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We experimentally investigate the behaviour of a line-source plume falling through a

finite two-layer stratified ambient where the depth of the upper ambient layer increases

in time. Laboratory observations suggest one of two possible flow regimes depending

on the value of λ, which represents the relative loss of buoyancy experienced by the

plume upon crossing the ambient interface. When λ > 1, a classical filling-box-type

flow is realized and plume fluid always reaches the bottom boundary. By contrast, when

λ < 1, we observe a transition by which an increasing fraction of plume fluid discharges

along the interface. The approximate start time, tv, and end time, tt, of the transition

process are well-determined by λ. After transition the ambient density evolves to form a

three-layer fluid with an intermediate layer that grows in time. Measured densities of the

intermediate layer in experiments with λ < 1 are well predicted using plume theory. We

further characterize the horizontal speed of the intrusion that forms along the ambient

interface, the mass of solute present in the intermediate layer at time tt and the rate of

descent of the intrusion level for t > tt. The significance of our findings are discussed in

the context of the ventilation of natural and hybrid ventilated buildings and of effluent

discharge through marine outfall diffusers.
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1. Introduction

Liquid waste from coastal cities is often discharged into the marine environment

through outfall tunnels drilled into the seabed. At the point of discharge, the (buoyant)

effluent emanates from multiple diffusers and then merges together to form a single line-

plume. The plume continues to rise to the sea surface if the sea water has uniform density.

More desirably, density stratification may cause the plume to spread at some intermediate

depth along its level of neutral buoyancy. In the coastal ocean where ascending effluent

plumes are situated, seawater can vary between states of uniform density and comparative

strong stratification. This variation has an obvious impact on the height of rise of the

effluent. For example, the waste water from Boston is discharged into Massachusetts Bay,

which tends to be well mixed in winter because of surface cooling and wind forcing. In

summer near surface waters become both fresher and warmer as a result of which the

plume is trapped below this light surface layer (Hunt et al. 2010).

At smaller scales, a plume in an evolving stratified environment is also relevant

to naturally or hybrid ventilated buildings. Consider, for example, a building that

contains internal sources of buoyancy in the form of heat-producing electrical equipment

that creates vertically-ascending thermal plumes. This heat is vented to the exterior

environment through high-level openings. The escaping buoyant air is, in turn, replaced

with cool ambient air that enters the building through low-level openings (Linden et al.

1990). An interior two-layer stratification thereby develops where, at steady state, the

temperature of the buoyant upper layer matches the temperature of the plume at the

interface. Any subsequent changes in the plume source conditions, for example due to an

alteration of equipment operation (Bolster et al. 2008), may lead, for example, to partial

and eventual full detrainment of the plume below the ceiling.

Common to both of the above examples is vertical convection from an isolated source

that yields an (ascending) plume. Plume flow in a stratified or uniform ambient was

investigated quantitatively by Morton et al. (1956), who developed a one-dimensional

model to describe a statistically steady turbulent plume released from a point source

into an unbounded uniform or stratified ambient. In particular, analytical solutions were
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found for the case of a uniform ambient. This model has since been tested and widely

adapted to a variety of circumstances including effects of a finite-sized ambient (Baines

& Turner 1969; Germeles 1975), plumes and fountains in stratified fluid (Morton 1959;

Bloomfield & Kerr 1998, 2000), and line-plumes in two-layer stratified fluid (Noh et al.

1992) – see Woods (2010) for further details.

In one particularly relevant application, Baines & Turner (1969) examined the evo-

lution of the (initially uniform) ambient density in a finite control volume containing

an ascending vertical plume: the so-called filling box model. Upon reaching the free

surface, the plume fluid spread in the lateral direction to form a lighter upper layer that

deepened in time. The “first front”, the interface between the discharged plume fluid

and the original ambient, descended against the direction of the rising plume and some

fraction of this discharged plume fluid was re-entrained into the plume and carried again

to the free surface. Although the lighter density of the upper layer diminished the plume

vertical velocity, the density difference across the first front never became so strong that

the plume could not arrive at the free surface.

Numerous other studies have expanded upon the seminal work of Baines & Turner

(1969) by considering a nonuniform ambient at the initial time. For example, Kumagai

(1984) generated a dense plume through a nozzle placed at the free surface of a two-layer

stratified ambient, in which the plume could not initially fall through the lower layer.

The plume evolved to become a fountain below the ambient interface rising back to the

interface and then spreading horizontally. Kumagai (1984) adapted the filling box model

by parameterizing the entrainment from the lower layer fluid below the interface. This

so-called fountain top entrainment had the effect of progressively deepening the interface

as a result of the transport of entrained lower layer fluid returning upwards. Following

Kumagai (1984), Mott & Woods (2009) considered plume impingement from above upon

an ambient interface as an intense mixing process that thickened the interface instead of

deepening it. In collapsing their data, Mott & Woods (2009) found it helpful to introduce

a parameter Λ, which was the ratio of the reduced gravity of the plume just above the

interface with respect to the upper layer ambient to the reduced gravity associated with
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the upper and lower ambient layers. For 0 6 Λ < 1, the plume at the location of the

interface was lighter than the lower layer fluid and so was expected to spread along the

ambient interface. By contrast, and for Λ > 1, the plume was expected to descend into

the lower layer. The values of Λ in the experiments of Kumagai (1984) were limited to

between 0 and 0.15, while Mott & Woods (2009) ran experiments with a notably larger

range: 0 < Λ < 0.64. In both sets of experiments the plume was observed to spread along

the interface, as expected. In this case the plume flow in the upper layer can be regarded,

at least initially, as a filling box process with the interface serving as a surrogate bottom

boundary.

Wallace & Sheff (1987) and Kulkarni et al. (1993) respectively performed experiments

of line-source and point-source plumes with effective values of Λ being less than and

greater than unity. Although they did not compute this quantity explicitly, the values of

Λ ranged from 0.19 to 2.92 in the study of Wallace & Sheff (1987) and from 0.11 to 2.76

in the study of Kulkarni et al. (1993). These Λ values we estimate from plume theory

assuming an ideal point source and an entrainment coefficient of 0.1. In both sets of

experiments the tank was sufficiently large that boundaries played an insignificant role.

Wallace & Sheff (1987) and Kulkarni et al. (1993) observed different evolution regimes

depending upon different combinations of the experimental parameters, including the

density and volume flux of the plume source, the depth of the upper layer and the

densities of the upper and lower layers. If the plume density just above the interface was

significantly greater than that of the lower layer (Λ > 2.92 in the study of Wallace & Sheff

1987 and Λ > 2.25 in the study of Kulkarni et al. 1993), all of the plume fluid penetrated

through the interface. Conversely, if the density of the plume just above the interface was

smaller than that of the lower layer (Λ 6 0.19 in the study of Wallace & Sheff 1987 and

Λ 6 0.21 in the study of Kulkarni et al. 1993), some plume fluid nonetheless penetrated

into the lower layer due to inertia. An inverted fountain was thereby formed and whatever

plume fluid penetrated into the lower layer eventually flowed as an interfacial gravity

current along the ambient interface. Finally, a partial penetration regime occurred if the

mean density of the plume just above the interface was comparable to the lower layer
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density (Λ ≈ 0.97 in the study of Wallace & Sheff 1987 and 0.86 6 Λ 6 2.13 in the

study of Kulkarni et al. 1993). Because the horizontal time-averaged density distribution

of a plume was nonuniform (as opposed to the uniformity assumed by the so-called “top-

hat” formulation) and rather varied as an approximate Gaussian distribution, the fluid

in the core (periphery) of the plume was denser (lighter) than the lower layer. Thus,

as the plume impinged upon the interface, part of the plume penetrated through the

interface and continued to descend while the rest intruded at the interface. We refer to

this phenomenon as a “splitting plume”.

In related work, a downslope-propagating gravity current impinging upon an interface

in a two-layer ambient was examined by Wells & Wettlaufer (2007) and Cortés et al.

(2014). Like Kumagai (1984) and Mott & Woods (2009), Wells & Wettlaufer (2007)

determined that gravity current fluid accumulated at the interface of the two-layer

fluid causing the gravity current to break through the interface after some time. Like

Kulkarni et al. (1993), Cortés et al. (2014) found three different regimes characterized

by (i) total penetration of the gravity current through the interface, (ii) total spreading

along the ambient interface or (iii) partial splitting at the interface. Cortés et al. (2014)

characterized the regimes in terms of a bulk Richardson number, Ri, (which is effectively

inversely proportional to Λ) and a Froude number, Fr, which is the ratio of the current

speed to the shallow water speed based on the current height.

One of the principal limiting assumptions associated with the above studies is that the

upper ambient layer is uninfluenced by external effects, being affected by the impinging

plume alone. In the present investigation we extend this previous line of inquiry by

examining a line-source plume that descends into a two-layer stratified ambient in which

the upper layer is allowed to deepen as a consequence of surface fresh water inputs that,

at least initially, are larger than the flux of fresh water out of the upper layer due to

entrainment into the descending plume. The surface level is kept fixed by extracting

fluid from the bottom of the lower layer at the same rate as fresh water and plume fluid

are added at the top. With this setup, we are able to observe in some experiments the

transition in time from a bottom spreading plume to an interfacially splitting plume and
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then finally to an interfacially spreading plume. We characterize this complete life-cycle

in terms of relevant experimental parameters associated both with the plume and also

with the ambient stratification.

The rest of the manuscript is organized as follows. In section 2, equations for the

evolution of a plume in unbounded and bounded domains are reviewed. The experimental

setup and the detailed analyses of three experiments exhibiting qualitatively different flow

behaviour are presented in section 3. Thereafter, quantitative results are given in section

4. Finally, our discussion and conclusions are provided in section 5.

2. Theory

2.1. Equations for a line-source plume

Morton et al. (1956) formulated equations to describe a statistically steady plume

descending into an infinite environment. Although derived for a point-source plume, the

model is readily adapted for a line-source plume geometry (Lee & Emmons 1961). These

are the equations presented here.

The horizontal cross-section of the plume is assumed to have self-similar time-averaged

horizontal profiles that scale with height. For conceptual convenience, the profiles are

taken to have top-hat structure. In reality, the time-averaged structure is closer to

Gaussian and it is because of this that one might expect plume-splitting behaviour,

as discussed in the Introduction. However, the intent of this section is to classify when

plume splitting may occur, but not to model the splitting process itself. Under the top-

hat assumption, the time averaged profiles of the vertical velocity and reduced gravity

are

w(x, z) =


w̄(z), if |x| 6 b(z)

0, if |x| > b(z)

(2.1)

g′(x, z) =


ḡ′(z), if |x| 6 b(z)

0. if |x| > b(z)

(2.2)

Here, x is the horizontal co-ordinate with origin at the plume midpoint, z is the vertical
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co-ordinate whose positive direction is taken to be downward from the point source for

a descending plume, b(z) is the half-width of the line-plume, w̄(z) is the mean vertical

velocity of the plume and ḡ′(z) = g (ρ̄(z) − ρ0(z))/ρ00 is the mean reduced gravity, in

which ρ̄(z) is the mean density of the plume at depth z, ρ00 is a reference density taken

to be the ambient density at the surface, and g is gravity. The ambient density, ρ0(z),

is taken to be smaller than the plume density, at least near the source, so that ḡ′(z)

is positive. At any vertical level, the volume, momentum and buoyancy fluxes per unit

width of a line-plume are defined by

Q(z) =

∫ ∞
−∞

w dx = 2w̄(z)b(z), (2.3)

M(z) =

∫ ∞
−∞

w2 dx = 2w̄2(z)b(z), (2.4)

F (z) =

∫ ∞
−∞

wg′ dx = 2ḡ′(z)w̄(z)b(z). (2.5)

Assuming density variations between the ambient and plume are small, the Boussinesq

approximation can be invoked, in which case the dynamics of an ascending plume are

equivalent to those of the descending plume studied here. The system is closed by making

the entrainment assumption that the horizontal inflow velocity just outside the plume due

to entrainment is proportional to the mean vertical velocity of the plume at that vertical

level with proportionality constant α. Reported values for the so-called entrainment

coefficient differ depending on the experimental details (Lee & Emmons 1961; Kotsovinos

1975; Yuana & Cox 1996), but it is generally agreed that for a line-plume α falls between

about 0.1 and 0.16. From the conservation of volume, momentum and buoyancy for an

incompressible fluid, the following respective equations can be derived for the (steady

state) vertical variation of Q, M and F :

dQ

dz
= 2α

M

Q
, (2.6)

dM

dz
=
FQ

M
, (2.7)

dF

dz
= −Qdg′0

dz
. (2.8)
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Here g′0(z) = g(ρ0(z)− ρu)/ρu is the reduced gravity for the ambient density relative to

the characteristic density.

2.2. Solutions in a uniform ambient

For an ideal line-plume originating from an infinitesimally thin source at z = 0 and

descending through a uniform ambient, theoretical solutions can be obtained from (2.6)-

(2.8) by setting g′0(z) = 0 and taking the source volume and momentum fluxes to be

zero. The volume, momentum and buoyancy fluxes per unit width as functions of depth

are found to be

Q(z) = (2α)
2/3

F 1/3
s z, (2.9)

M(z) = (2α)
1/3

F 2/3
s z, (2.10)

F (z) = Fs, (2.11)

where Fs is the source buoyancy flux per unit width. From (2.3)-(2.5), it follows that the

mean reduced gravity of the plume is

ḡ′(z) =
Fs
Q(z)

= (2α)
−2/3

F 2/3
s z−1, (2.12)

and the half-width of the plume is

b(z) =
Q2(z)

2M(z)
= αz. (2.13)

2.3. Filling box theory

The above solutions apply for the case of a line-plume in a stationary unbounded

ambient. Considering a descending line-source plume in a confined region, such as a

rectangular tank with length LT , the vertical velocity of the rising ambient return flow

can be obtained from conservation of volume as −Q(z)/LT . By extension, and ignoring

diffusion, the ambient density evolves according to the following advection equation

(Baines & Turner 1969):

∂g′0
∂t

=
Q

LT

∂g′0
∂z

. (2.14)
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The filling box model is obtained by coupling (2.14) with (2.6)-(2.8). Taking this ap-

proach, Baines & Turner (1969) derived an expression for the position of the first front

with time, t. They assumed that the ambient density increases linearly with t in the

long-time limit whereas other variables, such as the plume radius, vertical velocity and

reduced gravity were time independent.

Germeles (1975) extended the Baines & Turner (1969) model by considering non-ideal

plumes and, more importantly, by developing a numerical algorithm to solve the filling

box model, in which the ambient density profile was discretized into a staircase structure.

At each time step a new layer representing the discharged fluid from the plume impacting

the lower boundary was added at the bottom of the profile.

The time for the entire box to be filled with discharged plume fluid, equivalent to the

time required by the first front to reach the elevation of the source, is referred to as

the filling box time, Tfb. For an ideal line-source plume, the filling box time is given by

(Baines & Turner 1969):

Tfb =
LT

(2α)2/3F
1/3
s

. (2.15)

2.4. Plume incident upon an interface of a two-layer fluid

For an ideal plume falling through a two-layer stratified ambient with a lower layer

having density ρl and depth Hl and an upper layer having density ρu and depth Hu,

(2.12) gives the reduced gravity of the plume just above the interface as

ḡ′(Hu) = g
ρ̄(Hu)− ρu

ρu
= (2α)

−2/3
F 2/3
s H−1u . (2.16)

At this depth, the mean density of the plume is less than (greater than) the lower layer

density if ḡ′(Hu) is less than (greater than) the reduced gravity, g′ul, based on the density

contrast between the lower and upper layers where

g′ul = g
ρl − ρu
ρu

. (2.17)

As suggested by the previous discussion, the ability of the plume to descend within the

lower layer can be assessed by forming the ratio of these two quantities (Mott & Woods
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2009):

Λ ≡ ḡ′(Hu)

g′ul
= (2α)−2/3

F
2/3
s /Hu

g′ul
. (2.18)

If Λ > 1, the plume can penetrate through the interface initially and will continue to do

so for all time: the finite width of the domain implies that the upper layer thickness Hu

will progressively decrease as the ambient fluid in the upper layer is entrained into the

plume and carried to depth. As a result, ḡ′(Hu) and hence Λ will increase with time so

that Λ is always greater than unity. On the other hand, if Λ < 1 initially, the plume will

spread at the interface. Over time, the plume will therefore descend into the evolving

stratified ambient in the upper layer as predicted by the filling box theory of Baines &

Turner (1969). This situation will persist if Λ � 1 in which case the ambient interface

effectively plays the role of a solid bottom boundary. However, if Λ is initially not too

much smaller than 1, it is possible that ḡ′(Hu) will increase sufficiently as a result of the

density increase of the upper layer ambient so that plume breakthrough occurs at some

later time (Mott & Woods 2009).

For a constant flux gravity current propagating downslope through the interface of a

two-layer ambient, Cortés et al. (2014) argued that both the Richardson number, Ri,

and the Froude number, Fr, determine whether the gravity current splits or not. They

defined

Ri =

(
F

2/3
s /Hu

g′ul

)−1
, (2.19)

Fr =
U

(g′h)1/2
, (2.20)

in which U , g′ and h are the average velocity, reduced gravity and the thickness of the

gravity current, respectively. From the dimensional analysis of a two-dimensional gravity

current, F
2/3
s /Hu is proportional to the reduced gravity of the gravity current just above

the interface. Accordingly, Ri defined by (2.19) is proportional to Λ−1.

2.5. Filling box flow in a two-layer ambient fluid containing an ambient source and sink

As a nontrivial extension of the flow scenario described in section 2.4, consider a case

in which lower layer fluid is extracted from the bottom of the domain with a constant
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Figure 1: Schematic of a line-plume descending through a two-layer ambient with upper
layer density ρu, upper layer depth Hu and lower layer density ρl, lower layer depth Hl.
The source density of the non-ideal plume is ρs and its volume flux per unit width is Qs.
Fluid of density ρu is also injected at a constant rate, Qu, equally at either side of the
domain near the surface. Meanwhile, fluid is extracted at a constant rate Qsink = Qs+Qu
equally at either side of the domain from the bottom, so that the free surface remains
fixed in time.

volume flux per unit width Qsink while fluid with density ρu is injected at the surface

with constant volume flux per unit width Qu, as shown in figure 1. So that the total

volume in the domain remains constant (and hence the free surface stationary), Qsink is

chosen to equal the sum of Qu and the volume flux per unit width from the line-plume

source, Qs. For an ideal plume, Qs = 0, by definition, and therefore Qsink = Qu.

In the absence of the plume, the interface would descend at a speed Qsink/LT . Con-

versely, in the absence of the sinking flow (Qsink = 0) and as a consequence of entrainment

of upper layer fluid into a pure plume, the interface would rise at the (time-variable) speed

Q(Hu)/LT . If Qsink > 0 and the plume penetrates into the lower layer, carrying entrained

upper layer fluid to depth, the interface would have a speed of (Qsink −Q(Hu)) /LT ,

with a downward (upward) direction if the sign is positive (negative). The competition

between these effects with Qsink > 0 and Q(Hu) > 0 are considered here specifically for

the circumstance in which Hu is initially zero. By extension, Hu(t) can be expressed as

Hu(t) =

∫ t

0

Qsink −Q(Hu(τ))

LT
dτ. (2.21)

Assuming the plume always penetrates into the lower layer, the interface deepens asymp-

totically to a depth Hu∞, at which point the volume flux per unit width of the plume

at the interface Q(Hu∞) is balanced by Qsink. Using (2.9), the steady state upper layer
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thickness is predicted to be

Hu∞ =
Qsink

(2α)2/3F
1/3
s

. (2.22)

The characteristic time for the interface to deepen to its time-independent value is

Hu∞

Qsink/LT
=

LT

(2α)2/3F
1/3
s

, (2.23)

which is just the filling box time Tfb expressed in (2.15).

The steady state upper layer depth prescribed by (2.22) can only be achieved if the

plume density at Hu∞ is greater than ρl so that the plume continues to descend into the

lower layer. Analogous to the time-dependent variable Λ prescribed by (2.18), we define

a time-independent variable λ by

λ ≡ lim
t→∞

Λ =
ḡ′(Hu∞)

g′ul
=

Fs
g′ulQsink

. (2.24)

The term g′ulQsink = g′ulQ(Hu∞) can be interpreted as the loss of buoyancy flux per unit

width that is experienced by the plume as a consequence of traversing the interface. By

extension, λ−1 is the relative loss of buoyancy flux per unit width as the plume penetrates

into the lower layer from the upper layer.

While Mott & Woods (2009) focused on cases with no sinking flow and initially with

Λ < 1, here we consider cases where Λ, though initially greater than unity, subsequently

decreases as the sinking flow acts to increase Hu. Whether Λ < 1 in the long time limit

depends on the value of λ given by (2.24), which in turn depends upon the external

parameters Fs, Qsink and g′ul, all of which are time-independent by assumption. If λ > 1,

the plume is predicted to descend into the lower layer for all time. By contrast if λ < 1,

eventually the plume will not penetrate through the interface, and will instead spread

above the lower layer. In the latter case, one anticipates a transition regime in which the

plume splits, corresponding to partial outflow along the interface as Λ falls below a value

of order unity. Once splitting begins, a positive feedback occurs whereby the upper layer

deepens and further decreases Λ, so that eventually the plume is expected to spread

entirely at the interface. These predictions are tested against laboratory experiments.

Although our analysis, experimental and otherwise, is here restricted to a line-source
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Figure 2: Schematic diagram of the laboratory experimental set-up. The tank measured
LT = 120 cm long, WT = 8 cm wide and HT = 40 cm deep. The upper layer of the
ambient was fresh water with density ρu and the lower layer was filled with salt water
having density ρl.

plume, we expect the condition λ = 1 likewise represents a marginal case when the plume

structure takes other shapes at the source, e.g. a point, or even a distributed, source.

Indeed, this is the basis for the comparisons with environmental and architectural flows

that we draw in section 5.

3. Experimental setup and analysis methods

3.1. Experimental setup

Laboratory experiments were conducted in an acrylic tank with rectangular cross-

section, as shown schematically in figure 2. The tank measured LT = 120 cm long,

WT = 7.6 cm wide, and HT = 40 cm deep. The tank was filled to a depth H = 30 cm

with salt water of density ρl, measured with an Anton Paar DMA 4500 densitometer,

having a precision of ±0.00001 g/cm3. The density ρl varied between 1.00100 g/cm3

and 1.02000 g/cm3 among different experiments. A relatively thin (∼ 5 cm) upper layer

was established by adding fresh water dyed with green food colouring through sponge

floats at both ends of the tank. Density profiles were measured by a vertically-oriented

micro-scale conductivity probe (Precision Measurement Engineering, MSCTI) having a
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measuring frequency of 10 Hz. This probe was connected to a vertically traversing plate

located at x = −15 cm, i.e. 15 cm to the left of the plume source. The plate and probe

moved downward at a speed of 0.5 cm/s. Motion control was achieved using a stepper

motor (Oriental Motor, PK245-01AA) connected to a computer running LabView. Probe

measurements confirmed that the initial interface thickness was around 1 cm.

A line-source nozzle spanning the tank width was located in the middle of the tank.

The nozzle, whose opening measured 0.4 cm wide by 7.1 cm long, had a T-shaped internal

structure that reduced the outflow speed. A piece of coarse sponge material was attached

to the opening to introduce small perturbations to the flow and thereby trigger a laminar

to turbulent transition in the plume. Schematics of the nozzle can be found in Appendix

C of Roes (2014).

As shown in figure 2, the nozzle opening was always situated at the approximate mid-

depth of the interface at the initial instant. Thus every experiment, regardless of the

value of Λ, began the same way, i.e. with plume fluid falling all the way to the bottom

of the tank.

Over the course of each experiment, red food colouring was periodically injected into

the tubing connected to the source nozzle. At early times dye was injected every ∼ 3 min

including at t = 0. This time interval grew to 6 min as the experiment progressed and the

flow dynamics became less transient. An electroluminescent light sheet with near-uniform

intensity (Electric Vinyl, Perf-Alite Electric Vinyl) was placed 20 cm behind the tank. In

front the tank at a distance of 3 m was situated a digital video camera (Panasonic HDC-

HS250) that recorded experimental images with a frame rate of 30 frames per second

(fps). Although the shortest of our experiments lasted just over 1 hour, experiments were

more typically run for 2 hours and, in one extreme case, more than 4 hours. For all

experiments, digital movies were analyzed by extracting one frame per second to make

time-lapse movies that were then imported into Matlab.

The experiment began with the activation of two peristaltic pumps (Manostat, Carter

and Newport FPU5-MT/N) that acted as a source of salt water for the plume and as a

source of fresh water for the surface layer. The peristaltic pumps also extracted water from
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the bottom of the tank. The use of peristaltic pumps with tubing of consistent diameter,

wall thickness and material type ensured that the total volume of injected fluid was

equal to the volume of extracted fluid. The pumps were calibrated by measuring with

a stopwatch the time required to fill a graduated cylinder to a volume of 230 mL. The

constant rate of injection of fresh water, QuWT , ranged from 2.0 cm3/s to 7.1 cm3/s in

different experiments. Meanwhile, the source had a constant volume flux of QsWT that

fell between 0.6 cm3/s and 2.0 cm3/s in different experiments.

The plume was generated by injecting dense salt water of density ρs > ρl, ranging

between ρs = 1.0130 g/cm3 and 1.1102 g/cm3. Multiple ambient density profiles were

collected during each experiment, with a single traverse taking approximately 1 min. This

was sufficiently fast compared to the slowly varying ambient density, that each profile

could be considered as an instantaneous measurement of the ambient density. The probe

was calibrated before and after each experiment using four salt water solutions whose

densities were accurately measured with the densitometer.

4. Experimental results

4.1. Qualitative results and analysis methods

Three experiments are presented here for the purpose of illustrating the range of flow

behaviour that was generally observed.

A classical filling box type experiment is shown in figure 3. Experimental parameters

correspond to Expt. 22 in table 1, where the source buoyancy flux per unit width was

calculated from

Fs = Qsg
ρs − ρu
ρu

. (4.1)

Two comments are necessary regarding (4.1). Firstly, and because the nozzle was initially

located at the elevation of the ambient interface, it should be understood that the above

definition for Fs does not apply for small t. Secondly, Qs > 0. To account for the finite

source volume flux of the plume, the virtual source distance, zv, was computed using the

methodology of Hunt & Kaye (2001). For the experiments of table 1, zv . 0.2 cm which

is an order of magnitude smaller than the terminal upper layer thickness. Based on this
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(a) Snapshot, t = 0.7 min

(b) Snapshot, t = 3 min

(c) Snapshot, t = 60 min

(d) Vertical time series, x = −20 cm

(e) Vertical density profiles, x = −15 cm

Figure 3: Snapshots from a classical filling box type experiment (Expt. 22 in table 1),
with λ = 1.180, taken at time (a) 0.7 min, (b) 3 min and (c) 60 min. For future reference,
note that the upper layer thickness is measured from the base of the nozzle, not the free
surface. (d) Vertical time series collected at x = −20 cm. For flow visualization purposes,
red dye is injected into the plume every 3 min at the start of the experiment and every
6 min thereafter. (e) Density profiles measured at the times indicated.

observation, it is sufficient and convenient to set the elevation of the nozzle tip as the

origin, z = 0.

With λ = 1.180, the plume is expected to descend to the tank bottom for all times, a

fact confirmed by figures 3 (a)-(c). Shortly after the start of the experiment (figure 3 (a))

the plume arrived at the tank bottom and then spread as a gravity current until it reached

the side walls. The first front (figure 3 (b)), which demarcates the interface between

discharged plume fluid and uncontaminated lower layer fluid, ascended continuously

because the plume volume flux per unit width at the first front was greater thanQsink. The

fluid below the first front remained continuously stratified, as indicated by the density

profile collected at 4 min (figure 3 (e)). Thereafter the first front ascended to a terminal
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elevation of 2.60±0.07 cm, at which elevation the plume volume flux through the front

was balanced by the volume flux of the sink at the tank bottom. After the upper layer

reached a depth of 0.78±0.07 cm, the plume began to split and an interfacial gravity

current was formed. As confirmed by figure 3 (c), however, the depth of the resultant

intermediate layer remained modest and the plume continued to fall all the way to the

bottom boundary for the entire duration of the experiment, about an hour.

Vertical time series were constructed from the experimental video by stacking together

a series of vertical slices (one pixel wide) taken at x = −20 cm from successive video

frames, as shown in figure 3 (d). This panel makes clear the progressive deepening of

the upper layer from 0 cm to 0.98±0.07 cm. The terminal depth in question may be

compared with the predicted depth Hu∞ using (2.22). Assuming α = 0.1, we predict

Hu∞ = 0.84 cm, which is in reasonable agreement with the measured value.

Figure 3 (e) shows density profiles taken at successive times. Profiles collected after a

significant time had elapsed confirmed that the upper fresh water layer reached a terminal

depth of approximately 1.0 cm, measured from the base of the plume nozzle. Below this

depth the ambient consisted of a gradually thickening interface and a lower-layer whose

density, nearly uniform in z, increased slowly with time, t.

An experiment exhibiting a transition to an interfacially spreading plume is shown in

figure 4. The experimental parameters correspond to those given for Expt. 9 in table 1

and are comparable to those of Expt. 22 (shown in figure 3) except that the plume source

density, ρs, is smaller by 0.02 g/cm3. The smaller value of ρs results in a decrease of Fs

to 5.49 cm3/s3, and a corresponding decrease of λ to 0.791. Although ρs > ρl, because

λ is less than unity it is anticipated that the plume will eventually spread entirely at or

above the interface of the two layer ambient, intruding within an intermediate layer.

At early times (figure 4 (a)), the plume descends to the bottom as before. After ∼

10 min, the plume splits at the interface to form an intrusion that propagates to x =-

20 cm at 10 min (figure 4 (b)). Later, the plume spreads entirely within this intermediate

layer, as shown in figure 4 (c). We refer to the process by which the intrusion evolves

first from a splitting intrusion (with some plume fluid continuing to penetrate through
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the lower ambient layer) to a spreading intrusion (with no plume fluid falling into the

lower layer) as the “transition.” The time tt corresponds to the end of the transition

process and can be estimated from movies of the experiments by noting the time at

which the red fluid injected into the plume first spreads entirely above the lower layer.

For the experiment shown in figure 4, tt '35 min with an error of ±3 min. The end of

the transition can be determined more accurately from vertical time series images (e.g.

figure 4 (d)) by tracking the rate of descent of the interface between the intermediate

and lower layers. When the transition is complete, no plume fluid penetrates all the way

through the interface at the top of the lower layer. As a result, there is no fountain top

entrainment that would otherwise transport lower layer fluid to the interface (Kumagai

1984). If we consider the fluid below the interface as a control volume, then following

transition a constant outflow from this volume due to the bottom sinks results in a steady

descent of the interface at speed Qsink/LT =0.005 cm/s. After locating the time-variable

interface depth from the vertical time series, we find the best-fit line at later times when

the interface is observed to descend at a constant speed. Separately, we fit a degree five

polynomial to the interface depth versus time plot at early times. The intersection of the

best-fit line and polynomial gives tt. For the experiment shown in figure 4, tt = 36±1 min.

This measurement is characteristic of other experiments, i.e. tt is typically on the order

of tens of minutes. If no transition occurred after two hours (for most experiments), it

was deemed that transition would never occur.

The time for the start of transition is also estimated from the vertical time series.

From the aforementioned best-fit line to the late-time interface depth versus time, we

extrapolated backward in time to find the intersection of this line with z = 0, indicating

the elevation of the source. This point of intersection defines a “virtual time”, tv. For the

experiment shown in figure 4, tv = 11 min. If we imagine a similar experiment starting

from t = tv with Fs = 0, so that the plume is in fact a jet, the ambient interface

will descend with the constant rate Qsink/LT from the beginning. After time tt − tv the

ambient interface will exactly overlap the ambient interface shown in figure 4 (d). The

virtual time is therefore the time delay of the real experiment with Fs > 0 from an
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(a) Snapshot, t = 0.7 min

(b) Snapshot, t = 10 min

(c) Snapshot, t = 60 min

(d) Vertical time series, x = −20 cm

(e) Vertical density profiles, x = −15 cm

Figure 4: As in figure 3, but for an experiment with λ = 0.791 (Expt. 9 in table 1). In
panel (d), the extrapolation of the interface between the intermediate and lower layers
is intersected by the x axis, from which the virtual time, tv = 11 min can be found. In
panel (e), the ◦ and ∗markers indicate the measured depths of the splitting and spreading
intrusions, respectively, for each applicable time. The locations denoted by ‘A’ and ‘B’
indicate the upper and lower depths, respectively, bounding the intermediate layer of
fluid formed by the intrusion at t = 82 min.

analogue experiment with Fs = 0. From this point of view, we can also consider tv as

the approximate onset (or start) time of the transition process.

For the experiment shown in figure 4, the green-dyed upper layer deepened to a

measured value of Hu∞ = 0.94 ± 0.07 cm. This was consistent with the prediction of

0.96 cm obtained from (2.22) with α = 0.1.

Although the first front moved upwards for t < 10 min (figure 4 (d)), it later moved

downwards as splitting occurred because Qsink exceeded the plume volume flux per unit

width through the first front. After transition, when the plume stopped penetrating into

the lower layer, the first front descended at the same rate, Qsink/LT , as the interface.

Figure 4 (e) shows the density profiles measured with the conductivity probe at different

times. Before the transition was complete the ambient resembled a two-layer stratifica-
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tion. The ambient thereafter evolved towards a three-layer profile. The intermediate layer

was formed by the intrusion, whose steady state density, ρ̄(Hu∞), can be estimated using

(2.12). Given z = Hu∞ and Q(Hu∞) = Qsink,

ρ̄(Hu∞) = ρu

(
ḡ′(Hu∞)

g
+ 1

)
= ρu

(
Fs

g Qsink

+ 1

)
. (4.2)

For the experiment shown in figure 4, the mean density calculated from (4.2) is

1.0083 g/cm3. We compare this prediction with measured values taken at t = 82 min at

depths between points A and B in figure 4 (e). Consistent with (4.2), the mean density of

the intermediate layer is measured to be ρint = 1.0085± 0.0003 g/cm3. The time-variable

intrusion depth can be inferred from the right-hand side of figure 4 (d) as the left-most

point of the sideways parabola-like red curves that appear between the upper (green-

dyed) layer and the lower layer. These intrusion depths are superimposed as symbols

plotted on the density profiles in figure 4 (e), showing that the intrusion descended at a

level close to the middle of the near-uniform middle layer. The positions of the fronts

of the first-observed interfacial gravity currents are tracked at different times and are

plotted in the x − t plane, as shown in figure 5. The data points satisfying |x| < 30 cm

are fitted with a pair of best-fit lines, whose slopes indicate the (approximately constant)

initial speeds of propagation. The small difference between the speed of the leftward

propagating current, 0.067± 0.002cm/s, and that of the rightward propagating current,

0.064± 0.002cm/s, may reflect a slight asymmetry in the rate of freshwater injection in

the upper layer. For the experiments in which transition occurred, the average of the

left and right front speeds shall be denoted by Uintr.

For the experiment shown in figure 6, the source density is ρs = 1.02697 g/cm3. The

corresponding source buoyancy flux per unit width is Fs = 2.24 cm3/s3, and λ = 0.320

(see Expt. 2 of table 1). Consistent with expectations, the experiment shows a faster

transition compared to the experiment exhibited in figure 4. Here, tv ' 2.2 min and the

transition is complete after tt =20 min. Thereafter the interface descends at the same rate

of 0.005 cm/s as seen for Expt. 9. The density profiles are shown in figure 6 (e). Following

transition, a three-layer stratification evolved from a two-layer stratification as observed
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Figure 5: Intrusion front location vs. time (Expt. 9 in table 1). The slopes of the best-fit
lines show the initial propagation speeds of the splitting intrusion in the left and right
directions.

(a) Snapshot, t = 0.7 min

(b) Snapshot, t = 17 min

(c) Snapshot, t = 60 min

(d) Vertical time series, x = −20 cm

(e) Vertical density profiles, x = −15 cm

Figure 6: As in figure 4, but for experiment with λ = 0.320 (Expt. 2 in table 1).

in the experiment shown in figure 4. From (4.2), we expect ρ̄(Hu∞) = 1.0024 g/cm3. The

mean density of the intermediate layer is calculated from the last measured profile at

t = 72 min over the range between points A and B indicated in figure 6 (e). We find that

ρint = 1.0030± 0.0002 g/cm3, which agrees reasonably well with the predicted value.



22 Y. Ma, M. R. Flynn and B. R. Sutherland

Figure 7: Ambient fluid density measured at a depth of z = 28 cm for the experiment
shown in figure 3. A corresponding filling box prediction in which the upper layer is
omitted is plotted as the solid line.

4.2. Quantitative results

The value of the ambient fluid density measured at the deepest depth, z = 28 cm, from

figure 3 is plotted against time in figure 7. For sake of comparison, figure 7 also contains

an analogue filling box prediction computed using the Germeles algorithm (Germeles

1975). In drawing the solid curve, we have assumed an ideal plume and have applied the

same source buoyancy flux but have presumed a uniform ambient having the same density

as that of the lower layer from the experiment. The significant deviations between this

solid curve and the experimental data points for t & 500 s affirm the nontrivial influence

of the deepening upper layer and the commensurate transport of upper layer fluid to

depth by the plume.

A series of experiments were run with a range of parameters as listed in table 1. Figure

8 shows a regime diagram indicating whether or not transition occurred; measurements

are plotted in the g′ul − λ plane. Experiments that did and did not include transition

are drawn, respectively, with circles and squares. In the former case, the circle radius

indicates the time, tt, needed to complete the process of transition. In section 2.5, it was

argued that λ = 1 ought to represent a dividing line in such regime diagrams. Figure 8

confirms that this interpretation is accurate. As expected, the figure also confirms that

tt generally increases with λ for 0 < λ < 1.
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Figure 8: Regime diagram indicating transition vs. no transition for the experiments
described in table 1. Here λ is given by (2.24) and g′ul = g ρl−ρuρu

is the reduced gravity
between the ambient upper and lower layers. Moreover, tt is the end of transition time
and Tfb is given by (2.15). The solid symbols correspond to the experiments shown in
figures 3, 4 and 6, respectively, with decreasing λ.

(a) Virtual time (b) End of transition time

Figure 9: Non-dimensional virtual time and end of transition time vs. λ. Both times are

normalized by the filling box time Tfb = (2α)−2/3LTF
−1/3
s with α = 0.1.

For the experiments wherein transition occurred, figure 9 shows the values of tv and tt

(normalized by the filling box time, Tfb) plotted against λ. For a wide range of g′ul, the

data collapse well, which indicates that λ is the appropriate parameter for characterizing

the plume splitting and transition processes. Both tv and tt become very large compared

with the filling box time as λ→ 1−. The relative loss of the plume buoyancy flux decreases

as λ increases and thus it takes more time for the transition to initiate and to complete.

To help generalize the results, figure 9 includes empirically fit curves to the data, which



24 Y. Ma, M. R. Flynn and B. R. Sutherland

Figure 10: Mean steady state density of the intermediate layer in those experiments
where transition occurred. The straight line indicates the prediction of (4.2).

have the following respective equations:

tv
Tfb

= (−2.16± 0.25) log(1− λ),
tt
Tfb

= (−4.63± 0.48) log(1− λ1/2). (4.3)

Also for the experiments with transition, the mean steady state density, ρint, of the

intermediate layer is plotted against Fs/ (g Qsink) in figure 10. The data collapse well

with the prediction of (4.2), which confirms that ρint is independent of ρl and the tank

dimension.

Images like figure 6 (b) suggest that a significant amount of plume fluid may accumulate

along the interface even before transition. Because this discharged plume fluid contains

solute (and, in the marine outfall scenario, aqueous pollution), it is desirable to estimate

the mass of solute, Mint, within the intermediate layer in question at time tt. This

information can be gleaned from the conductivity probe data. Care is taken to discount

any solute present in the (diffuse) interface at the initial time. Figure 11 plots Mint

versus λ where the former variable has been normalized by Mtotal, the total mass of

solute supplied by the plume source over 0 6 t 6 tt. Before the onset of splitting, all

the plume fluid falls through the lower layer. With larger λ < 1, it takes more time for

splitting to initiate. Thus more plume fluid descends to the bottom boundary as a result

of which Mint/Mtotal is less than in experiments where λ is small and splitting occurs

earlier, albeit with intermediate fluid whose density may be little larger than ρu. When
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Figure 11: Ratio of the solute mass in the intermediate layer, Mint, at tt to the total
mass of solute, Mtotal, injected by the nozzle during 0 6 t 6 tt.

applied to the marine outfall example discussed previously, this tells us that the relative

amount of pollution that can be carried to the surface will increase with λ.

After transition, discharged plume fluid intrudes roughly in the middle of the interme-

diate layer as shown in figures 4 (d) and 6 (d). Of course, the intermediate layer thickens

over the duration of the experiment and hence the depth at which plume fluid discharges

as an intrusion descends with time. Figures such as 4 (d) and 6 (d) show that the rate

of descent, Wintr, is approximately constant; accordingly, a unique value for Wintr can be

calculated for each experiment in which transition occurred. In figure 12, we plot Wintr

against λ. Considering the symmetric geometry of the intrusion (e.g. see figure 4 (c),

6 (c)), approximately one-half of the intrusion fluid lies below the intrusion depth, and

Wintr is approximately 0.5(±0.1)Qsink/LT .

Whereas figure 12 considers the vertical descent of the intrusions, figure 13 shows

the variation of Uintr with λ. Studies of intrusions often non-dimensionalize the front

speed using, as a characteristic vertical length scale, the intrusion height. We find it

more instructive, however, to non-dimensionalize Uintr with αF
1/3
s . So normalized, and

although there is some scatter in the data, the front speed decreases approximately

linearly with increasing λ. The qualitative trend of the data from figure 13 can be

understood by referring to figures 4 (b) and 6 (b), which suggest that thicker and faster

advancing intrusions are associated with smaller values of λ. Taken together, the marine
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Figure 12: Descent rate, Wintr, of the intrusion spreading depth vs. λ.

Figure 13: Normalized intrusion front speed, Uintr, vs. λ. In some experiments with large
Qu, the asymmetries in the fresh water influxes at the two ends of the tank were large
and introduced large errors indicated by the comparatively long lengths of the vertical
error bars.

outfall implication of figures 11 and 13 is as follows: with smaller λ, more passive

scalars accumulate in the vicinity of the pycnocline and their lateral transport along

the pycnocline and away from the point of vertical convection is larger.

5. Discussion and conclusions

We have examined the influence of a deepening upper layer on the behaviour of a line-

source plume that falls through a two-layer stratified ambient fluid. Depending upon the

relative loss of buoyancy flux of the plume at the interface, which we express using the

parameter λ = Fs/ (g′ulQsink), either a bottom propagating gravity current develops and
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persists (if λ > 1) or the plume splits then spreads entirely as an intrusion that propagates

between the upper and lower layers (if λ < 1). During plume splitting some fraction of

the plume fluid discharges once the upper layer depth surpasses a critical value. Unlike

the experiments of Kumagai (1984) and Mott & Woods (2009), which examined the

eventual breakthrough of a plume at an interface due to solute accumulation, an opposite

transition process is observed in many of our laboratory experiments. Specifically, the

plume evolves from total penetration to partial discharge (splitting) to complete discharge

with interfacial spreading occurring in a deepening intermediate layer of roughly constant

density.

Because initially a plume entrains upper-layer fluid and carries it to depth, the ambient

interface descends more slowly at first than it would if the source were a jet (Fs = 0),

which does not penetrate the interface. However, if a jet source flow was initiated at

the virtual time t = tv rather than t = 0, the ambient interface would, in due course,

overlap with the descending ambient interface observed in our experiments employing

plumes. This is the way in which we consider tv to represent the approximate onset of

the transition process, and tt to represent the corresponding end where no plume fluid

reaches the lower layer. As shown in figure 9, tv and tt normalized by the filling box time

Tfb collapse well when plotted against λ and both become very large as λ→ 1−.

Although our experiments are highly idealized, they can provide further insights into

some important environmental flows. Consider again the outflow of aqueous pollutants

in Massachusetts Bay. The outfall tunnel extends 13 km offshore and is connected to a

2 km long diffuser which is located along the seafloor. The effluent is discharged through

55 risers into the sea whose local depth is approximately 34 m. The average volume

flux of the waste water from all 55 risers is 16.0 m3/s and the waste water density is

taken as 1.0 g/cm3 (Hunt et al. 2010; Roberts et al. 2011). From surveys conducted in

summer (Hunt et al. 2002), the stratification in Massachusetts Bay can be represented

approximately as a two-layer fluid with a 10 m upper layer of density 1.0226 g/cm3 and

a 24 m lower layer of density 1.0245 g/cm3 such that g′ul = 0.018 m/s2. Moreover, the

buoyancy flux per unit length of the diffuser is taken to be Fs = 0.019 m3/s3. Also from
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equation (2.12), the reduced gravity of the plume varies with elevation z as ḡ′(z) =

0.21m2/s2 × z−1 where z = 0 corresponds to the seafloor. Accordingly, the reduced

gravity of the plume at the interface (z = 24 m) is 0.0087 m/s2. From equation (2.18),

Λ = 0.48 which signifies that the plume will be arrested below the upper layer. As winter

approaches, and due to surface cooling and wind forcing, the water column becomes well

mixed. The interface steadily approaches the seafloor and the ambient reduced gravity

decreases. Both of these factors serve to increase Λ. Although the directionality of the

interface advance relative to the source is opposite to that in our experiments, the present

results apply because the interface vertical velocity is small. We anticipate that plume

splitting should occur as Λ approaches unity, and complete transport of the pollutants

to the free surface should occur for Λ > 1.

Another similar, albeit inverted, example concerns the displacement ventilation of a

building containing low-level and high-level vents to the exterior. We consider a ground-

level heat source such as a piece of electrical equipment that generates an ideal plume

having a buoyancy flux per unit width, Fs. The plume ascends to the ceiling at z = H

and discharges its fluid to form an upper layer where the reduced gravity, g′ul, between

the upper and lower ambient layers is identical to the reduced gravity of the plume ḡ′(H)

measured at the ceiling at t = 0. Over time, the interface descends towards the source

before reaching a terminal elevation, h, which is prescribed by the area of the upper

and lower vents and the height of the building zone (see (2.11) of Linden et al. 1990).

Applying (2.9) with z = h and (2.12) with z = H into (2.24), we find that λ = H/h > 1.

Thus transition and outflow of the plume along the ambient interface cannot occur as

indeed has been observed experimentally (Linden et al. 1990). However, if after steady

state is achieved the heat source is turned down and the outflow rate, Qsink, through

the high-level vent is enhanced artificially by a ratio greater than H/h, (e.g. using an

extraction fan), then λ can fall below unity. In this scenario, transition is anticipated and

a three-layer stratification will develop.

In the Introduction, we presented a qualitative description for plume splitting along

the ambient interface and thereby emphasized the importance of a non-uniform density
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distribution over the plume cross section. Efforts to model the plume splitting analytically

have been pursued; in particular, we attempted to parameterize the fraction of the

plume fluid that would “split” (and therefore discharge along the ambient interface)

given Gaussian distributions for velocity and density. At early times when the ambient

interface is sharp, the calculation is straightforward and the total volume and density of

discharged fluid can readily be obtained. Complications arise, however, for larger times

when the sharp ambient interface must be replaced by a zone of continuous stratification.

In this latter case, the plume splitting behaviour depends on the local buoyancy frequency

of the ambient as well as the local reduced gravity of the plume. Future work will aim to

more satisfactorily model the time evolution of the splitting process. Ultimately, we wish

to derive a parameterization of the plume splitting process that can be straightforwardly

incorporated into a filling-box model.
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Expt. ρs ρl QsWT QsinkWT Fs λ tt(
g/cm3

) (
g/cm3

) (
cm3/s

) (
cm3/s

) (
cm3/s3

)
(min)

1 1.02287 1.00655 0.437 7.67 1.39 0.172 17
2 1.02697 1.01063 0.61 4.48 2.24 0.320 20
3 1.04004 1.01056 1.00 8.14 5.37 0.422 13
4 1.04037 1.02009 1.01 4.61 5.47 0.424 17
5 1.05911 1.01008 0.46 4.00 3.60 0.600 34
6 1.05707 1.05165 2.00 3.06 15.14 0.720 24
7 1.02000 1.00500 1.01 4.54 2.80 0.739 39
8 1.03984 1.01037 0.97 4.35 5.14 0.791 27
9 1.05408 1.01060 0.77 4.44 5.49 0.791 39
10 1.06604 1.01534 0.94 4.55 8.20 0.827 38
11 1.02970 1.01033 0.96 3.02 3.87 0.837 52
12 1.00828 1.00098 1.02 4.57 1.29 0.870 68
13 1.05922 1.02000 0.95 3.00 7.46 0.893 60
14 1.01238 1.00344 0.98 3.03 1.76 0.904 89
15 1.09034 1.02008 1.03 4.59 12.22 0.952 51
16 1.04029 1.00810 1.00 4.54 5.40 0.955 57
17 1.04997 1.01010 1.02 4.57 6.78 0.990 57
18 1.04008 1.00700 1.00 4.65 5.37 1.052 No
19 1.03988 1.01030 0.91 2.94 4.87 1.083 No
20 1.11020 1.01988 1.01 4.56 14.58 1.155 No
21 1.05963 1.01012 1.01 4.54 7.97 1.174 No
22 1.07565 1.01081 0.80 4.25 7.97 1.180 No
23 1.01338 1.00097 0.96 4.47 1.85 1.277 No
24 1.03970 1.00500 0.96 4.41 5.01 1.417 No
25 1.07975 1.00976 1.01 4.79 10.61 1.510 No
26 1.04020 1.00196 0.96 4.41 5.17 2.624 No
27 1.04051 1.00106 0.99 4.47 5.36 3.547 No

Table 1: Experimental parameters. Experiments 22, 9 and 2 correspond to the
experiments shown in figures 3, 4 and 6, respectively.
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