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ABSTRACT

The equilibrium and stability of a gas-vapor bubble

2

in a ligquid-gas solution at negatiVe Pressures .is investigated.

. The bubble is considered to exist at the center. of rotation
of a thin tube fllled with the solution. The centrifugal
fleld generated by the rotation of the system produces a
state of tension in the solution surroundlng the bubble
The- equlllbrlum shape of the bubble is shown to be

approximated by a spheroid for which the plane section is an
ellinse.' However, for negative pressures in the solution the
bubble 1is vet& close to being spherioal. The stability
analysis shows that the equilibrium state of thelbubbleeis
unstableiﬁand the equilibrium-size represents a criticai
”_value.' A bubble {e%s'than the criticai size willjsﬁ?ntan-

Aeously collapse, while ‘a buhble greater than the oritical

v

" size will spontaneously gfow.

a

Con51deratlon is then restricted. to a dllute, llquld—

gas solution. The critical radius is expressed as a function
,of'the'propetties ofﬁthe liquid phase outside the center of
the bubble. The dependencs of the critical radius on the
pressure, concentration, and temoerature is‘investiéated for

. , o
the specific case of a dilute solution of air in water. The

N

critical radius is found to Qecrease as the magnitude of the
S ’

negative pressure‘increases.-1 The presence of the dissolved

i
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gas results in a small reduction in the critical radius at

v

~§

negative pressures. _
\/‘)
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CHAPTER 1

INTRODUCTION
’ 3
The transition of a fluid from a liquid phase to a
¢ .

vapor phase characterizes many important fluid phenomena.
Two of the most interesting of these from an engineering
point 6f view are boiling and cavitation. Boiling and
cavitation can be described as the explosive vaporization
of tﬁe ligquid into a vapor—filled cévity [1]. Boiling is

caused by heating un constant pressure, while ‘cavitation

is the result of a redpcoti in pressure at essentially

constant temperatur€. The onset of both of these phase
transition pheﬁg-ena is not as yet fully understood. For
example, cavita :on is said to occur when ‘the pressure in
the fluid‘drops below the vapor pressure of the.liquid.v‘In
acﬁual practice, tQ{is criterion is much too simple to be
able to accurately predict th® onset .of cavitation.

| Boilimg and cavitation represent phase transitions
as a result of a metastable state in a liquid. A metastable
state is stable for infinitesimal deviations about the
equilibriumvstate}.however, fdr a finite deviafion,-the system
does not return gg’EﬁZ originai'state, but proceeds to some
other equilibrium stéte for which the entropy'of the system

is:g:eater than in the original state. Given enough time, a

system will move from a metastable state to a stable one.

¢



The mechanism of this phase transition is crucial to an

understanding of boiling and cavifation.
/ &
. .
Both boiling and cavitation require the formation

of a vapor ca&ity of particulér size in the metastable liquid
state. According to Plesset [2] ,"a central problem in
cavitation and boiling is how macroscopic vapor cavities

can form when moderate tenéions.are applied to a liquid". If
the liquid pressure is mechanically reduced sufficiently
below the vapor‘pressure, the 'ligquid can enter a state of
tension, or negative pressu;e. Negative pressures -are made
possible i; a liquid by intermolecular attraction. In this
‘sense, a liguid more closély resembles an amorphous solid
than a gas.

Théoretical calcul&tions have shown that the fracture
of a pure liquid leading to the creation of a J%por cavit§
could only. be producéd-by extremely large tensionsl or super-
heats [4]. However, experimentally much lower tensile
\strengths and superheat limits have been obtaingg’for common
engineering fluids. In an attempt to, explain the relatively
low tensions énd“superheaﬁg commonly encountered, the presence
of nuclei has been postulated in ordinary liguids.y These
nuclei would serVe to initiate the formation of the vapor
.cavity.

It is well known. that a "dirty" liquid has a much

lower tensile strength than the pure liquid. Heterogeneous

. : lFor water at 300°K, Fischer [3] calculated a tensile
limit of approximately 134 MPa.

*
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nucleation theory considers a foreign particlé or surface
to serve as“the nucleation site. Thus, the presence of a
surface or colloidal impurity in the liquid would be
responsible for the reduction in tensiie étrength.

Another possible reason for the low liquid tensions
ekperimentally obtaiged is the presénce of dissolved gas.
Even when careful attention is given to ‘the purity of the-
iiquid, in practice small amounts of dissolved gas are
~usually preseht. To date, the effecé of the presence of
dissolved gas on the tensile strength of a 1iquid‘has not
been conclusively determined. There is general'aisagreement
as to whether the gas significantly lowers the tenéile
limit [5]. | |

The preéence of dissolved gas is important when the
vapor cavity formation is initiated by homogeneous bubble
nucleation. Homogeneous nuCleatiqﬁ theory [6,7] postulates
that a thermodynamic fluctuation in a métastable state pro-
duces an "embryo" of the new phase, which if sufficiently
large in size serves to initiate the Phase trapsition. For
the transition of a liquid éo a vapor, the embryo can be
regarded as a very sméll vapor bubhle or nucleus. From
statistical'physics (8], it is undefstsod that the inStan—b
taneous value of the density of a liquid fluctuates over a
Arange of values. Figure 1-1 illustrates the density at a
pafticular location in a liquid as a function 6f.time.

Although the ihstantaneous value fluctuates rapidly, the
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5
time average value remains constant for a stable equilibrium
state. Small deviations in the density do not disturb the
equilibrium state of the liquid. However, a sufficiehtly

large fluctuation in the density of the liquid can cause a

vapor nucleus to be formed. For a liquid phase .in a meta-
stable state, it is possible that the nucleus will not decay

as it does for a stable equilibrium state, but instead grow

-~

<L

to form a center for vaporization.
Whether the nucleus grows or deécays is explained by
the concept of a critical size, or in the case of a spherical

Y
nucleus-, a critical radius. .There is a critical size for

which a nucleus in a metastable state will grow to become a-

center for the formation of a new phase. If the nucleus is

- N . . - . . »')
less than the critical size, the nucleus will decay. How-

ever, if the nucleus is greater than the critical size, the

nucleus will grow to become in this case a center for vapor-

. . >
ization.

. | Ffom staﬁistical'physics [9], it is possiblévto
prgdiCt the probability that a critical size nucleus will
occur. The probability, Pr, is inversely proportional to the
expgnqntialfof the reversible work, Wﬁ, required to form the
nucleus, i.e. | ‘

'ka. - |
Pr = exp (- i) . i - (1-1)

where k is Boltzmann's constant, andsT is the temperatute:.’

,The:;eversible‘work in the above expression is a function of

T
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the critical size of the .vapor nucleus.
Although the diécussion has referred so far té a

pure liquid, it {s of specialrinterest to consider the case;
of a liquid4gas solution in ﬁrder to include the effect of
"the dissolved gas on the system. The reversible work
required to form aﬂeritical size nucleus in a liquid-gas
soiﬁtion can be determined if the size of the nucleus has
been obtained as ‘a function of the properties of the solution.
For a spherical nucleus of radius Rc’ in & two component

solution, a useful representation is

o

RC = Rp»(T,P,C). (1-2)

vwhefe T, P, and C are, respectively, the temperature,
préssure, and concentration of the solution.
Ward,'Balakfishnan, and Hooper [10]bhave aeveloped
an expression for the critical radius of a gas-vapor bubble
in. a liquidfgas sblution at positive pressuré. The condi-
tions of thermodynamic equilibrium for the general case_of a
nmulticomponent solution yielded the equality of chemical
poteitials, and the Laplace equation of capiilarity relatiné

e . .
the pressure difference across the interface to the curvature

of the bubble at that point. ' For the special case of a dilute.

solution of a gas in a liquid, the critical radius of ra

4

sphefical bubble was expressed as a function of the tempera-

ture, concentration, and pressure of the dilute

r
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: ' . 2 .
solution, . 1i.e.

-

R_ = A (1-2)
. . nPV + PC* - P
.. , o,
where
VL
'n Z exp [ET (P—PV) - C] (1-3)

The surface tension vy, épecific volume VL, and vapor
’pressure PV are Ednctions of the temperature, T. The refer-
ence concentration CO is that of the liquid saturated with
the gas. across a flat, non-rigid membrane permeable only to
the gas component. The reference system is stfictly-liﬁited
to pdéitive pressures’ for the liquid.J If the liquid is in a
v’stgte Qf tension, the equality of pressure across the membrane
Qoﬁld require the gas to also exist at a neéative pressure,
which is impossible. Thus, the expression for the criticél h ¢
radius given by equation (1-2) is only valid for positive
pressures in the s;lution. |
If homogeneéus nucleation theory is to be used to
explain the onset of cavitation and.boiling in liquid-gas = &
‘solutiohs, the expression for the critical size of a gas-vapor
nucleusvhust be extended to include the possibility of

negative pressures. From this expression, the reversible ‘work

required to form a critical size nucleus in such a metastable

2Since Ward et al. included the effect of non-ideal
gas behavior inside the bubble, the expression obtained for
R, included the activity coefficients of each component. Ex-
pression (1-2) results from setting the activity coefficients
equal to one in the original expression, i.e. it is assumed that
the gas and vapor inside the bubble behave as an ideal gas
mixture. ° '
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state can be calculated. Once-the reversible WO{F_iS known,
the probability of the formation of a éritical éﬁze’nucieus
can be obtained. This‘investigation will consider an ex-
pression %or the critical size of a gas-vapor nucleus in a
liquid-éas solution at negative pressure, and relate it to
the reversible work required to form £hé nucleus. |

Since this investigatiqn will involve a solution.at

negative pressure, it is useful to consider some of the

)
N g

techniques that have been developed for producing tensions
in liguids. The principal purpose of experimentallygen‘er—j1
‘éting neéative pressures in'liquids has been the meaéuremeﬁt
’éf liqguid tensile strengths. A thorougﬁ review_of'thenmethods
used to determine the fensile strengths of l;qﬁids, and some
of the results obtained are given by Blakg/kll].

One‘method of genefating)liquid'éensions,is bykthe
use of preséure fields. “For example,’khe region of rare-
faction for an,acogstica; standing‘QaVe in a iiquid can
exhibit negative préssures. Galloway [12] -used this téchnique
to study sonically inducéd cavitafion in water and benzene,

among other liquids. Rédially symmetric stahding:waves .

produced by a spherical resonator were used to generate

.

acoustic pressures in the body of the liquid away from ahy)
'solid surface. Dynamic tensile strengths of approximately
20 MPa for water and 14 MPa for benzene were obtained. It
was determine@gthat the air content of the liquid sigﬁifi—
cantly limitea the maximum'negative‘preséure the liquid could

4
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withstand. Figure 1-2 illus;rates Galloway's results for
thg dependencélof the cavitation threshold pressuré of water
and benzeme on the percentage air concentration.
A centrifugal pressure field can alsé be used ZO

generate liquid tensions. A description of the method ﬁsed
by Briggs [13] will suffice to explain the technique involved.
The liquid was contéined in a fhin capillary tube open at
both ends.. About one centimeter from each end, the tube was
bent backvupon itself through ah angle of 140° to form a 2
shape. The tube was mounted on a spinner connected to the
end of a vertical shaft of an electric motor. The entire
system was enclosed in a large cylinder. When operating,
.the air pressure inside the cylinder was reduced to 4 o¥ 5
kPa (3 of 4 cm Hg).‘ The gube was mounted on a horizontal
plane. with the center inteisecting the projected é%in axis.
Thus, when spinning, each Balf column of liguid pulled
against the other, placing the liquid at the.center in a
state of tension. The fracture of thg'column'of liquid at
the mid-point of the tube indicated that the maximum tensile
.strength had been reachéd.' Knowledgé of the length of the
tube and the angﬁlar velocity of the system enabled the
maximum negative pressure to be calculated for a liqﬁid of
'giVen,density._ Briggs notes that-ﬁscfupulous cleanliness"
Qaé nééessary. |

»ﬁx AReyholds [14], in 1878, wé§ the first to use a cen-

.trifugal system to measure 'the tensile strength of a liquid.



10

1003
g N
o | WATER
o ,
=5
n
0 10
H ] ' BENZENE
Q‘ —
e i
—
O -t
ps
102} -
)
5
£
£ 1=
ol 3
(o] —
v =
2 i
3 .
-
> -
S
SH -
01— T T T T T T T
0.01 01 . 1 ) 10

$ Air Concentration

?igure 1-2 Galloway's Experimental Results for the

o . = Dependence of the Cavitation Threshold Pressure
on the Percentage Gas Concentration. (100%
corresponds to the saturation concentration at
a pressure of 0.10 MPa and a temperature of 22°C)



11

. \ : ° ' )
_He Obtained a maxiﬁﬁg?tension of about 0.49 MPa for ordinary
tap water. Temperley &nd Chambers [15], in an attempt to
repeat his results in 1946, obtained a max imum value of -
0.57 MPa for water at room temperature, The largest'experl—'ﬁ
mentally measured tension for water is ‘that due to Briggs.v
Using the"centrrfugal system described above, he obtained a
maximum tension of about 27.7 MPa for water around 10°C
| A centrifugal system has also been app 1ed to the’
study of liquids other than water Apfel and S&lthn[lG]
obtained a ma;imum‘tension of 17.6 MPa for di—ethyl ether
using an air;driven ceﬁtrgfugal device. The sighificance
of this value'is that it lies "between 88 and 93 per ‘cent o}
the tensile strength of di-ethyl ether at room temperature
as predicted by homogeneous nucleation.thépry." Donoghue,
Vollrath, and Gerjuoy [17] obtained a maxiﬁum tension of
15. 9 MPa. for benzene using a system 51mllar to that of Brlggs.
Like Galloway, Donoghue et al. observed the effect of dissolved
‘gas on the tensile strength of benzene..'Some of their
results are presented in Fioure 1-3. They indicate that the
rupture strength is decreased by the addition of dlssolved
gas. . |

Although the results of Galloway'and Donoghue et al.
suggest that-the preseﬁce of dissolved gas decreases the
tensile strength of a liquid, their-results are not conclu- -

sive. In a brief dlSCUSSlOn of Galloway s results, Hammltt'

[18] notes that for a hxgher gas content, i.e. fifty to
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ninety~five per cent'éaturation, the results of ;yengar\and
Richardsonp[l9} using ultrasonic cavitation in static systems
show no effect of dissolved air on the cavitation threshold.
Kuper and Trevena [20] réported on theoretical grounds that
"the presence of disso}ved gas only causes a negligible
diminutio; in the‘intrinsic étrength of liquids." Harvey

[21] found that prepressurizing the liquid to drive the free
gas into solution enabled Considerable tensions to be obtain-
ed in water. He demonstrated tﬁat in considering the effect
of gas content.on the teﬁ%ile étréngth of liguids, qne must-
discrim{hate between dissélved and undissolved gas?’

f_In general, it should be noted that the use of a

centrifugal system to measdre thgftensilé strength of a

uid requires that the ryé;;;; originate in the body of the

¢

However, in many cases it has not been clearly

s ' ’
established w her the liquid column fails due to los’s of

édhesion at the walls of the tube or loss of cohesion in the

body of the ligquid.

R

Uy

This investigation will consider the use of a centri-

fugal field to produce a region of negative pressure in a
liquid.{;lf a gas-vapor nucleus is imagined to exist at the
center of rotation of a system similar to that of Briggs,

the solution outside the nucleus would be subject to negative

o

pressures. Thus, the thermodynamicvanalysis of a gas-vapor
y; : ; .

Qucleus located at the"axis of rotation of -a narrow tube

‘filled with a liquid-gas solution.wil;.jiéid an expression
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. for the critical size similar to that obtained by Ward gg:giﬁ:
valid for the case of negative pressure. The expressiqﬂ-
for the critical size of the nucleus in terms of the proper-
‘ties of the solution will require thé use of a special
reference system different from that of Ward'gg al., which
is valid for a solution at.negative pressure.
For a system subject to a g¢entrifugal field; the

deformation of the bubble must be considered. A gas-vapor
" bubble rétating about a central axis cannot be assumed to
have a spherical shape.' Rather, the effeét of the centrifugal
field would be such as to produce a deformation consistent
with the éxial symmetry of the system. Lord Rayleigh {[22]
considered the effect of "capillary tension" on an ingom—
pressible fluid mass rotating with uniform angular velocity.
He solved the differential equation for the system using a
pdwer series expansion. When only first order terms were
considered, the shape of a plane section:through the akis of
rotation of the bubble was approximated by:an ellipse. .

‘Rosenthal [23] and Princen;AZié; and Mason f24] bétﬁ‘;
s éénéiberédhﬁhé'shape of a fluid bubble immersed in and
roﬁaginq with a heavier‘flﬁid.' Beginning with Laplace's
equation Qf capillarity, both obtained solutions for the shape
of a plane section through the éxis of rotation in terms of"
elliptic integrals of the first and second kind. Each method
differed in the choice of the bubble parameter- to which the

size and shape were referenced, although the results were



15
easily related.b Both concluded that for high angular veloc-
ities, the shape of the bubble became essentially that of a
cylinder with rounded ends.

Princen et al. used their expression for the bubble
length to determine the interfacial tension of an experiment-—
él system. Measuring the length of a bubble of known volume
at a givén speed enabled ﬁhem to calculaté the surface tension.
In the course of their experiments, they observed the bubble
to bedome cyli;drical in shape for large angular velocities,
as théy had predicted.

The conclusions4of Rosenthal and Princen et al. are
not-diréctly»applicable since their s Stems treated fluid
bubbles of constant volume, That is, a bub le‘of given |
volume initially placed in their system t rest, will retain
that volume even when accelerated to different angular
velocities. Fo? a>g§s—Vd§Qr;bubbie~in a’' liquid-gas solution, -
the effect of mass transfer across the'inteffécé ﬁuét bé" ,
included. The eqdilibrium condition§ will'détefmihé.thex
distribution of mass inside and outside the bubble.

N " In tﬂis invéstigation,’the conditions of thermo-
dynamic equilibrium will be obtained for a gas-vapor nucleus
at the center of rdﬁatibh of a centrifugal system. A stability
analysis will determine the naﬁu;e of the equilibrium state.
From"the'céndiﬂiéns‘offéqﬁilib:ium,vthe shape bf.the;b@ﬁbléA
will belobtained for ﬁegaﬁi&e‘préséures in the solution out-

o

side the bubble. For the specific case of a gas-vapor bubble
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in a dilute solution, the use of an appropriate reference
condition will enable the critical size to be expressed in

. A
terms of the properties of the dilute solution.



CHAPTER 2

THE EQUILIBRIUM STATE OF A GAS-VAPOR BUBBLE
IN A LIQUID-GAS SOLUTION SUBJECT TO

A CENTRIFUGAL FIELD

2.1 The Equilibrium Conditions L \ '*’{

This section considers the éonditions of thermo-
dynaﬁic equilibrium for a gas-vapor Bubble in a multi-
component liquid-gas splution at ﬁegative pressure. in
order to place the liquid phase outéide the bubble in a
state of tension, the entire system is considered subject .
to a centrifugal field.

The thermodynamic system is represented by the
schematic invFigure 2.1-1. A loﬁg, narrow tube rotates at

= .
constant velocity around a central axis denoted x. The tube
is filled with a solution of n-1 gases in an incompressible
liquid. Each chemical component is considered to be inert,‘
i.e. there are no chemigcal reactions in the system.’ The
pressure in the liquid solution at both ends of the tube--a
radial distance 2from the x-axis--is dendted by the reference
pressureTPo. A single gas-vapor bubble is located at the
center of the tube in the liquid-gas solution. The liquid-
géé solution containing the gas—-vapor bubble composes the

thermodynamic system considered. The entire system is assumed

to rotate with angular velocity w, and thete are no other

17
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fields acting;on.the sYStem , For the closed, .constant-
fVOlume‘system conSLdered the total mass and total volume
remain constant. The entlre system 1s in dlathermal contact
“with a-heat reServo1r_at temperature T.

The equilibrium state of a thermodynamic system is
that which minimizes the“valueVof‘thewinternal energy‘forga~mt
.flxed value of the total entrOpy.brﬂoQéVer, for a system
at constant temperature,:lt is more convenlent to use the
Helmholtg potential.l The natural variables for the  ©
Helmholtz potential, F, are the temperature, T, volume; v,
and mole numbers, g:z The equllibrium state for a system at
constant temperature is that which minimizes the value of the
Helmholtz potential at that temperature [25]. The advantage
of using the Helmholtz potential formulation is a reduction
by one in the_number of independent variables due to the
constant temperature condition.. Given an expression for the
total free energy of the system, the equilibrium conditions
are obtained by setting the variation of the energy at |

constant temperature equal to zero. ..
N i

lThe Helmholtz potential is the Legendre trans;
formation of the 1nternal energy,. U, ‘replacing the entropy,
.S by the temperature, T, as. an, 1ndependent varlable, i e.,f

« "-17‘—U--TS"

e e The number of molecules, expressed in- moles,'of a

g,chemlcal component i is’'denoted by the mole. number N, The.
--notation ‘N is used to. represent the mole numbers of éach of
“the- reSpectlve components, i. e.v- : :

"N N

N A.2]"-‘-.' n..

1!
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'The first step in the equilibrium analysis is to
formulate an expression for the total free energy of the
system u51ng the Helmholtz potentlal representation. The
total system represented in Figure 2.l—l is comprised of
three subsystems: the liquid-gas solution, the gas-vapor
mixture, and the interfaCe, denoted by the superscripts L}
fé; and S, respectively._ Flgure 2.1-2 lllustrates the three
i subsystems created by the bubble surface The prOpertles of
a s1ngle subsystem are not unlform and homogeneous through—
out due to the 1nfluence of the centrlfugal field. . In order
to account for{the spatlal variatlon of the‘local properties,
small elements of each subsystem are considered. The symbol
D is used to 1nd1cate small quantities of the exten51ve
varlables3 for wh;ch_the properties are constant.

The Helmholtz.potential in the liquid-gas solution
and the gas-vapor mixture can be expressed as a function of
‘the‘local values of the temperature, volume, and mole numbers
of the chemical components. The expression for the Helmholtz

potentlal of a small element of elther subsystem at constant

temperature is I

?

- DF = - PDV. + I . u.DN. (2.1-1)
LT _ REC i S T

‘where Pfis'the?pressure,fand ul 1s the chemlcal potentlal of '
lthe ithMCOmponent‘ Equatlon (2.1- -1) can be 1ntegrated over

r"each subsystem to obtaln an expression for ‘the" Helmholtz

, 3An exten81ve varlable or parameter is one that is
gaddltlve over the extent of the system, i.e. V or N

ik'
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potential of the liquidfgasrsolution'and the gasrvapor

‘mixture, i.e.

n - . L A
Pl = ~ pipvt &+ s u? DN? (2.1-2)
v Ci=1 - ‘
) I T NI
N i v 1
and S o
G ¢ .6 Tl G e o PR
F =/| =PV + I |- wu’ DNZ . (2.1-3)
. . : . 1 1
) i=1 .
vC NC
o ’l

The expression for the Helmholtz potential associated
with the interface is obtained from surface thermodynamics |
[26]. The interface is modelled as a mathematical surface of
}discontinuity called the "dividing surface" - The'position of
the "d1v1d1ng surface" 1s so chosen as to ellmlnate the
dependence of the free energ§ a55001ated w1th the 1nterface
on the curvature of the surface 12771.° ‘It has zero thlckness,
and hence-no volume. The area replaces the volume as an
independent parameter in the‘expression forlthe Helmholtz
potentiai. Excess quantities4 are associated with the
"dividing surface" in an analogous way to their counterparts
in the other two systems. 'Thus,:the Helmholtzhpotentlal in
the 1nterface is expressed as a function of.the temperature}

area, ‘and excess mole numbers of the chemical-components.

4An excess quantity represents the difference between
~ the actual amount of an extensive quantity contained in the
interfacial region, and.the amount that would be contained if
the phases on either side of the "dividing surface" were
assumed to extend right up to the surface in a contlnuous
_and unlform manner.
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The expression for the Helmholtz potentlal of a small element,

DA of the "d1v1d1ng surface at constant temperature is

won o (2.1-4)

DF° = YDA +
. . l 1

i

N

where 'y is the surface tension [28]. Integrating over the

"dividing surface" gives the expression for the Helmholtz

R

potential of the interface, i.e.

o |
F. = YDA + % u,” DN, - (2.1-5)

The Helmholtz potentlal of the entire system is’

’ 51mply the sum of the potentlals of the three subsystems,"

L G S

F = F' +F +F . 0 (2.1-6)

Using eguations (2.1-2), (2.1-3), and (2.1-5) in (2.1-6)
gives an expression for the intrinsic free energy of the

tofal system, i.e.

e —
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;The>sy§tém>§hpwn iq-Figﬁre 2.1-1 is Subject-tofa-

' ééntrifﬁgél.fieid‘génerated-by a rotatiqn‘about the central
éxis.'sThe'expresSion"erthé intrinsic free energy given

by equatibn (2.147)'does an;inc1Udé-the'enérgy'cohtribution:
.due to the field. The potential energy associated with a’

small element of mass, Dm, in the presence of the field is

w2r2 Dh. . (2.1-8)

1
N

-where w is the angular Veiocity; and r 1is the radiéi

distance of element Dm from the -axis of rotation.5

' : 5The'method whereby the effect of .the centrifugal
field is introduced closely follows that developed by
Gibbs [29] in treating the equilibrium of a system under
the influence of gravity. S - :

~
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Integrating expression (2.1-8) over eaéh subsfstem gives'
the contribution of the céntrifugal field to the free
energy of each subéyéﬁgm, i.e.

[

- % wr” Dm ‘ (2.1-9)

Finally, combining expressions (2.1-7) and (2.1-9)
yields an expression for the total free energy, F, of the

) : \ L
- system including the effect of the centrifugal field, i.e. .

1

. , _ n | |
F = - PPDVL + I u LDNiL + - = w2r2DmL
' ' Coi=1 , o
L - ' . ‘L - L
V‘, R i Ni. - o m .
b3 n -
+ - PGDVG + I u.GDN G + - = w2r2DmG
. i 2
i=1
VG N.G mG
l +
n- 2 2. S
+ YDA + I u.5pn. 5 7 - e xrDbm
i=1 oot
S S
A N, m
. l ~
- . (2.1-10)

The condition for an extremum of the free energy

- can be expressed as

i
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SF = 0 . (2.l—lly,

T VN . -

The § notation is used- to indicate a virtual variation

6f the Helmholtz potential. The vériation in equation

(2.1-11) is subject to the follbwing constraints: =
;T = constant - (2.1-12)
lF .,
DVY 4 pv® = T (2.1-13)
G -» . :

v v o

i=1,2,...,n

i Ny Ny C(2.1-14)

N

where'VT and NiT.represent the total volume and total mole

numbers of the entire system. For the closed, constant-

volume system considered, VT‘and NiT in the above equations
are constant. Using expression (2.1-10), ‘the variation of

thé'free energy in eqﬁation'(Z}l—ll) can benexpreségé‘as
. % -

A
u
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i=1
A N.S mS
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(2.1-15) -
In general
2 _ 2
$(r"Dm) = 2rSr Dm + r*S§Dm _ (2.1-16)

AT

{ o

For the liquid-gas solution and the gas-vapor mixture, the

—

element of mass Dm can be expressed as pDV or g MiDNi’ where
_ i=1.
. - . 7 . -
P is the density and Mi 1s the molecular weight of component i.
Then equation (2.1-16) becomes o
- | g

2

§(r’dm) = 2rérepv + r’M, 6DN, 1 (2.1-17)

I el

i=1

@

Likewise, for theqiffterfac;?ii the’ element of qeés
N

Dm can be-

73 )

' . . ‘nu ] s N S . » . :‘.1"‘ . . . '
expressed as FDAvopA % Mi i - The symbol ri denotes the}
. ‘ . i=1 \ S
‘ . - e o~ "‘
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'adsprp;ion6 of component i at the interface, defined by

v N,
r, = =% (2.1~18)

* The total adsorption is the sum of the individual

quantities, i.e. -
n
rr = 1 T, ‘ (2.1-19)
For the interface, equation (2.1-16) becomes

2

§ (r"Dm) = 2r8r DA + 2 S

r Mi 6DNi (2.1—20)‘Q

o

i=1
Using expressions (2.1-15), (2.1-17), and (2.1-20) in
equation (2.1-11) yields an expression for the extremum

condition in'termﬁ—of the thermodynamic variables of the

system, i.e.

. n
- PL dDVL + - wzr 6rpLDVL + I (uiL— % w2r2M ) SDN L
VL » i=1
) vr N. D
- i
G... G : 2 G_.G n G 1L 22 G
+ - P SDVT + - w°rdrp DV + I (U, - > w“r“M.) 6DN.
. i 2 i i
i=1 .
ve vC N.C .
. : N
o
| 2 n s 1 22 -
+ YSDA + | - w“rSrIDA + I (u."=- = W r*M.)8DN." =0
v . 2. 1 1
° R i=1
A A Iy, S .
. : i (2.1-21)
\\ M " EY .

~ ' ®an alternate name for the adsorption is the
gaﬁérgicial’density. .
\\

~
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The equilibrium conditions are obtained from

‘ N
equation (2.1-21) subject to the constraints given by K
equations (2.1-12), (2,1—13),‘and_(2.Le14). Since varia-
tions in the volume and surface area are independent of
variations in the mole numbers, equation (2.1-21) can be
expressed as two separate conditions, i.e.
- - PL <SDVL + - wzr érpL DVL + - PG 6DVG
‘ . G
VL VL v
-
+| - w?rsrp® pv® + | Y6DA + | - wrér T DA = 0 (2.1-22)
VG A A
and
?
n : : n
L (.l - 2 w?e?) sonP o+ : (1.% - L 4222y s5pn.©
C i i - i i
i=1 i=1
N.L N.G
i i
n s 1 22 S
+ I (u.” - = wr®) &DN. = 0 (2.1-23)
. i 2 1
i=1 .
N.S
i
o

_The conditions of constraint %}ven by equations (2.1-13) and
(2.1-14) expressed in terms of variations in volume and mele

numbers become
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’ GEJL + SDV

i
(@]

(2.1-24)

R
<
G

<SDNi + DN, + ' GDNi 0, 1i=1,2,...,n

(2.1-25) ..

Equation (2.1—22) represents the coﬁdition of

iﬁ'méchanical equilibrium. The variation of the system is
expressed as variations in the size and position of the
volume and surface elements. Considering thé‘pressure—

volume terms first, by simple differentiation

PSDV = § PDV' - SPDV’ (2.1-26)

v v v ( 2

In the equation above, 6P represents the variation in
the pressure associated with the change in position of the
volume element DV. For a volume, V, bounded by a surface,

A,

s PDV = P &n DA . ) (2.1-27)
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A

where én is the normal component of the motion of DA,
positive when outward with respect ﬁQ”V,_;Using equation

(2.1-27)° in (2.1-26) gives
v A ;

In terms of the liquid-gas solution,VVL, and the gas-vapor

mixture, VG, equation (2.1-28) becomes

pl spvl + p¢ spvC = p¢ - pL)A $n DA
VL VG - A
.- sl pvP - sp¢ pv® | (2.1-29)
v v
where (PG - PL)A is the pressure- dlfference across the

~

a . .
surface element DA, and 8n is positive when projecting

outward from VG into VL.
Consider now the surface terms in equation (2.1- 22)

Agaln, dlfferentlatlng gives
f

YSDA = 3§ YDA - §YDA . (2.1-30)

A ' A A
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| Voo o - - :

where §y is the variation in the surface tension associated
w1th the component of motion of the surface element DA lylng

in the surface For the "d1v1d1ng surface , A, w1th

principal curvatures Ky and Koy

e -
-

~

8 YDA = | Y(k; + k,) 6n DA ' (2.1-31)

2

A . - ‘A

- where the curvatures are considered positive when the

centers are inside VG. Using equation (2.1-31) in (2.1-30)

gives

YéDA = Y(k; + k,) 6n DA - SYDA (2.1-32)

A ‘ A . A

Finally, by means of equations (2.1-29) and (2.1-32),

the general condition of mechanical equilibrium is reduced

- to

(SPP - mezrdr) DVL + (GPG - prz}ér) DVG

v o

+ [—(PG—PL)A §n + Y(Kl + K2)5n - szrdr -8yl pA =0

A ‘ o, , © (2.1-33)
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Equation (2.1-33) is satisfied by the condition that the

integrands vanish throughout the system, i.e.

= przr S R .o (2.1-34)
= 05,2, | (2.1-35)

G’ _L ~ | LS 2
-(P~ - P )A Sn + ¥ (Kl + K2) Sn - 'w"rér - 8y = 0 (2.1-36)

Separating the variations in equation (2.1-36) into normal .

and tangential motions of DA yields

(e - pLyA =¥ (ky *+xy) = T w2r 9§ (2.1-37)
: dn
and
NG
QI. £ - 2 )
dy row?r (2.1-38)

\

respectively. If x is defined as the angle between the \\

normal and radial direction, i.e.

~

dr = dn cos ¥ (2.1-39)

equation (2.1-37) can be rewritten as

L

G _ 2 L
(P~ - P.)A =Y (Kl + K2) I' w"r cos x | (2.1-40)

~Consider now the conditions for chemical equilibrium

given by equation (2.1-23). Since the variations in mble
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numbers are not independent of each other, the method of
Lagrange undetermined multipliers is used to solve equation

(2.1-23) subject to the constraint given by equatlon

(2.1 25). Equatlon (2. l -25) is multlplled by the constant

Ai, and then subtracted from equatlon (2.1- 23) to glve

. n *n ~
L mL-%meﬂ)wnL+z mf—%&gmﬂjdmp
l=l 1 l=l . 1 -1 1
N_L R N.G
i i.
| n s 1 22 S
+ I (L= = w"r"M. - A.) SDN. =0 (2.1-41)
. i 2 1 i i
« i=1
N.S
1
Equation

(2.1-41) is satisfied by the condition that each
«integrand vanish, which yields

(2.1-42)

The equilibrium conditions for a gas-vapor bubble
in a liquid-gas solution subject to a centrifugal field

can be briefly summarized.by the followipg equations:
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L G ' .
2 p .
%%— = -DLQ r ; %;— = - przr . (2.1-43)
G L., _ : 2 .
(P~ - P )A = Y(Kl + Kz), Tw™r gos‘}V ‘ ((2.1 44)
ay _ _ .2 _
&L= - - (2.1-45)
L1 2.2 ~ G 1 22 _ s 1 22 _
b - s ety = w T - Sty = T 5wty = Ay,

i=1, 2, ..., n ' %iiT_46)

2.2 The Equilibrium Shape of the
Gas-Vapor Bubble

y

The equilibrium shape ‘of the gas-&apor bubble at
the axis of rotation of the system will be deformed from a
spherical shape by the tentrifugal field.  In thisrsection,~
an expression for the equilibrium shape of the gas-vapor
bubble will be derived from the conditions:of equilibrium
obtained in the previéus section. .

Sincé the bubble is.syméetric about the axisvdf
rotation, the curve produced by a plane section through
the.axis is used to repreéesent the shape of the bubble.
Figure 2.2-1 ;hows such a élane séction. The radial
direction, perpendicular to the axis‘of rotation, is indi-
éated by the r-axis. The r and x intercepts are denoted by
'a' and 'b', respectively. The distance a' represen#s ﬁhe

maximum radius of the bubble. The radius of curvature at
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the center of the system, i.e. at r=0; is denoted by 'h'.
The angle 6§ is that associated with the slope of the curve.‘
The angle between the normal to the curve and the positive
x-axis .is denoted by ¢.
Neglecting the term I‘wzrcosx7 in equation (2.1-40)
results in Laplace's equation of capillarity, i.e.
G __L,  _ -
(P” - P )A = Y(Kl + K2) (2.2-1)
relating the pressure difference across the interface to

the surface tension and principal curvatures of the inter-—
face at that point. Equation (2.2—1)'is further simplified
by assuming the surface tension to be constant over the
_interface.8 Once the éressure difference is expressed as a
function.éf the disténce.rzgrom the axis of rotation, an

appropriate'éxpression for the curvature can be substituted

into equation (2.2-1) to yield a differential equation for the

7The value of the adsorption, T, is usually suffici-
ently small to justify neglecting the term szrCOSk in equation ,
(2.1-40). For example, Defay, Brigogine, agd Bellemans (30]
obtained a value of 0.62 x 10 kg-mole m™<4 as the approximate
magnitude of the relative adsorption of nitrogen &t the plane
surface of a saturated solution of nitrogen in water with a
gaseous phase of nitrogen and water vapor.

8E:om the equilibrium conditions,

dy _ _ 2
ar - 'w'r

In view of the small value of the adsorption, T, the rédial

variation of Y can be neglected.



equilibrium shape of the bubble.

Equation (2.1-34) éives the radial pressure
variation in the liquid-gas solution.- Ihtegrating equation
(2.1-34) from r=0 where PL = PcL to a point'r'results in

P™ (xr) =P +%-p w'r (2.2-2)

where.pL is constaét due to the aésumption of liquid
incémpressibility. For a'gas-vapor mixture of low density, -
the préssure inside thg bubble, PG, can be aisumed constant.9
The pressure diffe&éﬁce across the interface‘at the center

. of the system can be related to the radius of curvature, 'h'

at that point, i.e.

(% -l = & T (2.2-3)

Using equations (2.2-2) and (2.2-3), the pressure differ-

ence across the interface at any point 'r'can be expressed as

. € -
% - ph =2x 1 L2272 (2.224) ./
A h 2 . ,
?From the equilibrium conditieps, .
G
dP —_ G 2 . R . i :.-"E«':
@& TP |
For a gas-vapor mixture of‘low density, i.e. pG<<1,
ap® =g (
dr- . |
LY

implying that‘PG is approximately constant. *
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The shape of the surface at any point is character-

ized by the two principal curvature, Kl>énd Ky e For the

axisymmetric surface being considered, «., is the plane

1
curvature of the meridional curve shown in Figure 2.2-1.

The second curvature, « acts in a perpendicular direction

2 ’
to the x-r plane. The radius of curvature associated with
K2, denoted by ﬁz in Figure 2.2-1, is equal to the distance
between the curve and the x-~axis along "a line normal to the

‘curve in the Xx-r plane. From analytical geometry [31], the

sum of the principal curvatures can be expressed as

2
dr, 2 é-—£)
K+K=l+(d_x) " T ax? (2.2-5)
1 2 " 372 - .

r 1+ 57

The angles 6 and ¢, positive in a counterclockwise sense,

are related by the equation

9 = ¢ - /2 © (2.2-6)
where 6 is defined by

dr . '
tan 6 %a; - (2.2 7)'
Using equation (2.2-7) in (2.2-6) gives
@

dr . _  _ : ! ' _
= cot ¢ . ‘ (2.2-8)

which upon differentiating yields
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kY

— = csc2¢ g% / . : (2-2—9)
dx : PR

Substituting expressidné (2.2-8) and (2.2-9). into (2.2-5)

results in

1 + cot2¢ - (r)csc2¢ g%

Kyt Ky = - ; 373 (2.2-10)
r{(l + cot“¢)
which reduces to
-la o : _
Kl + K2 ’—'r dr”(r51p¢) . (%.2 11)

.Finally, using expreésions (2.2-4) .and (2.2-11) in

N

(2.2-1) gives a differential équatidh for the shape of the

gas—-vapor bubble in terms of_the parameters'r'and ¢,.i.e.

2 pr2r2
. T—E?__ B (2.2-12)

- . . N . B A
P R

. o 2,‘,’*\ £ B . .
Expression (2.2—IZY:Q§ﬁ7be integrated to give

a5

- pr2r3 . .
sin ¢ = = - E 2 L o : .2-13
Sin ¢ =g By . (2.2-13)
where the constant of integration ‘=~ zero sinée r=0 at $=0. °

B L ‘
A relationship between the maxim m : adius of the bubble, 'a',
and the radius of curvature at the centegy'h' is obtained?gy<

evaluating equation (2.2-13) at ¢ = T whgre r=a, i.e.
9 - ' ‘

2
é— = l + -ﬁjz_a_i' ) . ' A .
3 - "k 8Y (2.2-14) -

Let the shape parameter 'e' be defined as
C . .

SN~ N NN
NG N s
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© ol 2.3 o
= pwal 2.2-15
T e 8Y . . ' - ( . )
Then, from equation (2.2-14)

-

a = (L+e)h o | (2.2-16)

and equation (2.2-13) can be :spressed as

»

) sing = (L + e)R - eR’ (2.2-17)

where R is the dimension%&ss co—ordinate’given by
A . .-
R = £ B ,‘ (2.2-18)
a - .

Equatlon (2.2~ 17) expresses_the shape of”the\bubble in
N

terms of R and ¢, u51ng the. shape parameter 'e'.

"The shape of the bubble is more convenlently

expressed as an explicit function for the dimensionless

co—-ordinate X in terms of ,R, where

x = X (2.2-19)
. a o

From equation (2.2-18) .
dx _ » ; : )
3R - tan ¢ ‘ .- (2.2 20)

ol

If tan ¢ is expressed in terms of sin ¢, ~quation (2.2-20)

becomes

dX = sind N (2.2-21)°

— I - T
B - sin%y)

Us£pg expression (2?2f17)for_sin¢ in (2.2~1) results in

3
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g& - - R[(1. + e) =- eR2]
{1 - R® [(1 + e) - er?]%} 2

(2.2-22)

The solution to the differential equation represented by
expression (2.2-22) can be obtained in more than one form.
The expression for dX can be integrated directly in terms
of elliptic integrals of the first and second kind to give
aAgeneral expression for X. The’resul£‘is presented.in
Appendix A.

However, an alternate formulation utilized by Lord
ﬁaYleigh-[BZ]\in his treatment of a rotating fluid mass:
subject to capillary tensioh expresses the solution as a
'series expansion in terms of the shape parameter, 'e'. Intro-
ducing the transformation

2 =1-8 | (2.2-23)
F ' ' ‘
into equation (2.2—22) resulté in
‘dax " 14eg

dx 0 (2.2-24)
dz 2{1 - (1 - 7) (L + ez)?] 2

The solution to equation (2.2-24) .can be expressed as a
' series expansion in terms of powers of 'e'. For the cése of
a.small bubbie, where e <« 1, oﬁly the leéding terms need .
be retained. ) ‘ |

| An estimate of the order of magnitude of'e' for a

small negative pressure in te solution at the center of the

system can be obtained using a spherical approkimation for
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the bubble shape. For a given system, the value of 'e'is
dependent upon the maximum radius, 'a', which can be estimated
. : .
using the expression for the critical radius of a spherical

vapor bubble in a pure liquid [33], i.e.

R = - 2Y : | (2.2-25)

‘where PV is the vapor pressure of the~liquid: \ﬁdr water

at 20?C,'the surféce ;ension is 0.0728 N/m and the3vap6r
pressure is 2.34 kPa [34]. If the liquid pressure outside
the bubble is floo kpa, using eqﬁétion (2.2-25), the order

of magitude of 'a'.is 1 ym. For an angular velocity of 1006
.rad/sec,lo the order of magnitude of the shaﬁe parameter is
10-9. For largér negative pressures, the value of 'e' would

be even smaller. Thus, for negative pressures in thé‘liquid—
gas solution‘outside the bubblé, the equilibrium size of the
gas—vapor.bubbie is suffidiqhtly small to saEisfy the condition
that |

| e << 1 (2.2-26)

For such a condition, it is mathematically conven-

. ’ . dx . . . -
ient to express the function az as a power serles expansion

Z

in terms of 'e'. Equation (2.2-24) can be rewritten as

loThé value of w strictly depends on the values of
‘Po and Pc for a.given system, i.e.
A _ .
2(p_ - Pl 172
: o c

w =
lez
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+
e Lt ez 51— (2.2-27)
22 % [1 - 2(1-2Z)e - Z(1-Z)e ]2

Using & biuomial series [35] for the term

1
-,

J = [1-2(1-2)e - z(1-2)e?]  (2.2-28)
™
in equation (2.2-27) results in the following expression
for J:ll
I =1+ U-z)e+ (3-322+2%e?+ o (e (2.2-29)
Using expression. (2.2-29) in (2.2-27) results in
= 1+ (me+ G- 324 2262
Z - 27 /y » 2 2
g L2 3, |
t 5— e+ (1-2)e”] + o (e”) : (2.2-30)

Equation (2.2-30) can be rearranged in te;mé of powers of

Z to give d

‘ ‘ ' =1, 5 1

/, .
X L1 +e+ 32, -3 224 o (3 (2.2-31)
az " 32 T2 ¢ o v ,

Transforming equation (2.2-31) back into an expression in

terms of R using equation (2.2-23) gives.

2

lExpression (2.2-29) is only strictly valid for the

condition _j < -2(1-z) - z(1-2)e? £ 1. Since 0 % g < 1, this
condition is satisfied when e << 1. )

—



_1
ez) R(l—Rz) /2

|
I
|
-
+
M
+
Njw

1
e?R (1 - R9) 2 + 0 (ed) (2.2-32)

Integratiﬁg equation (2.2-32) results in

- . 1 2 3
X=(1L+e+ % e?) (1-r%) 2 - . (1-R%) 2 + 0 (e3) .

(2.2-33)

¢

where the constant of integration is zero since X=0 at R=1.
If only terms of oOrder 'e' are retained in equation (2.2-33),
the curve produced by a plane secti?B/through the axis of

the bﬁbble”can be approximated he ellipsé.given by

L,
_x__2_ + 22 = 1 (2.2-34)
(1L + e)

For small bubbles, where e << 1, the bubble sﬁape is essenti-
ally that of the sphefoid_generated by rotating the curve
givén by equation,(2.2534) about the x-axis, the axis of
rotation.

Briefly summarizing, this;section considéred the
‘equilibrium shape of»a gas-vapor bubble in aﬁliéuid—gas
solﬁtion at the éenter of a centrifugal field. For négative
pressures in the solution, the small size of £he bubble leab
to the condition that e << ‘1, and the curve produced by a

' plane section through the axis of rotation of the bubble can

be approximated by the ellipse given by equation (2.2-34).

{
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_The elongaﬁibn of the bubble along the axy§ of rotation agrees
with intuition. Due to the cegtrifugal field, the heavier
liquid is displaced further away-from the axis of rotation,
causing the lighter, gésedﬁs phase to move close& to the center
), of the systeqf Thus, the bubble is rédially flattened.
| In this chapter, the equilibrium state was determined
from the extremum condition one the total energy of the system.

The next chapter 1nvest1gates the stability of thlS equlllbrlum

state by con51der1ng the exact nature of the extremum condition.

/\ T . ‘J-

¥



- CHAPTER 3
- _ THE NATURE OF THE EQUILIBRIUM STATE

The equlllbrlum state is characterlzed by a station-

ary value of the total energy of the system. The‘stebility A
of the equilibrium state depends upon the nature of this
egtremum. Minimum and maximum.values of the total energy
represent stable and unstable equilibrium states, respect-
ively [35]. In order to determine the nature of the extremum,
 the total energy of the system must be examined for thoEe
states close to equilibrium.

| Consider the dlfference in the total energy of the
system, AF between the equilibrium state, and a new state
close to but not at equilibrium. ‘The;subscrlpts a and‘B
will be used to denote the equilibrium and Aon-equilibtium.\
states, respectively. The gas-vapor bubble'in each state
is characterlzed by a spec1flc size and shape, as shown in
Flgure 3-1. From equation (2.2—34), the size and shape of
.the egulllbriqm»bubble are dependent on the shape patameter,.
'e', and the maximum radius, {a“ﬁ But from.equation (2.2-15) '€’
for a given system isia funetion of 'a'. Thus, 'a' ‘is the
obv1ous ch01ce for the bubble parameter to which the state
of the system is referenced. The varlation of the maximum

radius from the equlllbrlum value will 1nd1cate a dlsplace—

ment Qf the state from the equilibrium pOSltlon. Let € denote

47



48

equilibrium state a
non-emﬁlibnhmlstaté B
Figure 3-1 A Comparison of the Plane Sections of the &

Gas-Vapor Bubble in the Equilibrium and
Non-Equilibrium States



e : A‘,;:f,",
L a9
the'differenée~in thé_maximum radius of the bubble between

- the equilibrium &#d nonreéquilibrium states, i.e. -

BT L

€ = aB - %d& - i

.RA
where € can be positive or negative. Using equation (3-1)

in expression (2.2-15) for 'e' allows the value of the
b
. B S
shape parameter in both states to be related, i.e.

e8=ea'(1+§)3 - (3-2) .
o

1Y

a _ .
In chapter 2 an expression was developed for the .

total energy of the equilibrium system, i.e.

n
Fa = - PE DVL + I (uiL —'% mzrzMi) DNiL
. i=1 o '
L L
' - Ny
G .G n G 1 2.2 G
T+ —,Pa DV + I (ui -5 w'r M.) DN,
i=1l o , 1 1
VG N G
a i
A
‘ n ' S 1 22 s
+ Yo DA .+ I (ui -3 w'n‘Mi) DNi
i=1 o ‘
A, ; N

(3-3)



For the new'statel
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slightly displaced from equilibrium the

total energy of the s&stem can likewise be expressed as

' : . n
_ _ L
FB : P8 DVP + iél
Vg NiL
B
. n
+ - Pg DVG + I
i=1
G G
,VB NiB
. n
+ Yy, DA + %
B -
i=1
S
A Ni.
B 8

L 2 2 L
(ui -z Mi) DNi
B
G 1 22 G
(ui -3 wr Mi) DNi
B
2 S .
- 5w Mi) DNi (3-4)

Subtracting equation (3-3) from (3-4) gives an expression

for the difference in the total energy of the system between

the new and equilibrium states, i.e.

lAlthough the system in the displaced state is not

in equilibrium as a whole,
assumed to exist in a state

the individual phases can be
of

"local equilibrium" for which

the equilibrium function for the Helmholtz potential, F, is

‘valid [37].
. A

©



AF =

*‘i‘
—_PEDVL— - T o 4
a
L
5 v,
- p® pv® 4 Yg DA -
G
o Ag
h 3
n
(ui -—l—wzrzM.)DN.L - X
i1 .
i=1l
NiL
B
, 2.2 ¢ n
(U, > w'r Mi)DNi -.Z
1=
NiG
.' Bu.
' n
(n.5 - % w?r?m)on,S - 3
. i Adatas | .
_ i=1.
Nis
8
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G G
B
.
L w2r2M.)DN.L
2 i i

G _ lwzrall.)DN.G
2 1 i

= w’r’m,)on,5
bR §

(3~5)
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Consider first the pressure-volume terms in equation

(3-5), 1i.e.
]
f
L L L G G G G
— Pg DVl - P, DV’ +.| =-PgDve - | - % py
o o . o
B a B a
(3-6)
Introducing the change in volume AV, defined by
-G .G - L L >
, AV = VB - Va = Va - VB (3-7)
into expression (3-6) results in
- Pg pvi - | - p¥ pv® - - pC pyt
L L AV \\‘\\\.
v ,
Vg 8
+ -8 v+ | - pC pv® - | - 6 yC (3-8)
B . R a S
G
VG AV Va
a a

Since the bubble is very small compared to the surrounding

liquid—gas solution, the pressure distributioﬁ in the liqﬁid-

¥

J}}
5
&

'ggngOlutidn in both states can be assumed equal, i.e.

(3-9)
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Condition (3-9) reduces expression (3-8) to

- (PBG - pS) ove + | - (pg - PE) DV ‘ (3-10)

v AV

'Now consider the chemical and field potential terms

in equation (3-5), expressed by

Z (u, " - %wzrzmi)DNiL -z (" - 2 P, o, ™
i=1 B i=1 o |
N, T N T
ig 1y
n . . n .
+ I (ulG - %—wzrzMi)DNiG - I ' (uiG - %-wzr .) DNiG
i=1 B o i= o ot
N.G . @l N.
lﬁgﬁy LT ) .
j:‘r?,.lz “";a'
Kl
n 7 - n -
* 2 (> - o%)m, S - g = 3 o) on®
i=1 i=1 o '
Nis NS
B l(! .
(3-11)

Since the number of»molecules associated with the bubble
. interface is much less than the numBer of'molecules in the

gas-vapor mixture and the liquid-gas solution, the last two
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: @ . ,
Eerms can be neglected in expression (3-11) as small compared

to the other terms. From the equilibrium conditions,}\

e

£
H
=
Il
=
I
N
1>
(V)
H
0o
K- 4
Il

Ao i=1,2,...,n (3-12)

where Ai is a constant. . Using equation (3-12)(§§£/ ssion

(3-11) can be writtén in. the form

n ‘
b} (p.” - L w2r2M. - Xx.) DN.L
D T1 2 i 1
i=1 v B
L
Ny
B f o~
n /
v (% - L w%:2y. - 2. bon.C (3-13)
. i 2 i 1 1 :
i=1 B .
. N'iG
B

Since the temperature and pressure distribution in the

liquid-gas solution in pboth states are equal, it follows
. ) , \‘,\ ‘ .

b= ow.t, i=1,2,....n (3-14)
- T e

From eqdations (3-12) and (3-14) it is evident that the

first term in expression (3413) ié equal to zero. Thus,

the contribution ofrthe chemical and fiéld potehtial terms

in the expression for AF reduces to
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n :
i (" - Fwr M, —')\i) DN, | - (3-15) .

Finally, the surface terms in equation (3-5) -

~consist of .

g pa - . v, DA ' " (3-16) |,

.Since the surface tension is assumed constant, expression

A

(3-16) reduces to

Y AA | L (3-17)

‘where ' L ' . - ' S
] - - P

©

AA = A. - A w  (3-18)

’Substitptihg the - reduced expressions for (3-§)}

(3-11), and (3-16) back into equation: (3-5) for_AF results

in

/ , . . _ ,
i G ' .G G G - L,
‘ ) . (PB ?G)DV + (PB - pa) DV
. v : ;,'::

. n o . ‘ - ‘ .
P N .- 1022y, - a.) DN.C + yan (3-19)

. g i 2 i i i ,

l—:l B . - . :

- Iy,C .
‘ 1l
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The pressure and the chemical poterntials.in the
gas-vapor mixture in the equilibrium state are~function§
of the maximum radiusg, 'a', and the mole numbers, gG, ipside
the bubble. The néw state is'cénsidered sufficiently close:
to the equilibrium state to enable the pressure and chemical
potentials in the ggs—vapbr mixture in the new state to bé
.‘expressed by Taylof series expansions around the equilibrium

2 .
~values,” j.e.

: G . n G :
PP, .0 =@ N C) 4 2B | (o, § 2P (N, - nC
B'<B | o’la oa L i=1 aN G ig la)
G i
aa’N : a ,N G
~o a’<a
///-\~-+ higher order terms B '(3-20)
G Co G »
. TR n 9y,
niZ(ag e = ufam® s | @+ z 2L A
> R Fe e B o
N G N ©
Ao Ao ¢
+ higher order terms, i=1l,2,..+,n -(3?21)
2The notation
ap®
sa

) G
a ,N
N\ a’Ja

indicates that thp partial derivative of the pressure PG&u§G)

with respect to . 'a’ is evaluated for the equilibrium values

a, and g G :
~a

. <
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From the equilibrium conditions, the leading term in

equation (3-21) can be expressed as . ‘\\
G G, 1 22 . o
ui (aa,ga ) = Ai + 5 w r Mi’ 1=1,2,...,n (3-22)

If the higher order terms are neglected in«equations (3-20)
and (3-21), and the resultant expréssions substituted into

equation (3-19), the expression for AF becomes

AF = (B, - PU) DV + yAA
AV Ny
r n G
3P | (&) + 3§ 9B o, ¢ - 5% ov®
+ - ] s — G 1
, 3a 11l.8Ni B
G G.
VG aa'ga 7 aa’§a
a
:' n G
o |2 @ +ar B (G N.%) | Dv
3a i=1 AN, B ,
G S o
AV a ,N tG
a’~a . Ay Ny
G |’ G * F,
. du n Ju :
+ 3 m— | (€) v 1 —2 | ® -0 o, ©
- - j=1 8N Jg Jo
N, © la ,N ‘ G
. ig a'za aafga
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G _ NS) can be made arbitrarily

Since the quantities € and (N
small, only the first two %érms will be retained as signifi-
cant in equation (3-23). Then the expression for AF reduces

2

to

AF = -.(pg - Pi) DV + yAA | o (3-24)

AV
Using expression (2.2-4) for the equilibrium pressure
difference across the interface in equation (3-24) results in

‘AF = - (%1 - prer) DV + yAA . (3-25)

AF = —Jl + J2 + q3 ' - (3-286)
where . r
J. = 2Y py ‘ (3-27)
1 h . | .
o3 .
4 JAV
[ -
T2 5| LolElov (3-28) .
Jav
I, = yha - | - (3-29)
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The evaluation of Jyr J,, and J, requires the use of

analytlcal expressions for the area, volume,‘and a term
31m11ar to the moment of 1nert1a of the bubble in both states.
The moment of 1nert1a, I, of an ax;—symmetrlc body about the

"cylindrical axis is defined by i

H
Hi

vy

The -particular moment of inertia used to-evaluate expression ¥y

(3-28) for J2 is that of a spheroid of liguid identical.in

size and shape €5 the gas-vapor bubble, and of constanp
density pL; . In the previous chaéter it was shown that for a
small bubble at negafive pressures the condition e <« 1
enabled the equilibrium bubble shape to be approximated by
'the”spheroia'représentea by '

- ‘ - x2 r?

— = = + == =1 . (3-31)
§l+e)2a2 ' a2 ’

where terms ofIPOWe: e2 and higher have beep'neglgctea.3
For this approximation, the area, volume, and moment of
inertia requiredbabove are given by the following expres-

_ sions:

. 3Slnce the Orlglnél expressioy for the éhape of the
. bubble has neglected terms of power e” and higher, these terms
will not be retained in the follow1ng development.

4The derivations of the ex%}essxons for the area,
volume, and ‘moment of inertia are presented in Apgendlx B. -

- . “'

" pr< DV , : (3-30) °

-

<
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A = 41Ta2 (1 +,§ e) : (3-35)

o
MR ana’ ' :
Vo =a5 (1 o+ e) , | (3-33)

8an(l + e)a5

15 (3-34)

" The .. .-essions above are ip a striCt sepse only valid

for the equilibrium state. HoweVer, the pew Stgte will be
considered Sufficien£ly close to equilibrjum tO enable the
equilibrium expressions.for the shape, area, vOlume, and
moment of inertia to be used in the displaceé State.

Now consider the term Jir .Since poth Y and ha;are

constant for a;given.system, the integral in eduation (3-27)

reduces to

P

_ 2 e | _
g, = e (Vo= V) (3-35)

Using expression (3—33), tﬁe/gig;;rence in Volume can’be

expressed as

‘_ 4m 3 3 - )
VB -v, = 3--—,_[aB (1+eg) ag (l+ea)] '(3 36)

SubStituting expressions (3-1) and (3-2) for ag and eg in
equatidn (3-36), and collecting terms regyltg in

9

2 )
8 o 4ma (l+2eq)s + 47a (l+5eq) £

<
|

<
[}

. / g \ )
31+ 20e) 2+ ored) (3-37)
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Equation'(2.2—16) expressed the equilibrium rad}us of
curvature at the center in terms of the maximum radius
and shape paraméter. Substituting equatipns (2.2-16) - and
(3-37) back into (3-35), and neglecting terms of power ez,.

yields an expression for J, in terms of the equilibrium

1
parameters a, and e, and the radial displacement €, i.e.

_ | | 2
Jl = 8wyaae(l + 3ea)e + 8wy (1 + GeG)e
- 8Ty | €3 4 ’
.+ —=— (1 + 21le ) — + 0O(e") . (3-38)
B % &

4

Next, consider the term Jy- Using expression (3-30)

in equation (3-28) gives

_1-2 |
I = g (Ig -1y (3-39)

where the density of the sphefoid considered is that of
the liquid, pL. _Using'éxpression (3-34) for the'moment_

-of inertia terms in° (3-39) results in
. s ,

4anQ2 '
T2 =715 - [te

5 5.
B)aB - (l‘+vea)aa ] (3-40)

Again substituting expressions (3-1) and (3-2) for aB and

ey in equation (3-40) , and collecting terms gives
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‘4anw2a&3 °
A J2 = —T— [(5+ 8ea) aaa
: N 3 . .
2 € 4 2.
+ 2(5 + l4ea)e + 2(5 + 28ea) T ] + 0(e)) y (3-471)
a
. Using the substitution
L2 3 _ :
prwra, = 8yea ‘ (3-42)
equation (3-41) becomes
32nyea - 2
'J2 = 15— [ {5 + 8ea% a, €+ 2(5 + l4ea)e
- e3 . 4 '
+ 2(5 + 28ea) ;—']' + 0O(e’) - (3-43)
o _
Neglecting powefs of ez reduées expressi&n (3-43) for J2 to
3271yve ' 3
o o . 2 €7, . 4 ‘-
J2 = 15 (aa: + 2e” + 2 aa) + 0O(e’) (3-44)
! ,
Finally, cpﬁsider the term J3. Using expression
(3-32) for the area in (3-29) results in (
= tny [a2 2. _,2 2, i
J3 = 47y [aB (; + 3 eB) a.” (1 + 3 ea)] (3-45)

8 and eB in

"~ the above equation yields the following expression for J3:

_Subétituting expressions (3-1) and (3-2) for a
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' _ 5 20 2
@QJ3 = 8nyaa‘(l + 3 ea) e + 41y (1 + I ea)e
+ 89 nve e, ote), (3-46)
3 Yeq a,. » &

Returning to expression (3-26), and substituting
- for Jl' J2, and J3 from equations (3-38), (3-44), and
3 ' ' :
(3-46), respectively, results in an expression for AF

close to equilibrium, i.e.

_ 2 € 2 2 ' € 3 4
AF = 4mya = | —(E;); -3 (L + 3ea)§zg) 1 + Of(e)

. (3-47)

where (gfo << 1.
o

Expression (3-47) retaips terms of 0(54). As a
means of détermining how many terms must be retained in
equation (3-47), the expressiog\ﬁor AE'when no field is
present can be'COmparéd toi‘hat obtained by Ward et al. [38]
forlthe'case of positive presgures in the liquid-gas solutioﬁ.
When the angular velocity is z”fo, the shépe parémeter is
zero, and equation (3-47)  rgduces to '

AF = 4ﬂyéa2 (- &% -2 (%1 + oteh)y  (3-18)

3

- a o
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Ward et al. obtained the following expre;sion5 for the
difference in the free energy qf the eéﬁilibrium and non-
‘equilibrium systems: |
2_1_2 28 .
AF = 4#Y‘€R -3 Rc‘- 3 ﬁg), ) (3-49)

where RC and R are,‘respectively, the radii of the
spherical gas-vapor bubble in the equilibrium and non-

equilibrium states. For means of compariSon, the expression
R=R_+ ¢ ' ' (3-50)
can be substituted into equation (3-49) to give

oF = amr ) [ - (592 - 2 (&3 . (-5

(E;
c R

Comparing equations (3-48) and (3-51), and noting that .

' for zero angular velocity,_aa = Rc, it is evident that

5'Ward et al. obtained the following expression for

the change in the Helmholtz potential, AF , due to the forma-

tion of a spherical gas-vapor bubble of radius R close to
the equilibrium radius, Rc, in a liquid-gas solution:
- . : 3 _
- 2 _ 2R
AFO = 4my (R 3 Rc)

between the equilibrium and non-equilibri states, the
_reversible work, W_, for the formation of the equilibrium
bubble muist be subtracted from the equation above. The
reversible work is obtained from the equation above evaluated
at R =R _, i.e. ’ ' ' :

o ¢ 2

In order to obtain the difference in the ﬁelmholtz potential

_— 4nyRc
"R 3 _ ¢
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expression L3-47“for AF reduces to that of Ward et al. for

the no field condition. Terms of 0(64) can-be neglectec in

equation (3-47), and the expression for A£ reduces to

2

Wi

oF = amva,? - (9% - 2+ 3e)(E3 T (3-52)

a a

Since equation (3-52) represents the change in
the free energy’of the system és a function of‘the radial
' displacement €, it can be used to determine the nature of
the extremum at equilibrium, i.e. at:égo. Differentiat.ing
equation (3-52) twice with respect to e-gives.

A(AF) e

- -9 & _ e y2 | -
—-dTE——— = 41T'Yaa [ 2 aa 2(1 + 3ea) (aa) ] » (3 53)

and

2
da® (AF) _ - - : £ : -
T._ = 4'”"Y [ @ 4 (l + 7360') (aa)] (3 54)

Setting ééég% equal to zero yields the stationary value, €=0,

for which .dZ(AF) is iéés_than zero. - Thus, the extremum
- 2 ,
for the free de energy of the system at equilibrium is a

maximum. Figure 3-2 'shows the graph of equation (3-52) in
the regidngclose to e€=0 for e = 10_6.

1
Since the free energy of the system is a maximum

for €=0, the equilibrium’state of thé'gqs—vapor~bubblé iéi
unstable. The condition of instability leads to’ the concept

of é'critical size fo: the bubble, characterized by the

4 . i .\ 4 ' '.-:
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equilibrium value of the maximum radius, a,- If a bubble
is created of less than equilibrium size, the decrease in.-
energy accompanying' bubble contraction causes the bubble
to spontaneously collapse. Likewise, if a bubble is created
of greater than‘equilibrium size,.the.decrease in energy
accompanylng bubble expan51on causes the bubble to spontan-
eously grow. In this sense, the equ1]1br1um size represents
a critical value whlch must be exceeded if the bubble is to
grow.
| Stability considerations have shown that the free
energy of the gas-vaporibubble is a maximum for the,eguili—
brium state. . The reversible work of formation, wR, for the
equilibrium gas-vapor bubble represents the increase in the
.free energy of the equlllbrlum system due to the formatlon,,"
of the gas-vapor bubble. An expression can be obtained for
WR py comparing the Helmhoitz potential, Fa' of the equili-
‘brium system'with thevHelmhoitz potent;affof the liquid—gas‘
solution without the bubble present The difference in free -
.energy between the two systems represents the work required
to form the equlllbrlum gas—vapor bubble. If the subscrlpt Y
is used to denote the equlllbrlum system consisting of only
the liquid-gas solution, the expresslon for Fv 1s,expréssed
by
L o L 1 22 L ’
F, = | PCoov"+ I (™ - 5 wc’u) oY (3-55)

i=1 1y 2

- Ve L L

\Y N
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The condltlon of chemical equlllbrlum in" the llquld-gas
. 1

solution requlres that

w - 2w =, , i=1,2,...,n - (3-56)

1 2 1 1 : o

\Y . . v .
where A, . is a constant. Using expression (3-56) in o
(3-55) ~gives
. L n L , L
F o= RSOV 4 LA N, (3-57)
. - i=1 \Y Vv : 2
vy

Equatlon (2.1~-42) for the condltlon of chemlcal equlllbrlum
in the’ system with the bubble present can be used to reddce
expre551on (3 3) for F, po' ) . .

‘ L L . G ¢ | D T
F = - P DV + -P_ DV + | YDA + I A.N." . (3-58)
, o o : v . i, :
. . ) " . l—l )
'8 | v, /A

Subtractlng expression (3- 57) for F 'from (3 -58) fquF ‘gl%es
the follow1ng expression for the reversible work of formatlon

afor the equlllbrlum gas—vapor bubble

\



a
5
\
n . L
+ | ypA+ I [ A, N;” - X, N.7]
. i=1". ta - tg Ty iy
; el
A
Noting that S
v o= v o4 VO
v a )

and o

7in4equation (3-59) results in

SRS DU SR S 4G L.
W = | - (g —ED) DV 4 R TS

£ 4
. N ' {
. "' - S |
L }‘ : p
e ! + . ) Ni
L - a V., Ta

e :.1ﬂ‘ slnce the bubble is’ very small in. compaz

, surroundxng solution, the pressure distribution

B ~! o . . ~ - '< ‘ - Co
Do ey T \ N
o . R .. P P S .

s . Lo . i B a
AL ;
. S e _

L
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(3-59)

';”d (3“60)

(3-61)

ison to the

in'tho,
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5 ’

liquid~-gas sojltion in both systems can be assumed equal,'

i.e.

- p | (3-63)

o , B o
The equality ¢¥ the pressure distribution and temperature

in the liquid-Vas solution ih both systems implies that

RETHR IR & , i=1,2,...,n (3-64)
a v , ‘ !

Using express}Ons (3-12) and (3-56) in equation (3-64)

results in

Ai = Ay 4 d=lL2,....nm (3-65)
o v o
Equations (3~#3) and (3-§5) are‘used: reduce expression
(3-62) for WR to
W. = \'(PG - PL)‘DVG ; : YDA | ' (3-66)
R o a : : . : '
' 've o ' :
Va A .

) Using “»*bression (2.2-4) for the pressure diﬁferencer

across the eq&ilibfium interface, and noting- that y is

_éonstaht ihrefDression (3~66) results in

R= | < (2 -1 LW2:%py + ya o (3-6T)
o . hy 2 e
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or upon rearranging, ‘-
W = ~.2YV 2 L 2

1 . R \
: + = w P r” DV % yA (3-68)

v .
L

o -
-

where V' and A refer to the equilibrium bubble. Substitu-

=

fing expression (3-33) for V, and expression (2.2-16) for

ha in the.first term of equation (3-68) gives

A B 2
_ _ 8mya _ . ,
STV - T % (14 2e) ‘ (3-69)
C. ., O .
, o« _ .
where powers of ei have been neglected. - If the integral in

the second term of.equation (3-68) - is evaluated uSiné*expres—

2
v

sion (3-34) for the moment of inertia, the resultant

expression is

% w . p rT DV = . - 't (3-70)

Using expression (3—42) in (3-70), and neglecting powers of
ei results in

g .

1 4 _ o . . - -
v—z-‘w | £ bv = ‘———1-5——“ . (3-71)
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Substituting_expression (3-32) for A in the last term of
equation (3-68) gives
2 2

YA = 4nyaa (1 + 3 ea) (3f72)

A}

Finally, using expressions (3-69), (3-71), and (3-72) in

3 .
(3-68) yields an expression for the reyersible work of
formation for the equilibrium gas-vapor bubble, i;e. - ,

2
4mya 5 .
W, o= =~ (1 -fe) (3-73)

R 3
.W} o lx . : ! r

In summary#‘the stablllty analysis determlned that

v

the free energy of a gas—vapor bubble in a llquld—gas soluthn
at negative pressure is a maximum for the equ111br1um state.
Consequently, the equlllbrlum state 1s unstable, and the
equlllbrlum size of the bubble represents a- crltlcal value.
A gas—vapor bubble must exceed the critical 51ze in order to
spontaneously grow. The rever51ble work requlred to form a
gas-vapor bubble of crltlcal size is expressed by equation
(3-73). - ;

In the next chapter, an expre551on is developed for
_the crltlcal 51ze of a gas-vapor bubble in a dilute, llquld-‘
gas solutlen at negatlve pressure in terms of the properties

of the solutlon.

\



CHAPTER ' ¢4

THE CRITICAL SIZE OF A GAS-VAPOR BUBBLE IN A

DILUTE SOLUTION AT NEGATIVE PRESSPRES

. In chapter 2 an expre351on for the equlllbrlum
shape of the gas~vapor bubble was obtalned from the -
conditions of equilibrium. For the case of negative
pressures in the solution at the center of the system, e << 1,
and the bubble was approx1mated by the spher01d5represented
by equatlon (2 2- 34) In the case of a spherlcal bubble.
when no field is present, the size is expressed in terms of
“the equlllbrlum or crltlcal radius 639] ?or a spyerOLdal
bubble, equataoq_(z 2 34) expresses the equlllbrlum size and
-shape as a function of the max1mum radlus 'a'{

Slnce the bubble size and shape is an equlllbrlum
_property of the system, it is approprlate Lo develop an
vexpre551on,for 'a' in terms of the propertles of the llqu1d—
gas solutlon. However,,the value of 'a‘ is 1mplicitly expressed
by the cublc ~equation glven by (2.2-14), which depends upon
the radlus of curvature at the center of the bubble, 'h'.
‘i:Thus,.'h' ‘is the ba51c parameter, whlch when evaluated in
terms of the propertles of the solutlon, enables the 51ze and
_shape of the equ111br1um gas-vapor bubble to be determlned
As the bubble--and hence the shape parameter--becomes smaller

*

-Qand smaller, the deviatlon from sphermcxty becomes,Bx?ctlcaily
_ 3 ; e R

73
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negligible. For a perfectly spherioal‘bubble; the radlys

and radius of curvature are equal. 1In practice,

since e << l,'evaluation.of 'h' in terms of the solution prop-
erties will be sufficient to describe the equilibriuh size

N

of tneAbubble.
Up. until now, the analysls has been of a QEneral
nature, i.e.f%ne equilibrium and stability consldefed the
case of a multicomponent . iquid-gas solution. Atithishpol%t,
the development will be restricted to the specific case of
a dilute soluuion of a single.gas in a liqu@d solventén The
term di%ute implies that thé number[of solute molecules.is ;
much 1 than the number of solvent.molecules, and conse- .
quently, any 1nteractlon among the solute molecules may be
- ignored {[40]. The concentratlon,‘c, of<the solution ls
defined as the ratio'of the number of nolei of solute.to.the.

number of moles of solvent, q.e.

N ™~ b ¥
2 ¢
C = '—L IEENGPN (4 l))
N B 3
L,y .

. . j ’ ’ ]
'where\\qe subscrlpts 1 and 2 refer to the liquid and gas -

components, respectlvely. For a dllute solution,

c <1 L M-2)
. : A

In: addltlon, it is assumed that the gas and vapor inside the
"bubble behave as an ldeal gas mlxture. ’Usingvapgropr;ate

§ . SR S .
‘_ - o N ‘ " C . ' R '1_. A ) f . . » _v . RS

\l

b
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expressions for the propefties of a dilute solution and an

o

ide@lkﬁ?s mixture, an expression for 'h' can be developed in
PR . _ . ,
. Yerngs

of the liquid phase properties.

N

. The value of 'h' is obtained from Lapiace's equation

of capillarity, given by (2.2-1), evaluated at the center

of the system where the bubble curvature is %l . Rearranging

equation (2.2-3) gives

h = —————— o (4"‘3)
- (@% - ph |
e T

-~

Integrating equation (2.1—34)'from,:FR where PL = PO to r=0
yields an expression for Pg, the preséu;e in the liquid at

Y | _
the center of the system, i,e.

PP = p_ - %.p w?2? . C (4-4)

. It rema'né to 6btain_ah expfessioﬂ_for PS in térms of the
\ propefties of the dilute solution. .
The/parﬁiél‘pressures of the gas énd vapor components
inside the bubble can Le expressed in terms‘of‘their respect-
" ive . mole érqctiOns, X, and Xz,‘i.e; | .

\‘\\ ‘ ; o ‘ B .

o - co v

H Q)
in
i)
@
>
-

e
]
=
N

(4-5) -
where

- , i=1,2 T (4-6)



(&)

: ‘ ‘ 76
and '

= + (4~
- .‘ | N : -Nl N2 .(4 7)
‘ - —_— ,
The total pressure, P, is the sum of the partial pressures,
i.e. )
G _ G . _
P = Pl + P2 (4-8)
The expressiqns for the partial’preséures are obtained
from the condition of chemical equilibrium across the
v . B . : :
interface, i.e.
L 1 2.2 _ .G -1 22 . A
Hy 2. r Mi = ui - S ; Mi’ i=1,2 (4 9)

 The general expressibn:for the chemical potential of each

component in an ideal gas mixture is

. - . PR . '
ui(P,T) — Hys (Pr,T) k kTin (5;—) 5 (4-10)
where 'k' is Boltzmann's constant. and G

¢hemical potential of the pure camonent at same reference pressure Pr [41].
¢ - For a dilute solution of concentration C, the

"chemical potentials of the solvent ard solute can be

N . Ve
'expressed respectively as '

N i (a-11)
Afand ‘." - B ' :

'uz_(?;T) = y(P,T) + kT &nC

R

(4-12)



where uo?(P,i} is the chemical:potential of t
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pure liquid

_component, and y(P;T) is a function‘of P and/T [42]. For

an incompressible solvent w1th spec1f1c volume VL, a

reference pressure, Pr’ can.be introduced into expression

(4-11):to give ‘ S d

A

L

T
My (P, Ty = “el (p )+ vP (P - P ) - kTC

Now evaluatlng equatlon (4 9) at the
‘ylelds the condition of equallty of chemlcal
‘across theclnterface, i.e.

w = ®, =12

Substituting the eppropriate expressions for’
- L . {

s

potentials. in the equation above results in ‘expressions

(4-13)

3
interface

potentials

(4-14)
the chemical

for the partial pressures in terms of ‘the properties of the.

dilute sOIution.ﬂ

“Consider first component 1. Ohoosing P ’ the vapor"

.pressure of the llquld as the reference pressure, aﬁd

usxng expre531on (4- 10) and (4-13) in (4= 14)

L, L

G

J |
) PTX

S (p,.T) + KT &n- (5

1
T Mon

v

P A L _ _ .
Hop (ByeT) + V7 (P = B) - kIC

)

gives

‘(4—;5)
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Noting thet u L (p.,T) = u G'(P T)l and rearranging equation
: o1 (FyrT) = ¥op (Pyr _
(4-15) results in an expression for the partial préssure of

the vép?r inside the bubble, i.e.

2
J

'L '&;

Now consider component 2. Using expreesions (4-10)

and (4-12) in (4-14) gives
&
- .v" . ) -
PGX2
gTZn (—

r

G

) = wEhm - uS

(P.,T) + kT &n c

(4-17)

The functions w(PL,T) and uog(Pr;?)’are unknown in‘terms '
'of the properties of the dilute solution. Therefore, a
reference condltlon w1ll be used to eliminate the term

9
w(PV,T) - uoz(P ,T) from exﬁre551on (4 17) _Since the

-

'equilibrium sx%e and.shape of the bubble pertain to negative
'“pressures in the:surroundieg'solution, the reference condi-
rien‘must remain:Valid Qhen the liqeid near the center of
Athe‘System enters a state-of-tension.

o ‘Ward et al. [44] considered a reference system
‘consisting of a liquid saturated with the gas component

‘across a flat interface. The pure gas and liquid phases
: . P ‘- -

|

: l'I‘he vapo; pressure is-the pressure of the vapor

-1n equlllbrlum with a liquid phase for a flat interface

.. .at a given temperature [43]. Since the system is in

”,equlllbrlum, it follows that the chemlcal potentlals 1n
each phase are equal. .

3 Lo e L
P°x, = P .exp [z (B~ - P ) - O | F4-16)

!
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\

1

were separated by a non-rigid membrane permeable iny to

the gas component. For such a system at equilibrium, the
equality of the chemical potential of the éas.component R
across the interface enabled the foliowing substitution td
be made in equationy(4—l7)‘mith the‘referengﬁﬁpressure

e

chosen to'be?L

~

G , L ‘ : ' '

Loy o - |
y(P~,T) - Mgy (PT3T) = -kT 2n Cq (g—;s)

-where Co is the saturation concentration of the gas in the

liguid phase. However, such a reference condition is not

' appropriate to a system where the dilute solution outside

the buhble is subject to'negative pressures. Since the
membrane in the refdé®ence system is.flat, a state.of tension

in the solution would require‘the pressure in the gas,phase

to also be negative, which is impossible. Thus, the refer--

'<J

ence concentration used by Ward et al in their treatment

of an equ111brlum gas vapor bubble is not deflned for the
case of negatlrzgpressures in the solutlon out51de the bubbie.

| | Consider instead the reference system glven in '
Flgure 4- l, where the non-rlgld membrane at r=L+is only
permeable to the gas component. The l&quxd and_gas sub-
systems -are. denoted by the superscrlpts LR and GR, respect-
xvely. Slnce the geometry, angular velocity, and reference
pressure in the prlmary and reference systems are the same, .
the prﬁdfure dxstrlbutlons 1n the llquld—gas solutlon are

ldentical._ "The conditxon of chem1cal equillbrlum for the -

,/
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. The expreSSLOn for the equlllbrlum concentrailon

81
gas component in the reference system reQuires,that

LR 1 L 1 :
My = 5 wrM = qu - SwrM ) (4 19).

.Specifically, consider condition (4-19) for a point 'r'

in the liquid solution and the point r=t in the gas at the

membrane. Using the expressions for the chemical potential

M
o

- of the gas component. in each subsyetem in equation- (4-19)

gives

v{P"R,7) & kT nC_

(4-20) -

where P is the reference pressure at the membrane, and C

is the equlllbrlum concentraﬁ{bn aé\any point 'r' in the:

reference system. Rearranging equation (4-20) and notingb_

that PR 'is equal to PL, results in

s
i
4

(P T) = len\ﬁ——) +

" Lw?2? M » (am21)
02 N 2 @ )
. \ .

.,.Knowledge_ef the equilibrium disbribntion ef the -

-at 'r' to be related to the EOncentration C so at the membrane.

"obtalned from the cond&tlons of equlllbrlum 1n the dllute

solution ln_the reference system,_l.e;. : .

© o

LR : : . . v. . . - .
gi =t S a2




and | | . \— \‘ . . I‘\\’
. - LR 2 20 _ R A |
, A | .

R _ 1 M. =
S .HQ; 2(1)1'M2

- where AR ié a constant. Using th *expressidn’for the.

‘chemlcal potent1a1 of the solute in a dllute solution in’ )
,//~equatlon (4-23).results in
v (PR, 7) + k7 en c - % wirdy, = A . (4-24)
- leferentlatlng express1on (4 -24) w1th respect to 'r' at
constant temperatqre yLeLdsfi”f
. 3 H : ~’ .’\ i
: , ac. . . o
2 kT s - 2 . .
| . 8; 'd—u—r ” ] er = O‘ | (4-205)\

- 0, SaneNAZ' is a constant., Substitufing

@

-‘:'on (4 22) for dP " in (4 25) agd rearranglng ‘gives
| & ’ T

.V , N . .
‘ : : 2v N
kKT =—2 ‘= U{ ) w rdr (4-26)
?s .n‘ ,BPLR g . : : o
From equation (4-12), . ..
.. " R . ) ’
:  du . S
) 4 . IRT ) o R
, : . TEN]_’NZ S
‘L '. <y . ] m ’ ’ 3, § ’\r‘,'
Using the relations My = 5§~ , and
' i ! . l‘ : 2' . ¢ A . ‘, 1
./t'. R . s : o *. . ‘/ T'P',Nl * ‘\. ?
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'“.'pdiht 'r' in ‘the solution gives
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\

v =*_%§ 1 o [45]2 reduces equatiOn (4-27) to
_ i
- ?’Nl'NZ - | e
R | CLSE o (4-28)
‘ aPLR , 2

where Vz'iSche,partial molar volume of the gas in the

B

dilute.sélutiqnj i.e.
SV, = = “ o , (4-29)

Ny

.

‘ Substitdtihg*expression (4-29) into (4-26) results in .
ac B

kT =2 = (M, - pLV ) w?r ar (4-30)
c, 2 2

 'Ih€e§rating'equation (4-30) froﬁ r=f where CS = CSQ’ to a

: -wz \ 2 2 L= c '
Cs T Cgo &*P [ zxr b)Y, - Mz)} (4-31)

s
where pU and V, are assumed to be cogstant. The concentra-
‘tion c__ can jbe evaluated using Henry's law constant, Ky

[46], i.e.

?The symbol G denotes the Gibbs potential, which is
the Legendre transformation of the internal energy replacing
the entropy by the temperature and volume by the pressure as -
the independent variables, i.e. .

! ' S
3

g "G=U-TS_—PV

)
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" » %o = BF | (4-32)

™

» once P is specified. ‘Before returning to the primary .

system, the contribution of the reference system can be

"

brlefly summarlzed Equatlon (4-21). represents a useful
substltutlon for the unknown -quantity w(P ,T) - “02(P6'T)

in equation (4 17) for the primary ' system. The reference
concentration, Cs, expressed by equatlon (4~ -31), is valld

I
for the case of negatlve pPressures in the lquld gas solutlon

outside the bubble.

Returning to the prlmary system, let. the reference
pressure in equation (4-17) be equal to é’ Then; u51ng

/’

vL equatlon (4-21) in (4- 17) results in

G S : _ .

PX . . '
kT 2n ( 2) = kT 2%n (9—) +-l w2(r2 - 22)M
P C 2 :

5 (4—33)

k)

)
3

‘Substituting equations' (4-31) and (4-32) in (4-33), and.
rearranging yields an expression for thsfpartial pressure

of the gas-.inside the bubble, i.e.

prZV

2 2 _ ,2
S (1 - 2 )] C (4-34)

P-X2 = C KH exp [

A4

Using equations (4- 16) and (4-34) for thé-partlal
.pressures in (4- 8) results in an expre581on for the total
. Pressure, PG, inside the bubble in terms of the pererties
of the’liquidﬁgas solution,/}ée.

’



Pro= mP, +n, C Ky
where
. VL L ‘ .
n, = expv[ T (p™ - Pv) - C‘] : (4-36)
and
: _ przvz 2 2 i ’
nz-k = exp [ TT——- (l‘ - £ ):[ . | ' (4—37)

, : ’ )
Expression (4-3) for 'h' requires the value of
PG at the center of the system, Pg. Setting"r3 equal to

zero in equation (4-35) gives

G . _ .
Pc\ B gva t & C Ky

~ . -

(4-38)

where E and E are deflned to be the values of nl and n2

respectively, at r=0, i. e.

B
£, = exp [ v ek - B, - C ] _ (4-39)
and .
L | pr2¢2V2 | ' | |

253-.Due to the lew density of the gas-vapor mixture inside the
bubble, the pressure PG was prev1ously assumed to be constant&”é
and eéual to the value at the center. It should be noted

-that thlS is equlvalent to approx1mat1ng nl and n, by their

values at the center, i.e.
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where r2 << 22 ln equatlons (4-36) and (4-37).

w r.\.l’\ ‘- . I‘\ < ‘ e . -
ngo= L . (4-4D
_,(/ v 2 . 7 ‘\ f
’ - k2 N

Py nz

Equatlon (4 40) relates 5 to the angutar veloc1ty -
aﬁd the length of the system. For a given system opspatlpg ,
at a specifiC‘speedf both w and 2 afe\constantsl; Sinse.it !
is preférable tq e‘xpress)E2 as“a fdnct?on of thé tﬁérmo— w
dynsmic variables, equation (4-4) Qill bénused_to éliminate
the term % olw? 2 from eqﬁétion (4-40). The rsgultang
equation.exprésses 62 as a funstidh of the pfessure in the

dilute solution, i.e.

| T @k - )T, R
£2 = exp" RT o (4-43)

223

The concentration C in equation (4-38) Specificaily

refers to that in the liquid-gas solution at ths,ééﬁter

of the system.’ 1In préctice, the solution is initially

‘placed'in the tube of the centrifugal system at rest, g:///f-

3From equatlon (4~ 4), a negative pressure in the
llquld-gas solutlon at the center of the system requires. that

1 L2 2 ,

-— > . R

5 prw L Po | ) ‘
Due to practical limitations on the angular velocity, w, in
experimental systems, the length, %, is usually several orders
of magnitude greater than the equilibrium size of the bubble.
Thus, for experimental systems such as that of Briggs (471,

) - r2 << 22-
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l

and the céneentration'is everywhere the same. Then the

‘ system is qulckly accelerated to the angular veloc1ty

N

required. Slncevthe time scale for the dlffu51on'of a

gas in a.liquid is much greater than that:for‘the attain—’

9

-ment of mechanical equilibrium,4 the concentration of the

' gas remains constant throughout the solution over the time

span of the experiment. Thus, C is considered to be a»giyen
quantity in expres$sion (4-38) . | ‘ '
Substitﬁting eqﬁation (4-38) back into (4 3) yields

an expression for 'h' in terms of the propertles of the"

‘dllute solution for a given system, i.e.

hoo= 2Y

, * ' (4-44)
gva + 52 g K. -P . .

‘H

. ”Eriefly summafizing, for an eCI‘;lilibrim“'‘43'5‘S";‘f"}“apve/}r
o

" bubble subjected to a centrlfugal fleld, the radlus of

‘curvature, 'h' at the center;of the system is the ba51Q'

parameter charactﬁrlzlng the equlllbrlum s;ze and shape.

_qu the spec1al case of a’ dllute solution of a gas 1in a

.liquid,.the introduction of a reference condition valld

F

4

‘ The characterlstlc time scale for the dlffu51on

- process is of the order of ) . L
T n, &_f. B - : ‘ i
D_« Dc. . | ,

where Dcls the diffusion coefficient of the dgssolved gas

For a solution of .air in water (Dev 2.0 x 10 cm2 sec” [48])

with £ equal to 15 cm,,'“rD is of the order of_lo segonds, or
about 3000 hours. - :



for llquld ten51ons enables 'h' to be expressed in terms.

.of the propertles of the dllute solution, i.e. T, C, P

L

A
and P ~In practlee, when the bubble is essent}ally_

~
spherlcal 'h' represents the critical radius.

fIn the next chapter, the expression developed for
'h'- w1ll be used to calculate the critical radlus of a o

~.

specific system

<

4023

”
DAl
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- of primarily two gases, it is commonly treated as a single

s

CHAPTER 5 : -

.

» . THE CRITICAL RADIUS OF A GAS-VAPOR BUBBLE
IN A DILUTE SOLUTION OF AIR IN WATER

AT NEGATIVE PRESSURES

R4

- The previous chapter treated the special case of a
) A

gaé—vapor bubble in a dilute solution of a single gas in

a liquid solvent at negative'éressure. In practice when

N\
N

e << 1,“theﬁradius QfScurvature,'h' at the center)represents
the critrcai radius of theibhbble. Equation (A§44{‘ expreeses
'h' as a function of the properties of &he dilute'solution.
Consider now the.apélicatiop'df the expressien for 'h' to

a specific system containing a dilute solution of air in

- water at constant temperature.} Although air is a mixture

L3 . 4
a—

@

gas component of fixed ratio, i.e. twenty-one per cent oxygen

~.

Before proceeding to evaluate 'h% for the case of .~

and seventy-nine per cent nitrogen

air in water, consider the range of validity of -'h', ‘the
approximation for the eritical radius. As the bubble tends
to a spherlcal shape, the ratio of the maximum radlus, 'a',

to the radius of curvature, 'h',at the center approaches

: /’lAir in water is a common'example’of a dilute
*solution of a "gas" in a liquid for which -an_abundance of
- data exlsts. The values of the propertles of the system
used in the evaluation of 'h' are recorded in Appendix C.
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unity. Equation (2.2-14) can be rearranged to give

A \ a»3' | . |
5" 1 + £ (H) . . ‘ (5-1)
where \
. L 2.3 o
- p w'h -
£ = By (5-2)

¥

Figure 5-1 illustrates the deviation of the ratio % from

. \ . : . .
unity as a function of the parameter 'f'. Once 'h' is
/known, the value of 'f'! follows from equation (5-2). For .

f << 1 in Figure 5-1, the deviation of % from unity is

-approximately equal to"f'.’ As % approaches unity, 'f'

becomes approximately equal to thelshépe parameter 'e'. Then
for £ << 1, i.e. e << 1, the-differende‘between 'a' and 'h'
is negligible, and the value of 'h' represénts the critical

radius. of the bubble.

il

EQuation (4~-44) expresses 'h'  as a function of

L~

»

four variables, namely the teﬁperature,Uconcentration;
reference pressure, and the pressure.at phe éenter of the .
system in the dilute solution. The va:%;ble Pg represents
the presSufé outside the bubble at the center, which can be
positi&e or neéative; For the case of“pOSitive‘pressufes;,
Ward gg él.‘[49] ékpressed‘ﬁhé critical radius as a function

of theAtemperatﬁre; concentration, and pressure in the dil%}e

" solution. At zero angular velocity, where Pi is equal to
. > . €,

g

P, expression ¢4-44) for 'h' reduces to that of Ward gﬁ al.
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Figure 5-1

B4

a _
0.06- . R
’\/
004- <
0.024
d T T T T T T T T
0 002 .004 0.06 0.08. ,OJ

0.16 1

= |« .a_

e

0.12-

1+ f

Deviation of the Gas-Vapor Bubble From Spher1c1ty.
% is the ratio of thé maximum radius to the s

radius. of curvature at the center; f s the

parameter L 2h3

8y
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{h When the system is rotatinc, the pressure\difference
Pg - P" in the E term 1n express1on (4 43) can be related
‘to the angular ve1001ty by equation (4 4) Thus, the 7

c -
“additional variable Po in the expression for the critical

radius is

result of the pressure variation in the dilute
‘solutionk “;o the angular rotatr%n. ‘
4'n$resenting the results, the variation of "h' with
P, C, and f will be examined since these variables are .
thermodynamic properties of the liquid phase at the center
of the system. However, first the dependence of 'h' on P
must be determined. The r:ference pressure only appears 1n
the exponential factor 52 in. equation (4- 44) for 'h'. From
equation (4- 38) the term £ CKH phy51cally represents the
increase in pressure inside the bubble due to the presence

of the solute in the system.

The variation of 'h' with PO is’presented in Figures
. L

5-2a, 5-2b, and 5-2c as a function of P r C, and T, respect—"

ively. Figure 5- 2a illustrates the effect of PL on the
dependence of 'h' on P for constant C and T. The .change

in 'h' Wlth ?O only becomes appreciable as Pg beccmes
positive, and near the upper linit'cOnsideredifor PO.
Ph?sically, the effect of'P is negligible Qhen the pressure

out51de the bubble is much greater in magnitude than that
’ [ ' \13 :
inside.

Next, consider the effeﬁt of C on. the variation of

: G
'h' with Po_for constant Pg and T. 1In Figure 5-2b the

(O
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-changeyin"h' W1th P 1ncreases w1th C. " This is evident

N3

| from equatlon (4 440 where the relatlve magnltude of the

&

partlal pressure of the gas, i.e. E CK 1n comparlson tQ

the other pressure terms in the denomlnatorvdetermines the

‘ 51gn1f1cance of P As C goes to zero,jthe efﬁéct?of Po

dlsappears. The reason the curves collapse ontoathe pure

vapor lrmlt is that for a glven value of P the dlfference

v

-

’.4PL—P becomes 1ncrea51ngly large and negatlve as P

(o]

1ncreases, tendlng to cause- 52 to go to zero. The maximum

- change in 'h" cgpaless than seven per cent over the entire

range of P .

Flnally, the effect of T on the change in 'h' with

o

- P at constant PL and C ls presented in Flgure 5 2c. The

BN

"“ value of 'h' for a glven temperature is almost constant.

Slnce KH~reaches a maxrmum around lOO°C, the partlal pressure

of the gas and hence the effect of P 1s‘greatest at temper—

,atures around 100 C Even then, the change in 'h' with P

’ 1s only perceptlble near the upper llmlt of P con51dered,

Summarlzlng the results above, the effect of P on .
I-h‘.'; is negllglble over a w1de range of values of P ’
espec1ally for large negatlve pressures. Since 'h' is
lndependent of P _'the crltlcal radlus can be con31dered a
functlon of P ;, and T The value of*P‘~used for computa-
tlonal purposes.w1ll be the equlllbrlum pressure of a gas-
vapor mlxture over a flat 1nterface of a dllute solution at

temperature T and concentratlon C. Then, Po_ls.expressed,by

-t
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the relation [5/44 ‘ S

Po = Pv + C KH = : ‘ (5-3)
where
) o L |
n. = exp [ (Po - ?y) - Cl (5-4)

o

Experimentally,fthis value of PO corresponds to‘the pressure
at which the.liquiaLgas solution is prepared. Since PV and
KH depend on T, Po is a function of T and C; However, slnce
'h“és lndependent of'PO over the range of Po considered,
the effect on"h' of the.change in PO with T and C ls
negligible. S

It should be notec that the choice of PO given by&
‘equation (5-3) is equal to the pressure inside the bubble at
.zero angular velocity. Since the pressumes inside and outside
wthe bubble are then equal, the equilibrium interface for
‘'zero angular velocity has an infinite radius of curvature,
i.e. is a flat surface— Thus, as PL approaches the value’ of
P given by equation (5-3), the critical radius tends to,
infinity, since the denomlnator in equatlon (4-44) approaches
'zero. |

Hav1ng established the value of P “to be used the -
dependence of 'h' on pﬁ, c, and T can now be 1nvest1gated |
The varlatlon of"h' withhé for . several values of c and T
is presented in Flgures 5 3a to 5 3d. The Value ‘of 'h'

‘,decreases as the magnltude of the negatlve pressure PL
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Figure Theoretical Results for the Dependence of the

Critical Radius on Negative Pressure at Various
Concentrations. For a solution of air in water
-at a temperature of 25°C ’ N
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Figure 5-3b Theoretical Results for the Dependence of the

Critical Radius on Negative Pressure at Various

Concentrations. For a solution of air in water
at a temperature of 100°C
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Figure 5-3c Theoretical Results for the Dependence of the
" Critical Radius on Negative Pressure at Various
Concentrations. For a solution of air in.water
at a temperature of 200°C. '
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Figure 5-3d8 Theoretical Results for the Dependence of the

. Critical Radius on Negative Pressure at Various

Concentrations.,  For a solutlon of alr in water

‘at a temperature of 300°C -
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.increases. fn equation (4-4), as PE becomes-large and
negativef tﬁe pressure difference across the interface
steadily increaSes, causing the critical radius to,decrease.
The rate of change of 'h' with Pg increases as‘Pg becomes
positive. The value of 'h' tends to infinity as the pressure
in the liqurd tends to the value'Po. |

Figures 5-3a te 5-3d also illustrate the effect.of

the solute concentration on the critical radius. At constant

Pg and T, the value of 'h' decreases as C increases. For

Pg large and negative, only highﬁconcentration levels

appreciably reduce the value %{)‘h'. However, the effect of

/

C on 'h' increases as P becomes positive.

-

The effect of 1ncrea51ng C is to increase the partlal

pressure of the gas 1n51de the bubble, thus 1ncrea51ng the
J

pressure.dlfference across the bubc}e 1nterface, and decreas-
ing the critical radius. As PL becomes 'smaller in magnitude,
the 51gn1f1cance '0f the partlal pressure of the gas lncreases,

and the curves for each concentratlon tend to diverge.

v

_ Comparing. the spread of the curves in each of‘Figures
: 5-3a to 5-3d indicates that the dependence cf’tie value of .

'h' on C decreases with T. Since KH decreases for temperatures
= : 1

- above 1l00°C, the partial pressure of the gas also decreases
with T.._ ThlS explains the reduced effect of C on 'h' w1th T.

. The results are summarlzed 1n Figure 5-4 whlch

L.

'1llustrates the change in 'h' w1th C at constant P 4and T.

N by
. An upper bound of 10 3 has been used for C in order to better

A
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iklustrate the effect of C on 'h', although this value is

bordering on the upper limit for a dilute solution [51]. '

*

) Fd% C close to zero} the curves for negative values of PL

 are almost horizontal The exact magnitudes of the change in
'h' w1th C for these values are presented in Table 1.

The last effect to be conSidered is that of tempera—
tnre on 'h' at constant Pg and C. in:equation (4-44) the |
th&ee properties which change significantly with T are the
surface tension, vapor pressure, and Henry's law constant.
Table 2 shows that Y decreases with T, while P increases,
The value of KH_initially increases up to a maximnm between
75°C and 100°C, and thereafter steadily decreases. The
~solubility has a minimum value at the\maximum valne_of KH.

g The temperature variation of 'h' is illustrated in'

Figures 5 5a-and 5-5b for the_pure vapor case and a concen-

tration of’ 10 3,.respectively. The pure ¥apor case repre-
. 3
sents an upper limit for 'h' at constant poa, : The

temperature variation of 'h' for the pure vapor case depends

only on the change in Y and P w1th T. From Figure 5-5a,

the value of 'h' decreases with T for constant PL The rate,

\

of change of 'h' with T 1ncreases w1th temperature, and as

PL becomes p051tive, since the relative magnitude of P
compared to P becomes larger.

The same general decrease ih';h' with temperature
is shown in Fignre 5-5b for a concentration of 10-3. For a

dilute solution, the temperature variation of 'h' depends
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THE DEPENDENCE‘OF-THE CRITICAL RAﬁIUS ON THE AIR CONTENT
FOR WATER WITH VARIOQOUS NEGATIVE'PRESSURES

AT A TEMPERATURE OF 25°C

105

[#]

Dissolved Critical Radius, h (um)

Gas ‘ ' L .
Content Negative Pressure; P (MPa)

c L <
(mole ratio) -10.13. -5.07 . =2.53 " -0.10 0.0
1 x 10°° 0.00901  0.01272- 0.01560  0.01891 0.02152}
1 x 1074 0.01336  0.02503  0.04440 0.08288 0.3889
1x 107° 0.01411 0.02802 0.05521 ° 0.01322 1.873
1 x 10°° 0.01419  0.02836 ~ 0.05660 0.1406 -13.64
1 x 1077 0.01420. 0.02839 0.05674 0.1415:_36.75

0 0.01420 0.1416 45.28

0.02840

0.05676
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Figure 5-5a Theoretical Results for the Dependence of the

Critical Radius on Temperature for a Pure Vapor
‘Bubble in Water at Various Negative Pressures
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upon the change in Kﬁ<§&th T,'in addition_to the change'in A

[Y and P . ~ The relatlve variation of the magnltudes of the

; partlal pressures of the vapor and gas inside the bubble

H o

due to the temperatur varlatlon of P and K 1ntroghces
the curves of constant pressure in’

an“inflection point i

~

'Figure 5r55.‘ The 1nflectlon p01nt occurs around 100° C, at

o ? 4 &
which temperature the value of KH undergoes a maximum. As

PL becomes p051t1ve, ‘the temperature varlatlon of the partial

Vpregsurés,becomes more 51gnificant. In_particular{\the;

decrease'ianH:tends.to.offset the temperaturefvariation of
'h! w1th~y and P petween lOO°C anH 200°C. For large
te eratures, the effect of P domlnates, reduC1ng the value-
mshﬂ sharply.v The dependence of jh' on the relatlve_

varlatlon of the partlal pressures hecomes less and less

' as the magnltude of the negatlve pressure 1ncreases, s1nce:

. .-

,‘J£¢;

DA
e

'Then, the 1nterface between them ceas

only the pressure dlfference across the 1nterface is 1mportant
. ; y

The value of the crltlcal radlus at the crltlcal ///7

temperature represents a lower 11m1t for the temperature

varlatlon of 'h' At the crltlcal p 'nt for the liquid- gas

solutlon,? the llquld and vapor ph

es'become 1dent1cal
1.

'to exrst, and the °
. . ! ' ;

- surface ten31on becomes equal to zero.- Thus,’the valug of

o

‘-')

, 2The values of T and P_ for the dllute solutlon o§
a1r in water are not equgl to tﬁe values for pure water, i.e. -
= 374°C-and P_ =,22.12 MPa [52]. 1In practlce,'a 'mixing
rﬁle" is used to-relate ‘the value of T, and P for the solution
to ‘the values of T and P for the purg solvegt and solute'

[53] . . c‘ L - »
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the critical radlus glven by equatlon (4-44) is equal to Ag

zero at the cr1t1cal p01nt

N

The value of 'h' is 1nversely proportlonal to the
pressure dlfference across the bubble interface. The
expre531ons in the denomlnatOr of equatlon (4-44) for the
partial pressures of the gas- vapor mlxture 1n51de the bubble N
1ﬁclude the factors gl and 62, glven by expre551ons (4= =39)

and (4‘41),.respect1vely. These factors are‘functlons of

L

EC, C, 'T and P . Slnce the ch01ce of P glven by equatlon

((5 -3) is . a functlon of C and T 1t is’ suff1c1ent to cons1der‘

the varlatlon with- PL C, and T.'

e

The exponéntlal terms El -and E reﬁ&esent reductlons
\‘,1n the partlal pressures of the vapor and gas 1n31de the

'bubble due to the curvature of the 1nterface. From equatlon

:{(5 3), for -a gas vapor mlxture in equlllbrlum w1th a dllute

.

3solutlon across a. flat 1nterface, the partlal pressures of

-fthe vapor and gas are glven respectlvely by *

I A T T s
 ana f:h; S R
P, =CKg . -..-»-"-‘('5‘6)'

5 e EEREIE N Y

_éFor n. approx1mately equal to one% i. e. the partlal pressure

hﬁ?of the vapor approx1mately equal to ‘the vapor pressure, the

“For a dllute solution of 31r ‘in water at a temperature
'jof 25°C and a concentratlon of 10 the value of n is 1.0053.

S

e v
2 Pt o Vi AR oo A bt da ot s s e et b A .

il



percentage reductions in the partlal pressures of the vapor
and gas due to the curvature of the 1nterfaée4become (1 - £ )
.'and (1 - g ),‘respectlvely. 433'

 Table 3a illustrates the variation of (1 - g,) and
.(l - Sz)ﬂwith Pilforbconstant C and T;l'Each value increases
steadily as the magnitudeTof-the negative'pressure increasesl
The dev1at10n of S andTE from unlty for 1arge negatlve
upressures SLgnlflcantly lowers the pressure 1n51de the bubble
in comparlson to that for the case of a flat 1nterface."

The varlatlon of (1 - 5 ) and (1 - g ) w1th C at

constant PL and T is presented in Table 3b. . The value oﬁ

(l - EI) 'is almOSt constant, whlle that of (1 - E ) decreases

L]

_.as c 1ncreases.u_ in expre551on (4—39) for E ‘the effect of.

- é-is}important onlijhen Pg approaches Pv.' In expre581on

'K4-43)'for Sé, the onlyfeffect of C is to’change.Po;; This_

effect is negligible when'the'magnitude of Pgris much greater g

' than P .
S To

©

FinallY?‘Table 3c considers the temperature variation

ofl(l.—’E )vand (l - 3 ) for.constant PL and C. The, values{w;

fe;

~of (L -§&; ) and (1 - E ) 1n1t1ally decrease to a mlnlmum’?“7f"’

Mfand then lncrease w1th T, as a. result of the temperaturej
7ﬂvar1atlon of VL,'PVj'and P ol and the pre‘ence of T in the o
‘fdenomlnator of thelexponents of both E and E : The exact
dependence of the percentage reductlons in the partlal
pressures represented by (1L - E ) and (1 - E ) on both C and

T ‘is sensxtlve to ‘the value of PL However, -in- general;the

SV R SRR

ek e ha g
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' THE PERCENTAGE REDUCTIONS IN THE PARTIAL PRESSURES

‘ TABLE 3a

FOR VARIOUS NEGATIVE PRESSURES

112

>V(F0r‘a:§§1ution'of air in water with a concentration of 10-4

and a temperéture,of i1o00°C)

Negative =

. Pressure’

Reduction in Partial Pressures -

Vapor
1 — £, (%)

Gas
-~ £, (%)

1.239
2,254
iléj;
6.354

8.812

’

LAL.200
24.30

41.98

55.52

65.91

e, > St oot e T e tbt st s
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TABLE 3b

THE PERCENTAGEﬂRE UCTIONS IN THE PARTIAL PRESSURES
FOR . V OUS CONCENTRATIONS
(For a'solution of_air in water with a negative pressure, Pg,

" of -10 MPa and a temperature of 100°C)

Concentration of . Reduction in Partial Pressure
Dissolved Gas . - Vapor . _ Gas
C (mole ratio) | 1= £, (%) 1-E_ (%)
1 2
1 x 10 “ 6.032 19.87
K _q v | . ‘
5 x 10 : 5.985 15.17
: -4 _ 4 ’ :

-1 x. .10 - ' 5.942 . -+ 11.21

5 x 10 . 5.938 L : 10.70
-1 x +10 , 5.933 e 10.29
o5 x 10 : +5.933" 10.24
1 x ‘107 5.933 .. 10.20

'-: ’
. .

T s

S ety ik L+ et paia A T
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TABLE 3c

THE PERCENTAGE REDUCTIONS IN THE PARTIAL PRESSURES
FOR VARIOUS TEMPERATURES

(For a solution of air in water with -a negative pressure, Pg,

of ~10 MPa and a concentration of 10_4)

“

Temperature Reduction in-Partial Pressures

i

T (°C) Vapor ., Gas !

1-¢, (%) : | l-E, (%) g

- » ]

50 6.573 . _ 12.61 s

. % . i

o ’ . _ §

100 | - 5.942 , . 1l.21 {

" 150 5.688  10.10 |
200 - 5.942 S 9.702

' 250 © 6.995 \ 10.32

300 9.404 12.21
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variation of (L - El) and (1 - 52)4with C and T is small

compared to the variation with Pi.

'

Sy

-Having obtained actual values for the critical
radius using expression’(4—44) for 'h', the validity of ?
thiS‘approxiﬁation cen now be determined. Recell that the ‘
value of 'h' for the pure vapor case represents an upper
limit -at a‘given Pi and Ti' Then, from Figure:5-5a, it is\\\\\‘,/g
eyideut*tHEE for ég less than -5.0 MPaf 'h' is always less
than 0.1 um. Using this value of 'h' in egquation (5-2) gives

" a value of 2 x 10712 for '£' at a temperature of 25°C and
an augular‘uelocity of 1000 rad/sec. From ?igure 5-1, the
Mdeviatiou of % from unity is approximete;y equal to the value u !
of 'f', 2 x 10_12. Since this deviation can be considered

negligible, the bubble is essentially spherical of radius 'h'.

In summary, using expre551on (4-44) for 'h' the

crltlcal radius was evaluated for a dilute solution of air |
in water. Since 'h' is insensitive to P the critical
radius is essentially a function of Pi, C; and‘T. The velue
of 'h' decreases as the megnitude of the negative pressure,'
in the solution outside the bubble increases. Increasing

the solute concentratlon decreases the value of 'h'i Finally,
'h' decreases 51gn1f1cantly at negatlve pressures as- the

temperature increases. 1In the reglon of negatlve pressures

-the bubble 1s essentlally spherlcal




' CHAPTER 6
'SUMMARY AND. ‘g:o'N_cLUS IONS

In the beglnnlng of this 1nvest1gatlon the concept
of a critical size gas—vapor bubble was introduced to explain
the. phase tran31tlon of a llquld-gas solutlon to a gas—vapor
__mlxture. Homogeneous nucleatlon theory pOstulates ‘the'

wcreatlon of mlnute gas-vapor nuclel by fluctuatlons in- the

density of the llquld-gas solutlon. The rever51ble work - 0.

requlred to form a crltlcal size nucleus represents a type ‘of
| potentlal barrier" to the transition of the liquid-gas
solution-to a gas-vapor mixture [54]. If a‘bubble smaller
than the critical size is formed, it spontaneously decays.
1f a bubble‘larger than the critical size is.formed, it
spontaneously grows, becoming a center\for the formation of
the new phase. Thus, 'the- idea of a critical size nucleug is
central to homogeneous nucleation theory. |

For the case of pOsitive'pressure'in the solutdion,
the bubble is spherical, and the critical.radius has pre—

viously béen determined. However, a solution can be in a,

metastable state at negatlve pressures, 1 -e. the solutlon can_

o

;be 1n ten51on. Thé purpose of thls 1nvest1gatlon 1s to

v

determlne the crltlcal 51ze30f a gas-Vapor bubble for the

P

case of a solutlon at negatlve pressuref

o SR
e R . RS
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The thermodynamic system considered corresponds to
that used in pfactice to meaaure.thejtensile strengths of
nliquids‘by means df'a centrifugai E}eld. . The gas;vapor
"buhE}e is- imagined to exist at'the qenter of totation of a
narrow tube filled with a liquid-gas solution., If the tube‘
is rotated with suff1c1ent angular veloc1ty, the lquld
'lOut51de the bubble at the center of the system can be placed -

/

‘1n a state of ten81on.

© .The tritical size and shape of the equilibrium bubble

follow from the condition$ of thermodynamic equilibrium. A

plane section through_ the axis of rotation of the bubble

can be approximated for negative pressure by the ellipse
given by

2 .- 2 : o ’

X —~ + & = 1. (6-1).

(1.+ e)za2 ua2

where '‘a' is the maximum radius of the bubble, and re' is

a shape parameter defined by equation (2.2—15), The
magnitude of ‘e’ determines-the deviatien of the bubble
from snhetieity. For all practical purpoaes, at negative
bressures the'magnitude of 'eF-is’negliéible,hwhich/implies

that the bubble is essentlally spherlcal

The equlllbrlum state of the: system is an unstable

a»;j,:equlllbrlum, 51nce the free energy of the bubble is a: f
L (max1mum Thus, the equlllbrlum 312e of the bubble representé,i

, y;;jma crltlcal vaLue.q A smaller bubble W111 spontaneously

J "":..;_ e e
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coliapse, while a largef.bubble will spontaneously expand.
A thermodynamic fluctuation in the density of the solution
which p:educes aihubbleAlargervthan the critical size will
'initiete the formation of a gae-vaporlfilled cavity. The

reversible workirequired to form.a etiticei;size gasévapor

_bubble is given by
W= Amya o (6-2)

where for negative‘pfeesures the maghitude of 'e' is

hegligible.v

The critical :adius i 1osely approx1mated b- the

radius of curvetﬁre; 'h', at the center of the bubble, 51gce
\

the value of 'e' is very‘Small. Thus, the_critiee; radius\
can be represented hy‘the expressioh for th' obtaihed from
‘the equlllbrlum condlthhg,//For the spec1a1 case of a dllute
‘N_solutlon of a gas in a llquld the crltlcal radlus can be'»?
expressed 1n terms of the properties of the dllute solutlon.
Introducing_an‘appropriaua;eference.condition valid for
negative pressures in the dilute'solution outside the bubble

results in

h = 2Y o (6-3)

-where El and 52 are exponential terms which deviate from
.ﬁnity; ahdiere expressed by equations (4—39)eand (4-43),

respectively. . ... -, . ' .



) . 119
Using eduation (6-3) for_'h', the crltlcal radlus
was evaluated for the speclflc case of a dllute solutlon of
alr in water. The crltlcal radlus was essentlally a functlon
of the temperature, concentratlon, and pressure of the liquid
\phase'at}the center of the system; being independent of the

referenceepressure.r As  the magnltude of the negatlve

pressure'increased ‘the value of the critical radlus decreased

- The effect of the solute was: to- reduce the bubble size,

although a SLgnlflcant reductlon was only effected by concen—
~trat10ns near the upper limit for a dilute solution. The
’dependence of the crltlcal radius on the temperature followed
from the variation of the surface'tens1on, vapor pressure,
and Henry' s.law constant with temperature.
The dependence of the express1on for the crltlcal
. radlus glven by (6 3) on the solution: propertles out51de the
,bubble has several lmpllcatlons for the tens1le strength of
4a dllute solutlon in a centrlfugal system. These 1mpllca-
: tlons assume that the llquld fracture occurs in the body of

the fluld i.e. not at a. surface, and that homogeneous nuclea-

tion is- the mechanism responsible for the formation of the gas- . -

vaporvcav1ty prec1p1tat1ng liquid fracture, As the magnitude
.of the neéativeApressure ln the solution~at the'centerfin— o
creases,’the value of the crltlcal radlus steadlly decreases.v
The rever51ble work requlred to form the crltlcal nucleus
decreases as the critical- radlus becomes smaller. However,

-~

" ‘as the‘reversible_work decreases, the probability of the



120

formatlon of a crltlcal 51ze gas- vapor nucleus anreases,
since the probability 15 proportlonal to the negative
exponentlal of the'rever51ble work. At some point, the
formation dffa nucleus greater than critical size becomes’
reasohabiy:Iikely-over"a-short~§eriod of time,.‘When~this
negative pressure is reached, the liquid at the center would

be expected to rupture. This negative pressure represents

}

the tensile llmlt of the lquld solution. ’ -

The fact that .increasing the concentration of the
gas does not significantly reduce the critical radius eXxcept
_at large concentration levels implies that for*aidilute-’

sqlution the tensile strength is not substantially  reduced. -
by\the"presehce”dfhdiss61Ved'gas@” Since there is hd general
‘concensus as to the effect of dlssolved gas on the experl—‘
'mentally determlned ten51le strengths of llqulds, the -. |
7valld1ty of-dus 1mp11cat10n cannot at present be conflrmed

“The temperature”dependence'of the crltleal rad;us
suééests that the tensile strength.of a 1iquid-gas soiution.
is significantl& reduced as the temperature of the system

increases. Although there has been both experimental and

AN

theonancal work whlch seems to bear thls out [55], there is’

ha notable lack of data from a centrlfugal system at high

/e
-temperatures.

This investigation considered the equilibrium size
pd - ’)\

and shape‘of a-gas-vapor bubble in;aul;quid-gas solution

subject to a centrifugal field. The radial pressure

A




v 12l
distribution in the solution due to the centrifugal field
was‘used to generate‘tensionS-in the solution outside the
bubble.t For the small equlllbrlum gas vapor bubbles
correspondlng'to negatlve pressures in the llquld—gas
'~solut10n, the bubble shape is approximately spherical. For
.such a bubble in a dilute, l{quid-gas solution, the critical
radius is a function of the.properties of the liquid phase
outside the center of the hubble. Sinoe the equilibrium
size of the gas-vapor bubble is very small, any dlreot
robservation of the equlllbrlum 51ze and shape would be .
'iﬁbqééisié}‘ However, the expreSS1on for the crltlcal radlus

<

can be used to obtain theoretical predictions for the tensile

\

strengths of dllute, llquld gas solutlons 1n ‘a centrlfugale,‘ﬁ N

system on the ba51s of homogeneous nucleatlon theory..'The'
~comparlson-of these predlctlons with experlmentally deter-
mined values would prov1de a- means of 1nd1rectly verlfylng:”

the results obtalned in thls 1nvestlgat10n.v
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APPENDIX A
THE GENERAL EXPRESSION FOR THE EQUILIBRIUM SHAPE
_OF THE. GAS-VAPOR BUBBLE

The solution to equation (2.2-22), i.e.

— 2.

dx _ § [ l+e) eR 1” —— ) .ﬁ (A-1)
(1 - &2 [(1+e) - eR®1%} o
for the eéﬁilibrium'éhape of'é QaéLvapbr bubble in a liquid-
'gas solutlon subject to a centrlfugal fleld can be obtalned

in terms of elllptlc 1ntegrals of the flrst and’ second klnd.l

U81ng the transformation

~

" (1 +e) - erR? _m:””, ’*7(A—2)'

Y =
where | e
in equatioﬁ (A—li resﬁitSfin{ .
ax = . Yady | '  (a-4)

2e 2 [¥3 - (1+e)Y? + o] 2

Integrating equation (A-4) gives

X = =5 | =35 o+ 0 R - s

lrhe method of solution closely follows that used by
Princen et al. [56] in their treatment of a fluid bubble

1mmersed in and rota;lng with a heav1er fluid.

o - -
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where

Wz Y- a+exiie  (a-6)

Y, >Y

‘and Q is a constant of iﬁtegratidn,'_The‘roots Y > ¥, ¥y

& are ‘given by

>;of'thé‘dubic t

erm
)

R

1= 1 (A-7)
Y, = fe+/ e(i + 59 ‘ ; (A-8)
T 2 2 . 4 . |
v, = e /e1+g (a-9)
-3 2 7 . 4" , - ,
. < <‘ : ‘ . < <
For the interval Yl - Y - l+e corresponding to 0 - R - 1,

the use of the transformations

Y. - Y, sin® v o .
¥ = 1 2 > | S (A-10)
1l - sin®Vy
and
Y, - Y. :
| 2 I3 3
.o A E (A-11)
7

- results in thé following,expressidn for the integral in

equation (A-5) [57]:

. e T | "

vy w2 i 2 Ve -
+ (Yl-Y3) tan¥ (1-K® sin"Y¥) "°] - (A=12)

!

&y
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where F(X,Y¥) and E(K,Y¥) are elliptic integrals of the first
and second kind. Substituting expression (A-12) in'(A—S)
gives
X o= —Lr Rk Sq. - v E(K, ¥)
. B S RO 4

,————-——-—e (Yl"Y ) .

3 -

- ‘ o J
-+ (Yl— Y39 tan¥ (1 - K2 sinZW)/z] +Q , (A-13)
"’ The constant of integrétibn&éan be determined by evaluating

equation (A-13%.at thﬁ;point X=0 and R=1, where Y;Yl,

" Equation (A-lO).can b[ rearfanged to give an expression for

‘W, i.e. -
| -1 Y- Yl N
¥ 1= sin (——:———) (A-14) .
1! Y - ¥,
|

From_équétion (A—14);evaluated-at Y=Y ¥=0. For ¥=0, tanVy,

ll
: F{K(W), and'E(K,T)'a e all’equél to zero. Thus, equation

"(A-13) evaluéﬁed at F=0 and R=1 yields v

B i

e

Q = 0 - ' (A-L§)
Then, equation (Aflj).for the ‘equilibrium shape of a plane
‘section through the axis of rotation of the gas-vapor bﬁbble

becomes

&

‘s



/e(Yl - ¥3)

+

1

[Yl.F(K,W) - (Y

(Y

1

- Y3) tany (lvf KzsinZV), ]

1
)
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(A-16)
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APPENDIX B ,

\

DERIVATION OF EXPRESSIONS FOR THE SURFACE AREA, VOLUME AND

MOM$NT OF INERTIA oF THE SPHEROID

. For the case of negatlve pressures in the llquld—

gas solutlon when e << 1, the equlllbrlum shape of the

gas—vapor bubble was approx1mated by the spherold represented

by equatlon (3- 31), i.e.

e

where

R 2 .
& o= o (B-1)
-a T
(L+e)a - (B-2)

3

Expressions for; the surface area.’A‘ the volume, V, and

the moment of~inertia,.I, of the spher01d w1ll be obtalned

in terms of the max1mum radlus, 'a', and the shape para—'

meter, 'e!',

B.l;‘Surface Area

>

given in Figure 2. 2 -1,

A

§
or using ds = (gg)dx,

A

6

If ds is the element of arc length of the curve

the surface area can be expressed as

= 2mrds . - (B.1-1)
Ja -
. b E
= 47 r ( )d . (B.1-2)

133



From equation (B-1)

2 =Y,
dr -ax X :
== = —5— (1 - =) (B.
dx b2 b2 o
“Ele@eﬁtary calculus gives the differential relationship
expressed by : ' ' ®
ds . dr 2' 2 :
Ix (1 + (a;) ] (B.
Using expression (B.1-3) in (B.1l-4) results in
% » -
r R 1 .
ds _ a. (1 - B2x2) /2' : .(B
dx r b2 ‘ ' :
where the eccentricity, B, is'definéd by
2, : '
B = (1-3%) | (B.
b™ \ ©
Substituting equation (B.1-5) back into (B.1-2), and
rearranging termé yields the following exg;esSioq for A:
b L "
: . 2 7,
A = 4zBa . | (E— - xz) dx " (B.
- b 2.
. B ) .

Using integral tables [58] to - perform the integration in -

equation,(?.l—7) results in

4
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1-3)

1-4)

-

1-5)

1-6)

-

1-7)
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. 2 1/2 2 _ .
A = i%@i % 95 - 22) + —97 sin L (§§) s (B.1-8)
: B - 2B
o 0
Oor upon evaluating the limits,
b 2.2y -1, | |
A = 4ma > (1 -~ BY) .’+ 5 Sin -(B) . (B.1-9)
‘ The use of expression (B 1- 6) for B reduces the flrst term
1n51de the brackets{in equatlon (B.1~- 9) to |
N ‘ Yy, : :
AL . E - = a - » = v
A > (1 B ) > - (Bil 10)
N

For 1B|<l, sin_lLB) can be expanded as a power series. [59],

3 .., .5 IR “
B 1-3 B ’ :
SR Pl Y (B.1-11)

-

w0
+
5
©
o
o
+
roJ

Thus, the second term inside the brackets in equation

(B.1-9) becomes

-1 b . bB® 3bB _
= orene BB (B.1-12)

Using equatiéhs (B—Z) and (B.1-6) to evaluate powers of B,
and neglectlng terms of power e2 and greater in equatlon

(Bs1-12) results in | ’ . @

{
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&

3 T e A )
= s;n (B) (2 + 3

e)a: (B.1-13)
Finally, substituting eqautions (B.1-10) and (B.1-13) back
" into (B.1-9) yields an expression for the area in terms

of 'a' and 'e', i.e.
3

)

A = 4ma“® (1 +

Wi

e) S (B.1-14)

B.2 Volume
The volume of the sphero@d can be expressed as

¢ . |b . ‘
Vo= 2 '-nrzdx : C (B.2~1)

where from eqﬁé;ibn (B-1),

5 .
r“=a (1-%) : (B.2-2)
- : b
Using expression (B.2-2) in (B.2-1) rgsults in
} 2 b x2_ ) | ‘
v = 2Ta (1 - —2-) a . (B.2-3)
‘ N B ) b . ) B -
-0
Evaluating the integral in the equation above gives
v o= %, ma’b o . (B.2-4)



4
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137
Substituting equation (B-2) for 'b' in equation (B.2-4)

yields an expression for the volume in terms of 'a' and 'e',

‘i.er . ‘ L ~

- v o= % ralare » (B.2-5)

o N

B.3 Moment of Inertia

The moment of inertia for the spheroid abdut the .

axis of rotation can be expressed as

I ="p r® pv )2 (B.3-1)
where the density,~pL, isz¢bnstaﬁt. The integral in equation

(B.3-1) can be evaluated "using cylind:id&l~cb—ordina§es wheré'

' corresponds to the cylinder axis, 'r' is the radial \ _

~ direction, and @ is thkd%angle co-ordirate. The limits of

N " . _
Aiped.from equation (B-1l) in terms

e

_of 'r', i.e. °
s . . i R 1/2
x = 2 (a® - ¥ (B.3-2)
For the volume element given by ' <y
o o | : o A\
~ DV-= ‘rdr de dx . (B.3-3).
expression {B.3-1) becomes. »
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.. »,g(élz-rv‘z)'l2 2 [a L
I°= || rlareeax  (B.3-4)
D@22 )y g
! a ., S
Pefformlng the Lntegratlons w1th ‘respect to 'x' and @ in _
equation (B. 3 4) glves
o a .
: - ApaD ' Yy S
LI = 312—2 (az-rZ) r3 dr B , (B??LS)
j

respect jto 'r' in equation (B.3-5) results in

.“‘ ! »l._.."'v .;/" 2 2 5/2. 2 2 3/2 a : . ‘J, | . \
I = arplp [ (a -xr7) _ _ 2 (a’-r%) J . (':B""" 3-6)
ek e ;o 40 7 |
L4 v - @ T
anplga I . ~ (B.3-7)

]
o~

Substltutlng eguatlon (B—Z) for 'b' in equat on (B 3-~7)- ylelds

an expressxon for the moment of 1nert1a ab Jt the axls of

B

totation 1n terms of 'a?zand ‘e', i.e. o ;';‘ | °

ot
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L 5
8mp (1l + e)a -
5 (B.3-8) .



* APPENDIX C
NUMERICAL DATA USED IN CALCULATIONS
Constants
Boltzmann's constant k = 1.380 x 10”23 J/°K
' o : 26 S
Avogadro's number NA = 6.023 x 10 molecules
o : kg-mole
. L ‘
Specific Volume,vew [61] -
o : L .
Temperature . ) v (HZO)
(°cc)y  (m/kg)
0 - , 0.001000
Ti25 I - 0.001003
50 o 0.001012
75 ' ' " 0.001026
100 s | 0.001044
125 | | ©0.001065
150 - ~ dloolo91
1/? 175 g.o0l121
200 , - 0.001157
225 . © 0.001199
. 250 . 0.001251 . |
C | e T T
275. : | 0.001317 ‘
300 0 .. 0.001404
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C.3 Vvapor Pressure,.Pv [62] v

The values ef the vapor pressure used. in the calcula—
tions are presented in Table 2 for various temperatures.
These values were obtalned from the following equation for
theﬁvapor pressure as a function of the temperature, T, in

degrees Kelvin: ‘
o 5 . E
r o(1-9) -
n=1 -0

P (6) =P _ exp 1 -
c 3 1+x6(1-e)+x7(r=-e)2 .K8(1—9{74K

g

(C.3-1)
where o . e ’é %—
o]

and the constants are as follows:

T, = 647.3 °K
B, = 22.120 wpa
K, = -7.6912 |
K, = -2.6080
Ky = -1.6817
Ky = 6.4233 |
Ky = -1.1896 ] - .
K.o= 4den o
_= -2..‘0975 Cwl T L e
:“ Kg = 107
S Ky = 6
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C.4 pPartial Molar Volume, V. [63]

2
. The partial molar volume of air in water was’
approximateq by the value of nitrogen in water at a temper-

ature of 25°C, i.e.

oo

e

V, = 0.033 m’/kg-mole | ,

Although rough correlations have been established

an

for the température variation. of the partial molar volumé

of a solute in a diluté-solution'[§4], in view of the low |
level of accuracy involved, it was decided'to use a constant
value of VZ for all temperatures. It should be noted that
“equation (4—44) for 'h' is not highly SensitiVe_to the value

of V For éxample, at T = 25°C for Pg = -10 MPa and C = 10~

29

a fifty per-cent increase in Vz

changes the valuéiof 'h' by
less than half of one per cent. '

C.5 sSurface Tension, y [65] ~

«
-

The values of the surface tension used in the calcula-

tions are presented in Table 2 for vafious temperatures. - .
These values were bbtained from the following equation for the
~ Sh;face‘tension of water in contact with its vapor as a

.. A f)' .
function of the temperature, T, in degrees Kelvin:

o r L1.256] LT

- o (C.5-1)
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The effect of the dissolved gas on the surface tension
was neglected. For a dilute solution, the&reduction in the
surface tension of the pure solvent can be expressed by
where R is the gas constant, and'I‘2 is the adsorption'df
the solute at the interface [66]. For a dilute solution

*
of nitrogen in water, the adsorption1 was estimated to be of

order 10-10

- Thus, since the adsorption is very small, the
effect of the dissolved gas on the surface tension can be
neglecfed. _\"

C.6 Henry's Law Constant,_KH

The values of Henry's law constant used in the calcu-

lations are presented in Table 2 for various temperatures.

For a dilute solution of air in water,JKHJcan bq expressed
. R . N N

in terms of KH2 and KHB for dilute solutions bf‘oxygen and

nitrogen in water.

' Consider a constant temperaturé, constant pressure

.system consisting of a-dilute solution of air in water and an.

ideal gas mixture of air and water vapor. The liquid_and

gas subsystems, denoted by the supérScripts L and G, are

Fseparated by a plané;interface. The argon free’air in the

gas-vapor mixture is assumed to consist of twenty-one'per;

lsee footnote 6 in Section 2.2. j .
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cent ‘oxygen and seventy—nine per cent nitrogen.1 The water,
oxygen, and nltrogen are denoted by the subscrlpts 1, 2, and
3, respectlvely.

Setting the variation of the Gibbs potentlal equal
to zero for constant temperature, T, pressure, P, and total
mole numbers, Nl, yields the equlllbrlum condltlons, i.e.

_ .A’
M. =- qu, 1= 1,2,3 (C.6-1)
Using the ekpressions for the chemical potentials of the-
gas components in thetdflute solution and fdeal,gas mixture

in equation (C.6-1) gives

e PX.

. - i
Hoi  (PprT) + kT &n (=)
. : r

= y(P,T) + kT &n ci’ - i=2,3 - (Cc.6-2)

H

Let the reference system for each gas be. the 11qu1d saturated
\ )
with the. gas¢7cross a non—rlgld membrane, permeable only to

the gas component. If C. 1s the. saturatlon concentratlon ‘
1, ,
of component i, the equallty of chemical potentlals across

the membrane glves

"

. ° _
Substxtutlng equatlon (C 6-3) back into (C.6- 2) and choosxng

the reference pressure,.Pr; to be equal to P results in

N
N
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PX; = Kyp Cp (C.6-4)

and

8 PX3 = K C, . (C.6-5)

where Henry's law constant, K, ., for each gas component

Hi
is given by

. P . . - e el
Hi EI— i=2,3 | (C76 6)

=
"

Dividing‘equation (C.6-4) by (C.6-5) and rearranging givés

. C2 F g C3 '(C.6—7),
_whefe . s
- X, K
' o q = 2 A | . (C.6-8)
! 3 H2 : o ' ,
) ~ .
For the air in the gas-vapor mlxture, the ‘ratio of the
mole fractlon of oxygen to nltrogen is fixed, i.e.
- X | : - ‘
B . o —~2- = p—'..gi = - & -0
o , . | X3 079 0.266 ' (C.6 ?),
Thus,‘expressioh (C.6~-8) for q becomes
. . - ' L] » ) . . 5 o
b . - K '. . | . . 'f‘;"t’,‘
qa = 0.266 23 - (C.6-10)
_ - TH2 ' . ‘ .
i , . - ' . ’ B

If KH 18 Henry s law ‘constant for a dllute solutlon .

- “n

of a1r in water treatlng a1r as a 51ngle component, then
-

3
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P(X, + x3)_:=; Ky (€ + C,) - (C.6-11)

Adding equatiénsm*@&§§4)f?p¢~(C.6-5) gives .
o : ™ "::%.*;;
""}\G v‘+

B(Xy + X5) = Ky, 2 ¥ §q3Cs o

From equations (C.6-11) and (C.6-12),

. "KH (Cl + cz? = K5202_+ KH3c3 (C.6-13)
Substituting:equatibns (C;6-7) and (C.6-10) into (C.6-13)

and rearranging results in

" L)

_ _1.266 Km
H
(1 + 0.266 ;53 )
H2

(C.6-14)

?Equation (C.6-14) expresses Ky for a dilute solution of air

"J.in water ih‘terms'of K and KH3vfor dilute solutions of

H2
oxygen and nitrogen in water, respectively.
‘The values of KH2 and,KH3 [67] were obtglned from the

following'equation'for Henry's law constant as a function of

the temperature, T, in degrees Kelvin: -
. = . .3 4 .=~ (CT, + D)
(T,) = (1.013 x 10”) exp 1 o+
KH ; o . [ ~ 2A - .
1 ‘
i )/(CT +D)° - 4a (BT 20+ ET, - 1) (MPa)
T /L R 17 . N

(C.6-15)



where

and the values of the constants
o given as follows for oxygen and
oxygen
A = -0.0005943
////— . B = -0.1470
C = -0.05120
" D = -0.1076
Lol . N
E = 0.8447
£

10°
T
A’ B’ C,
nitrogen:
A =
B =
C =
D?=
E =

147

D, and E are

nitrogen

-0.1021
~0.1482
~0.01900
~0.03741

0.8510__

-




