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(1)

ABSTRACT

The relativistic gravitational collapse of an object is usually
considered in four stages: instability, implosion, horizon, and singular-
ity. In addition, the collapse itself falls into one of three categories:
spherical, nearly-spherical, or highly nonspherical. This thesis is
devoted to the presentation of three studies, each of which deals with a

particular phase of this complex problem.

In the first study we present some fairly elementary results,
related to the instability stage of spherical collapse. For simplicity
we deal with spherical shells. A solution of the Einstein equations is
derived, representing a thin spherical shell of charged fluid, falling in
a spherically symmetric field due to mass and charge at its centre. No
restrictions are placed on the equation of state. We integrate the equa-
tions of motion to find the law of conservation of total energy, and we
use it to study the equilibrium states of the system, and their stability
against collapse. We find under reasonable assumptions, that, given the
entropy and the equation of state, there is a maximum equilibrium mass, and,
corresponding to it, a critical radius, inside of which instability sets in.
For uncharged bodies, these results completely parallel, and serve as a
simple illustration of, the much more complicated analyses needed for fluid

spheres.

The second study is concerned with the implosion and horizon

stages of nearly-spherical collapse. Two idealized collapse models (again



(ii)

thin shells), involving a scalar monopole and a magnetic dipole, are
considered, treating departures from sphericity as small perturbatioms.
Radiative leakage (largely downwards through the Schwarzschild horizon)
causes the externally observable asymmetries to decay to zero in an
oscillatory fashion. These results have significant consequences for
astrophysics; they imply in particular that a "black hole' cannot be a

source of synchrotron radiation.

In the third study we deal mainly with the horizon stage of
highly nnmmspherical collapse, and we consider static scalar fields. We
prove the following theorem. Every zero-mass scalar field which is gravi-
tationally coupled, static and asymptotically flat, becomes singular at a
simply-connected event horizon. 1In the special case where the gravitational
coupling of the scalar energy density is neglected, the solutions are

computed explicitely. Some properties of the singular event horizons are

also discussed.
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CHAPTER 1

Introduction

§1.1 Spherical Collapse

The story of relativistic gravitational collapse really began
in 1916, when the normally formidible Einstein equations were shown, by
Schwarzschild [l], to yield, in the static spherically symmetric vacuum

case, a beautifully simple solution,

as? = -1 - %)cu:2 + (1 - -2]:2)’1c1r2 + r2(a6® + sin%e 442 . (1.1)
(We choose the signature to be - + + + and our units such that

G=c¢c=1.)

Several of the well-known properties of the metric form (1.1)

are worth noting.

(i) Recall that (1.1) is static. It can be shown that "any
spherically symmetric vacuum field is static'". This result
is known as Birkhoff's Theorem [2], and in particular it
tells us that, even in the case of a star undergoing catas-
trophic spherical collapse, the external line element is

just the Schwarzschild metric (1.1).

(ii) The apparent singularity at r = 2m is not a physical

singularity, but merely a pathology of the particular coordi-

nate system chosen - in fact, by transforming to different



coordinates, or examining scalars formed from the curva-
ture tensor, it is easily seen that the space-time is
perfectly well-behaved at r = 2m [3]. On the other hand,
the 1 = 2m hypersurface does have special properties. It
is an "event horizon" [4], i.e. it is the inner boundary of
the set of events which can be connected to spatial infinity
by future timelike lines. Also, every spacelike 2-sphere

52 (r = const. < 2m , t = const.) inside the r = 2m
hypersurface is "trapped", i.e. both systems of null

geodesics (outgoing as well as incoming), which meet S2

orthogonally, converge locally in future directions [5].

(iii) The singularity at r =0 1is a true physical one [6], i.e.
a free-falling observer would be torn apart by tidal gravi-

tational forces near r =0 .

Since the gravitationalsurface r = 2m is not physically
singular, there is no physical reason why a star should not fall inside
it. At the same time, once a star is inside its own gravitational radius,
it can never reemerge (property (ii)), hence collapse is irreversible.

In this sense then, general relativity predicts the inevitability of
spherical stellar collapse, and these predictions have been verified, for

certain idealized models, by several calculations [7].

The overall phenomenon of spherical gravitational collapse has

been portrayed by Thorne (8] as having four key stages:



(i) Instability. At a certain stage in its evolution, the
star runs out of nuclear fuel, which affects the equation

of state and thus leads to instability.

(ii) Implosion. In a very short time the instability causes
collapse to begin, with the dense core falling more rapidly

and leaving an outer envelope to trail behind.

(iii) Horizon. The stellar surface reaches its gravitational
radius in a finite time, as measured by a comoving observer.
However, to a distant observer, the star takes infinite time
to approach r = 2m , i.e. this surface is, for him, an
event horizon. This horizon becomes the boundary of a "black
hole", a region of space-time that can never communicate with

the "outside world".

(iv) Singularity. The star continues to collapse and soon reaches
the singularity at r = 0 , corresponding to infinite density

and infinite tidal gravitational forces.

§1.2 Nearly-Spherical Collapse.

A fundamental problem still remains. Does our present descrip-
tion of idealized spherical collapse also fit, to any degree of accuracy,
the case of a more realistic, non-spherically collapsing star? In other
words, will a star, whose collapse is nonspherical because of rotation,

magnetic fields, asymmetric demsity, etc., behave qualitatively like the



idealized spherical case? Or is it possible that these complications
might alter the spherical collapse picture by stopping or reversing the
collapse [9] or by eliminating the event horizon [10], thus leaving the

r = 0 singularity visible to all?

A complete solution to this problem still is not known,
although several recent results have provided us with a good picture of
collapse, in the special case of small perturbations from sphericity. We

will briefly outline these developments now.

In 1963, we were again very fortunate when the Einstein equa-
tions miraculously yielded another simple solutionm, namely, that of Kerr
[11], for stationary axi-symmetric vacuum fields. This was generalized

to include the case of charge, a short time later [12j}.

Early studies of perturbed spherical collapse, while lacking
detail, indicated that: (i) the external field of a collapsing star
should become asymptotically stationary [13];

(ii) if we assume (i), then in order to avoid
singularities [14], all externally-viewed asymmegries must somehow

disappear [15] as the collapsing object approaches the horizon.

More recently, these results have been largely confirmed.
Novikov [16] proves that, in fact, the perturbations do not become singular
near the horizon. De la Cruz, Chase, and Israel [17] numerically trace the
perturbed collapse of several simple idealized models, and show that, as
predicted, the perturbations do not blow up, but are "radiated away" as

gravitational, electromagnetic, or scalar waves — some going off to



infinity, and the rest falling in through the horizom.

The definitive contribution in this area is undoubtedly the
beautiful work of Price [18]. He also carries out numerical analyses
of perturbed collapse, and is the first to succeed in showing how the
"tails" of the radiated waves die out, for large t . Even more impor-
tant, he proves a theorem that explains exactly why the perturbations

are radiated away.

We can therefore summarize nonspherical gravitational collapse,

in the case of small perturbations, in the following way:

(i) Nearly-sherical collapse does behave qualitatively like
idealized spherical collapse (except possibly for the
“"singularity" stage, about which little is known). In
other words, perturbed spherical collapse a}so fits into

the standard mold - instability, implosion, horizon.

(ii) Price's Theorem: '"In relativistic gravitational collapse
with small nonspherical deformations, anything that can be
radiated, will be radiated away completely.'" This theorem
holds for zero-rest-mass fields of arbitrary integer spin.

It is well known that all multipole moments of order £ > s
(for a massless spin-s field) can be radiated away - the

rest cannot, i.e. they are "comnserved". According to Price's
theorem, then, the end result of nearly-spherical collapse
must be a "black hole" exhibiting no scalar field, only a

monopole electromagnetic field (charge), only monopole and



dipole gravitational fields [19], and so on.

§1.3 Highly Nonspherical Collapse [20]

The question of whether or not biack holes still are formed,
when the collapse is of a highly nonspherical nature, has become a
widely investigated problem in recent times — a problem not yet fully
resolved. Nevertheless, mounting evidence, while still not conclusive,

points to the following results:

(i) "The Black Hole Conjecture'". A black hole forms when and
only when a mass m is somehow compressed until its circum—

ference in every direction is C < 4mm .

(ii) "A black hole has no hair". This colourful expression of
J.A. Wheeler memorably paraphrases the conjecture that,
after collapse, the horizon will eventually settle down to
a stationary state, whose external field is given by the
“charged Kerr" metric. In other words, a black hole, and
hence its exterior geometry, is ultimately determined by
just three "conserved quantities" - the mass m , charge e ,

and angular momentum J that fall dinto the hole. Other

factors, such as the collapsing body's asymmetries (e.g.

gravitational quadrupole), or locally conserved quantities

(e.g. baryon number), have no net effect on the external

field [21].



We will briefly review the theorems and analyses that tend
to support these conjectures. The main evidence in support of (1) is
naturally its well-established truth for spherical and almost-spherical
collapse. Several examples of highly nonspherical collapse have been
demonstrated, in which no horizon is formed [22]. However, these
examples are pathological in nature, and the absence of a horizon seems
due to the fact that the collapse does not occur in all directions
(hence the inclusion of the phrase '"in every direction" in the black

hole conjecture).

The plausibility of conjecture (ii) is enhanced by a series
of rigourously established results, concerning static and stationary
event horizons. We can summarize the static (g = Q) results as

follows:

(i) The Schwarzschild fields with m > 0O are the only static,
vacuum (e = 0) solutions which are asymptotically flat
and possess simply-connected equipotential 2-surfaces

(go° = const.) , and a nonsingular horizon Boo = 0 [23].

(ii) The Reissner-Nordstrom solutions with m > |e| occupy the
same unique position in the class of all static electrovac

solutions [24].

(iii) Every zero-mass scalar field which is gravitationally
coupled, static and asymptotically flat, becomes singular

at a simply-connected event horizon [25].



From these theorems we would like to conclude that "a nonro-
tating black hole has no hair', i.e. it is completely determined by the
mass m and charge e (if any) that goes down the hole. Unfortunately,
we cannot draw this conclusion, for two reasons. First, the topological
requirement that the equipotential 2-surfaces be simply-connected, is
overly restrictive, and should be dropped. Second, the demand for static
solutions is too strong and must be replaced by the weaker conditions
"stationary plus J =0". A definite improvement, in the uncharged case,
has been made by Carter [26] who reproves result (i) with the changes
indicated, except that he needs to assume axial symmetry — an unfortunate

restriction which no one has yet succeeded in removing.

In the case where angular momentum is nonvanishing, established
results have been found only recently. Carter [27] was the first to
provide valuable evidence in support of our conjecture. He again considers
the charge-free case, and shows that all asymptotically flat, stationary
vacuum fields, satisfying several additional (and unwanted) requirements
including axial symmetry, comprise a 2-parameter family, where one of the
parameters is the magnitude of the angular momentum. Moreover, only the
family of Kerr solutions contains a member with J = 0 , i.e. only the

Kerr family contains the Schwarzschild subfamily.

Very recently Hawking [28] has proved the following important
result: every stationary field containing an event horizon, which consists
of past and future sheets intersecting in a 2-space with the topology of a
2-sphere, and which is vacuum in some neighbourhood of the horizon, is either

static or axisymmetric. This theorem can now be combined with the earlier



theorems of Israel (static) or Carter (axisymmetric) to "almost prove'"
(we still have several unwanted requirements) that the field must be

Schwarzschild or Kerr, respectively.

If this "combined theorem" eliminating the possibility of other
2-parameter families distinct from the Kerr family, can be reproved, without
the unwanted conditions, it will establish that a stationary vacuum black
hole is a Kerr black hole, and from there, it seems very reasonable that the
external field of a stationary electrovac black hole will be of the 'charged

Kerr" type. However, at present these remain unverified conjectures.

§1.4 Summary of the Thesis.

The previous three sections have provided us with a brief survey
of the overall field of relativistic gravitational collapse. The purpose
of this dissertation is to present several separate results - each of

which deals with a particular phase of this complex problem.

In Chapter II we present some fairly elementary results, related
to the instability stage of spherical collapse. For simplicity we deal
with spherical shells. A solution of the Einstein equations is derived,
representing a thin spherical shell of charged fluid, falling in a
spherically symmetric fieid due to mass and charge at its centre. No
restrictions are placed on the equation of state. We integrate the equations
of motion to find the law of conservation of total energy, and we use it

to study the equilibrium states of the system, and their stability
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against collapse., We find, under reasonable assumptions, that, given
the entropy and the equation of state, there is a maximum equilibrium
mass, and, corresponding to it, a critical radius, inside of which
instability sets in. For uncharged bodies, these results completely
parallel, and serve as a simple illustration of, the much more complica-

ted analyses needed for fluid spheres.

Chapter III contains studies concerned with the implosion and
horizon stages of nearly-spherical collapse. Two idealized collapse
models (again thin shells), involving a scalar monopole and a magnetic
dipole, are considered, treating departureé from sphericity as small
perturbations. Radiative leakage (largely downwards through the Schwarz-
schild horizon) causes the externally observable asymmetries to decay to
zero in an oscillatory fashion. These results have significant conse-
quences for astrophysics; they imply in particular that a black hole

cannot be a source of synchrotron radiation.

In Chapter IV we deal mainly with the horizon stage of highly
nonspherical collapse, in the case of static scalar fields. We prove
the following theorem. Every zero-mass scalar field which is gravitation-
ally coupled, static and asymptotically flat, becomessingular at a simply-
connected event horizon. In the special case where the gravitational
coupling of the scalar energy density is neglected, the solutions are
computed explicitely. Some properties of the singular event horizons are

also discussed.
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CHAPTER II

Gravitational Instability and Collapse
of Charged Fluid Shells

§2.1 Introduction.

In this chapter we consider the motion of a spherical shell
of ideal fluid, with charge e and mass m , falling in the external
field due to a spherical iistribution of gravitational mass m, and
charge e, at its centre. In Newtonian theory, the dynamics of this

system are described by
T+ U+ (e,-e)2/2R + (e,-e e /R - (m,-m)2/2R
2 71 2 "1°71 21
~ sz-ml)ml/R = const. ,

expressing conservation of total energy, along with the adiabatilc

condition
2
du = -p d(4mR7) ,

where T = kinetic emergy , U = internal energy, P = surface pressure,
e2 = e+e1 > m2 = m+m1 .
It is our aim to establish the relativistic analogue of this,

namely
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1+i12-A+B/R+ C/R2 .

A= (mz-ml)Z/M? » B = m+m, - (mzqml)(ezz-elz)/Mz (2.1)

—_—

C= (ezz-elz)zléM2 + M2/4 - (e12+e22)/2 s

where A , B , C are functions of M = Mb + U, and dM = —Pd(4wR2) .
In what follows, we will associate with the shell three different
"masses': M.o (sum of the rest masses of the comstituent particles

of the shell), the total proper mass M (the "bare or baryon mass"

Mb plus the internal thermal energy of the shell), and the gravita-
tional mass m (the total energy of the shell). M and m are then

o]
constants of the motion.

Although the problem of gravitational collapse of a thin
shell is a hypothetical one, from a physical point of view, it is never-
theless useful, because in its crudest overall aspects, the dynamics of
stellar collapse turns out to be not too sensitive to the detailed
distribution of matter within the star. The advantage of such a shell

model is that a complete solution can be easily found in an explicit

form [29].

Various special cases of the general result (2.1) have been
obtained previously. Israel [30] has derived the equation of motion of
a spherical shell of incoherent dust (mlﬂel-ez-o ; zero pressure) and
studied its collapse [31]., Using a similar approach, de la Cruz and

Israel [32] have dealt with a charged shell of dust in the field due to
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a concentration of mass and charge near its centre (zero pressure).
Papapetrou and Hamoui [33] have studied uncharged shells of ideal

fluid (ml-el-e2-0) and their motions, assuming a particular equation
of state [34]. Kuchar [35] has considered charged fluid shells
(ml-e1=0) , but restricts the equation of state to be polytropic. We
propose to obtain (2.1) without placing any restriction on the equation

of state.

After some preliminaries (§2.2), the equations of motion for
the system are derived (§2.3) and integrated (§2.4), giving (2.,1). 1In
§2.5, we deal with the stability of an uncharged fluid shell (ml=e1=
l==e2-=0) in equilibrium. A brief treatment of stability for the more
complicated original system is given in §2.6. At several points we

refer to Appendix A, which contains some results of two-dimensional

relativistic gas theory, necessary in this work.

§2,2 Geometrical and Dynamical Preliminaries.

A brief sketch of the geometry and dynamics of a thin shell of

ideal fluid is offered here [36].

Let Z be a timelike hypersurface, dividing space-time into
two 4-dimensional domains, Vd_ and V_, and belonging to the boundary
of both [37]. Suppose gi are intrinsic coordinates for z s, with
e

~(1)
normal to z (directed from V_ to V,) . For an arbitrary vector field

the assoclated tangent base vectors, and n a unit spacelike

A , the intrinsic covariant derivative with respect to gj is defined by
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3 k

= ) jﬂ -
Ay T 2 3A/3¢ 34,/3g ATy 49 0 (2.2)
where the Christoffel symbols Ty 13 are given by
]
r = e - 2e /agj . (2.3)
k,ij  ~(k) ~(1)

Non-intrinsic properties enter by means of the extrinsic curvature
3-tensor of Z , which measures the variations ag/agi of the unit
normal. Each of these three vectors is perpendicular to n (hence

tangent to X ), so we may write
i_ i
dn/3¢g Ky 2(4) s (2.4)
which leads to

- - i-_ . i.— . j-
Kig = Sgy © PRIOF = M- dg(4y/08 = - dg(yy /g T Ky o (203)

1] ji

In general, when measured with respect to V+ and V , the correspond-
ing components of this tensor, KIj and K;j , may or may not be equal,
However, in order that 2 be (the history of) a surface layer [38], we

require KIj ¥ K;J . It then follows, provided

S -
is nonvanishing, that z is the history of a thin shell.

From (2.3) and (2.5) we obtain the Gauss-Weingarten equations
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j - e .
ae(i)/ag Kij n + Fij e(]) ’ (2.7)
which, with (2.2) leads to
o - § _ Al
A/3E A :4 e(i) A Kij n . (2.8)

1
Taking 3/3t  of (2.7), using (2.4) and (2.7), and applying
the Ricci commutation relations [39] we obtain the well-known Gauss-

Codazzi equations
R e eB e e6 = R - K + K (2.9)
agys S(2)%(0)%()%(@) ~ Rabed ~ Kacfba ¥ Foctad y

a B oY o8 = -
RaByG n e(b)e(c)e(d) Kbc;d Kbd;c * (2.10)

Operating on (2.9) and (2.10) with gbcgad and gbd

respectively, and using the fact that

be B8 Y By B Y

g e(b)e(c) = g - n'n . (2.11)
we find
+ +
3, _ ab 2{— _ _ a_B|—
R KabK + K | 2 GaB nn | . (2.12)
+ +
b - — - a Bl—
Ka sb K;al GaB e(a)n | , (2.13)

where 3R is the intrinsic 3-curvature invariant of Y, K= gabKab ’

and G = R

1
B ag "2 gaB R 1is the Einstein tensor.
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Let u be a unit vector, tangent to Z , representing the
velocity of matter in the shell. Then, from (2.8), the 4-acceleration

of an element of the shell, as measured in V+ and V_ , is [40]

+
ui uj - nal(ijuiuj - . (2.14)

i) |

+
su®/st| = e?

Since any motions of the shell are in a direction normal to the shell,

we restrict our interest to the normal components of (2.14), namely

+ +
naGua/Gt - 1 jK—

= -uu 13 s

from which, by adding and subtracting, we obtain

+ -
a a - i3>
naGu /8t + nasu /8t 2u”u Kij R (2.15)
a su®/st| - n su®/st ) - - uiuj Y (from (2.6)). (2.16)
a v 13

Turning to dynamical consideratioms, the components of the

surface energy 3-tensor are defined by the 'Lanczos equations",

Yij - gin - _3,,51:I . (2.17)
or equivalently

= -8n(S (2.18)

1
Y14 14 "2 813 ) -

We also have Einstein's field equations,
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G _ = —-8aT (2.19)
a

af g °

satisfied in the regions V_ and V+ , exterior to the shell. Using
(2.17) and (2.19), the jumps of (2.12) and (2.13) across z can be

put in the form

132 o a B
S Kij [TaBn n | » (2.20)
1 .. « B
Si;j [TaBe(i)n ] . (2.21)

For a shell of ideal fluid, the intrinsic surface energy tensor has

the form
Sij = (g+P) uiuj + Pgij . uiu a ~ 1 ’ (2.22)

where P 1is the surface pressure, and ¢ 1is the surface energy density

of the fluid. It is easily shown from (2.20) and (2.22) that

~

i3 - -1 [~ a 8
-2u'u Kij 2(o+P) {PK-['I(‘IBn n-]} s

and from (2.18) and (2.22) that

-uiujyij = 8x(P+a5/2) .

Hence (2.15) and (2.16) can be written

+ -
naGuaIGT + naéua/ST = 2(cr+1’)_l {PK—[TaBnanB]} . (2.23)
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+ -
nasua/GT - naau“/sr = 87(P+a/2) . (2.24)

Note that these results agree with those of de la Cruz and Israel [41]

for zero pressure, and are identical with Kuchar's results [42].

For future reference, it is easily derived from (2.21) and

(2.22) that

(°“j);3 + P“g = [Taee?i)nel ot = [Tas“a“B] . (2.25)

§2.3 Charged Spherical Shell of Ideal Fluid in a Spherisymmetric
Electrovac Field.

Consider a charged shell of ideal fluid, falling in the field
due to a spherically symmetric distribution of mass m, and charge
e, , mear its centre. Let r = R(t) be the equation of ) . Then its

intrinsic metric is given by

2 2

(dsz)x = (R(1)}? da? - dt (ao? = e + sinede?) (2.26)

where gi = (6,¢,7) and Tt 1is proper time along the streamlines
6,4 = constant. In both V+ and V_ , the line element is reducible to
the Reissner-Nordstrom metric, by extension of Birkhoff's theorem [43].

Hence we have

@) _ = (£_(0)y tar? + PPae? - £_(matZ @ <R, (2.2D)

(d32)+ - {f+(r)}-1dr2 + r2dg? - f+(r)dti (r > R(t)) ,  (2.28)
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where

2,2 2, 2
£ (v) = 1-2m1/r + el/r . f+(r) 1—2m2/r + e2/r . (2.29)

It is easily seen, by proper choice of t_(1) » t+(r) on ) , that

the metrics induced by (2.27) and (2.28) on z , agree with (2.26).

It can be verified, by intrinsically differentiating

uaua = -1 , with R = dR/dt and E+ = dt _/dt , that [44]

1

+ -_—
- a - =1 » . 2.2 ¢
0 = u bu /6T £,(R) "R R/8t ~ {f+(R) + R} 6t+/5‘r . (2.30)

We now use (2.30) to eliminate 6t+/61 from

+ 1

n_su®/or| = (£,(R) + &Y

-—l - - L
f+(R) 8§ R/st - RS t+/61 ’
and since
° - .. 1
SR/6t = R+ 5 df+(R)/dR s

we finally obtain, from (2.29),

1
+ -2

n_su®/st| = {£,(R) + 27 2 @R+ mZ/RZ - e§/R3} . (2.31)

The analogous expression for naSua/GT is

(N

a_6u®/st| = {£_(R) + R b 2 R+m /R - G/R) (2.32)
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The energy tensor associated with the Reissner-Nordstrom

metric (2.27) is given by

b4 1203, 20 4
-T4 Tl T, T3 el/8nr (other components zero), (2.33)

with e, replaced by e, for the metric (2.28). From (2.33) it 1s

easily shown that

8 +
Tauans =0 , (2.34)
[TusnanB] - -(e§ - ei)/SnR4 ) (2.35)

Using (2.25) and (2.34) it follows that

(ou

.‘l).

2'
33 (2.36)

The left side of (2.36) is just the rate of increase of surface energy,
while the right side is equal to minus the rate of work done by the
pressure in expanding the shell. Hence, unlike the de la Cruz and
Israel result for dust [45], the proper mass of an element of fluid

under surface pressure P changes with time.

We can now write (2.23) and (2.24), using (2.31), (2.32) and

(2.35), in the form

2 2,3
{R#m,/R" - e /R"}

N

-1
2

(£, (R) + K2} 2 (iemy/RE - eB/R%) 4 (£ (R) + KD

- 2(o+P) “HEE + (eg-ei)/BnRA} ,

(2.37)
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-1
2

Nj =

.2 N 2 2,3 .2 - 2 2,3
{£, (R) + R} {Rm,/R” - e,/R"} - {£_(R) + R} {Rim, /R" - e, /R"}
= 87 (P+c/2) . (2.38)

We call (2.37) and (2.38) the equations of motion for the system. In

order to simplify the notation, we define F+ = {f+(R) + ﬁ?}l/z and
F_= {f_(R) + &K2}/2 . Then (2.37) and (2.38) become simply
. e e -1 o 2 2 4
{F, + B_}R = 2(c+P) 7" {PK + (ej-e)) 87R'} (2.39)
{F, - F_}/R = 81(P+o/2) . (2.40)

§2.4 Integration of the Equations of Motion.

A first integral of (2.40) is obtained by noting that, for
the intrinsic coordinates of (2.26), we have ui = (0,0,1) , therefore

u?j = 2R/R . From (2.36), it then follows that

(P+/2)R = - % d(oR)/dT . (2.41)

It is worth pointing out that (2.41) 1is just M= -PA , where A =

area = Asz , and M is the total proper mass of the shell, defined by
2
M= 47R"c . (2.42)

Using (2.41), (2.40) can be written equivalently as
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F,~F_-= -47d(oR)/d T , (2.43)

which can be integrated to give (from (2.42))

F,-F_=-MR-C , (2.44)

where C 1is a constant of integration. Multiplying (2.44) by

(F+ + F_) and using (2.42) leads to
F 4+ F = 2(m.-m.)/R(4TRo4C) - (e2-e2) /R (4mRo+C) (2.45)
P F_ 2703 27¢1 . y

From (2.5), a long but straightforward calculation gives

K=K

ijgij - (F, +F_VR+7 (B +E_ R . (2.46)

pPutting (2.46) into (2.39) and simplifying, yields
. . . 2 2. . 4
{F, +F_} = (2PR/oR) {F_+ F_} + (e, - el)R/lnrR g . (2.47)

Substituting (2.45) and its time derivative into (2.47), and comparing
both sides, with the aid of (2.41), it follows that C must vanish in
order that (2.45) be compatible with (2.39). Hence, using (2.42),
equations (2.44) and (2.45) become

1 1

2, .22 2,2 2,22 2.2
M=FR-FR={R(I4R") - 2mR + ell © - {R7(1+R7) - Zm,R + e,} ,
(2.48)

FR+ F,R = {2R(m,-m;) - (eg—ei)}/M . (2.49)
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Differentiation of (2.49), with the help of (2.41), will give (2.47),
showing that, as expected, (2.49) is an integral of (2.39). Equations
(2.48) and (2.49) can be combined, by adding and squaring, to give

the final form, (2.1).

At this point, several remarks should be made concerning the

integral of motion.

(1) This integral (2.1) along with (2.41) (i.e. along with
dM = —Pd(&nRz)) sums up the information contained in all the previous

equations related to the motion of the system.

(11) Our result is precisely that obtained by de la Cruz and
Israel [46] for zero pressure, except that, in our case, the total

proper mass M 1is not constant.

(111) 1In the special case m, = e, = 0 , considered by Kuchar [47],

1 1
(2.1) can be written in the equivalent form

1
m = M(1+8%)2 - P—e?)/2R (2.50)

expressing the conservation of total energy m of the shell. OQur
integral, then, is a generalization of this conservation equation, to

non-zero m and e
1 1°

(iv) The integral (2.1) is also a generalization of Kuchar's
result in a different sense. 1In obtaining (2.50), Kuchar makes the
assumption that the equation of state is polytropic, i.e. that the

adiabatic exponent, defined by
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y = - dfnP/dfnA , (2.51)

is constant. In our considerations, however, no mention has been made

of any restrictions on the equation of state, and, in fact, none need

be made.

In Section 2.6 we consider the stability of this system, and
we make use of definition (2.51), keeping in mind that vy 1is not

constant, but is itself a function of the entropy and the density {481.

§2.5 Stability of an Uncharged Fluid Shell.

In this section, we avold several involved computations,and
consider the reasonably simple case of an uncharged fluid shell

(ml =e = e, = 0) . We want to study the stability of such a system

against collapse.

The integral (2.1) can be simplified, in this case, to

1
m = M(l+§?)2 - MZ/ZR = total energy » (2.52)
which, along with
2
dM = - Pd(4nR") , (2.53)

and the equation of state, completely describes the motion of the
shell. Consider a momentarily static configuration, that is, a shell
for which, at some instant, R=0 . Taking d/dt of (2.52), and

using (2.53), it is immediate that
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(MR), = 87R(1-M/R)(P-T) (2.54)
R=0

where T 1is defined by
2 2
r = M°/167R"(R-M) , (2.55)

representing thegravitational.self—attraction of the shell [49]. If
the equations of state P = P(oo) sy O = o(oo) are given (co is the
"pare mass density"), then the configuration and initial acceleration
of any momentarily static shell are completely determined by any two
pieces of data. For example, suppose we are given the number of
particles (i.e. given Mb) and the radius R . Then % follows

from o = Mo/4nR2 , and hence P = P(oo) s O = c(co) s M, m,

and T are found from (2.42), (2.52) and (2.55) respectively. Finally
R follows from (2.54). Hence, to any momentarily static configuration
of a given shell (of fixed Mb)’ we can assoclate a potential function

m(R,Mo) :

a, -y -ul/2R =M+ U - /2R (2.56)
RFO,Mofixed
In a quasistatic displacement, the change in this potential function

can be written

dm = - 87R(1-M/R) (P-T)dR ,
RFO,Mofixed

1/2

and since 1-M/R = (1-2m/R) from (2.56), we have
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-

dm_ = —(1-20/R)% (p-T)d(47RD) . (2.57)
R=0,M_fixed

This can be thought of as the energy change, measured by an observer
at infinity. The term (P—F)d(4wR2) is the local measure of work
done, AE , and it is decreased by ~AEm/R , the amount of energy lost

in pushing AE up to the distant observer.

Suppose now that the shell is in equilibrium. Then
R=kR=0 |, (2.58)

hence from (2.54)

P=T . (2.59)
From (2.57), this is seen to be equivalent to

(dm/dR) _ = 0 s (2.60)
R?O,Mofixed

i.e. the potential energy is statiomary for equilibrium.

As a result of this additional cqndition, we have that,
given the functions P(oo) s a(co) , an equilibrium state is completely
determined by a single datum. Under the assumption of equilibrium,

P =T , equation (2.55), with M = 4nR20 , gives R as a function of

R = P/no(o+ 4P) . (2.61)
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Similarly
2 2
M = 4P /no(o+ 4P) (2.62)
and
2 3
m = 4P°(o+2P) /7o (o+4P) (2.63)

follow from (2.42) and (2.56).

Consider the class of all equilibrium states, each of which
is specified by a particular equation of state, and one piece of data
(say Mo) . In the non-relativistic limit (P << co) , the equation
of state is given by P o 02 (see Appendix A), hence, from (2.63),

1im m®P,o(P)) = 0 . Similarly for the ultra-relativistic limit
P->0

(P >> oo) , we have P a o (see Appendix A) and 1lim m(P,o(P)) = 0 .

P
We conclude that there must be at least one maximum for m(P,0) . If
we suppose, for simplicity, that there is exactly one maximum, we can
represent the class of all equilibrium states P =T, by the solid
curve in Figure 1. For a given m , then, there may be two or more
equilibrium states. Presumably, not all of these will be stable

against collapse.

Let us look at the stability of a particular shell of fixed
Mo , whose equilibrium configuration is represented by the point E

(Figure 1). The assignment of Mo completely determines e RE s
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PE . We now displace the shell quasistatically to A , as in (2.57),

keeping Mb fixed. Since work is done, m, # m, . At A we

release the shell to move freely (m = m, = constant). In order that
the system be stable, it is necessary and sufficient that ﬁA is
opposite in sign to RA - RE , thus causing the shell to move from

A to B, turn around, and continue to oscillate about E' . Hence,
from (2.54), (P—I‘)A must be opposite in sign to R, - R, . Therefore,
a necessary and sufficient condition that the equilibrium at E be

stable is that

(d/dR) (P-T) <0 , (R= RE) . (2.64)
k;o,Mo fixed

From (2.57) and (2.60), we see that (2.64) is equivalent to

(dzm/dRZ). >0

, (R=R) , (2.65)
R=0,M_fixed "

i.e. the equilibrium at E is stable if and only if the potential
function m(RE,Mo) is a minimum. In the remainder of this section, we
will understand that dm/dR etc. are taken with R =0 , M.o fixed,

although we no longer write these conditions, for brevity.

We now derive an expression for the critical radius, RC , at
which stable equilibrium configurations become unstable. Taking d/dR

and d%/dR® of (2.56) at R = R, , conditions (2.60) and (2.65) become

dm/dR = (dM/dR).(1-M/R.) + M%/2R® = 0 , (2.66)
E Rg Rg
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a®n/ar? = (aPM/ar?) (1-M/R)) - (aM/dR)((aM/dR)y - ZM/Rp) /Ry -
- MZIR; >0 . (2.67)
From (2.51) and (2.53), it is not difficult to show that
(@i/ar?y | = (aw/aR) LQ-2v) /Ry - (2.68)

Substituting (2.68) into (2.67) and simplifying, by means of (2.66),

the stability condition becomes
vy - 3/2 > {M/(RE—M)} {M/4(RE—M) + 1} . (2.69)
Using (2.56), (2.69) can be written
1 1
v -2 11+ Ry @E2Rm?) R,/ (- 433 . (2.70)

To obtain an approximation, we assume RE >> m and neglect second
order terms in m/RE . Then (2.70) becomes simply the condition that

the equilibrium at E is stable if and only if
3 3 .
Rp > m/(y - 5) ~Ry » F<YZ 2 (see Appendix A) . (2.71)

It is interesting to note the similarity of this result and that of
Chandrasekhar [50] for fluid spheres, namely that stable equilibrium

occurs for

RE>2Km/(Y—%)~RC , %<y£-§— , K~1 .
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We conclude this section by showing that equilibrium states
such as E (where P < PC) are stable against collapse, while config-
urations such as F (P > PC) are unstable. Since dm/dP = (dm/dR) x
(dR/dP) , we see from (2.59) that the Mo = constant curve (broken line

in Figure 1) has extrema at E and F . It also follows from (2.60)

that
a2m/ap? = (a®w/ar®) (ar/ap)? (2.72)

hence from (2.65) the equilibrium at E is stable if and only if that
curve has a minimum there. Since noextremum occurs between E and F ,
it is immediate that stability (instability) at E implies instability
(stability) at F . This argument shows that the critical radius RC
must correspond to the equilibrium state at C . That the equilibrium
is, in fact, stable at E , can be shown by considering (2.71) in the
non-relativistic limit (y - 2) . 1In this limit, as E approaches the

origin along P =T , we have P a 02 , hence 1im m(P,o(P)) =0 ,

P->0

while 1im R(P,o(P)) is finite, from (2.61). Therefore (2.71) is
P->0

satisfied near the origin and we have stability there. Consider again
a quasistatic displacement from E (near the origin) to A along
MO = constant. If we make the reasonable assumption that P is a mono-—

tone function of O, » then de = 0 implies
(dr/@P) = - (R/20°) (dco/dP) <0 .

Thus, the increase in P from E to A is coincident with a contraction
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of the shell. This fact, together with the stability at E , is
sufficient to show P > I' throughout the region under the P =T
curve. It then follows that the equilibrium states are stable for

P < PC and unstable for P > PC .

§2.6 Stability of the Charged System.

We return now to the original system, and derive a condition
for stability against collapse. We consider only configurations which
are outside the upper Nordstrom horizon, i.e. we assume [51]

1 1

2 2,2 2 2,2
R>m, + (m; —e))” >m + (m - e)” .

It is convenient to deal with the integrals (2.48) and (2.49) rather
than (2.1). For an equilibrium configuration at R = Ro we must have
(2.58) satisfied there. Then one equilibrium condition can be written,
from (2.48) and (2.58), as

1 1

M= (F_R - F,R) 2 @2-eD)? .

PR = (® -mp? - @i-eD)? - (R -my)
(2.73)

Taking d/dt of (2.48) and using (2.58), a second equilibrium condition

is found to be

_ -1 -1
(dM/dR)Ro = (Ro—ml)(F_R)Ro - (Ro—mz)(F+R)R° . (2.74)
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Equivalently, if we write (2.49), from (2.48), in the form

- 2_2 -
m = my,~m, = F M {M? - (ez—el)}/ZR = constant , (2.75)

and follow an argument identical to Section 2.5, we see that

(P—I‘)R =0 , (2.76)
o

in order that equilibrium be maintained. In this case, T represents
the gravitational self-attraction, together with the electrostatic

forces, and is given by

- o2 2_2 2 -1 2 _
Ty~ M - (ej-e]) + 2M(mR —e]) (F_R)Ro}/161rRo {(F_R)Ro M} .
(2.77)

As in the previous section, the equilibrium will be stable, provided

(d/dRr) (P-T) <0 , (R=R) . (2.78)
RPO M fixed °

If we now substitute for P from (2.53), and for T from 2.77),
and evaluate the left side of (2.78), the resulting complicated expres-

sion can be reduced, with the aid of (2.73) and (2.74), to
@/ar?y. + ((@2-e?)(F R - (ml-ed) (R} 31 50 (2.79)
R, 1717V -R 2"%2 R, . :
From (2.68) and (2.74) we find

o

@war?y, = {(Ro-ml)(F_R);i - (Ro—mz)(F+R);2}(1—ZY)/Rb . (2.80)
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Substitution of (2.80) into (2.79) leads to the final form

-1 -1 2 2 -3
{(Ro-ml)(F_R)RO - (R -m,) (F+R)Ro} (1-2y)/R_ > (m,-e,) (F+R)Ro -
2 2 -3
- (mj-ey) (F_R)Ro . (2.81)

This form of the stability condition is a function of the equilibrium
radius Ro , alone, since m, m, , € » e, are fixed. Since Yy >3
and (dM/dR)R is negative (from dM = —Pd(4nR2) , P>0) , it is

o

clear, from (2.74), that the left side of (2.81) is positive. Thus,
instability for some Rb > m, + (m;—eg)llz can occur, only when the

right side of (2.8l1) is positive. We now show that this is always

the case.

The obvious restriction on the equation of state that P > o,
becomes, for equilibrium, the conditiom that T > 0. From (2.77),

this restriction can be reduced to the simple condition

2 2

(mi-ei) /R m)? < (m%—eg)/(Ro—mz) 3 (2.82)

This is a generalization of the condition m? - e2 > 0 , found by
Kuchar [52]. Using (2.82), it is straightforward to show that the right
side of (2.81) is always positive. We therefore see, under the physi-
cally reasonable assumptions Iell <m o, le2| <m, , that instability
can occur outside the upper Nordstrom sphere. To show that, in fact,

it does occur, it is sufficient to prove the existence of a critical

radius RC > m, + (mg-eg)llz . If we evaluate both sides of (2.81) at
the Nordstrom sphere R = m, + (mg—eg)llz , we find that condition (2.81)
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is violated, indicating instability. Similarly, it is trivial to show

that, as R » = , the condition is satisfied, hence instability sets

_ 2 2.1/2
in somewhere outside R = m, + (m2 e, .
An approach which is perhaps more instructive, is to assume
Ro >> m, and find an approximating stability condition, which is
more informative than the exact relation. Neglecting second order terms

in mZ/Rb , we can write (2.75), with R = 0, as
_ 1 2_2 _ _ (22 _
n=M+35 {(m-e])/(R) m,) - (m, er)/ (R -my)}
and hence an approximating condition can be found, from (2.65), to be

o (@2-e2) - m( 2_.2,

g 5 2x-l 27272 my imy =€y
>

o 2y-3

. 2.83)
5 2 52 , (
(my-e3) = (my=ey

for stabi.ity. Under the assumption Ro >>m, , (2.82) becomes simply

mi—ei < mg-eg , i.e. the denominator of (2.83) is positive. Hence

2y-1
Ry > 3y3 T2

for stability. In the case of particular interest, an effectively "hot"
gas exerting pressure, we have vy +-§ and therefore, only very diffuse

2

equilibrium states are stable.



- 36 -

CHAPTER III

Gravitational Collapse with Asymmetries

§3.1 Introduction

Every static nonspherical perturbation of Schwarzschild's
exterior field, due to gravitational or electromagnetic sources within
the stationary lightlike surface 800 0 [53] becomes singular on this
surface [54]. The same is true for all static zero—-mass scalar pertur-
bations [55] — spherical as well as nonspherical. Further, it appears
from the discussion in §1.3, that stationary perturbations of Kerr's
rotating solution have a similar property [56]. Assuming these results
to be applicable to the asymptotically stationary exterior field of a
collapsing star, one is led to the conjecture that all externally detect-
able asymmetries, including scalar and magnetic fields, must somehow decay,
leaving behind Schwarzschild's vacuum field (or, in the case of nonvanish-
ing charge and angular momentum, the "charged Kerr" field) as the sole

external manifestation of the collapsed object.

To examine these questions, we carry out a dynamical analysis of
two idealized collapse models, one involving a scalar monopole, the other
a magnetic dipole. Our results support the foregoing conjecture and reveal
the decay mechanism to be a rapid radiative leakage of the perturbing field,

largely downwards through the event horizon.

We cast the Schwarzschild metric into the form
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ds? = o dxdy + r2 4o
(3.1)
1
o=1-= s

where the retarded and advanced time coordinates -x,y are related to

the standard Schwarzschild coordinates by

]
!

(r-1) + £n(x-1) -t ,
(3.2)
(r-1) + £n(xr-1) + t .

<
0

Lengths are measured in units of the Schwarzschild radius 2m =1 .

Both of our models can be considered as linearly perturbed
variations of the following basic situation (Figure 2). A thin hollow
spherical shell of mass m =-% is initially static with radius
r=R > 1 [57]. At time ¢t = -1 x = -(R 1) - £a(R-1), it suddenly
begins to collapse with the speed of light [58]. This model, adopted for
mathematical simplicity, is highly artificial from an astrophysical point
of view, but does not violate any of the principles of relativity theory.
Moreover, our main interest is in the asymptotic behaviour of the exterior

field as t - « , and we do not expect this to depend too sensitively on

the precise structure of the source or the initial conditions.

The perturbations we intend to impose on this idealized collapse
picture are of two types — one a static spherically symmetric scalar mono-
pole, the other a static axi-symmetric magnetic dipole. Both, however, are

located at the centre of the collapsing shell, and both are assumed to be

weak.
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Since news of the onset of collapse cannot reach the interior
ahead of the shell itself, the initial static interior field (Region I
in Figure 2) remains unchanged in both models. The exterior field, how-
ever, becomes time-dependent after passage through a shock front at
X=X - Our problem is thus to find the perturbing field in the time-
dependent region x x5 > 0 (Region III in Figure 2), given Cauchy
initial data on the characteristics y =0 , x = x, >> 1 . This we will
do by numerical integration. (It is unnecessary to distinguish, at this
level of approximation, between null hypersurfaces of the Schwarzschild

background field and of the perturbed field).

In Section 3.2 we formulate the characteristic initial value
problem for the collapse model just described, in the case of the scalar
monopole perturbation. Section 3.3 contains the corresponding derivation
for the magnetic dipole case. It is seen that the two problems can be put
in very similar form - a convenient fact when it comes to integrating numer-
ically. In Section 3.4 the results of the integrations for these two models
are presented, including a discussion of where the external scalar or
magnetic field energy goes. Finally, Section 3.5 gives qualitative inter-

pretation and some concluding remarks.

§3.2 Scalar Monopole Model

For our first model we consider a static spherically symmetric
zero-mass scalar monopole, located at the centre of the shell. It is
assumed that this source is weak enough that any gravitational effects of

the scalar energy density can be neglected for r > 1 (i.e. the scalar
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field is not gravitationally coupled).

In order to find the perturbing scalar field in the time-

dependent region, we must solve the scalar field equation

e =2 /6g®¥eo ) =0 ,
/G 87
(3.3)
G = det gaB ’
using the background metric (3.1) for that region [59]. From the
spherical symmetry of ¢ , (3.3) then becomes simply
® 4= (2.+9) =0 (3.4)
xy 2r " x y ? )

where the subscripts here denote partial differentiation.

It now remains to find the initial values on the characteristics
y=0, x= X - This we will do by finding exact solutions of (3.3) in
both the static interior and static exterior regions (Region I and Region
I1 of Figure 2, respectively), and using the fact that these solutions (but
not their first derivatives) must match - not only with each other across

their common boundary (xr = Ro) , but also with the non-static solution

across the characteristics which bound the time-dependent region.

First we solve (3.3) in the static interior region. 1In this
case the background metric is flat [60], and (3.3) becomes, in the case of

spherical symmetry,

r ¢ +2¢_ =20
rr r

>

which has the general solution
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$ = cy + c2/r . (3.5)

In the static exterior region, we have the Schwarzschild

background (1.1), and for static spherical symmetry, with 2m =1

’

(3.3) becomes
(r-1) & _ +2(1L - =) o_=10
rr 2r r ‘
The solution in this case [61] is

_ -1
® = 4+ ¢, £n ( = )y .

€3 7 %

The arbitrary constant in ¢ makes no difference to the field, so we

[ o4 &l . 3.

At this point it is convenient to assume the initial radius
of the shell is very large (R.0 >> 1) . Then throughout the static

exterior region (r 3_R° >> 1) we have
-1, ~ 1
£n( - ) = z 3.7)

In particular, in order that (3.5) and (3.6) match up across r = R_>>

it follows from (3.7) that

¢y + c2/Ro = - c4/Ro .

This tells us that
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= C . (3~8)

= £
¢ == (3.9)

and from (3.7) and (3.8) the static exterior solution is

= -1, . ¢
® = c £a( - ) = - . (3.10)
The value of ¢ on the characteristic y = 0 (history of the collapsing
shell) is then determined by the solution (3.9), and so (choosing c¢ =1
for simplicity) we have

1

. (3.11)

Similarly, for the characteristic x = x = 2(Ro-1) + 2 Zn(Rb-l) >> 1
(history of the shock front) we use (3.10) to conclude that

1

= r(x=°’Y) (3.12

¢ (x=w,y)

If we define ¥ = r ¢ , the characteristic initial value problem

given by (3.4), (3.11) and (3.12) takes the simple form

= 2 .
Yy ic3 L (3.13)

¥(x,0) =

I
[
-

(3.14)

[
[
.

¢(°°,Y) =
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§3.3 Magnetic Dipole Model

We now turn to our second model in which a static axi-symmetric
magnetic dipole of moment u is placed at the centre of the shell. As
before, it is assumed that uz << 1 , i.e. the perturbing field is weak

enough that it in no way affects the geometry of the system.

Our first step is to write down the source-free electromagnetic

field equations

uv o _
F IV =0 s (3.15)
F = 3.16
(w,o1 =% (3.16)
where the electromagnetic field tensor is given by
F = A - A 3.17
v v, u w,v ( )

and Av = (Ao’Al’AZ’A3) is the associated potential 4-vector. We need
concern ourselves only with (3.15), since (3.16) is satisfied identically

by virtue of (3.17).

As in §3.2, we want to solve these field equations in the time-

dependent region, given initial values on the characteristics y =0,

X=X . If we write out the equations (3.15) on the Schwarzschild back-

ground (3.1) and use (3.17), together with the facts that the field is axi-

symmetric and gauge invariant, we obtain the following results (see Appendix

B):



- 44 -

2 o A3 2

= . i, = =

U 3 ¢ sin © A3,01 + 2r2 (sin 6),2 0 (3.18)

p=2: A2 = £(x,0) + g(y,8) » f and g arbitrary, (3.19)
2

p=1: 4EA D) o * 1 (sin 0 A. ) , = —— (sin 8 A, ()
s 20,17,0 " sin ® 0,2’,2 " sin © 2,00,2 °

(3.20)

r2 1 1

n=0: 4G54 g)y*3ine (sin 6 Ay ) 5, = gin e 7 0 Ay 1), -

(3.21)

As before, in order to obtain suitable initial conditions, we
must find corresponding solutions of the field equations for the static
interior and static exterior regions. Because these solutions are static,
it is convenient to use the standard Schwarzschild coordinates x’ = (t,r,6,¢)
which are related to our original %’ = (x,¥,6,¢) by (3.2). The corres-

ponding components of the potential 4-vector are then given by

_ H
Av = A '3§; ’
u X
so that
A = 2(A,-A) i =2 (a+A)
o Al o ’ 1 o o 1 ’
(3.22)
A, = A, , By=A4y -

Consider first the static interior region where space-time is
flat (o=1) . From the Maxwell equations with magnetic field H and

vanishing electric field, we can write
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divH=0 , (3.23)
from which it follows that
H = curl A = grad @ , (3.24)

where A = (Ki;Ké;KS) is the 3-vector potential. By virtue of (3.23)

and (3.24) we have

VTR
which, for a magnetic dipole of moment u , yields a solution

Q= - ncos 6 . (3.25)
T

Taking contravariant components of (3.24) gives

-1
2

g eipq'K = g1d Q

=g

q,p % (3.26)

where g = det gij and eipq is the standard permutation symbol. Using
(3.25), (3.26) has, as one of its solutions

A, =A =0 |, X3 = sino/r . (3.27)

(In addition, 'K; can be chosen zero since there is no electric field).
Returning to our original coordinates x° , a solution of the field
equations in the static interior region is now found, from (3.22), and

(3.27), to be
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(3.28)

One can easily check that this solution satisfies (3.18) - (3.21) with

a=1 , as required.

Turning to the static exterior region, we must find the corres-
ponding static solution. It is clear that, in this region as well, we

may choose

A =A =A,=0 , (3.29)
so that (3.19) - (3.21) are trivially satisfied. Let us define

Ay = ¥(x,y) sin’8 . (3.30)

(Comparison with (3.28) shows that ¢ = p/r represents the appropriate

static interior solution.) From (3.30), we can reduce (3.18) to get

where again the subscripts denote partial differentiation.

For a static solution, it is easily shown from (3.2) that

2
a

I -
ey % Ver 2 v, o (3.32)

Combining (3.31) and (3.32) we obtain

1, .2
G\brr"'?ll’r—rz‘l’ [
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which can be solved to give

yp=C r2 J—EQE___ , C arbitrary constant. (3.33)
r (x-1)

If we assume as before that R0 >> 1, then T >> 1 throughout the static

exterior region, and (3.33) becomes
" :l‘r- . (3.34)

with suitable choice for C . This result is therefore identical to the

static interior solution.

It remains to find the manner in which these two solutions join
up with the non-static solution across the characteristics y = o,
X = X >> 1 . As it turns out, the jump conditions for the electromagnetic
field require continuity of the Av across the characteristic surfaces
(see Appendix C). 1In the time—depéndent region, then, we can again take
A0 = A1 = A2 = 0 , so that the characteristic initial value problem is
given simply by

b =5V (3,35)
xy 2r2

= —F
W(x,o) = r(x,0) s

(3.36)
u

'p(‘”,}’) = r(m,y) = 0 -

Comparison with the scalar monopole case, (3.13) - (3.14), shows

that these two collapse models are strikingly similar [62].
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§3.4 Results of Numerical Integration

The two characteristic initial value problems, (3.13) - (3.14)
and (3.35) - (3.36), can now be integrated numerically over the time-
dependent region -® < X < @ , 0 <y <= [63]. Some results of these
integrations can be seen in Figure 3 (scalar monopole perturbations) and

Figure 4 (magnetic dipole perturbations).

Several general remarks apply to both cases. To a stationary
external observer (r = const.) the field appears nearly constant for
a period about equal to the Newtonian free—-fall time [64] i.e. down to
x ® 0. The epoch x ® 0 1is marked by the fairly sudden onset of an
oscillatory decline towards zero. On the horizon r = 1 itself, the
field displays a similar damped oscillatory behaviour as a function of y .
A free-falling observer close to the collapsing body sees no decline in
the field, but we can find no support (at least in these idealized models)
for a suggestion by Ginzburg [65] based on a quasi-static analysis for a
magnetic dipole perturbation, that the field becomes infinitely compressed

against the body.

With the knowledge that, in both models, the external field
decays in an oscillatory fashion, it is natural to ask what becomes of the
external scalar and magnetic field energies. We can answer this questicn

by making use of a certain identity, which we now derive.

From (3.2) it is immediate that both the scalar and magnetic

equations, (3.13) and (3.35), are of the same form, namely
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lbxy = f(x+y) ¢ . (3.37)

Using (3.37), then, we can easily obtain the identity

2

) 2 2. _ 9 2
g(wy +f“’)=§§(“’x + fyp7) . (3.38)

Physically, (3.38) 1is just the explicit form of the law of conservation

of energy [66].

Now we integrate (3.38) over the time-dependent region

—» < x <®, 0 <y <®, and obtain

fo (y” + €07 |y + fm(“’xz + 10| L ax
(3.39)
® 2 2 2 2
= Jo C )|x=_°°dy + Lw("’x + fy°) =°°dx .
The left side of (3.39) can be integrated for both the scalar and magnetic
cases by making use of the characteristic initial values (3.14) or (3.36).
Since the field energy is conserved, it follows that the two terms on the
right side of (3.39) represent (up to a constant factor) that energy which
falls in through r = 1 , and that which is radiated out to infinity,

respectively.

Consider first the scalar monopole case, for which
3 4
f = al4r” = (r-1)/4r . (3.40)

If we integrate the left side of (3.39), using (3.14), (3.40) and the fact
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that dx = dy = 2 dr/a from (3.2), we obtain the value 1/4 . 1In
addition, the contribution of the terms f£¢° in both the right hand
integrals of (3.39) is zero. For the first term, this is true because

X = —o implies r =1, by (3.2), and hence f =0 , from (3.40). For
the second term, (3.40) again guarantees that f vanishes, since r = «

when y = o [67]. Thus (3.39) becomes

. (3.41)

&=

J: ¢y2|x=-°° W+ L,,‘px2|y=°° dx =

The two remaining integrals in (3.41) can be evaluated numerically, with
data provided by the computer output from the original integrations. The

result of these calculations is

- -

oo 2 N
Jo Yy |x=-°° dy ¥ .168 -, J_mwx

g @X % 080 . (3.42)

|
Since the sum of these integrals is very close to %-, almost all of the
scalar field energy (i.e. 99%) is accounted for. We may therefore say with

confidence that about two-thirds (approximately 67%) of the energy falls in

through the horizon, while the remainder is radiated away to infinity.
We now turn to the magnetic dipole model. This time

a (r-1)

f=—-= 3 . (3.43)

2r 2r

Using (3.36) and (3.43), the same approach as before yields the value
3u2/8 for the left side of (3.39). Again the contribution of f¢2 to

both of the remaining integrals is zero, from (3.43), so that (3.39)
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reduces to

- o 2
Jo wyz‘x=_m ay + 1[_.,, :pley:w ax = 2. (3.44)

Numerically integrating the left side of (3.44) gives

= 2 ~ 2 2 ~ 2
Jo vy |x=_w dy ® .360 u° , qu;x |y=w dx ® .015u° . (3.45)

Here, virtually all of the electromagnetic field energy is accounted for,
and the corresponding proportions which pass in through the Schwarzschild

radius and out to infinity are 96% and 4Z, respectively [68].

§3.5 Discussion and Remarks

In the previous three sections we have considered two highly
jdealized models of perturbed collapse, involving weak scalar monopole
and magnetic dipole fields anchored to thin spherical shells collapsing
with the speed of light. We have seen that the perturbing field decays in
an oscillatory manner, with most of the field energy falling into the
“black hole" formed when the object collapses jnside r=1 . A summary

of these results appears in Table 1.

We conclude this section with several remarks worth noting.

(1) In the electromagnetic model, only 4% of the field energy escapes
to the outside, as compared with 33Z for the scalar model. The
difference here is presumably due to the fact that scalar fields

can emit monopole radiation, while electromagnetic fields cannot.
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(ii) 1Israel [69] has described the oscillatory nature of the decay
as a "bathplug effect”: not all of the inward-falling field
energy is sucked into the hole at once; instead, some of it is
turned aside by field pressure, and it swirls about the hole on
a time-scale several times larger than the Schwarzschild charac-
teristic time. In this same connection, Price's analysis [70]
establishes the existence of a curvature-induced potential
barrier at T ® 3m which prevents the escape of low-frequency
waves to infinity. Further, the potential barrier causes the low-
frequency waves to oscillate - once for monopole fields £=0),

twice for dipole fields (£=1), etc. [71].

(ii1) With regard to the second (magnetic) model, our results have an
important bearing on the question of observability of collapsed
stars, and their distinguishability from neutron stars. Unlike
neutron stars, which can remain intensely magnetized for periods
exceeding 106 years [72], a collapsed object cannot be a source
of synchrotron or other radiation requiring the agency of magnetic
fields. However, accretion of interstellar material in a favour-
able environment, e.g. in close binary systems, could produce a

strong source of thermal x-ray bremsstrahlung.

(iv) Again, concerning the magnetic dipole model, a glance at Figure 4
reveals a curious fact. The T = const. curves appear to have
several points of coincidence. This has been further verified by
plotting similar curves (mot shown) for several additional values

of r , with the same result. We have found no explanation for this,
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but it may possibly have significance regarding a resonant

quality of space-time [73].

(v) A similar analysis for the case of a weak gravitational quadru-
pole perturbation has been carried out by de la Cruz and Israel
[74]. The results lack the completeness and accuracy which our
models yield, but they are qualitatively alike. 1In particular,

only a small amount of gravitational energy escapes to infinity.

(vi) Our efforts to find the asymptotic behaviour of the external
field have unfortunately failed. Price {751, however, does
succeed in showing how the tails of the radiated waves die out
for large t . He considers weak, zero-mass fields of arbitrary
integer spin s on a Schwarzschild background, and shows that, as
t - » , a multipole moment of order £ decays in time as

fa t/ t:2!L+2 2

€ >s >0) or 7't (L =s =0) [76].
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CHAPTER 1V

Event Horizons in Static Scalar-Vacuum

Space-Times

84,1 Introduction

Recent interest in the theory of gravitational collapse has
raised many questions regarding the existence and nature of event horizons
in relativity. Some definite results are known. Israel has shown [77]
that for the class of asymptotically flat, static vacuum fields, only
the spherically symmetric Schwarzschild solutions with m > 0 have a

regular event horizon (r = 2m), and [78] that for the corresponding
1

electrovac space-times,the Reissner-Nordstrdm solutions with m > Gzlel/c
are the only ones with non-singular horizons. In view of these special
cases, it is therefore natural to ask whether, for arbitrary, asymptotically
flat static fields, a regular event horizon is destroyed by any asymmetric

perturbation due to sources within the surface Boo = 0.

In this connection there has been some recent interest in
another special class - namely, the coupled gravitatiomal and massless
scalar fields (where by "massless scalar field" we mean a scalar field
for zero-mass particles). The spherically symmetric solution of Janis,
Newman and Winicour (JNW) [79] has the interesting property that the event
horizon is a singular point in the space no matter how small the coupling
constant becomes. Penney [80] has suggested that this surprising result
is due to the imposition of spherical symmetry, and that, by considering

asymmetric solutions, one is led to a non-singular horizon. However, his
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example in support of this contention contains an error [81], and, in

fact, his solution is singular at the horizonm.

In this paper we propose to clear up much of the controversy
about event horizons associated with asymptotically flat, static, massless
scalar fields interacting with Einstein fields. Our main result can be
stated as a theorem: every zero-mass scalar field which is gravitation-
ally coupled, static and asymptotically flat, becomes singular at a
simply-connected event horizon. This theorem immediately obviates

Penney's search for a non-singular asymmetric horizon.

We proceed by reformulating the given conditions in terms of
the geometry of the surfaces Boo = const. (§54.2 - 4.3). The theorem
is stated in detail (§4.4) and proved (§4.5). In the speclal case where
we neglect the gravitational effect of the scalar energy demsity, the
solutions are computed explicitely (§4.6). In 54.7, we discuss some

properties of the singular horizoms.

§4.2 Static Fields

This section deals with the general static field. We want to
reformulate the Einstein equations as conditions on the geometry of the

equipotential surfaces [82].

The signature of the metric is —++H+. Capitalized Latin
indices run from 0 to 3. Three-dimensional and two-dimensional
subtensors are distinguished by Greek indices (range 1-3) and by lower-

case Latin indices (range 2-3). Covariant differentiation with respect



- 59 -

to the 4-dimensional, 3-dimensional, and 2-dimensional metrics is

denoted by V, a stroke, and a semicolon, respectively.

A space~time is called "static" if it admits a regular,
hypersurface-orthogonal, Killing vector field &, which is time-like

(EAEA < 0) over some domain; i.e., we have

VaEg t V =0 (Killing's equations), (4.1)

B%A

E[AVCgB] =0 (hypersurface-orthogonality). (4.2)
From (4.1) and (4.2) it is easy to show that
3, (W 2E,) = 0 (4.3)
[A B] ’ :
where we define V by
1,
V= (-gAgA)2 . (4.4)

Therefore, throughout a simply-connected domain in which & 1is time-

like, (4.3) enables us to choose t(xA) such that

= -3,t . (4.5)
(o]

This allows us to introduce "static coordinates" x = t, xa, where

the latter are any three independent solutions of
A, o _
£9,x =10 . (4.6)

Using (4.1), (4.4), (4.5) and (4.6), it is straightforward to show that,

in the domain where EAEA < 0, the metric can be put in the form
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2

ds® = gas(xl,xz,x3)dxadxB 2ae?

- vt ,
4.7)
vV = V(xl,xz,x3) >0

We can further decompose the metric form (4.7) if we define

- P
o= v 4.8)

and assume p_l vanishes nowhere in the domain of interest [83]. As
intrinsic coordinates for the equipotential 2-spaces V = const.,
t = const., we introduce functions 61, 62 which are constant along

the orthogonal trajectories (g“Baaeaan = 0). The spatial metric then

becomes

a.b

dx*dx® = g_, (v,0)d0%do 2

2
Bog + {p(V,0)]" dv . 4.9)

Suppose n 1is the unit space-like vector normal to the

equipotential surfaces. Then, from (4.8),
-1, a
n = paaV =p “9x (V,0)/3Vv . (4.10)

In addition, we let g(a) be the tangential base vectors associated

with 6%, so that

ab

¢ = 3x™(v,0)/902, eéa) Zg ey, = ae?/ax® . (4.11)

®(a)
The triad {g(a),g} then spans the 3-space at each point. From (4.9),
(4.10) and (4.11), or by simple modification of (2.11), it is immediate

that
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ab B
Using (4.8), it is easy to show
pZVIaBnB = —Bap . (4.13)

The extrinsic curvature of the 2-space V = const., considered as imbedded

in the 3-space t = const., is defined, from (2.4), by
Sna/Geb = k2 &% (4.14)
Kb (a) ° :

from which

- & b Z o0 B - o B

Kab e(a)snalde e(a)nalee(b) P (2% (b) VlaB . (4.15)

By virtue of (4.12), (4.13) and (4.15) we have

_ -1 (a)_ () _ -2 (c) (c)
VIGB =p Kabea eB o} acp(ea nB + eB n)
(4.16)
- 073(30/3%)n_n
a B
From (4.10), (4.11) and (4.14) we also obtain
=1 -1
Ky =50 98, /3V (4.17)
which leads to the related formula
k> A

ag=</av = g2 pK , (4.18)
where g 1is the 2 x 2 determinant of 2.b and K = gabKab is twice

the mean curvature. From (4.12) and (4.16) it follows that
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Boo= p—lK - p_3 3p/dV . (4.19)

The Einstein field equations

G

AB = -8myT

AR (4.20)

(where vy is Newton's constant of gravitation divided by c2) can now

be decomposed [84], yielding

1l aB _ o
> 8 RaB = 8nyTo
0 = 8myT,_ L (4.21)
- - -yl _ylu
Coa 8T o = V (VIaB v 8,8 -

4

The relativistic analogue of Poisson's equation is then given by
[w _ o _ 0 .
A IU ényV(Ta TO) ’ (4.22)
which, combined with (4.19), gives

0" 23p/0V = K - 4nyVD(T g) ) (4.23)

There are several other important relations which we
require in what follows. However, their derivations are somewhat
tedious, and we relegate them to Appendix D, merely listing the results

here for later use:

_l
2

2..b b 1 ,.b 1
B(gZVK 33V = =p 3P - Lor8D - Brye (T gel,yelny § Tagay)

(4.24)
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ab B

nan + p-l 1

1 2 . -
5 (K KP-KR) = -8myT g VK, (4.25)

2

B 1

b _ o -2 -
aaK - Ka;b = SﬂYTaBe(a)n +p V aap s (4.26)

ABCD _ af, -2 -2 ab,, -4 -2 s;a, —6_-2 2
%RABCDR = G640 2 K K2 4207V 0o %07y 2 (2p/aN) %, (4.27)

where R = gabR

ab* Equations (4.17), (4.23), and (4.24) form a complete

system for determining the evalution of Bap> P> Kg as functions of V.
Equations (4.25) and (4.26) are involutive constraints, i.e., if they
are satisfied on one surface V = const., they must be satisfied
identically. The last equation gives the (invariant) square of the

four-dimensional Riemann tensor.

§4.3 Static Massless Scalar Fields

We now consider a static scalar field ¢ for zero-mass

particles, with '"scalar gradient" given by
1

O, = —(4n)§-aA§ . (4.28)

Since ¢ 1is static we have Oy = 0. The scalar equation [¢ = 0 can
be written
_1 1
2

(-det g,.) 9, [(~det gAB)ZgaB

86¢] =0 . (4.29)

In view of (4.7) and (4.9) this can also be written as

1 1
v'la(ngw)/av = —aa(pgz¢‘a) . (4.30)
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with ¢ defined by

3¢/3V = pyp . (4.31)

For a massless scalar field the energy temnsor is given by

i} 1 o
TAB = 3A§3B¢ ~ 2 2,8 3C¢8D¢ s (4.32)
or from (4.28) we can write
4T = -1 02 }
o T 2 >
4% = 0 , ( (4.33)
aB _ o B 1 aB 2
41T = o o - 58 O > J
with
1
- _ 2 (a)
Oy = (47) (wnd+ea 8a¢) . .30
2 _ o _ 2 sa
" =g 0 = 4w (Y +¢;a® ) .

If we now substitute (4.33) into the basic equations (4.23)-(4.26) of the
previous section, we are led to the following complete first-order

system for determining the V-dependence of 8ab° ¢, ¢, p, and KE:

Geometrical equation

3g,, /3V = 0K, (4.17)

Static Scalar equations

3%/3vV = py , (4.31)
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1 1
2(vg2p) /o = —Vo_Gog%e’®) (4.30)

Gravitational equations

p_zap/BV =K , (4.35)
-1 1
-1 2 2_b _ sb 1 b _ )
V g “a(g VKa)/av = p;a -3 pRGa 8nyp¢;a® . (4.36)
Involutive constraints
1k k¥ k2 R) = s4ay@i-0 8’3 + o vk (4.37)
ab sa

b _ -2 -1

2K - Ko = -Bryye. +p % b0 - (4.38)

The following result, which we will need later, is obtained by contracting

(4.36) and eliminating R by means of (4.37):

-1 __,a_1 2 _ ab _ 2 (
Va(V "K)/av = p;a 3 pK pAabA 8mypy . (4.39)
where
A, =K e K (4.40)

is a measure of deviation from spherical symmetry.
Finally, we combine (4.27) and (4.35) to obtain

ABCD _ aB, -2 ~2. _ab.. ~4_ -2  3a, ~2 -2 2
%RABCDR = GGBG +p 2V KabK +2p V p;ap +p V K . (4.41)

8

Although an exact expression for the quantity GaSGa could be evaluated

from (4.12), (4.16), (4.21), (4.22), (4.33), and (4.34), it is sufficient
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to note here that all terms of this expression will be positive, with one

such term being

ety ire o H? . (4.42)

§4.4 Statement of Theorem

In a static space-time, let X be any spatial hypersurface
t = const., maximally extended consistent with &AEA < 0. We consider
the class of static massless scalar fields such that the following

conditions are satisfied on 2 :

(i) z is a "scalar-vacuum" space (i.e., free of matter and

sources of scalar fields).

(ii) 2 is regular, non-compact and "asympotically Euclidean".
That is, there exist coordinates x* in terms of which the

metric (4.7) has the asymptotic form

o, )

-1
guB = GaB + 0(xr ), aygas
v=1- (m/r) + n , m = const., »(r » ») (4.43)
_ o2 _ ("3 P
n=0("), 3n-= o(r 7), 9,9g" = 0(r )J

1
_ a_ B2
where r = (Gaex x .

(i11i) The asymptotic form of the static scalar field is

o
I

(k/r) + ¢ , k = const.,

(xr + =) (4.44)

o™ %), 5 ¢ =0(3).

¢

ta
]
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(iv) The equipotential surfaces V = const. > 0, t = const., are
a regular family of simply-connected, closed 2-spaces.

(v) 1If the greatest lower bound of V on Z is zero, then the
geometry of the equipotential surface V = ¢ approaches a
limit as € - 0+, corresponding to a closed regular horizon
of non—-infinite area.

ABCD

(vi) The invariant RABCDR is bounded on Z.

Theorem: There is no non—-trivial static space-—time which satisfies

conditions (i) - (vi).

(Here we assume vy > 0. The case of zero coupling is

discussed in §4.6.)

The proof of the theorem is presented in §4.5. There is omne
trivial case, however, which can be quickly disposed of here. Suppose
that V has a positive lower bound. Then the maximally extended 3-space
Z is complete. Using (4.29) and the boundary condition (4.44), Green's
theorem implies & = 0. Furthermore (4.22) reduces, as a result of
comparing (4.23) and (4.35), to Laplace's equation VlTu = 0 , which,
together with the boundary conditions (4.43), leads to V = 1. This

means space—-time is flat, and the theorem is established.

We may assume henceforth that V comes arbitrarily close to
zero on z . The equipotential surface V = 0+ then forms an inner
boundary of Z . Suppose that V has zero gradient at some interior
point P of z . Since V 1is harmonic (Vlu =0) on Z , P would

Ju
have to be a point of bifurcation of the equipotential surfaces [{85], which
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contradicts (iv). Therefore, by (4.8), p-l vanishes nowhere in the

domain of interest.

We conclude this section by recording the exterior and interior
boundary conditions in a form convenient for later application. For the
asymptotic forms (4.43) and (4.44), we find from (4.8), (4.18), and
(4.31)

r + o, p/r2 > m—l, rk > 2,
(4.45)

r¢ - k, rzw > -k, as V->1.

According to (vi) and (4.41), the regularity of the manifold at the inner

boundary V = O+ requires that
Kyp = 06V, p,, = 06%v) as Voo, . (4.46)

It follows that p—l is constant on the event horizon:

1

p_l(O,e ,92) = l/po = const. (4.47)

In addition, since the curvature scalar RABCDRABCD is bounded every-

where on X by (vi), it follows that the expression (4.42) cannot
become infinite anywhere on z . Hence we have the result that ¢ and
o, are bounded functions throughout Z .

sa

§4.5 Proof of Theorem

In this section we employ mainly the scalar equations, (4.30)
and (4.31), to derive integral relations which enable us to show that
the triwvial solution ¢ = 0 is the only one compatible with conditions

1) - (vi).
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Let F(V,$), G(V,?) be (for the moment, arbitrary) differ-
entiable functions. From (4.30), (4.31), (4.35), and (4.18) we easily

obtain the identity

1 1
g2 (3/9V) [g21VF(V,8) v+ Le(v,8)}] = A(V,‘I’)D(IDZ-HI’_aq’;a) + B(V,®)y
_1 1 (4.48)
+ p Lag/av - vg Z(Fpg2¢;a),a ,
where
A = V3F/3®, B = V3F/3V+3G/3% . (4.49)

In order to obtain integral conservation laws from (4.48) and (4.49), we

require that

A =38 =203G/3V =20 . (4.50)

The general solution of this linear system of differential equations for

F, G is a linear combination of the two particular solutions

|
1l
.
(]
I
[

(4.51)

Taking these values in turn we integrate (4.48) over z , i.e., we form
1

[ [ (4.48) gdedelde2 ,» noting that the integral of the last term,
z

being a 2-divergence, vanishes when taken over any closed 2-space
V = const. The results express the equality of the surface integrals of
the expression in square brackets above over any two equipotential

surfaces V = const.:



- 70 -

f(vw+p’1)ds =C (4.52)

JLev 2n Vyv-p~Telas = ¢ (4.53)

2 ’

1
where we have defined the element of area by dS = gzdeldez .

As an immediate consequence of (4.18) and (4.35) we have

1
5 g2y /v =0, (4.54)

hence if we form fff (4.54) dVdeldez, we obtain
-1.. _
JeTas=c, . (4.55)
Comparison of (4.52) and (4.55) show that

[ wds = C;-Cy3=C¢C

3 4 - (4.56)

We can now evaluate the constants CZ’ C3 and C4 by integrating
(4.53), (4.55) and (4.56) over the upper boundary V = 1, with the
help of the boundary conditions (4.45). We thus find, as integral

conditions on the lower boundary V = 0+ :

p-ldS = 4Tm , (4.57)
/ VydS = -4k, (4.58)
V=0
+
f [V 2n V)p—p tolds = 0 . (4.59)

V=0+
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In view of (4.47) we can write (4.57) as

SO/po = 4mm , (4.60)

where So is the area of the horizon V = 0+. Since So is non-

infinite by (v), (4.60) implies that o is also non-infinite.

We now consider the relation (4.58). Since ¢ and the surface

area are bounded on the horizon V = O+, it follows that k = 0, i.e.,
/ vyds = 0 . (4.61)
V=0+

In addition, the boundedness of py = 3%/3V and Q-a throughout z
>
guarantees that ¢ itself is bounded on the horizon. This fact,

together with (4.61) leads to

{ voyds = 0 . (4.62)
v=0_

We now return to the identity (4.48)-(4.49) and this time require
A=V, B=23G/aVv=0 . (4.63)

The resulting linear differential equations have the particular solution

F=¢+ 2nV
(4.64)
G =-% .
With F, G given by (4.64), we thus have the identity
1 1 1
2 - 2 ; 2 2 ;
a2 (3/oV) [g2(VFpto L) ] = oV (p4e_o3%) - Vgt (Feg 0’ | . (4.65)

Integrating over X (again the last term doesn't contribute) we deduce
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the inequality

/ (VFp+o YG)ds > | (VEyp+p 1G)dS . (4.66)

From (4.65) it is clear that equality in (4.66) holds if and only if

<
n
o

(4.67)

Q;a =0

everywhere on E . Now both surface integrals in (4.66) can actually be
evaluated using (4.64). The left side yields the value zero when
integrated with the help of (4.45), as does the right side, in view of
(4.59) and (4.62). We conclude that (4.67) must hold, hence ¢ = const.
throughout z . The fact that ¢ vanishes on the outer boundary V =1
ensures that ¢ = O and this completes the proof. It is worth noting

that the theorem holds even for a regular point or line horizon (S0 = 0).

§4.6 Zero Coupling

We consider in this section the case where the gravitational
coupling of the scalar energy density is neglected. Our problem is to
obtain solutions of the vacuum equation GAB = 0 and the scalar equation
¢ = 0, which satisfy conditions (1) - (vi) of §4.4. It is already
known [86] that the only vacuum space—times compatible with (1) - (vi)
are the Schwarzschild solutions with m > 0. The problem thus reduces

to finding well-behaved static scalar fields defined on the Schwarzschild

background:
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gadeade = (1—2m/r)_ldr2 + r2(d62+sin2 9d¢2) .
1 (4.68)
V= (-20/0)? .
The static scalar equation, [¢ = 0 , reduces to
2 2
v© 9 2.2 3% \' ) 2%
T VP YT e Bin P
r r s8in 6 (4.69)
V2 82¢
+ 5 5 = o .
r~ sin 0 9¢
Separable solutions which are regular on the axis have the form
® = R(r)PZ(cos 6)eiM¢ . (4.70)
where R satisfies
2. a’r drR
(1-x7) -3 - 2x '&+ n(ntl)R =0 , (4.71)
dx
= I _
x = - 1 . (4.72)
For general n, (4.71) has the linearly independent solutions
R = cl‘P @, rR=c,Q . (4.73)

Of these solutions, the latter are unacceptable for all n, since C)In(x)
is singular at x =1 (i.e., at the event horizon r = 2m). On the
other hand, the formersolutions have the wrong behaviour at infinity,
except when n = 0. Hence the only well-behaved solution satisfying

(1) - (vi) occurs for n =M= 0 and is given by
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from the boundary condition (4.44). We conclude that the trivial solution

$ = 0 is the only static scalar field on a Schwarzschild background which

is well-vehaved for 2m < r < = ,

84,7 Singular Point Horizons

It is clear from the previous theorem that a non-trivial
static scalar-vacuum field must have a singular event horizon (be it a
point or otherwise), and thus Penney's search [87] for an asymmetric
solution with a regular event horizon is unnecessary. Our theorem also
generalizes the work of JNW [88] who show that all spherically symmetric

solutions always have singular horizons.

In the case of spherical symmetry, equations (4.30) and (4.39)

become simply

1
a(VgZy)/ov = 0 (4.74)
VB(V—lK)/BV = —%»pK2 - 8nypw2 . (4.75)

Now (4.74), (4.54) and (4.31) can be solved explicitly with the help

of the asymptotic forms (4.45) to give

& = —km * 2n V . (4.76)
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which is a function of the two parameters k and m. Consideration

of (4.35), (4.75) and (4.76) enables us to solve for p and K as
functions of V, from which it can be determined that p - 0 as V - 0+.
From (4.57) it then follows that the area of the inmner boundary V = 0+
is zero, i.e., the horizon is a point (the non-regularity of the event
horizon means that (4.47) is no longer true, but the integral condition
(4.57) still holds). This solution is precisely the JNW solution [89],

which has a singular point horizon regardless of how small the coupling

constant becomes.

The fact that the horizon is always a point in the case of
spherical symmetry leads us to ask whether the same is true in general.
Penney's example [90], although not regular as he had thought [91],
serves to show that there are asymmetric solutions whose horizonms,
while singular, are not point-like. His axially symmetric solution
has the line element

2 _ 2v R 2, 2.2 2 .2 .2 (R-2m, 2
ds” = e’ [(g=57) dR" + R°de7] + R7sin"0d¢" - o LU CR )

with

2 R(R—Zm)sinze
[R(R—2m)+m2cosze]2

v = =2nya . (4.78)
It is easy to check that the horizon (R = 2m) dis not point-like. This
example, along with (4.57) suffices to show that the function p need

not vanish everywhere on the horizon vV = 0+. We can, however, show
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for a general scalar solution with event horizom of bounded area, that
p always vanishes at least locally there. From (4.35) and (4.54) it

is easily shown that

&S feo?as=-[oRas . (4.79)

From (4.39) and (4.54) we have

1 1 1 1
B(p—lgzK)/BV = p_lV.lgzK - 8nyg2w2 —'% g2K2

1 (4.80)

- 821 (2n p) ;a+p—2
sa

b

;a a
p;ap +AaA ] .

b
If we now form. fff (4.80) dVdeldO2 and use the Schwarz inequality

on the second term of the right side,
2 2
[ vPas > £ 1f was1®
it is straightforward to arrive at the inequality

1 _ 8uy

%J’K p — ds i%f KoL d 5 LJ ws1? (4.81)

which, in view of (4.56) can be written

2
4
VZS

8nyC
-1 1 -1
dS_<_Vpr ds -

d
w/Ke (4.82)

If we now let
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X(W) = [ o2 as , (4.83)

then (4.79) and (4.82) combine to give

d .14dx _
wRal 273 > C = const. > 0 . (4.84)

Since S = S(V) 4is a continuous function, infinite only on the outer
boundary V = 1, then for any V1 <1, S(V) must attain a maximum SM
somewhere in the interval from V = 0+ to V = Vl' In this interval

we thus have 1/S > 1/S,, hence

[«

d ,ldx, C' v
av IV av 1V3 . c' = C/SM >0 . (4.85)

£

Integrating (4.85) twice we arrive at the inequality

2
X)) > -Cy 2n V + C,V" + C3 .
(4.86)
C1 =Cc'/2 > 0, C2 and C3 arbitrary ,
from which
-2
X(0) = [ p T dS == . (4.87)
V=Q+

The integral condition (4.87) along with (4.57) shows that p becomes
zero at least locally on the inner boundary V = 0+ (this reaffirms
that for spherical symmetry the horizon must be a point). It is also

clear from (4.57) that the region of the horizon on which p vanishes

-1
must be of zero area. In other words the gravitational flux o = IVV|
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becomes infinite somewhere on the horizon because some finite—area flux

tube shrinks to a point or limne there.

In the case of Penney's example, comparison of (4.7) and (4.9)

with (4.77) shows

1
2
v = (%) , (4.88)
2.2 2v R 2
p av® = e (z5z) ar® . (4.89)
From (4.88) and (4.89) we immediately deduce that
o = eR%/m . (4.90)

On the horizon R = 2m, consideration of (4.78) shows that p vanishes

in the equatorial plane 6 = /2.

We can summarize our results for static scalar fields as
follows:

(1) Every massless scalar field which is gravitationally coupled,
static and asymptotically flat, becomes singular at a
simply-connected event horizon.

(2) 1In the case of spherical symmetry, the singular horizons
are points.

(3) If we allow asymmetric solutions, it is possible to find
examples for which the horizon is not point-like.

(4) Assuming the horizon has bounded surface area, the gravitational
flux o-l always becomes singular somewhere on the horizon,
due to the shrinking of some finite-area flux tube to a point

or line.



- 79 -

APPENDIX A

2-Dimensional Kinetic Theory of a Simple

Relativistic Gas

Consider a 2-dimensional distribution (for example a spherical
shell) of a relativistic ideal gas. Let n(p)dp be the number of
particles with mcmenta (p,ptdp) per unit area, as measured in the rest
frame of the gas.

The baryon density of the gas is given by

[ -]

o, = f n(p)mAdp . (A.1)
o

where m, is the atomic mass of a constituent particle. The total

energy of an atom with velocity u is

1

E=mA(1-u2) 2 (A.2)

hence the total surface energy density is

Y [

o=f n@Edp=J n(p)mA(l-uz) dp - (4.3)
o} (o]

The pressure exerted by the gas is the normal component of the mean
rate of momentum transfer across a line segment of unit length, and is

given by

p=21 f n(p)pu dp , (A.4)
2 o
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where the factor -% arises from averaging cosze over all directions
in a plane and the momentum p of an atom is simply

1
p = mAUCl—uz) 2 (A.5)

We assume that pressure is a monotone increasing function of
surface energy o, and discuss the special limiting cases of the
equation of state, namely the non-relativistic 1limit (P << co), and

the ultra-relativistic limit (P >> oo).

In the non-relativistic case we have u << 1, hence
E = mA(l + u2/2) and p ~ m,u. The integrand in (A.3) then vanishes
except for very small p, and we have

~ 1 2, o
oRo, 3 fo n(p)mAu dp R o + P . (A.6)

Substituting (A.6) into the isentropic condition

d(c/oo) + P d(llco) =0 , (A.7)
it is found that
Paoc> . (4.8)
o

The dependence of P on o, since P << LI is immediate from

(A.6) and (A.8), hence

Pao . (A.9)



- 81 -

For the ultra-relativistic case, u~> 1, thus E S p, from
(A.2) and (A.5). This time the main contribution to the integrand in
(A.3) is from very large p. 1t is then immediate from (A.3) and (A.4)
that
o~ ] n(ppdp= 2P , (A.10)
o)
i.e., P ao , the fully relativistic analogue of (A.9). Putting

(A.10) into (A.7) leads to
Pag . (A.11)

corresponding to (A.8). Equations (A.8) and (A.11) are important,
since they show that, for an ultra-relativistic gas exerting pressure,

the adiabatic exponent y = 3/2, and that otherwise 3/2 <y £ 2.

We conclude by showing that ¢ - 2P < o, for a simple

2-dimensional relativistic gas, interacting only by collisions.
1

Since p = mAu(l—uz) 2, it follows from (A.1l) , (A.3) and (A.4)

that

1
g - 2P = f n(p)mA(l—uz)2 dp < o .
o
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APPENDIX B

Electromagnetic Field Equations on a

Schwarzschild Background

Consider the Schwarzschild background metric in the form

ds? = adxdy + r%?
(3.1)
a=1 —-% »
where
x = (r-1) + ¢n(x-1) -t ,
(8.2)
y = (r-1) + ¢n(r-1) + t .
Wwith x¥ = (x,y,0,4), we can then write
0 af2 0 0 T
a/2 0 0 0 uv -1
- = . B.3
[gw] ) » [g77) [gw] (B.3)
0 0] r 0
L 0 0 0] rzsinze

We are concerned with the electromagnetic field equations

uv D SR sl A =
Fly = /__G(/—GF ) ,=0 (B.4)

on the backgrcund (B.l), where
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F = A - A . (B.5)
Hv v,u U,V
Assuming the field is axi-symmetric (independent of x3 = ¢) and
2
evaluating G = det guv = - gz-rasin 6 from (B.3), we can write
(B.4) as
5 2 & r%sine P | =0 (GG =0,1,2) ,
ar sind ?

or equivalently,
a 2 up _jo =
(2 r'sind g = g Fpa),j =0 . (B.6)

Putting u = 3 in (B.6) we obtain

a 01 o 10 a
Goine & F3),0" Goine & F30’,1 * Goimp & F32),2° O

which from (B.3) and (B.5) simplifies to

2 o 1
sino 23,00 Y 77 Gine %3,22,2°0 - (®.7)
2r

In a similar fashion, (B.6) with u = 2 becomes

Ay 02 Y Ag,12 ~ 24 01 = O (B.8)

Now we will use the fact that the field is gauge invariant, i.e., it is

unaltered by a transformation of the type

4
=A +0
Al-l u

’
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Consequently

Now the wave equation & = h(x,y,9) can always be solved; in

particular we can choose our ¢ such that

so that

= B.
Aot %,1°0 > (B.9)

can always be made to hold. In view of (B.9), then, (B.8) becomes

simply

from which

A2 = f(x,0) + g(y,0), f and g arbitrary. (B.10)

Finally we put u =1 and u =0 in (B.6) and obtain similar

relations, namely

2
2r 1 _
o Fo1),0 * Sine (51m8 Fyp) , =0 (B.11)
2r2 1
( + = (s:meFlz),2 =0 . (B.12)

o F10),1 sin6
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It is easily shown from (B.2) that

2 2
2r _ ,2r _ 2r-3
( a ),0 = 5 ),l T a > (8.13)
and hence (B.11l) and (B.12) become
2r-3 2r2
5 F01 + "E_'F01,0 + 1-*02’2 + cotb F02 = 0 s (B.14)
2r-3 2r2
= Fiot o Flo’l + Flz’z + cotd Fy, = 0 . (B.15)
Now from (B.5) and the gauge condition (B.9) we have
F., = -=2A F.. = =2A . (B.16)

o1 0,1 ° 10 1,0

Finally, using (B.5), (B.13) and (B.16), we can put (B.1l4) and (B.15)

in the form

2

r 1 _ 1
4G Ay 1) o * Sime 510 Ag o) 5 = Jing(sing Ay 4) s (B.17)
4653 ) .+ —L _(sin6 A, .) . = ——(sin6 A, ,) (8.18)
a 21,07,1 7 sine S 84,27 2 T Gime ST f2,17,2 .

The four key equations to be solved for Av are therefore (B.7), (B.10),

(B.17) and (B.18).

It is worth noting that the left sides of (B.17) and (B.18)
involve only AO and A1, respectively. This makes it particularly
easy to see that Ao = A1 = A2 = 0 trivially satisfies (B.10), (B.17)

and (B.18).
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APPENDIX C

Jump Conditions for the Electromagnetic Field

We are concerned here with finding the jump conditions for
the electromagnetic field across an arbitrary 3-surface Z . Suppose

we choose a 3-dimensional '"cylinder" R3 of "length" 2¢ and interior

R4 , which cuts z as shown in Figure 5. Applying Stokes' Theorem to

an arbitrary vector quantity vH s Wwe have
uo_ u
fR vV dt" = fR \' LI (C.1)

where dt" is choosen normal to the 3-surface R3 .

We now let Vu = Fuv Fuv

n, where is the electromagnetic

field tensor and nv is arbitrary. Then (C.1l) becomes

IR F nY d¥ = IR4 Fuvl n. dr + IR F*Vn

5 v e 4 \’Iu dt . (C.2)

The first term on the right side of (C.2) vanishes.by virtue of the
electromagnetic field equations (3.15). In the limit as e - 0 , the
volume R4 becomes sufficiently small that the right side disappears

entirely, while only the ends of the cylinder R3 contribute to the left

side. Therefore, since nv is arbitrary; (C.2) becomes

F_dat"|T - F

Hi—- _ H =
v dt"|” = [F,, dt’] o ,

uv
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FIGURE 5

The 3-surface z being cut by a 3-cylinder R3 of length

2e¢ . One dimension is suppressed in the diagram.
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where dt" is normal to 2 . The required jump conditions are thus

given by
[FvBNv] =0 s N’ normal to Z . (C.3)

As a particular example, we consider the idealized collapse
model of §3.3, in which the two characteristic surfaces of interest
are given by y =0 and x = X, >> 1 . Because the collapse occurs
with the speed of light, these surfaces are null, which means that a

vector normal to either surface is also tangent to that surface.

We first consider the surface 21 , gilven by y = 0 . For the

static interior field, the equation of the collapsing shell is

from which a normal (hence tangent) vector is

dx"

N = &5 = L1000 , (C.4)

where x" = (t,r,9,4) . Using the static interior solution

2
A =A =4, = A =nsin®
Ao = Al A2 o , A3 - ’
found in §3.3, together with (C.4) and
o - *
F = A - A C.5
ol SV W (c.5)

we obtain
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=0,1,2: F N =0
et uv IZI ’
(C.6)
VIR M sinze
u=3: F N = - =
HY Iz1 r2
Turning to the exterior field, the equation of the shell is
y = (xr-1) + £n(xr-1) + £t =0 ,
and hence
w_ dax" 1 (x-1)
N" = —ar - (- 3,1,0,0) > @ = . (C.7)

Using (C.3) , (C.5) , (C.6) and (C.7) we easily obtain the jump

conditions across y = 0 , namely:

_ _ + \
=0,1: (&, ; - Al’o)lz1 =0
2 & L -E L @ -5 -0
p=2: (Ao’2 Az’o)( a)|21 + (Al’z A2,1)|21 =0 (C.8)
da, [+ 2
=3 - A +=_3 =_HM
== (K3,1 A3,o/a)|z1 drlz1 r2 }

The second characteristic surface 22 is given by x = x, >> 1.

If we now carry out the similar analysis for this case, and use the static

exterior solution

found in §3.3, the corresponding jump conditions turn out to be
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u=0,1: (& ;- Xl,o)lfz -0 , A
=7 Yy e 1.+ _ = + _
u=2: (Ao,Z AZ,o)(a)Izz + (Al,Z AZ,l)IZ2 0 ? $ (C.9)
dA_,+ 2
— — + 3 M sin" 6
=3: A, . +A = —|¢ = - .
=2 SR 3,o/°‘”22 drliz 2 )

The jump conditions (C.8) and (C.9) across the characteristic
surfaces y =0 , x = Xg >> 1 , guarantee a solution in the time-depend-

ent exterior region of the form
A = =A, =0 A, = P(x,¥) sin’e
s > A ’ ’

where ¢ = u/r on both characteristic surfaces. This is easily seen
physically, because the characteristic initial-value problem of Chapter
IITI must have a unique solution for Fuv , and since the assumption,

K; = Ki = Xé = 0 , made in Chapter III, satisfies all required conditions
(the jump conditions (C.8), (C.9) as well as the field equations) it must

be the solution.
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APPENDIX D

Imbedding Relations

We first derive several relations for imbedding an arbitrary
hypersurface 2 in an (n+l) - dimensional Riemannian space. Greek
indices run from 0 to n ; Latin indices, which distinguish quantities

defined on the hypersurface, have the range 1 to n .
Let the equations

<% = x“(el,---,en;V) , V = const. (D.1)

represent an orientable hypersurface z with tangent base vectors

e(ig = 3x%/00" (D.2)

and unit normal n =

+1 n spacelike,
=0 , nen=¢€c@) = (D.3)
-1 n timelike.

As in Chapter II, the extrinsic curvature tensor Kab , and the intrimsic

affine connection rabc are defined by

b _ a
an/36° = K.~ g, ,
(D.4)

/26 =T

&(a) " °2(b) a,be
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from which we obtain the Gauss—Weingarten equations

/36° = —e(n) K, n+r,° (D.5)

ag'(a) b ~ ab E'(o::) :

(Note that in Chapter II, 2 was a timelike hypersurface, hence
e(n) = +1). Then (D.4) and (D.5) , together with the Ricci commuta-

tion relatioms,

B .. Y

] 9 9 9 ih U o 9x 09x
(¢ - de. ) =R e —_ (D.6)

26® 262  20C 36® (@ aBy “(a) b gg¢ 7
lead to the Gauss-Codazzi equations
R e %e Be Ye § R + e(m)( K ,-K K.) (D.7)
aBySs (a) (b) “(c) (d) abcd ~ Kbc ad ac db ’ *
a B Y S _ -

RaByG n e(b) e(c) e(d) Kbc;d Kbd;c * (D.8)

Given a range of values for V , (D.1) then gives rise to a

regular family of hypersurfaces, parametrized so that ei are constant

along the orthogonal trajectories, i.e. n“ael/sx“ = 0 . It then follows
that
i,,.a_ 1] _ 1)
207 /ox g e(j)a e a . (D.9)
ax*(8,V)/ov = pn® (D.10)

where p 1is defined by
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n = e(g)paaV .

1

ot = [e@s™ W (3,117

where p_

follows from (D.12) that

p

2 B

VI n =

Using (D.4) and (D.10) we find

3

(1)

from which

/3V = a(pn) /20" = (3,p)n + o K,

i

23G)

38,,/3V = (3/3V) (g v e)) = 20 Ky

From (D.4) we also have

Kab = g'(a)

-a&/aeb =

/v = - (@) (3 p)e

e

an e B = e ae
(a) "a|BS(®) P€a) “(b)

(a)

By
|a

which, together with (D.13) and the completeness relation

gaB

ab

a

€a) €(m)

B+ e(n)n

anB

]

B

vanishes nowhere in the region of interest (see §4.6).

(D.11)

(D.12)

It

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)
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yields
I | (a) _(b) _ -2 (a) (a) o
VIGB P Kabe o 8 e(n)p (aap)(e o + e gt )
- e(g)p_3(3p/3V) nng . (D.19)
Then for the mean curvature K = gab Kab ,» we have
af -2
K = pg VIUB + e(m)e Ip(v,0)/3v . (D.20)
If we now form
9 9 ] 9 a
(G —5 - —73990) >
ov aei aei Vv
and use (D.4) , (D.5) , (D.6) , (D.1l4) and (D.16) , we obtain
a_p v B _ P P
p RuuvBe(a) n'n e(b) G(R)D;ab + gap 8K$ /3V + p Kapr . (D.21)
By suitably contracting (D.7) , (D.8) and (D.21) , and using
(D.18) , we arrive at the decomposition of the Ricci temsor, RaB = RuaBu R
- -1
and the associated Einstein tensor, GaB = RaB 5 gaB R , with respect
to the basis {g(i),g} :
a B _ _ ab ab _ 2
ZGOlB nn = e(n)g Rab + KabK K . (D.22)
a B _ _ c,
RaBn e(b) abK Kb 3C R (D.23)
R e, e B-Rr. + p—lp + e(@K K, + e(n)p_lg ok P/av . (D.24)
aB (a) (b) ab ;ab ~ ab ~ ap %
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Let us now consider the case where n

3 In

order to have

agreement with §4.2, we change our notation so that capitalized Latin

indices range from O to 3 , while Greek indices run 1

to 3 For

the spacelike hypersurface ¢t = const. (e(m) = ~1) it turns out from
(D.15) that the extriansic curvature %-V_lagaslat vanishes, hence
(D.22) - (D.24) become simply
AB _ aB
ZGABn n =g RaB .
RABn e(B) =0 s > (D.25)
A B --1v
R = R + .
AB® (@) (8) a8V Va8 )
From (D.25) and the Einstein field equations
GAB = - 871y TAB ’
we readily derive the following decomposition:
1l aB _ o )
> B RaB = 8wy To s
o = 8wy Tao s $ (D.26)
= - - -V .
Gog = = 8™ T =V " (V4g |uBag? )
We are also interested in the 2-space V = const., considered

as imbedded in the 3-space t const.

relations

(D.22) - (D.24) , where n 2

This time we use the imbedding

e(n) = +1 , and lower case
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Latin indices have the range 2,3 .

Let X , Ya , and Za be the right-hand sides of (D.22) ,

b
(D.23) , and (D.24) , respectively. Then, by virtue of (4.17) (di.e.

from (D.4) , (D.9) , and (D.10)) we have the following identities:

g 13 (gx) /oV = oZab(Kab - kg®) - o'l(ozYa),a
]

1 1 (D.27)

-2 2 b ,c b -1, 2
=T -—
g 3(g7Y /v = [n(8_ 2. =21 +p "X,

where g 1is the determinant of the 2-space metric Thus, if (4.17)

8ab °
and (D.24) are considered as a system of first order equations for find-
ing 8.b and Kab as functions of V , then (D.22) and (D.23) are

"involutive constraints', i.e. if they are satisfied on one surface V =

const., then from (D.27) they must hold identically.

From (D.19) , (D.24) and (D.26) , we obtain

1 1
-1 2.2 b __. b _1 b
v g 3(g” Vv Ka )/3V = p;a 5 P R Ga (D.28)
a B 1. A
- 8o (T gey p) ~ 7 Ta 8ab) °

where R = gab Rab , while (D.22) and (D.23) , respectively, combine

with (D.19) and (D.26) to give

1 ab _ 2 _ - _ a B -1,-1
2(KabK K R) 8wy TaB nn 4+p V'K , (D.29)
b - . a B -2 -1
aax - Ka b 81y TaB e(a) n +p V aap . (D. 30)
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Finally, from (D.7) , (D.8) and (D.21) , with suitable

changes in notation, we find

ABCD aB 2 afB

vles

1 _ -
% Rapcp® =GtV Vg
which together with (D.19) , yields
1 ABCD _ af -2_-2 ab -4, —-2 ;a
4 RABCDR = GaBG +po vV KabK + 2p 'V p;ap

+ p_6V-2 (ap/aV)2 . (D. 31)
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=2 2 ‘
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