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ABSTRACT 

In remotely located forest watersheds, monitoring nitrogen (N) in streams 

often is not feasible because of the high costs and site inaccessibility. Therefore, 

modelling tools that can predict N in unmonitored watersheds are urgently needed 

to support management decisions for these watersheds. Recently, remote sensing 

(RS) has become a cost-efficient way to evaluate watershed characteristics and 

obtain model input variables. This study was to develop an artificial neural 

network (ANN) modelling tool relying solely on public domain climate data and 

satellite data without ground-based measurements. 

ANN was successfully applied to simulate N compositions in streams at 

studied watersheds by using easily accessible input variables, relevant time-

lagged inputs and inputs reflecting seasonal cycles. This study was the first effort 

to take the consideration of vegetation dynamics into N modelling by using RS-

derived enhanced vegetation index (EVI) that was capable of describing the 

differences of vegetation canopy and vegetation dynamics among watersheds. As 

a further study to demonstrate the applicability of the ANN models to 

unmonitored watersheds, the calibrated ANN models were used to predict N in 

other different watersheds (unmonitored watersheds in this perspective) without 

further calibration. A watershed similarity index was found to show high 

correlation with the transferability of the models and can potentially guide 

transferring the trained models into similar unmonitored watersheds. Finally, a 

framework to incorporate water quantity/quality modelling into forestry 

management was proposed to demonstrate the application of the developed 



models to support decision making. The major components of the framework 

include watershed delineation and classification, database and model development, 

and scenario-based analysis. The results of scenario analysis can be used to 

translate vegetation cut into values of EVI that can be fed to the models to predict 

changes in water quality (e.g. N) in response to harvesting scenarios. 

The results from this research demonstrated the applicability of ANNs for 

stream N modelling using easily accessible data, the effectiveness of RS-derived 

EVI in N model construction, and the transferability of the ANN models. The 

presented models have high potential to be used to predict N in streams in the 

real-world and serve forestry management. 
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CHAPTER 1. BACKGROUND AND INTRODUCTION 

1.1 Background 

Natural (e.g., wildfires) and anthropogenic (e.g., forest harvesting) watershed 

disturbance can change watershed features such as soil properties and vegetation 

cover and affect nutrient cycling and budget in the forestry system (Chanasyk et 

al. 2003). Wildfires and harvesting have been associated with increased water 

yield and release of nitrogen (N), phosphorus and sediments from watersheds into 

streams several years after the disturbances (Prepas et al. 2003; Pelster et al. 

2008). In Swan Hills, Alberta, the increased nitrate-N and ammonium-N 

concentrations, combined with increased runoff one year after harvest resulted in 

impact ratios for  areal nitrate-N and ammonium-N exports that were 170% and 

130%, respectively, higher in harvested than reference watersheds (Pelster et al. 

2008). The increase of nutrient in surface water can potentially cause severe 

environmental problems such as dissolved oxygen depletion, algal blooms, 

cyanobacterial toxin production, chlorophyll a and biodiversity disruption. 

Therefore, as an important land-based resource activity in Alberta, forestry must 

be scientifically planned to ensure sustainable fibre production and minimal 

adverse environmental impact. 

Currently, the harvesting activities in Alberta are governed by Forest 

Management Agreements (FMA) with the Province. The obligations of an FMA 

permit holder are to harvest no more than the amount of timber stated in the FMA, 

and to promptly regenerate and maintain the harvested areas in a forested 

condition. In addition, the FMA holder should also plan its harvest strategy to 

prevent detrimental effects to other interests in its FMA area. A set of harvesting 

control policies are currently used as best practices, attempting to minimize the 

adverse impacts of forest harvesting on biodiversity, ecological integrity, water 

quantity and quality and timber supply. In an era of increased land use and 

resource development, forest management planning processes will require 
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increasingly more sophisticated modelling tools and science-based evidence to 

identify and avoid significant impacts on the environment (Smith et al. 2003). 

Therefore, the Forest Watershed and Riparian Disturbance (FORWARD) 

project was initiated in 2001. It is a long-term project to integrate aquatic and soil 

science, hydrology, and forestry into models that link water quantity and quality 

and disturbance indicators with watershed management on the Boreal Plain of 

western Canada. The modelling component of the FORWARD project is to 

develop modelling procedures that can be used for predicting the impacts of forest 

harvesting on water quantity and quality in streams. 

1.2 Watershed Modelling 

1.2.1 Watershed Models Classification 

Watershed models can be classified based on the degree of spatial resolution 

into: (1) lumped models that use average values of input variables over the entire 

watershed area, and thus have minimal data requirements; (2) semi-distributed 

models that divide the watershed into sub-watersheds, in which each sub-

watershed carries a distinct set of input variables; and (3) distributed models that 

are made up of very small areas that may be represented by imagery based pixels 

in terms of input representations and parameter routing, and therefore having huge 

data requirements. 

Watershed models can also be classified according to physical 

conceptualization into: (1) empirical (also called data-driven); (2) physically 

based (also called mechanistic); and (3) conceptual (also called parametric) 

models. Empirical models use time-series of input and output records to derive 

both the model structure and the corresponding parameter values. They do not 

need a complete understanding of the physical, chemical, hydro-morphological 

and biological processes controlling flow processes and contaminant transport 

mechanisms. Physically based models mathematically describe a process using a 

set of principles, based on the conservation of mass, momentum and energy. They 

are distributed models and have intensive data requirements. Conceptual models 
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include both simplified physically based components and empirical components. 

That means, based on a conceptualization of the watershed, the structure of these 

models is specified in advance, then the observations of the watershed response 

are used to find appropriate values for the model parameters through empirical 

relations. Conceptual models form the large majority of models used in practice. 

Conceptual watershed-scale water quantity and quality models include, but are 

not limited to, the Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998), 

aerial non-point source watershed environment simulation-2000 (ANSWERS-

2000) (Beasley et al. 1980; Bouraoui and Dillaha 1996), Hydrologic Simulation 

Program Fortran (HSPF) (Johanson et al. 1984), erosion productivity impact 

calculator (Sharpley and Williams 1990), annualized agriculture non-point source 

pollutant loading model (AnnAGNPS) (Bingneer et al. 2001), and the Guelph 

model for evaluating the effects of agricultural management systems on erosion 

and sedimentation (GAMES) (Cook et al. 1985). The use of this class of models 

presents the challenge of estimating or calibrating a large number of model 

parameters from information with limited availability. Obtaining the information 

necessary for model calibration is time-consuming and expensive. To use the 

models for forested watersheds, certain modifications have to be completed first 

as most of the models were originally developed for agricultural dominated 

watersheds.  

Data-driven models have been successful in capturing the relationship 

between the input and output data with less knowledge of the modelled system in 

terms of the interaction of the biological, geological, chemical and physical 

processes. Consequently, they are attractive alternatives to traditional conceptual 

models. Among those techniques, artificial neural network (ANN) models hold 

promise for water quantity and quality modelling. They can often capture data 

patterns without extensive knowledge of the particular site-related problems and 

can model complicated and nonlinear processes with fewer input variables than 

mechanistic models. Because they are capable of handling large-scale and 

complex problems, ANN models provide great advantages in a wide range of 

water quality applications, such as modelling sediment concentrations (Cigizoglu 
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and Alp 2006; Cigizoglu and Kisi 2006; Tayfur and Guldal 2006; Alp and 

Cigizoglu 2007), phosphorus concentrations (Nour et al. 2006a; Nour et al. 

2006b),  cyanobacteria blooms (Maier et al. 2001b; Teles et al. 2006) in surface 

waters, and N loads and concentrations from agricultural settings into drainage 

water (Salehi et al. 2000; Sharma et al. 2003). 

1.2.2 Artificial Neural Networks 

ANNs consist of a large number of simple, highly interconnected processing 

elements (neurons) in an architecture inspired by the structure of the cerebral 

cortex of the brain (Tsoukalas and Uhrig 1997). ANN models are developed in an 

attempt to mimic the learning of human brains. The processing neurons are 

generally organized in layers. A feedforward networks has an input layer, one or 

more hidden layers and an output layer. The nodes in one layer are connected to 

each node in the next layer, but not to those in the same layer. The input from 

each node in the previous layer is multiplied by a connection weight. At each 

node, the weighted input signals are summed and then added a threshold value. 

Then a transfer function is performed on the combined input to produce the output 

of the node. The types of ANNs that have been used in water quantity and quality 

modelling include feed-forward multilayer perceptron trained with the back-

propagation algorithm (MLP-BP), recurrent neural networks (RNNs), radial basis 

function networks (RBFNs), general regression neural networks (GRNNs), 

modular neural networks (MNNs), Kohonen’s self-organizing map (KSOM), and 

associative memory network (AMN). So far, MLP-BP is the most widely used 

ANNs.  

ANN models have become an attractive modelling tool in solving complex 

problems because (ASCE Task Committee 2000) ANNs: (1) are able to identify 

the relationship between inputs and outputs without fully understanding the 

mechanistic principles behind them, (2) can work well even when the training sets 

contain noise and measurement errors, (3) can be adapted to solutions to 

compensate for changing circumstances, and (4) are easy to use once trained. In 

addition, ANNs have demonstrated strengths over the other two alternative 
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models − conventional statistical models and numerical models − from several 

perspectives. The traditional statistical modelling approaches (e.g., multivariate 

linear regression (MLR)) involve making assumptions about the system under 

study and developing equations describing the problem to achieve statistical 

optimality. In contrast, the ANN practitioners do not need to make such 

assumptions and figure out equations for the problems. Their primary objective is 

to achieve high prediction accuracy and develop models that work in practice 

(Breiman 1994; Tibshirani 1994). The modelling approach differences between 

ANN models and traditional statistical models, coupled with a lack of strict rules 

charging the ANN model development lead to the tendency of choosing ANNs 

over MLR when predicting surface water quality parameters. ANNs can achieve 

higher prediction accuracy than MLR as shown through a number of case studies 

(e.g., Kisi 2004; Bowden et al. 2006). Compared to numerical models, ANN 

models can provide comparable modelling accuracy but are more applicable in 

practice when professional expertise and data are limited. 

The development of ANN models generally includes the following steps: (1) 

input determination; (2) data division into training, testing and validation datasets; 

(3) determination of model architecture (e.g., number of hidden layers, number of 

neurons in each layer, activation function, and learning rate); (4) model 

calibration; and (5) model evaluation. The determination of model inputs is one of 

the most important steps in developing a successful ANN model. Input variables 

should be carefully selected to closely describe the physical system being 

modelled and not to include noisy or correlated variables because inclusion of 

these kinds of inputs can increase computational complexity and deteriorate 

model performance. Ideally, the available input/output data pairs should be 

divided into three data sets (training, testing and validating data sets) that can 

represent the same population to assure model generality. The training data set is 

used for model training and for the optimization of the model connection weights. 

The testing set is used to decide when to stop training to avoid model overfitting. 

The cross-validation data set is used to evaluate the model against a totally 

independent data set. Model architecture determination generally relies upon 
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modellers’ experience; however, guidelines have been proposed in recent studies 

(e.g., Maier and Dandy 2000; Nour et al. 2006b). For an ANN to generate output 

predictions that are as close as possible to the objective values, model calibration 

is an essential step to find optimal weights by minimizing a predetermined error 

function. After model calibration, the power of the models in terms of prediction 

accuracy, robustness and generality should be verified before the models are put 

in use. The models usually are tested through several criteria that include both 

correlation-based measures (e.g., coefficient of determination, coefficient of 

efficiency) and additional statistical measures (e.g., mean absolute measure, 

summary statistics) (Legates and McCabe 1999).  

ANN is an efficient tool for modelling complex systems at desirable accuracy 

if well developed. The popularity of ANNs, on the other hand, reveals its 

limitations as well as further expectations from model practitioners. In turn, 

advanced studies have been conducted in the following perspectives to make 

ANN a more reliable modelling tool: (1) combine ANNs and other alternative 

models with emphasis on numerical models to couple the strengths of ANNs in 

simplifying the description of the problem and reducing data requirement and 

computational time, and the strengths of numerical models in describing the 

physical principles; (2) find the ways of extracting information from ANNs 

because they are looked at as ‘grey-box’, which means that ANNs contain 

physical information about the system being modelled; (3) improve the generality 

of ANNs models because the models developed based on experimental data are 

expected to be applicable in similar situations; and (4) establish systematic 

procedures and guidelines for ANNs model development, which is crucial to 

develop successful ANNs models. 

1.3 Watershed N Modelling Approach 

1.3.1 Model Selection 

It is recommended to consider 11 criteria to select the appropriate watershed 

N models (Putz et al. 2003). Generally speaking, first, the model should be able to 
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achieve the overall modelling objectives, that is, to predict water quality at 

satisfactory accuracy, link watershed disturbance indicators with water quality 

and can be potentially incorporated into forestry management. Second, the models 

should be applicable in practice. Specifically, the following issues including the 

spatial and temporal resolutions of inputs and outputs, the data requirements and 

availability for the models, the requirements of computational hardware and 

personal skills should be considered.  

Modelling N composition in streams is very complex because of the 

difficulty in mathematically representing factors like land use and land cover, soil 

and vegetation N dynamics, in-stream nitrification/denitrification and 

meteorological parameters. These factors are complex, nonlinearly related, 

spatially distributed on a watershed scale and temporally variable. Also, 

hydrological, biological and chemical processes underlying N storage, 

transformation and release are not well understood. Hence, the application of 

mechanistic models is costly and impractical, because large amounts of data are 

required to establish parameters and verify model performance.  

In contrast, ANN models can often capture data patterns without extensive 

knowledge of the particular site-related problems and can handle large-scale and 

complex problems. Therefore, ANN models are suitable to predict N in 

watersheds. In addition, the successful application of ANNs in water quantity and 

quality modelling indicates that ANN models are useful in supporting 

environmental decision-making (Maier et al. 2001a; Rudra et al. 2005; Dakou et 

al. 2006; Diamantopoulou et al. 2007; Elhatip and Komur 2008). 

Application of ANNs for N modelling has mostly relied on MLP-BP and 

focused on nitrate (NO3
-) in agricultural settings, such as predicting annual NO3

- 

loss into drainage (Salehi et al. 2000), simulating NO3
- leaching in drainage 

effluent (Kaluli et al. 1998), forecasting NO3
- loads on a watershed based on 

historical data (Yu et al. 2004) and predicting NO3
- concentration in drainage 

water  after application of fertilizers and manure (Sharma et al. 2003). Lek et al. 

(1999) applied MLP-BP to predict total and inorganic N concentrations in streams 
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with correlation coefficients of 0.82 and 0.80, respectively, from watershed 

features. In another study, using weather station data, daily streamflow and the 

Julian day as model inputs, Suen and Eheart (2003) developed a MLP-BP model 

with overall accuracy of 0.8 to predict if NO3
- concentrations in a river were 

greater or less than 10 mg L-1. 

1.3.2 Data Requirements 

The availability of data is always a concern to develop practically-applicable 

watershed models. Recently, the development of Earth observing satellite system 

and the advancements in computer and software technologies have made it 

possible to evaluate watershed characteristics and obtain model input variables 

through remote sensing (RS). RS is a cost-efficient way to improve the spatial and 

temporal coverage of surface water and watershed monitoring (Koponen et al. 

2004). RS technology develops quickly and includes most of the electromagnetic 

spectrum to provide a variety of information about the Earth. To acquire RS data 

efficient and appropriate for its specific application, spatial resolution, temporal 

resolution, spectral resolution and spectral wavelength need to be considered. 

The Earth observing system (EOS), launched December of 1999, is the first 

observing system to offer integrated measurements of the Earth's processes. The 

moderate-resolution imaging spectroradiometer (MODIS) is the key EOS 

instrument and its mission is to study global/local interactions.  MODIS was 

designed to improve monitoring of land, ocean and atmosphere, particularly, to 

provide innovative land products data that are especially designed to support 

modelling applications (Reed et al. 2002). The MODIS collects reflected and 

emitted radiation from the earth in 36 bands from 0.405 to 14.385 µm and 

provides spatial resolution of 250 m, 500 m and 1 km (Barnes et al. 1998). The 

MODIS Land Group provide not only satellite data but also high level data 

products (e.g., vegetation indexes (VIs)) that are specifically designed to support 

the global to regional monitoring, modelling, and assessment. Furthermore, 

MODIS data are freely available, thus providing a means of acquiring time series 

representations of vegetation dynamics at an affordable cost. For instance, a 
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successful nutrient model requires information regarding soil and vegetation 

nutrient status. RS VIs can represent vegetation health and stress in terms of the 

vegetation chlorophyll content and the leaf water content, which can be linked to 

soil/vegetation nutrient interactions and thus can aid in formulating relatively 

accurate and usable nutrient watershed models (Cheng et al. 2006). Such 

information can potentially act as a surrogate for soil/vegetation nutrient transport 

and therefore can potentially represent vegetation dynamics in nutrient models. 

The direct use of RS digital data to estimate hydrological state parameters is 

an important application to watershed modelling and is normally achieved 

through electro-optical or statistical modelling of known hydrometric data with 

satellite data. Although there has been some success in the application of RS data 

in hydrology, the incorporation of RS information into nutrient modelling still 

requires more effort. To develop low-cost N models that are applicable to a 

number of watersheds (e.g., unmonitored watersheds, watersheds at remote areas), 

RS data is an essential component of the data requirements in this study. 

1.4 Research Objectives 

In order to develop ANN N models that only rely on weather station 

measures and RS data, and have high applicability in practice, the following 

objectives have to be achieved: 

1. Develop ANN models that can simulate ammonium, nitrate and total 

dissolved N in streams draining undisturbed and disturbed watersheds; 

2. Develop ANN models that are capable of modelling aquatic N 

concentrations and loadings in unmonitored watersheds only relying on 

climate data and RS information; 

3. Investigate the applicability and transferability of the above developed 

models (2) in unmonitored watersheds: 

a. Develop individual and combined watershed similarity indices 

between any two watersheds (i – j), which can guide model 

transferability, 
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b. Apply the calibrated ANN models based on watershed i to a 

different watershed j without further calibration, and 

c. Find a watershed similarity index that can reasonably guide model 

transferability by investigating the relationship between similarity 

indices and the performance of model transfer; and 

4. Propose a framework to incorporate ANNs models into forest 

management. 

1.5 Thesis Organization 

A paper format has been employed to this thesis to preserve the diversity of 

the models and achieve the research objectives. 

Chapter 2 provides comprehensive reviews on: the application of ANNs to 

water quality modelling, which is very beneficial to understand the ANN 

modelling work in this thesis; the application of geographic information system 

(GIS) and RS to water quality modelling as they have become important tools for 

watershed modelling and watershed management; and how snowpacks in winter 

affect N in streams because in north region the existence of microbial activities in 

snowpacks can influence the N export into streams during snowmelt.  

The first part presents the general procedure and methodology of ANN model 

development; summarizes and compares different types of ANNs that have even 

been used in water quality modelling; provides the advanced studies to overcome 

the challenges for ANN models; reviews and discusses the applications of ANNs 

to modelling surface water quality parameters; and suggests future research 

recommendations to improve ANNs applications in water quality modelling.  

The second part provides essential technical information of RS and GIS that 

are important to development and application of simulation models to watershed 

management. RS data provides valuable information about watershed 

characteristics for water quality modelling. Generally, RS data can be used to 

estimate the input parameters (e.g., surface temperature, soil moisture) for 

watershed models, delineate watershed and streams, classify land-use and land-
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application, monitor water quality parameters, and provide vegetation indices data 

for vegetation dynamics study. RS data can be best utilized if they are integrated 

into a GIS that is designated to manage large volumes of data. The use of GIS 

ranges from just display and visualization of results to storage and retrieval of 

remotely sensed data and environmental data, from spatial analysis of landscape 

and preparation of model parameters for integration with watershed modelling. 

Three of the most common strategies for linking a GIS to a simulation model are 

loose coupling, tight coupling and an embedded system approach.  

The third part helps to understand the seasonal variation of N in streams and 

the determination of ANN N model input variables. A number of in-situ and lab 

works have confirmed the active N processes under snow cover, and 

demonstrated that overwinter N processes are important and should be considered 

when modelling N leaching and concentrations in surface water. Snowpack 

insulates soil from the very low atmospheric temperature in winter and thus 

enables microbial activities including mineralization and 

nitrification/denitrification. Consequently, this leads to increase of N in soil under 

certain conditions of snow accumulation, snow depth and snow consistence. The 

major sources of N into streams after winter break are snowpacks and soils. It is 

commonly recognized that inorganic N concentrations peak in surface water 

during snowmelt or winter breaks. 

Chapter 3 is the modelling of N compositions in streams on the Boreal Plain 

using GRNN. GRNN was selected because there is only one parameter to be 

optimized and it is very fast to train. GRNN models were developed following 

strict procedures and applied to simulate daily mean NO3
-, ammonium (NH4

+) and 

total dissolved N (TDN) concentrations in streams at three watersheds in the 

Swan Hills of Alberta, Canada. The optimal inputs were derived from five major 

variables: rainfall, daily mean air temperature, cumulative degree-days, enhanced 

vegetation index (EVI) and Julian day of the year. The consistent performance of 

GA-GRNN models for two relatively undisturbed watersheds, as well as a burned 

watershed, was obtained with the inclusion of the RS-derived EVI as one of the 

model inputs. This index was capable of describing vegetation canopy differences 
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among watersheds, as well as vegetation phenology. In terms of model 

architecture, the developed models were not sensitive to the initial smoothing 

factor and training with a genetic algorithm improved model performance on 

testing data sets. The developed models successfully simulated NO3
-, NH4

+ and 

TDN concentrations for three streams, with r2 values exceeding 0.83 for all data 

sets. This study distinguished itself from other N modelling studies (Kaluli et al. 

1998; Lek et al. 1999; Sharma et al. 2003; Yu et al. 2004; Khalil et al. 2005; 

Almasri and Kaluarachchi 2005) in that it: (1) explored the water quality 

modelling capability of GRNNs trained with a genetic algorithm; (2) took into 

consideration the dynamics of vegetation phenology on N modelling by using RS 

data and; (3) developed GA-GRNN models that successfully predicted not only 

NO3
-, but also NH4

+ and TDN concentrations. More importantly, it implies the 

high potential of applying GA-GRNN models for predicting other surface water 

quality parameters on other similar or different watersheds.  

As further study from Chapter 3, in Chapter 4 a model of N export in 

unmonitored watersheds was developed by transferring trained models to new 

watersheds that the models have never seen during their calibration and find out 

an index that can measure models’ transferability. MLP-BP N export models were 

developed using low-cost, readily available meteorological data and satellite data 

in forested watersheds. The performance of the models was evaluated using 

correlation-based measure, absolute error measures and time series plot of 

measured and modelled values. Although the modelled parameter varied over a 

big range (i.e., the peak values were thousands of times the low values), it was 

simulated fairly well. The best MLP-BP architecture for all the models had a 

single hidden layer with three activation functions. The networks were trained 

using either typical gradient BP or BP with batch update. Modelling N export 

only using readily available data with reasonable accuracy indicates its potential 

application to unmonitored watershed. To demonstrate the applicability of the 

developed models to unmonitored watersheds, the calibrated models were used to 

predict N export in other different watersheds without further calibration. The 

Nash Sutcliffe coefficient E was greater than 0, which means that the models 
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produced better estimates than the mean of the observed values. The correlation 

coefficient r2 and index of agreement d were in the range of 0.44 to 0.63 and 0.73 

to 0.88, respectively. The transferred models could catch the seasonal and annual 

periodicity of N export even though some peak values were not well predicted. 

The overall results indicated that transferring the calibrated models developed 

using the proposed algorithm to other different watersheds is promising. To 

transfer models to unmonitored watersheds, it is very important to find a 

similarity index that can effectively measure watershed similarity because the 

more similar the watersheds are the greater success in the model transfer. The 

indexes representing watershed soil types, rainfall and watershed vegetation 

conditions were computed then their correlation with model transfer performance 

was tested. For each single index, Rainfall_Index (r2 = 0.71) and NDWI_Index 

(normalized difference water index) (r2 = 0.69) had the highest correlation with 

model transferability. Peatland_Index,  Riparian_Index and EVI_Index were not 

significantly correlated with model transferability. The best watershed similarity 

index was (Rainfall_Index+ Peatland_Index+ NDWI_Index) (r2 = 0.74) when all 

of the factors of watershed soil types, rainfall and vegetation conditions were 

considered. 

Chapter 5 provides a framework to incorporate water quantity/quality 

modelling into forestry management. This chapter summarizes the modelling 

results from two approaches, SWAT and ANN, applied to FORWARD project. 

The framework is: (1) Delineate the digital elevation model (DEM) of the MWFP 

FMA area into first order watersheds (~ 5 km2) using the eight-direction pour-

point algorithm and a reasonable threshold for flow accumulation. (2) Use rainfall 

interpolation techniques like kriging and inverse distance weighted interpolation 

techniques to estimate daily rainfall intensity in the centroid of each watershed 

using data from surrounding weather stations (fire towers, Environment Canada, 

and FORWARD project stations). (3) Formulate streamflow (Q), Total suspended 

solids (TSS) and nutrient models for several of the 16 FORWARD experimental 

watersheds and validate with the remaining watersheds. (4) The previously 

delineated watersheds, including the FORWARD study watersheds, will be 
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grouped into different categories according to hydrologic homogeneity in term of 

VIs, average slope, % wetland composition, yearly precipitation, and basin area. 

(5) Each calibrated model is then run for all the watersheds falling into its group 

of similar watersheds. Upon successful implementation of models to the whole 

FMA area, scenario-based analysis that forces harvesting disturbance on the 

landbase can be fed to the models to identify the impact of different land use 

activities on water quality and quantity. To design these scenarios, a relation has 

to be established between VIs and typically used vegetation metrics (e.g., timber 

volume, average age, height, and diameter at breast height). This relation can be 

used to translate vegetation cut into values of VIs that can be fed to the models to 

predict changes in streamflow, water-phase solids, and nutrients in response to 

harvesting scenarios. 

Chapter 6 presents overall conclusions and recommendations for further 

research in this area. The contribution of this research to academia is that it 

provides an approach to simulate N in unmonitored watersheds at daily scale. 

Specifically, it improves N modeling through incorporating vegetation dynamics, 

which significantly affect N cycle and leaching into streams.  This research 

contributes to industry by developing effective and cost-efficient models that 

produce satisfying accuracy but only require public domain data. They have high 

practical values for lumbering industry because the developed models can link 

lumbering activities with water quality parameters through VIs.  The models can 

be potentially applied to support decision-making on planning lumber harvesting 

and meet environmental regulatory requirements.  
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CHAPTER 2. STREAM WATER QUALITY MODELLING 

FOR WATERSHED MANAGEMENT USING ARTIFICIAL 

NEURAL NETWORKS: A REVIEW 

2.1 Introduction 

Stream water quality modelling involves understanding physical, 

geochemical and biological processes that includes a number of inter-related 

factors such as watershed features, meteorological factors, geological factors and 

anthropogenic effects.  However, the relationships between these processes and 

water quality parameters are complex, not deterministic and currently even not 

fully understood to our knowledge. Therefore, artificial neural networks (ANNs), 

capable of modelling complicated and non-linear processes, have been gaining 

popularity in water quality modelling over the past decade. As for large scale 

areas especially where measurements are not feasible or cost prohibitive, remote 

sensing (RS) data provide valuable information required for watershed modelling 

and management. In this context, geographic information system (GIS) 

technology, as an essential and functional tool for handling and utilizing a large 

volume of spatial data, plays an important role on dealing with RS data and 

supporting watershed management.  

In this research, to successfully model nitrogen (N) using ANNs in ungauged 

watersheds with the aid of remotely-sensed information and apply the developed 

ANNs models to watershed management, it is important to: (1) follow a 

systematic procedure for ANN model development, (2) determine the model 

inputs and internal parameters, (3) understand the advantages and limitations of 

ANNs in modelling water quality, (4) find out the periodicity of N in streams in 

north region, (5) get knowledge of the physical processes affecting N in streams, 

in particular, how does snowmelt affect N leaching from soil to streams in north 

region, (6) know the use of RS data for water quality modelling in general and 

what type of RS data can serve N modelling, (7) understand in which ways GIS 

can contribute to RS data processing and water quality modelling. Therefore, this 
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review is prepared to summarize knowledge of the above concerns to fulfill the 

research objectives.  

2.2 The Modelling Tool - Artificial Neural Networks 

2.2.1 ANNs 

ANNs are an artificial intelligence (AI) approach that mimics the operation of 

human brain to solve problems. From a statistical perspective, ANNs essentially 

employ a similar modelling philosophy as that of conventional statistical models 

to predict environmental variables (Maier and Dandy 2001), where the objective 

is to identify the relationships between model input variables and corresponding 

output variables. This objective is achieved with ANNs by employing enough 

data sets representing the input-output relationship for adjusting the model 

internal parameters (e.g., the connection weights) and minimizing an error 

function between the predicted and observed outputs (Maier and Dandy 2001). 

ANN models have become an attractive modelling tool in solving complex 

problems. The ASCE Task Committee (2000) observed that ANNs: (1) are able to 

identify the relationship between inputs and outputs without requiring the full 

understanding of the mechanistic principles behind them; (2) can work well even 

when the training sets contain noise and measurement errors; (3) can be adapted 

to compensate for changing circumstances; and (4) are easy to use once trained.  

An ANN mode is a data processing system consisting of a large number of 

simple and highly interconnected processing neurons (or called elements) in an 

architecture inspired by the structure of the cerebral cortex of the brain (Tsoukalas 

and Uhrig 1997). There are seven major components to an ANN architecture: (1) 

processing neurons, (2) a state of activation, (3) an output function for each 

neuron, (4) a pattern of connectivity or weights between neurons, (5) a 

propagation rule, (6) an activation function to combine the inputs impinging on a 

neuron with the current state of that neuron to produce a new level of activation 

for that unit, (7) a learning rule whereby weights are adjusted (Rumelhart et al. 

1986). The processing neurons are generally organized in layers. ANNs are 

generally categorized into two groups that are feed-forward networks and feed-

 20



backward networks based on the direction of information flow and processing. 

Feed-forward neural networks, the most popular category, have model inputs 

processed forward through the network in sequence and do not contain the feed-

back connections necessary to provide a dynamic mode. Feed-backward networks 

have recurrent loops within the architecture that make possible for the network to 

retain a short memory with respect to the previous input information. Such 

incorporation of information makes feed-backward networks particularly suitable 

for modelling time dependent systems. In order for an ANN to generate output 

predictions that are as close as possible to the objective values, a training process, 

also called learning, is employed to find optimal ANN parameters (e.g., weights, 

smoothing factors) minimizing a predetermined error function.  

The types of ANN models that have been used for surface water quality 

modelling include feed-forward multilayer perceptron trained with the back-

propagation algorithm (MLP-BP), recurrent neural networks (RNN), radial basis 

function networks (RBFNs), general regression neural networks (GRNNs), 

modular neural networks (MNNs), Kohonen’s self-organizing map (KSOM), and 

associative memory network (AMN). The architecture of these ANNs is 

summarized in Figure 2-1. Table 2-1 describes these ANNs and compares the 

advantages and limitations of each type of ANNs. MLP-BP is the most popular 

type of ANNs for prediction and forecasting applications even though other 

ANNs sometimes performed better than MLP-BP. 

2.2.2 Advanced Studies on ANN Modelling  

Although ANN models have been considered as successful tools for complex 

problems, it is necessary to be aware of their limitations to ensure their proper 

implementation and an adequate interpolation of the modelling results. The major 

concerns about ANNs have resulted from the fact that they are looked as ‘black-

box’, which means that they do not represent physical mechanisms. This ‘black-

box’ recognition of ANNs leads to the difficulty of interpreting and extrapolating 

the modelling results. However, modellers commonly expect that proper 

interpretation of modelling results and extraction of physical knowledge about the 
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system being modelled is possible. The most recent research is conducted in the 

following perspectives to make ANNs a more desirable modelling tool. 

2.2.2.1 Hybrid ANN Models 

 The combination of ANNs with numerical models has gained considerable 

interest as the hybrid neural models with a degree of deterministic components 

integrated into them, can achieve the best of both the neural networks and 

numerical models. Within the hybrid model structure, the numerical model 

specifies the basic dynamics of the relevant process variables, and the ANNs 

model properly accounts for the unknown and nonlinear parts of numerical 

models (Lee et al. 2002).  Typically, there are two types of hybrid models: the 

serial hybrid neural model and the parallel hybrid model. In the serial hybrid 

model, an ANN model is put in series with a numerical model. The numerical 

model mathematically describes the well understood system whereas the ANNs 

model describes the unknowns (Chen and Adams 2006). In the parallel hybrid 

model, an ANNs model is placed in parallel with a numerical model. The ANNs 

compensates for the differences between the numerical model predictions and the 

process data (Zhao et al. 1997; Lee et al. 2002). In addition, ANNs have been 

combined with fuzzy logic and genetic algorithms to take account of uncertainties 

(Chen et al. 2001; Choi and Park 2001; Chen et al. 2003a; Nayak et al. 2007) and 

combined with traditional regression models (e.g., autoregressive moving average 

(ARMA), autoregressive integrated moving average (ARIMA)) to improve the 

forecasting accuracy for time series data (Jain and Kumar 2007; Sallehuddin et al. 

2007; Valenzuelaa et al. 2008). 

2.2.2.2 Knowledge Extraction 

ANNs was thought to explain very little about the influences of the 

independent input variables in the prediction process (Olden and Jackson 2002; 

Olden et al. 2004). However, recent studies have confirmed that physical 

information can be extracted from the internal structures of ANN models (Jain et 

al. 2004). The contributions of input variables can be evaluated by the ‘partial 

derivatives’ method,  the ‘weights’ method, the ‘pertub’ method, the ‘profile’ 
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method, the ‘classical stepwise’ method, the ‘improved stepwise a’ method, and 

the ‘improved stepwise b’ method (Gevrey et al. 2003). Studies are ongoing to 

develop the methodology to extract knowledge from trained ANNs to make 

ANNs a valuable quantitative tool to evaluate, understand and predict 

environmental phenomena (Olden and Jackson 2002; Wilby et al. 2003; Jain et al. 

2004; Olden et al. 2004; Sudheer and Jain 2004; Sudheer 2005; Gevrey et al. 2006; 

Kingston et al. 2006). So far, the commonly used methods to determine the 

contribution of input variables to output are based on sensitivity analysis and 

optimal weights. Knowledge from ANNs models is usually extracted by 

interpreting information contained in a single optimal weight vector (Gevrey et al. 

2003; Olden et al. 2004). However, there exist many different weight vectors that 

result in similar network performance, which means that there may be a range of 

‘optimal’ weight vectors. Therefore, a probabilistic knowledge extraction from 

the weights of an ANN to reveal the range of relationships between the model 

inputs and outputs should be considered (Kingston et al. 2006).  

2.2.2.3 Model Generalization 

Besides simulation accuracy, model generalization is a major criterion to 

evaluate the performance and power of ANNs models. Model generalization is 

primarily related to the learning or training methods and the amount and 

representativeness of training data (Bishop 1995). Studies have been carried out to 

investigate how to alleviate over-fitting and improve generalization through 

improving learning algorithm (e.g., early stopping) (Anctil and Lauzon 2004), 

developing simpler ANNs without reducing its prediction accuracy (Gaume and 

Gosset 2003), and selecting representative training data (Anctil and Lauzon 2004; 

Shabin et al. 2004). The quantity and quality of data, the type of noise and the 

mathematical properties of the algorithm for estimating the usual large number of 

parameters are crucial for the generalization ability of ANNs (Giustolisi and 

Laucelli 2005).  

In addition to optimizing a single network, combining multiple ANNs is 

another way to improve the generalization ability of ANNs because it is difficult 
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to develop a single neural network with high modelling quality for a complex task. 

The combination of several ANNs, namely aggregated/compound neural 

networks (A/C-NN), appeared to be a promising approach (Mani and Omkar 2002; 

Versace et al. 2004; Wang and Yan 2004; Ahmad and Zhang 2005a, b; Samanta 

et al. 2005; Wang et al. 2006). Combination of multiple neural networks can work 

in two ways: (1) Training-A/C-NN: The individual models simulating the same 

relationship are developed from different data sets and/or different training 

algorithms and combined to provide the outputs through methods such as stacking, 

bootstrapping and Bayesian selective combination; (2) Subtasks-A/C-NN: A 

whole task is divided into specific situations (or subtasks) based on a certain 

criteria. The overall forecast is a weighted sum of the individual model output for 

each situation. To test the effectiveness of training-A/C-NN, multiple neural 

networks were combined using data fusion techniques by which the combination 

weight of each neural network was determined according to the model input data 

(Ahmad and Zhang 2005b).  

2.2.2.4 Guidelines of ANNs Model Development  

The basic theory of ANNs and the case studies are described very well in 

most publications. However, the development of ANNs models in a systematic 

way, which is crucial to find the optimal model, is not properly described in 

general. It is urgently needed to establish guidelines that assist with the 

development and applications of ANN models (Wilby et al. 2003; Al-Yemni and 

Yang 2005; Dawson et al. 2006). Guidelines that can effectively assist with the 

development of ANN models need to include at least the following components: 

select suitable network algorithm such as MLP-BP, GRNN, RBF, estimate neural 

network parameters (e.g., activation functions, learning rate), determine adequate 

model inputs, divide the whole data into representative subsets, find proper 

training algorithm and stopping criteria, evaluate model’s performance properly, 

and interpret modelling results. Although a comprehensive guide covering each 

step of developing an ANNs model has not been presented, it is promising that the 

consideration of individual components has been addressed in studies, such as 
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determination of input parameters (Bowden et al. 2005a; Bowden et al. 2005b) 

and data division (Bowden et al. 2002; Shabin et al. 2004).  

2.2.3 Application of ANNs for Water Quality Modelling 

Over the past decade, ANNs have been successfully used to predict and 

model a variety of water quality parameters such as sediment, nutrients, microbial 

concentration, and salinity. The information that is useful and of interest to 

modelers and researchers is summarized in Table 2-2.  

According to Table 2-2, MLP-BP is the most widely used ANNs for water 

quality modelling because MLP-BP is capable of handling a wide range of 

problems (Table 2-1).  Comparison studies indicate that ANNs are superior to 

linear regression to model time-correlated variables. MLP-BP sediment models 

were significantly superior to conventional sediment rating curve and MLR 

method (Cigizoglu and Alp 2006; Alp and Cigizoglu 2007).  In modelling total 

phosphorus concentration, MLP-BP models outperformed autoregressive moving 

average with exogenous input (ARMAX) (Nour et al. 2006b).  The MLP-BP 

model was able to predict several strains of indicator bacterial concentrations in a 

river from other related physical, chemical, and bacteriological variables and was 

superior to conventional imputation and MLR models (Chandramouli et al. 2007). 

MLP-BP models have been compared with other ANNs (e.g., RBF, GRNN) 

models to explore the advantages of different ANNs (Table 2-2).  GRNN and 

RBF performed better than MLP in the estimation of total sediment load (Kisi 

2004). Realizing the limitation of MLP-BP approach to interpret the relationship 

between the inputs and the outputs, B-spline AMNs were developed to forecast 

Anabaena spp. (Maier et al. 2000, 2001). The weights of AMNs can be 

interpreted as a set of fuzzy membership functions and then the relationship 

between the model inputs and outputs are written as a set of fuzzy rules. AMNs 

and MLP models obtained comparable forecasting accuracy, but the B-spline 

AMNs model provided more explicit information, for example, indicated that the 

incidences of Anabaena spp. generally occurred after passing of the flood 

hydrograph and when water temperature were high (Maier et al. 2000, 2001). The 
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surface water quality parameters generally vary in a big range and have a high 

standard deviation. Thus, the ANNs models sometimes fail to predict the peaks 

with satisfied accuracy. Accordingly, range dependent neural networks (RDNN) 

(also called A/C-NN) were developed to improve the prediction accuracy for 

extreme values (Cigizoglu and Kisi 2006; Jain 2008). The RDNNs trained with 

three subsets of training data were found to have strengths over conventional 

ANN in predicting both low and high sediment values more precisely. Similarly, a 

A/C-NN consisting of more than one ANNs, each of which was trained with a 

subset of data, modelled the integrated stage-discharge-suspended sediment rating 

relationship more precisely than a single ANN (Jain 2008). The MNN model that 

worked through dividing the whole task into subtasks showed better simulation 

results than GRNN model to describe the water and nutrient mass dynamics (Kim 

and Kim 2007).  

Table 2-2 shows that the surface water quality parameters are modelled in 

daily, weekly and monthly time steps. To use the ANN models for watershed 

management, it is important that ANN models are able to forecast water quality in 

advance. Actually, the most ANN models only predict the modelled parameters at 

current time except for sediment prediction (1 day ahead) (Cigizoglu 2004), 

nitrate (1 week ahead) (Markus et al. 2003), Cynobacteria (4 weeks ahead) (Maier 

et al. 1998, 2000, 2001), and salinity (14 days ahead) (Maier and Dandy 1999; 

Kingston et al. 2005; Bowden et al. 2002, 2005a, 2005b). Input determination 

plays a significant role on the success of the ANNs forecasting models. The above 

studies used not only a prior knowledge about the modelled system, but 

correlation analysis, partial mutual information (PMI) and trial-and-error to find 

the antecedent variables highly related to the modelled parameters. 

The database required for the ANN models is very important as data 

availability may present a restriction for model selection and performance in 

practice. It is critical to carefully select a representative and significant set of 

input variables to develop a robust ANN model. Table 2-3 summarizes the input 

variables for modelling sediment, nutrients, microbial concentration, and salinity, 
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which is a good reference for input determination to anybody who is interested in 

developing ANNs models for these parameters.  

2.3 Water Quality Modelling with the Aid of GIS and RS 

2.3.1 GIS and Its Applications 
GIS is composed of four basic components: (1) data input and editing, (2) 

storage of geographic databases, (3) data analysis and data modelling, and (4) data 

visualization and presentation (Mattikalli 2000). The uses of  GIS include display 

and visualization of results (Chen et al. 2003b; Yacobi and Schlichter 2003), 

storage and retrieval of remotely sensed data and environmental data (Ballester et 

al. 2003; Xu and Zeng 2003), preparation of model parameters (Almasri and 

Kaluarachchi 2005), spatial analysis of landscape (Cedfeldt et al. 2000; Brown 

2006), and integration with environmental modelling (Bhaduri et al. 2000; Baker 

et al. 2001). In most of the cases, GIS is often used to combine information from 

different sources such as cartography (i.e. maps), remote sensing (i.e. aerial and 

satellite imagery),  hydrology surveys, environmental monitoring, and create 

overlapping layers that can be accessed, transformed, and manipulated 

interactively in one spatial structure. With regard to water quality modelling, GIS 

has contributed to solve the following problems:  

2.3.1.1 Estimating and Assessing Water Quality  

GIS is often applied for water quality and runoff modelling at a watershed 

scale as they are increasingly affected by spatially distributed human activities 

such as urbanization, agricultural development and logging. In this context, GIS 

has been shown to be useful for handling spatial data and mapping the results. In 

addition, GIS plays a key role in assessing and analyzing the contributed factors 

and the results. For example, it is used to locate high risk of contamination by 

pesticides (Sinkevich et al. 2005), assess pollutants distribution (Davies and Neal 

2004) and lake eutrophication (Xu et al. 2001), evaluate pollution risks to water 

supply intakes (Foster and McDonald 2000), analyze land use/land cover (LULC) 

change impact on water quality (Basnyat et al. 2000; Bhaduri et al. 2000; Choi et 
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al. 2003; Haverkamp et al. 2005) and agricultural pressures and impacts on water 

quality (Giupponi and Vladimirova 2006).  

2.3.1.2 Identification and Quantification of both Point and Non-point Sources of 

Pollution 

GIS has traditionally been used to identify and quantify both point and non-

point sources of river pollution such as identify the main contamination sources of 

heavy metals, organic compounds and other physicochemical parameters in river 

waters and describe their temporal and spatial distributions (Terrado et al. 2006), 

develop nitrate leaching maps for different N fertilization rates in an agricultural 

watershed (de Paz and Ramos 2004), estimate the spatial and temporal N-loading 

patterns to a watershed (Fernandez et al. 2002, 2006), identify potential pollution 

resulting from manure spread on agricultural lands (Giasson et al. 2002), and 

identify the sources of nitrate pollution (Matejicev et al. 2003) and nutrient load to 

river (Mourad et al. 2005).  

2.3.1.3 Other Applications 

GIS is also an important tool for watershed management. It has been used for 

sustainable management of water resources (Belmonte et al. 1999), watershed 

management (Clark 2000; Blum 2001; Choi et al. 2005; Lant et al. 2005), GIS-

based decision support system for water assessment (Chowdary et al. 2003). 

2.3.2 Development of Earth Observing System 

RS is one of the most successful GIS-related technologies, which are defined 

as the technologies that are commonly used in conjunction with GIS. In practice, 

RS gathers reflected radiation from the atmosphere. This information can be 

related to other conditions and then used to understand the Earth’s environment. 

RS also provides important coverage, mapping and classification of landcover 

features, such as vegetation, soil, water, forests and urban. The spaceborne RS is 

the only cost-efficient way to improve the spatial and temporal coverage of 

surface water and watershed monitoring (Koponen et al. 2004). RS is an integral 

part of GIS because it provides substantial amount of spatial data to the GIS 
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databases. Without the data from RS, GIS cannot explore its full functionality 

(Skidmore 2002) 

The first Earth Observing System (EOS) satellites, as part of the Earth 

Science Enterprise (ESE) comprehensive program by National Aeronautics and 

Space Administration (NASA) were launched in December of 1999. NASA’s 

EOS and its mission were initiated to contribute to decision making and allow the 

development of policies to preserve and protect the Earth’s environment based on 

a better understanding of the biosphere on Earth (Robinson 1995). A moderate-

resolution imaging spectroradiometer (MODIS) is the key EOS instrument and its 

mission is to study global/local interactions.  MODIS was designed to improve 

monitoring of land, ocean and atmosphere, in particular, to provide innovative 

land products data that are especially designed to support modelling applications 

(Reed et al. 2002).  

Focused on environmental monitoring in general and the estimation of 

vegetation indices (VIs) in particular, MODIS provides spectral and spatial 

resolution superior to that of advanced very high resolution radiometer (AVHRR) 

sensor (Fensholt and Sandholt 2005). The MODIS collects reflected and emitted 

radiation from the earth in 36 bands from 0.405 to 14.385 µm and provides spatial 

resolution of 250 m, 500 m and 1 km (Barnes et al. 1998). The upgraded spectral 

resolution improved cloud and atmosphere characterization which enabled the 

removal of atmospheric effect on surface observation and the provision of 

atmospheric measurement (Justice et al. 1998). The combination of coarse and 

high resolution data are needed to realize systematic global monitoring of land 

surface (Skole et al. 1997). 

 The MODIS science team developed software to generate data products that 

meet the requirements of global change research. The land discipline group 

provided a combination of basic surface variables of spectral reflectance, albedo, 

and land surface temperature as well as higher order variables such as VIs, leaf 

area index (LAI), fraction of absorbed photosynthetically active radiation, active 

fires, burned area, and snow and ice cover (Justice et al. 1998). The MODIS Land 
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Group provide not only satellite data but also high level data products that are 

specifically designed to support the global to regional monitoring, modelling, and 

assessment. Specially, the MODIS Science Team came out with a new data 

product that is enhanced vegetation index (EVI). Satellite measurements of leaf 

area, leaf duration and net primary productivity provide important inputs to 

parameterize or validate ecosystem process models.  

2.3.3 The Integration of RS and GIS  

RS data can be best utilized if they are integrated into a GIS that is designated 

to manage large volumes of data. An important feature of GIS is that it is able to 

overlay different layers of spatially geo-referenced data. Thus, integrating remote 

sensed data into GIS enables the user to graphically and analytically determine 

how spatial structures and objects interact with each other (Mattikalli 2000). The 

information stored in a GIS is only static while a basin hydrological system is 

dynamic. Thus, data in a GIS need to be updated to represent the temporal change. 

In this context, remotely sensed satellite data offer excellent input to the GIS to 

provide repetitive, synoptic, and accurate environmental information of the 

changes in a wide range of spatial scales, and offer the potential to monitor these 

dynamic changes. Remotely sensed data can be used to create a permanent 

geographically located database to provide a baseline for future comparisons 

(Ritchie et al. 2003).  Moreover, successful applications of RS have contributed to 

modification of existing water quality models and development of new types of 

models to incorporate widely available spatial data. RS data enable us to map the 

variation in terrain properties spatially and temporally, such as vegetation, water 

and geology. In many cases, to serve the modelling purpose RS data have to be 

merged with ancillary georeferenced information such as soil, geology, and 

elevation. At this point, GIS offers an appropriate technology for merging these 

various layers of spatial data. 

Technically, information is extracted from satellite imagery by image 

processing methods and then combined with other data layer in a GIS. Satellite 

imagery is stored in a raster format that makes it ideally suited for incorporation 
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into a GIS. Therefore, RS imagery can be easily imported into a GIS project as an 

image theme/layer. Integration of remotely sensed data with a GIS can greatly 

enhance modelling and analyzing capability of the GIS, and its potential has been 

demonstrated in many areas of hydrology and water management.  

2.3.4 The Applications of GIS and RS to Water Quality Modelling 

Watershed-scale water quality models typically require a considerable 

amount of data (e.g., topography, vegetation cover, soil characteristics, stream 

channel characteristics and subsurface infiltration) for model calibration, which is 

sometime cost-prohibitive, especially for forested watershed. The RS technology 

provides a cost-effective way to evaluate and quantify large numbers of watershed 

physical characteristics and state variables. RS techniques have expanded widely, 

to the point that they now include most of the electromagnetic spectrum and can 

provide unique information about properties of the surface or shallow layers of 

the Earth. 

To acquire RS data efficiently and appropriately for its specific application, 

spatial resolution, temporal resolution, spectral resolution and spectral wavelength 

need to be considered. The choice of spatial resolution depends on the nature of 

the problems and the details needed in the watershed-scale models. Thus, it is 

often a trade-off between cost and the sufficient details needed. RS data are 

acquired with a given resolution in time. In some cases of dynamic processes and 

small basins, the data may be needed daily or more often. Whereas in some less 

dynamic processes and large basins, data on two weeks or longer may be 

satisfactory (Schultz and Engman 2000). In addition, the spectral resolution and 

wavelength should be selected because the reflectances from different spectral 

bands are used specifically to identify the different features (vegetation, clear 

water, soil, etc.) on the Earth. Table 2-4 shows remote sensing applications of 

different spectral bands.  

RS data in various spectral bands provides information on watershed 

characteristics (e.g., landcover, land use, vegetation, etc.) (Table 2-4). Some of 

water quality model parameters can be estimated using the comprehensive RS 
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information. Another important aspect of RS is that it provides data in remote 

areas, where measurements are not feasible or can not be carried out due to 

prohibitive cost. The limitation of data is the main reason that results in the 

unsatisfactory performance of so many water quality models. Hence, in many 

fields of water quality modelling, it is expected that the availability of RS 

information will lead to the development of much more efficient models.  

The rapid development of RS technology, the reduced cost of acquiring RS 

data, and the capability of RS to assist in describing watershed characteristics 

have lead to the incorporation of RS information into water quality models. GIS 

and RS technologies have become indispensible tools for watershed hydrological 

analysis, modelling and management (Jones et al. 2002). The use of RS to provide 

data and GIS to process spatial data has been used to support water quality 

modelling as follows: 

Develop Watershed Database: Multi-spectral satellite image data are processed 

to generate thematic maps. Data derived from various sensors can be integrated to 

improved maps with higher detail of cartographic information than an individual 

image. Two or more data layers can be overlayed to merge spatial information.  

Watershed Delineation: In general, delineation of watershed and subcatchment 

is an essential step for most of watershed scale studies. Delineation is often 

achieved through digital elevation model (DEM) data that can be used to develop 

flow direction, flow accumulation, and pour point coordinates information.  

Integrated Use of DEM: A DEM is a numerical representation of topography in 

a raster format and each cell is given a value of elevation. DEM data are very 

important to derive a variety of information including slope, aspect, curvature etc. 

DEM became a popular tool for land characterization due to its simple data 

structure and wide availability. In conjunction with satellite reflectance data, a 

DEM can also be used to simulate hydrological processes.  

Land Use/Land Cover Change Detection: LULC play important roles in 

characterizing our environment at different scales-local, regional and global. 

Providing multi-temporal repetitive data to identify and quantify land surface 
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changes, RS greatly enhances the capability of GIS in updating map information, 

which is very useful for decision makers and environmental managers.  

With the aid of RS and GIS technologies, the watersheds can be subdivided 

into different categories of LULC and the contributions of each type of LULC to 

water quality can be monitored, analyzed and determined. In this context, RS 

imagery is used to obtain the necessary spatial coverage and classification 

schemes such as the normalized difference vegetation index (NDVI). The 

integrated analysis of landscape characteristics based on RS and GIS is a 

comprehensive tool to enable us to understand the complex environmental 

questions such as the effects of land use change on the biogeochemistry of 

riverine systems (Ballester et al. 2003).  

Watershed Runoff Modelling: The advent of distributed runoff modelling 

requires different spatial parameters that are collected from each grid rather than 

the whole basin, which is time consuming, laborious and relatively expensive. 

Integrating a GIS with the model can make chores easier and often transparent to 

the user as well as make available the calculation and display of runoff flow 

depths across watershed sub-basins. In urban watersheds, the spatial analysis 

capabilities of a GIS can be used to analyze hydrological processes. Watershed 

attributes such as surface characteristics (pervious, impervious, slope, roughness), 

geometry and dimensions of flow planes, routing lengths, geometry and 

characteristics of routing segments, and soil information (infiltration rates, 

hydraulic conductivity, and storage capacities) can be efficiently stored in a GIS 

and utilized for urban runoff calculations (Mattikalli 2000).  

Monitoring and Modelling Water Quality: RS data can be used to monitor 

water quality parameter because the presence of pollutants can affect the 

reflectance light at the visible/thermal bands from surface water in different ways. 

Hence, reflectance from certain bands has correlation with specific pollutants. RS 

imagery have been applied to estimate  the values of several water quality 

parameters (e.g., chlorophyll-a, turbidity, TSS, Secchi depth) (Yin et al. 2005; 

Tyler et al. 2006). The monitoring of cyanobacterial blooms (Kutser et al. 2006), 
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lake water quality characteristics, including chlorophyll and colored dissolved 

organic matter (Brezonik et al. 2005; Kutser et al. 2005), and contaminated stream 

water (Vignolo et al. 2006) was successful using Landsat-based RS.  

Estimate Input Parameters for Water Quality Models: RS data from different 

spectral range provide specific information commonly used as water quality 

model inputs. For instance, surface temperature data can be produced from 

thermal-infrared imagery; soil moisture data can be produced from microwave 

reflectance. These two types of data can be combined to estimate evaporation and 

evapotranspiration rates. Using the data derived from RS spectral reflectance is 

particularly beneficial for some remote areas where on-site measurements are not 

applicable.  

RS can provide data for global to regional monitoring, modelling and 

assessment such as VIs (e.g., NDVI, EVI). VIs have been successfully used to 

detect forest disturbance (Jin and Sader 2005), monitor vegetation dynamics 

(Beck et al. 2006), vegetation cover and condition (Fensholt 2004; Ben-Ze'Ev et 

al. 2006) and forage condition (Kawamura et al. 2005). A number of comparative 

studies have linked forest disturbance to the change of water quality (Prepas et al. 

2001; Ensign and Mallin 2001; Swank et al. 2001).  Also, the vegetation cover, 

such as in riparian areas, was proven to impact water quality in streams (Luke et 

al. 2007). The incorporation of VIs into model inputs for nutrient modelling 

improved the model’s performance (Li et al. 2008). 

2.3.5 Integration of GIS, RS with Water Quality Models 

The studies that combine the power of water quality modelling with the GIS 

to deal with spatial variations have been successful in environmental assessment 

and watershed management. The principal benefit of coupling GIS with 

environmental models is to enable the models to deal with large amount of spatial 

data that are essential to describe many environmental processes geographically. 

The primary GIS data provided to the models are the DEM, the LULC map, 

vegetation cover, and the soil map. Here, GIS can provide modelers with new 

platforms for data management and visualization. Data are preprocessed into a 
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form suitable for analysis which includes data import, scale, coordinate 

transformation, data conversion, data structure and spatial analysis of input data. 

In addition to standard functions (e.g., coordinate transformation, conversion 

between spatial formats, raster algebra, vector operations, network analysis, 

display and visualization) GIS supports modelling directly so that some tasks such 

as analysis, calibration and prediction can be carried out by using GIS itself. The 

postprocessing mostly analyzes the spatial information, and visualizes exports 

data through reformatting, tabulation, and mapping. To date, no GIS system has 

the spatial and temporal data representation flexibility as well as the algorithmic 

capability needed to construct process-based models internally; consequently, 

environmental models and GIS will be coupled (Loague and Corwin 2000).  

Another reason that drives the integration of water models with GIS is the 

need to provide a scientific land management and decision-making tool by 

incorporating the simulation models. Also, it is becoming recognized that land 

management and decision-making require integrated assessment of environmental 

(air, land, water, and the interactions and fluxes between these), ecological, social 

and economic systems. Consequently, the multiple uses of resources and multiple 

goals requires integrating information and analysis to further decision-making, 

which can be addressed using the data management facilities of GIS (Aspinall and 

Pearson 2000).  

2.3.5.1 Coupling GIS and Simulation Models Theory 

Simulation models are very useful tools to analyze watershed processes, and 

develop and assess watershed management scenarios. Implementation of these 

models often requires the integration of GIS, RS and multiple databases for 

determination of the model input parameters and for analysis and visualization of 

the simulation results (He 2003). The mechanisms and approaches to link GIS and 

water quality models have received much attention in both geographic 

information sciences and simulation modelling. Three of the most common 

strategies for linking a GIS to a simulation model are loose coupling, tight 

coupling and an embedded system approach (Corwin et al. 1997) (Figure 2-2).  

 35



In a loose coupling, data are stored in one system and transferred to another 

and subsequently read by the other system. This approach usually involves a 

standard GIS package (e.g., Arc/Info) and hydrological modelling programs (e.g., 

HEC-1, HEC-2, STORM) or a statistical package (e.g., SAS or SPSS) (Sui and 

Maggio 1999). The important characteristic of the loose coupling is that GIS and 

environmental models are implemented separately without common interface. 

The simulation models and GIS are integrated via data exchange using either 

ASCII or binary data format. A majority of GIS applications for modelling 

represent this approach because it requires little software modification.  

In a tight coupling, the simulation model and GIS share the same database 

and the data management is integrated into the system. Characteristically, a tight 

coupling provides a common user interface for both the GIS and the model i.e. the 

information sharing between the respective components is transparent.  

The model becomes embedded models as the degree of coupling between the 

GIS and the model increases to the point where the model’s functions are 

essentially part of the built-in functionality of the GIS. In embedded systems, the 

coupling of software components occurs within a single application with shared 

memory rather than sharing the database (loose coupling) and a common interface 

(tight coupling). Thus, embedded systems require a substantial amount of time to 

develop and may be difficult to modify when changes are needed. Also, the 

modelling capabilities are usually simplistic and calibrations must take place 

outside of the package. These models tend not to be industry standard (Sui and 

Maggio 1999).  

The types of coupling stated above only represent how GIS and 

environmental models can share the same data technically. This type of coupling 

does not represent the integration in terms of achieving compatible views of the 

world and in turn has not necessarily improved in the scientific foundation of 

either GIS or environmental modelling. The main difficulty for the integrated use 

of GIS and environmental simulation models is their different data models  

because GIS is a static representation and simulation models is concerned with 
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dynamic processes (Hellweger and Maidment 1999; Aspinall and Pearson 2000). 

This means that their data models will be quite different and result in different 

database structures. It should be the databases where GIS and environmental 

simulation models are related to each other (Brimicombe 2003). In the future, 

these databases will be increasingly networked and so GIS and environmental 

modelling will be more greatly integrated and interoperative.  

The successful use of GIS bridges the gaps between scientific research 

modelling and management applications and encourages the conceptual 

developments about the ways of utilizing spatial data in environmental modelling 

(Goodchild et al. 1996). On the negative side, the tremendous success of 

modelling using GIS has resulted in the problems of framework inflexibility, in 

that GIS are often treated as the technical and conceptual framework into which 

environmental modelling must fit, rather than it provides of services (primarily 

spatial data analysis and management) to environmental modelling (Argent 2004).  

Apart from GIS-centric view of environmental model integration, the 

structural context of the environmental modelling situation and an appropriate 

higher level of data model for framing the problem were investigated 

(Livingstone and Raper 1994; Raper and Livingstone 1995). Similarly, as an 

alternative to describing linkage between GIS and environmental models based on 

the database, the practical implementation and operation of GIS and 

environmental modelling from a programming and interface perspective should 

also be considered (Aspinall and Pearson 2000). The tools for analysis can be 

provided in menus or in additional programs accessed through menus added to the 

GIS interface. Through linking GIS and environmental models in the manner of a 

toolbox with the environmental models being developed and implemented as 

additional tools or suites of tools for the GIS (Aspinall and Pearson 2000). The 

two different views of integration of GIS and environmental models is illustrated 

in Figure 2-3 (Argent 2004). In one view, the model is built into or accessed from 

a GIS, whereas in the other view, the GIS is a spatial data collection and other 

services are accessed from the environmental model.  
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2.3.5.2 Applications of Integrating GIS, RS and Water Quality Models 

Reviews on the integration of GIS with hydrological modelling and 

environmental modelling can be found in literature (Lam and Pupp 1996; Sui and 

Maggio 1999; Yang et al. 1999; He 2003; Argent 2004). The integration of GIS 

with hydrological modelling is applied for abundant empirical studies in various 

regions, most of which rely on a combination of loose and tight coupling (Hao et 

al. 2003; de Jong van Lier et al. 2005). The integration of GIS with hydrological 

modelling enables GIS users to go beyond data management and thematic 

mapping to conduct sophisticated analysis and simulation for scientific research 

and policy analysis. GIS provided hydrologists and hydraulic engineers with the 

ideal computing platform for data inventory, parameter estimation, mapping and 

visualizing the modelling results. Thus, GIS greatly facilitates the design, 

calibration, and implementation of hydrological/hydraulic modelling. However, 

the loose coupling of hydrological modelling and GIS does not improve the 

scientific foundation of these models (Sui 1999). It is highly recommended that 

the integration of GIS with hydrological modelling should involve the 

development of a high level common ontology that is compatible with both GIS 

and hydrological models (Sui and Maggio 1999). The common ontological 

framework should incorporate multi-dimensional concepts of space, time and 

scale.  

The interfaces between GIS and environmental models often carry out data 

processing and visualization, tool coordination, and improve the applicability of 

models. These interfaces are also user friendly. The integration of GIS and the 

distributed continuous time, non-point source pollution model soil and water 

assessment tool (SWAT) was effective and efficient for data collection and to 

visualize and analyze the input and output of simulation models (Arnold et al. 

1999). GIS has been used by combination with SWAT for many cases (Di Luzio 

et al. 2005; Qi and Grunwald 2005; Santhi et al. 2005; Grunwald and Qi 2006; 

Olivera et al. 2006). The main motivation of integrating GIS with water quality 

models at watershed scale is to discover and evaluate the crucial areas within a 

watershed so that the land use and management practices can be optimized to 
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control the loading of nutrients and sediment into water bodies (Grunwald and Qi 

2006).  

In addition to the powerful and comprehensive models such as SWAT and 

BASINS, a variety of other models have been integrated with GIS and formed 

GIS-based models, which have been used for water quality assessment upon 

human activities (Xu et al. 2001; Giupponi and Vladimirova 2006), water 

contamination risk assessment (Sinkevich et al. 2005), identification of 

contamination sources (Terrado et al. 2006), and water quality modelling 

(Fernandez et al. 2002; Vivoni and Richards 2005). Here, GIS is to incorporate 

spatial data as water quality is often affected by spatially distributed natural or 

human factors.  

The use of multi-temporal remote sensing images in support of 

environmental modelling analysis in a GIS environment contributes to identify a 

variety of long-term interactions between resources and land use, and the built 

environment has been a highly successful approach in recent years (Ning et al. 

2006). The spatial and time variation of the nitrate in the basin of a small river 

was simulated by combining nitrate dynamic modelling and GIS (Matejicek et al. 

2003), where the NDVI is used to estimate the level of denitrification.  

2.4 N Export to Surface Water in Forested Watersheds 
To determine ANN N model input variables, it is important to understand the 

export of N into streams in forested watersheds. 

2.4.1 Sources of N in Streams 

The N is undergoing a complex cycle and its leaching into streams is affected 

by many interacted factors (Figure 2-4). The two primary theories developed to 

predict long-term  changes in nitrate loss rates are the N saturation theory (Aber et 

al. 1989; Aber et al. 1997; Currie et al. 1999; Venterea et al. 2004) and the 

nutrient retention hypothesis (Vitousek and Reiners 1975; Vitousek and Matson 

1984). The common emphasis shared by these to theories is the interaction 

between plant nutrient demand and soil nutrient supply over time (Aber et al. 
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2002). The N saturation theory suggests that cumulative N deposition adds to soil 

N pools and rates of N mineralization, eventually leading to excess availability, 

induced or increased nitrification, and elevated nitrate leaching. The nutrient 

retention hypothesis suggests that both the accumulation of limiting nutrients 

through deposition and reductions in net plant demand due to decreasing biomass 

accretion leads to the alleviation of nutrient limitations and increasing leaching 

loss rates. The most important participating factors - plant nutrient demand and 

soil nutrient supply - are seasonally variable, and thus export of N to surface 

water display a seasonal cycle. 

Inter-annual variability in the timing and depth of snowpack accumulation 

may explain the year to year variability in inorganic N concentrations in surface 

water in these ecosystems (Brooks et al. 1998). The winter snow pack is the major 

control both on hydrologic N export and on soil source/sink relationships for N 

concurrent with this transport mechanism (Brooks et al. 1999). The effect of 

winter snow cover on the fate of both atmospheric and soil N needs to be 

considered when evaluating the potential effects of increased N deposition on 

either terrestrial or aquatic ecosystems in seasonally snow-covered watersheds. 

Sometimes, nitrification in the forest floor-mineral soil contributes more than the 

atmospheric NO3
- in snowpack to the NO3

-  pulses in streams during later 

winter/early spring (Piatek et al. 2005).  

Generally, the major sources of N leaching into streams after winter break are 

snowpacks and soils. Inorganic N released from winter snowpacks provides a 

large pulse of mobile, potentially available N each spring. The soil storage 

capacity is responsible for the variability of NO3
- at different sites, while the 

potential snowmelt and the flow paths account for the variation of NO3
-  from 

year to year within a site. In forest ecosystem, carbon and N cycles interact at 

several points between plants and microorganisms. The degree to which 

nitrification occurs depends upon the competition of nitrifier with the strength of 

plant demand on N. Nitrate leaching is proportional to the amount of NO3
-  

remaining in the soil after plant uptake and water drainage rates (Aber et al. 1997). 
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2.4.2 The Effect of Snow Cover on Microbial N Transformation and N 

leachate 

Traditionally, N mineralization in soil is assumed to take place within a 

temperature range of 5 to 35 °C. On the other hand, it is also found that microbial 

activities exist at low temperatures, even at sub-zero °C (Clein and Schimel 1995; 

Rankinen et al. 2004). Although the bulk of soil water freezes just below 0 °C, 

there still exist liquid water films surrounding soil particles down to temperature 

at least or below -10°C (Romanovsky and Osterkamp 2000), and the presence of 

unfrozen water in soil allows microbial activity to continue (Rivkina et al. 1998; 

Mikan et al. 2002; Rivkina et al. 2004). The accumulation of snow and snow 

depth play an important role on controlling soil temperature and ensuring the 

existence of unfrozen water.  

The presence of snow is imperative for microbial processes in winter with 

very low atmospheric temperature. Snow is an effective insulator and thus the 

depth of snow regulates soil temperature. In the case of snow-covered soil, the 

soil temperature is typically only a few degrees below zero even though the 

surrounding air temperature is much lower. The reduction of snowpack 

accumulation will induce soil freezing (Groffman et al. 2006), consequently 

regulate soil biogeochemical processes and solute delivery to streams in forested 

watershed (Groffman et al. 1999, 2006).  

A field incubation study carried out in a sub-arctic region observed 

mineralization and immobilization of N in soil during winter (Schmidt et al. 1999). 

Other studies even found that 40% of net N mineralization in boreal forest soil 

occurred during the winter (Stottlemyer and Toczydlowski 1999; Kielland et al. 

2006). During dormant season, positive nitrification was observed in soils from 

willow and white spruce stands prior to the mid-winter (January) sampling, 

whereas significant nitrification was found in spring (May) in soil from stands of 

alder, poplar, and particularly black spruce (Kielland et al. 2006). It was surmised 

that the first flush of net N mineralization occurs in spring due to soil thaw and 

then the net N release declines as plants start competing with soil microbes in 
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early May-June. The second flush of net N release in August is attributed 

principally to root mortality, which is fairly synchronous across successional 

stages (Ruess et al. 2003). 

The effect of decreases in snowpack accumulation on microbial biomass and 

activity was quantified and the results showed that a relatively mild freezing event 

induced significant increases in N mineralization and nitrification rates, solute 

leaching and soil nitrous oxide production (Groffman et al. 1999). Low soil 

temperatures limit soil N mineralization under ambient snow conditions, but the 

deeper snow conditions with the associated warmer winter soil temperature 

dramatically increase over-winter N mineralization (Schimel et al. 2004). Mild 

soil freezing (temperature > -5 °C) increased soil NO3
-  concentration by physical 

disruption of the soil ecosystem rather than by direct stimulation of mineralization 

and nitrification (Groffman et al. 2001). A study on how snow cover controls 

subnivial (below snowpack) microbial processes and N leachate from the snow-

soil interface to surface waters in high-elevation catchments indicates that a 

portion of the spatial and temporal variability in N export from these seasonally 

snow-covered systems was attributed to variability in winter snow cover across 

landscape types and inter-annually within a landscape type (Brooks and Williams 

1999). Soils remain frozen and there is little microbial activity and N leachate is 

high in shallow-short duration snowpacks; total microbial activity is highly 

variable and the amount of N leachate is highly variable in high interannual 

variability in snow depth and duration; total microbial activity is high and there is 

little N leachate in continuous snow cover; and microbial activity is reduced 

because of carbon limitation and N leachate is high in deep long-duration snow 

cover verging on perennial snowpacks (Brooks and Williams 1999).  

Mineralization of organic matter was the dominant source of soil inorganic N 

before and during the spring thaw. Nitrification and denitrification does occur 

under snow cover. In a word, studies indicate that microbial activity under 

seasonal snowpacks plays an important role in controlling N export in surface 

water. 
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2.4.3 Seasonal N Concentrations in Stream Water 

The accumulation of N in snowpacks and the existence of nitrification during 

winter obviously lead us to think that snowmelt will result in leaching of N from 

these sources and consequently increase of N in streams. In fact, there is evidence 

that inorganic N concentration peaks occur in later winter/early spring. The snow 

pack is able to store large amounts of different substances, which are released 

during the first snow melt. The observed high N concentrations in late 

winter/early spring often resulted from the release of N from the snow pack 

and/or soil (Arheimer et al. 1996; Williams et al. 1996b; Williams et al. 2001; 

Rankinen et al. 2004).  In comparison, inorganic N concentrations are often lower 

in summer than in the dormant seasons in non-polluted and undisturbed northern 

rivers (Williams et al. 1996a; Williams et al. 2001; Kaste and Skjelkvale 2002). 

The great difference of N concentrations between summer and winter indicates 

that soil water contains higher N in the dormant season than in the growing season, 

when inorganic N is usually retained effectively (Rankinen et al. 2004). The study 

of N leaching in northern latitudes indicated that NO3
-  concentration decreased 

during the growing season to an almost negligible level, and NH4
+ concentration 

had the similar seasonal pattern except that the concentration levels were even 

lower (Rankinen et al. 2004). The data series from ten years of measurements in 

20 small Swedish and Finnish catchments showed that enhanced inorganic-N 

concentrations normally occurred during the spring, and low concentrations 

occurred during the growing season (June-August) (Arheimer et al. 1996).  

2.4.4 N Modelling 

Modelling of N forms in streams is very complex due to the difficulty of 

mathematically representing factors like the land use and land cover, soil and 

vegetation N dynamics, in-stream nitrification/denitrification, and meteorological 

parameters. Also, hydrological, biological and chemical processes underlying N 

storage, transformation and release are not well understood in these environments. 

The concentration of N fluctuates with significant seasonal cycles, which should 

be captured by effective models. The largest  NO3
- fluxes in streams from forested 
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watershed occur with large runoff events during early spring snowmelt when 

vegetation and microbial uptake of inorganic nitrogen is low.  

ANNs have been mostly used in agricultural watersheds to simulate nitrate 

leaching in agricultural drainage effluent (Kaluli et al. 1998), forecast nitrate 

loads on an agricultural watersheds based on historical data (Yu et al. 2004), 

simulate  nitrate-N concentrations in drainage water after the use of manure 

and/or fertilizer (Sharma et al. 2003), and predict total and inorganic nitrogen 

concentrations in streams from watershed features (Lek et al. 1999). A GRNN 

model to predict the nutrient loading into the neighboring water from large-

plotted paddy rice fields with hydro-meteorological factors and nutrient contents 

from water sources  tell that both environmental inputs (i.e., nutrient contents in 

irrigation streams) and hydrological processes (i.e., rainfall, surface discharge) 

have significant impact on N leaching into water body (Kim et al. 2007). These 

ANN N models have considered only nitrogen load from external sources, 

nitrogen leaching and seasonal/annual cycles, but not vegetation dynamics, one of 

the most important factors impacting nitrogen cycle. Recently, the rapidly 

developing RS technology and the reduced cost of requiring remotely sensed VIs 

data has made this possible. Li et al. (2008) successfully applied GRNN to predict 

nitrate, ammonium and total dissolved nitrogen in streams within undisturbed and 

disturbed watersheds using weather parameters, time index reflecting seasonal 

cycles and EVI as model inputs. The inclusion of VIs reflecting the watershed 

disturbance and vegetation dynamics highly improved the accuracy of model 

prediction (Li et al. 2008).  

The mineralization and nitrification happening under snow cover in winter 

should be considered when modelling N in forest watersheds. A number of 

studies have observed microbial activities under snow cover at the temperature of 

below 0 °C (Rivkina et al. 2004; Panikova et al. 2006). From the 1990s, it has 

been recognized that overwinter and snowmelt processes play important role on 

controlling N cycling and retention. Recent research indicates that the largest N 

fluxes from forested watersheds (sharply increased N concentrations in streams) 

occur with large runoff events, in particular, during early spring snowmelt when 
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vegetation and microbial uptake of inorganic N is low (Aber et al. 2003). The 

possible sources of N in streamwater in snowmelt come from atmospheric N, 

snow, mineralization in soils under the snowpack, groundwater during early 

phases of the melt, premelt stored water and nitrification, and a combination of 

these factors (Piatek et al. 2005). Besides, other factors including the presence of 

wetlands and vegetation types are also important in controlling N generation and 

loss rates (Campbell et al. 2002; Ito et al. 2005). 

The ultimate goal of water quality modelling is to support watershed 

management and decision making on watershed activities. The success of ANNs 

modelling highlight that the ANNs models can provide real time predictions, can 

answer questions related to the impact of climate change and watershed activities 

on water quality, and can be implemented in water resources management. So far, 

most of the research uses current meteorological information and watershed 

properties to predict current or recent (within several days) N concentrations. 

More recent research indicates that incorporation of information on vegetation 

dynamics and vegetation cover obtained from RS data has improved model 

performance. To apply the developed modelling tools to watershed management, 

further studies on forecast N weekly, monthly or yearly in advance are needed. 

This can be achieved in two ways: (1) use previous information (i.e., weather 

information at t-1…t-10) to predict the modelled parameter at time t; (2) the 

model inputs at time t are first predicted from other sources and then incorporated 

into ANNs models to forecast the interested water quality parameter at time t. 

This is a promising method as most of the ANNs water quality models include 

weather information that is predictable using RS. 

2.5 Summary and Recommendations 

Over the past decade, ANNs have been proven through a number of case 

studies to be a reliable tool capable of modelling a variety of water quality 

parameters. The performance of ANNs is evaluated not only by their own 

absolute performance but also by comparison with traditional MLR models and 

numerical models based on a series of model evaluation criteria. In most studies, 
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ANN models outperform traditional MLR probably because the water quality 

parameters being predicted are non-linearly interacted with model input variables 

in a complex non-linear way, which is already beyond the scope of MLR. 

Compared with numerical models, ANNs can provide comparable or even better 

modelling results in some cases as the capability of numerical models may be a 

trade off due to the our limited knowledge in certain situations and the non-

availability of reliable data for model calibration. Not limited to the most popular 

MLP-BP, a number of comparison studies are carried out to search for the best 

ANN for certain problems recognizing the advantage and limitations of different 

networks such as RBF, AMN, GRNN and MNN. Generally, MNN have higher 

prediction accuracy than a single ANN for complex problems; GRNN may work 

better for time series parameters than MLP-BP; and AMN has strengths in 

providing more explicit information about the system being modelled. However, 

there have no criteria for selecting a suitable or optimal ANN algorithm for 

different types of problems. 

The popularity and successful applications of ANNs, at the same time, 

revealed the modelers’ concerns and encouraged advanced studies to make ANNs 

a better modelling tool. Great efforts have been put into (1) developing hybrid 

ANN models, (2) extracting knowledge from trained ANN models, (3) improving 

model generalization ability, and (4) developing guidelines of ANN model 

development. 

GIS and RS technologies have become important components for water 

quality modelling and watershed management. The use of GIS ranges from just 

display and visualization of results to storage and retrieval of remotely sensed 

data and environmental data; from spatial analysis of landscapes to integration 

with environmental modelling. RS is one of the most successful GIS-related 

technologies and RS data can be best utilized if they are integrated into a GIS that 

is designated to manage large volumes of data. Regarding water quality modelling, 

RS data are mainly used to: (1) estimate the input parameters for both lumped and 

distributed watershed models, (2) delineate watershed and streams, (3) classify 

land-use and land-application, (4) monitor water quality parameters (e.g., particles, 
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turbidity, chlorophyll), (5) estimate vegetation indices and leaf area index to study 

vegetation dynamics, and (6) estimate meteorological parameter (e.g., surface 

temperature, snow) and watershed properties (e.g., soil moisture).  

To integrate GIS with environmental models, in one view, the model is built 

into or accessed from a GIS, whereas in another view, the GIS is a spatial data 

collection and other services are accessed from the environmental model. From 

data exchange perspective, three of the most common strategies for linking a GIS 

to a simulation model are loose coupling, tight coupling and an embedded system 

approach. The research on integration of GIS and environmental models, either 

from conceptual perspectives or case studies, is basically to combine GIS’s power 

in data process and management and environmental model’s ability to simulate 

the studied dynamic system. Ultimately, the integration is to serve decision-

making for watershed management.  

A number of field and lab studies have confirmed the active N processes 

under snow cover, and demonstrated that over-winter N processes are important 

and must be considered when modelling N leaching and its concentration in 

surface water. Snow pack insulates soil from the very low atmospheric 

temperature in winter and thus enables microbial activities. Consequently, this 

leads to increase of N in the soil under certain conditions of snow accumulation, 

snow depth and snow consistence. The major sources of N in streams after winter 

break are the snowpacks and the soils. The relative contribution of each source is 

determined by the combined effects of watershed characteristics, air pollution, 

vegetation, climate condition and disturbances. It is commonly recognized that 

inorganic N concentrations peak in surface water during snowmelt or winter 

breaks. Therefore, when simulating N concentrations in surface water using 

ANNs, it is important to include model inputs like stream flow, vegetation cover 

and time index that can represent this seasonality.   

To develop desirable ANN models for monitoring and forecasting water 

quality parameter and further to assist in decision making for watershed 

management, further studies are recommended: 
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1. Most studies use current meteorological information and watershed 

properties to predict current or recent (within several days) water quality 

parameters. However, to apply ANNs models to watershed management, 

further studies need to focus on forecasting water quality probably weekly or 

monthly in advance to give the decision-maker enough response time.  

2. Support decision making: Water quality modelling is a crucial component of 

environmental decision support system. Most studies on ANN modelling of 

water quality suggest that ANN models can be employed to support the 

decision making for watershed management and environmental issues. So far, 

there are few studies on incorporating ANN models into decision making 

systems. Therefore, further studies need to be conducted on employing ANN 

water quality models to direct decision making. 

3. Studies on water quality modelling need to consider incorporation of RS 

information, which can be used to monitor watershed properties and provide 

significant input variables for water quality models.  

4. N modelling using ANNs needs to include VIs as model inputs as VIs can 

describe vegetation dynamics and vegetation cover, which significantly 

affecting N retention in soil and its leaching into surface water.  
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Table 2-1. Comparison of different ANNs applied to water quality modelling. 

ANN 
algorithm 

Description Advantages Limitations References 

MLP-BP 

− Has an input layer, one or more hidden layers 
and an output layer (Figure 2-1a)  
− Each hidden layer neuron receives the weighted 
output of the previous neurons. At each neuron, the 
weighted input signals are summed and a threshold 
value is added 
− An activation function is performed on the 
combined input to produce the output of the node 

− Work well on a wide range 
of problems 
 

− Calibration is tedious 
because many internal 
parameters to be 
determined 

(ASCE 
Committee 
2000) 

RNN 

− Consist of both feed-forward and feed-backward 
connections between the layers and neurons as the 
inputs to the neurons come from both external 
input and internal neurons (Figure 2-1b). 

− Suitable to model dynamic 
relationships 

− Many internal 
parameters to be 
determined 
− The data should be in 
time-series with the 
same gap. 

(Mandic 2001; 
Chiang et al. 
2004) 

RBFN 

− Consists of three layers (Figure 2-1c).  
− The individual hidden neurons compute their 
activation using a radial basis function, typically 
the Gaussian kernel function 
− The output units simply sum the weighted 
activations of individual hidden neurons.  

− Can be trained much faster 
− Can be easily optimized 
because the number of hidden 
neurons the only parameter 
need to be adjusted  

− May only work well 
on certain problems 

(Meireles et al. 
2003) 

GRNN 

− Consists of an input layer, a pattern layer, a 
summation layer and an output layer (Figure 2-1d) 
− The output of GRNN is a simple division of the 
results from the summation unit by the result from 
the division unit 
 

− Converge to the optimal 
regression surface and deal 
with sparse data efficiently 
− Can be easily optimized 
− Does not provide wild 
estimation. 

− The estimation is 
limited by the 
minimum and 
maximum boundary 

(Specht 1991) 

     



     
Table 2-1. Continued 

ANN 
algorithm 

Description Advantages Limitations References 

MNN 

− Consist of an input layer, a processing layer 
comprising the expert networks and the gating 
network, and an output layer (Figure 2-1e). 
− To develop a MNN model, the whole task is 
divided into several simpler substasks, then these 
subtasks are solved through expert networks and 
finally the subsolutions are combined through a 
gating network to produce the desired solution of 
the original complex task. 

− Suitable for complex 
problems 

− Many internal 
parameters to be 
determined 

(Tsoukalas and 
Uhrig 1997) 

KSOM 

− Consists of two layers 
− In competitive learning, the neurons of the 
networks can recognize groups of similar input 
vectors (Figure 2-1f). 

− Able to order multivariate 
data and preserve the 
topological structure of the 
data  Suitable for 
classification 

− Cannot work on 
continuous functions 

(Kohonen 
1982) 

AMN 

− The input space of AMNs is normalized by a p-
dimensional lattice, and each cell of the lattice 
represents similar regions of the input space 
(Figure 2-1g).  
− The AMN has only one hidden layer, which 
consists of basis functions that are defined on the 
lattice formed by normalizing the input space.  

− Provide more explicit 
information about the 
relationship between the 
inputs and the outputs 

− Not suitable for 
problems with a large 
number of inputs 

(Brown and 
Harris 1994), 
(Brown and 
Harris 1995) 
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Table 2-2. Summary of water quality modelling using ANNs. 

# Modelled 
parameter Location ANNs  Input 

determination 
Input 
parameters 

Forecast 
length 

Data 
division Evaluation Comparison Reference 

1 Sediment 
(mg/L) 

A variety of 
locations 

MLP Prior knowledge Tractive 
shear stress 
Velocity 
ratio 
Suspension 
parameter 
Longitudinal 
slope Water 
depth ratio 

0 
T:V=1:1 
random 

% of data 
in range, 
plot2 

other 
conventional 
models 

(Nagy et al. 2002) 

2 Sediment 
(mg/L) 

Tongue River in 
Montana, USA 

GRNN, 
RBF, 
MLP 

Correlation 
analysis 

Lagged Q 
and sediment 

0 
Time 
range*  

MRSE, 
MAE, 
plot1, and 
plot2 

MLP RBF, 
GRNN and 
MLR 

(Kisi 2004) 

3 Sediment 
(mg/L) 

Tongue River in 
Montana, USA 

Neuro-
Fuzzy 

Prior 
knowledge, 

trial-and-error 

Lagged Q 
and sediment 

0 
Time 
range * 

MRSE, R2 

MLP, 
sediment 
rating curve, 
and MLR 

(Kisi 2005) 

4 Sediment 
(mg/L) 

Banha 
watershed in the 
Upper Damodar 
Valley, 
Jharkhand state, 
India 

MLP Prior knowledge Geomorphol
ogical 
parameters 
and runoff 
rate 

0 
T:S:V = 
3: 2: 4, 
N/A 

E, MRSE, 
R2, AAD, 
Plot1 

regression 
models 

(Sarangi and 
Bhattacharya 2005) 

5 Sediment 
(mg/L) 

St. Esprit 
watershed, 
Quebec, Canada. 

MLP MARS Geomorphol
ogical 
parameters 
and runoff 
rate 

0 
T:S:V = 
2: 1: 1, 
N/A 

MRSE, R2, 
plot1, and 
plot2 

regression 
equations 

(Sarangi et al. 
2005) 

6 Sediment, 
(tons/d) 

Schuylkill river, 
Philadelphia. 
USA 

MLP Correlation 
analysis 

Lagged 
upstream and 
downstream 
sediment 

1 day 
Time 
range * 

MSE, R2, 
Plot1, 
Plot2 

MLR, 
sediment 
rating curve 

(Cigizoglu 2004) 



Table 2-2. Continued 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation Comparisons Reference 

7 Sediment 
(tons/d) 

Juniata River of 
Pennslyvania 
 

FFBP 
and 
GRNN 

Correlation 
analysis 

Lagged Q 
and -1d 
sediment 

0 N/A 
MSE, R2, 
Plot1, 
Plot2 

MLR, 
sediment 
rating curve 

(Cigizoglu and 
Alp 2006) 

8 Sediment 
(tons/day) 

Schuylkill 
River. USA 

FFBP- 
RDNN  

Correlation 
analysis 

Lagged Q 
and –d 
sediment 

0 
Time 
range * 

MAE, R2, 
Plot1, 
Plot2 

MLP (Cigizoglu and 
Kisi 2006) 

9 sediment 
(kg/s)  

Vamsadhara 
River basin of 
India 

MLP Prior 
knowledge, 

trend analysis 

R and Q 
0 

Time 
range * 

MRSE, R2, 
E 

linear 
regression 

(Agarwal et al. 
2005) 

10 Sediment 
(tons/d) 

Juniata 
Catchment, 
USA 

FFBP, 
RBF 

Correlation 
analysis 

Lagged R 
and Q 0 

Time 
range * 

MSE, R2, 
Plot1, 
Plot2 

FFBP and RBF (Alp and 
Cigizoglu 2007) 

11 Sediment 
(tons/ha)  

Upper Siwane 
River, India 

MLP Prior 
knowledge, 
trial-error 

Lagged R, T 

0 
Time 
range * 

RMSE, R2 

LR (Raghuwanshi et 
al. 2006) 

12 Sediment 
(mg/L) 

N/A MLP Correlation 
analysis, trial-

error 

Lagged R 

0 
Time 
range * 

MAE, R2, 
Plot1, 
Plot2 

two-
dimensional 
unit sediment 
graph theory  

(Tayfur and 
Guldal 2006) 

13 Sediment 
(mg/L) 

watersheds in 
the Canadian 
Boreal Plain 

MLP Correlation 
analysis 

Lagged Q 
and R, T, ddt, 
snowfall, 
periodicity 
index 

0 KNN 
MRSE, R2, 
Plot1, 
Plot2 

N/A (Nour et al. 
2006a) 
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Table 2-2. Continued 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation Comparison  Reference 

14 Sediment 
(kg/s) 

Longchuanjiang 
River, China 

MLP Correlation 
analysis 

Lagged R and T 

0 

T:S:V=1
6:5:15 
Time 
range * 

MRSE, R2, 
Plot1, Plot2 

MLR (Zhu et al. 
2007) 

15 Sediment 
(mg/L) 

Mississippi 
River and 
Conococheague 
Creek, USA 

Compo
und 
MLP 

Correlation 
analysis, trial-

error 

Lagged Q and S, 
river stage 

0 
Time 
range * 

R2, SSE, 
Plot1 

compound 
rating curve 

(Jain 2008) 

16 Sediment 
flow rate 
(N/s) 

W-2 of Treynor 
Catchment and 
W7 of Goodwin 
Creek 
watershed, USA 

MLP Correlation 
analysis, trial-

error 

Lagged R, 
Sediment flow 
rate, and runoff 0 T:V=7:3 

RMSE, R2, 
E, plot1 

the linear 
transfer 
function model 

(Rai and 
Mathur 
2008) 

17 Sediment 
(tons/year) 

Tigris River, 
Turkey 

MLP Correlation 
analysis 

R, T, Q 
0 

T:S:V=1
65:82:82 

Plot1, plot2, 
%error 

Linear 
regression 

(Hamidi and 
Kayaalp 
2008) 

18 Sediment 
(mg/L) 

Quebrada 
Blanca and Rio 
Valenciano 
Station, USA 

MLP Correlation 
analysis 

Lagged Q and 
sediment 

0 
Time 
range * 

R2, plot1, 
plot2 

Three training 
algorithms 

(Kisi 2008) 

19 Nitrate 
leaching in 
agriculture 
drainage 
effluent 
(mg/L) 

Soulanges, 
Quebec 

MLP Prior knowledge Julian day, 
denitrification, 
cropping system, 
water table depth, 
N application, 
precipitation, N 
con. in drainage, 
drain flow 

0 
Time 
range * 

R2, Plot1, 
plot2 

N/A (Kaluli et al. 
1998) 
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Table 2-2. Continued 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation Comparison Reference 

20 Nitrate 
loss to 
drain flow 
from 
agricultura
l farm (Kg 
N/ha.) 

Eugene F. 
Whelan 
Experimental 
Farm Woodslee, 
Ontario, Canada 

MLP Prior knowledge Julian day, year, 
T, soil condition, 
evapotranspiratio
n, snow melt, 
drain 

0 random 
RMSE, 
plot2 

N/A (Salehi et al. 
2000) 

21 Nitrate in 
drainage of 
agriculture 
watershed 
(mg/L) 

Greenbelt 
Research Farm 
of Agriculture 
Canada, Ottawa, 
Ont. 

MLP  Prior knowledge Julian day, 
treatment, 
nitrogen applied, 
R, snow fall, T 

0 N/A R2, E 

RBF (Sharma et 
al. 2003) 

22 Nitrate 
(mg/L) 

Sangamon River 
near Decatur, 
Illinois, 

MLP Correlation 
analysis, trial-

error 

Lagged R, T, N 
concentration and 
streamflow 

1 week 
Time 
range * 

RMSE, 
plot1 

linear 
regression  

(Markus et 
al. 2003) 

23 Nitrate in 
river 
(mg/L) 

Upper 
Sangamon River 
in Illinois 

MLP 
and 
RBFN
Ns 

Prior knowledge R, T, Streamflow, 
Julian day 

0 
Time 
range * 

RMSE, 
plot2 

traditional 
regression 
model and 
SWAT  

(Suen and 
Eheart 2003) 

24 nitrate in 
stream 
(mg/L) 

Vermilion River 
in Illinois 

MLP Prior knowledge Q, R, nitrate load 
0 

Time 
range * 

RMSE, R2, 
E 

N/A (Yu et al. 
2004) 

25 Nitrate and 
total 
dissolved 
nitrogen 
(ug/L) 

Watersheds in 
Canadian Boreal 
Plain 

GRNN Correlation 
analysis, trial-

error 

Lagged ddt, R, T, 
EVI, Julian day 

0 
T:S:V=3:
1:1, 
KNN 

RMSE, R2, 
Plot1 

N/A (Li et al. 
2008) 

26 Phosphoru
s (mg/L) 

watershed in the 
Canadian Boreal 
Plain 

MLP Correlation 
analysis 

Q, T, TSS, ddt, 
snowmelt, 
periodicity index 

0 KNN 
RMSE, R2, 
plot1, plot2 

N/A (Nour et al. 
2006a) 
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Table 2-2. Continued 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation 
Comparison 
against Reference 

27 Phosphoru
s (mg/L) 

watershed in the 
Canadian Boreal 
Plain 

MLP Correlation 
analysis 

Lagged Q and P, 
T, periodicity 
index 

0 
T:S:V=3:
1:1 

RMSE, R2, 
plot1, plot2 

ARMAX (Nour et al. 
2006b) 

28 Phosphoru
s (mg/L) 

Incheon area MNN Prior 
knowledge, 
trial-error 

Lagged R, surface 
discharge 0 T:S=4:1 RMSE, R2 

GRNN (Kim and 
Kim 2007) 

29 Phosphoru
s (mg/L) 

Odra River, 
Poland 

MLP Prior knowledge (1)Previous P or 
(2) other water 
quality 
parameters: T, 
pH, TKN, BOD, 
COD etc. 

0 

T:S:V=5
4%:23%:
23%, 
random 

R2,MAE, 
Error S.D., 
S.D. Ratio  

GRNN, MLR, 
RBF 

(Mozejko 
and Gniot 
2008) 

30 Cynobacte
ria 
(Anabaena
. spp.) 
(cells/mL) 

River Murray at 
Morgan, 
Australia 

MLP Sensitivity 
analysis, trial-

error 

Lagged Q, 
turbidity, color, 
T, , total P, 
soluble P, total 
iron, and oxidize 
N 

4-week 
Time 
range * 

RMSE, 
plot1 

N/A (Maier et al. 
1998) 

31 Cynobacte
ria 
(Anabaena
. spp.) 
(cells/mL) 

River Murray at 
Morgan, 
Australia 

B-
spline 
AMN 

Prior 
knowledge, 
trial-error 

Lagged Q and T 

4-week 
Time 
range * 

Plot1 

MLP-BP  (Maier et al. 
2000) 

32 Cynobacte
ria 
(Anabaena
. spp.) 
(cells/mL) 

River Murray at 
Morgan, 
Australia 

B-
spline 
AMN 

Prior 
knowledge, 
trial-error 

Lagged Q and T 

4-week 
Temporal
ly * 

Plot1 

MLP-BP (Maier et al. 
2001) 
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Table 2-2. Continued 
 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation 
Comparison 
against Reference 

33 Peak 
Cryptospo
ridium 

Delaware River, 
USA 

MLP Correlation 
analysis 

Turbidity, pH, 
TC, FC, R, Q, 
Clostridium 
perfringens, 
Escherichia Coli 

0 
T:V=51:
17 

Plot2, 
%error 

N/A (Brion et al. 
2001) 

34 Classificati
on of 
sources 
and ages 
of fecal 
contaminat
ion 

Inlet to Town 
Branch WWTP 
of Lexington, 
KY, USA 

MLP ANOVA R, total, atypical 
and background 
colonies, FC, 
fecal streptococci 0 T:V=2:1 %error 

N/A (Brion et al. 
2002) 

35 Cryptospo
ridium and 
Giardia 
(cells/mL) 

Delaware River, 
USA 

MLP trial-error pH, Q, R, C. 
perfringens, E. 
coli, FC, 
turbidity, TC, 
alkalinity 

0 
T:V=51:
17, 
random 

%error 

N/A (Neelakantan 
et al. 2001) 

36 Cryptospo
ridium and 
Giardia(ce
lls/mL) 

Delaware River, 
USA 

MLP Prior knowledge pH, Q, R, C. 
perfringens, E. 
coli, FC, 
turbidity, TC, 
alkalinity, 
suspended solids, 
dissolved solids, 
coliphage, F-
specific 
coliphage, 
rcoliphage : F-
specific coliphage 

0 
T:V=51:
17, 
random 

%error 

Compared 
different 
training 
methods 

(Neelakantan 
et al. 2002) 
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Table 2-2. Continued 

# 
Modeled 
parameter 

Location ANNs  Input 
determination 

Input 
parameters 

Forecast 
length 

Data 
division 

Evaluation 
Comparison 
against Reference 

37 E. coli 
(cfu/mL) 

the Agricultural 
Research Center, 
Univ. of Ariz. 
AZ 

MLP Prior knowledge pH, turbidity, 
conductivity 

0 
T:S:V=7
2%:20%:
8% 

Plot1, 
%accuracy 

GRNN  (Kim et al. 
2008) 

38 Cynobacte
ria bloom 

Crestuma 
Reservoir, 
Portugal 

GRNN Cluster analysis, 
sensitivity 
analysis 

COND Fe NO3
- 

TURB O taxa pH 
DISCH CHLOR 
Tmax DO 

Two-
week 

Time 
range 

Statistical 
analysis 
(mean, error 
S.D., 
RMSE, R2, 
etc.) 

NA (Teles et al. 
2006) 

39 salinity River Murray at 
river bridge, 
Australia 

MLP Prior knowledge Lagged Salinity at 
other locations 
and lagged Q 

14 days 
T:V=146
9:365 

RMSE, 
%error 

compared six 
training rules 

(Maier and 
Dandy 1999) 

40 salinity Same as the 
above 

MLP PMI Lagged Salinity at 
other locations, 
and lagged Q and 
river level 

14 days 
Time 
range * 

RMSE, AIC, 
Plot1 

Compared 
training 
algorithms 

(Kingston et 
al. 2005) 

41 Salinity Same as the 
above 

MLP Prior knowledge Lagged Salinity at 
other locations, 
and lagged Q and 
river level 

14 days 

Time 
range *, 
GA, 
KNN 

RMSE, AIC, 
Plot1 

Presented 
optimal data 
division GA-
SOM 

(Bowden et 
al. 2002) 

42 Salinity Same as the 
above 

MLP PMI, KNN-
GAGRNN 

Lagged Salinity at 
other locations, 
and lagged Q and 
river level 

14 days 
T:S:V=3.
2:0.8:1, 
GA 

RMSE, 
Plot1 

Compared 
input 
determination 
methods 

(Bowden et 
al. 2005a; 
Bowden et 
al. 2005b) 

Note:  
1. the ANN models in all cases were trained with BP. 
2. In “data division” column, “time range” means: a continuous set of data were chosen from the whole data set for calibration and the other data left 
are used for validation.  
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3. Plot1 is a time series plot of measured and predicted values. 
4. Plot2 is a plot of measured vs. predicted. 
5. AAD: Absolute average deviation 
6. MARS: Multivariate adaptive regression spline 
7.  S.D.: Standard deviation 
8. RMSE: Root mean square error 
9. AIC: Akaike’s information criterion 
10. TC is total coliform and FC is fecal coliform. 
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Table 2-3. Summary of ANN model inputs for water quality modelling. 

Variables 
modelled 

Examples of possible Inputs 

Sediment 

Meteorological data: rainfall, precipitation 
Stream data: (time-lagged) streamflow, antecedent sediment data, runoff  
Morphological parameters: bifurcation ratio, area ratio, channel length ratio, 
slope drainage factor and relief ratio 
Data reflecting seasonal/annual cycle: seasonal index 
Remote sensed data: Remote sensed optical data and microwave data 
Other data: fuzzy set membership 

Nitrate 

Meteorological data: rainfall, cumulative rainfall, snowfall, air temperature 
(maximum, minimum), precipitation, snow melt condition, 
Geographical and physical factors: treatment, total nitrogen applied, on-
ground nitrogen loading and recharge data, past nitrate concentrations, soil 
condition (frozen or non-frozen surface), streamflow, and nitrate load 
Land cover: RS VIs 
Data reflecting seasonal/annual cycle: Julian day of the year, year of 
experimentation 

Phosphorus 

Meteorological data: rainfall, air temperature, 
Geographical and physical factors: (time-lagged) streamflow, antecedent 
phosphorus, phosphorus load, suspended solids 
Land cover: RS VIs 
Data reflecting seasonal/annual cycle: seasonal index, 

Cynobacteria 
(Anabaena. spp.) 

(cells/mL) 

Turbidity, color, temperature, flow, the concentrations of total nitrogen, 
soluble and total phosphorus, conductivity, dissolved oxygen 

Peak 
Cryptosporidium 

spp. 

Turbidity, Clostridium perfringens, pH, total coliforms, fecal coliforms, 
river flow, Escherichia coli, precipitation 

Classification of 
sources and ages 

of fecal 
contamination 

Commonly measured indicator bacteria: background colonies, atypical 
coliforms, total coliforms, fecal coliforms, fecal streptococci 
Weather conditions: rain 
Others: turbidity, sources 

Cryptosporidium 
spp. and Giardia 
spp. (cells/mL) 

Inputs for Crytosporidium spp.: precipitation, river flow, pH, turbidity, 
alkalinity, suspended solids, dissolved solids, Clostridium perfringens, fecal 
coloform, E. coli; and total coliform 
 
Inputs for Giardia spp.: precipitation, river flow, pH, turbidity, alkalinity, 
suspended solids, dissolved solids, Clostridium perfringens, E. coli, fecal 
coliform, coliphage, F-specific coliphage, ratio of coliphage to F-specific 
coliphage, total coliform 

Salinity Antecedent flow and salinity, water level 
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Table 2-4. Remote sensing applications for different spectral bands after (Schultz 
and Engman 2000). 

Spectral 
band 

Wavelength Examples of applications 

Blue 0.45 to 0.50 
µm 

Land use, vegetation characteristics, sediment 

Green 0.50 to 0.60 
µm 

Green reflectance of healthy vegetation 

Red 0.60 to 0.70 
µm 

Vegetation discrimination due to red 
chlorophyll absorption 

Panchromatic 0.50 to 0.75 
µm 

Mapping, land use, stereo pairs 

Near -
infrared 

0.75 to 0.90 
µm 

Biomass, crop identification, soil-crop, land-
water boundary 

Mid-infrared 1.5 to 1.75 µm Plant turgidity, droughts, clouds, snow-ice 
discrimination 

Mid-infrared 2.0 to 2.35 µm Geology, rock formations 
Thermal 
infrared 

10 to 12.5 µm Relative temperature, thermal discharges, 
vegetation classification, moisture 

Microwave – 
short wave 

0.1 to 5 cm Snow cover, depth, vegetation water content 

Microwave – 
long wave 

5 to 24 cm Melting snow, soil moisture, water-land 
boundaries, penetrate vegetation 
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Figure 2-1. Configurations of ANNs.  
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(a) traditional feed-forward three-layer ANN (b) RNN

(c) RBFN 
(d) GRNN
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Figure 2-1. Continued  
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Figure 2-2. The most common ways of coupling a GIS with an environmental model 
(a) loose coupling, (b) tight coupling, and (c) embedded system (Corwin et al. 1997). 
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Figure 2-3. Two different views of integrating GIS and environmental models 
(Argent 2004). 
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CHAPTER 3. MODELLING NITROGEN COMPOSITIONS IN 

STREAMS ON THE BOREAL PLAIN USING GENETIC 

ADAPTIVE GENERAL REGRESSION NEURAL NETWORKS1 

3.1 Introduction 

Nitrogen is one of the most significant water quality parameters that affect 

ecological health. Increased nitrogen loading into aquatic ecosystems after 

watershed disturbance (e.g., wildfire, forest harvest) has been associated with 

water quality problems like dissolved oxygen depletion, algal blooms, 

cyanobacterial toxin production and biodiversity disruption (Prepas et al. 2001). A 

number of comparative studies have linked watershed disturbance to deteriorated 

water quality, with consequently increased total organic nitrogen, nitrate (NO3
-), 

total phosphorus and sediment concentrations in water (Carignan et al. 2000; 

Martin et al. 2000; McEachern et al. 2000; Ensign and Mallin 2001; Swank et al. 

2001). At the same time, terrestrial loss of nitrogen may limit forest growth, 

because nitrogen is a significant soil nutrient controlling forest production 

(Vitousek and Howarth 1991). In upland boreal forest stands in Alberta, Canada, 

nitrification rates were high in soils in cut plots within an aspen/conifer-mixed 

stand during the growing season after disturbance, and remained high into the fall 

and winter (Carmosini 2000). The measurable rates of net mineralization and 

nitrification during winter on the cut plots indicated that the plots had the 

potential to lose nitrogen with snowmelt in the next spring, because nitrogen may 

leach from the plant-rooting zone before plant uptake becomes significant 

(Carmosini 2000). 

Modelling nitrogen composition in streams is very complex because of the 

difficulty in mathematically representing factors like land use and land cover, soil 

and vegetation nitrogen dynamics, in-stream nitrification/denitrification and 

meteorological parameters. These factors are complex, nonlinearly related, 

                                                 
1 A version of this chapter has been published. Li, X., Nour, M.H., Smith, D.W., and Prepas, E.E. 
2008. Modelling Nitrogen Composition in Streams on the Boreal Plain using Genetic Adaptive 
General Regression Neural Networks. J. Environ. Eng. Sci. 7 (S1): 109 – 125 
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spatially distributed on a watershed scale and temporally variable. Also, 

hydrological, biological and chemical processes underlying nitrogen storage, 

transformation and release are not well understood. Hence, the application of 

mechanistic models is costly and impractical, because large amounts of data are 

required to establish parameters and verify model performance.  

In contrast, artificial neural network (ANN) models can often capture data 

patterns without extensive knowledge of the particular site-related problems and 

can model complicated and non-linear processes with fewer input variables than 

mechanistic models. A number of studies have shown that ANN models are 

superior to regression models for some applications (Cannon and Whitfield 2002; 

Sarangi and Bhattacharya 2005; Chandramouli et al. 2007). Since they are 

capable of handling large-scale and complex problems, ANN models provide 

great advantages in a wide range of surface water quality applications, such as 

modelling salinity (Bowden et al. 2005) and color (Zhang and Stanley 1997), 

sediment concentrations (Agarwal et al. 2005; Nour et al. 2006a; Cigizoglu and 

Kisi 2006; Tayfur and Guldal 2006; Alp and Cigizoglu 2007), phosphorus 

concentrations (Nour et al. 2006a, b, c), turbidity, dissolved oxygen 

concentrations and pH (Sahoo et al. 2006), cyanobacterial blooms (Yabunaka et 

al. 1997; Maier et al. 2001, 2004a; Teles et al. 2006), Cryptosporidium spp. and 

Giardia spp. density in river waters (Brion et al. 2001; Neelakantan et al. 2001) 

and non-point sources of fecal contamination (Brion and Lingireddy 1999, 2003; 

Brion et al. 2002).  

Application of ANNs for nitrogen modelling has mostly relied on multi-layer 

perception neural networks with back propagation (MLP-BP) and focused on 

NO3
- in agricultural settings, such as annual NO3

- loss into drainage (Salehi et al. 

2000), simulating NO3
- leaching in drainage effluent (Kaluli et al. 1998), 

forecasting NO3
- loads on a watershed based on historical data (Yu et al. 2004) 

and predicting NO3
- concentration in drainage water (Sharma et al. 2003) and 

groundwater (Khalil et al. 2005) after application of fertilizers and manure. Lek et 

al. (1999) applied MLP-BP to predict total and inorganic nitrogen concentrations 

in streams with correlation coefficients of 0.82 and 0.80, respectively, from 
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watershed features. In another study, using weather station data, daily streamflow 

and the Julian day as model inputs (but not vegetation dynamics), Suen and 

Eheart (2003) developed a MLP-BP model with overall accuracy of 0.8 to predict 

if NO3
- concentrations in a river were greater or less than 10 mg L-1.  

Although BP-MLP is the most popular ANN, BP-MLP takes a large number 

of iterations to converge on the desired solution (Specht 1991). In contrast, 

another type of ANN, general regression neural network (GRNN), is very fast to 

train because there is only one parameter to be optimized for model development. 

Developed by Specht (1991), the GRNN is a multilayer feedforward neural 

network that performs general regression analysis from sample data for the 

purpose of prediction. The GRNN is able to approximate continuous functions 

and model nonlinear relationships. Generally, GRNNs have the advantages of 

converging to the optimal regression surface and dealing with sparse data very 

efficiently in the real-time environment (Specht 1991). In particular, genetic 

adaptive GRNN used in this study applies a genetic algorithm to find appropriate 

individual smoothing factors for each input, as well as an overall smoothing factor 

during calibration. The Neuroshell 2 genetic adaptive calibration method 

(available from Ward Systems Group Inc., Frederick, MD) generally produces 

models that work much better on the test data set than the iterative calibration 

method.  

The performance and generality of a model can be significantly affected by 

data division into data subsets (i.e., training, testing and validation data sets). The 

arbitrary division of data subsets, with inadequate knowledge of the patterns 

associated with them, can potentially result in randomness in the developed ANN 

model quality and performance (Bowden et al. 2006). Therefore another type of 

ANN, the self-organizing map (SOM), is useful because it facilitates the 

production of representative data subsets to improve model performance and 

generality (Bowden et al. 2002; Shabin et al. 2004). A SOM can identify the 

regularities and similarities in its inputs. Thus, a SOM is used to classify all of the 

available data to several clusters, then from each of the clusters training, testing 
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and validation data are sampled. As a result, each of the data subsets is 

representative and evenly distributed for all of the parameters being modelled. 

Previous studies applying ANN to nitrogen modelling in a watershed have 

considered only nitrogen load from external sources, nitrogen leaching and 

seasonal factors. With the rapid development of remote sensing (RS) technology 

and the reduced cost of acquiring RS data, it is now possible to take into 

consideration vegetation phenology, one of the most important factors affecting 

the nitrogen cycle. The Terra spacecraft launched by the United States National 

Aeronautics Space Administration in December 1999 has enhanced the Earth 

Observing System program capabilities significantly. A sensor called the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra has 

greatly improved scientists’ ability to measure plant growth on a global scale, 

with moderate spatial and temporal resolution. The MODIS Land Group provides 

not only satellite data, but also high-level data products that are specifically 

designed to support global to regional monitoring, modelling and assessment, 

such as vegetation indexes (VIs) (e.g., normalized difference vegetation index 

(NDVI), Enhanced Vegetation Index (EVI) and leaf area index) (Justice et al. 

1998; National Aeronautics and Space Administration 2007). VIs have been 

successfully used to detect forest disturbance (Jin and Sader 2005), monitor 

vegetation dynamics (Beck et al. 2006), vegetation cover and condition (Fensholt 

2004; Ben-Ze'Ev et al. 2006) and forage condition (Kawamura et al. 2005). The 

successful application of VIs to vegetation dynamics indicates that it has potential 

for constructing nitrogen models and improving prediction accuracy. 

In this study, a GRNN was applied to model NO3
-, ammonium (NH4

+) and 

total dissolved nitrogen (TDN) concentrations in streams draining three 

watersheds on the Canadian Boreal Plain, within the study area of the Forest 

Watershed and Riparian Disturbance (FORWARD) project. The FORWARD 

project is a long-term study initiated to develop hydrological and water quality 

models that link water quantity and quality and biological indicators with 

watershed management on the Boreal Plain (Smith et al. 2003). Background 

information and objectives of the FORWARD project can be found in the Journal 
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of Environmental Engineering and Science (2003) (Vol. 2, Suppl. 1). Nitrogen 

modelling can contribute to linking water quality and disturbance indicators to 

watershed management. The major objectives of this study are to: (1) develop a 

GRNN modelling tool that is able to predict daily NO3
-, NH4

+ and TDN 

concentrations in streams using easily accessible databases; and (2) test the 

usefulness of RS data in constructing predictive nitrogen models.  

3.2 Theory 

3.2.1 General Regression Neural Network 

In the GRNN approach, a dependent scalar variable (y) can be estimated from 

independent random variables. A vector of x with p dimensions represents the p 

independent random variables and X is a particular measured value of the random 

variable x. The joint density function  yf ,X  is assumed to be known, then the 

conditional mean of y given X (also call the regression of y on X) is calculated 

based on the following equation: 
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However, the joint density function is not known. Therefore, a probability 

estimator , based on a sample of observations of x and y is used (Specht 

1991).  and are the sample values of the random variables x and y, whereas 

n is the number of sample observations, p is the dimension of the vector variable 

x, T is matrix transpose, and σ is the smoothing factor: 
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In essence, the probability estimator  Yf ,ˆ X  assigns sample probability of 

width σ for each sample  and , and the sum of those sample probabilities is 

the probability estimate. Substituting equation [2] into equation [1] and 

performing integration, Specht (1991) has shown the estimator of the conditional 

mean, , is: 
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where . This regression in equation [3] can be 

implemented by a GRNN with four layers (Figure 3-1). The pattern layer consists 

of one neuron for each training pattern. The weights of the A summation layer are 

set to the actual output values, i.e., 

   iTi
iD XXXX 2 

ii YA  ; i=1, …, n and weights of the B 

summation layer are unity i.e., 1iB ; i = 1, …, n. The output merely divides the 

results of the A summation by that of the B summation to provide the desired 

estimate of Y. To develop a GRNN with good performance, the optimal 

smoothing factor σ must be found.  

The GRNN does not produce wild estimates outside of the range of 

observation, because the estimate is bounded by the minimum and maximum 

values of the observations (Specht 1991). On the other hand, it means that GRNN 

will not give reliable predictions beyond the range of the training data sets. In 
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turn, the training data set must encompass the full range of expected output values 

to achieve accurate results.  

3.2.2 Kohonen’s Self-organizing Map Networks 

SOM networks can learn to detect regularities and correlations in their inputs 

and order the inputs by similarity, as well as adapt their future responses to the 

inputs accordingly (Kohonen 1982). The SOM network generally has an input 

layer and a Kohonen layer. As shown in Figure 3-2, the input layer, fully 

connected to the Kohonen layer, provides the inputs to be ordered to the Kohonen 

layer. In the Kohonen layer, there is one neuron for each output category. The 

neurons in the Kohonen layer measure the distance of their weights to the input 

pattern. Based on the distance, the winning neuron is determined as follows, 

where X represents the input data with N inputs: 

 

[4]   NixX i ,...,1; 

 

If there are M neurons in the Kohonen layer, each of the M neurons in the 

Kohonen layer will also have N weight values: 

 

[5]       NiMjwW jiji ,...,1;,...,1;   

 

First, it is determined how much the weights of each neuron match the 

corresponding input pattern. For each of the M Kohonen neurons, the distance, 

such as the Euclidean distance, is calculated as: 
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The winner neuron is the one having the smallest value of Sj. During the 

learning process, only the winner and the neurons close to the winner have their 

weights updated. The extent to which a neuron is close to the winner is defined by 

a neighborhood set. The radius of a neighborhood set can decrease as the training 

proceeds. After having the weights updated, the network will take the next input 

data pattern and the learning process continues until the stopping criteria are 

reached. It is the weights that provide topological information existing within the 

input data sets. 

3.3 Study Area and Database 

GRNN was applied to model nitrogen composition in streams on three 

forested watersheds located in the Swan Hills, northwest of Edmonton, Alberta, 

Canada, namely Burnt Pine (8 km2), Willow (16 km2) and Two Creek (129 km2) 

(Figure 3-3). The Burnt Pine watershed was 100% burned in a severe wildfire in 

June 1998, whereas Willow and Two Creek are relatively undisturbed watersheds. 

The dominant soils in the study area are Luvisols, Organics, Brunisols and 

Gleysols, but Regosols also exist (Ecological Stratification Working Group 1996). 

The Boreal Plain supports mixed-wood forests, characterized by black spruce 

(Picea mariana (Mill.) BSP) and tamarack (Larix laricina (Du Roi) K. Koch) in 

poorly drained sites, and trembling aspen (Populus tremuloides Michx.), balsam 

poplar (P. balsamifera L.), white spruce (Picea glauca (Moench) Voss), 

lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm.) and 

jack pine (P. banksiana Lamb.) in well-drained sites (Ecological Stratification 

Working Group 1996). 

The required input data were obtained from the Whitecourt A meteorological 

station (Environment Canada 2007), FORWARD meteorological stations (Nour et 

al. 2006a,b; Prepas et al. 2008), and MODIS VIs data sets (National Aeronautics 

and Space Administration 2007) from the years 2002 through 2005. The data 

layer of MODIS EVI was exported from the MODIS VI images using the 

software Geomatica V9.1 (PCI Geomatics, Richmond Hill, ON). The exported 
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MODIS EVI layer was then loaded into ArcGIS 9.2 (ESRI, Redlands, CA), 

overlaid by the watershed shapefiles, and the corresponding EVI data for each 

watershed were extracted and averaged using the spatial analyst tools. Stream 

water quality parameters, including NO3
-, NH4

+ and TDN concentrations from 

May to October for the years 2002 through 2005, were obtained from the 

FORWARD data repository (Prepas et al. 2008). TDN was measured on a sample 

that had been filtered through GF/C Whatman glass fibre filters and within 48 

hours photocombusted in a UV digester.  The products of photocombustion 

(ammonia, nitrate, nitrite, some nitrous oxide and some nitric oxide) were passed 

through a zinc reduction column to be reduced to ammonia and then analyzed.The 

uncertainty of these measurements is shown in Table 3-1.  

3.4 Model Development 

To ensure the models’ performance, all models were developed following the 

standard procedure for ANNs in a systematic way, which includes input 

determination, data division, determination of model internal parameters, training 

and stopping and model evaluation (e.g., Maier and Dandy 2000; the ASCE Task 

Committee 2000; Dawson et al. 2002).  

3.4.1 Input Determination 

In order to develop a robust ANN model, it is critical to carefully select a 

representative and significant set of input variables. Typically, the variables that 

describe the system being modelled are not equally prominent. The discrepancies 

in their importance are mainly due to their differences in causing changes in the 

modelled system. However, some input variables may be correlated, noisy or have 

no significant relationship with the output variable, increasing the computational 

complexity of the developed model (Bowden et al. 2006). Developing 

parsimonious models is always the objective of modelling efforts (El-Din and 

Smith 2002).  

This study focused on data-driven means of water quality modelling. 

Mechanistic studies specially targeting on nitrogen dynamics in streams can be 

 94



found in other literature (e.g., Chen et al. 2002; Fukuzawa et al. 2006; Oczkowski 

et al. 2006; Rusjan et al. 2008). Thus, model inputs in terms of cause/effect 

factors, time-lagged inputs and inputs reflecting seasonal cyclic nature were 

determined based on a combination of a priori knowledge of the system being 

modelled, cross-correlation analysis and trial-and-error screening by GRNN. On a 

watershed scale, the nitrogen concentrations in streams are influenced by 

atmospheric deposition, soil leaching and nitrogen transport along streams. These 

processes are very complex and are in turn influenced by land use and cover, soil 

and vegetation nitrogen dynamics, soil characteristics, in-stream nitrogen 

transformations and meteorological factors. Each of these factors is also a 

consequence of other more fundamental interactions. For example, nitrification 

and denitrification by bacteria are controlled by dissolved oxygen, alkalinity, pH, 

temperature and carbon source. The equilibrium between NH4
+ and ammonia 

(NH3) in water is governed by pH. Below pH 9.5, which is the case for the study 

streams, NH4
+ is predominant. 

Nitrogen concentrations in streams in the study area peak during early spring 

snowmelt (Pelster et al. 2008). The two major sources of nitrogen loading into 

streams after spring break-up are the snowpack and soils; this nitrogen primarily 

originates from atmospheric nitrogen deposition and nitrification, respectively. 

Total nitrogen deposition rates of approximately 420 to 2200 mg m-2 yr-1 have 

been estimated for western Canada, with higher rates close to urban development 

(Shaw et al. 1989; Kochy and Wilson 2001). A number of in-situ and laboratory 

studies have shown that nitrogen transforming processes occur under snow cover, 

and demonstrated that these processes should be considered when modelling 

nutrient leaching and concentrations in surface waters (Brooks and Williams 

1999; Brooks et al. 1999). Snowpack insulates soil from the very low atmospheric 

temperatures in winter and thus enables microbial processes (e.g., nitrification) to 

occur. Consequently, NO3
- concentrations can increase during the winter in soil 

under certain snow conditions. The relative contribution of atmospheric and 

microbial sources is determined primarily by the combined effects of air 

pollution, weather and watershed characteristics. The fact that nitrogen 
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concentration peaks occur during early spring snowmelt makes snowmelt a 

significant indicator of this phenomenon. Daily snowmelt can be estimated by the 

temperature-index approach because a linear function of daily snowmelt and 

average air temperature exists, given that the air temperature exceeds a base 

temperature.  

Based on an understanding of the processes involved in nitrogen modelling, 

the most significant cause/effect factors of concern are rainfall, temperature, a 

snowmelt indicator and a vegetation growth indicator. The cumulative degree-

days (ddt) can serve as an integrated measure of heat energy available to melt 

snow and can act as a surrogate to the temperature-index snowmelt approach. 
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Here, Tavg is the daily average air temperature in °C, Tb is a base temperature 

typically set at 0°C, N is the number of days during which Tavg ≥ Tb, ddt is the 

total degree days at time t in °C day, and (ti+1 – ti) is typically taken as 1 day. 

Vegetation growth was taken into consideration through the RS VIs, particularly 

EVI derived from MODIS images, which has been successful in monitoring 

vegetation phenology (Khan 2005). EVI is a relatively new data product 

developed from the MODIS Science Team to improve upon the quality of the 

NDVI for forested ecosystems. The atmospheric resistance was calculated by 

adding information from the blue wavelength and two constants, C1 and C2. The 

canopy adjustment to minimize the effect of the changes of optical properties of 

soil background was calculated by introducing a constant, L. EVI is formulated as 

represented by equation 8 (Huete and Liu 1994): 
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where G = 2.5, C1 = 6, C2 = 7.5, and L = 1. The terms ρBlue, ρRed, and ρNIR 

represent the reflectance at the blue (0.45 to 0.52 µm), red (0.6 to 0.7 µm), and 

near-infrared (0.7 to 1.1 µm) wavelengths, respectively. Compared to NDVI, EVI 

corrects for some distortions in the reflected light caused by particles in the air, as 

well as the ground surface below the vegetation. In addition, it is more near-

infrared reflectance sensitive than the NDVI and responds to canopy structural 

variations such as canopy type and architecture (Pettorelli et al. 2005).  

Rainfall, snowmelt and vegetation growth probably have time-lagged effects 

on nitrogen concentrations in this study, because other studies indicate that 

environmental variables have time-lagged effects on water quality parameters 

(Niu et al. 1998; Nour et al. 2006a). In addition, examination of a time series plot 

of daily nitrogen concentrations indicated seasonal periodicity. Thus, not only 

cause/effect inputs but also inputs reflecting time correlation and seasonal 

periodicity were considered when determining the inputs for the nitrogen models. 

The cross correlation function (CCF) was estimated between the potential time-

lagged inputs (e.g., rainfall, snowmelt, EVI) and the model outputs, and the 

possible time-lagged inputs were identified based on the selection criterion of 

95% confidence intervals. Although the accuracy of the CCF is limited by the fact 

that the time series in this study are not weakly stationary, it can still provide 

information to determine the possible time lags of input variables. Then, the 

selected possible inputs using CCF were further run through GRNN. At each 

time, only one input was removed from GRNN inputs and the GRNN was trained 

and evaluated again. It was a trial-and-error method at this stage and the final 

parsimonious inputs to GRNN model were determined based on the GRNN’s 

performance on the validation data set. The seasonal periodicity was accounted 

for by assigning Julian day of the year to each daily record. Assigning a time 

index to each data record has been successful in helping the ANN to identify the 

periodicity of data series (Gregory et al. 1991; Zhang and Stanley 1997; Sharma 

et al. 2003).  
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In summary, for all the developed models in this study, the cause/effect 

inputs were rainfall, daily mean air temperature, cumulative degree-days and EVI 

(Table 3-2). As determined through cross-correlation analysis and the trial-and-

error screening by GRNN, the input having the time-lagged effect on nitrogen in 

the studied watersheds was cumulative degree-days and the time lags were three 

days before the current day. The periodicity of the model output was considered 

in the model development by introducing an additional input representing the 

Julian day of the year. The inputs were scaled linearly into open intervals between 

-1 and 1.  

3.4.2 Data Division 

Data division is also an important step in ANN model development because 

an ANN’s performance can be significantly affected by the representativeness of 

subsets. Each of the subsets should represent all the patterns contained in the 

available data. A SOM was implemented using NeuroShell 2 (Ward Systems 

Group Inc., Frederick, MD) to divide the available data into training, testing and 

validation data sets, which were able to statistically represent the same 

population. To cluster the data, the inputs to the SOM network were the patterns 

of variables to be predicted, namely, NO3
-, NH4

+ and TDN concentration. The 

learning, neighborhood size and number of epochs were set by using default 

parameters and the number of clusters was five. After the clusters were formed, 

data sets for training, testing, and validation were randomly sampled from each of 

the clusters at a ratio of 3:1:1. After the three data sets were formed, further 

statistical analysis was performed on each of them to ensure they represented the 

same population. This data division method using SOMs has been tested to 

generate representative data sets and improve model performance and applied in 

the literature (Bowden et al. 2002; Maier et al. 2004b; Shabin et al. 2004). Since 

nitrogen concentrations in the study streams were not normally distributed, 

Kolmogorov-Smirnov tests were performed using MATLAB R2007a (The 

MathWorks Inc., Natick, MA) to verify that the three data sets represented the 

same population. 
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3.4.3 Determination of Model Architecture 

The parameters to be determined are the number of neurons in the input, 

pattern and output layers and the smoothing factor. In fact, the number of neurons 

in the input layer and the output layer correspond to the number of input variables 

and output variables, respectively. The number of neurons in the pattern layer is 

usually the number of patterns in the training data set, because this layer consists 

of one neuron for each pattern in the training data set. The number can be set 

larger if more patterns are added later, but it should not be smaller than the 

number of training patterns. Hence, the only parameter that needs to be optimized 

is the smoothing factor. The smoothing factor must be greater than 0 and usually 

ranges from 0.01 to 1 to provide good results (required by NeuroShell 2). For all 

nine models developed in this study, the smoothing factor was 0.3 and not 

sensitive. Given the same data, this work can be easily reproduced using 

NeuroShell 2 by setting the only internal parameter of GRNN to 0.3. 

3.4.4 Training Criteria and Stopping Criteria 

During calibration, a genetic algorithm was applied to find an appropriate 

individual smoothing factor for each input, as well as an overall smoothing factor. 

Genetic algorithms basically work through selectively breeding an initial 

population of individuals, each of which is a potential solution to the problem, 

based on an objective function (Tsoukalas and Uhrig 1997). At each step, the 

genetic algorithm selects individuals randomly from the current population to be 

parents and uses them to produce the children for the next generation. Eventually, 

the population "evolves" toward an optimal solution through successive 

generations. Training using a genetic algorithm proceeded in two steps, with an 

objective function to minimize the mean squared error of the test data set (Ward 

Systems Group Inc., Frederick, MD). At first, the network was trained with the 

training data set. Then with the network created, a whole range of smoothing 

factors was tested to try to find a combination that worked best on the test data 

set. The learning process was terminated when an individual that improved the 
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mean squared error by at least 1% was not produced within 20 successive 

generations of the whole population.  

3.4.5 Model Evaluation 

The developed models were evaluated based on the following criteria: 

1. The coefficient of multiple determination (R2) and root mean squared error 

(RMSE): 
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where y is the actual value, ŷ is the predicted value, y is the mean of the y 

values, and n is the number of data observations. R2 is a statistical indicator for 

multivariate regression analysis. The better the model fit, the closer the R2 is to 1. 

2. Model robustness based on swapping the testing and validation data sets, 

followed by retraining the genetic adaptive GRNN (GA-GRNN) model and 

assessment of the performance of the new model. A robust model should still 

perform well when the testing and validation data sets are swapped. 

3. Graphical examination of predicted and measured NO3
-, NH4

+ and TDN 

concentration profiles over time. 
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3.5 Results and Discussion 

3.5.1 Case Study 1: Willow watershed 

GA-GRNN models for NO3
-, NH4

+ and TDN concentrations were developed 

using inputs from the databases mentioned earlier following the model 

development procedure outlined above. The cumulative degree-days had a time-

lagged impact on NO3
-, NH4

+ and TDN concentrations (Table 3-2). Table 3-3 

presents the minimum, maximum, mean, period and number of data patterns for 

all three data subsets. The statistical measures of the GA-GRNN models’ 

performance based on R2 and RMSE are summarized in Table 3-4. The training 

data sets were well predicted (indicated by R2 and RMSE performance data) 

because of the nature of the GRNN architecture (i.e., the pattern layer consists of 

one neuron for each training sample). Also, the GA-GRNN models demonstrated 

high accuracy for the testing data set, because it was used to optimize the 

smoothing factors. However, for the validation data sets that the models had never 

seen before, the R2 values of GA-GRNN models were 0.95 for all modelled 

parameters (daily NO3
-, NH4

+ and TDN concentration) within the Willow 

watershed (Table 3-4). The average measurement errors for the modelled 

parameters were calculated by taking the average of daily measured values 

multiplied by their corresponding expanded uncertainty through the modelling 

period. The RMSEs for all of the validation data sets were 4.47, 4.97 and 26.9 µg 

L-1 and the average measurement error was 0.89, 1.55 and 37.09 µg L-1 for NO3
-, 

NH4
+ and TDN, respectively. The RMSEs were close to the measurement errors. 

The RMSEs were very low compared to the high concentrations of NO3
-, NH4

+ 

and for TDN and they were not low for the low concentrations of nitrogen. This is 

typical for stream water quality parameters because there is a large difference 

between water quality parameter values corresponding to baseflow conditions and 

those corresponding to snowmelt and storm events. Furthermore, these GA-

GRNN models proved to be stable and consistent in predicting average daily NO3
-

, NH4
+ and TDN concentration, because model performance was consistent even 

after swapping the testing and validation data sets (Table 3-4). The developed 
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GA-GRNN models successfully simulated most of the peak concentrations for 

NO3
-, NH4

+ and TDN (Figure 3-4a-c).  

3.5.2 Case Study 2: Two Creek watershed 

The Two Creek watershed is more than eight times larger in area than Willow 

watershed. Larger catchments typically have lower nutrient exports because they 

have more storage capacity for sediments and associated nutrients (Skidmore 

2002). The developed models were successful in predicting average daily NO3
-, 

NH4
+ and TDN concentrations in the stream draining this larger watershed. For 

the validation data sets, the R2 values of the NO3
-, NH4

+ and TDN models 

exceeded 0.90 (Table 3-4). The model performance was preserved when the 

testing and validation data sets were swapped, which further proved the model’s 

power. Visualization of Figure 3-5b showed that several peak concentrations of 

NH4
+ were not well modelled. Therefore, the model’s prediction accuracy about 

these peaks was further investigated and the results shown in Table 3-5. Except 

for 30-Apr-03 and 28-Arp-04, all the peaks that appeared to be missed by the 

models for 4 years (from 2002 to 2005) were actually well modelled because the 

modelled results fell within or were very close to (within 2 μg L-1 of) the 

confidence intervals. The network modelled results for 30-Apr-03 and 28-Arp-04 

were within about 8 μg L-1 and 3 μg L-1 of the confidence intervals, respectively. 

Based on these evaluations, the developed models demonstrated good simulation 

for peak concentrations of NO3
-, NH4

+ and TDN (Figure 3-5a-c). The effect of 

EVI on nitrogen was examined by comparing the models’ performance both with 

and without EVI as an input. By including EVI, there was marginal enhancement 

in the validation data R2 for the NO3
- and TDN models (from 0.97 to 0.98 and 

from 0.91 to 0.94, respectively), while the R2 for the NH4
+ model was 

significantly enhanced (from 0.62 to 0.95).   

3.5.3 Case Study 3: Burnt Pine watershed 

Changes to the vegetation canopy after wildfire in the Burnt Pine watershed 

are captured in the EVI, because it shows the density of plant growth. Higher EVI 

values indicate a more dense vegetation canopy. Compared to the MODIS EVI of 
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the Willow and Two Creek watersheds (approximately 1000 to 5000, with no 

annual trend from 2001 to 2005), the MODIS EVI of the Burnt Pine watershed 

was lower and demonstrated an increasing trend from 2001 through 2005, due to 

the recovery of vegetation with time since disturbance (Figure 3-6). Also, the EVI 

of these three watersheds showed common features in terms of seasonal 

vegetation growth pattern within a given year.  

Average daily NO3
-, NH4

+ and TDN concentrations were well predicted for 

Burnt Pine using GA-GRNN models of very similar model architecture (Figure 3-

7a-c). The number of hidden neurons was approximately the number of training 

data patterns and the initial smoothing factor was 0.3. In fact, model calibration 

using a genetic algorithm showed that the NO3
-, NH4

+ and TDN models were not 

sensitive to the initial smoothing factors, which is the only parameter to be 

determined for GRNN model architecture. Moreover, these three nitrogen models 

for Burnt Pine watershed had similar inputs as models for Willow and Two Creek 

watersheds (Table 3-2). The optimal inputs were derived from the five major 

parameters: rainfall, mean air temperature, cumulative degree-days, EVI and 

Julian day of that year, as well as related time lags (Table 3-2). Although several 

peak concentrations seemed to be poorly modelled (Figure 3-7b), in fact, with the 

consideration of measurement errors, the modelled results were close to the 

confidence intervals (within 5 μg L-1) (Table 3-5). For all of the data (May to 

October from 2002 to 2005), the only peak poorly modelled was on 17-Aug-04 

(Table 3-5) from the validation data set. This was probably because the training 

data set did not contain a pattern similar to 17-Aug-04. Data patterns that are not 

included by the training data set cannot be well modelled due to the nature of 

ANNs. However, in this study, the data division already verified that the training 

and validation data sets generally represented the same population. Thus, overall, 

the Burnt Pine nitrogen composition models predicted the base and peak 

concentrations of NO3
-, NH4

+ and TDN moderately well, with all R2 values 

exceeding 0.83. The RMSEs for validation data sets were 3.40, 4.92 and 29.67 μg 

L-1 for NO3
-, NH4

+ and TDN, respectively, and were comparable, with 

corresponding measurement errors that were 1.11, 1.22 and 17.35 μg L-1. 
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Including EVI as model input, the validation data R2 values for the NO3
- and TDN 

models were marginally enhanced (from 0.97 to 0.98 and from 0.93 to 0.96, 

respectively), while the R2 for NH4
+ was significantly enhanced (from 0.58 to 

0.87). This indicates that inclusion of RS information, which provides additional 

information on nitrogen processes, contributed to yielding a consistent predictive 

relationship. 

3.6 Conclusions 

The factors of concern in terms of nitrogen modelling are complicated and 

non-linearly related, which makes ANN a suitable application for this problem. 

This study provided an efficient and cost-effective approach to simulate nitrogen 

concentrations in streams using easily accessible data as model inputs. GA-

GRNN models were developed following strict procedures and applied to 

simulate daily mean NO3
-, NH4

+ and TDN concentration in streams at three 

watersheds in the Swan Hills of Alberta, Canada. The optimal inputs were derived 

from five major variables: rainfall, daily mean air temperature, cumulative 

degree-days, EVI and Julian day of the year. All such variables are easily 

accessible for the Boreal Plain of Canada. The consistent performance of GA-

GRNN models for two relatively undisturbed watersheds, as well as a burned 

watershed, was obtained with the inclusion of the RS-derived EVI as one of the 

model inputs. This index was capable of describing vegetation canopy differences 

among watersheds, as well as vegetation phenology. In terms of model 

architecture, the developed models were not sensitive to the initial smoothing 

factor and training with a genetic algorithm improved model performance on 

testing data sets. The developed models successfully simulated NO3
-, NH4

+ and 

TDN concentrations for three streams, with R2 values exceeding 0.83 for all data 

sets. The power of these models was demonstrated by the consistent magnitude of 

the performance measures achieved (R2 and RMSE) when swapping the testing 

and validation data sets.  

This study distinguished itself from other nitrogen modelling studies (Kaluli 

et al. 1998; Lek et al. 1999; Sharma et al. 2003; Yu et al. 2004; Khalil et al. 2005; 
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Almasri and Kaluarachchi 2005) in that it: (1) explored the water quality 

modelling capability of GRNNs trained with a genetic algorithm; (2) took into 

consideration the dynamics of vegetation phenology on nitrogen modelling by 

using RS data and; (3) developed GA-GRNN models that successfully predicted 

not only NO3
-, but also NH4

+ and TDN concentrations. Based on a series of model 

evaluations, the successful application of GA-GRNN models to predict three 

nitrogen constituents during dry and wet weather conditions by using five major 

input parameters and relevant time-lagged inputs, demonstrated the models’ 

generality in the studied watersheds. More importantly, it implies the high 

potential of applying GA-GRNN models for predicting other surface water quality 

parameters on other similar or different watersheds. To strengthen the results even 

more, further investigations are needed to determine the consistency of the 

presented modelling approach in different geomorphological and spatial settings, 

and with other water quality parameters. 
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Table 3-1. Uncertainties of measurements for NO3
-, NH4

+ and TDN (Biogeochemical 
Analytical Laboratory 2008). 
 
Analyte Detection Limit 

(µg L-1) 
Concentration Range 

(µg L-1) 
Expanded Uncertainty 

(95% confidence interval, 
%) 

NH4
+ 2 20 to 200 9.0 

NH4
+ 2 200 to 2000 5.3 

NO3
- 1 10 to 200 7.1 

NO3
- 1 200 to 2000 5.6 

TDN 7 70 to 500 9.1 
TDN 7 500 to 2000 7.7 
TDN 7 2000 to 6000 5.7 
Note: Expanded uncertainty defines an interval about the result of a measurement that 
may be expected to encompass a large fraction of the distribution of values that could 
reasonably be attributed to the measurand. The fraction is a level of confidence of the 
interval. To associate a specific level of confidence with the interval defined by the 
expanded uncertainty explicit or implicit assumptions regarding the probability 
distribution characterized by the measurement result and its combined standard 
uncertainty are required. 



Table 3-2. Input parameters to nine genetic adaptive general regression neural 
network models.  
 

Model Inputs 

 Rt Tmean ddt ddt-1 ddt-2 ddt-3 EVIt Julian day 

Willow         

NO3
- Y Y Y Y Y --- Y Y 

NH4
+ Y Y Y Y Y Y Y Y 

TDN Y Y Y Y Y --- Y Y 

Two Creek         

NO3
- Y Y Y Y Y --- Y Y 

NH4
+ Y Y Y --- --- --- Y Y 

TDN Y Y Y Y Y --- Y Y 

Burnt Pine         

NO3
- Y Y Y Y Y --- Y Y 

NH4
+ Y Y Y Y Y --- Y Y 

TDN Y Y Y Y Y --- Y Y 

Note: Rt is rainfall in mm; Tmean is mean daily air temperature in degrees C; ddt, ddt-1, ddt-2 
and ddt-3 are cumulative degree days at lags of 0, 1, 2, and 3 days, respectively; EVIt is the 
enhanced vegetation index. Y indicates the parameter was used, ‘---‘ indicates it was not 
used. 
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Table 3-3. The minimum, maximum, mean and number of data points (n) for input data to the nitrogen genetic adaptive general 
regression neural network model. 
 

   Rainfall (mm)*  Mean daily air 
temperature (ºC)* 

 Cumulative degree days*  Enhanced Vegetation 
Index† 

   T S S S‡ S1
‡ S2

‡  T S1 2  T S1 2  T S1 2 
Minimum  0.00 0.00 0.00  -1.2 -0.2 -0.3  193.7 194.6 194.7  1928 1934 1936 
Maximim  42.42 14.73 19.56  23.5 23.4 21.5  2328.1 2333.6 2337.7  4966 4966 4963 
Mean  1.39 1.27 1.45  12.49 12.36 11.91  1255.0 1271.8 1283.8  3678 3703 3687 

Willow 

n  383 127 127  383 127 127  383 127 127  383 127 127 
                  

Minimum  0.00 0.00 0.00  -1.20 -0.30 0.10  193.7 194.6 194.7  2101 2117 2122 
Maximim  22.07 33.56 26.07  23.40 22.20 23.50  2401.1 2380.9 2388.9  4493 4479 4464 
Mean  1.41 2.06 1.99  12.33 11.97 12.20  1287.3 1272.5 1294.4  3473 3451 3494 

Two 
Creek 

n  391 130 129  391 130 129  391 130 129  391 130 129 
                  

Minimum  0.00 0.00 0.00  -2.90 -3.30 -4.30  82.0 97.8 104.1  145 104 58 
Maximim  29.21 16.76 22.86  23.40 21.80 23.50  2339.1 2333.6 2337.7  4846 4813 4820 
Mean  2.14 1.26 1.82  11.85 11.79 12.08  1196.5 1213.9 1205.7  2952 2994 2967 

Burnt 
Pine 

n  413 138 138  413 138 138  413 138 138  413 138 138 
* Input data on a daily basis, generally from May to October for each year of 2002, 2003, 2004 and 2005.  
† Input data on a bi-weekly basis. 
‡ T is the training data set; S1 is the testing data set; S2 is the validation data set. The data patterns are evenly distributed from May to October for 
each year of 2002, 2003, 2004 and 2005. 
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able 3-4. Statistical measures of performance of the genetic adaptive general 
egression neural network models with EVI as model inputs. 

S1 as testing data set S2 as testing data set 
Model Measure Training 

(T) 
Testing 

(S1) 
Validation 

(S2) 
Training 

(T) 
Testing 

(S2) 
Validation 

(S1) 

Willow        

R2* 0.99 0.98 0.95 0.99 0.98 0.97 
NO3

- 
RMSE† 0.29 2.31 4.47 1.17 3.19 3.32 

R2 0.98 0.97 0.95 0.98 0.96 0.95 
NH4

+ 
RMSE 2.97 3.94 4.97 2.96 4.49 5.12 

R2 0.98 0.97 0.95 0.97 0.96 0.96 
TDN 

RMSE 18.34 19.61 26.90 20.18 24.74 23.14 

Two 
Creek 

       

R2 0.99 0.98 0.98 0.99 0.98 0.98 
NO3

- 
RMSE 1.89 2.54 3.17 1.62 2.51 2.78 

R2 0.98 0.96 0.95 0.99 0.96 0.95 
NH4

+ 
RMSE 2.05 3.20 3.78 1.43 3.48 3.61 

R2 0.99 0.96 0.95 0.99 0.97 0.94 
TDN 

RMSE 8.78 25.02 28.23 5.98 22.79 31.32 

Burnt 
Pine 

       

R2 0.99 0.98 0.98 0.99 0.98 0.98 
NO3

- 
RMSE 2.03 3.77 3.40 2.06 3.17 3.75 

R2 0.98 0.93 0.83 0.97 0.92 0.87 
NH4

+ 
RMSE 1.81 3.14 4.92 1.95 3.43 4.31 

R2 0.99 0.97 0.96 0.99 0.97 0.96 
TDN 

RMSE 13.56 26.13 29.67 13.61 26.49 29.15 
*

†
 R2 is the coefficient of determination. 
 RMSE is root mean square error in μg L-1. 



Table 3-5. Investigation of the ammonium model prediction accuracy about peak 
concentrations for the Two Creek and Burnt Pine watersheds. 
 

Date Measured 
(µg L-1) 

Modelled 
(µg L-1) 

Measurement 
Error (µg L-1)* 

Confidence 
Interval (µg L-1) † Data Set‡ 

Two Creek      
29-Apr-03 56.28 50.69 5.07 51.22 to 61.35 T 
30-Apr-03 67.07 53.54 6.04 61.04 to 73.11 S2 
01-May-03 59.30 53.38 5.34 53.96 to 64.64 S1 
22-Jul-03 118.44 109.74 10.66 107.78 to 129.11 T 
28-Apr-04 55.05 47.17 4.95 50.10 to 60.00 S2 
13-Sep-04 103.52 94.97 9.32 94.20 to 112.84 S2 
14-Sep-04 99.28 94.19 8.93 90.34 to 108.21 S1 

      
Burnt Pine      
18-Jun-02 72.96 67.83 6.57 66.39 to 79.52 S1 
4-Jul-02 29.45 24.35 2.65 26.80 to 32.10 S2 

10-Jun-03 21.89 18.38 1.97 19.92 to 23.85 S1 
3-Jul-03 44.08 40.70 3.97 40.12 to 48.05 S1 

17-Aug-04 64.16 29.69 5.77 58.39 to 69.93 S1 
18-May-05 54.64 47.08 4.92 49.72 to 59.56 S2 
22-Jun-05 53.63 44.86 4.83 48.80 to 58.46 S2 

* Measurement Error = Measured × Expanded Uncertainty 
† Confidence Interval = (Measured – Measurement error) to (Measured + Measurement 
error) 
‡ T is the training data set; S1 is the testing data set; S2 is the validation data set.
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Figure 3-1. The architecture of general regression neural network models. 
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Figure 3-2. The self-organizing map, consisting of n inputs and a 5 by 5 Kohonen 
layer.
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Figure 3-3. The three watersheds under study in the Swan Hills, Alberta, Canada. 
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Figure 3-4. Time series plot of measured and GA-GRNN predicted concentrations of 
(a) NO3

-, (b) NH4
+, and (c) TDN in the stream draining the Willow watershed. 
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(c) 

Figure 3-5. Time series plot of measured and GA-GRNN predicted concentrations of 
(a) NO3

-, (b) NH4
+, and (c) TDN in the stream draining the Two Creek watershed. 
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Figure 3-6. EVI of the reference watershed (Willow and Two Creek) and burned 
watershed (Burnt Pine). Note: The valid range of EVI is from 0 to 1. However, the data 
product of MODIS EVI is scaled up by a factor of 10,000 with a fill value of -3000 
(Huete et al. 1999). 
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Figure 3-7. Time series plot of measured and GA-GRNN predicted concentrations of 
(a) NO3

-, (b) NH4
+, and (c) TDN in the stream draining the Burnt Pine watershed.
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CHAPTER 4. NEURAL NETWORKS MODELLING OF 

NITROGEN EXPORT: MODEL DEVELOPMENT AND 

APPLICATION TO UNMONITORED BOREAL FOREST 

WATERSHEDS1  

4.1 Introduction 

Water quality modeling of lakes and streams involves understanding physical, 

geochemical and biological processes in the surrounding watershed, which in turn 

are regulated by interrelated factors, such as vegetation, soils, geology, weather 

conditions and anthropogenic disturbances in the watershed. However, 

relationships between water quality parameters and watershed features and 

processes are complex, not deterministic, and currently are not fully understood. 

Artificial neural network (ANN) models are capable of modeling complicated and 

non-linear processes; therefore they have gained popularity in water quality 

modeling applications over the past decade. Additional features of ANN models 

that contribute to their utility for surface water quality modeling are (ASCE Task 

Committee 2000): (1) they are capable of identifying relationships between inputs 

and outputs without fully understanding the mechanistic principles behind them, 

(2) they can work well even when the training data set contains noisy data, and (3) 

they are relatively easy to learn and use.  

ANN models have demonstrated strengths over conventional statistical and 

numerical models, especially when only sparse, gapped data are available for 

model training (Abrahart and See 2000; Srivastava et al. 2006). Conventional 

statistical modelling approaches (e.g., multivariate linear regression and time 

series modelling) make assumptions about the system under study and develop 

equations to describe the problem to achieve statistical optimality. In contrast, 

ANN practitioners do not need to make such assumptions (Amari et al. 1994). 

ANN models have also proven to be superior to traditional statistical time series 

models by a number of case studies (e.g., Chang et al. 2004; Kisi 2004; Nour et al. 
                                                 
1 A version of this chapter was accepted with revisions by Environmental Technology. 
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2006b; Bowden et al. 2006), because they can handle non-linear problems and 

non-stationary data sets (Chang et al. 2004; Nour et al. 2006b) that are often the 

cases for environmental variables. A number of case studies have documented the 

superiority of the ANN modelling approach over other statistical techniques (e.g., 

Chang et al. 2004; Kisi 2004; Nour et al. 2006b; Bowden et al. 2006). Compared 

to numerical models, ANN models can provide comparable modelling accuracy 

but are more applicable in practice when professional expertise and data are 

limited. A number of case studies selected ANN models because they can satisfy 

the modelling objectives by using only routine monitoring data (e.g., Brion et al. 

2001; Nour et al. 2006a; Li et al. 2008). 

Nitrogen (N) is one of the most significant water quality parameters that 

affect ecological health. Factors that change the availability and cycling of N in 

forest ecosystems include climate gradients and variations, atmospheric N 

deposition, soil types, vegetation cover, hydrologic pathways and landscape 

disturbance (Aber et al. 2003). The export of N from a watershed to its drainage 

streams is very complex due to the interaction between N export and the factors 

above. It is very difficult to mathematically represent these factors, because they 

are nonlinearly related, spatially distributed on a watershed scale and exhibit 

temporal variation. The complexity of the system makes ANN modelling a 

suitable alternative for N export modelling. 

Feed-forward multilayer perceptron trained with the error back-propagation 

algorithm (MLP-BP) is the most widely used neural network for water quality 

modelling (Zealand et al. 1999; Maier and Dandy 2000). MLP has been used to 

model a variety of water quality parameters such as sediment loads (Cigizoglu 

2004; Cigizoglu and Kisi 2006; Tayfur and Guldal 2006), phosphorus 

concentrations (Lek et al. 1996; Nour et al. 2006a, 2006b), microbial 

contamination (Brion et al. 2001; Neelakantan et al. 2001; Brion and Lingireddly 

2003), and phytoplankton (including cyanobacteria) communities (Recknagel 

1997; Maier et al. 1998, 2001; Hou et al. 2006; Recknagel et al. 2006; Teles et al. 

2006). In terms of N modelling, MLP-BP has been applied to simulate nitrate 

leaching in agricultural drainage effluent (Kaluli et al. 1998; Sharma et al. 2003), 
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forecast nitrate loads on an agricultural watershed based on historical data (Yu et 

al. 2004), predict total and inorganic N concentrations in 927 streams in the 

United States from features in mixed-use (forested, agricultural and urban) 

watersheds (Lek et al. 1999) and simulate annual total N export from 15 

predominantly forested river basins in Atlantic Canada over a 10-year period 

using climate data and watershed features (Clair and Ehrman 1996).  

However, there are limited applications of ANNs in modelling N export in 

surface waters draining forest - and particularly boreal forest - watersheds at a 

daily time scale. Monitoring N export in these watersheds is often logistically 

unfeasible due to the associated high costs and the relative inaccessibility of many 

of these sites. Therefore, the use of modelling tools that can predict N in 

unmonitored watersheds is urgently needed to support decision making in 

watershed management in the boreal forest. The Forest Watershed and Riparian 

Disturbance (FORWARD) project has been monitoring streamflow, water quality 

and weather in boreal forest watersheds in the Swan Hills of Alberta, Canada 

since 2001 (Smith et al. 2003; Prepas et al. 2008). The objectives of this study 

were to use N export data collected as part of the FORWARD project from five of 

these watersheds to: (1) develop ANN models that can predict N export in stream 

channels draining each of the studied watersheds based on easily accessible 

climate and remote sensing (RS) data; (2) develop watershed similarity indices for 

these watersheds using the same climate and RS data, (3) apply the five developed 

models from one watershed to the other watersheds, without further calibration, 

and evaluate the performance of model transfer, and (4) relate indices of 

watershed similarity to model performance to determine the optimal similarity 

index, which can then be used to guide model transfer to unmonitored watersheds. 

This research provides an important first step toward using climate and RS data to 

model N export in unmonitored watersheds. 

4.2 Study Area and Database 

The study area is located in the Swan Hills, northwest of Edmonton, Alberta, 

Canada. The five watersheds under study range in size from 5.1 to 129.4 km2 
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(Table 4-1, Figure 4-1). The peatland and riparian cover data summarized in 

Table 4-1 were previously documented (Prepas et al. 2006). Rainfall and 

temperature data were acquired from seven public-domain weather stations and 

fire towers close to the study area (Figure 4-1). Satellite-derived vegetation 

indices (e.g., enhanced vegetation index (EVI) and reflectance values at certain 

desired wavelengths) were acquired from Moderate Resolution Imaging 

Spectroradiometer (MODIS) through the National Aeronautics and Space 

Administration (NASA) from the years 2001 through 2005. Data acquired from 

MODIS were exported using the software Geomatica V9.1 (PCI Geomatics, 

Richmond Hill, ON). The exported MODIS images were then loaded into ArcGIS 

9.2 (ESRI, Redlands, CA), overlaid by the watershed shape files, and the 

corresponding data for each watershed were extracted and averaged over the 

watershed area using ArcGIS spatial analyst tools. Streamflow (m3/s) and total 

dissolved N (TDN) concentration (µg/L) data were obtained from the 

FORWARD database (Prepas et al. unpubl. data) for monitoring stations situated 

at each watershed outlet during the open water season (typically from April to 

October). For details of streamflow gauging and water sample collection in 

FORWARD streams, see Prepas et al. (2006). The areal TDN export (TDNE) 

(g/km2/d) for each watershed was calculated as indicated by Equation 1: 

[1]    





 





1000

606024

A

TDNQ
TDN C

E   

where Q is the daily average streamflow in m3/s, TDNc is the daily average TDN 

concentration in µg/L, and A is the area of watershed in km2.  

4.3 MLP Model Development 

To ensure adequate model performance, all models were systematically 

developed following the standard procedures for ANN model building, including 

input determination, data pre-processing, data division, determination of model 

internal parameters, selection of the model training algorithm and stopping 

criterion and model evaluation (ASCE Task Committee 2000; Maier and Dandy 

2000; Nour at al. 2006b). 
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4.3.1 Input Determination 

To develop a robust ANN model, it is critical to carefully select a 

representative and significant set of input variables. This study focused on 

developing a data-driven modelling approach for daily TDN export predictions. 

The mechanisms governing N export from watersheds can be found in detail in 

the literature (e.g., Creed and Band 1998; de Wit and Behrendt 1999). Generally 

speaking, TDN export is highly correlated with time and has seasonal fluctuation. 

Also, the influence of factors like rainfall on TDN export exhibits a time delay 

effect. Therefore, model inputs were divided into cause/effect inputs, inputs 

reflecting the seasonal cyclic nature of the modelled variable and time-lagged 

inputs. These inputs were determined based on a combination of a priori 

knowledge of the system being modelled and trial-and-error screening by ANNs. 

Since this study aims at developing models for unmonitored watersheds, the 

selected model inputs should be easily accessible and obtainable without on-site 

measurements.  

In general, daily TDN export is influenced by the available sources of N in 

the watershed and the momentum for N release from the watershed. The latter is 

correlated to streamflow, which is mainly controlled by rainfall and snowmelt 

(Hatano et al. 2005; Inamdar et al. 2006; Ide et al. 2007). In North America, 

rainfall information is widely available from public domain weather stations and 

fire towers. Daily snowmelt can be estimated by the temperature-index approach, 

because a linear function of daily snowmelt and average air temperature exists, 

given that the air temperature exceeds a base temperature. The cumulative degree 

days (dd), as represented by Equation 2, can serve as an integrated measure of 

heat energy available to melt snow and can act as a surrogate to the temperature-

index snowmelt approach.  
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where dd is the total degree days at time t in °C day, Tavg is the daily average air 

temperature in °C, Tb is a base temperature typically set at 0°C, N is the number 

of days during which Tavg ≥ Tb and (ti+1 – ti) is typically taken as 1 day. 

Air temperature is another climatic parameter that can be accessed from 

public weather stations and is correlated with N export. Increases in air 

temperature with decreases in precipitation lead to large decreases in runoff, and 

hence N export (Clair and Ehrman 1996), particularly in the study area (Prepas et 

al. 2006). 

The recent rapid development of RS technology and the reduced cost of 

acquiring RS data now make it possible to take into consideration vegetation 

phenology, one of the most important factors affecting the N cycle. Forest 

vegetation can affect N cycling in a watershed and act as a temporary sink for N 

taken up as a nutrient (Hatano et al. 2005). In many cases, a major portion of the 

annual N export occurs during spring snowmelt because N mineralization has 

occurred under the snowpack during winter (Pelster et al. 2008) and the uptake of 

N moving with snowmelt runoff by forest vegetation is minimal (Lauren et al. 

2005). The MODIS sensor on board Terra launched by NASA in December 1999 

has greatly improved scientists’ ability to measure plant growth on a global scale, 

with moderate spatial (250 m x 250 m pixel size) and temporal resolution. The RS 

EVI provided by the MODIS Land Group has shown a high correlation with 

vegetation conditions (Ferreira and Huete 2004; Kawamura et al. 2005; Cheng et 

al. 2006; Silveira et al. 2008). EVI is a relatively new data product developed by 

the MODIS Science Team to improve upon the quality of its predecessor, the 

normalized difference vegetation index (NDVI), for forested ecosystems. The 

successful application of EVI to vegetation dynamics indicates that it has the 

potential for reflecting vegetation dynamics and soil/vegetation interactions 

during N model construction. The EVI makes use of an atmospheric resistance 

term by adding information from the blue wavelength and two constants, C1 and 

C2. In addition, it uses a canopy adjustment term to minimize the effect of the 

changes of optical properties of soil background by introducing a constant, L. EVI 

is formulated by Equation 3: 
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where G = 2.5, C1 = 6, C2 = 7.5, and L = 1. The terms λBlue, λRed, and λNIR 

represent the reflectance at the blue (0.45 – 0.52 µm), red (0.6 – 0.7 µm) and 

near-infrared (0.7 – 1.1 µm) wavelengths, respectively.  

Based on an understanding of the processes involved in N modelling, the 

most significant cause/effect factors that can be obtained from public-domain 

databases for unmonitored watersheds are rainfall (R), a snowmelt indicator (dd), 

average air temperature (Tmean), and a vegetation growth indicator (EVI). Among 

those factors, rainfall and snowmelt has a time delay impact on N export (Li et al. 

2008). In turn, the time lags of rainfall and snowmelt were determined for the N 

export model.  

The seasonal periodicity of the modelled parameter was accounted for by 

assigning Julian day of the year to each daily record. To account for the long term 

cyclisity, a year index taking the value of either “-1” or “+1” was added to the 

vector of inputs. A year was given a value of “-1” if the total rainfall in the open 

water season of that year was lower than the 30-year-average rainfall sum; 

otherwise, the year index was given a value of “+1”. Assigning a time index to 

each data record has proven to be successful in helping the ANN to identify the 

periodicity of data series in other applications (Gregory et al. 1991; Zhang and 

Stanley 1997; Sharma et al. 2003). 

4.3.2 Data Pre-processing 

Daily EVI values were calculated from the original MODIS 16-day interval 

EVI data using linear interpolation. The daily rainfall values at the location of the 

studied watersheds were interpolated from the daily rainfall data acquired at the 

surrounding Environment Canada weather stations and fire towers using inverse 

distance weighted (IDW) interpolation. The IDW interpolation assumes that the 

closer objects are more alike than those far apart, which mean that rainfall values 

at closer weather stations to the modelled location have greater impact on the 
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predicted rainfall at that location. The IDW rainfall calculations were carried out 

using Equations 4 to 6: 
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where (x, y) is the coordinate of the location where the rainfall is to be estimated, 

i and j is the weather station number, n is the number of weather stations to be 

used in estimation, wi is the weight of rainfall at the weather station i, Ri is the 

measured rainfall at station i and  is the estimated rainfall.  ),(
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4.3.3 Data Division 

Data division is also an important step in ANN model development, because 

model performance can be significantly affected by the representativeness of 

subsets. Complete data records were divided into independent data sets for 

training, testing and validation at a ratio of 3:1:1. After data division, 

Kolmogorov-Smirnov tests were performed using MATLAB R2007a (The 

MathWorks Inc., Natick, MA) to verify that the three data subsets represented the 

same population because TDN export in the study streams was not normally 

distributed. The training data set was used to calibrate the model by updating the 

network connection weights. The testing data set was used to determine when to 

stop training attempting to avoid model overfitting. The validation data set, which 

model had never seen, was then used to test model generality.  

4.3.4 Model Architecture 

At this step, it is important to determine the number of hidden layers, the 

number of nodes in the hidden layers and the type of activation function(s). A 
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typical MLP ANN with a single hidden layer can model most applications. 

However, the single hidden layer with only one activation function did not 

produce acceptable N export results during preliminary model runs. Nitrogen 

export is highly correlated to streamflow, which is influenced by snowmelt in 

spring and by rainfall in summer and autumn. One hidden layer with more than 

one activation function has been successful in capturing the different driving 

forces for streamflow in the study area (Nour et al. 2006b). Thus, the same 

architecture was used in this application as well. The optimum number of nodes in 

the hidden layer and the activation functions were determined using the 

systematic approach presented in Maier and Dandy (2000) and Nour et al. (2008). 

4.3.5 Model Training  

During ANN model training, the connection weights are initially assigned 

arbitrary small values. As training progresses, the mean squared error (MSE) 

between the target output and the network output is calculated, and the weights 

are updated systematically. Weight adjustments are made based on an objective 

function that reduces MSE, attempting to reach a global minimum in the error 

surface. The training process stops when a prescribed stopping criterion is reached. 

The NeuroShell 2 software package was used to train the models (Ward Systems 

Group 1996). The important principle for model training is to find the balance 

between convergence and generalization. Therefore, a test data set that represents 

the system being modelled, but that does not contain the same patterns as the 

training data set, is used to determine when to stop training (typically termed “the 

early stopping technique” in the literature). The MSE for the training data set 

typically gets smaller as the network weights are updated based on model’s 

prediction accuracy on training data set. As the training proceeds, the model reads 

the test data set and computes its prediction MSE. The MSE for the test data set 

gets smaller as model training progresses until an optimal point is reached, after 

which MSE starts to increase, reflecting a state when the model is starting to 

memorize the training data set. Thus, in all developed models, training was 
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stopped when the model performed best on the test data set, that is, when the 

MSE for the test data set was smallest. 

4.3.6 Model Evaluation 

There is not a single statistical measure that can evaluate the performance of 

all models. Correlation-based measures have been widely used to evaluate model 

performance, but they are oversensitive to extreme values and insensitive to 

additive and proportional differences between observations and model predictions 

(Legates and McCabe 1999). Therefore, in this study, correlation-based measures 

(Equations 7 and 8) were supplemented with other error measures including mean 

absolute error (MAE) (Equation 9), root MSE (RMSE) (Equation 10) and 

graphing of observations and predictions to provide better evaluation of model 

prediction ability. The correlation-based measures that were used are the 

coefficient of determination (r2) (Equation 7) and Nash Sutcliffe coefficient (E) 

(Equation 8). Higher r2 and E values indicate better agreement between the 

observations and model predictions. 
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where Pi and Oi are the predicted and the measured TDN export at time i, 

respectively; O  is the mean of the measured TDN export for the entire time 
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period and; N is the number of data points for the study period. The r2 is one of 

the most commonly used measures and only evaluates linear relationships 

between observations and predictions, whereas E provides an improvement over 

r2 because it is sensitive to proportional and additive differences between the 

observed and predicted means and variances. Generally, RMSE is equal to or 

greater than MAE and the degree to which RMSE exceeds MAE can indicate the 

extent to which outliers exist in the data (Legates and McCabe 1999). MAE is 

preferred over RMSE in this study because of the existence of extreme values and 

the intrinsic large variation in the magnitude of the range of the modelled 

parameter. The r2 and RMSE were still used as they are commonly used to 

measure model performance in the literature. In addition to these four measures 

calculated for each training, testing and validation data set, the time series of 

observed and modelled profiles along the modelling period were plotted to 

examine when poor predictions occurred.  

4.4 Model Performance 

The daily TDN export of five watersheds was modelled using the above 

noted ANN modelling algorithm. Table 4-2 summarizes the incorporated model 

inputs for each modelled watershed. The inputs generally include causal inputs 

(R, Tmean, dd and EVI), time-lagged inputs (Rt-1, Rt-2, etc…, and ddt-1, ddt-2, 

etc…) and the inputs reflecting seasonal (Julian day) and annual (Year index) 

cycles of TDN export. The optimal ANN model architecture and internal 

parameters for all modelled watersheds are presented in Table 4-3. A single 

hidden layer with three activation functions (logistic, Gaussian and Gaussian 

complete) having the same number of nodes produced the best simulation for the 

studied watersheds. The training algorithm for Cassidy and Two Creek models 

was back-propagation and that for Willow and Thistle was back-propagation with 

a batch update.  

The performance of the developed models was evaluated by statistical 

measures of goodness-of-fit (Table 4-4) and by examining the time series plot of 

the measured and modelled TDN export profiles. The r2 values of the validation 
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data set exceeded 0.72 for all watersheds, except Thistle. For all studied 

watersheds, the values of TDN export were in the ranges of zero g/km2/d to 

thousands of g/km2/d (Figure 4-2). The MAE values for all data subsets were 

small compared to the peaks of TDN export. The peaks of TDN export occurred 

in spring during snowmelt and in summer during heavy rainfall events (Figure 4-

2). The time series plot of measured and predicted results showed that the models 

successfully predicted the seasonal and annual variation of TDN export for the 

studied watersheds. Most of the peaks were predicted with a reasonable accuracy. 

The peaks for the Willow, Cassidy, Two Creek and Thistle watersheds in the year 

2002 were poorly predicted. This is likely because the training data set did not 

contain enough data patterns similar to the ones to be predicted (2002 was the 

driest of the 5 study years) to let the models learn and identify the occurrence of 

these peaks. Thus the models did not predict the peaks well due to the nature of 

these data-driven models. The overall performance of the models was fairly good, 

given that the models were constructed with only readily available public domain 

input data.  

4.5 Modelling N Export in Unmonitored Watersheds 

The devised TDN export models produced reasonable prediction accuracy, 

highlighting the possibility of predicting TDN export in unmonitored watersheds 

where such information is available at no cost. A critical step for water quality 

modelling in unmonitored watersheds is to determine how to transfer calibrated 

models to unmonitored watersheds. 

4.5.1 Watershed Similarity Measurement 

Model transferability from one watershed to other watersheds is a very hard 

task due to the inherent variability in many watershed factors, including climate 

and watershed characteristics (e.g., topography, vegetation, land use and surficial 

geology). The more similar is each pair of watersheds, the higher the probability 

of success in model transferability. Thus, it is important to develop indices that 

can quantify watershed similarity, which can potentially guide the transferability 
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of models from one watershed to the other. There is limited literature available for 

water quality model transfer indices. For hydrological model transfer, the median 

Euclidean distance worked out from annual water budget, greenness fractions, and 

physical distances have been used to measure watershed hydrologic similarity 

(Gan and Burges 2006).  

This study used the composite information on soil types, rainfall and 

vegetation conditions to investigate watershed similarity. The soil types of 

concern to this case study were peatland and riparian, which can be identified 

through RS imagery (Everitt et al. 2002; Shanmugam et al. 2006). Peatlands store 

precipitation and surface water. The chemical and biological processes of 

nitrification, denitrification and anaerobic ammonium oxidation occur in peatland 

water and soils, such that the amount and form of N differs between water 

entering and water leaving the peatland. In general, forested peatlands contribute 

to high N export (Zhu and Mazumder 2008) and peatland cover was positively 

associated with ammonium (a fraction of TDN) export in the study watersheds 

(Prepas et al. 2006). Riparian soils also theoretically play an important role in 

regulating N export to surface waters. The role of riparian systems in Canada's 

boreal forest is complex due to the spatial variation in weather, soils, vegetation 

cover, slope, accumulation of organic matter, geographic location and relief (Luke 

et al. 2007). In general, riparian areas have the potential to reduce excess N export 

into surface water (Willems et al. 1997; Cey et al. 1999; Baker et al. 2001). 

Rainfall was also considered because of its known contribution to N export. 

Watershed vegetation dynamics, coverage and disturbance can be easily 

monitored using satellite data. In addition to the abovementioned EVI, the RS 

normalized difference water index (NDWI) is a surrogate for vegetation health in 

terms of leaf water content and chlorophyll content (Chen et al. 2005). The NDWI 

was calculated using the near- (NIR) and mid-infrared (MIR) frequency ranges 

downloaded from MODIS (Equation 11). 
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To develop a representative index of watershed similarity, the usefulness of 

the following indices (individual or combined) in reflecting the success of model 

transferability was examined: peatland index, riparian index, rainfall index, EVI 

and NDWI. These indices were calculated and plotted against the prediction 

accuracy of transferred models in terms of E. The relationships between the E 

values and the calculated indices were analyzed, attempting to develop an index 

that can correlate to the success of model transferability. 

To normalize the variation of the indicators used (not to bias the higher 

magnitude parameters), the original data were first standardized by applying the 

following relation: (original data – minimum value) / (maximum value – 

minimum value). The standardized data were then used to compute the indices 

based on the Euclidean distance principle as follows:  
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where i and j represent two different watersheds and k represents a day within the 

studied n days. The calculated indices between any two studied watersheds are 

presented in Table 4-5.  
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4.5.2 Application of Calibrated Models to Unmonitored Watersheds 

The calibrated models on Willow, Thistle, Cassidy and Two Creek 

watersheds were applied to other watersheds (unmonitored watersheds in this 

context) from which the models have never seen data. The statistical measures of 

model performance when the calibrated models were transferred to different 

watersheds were calculated (Table 4-6). Among all the model transfer cases, 

applying the Willow model to Thistle watershed resulted in the best performance, 

with E = 0.62 and r2 = 0.63. The seasonal and annual periodicity of TDN export 

in Thistle watershed was simulated well using the Willow TDN export model 

(Figure 4-3 (a)). The peaks were predicted fairly well for five years except for 

2002 and 2005 when the Willow had lower peak concentrations than the Thistle. 

As a result of the nature of data-driven model, the Willow model, which were 

trained using based on monitoring data from Willow, produced underestimations 

when applied to Thistle. These two watersheds are adjacent to one another and 

have the most similar soil properties in terms of peatland and riparian cover in the 

watershed (Table 4-1). They are also very similar in terms of rainfall and 

vegetation dynamics (Table 4-5).  

Applying the Willow model to watershed 1A generated the poorest 

performance, with E = 0.42 and r2 = 0.44. The 1A watershed has the largest range 

of TDN export (0 to >10 000 g/km2/d TDN) (Figure 4-3 (b)), probably because of 

its high percentage of peatland coverage (Table 4-1), which leads to retention of 

N in normal weather conditions but to excess releases during spring snowmelt or 

large storm events. The differences of TDN export regimes between these two 

watersheds result in the poor performance on transferring Willow model to 1A 

watershed. However, the overall model transferring results are very promising 

because 5 years of data were predicted fairly well, without being trained with any 

watershed-specific data points. 

Relationships between watershed similarity indices and model transfer 

performance in terms of the E are summarized in Figure 4-4. Among the 

individual watershed indices, rainfall_index explained the most variation in E (r2 
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= 0.71, P ≤ 0.05), followed by NDWI_Index (r2 = 0.69, P ≤ 0.05). Peatland_index 

and EVI were related to E, with r2 values of 0.45 (P ≤ 0.05) and 0.44 (P = 0.06), 

respectively. The riparian index did not provide an important measure of 

watershed similarity in this study. The combined effects of two most important 

individual indices, rainfall and vegetation conditions, displayed a stronger 

relationship than either of them alone with E (r2 = 0.73, P ≤ 0.05) (Figure 4-4 (f)). 

If the three most important factors were considered, their contribution to the 

variation in E was marginally improved to r2 = 0.74 (P ≤ 0.05) (Figure 4-4 (g)). 

The proposed measures of watershed similarity make use of public domain 

rainfall and RS information that can be easily calculated for unmonitored boreal 

forest watersheds. Initial results from the current study can be used to predict the 

expected success of model transferability as follows: (1) to predict N export in an 

unmonitored watershed j, select several monitored watersheds, (2) calculate 

watershed similarity index between any monitored watershed i and the 

unmonitored watershed j: Peatland_indexi-j + Rain_indexi-j + NDWI_Indexi-j, (3) 

select the most similar monitored watershed k to the unmonitored watershed, 

which have the lowest similarity index (the more similar are two watersheds, the 

lower the value of similarity index between them), and (4) apply the calibrated 

model k to the unmonitored watershed.   

The results obtained suggest that the key to obtaining good model predictions 

on unseen data is the availability of representative data for model training 

(including wet, dry and normal conditions), and the key for successful model 

transferability is watershed similarity. Further investigations are needed to 

rigorously test and to expand on the proposed watershed similarity indices. 

4.6 Conclusions 

The current study proposed a MLP algorithm that uses low-cost, readily 

available meteorological and satellite data to model TDN export in boreal forest 

watersheds. The IDW interpolation technique was used to generate the rainfall 

data at studied watersheds by using surrounding Environment Canada weather 

station data. The temperature index approach was used to account for snowmelt. 
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The MLP algorithm was applied to five watersheds to model N export. The 

performance of the models was evaluated using statistical measures of model 

performance, as well as examining the time series plots of measured versus 

modelled TDN profiles. Although the modelled parameter had a wide range of 

values (i.e., the peak values were over thousands of the low values), it was 

simulated fairly well. The best MLP architecture for all the developed models had 

a single hidden layer with three activation functions. The application of the 

devised algorithm to five watersheds ranging from 5 to 130 km2 in area 

demonstrated the success of the ANN modelling approach in predicting daily 

TDN using public-domain, readily available data with reasonable accuracy, 

indicating its potential application to unmonitored watersheds.  

To demonstrate the applicability of the developed models to unmonitored 

watersheds, the calibrated models were used to predict TDN export in other 

watersheds (unmonitored watersheds in this perspective) without further 

calibration. The results of transferring the calibrated models to other unmonitored 

watersheds were promising, with E and r2 values in the range of 0.40 to 0.62 and 

0.44 to 0.63, respectively. The transferred models managed to predict the seasonal 

and annual periodicity of N export, even though some peak values were not well 

predicted.  

In an effort to quantify watershed similarity to potentially guide the 

transferability of models from one watershed to the other, five similarity indices 

were developed and tested. The relationship (in terms of r2) between the proposed 

indices and model transfer performance (E) was then calculated for all proposed 

indices. The best watershed similarity index was found to be the combined 

(Rainfall_Index+ Peatland_Index+ NDWI_Index), with r2 = 0.74. Initial results 

from the current study can be used to predict the expected success of model 

transferability in unmonitored boreal forest watersheds. Although the proposed 

indices are not mature enough to have a meaningful threshold above which the 

models should not be transferred from one watershed to the other, this initiative 

towards expanding and refining hydrologic similarity indices relies on free-of-

cost RS information. 
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Table 4-1. Area and soil coverage in the studied watersheds. 
 
Watershed Peatland, % Riparian, % Area, km2 
1A 25.2 0 5.1 
Cassidy 4.8 0.6 5.9 
Thistle 10.5 4.6 8.5 
Two Creek 17 2.4 129.4 
Willow 10 3.4 15.6 
 
 



Table 4-2. Summary of all model inputs. 
 
Model Inputs 

1A 
Rt, Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Tmean, ddt, ddt-1, ddt-2, EVI, Julian Day, 
Year index 

Cassidy 
Rt, Rt-1, Rt-2, Rt-3, Rt-4, Tmean, ddt, ddt-1, ddt-2, EVI, Julian Day, Year 
index 

Thistle 
Rt-1, Rt-2, Rt-3, Rt-4, Tmean, ddt-1, ddt-2, ddt-3, EVI, Julian Day, Year 
index 

Two Creek Rt-1, Rt-2, Rt-3, Rt-4,Tmean, ddt, ddt-1, ddt-2,EVI, Julian Day, Year index 

Willow 
Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Tmean, ddt-2, ddt-3,EVI, Julian Day, Year 
index 

Note: Rt, Rt-1, Rt-2, Rt-3, Rt-4, Rt-5 is rainfall in mm at lags of 0, 1, 2, and 3 days, 
respectively; Tmean is mean daily air temperature in degree C; ddt, ddt-1, ddt-2 and ddt-3 
are cumulative degree days at lags of 0, 1, 2, and 3 days, respectively; EVI is the MODIS 
enhanced vegetation index; Year index is assigned value at either -1 or +1 (if the total 
rainfall of a year from April to October is lower than the 30-year average, that year is 
assigned -1; if the total rainfall of a year from April to October is higher than the 30-year 
average, that year is assigned +1). 
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Table 4-3. Summary table showing optimum ANN models’ architecture and ANN 
internal parameters. 
 
 Willow Model Cassidy 

Model 
Two Creek 

Model 
Thistle 
Model 

1A 

Data division 
(TS:SS:VS) 

3: 1: 1 3: 1: 1 3: 1: 1 3: 1: 1 3: 1: 1 

Scaling 
function 

<-1, 1> <-1, 1> <-1, 1> <-1, 1> <-1, 1> 

Optimum 
network 
(I-[H-H-H]-O) 

11L-[4LO-
4GC-4G]-

1LO 

12L-[4LO-
4GC-4G]-1LO 

11L-[4LO-
4GC-4G]-

1LO 

11L-[4LO-
4GC-4G]-

1LO 

13L-[4LO-
4GC-4G]-

1LO 
Training 
algorithm 

BP-BU BP BP BP-BU BP 

Learning rate 0.1 0.1 0.1 0.1 0.1 
Momentum 
coefficient 

0.1 0.1 0.1 0.1 0.1 

Initial weights 0.3 0.3 0.3 0.3 0.3 
Epoch size 500 500 500 500 500 
Stopping 
criterion 

On best test 
set 

On best test 
set 

On best test 
set 

On best test 
set 

On best test 
set 

Note: I and O are input and output layers, respectively; [H-H-H] represents a single 
hidden layer with different activation functions; L, is the linear scaling function; G, GC, 
and LO are the Gaussian, Gaussian complement, and logistic activation functions, 
respectively; TS, SS, and VS are the training, testing and validation data sets, 
respectively; and < > means a open interval; BP is a typical gradient descent back-
propagation algorithm; BP-BU is a back-propagation algorithm with a batch update, 
which means the weights are updates after training proceeds through the entire patterns in 
the training data set. 
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sures of performance for the calibrated models. 

 

Table 4-4. Statistical mea

Willow Model Cassidy Model Two Creek Model Thistle Model 1A Measures 
TS SS VS TS SS VS TS SS VS TS SS VS TS SS VS 

E 0.89 0.74 0.73 0.85 0.81 0.72 0.71 0.80 0.75 0.87 0.67 0.59 0.71 0.77 0.70 
r2 0.89 0.75 0.74 0.85 0.82 0.72 0.75 0.81 0.75 0.87 0.67 0.66 0.72 0.79 0.72 
MAE 112 143 134 144 141 165 221 225 243 116 183 181 251 312 287 
RMSE 231 326 317 279 244 330 341 359 378 238 447 419 522 852 562 
Note:

 
 
 

 TS, SS and VS are training data set, testing data set, and validation data set, respectively; MAE is mean absolute error in g/d/km2; RMSE is 
root mean squared error in g/d/km2. 



Table 4-5. Summary of watersheds similarity indices. 
 
Watersheds Peatland_Index Riparian_Index Rain_Index EVI_Index NDWI_Index 
Willow – Cassidy 0.21 0.61 0.16 1.30 0.81 
Willow – Thistle 0.02 0.26 0.01 0.58 0.64 
Willow – 1A 0.61 0.74 0.39 2.84 2.79 
Willow – Two Creek 0.28 0.22 0.55 1.69 2.73 
Thistle – Cassidy 0.23 0.87 0.16 1.58 0.99 
Thistle – 1A 0.59 1.00 0.39 2.58 2.75 
Thistle – Two Creek 0.26 0.48 0.55 1.50 2.65 
Cassidy – 1A 0.82 0.13 0.54 3.84 2.66 
Cassidy – Two Creek 0.49 0.39 0.70 2.63 2.40 
Two Creek – 1A 0.33 0.52 0.21 1.79 1.22 
Note: the lower the similarity index, the more similar are the watersheds.
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Table 4-6. Statistical measures of the model performance when the calibrated models were applied to other watersheds. 
 

Measures 
Willow 

applied to 
Cassidy 

Willow 
applied to 

Thistle 

Willow 
applied to 

1A 

Willow 
applied to 

Two 
Creek 

Thistle 
applied to 
Cassidy 

Thistle 
applied to 

1A 

Thistle 
applied to 

Two 
Creek 

Cassidy 
applied to 

1A 

Cassidy 
applied to 

Two 
Creek 

Two 
Creek 

applied to 
1A 

E 0.50 0.62 0.42 0.43 0.52 0.43 0.43 0.45 0.40 0.46 
r2 0.52 0.63 0.44 0.52 0.54 0.45 0.57 0.48 0.60 0.49 
MAE 187.26 150.49 366.90 303.89 215.41 360.03 272.97 303.77 250.13 321.08 
RMSE 446.03 403.82 901.60 526.45 465.28 896.45 528.69 630.59 411.59 872.08 
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Figure 4-1. Study area: the watersh
 

eds under study and the weather stations. 
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(d) 

Figure 4-2. Time series plot of measured versus modelled daily TDN export for (a) 
Willow, (b) Cassidy, (c) Two Creek, and (d) Thistle watershed.
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(b) 

Figure 4-3. Time series plot of measured versus modelled daily TDN export (a) when 
Willow model applied to Thistle, and (b) Willow model applied to 1A. 
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Figure 4-4. Plot of model transferability performance measure E versus watershed 
similarity indices.
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CHAPTER 5. INCORPORATING WATER QUANTITY AND 

QUALITY MODELING INTO FOREST MANAGEMENT1 

5.1 Introduction 

In Alberta, the forest industry is an important land-based resource activity, 

following only the oil and gas and agricultural sectors in economic importance. 

Millar Western Forest Products Ltd. (MWFP) is an Alberta-based company for 

pulp and lumber production. The company’s harvesting activities are governed by 

a Forest Management Agreement (FMA) with the Province of Alberta. The 

obligations of an FMA permit holder are to harvest no more than the amount of 

timber stated in the FMA, and to promptly regenerate and maintain the harvested 

areas in a forested condition. In addition, the FMA holder should also plan the 

harvest strategy to accommodate other interests in its FMA area, as they are 

impacted by the forest management operations. To accommodate possible 

conflicting interests within an FMA area, the agreement holder prepares a 

Detailed Forest Management Plan (DFMP) that sets the strategic planning process. 

This process assures that each FMA holder is following the guidelines set out by 

the provincial government.  

A set of harvesting control policies are currently used as best practices, 

attempting to minimize the adverse impacts of forest harvesting on biodiversity, 

ecological sustainability, water quantity and quality and forest sustainability. For 

example, rules like the 50% maximum allowable cut with a 40 ha area maximum 

clearcut size, and harvesting that mimics natural disturbance are being used to 

preserve our forests. However, there is no research basis to substantiate these 

approaches. In an era of increased land use and resource development, forest 

management planning processes will require increasingly more sophisticated 

                                                 
1 A version of this chapter has been published. Li, X., Nour, M.H., Smith, D.W., Prepas, E.E., 
Putz, G., and Watson, B. 2008. Incorporating Water Quantity and Quality Modelling into Forest 
Management. Forest. Chron. 84: 338 – 348. 
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modelling tools to identify and avoid significant impacts on the environment 

(Smith et al. 2003a). 

As a first step toward developing the required modelling tools, MWFP 

initiated the Forest Watershed and Riparian Disturbance (FORWARD) project in 

collaboration with researchers from Lakehead University, the University of 

Alberta, and the University of Saskatchewan to develop a better understanding of 

the impact of harvesting activities on soils, hydrology and water quality (Smith et 

al. 2003b). Over the past 6 years, FORWARD research has provided a detailed 

database of soil properties, streamflow and water quality within the MWFP FMA 

area and a better understanding of the link between land-based activities and 

water resource impacts. Initial streamflow and water quality simulation models 

have been formulated and tested on small pilot-scale forested watersheds near 

Whitecourt, Alberta. To apply these models on a scale comparable to an entire 

industrial forest management area, there is an urgent need to adapt them to be less 

reliant on data intensive inputs and to provide the means to include these models 

in operational forest management and planning. This paper summarizes the 

available water quantity and quality models, presents the FORWARD stream flow 

and quality modelling approach and initial modelling results, and proposes a 

framework toward incorporating these modelling efforts in the DFMP process.  

5.2 Water Quantity and Quality Modelling 

Simulation models are very useful tools to analyze watershed processes, and 

to develop and assess watershed management scenarios. A multitude of 

applications (e.g., streamflow and water quality parameters forecasting, the 

evaluation of the impact of different forest management and agricultural activities 

on water quantity and quality and the evaluation of watershed responses to 

different climate change scenarios) have contributed to the development of a vast 

number of watershed models, starting in the early 1960s (Wagener 2005). These 

models are usually a mixture of linear and non-linear functions, combined to 

represent those processes occurring in a specific watershed and important for the 

study objectives at hand. 
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5.2.1 Review of Available Watershed Models 

Watershed models can be classified based on the degree of spatial resolution 

into: (1) lumped models that use average values of input variables over the entire 

watershed area, and thus have minimal data requirements; (2) semi-distributed 

models that divide the watershed into sub-watersheds, in which each sub-

watershed carries a distinct set of input variables; and (3) distributed models that 

are pixel-based in terms of input representations and parameter routing, and 

therefore having huge data requirements. Although using distributed models is 

conceptually appealing, the superiority of the more complex semi-distributed and 

distributed models over the simpler lumped models is still an issue of debate 

(Wilcox et al. 1990, Michaud and Sorooshian 1994, Hauhs et al. 1996, Donnelly-

Makowecki and Moore 1999).  

Watershed models can also be classified according to physical 

conceptualization into: (1) empirical (also called data-driven); (2) physically-

based (also called mechanistic); and (3) conceptual (also called parametric) 

models. Empirical models use available time-series of input and output variables 

(nutrient concentrations, precipitation, streamflow, temperature, etc.) to derive 

both the model structure and the corresponding parameter values. They therefore 

do not need a complete prior knowledge about the physical, chemical, hydro-

morphological and biological processes controlling flow processes and 

contaminant transport mechanisms. Physically-based models mathematically 

describe a process using a set of principles, based on the conservation of mass, 

momentum and energy. They are distributed models and have intensive data 

requirements. Conceptual models include both simplified physically-based 

components and empirical components. The modeller, based on a 

conceptualization of the watershed, specifies the structure of these models in 

advance and uses observations of the watershed response to find appropriate 

values for the model parameters through empirical relations. Conceptual models 

form the large majority of models used in practice. 
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Conceptual watershed-scale water quantity and quality models include; but 

are not limited to: the Soil and Water Assessment Tool (SWAT) developed by 

Arnold et al. (1998); aerial non-point source watershed environment simulation-

2000 (ANSWERS-2000) (Beasley et al. 1980, Bouraoui and Dillaha 1996); 

Hydrologic Simulation Program Fortran (HSPF) (Johanson et al. 1984); erosion 

productivity impact calculator (Sharpley and Williams 1990); annualized 

agriculture non-point source pollutant loading model (AnnAGNPS) (Bingneer et 

al. 2001); and the Guelph model for evaluating the effects of agricultural 

management systems on erosion and sedimentation (GAMES) by Cook et al. 

(1985). The use of this class of models presents the challenge of estimating or 

calibrating a large number of model parameters from information with limited 

availability. Obtaining the information necessary for model calibration is time 

consuming and expensive.  

Data-driven models have been successful in capturing patterns in data with 

less knowledge of the behavior of the system in terms of interactions among the 

biological, geological, chemical and physical processes affecting the modelled 

system. Consequently, they are attractive alternatives to traditional conceptual 

models. Among those techniques, artificial neural network (ANN) models hold 

promise for water quantity and quality modelling. ANN models can often capture 

data patterns without extensive knowledge of the particular site-related problems 

and can model complicated and non-linear processes with fewer input variables 

than mechanistic models. Since they are capable of handling large-scale and 

complex problems, ANN models provide great advantages in a wide range of 

water quality applications, such as modelling sediment concentrations (Cigizoglu 

and Alp 2006, Cigizoglu and Kisi 2006, Nour et al. 2006b, Tayfur and Guldal 

2006, Alp and Cigizoglu 2007), phosphorus concentrations (Nour et al. 2006b, c, 

d), and cyanobacteria blooms (Maier et al. 2004, Teles et al. 2006) in surface 

waters. 
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5.2.2 Data Requirements 

It is always a concern to obtain the data required to calibrate watershed-scale 

models (e.g., topography, vegetation cover, soil characteristics, stream channel 

characteristics and subsurface infiltration), thus hindering their applications in 

practice. The current resurgence in earth-observing satellite and airborne 

platforms, along with the advancements in computer and software technology, has 

made it possible to evaluate and quantify large numbers of watershed physical 

characteristics and state variables via remote sensing (RS). It is a cost-efficient 

way to improve the spatial and temporal coverage of surface water and watershed 

monitoring (Koponen et al. 2004). RS techniques have expanded widely, to the 

point that they now include most of the electromagnetic spectrum. Different 

sensors can provide unique information about properties of the surface or shallow 

layers of the Earth.  

The application of RS information to watershed modelling, as well as 

management, can be divided into three main categories: (1) to delineate surface 

features, such as snow-covered areas, surface water extent or sediment plumes; (2) 

to retrieve information such as land cover, geological features or other hydrologic 

parameters through interpretation and computer classification of remotely sensed 

data; and (3) to directly use RS digital data to estimate hydrological state 

parameters. The third application is the most important to watershed modelling 

and is normally achieved through electro-optical or statistical modelling of known 

hydrometric data with satellite data. Although there has been some success in the 

application of RS data in hydrology, the incorporation of RS information in 

watershed water quality modelling still requires more effort.  

The Moderate-resolution Imaging Spectroradiometer (MODIS) sensor on 

board Terra (United States National Aeronautics Space Administration (NASA)) 

allows for measurement of plant growth on a global scale at moderate spatial and 

temporal resolution. The data provided by the MODIS Land Group (e.g., 

vegetation indexes (VIs) like the normalized difference vegetation index (NDVI), 

Enhanced Vegetation Index (EVI) and leaf area index (LAI)) support global to 
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regional monitoring, modelling and assessment (Justice et al. 1998, National 

Aeronautics and Space Administration 2007, Li et al. 2008). Furthermore, 

MODIS data are freely available, thus providing a means of acquiring time series 

representations of vegetation dynamics at an affordable cost. For instance, a 

successful nutrient model requires information regarding soil and vegetation 

nutrient status. RS VIs can represent vegetation health and stress in terms of the 

vegetation chlorophyll content and the leaf water content, which can be linked to 

soil/vegetation nutrient interactions and thus can aid in formulating relatively 

accurate and usable nutrient watershed models (Cheng et al. 2006). Such 

information can potentially act as a surrogate for soil/vegetation nutrient transport 

and therefore can potentially represent vegetation dynamics in nutrient model 

formulation.  

5.2.3 Integration of RS and GIS with Simulation Models for Watershed 

Management 

The complexity of decision-making, as well as data requirements, has created 

a need to integrate RS and Geographical Information Systems (GIS) technology 

with simulation models for watershed management. GIS technology is an 

essential tool in a variety of fields where spatial information processing is 

involved, such as forest management, urban planning and agriculture. RS is 

commonly used in conjunction with GIS to provide spatial data in GIS databases. 

GIS and RS have been combined with simulation models for many applications, 

such as vegetation mapping and monitoring, biodiversity mapping and modelling, 

hydrological modelling, land use planning and environmental impact assessment 

(Skidmore 2002). For example, a GIS-based ANN model was developed to 

simulate spatial distribution of nitrate (NO3
-) concentrations in groundwater with 

land use information and site-specific hydrogeological properties in an 

agricultural region (Wang et al. 2006). GIS tools were used to prepare and 

process input–output vectors data for the ANN, which efficiently simulated 

groundwater NO3
- concentrations and captured the general trend of groundwater 

NO3
- pollution patterns (Wang et al. 2006). The use of multi-temporal RS images 
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in support of environmental modelling analysis in a GIS environment has 

contributed to identify a variety of long-term interactions between resources and 

land use (Ning et al. 2006). The spatial and temporal variation in NO3
- in the 

basin of a small river was simulated by combining NO3
- dynamic modelling and 

GIS with the use of RS NDVI (Matejicek et al. 2003). The NDVI was 

implemented in the dynamic model to estimate the level of denitrification. In 

summary, the integration of simulation models, GIS techniques and RS 

information is necessary to improve watershed management and decision-making 

process when ground-based data are limited. 

5.3 FORWARD Modelling Approach 

The FORWARD project study area includes 16 watersheds (3 to 250 km2) 

located in the Virginia Hills, Alberta (locations shown in Prepas et al. 2008). 

Seven of the watersheds are relatively undisturbed systems, four were up to 100% 

burned during the Virginia Hill fire in 1998, four were harvested in 2004, and one 

was harvested in 2000. Data collection on soil, vegetation, meteorology, water 

quantity and water quality began in 1998. Based on 11 selection criteria for 

modelling streamflow and nutrient concentrations in Boreal Plain streams, two 

modelling approaches incorporating the SWAT model and ANNs have been used 

in the FORWARD Project (Putz et al. 2003). A detailed description of the 

FORWARD Project can be found in the J. Environ. Eng. Sci. 2 (Suppl. 1). 

5.3.1 SWAT Modelling 

The SWAT model is a physically-based distributed watershed-scale model 

that operates on a daily time step. It was developed to predict the impact of 

watershed management on water, sediment, nutrient and agricultural yields in 

large basins for a long simulation period (Arnold et al. 1998). Spatially, the 

SWAT model simulates a basin by subdividing it into sub-basins based on 

topographic information. The components of sub-basins include eight major 

divisions: hydrology, weather, sedimentation, soil temperature, crop growth, 

nutrients, pesticides and agricultural management (Arnold et al. 1998). The sub-
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basins can be further divided into smaller modelling units called Hydrologic 

Response Units (HRUs) depending on the heterogeneity of land uses and soil 

types within the sub-basin (Muleta and Nicklow 2005). Watershed characteristics 

and management features are considered homogeneous within an HRU.  

Hydrologic processes are simulated within the SWAT model, including 

surface runoff, percolation, lateral subsurface flow, groundwater flow, snowmelt 

and water storage (Arnold et al. 1998). The SWAT model also simulates a variety 

of other watershed processes (e.g., crop growth and nutrient cycling) using 

watershed information like weather, soil, topography, vegetation and land 

management practices. The integration of GIS and the SWAT model has proven 

to be an effective and efficient means for input data preprocessing and output data 

visualization (Arnold et al. 1999). It has been successfully used for many case 

studies (Di Luzio et al. 2005, Qi and Grunwald 2005, Santhi et al. 2005, 

Grunwald and Qi 2006, Olivera et al. 2006). The SWAT model is a 

comprehensive hydrologic model that can simulate streamflow, as well as water 

quality parameters. It is a public-domain model and is conceptually sound. 

However, it was initially developed to simulate agricultural watersheds. A number 

of modifications are required for the model to be able to simulate a forested 

ecosystem.  

5.3.2 ANN Modelling 

An ANN model is a data-driven modelling alternative that was developed in 

an attempt to mimic the learning of human brains. ANNs consist of a large 

number of simple, highly interconnected processing elements (neurons) in an 

architecture inspired by the structure of the cerebral cortex of the brain (Tsoukalas 

and Uhrig 1997). The successful application of ANNs in water quantity and 

quality modelling indicates that ANN models are useful in supporting 

environmental decision making (Maier et al. 2001, Rudra et al. 2005, Dakou et al. 

2006, Diamantopoulou et al. 2007, Elhatip and Komur 2008).  

There are seven major components to an ANN architecture: (1) processing 

neurons; (2) a state of activation; (3) an output function for each neuron; (4) a 
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pattern of connectivity or weights between neurons; (5) a propagation rule; (6) an 

activation function to combine the inputs impinging on a neuron with the current 

state of that neuron to produce a new level of activation for that unit; and (7) a 

learning rule whereby weights are adjusted for model calibration (Rumelhart and 

McClelland 1986). The processing neurons are generally organized in layers. The 

multi-layer perceptron neural network trained with the error back-propagation 

training algorithm (MLP-BP) is by far the most popular of all neural networks 

(Maier and Dandy 2000, Dawson and Wilby 2001). Considering the popularity of 

the algorithm and because the authors have applied this algorithm successfully in 

different applications, it was used in this study.  

The development of ANN models generally includes the following steps: (1) 

input determination; (2) data division into training, testing and validation datasets; 

(3) determination of model architecture (e.g., number of hidden layers, number of 

neurons in each layer, activation function, and learning rate); (4) model 

calibration; and (5) model evaluation. The determination of model inputs is one of 

the most important steps in developing a successful ANN model. Training data 

quality is of paramount importance to a data-driven modelling approach like ANN. 

Inclusion of noisy and correlated input variables can increase computational 

complexity and deteriorate model performance. Thus, input variables should be 

carefully selected to closely describe the physical system being modelled. Ideally, 

the available input/output data pairs should be divided into three data sets for 

training (calibrating), testing and validating the model. The training data set is 

used for model training and for the optimization of the model connection weights. 

The testing set is used to decide when to stop training to avoid model overfitting. 

The cross-validation data set is used to evaluate the model against a totally 

independent data set. Careful data division is important to assure good model 

generalization ability. Model architecture determination generally relies upon 

modellers’ experience, however guidelines have been proposed in recent studies 

(e.g., Maier and Dandy 2000, Nour et al. 2006d). For an ANN to generate output 

predictions that are as close as possible to the objective values, model calibration 

is an essential step to find optimal weights, minimizing a predetermined error 



 169

function. After model calibration, the power of the models in terms of prediction 

accuracy, robustness and generalization ability should be verified before the 

models are put in use. The models usually are tested through several criteria 

including: the coefficient of multiple determination (R2), correlation coefficient, 

root mean squared error, the multivariate corrected Akaike’s information criterion 

(AICc), the Bayesian information criterion (BIC), swapping the testing and 

validation data sets, plotting measured and predicted values over time and 

graphing measured and predicted values for training, testing and validation data 

sets (Nour et al. 2008a). 

5.3.3 Link between SWAT and ANN 

The SWAT model is widely used for hydrologic processes simulation and to 

support decision-making within watershed management. It has been upgraded 

over time and integrated with a GIS database component. However, as a 

physically-based distributed basin scale model, the SWAT model is very data 

intensive. In some situations, the power of SWAT is compromised due to data 

limitation. On the other hand, ANNs are able to identify the relationship between 

inputs and outputs, without fully understanding the mechanistic principles behind 

them. ANN models have proved to be superior to mechanistic models when data 

are limited and numerous assumptions have to be made to solve the physically-

based equations. For instance, in-stream nitrogen concentrations, which are 

affected by land use/land classification, vegetation dynamics and in-stream 

nitrogen transformations, were simulated reasonably well with the ANN approach 

(Lek et al. 1999; Khalil et al. 2005).  

A study on comparing the performance of SWAT and ANN models in 

simulating hydrologic processes in an agricultural watershed found that the ANN 

monthly predictions were closer to the observed flows than the monthly 

predictions from the SWAT model (Srivastava et al. 2006). This and other studies 

suggest that ANN is an attractive modelling alternative for hydrologic and water 

quality modelling. However, current ANNs efforts cannot take into account 
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spatial variation within a watershed. More efforts are needed to explore the 

applicability of developing semi-distributed watershed models using ANN. 

There have been very limited attempts in the literature to develop a hybrid 

SWAT/ANN approach. For example a hybrid rainfall-runoff model integrating 

ANNs with a conceptual model was introduced by Chen and Adams (2006). In 

their hybrid model, the spatial variation of rainfall, the heterogeneity of watershed 

characteristics and their impacts on runoff were investigated by the semi-

distributed conceptual rainfall-runoff model, while the nonlinear transformations 

of the runoff generated from the individual subcatchments into the total runoff at 

the watershed outlet were performed by the ANNs. This hybrid model took into 

account both the spatial variation presented by the semi-distributed conceptual 

model and the nonlinear mapping ability of ANNs, highlighting the possibility of 

integrating the two kinds of models. 

FORWARD researchers use one physically-based data-intensive approach to 

understand the biological, geological, chemical and physical behaviors of the 

system, and one data-driven approach that is flexible in terms of data 

requirements to develop a modelling tool that is less-data-intensive. In addition, 

attempts to link both the SWAT and the ANN approaches are ongoing to 

capitalize on the strength of each technique. 

5.4 Initial Modelling Results 

To date, FORWARD researchers have made significant modifications to the 

SWAT model to better model watersheds located in forested ecosystems. More 

modifications are underway. They developed a step-by-step framework for 

modelling time-correlated variables using ANN and a protocol for utilizing RS 

information in water quality modelling, and they have applied the developed 

models successfully in experimental small watersheds in the Boreal Plain. Both 

these modelling efforts require significant additional advancements before they 

can to be applied to a larger landbase (like an FMA area) due to the lack of 

detailed distributed land base data. The experience gained from implementing 

ANN and SWAT models in small experimental watersheds will pave the road for 
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further development towards a robust technique for utilizing RS data at the wider 

FMA scale. The following sections summarize the conducted modifications for 

the SWAT model, and the initial results of the ANN modelling approach. 

5.4.1 Modification of SWAT 

Because the SWAT model was originally developed for agricultural 

watershed management, a series of modifications have been incorporated to make 

it effective for boreal forest management. The modified model, called SWAT-

Boreal Forest (SWAT-BF), incorporates the following major changes: 

1. A litter layer component adopted from Wattenbach et al. (2005) has been 

incorporated. The litter layer contains many nutrients and is an important 

component of forest ecosystem. It is able to store water and reduce peak 

flows during rain events.  

2. An algorithm was incorporated to account for the effects of slope and aspect 

on incoming solar radiation. 

3. A new wetlands model was incorporated because the original wetlands model 

was not deemed suitable for the wetlands found in boreal forests. The new 

wetlands model is based on a bucket model approach. It has an upper organic 

layer and a lower organic layer. A non-linear function is used to determine 

the amount of lateral flow from each layer. Unlike the original wetlands 

model in SWAT, the new model accounts for water uptake by vegetation, 

surface runoff, percolation and base flow. 

4. A new feature has been incorporated into SWAT that enables lateral flow and 

base flow from upland HRUs to be routed through lowland wetlands that are 

found in valley bottoms. Previously with SWAT, this was not possible. 

Instead, all HRUs simply contributed to the stream and there was no 

consideration of the position of the HRUs in the landscape. Lowland 

wetlands tend to retain water and dampen peak flows, so this new 

arrangement in SWAT attempts to reproduce that process.  
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5.4.2 ANN Modelling of Streamflow and Water Quality Parameters 

The FORWARD researchers have been successful in using ANN modelling 

to predict streamflow, and water-phase total suspended solids (TSS), total 

phosphorus (TP), and nitrogen components (NO3
- and total dissolved nitrogen 

(TDN)) in undisturbed FORWARD watersheds (e.g., Willow, Two Creek, and 

Cassidy), disturbed watersheds (e.g., Burnt Pine) and watersheds with a relatively 

large percentage of wetlands (e.g., 1A) (Table 5-1). The main advantage of the 

developed ANN models is that they use as inputs meteorological data, which are 

easily accessible in the boreal forest via Environment Canada weather stations 

and provincial fire towers, and public-domain, free-of-cost RS MODIS-derived 

VIs. The model inputs were carefully selected to reflect causality, time correlation 

and Q/TSS/nutrient hystereses loops. The inputs are composed of cause/effect 

factors (e.g., rainfall (R), snowfall (S), temperature (T), degree-days (dd), and 

EVI), time-lagged inputs (e.g., Rt, Rt−1, …Rt−N) and inputs reflecting seasonal 

cyclisity and Q/TSS/nutrient hystereses behavior (e.g., sin(2πνt), cos(2πνt), 

Julian day), which are determined based on a combination of prior knowledge of 

the system being modelled, as well as statistical analysis of the data (Table 5-1).  

The developed models accurately predicted the data that the models had never 

seen during calibration (R2 of validation > 0.76), which highlights the good 

generalization ability of these models. Also, they captured the seasonal cycle of 

the modelled parameters and accurately predicted both base and peak 

concentrations (see Fig. 5-1 as an example). To demonstrate the applicability of 

the developed models to unmonitored watersheds, the calibrated models were 

used to predict N export in other different watersheds (unmonitored watersheds in 

this perspective) without further calibration. The results of transferring the 

calibrated models to other unmonitored watersheds were promising in some 

applications with Nash Sutcliffe coefficient E, the square of the Pearson’s 

product-moment correlation r2 and Index of degree d values being as high as: 

0.62, 0.63, and 0.88, respectively.  Furthermore, the usefulness of the following 

indices (individual or combined) was examined in simulating watershed 

hydrologic similarity, and thus reflecting the success of model transferability from 
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one watershed to the other: peatland index, riparian index, rainfall index, EVI, and 

remotely-sensed normalized difference water index (NDWI). The best watershed 

similarity index was found to be the combined (Rainfall_Index+ Peatland_Index+ 

NDWI_Index) with r2 = 0.74 when the similarity index values were regressed to 

the E values of model predictions (Figure 5-2). The results can be used to predict 

the expected success of model transferability from gauged to unmonitored Boreal 

forest watersheds. Although the proposed indices are not mature enough to have 

meaningful thresholds above which the models should not be transferred, it is an 

initiative towards expanding and refining hydrologic similarity indices that rely 

on free-of-cost remote sensing information. 

To quantify the impact of land use activities on water quality, the model must 

divide the watershed into subwatersheds, to be able to recognize the locations of 

disturbances and hence simulate the corresponding impacts. FORWARD 

researchers conducted a leading study on the impact of watershed subdivision on 

the prediction accuracy of TP concentration in Boreal Plain streams (Nour et al. 

2008b). Although the statistical model evaluation favored the finest spatial 

resolution, all model performance indicators were satisfactory for the four models 

devised for different watershed subdivisions for the Willow watershed. The 

differences in performance indicators were not significant for any practical 

application. Therefore, it was concluded that the choice of the optimum watershed 

subdivision should depend upon the modelling objective (Nour et al. 2008b). 

Lumped parameter models are easy to construct and rely on affordable land base 

information, but cannot address questions related to the impact of different land 

use scenarios on water quality. Therefore, if the objective is to forecast real-time 

water quality (likely used for post-harvesting assessment), lumped parameter 

modelling can be used without jeopardizing prediction accuracy. On the other 

hand, if the objective is to quantify the impact of different land use activities, then 

the watershed must be divided into subwatersheds to make the model able to 

recognize the locations of disturbances and thus, able to simulate the 

corresponding impacts on water quality. Based on our results, we conclude that 
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only in this case is the added time, cost and effort of preparing and processing 

distributed landbase information justifiable. 

Successful ANN modelling of water quantity and quality parameters relying 

only on meteorological and RS data suggests that the proposed models can 

potentially be applied to modelling watersheds in an FMA-scale land base. The 

use of MODIS-derived VIs has played an important role in representing 

phosphorus and nitrogen dynamics within the soil/vegetation phases in the 

developed water quality models. For example, changes to the vegetation canopy 

after wildfire in the Burnt Pine watershed (burned in 1998) are captured by the 

MODIS-derived EVI (Figure 5-3). Higher EVI values indicate higher density of 

vegetation canopy. Compared to the EVI of the Willow watershed, the EVI of the 

Burnt Pine watershed was lower and demonstrated an increasing trend from 2001 

through 2005, which was resulted from the recovery of vegetation with time since 

disturbance (Figure 5-3). The following section proposes a plan to extrapolate the 

application of the currently developed models to the entire MWFP FMA area. 

5.5 A Framework to Include Modelling in the DFMP Process 

The goal of the FORWARD Project is to develop an improved decision 

support tool (essentially integrated streamflow and water quality models), which 

is capable of predicting changes in streamflow and water quality parameters as a 

result of proposed spatial and temporal patterns of forest harvesting. The 

improved decision support tool will be incorporated into MWFP’s next DFMP to 

provide the capability to limit and control disturbance effects on water resources 

in the MWFP FMA area. This task is challenging, due to our immature 

understanding of the hydrological, biological and chemical mechanisms that 

control contaminant transport at the large watershed-scale, as well as the lack of 

pertinent data for model calibration. Providing the human and infrastructure 

resources to gauge streamflow and measure water quality in all watersheds of 

interest in an FMA area is impractical, thus a class of models that could simulate 

the response of unmonitored watersheds by relying on easily accessible 

information (like meteorological and RS inputs) is important to forest 
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management planning. The previously described ANN models use readily 

available, easily accessed meteorological information and public-domain free-of-

cost information as model inputs. Such models can have a good chance of 

application in unmonitored watersheds due to the relative ease of obtaining these 

inputs for an entire FMA area. However, initial results from the FORWARD 

modelling efforts suggest that the key to obtaining good model predictions on 

unseen data is the availability of representative data for model training (including 

wet, dry, and normal conditions), and the key for successful model transferability 

from one watershed to the other is hydrologic similarity. Thus, the following steps 

summarize the proposed FORWARD approach toward incorporating water 

quantity and quality modelling in the MWFP DFMP process: 

1. Delineate the digital elevation model (DEM) of the MWFP FMA area into 1st 

order watersheds (~ 5 km2) using the eight-direction pour-point algorithm 

and a reasonable threshold for flow accumulation. This task is already 

completed and details are presented in Prepas et al. (2008). 

2. Use rainfall interpolation techniques like kriging and inverse distance 

weighted interpolation techniques to estimate daily rainfall intensity in the 

centroid of each watershed using data from surrounding weather stations (fire 

towers, Environment Canada, and FORWARD project stations). FORWARD 

researchers have established the interpolation algorithm (Nour et al. 2006a). 

The interpolation weights can be assumed fixed with time, and thus can be 

used for future scenario simulations.  

3. Formulate streamflow (Q), TSS and nutrient models for several of the 16 

FORWARD experimental watersheds and validate with the remaining 

watersheds. A series of combinations of calibration and validation watersheds 

will be examined to assure model stability and parsimony. This process is 

still ongoing. For each model to be constructed, the following must be done: 

(1) MODIS images must be downloaded from NASA; (2) data quality has to 

be assessed; (3) a yearly stack of images will be constructed for each spectral 

band of importance (e.g., red, near infrared, mid-infrared, and blue bands) 

using Erdas Imagine image processing software (from Leica Geosystems); 
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(4) map algebra will be used to calculate relevant VIs that will later serve as 

inputs to the water quality models; (5) the DEM-derived watersheds will be 

overlapped on the satellite images to extract relevant VIs for each delineated 

watershed; (6) cross correlation and spectral analyses will be used to identify 

time-lagged inputs and feed the model with Q/TSS/nutrient hystereses loops, 

respectively; and (7) different ANN models will be formulated for predicting 

Q, TSS and nutrient concentrations for the FORWARD experimental 

watersheds.  

4. The previously delineated watersheds, including the FORWARD study 

watersheds, will be grouped into different categories according to hydrologic 

homogeneity in term of VIs, average slope, % wetland composition, yearly 

precipitation, and basin area (Figure 5-4). It is proposed to use an advanced 

classification technique (Kohonen neural networks; Kohonen 1982) to 

classify the MWFP FMA area delineated watersheds into groups of 

hydrologically similar watersheds. Data must be collected for a member of 

each group where none of the FORWARD study watersheds exist. Models 

are to be calibrated for these additional watersheds as described in No. 3 

above. This results in a calibrated model for each group of watersheds.  

5. Each calibrated model will then be run for all the watersheds falling into its 

group of similar watersheds. Upon successful implementation of models to 

the whole FMA area, scenario-based analysis that forces harvesting 

disturbance on the landbase, will be fed to the models to identify the impact 

of different land use activities on water quality and quantity. To design these 

scenarios, a relation has to be established between VIs (currently used in 

modelling) and typically used vegetation metrics (e.g., timber volume, 

average age, height, and diameter at breast height). This relation can be used 

to translate vegetation cut into values of VIs that can be fed to the models to 

predict changes in streamflow, water-phase solids, and nutrients in response 

to harvesting scenarios.  

6.  The previous demonstration will finally be repeated with a hybrid 

ANN/SWAT modelling approach, which would likely create boundaries and 
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reduce the number of parameters for the ANN modelling (a data-driven 

approach) based on the conceptual representation of the SWAT model (a 

conceptually based approach) and thus make it easier for ANN parameter 

estimation. 

5.6 Conclusions 

Over the past 6 years, the FORWARD research project has developed a 

detailed database of soil properties, streamflow and water quality within the 

MWFP FMA area and a better understanding of the impact of land-based 

activities on water resources. Simulation models capable of modelling initial 

streamflow, TSS and nutrient concentrations have been developed and tested on 

pilot-scale forested watersheds near Whitecourt, Alberta. To apply these models 

on a full-scale industrial FMA area, it is necessary to adapt them to be less data-

intensive and to provide the means to incorporate these models in operational 

forest management and planning. Therefore, FORWARD attempted to rely on one 

physically-based approach to understand the biological, geological, chemical, and 

physical behaviors of the system, and one data-driven approach, which is flexible 

in terms of data requirements, to develop a modelling tool that is less data-

intensive. In addition, attempts to link both approaches are ongoing in order to 

capitalize on the strengths of each technique.  

To date, FORWARD researchers have made significant modifications to the 

SWAT model to better model watersheds located in forested ecosystems. More 

modifications are underway. They developed a step-by-step framework for 

modelling time-correlated variables using ANN, a protocol for utilizing RS 

information in water quality modelling, and they have applied the developed 

models successfully in experimental watersheds on the Boreal Plain. 

The experience gained from implementing ANN and SWAT models in 

experimental watersheds will pave the road for further development towards a 

robust technique for utilizing RS data at the broader FMA scale. The results of the 

model application within the MWFP FMA area will be documented and included 

in the company’s next DFMP. These efforts will provide a leading example for 



 178

similar forest industry companies on how to predict and mitigate disturbance on 

the landscape wisely, so that water quality is not impaired. This work will also 

likely provide guidelines for including such modelling tools in operational forest 

management and planning for possible use by other forest industry companies. 
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Table 5-1. Initial ANN modelling results for streamflow and water quality parameters. 
 

Model performance (R2) Modelled 
parameter 

FORWARD 
watersheda Input parametersb 

Calibration Validation 
References 

Q 
Cassidy, Willow, 
1A, Two Creek 

R, dd, S, T, seasonal cycle indicators (sin(2πνt), 
cos(2πνt)) >0.90 >0.84 

Nour et al. 2006b,c, 
2008a 

TSS Two Creek 
R, dd, S, seasonal cycle indicators (sin(2πνt), 
cos(2πνt)) >0.90 >0.90 Nour et al. 2006b 

TP 
Willow, 1A, Two 

Creek 

R, dd, S, T, EVI, and seasonal cycle indicators 
(sin(2πνt), cos(2πνt))  >0.86 >0.76 

Nour et al. 2005, 
Nour et al. 2006b, 
2008b  

TDN 
Willow, Two 

Creek, Burnt Pine 
R, dd, T, EVI, seasonal cycle indicator (Julian 
day) >0.90 >0.90 Li et al. 2008 

NO3
- 

Willow, Two 
Creek, Burnt Pine 

R, dd, T, EVI, seasonal cycle indicator (Julian 
day) >0.90 >0.90 Li et al. 2008 

NH4
+ 

Willow, Two 
Creek, Burnt Pine 

R, dd, T, EVI, seasonal cycle indicator (Julian 
day) >0.90 >0.83 Li et al. 2008 

aCassidy, Willow and Two Creek are undisturbed watersheds, 1A is undisturbed and has a large percentage of wetlands, Burnt Pine watershed was 
100% burned in 1998. 
bR: rainfall, dd: degree-days, S: snowfall, T: air temperature, EVI: enhanced vegetation index. 
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Figure 5-1. Time series plot of measured and ANN predicted (a) streamflow (Q), (b) 
TP, and (c) TDN for the Willow watershed. 
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Figure 5-2. Plot of model transferability performance measure E versus watershed 
similarity indices.
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Figure 5-3. Comparison of EVI for the Willow and Burnt Pine watersheds for 2001 
to 2005. 
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Figure 5-4. A framework to model unmonitored watersheds using ANN models. 
DEM: digital elevation model, RS: remote sensing, GIS: geographical information 
systems, NN: neural network. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 General Overview 

Prediction of N using a modelling tool is a significant component of 

watershed planning and management. Watershed models can be classified into 

data-driven models, physically-based models and conceptual models according to 

physical conceptualization. The factors that change the availability and cycling of 

N in forest ecosystems include nitrogen deposition, climate gradients and 

variations, species effects, hydrologic pathways and disturbance. And the effects 

of the factors on nitrogen in streams are not completely understood. Also, it is 

very difficult to mathematically represent these factors that are nonlinearly 

interacted and spatially distributed. In addition, it is cost prohibitive and/or 

physically unavailable to monitor all the watersheds of interest and in addition 

some of them are very remote. Therefore, data-driven models (artificial neural 

networks (ANNs)) that require less data than the physically-based models and 

conceptual models were adapted to this study to simulate N forms in streams.  

The overall objective of this thesis was to develop nitrogen models with 

reasonable predictive capabilities that rely only on meteorological data and 

satellite information. The models will be further used to predict N in unmonitored 

watersheds where on-site measurements are not needed. Ultimately, a framework 

on incorporating these models into forestry planning and management is proposed. 

To achieve these targets, it is crucial to get understanding of ANN models, N 

dynamics and the way to couple models to support decision making. 

Understanding the standard model development procedure, the advantages and 

limitation of ANN models and the methods to reduce their limitations in practice 

is needed to develop reliable ANNs models and apply them properly (Chapter 2). 

It is very important to select a set of representative input parameters for the 

system being modelled to develop ANN model with good generality. To select the 

appropriate inputs, the studied system needs to be understood as much as possible, 

which is provided in Chapter 2. Chapter 2 also provides a review on the 
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combination of water quality models with GIS and RS to support decision making 

in watershed management. Given the solid understanding of the above 

perspectives, the nitrogen compositions in streams on Canadian Boreal Plain were 

modelled using ANNs and the results were presented in Chapter 3. The successful 

modelling N using only meteorological data and RS data highly indicated the 

proposed ANN approach is promising to be used to model N in unmonitored 

watersheds. Therefore, transferring calibrated models to other different 

watersheds without further calibration was investigated and a watershed similarity 

index correlated to the possibility of model transferability was proposed (Chapter 

4). Based on solid understanding of water quality models and the promising 

results of N modelling, Chapter 5 proposed a framework to incorporate these 

models into forestry planning and management.  

6.2 Conclusions 

Based on the literature study and the development of nitrogen models, the 

major conclusions can be drawn as follows: 

1. GA-GRNN models were developed following strict procedures and applied 

to simulate daily mean NO3
-, NH4

+
 and TDN concentrations in streams at 

three watersheds, Willow (reference, 15.6 km2), Two Creek (reference, 

129.4 km2), and Burnt Pine (burnt, 7.7 km2) in the Swan Hills of Alberta, 

Canada. The optimal inputs were derived from five major variables: rainfall, 

daily mean air temperature, cumulative degree-days, EVI and Julian day of 

the year. In terms of model architecture, the developed models were not 

sensitive to the initial smoothing factor and training with a genetic 

algorithm improved model performance on testing data sets.  

2. The consistent performance of GA-GRNN models for two relatively 

undisturbed watersheds, as well as a burned watershed, was obtained with 

the inclusion of the RS-derived EVI as one of the model inputs. Without 

EVI, some models could not steadily perform well on validation data sets. 

This index was capable of describing vegetation canopy differences among 

watersheds, as well as vegetation phenology. The developed models 
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3. A MLP-BP algorithm using low-cost, readily available meteorological data 

and satellite data was proposed to model N export in forested watersheds. 

The performance of the models was evaluated using correlation-based 

measures, absolute error measures and time series plots of measured and 

modelled values. Although the modelled parameter varied in a big range 

(i.e., the peak values were over thousands of the low values), it was 

simulated fairly well. The best MLP-BP architecture for all the models had 

a single hidden layer with three activation functions. Modelling nitrogen 

export only using readily available data with reasonable accuracy indicates 

its potential application to unmonitored watershed. 

4. The calibrated models were used to predict N export in other different 

watersheds without further calibration to demonstrate the applicability of 

the developed models to unmonitored watersheds. The Nash Sutcliffe 

coefficient E is greater than 0, which means that the models produced better 

estimates than the mean of the observed values. The correlation coefficient 

r2 and index of agreement d were in the range of 0.44 to 0.63 and 0.73 to 

0.88, respectively. The transferred models could catch the seasonal and 

annual periodicity of nitrogen export even though some peak values were 

not well predicted.  

5. A watershed similarity index was proposed to measure watershed similarity 

and model transferability. The usefulness of the following indices 

(individual or combined) was examined in simulating watershed hydrologic 

similarity, and thus reflecting the success of model transferability from one 

watershed to the other: peatland index, riparian index, rainfall index, EVI, 

and remotely-sensed normalized difference water index (NDWI). For each 

single index, Rainfall_Index had the highest correlation with model 

transferability (r2 = 0.71), and the next one was NDWI_Index (r2 = 0.69). 

The best watershed similarity index was found to be the combined 
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6. A framework to incorporate the developed ANNs models into forestry 

management was proposed based on the success of N modelling. This 

framework basically includes watershed delineation, model development 

and watershed similarity measurement and can be proceeded in the steps: (1) 

Delineate the digital elevation model of the study area into 1st watershed; (2) 

Prepare rainfall data from weather stations and extract RS VIs for the 

studied watersheds; (3) The watersheds are classified into groups of 

hydrological similarity using Kohonen neural network or the proposed 

watershed similarity index in Chapter 4; (4) An ANN model is developed 

for a member of each group and validated for the other watersheds in the 

same group;  (5) A relation need to be established between VIs (currently 

used in modelling) and typically used vegetation metrics (e.g., timber 

volume, average age, height, and diameter at breast height) for successful 

implementation of models to direct forestry planning based on scenario 

analysis. This relation can be used to translate vegetation cut into values of 

VIs that can be fed to the models to predict changes in streamflow, water-

phase solids, and nutrients in response to harvesting scenarios. 

In addition, although GRNNs can model continuous functions and are fast to 

train, MLP-BP is more preferable over GRNN to simulate time series variables 

that vary in a large range of magnitude. This is because that GRNN models 

generate blank prediction results for input data that are not similar to its training 

data patterns. The nature of GRNNs determines that their predictions are bounded 

by the minimum and maximum of the training data. 

6.3 Recommendations for Future Studies 

This study developed N models only relying on meteorological data and 

satellite data, which can be applied to unmonitored watersheds, and proposed the 

application of these models to forestry planning and management. Based on the 

current results, future studies can be recommended as follows: 
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1. The model transferability was studied only to relatively undisturbed reference 

watersheds having different features and scales (from ~ 5 km2 to ~ 129 km2). 

To apply these models to forecast the effect of watershed disturbances (e.g., 

fire, harvesting) on water quality, several representative disturbed 

watersheds with several years of monitoring history should be selected. The 

change of seasonal and annual variation and the magnitude of the water 

quality parameters will be analyzed and compared to pre-disturbed status. 

Then the calibrated models will be modified based on the analysis of pre-

disturbed and post-disturbed status. Finally, the modified calibrated models 

will be used to predict the post-disturbed water quality. 

2. The proposed watershed similarity index can measure the transferability of 

calibrated nitrogen models from one watershed to other different watersheds.  

Further investigation should be conducted to use this similarity index guide 

transferring other nutrient like phosphorus models to different watersheds. 

3. The watershed similarity index was formulated from watersheds on Canadian 

Boreal Plain and the soil chemical properties were assumed uniform within 

the watersheds. These watersheds have relatively high peatland cover. To 

apply this watershed similarity index to other watersheds with completely 

different features than the Boreal Plain watersheds, further investigation is 

needed. 

4. RS VIs (e.g., EVI) is a significant input of the N models. To enable the 

models to provide scientific basis for harvesting planning not to impair 

water quality, the relationship between the change of EVI post-harvesting 

and the harvesting activity related parameters such as harvested volume and 

replanting should be established. In turn, the post-harvest EVI can be 

predicted and included in model inputs. 

5. This study demonstrated the significance of using RS EVI as model inputs to 

represent vegetation dynamics and the correlation of RS EVI and RS NDWI 

to model transferability. Improved estimation of vegetation dynamics and 

coverage, precipitation, soil moisture and snow is promising with the rapid 
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6. The hybrid models coupling ANNs and physically based models can improve 

the extrapolation ability of ANNs by incorporating mechanistic principles 

about the modelled system. Also, the hybrid models do not have such 

intensive data requirement as physically based models as ANNs can be used 

to predict some of the model parameters. It is plausible to investigate the 

hybrid ANNs-physical models for water quality prediction. 
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