xk ∈ Rn is the state, and wk ∈ Rn is the process noise, which is zero-mean

Gaussian with covariance Q ≥ 0. The initial value x0 of the state is Gaussian with

E(x0) = µ0, and covariance P0. The state information is measured by a number

of battery-powered sensors, which communicate with the state estimator through a
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wireless channel, and the output equations are

yik = Cixk + vik, (3.2)

where vik ∈ Rm is zero-mean Gaussian with covariance Ri > 0. In addition, x0, wk

and vik are uncorrelated with each other. We assume the number of sensors equals

M . Considering limitation in sensor battery capacity and the communication costs,

an event-based data scheduler is equipped with each sensor i. At each time instant

k, sensor i produces a measurement yik, and the scheduler of sensor i tests the event-

triggering condition

γik =

{
0, if yik ∈ Ξi

k

1, otherwise
(3.3)

where Ξi
k denotes the event-triggering set of sensor i at time k, and decides whether

to allow a data transmission. If γik = 1, sensor i sends yik to the estimator through

the wireless channel. Notice that the event-triggering scheme in (3.3) is fairly general

and covers most schemes considered in the literature and industrial applications, e.g.,

the “send on delta” strategy and the level-based triggering conditions (not necessarily

being symmetric). For many previously considered event-triggering schemes (e.g., the

level-based event-triggering conditions in [73] and Chapter 2 of this thesis), feedback

communication from the estimator to the sensor is needed at certain time instants as

the event is related to the innovation; however, since the event-triggering sets Ξi
k can

be designed offline, the remote estimator will have full knowledge of them without

communication. In this way, the proposed results are applicable to battery-powered

WSNs, where it is normally too costly to use feedback communication.

Since the main task is to study event-based estimation and sensor fusion, we assume

the capacity of the channel is greater than M so that it is possible for the sensors to

communicate with the estimator at the same time.

Let x̂ik denote the optimal estimate of xk after updating the measurement of the

ith sensor, and denote P i
k as the corresponding covariance matrix.1 Denote Sn+ as the

set of symmetric positive semidefinite matrices. Define the functions h(·): Sn+ → Sn+
and g̃i(·, ·): Sn+ × R→ Sn+ as follows:

h(X) := AXA> +Q,
g̃i(X,ϑ) := X − ϑX(Ci)>[CiX(Ci)> +Ri]−1CiX.

(3.4)

For brevity, we denote g̃i(X, 1) as g̃i(X). Denote Yk := {Y1
k ,Y2

k , ...,YMk } as the

collection of measurement information received by the estimator. Notice that if γik = 1,

1Here we denote the 0th sensor as the case that no sensor information has been fused, namely, the
prediction case.
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Y ik = {yik}; otherwise, Y ik = {yik| yik ∈ Ξi
k}. In the latter case, although yik is unknown,

it is still jointly Gaussian with xk. Further define

I ik :=
{
Y1,Y2, ...,Yk−1, {Y1

k ,Y2
k , ...,Y ik}

}
(3.5)

for i ∈ N1:M , and in this way, we are able to summarize all the information we have in

I ik before considering the additional information Y i+1
k from sensor i+ 1 at time k. The

objective of our work is to explore the MMSE estimate of the process state (namely,

E(xk|IMk )) by taking into account all given information, namely, the set- and point-

valued measurements provided by the sensor network as well as the event-triggering

schemes.

When the state information is contained in combined point- and set-valued mea-

surements, following a standard Bayesian argument, the exact MMSE estimate is the

mean of the distribution of xk conditioned on IMk ,

E(xk|IMk ) =

∫
Rn

xfxk(x|IMk )dx. (3.6)

The major problem of this estimate arises from the computational aspect, due to

the fact that the conditional distribution of xk in (3.6) is no longer Gaussian when

set-valued measurements are provided. This conditional distribution can be updated

recursively by fusing the information sequentially

fxk(x|I ik) =
fxk(x|I i−1

k )
∫

Ξi
k
fyik(y|I i−1

k , xk = x)dy∫
Rn fxk(x|I i−1

k )
∫

Ξi
k
fyik(y|I i−1

k , xk = x)dydx
, (3.7)

and the final result does not depend on the sensor sequence utilized during the fusion

procedure (since the distribution is unique). However, analytical solutions to the

integrations in (3.7) rarely exist and the only method to implement this estimate is

numerical integration, which is inevitably expensive in computation.

On the other hand, one notices that

fxk(x|I ik)

=

∫
Yi
k
fxk(x|yik = y, I i−1

k )fyik(y|I i−1
k )dy∫

Yi
k
fyik(y|I i−1

k )dy
(3.8)

=

∫
Rm

fxk(x|yik = y, I i−1
k )fyik(y|y ∈ Y ik, I i−1

k )dy, (3.9)

where fyik(y|y ∈ Y ik, I i−1
k ) satisfies fyik(y|y ∈ Y ik, I i−1

k ) = 0, y /∈ Y ik and∫
Rm

fyik(y|y ∈ Y ik, I i−1
k )dy = 1,
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and behaves similarly as the Dirac function δ(y), which equals to 0 except for y = 0

and satisfies
∫
Rm δ(y)dy = 1. If point-valued measurements are always available, equa-

tion (3.9) becomes
∫
Rm fxk(x|yik = y, I i−1

k )δ(yik − y)dy = fxk(x|yik = y, I i−1
k ), which

maintains Gaussianity. Motivated by these observations, we introduce the following

assumption:

Assumption 3.1. The conditional distribution of xk given I ik can be approximated by

a Gaussian distribution with the same mean and covariance.

This assumption is also a commonly used technique in designing nonlinear Gaussian

filters [7, 8, 33, 35]. To further illustrate the above assumption in the context of event-

based estimation, we present the following numerical example.

Example 3.1. Consider a linear system measured by one sensor and assume xk−1 is

Gaussian with

A =

[
1.5 0.7
0.8 1.6

]
, Q =

[
0.5 0.1
0.1 0.6

]
,Cov(xk−1) =

[
0.9 0.1
0.1 0.8

]
,

C = [1.2 0.3], R = 0.3, and E(xk−1) = [0.5 0.5]> respectively. We study the distribution

of xk conditioned on set-valued measurement information. We perform Monte Carlo

simulation and collect the realizations of xk’s such that yk ∈ Yk := [CAE(xk−1) −
δ, CAE(xk−1) + δ], and estimate the resulting distribution. Different values of δ are

considered, and 10 million realizations of xk satisfying yk ∈ Yk are used to estimate the

conditional pdf fxk(x|yk ∈ Yk) for each δ. The pdf of Gaussian distributions f̂xk(x|yk ∈
Yk) with equal first two moments are also included for comparison in the plots (see also

the KL-divergences DKL(f‖f̂) and DKL(f̂‖f) of the distributions). From Fig. 3.1, it is

reasonable to approximate the conditional distributions as Gaussian distributions with

acceptable approximation errors.

Now we are in a position to state the main problem considered in this work:

Problem 3.1. At time k, given a sequence of measurement information {Y ik|i ∈ N1:M}
of xk and under Assumption 3.1, is it possible to find a simple approximate MMSE

estimator in the recursive form? Does the exploration of the set-valued information

lead to improved estimation performance in terms of estimation error covariance?

Meanwhile, since the exact MMSE estimate is the same for all fusion sequences

under the Bayesian decision framework (by the uniqueness of the conditional distri-

bution), when an approximate solution of a simple form is obtained, an additional
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(a) δ = 1. DKL(f̂‖f) = 0.0032, DKL(f‖f̂) = 0.0033.

(b) δ = 5. DKL(f̂‖f) = 0.0267, DKL(f‖f̂) = 0.0319.

(c) δ = 10. DKL(f̂‖f) = 0.0006, DKL(f‖f̂) = 0.0004.

Figure 3.1: Plot of the conditional distributions.
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question to ask is whether the estimation performance is sensitive to the fusion se-

quence (due to the Gaussian assumption); we will further address this issue in the

experimental verification section, where we test the performance of the proposed re-

sults extensively by Monte Carlo simulations.

3.3 Optimal fusion of sequential event-triggered

measurement information

In this section, Problem 3.1 is studied in detail. Define zik = yik − Cix̂0
k. Since x̂0

k

is known at time k by the estimator, this relationship maps the set Ξi
k to a unique

set Ωi
k := {zik : zik = yik − Cix̂0

k, y
i
k ∈ Ξi

k}. Define Li+1
k := P i

k(C
i+1)>[Ci+1P i

k(C
i+1)> +

Ri+1]−1, and eik := xk − x̂ik. We have the following result:

Theorem 3.1.

1. The optimal prediction x̂0
k of the state xk and the corresponding covariance P 0

k

are given by

x̂0
k = Ax̂Mk−1,

P 0
k = h(PM

k−1).

2. For i ∈ N0:M−1, the fusion of information from the (i + 1)th sensor leads to the

following recursive state estimation equations:

(a) If γi+1
k = 1,

x̂i+1
k = x̂ik + Li+1

k (zi+1
k − z̄i+1|i

k ), (3.10)

P i+1
k = g̃i+1(P i

k); (3.11)

(b) If γi+1
k = 0,

x̂i+1
k = x̂ik + Li+1

k (z̄
i+1|i+1
k − z̄i+1|i

k ), (3.12)

P i+1
k = g̃i+1(P i

k) + Li+1
k Cov(zi+1

k |I i+1
k )(Li+1

k )>, (3.13)

where z̄
i+1|i
k := Ci+1(x̂ik − x̂0

k), and z̄
i+1|i+1
k := E(zi+1

k |I i+1
k ).
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Proof. The first part of the result follows from Assumption 3.1. The proof of the

second part is given in two steps.

(1) Proof of a few instrumental equalities:

E[eik(z
i+1
k − z̄i+1|i

k )>|I i+1
k ]

= Li+1
k E[(zi+1

k − z̄i+1|i
k )(zi+1

k − z̄i+1|i
k )>|I i+1

k ],

E[(eik − Li+1
k (zi+1

k − z̄i+1|i
k ))(zi+1

k − z̄i+1|i
k )>|I i+1

k ] = 0,

E[(eik − Li+1
k (zi+1

k − z̄i+1|i
k ))

(eik − Li+1
k (zi+1

k − z̄i+1|i
k ))>|I ik, zi+1

k = z] = g̃i+1(P i
k),

E[(eik − Li+1
k (zi+1

k − z̄i+1|i
k ))

(eik − Li+1
k (zi+1

k − z̄i+1|i
k ))>|I i+1

k ] = g̃i+1(P i
k).

Since yi+1
k = Ci+1xk + vi+1

k , we have

E(yi+1
k |I ik) = Ci+1E(xk|I ik) = Ci+1x̂ik. (3.14)

Cov[yi+1
k |I ik]

= E[(yi+1
k − E(yi+1

k |I ik))(yi+1
k − E(yi+1

k |I ik))>|I ik],
= E[(Ci+1eik + vi+1

k )(Ci+1eik + vi+1
k )>|I ik]

= Ci+1P i
k(C

i+1)> +Ri+1, (3.15)

where P i
k = Cov[xk|I ik]. Since zi+1

k = yi+1
k − Ci+1x̂0

k,

E(zi+1
k |I ik) = Ci+1x̂ik − Ci+1x̂0

k. (3.16)

Cov[zi+1
k |I ik]

= E[(zi+1
k − E(zi+1

k |I ik))(zi+1
k − E(zi+1

k |I ik))>|I ik],
= E[(Ci+1eik + vi+1

k )(Ci+1eik + vi+1
k )>|I ik]

= Ci+1P i
k(C

i+1)> +Ri+1. (3.17)

Similarly, we have

Cov[yi+1
k x>k |I ik] = Ci+1P i

k. (3.18)

Thus

Cov[xk|I ik, yi+1
k = y] = g̃i+1(P i

k), (3.19)

E[xk|I ik, yi+1
k = y] = x̂ik + Li+1

k (yi+1
k − Ci+1x̂ik). (3.20)
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Define pi+1
k := Pr[zi+1

k ∈ Ωi+1
k |I ik] =

∫
z∈Ωi+1

k
fzi+1

k
(z|I ik)dz. We have the conditional pdf

fzi+1
k

(z|I i+1
k ) =

{
fzi+1

k
(z|I ik)

/
pi+1
k , if z ∈ Ωi+1

k ;

0, otherwise.
(3.21)

The rest of the proof follows from similar arguments as those below equation (27) of

[73].

(2) Proof of the theorem: The case of γi+1
k = 1 follows from (3.19) and (3.20). Now

we focus on the case of γi+1
k = 0. If the information provided by sensor i + 1 is given

as a set Y i+1
k , x̂i+1

k should evolve according to

x̂i+1
k = E[xk|I i+1

k ]

=

∫
z∈Ωi+1

k

E[xk|I ik, zi+1
k = z]fzi+1

k
(z|I ik)dz

/
pi+1
k

=
1

pi+1
k

∫
z∈Ωi+1

k

[x̂ik + Li+1
k z + Li+1

k Ci+1(x̂0
k − x̂ik)]

fzi+1
k

(z|I ik)dz
= x̂ik − Li+1

k z̄
i+1|i
k + Li+1

k z̄
i+1|i+1
k , (3.22)

where z̄
i+1|i+1
k := 1

pi+1
k

∫
z∈Ωi+1

k
zfzi+1

k
(z|I ik)dz = E(zi+1

k |I i+1
k ). Finally we calculate the

covariance of xk conditioned on I i+1
k :

P i+1
k = E[(xk − x̂i+1

k )(xk − x̂i+1
k )>|I i+1

k ]

= E[(eik − Li+1
k (z̄

i+1|i+1
k − z̄i+1|i

k ))

(eik − Li+1
k (z̄

i+1|i+1
k − z̄i+1|i

k ))>|I i+1
k ]

= g̃i+1(P i
k)

+ Li+1
k E[(zi+1

k − z̄i+1|i
k )(zi+1

k − z̄i+1|i
k )>|I i+1

k ](Li+1
k )>

− Li+1
k (z̄

i+1|i+1
k − z̄i+1|i

k )(z̄
i+1|i+1
k − z̄i+1|i

k )>(Li+1
k )> (3.23)

= g̃i+1(P i
k) + Li+1

k Cov(zi+1
k |I i+1

k )(Li+1
k )>, (3.24)

where equation (3.23) follows from the instrumental equalities as well as the equation

E[eik|I i+1
k ]

= E[xk − x̂ik|I i+1
k ]

=
∫
z∈Ωi+1

k
E[xk − x̂ik|I ik, zik = z]fzi+1

k
(z|I ik)dz

/
pi+1
k

=
∫
z∈Ωi+1

k
Li+1
k (z − z̄i+1|i

k )fzi+1
k

(z|I ik)dz
/
pi+1
k

= Li+1
k (z̄

i+1|i+1
k − z̄i+1|i

k ),

(3.25)
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and equation (3.24) follows from the relation

E[(zi+1
k − z̄i+1|i

k )(zi+1
k − z̄i+1|i

k )>|I i+1
k ]

= E[((zi+1
k − z̄i+1|i+1

k ) + (z̄
i+1|i+1
k − z̄i+1|i

k ))

((zi+1
k − z̄i+1|i+1

k ) + (z̄
i+1|i+1
k − z̄i+1|i

k ))>|I i+1
k ]

= Cov[zi+1
k |I i+1

k ]

+ (z̄
i+1|i+1
k − z̄i+1|i

k )(z̄
i+1|i+1
k − z̄i+1|i

k )>.

From the above result, the first and second moments of the truncated Gaussian

distributions, namely, E(zi+1
k |I i+1

k ) and Cov(zi+1
k |I i+1

k ) need to be calculated to im-

plement the event-based estimator. Fortunately, the moment evaluation problems of

truncated Gaussian distributions have been extensively studied in the literature of

statistical analysis; explicit formulae and efficient implementation methods have been

proposed for a variety of truncation sets, see [42, 68, 69] and the references therein.

Also, the estimate in (3.10) and (3.12) can be written in terms of the sum of series

of random variables with Gaussian and non-Gaussian distributions. According to the

asymptotic distribution theory for state estimate from a Kalman filter in the absence

of Gaussian assumptions [5, 65], the central limit theorem for the estimates is still

valid, which helps explain the rationality of Assumption 3.1.

The above result provides an acceptable answer to the first part of Problem 3.1; The

second part of the problem, however, is difficult to answer for general event-triggering

schemes. In the following, we consider m = 1, namely, when each sensor has only

one channel. Notice that this scenario is equivalent to that the sensors have multiple

channels, but each channel has uncorrelated measurement noise and separate event-

triggering conditions, which is easy to implement in most prevailing embedded systems.

Furthermore, the results can be equally applied to the case of multiple-channel sensors

with correlated measurement noise but separate event-triggering conditions. To do

this, it suffices to first transform each sensor measurement yik to ŷik = U iyik (where

U i is an orthogonal matrix satisfying Ri = (U i)>ΛiU i, Λi being a diagonal matrix

containing the eigenvalues of Ri), and then design the event-triggering conditions for

each channel of ŷik.

When m = 1, without loss of generality, the event-triggering sets can be parame-

terized as Ωi
k = {zik|aik ≤ zik ≤ bik}, for i ∈ N1:M . For this type of sets, we have the

following well known result [34].

Lemma 3.1. For a univariate Gaussian random variable

zi+1
k |I ik ∼ N (z̄

i+1|i
k , Qzi+1

k
),
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its truncated mean and variance over Ωi+1
k = {zi+1

k |ai+1
k ≤ zi+1

k ≤ bi+1
k } satisfy

E(zi+1
k |I i+1

k ) = z̄
i+1|i
k + ẑi+1

k , (3.26)

Cov[zi+1
k |I i+1

k ] = (1− ϑi+1
k )Qzi+1

k
, (3.27)

where φ(z) := 1√
2π

exp(−1
2
z2),

ẑi+1
k =

φ

(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
− φ

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)

Q
(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
−Q

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)Q1/2

zi+1
k

, (3.28)

ϑi+1
k =


φ

(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
− φ

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)

Q
(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
−Q

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)


2

−

ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

φ

(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
− bi+1

k −z̄i+1|i
k

Q
1/2

zi+1
k

φ

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)

Q
(
ai+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

)
−Q

(
bi+1
k −z̄i+1|i

k

Q
1/2

zi+1
k

) , (3.29)

Q(·) denotes the standard Q-function.

Based on this result, we will show that the optimal estimate subject to a given

sequence of measurement information reduces to a simple closed form, and that the

exploration of set-valued information could lead to guaranteed enhanced performance.

To do this, we introduce the following lemmas.

Lemma 3.2 (Theorem 2 in [12]). Let z be an absolutely continuous random variable

with cumulative distribution function F (z). The conditional variance Cov(z|a ≤ z ≤
b) is increasing in b if and only if∫

a≤z1≤z2≤b
{F (z1)− F (a)} dz1dz2 (3.30)

is log-concave in b, and it is decreasing in a if and only if∫
a≤z1≤z2≤b

{F (b)− F (z1)} dz1dz2 (3.31)
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is log-concave in a. When both conditions in (3.30) and (3.31) are satisfied for all

a, b ∈ C for some convex set C, then Cov(z|z ∈ A) is partially monotonic in an

interval A such that A ⊂ C.

Lemma 3.3 (Lemma 1 in [12]). If a function f(z) is log-concave for z ∈ (a, b), then

the antiderivative F (x) =
∫ z
a
f(t)dt is also log-concave for z ∈ (a, b) whenever it is

well defined.

Now we are ready to present the following result.

Theorem 3.2.

1. The optimal prediction x̂0
k of the state xk and the corresponding covariance P 0

k

are given by
x̂0
k = Ax̂Mk−1,
P 0
k = h(PM

k−1).
(3.32)

2. For i ∈ N0:M−1, the fusion of information from the (i + 1)th sensor leads to the

following recursive state estimation equations:

(a) If γi+1
k = 1,

x̂i+1
k = x̂ik + Li+1

k (zi+1
k − z̄i+1|i

k ), (3.33)

P i+1
k = g̃si+1

(P i
k). (3.34)

(b) If γi+1
k = 0,

x̂i+1
k = x̂ik + Li+1

k ẑi+1
k , (3.35)

P i+1
k = g̃si+1

(P i
k, ϑ

i+1
k ), (3.36)

where ẑi+1
k is given in (3.28), and ϑi+1

k is given in (3.29) and in particular,

satisfies ϑi+1
k ∈ (0, 1).

Proof. It suffices to prove equations (3.35) and (3.36). Equation (3.35) follows from

(3.26) and (3.12). From (3.13),

P i+1
k = g̃si+1

(P i
k) + Li+1

k Cov(zi+1
k |I i+1

k )(Li+1
k )>

= g̃si+1
(P i

k) + (1− ϑi+1
k )Li+1

k

[Ci+1P i
k(C

i+1)> +Ri+1](Li+1
k )>

= g̃si+1
(P i

k, ϑ
i+1
k ).
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Finally we show ϑi+1
k ∈ (0, 1). Since Cov[zi+1

k |I i+1
k ] > 0, we have ϑi+1

k < 1. We

consider the case z̄
i+1|i
k ∈ [ai+1

k , bi+1
k ]. In this case, (ai+1

k − z̄i+1|i
k )/Q

1/2

zi+1
k

≤ 0 and

(bi+1
k − z̄i+1|i

k )/Q
1/2

zi+1
k

≥ 0 hold. From (3.29), we have ϑi+1
k > 0. This implies that

a pair (ai+1
k , bi+1

k ) such that ai+1
k ≤ z̄

i+1|i
k ≤ bi+1

k will lead to Cov[zi+1
k |I i+1

k ] < Qzi+1
k

.

Now consider the case that z̄
i+1|i
k /∈ [ai+1

k , bi+1
k ]. There always exists a pair (ai+1

k , b̄i+1
k )

such that [ai+1
k , bi+1

k ] ⊂ [ai+1
k , b̄i+1

k ] and z̄
i+1|i
k ∈ [ai+1

k , b̄i+1
k ]. Since φ(z) is a logarithmi-

cally concave function, from Lemma 3.2 and Lemma 3.3, we have Cov[zi+1
k |I i+1

k ] ≤
Cov

[
zi+1
k |I ik, zi+1

k ∈ [ai+1
k , b̄i+1

k ]
]
< Qzi+1

k
. Thus we have ϑi+1

k > 0, which completes the

proof.

Since ϑik ∈ (0, 1) is guaranteed when γik = 0, smaller estimation error covariance

can be obtained by exploiting the set-valued measurement information, which implies

improved estimation performance. Also, we know that for a given sensor information

sequence s, the resultant optimal estimate evolves according to (3.33) and (3.35). The

calculation of ϑik mainly requires the calculation of the standard Q-functions, which is

easy to implement. Therefore, theoretically, the derived event-based estimator enjoys

both potentially improved performance and a simple closed form with low computa-

tional complexity. The actual effectiveness of the estimator will be further verified in

the following section.

3.4 Experimental verification of the proposed re-

sults based on Monte Carlo simulations

In this section, we test the efficiency of the proposed results by Monte Carlo simu-

lation. Specifically, we consider the practical “send on delta” communication strategy

[44], namely, at time k, sensor i decides whether to send new measurement updates to

the remote estimator according to the following condition:

γik =

{
1 if |yik − yiτ ik | ≥ δi,

0 otherwise,
(3.37)

where τ ik denotes the last instance when the measurement of sensor i is transmitted.

To study the applicability of the results, we consider three categories of systems:

1. Category 1: trace{Q}/n� trace{Ri}/m.

2. Category 2: trace{Q}/n ∼ trace{Ri}/m.
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3. Category 3: trace{Q}/n� trace{Ri}/m.

For each category, we randomly generate 1,000 third-order stable discrete-time sys-

tems2, the eigenvalues of which lie uniformly in [−0.95, 0.95], and measure each system

by 5 sensors with m = 1 and randomly generated parameters3. For each system, we

perform the simulation for 1,000 time instants, and evaluate the performance of the

proposed event-based estimator from two aspects:

(1) To study the possible performance improvement induced by exploring the set-

valued information, comparison is made with the Kalman filter with intermittent obser-

vations exploring only the received point-valued measurement information. To quantify

the performance difference, the estimation errors are normalized by the averaged norm

of the original state:

∆E :=
eK − eE√∑1000
t=1 ‖xt‖2/1000

, (3.38)

where eK denotes the root average squared estimation error of the Kalman filter with

intermittent observations, eE denotes the root average squared estimation error of the

proposed event-based estimator, and xt denotes the random generated state trajectory

of the system. The distributions of ∆E’s for different categories as well as the corre-

sponding average communication rates4 are plotted in Fig. 3.2. From this figure, it

is observed that the proposed event-based estimator obtained almost guaranteed im-

proved performance compared with the Kalman filter with intermittent observations,

indicating the efficient exploitation of the set-valued information. The only few cases

that the event-based estimator slightly deteriorates the estimation performance be-

long to Category 1 (see Fig. 3.2(a)), and from Fig. 3.2(b), it is observed that these

cases have very low communication rates, which correspond to large δi’s; intuitively,

the Gaussian assumptions sometimes may not be accurate enough to provide effective

description of the a priori distributions for this case, thus resulting in less effective

estimates.

(2) To test the sensitivity of the estimation performance to sensor fusion sequences,

comparison is made between the estimates that are obtained according to different se-

2We do not consider unstable eigenvalues here to avoid errors introduced by the unbounded state
trajectories.

3The Q and Ri matrices are obtained by first enumerating a set of positive real numbers satisfying
the same uniform distributions, and then decreasing (increasing) those corresponding to Ri’s by one
magnitude for Category 1 (Category 3); the δi’s are also randomly generated positive real numbers
to allow for different communication rates.

4The average communication rates are calculated as 1
5·1000

∑5
i=1

∑1000
k=1 γ

i
k, which are nonnegative

by definition.
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quences of sensors. The first one is obtained by the sequences that minimize the

estimation error variances at each time instant, while the second one is obtained by se-

quences that maximize the estimation error variance at each time instant. To quantify

the performance difference, define the normalized performance difference as

∆F :=
eW − eB
eB

, (3.39)

where eB and eW denote the root average squared estimation errors of the fusion

sequences obtained by minimizing and maximizing the error variance, respectively. The

distribution of ∆F ’s and the corresponding communication rates are shown in Fig. 3.3.

It is observed that the difference is always relatively small, and becomes smaller as

the system becomes more measurement-noise dominant. Since the difference should

be zero for the MMSE estimate without the Gaussian assumption, the results indicate

that the proposed estimator represents the exact MMSE estimator to a satisfactory

extent.

3.5 Summary

In this chapter, the problem of optimal fusion of hybrid measurement information

for event-based estimation is studied. For a fixed sensor sequence, we show that the

optimal MMSE estimate depends on the conditional mean and variance of the inno-

vations. When each sensor has only one channel, a closed-form representation for the

MMSE estimate is developed, and it is proved that exploring the set-valued informa-

tion always improves estimation performance. The results are equally applicable to

multiple-channel sensors with separate event-triggering conditions. Extensive simula-

tion results show that the proposed estimator provides improved performance for most

cases and is not sensitive to the fusion sequence.
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(a) Estimation performance of Category 1
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(b) Communication rate of Category 1
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(f) Communication rate of Category 3

Figure 3.2: Performance validation of the proposed event-based estimator.
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Figure 3.3: Performance comparison between different fusion sequences.
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Chapter 4

On set-valued Kalman filtering and
its application to event-based state
estimation∗

∗

4.1 Introduction

The event-based estimation problem can be considered as a set-valued Kalman

filtering problem in the convex Bayesian decision framework [66], which takes the

difference and separation between “stochastic uncertainty” and “non-stochastic uncer-

tainty” into account. In [47], it was pointed out that “Ignorance, in its root meaning,

means lack of knowledge; uncertainty, on the other hand, typically means lack of pre-

cision. By specifying a probability distribution for a random variable, we attempt

to characterize uncertainty. If the correct distribution function is unknown, that is a

manifestation of ignorance.” From this perspective, the statistical information of the

noise and the initial states are regarded as “uncertainty” (or “stochastic uncertainty”),

while the ambiguous information contained in the event-triggering sets can be consid-

ered as “ignorance” (or “non-stochastic uncertainty”), since the estimator’s inability

of knowing the point-valued measurement information during non-event time instants

can be regarded as “lack of knowledge”, which is caused by the subjective choice of

the event-triggering conditions.

Compared with the existing results in event-based state estimation, the set-valued

filtering approach provides an alternative way of exploiting and understanding the

∗Parts of the results in this chapter have been conditionally accepted by IEEE Transactions on
Automatic Control as a full paper, 2014.
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additional information contained in the event-triggering conditions. The set-valued

Kalman filter was originally introduced by [47], where the standard Kalman filter was

extended to the case that a convex set of initial estimate distributions was consid-

ered. Although the filters bear good asymptotic properties, they are not applicable to

the event-based estimation scenario, since only point-valued measurements are consid-

ered. Recently, further relaxation of the assumptions on uniqueness for the a posteriori

probability distributions was considered in [51] by allowing set-valued measurements

and the multiple sensor fusion problem was considered in [52] utilizing the informa-

tion filter approach. When the set-valued measurements are treated as non-stochastic

uncertainty, the choice of different points in the measurement set at each time instant

only leads to different values of the estimation mean (which we refer to as “the set

of estimation means” hereafter), while the estimation error covariance remains unaf-

fected. These results allow set-valued event-based estimators to be designed; however,

several problems remain unexplored with respect to these new set-valued filters, which

are of fundamental importance for the study of event-based estimation:

1. For multiple point-valued measurements, the performance is quantified only in

terms of the estimation error covariance, and it is known that the fusion sequence

used to update the sensor measurement information at the same time instant does

not affect the resultant centralized Kalman filter. For set-valued Kalman filters,

the overall performance is measured in two terms, the estimation error covariance

and the size of the set of estimation means (e.g., the size of an ellipsoidal set can

be quantified by the trace of a positive semidefinite matrix defining the shape of

the set in this work). Apparently, the fusion sequence still does not affect the

error covariance, but its effect on the size of estimation means is not known.

2. In [47], it was shown that the set of estimation means converges towards a sin-

gleton as time goes to infinity for point-valued measurements. However, the

asymptotic behavior of the size of the set of estimation means is not clear when

set-valued measurements are considered. In addition, due to the properties of

the Minkowski sum of ellipsoids, the set of estimation means can only be calcu-

lated approximately [51]; in this regard, the asymptotic property of the size of

the approximate set of estimation means is of importance as well.

3. In set-valued Kalman filtering, the performance of the estimator is measured by

not only the estimation error covariance that quantifies stochastic uncertainty,

but the size of the set of estimation means quantifying non-stochastic uncertainty
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as well. For standard Kalman filters, it is known that increasing the number of

sensors can reduce the estimation error covariance; this result is still valid for

the set-valued case. The effect of adding more sensors on the size of the set of

estimation means is, however, still unknown.

In this chapter, we seek to explore the above problems for linear time-invariant

systems with an emphasis on event-based estimation. The estimation problem is con-

sidered in the multiple sensor scenario, where each sensor is allowed to provide its

own set-valued measurement parameterized by ellipsoids. The main contributions are

summarized as follows.

1. The exact set of estimation means is shown to be invariant with respect to the

fusion sequences. Since the exact set-valued filter is normally not implementable,

a two-step approximate set-valued estimator is proposed and is shown to be

unaffected by the fusion sequences. The approximate estimator proposed here is

different from that in [52], which was given in the information filtering form.

2. The boundedness of the size of the set of estimation means for the exact set-

valued filter is proved. For the approximate estimator, we show that if the

closed-loop matrix is contractive at steady state, then the boundedness of the

size of the set of estimation means is guaranteed; otherwise, there exists an

invertible linear transformation such that the size of the set of estimation means

of the approximate estimator after the transformation is bounded.

3. An upper bound on the steady-state performance in terms of the size of the set

of estimation means is proposed, and conditions are characterized for smaller size

of the set of estimation means. For scalar systems, a sufficient condition is pro-

vided for guaranteed performance improvement. Based on the developed results,

an optimal event-triggering condition design problem is further formulated and

solved.

Notation: We use Italic letters to denote vector- or matrix-valued variables, and use

calligraphic letters to denote sets (except for the sets of real numbers and integers). R
denotes the set of real numbers. N denotes the set of nonnegative integers. N+ denotes

the set of positive integers. Let m, n ∈ N+; Rm×n denotes the set of m by n real-valued

matrices. For brevity, denote Rm := Rm×1. For v ∈ Rm, let ‖v‖ denote its Euclidean

norm. For Z ∈ Rm×n, Z> denotes the transpose of Z, and ‖Z‖2 denotes the spectral

norm of Z. The symbol I denotes the identity matrix with a context-dependent size.

53



For X, Y ∈ Rn×n, X > (≥) Y means X−Y is positive definite (positive semidefinite).

For two convex sets X , Y ⊆ Rn, let X ⊕ Y denote their Minkowski sum, namely,

X ⊕Y := {x+ y|x ∈ X , y ∈ Y}. Also,
⊕n

i=1Xi := X1⊕X2⊕ · · · ⊕Xn. For T ∈ Rm×n

and X ⊆ Rn, define TX as

TX := {Tx ∈ Rm|x ∈ X}.
Given Y > 0, an ellipsoidal set (or an ellipsoid) Y = E(c, Y ) in Rm is defined as

Y := E(c, Y )

=
{
y ∈ Rm

∣∣ (y − c)>(Y )−1(y − c) ≤ 1, Y > 0
}

;

if Y is singular and Y ≥ 0, Y is parameterized as1

Y =
{
y ∈ Rm

∣∣〈l, y〉 ≤ 〈l, c〉+ 〈l, Y l〉1/2,∀l ∈ Rm
}
.

In this work, we define the size of an ellipsoidal set Y as TrY , and we say set Y has a

bounded size if TrY is bounded2.

Let m,n, p, q ∈ N satisfying m ≤ n and p ≤ q; Nm:n denotes the set of integers

{m, ..., n}; letting {si ∈ N|i ∈ N1:r, r ∈ N+} be an indexed set of integers, ysm:n

denotes the set {ysm , . . . , ysn}, and ysm:n
p:q denotes the set {ysm:n

p , . . . , ysm:n
q }; similarly,

ysm:n ∈ Ysm:n denotes the relationship ysm ∈ Ysm , . . . , ysn ∈ Ysn , and ysm:n
p:q ∈ Ysm:n

p:q

denotes the relationship

ysm:n
p ∈ Ysm:n

p , . . . , ysm:n
q ∈ Ysm:n

q .

For a vector-valued random variable x, we use E(x) and Cov(x) to denote its mean

and covariance, respectively.

4.2 Problem setup

The process is linear time-invariant and evolves in discrete time driven by white

noise:

xk+1 = Axk + wk, (4.1)

where x ∈ Rn is the state, and w ∈ Rn is the noise input, which is zero-mean Gaussian

with covariance Q ≥ 0. We assume (A,Q) is stabilizable3. The initial value x0 of

1Note that the way of parameterizing an ellipsoidal set does not affect the results developed in
this work.

2Notice that based on this definition, the boundedness of the size of Y is independent of its centre
c ∈ Rm, since c only describes the relative position of Y. Normally the size of an ellipsoid is given by
the maximal eigenvalue of Y . In terms of boundedness, however, these two definitions are equivalent.

3Note that this is equivalent to the stabilizability of the pair (A,
√
Q), which can be proved based

on the PBH criteria.
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the state is also zero-mean Gaussian, with covariance P0. The state information is

measured using M different sensors, the measurement equations of which are

yik = Cixk + vik, (4.2)

where yi ∈ Rm denotes the output of the ith sensor, vi ∈ Rm is zero-mean Gaussian

with covariance Ri for i ∈ N1:M , and vi and vj are uncorrelated if i 6= j. In addition,

x0, w and vi are uncorrelated with each other. We assume (A,C) is detectable, where

C := [C>1 , . . . , C
>
M ]>; define R := diag{R1, R2, . . . , RM}.

We consider the scenario that the values of the measurement outputs yik are not ex-

actly known, but are only partially known in the sense that only the exact description

of sets Y ik is known such that yik ∈ Y ik for all i ∈ N1:M . To some extent, this reflects

the estimator’s inability of telling a point measurement from an uncountable set of

measurements, due to the lack of knowledge, e.g., the situation the remote estimator is

facing during the non-event instances in an event-based estimation scenario [73]. As a

result, the uniqueness of the posteriori probability distributions cannot be maintained,

which gives rise to the set-valued Kalman filters [47]. Due to the set-valued measure-

ments from the M sensors at each time instant, one feasible way to update the state

estimate is to fuse the measurement information from the sensors sequentially piece by

piece according to some sequence, which (can be chosen either arbitrarily or by design)

is mathematically given as

s = [s1, s2, . . . , sM ],

where si ∈ N1:M and si 6= sj unless i = j, for i, j ∈ N1:M . We refer to this sequence

as “fusion sequence” in this work. Note that in a fusion sequence, each sensor appears

once and only once, and the sequence is used to update the information from different

sensors measured at the same time instant and does not affect the sensor measurement

information in this work.

In standard Kalman filtering, the optimal state prediction x̃s0k that minimizes the

estimation error covariance at time instant k is known to satisfy

x̃s0k = E(xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1 ), (4.3)

where the superscript s0 is used to indicate that no sensor information measured at

time k has been updated; similarly, for i ∈ N1:M , the optimal state estimate x̃sik after

updating the measurement information from sensors s1, s2, . . . , si at time k satisfies

x̃sik = E(xk|ys1:M0 , . . . , ys1:Mk−1 , y
s1:i
k ). (4.4)
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The corresponding estimation error covariance satisfies

P s0
k := Cov(xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1 )

= AP sM
k−1A

> +Q, (4.5)

P si
k := Cov(xk|ys1:M0 , ys1:M1 , . . . , ys1:Mk−1 , y

s1:i
k )

= P
si−1

k − P si−1

k C>si(CsiP
si−1

k C>si +Rsi)
−1CsiP

si−1

k (4.6)

for i ∈ N1:M . In set-valued filtering [51, 52], the set-valued measurements are treated

as non-stochastic uncertainty; as a result, the choice of different points in the measure-

ment set only leads to different values of the estimation mean, while the estimation

error covariance remains unaffected. Specifically, the set of estimation means is defined

as

X s0
k :=

{
E(xk|ys1:M0:k−1)

∣∣ ys1:M0:k−1 ∈ Ys1:M0:k−1

}
, (4.7)

X si
k :=

{
E(xk|ys1:M0:k−1, y

s1:i
k )
∣∣ ys1:M0:k−1 ∈ Ys1:M0:k−1, y

s1:i
k ∈ Ys1:ik

}
, (4.8)

for i ∈ N1:M , where X s0
k denotes the set of estimation means when no sensor information

is fused at time k (namely, the prediction of the state), and for i ∈ N1:k, X si
k denotes

the set of estimation means after fusing the information of sensor s1, s2, . . . , si at time

instant k. We assume X s0
0 = {0}, following the zero-mean Gaussian assumption of x0.

The definition of estimation error covariance still follows that of the standard Kalman

filters, which has been given in (4.5) and (4.6). In light of the results in [47], [51, 52],

the exact set-valued Kalman filter with multiple sensor measurements is recursively

given as

X s0
k = AX sM

k−1, (4.9)

P s0
k = AP sM

k−1A
> +Q, (4.10)

and for i ∈ N0:M−1,

X si+1

k = (I −Ksi+1

k Csi+1
)X si

k ⊕K
si+1

k Ysi+1

k , (4.11)

where

K
si+1

k = P si
k C

>
si+1

(Csi+1
P si
k C

>
si+1

+Rsi+1
)−1,

P
si+1

k = P si
k − P si

k C
>
si+1

(Csi+1
P si
k C

>
si+1

+Rsi+1
)−1Csi+1

P si
k . (4.12)

In Kalman filtering, the confidence on the estimate is fully characterized by the

estimation error covariance; while in set-valued Kalman filtering, a set of probability
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density functions with the same covariance is considered, and the unknown information

caused by stochastic uncertainty and non-stochastic uncertainty is treated separately:

the confidence on stochastic uncertainty is still quantified as covariance (equations

(4.10) and (4.12)); the confidence on non-stochastic uncertainty is quantified as the

size of the set of estimation means (equations (4.9) and (4.11)). As will be shown in

this work, this separation can help provide new insights for event-based estimation

problems.

In this work, we assume Y ik are ellipsoidal sets parameterized as

Y ik := E(cik, Y
i
k ). (4.13)

Notice that the parameters of Y ik can be acknowledged by the estimator without com-

munication from the sensor. For instance, in an event-based estimation scenario with

the aforementioned “send-on-delta” triggering conditions in Section 4.1, cik is the pre-

viously transmitted measurement, while Y i
k is normally defined offline and thus can

be known to the estimator beforehand. In the literature, there are alternative ways

of describing set-valued measurements, e.g., in terms of parallelotopes and zonotopes

[3, 14]. The properties of the resultant estimates are, however, difficult to characterize,

due to the lack of intuitive mathematical description of the notion “sizes of the sets”.

Although the Minkowski sum of ellipsoids (which may not be an ellipsoid) is difficult to

calculate exactly [37], the ellipsoidal sets are very helpful in analysing the dynamic be-

havior of the estimates, since the size and shape of an ellipsoid are uniquely determined

by a positive semidefinite matrix. At the same time, outer ellipsoidal approximations

are conveniently employed to calculate the set that contains the set of means of the

estimates at each time instant, which is calculated according to the following result.

Lemma 4.1 ([37]). Let p > 0. We have

E(c1, X1)⊕E(c2, X2)

⊆E
(
c1 + c2, (1 + p−1)X1 + (1 + p)X2

)
. (4.14)

Normally p is calculated in some optimal sense. In this work, we take p = (Tr X1)1/2

(Tr X2)1/2
,

which minimizes the trace of (1 + p−1)X1 + (1 + p)X2. In this way, we are able to

evaluate the outer ellipsoidal approximate estimates

X̂ s0
k := E(x̂s0k , Xk) ⊇ X s0

k (4.15)
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of X s0
k according to Lemma 4.1 and equations (4.9)-(4.11), which will be formally

introduced in the next section to take account of the effect from sensor fusion sequence.

Based on the introduced notations, we are now in the position to present the

problems to be considered in this work:

1. Analyze the effect of the sensor fusion sequence s on the exact and approximate

sets of estimation means X s0
k and X̂ s0

k , respectively;

2. Analyze the asymptotic behavior of the sizes of X s0
k and X̂ s0

k subject to multiple

sensor set-valued measurements.

3. Analyze the effect of including additional sensors on X̂ s0
k .

In addition, after obtaining the solutions to these problems, we will apply them to

the analysis and design in event-based state estimation.

4.3 Sensor fusion

In this section, we analyze the effect of the fusion sequence on the size of the set of

estimation means, based on which a “sequence-independent” separate fusion principle

of fusing multiple sensor measurements is proposed. This property is of fundamental

importance for the analysis of asymptotical behavior and performance improvement

in the multiple-sensor scenario, without which the whole set of fusion sequences (the

cardinality of which equals M !) would have to be considered to analyze the worst-case

behavior.

To aid the analysis, we first present the following lemma on the properties of

Minkowski sum.

Lemma 4.2. Let X , Y ⊆ Rn, and let T : Rn → Rn be a linear transformation. Then

T (X ⊕ Y) = (TX )⊕ (TY).

Proof.

(TX )⊕ (TY) = {Tx|x ∈ X} ⊕ {Ty|y ∈ Y}
= {a+ b|a ∈ {Tx|x ∈ X}, b ∈ {Ty|y ∈ Y}}
= {T (x+ y)|x ∈ X , y ∈ Y}
= T (X ⊕ Y).
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Now we show that the fusion sequence does not affect the exact set of means of the

estimates. Before that, we first present some insights into the structure of the filter

gains and the closed-loop system matrix. For a given fusion sequence s, the closed-loop

matrix Ās0k satisfies

Ās0k :=A
M∏
i=1

(I −Ksi
k Csi) (4.16)

and the filter gain K̄
sj
k for the jth sensor satisfies

K̄
sj
k := A

[
M∏

i=j+1

(I −Ksi
k Csi)

]
K
sj
k . (4.17)

For these two matrices, we have the following equivalent representations.

Proposition 4.1. Ās0k P
s0
k = AP sM

k , K̄
sj
k = AP sM

k C>sjR
−1
sj

.

Proof. First, applying the matrix inversion lemma to equation (4.12), we have

P
si+1

k = (I + P si
k C

>
si+1

R−1
si+1

Csi+1
)−1P si

k . (4.18)

Similarly, for K
si+1

k , we have

K
si+1

k = (I + P si
k C

>
si+1

R−1
si+1

Csi+1
)−1P si

k C
>
si+1

R−1
si+1

= P
si+1

k C>si+1
R−1
si+1

. (4.19)

Also, from equation (4.12) and the fact that K
si+1

k = P si
k C

>
si+1

(Csi+1
P si
k C

>
si+1

+Rsi+1
)−1,

we have

P
si+1

k = (I −Ksi+1

k Csi+1
)P si

k . (4.20)

From equation (4.17), we have

K̄
sj
k = A

[
M∏

i=j+1

(I −Ksi
k Csi)

]
K
sj
k

= A

[
M∏

i=j+1

(I −Ksi
k Csi)

]
P
sj
k C

>
sj
R−1
sj

= AP sM
k C>sjR

−1
sj
, (4.21)

where the last equality is obtained by recursively applying equation (4.20). The relation

for Ās0k can be obtained following a similar argument.
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Remark 4.1. Notice that if P s0
k is nonsingular4, we have Ās0k = AP sM

k (P s0
k )−1. The

above result implies that the filter gains can be updated either by calculating the

Riccati equation in (4.12) corresponding to (Csi , Rsi) sequentially or by lifting all sensor

information matrices {(Csi , Rsi)} as (C,R) and computing the Riccati equation by

replacing Csi and Rsi with C and R in (4.12). The calculation of Ās0k is straightforward

as it is well know that it satisfies

Ās0k = A− AP s0
k C

>(CP s0
k C

> +R)−1. (4.22)

The update of the set of estimation means, on the other hand, can only be updated

by sequentially fusing the sensor information, although the fusion result is sequence

independent, as is shown in the result below.

Theorem 4.1. Let s1, s2 denote two different sensor fusion sequences. We have

1. If P
s10
k−1 = P

s20
k−1, then P

s10
k = P

s20
k .

2. If X s10
k−1 = X s20

k−1, then X s10
k = X s20

k .

Proof. The first part of the result follows from the matrix inversion lemma and a

few matrix manipulations. To prove the second part, first notice that according to

Lemma 4.2, we have

X sr0
k = Ā

sr0
k−1X

sr0
k−1 ⊕

M⊕
j=1

K̄
srj
k−1Y

srj
k−1 (4.23)

for r ∈ N1:2. From Proposition 4.1, K̄i
k−1 only depends on Ci and Ri, which are not

affected by the relative position of sensor i in the fusion sequence. Since for i ∈ N1:M ,

each sensor i appears once and only once in a fusion sequence, different fusion sequences

will lead to different permutation of the same set of summands {K̄i
k−1Y ik−1|i ∈ N1:M}

in the second term on the right hand side of equation (4.23). Finally, from (4.22),

Ā
sr0
k−1X

sr0
k−1 is unaffected by the fusion sequence either, the conclusion now follows from

the commutativity and associativity of Minkowski sums over convex bodies [41, 58].

Furthermore, note that since (A,C) is detectable,

Ā = lim
k→∞

A

[
M∏
i=1

(I −Ksi
k−1Csi)

]
4This condition holds asymptotically if (A,Q) is reachable (see the corollary on page 710 of [11]).
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exists and Ā is stable [15], which will be used in the stability analysis in the next

section. The above result shows that the estimation performance in terms of either the

estimation error covariance or the size of the set of estimation means does not depend

on the fusion sequence s for the exact set of means of the estimates. Unfortunately,

the exact sets of means of the estimates either in the form (4.23) or the recursive form

(4.9)-(4.11) are difficult to obtain analytically when the measurements are given in

terms of ellipsoidal sets, since the summation of ellipsoids may not be ellipsoids at

all [37], and consequently the analytical expression of the exact set-valued estimator

cannot be maintained. Motivated from the above result, however, we propose the

following procedure in Algorithm 1 to calculate the outer approximation of the set of

estimation means.

Algorithm 1 Calculation of X̂ s0
k

1: X̂ s0
0 = E(0, 0);

2: P s0
0 = P0;

3: k = 0;
4: while k ≥ 0 do
5: P sM

k = P s0
k − P s0

k C
>(CP s0

k C
> +R)−1CP s0

k ;

6: P s0
k+1 = AP sM

k A> +Q;

7: Ās0k = A− AP s0
k C

>(CP s0
k C

> +R)−1;

8: for i = 1 : M do
9: K̄si

k = AP sM
k CsiR

−1
si

;
10: end for
11: X̄ s0

k := E
(
x̄s0k , X̄

s0
k

)
= Ās0k X̂ s0

k

12: = E
(
Ās0k x̂

s0
k , Ā

s0
k Xk(Ā

s0
k )>

)
;

13: for i = 1 : M do

14: psik =
√

TrX̄
si−1

k

/
TrK̄si

k Y
si
k (K̄si

k )> ;

15: x̄sik = x̄
si−1

k + K̄si
k c

si
k ;

16: X̄si
k = (1 + 1/psik )X̄

si−1

k + (1 + psik )K̄si
k Y

si
k (K̄si

k )>;

17: X̄ si
k := E

(
x̄sik , X̄

si
k

)
;

18: end for
19: X̂ s0

k+1 := X̄ sM
k ;

20: k = k + 1;
21: end while
22: end

Algorithm 1 indicates that for multiple-sensor set-valued filtering, the fusion of co-

variance and estimation means should be performed separately: the estimation error

covariance is updated first (see lines 5 − 10), where the covariance updates are first
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calculated by solving the Riccati equation for C and R, and Ās0k and K̄si
k are respec-

tively calculated according to (4.22) and (4.21); then the update of estimation means

is performed (see lines 11-19), where the set of estimation means X̂ s0
k are calculated by

iteratively fusing the summands in (4.23) in a two-by-two fashion based on Lemma 4.1

according to an arbitrary fusion sequence s. One may think that it is not necessary to

do so, as is the case for classical Kalman filtering with multiple point-valued measure-

ments. We show that, however, the proposed procedure bears the basic properties of

the classical Kalman filter while enjoying the benefits of distributed implementation.

To see this, we look into the structure of the outer approximation of the set of the

means of the estimates with the help of the following lemmas [37].

Lemma 4.3. Let E(a,Q) ⊆ Rn. Then x ∈ E(a,Q) is equivalent to Ax + b ∈ E(Aa +

b, AQA>).

Lemma 4.4.

l⊕
i=1

E(ci, Xi) ⊆ E(c0, X0), (4.24)

with c0 =
∑l

i=1 ci,

X0 =

(
l∑

i=1

qi

)
l∑

i=1

q−1
i Xi (4.25)

for all qi > 0, i ∈ N1:l.

Following these lemmas and equation (4.23), we have the following updating equa-

tions of X̂ s0
k from X̂ s0

k−1 = E(x̂s0k−1, Xk−1) and Ysik = E(csik , Y
si
k ):

X̂ s0
k = E (x̂s0k , Xk) , (4.26)

x̂s0k = Ās0k−1x̂
s0
k−1 +

M∑
j=1

K̄
sj
k−1c

sj
k−1, (4.27)

Xk =

(√
Tr Ās0k−1Xk−1(Ās0k−1)> +

M∑
j=1

√
Tr K̄

sj
k−1Yk−1(K̄

sj
k−1)>

)
[(√

Tr Ās0k−1Xk−1(Ās0k−1)>
)−1

Ās0k−1Xk−1(Ās0k−1)>

+
M∑
j=1

(√
Tr K̄

sj
k−1Yk−1(K̄

sj
k−1)>

)−1

K̄
sj
k−1Yk−1(K̄

sj
k−1)>

]
. (4.28)
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Using a similar argument as that in Section IV.A of [52], equation (4.28) can

be evaluated in an iterative way as in lines 11-19 of Algorithm 1 according to an

arbitrary sequence. This not only helps to reduce the computational complexity at the

fusion centre through distributed computation (the acknowledgement or computation

of Ās0k and K̄si
k at sensor i would be necessary), but also guarantees the invariance

of outer ellipsoidal approximation of the set of estimation means with respect to the

fusion sequence. In [52], to possess this property, a different filter form, namely, the

information filter [50], was considered. On the other hand, the filter form utilized here

inherits the original form of Kalman filter with multiple point-valued measurements,

due to the separate covariance and estimate updating procedure in Algorithm 1. Notice

that in fact, at steady state, only the update of the estimation means (lines 11-19) is

necessary, since the solution to the Riccati equation converges to its unique stabilizing

solution, and therefore the algorithm can be implemented in a completely distributive

way without considering covariance update at the steady state.

4.4 Asymptotic properties of the set of means of

the estimates

In this section, the objective is to discuss the asymptotical boundedness properties

of both the exact and outer-approximate sets of estimation means for the multiple

sensor case. We first focus on the single sensor case and analyze the asymptotic

properties of the set-valued mean evolutions, and then extend the results to multiple

sensor case. When there is only one sensor, the equations are given by

X 0
k = AX 1

k−1, (4.29)

X 1
k = (I −KkC)X 0

k ⊕KkYk. (4.30)

In the prediction form, we have

X 0
k+1 = ĀkX 0

k ⊕ K̄kYk, (4.31)

where Āk = A(I − KkC), K̄k = AKk. Correspondingly, let X̂ 0
k = E(x̂0

k, Xk) and

Yk = E (ck, Yk), and the approximate estimate is given by

X̂ 0
k+1 = E

(
Ākx̂

0
k + K̄kck, Xk+1

)
, (4.32)

Xk+1 =

(
1 +

√
Tr K̄kYkK̄>k√
Tr ĀkXkĀ>k

)
ĀkXkĀ

>
k +

(
1 +

√
Tr ĀkXkĀ>k√
Tr K̄kYkK̄>k

)
K̄kYkK̄

>
k . (4.33)
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The objective of this section is to show the boundedness of the sizes of the sequence

of sets {X 0
k } and the possible boundedness of the sizes of the sequences of sets {X̂ 0

k }.
Before continuing, we give the following lemma.

Lemma 4.5. Let Q ≥ 0, and 0 ≤ P < I. Then Tr QP ≤ Tr Q.

Proof. Since 0 ≤ P < I, there exists a unitary matrix U such that U> = U−1 and

U>PU = U−1PU = diag{p1, p2, ..., pn}

satisfying 0 ≤ pi < 1, pi being the eigenvalues of P . Let p∗ = maxi∈N1:n pi < 1. We

have

TrQP = TrU−1QUU−1PU = TrU−1QUdiag{pi}.

Since U−1QU = U>QU ≥ 0, the diagonal elements of U−1QU are nonnegative. Thus

we have

TrU−1QUdiag{pi} ≤ TrU−1QUp∗I = p∗TrQ ≤ TrQ.

Notice that since p∗ < 1, the equality holds if and only if Q = 0.

Now we are ready to present the first result on the asymptotic properties of the

sizes of the sets of the means.

Theorem 4.2. Assume the pair (A,C) is detectable and (A,Q) is stabilizable. Let

Ā := limk→∞ Āk and K̄ := limk→∞ K̄k.

1. The sizes of the sequence of sets {X 0
k } are asymptotically bounded for all mea-

surement set sequences {Yk} with bounded sizes.

2. If ‖Ā‖2 < 1, the sizes of the sequence of ellipsoids {X̂ 0
k } are asymptotically

bounded for all measurement set sequences {Yk} with bounded sizes.

3. If ‖Ā‖2 ≥ 1, there exists an invertible linear transformation T : Rn → Rn

such that the sizes of the sequence of the set of estimation means { ˆ̃X 0
k} for the

transformed state x̃k := Txk are asymptotically bounded for all measurement set

sequences {Yk} with bounded sizes.

Proof. Since (A,C) is detectable and (A,Q) is stabilizable, the Kalman filter is stable

and the solution to the Riccati equation converges to the unique stabilizing solution.
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Thus Ā = limk→∞ Āk and K̄ = limk→∞ K̄k are well defined, and satisfy Ā = A− K̄C
and K̄ = AP̄C>(CP̄C>+R)−1, P̄ being the stabilizing solution to the Riccati equation

P = APA> − APC>(CPC> +R)−1CPA> +Q.

We will prove parts (2) and (3) before proving the result in part (1).

First we show that if ‖Ā‖2 < 1, the evolution of the size of the outer approximation

of the Minkowski sum in (4.32-4.33) is asymptotically bounded. Since the evolution of

equation (4.33) does not affect the evolution of the covariance and (A,C) is detectable,

it suffices to consider the steady-state Kalman filter gain, which is equivalent to the

consideration of Ā. At steady state, taking traces on both sides of equation (4.33), we

have

TrXk+1 =

(
1 +

√
Tr K̄YkK̄>√
Tr ĀXkĀ>

)
Tr ĀXkĀ

>

+

(
1 +

√
Tr ĀXkĀ>√
Tr K̄YkK̄>

)
Tr K̄YkK̄

>

=
(√

Tr ĀXkĀ> +
√

Tr K̄YkK̄>
)2

(4.34)

Since Xk+1 ≥ 0, we have TrXk+1 ≥ 0. Thus√
TrXk+1 =

√
Tr ĀXkĀ> +

√
Tr K̄YkK̄>

=
√

TrXkĀ>Ā+
√

Tr K̄YkK̄>

≤
√
a∗
√

TrXk +
√

Tr K̄YkK̄>, (4.35)

for some a∗ ∈ (0, 1), which follows from ‖Ā‖2 < 1 and Lemma 4.5. This implies the

boundedness of {√TrXk}, given the boundedness of {Yk}.
Now we consider the case ‖Ā‖2 ≥ 1. Since Ā is stable, there exists Ps > 0 such

that Ps is the solution to the Lyapunov equation Ā>PĀ − P + I = 0, which implies

Ps ≥ I > 0. Now we introduce a linear transformation T = P
1/2
s : Rn → Rn and let

x̃k = Txk. Apparently x̂k evolves according to

x̃k+1 = Ãx̃k + B̃wk,

yk = C̃x̃k + vk,

where Ã = TAT−1, B̃ = T , C̃ = CT−1. Furthermore, it is easy to verify that
¯̃K := ÃP̃ C̃>(C̃P̃ C̃> + R)−1 = TK̄ and P̃ = T P̄T>, P̃ being the stabilizing solution

to the Riccati equation

P = ÃP Ã> − ÃP C̃>(C̃P C̃> +R)−1C̃P Ã> + TQT>.
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Define ¯̃A := Ã− ¯̃KC̃, we have ¯̃A = T (A− K̄C)T−1 = P
1/2
s ĀP

−1/2
s . Thus

¯̃A> ¯̃A = P−1/2
s Ā>PsĀP

−1/2
s

= P−1/2
s (Ps − I)P−1/2

s = I − P−1
s < I,

which implies ‖ ¯̃A‖2 < 1. Therefore the conclusion of part (3) follows from the same

argument used for proof of part (2).

Finally we prove the result in part (1). The case of ‖Ā‖2 < 1 follows from the result

in part (2), since {X̂ 0
k } provides an outer approximation of {X 0

k }. To prove the case

of ‖Ā‖2 ≥ 1, we analyze the relationship between the exact Minkowski sum for the

original state estimate and that of the transformed state estimate. Similar to equation

(4.31), we have

X̃ 0
k+1 = ¯̃AkX̃ 0

k ⊕ ¯̃KkYk, (4.36)

where ¯̃Ak = Ã− ¯̃KkC, ¯̃Kk = ÃP̃k−1C̃
>(C̃P̃k−1C̃

> +R)−1 and P̃k being the solution to

the Riccati equation P̃k+1 = ÃP̃kÃ
>− ÃP̃kC̃>(C̃P̃kC̃

>+R)−1C̃P̃kÃ
>+TQT> subject

to P̃0 = TP0T
>. At time t = 0, X̃ 0

0 = {Tx0} = TX 0
0 . Note that following a similar

argument as that in the proof of part (3), ¯̃Ak = TĀkT
−1 and ¯̃Kk = TK̄k. Now assume

at time t = k, the relationship X̃ 0
k = TX 0

k holds. We have

X̃ 0
k+1 = TĀkT

−1X̃ 0
k ⊕ TK̄kYk. (4.37)

Following the definition Minkowski sum,

X̃ 0
k+1 :=

{
TĀkT

−1x̃+ TK̄ky
∣∣∣x̃ ∈ X̃ 0

k , y ∈ Yk
}

=
{
TĀkx+ TK̄ky

∣∣x ∈ X 0
k , y ∈ Yk

}
=
{
T (a+ b)|a ∈ {Ākx|x ∈ X 0

k }, b ∈ {K̄ky|y ∈ Yk}
}

= T
(
ĀkX 0

k ⊕ K̄kYk
)

= TX 0
k+1.

Thus X̃ 0
k = TX 0

k for all k. Since T is nonsingular, the boundedness of {X 0
k } is equivalent

to that of {X̃ 0
k }. The conclusion follows from part (3) of the theorem and the fact that

{ ˆ̃X0
k} provides an outer approximation of {X̃ 0

k }.

Remark 4.2. From the above proof, a quantitative relationship of the size of the set

of estimation means with the sets of measurements, the statistical properties of the
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noises and the system matrices can be obtained. To see this, assume there exists an

upper bound Ȳ ≥ Yk for all k ∈ N. For the case ‖Ā‖2 < 1, from (4.35), we have√
TrXk+1 ≤ ‖Ā‖2

√
TrXk +

√
Tr K̄Ȳ K̄>. (4.38)

Thus we have

lim
k→∞

√
Tr Xk ≤

√
Tr K̄Ȳ K̄>

/(
1− ‖Ā‖2

)
,

where the system and noise parameters are reflected in K̄ and Ā (Recall that K̄ =

AP̄C>(CP̄C>+R)−1 and Ā = A− K̄C, respectively, P̄ being the stabilizing solution

to the Riccati equation P = APA> − APC>(CPC> + R)−1CPA> + Q). The same

analysis applies to the case of ‖Ā‖2 ≥ 1 by introducing the linear transformation

T = P
1/2
s . In addition, note that the boundedness of {X̃ 0

k } does not imply that of

{X̂ 0
k }, since considering the trace operations in (4.33), the relationship between X̂ 0

k

and X̃ 0
k is not clear.

Another consequence of the above result is that for first-order systems with constant

size of measurement set, we are able to exactly characterize the size of the set of means

of the estimate at steady state.

Corollary 4.1. For n = m = 1, and Yk = Y . The size of {Xk} converges to

|K̄
√
Y |/(1− |Ā|).

Proof. The proof of this result follows from inequality (4.35) and the fact that |Ā| < 1

always holds for n = 1.

The next result generalizes Theorem 4.2 to the multiple sensor case, utilizing the

properties of the outer-approximate estimate set.

Corollary 4.2. Consider the exact and approximate multiple sensor set-valued esti-

mators in (4.9)-(4.12) and (4.26)-(4.28), respectively. Assume (A,C) is detectable and

(A,Q) is stabilizable. Let Ā := limk→∞ Ā
s0
k .

1. The sizes of the sequence of sets {X s0
k } are asymptotically bounded for all mea-

surement set sequences {Ysik } with bounded sizes.

2. If ‖Ā‖2 < 1, the sizes of the sequence of ellipsoids {X̂ s0
k } are asymptotically

bounded for all measurement set sequences {Ysik } with bounded sizes.

3. If ‖Ā‖2 ≥ 1, there exists an invertible linear transformation T : Rn → Rn such

that the sizes of the set of mean of the estimates { ˆ̃Xs0

k } for the transformed state

x̃k := Txk are asymptotically bounded for all measurement set sequences {Ysik }
with bounded sizes.
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Proof. To show this result, we establish the relationship between the single sensor case

and the multiple sensor case. By calculating the traces of both sides for (4.28), it is

not difficult to verify that

TrXk =

(√
Tr Ās0k−1Xk−1(Ās0k−1)>

+
M∑
i=1

√
Tr K̄si

k−1Y
si
k−1(K̄si

k−1)>

)2

, (4.39)

and thus √
TrXk =

√
Tr Ās0k−1Xk−1(Ās0k−1)> (4.40)

+
M∑
i=1

√
Tr K̄si

k−1Y
si
k−1(K̄si

k−1)>. (4.41)

Noticing the relationship with equation (4.35) and the boundedness of {Y si
k }, the

results are proved with a similar argument as that in the proof of Theorem 4.2.

4.5 Performance improvement

Now we analyze the effect of including more sensors on the estimation performance

in the set-valued estimation framework. Adding sensors always reduces the estimation

error covariance, following the monotonicity properties of the solutions to the Riccati

equations. Adding sensors, however, does not necessarily reduce the size of the set of

the means of the estimates, as is shown in the following example.

Example 4.1. Consider the system in (4.1) with n = 1, m = 1, A = 1.3, Q = 1.2,

C1 = 1, C2 = 0.6, R1 = 1.9, R2 = 0.7. Assume Y 1
k = 1, we consider two choices

of Y 2
k : (1) Y 2

k = 1.2, (2) Y 2
k = 0.2. The performance in terms of the size of the set

of estimation means obtained by using sensor 1 alone and using sensor 1 and sensor

2 are shown in Fig. 4.1 (a) and (b), respectively. It is shown that when Y 2
k = 0.2,

the addition of sensor 2 helps to improve the estimation performance; the choice of

Y 2
k = 1.2, however, deteriorates the performance in terms of a larger size of the set of

estimation means.

Motivated by the above example, given an existing sensor 1, it is interesting to

characterize conditions on properties of sensor 2 such that improved performance can

be guaranteed. Now we make the problem more explicit. Suppose we have a linear
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system originally measured only by sensor 1, namely, equations (4.1) and (4.2) with

M = 1. Now we introduce sensor 2 and measure the system state using two sensors.

We want to compare the size of the set of estimation means obtained only using

sensor 1 with that using sensors 1 and 2 together. First we need to quantify the

performance. To do this, we focus on the steady-state behavior of the size of the set

of estimation means by assuming that the closed-loop matrix Ā under consideration

satisfies ‖Ā‖2 < 1 (Note that if this condition is not satisfied by the original system,

we can introduce the linear transformation T in the proof of Theorem 4.2 such that the

transformed closed-loop matrix satisfies this condition). For simplicity, we assume the

shape of Ysik is asymptotically time invariant, namely, limk→∞ Y
si
k = Y si , and further

assume (A,Q) is reachable, which guarantees the positive definiteness of P s0 (see the

corollary on page 710 of [11]). From equation (4.41), we have

√
TrXk ≤‖Ās0k−1‖2

√
TrXk−1 +

M∑
i=1

√
Tr K̄si

k−1Y
si
k−1(K̄si

k−1)>. (4.42)

Since Xk ≥ 0 and Y si ≥ 0, the solution to the following equation serves as an upper

bound for the size of the set of means of estimates at steady state

x̄ = ‖Ās0‖2x̄+
M∑
i=1

√
Tr K̄siY si(K̄si)>. (4.43)

From Proposition 4.1, this is equivalent to

x̄ =‖AP sM (P s0)−1‖2x̄

+
M∑
i=1

√
TrAP sMC>siR

−1
si
Y siR−1

si
CsiP

sMA>, (4.44)

where P s0 is the stabilizing solution to the algebraic Riccati equation

P = APA> − APC>(CPC> +R)−1CPA> +Q, (4.45)

and

P sM = P s0 − P s0C>(CP s0C> +R)−1CP s0 . (4.46)

Notice that P s0 = AP sMA> +Q. Thus from Proposition 4.1, we have

Ās0 =AP sM (P s0)−1

=AP sM (AP sMA> +Q)−1. (4.47)
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For the case of one sensor (M = 1), we denote P 1 := P s1 for brevity, and the steady-

state performance is

x̄1 =

√
TrAP 1C>1 R

−1
1 Y 1R−1

1 C1P 1A>

1− ‖AP 1(AP 1A> +Q)−1‖2

. (4.48)

When sensor 2 is included (namely, M = 2), we denote P 2 := P s2 for brevity, and the

steady-state performance becomes

x̄1,2 =

[√
TrAP 2C>1 R

−1
1 Y 1R−1

1 C1P 2A>

+

√
TrAP 2C>2 R

−1
2 Y 2R−1

2 C2P 2A>
]/

(4.49)[
1− ‖AP 2(AP 2A> +Q)−1‖2

]
. (4.50)

Notice that for sensor i, the Ci and Ri matrices are fixed and cannot be adjusted;

the only adjustable parameter5 is Y i, which controls the size and shape of the set of

measurement. Therefore, at steady state, the parameters A, Ci, Ri, P
i are constant. In

this way, it is easier to check whether a choice of Y 2 will lead to improved performance

in terms of the size of the set of estimation means. In particular, the condition becomes

easier to verify when Y i’s has special structures, e.g., Y i = ηiI, which can be used for

design purposes. Finally, we consider scalar systems, namely, n = m = 1, and have

the following result.

Proposition 4.2. For n = m = 1, if Y 2

Y 1 <
[

(P 1−P 2)C1R
−1
1

P 2C2R
−1
2

]2

, then adding sensor 2

improves the steady-state performance in terms of both estimation error covariance

and size of the set of the means of the estimates.

Proof. When n = m = 1, equations (4.48) and (4.50) reduce to

x̄1 =
|A|P 1C>1 R

−1
1

√
Y 1

1− |A|P 1(P 0)−1

=
|A|P 1C>1 R

−1
1

√
Y 1

1− |A|P 1(AP 1A+Q)−1
, (4.51)

and

x̄1,2 =
|A|P 2

(
C>1 R

−1
1

√
Y 1 + C>2 R

−1
2

√
Y 2
)

1− |A|P 2(AP 2A+Q)−1
, (4.52)

5This can be achieved by changing the event-triggering conditions in the microprocessors on the
sensor side.
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respectively. Since C1R
−1
1 C1 < C>R−1C, from the monotonicity properties of the

solutions to the Riccati equations (4.45) and (4.46) (Lemma 3 of [59]), we have P 1 >

P 2. Therefore

Q

AP 1A+Q
<

Q

AP 2A+Q

⇒ |A|P 1

AP 1A+Q
>

|A|P 2

AP 2A+Q

⇒1− |A|P 1

AP 1A+Q
< 1− |A|P 2

AP 2A+Q

⇒ 1

1− |A|P 1

AP 1A+Q

>
1

1− |A|P 2

AP 2A+Q

, (4.53)

where the fact that 0 < |A|P 1/(AP 1A+Q) < 1 and 0 < |A|P 2/(AP 2A+Q) < 1 are

utilized in the last line, due to equation (4.47) and the stability of the Kalman filter.

Since Y 2

Y 1 <
(

(P 1−P 2)C1R
−1
1

P 2C2R
−1
2

)2

, we have

|A|P 1C1R
−1
1

√
Y 1 > |A|P 2

(
C1R

−1
1

√
Y 1 + C2R

−1
2

√
Y 2
)
.

Combining with (4.53), we have x̄1 > x̄1,2, which completes the proof.

Remark 4.3. The intuition provided in the above result is that to achieve improved

performance, the accuracy of sensor 2 should exceed certain level determined by that

of sensor 1, although this does not require the accuracy of sensor 2 should be better

compared with that of sensor 1.

Remark 4.4. As the confidence on stochastic and non-stochastic uncertainties is

parameterized separately as covariance and the size of the set of estimation means,

evaluation of the overall performance of a set-valued estimator is more complicated

compared with its point-valued counterpart. Adding a sensor can always reduce the

estimation error covariance, but can decrease, slightly or even severely increase the

size of the set of estimation means. One possible approach of evaluating the overall

or combined performance is to explore the equivalence relationship between stochastic

and non-stochastic uncertainties in some sense, which can be potentially pursued based

on ideas of the probabilistic approach or randomized algorithms utilized in control and

estimation of uncertain systems [60, 70].

It is straightforward to observe that similar phenomenon exists for the multiple

sensor case, and conditions for performance improvement can be obtained in a similar
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way. On the other hand, when taking all Y i’s as tuning parameters, the above analysis

can be utilized to formulate design problems such that pre-specified performance can

be achieved, as will be shown in the next section.

4.6 Application to event-based state estimation

In this section, we show how the results obtained in this work can be applied in

remote event-based state estimation. Furthermore, an optimization problem is formu-

lated and solved to design the event-triggering conditions by considering requirements

on estimation performance and communication rates.

4.6.1 Analysis and parameter design

We consider the system in equation (4.1) measured by M sensors described in

equation (4.2), which communicate with the remote state estimator through a wireless

channel (see Fig. 4.2). To simplify the analysis, we assume the channel is reliable with

no packet dropouts. Due to the event trigger, the sets Y ik have more detailed param-

eterizations. At each time instant, the sensors measure the current state and decide

whether to send the current measurement or not according to the values of binary

decision variables γik’s that are determined by pre-specified triggering conditions. We

consider a relatively general description of the triggering conditions:

γik =

{
0, if yik ∈ Ȳ ik
1, if yik /∈ Ȳ ik

(4.54)

where

Ȳ ik =
{
y ∈ Rm

∣∣ (y − c̄ik)>(Ȳ i
k )−1(y − c̄ik) ≤ 1

}
. (4.55)

Note that the necessity of transmitting Ȳ i
k and c̄ik to the estimator during the non-event

instants depends on the specific triggering conditions under consideration, as will be

shown in Section 4.6.2. In this case, when γik = 1, the remote estimator receives the

point-valued measurement information from sensor i, and thus the set of measurement

information is given by a singleton Y ik = {yik}; when γik = 0, the set of measurement

information is implicitly given by Y ik = Ȳ ik.
From the results obtained in Sections 4.3 and 4.4, it is known that

1. The performance of the exact and approximate set-valued event-based estimators

are invariant with respect to the fusion sequence. Notice that the counter part

for either the exact or approximate MMSE event-based estimator is very difficult

to be theoretically verified (see Chapter 3).
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Figure 4.2: Multiple-sensor event-based remote estimation architecture.

2. For the event-based set-valued estimator, the set of estimation means is asymp-

totically bounded, and the outer approximations of the sets are bounded as well,

which can be calculated according to arbitrary fusion sequences at each time

instant.

On the other hand, it is still not clear how to design the event-triggering conditions

so that the requirements on communication rate and estimation performance can be

simultaneously considered, which is one of the main concerns in event-based control

and estimation [43, 73]. In the following, we show how the analysis in Section 4.5

can be utilized in parameter design problems for guaranteed worst-case estimation

performance and optimized communication rate.

From the analysis in the previous section, it is intuitively known that increasing

the trace of Ȳ i
k increases the size of the set of estimation means, which leads to the

decrease of estimation performance. On the other hand, from the literature of event-

based estimation [73], it is known that the increase of Ȳ i
k leads to the reduction of the

communication rate6. Therefore Ȳ i
k ’s can serve as tuning parameters for the tradeoff

between estimation performance and communication rate. Note that the estimation

performance here considers the size of the set of estimation means only, since the

covariance is independent of Ȳ i
k in the set-valued filtering framework.

For convenience of design and implementation, we consider the parameters Ȳ i
k ’s to

be time invariant, namely, Ȳ i
k = Ȳ i. First we introduce the constraints on the esti-

6Considering the scope of this work, we omit the analysis of the exact relationship between the
communication rates and Ȳ i, although, in fact, this analysis can be done following the approach in
[73] with the difference that no Gaussian assumptions are required under the framework of set-valued
filtering in this work.
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mation performance. Observing that the measurement set Y ik is time varying (which

can be Ȳ ik or {yik} depending on the value of γik), we consider the worst-case transient

performance, namely, γik = 0 for a large number of consecutive k’s such that the mea-

surement set is always given by Ȳ ik during this period. From Corollary 4.2, the upper

bound on the size of the set of estimation means will evolve towards an equilibrium,

which thus quantifies the worst-case performance. We still assume ‖Ā‖2 < 1; in case

that ‖Ā‖2 ≥ 1, the results developed in this section can be applied by introducing

the linear transformation T defined in the proof of Theorem 4.2 to the system. From

(4.44), the worst-case performance bound is given by

x̄ =

∑M
i=1

√
TrAPMC>i R

−1
i Ȳ iR−1

i CiPMA>

1− ‖APM(APMA> +Q)−1‖2

, (4.56)

where PM , Ci and Ri are used instead of P sM , Csi and Rsi for notational brevity, since

P sM is independent of the fusion sequence. To guarantee the worst-case performance,

we specify an upper bound x̄∗ and enforce the constraint x̄ ≤ x̄∗. From (4.56), di-

rect verification of this constraint is not computationally efficient for design purposes.

Alternatively, using the Cauchy-Schwarz inequality,

x̄ =

∑M
i=1

√
Tr Ȳ iR−1

i CiPMA>APMC>i R
−1
i

1− ‖APM(APMA> +Q)−1‖2

≤
∑M

i=1

√
Tr Ȳ i

√
TrR−1

i CiPMA>APMC>i R
−1
i

1− ‖APM(APMA> +Q)−1‖2

, (4.57)

thus the performance inequality can be indirectly enforced by requiring∑M
i=1

√
Tr Ȳ i

√
TrR−1

i CiPMA>APMC>i R
−1
i

1− ‖APM(APMA> +Q)−1‖2

≤ x̄∗, (4.58)

which is a linear constraint of
√

Tr Ȳ i. On the other hand, we also include requirements

on the upper bounds of the communication rates of each sensor by considering Tr Ȳi ≥
ηi ≥ 0, which is equivalent to

√
Tr Ȳi ≥

√
ηi. The objective of the parameter design

is to minimize the communication rate, which is done by maximizing
∑M

i=1 Tr Ȳi. To

summarize, the parameter design problem is formulated as the following optimization

problem:

max
a1,a2,...,aM

M∑
i=1

a2
i

s.t.
M∑
i=1

biai ≤ x̄∗,

ai ≥
√
η
i
, i = 1, 2, ...,M, (4.59)
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where ai =
√

Tr Ȳ i and bi =

√
TrR−1

i CiPMA>APMC>i R
−1
i

1−‖APM (APMA>+Q)−1‖2 > 0 are used for notational

brevity. Note that we safely ignored the case bi = 0, since from Proposition 4.1 and

the definition of matrix spectral norm, bi = 0 if and only if the steady-state Kalman

filter gain K̄i corresponding to sensor i is zero, which implies that the consideration

of sensor i will affect neither the estimation error covariance nor the size of the set of

estimation means. To solve this problem, we further consider the following equivalent

representation:

max
p1,p2,...,pM

M∑
i=1

(pi +
√
ηi)2

s.t.
M∑
i=1

bipi ≤ q,

pi ≥ 0, i = 1, 2, ...,M, (4.60)

where q = x̄∗ −∑M
i=1 bi

√
η
i
. Notice that this problem is feasible if and only if q ≥ 0,

which should be taken as the guideline in choosing the specifications of ηi and x̄∗ in

problem (4.59). Since this problem is a maximization problem of a positive semidefinite

quadratic function over a polytope, the optimal solution is at one of the vertices, which

are composed by the origin pi = 0 and points of the form pi = q/bi, pj = 0 for j 6= i

and i, j ∈ N1:M for this case. Let i∗ = arg maxi∈N1:M
q/bi +

√
ηi. Since bi > 0 and

ηi > 0, the optimal value function of this problem equals (q/bi∗+
√
ηi∗)2 +

∑M
j=1,j 6=i∗ η

j

with optimizer pi∗ = q/bi∗ , pi = 0 for i 6= i∗. This implies that the set of optimal

parameters should be chosen as

Tr Ȳ i ={
ηi, if i 6= i∗;(√

ηi +
(
x̄∗ −∑M

j=1,j 6=i∗ bj
√
η
j

)/
bi

)2

, if i = i∗.
(4.61)

Based on the value of Tr Ȳ i, Ȳ i can be chosen to satisfy further requirements, e.g.,

relative importance of different sensor channels. For the case of m = 1, Ȳ i reduces to a

positive scalar, then the analysis here provides a complete parameter design procedure.

4.6.2 Examples

Example 4.2. In this example, we apply the set-valued estimation approach to the

scenario of event-based state estimation with one sensor and interpret the difference of
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the obtained results from the existing results applicable to the same scenario [64, 73].

Consider a second-order system with parameter matrices

A =

[
0.5 0.3
−0.1 0.8

]
, Q =

[
0.202 0.053
0.053 0.136

]
, C1 = [0 1]

and R1 = 0.2. To make a comparison with the existing results, we consider the

following specific parameterization of Ȳ1
k in (4.55), which is equivalent to the event-

triggering conditions considered in [73] for the case m = 1:

Ȳ 1
k = δ2(C1P̃

1
kC
>
1 +R1), c̄1

k = C1x̃
0
k,

where δ denotes the event-triggering level, P̃ 1
k and x̃0

k denote the estimation error

covariance and the optimal prediction of the event-based MMSE estimator (see [73]

for further details), respectively. In this scenario, the time-varying parameters c̄1
k and

Ȳ 1
k have to be transmitted to the estimator to update the set of estimation means at

non-event instants. For this system, ‖Ā‖2 = 0.51, and thus the boundedness of the size

of the set of estimation means can be guaranteed by Theorem 4.2 without introducing

the linear transformations. Two other approaches are also applied according to this

triggering condition, including the event-based MMSE estimator [73] and the Kalman

filter with intermittent observations [64]. To consider the performance of the estimators

under different average communication rates, the estimators are implemented for δ

equal to 0.5 and 1.5, the resultant average communication rates of which equal 0.636

and 0.163, respectively. The estimation error plots are shown in Fig. 4.3 and Fig. 4.4.

It is observed when the average communication rate is relatively high (δ = 0.5),

the size of the set of estimation means of the set-valued estimator is small, and the

performance in terms of estimation error of the set-valued estimator can be char-

acterized by the centre of the set of the estimation means. Under a lower average

communication rate, however, the effect of separate parameterization of stochastic

and non-stochastic uncertainty becomes more apparent. The exploration of set-valued

information as non-stochastic uncertainty leads to a set of estimates with the same

filtering gain that contains the estimates corresponding to all point-valued measure-

ments lying in the event-triggering sets during non-event instants, including the MMSE

estimate obtained by using the exact point-valued sensor measurements for all time

instants (namely, the Kalman filter with periodic observations). In this case, it is not

possible to tell which one in the set is associated with the smallest estimation error

(without knowing the real state). The alternative answer, however, is that the cen-

tre of the set-valued estimator always serves as a point-valued estimate with the best
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γ

Figure 4.3: Performance comparison of the different estimation strategy for δ = 0.5 (the
sets of estimation means are calculated by projecting the two-dimensional ellipsoids
on one dimension).

robustness performance, in the sense that it has the smallest worst-case distance to

the Kalman filter with periodic observations. This worst-case distance is known to be

bounded (Theorem 4.2) and based on Remark 4.2, the asymptotic upper bounds are

calculated as 0.4526 and 1.3577 for δ being 0.5 and 1.5, respectively. On the other

hand, the precision of the Gaussian assumptions of the non-Gaussian distributions are

normally not possible to be verified, which is the basic motivation and theoretic benefit

of utilizing the set-valued estimation approach. Finally, it is interesting to note that

in both cases, the centre of the set-valued estimator, which can be viewed as a point-

valued estimator, achieves similar performance in terms of estimation error as that of

the event-based MMSE estimator and Kalman filter with intermittent observations.

Example 4.3. In this example, we apply the developed event-trigger parameter design

procedure in Section 4.6.1 to a third-order system, which is obtained by discretizing

the benchmark model for a three-blade horizontal-axis turbine with a full converter
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γ

Figure 4.4: Performance comparison of the different estimation strategy for δ = 1.5 (the
sets of estimation means are calculated by projecting the two-dimensional ellipsoids
on one dimension).

coupling [53] with sampling time Ts = 2.5s and including a system noise term:

xk+1 =

⎡
⎣ 0.9 0 −1.5
66.1 0.3 2103.6
0 0 0.2

⎤
⎦ xk +

⎡
⎣0 −4.1
4 −464.7
0 0

⎤
⎦ uk + wk.

The input signal is generated according to the data provided in [53]. Four sensors are

used to measure the state information:

y1k =
[
1 0 0

]
xk + v1k

y2k =
[
1 0 0

]
xk + v2k

y3k =
[
0 0.1 0

]
xk + v3k

y4k =
[
0 0.1 0

]
xk + v4k

with measurement noise covariances R1 = 0.03, R2 = 0.05, R3 = 0.17 and R4 = 0.18,
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respectively, and the system noise covariance is

Q =

0.2023 0.0530 0
0.0530 0.1360 0

0 0 0.1000

 .
We consider the “send-on-delta” triggering conditions [44], namely,

γik =

{
0, if yik ∈ Ȳ ik
1, if yik /∈ Ȳ ik

(4.62)

where Ȳ ik =
{
y ∈ Rm

∣∣∣ (y − yi
τ ik

)>(Ȳ i)−1(y − yi
τ ik

) ≤ 1
}

, τ ik denoting the last time in-

stant when the measurement of sensor i is transmitted. In this case, no communication

is needed during the non-event instants, since Ȳ i’s are constant and yi
τ ik

’s are always

known to the estimator. For this system, ‖Ā‖2 = 2103.6. To guarantee the bounded-

ness of the set of estimation means, we calculate the linear transformation

T =

80 −0.1 974
0 1 −380
0 0 1823.3


according to the proof of Theorem 4.2 and apply the estimation procedure to the

transformed system. Furthermore, for problem (4.59), the bi coefficients are calculated

as b1 = 3.6049 × 108, b2 = 3.1543 × 108, b3 = 4.0788 × 107 and b4 = 3.852 × 107,

respectively. The values for ηi’s are specified as η1 = 0.5, η2 = 0.4, η3 = 30, η4 = 28,

and x̄∗ = 9×108. The event-triggering conditions are calculated according to equation

(4.61) as Ȳ1 = 0.5, Ȳ2 = 0.4, Ȳ3 = 35.1317 and Ȳ4 = 28. The set-valued event-based

estimator is then implemented and the estimation performance is shown in Fig. 4.5,

which is obtained by applying inverse transformation T−1 to the estimates. The plot of

sensor transmissions are shown in Fig. 4.6, where the average communication rates for

the four sensors equal 0.577, 0.632, 0.950, and 0.955, respectively. From Fig. 4.5, it is

observed that bounded envelopes for the estimates are always obtained, and the centers

of the ellipsoids also serve as efficient point-valued estimates for the state variables.

Notice that although the constraint in (4.58) guarantees worst-case performance, it

also implicitly helps to control the transient performance. Another way to quantify the

transient performance is to consider probabilistic performance constraints (combined

with the average communication rates), which is the topic of our future work.

4.7 Summary

In this work, the properties of set-valued Kalman filters with multiple sensor mea-

surements are explored, which help provide further insights on event-based state esti-
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Figure 4.5: Performance of the set-valued state estimation strategy (the envelopes are
calculated by projecting the three-dimensional ellipsoids on one dimension).

mation. Despite the distinct nature of the filter, it is shown that the important features

of the classic Kalman filter, namely, the invariance of the estimation performance with

respect to fusion sequences, the asymptotic boundedness of the performance measures

(under certain assumptions, e.g., detectability and stabilizability), are maintained by

both the exact set-valued filter and the proposed approximate set-valued filter. On

the other hand, we show that the inclusion of more sensors does not necessarily reduce

the size of the set of estimation means, and certain conditions need to be satisfied to

guarantee performance improvement, which is utilized to formulate design problems

in event-based estimation.
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Chapter 5

Event-based state estimation of
discrete-state hidden Markov
models∗

∗

5.1 Introduction

In this chapter, we consider the event-based remote estimation problem for discrete-

state HMMs. The motivation stems from the fact that HMMs represent the individual

component states of a dynamic system in a natural way [2]. This type of model has

been extensively used in speech signal processing (see [23, 56] and references therein),

and has also found applications in various areas of engineering, e.g., teleoperation

systems [27], smart grid [76], machinery system monitoring [24], and motor systems

[74]. We assume that the measurement updates are transmitted to the remote estima-

tor through wired or wireless communication networks, and the estimation problem

is considered for both the reliable communication channel scenario and the scenario

that the channel is associated with a packet dropout process. Differently from existing

results in the literature of event-based estimation, an alternative approach, the change

of probability measure approach introduced in [17], is utilized to solve the event-based

state estimation problems. In this approach, the problems are not directly solved

under the original “real-world” probability measure; alternatively, the idea utilized is

to consider the estimation problems under new probability measures, construct maps

∗Parts of the results in this chapter were submitted to IEEE Transactions on Automatic Control,
2014.
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from the new measures to the “real-world” measure such that the problems consid-

ered under different measures are equivalent, and finally map the results from the new

measures to the “real-world” probability measure, which solves the original problems.

The main results are summarized as follows.

1. For both the reliable communication channel and unreliable channel scenarios,

closed-form expressions for the evolution of the probability distribution of the

states conditioned on the available hybrid measurement information of the es-

timator have been developed. The unnormalized probability distributions in-

troduced under the new probability measures are shown to evolve recursively

according to linear maps. Also, we show that the estimation problem for a lossy

communication channel, but without the event trigger, can be treated as a special

case of the reliable channel results.

2. Based on the expressions for the conditional probability distributions, analytical

results for communication rate analysis are obtained for both the reliable and

unreliable communication channel scenarios. The expected communication rates

are expressed in terms of the ratio of the weighted 1-norms of the conditional

probability distributions of the states versus their 1-norms.

3. Implementation issues of the developed results are discussed. The relationship of

the results and the real-valued finite-state HMMs is analyzed, and the expressions

for MMSE estimates are presented. The effectiveness of results are illustrated by

a numerical example and comparative simulations, and it is shown that improved

estimation performance is always obtained by the proposed results through the

exploitation of the information contained in the event-triggering sets.

Notation: Let N denote the set of nonnegative integers. Write N1:M := {1, 2, . . . ,M}
and Z−M,N := {−M,−M + 1, . . . , N}. Let I := {i1, i2, ..., iN} ⊂ N be a set of indices.

We use [xi]i∈I to denote [x>i1 , . . . , x
>
iN

]>. For a set M, let |M| be its cardinality. For a

probability measure P (or P̂ and P̌), we use E (or Ê and Ě, respectively) to represent

the expectation operator. For a vector v = [vi]i∈N1:n ∈ Rn, we denote ‖v‖1 as its

1-norm, which is defined as ‖v‖1 =
∑n

i=1 ‖vi‖, where ‖vi‖ is the absolute value of vi.

5.2 Problem Description

Firstly, we introduce a hidden Markov model on the probability space (Ω, F , P).

The hidden process considered is a finite-state, homogeneous, discrete-time Markov
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chain X. Assume the initial state X0 is given. Suppose the cardinality of the state

space of Xk is N , then the state space SX can be identified with

SX = {e1, e2, . . . , eN},

where ei is the unit vector in RN with the ith element equal to 1. Let F0
k :=

σ{X0, . . . , Xk}, and let {Fk} be the complete filtration generated by F0
k . By the

Markov property,

P(Xk+1 = ej|Fk) = P(Xk+1 = ej|Xk). (5.1)

Let

ai,j = P(Xk+1 = ei|Xk = ej), A = (ai,j) ∈ RN×N , (5.2)

then

E(Xk+1|Fk) = E(Xk+1|Xk) = AXk. (5.3)

Define Vk+1 := Xk+1 − AXk, so we have the state space equation

Xk+1 = AXk + Vk+1. (5.4)

Note that Vk+1 is a vector (P, Fk) martingale increment. Let Yk be a sensor measure-

ment process of Xk, which takes values in a finite-state space. Let the cardinality of

the state space SY of Y be M , then SY can be identified with

{f1, f2, . . . , fM},

with fi the unit vector in RM with the ith element equal to 1. Write

C = [ci]i∈N1:M
, ci = [ci,j]

>
j∈N1:N

, (5.5)

where

ci,j = P(Yk+1 = fi|Xk = ej), (5.6)

so that
∑M

i=1 ci,j = 1 and ci,j ≥ 0. Therefore

E(Yk+1|Xk) = CXk. (5.7)

Define Wk+1 := Yk+1 − CXk, so we have the measurement equation

Yk+1 = CXk +Wk+1. (5.8)
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Figure 5.1: Block diagram of the event-based remote estimation system with a reliable
communication channel.

Note that the discrete HMM described in (5.4) and (5.8) is similar to the one considered

in Chapter 2 of [17]. Let Gk be the completion of the σ-field on Ω generated by X0, X1,

. . . , Xk and Y1, Y2, . . . , Yk, and let Yk be the completion of the σ-field on Ω generated

by Y1, Y2, . . . , Yk. Note that

E(Yk+1|Gk) = E(Yk+1|Xk) = CXk, (5.9)

so that

E(Wk+1|Gk) = E(Wk+1|Xk) = CXk − CXk = 0, (5.10)

implying Wk+1 is a (P,Gk) martingale increment.

Now we introduce the remote estimation problem (see Fig. 5.1), where the state of

the HMM is estimated by a remote estimator, based on the measurement information

from the sensor through a wired/wireless communication channel. Currently, we as-

sume the communication channel is reliable. We consider the scenario that the sensor

measures Yk at every time instant k, but does not always send the value of Yk to the

estimator. At each time instant k, a set of indices Ik := {i1, . . . , i`k} ⊆ N1:M is specified

with |Ik| = `k. If Yk ∈ {fi ∈ SY |i ∈ Ik}, then the value of Yk is not sent; otherwise the

value of Yk is sent via the communication channel and the remote estimator knows the

value of Yk. Note that due to the event-triggering condition, the estimator still has the

information Yk ∈ {fi ∈ SY |i ∈ Ik} even when the exact value of Yk is not received. To

model explicitly the event-triggering condition, we define a new random variable γk as

γk =

{
1, if Yk ∈ {fi|i /∈ Ik}
0, otherwise

(5.11)

which indicates whether a transmission is performed by the sensor at time instant k.

Let gi be the unit vector in RM+1 with the ith element equal to 1. To model the

event-based measurement information of the estimator, we introduce a new variable
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Ŷk taking values in {g1, g2, . . . , gM+1}. This is defined as Ŷk := DkYk, where Dk =

[d>1,k, . . . , d
>
M+1,k]

> ∈ R(M+1)×M , and di,k satisfies

di,k =


f>i , for i /∈ Ik,
0, for i ∈ Ik,∑

j∈Ik f
>
j , for i = M + 1.

(5.12)

Let Ŷk = [Ŷ 1
k , . . . , Ŷ

M+1
k ]>. From the definition of Dk, the state space of Ŷk is composed

of the standard unit vectors{
gi ∈ R(M+1)×1

∣∣ i ∈ N1:M+1\Ik
}
, (5.13)

and

Ŷk =

{
gM+1, for Yk ∈ {fi ∈ SY |i ∈ Ik};
gi, for Yk = fi, i ∈ N1:M\Ik. (5.14)

Now we have

Ŷk+1 = Dk+1CXk +Dk+1Wk+1 (5.15)

:= Ĉk+1Xk + Ŵk+1, (5.16)

where Ĉk+1 := Dk+1C ∈ R(M+1)×N and Ŵk+1 := Dk+1Wk+1. Note that since Ĉk+1 is

the transition matrix from Xk to Ŷk+1,

E(Ŵk+1|Ĝk) = E(Ŷk+1 − Ĉk+1Xk|Ĝk) = 0, (5.17)

which means that Ŵk+1 is a (P, Ĝk) martingale increment. Let Ĝk be the completion

of the σ-field on Ω generated by X0, X1, . . . , Xk and Ŷ1, Ŷ2, . . . , Ŷk, and let Ŷk be

the completion of the σ-field on Ω generated by Ŷ1, Ŷ2, . . . , Ŷk. Let Lk := N1:M+1\Ik.
Write

Ĉk+1 = [ĉi,k+1]i∈N1:M+1
, and ĉi,k+1 = [ĉi,j,k+1]>j∈N1:N

. (5.18)

From the definition of Ĉk+1, we have

ĉi,j,k+1 =


ci,j, for i /∈ Ik+1

0, for i ∈ Ik+1∑
i∈Ik ci,j, for i = M + 1.

(5.19)

Note that γk now satisfies

γk =

{
1, if Ŷk ∈ {gi|i ∈ N1:M\Ik};
0, otherwise.

(5.20)
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Before continuing, we summarize the actual model we need to consider under P ob-

tained through the above discussion:

Xk+1 = AXk + Vk+1,

Ŷk+1 = Ĉk+1Xk + Ŵk+1,
E(Vk+1|Fk) = 0,

E(Ŵk+1|Ĝk) = 0.

(5.21)

The objective is to estimate the distribution of Xk based on the measurement

information Ŷk.

5.3 Results on reliable communication channel

Now we consider a new probability measure P̂, under which we still have

Xk+1 = AXk + Vk+1, (5.22)

with Vk+1 a martingale (P̂, Fk) martingale increment, namely,

Ê(Vk+1|Fk) = 0, (5.23)

but the Ŷk+1 are uniformly distributed independent random variables satisfying

P̂(Ŷk+1 = gi|Ĝk) = P̂(Ŷk+1 = gi) =
1

M + 1
. (5.24)

Now we transform the probability measure P̂ to P by defining the following map:

dP

dP̂

∣∣∣∣
Ĝk+1

= Λ̂k+1, (5.25)

where

Λ̂k+1 :=
k+1∏
l=1

λ̂l, (5.26)

λ̂k+1 := (M + 1)
M+1∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉. (5.27)

To map the model in (5.22)-(5.24) from probability measure P̂ to probability mea-

sure P, we recall the following result in [17].
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Lemma 5.1 (Theorem 3.2 in Chapter 2 of [17]). Suppose (Ω, F , P) is a probability

space and G ⊂ F is a sub-σ-field. Suppose P̂ is another probability measure absolutely

continuous with respect to P and with Radon-Nikodym derivative dP
dP̂

= Λ̂. If φ is any

P integrable random variable, then

E(φ|G) =


Ê(Λ̂φ|G)

Ê(Λ̂|G)
, if Ê(Λ̂|G) > 0;

0, otherwise.

(5.28)

Recall that a sequence {φk} is said to be Ĝ-adapted if φk is Ĝk-measurable for all

k [17]. Since Ŷk is a sub-σ-field of Ĝk, we have the following result.

Lemma 5.2. If {φk} is a Ĝ-adapted integrable sequence of random variables, then

E(φk|Ŷk) =
Ê(Λ̂kφk|Ŷk)
Ê(Λ̂k|Ŷk)

. (5.29)

Based on the above lemmas, we have the following result.

Lemma 5.3. If the model in (5.22)− (5.24) is mapped from probability measure P̂ to

probability measure P via (5.25), then the obtained model has the following properties

under measure P:

E(Xk+1|Fk) = AXk, (5.30)

E(Ŷk+1|Ĝk) = Ĉk+1Xk. (5.31)

Proof. From the definition of λ̂k+1,

Ê(λ̂k+1|Ĝk) = Ê
[
(M + 1)

∑M+1
i=1 〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉|Ĝk

]
(5.32)

= (M + 1)
∑M+1

i=1 〈Ĉk+1Xk, gi〉Ê(〈Ŷk+1, gi〉|Ĝk) (5.33)

=
∑M+1

i=1 〈Ĉk+1Xk, gi〉 = 1. (5.34)
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Now we have

E(Xk+1|Ĝk) =
Ê(Λ̂k+1Xk+1|Ĝk)

Ê(Λ̂k+1|Ĝk)
(5.35)

=
Λ̂kÊ(λ̂k+1Xk+1|Ĝk)

Λ̂kÊ(λ̂k+1|Ĝk)
(5.36)

= Ê(λ̂k+1Xk+1|Ĝk) (5.37)

= Ê(λ̂k+1|Ĝk)Ê(AXk + Vk+1|Ĝk) (5.38)

= AXk, (5.39)

where the last equality follows from Ê(λ̂k+1|Ĝk) = 1 and Ê(Vk+1|Ĝk) = 0, as Ê(Vk+1|Fk) =

0 and Vk+1 and Ŷk are mutually independent. By repeated conditioning (Lemma 1.11

in [16]), this further implies

E(Xk+1|Fk) = E[E(Xk+1|Ĝk)|Fk] = AXk, (5.40)

as Fk ⊂ Ĝk. Similarly,

E(Ŷk+1|Ĝk) =
Ê(Λ̂k+1Ŷk+1|Ĝk)

Ê(Λ̂k+1|Ĝk)
(5.41)

= Ê(λ̂k+1Ŷk+1|Ĝk) (5.42)

= Ê[Ŷk+1(M + 1)
∑M+1

i=1 〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉|Ĝk] (5.43)

=
[
Ê(〈Ŷk+1, gj〉(M + 1)

∑M+1
i=1 〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉|Ĝk)

]
j∈N1:M+1

(5.44)

= Ĉk+1Xk, (5.45)

which completes the proof.

Note that the above result implies that under probability measure P, the rela-

tionships Xk+1 = AXk + Vk+1 with Vk+1 being a (P, Fk) martingale, and Ŷk+1 =

Ĉk+1Xk + Ŵk+1 with Ŵk+1 being a (P, Ĝk) martingale are recovered. Therefore, we

can solve the original estimation problem for (5.21) under P by solving the problem for

(5.22)− (5.24) under P̂ and mapping the result back to P, which allows us to obtain

a simple expression on P for the estimator, as will be shown in the following.

5.3.1 Results on recursive estimation

For r ∈ N1:N , define q̂rk and p̂rk as

q̂rk := Ê
[

Λ̂k〈Xk, er〉
∣∣∣ Ŷk] , (5.46)

p̂rk := E
[
〈Xk, er〉| Ŷk

]
, (5.47)
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respectively. Write q̂k = [q̂1
k, . . . , q̂

N
k ]> and p̂k = [p̂1

k, . . . , p̂
N
k ]>, so that from Lemma 5.2

p̂rk = q̂rk/‖q̂k‖1. (5.48)

In this way, p̂k represents the probability distribution of Xk conditioned on Ŷk. For the

recursive estimation of Xk conditioned on Ŷk, we shall derive the recursive evolution

of q̂rk, which is presented in the following result.

Theorem 5.1. For k ∈ N, r ∈ N1:M ,

q̂rk+1 = (M + 1)
N∑
j=1

ar,j q̂
j
k

∑
i∈Lk+1

ĉi,j,k+1Ŷ
i
k+1. (5.49)

Proof. In the following, we first present the main derivations, and then provide the

detailed explanations. For r ∈ N1:N , we have

q̂rk+1 = Ê[〈Xk+1, er〉Λ̂k+1|Ŷk+1] (5.50)

= Ê

[
〈AXk + Vk+1, er〉Λ̂k

M+1∑
i=1

(M + 1)〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.51)

= (M + 1)Ê

[
〈AXk, er〉Λ̂k

M+1∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.52)

= (M + 1)
N∑
j=1

ar,jÊ

[
〈Xk, ej〉Λ̂k

M+1∑
i=1

ĉi,j,k+1〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.53)

= (M + 1)
N∑
j=1

ar,jÊ
[
〈Xk, ej〉Λ̂k

∣∣∣ Ŷk+1

]
Ê

[
M+1∑
i=1

ĉi,j,k+1〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.54)

= (M + 1)
N∑
j=1

ar,jÊ
[
〈Xk, ej〉Λ̂k

∣∣∣ Ŷk] Ê

[
M+1∑
i=1

ĉi,j,k+1〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.55)

= (M + 1)
N∑
j=1

ar,jÊ
[
〈Xk, ej〉Λ̂k

∣∣∣ Ŷk] ∑
i∈Lk+1

ĉi,j,k+1〈Ŷk+1, gi〉 (5.56)

= (M + 1)
N∑
j=1

ar,j q̂
j
k

∑
i∈Lk+1

ĉi,j,k+1〈Ŷk+1, gi〉 (5.57)

Now we present the necessary explanations for the above derivations.
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1. Equation (5.51) → equation (5.52). It suffices to show

Ê

[
〈Vk+1, er〉Λ̂k

M+1∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
= 0. (5.58)

To see this, we have

Ê

[
〈Vk+1, er〉Λ̂k

M+1∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣ Ŷk+1

]
(5.59)

= Ê

[
Ê

[
〈Vk+1, er〉Λ̂k

M+1∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣ Ĝk, Ŷk+1

]∣∣∣∣∣ Ŷk+1

]
(5.60)

= Ê

[
Ê
[
〈Vk+1, er〉| Ĝk, Ŷk+1

]
Ê

[
Λ̂k

M∑
i=1

〈Ĉk+1Xk, gi〉〈Ŷk+1, gi〉
∣∣∣∣∣

Ĝk, Ŷk+1

]∣∣∣ Ŷk+1

]
. (5.61)

Now we show Ê[〈Vk+1, er〉|Ĝk, Ŷk+1] = 0. Since Xk and Ŷk are mutually indepen-

dent and Vk+1 = Xk+1 −Xk, Vk and Ŷk are mutually independent as well. Thus

we have

Ê
[
〈Vk+1, er〉| Ĝk, Ŷk+1

]
= Ê [〈Vk+1, er〉| Fk] = 0. (5.62)

2. Equation (5.52) → equation (5.53). This follows from the fact that Xk ∈
{e1, . . . , eN}, and that for Xk ∈ {e1, . . . , eN}

〈AXk, er〉〈Xk, ej〉 = ar,j〈Xk, ej〉. (5.63)

3. Equation (5.53) → equation (5.54). Since Ŷk are i.i.d. uniformly distributed

under P̂, X is independent of Ŷ . Thus conditioned on Ŷk+1, 〈Xk, ej〉Λ̂k and∑M+1
i=1 ĉi,j,k+1〈Ŷk+1, gi〉 are independent.

4. Equation (5.54) → equation (5.55). This follows from the definition of Λ̂k and

the fact that Ŷk are i.i.d. random variables.

5. Equation (5.55) → equation (5.56). This follows from the fact that ĉi,j,k+1 = 0

for i ∈ Ik+1 (see equation (5.19)).

Let ôk :=
[
(M + 1)

∑
i∈Lk

ĉi,j,kŶ
i
k

]
j∈N1:N

∈ RN , then equation (5.49) is equivalent

to

q̂k+1 = A diag(ôk+1) q̂k. (5.64)
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5.3.2 Communication rate analysis

In this section, the target is to analyze the probability of sensor transmission at

time instant k + 1, based on the hybrid measurement information Ŷk. According to

the definition of γk+1, the average communication rate at time instant k + 1 is given

by P[γk+1 = 1|Ŷk]. Note that the value of γk+1 is determined by Ŷk+1, and that∑M+1
j=1 〈Ŷk+1, gj〉 = 1. We need to evaluate E[〈Ŷk+1, gj〉|Ŷk], for which we have the

following result.

Lemma 5.4.

E[〈Ŷk+1, gi〉|Ŷk] =
∑N

j=1

[
ĉi,j,k+1q̂

j
k

/∑N
l=1 q̂

l
k

]
.

Proof.

E
[
〈Ŷk+1, gi〉|Ŷk

]
= E

[
〈Ĉk+1Xk + Ŵk+1, gi〉|Ŷk

]
(5.65)

= E
[
〈Ĉk+1Xk, gi〉|Ŷk

]
+ E

[
E
[
〈Ŵk+1, gi〉|Ĝk

]
|Ŷk
]

(5.66)

= E
[
〈Ĉk+1Xk, gi〉|Ŷk

]
(5.67)

= E
[∑N

j=1〈Ĉk+1ej, gi〉〈Xk, ej〉|Ŷk
]

(5.68)

=
∑N

j=1 ĉi,j,k+1E[〈Xk, ej〉|Ŷk] (5.69)

=
∑N

j=1

[
ĉi,j,k+1q̂

j
k

]/∑N
l=1 q̂

l
k , (5.70)

where equation (5.66) is due to Ŷk ⊂ Ĝk, equation (5.67) is due to

E
[
Ŵk+1|Ĝk

]
= 0,

and equation (5.70) follows from Theorem 5.1.

Let Ôk = [ci]i∈N1:M\Ik ∈ R(M−`k)×N . Based on the above expression for E[〈Yk+1, fj〉|Ŷk],
we have the following result on communication rate analysis.

Theorem 5.2. For the state estimation scheme in Fig. 5.1 and the event-triggering

condition in (5.20), the expected sensor to estimator communication rate P(γk+1 =

1|Ŷk) is given by

P(γk+1 = 1|Ŷk) = ‖Ôk+1q̂k‖1 /‖q̂k‖1 .
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Proof. From the definition of γk+1, we have

P(γk+1 = 1|Ŷk)
=
∑

i∈N1:M\Ik+1
P(Ŷk+1 = gi|Ŷk) (5.71)

=
∑

i∈N1:M\Ik+1
E
[
〈Ŷk+1, gi〉|Ŷk

]
(5.72)

=
∑

i∈N1:M\Ik+1

∑N
j=1

[
ĉi,j,k+1q̂

j
k

/∑N
l=1 q̂

l
k

]
(5.73)

=
∑

i∈N1:M\Ik+1

∑N
j=1

[
ci,j q̂

j
k

/∑N
l=1 q̂

l
k

]
, (5.74)

where the last equality is due to equation (5.19). The conclusion follows from the

definition of Ôk and the non-negativeness of q̂ik and ci,j.

5.3.3 Estimation with a lossy communication channel: a spe-
cial case

In this subsection, we show that the results obtained in Section 5.3.1 are rich

enough to cover the scenario of remote estimation with an unreliable communication

channel but no event-trigger (see Fig. 5.2). At this stage, we only require that the

Figure 5.2: Block diagram of the periodic estimation problem with a lossy communi-
cation channel.

packet dropout process ζk is independent of Xk and Yk, but do not need the specific

model of it. In this case, if no information is received by the remote estimator at time

k, it would only know Yk ∈ SY ; otherwise it knows the exact value of Yk. In this

case, Ik = N1:M when the value of Yk is not received, and Ik = {i ∈ N1:M |Yk = fi}
otherwise. Based on this specific definition of Ik, the index set Lk is generated, and

thus the updating equations for the probability distribution of Xk, conditioned on the

received measurement information, can be obtained by applying Theorem 5.1 for the

obtained Lk. We shall use this result for comparative simulation to illustrate how the

estimation performance is improved by exploiting the information contained in the

event-triggering set in the numerical verification section.
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5.4 Results on unreliable communication channel

Figure 5.3: Block diagram of the event-based remote estimation system with an unre-
liable communication channel.

Now we consider the scenario that a packet dropout process is associated with the

communication channel. We start from the model for Yk and Xk that we have under

P for the reliable communication channel case:

Xk+1 = AXk + Vk+1, (5.75)

Yk+1 = CXk +Wk+1, (5.76)

E(Vk+1|Fk) = 0, (5.77)

E(Wk+1|Gk) = 0. (5.78)

To analyze the effect of the unreliable channel, we follow the standard technique in

handling packet loss [60, 64] and introduce a packet dropout process ζk, which is an

i.i.d. Bernoulli process under P satisfying

P(ζk = 1) = P(ζk = 1|Gk,Γk−1) = λ, (5.79)

P(ζk = 0) = P(ζk = 0|Gk,Γk−1) = 1− λ. (5.80)

Here Γk−1 denotes the completion of the σ-field on Ω generated by ζ1, ζ2, . . . , ζk−1. If

ζk = 1, then the value of Yk sent by the sensor is received by the estimator; otherwise

a packet dropout occurs at time instant k and thus the value of Yk sent by the sensor

is not received by the estimator. Note that this packet dropout process only takes

effect during the event instants (namely, γk = 1), because the sensor would not send

the measurement to the remote estimator otherwise. In this way, the measurement

information at the estimator side when Yk is not received becomes more ambiguous due

to the packet drop process: if ζk = 1, then the estimator knows Yk ∈ {fi ∈ SY |i ∈ Ik};
otherwise (i.e., when ζk = 0) it would infer that Yk ∈ {fi ∈ SY |i /∈ Ik}.
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We shall use Ǧk to denote the completion of the σ-field on Ω generated by Γk and

Gk, namely,

Ǧk = Γk
⋃Gk. (5.81)

Note that what the remote estimator can observe is (1) Yk is received; (2) Yk is

not received. Both these two types of observations are measurable in Ǧk, as they can

be represented by the combination of the events of Yk and ζk. To be specific, “Yk is

received” implies {Yk = fi} ∩ {ζk = 1} for some i /∈ Ik; “Yk is not received” implies

that {{⋃
i/∈Ik{Yk = fi}

}⋂{ζk = 0}
}⋃{⋃

i∈Ik{Yk = fi}
}
. (5.82)

For notational simplicity, we introduce a new variable Y̌k to denote the received infor-

mation at the sensor:

Y̌k =

{
gi, if {Yk = fi} ∩ {ζk = 1}, i ∈ N1:M ;
gM+1, if

{{⋃
i/∈Ik{Yk = fi}

}⋂{ζk = 0}
}⋃{⋃

i∈Ik{Yk = fi}
}
.

(5.83)

We shall use Y̌k to denote the completion of the σ-field on Ω generated by Y̌1, . . . , Y̌k.

From the above discussion, obviously we have Y̌k ⊂ Ǧk.
Now we consider a new probability measure P̌, under which we still have

Xk+1 = AXk + Vk+1, (5.84)

with Vk+1 a (P̌, Fk) martingale increment, namely,

Ě(Vk+1|Fk) = 0. (5.85)

but the Yk+1 are uniformly distributed independent random variables satisfying

P̌(Yk+1 = fi|Ǧk) = P̌(Yk+1 = fi) =
1

M
. (5.86)

In addition, we have a model for ζk:

P̌(ζk+1 = 1|Ǧk) = P̌(ζk+1 = 1) = λ, (5.87)

P̌(ζk+1 = 0|Ǧk) = P̌(ζk+1 = 0) = 1− λ, (5.88)

which implies that ζk is an i.i.d. Bernoulli process that is independent of Xk and Yk.

Again we establish a one-way map from P̌ to P over Ǧk:
dP

dP̌

∣∣∣∣
Ǧk

= Λ̌k, (5.89)
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where

λ̌k+1 =
M∑
i=1

M〈CXk, fi〉〈Yk+1, fi〉, Λ̌k =
k∏
l=1

λ̌k. (5.90)

Note that the λ̌k defined here is not related to ζk. This trick allows us to keep its

properties when mapping it from P̌ to P.

Recall that a sequence {φk} is said to be Ǧ-adapted if φk is Ǧk-measurable for all

k, [17]. Since Y̌k is a sub-σ-field of Ǧk, we have the following result.

Lemma 5.5. If {φk} is a Ǧ-adapted integrable sequence of random variables, then

E(φk|Y̌k) =
Ě(Λ̌kφk|Y̌k)
Ě(Λ̌k|Y̌k)

. (5.91)

Based on the above lemma, we have the following result.

Lemma 5.6. If the model in (5.84)− (5.88) is mapped from probability measure P̌ to

probability measure P via (5.90), then the obtained model has the following properties

under measure P:

E(Xk+1|Fk) = AXk, (5.92)

E(Yk+1|Gk) = CXk. (5.93)

E(ζk+1|Ǧk) = E(ζk+1) = λ. (5.94)

Proof. From the definition of λ̌k+1,

Ě(λ̌k+1|Ǧk) = Ě
[
M
∑M

i=1 〈CXk, fi〉〈Yk+1, fi〉|Ǧk
]

(5.95)

= M
∑M

i=1〈CXk, fi〉Ě(〈Yk+1, fi〉|Ǧk) (5.96)

=
∑M

i=1〈CXk, fi〉 = 1. (5.97)

Now we have

E(Xk+1|Ǧk) =
Ě(Λ̌k+1Xk+1|Ǧk)

Ě(Λ̌k+1|Ǧk)
(5.98)

=
Λ̌kĚ(λ̌k+1Xk+1|Ǧk)

Λ̌kĚ(λ̌k+1|Ǧk)
(5.99)

= Ě(λ̌k+1Xk+1|Ǧk) (5.100)

= Ě(λ̌k+1|Ǧk)Ě(AXk + Vk+1|Ǧk) (5.101)

= AXk, (5.102)
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where the last equality follows from Ě(λ̌k+1|Ǧk) = 1 and Ě(Vk+1|Ǧk) = 0, as Ě(Vk+1|Fk) =

0 and Vk+1 and Y̌k are mutually independent. By repeated conditioning (Lemma 1.11

in [16]), this further implies

E(Xk+1|Fk) = E[E(Xk+1|Ǧk)|Fk] = AXk, (5.103)

as Fk ⊂ Ǧk. Similarly,

E(Yk+1|Ǧk) =
Ě(Λ̌k+1Yk+1|Ǧk)

Ě(Λ̌k+1|Ǧk)
(5.104)

= Ě(λ̌k+1Yk+1|Ǧk) (5.105)

= Ě[Yk+1M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉|Ǧk] (5.106)

=
[
Ě(〈Yk+1, fj〉M

∑M
i=1〈CXk, fi〉〈Yk+1, fi〉|Ǧk)

]
j∈N1:M

(5.107)

= CXk. (5.108)

Finally,

E(ζk+1|Ǧk) =
Ě(Λ̌k+1ζk+1|Ǧk)

Ě(Λ̌k+1|Ǧk)
(5.109)

= Ě(λ̌k+1ζk+1|Ǧk) (5.110)

= Ě[ζk+1M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉|Ǧk] (5.111)

= Ě[ζk+1|Ǧk]Ě[M
∑M

i=1〈CXk, fi〉〈Yk+1, fi〉|Ǧk] (5.112)

= λ, (5.113)

where the fact that ζk is independent of Yk and Xk is used to obtain (5.112), and

(5.113) is due to that Xk takes values in {e1, . . . , eN}, that
∑M

i=1 ci,j = 1 and that Yk+1

and Xk are mutually independent.

The above results indicate that we are able to recover exactly the model defined

under P with the newly defined reverse map Λ̌k. With this new probability measure and

change of measure, we obtain the results for recursive estimation and communication

rate analysis, as is shown below.

5.4.1 Results on recursive estimation

Write q̌k = [q̌1
k, . . . , q̌

N
k ] and p̌k = [p̌1

k, . . . , p̌
N
k ], where for r ∈ N1:N , q̌rk and p̌rk are

defined as

q̌rk := Ě
[
Λ̌k〈Xk, er〉

∣∣ Y̌k] , (5.114)

p̌rk := E
[
〈Xk, er〉| Y̌k

]
, (5.115)
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respectively, so that we still have

p̌rk = q̌rk/‖q̌k‖1. (5.116)

Also, for notational simplicity, write

Čk = [či,k]i∈N1:M+1
, či,k = [či,j,k]

>
j∈N1:N

, (5.117)

where

či,j,k =

{
ci,j, for i ∈ N1:M ;

1
M−λ(M−|Ik|)

[∑
i∈Ik ci,j +

∑
i/∈Ik(1− λ)ci,j

]
, for i = M + 1.

(5.118)

For the recursive estimation of Xk conditioned on Y̌k, we shall derive the recursive

evolution of q̌k, which is presented in the following result.

Theorem 5.3. For k ∈ N, q̌k evolves according to the following recursive form:

q̌k+1 = A diag(čk+1) q̌k, (5.119)

where čk :=
[
M
∑

i∈Lk
či,j,k〈Y̌k, gi〉

]
j∈N1:N

∈ RN .

Proof. In the following, we first present the main derivations, and then provide the

detailed explanations. For r ∈ N1:N , we have

q̌rk+1 = Ě[〈Xk+1, er〉Λ̌k+1|Y̌k+1] (5.120)

= M
N∑
j=1

ar,jĚ
[
〈Xk, ej〉Λ̌k

∣∣ Y̌k] Ě[ M∑
i=1

ci,j〈Yk+1, fi〉
∣∣∣∣∣ Y̌k+1

]
(5.121)

= M
N∑
j=1

ar,jĚ
[
〈Xk, ej〉Λ̌k

∣∣ Y̌k] ∑
i∈Lk+1

či,j,k〈Y̌k+1, gi〉 (5.122)

= M
N∑
j=1

ar,j q̌
j
k

∑
i∈Lk+1

či,j,k〈Y̌k+1, gi〉. (5.123)

Now we present the necessary explanations for the above derivations.

1. The derivation from equation (5.120) to equation (5.121) follows a similar ar-

gument as that for equation (5.50) → equation (5.55) and thus is not discussed

considering the space limitation.
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2. Equation (5.121) → equation (5.122). To see this, we have for Y̌k+1 = gM+1,

Ě

[
M∑
i=1

ci,j〈Yk+1, fi〉
∣∣∣∣∣ Y̌k+1 = gM+1

]

=
M∑
i=1

ci,jĚ
[
〈Yk+1, fi〉| Y̌k+1 = gM+1

]
(5.124)

=
M∑
i=1

ci,j
1− λ[1− 1Ik+1

(i)]

M − λ(M − |Ik+1|)
(5.125)

=
1

M − λ(M − |Ik+1|)

 ∑
i∈Ik+1

ci,j +
∑
i/∈Ik+1

(1− λ)ci,j

 , (5.126)

where equation (5.125) is due to

Ě
(
〈Yk+1, fi〉|Y̌k+1 = gM+1

)
=

P̌
(
{Yk+1 = fi}

⋂{Y̌k+1 = gM+1}
)

P̌(Y̌k+1 = gM+1)

=
[
P̌
(
{Yk+1 = fi}

⋂{{
{⋃j /∈Ik+1

{Yk+1 = fj}}
⋂{ζk+1 = 0}

}
⋃{⋃

l∈Ik+1
{Yk+1 = fl}

}})]
/[

P̌
({
{⋃j /∈Ik+1

{Yk+1 = fj}}
⋂{ζk+1 = 0}

}⋃{⋃
l∈Ik+1

{Yk+1 = fl}
})]

=
[
P̌ (ζk+1 = 0) P̌

(
{Yk+1 = fi}

⋂{⋃
j /∈Ik+1

{Yk+1 = fj}
})

+P̌
(
{Yk+1 = fi}

⋂{⋃
l∈Ik+1

{Yk+1 = fl}
})]

/[
P̌ (ζk+1 = 0) P̌

(⋃
j /∈Ik+1

{Yk+1 = fj}
)

+ P̌
(⋃

l∈Ik+1
{Yk+1 = fl}

)]
=

(
1− 1Ik+1

(i)
)
P̌ (ζk+1 = 0) P̌ (Yk+1 = fi) + 1Ik+1

(i) P̌ (Yk+1 = fi)

P̌ (ζk+1 = 0) P̌
(⋃

j /∈Ik+1
{Yk+1 = fj}

)
+ P̌

(⋃
l∈Ik+1

{Yk+1 = fl}
)

=
(1− λ)

(
1− 1Ik+1

(i)
)

1
M

+ 1Ik+1
(i) 1

M

(1− λ)(M − |Ik+1|) 1
M

+ |Ik+1| 1
M

=
1− λ[1− 1Ik+1

(i)]

M − λ(M − |Ik+1|)
.

For the case of Y̌k+1 = gr, r ∈ N1:M , the derivation is much simpler, for which we
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have

Ě

[
M∑
i=1

ci,j〈Yk+1, fi〉
∣∣∣∣∣ Y̌k+1 = gr

]

=
M∑
i=1

ci,jĚ
[
〈Yk+1, fi〉| Y̌k+1 = gr

]
= cr,jP̌

(
Yk+1 = fr| Y̌k+1 = gr

)
= cr,j

P̌
(
{Yk+1 = fr} ∩ {Y̌k+1 = gr}

)
P̌
(
Y̌k+1 = gr

)
= cr,j

P̌ ({Yk+1 = fr} ∩ {{Yk+1 = fr} ∩ {ζk+1 = 1}})
P̌ ({Yk+1 = fr} ∩ {ζk+1 = 1}) = cr,j.

5.4.2 Communication rate analysis

The communication rate analysis for the scenario of an unreliable communication

channel still focuses on the probability of sensor transmission at time instant k + 1,

based on the measurement information Y̌k, as the target of this analysis is to evaluate

the impact of the triggering condition and packet dropout on the energy consumption

of the sensor. For this unreliable communication channel case, the average commu-

nication rate at time instant k + 1 is given by P[γk+1 = 1|Y̌k]. Noticing that the

value of γk+1 is determined by Yk+1, and that
∑M

j=1 〈Yk+1, fj〉 = 1, we need to evaluate

E[〈Yk+1, fj〉|Y̌k], for which we have the following result.

Lemma 5.7.

E[〈Yk+1, fi〉|Y̌k] =
∑N

j=1

[
ci,j q̌

j
k

/∑N
l=1 q̌

l
k

]
.

Proof.

E
[
〈Yk+1, fi〉|Y̌k

]
= E

[
〈CXk, fi〉|Y̌k

]
+ E

[
〈Wk+1, fi〉|Y̌k

]
(5.127)

= E
[
〈CXk, fi〉|Y̌k

]
+ E

[
E
[
〈Wk+1, fi〉|Ǧk

]
|Y̌k
]

(5.128)

= E
[
〈CXk, fi〉|Y̌k

]
+ E

[
E [〈Wk+1, fi〉|Gk] |Y̌k

]
(5.129)

= E
[
〈CXk, fi〉|Y̌k

]
(5.130)

=
∑N

j=1 [ci,j q̌
i
k]
/∑N

l=1 q̌
l
k , (5.131)
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where equation (5.128) is due to Y̌k ⊂ Ǧk, equation (5.129) is due to the fact that

Ǧk = Gk ∪ Γk and that ζk and Wk are mutually independent, equation (5.130) is due

to E [Wk+1|Gk] = 0, and equation (5.131) follows from a similar argument as that in

the proof of Lemma 5.4 (i.e., equation (5.67) → equation (5.70)).

Based on the above expression for E[〈Yk+1, fj〉|Y̌k], we have the following result on

communication rate analysis.

Theorem 5.4. For the state estimation scheme in Fig. 5.3, the deterministic event-

trigger γk and the packet dropout process ζk, the expected sensor to estimator commu-

nication rate P(γk+1 = 1|Y̌k) is given by

P(γk+1 = 1|Y̌k) = ‖Ôk+1q̌k‖1 /‖q̌k‖1 .

This result follows from a similar argument as that of Theorem 5.2 and so the proof

is omitted.

5.5 Numerical implementation and verification

In this section, we discuss the numerical implementation of the proposed event-

based estimates and illustrate the efficiency of the results by a numerical example.

5.5.1 Numerical implementation

Firstly, we discuss the numerical implementation of the event-based estimators.

From the analysis in Sections 5.3 and 5.4, the estimators for both the reliable and the

unreliable communication channels can be written in the form

qk+1 = Akqk, (5.132)

pk+1 = qk+1/‖qk+1‖1. (5.133)

Here qk denotes an unnormalized probability distribution under the new measure, pk

denotes the probability distribution under the original measure, and Ak ∈ RN×N is

a time-varying transition matrix that depends on the new measure and the problem

considered. Equation (5.132) evolves as a linear time-varying system, which causes

numerical problems in recursive implementation. If Ak is unstable, limk→∞ qk → ∞
and thus the value of qk will blow up as time goes by. If Ak is stable, limk→∞ qk = 0 and

in this case it will be difficult to numerically evaluate pk as ‖qk‖1 approaches 0. Note
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that this numerical issue is not related with the correctness of the results developed,

as what is actually needed for the state estimate is pk+1, the 1-norm of which always

equals 1 by equation (5.133). To overcome this issue, we observe the following result.

Proposition 5.1. Let q̃k and p̃k satisfy

q̃k+1 = Akq̃k/‖q̃k‖1, p̃k+1 = q̃k+1/‖q̃k+1‖1, q̃0 = q0. (5.134)

Then p̃k = pk for all k ∈ N.

Proof. By definition, we have for k ≥ 1,

q̃k+1 =

∏k
t=0Atq̃0∏k

t=0

∥∥∏t−1
l=0 Alq̃0

∥∥
1

, (5.135)

where
∏k

t=0At satisfies
∏k

t=0At = Ak
∏k−1

t=0 At and the convention
∏−1

l=0Al = I is

assumed. Thus

p̃k+1 = q̃k+1/‖q̃k+1‖1 (5.136)

=

∏k
t=0Atq̃0∏k

t=0

∥∥∏t−1
l=0 Alq̃0

∥∥
1

/∥∥∥∥∥
∏k

t=0Atq̃0∏k
t=0

∥∥∏t−1
l=0 Alq̃0

∥∥
1

∥∥∥∥∥
1

=

∏k
t=0Atq̃0

‖∏k
t=0Atq̃0‖1

. (5.137)

Since q̃0 = q0, we have qk+1 =
∏k

t=0Atq̃0 from (5.132), and the conclusion follows from

(5.133).

From this result, the numerical issue raised above can be solved by normalizing qk

using its 1-norm at each time instant. Now we continue to discuss the application to

finite-state real-valued hidden Markov models. For applications to state estimation,

we start with a process xk with real-valued states {x1, . . . , xN}, which are identified

with the unit vectors {e1, . . . , eN} in our analysis. We then try to find an estimate of

xk at each time instant that is optimal in some sense. Based on the expressions for

the conditional distributions, the optimal estimates are straightforward to obtain. For

performance comparison, we consider the MMSE estimate, which, as is well known, is

the mean of the conditional distribution of xk. Write x = [x1, . . . , xN ]. For the reliable

communication channel case, the MMSE estimate x̂k conditioned on the available

information of the remote estimator is

x̂k = xp̂k, (5.138)
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while for the unreliable communication channel case, the MMSE estimate x̌k condi-

tioned on the available information of the remote estimator is

x̌k = xp̌k. (5.139)

Note that the above expressions apply equally to the case that xk has vector real-valued

states. The actual values of the measurement processes are not necessarily needed, as

they do not affect x̂k and x̌k in this formulation.

5.5.2 A numerical example

In this section, the proposed event-based estimates are illustrated by a numerical

example. Consider a scalar real-valued process xk with state space {x1, . . . , xN} satis-

fying N = 41, x1 = −5, xN = 5, and xi+1−xi = ∆x. For τ ∈ Z−N :N , define φ(τ, σ) :=
1√
2πσ

exp[− (τ/N)2

σ2 ]. The transition matrix A is constructed as A = [A1, . . . , AN ], where

Ai = [φ(τ, 0.1)/
∑

l∈Z1−i:N−i

φ(l, 0.1)]τ∈Z1−i:N−i

so that ‖Ai‖1 = 1 holds. The measurement process yk is also a scalar real-valued

process with state space {y1, . . . , yM} satisfying M = 41, y1 = −2, yM = 2 and

yi+1 − yi = ∆y. Note that the choice M = N here does not necessarily imply the

sensor has a huge number of measurement channels, but only means that the number

of states of the measurement process is equal to the number of states of the hidden

process. The measurement matrix C is constructed as C = [C1, . . . , CN ], where

Ci = [φ(τ, 0.05)/
∑

l∈Z1−i:M−i
φ(l, 0.05)]τ∈Z1−i:M−i

.

First we focus on the reliable communication channel case. For this case, we con-

sider the “send-on-delta” triggering condition, which is given as [44]

γk =

{
1, if ‖yk − yτk‖1 > δ
0, otherwise,

(5.140)

where τk is the last time instance when the measurement value is transmitted. For

performance comparison, the MMSE state estimate obtained by ignoring the infor-

mation contained in event-triggering conditions (which we refer to as the ‘p-MMSE

estimate’) is considered. To indicate the best estimate possible, the MMSE estimate

obtained using all past measurements at each time instant, which we refer to as the

‘n-MMSE estimate’, is also presented for comparison. The performance comparison of
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the proposed event-based MMSE estimate (which we refer to as ‘e-MMSE estimate’)

obtained for δ = 1.5, the n-MMSE estimate and the p-MMSE estimate obtained using

the same communication sequence γk is shown in Fig. 5.4. The resulting average es-

timation errors for p-MMSE, n-MMSE and e-MMSE estimates are 1.2169, 0.833 and

0.9138, respectively. To illustrate the tradeoff between the average communication

rate and estimation performance, the average estimation error comparison for differ-

ent average communication rates (obtained by using different δ’s) for the e-MMSE

estimates and the p-MMSE estimates is further shown in Fig. 5.5. From all these

comparisons, we observe that the exploration of the set-valued information contained

in the event-triggering conditions leads to improved estimation performance in terms

of average estimation error. In addition, from Fig. 5.4, it is shown that compared with

the n-MMSE estimate, the performance can be maintained by the proposed e-MMSE

estimate even when communication rate is much decreased by the triggering condi-

tions. Also, note that when the triggering set is chosen to be sufficiently large, the

performance of the e-MMSE coincides with that of the p-MMSE, as the information

provided by the event-triggering set is the same as the information of a packet dropout

when δ is chosen too large, (e.g., δ = 4.1, which would imply a zero communication

rate as yk ∈ [−2, 2]).

E
(γ

k
+
1
|Ŷ k

)
γ

Figure 5.4: Estimation performance comparison for the reliable communication channel
case.
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Figure 5.5: Tradeoff between average communication rate and estimation performance
for the reliable communication channel case.

We now continue to illustrate the unreliable communication channel case. Due to

the packet drop process ζk, the sensor cannot tell whether the estimator receives the

measurement update or not during the event instants, and thus the ‘send-on-delta’

conditions can no longer be implemented1. In this regard, we consider an alternative

event-triggering condition:

γk =

{
1, if ‖yk‖1 > δ
0, otherwise

(5.141)

Basically, this condition implies that the measurement update is not sent to the remote

estimator if yk has a relatively small magnitude. For this scenario, the performance

comparison of the proposed e-MMSE estimate for δ = 2.5 with packet dropout rate

1−λ = 0.2, the n-MMSE estimate and the p-MMSE estimate obtained using the actual

communication sequence γkζk is shown in Fig. 5.6. The resultant average estimation

errors for p-MMSE, n-MMSE and e-MMSE estimates are 1.1684, 0.8168 and 0.9585,

respectively. The tradeoff between the average estimation error comparison and the

average communication rates for the e-MMSE estimates and the p-MMSE estimates are

further shown in Fig. 5.7 for the cases λ = 0.4, 0.6 and 0.8, respectively. Again, from

these results we observe that the exploration of the set-valued information contained

in the event-triggering conditions leads to improved estimation performance in terms

of average estimation error.

1Note that feedback communication from the estimator is not helpful in this case as well, so long
as the same lossy communication channel is used.
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Figure 5.6: Estimation performance comparison for the unreliable communication
channel case.

5.6 Summary

In this chapter, the change of probability measure approach is utilized to solve the

event-based state estimation problem for discrete-state HMMs. For both the reliable

and unreliable communication channel cases, closed-form expressions are obtained for

the conditional probability distributions of the states on the hybrid measurement in-

formation available at the remote estimator, and the expected communication rates

are found to be expressed as the ratio between the weighted 1-norm and 1-norm of

the obtained conditional probability distribution of the states. So far, our attempts

at handling the ambiguous information contained in the event-triggering sets with the

change of probability measure approach seem encouraging. The results not only solve

the event-based estimation problem for the finite state HMMs, but reveals a systematic

approach to handling the event-based measurement information.
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Figure 5.7: Tradeoff between average communication rate and estimation performance
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Chapter 6

Conclusions and Future Work

6.1 Concluding remarks

In this thesis, the event-based state estimation problem is considered from differ-

ent perspectives. The target is to find event-based estimators that is both easy to

implement (in the sense of computational complexity) and optimal in a certain sense

(e.g., ML, MMSE). The outcomes of our research attempts are further summarized as

follows:

1. The structure of the event-based ML estimates is provided; for the one-step

case, we show that it has a similar form as the Kalman filter with intermittent

observations. A general approach for estimating upper and lower bounds of the

communication rates has been proposed.

2. Under a Gaussian assumption on the conditional distribution of the state on

the past hybrid measurement information, the event-based MMSE estimate is

proposed for general event-triggering conditions and multiple sensor measure-

ments; for the case of single-channel sensors, performance improvement in terms

of smaller estimation error covariance is rigorously proved.

3. The properties of the exact and approximate set-valued filters with multiple

sensor measurements are investigated. The results are applied to event-based

estimation, and an event-triggering condition design procedure is proposed by

simultaneously considering the requirements on estimation performance and com-

munication rates.

4. With the change of probability measure approach, the event-based state esti-

mation problems of discrete state HMMs for both the reliable and unreliable
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communication channel cases are formulated and solved. Closed-form expres-

sions for both the estimates and average communication rates are derived.

In addition, viewed from the extensive examples considered and the obtained esti-

mation performance, the results developed are potentially attractive to a variety of

industrial/commercial applications.

6.2 Future work

So far, the results of our exploration on simple-structured optimal event-based

estimators are encouraging. These results, however, only form the tip of the iceberg in

event-based estimation and much remains to be done. The following problems need to

be further considered and addressed in the future research work, which are potentially

the building blocks of a systematic approach to event-based estimation.

6.2.1 Application of the discrete state HMM results to gen-
eral dynamical systems

The value of the discrete state HMM results would be enormously increased if the

applicability to general dynamical systems can be further addressed. This seems pos-

sible, as the states of dynamical systems can be naturally represented by the states of

HMMs. Another fact that increases the feasibility is that in sampled-data control sys-

tems, the measurements and control signals are received/implemented in a quantized

fashion using analog to digital and digital to analog converters.

6.2.2 Event-based estimation problems for HMMs with con-
tinuous state spaces

To solve the event-based estimation problem from a more fundamental perspective,

HMMs with continuous state spaces need to be considered. The difficulty in solving

this problem mainly lies in the construction of a new probability measures and the

structure of the event-triggering conditions under the new measure.

6.2.3 The effect of time delays in communication protocols

Although the effect of packet dropout is considered in Chapter 5, the effect of time

delays have not yet been taken into account. It seems that the consideration of time
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delays may further add to the computation complexity of the algorithms; however,

alternative approaches might exist to overcome this difficulty.

6.2.4 Periodic local estimation vs. event-based remote esti-
mation

Event-based remote estimation helps maintain the estimation performance when

the communication and computation resources are limited; however, there also exist

many applications with enough computation power so that the estimates can be gener-

ated periodically by the local estimators. In this regard, it is interesting to investigate

the relative advantages of the two, and determine when to adopt event-based remote

estimation or periodic local estimation.
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