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Abstract

In estimation theory, a set of parameters are estimated from a finite number

of measurements (samples). In general, the quality of estimation degrades as

the number of samples is reduced. In this thesis, the problem of parameter

estimation in low-rank models from a small number of samples is studied.

Specifically, we consider two related problems that fit in this system model:

direction-of-arrival (DOA) and spectrum estimation. We focus on subspace

based DOA estimation methods which present a good compromise between

performance and complexity. However, these methods are exposed to perfor-

mance breakdown for a small number of samples. The reason is identified to

be the intersubspace leakage where some portion of the true signal subspace

resides in the estimated noise subspace. A two-step algorithm is proposed to

reduce the amount of the subspace leakage. Theoretical derivations and sim-

ulation results are given to show the improvement achieved by the introduced

method. Furthermore, the dynamics of the DOA estimation method in the

breakdown region has been investigated, which led to identification of a prob-

lem named root-swap where a root associated with noise is mistakenly taken

for a root associated with the signal. Then, an improved method is introduced

to remedy this issue.

Spectrum estimation from undersampled data (samples obtained at a rate

lower than the Nyquist rate) is studied next. Specifically, the performance

of the averaged correlogram for undersampled data is theoretically analyzed

for the finite length sample size as well as asymptotically. This method par-

titions the spectrum into a number of segments and estimates the average

power within each segment from samples obtained at a rate lower than the

Nyquist rate. However, the frequency resolution of the estimator is restricted
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to the number of spectral segments, and the estimation made for each segment

has also limited accuracy. Therefore, it is of significant importance to analyze

the performance of this method especially in the case that only a finite num-

ber of samples is available. We derive the bias and variance of the averaged

correlogram for undersampled data for finite-length signals, and we show the

associated tradeoffs among the resolution, the accuracy, and the complexity

of the method.

Finally, spectrum estimation from compressive measurements is studied.

The number of such measurements is much less than the number of Nyquist

samples, and they are obtained by correlating the signal with a number of

sensing waveforms. We specifically consider signals composed of linear com-

binations of sinusoids. Albeit these type of signals have a sparse model, their

representation in the Fourier basis exhibits frequency leakage. This problem

results in the poor performance of the conventional compressive sensing re-

covery algorithms that rely on the Fourier basis. We introduce an improved

model-based reconstruction algorithm which has a performance close to the

Cramér-Rao bound, which we also derive.
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Chapter 1

Introduction

Parameter estimation from a finite number of measurements is a fundamen-

tal problem in signal processing. The quality of estimation highly depends

on the number of available samples. In general, the availability of more sam-

ples translates into lower estimation error. On the other hand, the difference

between the estimated and true values can grow large for a small number of

samples. In some cases, there may be a minimum number of samples required

for a successful estimation. In this thesis, we consider parameter estimation

in low-rank system models from a small number of samples.

Consider the system model x(t) = As(t)+n(t), where x(t) is the measured

data at time instant t, A is a tall matrix, s(t) is a vector containing the

amplitudes of the sources, and n(t) is additive noise. A tall matrix refers to a

matrix with the number of rows being much larger than the number of columns.

Since A is a tall matrix, the covariance matrix of the measured data is equal

to a low-rank matrix plus the covariance matrix of the noise. Therefore, such

a system is called a low-rank model. Matrix A can be fully known, known up

to a number of unknown parameters, or completely unknown. In this thesis,

we study the second case where matrix A contains unknown parameters, but

its structure is known. Specifically, we consider direction-of-arrival (DOA)

and spectrum estimation problems which fit in this system model. For DOA

estimation, the unknown parameters are the angles between far-field sources

and an array of sensors. For spectrum estimation, the unknown parameters

are the frequencies of signals. Therefore, the system models of the source
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location problem and the problem of temporal spectral estimation are closely

related. Furthermore, the DOA estimation problem deals with determining

the position of sources of energy in air, water or the earth, and can be viewed

as estimating the distribution of energy over the space. Therefore, it can be

called a spatial estimation problem. Because of these ties, most of the methods

used for one problem are applicable to the other one as well.

In the case of DOA estimation, we consider the problem of locating K

radiating or reflecting sources by using an array of M sensors. The emitted

energy from the sources can be electromagnetic, acoustic, and so on, and the

receiving sensors may be any transducers that convert the received energy

to electrical signals. Examples of sensors include electromagnetic antennas,

hydrophones, and seismometers. This type of problem has applications in

radar and sonar systems, communications, astrophysics, biomedical research,

seismology, underwater surveillance, and so on [1].

The goal is to perform an estimation from the spatial and temporal samples

collected at the sensors (space-time processing). Spatial filtering (conventional

beamformer) was the first approach to perform space-time processing from

data sampled at an array of sensors, which dates back to the second world-

war [2]. Later, classical time delay estimation methods [3] were introduced to

enhance the ability of resolving closely spaced signal sources. Furthermore, an

early application of the maximum likelihood (ML) principle for multiple-signal

sources appeared in [4]. The ML method is an efficient estimator. However, it

suffers from high computational complexity. Then, the emergence of subspace-

based estimation techniques [5, 6] started a new era in the sensor array signal

processing literature, as they provided a compromise between performance and

complexity.

1.1 Proposed research problems

In this dissertation, we concentrate on small sample size and undersampled

data scenarios. A brief description of the tackled problems is as follows.

Classical methods of DOA estimation based on the sample covariance ma-
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trix, such as the multiple signal classification (MUSIC) algorithm [7], are based

on estimating the signal and noise subspaces from the sample covariance ma-

trix. For a small number of samples, such methods are exposed to performance

breakdown, as the sample covariance matrix can largely deviate from the true

covariance matrix. In Chapter 3, the problem of DOA estimation performance

breakdown is investigated.

We consider the structure of the sample covariance matrix and the dynam-

ics of the DOA estimation algorithm. It is shown in [8] that the performance

breakdown problem is associated with the intersubspace leakage “whereby a

small portion of the true signal eigenvector resides in the sample noise subspace

(and vice versa)” [8]. In Chapter 3, the subspace leakage notion is formally

defined, and its theoretical derivation is given. We propose a two-step method

which improves the performance by modifying the sample covariance matrix

such that the amount of the subspace leakage is reduced. Furthermore, we

introduce a phenomenon named as root-swap which occurs in the DOA esti-

mation algorithm in the low sample size region and degrades the performance

of the DOA estimation. A new method is then proposed to alleviate this

problem.

In the case of spectrum estimation, not only the number of available sam-

ples is finite, but also the rate at which these samples are collected is limited.

The latter can lead to aliasing. A sufficient condition for alias-free sampling is

to sample the signal of interest at the Nyquist rate which is twice the maximum

frequency of the signal.

Chapter 4 gives the finite-length analysis of a spectrum estimation method

for the case when the samples are obtained at a rate lower than the Nyquist

rate. The method is referred to as the averaged correlogram for undersampled

data. It is based on partitioning the spectrum into a number of segments and

estimating the average power within each spectral segment. In this method,

samples are collected using multiple channels, each operating at a rate L times

lower than the Nyquist rate. The frequency resolution of the estimator is re-

stricted to the number of spectral segments, and the estimation made for each

segment has also limited accuracy. Therefore, it is of significant importance
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to analyze the performance of this method especially in the case when only

a finite number of samples is available. We derive the bias and variance of

the spectrum estimator, and show that there is a tradeoff between the accu-

racy of the estimation, the frequency resolution, and the complexity of the

estimator. A closed-form approximation of the estimation variance is derived,

which clearly shows how the variance is related to different parameters. The

asymptotic behavior of the estimator is also investigated.

In Chapter 5, we consider signals with sparse representations. These sig-

nals can be recovered from a number of measurements much less than the

number of samples given by the Nyquist sampling rate using the compressive

sensing (CS) method [9–11]. Such measurements are obtained by correlating

the signal with a number of sensing waveforms. The algorithms used for re-

covering the signal from these measurements exploit the sparsity of the signal

in a proper basis. In Chapter 5, sparse signals composed of linear combina-

tions of sinusoids are studied. Albeit these type of signals generate sparse

coefficients by the discrete-time Fourier transform (DTFT), their representa-

tion in the Fourier basis obtained by the discrete Fourier transform (DFT)

exhibits frequency leakage. This problem results in the poor performance of

the conventional CS recovery algorithms that rely on the Fourier basis. Al-

though these signals do not have a sparse representation in the Fourier basis,

they possess a sparse model in terms of the DTFT. We introduce an improved

model-based algorithm that takes the signal structure into account to esti-

mate the unknown parameters (the frequencies and amplitudes of the linearly

combined sinusoidal signals). Furthermore, we derive the Cramér-Rao bound

(CRB) for spectral compressive sensing, and show that the proposed algorithm

approaches the CRB.

1.2 Applications

Examples of parameter estimation from small sample size and undersampled

data include the following.

In real-time radar systems, it is crucial to estimate the parameters of targets
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as fast as possible. In such a scenario, the number of available snapshots can be

very small. Furthermore, for fast-moving objects, the statistics of the system

may change as the objects move, which makes it impractical to wait for a large

number of samples to be collected. Therefore, it is of significant importance

for such scenarios to be able to estimate the parameters from small number of

samples.

As another example, consider the seismic imaging methods which aim at

obtaining an image of the subsurface of the earth. A pulse of energy is sent

into the earth and the reflections from geological boundaries are received by

an array of sensors. One important problem that arises in the seismic imaging

applications is that due to obstacles such as highways, rivers, trains, etc., the

locations available for the receiving sensors can be quite limited. This issue

demands for techniques which are capable of making estimations from small

number of samples.

Finally, for an example of the undersampled data scenario, consider wide-

band spectrum sensing in a cognitive radio system. The Nyquist rate sampling

for such a system is either impractical or too costly with the current technol-

ogy. Therefore, it is desirable to make spectrum estimation from measurements

obtained at a rate lower than the Nyquist rate.

5



Chapter 2

Preliminaries

2.1 Array processing

In this section, we briefly review the assumptions that lead to the derivation

of the system model for DOA estimation. Two approximations are considered

to simplify the model of the antenna array.

The first approximation is that the array is in the far-field of the signal

source. In the far-field, the direction of propagation is approximately the same

for each element of the array. Modeling an emitter as far-field depends on the

size of the array and on the desired accuracy of the approximation. Consider

the geometry shown in Fig. 2.1 [12]. An emitter at the center of the circle

is at distance r away from a linear array of length 2ℓ. In this example, the

direction of propagation is normal to the array at the center, but deviates

from normal incidence by θ at the end of the array. If we desire to keep the

deviation from normal incidence to be less than a tenth of a degree, then

r/ℓ > cot (0.1π/180) ≈ 573. Therefore, the distance from the center of the

array to the emitter must be at least 573/2 times the length of the array for

the far-field approximation to hold [12].

The second approximation is about the bandwidth of the received signal.

When the far-field approximation holds, the direction of propagation is the

same at each array element. Consider an array with two elements. If u is

a unit-length vector in the direction of propagation and d is the vector from

the first array element to the second as shown in Fig. 2.2, then the signal

at the second array element will be delayed from that received at the first
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Figure 2.2: Narrowband approximation.

element by τ =< d,u > /c = d sin(θ)/c, where <, > represents the innner

product of two vectors, d is the distance between the two array elements,

and c is the speed of the traveling wave. If the signal received at the first

element is x1(t) = m(t)ejωt, then the signal received at the second element is

x2(t) = x1(t − τ) = m(t − τ)ejω(t−τ) = m(t − τ)ejωte−jωτ . The narrowband

approximation is used here. The rate at which a signal changes is related

to the bandwidth of the signal. If the bandwidth of m(t) is much smaller

than 1/τ , we can use the approximation m(t − τ) ≈ m(t), so that x2(t) =

m(t− τ)ejωte−jωτ ≈ m(t)ejωte−jωτ = e−jωτx1(t). With this approximation the

delay operator is replaced with a simple phase shift. The center frequency ω

can be written as ω = 2πc/λ, where λ is the wavelength of the plane wave

impinging on the array. Therefore, the received signal at the second element
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of the array can be written as x2(t) = e−j2π(d/λ) sin(θ)x1(t).

We next consider the model of a uniform linear array (ULA). The array

consists of M number of antennas separated from each other by a distance

of d ≤ λ/2. The array receives K number of narrowband plane waves from

directions θ1, θ2, · · · , θK . Without loss of generality, assume −π/2 ≤ θ1 ≤
θ2 ≤ · · · ≤ θK ≤ π/2. The received waves are down-converted, low-pass

filtered, and sampled in time. Each sample is a vector containing the measured

data at the antenna elements. If we consider the first element of the array as

the reference, the received signal from a given source is delayed by τ at the

second element, by 2τ at the third element, by 3τ at the forth element and so

on. Then, by defining the steering vector of the array a(θ) ∈ CM×1 as

a(θ) ,
[
1, e−j2π(d/λ) sin(θ), · · · , e−j2π(M−1)(d/λ) sin(θ)

]T
(2.1)

(here (·)T stands for the transposition operator) and also using the superposi-

tion principle for multiple sources, at time instant t ∈ N, the received vector

xa(t) ∈ CM×1 is given by

xa(t) =

K∑

i=1

a(θi)si(t) + n(t) (2.2)

where si(t) ∈ C is the amplitude of the i-th source and n(t) ∈ CM×1 is the

noise vector at time t. By arranging the amplitudes of the sources in the vector

s(t) = [s1(t), s2(t), · · · , sK(t)]T ∈ CK×1 and forming the Vandermonde ma-

trixA = [a(θ1), a(θ2), · · · , a(θK)] ∈ CM×K , the model (2.2) can be rewritten

in matrix-vector form as

xa(t) = As(t) + n(t). (2.3)

We consider the noise vector n(t) to be independent from the sources and other

noise vectors and to have the circularly-symmetric complex jointly-Gaussian

distribution NC(0, σ2
nIM) where IM is the identity matrix of size M .

2.2 DOA estimation problem

Subspace based DOA estimation methods are based on the structure of the

covariance matrix of the received signal. Considering the system model (2.3)
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and with the assumption that the sources are wide-sense stationary (WSS),

the data covariance matrix R ∈ CM×M is given by

R , E
{
xa(t)x

H
a (t)

}
= ASAH + σ2

nIM (2.4)

where S = E
{
s(t)sH(t)

}
∈ CK×K is the source covariance matrix, and (·)H

and E{·} stand for the Hermitian transposition and the expectation operators,

respectively.

Let N number of snapshots (samples) be available. The conventional

method for estimating the covariance matrix from the samples xa(t) (1 ≤
t ≤ N) is given by

R̂ ,
1

N

N∑

t=1

xa(t)x
H
a (t) (2.5)

where R̂ ∈ C
M×M is the sample data covariance matrix. Let λ̂1 ≤ λ̂2 ≤ · · · ≤

λ̂M be the eigenvalues of R̂ in nondecreasing order, and let ĝ1, ĝ2, · · · , ĝM−K

be the noise eigenvectors associated with λ̂1, λ̂2, · · · , λ̂M−K and ê1, ê2, · · · , êK

be the signal eigenvectors corresponding to λ̂M−K+1, λ̂M−K+2, · · · , λ̂M . Let

also Ĝ ∈ C
M×(M−K) and Ê ∈ C

M×K be defined as

Ĝ ,
[
ĝ1, ĝ2, · · · , ĝM−K

]
(2.6)

Ê , [ê1, ê2, · · · , êK ] . (2.7)

The range spaces of Ĝ and Ê represent the estimations of the noise and signal

subspaces, respectively. Recalling (2.1) and defining z , ej2π(d/λ) sin(θ), the

steering vector can be rewritten as

a(z) =
[
1, z−1, · · · , z−(M−1)

]T
. (2.8)

2.3 Root-MUSIC method

In the root-MUSIC method, the roots of the equation aT (z−1)ĜĜ
H
a(z) = 0

which are inside the unit circle are considered. These roots are sorted based

on their distance to the unit circle, and the first K number of the roots which

are closer to the unit circle are picked. The estimates of the DOAs denoted

by θ̂1, θ̂2, · · · , θ̂K are then obtained by multiplying the angles of the selected

roots by λ/(2πd) and taking the inverse sinusoid function of the results.
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2.4 Unitary root-MUSIC algorithm

The unitary root-MUSIC algorithm [13] has a lower computational complex-

ity compared to the root-MUSIC method, as it uses the eigendecomposition

of a real-valued covariance matrix. Furthermore, the unitary root-MUSIC al-

gorithm has better performance for the case that the sources are correlated.

The real-valued covariance matrix Ĉ ∈ RM×M is given by

Ĉ =
1

2
QH

M

(
R̂ + JMR̂

∗
JM

)
QM

= Re
{
QH

MR̂QM

}
(2.9)

where (·)∗ and Re {·} stand for the complex conjugate and real part operators,

respectively. Furthermore, the matrix JM is the exchange matrix (all zeros

except for the antidiagonal elements which are equal to one) of size M . In the

case that M is even (M = 2i), QM is given by

QM =
1√
2

[
I i jI i

J i −jJ i

]
(2.10)

and in the case that M is odd (M = 2i + 1), QM is given by

QM =
1√
2




I i 0i jIi

0T
i

√
2 0T

i

J i 0i −jJ i



 (2.11)

where 0i is an i× 1 vector of all zeros.

The rest of the steps of the unitary root-MUSIC algorithm are the same as

the root-MUSIC method except for that QMĜc is used instead of Ĝ to form

the unitary root-MUSIC polynomial, where Ĝc ∈ RM×(M−K) is composed of

the noise eigenvectors of Ĉ.

2.5 Cramér-Rao bound

The CRB, first introduced in [14, 15], is a useful lower bound on the variance

of any unbiased estimator, and it provides a benchmark for comparisons of

performance. The CRB for array processing is obtained in [16,17] in an indirect

manner by an asymptotic analysis. A direct derivation of the CRB for array
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processing is given in [18]. Let θ , [θ1, θ2, · · · , θK ]T ∈ R
K×1 be the vector

of parameters. Then, the covariance matrix of any unbiased estimator C
θ̂
∈

RK×K follows

C
θ̂
≥ CRB (θ) (2.12)

where C
θ̂

= E

{(
θ̂ − θ

)(
θ̂ − θ

)T
}

and C
θ̂
≥ CRB (θ) means that C

θ̂
−

CRB (θ) is a positive-semidefinite matrix. The matrix CRB (θ) is given by [18]

CRB (θ) =
σ2

n

2N

{
Re
[(
CHP⊥

AC
)
⊙
(
SAHR−1AS

)T]}−1

(2.13)

where C , [da(θ1)/dθ1 · · · da(θK)/dθK ] and ⊙ stands for the Hadamard

product. The matrix P⊥
A ∈ CM×M is the true noise projection matrix given

by P⊥
A = IM −A

(
AHA

)−1
AH .

In Chapter 3, the performance of various methods is investigated by com-

paring the mean squared error (MSE) of the estimators. The MSE is given by

Tr
{
C

θ̂

}
where Tr {·} stands for the trace operator. Since C

θ̂
− CRB (θ) is a

positive-semidefinite matrix, all of its eigenvalues are nonnegative. Therefore,

Tr
{
C

θ̂
− CRB (θ)

}
≥ 0 since the trace of a matrix is equal to the summation

of its eigenvalues. This gives the result that the MSE of any unbiased DOA

estimator is lower bounded by Tr {CRB (θ)}.

2.6 Pseudo-noise resampling

Pseudo-noise resampling has been proposed in [19] to improve the DOA esti-

mation performance at the breakdown region. The pseudo-noise resampling

method is motivated by resampling schemes such as bootstrap [20,21] and uses

synthetically generated pseudo-noise in order to perturb the original noise [22].

The conventional beamformer has also been combined with the pseudo-noise

resampling technique in [23]. Furthermore, an improved unitary root-MUSIC

method which uses the pseudo-noise resampling and beamforming techniques

is introduced in [24]. In this section, we summarize the steps of the method

in [24]. This algorithm will be later used in Chapter 3.

The method in [24] starts with estimating the DOAs using the unitary root-

MUSIC algorithm. Next, a hypothesis is tested for the DOA estimates. If the
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test is passed, the algorithm halts with the current DOA estimates as the final

estimates. Otherwise, the pseudo-noise resampling technique is implemented

to obtain improved estimates of the DOAs. The hypothesis test H checks if

the estimated DOAs belong to a set of predetermined angular sectors. These

sectors are obtained by the conventional beamformer [23,25,26]. There are K

number of sectors. Each sector is centered around a peak of the beamformer

output which corresponds to a source. The left and right boundaries of each

sector is chosen as the points with 3 dB drop compared to the corresponding

peak of the beamformer output.

The resampling process is next performed P number of times, and the

DOAs are estimated at each resampling. The resampling is done by adding

pseudo-noise vectors to the received vectors xa(t) (1 ≤ t ≤ N). Each pseudo-

noise vector is independent from other pseudo-noise vectors and is drawn from

the circularly-symmetric complex jointly-Gaussian distribution NC(0, σ̂2
nIM).

Here, σ̂2
n is equal to the average value of the noise eigenvalues of the real-

valued covariance matrix Ĉ. Then, for each resampling run, the unitary root-

MUSIC algorithm is used to obtain a set of DOA estimates. The corresponding

magnitudes of the roots associated with these DOA estimates are also recorded.

After the resampling step is done, there are P sets of DOA estimates (and

their corresponding root magnitudes). First, the elements of each set are

sorted, so that the k-th element of each set is associated with the k-th source.

Then, each set is tested by the hypothesis H, and two disjoint sets are formed:

one containing the sets that passed the test, and the other one containing the

sets that were rejected by the test. There are two possible scenarios. In case

that the first set containing accepted DOA estimates is not empty, the final

DOAs are obtained as the average value of the DOA estimates in this set (the

k-th DOA estimate is equal to the average value of the k-th elements of the

accepted DOA sets). In the other case when there are no accepted sets, the

final DOA estimates are obtained in the following way. For the k-th DOA

estimate, the corresponding magnitudes for the DOA estimates of the k-th

source are compared, and the DOA estimate with the largest corresponding

magnitude is picked as the final DOA estimate for the k-th source.
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Chapter 3

Subspace Leakage Analysis and

Improved DOA Estimation

Methods

Classical methods of DOA estimation such as the MUSIC [7], root-MUSIC

[27], and estimation of signal parameters via rotational invariance techniques

(ESPRIT) [28] are based on estimating the signal and noise subspaces from

the sample data covariance matrix. It is well-known that these methods suffer

from performance breakdown for a small number of samples or a low signal-

to-noise ratio (SNR) value [29,30] where the expected estimation error departs

from the CRB. The SNR region at which this phenomenon happens is known

as the threshold region.

The fidelity of the sample data covariance matrix to the true data covari-

ance matrix plays a critical role in a successful estimation. At the low SNR

and/or small sample size region, the sample data covariance matrix can largely

deviate from the true data covariance matrix. There are various methods in-

troduced in the literature which target at improving the estimation of the data

covariance matrix [19, 23, 24, 31–33].

Diagonal loading [31] and shrinkage [32] methods improve the estimate of

the covariance matrix by scaling and shifting the eigenvalues of the sample

data covariance matrix. However, the eigenvectors are kept unchanged. As a

result, the estimated signal and noise projection matrices from the improved

covariance matrices are exactly the same as those obtained from the sample
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data covariance matrix. Therefore, these methods are not beneficial for the

subspace-based DOA estimation algorithms.

In [33], techniques from random matrix theory have been deployed to im-

prove the performance of the MUSIC algorithm. The introduced method con-

siders the asymptotic situation when both the sample size and the number

of array elements tend to infinity at the same rate. It is then inferred that

the improved method gives a more accurate description of the situation where

these two quantities are finite and comparable in magnitude. However, the

performance of the introduced method is not satisfactory at the small sample

size scenario [34].

A more promising approach to remedy the performance breakdown at the

threshold region was introduced in [19] and has been further improved in [23]

and [24]. These methods are based on a technique called pseudo-noise resam-

pling which uses synthetically generated pseudo-noise to perturb the original

noise. The pseudo-noise is added to the observed data, and a new estimate of

the covariance matrix is obtained, which leads to new DOA estimates. This

process is repeated for a number of times, and the final DOAs are determined

based on the bank of the DOA estimates.

In this chapter, we tackle the problem of the performance breakdown at

the threshold region by considering the structure of the sample data covari-

ance matrix and the dynamics of the root-MUSIC algorithm. It is shown in [8]

that the performance breakdown problem is associated with the intersubspace

leakage “whereby a small portion of the true signal eigenvector resides in the

sample noise subspace (and vice versa)”. In this chapter, we formally de-

fine the subspace leakage notion, and we present its theoretical derivation.

We propose a two-step method which improves the performance of the root-

MUSIC algorithm by modifying the sample data covariance matrix such that

the amount of the subspace leakage is reduced. Furthermore, we introduce a

phenomenon named as root-swap which occurs in the root-MUSIC algorithm

at the threshold region and degrades the performance of the DOA estimation.

A new method is then proposed to alleviate this problem.

It will be shown that there are undesirable by-products in the sample data
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covariance matrix that tend to zero as the number of samples goes to infinity.

However, for a limited number of samples, these terms can have significant val-

ues leading to a large amount of subspace leakage. One possible approach to

remedy the effect of the undesirable components is to consider the eigenvalue

perturbation caused by these terms. The incorporation of this knowledge into

the estimation method can result in better estimates of the signal and noise

subspaces. In this chapter, we propose a two-step algorithm in order to re-

duce the effect of the undesirable terms. The introduced method is based on

estimating the DOAs at the first step and modifying the covariance matrix

using the estimated DOAs at the second step. We will theoretically derive

the subspace leakage at both steps. Then, it will be shown using numerical

examples that the subspace leakage is reduced at the second step leading to

better performance.

In the root-MUSIC method, the estimation error of the roots follows a chi-

square distribution with a variance which is proportional to the variance of

noise over the number of samples [35]. Therefore, at the threshold region, the

variance of the estimation error can have a significant value which in turn can

result in a swap between a root corresponding to a signal source with a root

associated with the noise. We dub this phenomenon as a root-swap. Then,

a new method is proposed to remedy this problem. The introduced method

considers different combinations of the roots as the candidates for the signal

sources. These candidates are then evaluated using the stochastic maximum

likelihood function, and the combination that minimizes the objective function

is picked up for the DOA estimates [36].

The rest of the chapter is organized as follows. First, the two-step and

root-swap algorithms are proposed in Section 3.1. Definition and theoreti-

cal derivations of the subspace leakage are presented in Section 3.2. Finally,

numerical examples and simulation results are given in Section 3.3.
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3.1 Proposed improved methods

3.1.1 Two-step root-MUSIC algorithm

Let us start by expanding (2.5) using (2.3) as follows

R̂=
1

N

N∑

t=1

(As(t) + n(t)) (As(t) + n(t))H

=A

{
1

N

N∑

t=1

s(t)sH(t)

}
AH +

1

N

N∑

t=1

n(t)nH(t)

+A

{
1

N

N∑

t=1

s(t)nH(t)

}

+

{
1

N

N∑

t=1

n(t)sH(t)

}

AH . (3.1)

Comparing (3.1) with (2.4), it can be observed that the expansion of R̂ consists

of four terms while the model for R comprises two summands. The first

two terms of R̂ given by (3.1) can be considered as estimations for the two

summands ofR, which represent the signal and noise components, respectively.

The last two terms of R̂ in (3.1) are undesirable by-products which can be

viewed as estimations for the correlation between the signal and noise vectors.

In the system model under study, we consider the noise vectors to be zero-

mean and also independent of the signal vectors. Therefore, the signal and

noise components are uncorrelated to each other. As a result, for large enough

number of samples N , the last two terms in (3.1) tend to zero. However, the

number of available samples can be limited in practical applications, and in

some cases, it is favorable to estimate the DOAs based on a finite number of

samples, so that real-time decisions can be made as fast as possible. In this

case, the last two terms in (3.1) may have significant values, which causes the

estimations of the signal and noise subspaces to deviate from the true signal

and noise subspaces.

The main idea of the two-step root-MUSIC algorithm is that at the first

step, DOAs are estimated based on the sample data covariance matrix R̂, and

at the second step, DOAs are estimated again based on a modified covari-

ance matrix. The new covariance matrix is obtained by deducting a scaled

version of the estimated undesirable terms from the sample data covariance
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matrix. The steps of the proposed method are listed in Table 3.1. The algo-

rithm starts by computing the sample data covariance matrix R̂. Next, the

DOAs are estimated using the root-MUSIC algorithm. The superscript (·)(1)

refers to the estimation made at the first step. Then, at the second step, the

Vandermonde matrix is formed using the available estimations of the DOAs.

Next, we estimate the amplitudes of the sources such that the squared norm of

the difference between the observation and the estimation is minimized. This

step can be formulated in terms of the following optimization problem

ŝ(t) = arg min
s
‖xa(t)− Âs‖22. (3.2)

The minimization of (3.2) can be performed using the least squares (LS) tech-

nique and the corresponding solution is given as

ŝ(t) =
(
Â

H
Â
)−1

Â
H
xa(t). (3.3)

The noise component is then estimated as the difference between the estimated

signal and the observation made by the array, i.e.,

n̂(t) = xa(t)− Âŝ(t). (3.4)

After estimating the signal and noise vectors, the third term in (3.1) can be

found as

T , Â

{
1

N

N∑

t=1

ŝ(t)n̂H(t)

}

= Â

{
1

N

N∑

t=1

(
Â

H
Â
)−1

Â
H
xa(t)

(
xH

a (t)− xH
a (t)Â

(
Â

H
Â
)−1

Â
H
)}

= P̂ A

{
1

N

N∑

t=1

xa(t)x
H
a (t)

(
IM − P̂ A

)}

= P̂ AR̂P̂
⊥

A (3.5)

where

P̂ A , Â
(
Â

H
Â
)−1

Â
H

(3.6)

is an estimation for the projection matrix of the signal subspace, and

P̂
⊥

A , IM − P̂ A (3.7)
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is an estimation for the projection matrix of the noise subspace. The forth

term in (3.1) is equal to the Hermitian of the third term, i.e., TH . Next, the

modified covariance matrix is obtained by deducting a scaled version of the

estimated terms from the sample data covariance matrix as follows

R̂
(2)

= R̂− γ
(
T + TH

)
. (3.8)

The scaling factor γ is considered to be a real number between zero and one,

and it is introduced due to the fact that the estimations of the undesirable

terms are not perfect, and therefore, these estimations are scaled down before

being subtracted from the sample data covariance matrix.

Next, given the modified data covariance matrix R̂
(2)

, the DOAs are es-

timated again using the root-MUSIC algorithm. The value of γ can be pre-

determined before running the algorithm, or it can be obtained to optimize

an objective function. Here, we consider the minimization of the stochastic

maximum likelihood (SML) function given by [16]

FSML(γ) = ln det



P̂
(2)

A R̂P̂
(2)

A +
Tr
{
P̂

⊥(2)

A R̂
}

M −K
P̂

⊥(2)

A



 (3.9)

where P̂
(2)

A is an estimation of the projection matrix of the signal subspace

obtained from θ̂
(2)
1 , θ̂

(2)
2 , · · · , θ̂

(2)
K , and P̂

⊥(2)

A = IM − P̂
(2)

A . The minimization

of (3.9) is performed by considering different values for γ taken on a grid

(e.g. γ = 0, 0.1, 0.2, · · · , 1) and making DOA estimations for each value

of γ. Then, the set of DOA estimations corresponding to the value of γ that

minimizes (3.9) is chosen as the output of the algorithm.
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Table 3.1: Two-step root-MUSIC algorithm

Inputs:
M, d, λ, N, K, and
received vectors xa(1), xa(2), · · · , xa(N)

Outputs:

Estimations θ̂
(2)
1 , θ̂

(2)
2 , · · · , θ̂

(2)
K

Step 1:

R̂ = 1
N

∑N
t=1 xa(t)x

H
a (t){

θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
K

}
← root-MUSIC

(
R̂, K, d, λ

)

Step 2:

Â =
[
a
(
θ̂

(1)
1

)
, a
(
θ̂

(1)
2

)
, · · · , a

(
θ̂

(1)
K

)]

P̂ A = Â
(
Â

H
Â
)−1

Â
H

P̂
⊥

A = IM − P̂ A

T = P̂ AR̂P̂
⊥

A

Determine γ as the minimizer of (3.9)

R̂
(2)

= R̂− γ
(
T + TH

)
{
θ̂

(2)
1 , θ̂

(2)
2 , · · · , θ̂

(2)
K

}
← root-MUSIC

(
R̂

(2)
, K, d, λ

)
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3.1.2 Root-swap root-MUSIC algorithm

In the root-MUSIC method, the roots inside the unit circle are considered,

and the first K number of them which are closer to the unit circle are picked.

Then, the DOAs are estimated based on the angles of these roots. Due to

the finiteness of the available samples, the estimated roots from the sample

data covariance matrix R̂ deviate from the true roots corresponding to the

actual data covariance matrix R. Specifically, let ∆ri , r̂i − ri be the differ-

ence between the magnitude of the i-th estimated root r̂i and the magnitude

of the corresponding true root ri. It is shown in [35] that (∆ri)
2 follows a

(
σ2

y/2
)
χ2 (2(M −K)− 1) distribution, where χ2 (ℓ) denotes a chi-square dis-

tribution with ℓ degrees of freedom, and σ2
y is computed from the eigenvalues

and eigenvectors of R and the true DOAs. The variance of ∆ri depends on

σ2
y which is proportional to σ2

n/N [35]. Therefore, the variance of ∆ri can be

significant for a small number of samples and a large value of σ2
n (low SNR

region). Consequently, there can be a considerable probability that an esti-

mated root associated with noise takes a larger magnitude than an estimated

root associated with a signal source. We will refer to this phenomenon as a

root-swap. To deal with this problem, we propose an algorithm that considers

different combinations of the roots to be the candidates for the DOA estimates.

The method is dubbed the root-swap root-MUSIC algorithm.

The root-MUSIC polynomial has M − 1 number of roots inside the unit

circle. Our goal is to find the roots which have a higher likelihood of being

associated with the K sources. Consider choosing K number of roots out of

all the roots. There are Nc , (M − 1)!/ (K!(M −K − 1)!) different possible

combinations. Let

Γ , {Θ1, Θ2, · · · , ΘNc
} (3.10)

where Θi (1 ≤ i ≤ Nc) is a set containing the DOA estimates obtained from

the i-th combination. Then, the root-swap root-MUSIC method estimates the

DOAs as {
θ̂1, θ̂2, · · · , θ̂K

}
= arg min

Θ∈Γ
FSML (Θ) (3.11)

where FSML (Θ) is the stochastic maximum likelihood function given in (3.9)
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with P̂
(2)

A replaced with the signal projection matrix obtained from Θ.

The complexity of the introduced root-swap root-MUSIC method can be

reduced by pre-eliminating some of the roots. Specifically, let p ≤ K closest

roots to the unit circle be picked, and let q number of roots closest to the

origin (furthest from the unit circle) be ignored. Then, our task is to choose

K − p number of roots out of M − p − q − 1 roots. Now, there are Nr ,

(M −p− q−1)!/ ((K − p)!(M −K − q − 1)!) different possible combinations.

The rest of the algorithm is the same as above except for that here each

combination contains K − p number of roots. Therefore, in order to evaluate

the SML function, the fixed p pre-selected roots are added to each combination.

3.2 Subspace leakage

3.2.1 Definition

Consider the eigendecomposition of the data covariance matrix R. Form G ∈
CM×(M−K) and E ∈ CM×K by placing the noise and signal eigenvectors as the

columns of G and E, respectively. The range spaces of G and E represent

the true noise and signal subspaces. Note that the matrix of the eigenvectors

QR = [G E] ∈ CM×M is a unitary matrix
(
QRQ

H
R = IM

)
, therefore

GGH +EEH = IM (3.12)

or

P⊥ + P = IM (3.13)

where, P⊥ , GGH and P , EEH are the true projection matrices into the

noise and signal subspaces.

Ideally, the estimation of each signal eigenvector êk (1 ≤ k ≤ K) would

perfectly fall in the true signal subspace. In practice, however, the energy of the

projection of êk into the noise subspace
(
‖P⊥êk‖22

)
is almost surely nonzero,

which can be viewed as the leakage of êk into the true noise subspace. Here, we

define the subspace leakage as the average value of the energy of the estimated
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signal eigenvectors leaked into the true noise subspace, i.e.,

ρ ,
1

K

K∑

k=1

‖P⊥êk‖22. (3.14)

Note that P⊥ is a Hermitian matrix and P⊥P⊥ = P⊥. Therefore, ρ can be

written as

ρ =
1

K

K∑

k=1

êH
k P

⊥êk. (3.15)

Using (3.13), the expression (3.15) can be simplified to

ρ =
1

K

K∑

k=1

êH
k (IM − P ) êk

=
1

K

(

K −
K∑

k=1

êH
k P êk

)

= 1− 1

K

K∑

k=1

Tr
{
êkê

H
k P
}

= 1− 1

K
Tr

{(
K∑

k=1

êkê
H
k

)

P

}

= 1− 1

K
Tr
{
ÊÊ

H
P
}

= 1− 1

K
Tr
{
P̂P

}
(3.16)

where P̂ , ÊÊ
H

is the estimated signal projection matrix.

3.2.2 Two-step root-MUSIC algorithm

The estimated signal and noise projection matrices obtained from the eigen-

decomposition of the sample data covariance matrix R̂ and the modified co-

variance matrix R̂
(2)

are deviated from the true signal and noise projection

matrices. Let ρ1 and ρ2 be the subspace leakage due to the estimations ob-

tained from R̂ and R̂
(2)

, respectively. In this section, we derive the expected

value of ρ1 and ρ2. The variance of ρ1 is also studied.

Subspace leakage at the first step of the proposed algorithm

Let us start with the computation of ρ1. Let ∆P , P̂ −P be the estimation

error of the signal projection matrix. Then, using the properties that P 2 = P
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and Tr {P } = K, the expression (3.16) can be simplified as

ρ1 = 1− 1

K
Tr {(P + ∆P )P }

= 1− 1

K
(K + Tr {∆PP })

= − 1

K
Tr {∆PP } . (3.17)

Now, let ∆R , R̂−R be the estimation error of the covariance matrix. Define

also

V , R− σ2
nIM

= ASAH

=
K∑

k=1

(
λM−K+k − σ2

n

)
eke

H
k (3.18)

and let V † ∈ CM×M denote the pseudo-inverse of V given by

V † =

K∑

k=1

1

λM−K+k − σ2
n

eke
H
k (3.19)

where λM−K+1 ≤ λM−K+2 ≤ · · · ≤ λM are the K largest eigenvalues of R, and

e1, e2, · · · , eK are their corresponding eigenvectors. It is shown in [35] that

the series expansion of P̂ based on ∆R is given by

P̂ = P + δP + · · ·+ δnP + · · · (3.20)

where

δP = P⊥∆RV † + V †∆RP⊥ (3.21)

and the rest of the terms are related by the following recurrence

δnP = −P ⊥
(
δn−1P

)
∆RV † + P⊥∆R

(
δn−1P

)
V †

−V †∆R
(
δn−1P

)
P⊥ + V †

(
δn−1P

)
∆RP⊥

−
n−1∑

i=1

P
(
δiP

) (
δn−iP

)
P +

n−1∑

i=1

P⊥
(
δiP

) (
δn−iP

)
P⊥. (3.22)

The following lemma regarding the columns of V † is in order.

Lemma 3.1. The columns of V † belong to the signal subspace, i.e., PV † =

V †.
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Proof. The following train of equalities is valid.

PV † = EEH
K∑

k=1

1

λM−K+k − σ2
n

eke
H
k

=
K∑

i=1

eie
H
i

K∑

k=1

1

λM−K+k − σ2
n

eke
H
k

=

K∑

k=1

1

λM−K+k − σ2
n

eke
H
k = V † (3.23)

In the last step, we used the fact that eH
i ek is equal to 1 for i = k and it equals

zero otherwise.

In a similar way to Lemma 3.1, it can also be shown that

V V † = V †V = P . (3.24)

Using (3.17) together with the series expansion of P̂ in (3.20), (3.21), and

(3.22) up to the δ2P term, the facts that PP⊥ = P⊥P = 0, P⊥P⊥ = P⊥,

P = PP , and Lemma 3.1, we can compute ρ1 as

ρ1 = − 1

K
Tr {−P (δP ) (δP )}

=
1

K
Tr
{
P
(
P⊥∆RV † + V †∆RP⊥

) (
P⊥∆RV † + V †∆RP⊥

)}

=
1

K
Tr
{
PV †∆RP⊥P⊥∆RV †

}

=
1

K
Tr
{
V †∆RP⊥∆RV †

}
. (3.25)

Computation of the expected value of the subspace leakage requires con-

sidering the statistical properties of ∆R. We use the following two properties

in our derivations [35].

Lemma 3.2. For all matrices A1, A2 ∈ CM×M , we have

E {∆RA1∆R} =
1

N
Tr {RA1}R (3.26)

and

E {Tr {∆RA1}Tr {∆RA2}} =
1

N
Tr{RA1RA2} . (3.27)
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Using (3.25) and (3.26), the expected value of ρ1 can be computed as

E {ρ1} =
1

K
Tr
{
V †E

{
∆RP⊥∆R

}
V †
}

=
1

K
Tr

{
V † 1

N
Tr
{
RP⊥

}
RV †

}

=
1

NK
Tr
{
P⊥R

}
Tr
{
V †V †R

}
. (3.28)

Since the range space of the matrix A is the same as the signal subspace, we

have P⊥A = 0. As a result, Tr
{
P⊥R

}
can be simplified as

Tr
{
P⊥R

}
= Tr

{
P⊥

(
ASAH + σ2

nIM

)}

= Tr
{
σ2

nP
⊥
}

= σ2
nTr {IM −P }

= σ2
n (M −K) . (3.29)

Furthermore, using (3.19) and the fact that the eigenvectors ofR are orthonor-

mal, V †V †R can be written as

V †V †R =

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2eke
H
k (3.30)

which results in

Tr
{
V †V †R

}
=

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (3.31)

Finally, E {ρ1} is obtained by substituting (3.29) and (3.31) in (3.28) as

E {ρ1} =
σ2

n (M −K)

NK
C (3.32)

where

C =

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (3.33)

The variance of the subspace leakage at the first step of the proposed

algorithm is given by

Var(ρ1) = E
{
ρ2

1

}
− [E {ρ1}]2 . (3.34)

Here, we show that Var(ρ1) is in the order of 1/N2.
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Using (3.25) and ∆R = R̂−R, E {ρ2
1} can be computed as

E
{
ρ2

1

}
=

1

K2
E

{[
Tr
{(
R̂−R

)
P⊥

(
R̂−R

)
V †V †

}]2}
. (3.35)

It was shown in (3.29) that P⊥R = σ2
nP

⊥ which is also equal to RP⊥. By

using this fact and expanding the terms in (3.35), E {ρ2
1} can be written as

E
{
ρ2

1

}
=

1

K2

×E

{[
Tr
{
R̂P⊥R̂V †V †

}
− σ2

nTr
{
R̂P⊥V †V †

}

−σ2
nTr

{
P⊥R̂V †V †

}
+ σ4

nTr
{
P⊥V †V †

}]2
}

. (3.36)

From Lemma 3.1, we know that the columns of V † belong to the signal sub-

space and therefore P⊥V † = V †P⊥ = 0. As a result, all the terms in (3.36)

except for the first term are equal to zero. Therefore, E {ρ2
1} is given by

E
{
ρ2

1

}
=

1

K2
E

{[
Tr
{
R̂P⊥R̂V †V †

}]2}
. (3.37)

The following lemma is used to proceed with the computation of E {ρ2
1}. For

details about this property see [37].

Lemma 3.3. For all matrices A1, A2 ∈ CM×M , we have

E

{[
Tr
{
R̂A1R̂A2

}]2}
=

[Tr {RA1RA2}]2 +
2

N

{
Tr {RA1RA2RA1RA2}

+Tr {RA1RA1RA2RA2}+ Tr {RA1RA2}

×Tr {RA1}Tr {RA2}
}

+O
(

1

N2

)
. (3.38)

Using Lemma 3.3, E {ρ2
1} can be further computed as

E
{
ρ2

1

}
=

1

K2

{[
Tr
{
RP⊥RV †V †

}]2

+
2

N

{
Tr
{
RP⊥RV †V †RP⊥RV †V †

}

+Tr
{
RP⊥RP⊥RV †V †RV †V †

}

+Tr
{
RP⊥RV †V †

}

×Tr
{
RP⊥

}
Tr
{
RV †V †

}
+O

(
1

N2

)}
. (3.39)
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Finally, using the facts that RP⊥ = P⊥R = σ2
nP

⊥ and P⊥V † = V †P⊥ = 0,

it is concluded that

E
{
ρ2

1

}
= O

(
1

N2

)
(3.40)

and from (3.32) and (3.34), Var(ρ1) is given by

Var(ρ1) = O
(

1

N2

)
− σ4

n (M −K)2

N2K2
C2 = O

(
1

N2

)
. (3.41)

Subspace leakage at the second step of the proposed algorithm

The subspace leakage at the second step can be obtained through the same

steps taken for the computation of ρ1. Referring to (3.25), ρ2 is given by

ρ2 =
1

K
Tr
{
V †∆R(2)P⊥∆R(2)V †

}
(3.42)

where ∆R(2) , R̂
(2) −R is the estimation error of the covariance matrix at

the second step. Using (3.8), ∆R(2) is given by

∆R(2) = ∆R− γ
(
T + TH

)
. (3.43)

Recalling (3.5), we have T = P̂ AR̂P̂
⊥

A. Next, we consider the first order

Taylor series expansion of P̂ A around the true DOAs given by

P̂ A ≈ P A + dP (3.44)

where P A , A
(
AHA

)−1
AH is equal to the true signal projection matrix,

i.e., P A = P , and dP is given by

dP =
K∑

k=1

∂P A

∂ωk

∆ωk (3.45)

where ωk , 2π(d/λ) sin(θk), and ∆ωk , ω̂k−ωk is the error of estimation of ωk

with ω̂k , 2π(d/λ) sin(θ̂k). The following lemma is used for the computation

of ∂P A/∂ωk.

Lemma 3.4. For any square and invertible matrix B, the partial derivative

of B−1 with respect to the variable ω is given by

∂B−1

∂ω
= −B−1∂B

∂ω
B−1. (3.46)
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Proof. We have BB−1 = I. Therefore,

∂B

∂ω
B−1 +B

∂B−1

∂ω
= 0. (3.47)

Then, by left multiplying all terms by B−1 and moving the first term to the

right-hand-side, we complete the proof.

Using Lemma 3.4, ∂P A/∂ωk can be computed as

∂P A

∂ωk

=
∂A

∂ωk

(
AHA

)−1
AH +A

∂
(
AHA

)−1

∂ωk

AH +A
(
AHA

)−1
(

∂A

∂ωk

)H

=
∂A

∂ωk

(
AHA

)−1
AH +A

(
AHA

)−1
(

∂A

∂ωk

)H

−A
(
AHA

)−1

((
∂A

∂ωk

)H

A+AH ∂A

∂ωk

)
(
AHA

)−1
AH

= P⊥ ∂A

∂ωk

(
AHA

)−1
AH +A

(
AHA

)−1
(

∂A

∂ωk

)H

P⊥. (3.48)

The estimation error of ωk, i.e., ∆ωk in (3.45) can be written based on ∆R

as [35]

∆ωk =
a

(1)H
k P⊥∆RV †ak − aH

k V
†∆RP⊥a

(1)
k

2j
(
a

(1)H
k P⊥a

(1)
k

) (3.49)

where ak is a shorthand notation for a(θk), and a
(1)
k ∈ CM×1 is defined as

a
(1)
k , −

[
0, e−jωk, 2e−j2ωk, · · · , (M − 1)e−j(M−1)ωk

]T
. (3.50)

The first order Taylor series expansion of P̂
⊥

A is obtained using (3.7) and

(3.44) as

P̂
⊥

A ≈ P⊥
A − dP (3.51)

where

P⊥
A , IM − P A. (3.52)

The matrix T can be then computed using (3.5), (3.44), and (3.51) with

keeping only the first order terms and noting that P A = P , P⊥
A = P⊥, and

PRP⊥ = 0 as

T = (P A + dP ) (R + ∆R)
(
P⊥

A − dP
)

≈ −PRdP + P∆RP⊥ + dPRP⊥. (3.53)
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We can now compute ρ2 using (3.42), (3.43), and (3.53) as

ρ2 =
1

K
Tr
{
V †
(
∆R− γ

(
T + TH

))
P⊥

(
∆R− γ

(
T + TH

))
V †
}

=
1

K
Tr
{
V †
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥

−dPRP + P⊥∆RP + P⊥RdP
))

×P ⊥
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥

−dPRP + P⊥∆RP + P⊥RdP
))
V †
}

=
1

K
Tr
{
V †
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥

))

×P⊥
(
∆R− γ

(
− dPRP + P⊥∆RP + P⊥RdP

))
V †
}

(3.54)

where in the last step, we used (3.45), (3.48), and the facts that PP⊥ =

P⊥P = V †P⊥ = P⊥V † = 0 to eliminate the terms that equal zero. Expand-

ing the terms in (3.54) and using the fact that PV † = V †P = V † results in

the following expression for ρ2

ρ2 =
1

K
Tr
{
V †∆RP⊥∆RV † −γ

(
−V †∆RP⊥dPRV †+V †∆RP⊥∆RV †

+V †∆RP⊥RdPV † − V †RdPP⊥∆RV † + V †∆RP⊥∆RV †

+V †dPRP⊥∆RV †
)

+ γ2
(
V †RdPP⊥dPRV †

−V †RdPP⊥∆RV † − V †RdPP⊥RdPV † − V †∆RP⊥dPRV †

+V †∆RP⊥∆RV † + V †∆RP⊥RdPV † − V †dPRP⊥dPRV †

+V †dPRP⊥∆RV † + V †dPRP⊥RdPV †
)}

. (3.55)

By reordering the terms in (3.55), ρ2 can be further rewritten as

ρ2 =
1

K
Tr
{(

1− 2γ + γ2
)
V †∆RP⊥∆RV † +

(
γ2 − γ

)

×
(
− V †∆RP⊥dPRV † + V †∆RP⊥RdPV †

−V †RdPP⊥∆RV † + V †dPRP⊥∆RV †
)

+γ2
(
V †RdPP⊥dPRV † − V †RdPP⊥RdPV †

−V †dPRP⊥dPRV † + V †dPRP⊥RdPV †
)}

. (3.56)

The terms multiplied by (γ2 − γ) in (3.56) can be simplified using (3.18),
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(3.24), and the fact that P⊥V = 0 as

−V †∆RP⊥dP
(
V + σ2

nIM

)
V † + V †∆RP⊥

(
V + σ2

nIM

)
dPV †

−V †
(
V + σ2

nIM

)
dPP⊥∆RV † + V †dP

(
V + σ2

nIM

)
P⊥∆RV †

= −V †∆RP⊥dPP −P dPP⊥∆RV †. (3.57)

In a similar way, the terms multiplied by γ2 in (3.56) are simplified as

V †RdPP⊥dP
(
V + σ2

nIM

)
V † − V †RdPP⊥

(
V + σ2

nIM

)
dPV †

−V †dPRP⊥dP
(
V + σ2

nIM

)
V † + V †dPRP⊥

(
V + σ2

nIM

)
dPV †

= V †RdPP⊥dPP − V †dPRP⊥dPP

= V †
(
V + σ2

nIM

)
dPP⊥dPP − V †dP

(
V + σ2

nIM

)
P⊥dPP

= P dPP⊥dPP

=
(
IM − P⊥

)
dPP⊥dP

(
IM −P⊥

)

= dPP⊥dP (3.58)

where in the last step, we used the fact that P⊥dPP⊥ = 0 (see (3.45) and

(3.48)).

Finally, using (3.25), (3.56), (3.57), (3.58), and Lemma 3.1, ρ2 is computed

as

ρ2 =
(
1− 2γ + γ2

)
ρ1 +

2 (γ − γ2)

K
Re
{
Tr
{
V †∆RP⊥dP

}}

+
γ2

K
Tr
{
dPP⊥dP

}
. (3.59)

Computation of the expected value of ρ2 involves finding the expected

value of the two trace functions in (3.59). Using (3.45), (3.48), and (3.49), the
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expected value of the first trace function in (3.59) is given by

E
{
Tr
{
V †∆RP⊥dP

}}

= E

{
Tr

{
∆R

K∑

k=1

P⊥ ∂A

∂ωk

(
AHA

)−1
AH∆ωkV

†

}}

= E

{

Tr

{
K∑

k=1

∆RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV † 1

2j
(
a

(1)H
k P⊥a

(1)
k

)

×
(
a

(1)H
k P⊥∆RV †ak − aH

k V
†∆RP⊥a

(1)
k

)}}

= E

{
K∑

k=1

1

2j
(
a

(1)H
k P⊥a

(1)
k

)Tr

{
∆RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †

}

×
(
Tr
{

∆RV †aka
(1)H
k P⊥

}
− Tr

{
∆RP⊥a

(1)
k a

H
k V

†
})}

(3.60)

which is computed using (3.27) as

E
{
Tr
{
V †∆RP⊥dP

}}

=
1

N

K∑

k=1

1

2j
(
a

(1)H
k P⊥a

(1)
k

)

×
(

Tr

{
RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †aka

(1)H
k P⊥

}

−Tr

{
RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RP⊥a

(1)
k a

H
k V

†

})
.

(3.61)

The second trace function in (3.61) equals zero as V †RP⊥ = 0. Then, (3.61)

can be rewritten as

E
{
Tr
{
V †∆RP⊥dP

}}
=

σ2
n

N

K∑

k=1

a
(1)H
k P⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †ak

2j
(
a

(1)H
k P⊥a

(1)
k

)

(3.62)

where we used the equality P⊥R = σ2
nP

⊥. In a similar way, the expected
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value of the second trace function in (3.59) is given by

E
{
Tr
{
dPP⊥dP

}}

= E

{
Tr

{
K∑

k=1

K∑

i=1

A
(
AHA

)−1
(

∂A

∂ωk

)H

P⊥∂A

∂ωi

(
AHA

)−1
AH∆ωk∆ωi

}}

= E

{

Tr

{
K∑

k=1

K∑

i=1

A
(
AHA

)−1
(

∂A

∂ωk

)H

P⊥∂A

∂ωi

(
AHA

)−1
AH

× 1

2j
(
a

(1)H
k P⊥a

(1)
k

) × 1

2j
(
a

(1)H
i P⊥a

(1)
i

)

×
(
Tr
{

∆RV †aka
(1)H
k P⊥

}
− Tr

{
∆RP⊥a

(1)
k a

H
k V

†
})

×
(
Tr
{

∆RV †aia
(1)H
i P⊥

}
− Tr

{
∆RP⊥a

(1)
i a

H
i V

†
})}}

(3.63)

which is computed using (3.27) and the fact that P⊥RV † = 0 as

E
{
Tr
{
dPP⊥dP

}}
=

σ2
n

2N

K∑

k=1

K∑

i=1

Tr

{(
∂A
∂ωk

)H

P⊥ ∂A
∂ωi

(
AHA

)−1
}

(
a

(1)H
k P⊥a

(1)
k

)(
a

(1)H
i P⊥a

(1)
i

)

×Re
{
aH

i V
†RV †aka

(1)H
k P⊥a

(1)
i

}
. (3.64)

Finally, the expected value of ρ2 for a fixed value of γ is obtained using (3.59),

(3.62), and (3.64) as

E {ρ2} =
(
1− 2γ + γ2

)
E {ρ1}+

2 (γ − γ2) σ2
n

NK
Re






K∑

k=1

a
(1)H
k P⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †ak

2j
(
a

(1)H
k P⊥a

(1)
k

)






+
γ2σ2

n

2NK

K∑

k=1

K∑

i=1

Tr

{(
∂A
∂ωk

)H

P⊥ ∂A
∂ωi

(
AHA

)−1
}

(
a

(1)H
k P⊥a

(1)
k

)(
a

(1)H
i P⊥a

(1)
i

)

×Re
{
aH

i V
†RV †aka

(1)H
k P⊥a

(1)
i

}
. (3.65)
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3.3 Numerical Examples and Simulation

Results

In this section, the performance of the proposed two-step root-MUSIC and

the root-swap root-MUSIC algorithms is investigated and compared with the

performance of the unitary root-MUSIC method and the improved unitary

root-MUSIC algorithm based on pseudo-noise resampling [24]. We also con-

sider the combination of the proposed methods with the other methods.

We consider K = 2 sources impinging on an array of M = 10 antenna

elements from directions θ1 = 35 ◦ × (π/180) and θ2 = 37 ◦ × (π/180). The

interelement spacing is set to d = λ/2 and the number of snapshots to N = 10.

Each source vector s(t) is considered to be independent from the source vectors

at other time instances and to have the circularly-symmetric complex jointly-

Gaussian distribution NC(0,S). The source covariance matrix S is given by

S = σ2
s

[
1 r
r 1

]
(3.66)

where 0 ≤ r ≤ 1 is the correlation coefficient. The SNR is defined as SNR ,

10 log10 (σ2
s /σ

2
n).

The performance of the proposed algorithms is investigated by considering

the subspace leakage, the MSE, the detection probability, and the conditional

MSE (CMSE). The detection probability is defined as the probability of suc-

cessful detection which is in turn defined as the event that both DOA’s are esti-

mated within one degree of their corresponding true values, i.e., the difference

between the true value of each DOA and its estimated value is less than 1 ◦ ×
(π/180). The CMSE is defined as E

{∑K
k=1 ‖θ̂k − θk‖22

∣∣∣ successful detection
}

which is the expected value of the estimation error conditioned on successful

detection. The reason for defining the CMSE in the above manner is to further

investigate the accuracy of the algorithms after making successful detection.

We estimate the expected value and variance of the subspace leakage, the MSE,

the detection probability, and the CMSE using the Monte Carlo method with

105 number of trials. Two cases are considered in the simulations: 1) the two

sources are uncorrelated, i.e., r = 0, and 2) the two sources are correlated with
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a correlation coefficient of r = 0.9.

Let us start by investigating the subspace leakage in the two-step root-

MUSIC algorithm for the case of the uncorrelated sources. The expected

value of the subspace leakage is estimated using (3.16) and the Monte Carlo

simulations. The approximate value for the subspace leakage is also obtained

from the theoretical derivations in (3.32) and (3.65). The value of γ is fixed at

0.5. The results are shown in Fig. 3.1. The solid lines represent the subspace

leakage at the first step, and the dashed lines depict the subspace leakage

at the second step of the proposed two-step root-MUSIC algorithm. It can

be seen that the curves obtained from the simulations are very close to those

obtained from our theoretical derivations at high SNR values. At the low SNR

region, the curve associated with the theoretical approximation at the second

step deviates from the curve obtained by simulations. The reason is that in

the derivations, only the first order Taylor series expansion is used. More

accurate results can be obtained by using higher order Taylor series. However,

the computations can become intractable. In Fig. 3.1, it can be observed from

both theoretical and simulation results that the subspace leakage from the

modified covariance matrix at the second step is significantly smaller than the

subspace leakage from the sample data covariance matrix at the first step.

This is achieved by removing the undesirable terms from the sample data

covariance matrix leading to an estimate of the signal projection matrix that

is closer to the true signal projection matrix, which is equivalent to a lower

subspace leakage at the second step.

The variance of the subspace leakage versus the number of snapshots at the

first step of the two-step root-MUSIC algorithm for the case of the uncorrelated

sources is depicted in Fig. 3.2. The SNR is set to 20 dB. The curve marked with

the squares represents the subspace leakage variance obtained by the Monte

Carlo simulations. Fig. 3.2 also includes the 1/N2 curve scaled by a coefficient

c such that both curves start at the same point. According to (3.41), the

variance of the subspace leakage at the first step is in the order of 1/N2, which

is consistent with the results shown in Fig. 3.2.

We next consider the performance of the proposed two-step algorithm
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when applied to the root-MUSIC, unitary root-MUSIC, improved unitary root-

MUSIC with pseudo-noise resampling, root-swap unitary root-MUSIC, and

root-swap unitary root-MUSIC with pseudo-noise resampling methods. The

value of the scaling factor γ is obtained by minimizing the SML function as

described in the steps of the two-step root-MUSIC method. In the root-swap

algorithm, the parameters p and q are set to p = 1 and q = 0, which means the

closest root to the unit circle is picked up and paired with the other roots one

at a time in order to find the pair of DOA estimates that minimizes the SML

function. In this case, the number of different possible combinations of the

roots is Nr = 8. The number of samples used for the pseudo-noise resampling

method is set to P = 50. According to our simulations, using more number of

samples would not yield in any considerable improvement in the performance.

The MSE versus SNR performance of the methods tested for the case of

the uncorrelated sources is presented in Fig. 3.3. The CRB [18] is also shown

in the figure. For the root-MUSIC method, the modification of the covariance

matrix in the second step of the introduced two-step method shifts the MSE

curve by almost half a dB to the left. For the unitary root-MUSIC method the

improvement is more significant and is about one dB. For the rest of the meth-

ods, there is no considerable change in the MSE performance. However, as it

will be shown in the next figures, the modification of the covariance matrix has

benefits in terms of the CMSE performance and the detection probability for

these methods. It can also be seen from Fig. 3.3 that the proposed root-swap

unitary root-MUSIC algorithm performs about 2 dB better than the unitary

root-MUSIC method, while imposing only a small amount of computational

complexity for evaluating the SML function for Nr = 8 different combina-

tions of the roots. The best performance is achieved by the root-swap unitary

root-MUSIC algorithm combined with the pseudo-noise resampling method.

Fig. 3.4 shows the detection probability versus SNR for the uncorrelated

sources. For the root-MUSIC method, the second step of the two-step algo-

rithm improves the performance by 1 to 2 dB. The rest of the algorithms have

almost the same performance with the root-swap based methods slightly out-

performing the other algorithms at low SNR values. It is observed that the
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second step of the two-step algorithm results in about 1 dB improvement in

the performance.

Finally, Fig. 3.5 illustrates the performance of the algorithms for the uncor-

related sources in terms of the CMSE. The root-MUSIC method is significantly

improved by the two-step method with an improvement ranging from 5 dB at

low SNR values to 1 dB at high SNR values. The rest of the algorithms show

similar performance, and the application of the two-step method leads to up

to 2 dB improvement in the CMSE performance.

The results for the case of the correlated sources with r = 0.9 are depicted

in Figs. 3.6, 3.7, 3.8, 3.9, and 3.10. The SNR is set to 26 dB in Fig. 3.7.

Similar observations are made from these figures as those discussed for the

case of uncorrelated sources.
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Figure 3.1: Subspace leakage versus SNR for uncorrelated sources. The solid and
dashed lines represent the subspace leakage at the first and second steps of the proposed
two-step root-MUSIC algorithm, respectively.
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Figure 3.2: Subspace leakage variance versus the number of snapshots for uncorrelated
sources at SNR = 20 dB. The curve marked with squares represents the subspace leakage
variance at the first step of the proposed two-step root-MUSIC algorithm. The curve
marked with triangles represents the 1/N2 curve scaled by the coefficient c.
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Figure 3.3: MSE versus SNR for uncorrelated sources. The solid and dashed lines
are based on the first and second steps of the proposed two-step method, respectively.
The methods used in the two-step algorithm are root-MUSIC (R-MUSIC), unitary root-
MUSIC (UR-MUSIC), and root-swap unitary root-MUSIC (RSUR-MUSIC) methods. P
is the number of samples used for the pseudo-noise resampling algorithm.
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Figure 3.4: Detection probability versus SNR for uncorrelated sources. The solid and
dashed lines are based on the first and second steps of the proposed two-step method,
respectively. The methods used in the two-step algorithm are R-MUSIC, UR-MUSIC,
and RSUR-MUSIC methods.
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Figure 3.5: CMSE versus SNR for uncorrelated sources. The solid and dashed lines are
based on the first and second steps of the proposed two-step method, respectively. The
methods used in the two-step algorithm are R-MUSIC, UR-MUSIC, and RSUR-MUSIC
methods.
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Figure 3.6: Subspace leakage versus SNR for correlated sources with r = 0.9. The
solid and dashed lines represent the subspace leakage at the first and second steps of
the proposed two-step R-MUSIC algorithm, respectively.
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Figure 3.7: Subspace leakage variance versus the number of snapshots for correlated
sources with r = 0.9 at SNR = 26 dB. The curve marked with squares represents
the subspace leakage variance at the first step of the proposed two-step root-MUSIC
algorithm. The curve marked with triangles represents the 1/N2 curve scaled by the
coefficient c.
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Figure 3.8: MSE versus SNR for correlated sources with r = 0.9. The solid and
dashed lines are based on the first and second steps of the proposed two-step method,
respectively. The methods used in the two-step algorithm are R-MUSIC, UR-MUSIC,
and RSUR-MUSIC methods.
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Figure 3.9: Detection probability versus SNR for correlated sources with r = 0.9.
The solid and dashed lines are based on the first and second steps of the proposed two-
step method, respectively. The methods used in the two-step algorithm are R-MUSIC,
UR-MUSIC, and RSUR-MUSIC methods.
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Figure 3.10: CMSE versus SNR for correlated sources with r = 0.9. The solid and
dashed lines are based on the first and second steps of the proposed two-step method,
respectively. The methods used in the two-step algorithm are R-MUSIC, UR-MUSIC,
and RSUR-MUSIC methods.
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Chapter 4

Averaged Correlogram for

Undersampled Data and Its

Finite-Length and Asymptotic

Analysis

Related to DOA estimation in spatial domain, the spectrum estimation prob-

lem in frequency domain from a finite set of noisy measurements (samples)

is a classical problem with wide applications in communications, astronomy,

seismology, radar, sonar signal processing, etc. [38], [39]. For practical appli-

cations, not only the number of available samples is finite, but also the rate

at which these samples are collected can be limited. The latter can lead to

aliasing. A sufficient condition for alias-free sampling is to sample the signal

of interest at the Nyquist rate which is twice the maximum frequency of the

signal. In practice however, the sampling rate can be restricted. As an ex-

ample, in the case of wideband spectrum sensing, there may not exist a fast

enough sampling hardware based on the current technology. If such a high

rate sampler exists, it can be quite costly. Therefore, it is desirable to make

spectrum estimation from measurements obtained at a rate lower than the

Nyquist rate.

Alias-free sampling was first introduced in [40], and further studied in [41]

and [42]. In [40], it is demonstrated that if the average sampling rate is below

the Nyquist rate, alias-free sampling cannot be obtained by uniform sampling,

and therefore nonuniform sampling is considered. In [41], it is shown that
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sampling at an arbitrarily small fraction of the Nyquist rate can be alias-free,

but error-free estimation of the spectrum may not be generally possible. In

[42], a new definition of alias-free sampling is given, and based on it, consistent

estimators are derived. However, the samples are considered to be collected

at random times which do not necessarily lie on a time grid or lattice. This

makes the hardware implementation of such methods very difficult.

In [43] and [44], authors have studied signal reconstruction from sub-

Nyquist samples which form a subset of Nyquist samples (samples obtained

at the Nyquist rate). The methods in these works aim at reconstructing the

signal, whereas one might be only interested in recovering the spectral con-

tent of the signal. In [45], authors have shown that for signals with sparse

Fourier representations, i.e., signals which have only a few nonzero coefficients

in the Fourier basis, the Fourier coefficients can be estimated using a subset

of Nyquist samples. In [46], power spectral density (PSD) estimation based

on CS techniques [9] with applications to wideband cognitive radios has been

introduced.

For all of the above mentioned methods, the sparsity of the signal is a

requirement for successful recovery of the spectrum. In [47, 48], PSD estima-

tion from a subset of Nyquist samples has been considered. The introduced

method is able to estimate the PSD from undersampled data without essen-

tially requiring the signal to be sparse. We refer to this method as the averaged

correlogram for undersampled data. In this method, samples are collected us-

ing multiple channels, each operating at a rate L times lower than the Nyquist

rate. This method of sampling is known as the multi-coset sampling [49]. The

averaged correlogram for undersampled data partitions the spectrum into L

segments (subbands), and it estimates the average power within each spectral

segment. The frequency resolution of the estimator is given by the width of

each spectral segment. In this chapter, we equivalently use the number of

spectral segments L as the frequency resolution of the estimator (with larger

L meaning higher resolution or narrower segments).

Similar methods to the averaged correlogram for undersampled data which

are based on multi-coset sampling have also been reported in [50] and [51].
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The method in [50] relies on the sparsity of the signal, and in the case that

the bandwidth of the active subbands is equal to the total bandwidth, the

sampling is performed at the Nyquist rate. In [51], prior to the sampling

stage, the input signal is multiplied by a waveform which has a bandwidth

larger than the original signal. Furthermore, the introduced methods estimate

the PSD at each individual frequency, whereas the averaged correlogram for

undersampled data estimates the average power within each subband. As

a result, the averaged correlogram for undersampled data is less complex in

terms of implementation and computational burden.

The averaged correlogram for undersampled data as mentioned above esti-

mates the PSD from sub-Nyquist samples without necessarily imposing spar-

sity conditions on the signal. However, the frequency resolution of the estima-

tor is restricted to the number of spectral segments, and the estimation made

for each segment also has limited accuracy. Therefore, it is of significant im-

portance to analyze the performance of this method especially in the case that

only a finite number of samples is available. Our major contribution is that

we derive the bias and variance of the averaged correlogram for undersampled

data for finite-length signals, and we show how they are related to various

parameters by formulating the associated tradeoffs among the resolution, the

accuracy, and the complexity of the method.

We first study the averaged correlogram for undersampled data by com-

puting the bias of the estimator in Section 4.3. Next, the covariance matrix of

the estimator is derived in Section 4.4, and using these derivations, we show

that for finite-length signals, there exists a tradeoff between the estimation ac-

curacy, the frequency resolution, and the complexity of the estimator. For the

case of a white Gaussian process, we derive a closed-form expression for the es-

timation variance, which clearly shows how the variance is related to different

parameters. Moreover, we prove that the estimation bias and variance tend

to zero asymptotically. Therefore, in the case of a white Gaussian process,

the averaged correlogram for undersampled data is a consistent estimator.

Furthermore, we show that this method makes uncorrelated estimations for

different spectral segments as the signal length goes to infinity [52].
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4.1 Averaged Correlogram for Undersampled

Data

Consider a WSS stochastic process x(t) bandlimited to W/2 Hz with PSD

Px(f). Let x(t) be sampled using a multi-coset (MC) sampler which collects

the samples by a multi-channel system. The i-th channel (1 ≤ i ≤ q) samples

x(t) at the time instants t = (nL + ci)T for n = 0, 1, 2, . . ., where T is the

Nyquist period (T = 1/W ), L is an odd number, and q < L is the number of

sampling channels. The time offsets ci (1 ≤ i ≤ q) are distinct nonnegative

integer numbers less than L, and the set {ci} is referred to as the sampling pat-

tern. Let the output of the i-th channel be denoted by yi(n) = x ((nL + ci)T ).

The i-th channel can be implemented by a system that shifts x(t) by ciT

seconds and then samples uniformly at a rate of 1/(LT ) Hz. The samples ob-

tained in this manner form a subset of Nyquist samples. The average sampling

rate is q/(LT ) Hz, and it is less than the Nyquist rate since q < L.

Given the MC samples, the first step of the averaged correlogram for under-

sampled data method is to undo the time shift that each channel imposes on

the signal. Let zi(n) be defined as yi(n) delayed by a fractional delay equal to

ci/L. Let also a and b denote two channel indices. It is shown in [48] that the

cross-correlation function rzazb
(k) = E{za(n + k)z∗b (n)} at k = 0 is given by

rzazb
(0) =

L∑

l=1

e−j 2π
L

(ca−cb)mlPx(ml) (4.1)

where ml = −1
2
(L + 1) + l, and Px(ml) is defined as

Px(ml) ,

∫ W
2L

− W
2L

Px

(
f − W

L
ml

)
df. (4.2)

Consider partitioning the bandwidth of x(t) into L equal segments. Then, for

a given ml,
L
W

Px(ml) is equal to the average power of the process x(t) within

the spectral segment
[

W
2
− W

L
l, W

2
− W

L
(l − 1)

)
.

Let us arrange the elements of the cross-correlation function rzazb
(0) (1 ≤

a, b ≤ q) in a matrix Rz ∈ Cq×q such that [Rz]a,b = rzazb
(0). Note that Rz is

a Hermitian matrix with equal diagonal elements. Then, it is sufficient to let
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the indices a and b just refer to the elements of the upper triangle and the first

diagonal element of Rz. Therefore, there are Q = q(q − 1)/2 + 1 equations of

type (4.1). In matrix-vector form, (4.1) can be rewritten as

u = Ψv (4.3)

where v = [v1, v2, . . . , vL]T ∈ RL×1 consists of the elements vl = Px(ml),

u = [u1, u2, . . . , uQ]T ∈ CQ×1 is composed of u1 = [Rz]1,1 and u2, . . . , uQ

corresponding to the elements of the upper triangle of Rz, and Ψ ∈ CQ×L

consists of the elements given by

[Ψ]k,l = e−jνkml (4.4)

where νk = 2π
L

(ca − cb), (1 ≤ l ≤ L and 1 ≤ k ≤ Q). Note that a and b are

obtained from k based on the arrangement of the elements of Rz in u.

Since the elements of v are real-valued, the number of equations in (4.3) can

be doubled by solving ŭ = Ψ̆v, where ŭ , [Re(u), Im(u)]T ∈ R2Q×1 and Ψ̆ ,

[Re(Ψ), Im(Ψ)]T ∈ R2Q×L. Doubling the number of equations is beneficial

in turning an underdetermined system of equations into an overdetermined

system.

Suppose Ψ̆ is full rank and 2Q ≥ L. Then, ŭ = Ψ̆v is an overdetermined

system and v can be obtained using the pseudoinverse of Ψ̆ as

v = (Ψ̆
T
Ψ̆)−1Ψ̆

T
ŭ. (4.5)

The cross-correlation function rzazb
(k) can be estimated from a finite num-

ber of samples as

r̂zazb
(k) =

1

N

N−|k|−1∑

n=0

ẑa(n + k)ẑ∗b (n) (4.6)

where N is the number of samples obtained from each channel, and ẑa(n + k)

and ẑb(n) are obtained by delaying ya(n + k) and yb(n) for ca/L and cb/L

fractions, respectively. Next, the elements of the matrix Rz are estimated as

[R̂z]a,b = r̂zazb
(0) =

1

N

N−1∑

n=0

ẑa(n)ẑ∗b (n). (4.7)
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The fractional delays ca/L and cb/L can be implemented by fractional delay

(FD) filters. In [48], authors consider using ideal FD filters which have infinite

impulse responses. Then, for the purpose of implementation, these filters are

truncated using a rectangular window whose width is twice the signal length N .

Consequently, the length of the filters can be quite large as N increases. Here,

we consider using causal finite impulse response (FIR) filters which have two

practical advantages [53]: first, the length of the filters are fixed, and second,

they enjoy causality. As for the analysis, we will use a general formulation

for the FIR FD filters, and for numerical examples, we will use the Lagrange

interpolator [54].

FIR FD filters perform the best when the total delay is approximately equal

to half of the order of the filter [55]. The fractional delays ca/L and cb/L are

positive numbers less than one, and the performance of the FIR FD filters is

very poor with such delays. To remedy this problem, a suitable integer delay

can be added to the fractional part. Note that r̂zazb
(k) is the inverse DTFT of

(1/N)Ẑa

(
ej2πfL/W

)
Ẑ∗

b

(
ej2πfL/W

)
, where Ẑa

(
ej2πfL/W

)
and Ẑb

(
ej2πfL/W

)
are

the DTFT of ẑa(n) and ẑb(n), respectively [56]. Then, considering that

Ẑa

(
ej2πf L

W

)
Ẑ∗

b

(
ej2πf L

W

)
=

[
Ẑa

(
ej2πf L

W

)
e−jD2πf L

W

] [
Ẑb

(
ej2πf L

W

)
e−jD2πf L

W

]∗
(4.8)

we can rewrite (4.7) as

[R̂z]a,b =
1

N

N−1∑

n=0

ẑa(n−D)ẑ∗b (n−D) (4.9)

where D is a suitable integer number close to half of the order of the FD filter.

Let ha(n) be the impulse response of a causal filter that delays a signal

for ca/L + D. Furthermore, let us assume that the length of ha(n) is large

enough, so that its deviation from an ideal FD filter can be ignored. Therefore,

za(n−D) can be written as

za(n−D) =

Nh−1∑

r=0

ha(r)ya(n− r) (4.10)
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where Nh is the length of the filter’s impulse response. For a limited number

of samples, we have

ẑa(n−D) =

Nh−1∑

r=0

ha(r)ya(n− r)WD(n− r)

=
n∑

r=n−Nh+1

ha(n− r)ya(r)WD(r) (4.11)

where WD(n) is a window of length N which equals 1 for 0 ≤ n ≤ N − 1 and

is equal to zero elsewhere. Using the elements of R̂z, the vector ̂̆u is formed

as an estimation for ŭ. Next, v̂ (the estimation for v) is formed by replacing

ŭ with ̂̆u in (4.5) as

v̂ = (Ψ̆
T
Ψ̆)−1Ψ̆

T ̂̆u. (4.12)

Finally, let us define p̂ ∈ RL×1 as

p̂ ,
L

W
v̂. (4.13)

The elements of p̂ give an estimation for the average power within each spectral

segment.

4.2 Preliminary Formulations for Bias and

Variance Analysis

Consider a Gaussian WSS signal x(t) bandlimited to W/2 Hz, and let x(m)

be the samples of the signal obtained at the Nyquist rate (m ∈ Z). Let

also rx(k) = E{x(m + k)x∗(m)} and Px(e
j2πf/W ) = DTFT {rx(k)} be the

autocorrelation function and the PSD of x(m), respectively. Furthermore,

consider a zero-mean Gaussian random process e(t) bandlimited to W/2 Hz

with a flat PSD Pe(f) = σ2/W . The autocorrelation function of e(t) is re(τ) =

σ2sinc(Wτ). Let e(m) be the samples of e(t) obtained at the Nyquist rate.

Then, the autocorrelation function of e(m) is given by

re(k) = σ2sinc(Wk/W ) = σ2δ(k) (4.14)

where δ(k) is the Kronecker delta function. Therefore, the PSD of e(m) is

given by Pe(e
j2πf/W ) = σ2. Consider a filter hx(m) such that σ2|Hx(e

j2πf/W )|2
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is equal to Px(e
j2πf/W ), where Hx(e

j2πf/W ) is the DTFT of hx(m). Therefore,

we have

Px(e
j2πf/W ) = |Hx(e

j2πf/W )|2Pe(e
j2πf/W ). (4.15)

As a result, x(m) can be considered as e(m) filtered by hx(m) since the output

of the filter has the same PSD as Px(e
j2πf/W ). Then, the output of the i-th

sampling channel can be written as

yi(n) = x(nL + ci) =
∑

m∈Z

hx(m)e(nL + ci −m). (4.16)

Let a and b denote two channel indices. Then, the cross-correlation function

ryayb
(k) = E{ya(n + k)y∗

b (n)} is given by

ryayb
(k) =

∑

m∈Z

∑

l∈Z

hx(m)h∗
x(l)

×E {e((n + k)L + ca −m)e∗(nL + cb − l)}

=
∑

m∈Z

∑

l∈Z

hx(m)h∗
x(l)re(kL + l −m + ca − cb)

= σ2
∑

m∈Z

hx(m)h∗
x(−kL + m + cb − ca). (4.17)

Furthermore, using (4.10), [Rz]a,b can be written as

[Rz]a,b = E{za(n−D)z∗b (n−D)}

=

Nh−1∑

r=0

Nh−1∑

p=0

ha(r)hb(p)ryayb
(p− r). (4.18)

4.3 Bias Analysis of Averaged Correlogram

for Undersampled Data

The bias of the averaged correlogram for undersampled data estimator is given

by

E{p̂} − p =
L

W
(E{v̂} − v) (4.19)

where p = (L/W )v. The expected value of v̂ is obtained using (4.12) as

E{v̂} = (Ψ̆
T
Ψ̆)−1Ψ̆

T
E{̂̆u}. (4.20)
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Computing E{̂̆u} requires finding the expected value of the real and imaginary

parts of R̂z. The expectation operation can be performed before taking the

real or imaginary parts of R̂z, as these operators are linear. Moreover, (4.9)

is used to form R̂z. Taking expectation from both sides of (4.9) along with

using (4.11) results in

E{[R̂z]a,b} =
1

N

N−1∑

n=0

Nh−1∑

r=0

Nh−1∑

p=0

ha(r)hb(p)

×WD(n− r)WD(n− p)E{ya(n− r)y∗
b (n− p)}

=

Nh−1∑

r=0

Nh−1∑

p=0

ha(r)hb(p)ryayb
(p− r)

× 1

N

N−1∑

n=0

WD(n− r)WD(n− p) (4.21)

With the assumption that the number of samples N is larger than the length

of the fractional delay filters Nh, the last summation of (4.21) can be simplified

to
N−1∑

n=0

WD(n− r)WD(n− p) = N −max(r, p). (4.22)

Therefore, (4.21) can be rewritten as

E{[R̂z]a,b} = [Rz]a,b −
1

N

Nh−1∑

r=0

Nh−1∑

p=0

ha(r)hb(p)ryayb
(p− r)max(r, p) (4.23)

where [Rz]a,b is given by (4.18).

Theorem 4.1. The averaged correlogram for undersampled data estimator p̂

is asymptotically unbiased.

Proof. It can be seen from (4.23) that as N tends to infinity, E{[R̂z]a,b} tends

to [Rz]a,b. Therefore, R̂z is an asymptotically unbiased estimator ofRz. Since

̂̆u consists of the elements of R̂z and the operation of taking the real and

imaginary parts are linear, it follows that ̂̆u is also an asymptotically unbiased

estimator of ŭ. Furthermore, letting the number of samples tend to infinity in

(4.20) and using (4.5), we find that

lim
N→∞

E{v̂} = (Ψ̆
T
Ψ̆)−1Ψ̆

T
lim

N→∞
E{̂̆u}

= (Ψ̆
T
Ψ̆)−1Ψ̆

T
ŭ = v. (4.24)
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In other words, v̂ is also an asymptotically unbiased estimator of v. Finally, it

can be concluded from (4.19) that the averaged correlogram for undersampled

data estimator p̂ is asymptotically unbiased.

Theorem 4.2. For the case that the input signal x(t) is equal to the white

Gaussian random process e(t), the bias of the averaged correlogram for under-

sampled data estimator is given by

E{p̂} − p = (H1 − 1)
σ2

W
1L. (4.25)

where 1L is the column vector of length L with all its elements equal to 1, and

H1 is given by

H1 =
1

N

Nh−1∑

r=0

(N − r)h2
1(r). (4.26)

Proof. In the case that x(t) is equal to e(t), we have hx(m) = δ(m). Then,

using (4.17), the cross-correlation function ryayb
(k) is given by

ryayb
(k) = σ2δ(k)δ(a− b). (4.27)

Applying (4.27) to (4.23), we find that

E{[R̂z]a,b} = [Rz]a,b −
1

N

Nh−1∑

r=0

h2
a(r)rσ

2δ(a− b). (4.28)

Next, [Rz]a,b is obtained using (4.18) and (4.27) as

[Rz]a,b =

Nh−1∑

r=0

h2
a(r)σ

2δ(a− b). (4.29)

Replacing (4.29) into (4.28) results in

E{[R̂z]a,b} = 0 (4.30)

for a 6= b, and

E{[R̂z]a,b} = σ2 1

N

Nh−1∑

r=0

(N − r)h2
a(r) = Haσ

2 (4.31)

for a = b, where

Ha ,
1

N

Nh−1∑

r=0

(N − r)h2
a(r). (4.32)
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Recalling that the first diagonal element of R̂z is used in ̂̆u and taking the real

and imaginary parts of (4.30) and (4.31), E{̂̆u} can be obtained as

E{̂̆u} = H1σ
2e1 (4.33)

where e1 is a column vector of length q(q − 1) + 2 with all its elements equal

to zero except for the first element which is 1. The expected value of v̂ can be

found using (4.20) and (4.33) as

E{v̂} = H1σ
2(Ψ̆

T
Ψ̆)−1Ψ̆

T
e1. (4.34)

Next, Consider the fact that x(t) has equal power in all spectral segments

(the elements of v are all the same). Since v̂ is asymptotically unbiased, it

follows that the elements of limN→∞ E{v̂} are also equal.

Replacing the true values in (4.1) with the estimated values for a = b = 1,

taking expectation from both sides, and letting the number of samples tend

to infinity, we obtain that

lim
N→∞

E{[R̂z]1,1} =

L∑

l=1

lim
N→∞

E{v̂l}

= 1T
L lim

N→∞
E{v̂} (4.35)

where v̂l (1 ≤ l ≤ L) are the elements of v̂. Considering normalized FD filters

(
∑Nh−1

r=0 h2
a(r) = 1) and referring to (4.32), we also find that

lim
N→∞

Ha = 1. (4.36)

Therefore, using (4.31), we can find that

lim
N→∞

E{[R̂z]1,1} = σ2. (4.37)

Combining (4.35) with (4.37) results in

lim
N→∞

E{v̂} =
σ2

L
1L. (4.38)

Letting the number of samples tend to infinity in (4.34) and using (4.38), we

obtain

lim
N→∞

E{v̂} = σ2(Ψ̆
T
Ψ̆)−1Ψ̆

T
e1 =

σ2

L
1L. (4.39)
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It follows from (4.39) that all the elements of the first column of (Ψ̆
T
Ψ̆)−1Ψ̆

T

are equal to 1/L. Therefore, (4.34) can be simplified as

E{v̂} = H1
σ2

L
1L. (4.40)

Finally, using (4.13), we have

E{p̂} = H1
σ2

W
1L. (4.41)

4.4 Variance Analysis of Averaged

Correlogram for Undersampled Data

The covariance matrix of the averaged correlogram for undersampled data is

given by

Cp̂ = E
{

(p̂− E{p̂}) (p̂− E{p̂})T
}

= E{p̂p̂T} − E{p̂}E{p̂}T . (4.42)

The diagonal elements of Cp̂ are the estimation variance of each spectral seg-

ment. The off-diagonal elements of Cp̂ represent the correlation between pairs

of the estimations made for different spectral segments.

It follows from (4.12) and (4.13) that

E{p̂p̂T} =

(
L

W

)2

(Ψ̆
T
Ψ̆)−1Ψ̆

T
UΨ̆(Ψ̆

T
Ψ̆)−1 (4.43)

where U , E{̂̆û̆uT} ∈ R2Q×2Q. Computation of the elements of U involves

taking expectation of the multiplication of the real or imaginary parts of the

elements of R̂z. We will use the following lemma [57] for interchanging the

expectation and the operation of taking real or imaginary parts.

Lemma 4.1. Let x and y be two arbitrary complex numbers. The following

equations hold

Re(x)Re(y) =
1

2
(Re(xy) + Re(xy∗)) (4.44)

Im(x)Im(y) = −1

2
(Re(xy)−Re(xy∗)) (4.45)

Re(x)Im(y) =
1

2
(Im(xy)− Im(xy∗)) . (4.46)
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The elements of U can be obtained using Lemma 4.1, E{[R̂z]a,b[R̂z]c,d},
and E{[R̂z]a,b[R̂z]

∗
c,d} , where [R̂z]a,b and [R̂z]c,d are the elements of R̂z used

for forming ̂̆u. Let the outputs of the sampling channels be given by (4.16).

Using (4.9) and (4.11), we obtain

E{[R̂z]a,b[R̂z]c,d} =
1

N2

×
N−1∑

n=0

n∑

r=
(n−Nh+1)

n∑

p=
(n−Nh+1)

N−1∑

u=0

u∑

s=
(u−Nh+1)

u∑

m=
(u−Nh+1)

ha(n− r)hb(n− p)

×hc(u− s)hd(u−m)WD(r)WD(p)WD(s)WD(m)

×E{ya(r)y
∗
b (p)yc(s)y

∗
d(m)}

=
1

N2

N−1∑

n=0

n∑

r=max
(0,n−Nh+1)

n∑

p=max
(0,n−Nh+1)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

u∑

m=max
(0,u−Nh+1)

ha(n− r)

×hb(n− p)hc(u− s)hd(u−m)

× (ryayb
(r − p)rycyd

(s−m) + ryayd
(r −m)rycyb

(s− p)) . (4.47)

The last line in (4.47) is obtained using the forth-order moment of Gaussian

random processes.

In a similar way, E{[R̂z]a,b[R̂z]
∗
c,d} can be obtained as

E{[R̂z]a,b[R̂z]
∗
c,d} =

1

N2

×
N−1∑

n=0

n∑

r=max
(0,n−Nh+1)

n∑

p=max
(0,n−Nh+1)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

u∑

m=max
(0,u−Nh+1)

ha(n− r)

×hb(n− p)hc(u− s)hd(u−m)

× (ryayb
(r − p)rydyc

(m− s) + ryayc
(r − s)rydyb

(m− p)) . (4.48)

Theorem 4.3. For the case that the input signal x(t) is equal to the white

Gaussian random process e(t), U is a diagonal matrix with

[U ]1,1 =
σ4

N2

(
N2H2

1 + (N − 2Nh + 2)G1 + Σ1

)

[U ]Q+1,Q+1 = 0

[U ]k,k =
σ4

2N2
((N − 2Nh + 2)Gk + Σk) (4.49)

where G1, Σ1, Gk, and Σk (2 ≤ k ≤ 2Q and k 6= Q + 1) are independent of

the signal length and depend on the FD filters.
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Proof. In the case that x(t) is equal to e(t), we have hx(m) = δ(m). Then,

the cross-correlation functions in (4.47) are simplified as

E1 , ryayb
(r − p)rycyd

(s−m) + ryayd
(r −m)rycyb

(s− p)

= σ4
(
δ(r − p)δ(a− b)δ(s−m)δ(c− d)

+δ(r −m)δ(a− d)δ(s− p)δ(c− b)
)
. (4.50)

Similarly, the cross-correlation functions in (4.48) are simplified as

E2 , ryayb
(r − p)rydyc

(m− s) + ryayc
(r − s)rydyb

(m− p)

= σ4
(
δ(r − p)δ(a− b)δ(m− s)δ(d− c)

+δ(r − s)δ(a− c)δ(m− p)δ(d− b)
)
. (4.51)

Recalling that only the first diagonal element of R̂z is present in ̂̆u, E1 can

be found to be equal to

E1 = σ4
(
δ(r − p)δ(s−m) + δ(r −m)δ(s− p)

)
(4.52)

for a = b = c = d = 1, and it equals to zero otherwise. Similarly, E2 can be

found to be equal to

E2 = σ4δ(r − s)δ(m− p) (4.53)

for a = c and b = d, and it equals zero otherwise (excluding the case when

a = b = c = d = 1 since [R̂z]1,1 is real-valued, and therefore, we do not

need to compute (4.48)). Noting that E{[R̂z]a,b[R̂z]c,d} and E{[R̂z]a,b[R̂z]
∗
c,d}

are real-valued and using (4.46), (4.52), and (4.53), we can find that all the

off-diagonal elements of U are equal to zero.

Let us start computing the diagonal elements of U by setting a = b = c =

d = 1. It follows from (4.47) and (4.52) that

E{[R̂z]1,1[R̂z]1,1} =
σ4

N2

(N−1∑

n=0

n∑

r=max
(0,n−Nh+1)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

h2
1(n− r)

×h2
1(u− s) +

N−1∑

n=0

S1(n)
)

(4.54)
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where S1(n) is defined as

S1(n) ,

n∑

r=max
(0,n−Nh+1)

n∑

p=max
(0,n−Nh+1)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

u∑

m=max
(0,u−Nh+1)

δ(r −m)δ(s− p)

×h1(n− r)h1(n− p)h1(u− s)h1(u−m). (4.55)

For Nh − 1 ≤ n ≤ N −Nh, S1(n) is given by

S1(n) =

n+Nh−1∑

u=
n−Nh+1

[
n∑

r=
n−Nh+1

u∑

m=max
(0,u−Nh+1)

δ(r −m)h1(n− r)h1(u−m)

]

×
[

n∑

p=
n−Nh+1

u∑

s=max
(0,u−Nh+1)

δ(s− p)h1(n− p)h1(u− s)

]

. (4.56)

Note that the summations in the brackets are equivalent to each other, which

leads to the following simplification

S1(n) =

n+Nh−1∑

u=
n−Nh+1

[
n∑

r=
n−Nh+1

u∑

m=max
(0,u−Nh+1)

δ(r −m)h1(n− r)h1(u−m)

]2

=

n+Nh−1∑

u=
n−Nh+1

[
min(n,u)∑

r=max(n,u)−Nh+1

h1(n− r)h1(u− r)

]2

. (4.57)

Next, a change of variable (g = u− n + Nh − 1) is used, which results in

S1(n) =

2Nh−2∑

g=0

[
min(0,g−Nh+1)+n∑

r=max(0,g−Nh+1)+n−Nh+1

h1(n− r)h1(n− r + g −Nh + 1)

]2

.

(4.58)

With another change of variable (p = n − r + g − Nh + 1), we obtain the

following

S1(n) =

2Nh−2∑

g=0

[
min(g,Nh−1)∑

p=max(0,g−Nh+1)

h1(p− g + Nh − 1)h1(p)

]2

(4.59)

which is equal to

G1 , S1(n) =

2Nh−2∑

g=0

[h1(i) ∗ h1(Nh − 1− i)|g]2 (4.60)
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where ∗ denotes the convolution operation. Note that G1 is not a function of

n. In a similar way, S1(n) for 0 ≤ n < Nh − 1 is given by

S1(n) =

n+Nh−1∑

g=0

[(h1(i)Wn(i)) ∗ h1(Nh − 1− i)|g]2 (4.61)

where Wn(i) is equal to 1 for 0 ≤ i ≤ n and zero elsewhere. For N − Nh <

n ≤ N − 1, S1(n) is given by

S1(n) =

N−n+Nh−2∑

g=0

[h1(i) ∗ h1(Nh − 1− i)|g]2 . (4.62)

Next, (4.54) can be rewritten as

E{[R̂z]1,1[R̂z]1,1} =
σ4

N2
×

(N−1∑

n=0

n∑

r=max
(0,n−Nh+1)

h2
1(n− r)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

h2
1(u− s)

+(N − 2Nh + 2)G1 +

Nh−2∑

n=0

S1(n) +

N−1∑

n=N−Nh+1

S1(n)
)
. (4.63)

Using (4.32), we have

N−1∑

n=0

n∑

r=max
(0,n−Nh+1)

h2
1(n− r) =

Nh−1∑

r=0

(N − r)h2
1(r) = NH1. (4.64)

Therefore, (4.63) can be simplified as

E{[R̂z]1,1[R̂z]1,1} =
σ4

N2

(
N2H2

1 + (N − 2Nh + 2)G1 + Σ1

)
(4.65)

where Σ1 ,
∑Nh−2

n=0 S1(n)+
∑N−1

n=N−Nh+1 S1(n). Note that [R̂z]1,1 is real-valued.

Therefore, [U ]1,1 is equal to E{[R̂z]1,1[R̂z]1,1} as given in (4.65) and [U ]Q+1,Q+1

equals zero since the imaginary part of [R̂z]1,1 is zero.

For the rest of the diagonal elements of U , E{[R̂z]a,b[R̂z]a,b} equals zero,

as E1 is zero. Therefore, [U ]k,k (2 ≤ k ≤ 2Q and k 6= Q + 1) can be obtained

using (4.44) and (4.45) as

[U ]k,k =
1

2
Re
(
E{[R̂z]a,b[R̂z]

∗
a,b}
)

. (4.66)
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From (4.48) and (4.53) we have

[U ]k,k =
σ4

2N2

∑

n

Sk(n) (4.67)

where Sk(n) is defined as

Sk(n) ,

n∑

r=max
(0,n−Nh+1)

n∑

p=max
(0,n−Nh+1)

N−1∑

u=0

u∑

s=max
(0,u−Nh+1)

u∑

m=max
(0,u−Nh+1)

δ(r − s)δ(m− p)

×ha(n− r)hb(n− p)ha(u− s)hb(u−m). (4.68)

It can be shown that for Nh − 1 ≤ n ≤ N −Nh, Sk(n) is given by

Gk , Sk(n) =

2Nh−2∑

g=0

(ha(i) ∗ ha(Nh − 1− i)) |g

× (hb(i) ∗ hb(Nh − 1− i)) |g. (4.69)

For 0 ≤ n < Nh − 1, Sk(n) is given by

Sk(n) =

n+Nh−1∑

g=0

((ha(i)Wn(i)) ∗ ha(Nh − 1− i)) |g

× ((hb(i)Wn(i)) ∗ hb(Nh − 1− i)) |g. (4.70)

For N −Nh < n ≤ N − 1, Sk(n) is given by

Sk(n) =

N−n+Nh−2∑

g=0

(ha(i) ∗ ha(Nh − 1− i)) |g

× (hb(i) ∗ hb(Nh − 1− i)) |g. (4.71)

Thus, (4.67) can be rewritten as

[U ]k,k =
σ4

2N2
((N − 2Nh + 2)Gk + Σk) (4.72)

where Σk ,
∑Nh−2

n=0 Sk(n) +
∑N−1

n=N−Nh+1 Sk(n).

The equations for computing the covariance matrix Cp̂ as given by (4.42)

to (4.49) are in the matrix form. Next, we simplify these formulas to show the

dependence of the estimation variance on different parameters more clearly.
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Theorem 4.4. For the white Gaussian process, the diagonal elements of Cp̂
can be approximated by

[Cp̂]l,l ≈
σ4

2W 2N2
x

(
L3

Q
+ L

)
((Nx − 2NhL + 2L)G1 + LΣ1) (4.73)

where Nx is the number of Nyquist samples.

Proof. Referring to (4.43), computation of the l-th diagonal element of the

covariance matrix requires the knowledge of the elements of the l-th row of

X , (Ψ̆
T
Ψ̆)−1Ψ̆

T
. The diagonal elements of U for 2 ≤ k ≤ 2Q and k 6= Q+1

as given by (4.49) differ from each other in Gk and Σk. However, the values

of Gk and Σk for different values of k almost remain the same as they are

related to the energy of the FD filters which are normalized to one. Let us

approximate Gk and Σk by G1 and Σ1. Then, [U ]k,k can be approximated by

η ,
σ4

2N2
((N − 2Nh + 2)G1 + Σ1) . (4.74)

The approximation in (4.74) relaxes the problem of computing the l-th diago-

nal element of the covariance matrix to just finding the Euclidean norm of the

l-th row of X . The squared norm of the l-th row of X can be obtained as

φl ,
[
XXT

]
l,l

=
[
(Ψ̆

T
Ψ̆)−1

]

l,l

=
[(

Re(ΨHΨ)
)−1
]

l,l
. (4.75)

Referring to (4.4), the diagonal elements of Re(ΨHΨ) are all equal to Q, and

the off-diagonal elements are given as

[
Re(ΨHΨ)

]
i,j

= 1 +

Q∑

k=2

cos((i− j)νk) (4.76)

where 1 ≤ i, j ≤ L and i 6= j. Noting that the frequencies νk are randomly

obtained based on the sampling pattern, the value of the off-diagonal elements

of Re(ΨHΨ) are negligible compared to the value of the diagonal elements.

Therefore, Re(ΨHΨ) can be approximated by a diagonal matrix with elements

equal to Q, which results in

φl ≈
1

Q
. (4.77)
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It is shown in the proof of Theorem 4.2 that all the elements of the first

column of X are equal to 1/L. Furthermore, all the elements of the (Q + 1)-

th column of X are equal to zero, as all the elements of the (Q + 1)-th row

of Ψ̆ are zero. Then, using (4.41), (4.42), (4.43), and (4.74), [Cp̂]l,l can be

approximated as

[Cp̂]l,l ≈
(

L

W

)2 [
ηφl +

1

L2
([U ]1,1 − η)

]
−
(

H1
σ2

W

)2

. (4.78)

Next, using (4.49), (4.74), and (4.77), we can simplify (4.78) to

[Cp̂]l,l ≈
σ4

2W 2N2
x

(
L3

Q
+ L

)
((Nx − 2NhL + 2L)G1 + LΣ1) (4.79)

where Nx , NL is the number of Nyquist samples.

Remark 4.1. Considering a large enough Nx, it can be seen from (4.73) that

the estimation variance is a cubic function of the number of spectral segments

L as (L3/Q+L). Moreover, the variance is inversely proportional to Q, which

means that the variance decreases quadratically with the number of sampling

channels q. Furthermore, at a fixed average sampling rate (q/L)W and a

given signal length Nx, the variance increases almost linearly with the number

of spectral segments. Finally, it can be seen that the estimation variance

decreases as the signal length increases at an approximate rate of 1/Nx.

We next consider the asymptotic behavior of the averaged correlogram for

undersampled data for the case of a white Gaussian process. The following

theorem studies the covariance matrix of the estimator as the length of the

signal tends to infinity.

Theorem 4.5. In the case of a white Gaussian process, the averaged correlo-

gram for undersampled data is a consistent estimator of the average power in

each spectral segment. Furthermore, the estimations made for different spectral

segments are asymptotically uncorrelated.

Proof. Letting the number of samples tend to infinity in (4.42) yields

lim
N→∞

Cp̂ = lim
N→∞

E{p̂p̂T} − lim
N→∞

E{p̂}E{p̂}T . (4.80)
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Since the averaged correlogram for undersampled data estimator is asymptot-

ically unbiased, we have

lim
N→∞

E{p̂} = p =
σ2

W
1L. (4.81)

From (4.43), we obtain

lim
N→∞

E{p̂p̂T} =

(
L

W

)2

(Ψ̆
T
Ψ̆)−1Ψ̆

T
(

lim
N→∞

U
)

Ψ̆(Ψ̆
T
Ψ̆)−1. (4.82)

Recall that all the off-diagonal elements of U are zeros, and the first diagonal

element of U is given by (4.49). Letting the number of samples tend to infinity

in (4.49), we obtain

lim
N→∞

E{[U ]1,1} = σ4. (4.83)

The (Q + 1)-th element of U is zero, and if the number of samples tend to

infinity in (4.72), limN→∞[U ]k,k = 0. Therefore, all the elements of limN→∞U

are equal to zero except for its first diagonal element which is equal to σ4.

In order to further simplify (4.82), only the elements of the first column of

(Ψ̆
T
Ψ̆)−1Ψ̆

T
are required. We have shown in the proof of Theorem 4.2 that

these elements are all equal to 1/L. Therefore, (4.82) can be simplified to

lim
N→∞

E{p̂p̂T} =

(
L

W

)2(
σ4

L2

)
1LL =

(
σ4

W 2

)
1LL (4.84)

where 1LL is an L×L matrix with all its elements equal to 1. It follows from

(4.80), (4.81), and (4.84) that

lim
N→∞

Cp̂ = 0. (4.85)

In other words, the variance of the averaged correlogram for undersampled

data tends to zero as the number of samples goes to infinity, which proves the

consistency of the estimator. Moreover, all the elements of Cp̂ tend to zero,

which implies that the estimations made for different spectral segments are

asymptotically uncorrelated.

Remark 4.2. Note that the conventional correlogram method is inconsistent

for the case of a white Gaussian process. This is not in contradiction with
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the result given by Theorem 4.5. Note that first of all, the averaged correlo-

gram for undersampled data does not simplify to the conventional correlogram

method if the average sampling rate is made equal to the Nyquist rate (due

to the separation of the real and imaginary equations and also the presence of

the fractional delay filters). Furthermore, the averaged correlogram for under-

sampled data estimates the average power in each spectral segment, and the

conventional correlogram method also becomes a consistent estimator if the

PSD estimation is averaged over a frequency band using a spectral window [58].

4.5 Numerical Examples

In this section, we investigate the behavior of the averaged correlogram for

undersampled data for finite-length signals based on the analytical results

obtained in Sections 4.3 and 4.4. Monte Carlo simulations have also been

performed to validate the theoretical results.

The estimation bias and variance of the averaged correlogram method de-

pends on the number of sampling channels q, the number of spectral segments

L, and the number of samples per channel N . Here, the Nyquist sampling

rate is considered to be W = 1000 Hz. The time offsets ci (1 ≤ i ≤ q) are

distinct positive integer numbers less than L which are generated with equal

probability for each (L, q)-pair. After generating the time offsets ci, the matrix

Ψ̆ is formed and its rank is checked. In the case that Ψ̆ is rank deficient, a

new set of time offsets is generated until a full rank matrix Ψ̆ is obtained or a

maximum number of tries is performed. In the latter case, the given (L, q)-pair

is considered as unfeasible. Once a full rank matrix Ψ̆ is obtained, it is kept

unchanged for different signal lengths.

We present six examples to illustrate the bias and variance of the averaged

correlogram for undersampled data. For the first four examples, we consider

a white Gaussian process with its PSD equal to σ2/W = 1. For the last two

examples, a filtered Gaussian process is used.

The estimation bias is investigated first. We consider the case when the

average sampling rate (q/L)W is kept unchanged. Therefore, for a given num-
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ber of Nyquist samples, the overall number of samples available for estimation

is the same for different (L, q)-pairs. Fig. 5.1 depicts the bias of the estimator

versus the number of Nyquist samples Nx. The curve marked with squares

is obtained by Monte Carlo simulations for comparison with the theoretical

results. The rest of the curves are obtained from (4.25). Referring to (4.25)

and (4.26), it can be seen that the bias is proportional to the inverse of the sig-

nal length Nx (consider multiplying (4.26) by L/L, and note that Nx = NL).

Moreover, at a given signal length, the bias increases linearly with the number

of spectral segments. It can also be seen that the estimation bias tends to zero

as the length of the signal tends to infinity.

Fig. 4.2 depicts the variance of the estimator [Cp̂]1,1 versus the number of

sampling channels q for different values of spectral segments L. The signal

length is fixed at Nx = 105. The curves drawn with solid lines represent the

exact variance obtained from (4.42) to (4.49), and the curves plotted with

dashed lines are the approximate values obtained from (4.73). Increasing q at

a fixed L is equivalent to increasing the average sampling rate (q/L)W . Ac-

cording to the approximate variance as given in (4.73), the variance decreases

quadratically with the number of sampling channels q. Therefore, the perfor-

mance of the estimator improves by increasing q, but this comes at the price

of adding to the complexity of the system by using more sampling channels.

Fig. 4.3 shows the variance of the estimator [Cp̂]1,1 versus the number of

spectral segments L for different numbers of sampling channels q. The sig-

nal length is fixed at Nx = 105. Again, the curves drawn with solid lines

are obtained from (4.42) to (4.49), and the curves plotted with dashed lines

are obtained from (4.73). According to the approximate variance as given in

(4.73), the variance increases cubicly with the number of spectral segments L.

Therefore, at a fixed signal length and fixed number of sampling channels, the

performance of the estimator is degraded by increasing the number of spectral

segments L, i.e., by increasing the frequency resolution.

The variance of the estimator [Cp̂]1,1 versus the signal length Nx is illus-

trated in Fig. 4.4. Here, the average sampling rate (q/L)W is kept unchanged.

Therefore, for a given number of Nyquist samples, the overall number of sam-
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ples available for estimation is the same for different (L, q)-pairs. The curve

marked with squares is obtained by Monte Carlo simulations for compari-

son with the theoretical results. Again, the curves drawn with solid lines are

obtained from (4.42) to (4.49), and the curves plotted with dashed lines are ob-

tained from (4.73). Referring to the approximate variance as given in (4.73),

the variance is almost proportional to the inverse of the signal length Nx.

From the curves corresponding to the (51, 12), (101, 25), and (201, 50)-pairs in

Fig. 4.4, it can be seen that the performance of the estimator degrades when

increasing the number of spectral segments, i.e., when increasing the frequency

resolution. The average sampling rate is kept almost the same in this scenario.

It can also be seen that the estimation variance tends to zero as the length of

the signal tends to infinity.

For the next two examples, we consider a more general case with a filtered

Gaussian process. The signal is obtained by passing a white Gaussian signal

through a bandlimited filter with cutoff frequencies set at W/10 and W/5 Hz.

Through our experiments, we found that the estimation variance at each spec-

tral segment depends not only on the power of signal at that frequency band,

but also it is dependant on the power of the signal at other spectral segments.

As noticed from the analytical derivations for the white Gaussian process (see

(4.43), (4.49), and (4.73)), the estimation variance is proportional to the square

of the signal power (σ4/W 2). Therefore, we set the gain of the filter so that

the square of the power averaged over all spectral segments for both the white

Gaussian process at the input of the filter and the filtered signal is the same.

In Fig. 4.5, the variance of the estimator [Cp̂]1,1 versus the number of spec-

tral segments L is depicted. The number of sampling channels is set to q = 45,

and the signal length is fixed at Nx = 105. The curve for the white Gaussian

signal is based on (4.42)–(4.49), and the curve for the filtered Gaussian signal

is obtained by Monte Carlo simulations. The latter curve is the average esti-

mation variance of the spectral segments that pass through the filter. It can

be seen in Fig. 4.5 that the variance of the estimator for the white and the

filtered signals are close to each other.

Finally, the variance of the estimator [Cp̂]1,1 versus the signal length Nx
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for the white and the filtered signals is investigated. The number of spectral

segments is set to L = 101, and the number of sampling channels is set to

q = 25. Again, the curve for the white Gaussian signal is based on (4.42)–

(4.49), and the curve for the filtered Gaussian signal is obtained by Monte

Carlo simulations. Similar to the previous example, it can be seen in Fig. 4.6

that the estimation variance for the white and the filtered signals are close to

each other. It can also be seen that the estimation variance tends to zero as

the length of the signal tends to infinity.
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Figure 4.1: Bias versus Nyquist signal length Nx. The average sampling rate (q/L)W
for the (L, q) = (51, 12), (101, 25), and (201, 50) pairs are 235 Hz, 247 Hz, and 248 Hz,
respectively. The curve marked with squares is obtained by Monte Carlo simulations.
The rest of the curves are based on (4.25).
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Figure 4.2: Variance [Cp̂]1,1 versus number of sampling channels q at a fixed number
of spectral segments L. The number of Nyquist samples is set to Nx = 105. Solid lines
are based on (4.42)–(4.49) and dashed lines are based on (4.73).
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Figure 4.3: Variance [Cp̂]1,1 versus number of spectral segments L at a fixed number
of sampling channels q. The number of Nyquist samples is set to Nx = 105. Solid lines
are based on (4.42)–(4.49) and dashed lines are based on (4.73).
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Figure 4.4: Variance [Cp̂]1,1 versus Nyquist signal length Nx. The average sampling
rate (q/L)W for the (L, q) = (51, 12), (101, 25), and (201, 50) pairs are 235 Hz, 247 Hz,
and 248 Hz, respectively. The curve marked with squares is obtained by Monte Carlo
simulations. Solid lines are based on (4.42)–(4.49), and dashed lines are based on (4.73).
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Figure 4.5: Variance [Cp̂]1,1 versus number of spectral segments L at a fixed number
of sampling channels q = 45. The number of Nyquist samples is set to Nx = 105. The
curve for the white Gaussian signal is based on (4.42)–(4.49), and the curve for the
filtered Gaussian signal is obtained by Monte Carlo simulations.
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Figure 4.6: Variance [Cp̂]1,1 versus Nyquist signal length Nx for (L, q) = (101, 25)
pair. The curve for the white Gaussian signal is based on (4.42)–(4.49), and the curve
for the filtered Gaussian signal is obtained by Monte Carlo simulations.
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Chapter 5

Improved Model-Based Spectral

Compressive Sensing via Nested

Least Squares

Signals with sparse representations can be recovered from a number of mea-

surements much less than the number of samples given by the Nyquist sampling

rate using the CS methods [9], [10]. Such measurements are obtained by cor-

relating the signal with a number of sensing waveforms. The algorithms used

for recovering the signal from these measurements exploit the sparsity or com-

pressibility of the signal in a proper basis. There exist two main approaches

for signal reconstruction: convex relaxation and greedy pursuits [9,10,59–61].

A special type of sparse signals that appears frequently in signal processing

and digital communications is the class of signals composed of linear combi-

nations of sinusoids [62], [63]. Albeit these type of signals generate sparse

coefficients by the DTFT, their representation in the Fourier basis obtained

by the DFT exhibits frequency leakage. This problem results in the poor per-

formance of the conventional CS recovery algorithms that rely on the Fourier

basis (see [64]). Although these signals do not have a sparse representation in

the Fourier basis, they possess a sparse model in terms of the DTFT. In [65],

the advantages of taking a signal model into account for signal reconstruc-

tion have been demonstrated and the name model-based CS has been coined.

Although the model-based CS method still requires the sparsity or compress-

ibility of the signal, it can be modified to handle the class of signals of our
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interest. In [64], two model-based reconstruction methods have been consid-

ered for the signals of interest, and it has been shown that they outperform

conventional CS recovery methods. According to these methods, the signal is

reconstructed in an iterative manner, where at each iteration, a signal estimate

is formed and pruned according to the signal structure.

In this chapter, we introduce a new spectral CS recovery method. The

important difference of our method from that of [64] is the approach used for

estimating the amplitudes of the signal elements. In [64], the unknown am-

plitudes are estimated using the DTFT, while we estimate the amplitudes by

minimizing the squared norm of the compressed estimation error. Further-

more, we analyze the proposed method, derive the CRB for spectral CS, and

show that the proposed algorithm approaches the CRB.

5.1 Model-Based Nested Least Squares

Method

Let the signal x = [x(0), x(1), . . . , x(Nx − 1)]T ∈ C
Nx×1 be a linear combi-

nation of K sinusoids (K ≪ Nx) where x(n) (0 ≤ n < Nx) are the samples of

the signal obtained at the Nyquist rate. Here the sample x(n) is given by

x(n) =
K∑

k=1

dke
−jωkn (5.1)

where dk and ωk (1 ≤ k ≤ K) are unknown amplitudes and frequencies of

the K sinusoids, respectively. By arranging the amplitude parameters in

the vector d = [d1, d2, . . . , dK ]T ∈ CK×1 and forming the matrix A =

[a(ω1), a(ω2), . . . , a(ωK)] ∈ CNx×K with the frequency parameters, the

model (5.1) can be rewritten in the matrix-vector form as

x = Ad (5.2)

where a(ω) = [1, e−jω, e−j2ω, . . . , e−j(Nx−1)ω]T ∈ CNx×1 is the Vandermonde

vector.

Let the vector of the measurements y ∈ CNy×1 be given by

y = Φx+w (5.3)

78



where Φ ∈ R
Ny×Nx is the measurement matrix, andw ∈ C

Ny×1 is the measure-

ment noise with circularly-symmetric complex jointly-Gaussian distribution

NC(0, σ2
wI). The elements of the measurement matrix Φ are drawn indepen-

dently from, for example, the Gaussian distribution N (0, 1/Ny).

The goal is to estimate the unknown amplitudes and frequencies of the

signal (5.2) from the noisy compressive measurements (5.3).

Two criteria are taken into consideration for developing the estimation

algorithm: minimization of the estimation error and matching the estimated

signal to the sparsity model. The squared norm of the compressed estimation

error is ‖y − Φx̂‖22 where x̂ is the estimated signal. Thus, the problem of

finding the estimate x̂ can be formulated as

x̂ = arg min
x
‖y −Φx‖22. (5.4)

The estimation error is a convex function, and the minimization of (5.4) can

be obtained using the least squares (LS) technique with the iterative solution

x̂i = x̂i−1 + βΦT (y −Φx̂i−1) (5.5)

where x̂i is the estimated signal at the ith iteration and β represents the step

size of the LS algorithm or equivalently the scaling factor for the residual signal

of the previous iteration, that is, y −Φx̂i−1.

The LS problem of (5.4) is underdetermined and has many solutions. In

order to match the estimated signal to the model in (5.1), a pruning step

is inserted in the iterative solution of (5.5). Specifically, let xe = x̂i−1 +

βΦT (y −Φx̂i−1), then the frequencies ω1, ω2, . . . , ωK can be estimated from

xe using, for example, the root-MUSIC technique [27]. This method needs

the knowledge of the autocorrelation matrix of the data Rx for estimating the

frequencies.

Consider windowing xe by overlapping frames of length Wx. Then, the

elements of Rx can be estimated as

[R̂x]a,b =
1

Nx −Wx + 1

Nx∑

n=Wx

xe∗(n− a)xe(n− b) (5.6)
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where R̂x is an estimation for Rx, xe(n) (0 ≤ n < Nx) are the elements of xe,

and 1 ≤ a, b ≤Wx. Let Ω̂ = [ω̂1, ω̂2, . . . , ω̂K ]T ∈ [−π, π]K×1 be the vector of

the estimated frequencies. Then, the estimate of the Vandermonde matrix A

(denoted by Â) can be straightforwardly computed based on Ω̂.

Recalling the objective of minimizing the squared norm of the compressed

estimation error, the vector of the amplitudes d can be estimated by minimiz-

ing ‖y −ΦÂd‖22 [66]. The solution for this problem is given by

d̂i = (B̂
H
B̂)−1B̂

H
y (5.7)

where B̂ = ΦÂ. Note that in [64], the amplitudes are estimated as

d̂i = Â
H
xe (5.8)

where d̂i is the vector of the estimated amplitudes at the i-th iteration. The

algorithm based on (5.8) is referred to as spectral iterative hard thresholding

(SIHT) via root-MUSIC.

Finally, x̂i can be obtained using the estimated frequencies and amplitudes

as x̂i = Âd̂i. The steps of the algorithm are summarized in Table 5.1.

The algorithm consists of the outer and the inner least squares steps along

with the root-MUSIC method. In each iteration, the algorithm converges to

the true signal in three steps. First, the outer least squares makes an estimation

of the subspace in which the original signal lies. This is done by minimizing

the squared norm of the compressed estimation error. Note that due to the

fact that the problem is underdetermined, the signal x cannot be estimated,

but only an improved estimate of the subspace to which the signal x belongs

can be found. Then, the signal estimate x̂ is enhanced in the second and the

third steps of the algorithm. In the second step, the estimation is forced to

match the signal model by applying the root-MUSIC method. The frequencies

are estimated at this stage. Note that each frequency represents one of the

dimensions of the signal subspace. In the first few iterations of the algorithm,

some of the frequencies might be estimated incorrectly, as the output of the

outer least squares step might not be close enough to the true signal subspace.

In the third step of the algorithm, the amplitudes are estimated by applying
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the inner least squares. The last two steps are building the signal subspace

according to the signal model, and then, estimating the projection coefficients

for each dimension of the subspace. Finally, the estimated signal is fed back

to the outer least squares step for the next iteration. The algorithm continues

until some stopping criterion is satisfied. For example, the criterion can be

satisfied when a predetermined fixed number of iterations is performed or the

normalized compressed estimation error (‖y−Φx̂‖22/‖y‖22) is less than a given

threshold value.
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Table 5.1: Model-based nested least squares algorithm

Initialize: x̂0 = 0, i = 1
repeat

xe ← x̂i−1 + βΦT (y −Φx̂i−1)

Ω̂← root-MUSIC(xe, K)

Â← [a(ω̂1) a(ω̂2) . . . a(ω̂K)]

B̂ ← ΦÂ

d̂i ← (B̂
H
B̂)−1B̂

H
y

x̂i ← Âd̂i

i← i + 1
until stopping criterion is satisfied
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5.2 Cramér-Rao Bound for Spectral

Compressive Sensing

The CRB for the problem of estimating the parameters of multiple superim-

posed exponential signals in noise has been derived in [57]. In this section,

the CRB for spectral compressive sensing is derived by considering the system

model (5.2) and (5.3).

First, let the vector of parameters be defined by ϑ = [d̄
T
d̃

T
ΩT ]T where d̄

and d̃ represent the real and imaginary parts of d, respectively. Furthermore,

let

D = diag(d) =




d1 0

. . .

0 dK



 (5.9)

and C = [c(ω1) . . . c(ωK)] where c(ω) = da(ω)/dω.

The likelihood function of the measurement vector y is

L(y) =
1

(πσ2
w)Ny

exp
{
− 1

σ2
w

(y −Bd)H(y −Bd)
}

(5.10)

where B = ΦA.

The inverse of the Fisher information matrix is given by

I−1(ϑ) = (E{ψψT})−1 (5.11)

where ψ = ∂ ln L/∂ϑ.

The log-likelihood function is

ln L = −Ny ln π −Ny ln σ2
w −

1

σ2
w

(y −Bd)H(y −Bd) (5.12)

and its derivatives with respect to d̄ and d̃ are

∂ ln L

∂d̄
=

1

σ2
w

(
BHw +

(
wHB

)T)
=

2

σ2
w

Re
{
BHw

}
(5.13)

and

∂ ln L

∂d̃
=

1

σ2
w

(
−jBHw + j

(
wHB

)T)
=

2

σ2
w

Im
{
BHw

}
(5.14)

respectively. Recall that w = y−Bd is the measurement noise introduced in

(5.3).
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The derivative of the log-likelihood function with respect to ωk for 1 ≤ k ≤
K is

∂ ln L

∂ωk
=

2

σ2
w

Re

{
dH dBH

dωk
w

}

=
2

σ2
w

Re

{
dH dAH

dωk

ΦTw

}

=
2

σ2
w

Re
{
d∗

kc
H(ωk)Φ

Tw
}

. (5.15)

The derivatives of the log-likelihood function with respect to the frequencies

can be written in the matrix form as

∂ ln L

∂Ω
=

2

σ2
w

Re
{
DHCHΦTw

}
. (5.16)

To proceed, we use the extension of Lemma 4.1 to the vector case. Then,

the submatrices of I(ϑ) can be computed as

E

[
∂ ln L

∂d̄

] [
∂ ln L

∂d̄

]T

=
4

σ4
w

1

2
Re
{
E
{
BHwwHB

}}

=
2

σ2
w

Re
{
BHB

}
(5.17)

E

[
∂ ln L

∂d̄

] [
∂ ln L

∂d̃

]T

= − 2

σ2
w

Im
{
BHB

}
(5.18)

E

[
∂ ln L

∂d̄

] [
∂ ln L

∂Ω

]T

=
2

σ2
w

Re
{
BHΦCD

}
(5.19)

E

[
∂ ln L

∂d̃

] [
∂ ln L

∂d̃

]T

=
2

σ2
w

Re
{
BHB

}
(5.20)

E

[
∂ ln L

∂d̃

] [
∂ ln L

∂Ω

]T

=
2

σ2
w

Im
{
BHΦCD

}
(5.21)

E

[
∂ ln L

∂Ω

] [
∂ ln L

∂Ω

]T

=
2

σ2
w

Re
{
DHCHΦT ΦCD

}
.

(5.22)

Note that E
{
wwT

}
= 0. Then, I(ϑ) is given by

I(ϑ) =




F̄ −F̃ ∆̄

F̃ F̄ ∆̃

∆̄
T

∆̃
T

Λ



 (5.23)
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where (̄·) and (̃·) stand for the real and imaginary parts of a matrix, and

F =
2

σ2
w

BHB (5.24)

∆ =
2

σ2
w

BHΦCD (5.25)

Λ =
2

σ2
w

Re
{
DHCHΦTΦCD

}
. (5.26)

The signal x can be considered as a function of ϑ, and therefore, the

covariance matrix of any unbiased estimator of x, that is, Cx̂, satisfies the

inequality [67]

Cx̂ −
∂x

∂ϑ
I−1(ϑ)

∂xH

∂ϑ
≥ 0. (5.27)

Moreover, the signal x can be written as

x = Ad̄+ jAd̃ = d1a(ω1) + . . . + dKa(ωK). (5.28)

Then the derivative of x with respect to the whole vector of unknown param-

eters ϑ can be found as

∂x

∂ϑ
= [A jA d1c(ω1) . . . dKc(ωK)]

= [A jA CD]. (5.29)

Finally, by summing over the diagonal elements of (5.27), we obtain

E
{
‖x−x̂‖22

}
≥ Tr

{
∂x

∂ϑ
I−1(ϑ)

∂xH

∂ϑ

}
, CRB. (5.30)

5.3 Simulation Results

Consider a signal consisting of K = 20 complex-valued sinusoids. The win-

dow size in the computation of R̂x is set to Wx = 200. The frequencies

(ω1, ω2, . . . , ωK) are drawn randomly from the [0, 2π) interval with the con-

straint that the pairs of the frequencies are spaced by at least 10π/Nx radi-

ans/sample. Furthermore, the amplitudes (s1, s2, . . . , sK) are uniformly drawn

at random from the [1, 2] interval. In all of our simulations, the step size of

the outer LS algorithm is set to 1 (β = 1). The number of Monte Carlo trials

is also set to 300.
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The normalized MSE (NMSE) is defined as

NMSE = 10 log

(
E{‖x− x̂‖22}

E{‖x‖22}

)
. (5.31)

Recalling (5.30), the normalized CRB (NCRB) is defined as

NCRB = 10 log

(
CRB

E{‖x‖22}

)
. (5.32)

The bias of the model-based nested LS method is investigated first. Fig. 5.1

shows the normalized bias of the estimator versus the length of the signal.

The number of iterations of the algorithm is set to 10. The normalized bias is

defined as the squared norm of the bias vector divided by the squared norm of

the signal. The number of measurements is set to a third of the signal length

(Ny = Nx/3) and the noise standard deviation is set to 2 (σw = 2). It can be

seen in Fig. 5.1 that the bias of the estimator declines as the signal length is

increased.

The second experiment explores the performance of the model-based nested

LS and the SIHT via root-MUSIC algorithms [64] over 10 iterations. The sig-

nal length is set to 1024 (Nx = 1024), the number of measurements to 300

(Ny = 300), and the noise standard deviation to 2 (σw = 2). The simulation

results are illustrated in Fig. 5.2. It can be seen that the model-based nested

LS algorithm converges after 5 iterations, while the SIHT via root-MUSIC

method requires more iterations to converge. At the 5th iteration, the pro-

posed algorithm performs 3 dB better than the SIHT method, and it is 1 dB

away from the NCRB. After 10 iterations, the algorithm still performs 1 dB

better than the SIHT method.

Next, the performance of the algorithm is investigated for a range of noise

variances. The results are depicted in Fig. 5.3. The signal length is set to 1024

(Nx = 1024), the number of measurements to 300 (Ny = 300), and the number

of iterations of the algorithm to 10. Similar to the previous example, the pro-

posed method outperforms the SIHT via root-MUSIC algorithm. Moreover,

it can be seen that the performance of the proposed algorithm approaches the

bound at high signal to noise ratio values.
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The forth experiment investigates the performance of the algorithms for dif-

ferent numbers of measurements. The signal length is set to 1024 (Nx = 1024),

the noise standard deviation to 2 (σw = 2), and the number of iterations to 10.

The results are shown in Fig. 5.4. It can be seen that with 200 measurements,

the proposed algorithm is able to recover the signal, while the performance

of the SIHT method is significantly far from the NCRB. For larger number

of measurements, the model-based nested LS algorithm performs about 1 dB

better than the SIHT via root-MUSIC method, and it is about 1 dB away

from the NCRB.

Finally, we investigate the convergence of the proposed algorithm by count-

ing the number of missed signal frequencies over the iterations of the algorithm.

A frequency of the true signal is considered as missing in the estimated signal

when the root-MUSIC algorithm does not output any frequency within a dis-

tance of less than 5π/Nx radians/sample (which is the resolution limit under

the simulation set-up) to the true frequency.

The average number of missed signal frequencies over 4 iterations is pre-

sented in Table 5.2. The signal length is set to 1024 (Nx = 1024) and the

number of the measurements to 300 (Ny = 300). It can be seen that after 3

iterations, the root-MUSIC algorithm is able to find all the signal frequencies

(for σw = 2, 3, and 4). This indicates that the outer LS step of the algorithm

is converging to the true signal subspace, as the root-MUSIC algorithm is able

to distinguish more accurately between the signal and noise subspaces.

Table 5.2: Average number of missed signal frequencies

Iteration number 1 2 3 4
σw = 2 2.89 0.05 0 0
σw = 3 3.11 0.12 0 0
σw = 4 3.24 0.23 0.01 0
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Figure 5.1: Normalized bias versus number of samples after 10 iterations for σw = 2
and Ny = Nx/3.

88



1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

 

 

Model−based nested LS
SIHT via root−MUSIC
NCRB

N
M

S
E

(d
B

)

Iteration number (i)

Figure 5.2: Normalized mean squared error versus iteration number for σw = 2 and
Ny = 300.
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90



150 200 250 300 350 400
−30

−25

−20

−15

−10

−5

 

 

Model−based nested LS
SIHT via root−MUSIC
NCRB

N
M

S
E

(d
B

)

Number of measurements (Ny)

Figure 5.4: Normalized mean squared error versus number of measurements after 10
iterations for σw = 2.

91



Chapter 6

Conclusion

A summary of the contributions of the thesis is given in this chapter. We also

comment on the future work that can be done regarding different research

problems considered.

6.1 Summary of contributions

In this dissertation, we tackled the problem of parameter estimation in the

small sample size region and undersampled data scenarios. The contributions

of the thesis are as follows.

6.1.1 DOA estimation in the low sample size region

The performance breakdown of the subspace based DOA estimation meth-

ods in the threshold region where the SNR and/or sample size is low has

been studied in Chapter 3. The subspace leakage as the main cause of the

performance breakdown was formally defined and theoretically derived. We

proposed a two-step algorithm in order to reduce the amount of subspace leak-

age. The introduced method is based on estimating the DOAs at the first step

and modifying the covariance matrix using the estimated DOAs at the second

step. We theoretically derived the subspace leakage at both steps, and it was

shown that the subspace leakage was reduced at the second step leading to

better performance.

The behavior of the root-MUSIC algorithm in the threshold region has been

also studied, and a phenomenon called root-swap was observed to contribute
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to the performance breakdown. Then, an improved method was introduced

to remedy this problem by considering different combinations of the roots and

picking up the one that minimizes the stochastic maximum likelihood function.

The performance improvement achieved by the proposed method was pre-

sented using numerical examples and simulation results. We also combined the

proposed algorithm with the previously introduced methods in the literature,

which resulted in further improvement in the performance.

6.1.2 Analysis of averaged correlogram for

undersampled data

We considered the averaged correlogram for undersampled data which esti-

mates the spectrum from a subset of Nyquist samples. This method has been

analyzed in Chapter 4 by computing the bias and variance of the estimator.

The behavior of the estimator for finite-length signals has been investi-

gated. It has been shown that at a given signal length, the estimation accuracy

increases as the average sampling rate is increased (either by decreasing the

frequency resolution or by increasing the complexity of the system). It has

also been shown that at a fixed average sampling rate, the performance of the

estimator degrades for the estimation with higher frequency resolution. To

sum up, it has been illustrated that there is a tradeoff between the accuracy

of the estimator (the estimation variance), the frequency resolution (the num-

ber of spectral segments), and the complexity of the estimator (the number of

sampling channels).

It has also been shown that in the case of a white Gaussian process, this

method is consistent, as the bias and variance of the estimator tend to zero

asymptotically. Furthermore, it has been shown that the estimation made for

different spectral segments becomes uncorrelated as the signal length goes to

infinity.

6.1.3 Model-based spectral compressive sensing

A new signal recovery algorithm for model-based spectral compressive sens-

ing has been introduced in Chapter 5. We considered a general signal model
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consisting of complex-valued sinusoids with unknown frequencies and ampli-

tudes. Although the signal model is inherently sparse, its representation in the

Fourier basis does not offer much sparsity. For this reason, the conventional

CS recovery algorithms do not perform well for such signals.

The proposed algorithm estimates the signal iteratively by performing three

steps at each iteration. First, the outer LS makes an estimation of the subspace

in which the original signal lies. This is done by minimizing the squared

norm of the compressed estimation error. Next, the unknown frequencies are

estimated using the root-MUSIC algorithm. Then, the amplitudes of the signal

elements are estimated by the inner LS, and the result is fed back to the outer

LS for the next iteration.

The CRB for the given signal model has been also derived. Finally, the

simulation results have been presented, and it has been shown that the pro-

posed algorithm is able to converge after 5 iterations for the given settings and

it approaches the CRB at high signal to noise ratio values.

6.2 Probable future research

In Chapter 3, an improved subspace based DOA estimation method was in-

troduced. Our main focus was on the MUSIC algorithm. One possible route

for future research is to study other subspace based DOA estimation meth-

ods such as the ESPRIT [28] and Min-Norm [68] algorithms at the threshold

region. Then, the application of the proposed methods to these algorithms

can be investigated. Furthermore, we considered uniform linear arrays. There

are more sophisticated array configurations such as phased-array radars and

systems that employ multiple transmit antennas. In the phased-array radars,

scaled versions of a single waveform are transmitted from an array of antenna

elements, which allows quick scanning of space using digital beamforming [69].

In multiple-input multiple-output (MIMO) radars, more degrees of freedom are

provided by transmitting different waveforms via the antenna elements [70].

In the case of orthogonal waveforms, a virtual radar with more antenna el-

ements can be formed, which improves the angular resolution of the radar.
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A special form of the MIMO radar is the phased-MIMO radar which gives a

tradeoff between phased-array and MIMO radars [71]. Extension of the pro-

posed methods to these systems can also be an interesting research topic to

be studied.

Spectrum estimation from compressive measurements was studied in Chap-

ter 5. The elements of the measurement matrix were assumed to be drawn

from a Gaussian distribution, which is a common assumption in the CS the-

ory. Another possibility for future research is to consider sparse measurement

matrices consisting of only zeros and ones. Such a measurement matrix can

represent measurements from a sparse network with sensors randomly placed

in a field. Then, the introduced method will need to be modified to handle

the new system model.
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