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Abstract

The success in sequential resonance assignment is fundam ental to  protein three di­

mensional structu re  determ ination via NM R spectroscopy. In general, the sequential 

resonance assignm ent consists of four com ponents, namely, peak grouping, connec­

tiv ity  determ ination, string assignment and scoring scheme. The objective of peak 

grouping is to  classify the detected resonance peaks from m ultiple NM R spectra 

into spin systems. C onnectivity determ ination aims to  find the tru e  connectivity 

among the  grouped spin systems in order to  chain them  into some strings. The 

goal of string assignment is to  m ap the strings of spin systems to  non-overlapping 

consecutive amino acid residues in the  targe t protein. T he task  of scoring scheme is 

to  m easure the correlations between the  amino acid types and the grouped spin sys­

tems. This thesis thoroughly addresses the com putational issues th a t rem ain to  be 

resolved in each com ponent in the sequential resonance assignment process. Several 

novel com putational models are developed to  tackle those issues. We organize this 

thesis according to  the issues we tackle in the development. F irst, we discuss the 

difficulties in scoring scheme learning, evaluate the existing learning m ethods w ith 

the string assignment algorithm s, and identify the best one. Second, we provide our 

solutions to  resolve the connectivity determ ination problem , which supplies valu­

able constraints for com puting the reliable resonance assignment. A vital heuristic 

is disigned and applied to  our solutions. Third, we reveal th a t the peak grouping, 

which is often assum ed to  be less im portan t and neglected by m ost researchers, is the 

bottleneck in autom ated sequential resonance assignment. We present our graph- 

based solutions based on the improved autom ated assignment framework to  resolve
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the peak grouping and sequential resonance assignment simultaneously. T he value 

of our approaches to  solving the different issues is explored by conducting com pari­

son experim ents w ith  m any recently published similar m ethods. T he experim ental 

results show th a t this study  has m ade a significant contribution to  the  field of NM R 

protein structu re  determ ination. The perform ance comparisons dem onstrate the 

fact th a t  our models would be more promising for practical use. We conclude this 

thesis w ith a discussion of the lim itations in our models as well as related  future 

work.
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Chapter 1

Introduction

1
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This thesis investigates the com putational issues th a t rem ain to  be resolved in 

NM R sequential resonance assignm ent (e.g., peak grouping and connectivity de­

term ination), and provides a num ber of corresponding solutions. Based upon the 

improved au tom ated  assignment protocol proposed in this thesis, we design a graph- 

based approach to  autom ate the sequential resonance assignm ent process. This 

chapter s ta rts  w ith  a brief in troduction to  our m otivations, and th en  outlines the 

basic concepts and issues in the sequential resonance assignment process. O ur re­

search to  date  has m ade a significant contribution on NM R sequential resonance 

assignment and identified several issues for needed follow-up research.

1.1 M otivation

It is well known th a t proteins act as the m ost basic working units in life and under­

standing the  functions of proteins requires the knowledge of their th ree dimensional 

structure. P ro tein  structu re  determ ination is one of the  most challenging topics 

in the area of s tructu ra l biology. A variety of m ethods and techniques have been 

developed over the last several decades. Aside from the com puter aided structu re 

prediction through homology modeling and threading, Nuclear M agnetic Resonance 

(NMR) spectroscopy and X-Ray crystallography are still the dom inant experim en­

ta l techniques for protein structu re determ ination. Researchers have now identified 

NM R as a superior approach to  characterize the dynam ics of proteins in solution 

because of its efficiency and low cost. Though NM R has not been able to  achieve 

the same accuracy as X-Ray crystallography, enormous technological advances have 

brought NM R to the forefront of s tructu ra l biology [28] since the publication of 

the first complete solution structu re  of a protein (bull seminal trypsin  inhibitor) 

determ ined by NM R in 1985 [70].

The classical approach to  protein structu re  determ ination involves three stages; 

namely, peak picking, sequential resonance assignm ent and structu re  determ ination. 

T he objective of peak picking is to  filter and identify the  tru e  resonance peaks from 

NM R spectral data . The task  of sequential resonance assignm ent is to  m ap the 

picked resonance peaks to  the amino acid residues in the protein sequence. Such a 

sequential assignment labels the atom s in the targe t protein w ith  their chemical shift 

values. This step  provides the  guidance for the s tructu ra l constraint extraction from

2
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NOESY, scalar coupling, and dipolar coupling spectra. S tructure determ ination cal­

culates the  protein  structu re  by using m olecular dynam ics and energy m inimization 

under the identified s tructu ra l constraints, which are ex tracted  from the  results of 

sequential resonance assignment. M anually conducting each of the th ree tasks is 

difficult and often takes a long tim e because of the problem s frequently confronted 

by an NM R spectroscopist w ithin the whole process. These problem s involve dif­

ficulties in resolving correlations in crowded spectral regions, com plications arising 

from dynamics, such as weak and missing peaks, or the  fact th a t some atom s exhibit 

more th an  one peak [62], M any efforts have been m ade to  au tom ate the whole pro­

cess or a t least p art of it. In particular, peak picking and structu re  determ ination 

have been well studied over the past a few years. There are m any software packages 

currently used in NM R labs, e.g., NMRView [43] for peak picking and X -Plor [17] 

for s tructu re generation. Though the sequential resonance assignm ent problem  is 

relatively easy for small proteins, it becomes more complicated and time-consum ing 

for large ones. Since high-throughput NM R protein structu re  determ ination directly 

relies on high-throughput sequential resonance assignment, considerable research ef­

forts have been dedicated to  autom ate the sequential resonance assignm ent in the 

last two decades. To date, several program s have been developed. However, surpris­

ingly, none of them  has been widely used in NM R labs because of the  unsatisfactory 

assignment accuracy in practice. Several observations can be made.

(1) T he use of some tools are lim ited to  small proteins w ith well resolved spectra. 

These tools often fail to  produce assignments for datasets w ith  a general degree 

of chemical shift degeneracy because of lim itations w ith their exhaustive search 

and binary  decision strategies.

(2) Some program s require a large num ber of NM R experim ents for cross valida­

tion to  resolve resonance or chemical shift ambiguities.

(3) Some program s require too  much expertise to  understand their in ternal designs 

and m ethods. Param eter setting are generally very hard  to  tune, and it seems 

th a t  only designers can successfully apply it on real datasets.

(4) Some program s have been tested  only on the experim ental d a ta  generated in 

the designer’s lab b u t do not generalize to  the experim ental d a ta  from other

3
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labs. This m ay be due to  differences in the experim ental environm ent or 

differences in the signal-to-noise ratio  in the  spectra.

Given the above lim itations, m ost NM R sequential resonance assignm ents are still 

done m anually w ith the aid of some sem i-autom ated software tools. It m ight even 

take m onths of m anual work to  produce a nearly complete assignm ent {i.e. all 

identified true  peaks are assigned) because the tedious “undo -  redo” process oc­

curs fairly often if the  d a ta  quality is poor. Therefore, designing a robust and 

user-friendly au tom ated  NM R sequential resonance assignment system  can make an 

im portant contribution to  the NM R protein structu re determ ination.

1.2 P rotein  N M R  Sequential R esonance A ssignm ent

Scoring Scheme

Peak Lists - Peak Grouping Connectivity
Determination String Assignment ►Assignments

• • •o o om® m
o G

o
Spin Systems

Sequence

Figure 1.1: The framework in NM R sequential resonance assignm ent

Sequential resonance assignment is an essential step of d a ta  analysis before struc­

tu re  determ ination and structu re refinement being conducted. This process consists 

of four com ponents, namely, peak grouping, connectivity determ ination, string as­

signment and scoring scheme. Figure 1.1 illustrates the framework of a typical 

assignment program  and the relationships between the different com ponents.

Peak G rouping

4
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The input to  NM R sequential resonance assignm ent includes m ultiple peak 

lists from m ulti-dim ensional NM R spectra. T he goal is to  m ap the  in tra­

residue chemical shifts to  their corresponding amino acid residues in the  ta r ­

get protein. If each peak list is processed separately, the resonance assignment 

process would become very complicated because the  chemical shifts contained 

in one peak list can not provide enough signature inform ation to  m atch to  

their host residues. Therefore, the first stage in sequential resonance assign­

m ent, peak grouping, will group together the resonance peaks produced by the 

same amino acid residue in the  different peak lists to  form a list of s p in  sy s­

te m s . T he grouped spin systems, which contain collective signature informa­

tion about their host residues, become the basis for com pleting the  subsequent 

assignm ent steps.

C o n n e c t iv i ty  D e te rm in a t io n

Resonance peaks from m ulti-dim ensional NM R spectra  record the  nuclear cor­

relations for atom s from a common residue and for atom s from the  adjacent 

amino acid residues. Therefore, w ithin a spin system, there are chemical shifts 

for the nuclei residing in the same amino acid residue and chemical shifts for 

the nuclei residing in the  preceding residue. T he inter-residue chemical shifts 

contained in m ost spin system s can be used as the evidences to  determ ine 

w hether some spin systems should be chained together and assigned to  the 

adjacent residues in the protein sequence. This inform ation is referred to  as 

“connectivity inform ation” . T he objective of connectivity determ ination is 

to  identify the  true  connections among different spin systems, and to  chain 

the  spin systems into strings. These strings of spin systems will be assigned 

to  non-overlapping polypeptide segments in the protein sequence during the 

string  assignm ent process (see below).

S tr in g  A s s ig n m e n t

T he task  of string  assignment is to  find the non-overlapping m apping between 

strings of spin systems and polypeptide segments in the protein sequence. This 

problem  can be modeled as a constrained weighted b ipartite  m atching problem  

on two disjoint groups, one group containing strings of spin system s and the

5
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other containing a sequence of amino acids. T he spin systems contained in one 

string  m ust be m atched only w ith the consecutive amino acids. T he weight for 

each edge represents the probability of a corresponding m apping between the 

m atched spin system  and the amino acid, which could be com puted through 

a defined scoring scheme.

T he Scoring Schem e

A scoring scheme is used to  estim ate the likelihood of the  m apping between 

a spin system  and an amino acid type. A ccurately quantifying the signature 

inform ation of chemical shifts contained in the  spin system  provides a solid 

foundation for an accurate sequential resonance assignment. T he perform ance 

of the string assignm ent directly relies on the  discerning power of the  scoring 

scheme.

5.134
118.853

8.138 
118.853

8.139 8.139
118.849
59.841

7.730
120.305

7.732
120.329

7.733
120.460

7.338
117.499

7.340 7.341
117650

7.340
1.17.649
64.701

118.852 120.456 117.553
58.282

58 825 58.831 59.838 59.845 58.258 58.255
32.471 37.470 31.407

28.031 28.040 32.513 32.520 37  406 37.404

P ro te in
► CYS ► 7YR

Figure 1.2: An example in NM R sequential resonance assignment. Three spin sys­
tem s are constructed by grouping the peaks from three NM R experim ents, which 
are HSQC, CBCA(CO)NH and HNCACB. The grouped peaks essentially share the 
same H and N chemical shifts. T he C“ and C -3 chemical shifts in one spin system  
are com pared w ith C " _ 2 and cf_1 chemical shifts in o ther spin system s to  build the 
possible directed connections.

To illustrate the  sequential resonance assignment, F igure 1.2 provides an example of 

several peaks from the three NM R spectra: HSQC, CBCA(CO)NH, and HNCACB. 

T he HSQC spectrum  provides pairs of intra-residue chemical shifts (H ;,N ;), where 

i indexes the host residue to  which the nuclei H and N belong. T he CBCA(CO)NH 

spectrum  provides triples of chemical shifts (H*, Cf_1, NQ and (H;, C f_: , NQ; and the 

HNCACB spectrum  provides triples of chemical shifts (H;, C“_ 1; NQ, (H;, C f_1; NQ,
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(Hi, C f,  N i), and (Hi, C f, Nj). Two special cases to  be m entioned are (1) prolines do 

not have an H nucleus and (2) glycines do not have a C /3 nucleus. T he goal of the 

sequential resonance assignm ent is to  assign each chemical shift to  its host nucleus 

in the targe t protein. In  the theoretically ideal case, the  chemical shifts (and thus 

peaks) for any given nucleus (a set of nuclei) are identical across all three spectra 

and the num ber of spectral peaks read out of one spectrum  exactly m atches the 

num ber th a t should be observed. In o ther words, one peak in the HSQC spectrum  

matches exactly two peaks in the CBCA(CO )NH spectrum  and four peaks in the 

HNCACB spectrum , through com paring the  shared H and N chemical shifts. These 

seven peaks are grouped together to  form a spin system, which is a m ultidim ensional 

vector of the form (Hi, Ni, C f , C f , Cf_x, C?_x), where chemical shifts indexed i are 

intra-residue chemical shifts and those indexed i — 1  are inter-residue ones.

In the connectivity determ ination  step, the inter-residue chemical shifts will be 

used as evidences to  infer th a t two spin system s should be m apped to  adjacent 

residues in the targe t protein, since they would appear as intra-residue chemical 

shifts in the o ther spin system. Assuming no am biguity occurs, all spin systems 

could be connected in this way to  form a string, which is required to  be m apped 

to  a segment of am ino acid residues in the targe t protein  by the string assignment 

algorithm . For the  m apping to  be done, the chemical shifts in a spin system  are 

used either to  determ ine the residue type or to  provide a quantified score com puted 

during the scoring process.

1.3 Issues

In the example shown in Figure 1.2, one can see th a t the sequential resonance 

assignment can be done straightforwardly. In practice, however, due to  the problem  

of spectral noise and NM R d a ta  degeneracy, the chemical shifts observed for a 

nucleus are often not identical across the different spectra, some of them  m ight 

not be observed, and m any noise peaks will be present. Nevertheless, we still need 

the ability to  com pute the  highly confident assignm ent because any m inor error 

in the sequential resonance assignment would potentially  feed erroneous structu re  

constraints to  the  structu re  calculator and thus result in an  erroneous structure .

In peak grouping, m ost existing m ethods use resonance peaks from the  HSQC

7
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spectra as anchors and m ap resonance peaks from other spectra to  HSQC peaks by 

using a binary  decision strategy  w ith  setting  the tolerance thresholds on H and N 

chemical shift (the H and N differences between the anchor peak and the  m apped 

peaks m ust fall w ithin the given tolerance thresholds). However, the  b inary  decision 

strategy is often not effective enough to  resolve the am biguities in the grouping. A 

typical issue is th a t the grouped spin systems m ight contain ex tra  peaks. As a 

result, the judgem ent work has to  be done manually, which m ight take a long tim e 

for the proteins having more th an  1 0 0  amino acid residues.

The classic m ethod for determ ining the connectivity inform ation between spin 

systems in m ost existing m ethods is to  com pare the differences between chemical 

shifts for common nuclei and use the given tolerance thresholds to  decide the correct 

connections, which again involves a binary decision strategy. However, due to  noise 

and d a ta  degeneracy, connectivity determ ination is no longer a b inary  decision but 

probabilistic. Subsequently, one spin system  could s ta rt more th an  one connectivity 

pair and could end more th an  one connectivity pair. B etter com putational models 

are needed to  efficiently and effectively resolve this issue.

The string  assignm ent problem  can be modeled as a constrained weighted bipar­

tite  m atching problem  on two disjoint groups w ith one group containing strings of 

spin system s and the o ther containing a sequence of amino acids. U nfortunately, 

the constrained b ipartite  m atching problem  is N P-hard, even if the edges are un­

weighted [76], Hence the efficient and effective algorithm s are needed to  solve this 

problem.

The ideal scoring scheme, if it existed, could directly identify the correct as­

signment. B ut it is alm ost impossible to  find such a scoring scheme because the 

chemical shifts generated from some types of amino acids are close to  each other, 

and the  variances of the m easured chemical shifts depend on the experim ental envi­

ronm ent and m any other factors. T he same types of chemical shifts generated from 

the same residues m ight vary among different NM R labs or sometimes in different 

experim ents conducted in the  same lab. Therefore, an effective learning process is 

necessary to  score the  preferences as accurately as possible. Most published m eth­

ods for au tom ated  sequential resonance assignment make an assum ption th a t for 

one residue type, the chemical shift values of a nucleus follow a norm al (Gaussian)

8
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distribution. In the BioM agResBank (BM RB, h ttp ://w w w .bm rb .w isc .edu /), which 

is the central repository for known protein  NM R data, the m eans and standard  

deviations for H, N, C“ , C^, C, and HQ (and more) chemical shifts in all 20 amino 

acid residues are collected. W ith  these param eters a t hand, a typical procedure is 

to  use the density functions of the corresponding norm al distributions to  estim ate 

a probability for m apping a spin system  to  a residue. A lthough the scoring scheme 

th a t assumes the G aussian d istribution is frequently adopted, we suspect th a t  such 

an assum ption is correct. We believe more work is needed to  tackle th is problem  by 

using advanced learning techniques.

1.4 Structure of the D ocum ent

C hapter 2 highlights some basic concepts in NM R spectroscopy. It also briefly 

describes the NM R protein structu re  determ ination procedure, and introduces the 

NM R experim ents used in the thesis. It serves to  help the descriptions of the 

com putational models in the succeeding chapters.

C hapter 3 reviews the previous works on the protein NM R sequential resonance 

assignment. In particular, a variety of approaches are examined and their strengths 

and weaknesses discussed.

C hapter 4 deals w ith the  scoring scheme and string  assignment algorithm s. The 

existing scoring m ethods, as well as our histogram -based scoring scheme, are evalu­

ated w ith  the string assignment algorithm s and the  best one is identified.

C hapter 5 presents an  algorithm , CISA, for connectivity determ ination  by com­

bining chemical shift signature inform ation. T he perform ance of this algorithm  is 

evaluated by com paring it w ith another assignm ent program , PACES [22],

C hapter 6  discusses the  issues in peak grouping, and describes a novel com puta­

tion model, GASA, for resolving the peak grouping and conducting the sequential 

resonance assignm ent simultaneously. This model separates the assignm ent proce­

dure not into physical steps b u t only v irtual steps, and uses their o u tp u t to  cross 

validate each other. O ur approach is com pared w ith several recently developed tools, 

RANDOM  [47], MARS [45], and RIBRA [73],

C hapter 7 concludes this thesis w ith a discussion of the lim itations of our models 

as well as a discussion of fu ture work.

9
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Chapter 2 

Background
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Nuclear m agnetic resonance (NMR) spectroscopy is a biophysical m ethod th a t 

can provide high resolution structures of biological molecules such as proteins and 

nucleic acids a t atom ic resolution [11]. In this chapter, we will introduce some 

basic concepts in the NM R area, and briefly describe the NM R protein  structu re 

determ ination procedure and the NM R experim ents used in the thesis.

2.1 N uclear M agnetic R esonance P henom enon

Atoms are basic building blocks of m atter, and cannot be chemically subdivided by 

ordinary means. Atoms are composed of th ree types of particles: protons, neutrons, 

and electrons. Each proton has a positive charge and each electron has a negative 

charge, while neutrons have no charge. The num ber of protons in an atom  is the 

atomic number, which determ ines the type of the atom . B oth  protons and neutrons 

reside in the nucleus. The same type of atom s or elements m ay contain different 

num bers of neutrons, and they  are called isotopes.

A nucleus often acts as if it is a single entity  w ith intrinsic to ta l angular mo­

m entum  7, the nuclear spin, which is the overall effect of the im aginary spinning 

protons and neutrons. Despite m any spin-pairing rules, one characteristic is th a t 

a nucleus of odd mass num ber (which is the sum of the num bers of protons and 

neutrons) will have a half-integer spin and a nucleus of even mass num ber bu t odd 

num bers of protons and neutrons will have an integer spin. For a nucleus of spin 

7, there are 27 +  1  spin states (or orientations) ranging from —7 to +7 . In NMR 

spectroscopy for protein structu re determ ination, the  m ost im portan t nuclei w ith 

spin 7 =  1/2 are 1H (Hydrogen), 13C (Carbon), 15N (Nitrogen), 19F  (Fluorine), and 

31P  (Phosphorus), each of which has two spin states. An example of a nucleus w ith 

spin 7 =  1  is deuterium  2H (Hydrogen); Exam ples of isotopes w ith  no spin (i.e., 

7 =  0) are 1 2 C, 1 4 N, and ls O (Oxygen).

Nuclear M agnetic Resonance (NMR) is a phenom enon which occurs when nuclei 

w ith non-zero spins are immersed in a static  m agnetic field and then  exposed to  a 

second oscillating m agnetic field (which is created by radio frequency (r.f.) pulse). 

In the absence of an  external m agnetic field, for nuclei of spin 7, those 2 7 + 1  states 

are of equal energy. W hen an external m agnetic field is applied, the energy levels 

split. In an external m agnetic field of streng th  B q, the  spinning ro ta tion  axis of a

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nucleus will precess about the m agnetic field w ith angular frequency ujq = ''/Bo. loo

is called Larm or Frequency, where the gyromagnetic ratio 7  is different for distinct

types of nuclei. For nuclei of spin I  — 1/2, there will be two possible spinning

orien ta tions/states in the external m agnetic field, i.e., parallel to  the external field

(low energy state) and opposite to  the external field (high energy sta te). At the tim e

the external m agnetic field is applied, the initial populations of nuclei in the energy

levels are determ ined by therm odynam ics, described by the B oltzm ann distribution.

This m eans th a t the lower energy level will contain slightly more nuclei th an  the

higher energy level. It is possible to  incite the low energy level nuclei into the

high energy level w ith electrom agnetic radiation. In fact, if these aligned nuclei are

irradiated  w ith  an  r.f. pulse of a proper frequency, the  nuclei will spin-flip from

the low energy s ta te  to  the high energy sta te  or from the high energy s ta te  to  the

low energy s ta te  by absorbing or em itting  a quantum  of energy, respectively. The

frequency of rad iation  needed is determ ined by the difference in energy between the

two energy levels and when such a spin transition  occurs the nuclei are said to  be

in resonance w ith  this radiation. The electrom agnetic rad iation  supplied by the

second oscillating m agnetic field m ust be equal to  the frequency of the  oscillating

electric field generated by nucleus precession, which is — . This is because only
27T

under th a t circum stance, the energy needed in resonance can be transferred  from 

electrom agnetic rad iation  to  precession nucleus. It is possible th a t by absorbing 

energy, the  nuclei will reach a s ta te  w ith  equal populations in b o th  states. In such 

a case, the system  is saturated. If the electrom agnetic rad iation  supplied by the 

second oscillating m agnetic field is then  switched off, some of the nuclei a t the 

high energy s ta te  will fall back to  the low energy s ta te  and the system  will re tu rn  to 

therm al equilibrium . Such a process is the relaxation process. T he relaxation process 

produces a m easurable am ount of r.f. signal a t the resonant frequency associated 

w ith the  spin-flip. This frequency is received and amplified to  display the  NMR 

signal.

2 .1 .1  C h em ica l S h ift

T he resonance frequencies of individual nuclei are not only relevant to  the streng th  

of the applied external m agnetic field Bo, bu t also are dependent on their local
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chemical environments. T he m agnetic field generated by a nucleus itself tends to 

contradict the effect of the  external m agnetic field. This contradiction effect is 

defined as shielding. T he streng th  of this shielding effect increases w ith  the local 

electron density. This effect is called the Chemical Shift phenomenon. The actual 

field present at the nucleus is no t Bo bu t J3iocai — B q(1 — a), where a  Bo is the 

shielding effect (a is the shielding factor, which is small —  typically 1 0 - 5  for protons 

and 10~ 3  for o ther nuclei [11]). Chemical shift in parts  per million (ppm ) is defined 

as
(cjo ^reference) ^ lb  / \ .

S ~  (^reference O') X 10 , (2-1)
^reference

where ^reference is the  reference frequency and <7 reference is the reference shielding 

factor. For bo th  protons and carbons, the reference m aterial is often perdeutera ted  

3—(trim ethylsilyl) propionate sodium  salt (TSP) or 2 ,2-Dim ethyl—2—silapentane—5— 

sulfonate sodium  salt (DSS). The chemical shift effect is small b u t it is a very sen­

sitive probe of the  chemical environm ent of the resonating nucleus. Using chemical 

shift values, it is possible to  distinguish among nuclei in different chemical environ­

m ents. Once the chemical shifts of all the atom s of am ino acids are collected from an 

NM R spectrum , the  sequential resonance assignment can be conducted to  m ap the 

chemical shifts back to  their host amino acid residues in the protein sequence. After 

the sequential resonance assignment is finished, experim ental param eters th a t  define 

the three-dim ensional structu re  are m easured. T he m ost im portan t s tru c tu ra l in­

form ation derived from the  NM R spectra  is based on the Nuclear Overhauser Effect 

(NOE).

2 .1 .2  N u c le a r  O verh au ser  E ffect (N O E )

The Nuclear Overhauser Effect (NOE) is the  result of cross-relaxation between dipo­

lar coupled spins as a result of sp in /sp in  interactions through space. T he NOE allows 

the nuclear m agnetization to  transfer from one spin to  another through space and 

scales w ith  the distance between two spins. T he NOE-derived distance is one of 

the m ost im portan t sources of s tructu ra l inform ation for protein s tructu re  determ i­

nation. In  an NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum , NOE 

interactions between pairs of nuclei are shown as NOE peaks. Each dimension of 

the spectrum  is the chemical shift of one type of nucleus. For example, a peak at
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(4.5ppm, 4.6ppm) in an 1 H-1H NOESY spectrum  records an in teraction  between 

a proton w ith  chemical shift of 4.5ppm  and another pro ton  w ith  chemical shift of 

4.6ppm. T he intensity  of the NOE is related  to  the  distance r  between these two 

protons by an  equation of the general form which is defined in [74] as

NOEoc J _ /(rc), (2.2)
(r)

where the  second term  /(• )  is a correlation function th a t accounts for the m odulation 

of the spin-spin coupling by stochastic ra te  processes w ith  an effective correlation 

tim e t c .

NOEs are generally only observed between protons th a t  are separated  w ithin 

5A. J-Coupling constants, which are m ediated through chemical bonds, provide 

inform ation about dihedral angles, and thereby can define the peptide backbone 

and side chain conformations.

2 .1 .3  J -C o u p lin g

J-coupling (or spin-spin coupling) is the in teraction between nuclear spins tran s­

ferred through the electrons of the chemical bonds. T he energy levels of each spin 

are slightly altered depending on the spin s ta te  of a scalar coupled spin. This gives 

rise to  a splitting  of the resonance lines. There are a few factors in a J-coupling, 

which affect the coupling constant. These factors are the nuclei involved, the dis­

tance between the two nuclei, the angle of interaction between the  two nuclei, and 

the nuclear spins of the  nuclei.

B oth homonuclear and heteronuclear J-couplings can provide inform ation about 

internuclear distance (the smaller the num ber of chemical bonds between a pair 

of nuclei, the stronger the coupling constant is) and the covalent chemical bonds 

angle (the smaller the angle, the  bigger the coupling constant). Among them , one 

of the m ost commonly employed coupling constant is Vicinal (or three-bond, or 3 J) 

coupling th a t is dependent upon the dihedral angle 0 between the nuclei.

2 .1 .4  N M R  S p e c tro sc o p y

NM R spectroscopy is the use of the NM R phenom enon to  study physical, chemical, 

and biological properties of m atter. As a consequence, NM R spectroscopy finds ap­

plications in several areas of science. For example, NM R spectroscopy is routinely
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applied by chemists to  study  the chemical structu re  of small organic molecules us­

ing simple one-dimensional techniques. Two and higher dimensional techniques are 

used to  determ ine the structu re of m ore com plicated molecules. These techniques 

are continually improved and are replacing X-ray crystallography for the determ i­

nation  of protein  structure. The protein s tructu ra l inform ation obtained from NM R 

spectroscopy includes a network of distance restrain ts between spatially  close (i.e., 

<  5A) hydrogen atom s ex tracted  from the  NOEs, dihedral-angle restrain ts calcu­

lated from scalar coupling constants and chemical shifts, and other various geometric 

restrain ts including orientation inform ation from the residual dipolar coupling.

2 .1 .5  N M R  E x p er im e n ts

In general, all contem porary NM R studies on protein structu re  determ ination are 

done w ith  two-dimensional (2D) or three-dim ensional (3D) NM R experim ents. The 

H-N coupling in the peptide bond is typically the s ta rting  point for the  heteronuclear 

NM R analysis of proteins. This bond is present in every amino acid residue in 

a protein except the N -term inal and the proline residues. T he HSQC spectrum  

measures the correlation between N and the directly attached  H (See Figure 2.1(a)). 

It provides pairs of intra-residue chemical shifts (Hi, Ni), where i indexes the residue 

to  which the  nuclei H and N belong. The three dimensional NM R spectrum  can 

be used to  identify couplings between the three nuclei in amino acid residues. In 

the previous resonance assignment strategy  using homonuclear 2 D NMR, the inter­

residue connections were established from NOESY data. Recently, heteronuclear 3D 

NM R has been shown to  provide inter-residue connectivity through a series of triple 

resonance experim ents th a t overcome the peak overlap problem  in hom onuclear 2D 

NM R by introducing the th ird  dimension and separating overlapped peaks into a 

num ber of 2D planes.

The CBCA(CO )NH  experim ent especially m easures the heteronuclear coupling 

between H and N in one residue and the coupling across C to  the Ca and Cg in 

the preceding residue (See Figure 2.1(b)). It provides triples of chemical shifts 

(H i,C “_ 1 ; Ni) and (H*, Cf_1, Nj). The HNCACB spectrum  records two different 

heteronuclear correlation spectra. One records couplings between H, N and Ca and 

Cg in the same residue, and the o ther between H and N in one residue and the
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Figure 2.1: Schematic illustration of the correlations in NM R experim ents.

coupling across C to  the CQ and Cg in the  preceding residue (See F igure 2.1(c)). 

It provides triples of chemical shifts (Hj, C“_ 1; Nj), (H*, Cf_ 1 ,N j), (H j,C “ ,N j), and 

(H j,C f,N j) . In  a combined analysis of these two types of three dim ensional NM R 

spectra, it is possible for each individual H-N pair in an HSQC spectrum , to  be used 

to  identify the  Ca and Cp chemical shifts in the same residue and the  preceding 

residue.

2 .1 .6  S p e c tra l D a ta  A c q u is it io n  an d  P r o c e ss in g

A wide variety of NM R instrum entation  is available for NM R experim ents to  pro­

duce the d a ta  for protein structu re determ ination. T he common com ponents of 

NM R spectrom eters (see Figure 2.2) include (a) superconducting m agnet for sup­

plying an external m agnetic field, (b) a pulse program m er and r.f. tran sm itte r to 

generate and control r.f. pulses, (c) a probe for holding the  sample in the  m agnet, 

(d) receiver for receiving the resulting NM R signals, and (e) com puters for d a ta  

acquisition and processing. Superconducting m agnets can provide a wide range of
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frequencies from 60 to  800 MHz. A higher frequency implies the higher sensitivity 

and stability  of the NM R spectrom eter because the differences between the  chemical 

shifts are amplified w ith the increase of m agnetic field strength , which produces a 

b e tte r separation between different nuclei.

R a d i o  f r e q u e n c y  
t r a n s m i t t e r

S w e e p
C o i l s

*

M agnet
Pole

R a d i o  f r e q u e n c y  
r e c e i v e r  & a m p l i f i e r

S w e e p  
C o i l s  

♦

s p i n n i n g  
s a m p l e  t u b e

S w e e p  G e n e r a t o r

M agnet
Pole

Control Console j  

Recorder ‘

Figure 2.2: T he structu re  of NM R spectrom eter [63],

In NM R spectrom eters, the superconducting m agnet provides the external static 

m agnetic field. T he transverse m agnetic field is generated by a series of r.f. pulses 

coming from the probe. During the relaxation process of the nuclei in the probe, 

the tim e-varying current is amplified and digitized by pream plifier and analog-to- 

digital converter (ADC), respectively, and then  is recorded by the  spectrom eter. 

This tim e dom ain signal is sent to  com puter for further processing th a t  transform s 

the tim e dom ain signals into the frequency dom ain signals. The m ain step of such a 

processing is the  Fourier transform ation, ahead of which m ultiple processing m eth­

ods including zero filling, apodization, and linear prediction are applied to  prevent 

inform ation loss. After Fourier transform ation, a post-processing m ethod phase cor­

relation is applied to  optimize the appearance of the frequency dom ain spectrum . 

T he frequency dom ain signals are the  chemical shift values th a t  will be analyzed 

next.
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2.2 N M R  P rotein  Structure D eterm ination

The classical approach to  protein  structu re  determ ination via NM R can be sum m a­

rized in three steps, peak picking, resonance assignment  and structure determination.

2 .2 .1  P ea k  P ic k in g

The objective of peak picking is to  filter and identify the resonance peaks from the 

NM R spectral data . Each resonance peak indicates a particu lar m agnetic interaction 

w ithin a group of atom s (could be intra- or inter-residue) in the targe t protein. The 

m easured values of resonance peaks are the resonance frequencies, or chemical shifts, 

of the interacting atom s. The peak intensities provide geometric relationships (e.g. 

distances and angles) among the interacting atom s. Figure 2.3 shows a sample one 

dimensional chemical shift spectrum  which is a sketch of a proton NM R spectrum  

for the diacetone alcohol molecule [1 1 ]. In this spectrum , the x-axis is the chemical 

shift in ppm  and the y-axis is the intensity. In the spectrum , the  peak a t 0 ppm  is

5 4 3 2 1 0

Chemical Shift (ppm)

Figure 2.3: One dimensional NM R proton spectrum  for diacetone alcohol molecule.

the reference peak and there are some other low intensity  peaks which are considered 

as noise peaks.

For protein structu re determ ination, two and higher dimensional NM R spectra 

are used, where each axis is the chemical shift in ppm  for a certain  type of nuclei. 

Because of strongly overlapped peaks and spectral distortions due to  noise peaks,
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the robust recognition m ethods are needed to  identify tru e  resonance peaks. There 

are a num ber of existing m ethods available for peak picking, such as neural networks 

[24, 19], statis tica l approaches [61, 3], and num erical analysis [48, 29],

2 .2 .2  S e q u en tia l R e so n a n c e  A ss ig n m e n t

NM R spectra  contain sufficient inform ation to  determ ine biom olecular structu res in 

solution. However, none of the em bedded inform ation can be used w ithout having 

the peaks assigned. In o ther words, it m ust be first determ ined which peaks come 

from which nuclear spins. T hen the distance inform ation in the NOESY spectrum  

can be analyzed. Therefore, the sequential resonance assignm ent process plays a 

v ital role in the  structu re  determ ination process. Resonance peaks from m ulti­

dimensional NM R spectra  contain the chemical shifts for atom s from a common 

residue and for atom s from its adjacent residues. In a sequential assignm ent step, 

the resonance peaks ex tracted  from peak picking are m apped to  host residues in 

the protein sequence. T he m ethod first groups the chemical shifts for atom s from 

a common residue into a spin system  and then  uses the identified inter-residue 

chemical shifts to  determ ine the connectivity among the  grouped spin systems. This 

helps constrain which pairs of spin systems should m ap to  adjacent residues in the 

protein sequence. The m apping between spin systems and residues in the  protein 

sequence is evaluated by using bo th  the signature inform ation of the  spin system  

and the connectivity inform ation. The signature inform ation of a spin system  in 

our work is defined as the likelihood th a t a particu lar amino acid type residing 

in some type of secondary structu re could produce the spin system. T here are 

four com ponents involved in the sequential resonance assignm ent, which are peak 

grouping, connectivity determ ination, string assignm ent, and scoring scheme. The 

details about these four com ponents have been discussed in C hapter 1.

2 .2 .3  S tr u c tu r e  D e te r m in a tio n

Based on the results of sequential resonance assignment, we could fully in terpret 

the NOESY spectrum  to  provide m any distance constraints between the  hydrogen 

atom s in a protein. The inter-proton distance can be calculated from the  intensity of 

the NOE cross peaks. In general, an NOE peak w ith  strong intensity  m ay indicate
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th a t two protons are w ithin 2.5 A of each other while a weak NOE peak corresponds 

to  an upper lim it of 5 A.
M any other geom etrical constraints can be inferred using various m ethods. As

0

H a

C a

Figure 2.4: The torsion angles of an amino acid residue

shown in Figure 2.4, two dihedral angles are associated w ith  each peptide bond. 

The 4> angle is the torsion angle between the N — HN bond and C“ — H“ bond and 

the tp angle is another torsion angle between the Ca — HQ bond and C — O bond. 

The dihedral angle 4> can be calculated from the spin-spin couplings J h „ - n i i  using 

the K arplus equation which is defined as

JHa-N H  — 6 .4cos2 6 — 1.4cos0 +  1.9, (2.3)

where 9 =\<f> — 601 [46]. W ith  the  use of the above equation, m easurem ent of J h » -n  

provides com plem entary inform ation to  the NOE distance constraints for calculating 

the initial s tructu re  of a protein.

The next step is to  determ ine an initial protein structu re  th a t is consistent w ith 

the thousands of NOE constraints and any other conform ational constraints. Dis­

tance geom etry is the m ost commonly used m athem atical procedure in which the 

NOE distance constraints are converted into a three dimensional structu re  [39, 40], 

T he distance geom etry procedure is essentially a projection from a high-dimensional 

space into ordinary three-dim ensional space. The initial structu re  calculated from 

distance geom etry m ay violate a num ber of experim ental constraints. T he subse-
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quent structu re  refinement is required to  obtain  a high resolution protein  structu re 

w ith no constraint violations.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

R elated Work
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The sequential resonance assignm ent is one of the key tasks in NM R protein 

structu re determ ination. M any researchers have perceived for a long while th a t 

the laboriously m anual work has to  be substitu ted  by com puter program s to  b e tte r 

exploit the power of NM R in protein structu re  determ ination. Considerable efforts 

have been devoted to  the autom ated assignm ent program s and several software 

tools have been developed. Nonetheless, m ost m ethods essentially use the  same 

procedure, although different program s m ight have different focuses and s ta rt from 

different positions.

VI

Grouping Connectivity Assignment

M ultiple

Peak

Lists

Grouping-!-Connectivity

Connectivity+A ssignm ent

G rouping+C onnectivity+A ssignm ent

Figure 3.1: The flow chart of the resonance assignment process: different works 
assume different starting  positions. Phase I includes AutoAssign [78], R IBRA [73], 
PASTA [50]; Phase II includes AutoAssign [78], RIBRA  [73], PASTA [50], RAN­
DOM [47], CISA [67], MARS [45]; Phase III includes AutoAssign [78], RIBRA  [73] 
M A PPE R  [38], CBM [76]; Phase IV includes Sm artN oteBook [62]; Phase V includes 
PACES [22], MARS [45], CISA [67]; Phase VI includes GARANT [9, 10].

In Figure 3.1, we classify m ost of the assignment m ethods in the literature. To 

nam e a few, G ARAN T [9, 10] uses a genetic algorithm , PASTA [50] uses threshold 

accepting algorithm s, AutoAssign [78] uses heuristic best-first algorithm s, M AP­

P E R  [38] and PACES [22] use exhaustive search algorithm s, RANDOM  [47] applies
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a random ized algorithm , and RIBRA [73] applies a weighted m axim um  independent 

set algorithm  for the sequential resonance assignment, MARS [45] first applies an 

exhaustive search for all the legal paths w ith  length 5 and then  conducts a bidirec­

tional validation.

3.1 G A R A N T

GARANT [9, 10] is an  au tom ated  resonance assignm ent program  th a t combines a 

genetic algorithm  w ith a local optim ization routine. G ARANT consists of three 

m ain com ponents. T he first one is the representation of a resonance assignment, 

which considers the resonance assignment as an optim al m atching of two graphs. 

One graph represents the correlation between the atom s of the protein and expected 

cross peaks and the o ther the correlation between the chemical shifts and observed 

cross peaks. T he second one is a scoring scheme th a t evaluates the  m atching between 

two constructed graphs. The last one is a genetic algorithm  w ith a local optim ization 

strategy  th a t com putes an optim al m atching between two graphs, which corresponds 

to  the optim al assignment.

A. Expected peaks

atoms o f the protein (aGl I HN > I } H x  1 I rfs2< I I HN

expected cross peaks ( s ^   ̂ COSY J  ^ COSY J  ^ N O E S Y j

B. Observed peaks

chemical shifts (w^) [6 .

n=2

observed cross peaks (So) (  COSY ) [  COSY ] (  NOESY )  (  NOESY ]

C. A ssignm ent of the m easured peaks

( 6.93 ]  ( 4 J1  ]  (  2.78 ] ( 7.32 )

atoms of the protein (  H N , Ifci, J \  f KP2, ]

chemical shifts

observed cross peaks ^  ̂ ]

expected cross peaks ( COSY ) (  COSY ) (  NOESY ]

Figure 3.2: A schematic representation of expected (A) and observed cross peaks 
(B), and the m apping used to  describe possible resonance assignments (C) .
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Figure 3.2 [9] gives an example on how to  represent the  resonance assignment 

as a graph m atching problem. In this figure, peaks, atom s and chemical shifts are 

represented by vertices, and the relations between them  are represented by edges. 

The goal is to  find an optim al m atching between two graphs.

expected and observed peaks, which is referred to  as “m utual inform ation” . Let

where uq represents the observed peaks in NM R experim ents, a\,j represents the 

expected peaks, k runs over all types of atom s, I runs over all possible observed values

A general genetic algorithm  is used in conjunction w ith  a specific local opti­

m ization procedure to  find an optim al m atching between two graphs. However, a 

lim itation of genetic algorithm s is their slow convergence. For large proteins, the 

solution space grows exponentially w ith  the num ber of residues and, in practical 

tim e scales, searching this huge space is in tractab le unless some heuristics are used 

to  prune the search space.

The m atching between two graphs is evaluated by the m atching scores between

I r {D] M )  denote the m utual inform ation between the  observed graph D  and the 

expected graph M , which is calculated by

I r ( D - M )  =  £ a£>)
k

th a t could be assigned to  atom  k, denotes the conditional probability
(k)th a t, for atom  type k, the value aD is observed when its expected value is known

(k) / (k)\ (k)to be axM , p(aKDJ) denotes the prior probability th a t the value a ^  is observed for
(k)atom  k, and p(aKM\ )  denotes the probability th a t the expected peak is assigned 

to  value I.
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3.2 PASTA

PASTA [50], P ro tein  A ssignm ent by Threshold Accepting, uses threshold  accept­

ing th a t is a com binatorial optim ization strategy  and is superior to  the genetic al­

gorithm  used in G ARANT in term s of convergence time. In Figure 3.3, the steps of 

the PASTA assignm ent process is shown w ith  a flow chart.

Final
assignm ent

Refine pseudo 
residue list

Refine pseudo  
residue list

U se solutions with 
lowest energy to 

continue

C heck erroneous 
assignm ents with 

spectra

Initial pseudo-residue lists 
derived from HSQC or 

HNCO data

Assign by 
threshold accepting

Figure 3.3: T he assignm ent cycle of PASTA. An initial pseudo-residue list is created 
from the peak list of the HSQC or HNCO spectra. Additional inform ation is added 
by searching the peak lists of the  appropriate 3D experim ents. T he refinement of 
the list is done iteratively w ith the  use of the assignm ent routine.

To s ta rt, an  initial pseudo-residue list is created from the peak list of either 

the HSQC or HNCO spectra. The additional inter-residue chemical shifts and other 

intra-residue chemical shifts contained in the triple-resonance spectra  are then  added 

by finding the m atched trip lets for every H and N pair in HSQC or HNCO spectra. 

The m atching between the peaks is determ ined by com paring their H and N chemical 

shifts under the tolerance thresholds. For the ambiguous pseudo-residues, such 

as some containing too m any chemical shifts or too  few chemical shifts, m anual
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work has to  be conducted to  refine the pseudo-residue list. T he am ino acid type 

identification for each pseudo-residue is based on the published random  coil chemical 

shifts in [74] and [71]. For the connectivity determ ination  and string assignment, 

a com binatorial m inim ization strategy, threshold  accepting, is applied instead of 

the determ inistic approach. T he algorithm  of threshold accepting consists of four 

basic steps outlined below.

(1) S ta rt a t a random  solution

(2) G enerate a new solution x;+i via a random  local change of the solution x t .

(3) Com pare the quality of bo th  solutions w ith a penalty  function / .  If the value 

of the  penalty  function for solution Xj+i is not larger th an  the penalty  function 

for the solution Xi plus a user-defined threshold T,  proceed to  solution Xi+i; 

else discard solution Xj+i.

(4) R epeat steps (2) and (3). If for a user-given num ber of steps, there is no 

im provem ent of the  current minimum, the threshold T  is reduced stepwise to  

zero. T he solution w ith  m inim um  value of penalty  function during the  whole 

run  is the  final result.

The penalty  function to  be minimized in the algorithm  is defined as

E t o t  =  E m a t c h + E s e q ,  (3.1)

where E m a t c h  describes the fit between two adjacent residues. T he optional term  

E s e q  is an additional feature resulted from the initially obtained assignment. To 

obtain a new solution Xi+\ from x t , two strategies are chosen:

(1) An interchange of two random ly chosen residues.

(2) A ‘cut and p aste’ of a larger fragm ent. T he s ta rting  point, length and new 

position of the  fragm ent are determ ined by a random  num ber generator.

3.3 A utoA ssign

AutoAssign [78] is a constraint-based expert system  for determ ining resonance as­

signments from m any NM R spectra. T he spin system s are firstly identified by
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m atching the peaks in various spectra to  the peaks in the HSQC spectrum . T he C" 

and C '9  chemical shifts contained in the spin system s are used to  obtain  the proba­

bilities, which are used to  determ ine the set of residue types consistent w ith  the  spin 

systems. T he probability  score is defined as the Bayesian posterior probability  and 

the likelihoods are calculated using the expected C“ and O '9  chemical shift values 

and standard  deviations. Given an observed pair of Ca and C '9  chemical shifts, the 

probability score w ith respect to  amino acid residue type R  is com puted as

p ( R \ C a , C 13) = p ( C a , C ^ \ R ) P ( R ) / J 2 p ( C a , CP\R)P{R)  (3.2)
R

where p ( C a , C /3\R) is the probability of observing chemical shift values C a and 

c p , given the residue type R,  and P ( R )  is the frequency of occurrence of residue 

type R  in the protein sequence. T he C a and C' '9  chemical shifts are assum ed to  be 

independent and to  follow Gaussian distributions. For each residue in the  protein 

sequence, AutoAssign defines a list of spin systems th a t the nuclei in the residue 

may generate w ith  high scores.

In the next stage, the pairwise relationships between spin system s are built 

by using the Euclidean distance. Specifically, for each spin system , a vector of 

normalized values is com puted.

C j - r t C ' )  C ? - p { C ° )  C f - ^ C P )  H “ - p ( H ° )
1 [ s{C')  ’ s (C a ) ’ s(CP) ’ s ( H a) } K ’

where the m eans p  and standard  deviations s for each chemical shift dimension are 

collected over all available assigned chemical shifts. T he Euclidean distance between 

the associated vectors is com puted as the distance between two spin systems. For 

each pair of spin system s, AutoAssign checks if they reside in the  two lists of spin 

systems for two adjacent residues or not. If they  do, then  the pair is considered to 

be a valid adjacent pair. At the same tim e, its m apping location can be confirmed if 

the pair of adjacent residues in the protein sequence is unique. AutoAssign extends 

the assignm ent of two spin systems to  more spin system s by using an exhaustive 

search to  find all valid combinations.

AutoAssign combines the connectivity determ ination and the  string assignment 

to  validate each other, which reduces the to ta l num ber of possible connections. 

However, the  num ber of com binations increases exponentially as the  length of strings
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increases. Even worse, the am biguities of the connections among the  spin systems 

also increase the complexity of this approach, even if the list for a residue only 

contains 2 spin systems on average. A utoassign’s exhaustive search strategy  w ith 

its constraint propagation m ight fail because of a search tree explosion if the  d a ta  

quality is poor and thereby a big num ber of possible connections are created. As 

a m atte r of fact, AutoAssign requires the redundant inform ation from ex tra  NM R 

spectra in order to  reduce the complexity. In general, AutoAssign needs seven to 

eight three-dim ensional NM R spectra in order to  produce m eaningful assignments.

M A PPE R  [38] is a sem i-autom atic sequence-specific NM R assignm ent program . 

Basically, M A P PE R  only perform s the string  assignment. T he inpu t of M A PPE R  

contains the  prim ary protein  sequence and the strings of sequentially connected spin 

systems w ith inform ation on the Ca and C .3 chemical shifts an d /o r identification of 

amino acid types for the spin systems. M A PPE R  first trea ts  each string  separately 

to find its legal locations in the protein sequence. To determ ine the possible m apping 

positions for a given string  i w ith  the length n(i ),  the sum  of the squared deviations 

of all chemical shift values contained in the string is com puted by using the reference 

values at the m apping positions k, which is

where Aj( i )  denotes the set of atom s a t position j  in the fragm ent i, w“ (i) denotes 

the experim ental chemical shift for the atom  a G Aj( i )  at the  residue position 

j ,  Ldfi and Auifi are the reference chemical shift value and its s tandard  deviation 

for the atom  a of the amino acid type R.  T he chemical shifts are assum ed to  

follow a G aussian distribution. For the correct m apping, the probability  th a t  the 

m agnitude of the sum  of the squared relative chemical shift deviation exceeds the 

value com puted in E quation 3.4 is given by the x 2  probability  function Q (x 2(b k)\vi) 

where Vi =  X)J=d I A? ( 0 1  is the num ber of known chemical shifts in the  fragm ent E). 

Acceptable individual m appings have a value of <3(x2(*; k)\v{) above a user-defined 

threshold Q q.

3.4 M A P P E R

R ( k + j )

R ( k + j )

(3.4)
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In the second step, M A PPE R  applies an exhaustive search to  enum erate all 

consistent global m appings. T he global m appings found by M A P PE R  are ranked 

w ith x l {global) th a t is the sum of the individual y 2  values of all fragm ents. The 

Q(global) is defined in the same way and a value of Q(global) close to  100% indicates 

th a t a global m apping is confident in the sense th a t the  chemical shift deviations 

are w ithin the range expected statistically  on the basis of their s tandard  deviations.

3.5 PACES

PACES [22] is an interactive program  for sequential resonance assignment. It uses 

an exhaustive search algorithm  to establish the sequential connectivity and then  

perform  the string assignment. The input d a ta  for PACES could be peak lists or 

a list of assembled spin systems. If the  input is peak lists, PACES will first group 

them  into the  spin system s in a semi autom atic m anner, in which the  users have 

to  specify the tolerance thresholds and m anually conduct the  ad justm ent to  resolve 

the ambiguities. T he m ethod for grouping in PACES is essentially the sam e as w hat 

most program s do, which anchors the peaks in o ther NM R spectra  to  the HSQC 

peaks by using the tolerance thresholds.

After the spin system s are correctly compiled, PACES sta rts  by building a di­

rected network to  represent the connectivity relationship among the  spin systems. 

For two spin system s j  and k,

„•   /~ ia  /V rra / - ia  s~t/3 /~i' r r a
J  '~>i  ) ' - ' j  i , ' - ' j - l i  ° j - l >  ° j - l >  n j - l i

I, __ r - ta  ✓V ttol /~iOt s~*/3 r r a
K — ■"*: > n k- l :

a directed connection from spin system  j  to  spin system  k  will be established if

*3 1 1 < Sea

i c f - q L i < Scf>-.

i c ; - c L i i < Sc1,
Trot r r a  |tlj -  -Wfc—i 1 < Sh<*

where 6c^ ,5 C0 , S c  and Sh * are the user-specified threshold tolerances for C a ,C@, 

carbonyl and H a chemical shifts respectively.
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The exhaustive search is first applied to  enum erate all possible pa ths in the 

directed network, and each p a th  represents a possible string of involved spin sys­

tems, which has to  be assigned to  a polypeptide in the protein sequence. During 

the process of the p a th  enum eration, the  encountered cycles will be broken at the 

last visited vertices, and the back edges between the last visited vertices and the 

upstream  vertices are considered to  be false connections. In the  next step, a m ap­

ping process is invoked to  validate each p a th  by aligning it to  every valid location 

in the targe t protein. T he possible residue type for each spin system  in the pa th  

is determ ined by using the chemical shift ranges of each amino acid type, which is 

derived from BioM agResBank [13]. PACES does not weigh the different m appings 

b u t equally trea ts  all possible residue types for each spin system. In  the ideal case, 

each p a th  only contains the  correct connections, and it should m atch some portion 

of protein sequence completely a t the correct position. However, due to  chemical 

shift degeneracy, some wrong connections m ight be chained in the p a th  and thus 

create an illegal assignm ent. PACES cuts off the longest contiguous m atching por­

tions in the p a th  and the non-m atching portions are recycled to  be validated in the 

succeeding iterations.

W ithou t the m anual finalization, PACES claims from its sim ulation study  to  pro­

vide the  unam biguous m appings for 80% residues of any targe t protein. However, we 

rem ark th a t  this approach is only suitable for the simple networks constructed  w ith 

the high resolution experim ental d a ta  because it is almost impossible to  enum erate 

all paths in a graph w ith an average out-degree above 2. In fact, m ost directed 

networks tested  in PACES have the average out-degrees below 2. For the low reso­

lution datasets, PACES either runs out of m em ory or fails to  com pute a m eaningful 

assignment. A nother drawback in PACES is th a t the last visited connections in its 

cycles are always considered to  be false connections. Therefore, the  order of vertex 

visiting decides which edges represent the wrong connections. From our point of 

view, this is not a good strategy  to  identify the false connections in complex cases. 

It is highly possible th a t  more correct connections are m istakenly considered to  be 

wrong ones and thus removed from the directed network.
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3.6 Random Graph Approach

R andom  graph approach [47] provides a novel m ethod to  find the connectivity infor­

m ation by using a random ized algorithm . It again models the relationship among 

the spin system s as a directed graph, where the vertices represent the spin systems 

and the weighted edges between the spin systems represent their connections w ith 

probabilities. T he weight of each connection between two spin system s is derived 

from a function of distance on their chemical shifts. The connectivity determ ination 

problem is reduced to  the p a th  cover problem  th a t is a classic N P-hard  problem. 

A natu ra l random ized algorithm  is designed to  find the  optim um  p a th  cover th a t 

contains the  m inim um  num ber of paths to  cover all vertices in the  directed graph. 

T he random ized algorithm  consists of two phases, of which the first phase performs 

the initialization and the second phase explores the connection choices.

In the first phase, a p a th  cover is in itiated  w ith  all unam biguous edges th a t 

s ta rt from the vertices w ith  out-degree 1 to  the vertices w ith in-degree 1 . Those 

unam biguous edges are assum ed to  represent the correct connections in the random  

graph approach. In the second phase, the unam biguous edges in the  p a th  cover 

are extended by random ly choosing edges from the rem aining graph w ith  probabil­

ities proportional to  their weights. T he extending process in the second phase is 

iteratively run  until the p a th  cover contains all vertices. The basic two-phase pro­

cedure is presented in Figure 3.4. To resolve the errors produced in the random ized 

algorithm , the random  graph approach runs its algorithm  for 2 0 , 0 0 0  iterations to 

produce an ensemble set of p a th  covers and the paths agreed on by m ost p a th  covers 

are collected. The randomized strategy  in this approach guarantees th a t this algo­

rithm  will term inate  in a reasonable tim e period. For a graph w ith  n  vertices and 

average out-degree d, the algorithm  will stop w ith  a high probability  in expected 

O (n i+lo9 d̂~ 1̂ )

However, it is doubtful th a t the above approach would ou tpu t the  correct con­

nectivity inform ation in real applications because the noise and chemical shift de­

generacy m ight cause some unam biguous edges to  represent the wrong connections, 

and these wrong connections would lead to  the wrong assignm ents in the  ou tput. 

Furtherm ore, an edge w ith a high probability does not always indicate a good con-
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nection. Since the random  graph approach only perform s connectivity determ ina­

tion, it has to  use o ther program s to  finish the assignm ent. T he results reported  

in the random  graph approach is based on its com bination w ith M A PPE R . In gen­

eral, 50% of residues in a protein are correctly m apped w ithout m anual work, which 

thw arts its use in real applications.

Given G = (V, E)
Let initial cover C  = V
Let vertices w ith successors W  =  0
Choose vertex u  from V

Phas e  — 1 :
Let visited vertices U — 0 
W hile U ±  V  do 

Add u  to  U
If u  has single out-edge e =  (u. v) and v  has a single in-edge 

then
Add e to  C  
Add u  to  W  
Set u  to  v 

Else Choose u  from V  — U 
Endwhile

P hase  — 2 :
W hile C  is not a H am iltonian p a th  or cycle do 

Choose u  from V  — W
Choose an  edge (u,v)  w ith probability proportional to  its 

weight
If pred(u,C ') is null then  

Join the two fragments in C  
Add u  to  W  

Else
C reate two fragm ents in C  : (■ ■ ■ u, v ■ ■ •), 
and (• • ■ ,pred(v,  C))
Add u t o W
Remove p red (u ,C ) from W  

Endwhile

Figure 3.4: T he randomized algorithm  in Random  G raph Approach.
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3.7 MARS

MARS [45] is an autom atic backbone assignment program  th a t only perform s the 

connectivity determ ination and string assignment. The input spin system s should 

be generated using other program s, such as NMRView [43], and they  m ust be in-

include, (1) exhaustive search for all strings w ith 5 spin systems, (2) bidirectional 

validation of each possible string, (3) best-first strategy  for bo th  linking and m ap­

ping, (4) com bination of secondary structure , and (5) evaluation and assessment by 

perform ing m ultiple assignm ent. MARS applies a Z-score to  com pute the score of 

m apping ith spin system  to jth residue, which is defined as

the predicted (expected) chemical shift of type k of j th residue, N cs is the num ber

bution th a t is used for calculating If type k  is missing, S ( i ) ^ p — 5(j)k  is set

to  0 .

To reduce the im pact of chemical shift deviation, the score S ( i , j ) is converted 

into a pseudoenergy U ( i , j )  by ranking all residues j  w ith  respect to  the spin system 

i. The score th a t one string belongs to  a specific position in the protein sequence is 

com puted according to

where i is the index of the first spin system  in the string and n  is the  length (in 

general, n  =  5), m  is the index of the string  s ta rting  from spin system  i, and j i  are 

the residue num bers to  which spin systems i to  i + n  are ten tatively  assigned. All 

U™(j) are ranked and the string w ith  the best value is the targe t string  for spin 

system  i to  i + n.

A m ajor factor influencing the perform ance of MARS is the  quality of spin 

systems and the  quality of the chemical shifts contained in the spin system s because 

MARS lim its the length of the longest string in order to  m ake the exhaustive search 

feasible bu t m ay not be robust for lower quality NM R spectral.

spected m anually to  guarantee the high quality of input. T he key features of MARS

where 5(i)ê v is the m easured chemical shift of type k  of i th spin system, 6(j)k is

of chemical shift types and S^2 is the variance of the statistica l chemical shift distri-

i+n

u ? U )  = Y . u (k ’i ' ) ’
k=i
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3.8 RIBRA

RIBRA [73], R elaxation and Iterative Backbone Resonance Assignm ent, is a re­

cently developed work, published in 2005, on fully au tom ated  sequential resonance 

assignment. In RIBRA, the sequential resonance assignment problem  is reduced to 

the weighted m axim um  independent set problem  in a graph and a relaxation ap­

proach is designed to  solve this graph problem  in an  itera ted  fashion. T he peaks 

with top-level quality are first identified to  produce a partia l assignm ent w ith high 

confidence, and then  the peaks w ith middle-level and low-level quality  are used to 

generate more assignments. There are two m ain operations in RIBRA, which are 

called RG T and LM. R G T perform s the grouping and spin system  identification 

while LM involves the  connectivity determ ination and string assignment.

RGT:

T he input of RIBRA  is HSQC, CBCA(CO)NH and HNCACB spectral data. 

R G T first m aps all peaks in CBCA(CO)NH and HNCACB to the peaks in 

HSQC to  form a set of spin systems by com paring their shared H and N 

chemical shifts. T hen it uses an extended version of the classification result 

(see Table 3.1) in TATAPRO [5] to  a ttach  each spin system  w ith  a list of 

amino acid types.

C arbon chemical shift Amino acid
Absence of C^
14 <  C0 < 24 
56 <  C? < 67
24 <  G 3 <  36 and C“ <  64 
24 <  CIs < 36 and C“ >  64 
36 <  G 3 <  52 and CQ <  64 
36 <  G 5 <  52 and Ca > 64

C? > 67

Gly
Ala
Ser
Lys, Arg, Gin, Glu, His, Trp, Cysred , Val and M et 
Val
Asp, Asn, Phe, Tyr, Cysoxd, lie and Leu
He
Pro
T hr

Table 3.1: TATAPRO II residue typing scheme.

LM:

LM sta rts  w ith  all possible pairs of the grouped spin system s and tries to 

link them  to  form longer segments. D uring the expansion, LM validates each
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segment by m apping it to  the protein sequence. All possible segments will be 

generated in the LM operation. To resolve the conflicts of m apping among 

the generated segments, an undirected graph G(V, E )  is defined to  create a 

graph optim ization instance. Each node in V  represents a possible m apping 

for one segment. If a segment has n  possible mappings, there will be n  nodes 

in the graph G.  Each edge between two nodes represents a conflict between 

two possible m apping if 1 ) they  share the  same spin systems. 2 ) they  overlap 

in the targe t protein. To favor the longer segment, each node v  is given a 

weight defined as

S \  I I Nix') .

w(v) = — T ^W —  ( *
where |v| is the length of v, x  is a spin system  in v. N ( x )  is the  num ber of 

spin system s having the same H and N chemical shifts as x , and f r e ( v )  is the 

num ber of v ’s possible m apping positions. T he modified heuristic algorithm  

proposed in [14] is applied to  find several independent sets from G,  which 

represents some possible assignments.

The difference between the grouping model applied in RIBRA and the previous 

works is th a t  the am biguities appearing in the grouping could be autom atically 

resolved to  some extent by trying all possible scenarios. Nonetheless, we argue 

th a t the  grouping model in RIBRA is still susceptible to  the change of pre-selected 

tolerance thresholds because high tolerance thresholds will make RIBRA produce 

a huge num ber of legal spin systems while low tolerance thresholds will lead to 

too few spin systems to  complete the assignment. Furtherm ore, the spin system  

identification is not considered using probability  bu t derived w ith  the  fixed list in 

Table 3.1, which is constrained by the  quality of input spectral data .
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Chapter 4

Scoring Schemes
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A scoring scheme is required in NM R resonance assignment to  assess the likeli­

hood of the  m apping between an identified spin system  and an am ino acid residue in 

the protein sequence. A ccurately quantifying the signature inform ation contained 

in chemical shifts provides a foundation for the precise and complete sequential res­

onance assignm ent in protein NM R spectroscopy. In this chapter, we describe our 

histogram -based learning m ethod, and evaluate several different scoring schemes.

4.1 O verview

A spin system  in NM R contains an array of intra-residue chemical shifts and inter­

residue chemical shifts th a t  are generated by a specific amino acid and its preceding 

amino acid in NM R experim ents. It can be represented by a vector of chemical 

shifts, such as (Hi; Nj, C“ , C^; C“_ 1, C^_1), where Hi, Ni, C“ and are in tra­

residue chemical shifts generated by their host amino acid and Cf_x and Cf_x are 

inter-residue chemical shifts generated by the preceding amino acid. To measure 

the correlation between a given spin system  and a given amino acid type, we need 

to  quantify the signature inform ation of each type of chemical shift contained in 

the spin system. M any published m ethods assume th a t for one residue type, the 

chemical shift value of a nucleus follows a norm al (Gaussian) distribution . In the 

BioM agResBank (BM RB, h ttp ://w w w .bm rb .w isc .edu /), which is a repository for 

the known protein NM R data, the means and standard  deviations have been col­

lected for H, N, Ca , Ca , C, and HQ (and more) chemical shifts in all 20 types of 

amino acid residues. W ith  these param eters available, a typical procedure to  esti­

m ate the probability  for m apping a spin system  to  a residue is to  use the  density 

functions of the  corresponding norm al distributions for the  intra-residue chemical 

shifts in the spin system. M athem atically, for every intra-residue chemical shift (cs) 

in a spin system , the density function of the corresponding norm al d istribution is 

used to  estim ate a probability  p(cs \ aa) th a t the host nucleus is in residue aa, where

/i =  fi(aa) is the  mean, and a — a (aa) is the standard  deviation. Subsequently, 

the product of the probabilities for all the intra-residue chemical shifts in the spin 

system  is taken as the probability th a t aa is the host residue of the spin system.
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The scoring scheme assuming a norm al d istribution  is adopted by m any groups 

working on au tom ated  NM R resonance assignment. However, we believe th a t this 

scoring scheme is biased on very simple statistics, and we also conjecture th a t other 

chemical environm ental factors m ight affect the chemical shift values. In our inves­

tigations, we found th a t a m inor improvement in the scoring scheme m ight have a 

significant effect on the  accuracy of assignment. Therefore, we sought to  design a 

be tte r scoring scheme by combining more dom ain knowledge.

4.2 H istogram -Based Scoring Schem e

To avoid the bias arising from any specific assum ption, we have designed a histogram - 

based scoring scheme. One of the m ost im portan t elements in our scoring scheme is 

the chemical shift classification based on P r o te in  S e c o n d a ry  S tr u c tu r e .

4 .2 .1  P r o t e i n  S e c o n d a r y  S t r u c t u r e  P r e d i c t i o n

Protein  secondary structu re refers to  certain  common repeating structu res found in 

proteins. There are three types of secondary structures, which are a-helix, /3-sheet 

and loops. It is well accepted in NM R work th a t for the same atom  inside the same 

type of amino acid, the  m easured chemical shifts depend on the types of secondary 

structures where the  amino acids lie. S tatistics tells us th a t most am ino acids display 

this dependency to  some extent. For example, for alanines, the dot plots of chemical 

shifts of Ca ’s in a-helices, /3-sheets, and loop regions show a m arked difference.

Figure 4.1(a) is the sum  of these 3 dot plots as shown in Figures 4.1(b), 4.1(c), 

and 4.1(d). O ur scoring scheme accounts for th is s tru c tu ra l inform ation by incor­

porating  secondary structu re inform ation. The chemical shifts of each amino acid 

type in our train ing  set is further divided into three categories according to  the 

secondary structu re  type. Therefore, our train ing set has 60 classes in to tal. Each 

class is denoted by a couple (aa , s s ), where aa represents one amino acid type and ss 

represents one secondary structu re  type. T he secondary structu re  inform ation is ob­

tained in two ways. Given a protein sequence, we first check the P ro tein  D ata  Bank 

(PDB) [12] to ex tract its secondary structure. If there is no entry for this sequence 

in PDB, then  we predict its secondary structu re  by running the P siP red  program  

[44]. Psipred is one of the best known secondary structu re  prediction program s
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(a) sum (b) in a-helices

(c) in /3-sheets (d) in random coils

Figure 4.1: D istribution  of Ca chemical shifts from alanines in the train ing  d a ta  set.

w ith approxim ately 80 percent of accuracy for assigning a residue to  an a-helix, a 

/3-strand, or a loop.

4 .2 .2  T ra in in g  D a ta s e ts

We built two train ing datasets using known protein NM R d a ta  deposited in the 

BMRB and corrected by the RefDB [77], and the secondary structu res extracted  

from the PD B  [12].

The initial set of protein NM R d a ta  was obtained from the BioM agResBank 

and included all p rotein  entries present in the  databank  as of M ay 30, 2005. We 

applied several filtering steps to  remove poten tial noise and bias from the  dataset 

so as to  make it as clean as possible. Firstly, proteins containing less th an  50 amino 

acids or containing amino acids not part of the standard  twenty were elim inated. 

Secondly, corrected NM R protein entries were obtained from the  RefDB and these 

proteins overwrote any BM RB proteins present in the dataset. In the  resultant 

dataset, every protein entry (a single file) was parsed in order to  obtain  the  prim ary 

amino acid sequence, the chemical shift value for each nucleus, as well as the PDB

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



accession num ber(s). In the th ird  filtering step, the PD B num ber was used to 

retrieve the sequence and secondary structu re inform ation related to  th a t protein. 

The final datase t only contains those proteins th a t contain PDB accession num bers 

where the corresponding PD B protein sequence is a subsequence of the  BM RB 

protein sequence or the BM RB protein sequence is a subsequence of the PD B  protein 

sequence. The secondary structu re  inform ation from the  PDB protein en try  were 

obtained for th a t  protein. The PD B secondary structu re no tation  has eight different 

letters; we transla ted  this into a no tation  system  of three letters to  m atch up w ith 

the PsiP red  secondary structu re form at (namely, G, H, and I from PD B became H 

in PsiPred, E from PDB rem ained as E, and S, T , B, and non-annotated  positions 

in PDB becam e C in PsiP red). Such a translation  is necessary since we would use 

PsiP red as the secondary structu re  predictor in our testing. Nonetheless, a suitable 

adjustm ent can always be m ade if other secondary structu re  predictors are applied. 

A to ta l of 1,493 protein entries and 165,122 amino acid residues were obtained in 

the final dataset, denoted as ALL (cf. Figure 4.2 for more detailed statistics); 456 of 

these proteins and 45,964 amino acid residues were from the RefDB corrected data. 

A to ta l of 6  files were created w ith each corresponding to  a nucleus from H, N, C“ , 

C13, C, and H". For those protein entries in the final dataset, chemical shifts were 

placed into these 6  files. Each chemical shift is represented as a trip le t of amino 

acid type, secondary structu re  type, and the  chemical shift value.

We observed th a t a tiny num ber of chemical shift values should be trea ted  as 

outliers because they diverge far from the m ain stream  significantly. Since the 

abnorm al behavior of a single outlier could d isrupt the scoring scheme, an efficient 

statistica l m ethod, nam ely “b o x p lo t” [27] w ith param eter set a t 1.5, was applied 

to  remove the outliers — the fourth chemical shift filtering step.

In order to  reduce the bias th a t  could be caused by m ultiple homologous se­

quences, a second dataset was generated. “BLAST 2 sequences (bl2seq)” [64] was 

run between every pair of sequences. Any protein having greater th an  50% identity 

against another protein already included was removed from this datase t (though 

order dependent). T he resulting dataset, denoted as HOM O, contains 822 proteins 

and 91,382 residues, among which 336 proteins and 34,225 residues were from the 

RefDB. T he b o x p lo t was also applied on HOMO to get rid  of chemical shift outliers.
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Figure 4.2: A detailed amino acid com position of the two train ing datase ts ALL and 
HOMO: the height of each bar corresponds to  the num ber of amino acid residues in 
th a t amino acid and secondary structu re  couple in datase t ALL. T he height of the 
shaded region records the num ber in the reduced datase t HOMO.

4 .2 .3  H is to g r a m -B a se d  S cor in g  S ch em e

For every amino acid (aa) and secondary structu re  (ss) com bination, we do not as­

sume there is any specific p a tte rn  th a t  the d istribution follows, b u t use the  chemical 

shift values directly. For every type of chemical shift, we associate w ith  it an  error 

bound (e), which is different for different types of chemical shifts and is learned from 

our train ing  set. To estim ate a probability for m apping a chemical shift (cs) to  an 

amino acid residue (aa) and a secondary structu re  (ss) couple,

• let N  denote the to ta l num ber of the same type of chemical shifts in the 

train ing dataset;

• let N(a a,  ss) denote the num ber of (aa, ss) couples (which is typically in thou­

sands) w ithin N;

• let N (cs )  denote the num ber of chemical shifts in N  th a t fall in the  chemical 

shift window (cs — ecs,cs  +  ecs);

• let N (c s  | aa, ss) denote the num ber of chemical shifts in N(aa,  ss)  th a t  fall 

in the same chemical shift window.
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Then, we employed the Naive Bayes m ethod (see Figure 4.3) to  derive the score for 

m apping the spin system  (Hi, Nj, C f ,  c f ;  Cf_x, Cf_1) to  an amino acid type aa 

residing in secondary structu re  ss:

where

i E lo§ (p(cs aa, ss

p{cs | aa, ss) =
N{cs\aa,ss) N(cs)

7 ^ )  7T~ _  N ( c s  I aa.ss)
N(aa,ss)

N
N{aa,  ss)

(4.1)

Figure 4.3: The naive bayes scoring scheme learning

4 .2 .4  S co r in g  S ch em e  E n h a n cem en t

Most m ethods in au tom ated  NM R resonance assignm ent only take the  intra-residue 

chemical shifts in the spin system  into account in the scoring scheme. We propose 

to  add the signature inform ation of inter-residue chemical shifts, since in practice 

the spin systems from peak grouping process do contain the inter-residue chemi­

cal shifts and these inter-residue chemical shifts also contain signature inform ation 

for the preceding residue. A subsequent sim ulation experim ent dem onstrated  th a t 

using inter-residue chemical shifts can significantly improve the scoring scheme per­

formance, which is m easured by the quality of the resu ltan t assignment. O ur scoring 

scheme took advantage of a few special features of chemical shifts. To nam e a few, 

since there is no nucleus in glycine, no chemical shift can be observed for 

the  glycine spin system. Consequently, when a spin system  does contain a non-zero 

C '9  chemical shift value, then  it should not be m apped to  glycine. In this case, we 

associated w ith  the m apping a score maximum, which was set a t 9999.99 and it tells
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the assignment algorithm  th a t such a m apping is illegal. Similarly, since proline 

does not have a HN nucleus, a spin system  containing a non-zero HN chemical shift 

value gets a score maximum when m apping to  proline.

4.3 A ssignm ent A lgorithm

T he general weighted b ipartite  m atching problem  is to  find a one-to-one m atch­

ing between elements of two groups th a t maximizes the to ta l weight, where each 

m atched pair of elements has a pre-specified weight. T he NM R sequential reso­

nance assignm ent process can be natura lly  modeled as a weighted b ipartite  m atching 

problem, where each weighted edge has a confidence value representing a possible 

m apping of a spin system  to an  amino acid in the protein sequence. Nevertheless, 

the quality of assignment from such a weighted b ipartite  m atching is poor because 

frequently there are m ultiple amino acid residues of the same type in a protein 

sequence. To differentiate the m apping between spin systems and the same type 

residues, we have to  explore more constraints. T he m ost im portan t one is the con­

nectivity inform ation. In  practice, a string of connected spin system s typically have 

a much b e tte r score at the “correct” assignment position (i.e. the m atching be­

tween a spin system  of NM R peaks and the residue th a t generates the  peaks) th an  

almost all o ther (incorrect) assignment positions, especially as the size of the string 

increases.
Spin Systems

Residues in the target sequence

Figure 4.4: T he problem  of constrained b ipartite  m atching

To incorporate the connectivity inform ation, the general m atching problem  is 

extended to  a constrained weighted b ipartite  m atching problem  [76] on two disjoint 

groups, one group containing strings of spin system s and the o ther containing a 

sequence of amino acids. The spin systems in one string m ust be m atched only 

w ith neighbors of the o ther group (an example is shown in Figure 4.4). Unfortu-
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nately, the  constrained b ipartite  m atching problem  is N P-hard, even if the  edges 

are unweighted [76], M any heuristics have been proposed very recently, including 

some approxim ation algorithm s [20], our fast greedy and filtering algorithm  and our 

integer program m ing solver.

Our fast greedy filtering assignment algorithm  can be described as a two-phase 

procedure: in the  first phase, a greedy filtering is conducted to  select some num ber 

of best possible m appings for the identified strings; in the  second phase, for every 

com bination of string  mappings, an  efficient m axim um  weighted b ipartite  m atching 

algorithm  is used to  complete the assignm ent by m apping isolated spin systems to  

the rest of the residues. The algorithm  reports the best assignm ent from all com­

binations in term s of the assignment confidence (the to ta l weights of all individual 

mappings). T he heuristics applied in a greedy filtering algorithm  is fairly intuitive, 

and is very close to  w hat is currently  m anually done in an NM R laboratory. The 

m ain difference between the algorithm  and m anual work is th a t  we employ efficient 

com putational m ethods to  autom ate the assignment process at a global view, which 

produce an assignment w ithin seconds on a Pentium  IV PC. T he global view also 

helps avoid the tedious “undo-redo” operations which occurs very often through 

m anual efforts.

However, the greedy filtering algorithm  can not guarantee an optim al solution 

though it runs very fast. To make a fair com parison between different scoring 

schemes, we adopted Cplex, one of the best integer program m ing solvers, to  com pute 

the exact solutions for CBM instances. T he form ulation of CBM instance in integer 

program m ing is defined as follows:

• let {aq, a 2 , . . . ,  an } denote a protein sequence of length n,

{(siS 2 • • • S i- i) , (sjSj+i • • • Si+fc),. . . ,  (sjS j+ i • • • s„)} denote a set of chained spin 

systems, W  denote a score m atrix  in which each en try  Wij m easures the like­

lihood th a t the z-th spin system  is m apped to  j - th  amino acid residue, and X  

denote an assignm ent m atrix  in which the entry  Xij w ith 1  value m eans th a t 

the  i-th  spin system  is assigned to  j - th  amino acid.

•  For each string SjSj+i >  0, if Xij =  1, then  Xi+ij+i =  1 for every 

I = 1 , 2 , . . .  ,k .
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• The goal is to  minimize
n n

EE^
i= i j = 1

under the constraints,

^2 /Xij =  1, for i =  1 , 2 , . . . ,  n;
1=1

n

^ 2 ^  =  1 , for j  =  1 , 2 , . . . ,  n; 
j = i

Xj+/J +; =  Xij, for string i +  1  ■ • • si+fc;

Z =  1 , 2 , . . .,fc; 

j  =  l , 2 , . . . , n - f c ;

Xy e  0 ,1 , for i, j  =  1 , 2 , . . .  ,n;

4.4 Evaluation

4 .4 .1  T est D a ta s e t  S im u la tio n

An instance of CBM consists of an edge-weighted b ipartite  graph G — (A , S , E ), 

where A  consists of the amino acid residues linearly ordered as they  show up in 

the targe t protein, S  consists of the spin systems, and every edge (a i ,S j ) indicates 

a m apping between residue and spin system  Sj w ith  its weight recording the 

m apping score. W ithout any ex tra  inform ation for spin system s, the  above CBM 

instance expects a minimum-weight perfect m atching, which can be com puted effi­

ciently. The num ber of correctly assigned spin system s divided by the  to ta l num ber 

of assigned spin system s is defined as the assignment accuracy. If the  scoring scheme 

were ideal, then  the assignm ent accuracy would reach 100%. Therefore, we can use 

the assignm ent accuracy to  m easure the quality of the scoring scheme.

We chose a to ta l of 470 sets of protein NM R d a ta  for our sim ulation study, 

each of which contains all H, N, Ca , and C3 chemical shifts. For every protein, the 

prim ary sequence was retrieved, and the secondary structures were predicted using 

PsiPred. For every am ino acid residue, the chemical shifts for H, N, C“ , and O 3 were 

retrieved from the BM RB entry, which formed an initial spin system. Subsequently, 

the chemical shifts for Ca and G'3 in the preceding residue were appended to  form 

the second spin system.
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For every chemical shift in a second spin system , we pertu rbed  it by adding 

to  it a value th a t  follows a zero-mean norm al d istribution, for which the standard  

deviation was set to  the  standard  deviation we collected out of the train ing  dataset. 

This gave a th ird  spin system , which was finalized by random ly throw ing away some 

Ca and C '3  chemical shifts. T he probability  of throwing away chemical shifts was 

set to 5%.

In our sim ulation study, since we have all connectivity inform ation for every 

protein, we random ly added some portion  back to  generate a few instances for every 

protein. The different instances have different levels of connectivity abundance. 

More precisely, an instance of k%  connectivity contains k%  connectivity th a t was 

random ly added. We have set k  in tens and are interested in reasonable am ounts of 

connectivity, namely, k — 0 ,1 0 ,20 ,30 ,40 ,50 ,60 , 70,80,90.

4 .4 .2  S core  G en er a tio n

For the purposes of comparison, we also designed the scoring scheme based on 

the assum ption of norm al d istributions, using the m eans and standard  deviations 

collected in our two train ing  datasets ALL and HOMO. More specifically, in our 

im plem entation, we took the absolute logarithm  of a probability  divided by the 

num ber of intra-residue chemical shifts in the spin system, and m ultiplied by 1 0 0 , to 

be the score for m apping the spin system. The factor 100 is solely for com putational 

precision purpose and taking the average is for score norm alization purpose. Clearly, 

the sm aller the score, the higher confidence we have for the m apping. For ease of 

presentation, the scoring schemes assuming norm al distributions for chemical shifts 

are denoted as Normal. Furtherm ore, if it uses only intra-residue chemical shifts for 

score evaluation, then  it is denoted as Norm al-Infra; if it uses bo th  intra-residue and 

inter-residue chemical shifts for score evaluations, then  it is denoted as Normal-Bot/i.

The histogram -based naive Bayes scoring schemes using the chemical shift sta tis­

tics in the train ing  datasets directly (as described in the last section), are denoted 

as Bayes. In these scoring schemes, the chemical shift thresholds have to  be learned, 

and they  were set as follows. For trip let (aa, ss, nu),  let (enu) denote the  window-size 

associated w ith this trip let such th a t exactly 2 0  intervals of length (enu) cover the 

whole range of the chemical shifts. The value 20 was set so th a t these window-sizes

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m ap closely to  the standard  deviations, collected as described. For every observed 

chemical shift value (cs) for each nucleus (nu),  using (cs) as the m idpoint, the num ­

ber of chemical shifts in the train ing dataset th a t  fall into the window of size (enu) 

is N (cs  | aa ,ss) .  Similarly as in the  last paragraph, Bayes scoring schemes using 

only intra-residue chemical shifts are denoted as Bayes-Intra and those using bo th  

intra-residue and inter-residue chemical shifts are denoted as Bayes -Both.

To obtain  the  secondary structures for the protein sequence, we adopted PsiP red 

to  predict the secondary structures. T he PsiP red secondary s tructu re  form at con­

sists three notations, H for alpha helix, E for b e ta  sheet, and C for coil. In addition 

to  each predicted secondary structu re for an  amino acid, P siP red  also provides a 

confidence score, which is a single digit in the range of 0 to  9. We find th a t such a 

confidence value is a post-trea tm ent of the neural network ou tpu t, which are three 

values associated w ith three ou tpu t units (helix, sheet, and coil). All th ree values for 

every amino acid residue in the targe t protein are stored in an interm ediate PsiP red 

ou tpu t file w ith  suffix “ss2” . These values can be regarded as the “prediction prob­

abilities” for an  individual secondary structure , and our second idea is to  take in 

the predicted secondary structures together w ith their probabilities into the  scoring 

schemes. Such scoring schemes are classified to  have index 2. More specifically, 

when one amino acid residue aa is predicted to  be in a helix w ith  probability  0.55, 

to  be in a sheet w ith  probability  0.25, and to  be in a coil w ith probability  0.40, 

then  o~5'5~_j:6 '2 5 +o~4 0  final score comes from m apping the spin system  to  (aa, H),

o.5 5 + ^ 2 5 + 0 .4 0  from m apping the spin system  to  (aa, E ), and 0.55+o;25+o.40 from m aP ' 

ping the  spin system  to (aa, C). In this way, the scoring scheme Norm al-Both-2 

denotes the norm al scoring scheme using bo th  intra-residue and inter-residue chem­

ical shifts in the spin system  and using the  prediction probabilities from PsiP red 

ou tpu t for the  score evaluation. To summarize, we have two train ing datasets ALL 

and HOM O and a to ta l of eight scoring schemes N orm al/B ayes-In tra/B oth-1 /2 .

4 .4 .3  R e su lts

Table 4.1 summarizes the average assignm ent accuracies of the eight different scoring 

schemes th a t  are based on the train ing datase t ALL. Table 4.2 sum m arizes the 

average assignm ent accuracies of the eight different scoring schemes th a t are based
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on the train ing  datase t HOMO.

Scoring Scheme C onnectivity Percentage
0 % 1 0 % 2 0 % 30% 40%

Norm al-Intra-1 0.103 0.177 0.263 0.365 0.489
Normal-Both-1 0.509 0.575 0.650 0.718 0.783
Norm al-Intra-2 0.130 0.209 0.301 0.412 0.541
Norm al-Both-2 0.540 0.609 0.684 0.751 0.816
Bayes-Intra-1 0.140 0.232 0.342 0.465 0.591
Bayes-Both-1 0.553 0.621 0.696 0.760 0.823
Bayes-Intra-2 0.172 0.264 0.375 0.494 0.624
Bayes-Both-2 0.583 0.650 0.721 0.787 0.844
Scoring Scheme Connectivity Percentage

0 % 1 0 % 2 0 % 30% 40%
Norm al-Intra-1 0.619 0.753 0.875 0.958 0.992
Normal-Both-1 0.844 0.900 0.946 0.976 0.993
Norm al-Intra-2 0.676 0.798 0.903 0.967 0.991
Norm al-Both-2 0.872 0.917 0.955 0.979 0.992
Bayes-Intra-1 0.724 0.832 0.922 0.972 0.993
Bayes-Both-1 0.879 0.922 0.958 0.982 0.993
Bayes-Intra-2 0.749 0.853 0.930 0.975 0.993
Bayes-Both-2 0.895 0.932 0.963 0.983 0.995

Table 4.1: Assignment accuracies of scoring schemes based on the  datase t ALL.

Prom these results, we see th a t the Bayes scoring schemes perform ed uniformly 

significantly b e tte r th an  the Normal scoring schemes. T heir average perform ances 

are p lotted  in Figure 4.5, where each average is taken over 470 proteins. T he average 

difference between the two is about 4% and it is as m uch as 6 % in the instances 

with 70% connectivity inform ation. We consider th is as no surprise for two reasons: 

one reason is th a t the assum ption of norm al d istributions for chemical shifts is 

very rough and there m ight be o ther s tructu ra l factors th a t  affect the  chemical shift 

values; the o ther reason is even if the assum ption makes sense, the  estim ate of means 

and s tandard  deviations could differ from the  true  values.

Along w ith  the boosting concept, for spin system s th a t  do contain inter-residue 

chemical shifts, using them  into the scoring schemes m ust be beneficial. We im­

plem ented th is idea and we found th a t inter-residue chemical shifts indeed help 

distinguishing the residues. The above results dem onstrate th a t using them  can im-
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Scoring Scheme C onnectivity Percentage
0 % 1 0 % 2 0 % 30% 40%

Norm al-Intra-1 0.103 0.177 0.263 0.365 0.489
Normal-Both-1 0.495 0.562 0.637 0.706 0.775
Norm al-Intra-2 0.128 0.205 0.300 0.407 0.529
Norm al-Both-2 0.531 0.599 0.675 0.744 0.810
Bayes-Intra-1 0.140 0.232 0.341 0.464 0.590
Bayes-Both - 1 0.551 0.617 0.692 0.757 0.822
Bayes-Intra-2 0.172 0.264 0.373 0.494 0.622
Bayes-Both-2 0.580 0.649 0.720 0.783 0.843
Scoring Scheme Connectivity Percentage

0 % 1 0 % 2 0 % 30% 40%
Norm al-Intra-1 0.619 0.753 0.875 0.958 0.992
Normal-Both-1 0.837 0.894 0.945 0.977 0.993
Norm al-Intra-2 0.671 0.791 0.902 0.966 0.992
Normal-Both-2 0 . 8 6 8 0.915 0.955 0.980 0.994
Bayes-Intra-1 0.721 0.829 0.921 0.972 0.992
Bayes-Both-1 0.880 0.922 0.958 0.982 0.992
Bayes-Intra-2 0.747 0.850 0.929 0.976 0.993
Bayes-Both-2 0.895 0.931 0.962 0.984 0.994

Table 4.2: Assignment accuracies of scoring schemes based on HOMO.
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Figure 4.5: A com parison between the  Bayesian scoring schemes and the scoring 
schemes based on norm al assum ptions: each assignm ent accuracy is taken as the 
average of 4 scoring schemes, namely, In tra /B o th -1 /2 , on two train ing  datasets ALL 
and HOMO.
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Connectivity Percentage
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Normal 0.318 0.389 0.472 0.560 0.655 0.753 0.841 0.920 0.970 0.993
Bayes 0.361 0.441 0.533 0.626 0.720 0.811 0.884 0.943 0.978 0.993
HOMO 0.337 0.413 0.500 0.590 0.685 0.780 0.861 0.931 0.974 0.993
ALL 0.342 0.417 0.505 0.595 0.690 0.784 0.864 0.932 0.974 0.993
Intra 0.136 0.220 0.321 0.434 0.560 0.693 0.808 0.908 0.968 0.992
Both 0.543 0.610 0.684 0.751 0.814 0.871 0.917 0.955 0.980 0.993
1 0.325 0.399 0.486 0.576 0.671 0.767 0.852 0.926 0.972 0.993
2 0.354 0.431 0.519 0.609 0.704 0.797 0.873 0.937 0.976 0.993

Table 4.3: T he com parison of assignment accuracies of different types of scoring 
schemes.

prove the  perform ance on average significantly, for example by 12% and 10% in the 

instances w ith 50% and 60% connectivity inform ation respectively. Moreover, when 

no connectivity is used, using inter-residue chemical shifts can improve the assign­

m ent accuracy by as m uch as 35%. Figure 4.6 shows their average performances.
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Figure 4.6: A com parison between using bo th  chemical shifts and using only in tra­
residue chemical shifts: each assignment accuracy is taken as the average of 4 scoring 
schemes, namely, N orm al/B ayes-1/2, on two train ing  datasets ALL and HOMO.

Theoretically, train ing datasets for scoring scheme developm ent should not be 

biased on any typical portion  and hence NM R d a ta  for homologous proteins should 

be removed. Though our two train ing datasets ALL and HOMO vary quite a bit
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in the num bers of all types of chemical shifts, their com position percentages are 

close to  each other. This might explain the fact th a t we did not see m uch difference 

in the assignm ent accuracies by using different train ing  datasets. By examining, 

in detail, the  proteins th a t  were removed from ALL to  obtain  HOM O, we found 

th a t the num bers of homologous proteins for different proteins are not large, bu t 

usually only a few. Figure 4.7 shows the average perform ances over the  eight scoring 

schemes, where one could not really see the difference.
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Figure 4.7: A com parison between the two datasets HOM O and ALL: each assign­
m ent accuracy is taken  as the average of 8 scoring schemes, namely, N orm al/Bayes- 
In tra /B o th -1 /2 , on the two train ing datasets.

Since we know ahead of tim e th a t the secondary structures predicted by PsiP red 

come from a neural network where the  secondary structu res w ith the  largest prob­

ability are reported , using them  naively m ight introduce errors to  the  sequential 

assignment. We conjectured th a t  using the  accom panied probabilities of PsiP red 

might be helpful in reducing the prediction errors. We have tested  a scheme to  take 

advantage of the probabilities and the experim ental results dem onstrated  th a t us­

ing them  does improve the perform ance significantly. F igure 4.8 shows the  average 

perform ances of scoring schemes using and not using the prediction probabilities, 

where we can see th a t using the  accompanied probabilities is always a b e tte r  choice, 

and it could improve the  assignment accuracy as much as 5% (in the  instances w ith
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50% connectivity inform ation).
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Figure 4.8: A com parison between using the prediction confidences by PsiP red 
and w ithout using them : each assignm ent accuracy is taken as the  average of 4 
scoring schemes, namely, N orm al/B ayes-In tra/B oth , on two train ing  datasets ALL 
and HOMO.

To summarize, we are able to  claim th a t, according to  our sim ulation study, 

the scoring schemes Bayes-Both-2 learned using bo th  train ing  datasets ALL and 

HOMO perform  the best am ong all 16 scoring schemes. T he scoring scheme trained 

using HOM O is provided freely as a web server [53] th a t is accessible through 

h ttp ://w w w .cs.ualberta .ca/~gh lin /src/W ebT ools/score.php , where the  train ing  dataset 

HOMO is also available. The web server contains two m ain functions, one is “sin­

gle testing” th a t re tu rns a score for m apping an  input spin system  to  an  amino 

acid residue and a secondary structu re  couple, and the  o ther is “batch  function” 

th a t accepts a protein sequence together w ith  its secondary structu res in PsiPred 

format and a file containing the spin systems, and re tu rns an edge-weighted bipar­

tite  graph file, which can be readily fed to  an integer program m ing solver, or any 

other algorithm s for the CBM problem, together w ith some (or em pty) connectivity 

inform ation. Figure 4.9 shows a snapshot of the web server.

O ur current work on developing the b e tte r scoring scheme focuses m ainly on 

the scoring scheme train ing for backbone resonance assignment. This is a crucial
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C o m p u tin g
S c ie n c e

S c o r e :  A VV«b Server for Scoring Spin System s In Protein NMR 
Spectroscopy

M tch  Ts
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Figure 4.9: A snapshot of the Score web server using “batch function” . Top left: 
two windows expecting a file of protein sequence together w ith secondary structures 
in Psi-Pred form at and a file of spin systems. B ottom  left: a window showing the 
score m atrix  (the com plete b ipartite  graph). Top right: a b ipartite  graph w ith one 
side containing the spin systems and the o ther containing the linearly ordered amino 
acid residues in the targe t protein, where an edge indicates the best m appings for 
the residues. B ottom  right: a graphical view of the score m atrix , where the  heights 
of the colored bars are proportional to  the inverse of scores.
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step towards our objective to  develop a fully au tom ated  tool for protein NM R back­

bone resonance assignm ent th a t would be b o th  robust and efficient. The scoring 

schemes we have developed here can be adopted in any existing assignm ent frame­

works besides the CBM model, such as AutoAssign [78], M apper [38], and MARS 

[45]. We expect the autom ated assignment tool to  considerably speed up the  pro­

tein  s tructu re  determ ination  process via NM R spectroscopy, and to  transform  the 

resonance assignm ent from a time-consum ing task  to  a h igh-throughput process. 

For the scoring scheme itself, it can be extended into a more general one oriented 

towards full p rotein  structu re determ ination  to  include side-chain nuclei into the 

backbone assignm ent, as well as J-coupling constants and residual dipolar coupling 

constants. Such an integration not only fulfills the  assignment of o ther structu ra l 

factors, b u t also improves the  assignm ent accuracy altogether as they  can be used 

to cross validate each other.
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Chapter 5

CISA: Combined N M R  
Resonance C onnectivity  
Information D eterm ination and 
Sequential Assignm ent
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M any researchers realize th a t the  determ ination of spin system  connectivity plays 

a vital role in NM R sequential resonance assignment. T he accuracy of connectivity 

inform ation has a direct im pact on the perform ance of au tom ated  sequential assign­

m ent process. In this chapter, we describe our solution to  this issue, which is a 

heuristic algorithm  called “CISA” .

5.1 Overview

Resonance peaks from m ulti-dim ensional NM R spectra  contain chemical shifts for 

atom s from a common residue and for atom s from adjacent residues. For example, 

the CBCA(CO )N H spectrum  records the heteronuclear coupling between H and N 

in one residue and the  Ca and C'9 in the preceding residue (see Figure 2.1(b)), 

which provides triples of chemical shifts (H i,C “_ 1,Ni) and(Hj, C f_1,N j). There­

fore, the  inter-residue chemical shifts contained in the grouped spin system s can 

be used as evidence to  determ ine w hether some spin systems should assigned to  

adjacent residues in the protein sequence. This is w hat we refer to  as “connectivity 

inform ation” . The objective of connectivity determ ination is to  identify the true 

connections am ong the  spin systems, and to  chain the spin system s into strings. 

T hen in the  string assignment process, these strings of spin system s can be assigned 

to  the non-overlapping polypeptides in the protein sequence. The quality and quan­

tity  of the connectivity inform ation (or the identified connections am ong the spin 

systems) directly im pact the  success of any sequential resonance assignm ent. Once 

the connectivity determ ination is done w ith a certain  high level of confidence, the 

string assignm ent problem  could become trivial. O ur sim ulation study  in C hapter 4 

supports the  conclusion th a t if 80% correct connectivity inform ation is available, the 

sequential resonance assignm ent problem  can be solved efficiently and accurately.

Among the  sequential assignm ent program s th a t use connectivity inform ation, 

some of them  [10, 18, 78, 38, 52] assume the availability of connectivity inform ation 

and only focus on the string assignment problem. In the other models proposed 

for the sequential assignm ent [7, 22, 42, 62, 6], the connectivity inform ation is de­

term ined along the  way to  assignment. These program s first use the  differences 

between chemical shift values for the same nuclei in any pair of spin system s to  

find the connectivity inform ation and then  use these connectivities as constraints
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to  com pute a sequential assignment. At various levels of success, these algorithm s 

typically generate a large num ber of potential connectivity constraints, which grow 

exponentially as the spectral d a ta  quality decreases.

One big issue in connectivity determ ination is how to identify the  true  con­

nections from m ultiple choices. M ostly due to  the noise and d a ta  degeneracy, the 

connectivity determ ination is no longer a b inary  decision b u t a probabilistic one. 

As a result, one spin system  could s ta rt more th an  one connectivity pair (many in 

general) and could end w ith  more th an  one connectivity pair. A desirable way to 

describe the relationship am ong the spin system s is to  use the graph, which we call 

“connectivity graph” , where the vertices represent the spin systems, the  directed 

edges represent the possible connections, and edge weights represent the probabil­

ities associated w ith  the connections. A p a th  cover of the connectivity graph G, 

which is a set of disjoint paths th a t contain all vertices of G , indicates one set of 

potential connectivity constraints. The cost of a p a th  cover is the sum  of all edge 

weights in it. A m inim um  p a th  cover contains the least p a ths am ong all p a th  covers. 

The goal of connectivity determ ination is to  find the  minim um  p a th  cover w ith  the 

m inim um  cost (or m axim um  cost depending on the definition of edge weight) in the 

connectivity graph. This problem  is N P-hard  because it is a t least as hard  as the 

NP-com plete problem  of finding a p a th  cover of size 1 in an  unit-weighted directed 

graph, which is referred to  as a Hamiltonian  p a th  [23].

After the  connectivity graph is constructed, PACES [22], a recently proposed 

sequential resonance assignm ent program , enum erates all the pa ths in the  graph. A 

final set of non-conflicting paths are picked as identified connectivities. These iden­

tified connectivities are then  used as constraints to  finish the  sequential assignment. 

One disadvantage in PACES is th a t  it enum erates all paths in the  connectivity 

graph w ithout using the edge probability values and the enum eration m ight not be 

feasible if the  graph is no t sparse enough (see Experim ental Results section for more 

inform ation).

We proposed to  perform  the Connectivity D eterm ination and Sequential Assign­

ment sim ultaneously (acronym CISA, pronounced as ‘kiss-a’) by incorporating the 

chemical shift (or spin system ) signature inform ation into the  connectivity determ i­

nation. A key idea used in our sequential assignm ent program  is th a t  the  chemical
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shift signature inform ation can be used to  validate the  connectivity constrain t de­

term ination, and thus to  dram atically  decrease the num ber of constraints. In our 

development, we found th a t  a string of connected spin system s typically has a much 

b e tte r score at the  correct m apping position in the protein sequence th an  almost all 

the other (incorrect) m apping positions. This appears quite obviously when the size 

of the string  increases. Such an  observation leads to  our conclusion th a t a string 

of spin system s having an outstanding m apping score has a high probability  of be­

ing correctly chained. In o ther words, the connectivity determ ination  and string 

assignment support each other.

Our algorithm  s ta rts  w ith an Open L ist  of strings and seeks to  expand the 

string w ith the best m apping score. The subsequently generated descendant (longer) 

strings are appended to  the Open List only if their m apping scores are b e tte r th an  

their ancestor’s. A nother list, Complete L is t , kept in the  algorithm , saves strings 

not further expandable. At the  tim e Open List becomes empty, the high confident 

strings w ith  their m apping positions are filtered out from Com plete List; meanwhile, 

the conflicts am ong them  are resolved in a greedy fashion.

The m ain distinction between CISA and PACES is the use of spin system  sig­

nature inform ation to  progressively grow and validate the paths (the strings of spin 

systems) in the connectivity graph. In this way, a large num ber of connectivity 

edges could be filtered out according to  the low quality  of their resu ltan t assign­

ments. Therefore, the paths found in our ou tpu t assignm ent m ight not necessarily 

be m axim al paths in the connectivity graph, bu t they  all have the  outstanding  m ap­

ping positions in the protein sequence. The extensive sim ulation studies on various 

test datasets dem onstrated  th a t our proposal of combining chemical shift signature 

inform ation into connectivity determ ination is effective, and the combining improves 

the assignm ent accuracy significantly in com parison to  PACES.

5.2 C onnectivity  Graph

The relationships between spin systems are form ulated into an edge-weighted di­

rected graph referred to  as a connectivity graph. For every spin system , there is 

a vertex in the graph (in the  rest of the chapter, vertex and spin system  are used 

interchangeably). In this section, we describe the use of Ca and C^ chemical shift
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differences to  determ ine the connectivities between spin systems. In  our exper-

Here b o th  5a and d$ are pre-determ ined tolerance thresholds, which are typically set 

to  0.2 ppm  and 0.4 ppm  [22, 47], though m inor adjustm ents are sometimes necessary 

to  ensure a sufficient am ount of connectivity. If neither case occurs, th en  there is 

no edge between Vi and vj. E quation (5.1) is not the only weighting function, and 

some other functions as suggested in [47] on the chemical shift differences could be 

adopted to  weigh the edges.

In  the o ther com bination th a t contains C“ , C'3, and C chemical shift differences, 

it is required th a t a t least 2 out of the following 3 conditions hold: |C“ — C "_1| <  Sa , 

|C f — C j_ x\ < 5p, and |C; — Cj _ i |  <  5, and the weight of edge from vt to  vj is 

evaluated analogously as in E quation (5.1).

After every pair of vertices (spin systems) has been examined to  have an edge 

or not, we finish the construction of the  connectivity graph. However, some true 

connectivities m ight not be present in the connectivity graph while some wrong ones 

might be present.

5.3 String Growing

W ith the connectivity graph constructed, PACES proceeds to  enum erate all the 

(simple, directed) paths in the graph w ithout using the detailed edge weights. We 

choose another approach to  grow a p a th  using the edge weights. T he growth is

iments, we used another com bination th a t  contains CQ, O'9. and C chemical shift 

differences. O ther com binations of chemical shifts are possible and their connectivity 

graphs can be built similarly. For two spin system s Vi =  (H;, N,, C f ,  c f , C f_1, C/_^) 

and vj =  (Hj, N j, C“ , C j,  C“_ 1; C ^ ) ,  if bo th  I C f - C ^ J  <  and |C f — C j_ x| <  5P

hold, then  there is an edge from v/ to  Vj w ith its weight calculated as

(5.1)

Similarly, if bo th  |C“ — Cf_1| <  5a and |C^ — Cf_1| <  5p hold, then  there is an  edge

from Vj to  Vi w ith  its weight calculated as
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guided by the  quality of the p a th  m apping to  the protein sequence. Given a path , 

its quality is m easured by the m apping score of the p a th  at the best m apping position 

on the targe t protein. All the edges, coming out of the ending spin system  in the 

current p a th  to  be expanded, are sorted in a non-increasing order of their weights. 

For the  edge at the head of the order, the tem porary  extended p a th  (called child 

path) is formed and its best m apping position on the target protein can be found via 

a linear search. T he m apping score of this child p a th  is calculated and com pared 

w ith the m apping scores of its paren t p a th  to  decide whether to  accept it or not. 

It has been observed th a t  a sufficiently long p a th  is able to  detect the  succeeding 

spin system  by taking advantage of the discerning power of the  scoring scheme 

[68], Therefore, it is expected th a t  using m apping scores to  filter the extended 

paths would give rise to  much fewer potential paths for further consideration and 

eventually avoid exhaustive search as done in PACES.

In each iteration, CISA sta rts  w ith an Open List  (OL) of p a ths and seeks to  

expand the one w ith  the  best m apping score. The OL has a fixed size S  (in our 

experim ents, S  =  60) and the detailed value set for S  depends on com puter memory 

size. In our case, the  experim ents were done on a typical desktop w ith a 1Gb 

RAM. We found th a t  S  can be chosen from a value in the  range between 40 and 

80 w ithout affecting the perform ance significantly. We used the m edian value of 60. 

The subsequently generated child paths are appended to  OL if their m apping scores 

are high and there is room  in OL, or if their m apping scores are higher th an  th a t of 

some existing p a th  in OL. A nother list, Complete List  (CL), is kept in CISA to save 

those paths th a t can not be expanded further. At the tim e OL becomes empty, the 

high quality paths w ith  their m apping positions are extracted  out of CL where the 

conflicts are resolved in a greedy fashion. CISA chooses the  m ost reliable string out 

of the rem aining connectivity graph in each itera tion  and the corresponding pa th  

is removed from the graph. Our algorithm  term inates when the connectivity graph 

becomes em pty and re turns the constructed strings w ith their m apping positions on 

the targe t protein.
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5.4 Experim ents

We have designed two experim ents to  test our algorithm , CISA, and to  com pare its 

perform ance w ith th a t of PACES.

T he first experim ent used 22 proteins th a t were tested  by PACES and one real 

dataset Zdom th a t we obtained from AutoAssign [78], However, we did not obtain  for 

each protein the exact instance as tested  by PACES in [22]. Therefore, we sim ulated 

them  from the  corresponding protein entries in BioM agResBank according to  the 

sim ulation procedure described in [22]. Note th a t there are some m ore proteins th a t 

were tested  by PACES and did not require sim ulations. These proteins subsequently 

were excluded from our datasets. This experim ent was designed to  com pare the 

perform ance between CISA and PACES.

The second experim ent was designed to  show the com putational speed of CISA 

and its overall assignm ent accuracy, for which all eligible protein entries deposited in 

BioM agResBank were sim ulated and tested. T he perform ance of CISA on individual 

proteins and the average assignment accuracy were collected. Since it was possible 

to  run PACES on all these proteins w ithin a reasonable am ount of tim e, we chose 

to  run  CISA only.

In the first experim ent, PACES was run  on every datase t for 1 itera tion  only 

because we did no t m anually analyze the assignm ent to  prepare for the  second 

iteration. In this sense, all three program s are au tom ated  w ithout any m anual 

adjustm ent. As a result, the perform ance of PACES reported  in the  following might 

be a little worse th an  th a t reported  in [22], where PACES was usually ru n  a few 

iterations on a datase t w ith m anual adjustm ents in order to  improve the  assignment 

accuracy.

5 .4 .1  E x p er im e n t 1

In the first experim ent, we used the datasets tested  in [22] and followed the same 

sim ulation procedure, which used three inter-residue chemical shifts, Ca , C13, and 

carbonyl C, for connectivity graph construction (tolerance thresholds were 5a — 

0.2ppm, 513 — 0.4ppm, and 5 =  0.15ppm). T he reason we did our own sim ulation in 

this experim ent is the unavailability of the  original datasets from [22]. O ur sim ulated 

datasets were very close to  the corresponding datasets in [22] in term s of the  num ber
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of missing spin systems (and the perform ance of PACES). Overall, in these datasets, 

the percentage of missing spin system s ranged from 3% to  39%. We find th a t the 

existence of missing spin systems challenged the  robustness of our CISA in m any 

ways, especially in its assignm ent accuracy. A real instance Zdom was also included 

in this experim ent, which we indirectly obtained from AutoAssign [78] and did not 

need simulation. T he perform ances of PACES and CISA on these 23 instances are 

collected in Table 5.1. T heir assignment accuracies are also p lo tted  in Figure 5.1. 

In summary, CISA outperform ed PACES in all instances except bmr4402 where 

PACES perform ed a little  b it b e tte r  th an  CISA (assignm ent accuracies 0.873 vs 

0.860). T he tendency of the assignm ent accuracies shows th a t their perform ance 

gap becomes larger as the instances become harder.

|■ P A C E S  D C IS A l

Figure 5.1: P lo ts of assignm ent accuracies for PACES and CISA on the  sim ulated 
datasets for proteins from [22], using the  exact dataset generation m ethod as de­
scribed, and a real datase t Zdom indirectly obtained from AutoAssign [78].

5 .4 .2  E x p er im e n t 2

T he second experim ent was designed to  show the com putational speed of CISA and 

its overall assignm ent accuracy. To this purpose, we sim ulated all eligible protein  en­

tries deposited in BioM agResBank using the  default tolerance thresholds. We chose
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Length InstancelD #SpinSystem s PACES CISA
731 bmr5471 654 0.791 0.887
370 bmr4354 330 0.788 0.979
288 bmr5316 265 0.770 0.940
266 bmr5468 240 0.788 0.938
262 bmr4384 221 0.715 0.950
260 bmr4022 242 0.897 0.959
232 bmr4102 212 0.873 0.991
221 bmr4844 198 0.697 0.939
217 bmr4836 206 0.874 0.961
189 bmr4834 166 0.837 0.934
133 bmr4094 129 1.000 1.000
130 bmr5142 127 0.819 0.992
128 bmr4444 106 0.679 0.991
124 bmr4032 119 0.980 0.990

Group 1 Avg. 0.822 0.961
214 bmr4152 197 0.610 0.772
105 bmr4402 (126-230) 93 0.873 0.860
139 bmr4082 132 0.674 0.924

81 bmr4721 74 0.760 0.933
68 bmr4769 67 0.838 0.956

Group 2 Avg. 0.751 0.889
227 bmr4457 162 0.310* 0.575
192 bmr4341 117 0.598 0.872
110 bmr4136 105 0.419 0.724

71 Zdom* 65 0.338 0.738
G roup 3 Avg. 0.416 0.727

Overall Avg. 0.736 0.905

Table 5.1: Assignment accuracies of PACES and CISA on sim ulated datasets for 
proteins from [22], using the  exact dataset generation m ethod as described, and a 
real datase t Zdom indirectly obtained from AutoAssign [78], Tolerance thresholds 
are 5a  =  0.2ppm, Sg — 0.4ppm, and S — 0.15ppm. #SpinSystem s records the 
num ber of available spin systems for one instance. T he datasets are partitioned  into 
three groups. In the first group, datasets all have carbon alpha C a , carbon b e ta  
C 13, and carbonyl C chemical shifts of high quality; In the second group, datasets 
all have carbon alpha CQ, carbon b e ta  O'3, and carbonyl C chemical shifts, b u t of 
low quality; In the  th ird  group, datasets have only carbon alpha CQ and carbon 
b e ta  O 3 chemical shifts of various quality. * PACES perform ance on this dataset 
was obtained by reducing tolerance thresholds to  5a =  0.15ppm and Sg =  0.3ppm 
to ensure an assignment in 8 hours.
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to  use the  chemical shift com bination (H, N, C“ , C/3), and consequently the  eligible 

proteins are those th a t contain all these four types of chemical shifts (though they 

might be obtained from different spectra). T he default tolerance thresholds for C" 

and C'3 are 0.2ppm and 0.4ppm, respectively. To screen out some highly degenerate 

protein entries, we set up a 5-m inute tim e limit for CISA on each protein. T h at 

is, if CISA could not term inate the assignment for one protein in 5 m inutes, then 

the protein en try  was discarded. We rem ark th a t 5 m inutes was long enough since 

for m ost of the proteins on which CISA term inated, it term inated  w ithin seconds. 

One interesting discovery is th a t we found some proteins have significant resolution 

differences w ithin their spectral profiles, for example, bmr4402 (cf. Experim ent 3) 

has one half of high resolution b u t the o ther half of very low resolution. Through 

setting up the tim e limit, CISA was able to  detect the  low resolution proteins about 

20kDa in size.

In summary, CISA was able to  finish the assignments for 360 proteins in total. 

The length of these proteins ranges from 58 to  198, and the assignm ent accuracy 

from 0.62 to  1.00. T he average assignment accuracy is 0.903, which is consistent 

w ith the results in Experim ent 1. The assignment accuracy versus the  length of the 

protein is p lo tted  in Figure 5.2, where each cross represents an instance. From the 

plot, we see th a t CISA appears insensitive to  the  size of proteins.

0.9 

0.6 

0.7

S-|  0.6a
1 mI
•a 0.4$

0.3 
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0.1 

0
60 60 100 120 140 160 160 200

Protein Length

Figure 5.2: P lots of assignment accuracies for CISA on the sim ulated datasets for 
360 proteins from BioM agResBank, where each cross represents one instance using 
its length.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5 D iscussions and Conclusions

On a norm al desktop w ith  a 1.6GHz AMD-2000 processor and a 1Gb RAM , for the 

instances in the  first two experim ents, the overall running tim e of CISA ranged from 

a few seconds to  4 hours (and m ost of them  were done in less th an  20 m inutes). 

For the instances in the  th ird  experim ent, the overall running tim e of CISA never 

exceeded 30 m inutes. PACES failed to  finish the assignments in 8 hours for a 

num ber of instances because their connectivity graphs were too com plicated and 

the enum eration of paths becam e infeasible (1Gb m em ory ran  out). For th is reason, 

we m anually adjusted  the tolerance thresholds to  reduce the graph com plexity in 

order for PACES to ou tpu t some assignments. However, we adm it th a t  doing this 

might bring down the  assignment accuracy a b it since true  edges could be removed 

from the  connectivity graph.

T hrough CISA, we have successfully combined the spin system  signature infor­

m ation into the p a th  growing in the connectivity graph, which prunes the  search 

space more effectively com pared to  PACES (which failed on a num ber of complex 

instances in the first two experim ents). However, in the current version of CISA 

the weights of edges are used only to  order the child paths. We believe th a t some 

be tte r usage of edge weights in the m apping score evaluation for a growing pa th  

would help more effectively quantifying the quality of the  growing path . We have 

tried  some simple linear functions on the edge weights and the m apping scores of 

paths, which tu rned  out not to  serve satisfactorily. We are currently  investigating 

more com binations. Across all the experim ents, we found th a t CISA spent a large 

portion (about 50%) of tim e in finding the  first string. We also observed th a t for 

all instances, after 3 to  4 iterations, CISA found the best string in a straightforw ard 

way. In  o ther words, CISA running tim e was m ostly consumed in its first 3 -4  itera­

tions. One possible way to  speed up CISA in the first string  finding could be to  use 

only high probability  edges in the  connectivity graph. This m ethod is still under 

investigation.
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Chapter 6

GASA: A Graph-Based  
A utom ated N M R  Backbone 
Resonance Sequential 
Assignm ent
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T he trad itional au tom ated  assignment procedure involves th ree steps, nam ely 

peak grouping, connectivity determ ination and string  assignm ent. This procedure 

is widely used by m ost au tom ated  assignm ent systems. In this chapter, we describe 

a novel assignm ent procedure to  separate the assignment procedure no t into physical 

steps, b u t only into v irtual steps and use their ou tputs to  cross validate each other. 

The novelty lies in the places where the am biguities in the peak grouping step 

could be resolved by the connectivity determ ination and the am biguities in the 

connectivity determ ination could be resolved by the string assignment. In such a 

way, all ambiguities in the  whole assignment procedure would be resolved globally 

and optimally.

6.1 O verview

The trad itional au tom ated  assignment procedure involves three separate steps, which 

respectively group resonance peaks from m ultiple spectra  into spin systems, predict 

the  connectivity am ong the resu ltan t spin system s to  assemble them  into strings, and 

then  to  m ap strings to  non-overlapping consecutive am ino acid residues in the  targe t 

protein. This is illustrated  in Figure 6.1, where the scoring scheme quantifies the 

chemical shift signature inform ation for each steps if necessary. Several assignment

peak lists

Scoring

ChainingGrouping Assignment -candidates

Figure 6.1: The flow chart of the  peak assignment process.

m ethods have adopted the  trad itional procedure to  autom ate the resonance assign­

m ent process. Among them , AutoAssign [78] and RIBRA  [73] are two program s 

th a t fully autom ate the whole assignment process while most of o ther program s 

assume th a t  the perfect spin systems are given as input, and focus on the  design of 

com putational models for connectivity determ ination and string assignment. W ith in  

these two program s, the peak grouping is especially addressed w ith  a binary-decision 

model, which considers the  HSQC peaks as base peaks and subsequently m aps the
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peaks from other spectra  to  these base peaks. The H and N chemical shift values of 

the m apped peaks m ust fall w ithin the pre-specified H and N chemical shift toler­

ance thresholds of the  base peaks. However, the  binary-decision m odel in the peak 

grouping inevitably suffers from its sensitivity to  the tolerance thresholds. From one 

protein datase t to  another, the chemical shift tolerance thresholds vary because of 

the experim ental condition and the structu re  complexity. Large tolerance thresholds 

could create too m any am biguities in bo th  spin system  identification and connec­

tiv ity  determ ination, which lead to  a dram atic decrease of assignm ent accuracy. On 

the o ther hand, small tolerance thresholds would produce too few spin system s th a t 

would hardly  lead to  a useful assignm ent when the resolution of spectral d a ta  is low.

W hile there are a considerable num ber of assignm ent program s, the  assignment 

accuracy remains unsatisfactory in practice. Even worse, if the given spectral d a ta  

is of low resolution, m ost program s often fail to  o u tpu t a m eaningful assignment. 

Through a thorough investigation, we first identified th a t the bottleneck in most 

autom ated assignm ent program s is the perform ance of the peak grouping task. Our 

previous work [68, 69] showed th a t the  quality and quantity  of spin system s pro­

duced in the  peak grouping could have the m ost significant effect on the  assignment. 

Nevertheless, the widely used binary-decision m odel is inefficient in producing the 

spin system s of high quality for spectra  w ith typical resolution.

Second, we found th a t in the trad itional procedure, which is the  basis of most 

autom ated assignment program , each task  is conducted individually . The input of 

each task  is assum ed to  contain enough inform ation to  produce some m eaningful 

ou tput. However, for low resolution spectral data , the  am biguities th a t appear in 

one task  seem very hard  to  be internally resolved. Though it is sometimes possi­

ble to  o u tp u t m ultiple candidates, the uncertainties m ight cause m ore am biguities 

in the succeeding tasks. Consequently, the whole process would fail to  produce a 

m eaningful resonance assignment. In the previous chapter, we have shown th a t by 

incorporating the assignm ent verification into the connectivity determ ination, we 

can provide a b e tte r approach for resolving the am biguities in connectivity deter­

m ination. We believe th a t by combining the peak grouping w ith  the  connectivity 

determ ination and string assignm ent, we could effectively resolve the ambiguities ap­

pearing in the peak grouping stage and present a b e tte r solution to  the autom ated

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resonance assignment.

6.2 G A SA  A lgorithm

The input d a ta  to  our program  consists of the protein sequence and a set of NMR 

peak lists. Except for the  HSQC spectrum , our approach does not require any other 

specific NM R spectra  as long as they  are sufficient for the assignm ent purpose. For 

ease of exposition and fair com parison w ith  RIBRA [73], we assume the availability 

of spectral peaks containing chemical shifts for carbon alpha and carbon beta , as 

well as the HSQC peak list. Thus the peak lists we use to  conduct the  experim ents 

and com parison include HSQC, CBCA (CO )N H and HNCACB, although our ap­

proach can accept m any other com binations. Given these three peak lists, RIBRA 

tried  to  find the  two closest CBCA(CO)HN peaks and the four closest HNCACB 

peaks for each peak in the HSQC spectrum  under the  constraint th a t  the  H and N 

differences between these peaks are w ithin the given tolerance thresholds. If more 

th an  6  peaks are found, RIBRA generates all possible com binations to  represent all 

legal spin systems. T he true  spin systems are filtered ou t in the la ter process in 

RIBRA. T he difference between the peak grouping m odel applied in R IBRA  and 

the general binary-decision approach used in AutoAssign is th a t  the  am biguities 

appearing in the peak grouping could be autom atically  resolved to  some extent in 

RIBRA, while in AutoAssign, additional m anual work has to  be conducted or more 

peak lists are required to  provide the redundant inform ation for resolving the am ­

biguities. Nonetheless, we argue th a t the peak grouping model in RIBRA is still 

susceptible to  the change of pre-chosen tolerance thresholds because large toler­

ance thresholds could make RIBRA produce a huge num ber of legal spin systems 

while small tolerance thresholds would lead to  too few spin system s to  perform  the 

assignment process.

To elim inate the  sensitivity to  the  given tolerance thresholds in peak grouping 

and provide a com putational model for autom atically  resolving ambiguities and con­

ducting the sequential assignment, we designed a two-stage G raph-based Approach 

for Sequential Assignment (acronym G A S A ) th a t not only addresses the hard  is­

sues in the peak grouping bu t also presents a new m odel to  autom ate the sequential 

assignment process. In the first stage, we propose a two-way nearest neighbor search
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approach th a t  elim inates the  requirem ent of user-specified H and N chemical shift 

tolerance thresholds. T he ou tpu t of the first stage is two lists of spin systems. One 

list contains the  perfect spin systems and the o ther the imperfect spin systems. 

In the second stage, connectivity determ ination is perform ed to  resolve the ambi­

guities contained in the im perfect spin systems, and the  string assignm ent would 

be included as a subroutine to  determ ine the confident connectivity inform ation. 

In our approach, once the  am biguities in the im perfect spin system s are resolved, 

connectivity determ ination and string  assignment would be com pleted at the same 

time.

thresholds. In all peak grouping models we have seen, the tolerance thresholds are

or not. As a result, different tolerance thresholds would clearly produce different sets 

of possible spin systems, and for the spectral d a ta  w ith the low resolution, a minor 

change of tolerance thresholds would lead to  the a difference in the  final assignment. 

Thus the question of how to choose the tolerance thresholds is a very challenging 

issue in au tom ated  resonance assignment. An intuitive solution to  this issue is to 

use an exhaustive search th a t autom atically  tests all possible tolerance thresholds. 

Obviously, this solution is very time-consum ing and not applicable especially for 

the large protein. D uring our investigation, we noticed th a t the peaks residing 

in the same spin system  usually have closer H and N chemical shifts th an  those 

in different spin systems. Hence we could use the nearest neighbour m ethod to  

differentiate peaks in different spin systems. T he peaks in the  HSQC spectrum  

would be considered as centers, and each peak in CBCA(CO )NH and HNCACB 

would be d istribu ted  to  the  closest center. Given a center C =  (H e, N c) and a peak 

P  =  (Hp, Np, Cp^3), the  distance between them  is defined as

where crp and are the standard  deviations of H and N chemical shifts th a t are 

collected from BioM agResBank (h ttp ://w w w .b m rb .w isc .e d u ). In the  ideal case,

6.2.1 Filtering

The task  of filtering is to  find all perfect spin system s w ithout asking for the  tolerance

required as the cut-offs th a t  decide if two peaks should reside in the same spin system

(6 .1)
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Figure 6.2: Problem s in the  peak grouping.(a) T here are 3 HSQC peaks as 3 centers 
C i, C*2 , C 3 . Each peak is associated w ith the closest center. Only C 3  forms a perfect 
spin system  w ith  6  associated peaks, (b) C i finds the top  6  closest peaks to  form 
a perfect spin system  and meanwhile C 2  forms a perfect spin system  w ith  rest of 
peaks

each center should have 6  peaks d istributed to  it in to tal. However, due to  the 

chemical shift degeneracy, some centers m ay have less th an  6  or even 0  peaks because 

the peaks belonging to  them  m ight be closer to  o ther centers, which makes those 

other centers have more th an  6  peaks. Figure 6.2 illustrates a simple example w ith  3 

HSQC peaks as centers for this situation. In the ideal case, each center should have 

6  peaks in to tal. However, only one perfect spin system  w ith  center C 3  is formed 

because the two peaks belonging to  center C \ are closer to  center C 2 , which creates 

ambiguities in bo th  spin systems. Nevertheless, if we place the focus on center C \, 

we m ay find th a t its two peaks residing in the wrong spin system  are still in its top 

6  closest peaks. If the  spin system  w ith center C \ is formed by adding these two 

peaks (see Figure 6.2(b)), the spin system  w ith center C2 also becomes a perfect 

spin system . We designed a bidirectional nearest neighbour model in Filtering, which 

consists of two steps: Residing and Inviting. In the Residing step, we associated each 

peak in the CBCA(CO )NH and HNCACB spectrum  w ith  the closest HSQC peak. 

If the HSQC peak w ith its associated peaks in the CBCA(CO )N H and HNCACB 

spectrum  form a perfect spin system, the resu ltan t spin system  is inserted into the 

list of perfect spin systems and the contained peaks are removed from the  nearest 

neighbour model. In the Inviting step, each peak in the HSQC spectrum  looks
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for the top k  closest peaks in the CBCA(CO)NH and HNCACB spectrum , and 

if a perfect spin system  can be formed w ithin these k  peaks, the  sim ilar procedure 

would be conducted for the formed perfect spin system  and its contained peaks. The 

param eter k is related  to  the num ber of peaks contained in a perfect spin system. 

It is usually specified as 1.5 times the num ber of peaks in a perfect spin system. It 

can be autom atically  com puted in the program  w ith  respect to the  inpu t peak lists. 

The aforem entioned two steps would be continually executed until no perfect spin 

system  can be found and two lists of spin system s are produced. One list contains 

the perfect spin system  and the o ther list saves the im perfect spin systems. T he user 

could specify the m axim al H and N tolerance thresholds to  speed up the  process, 

bu t a m inor differences in the  m axim al tolerance thresholds would no t affect the 

perform ance of th is model. T he pseudocode of F iltering is in the  following;

Phase 1: F il te r in g

I n p u t :  HSQC, CBCA(CO)NH, HNCACB peak lists.

R e s id in g : For each peak in CBCA(CO )N H and HNCACB, find the 
closest peak in HSQC. Remove those peaks th a t form perfect spin sys­
tems.

In v it in g : For each peak in HSQC, find top  k  peaks in CBCA(CO)NH 
and HNCACB. Remove those peaks th a t form perfect spin systems.

Stop if no perfect spin system  is found.

6 .2 .2  R e so lv in g

The goal of the  Resolving step  is to  identify the tru e  peaks contained in the  imperfect 

spin system  and then  to  conduct the connectivity determ ination and string  assign­

m ent. Nevertheless, it is very hard  to  distinguish between true peaks and false peaks 

when each im perfect spin system  is individually checked. During our development, 

we found th a t in m ost cases the spin systems containing true  peaks could produce 

more confident connectivity inform ation th an  those containing false peaks. Hence 

we believed th a t  we could ex tract the true  peaks from the im perfect spin systems
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through the search of high confident connectivity inform ation contained among the 

perfect spin systems and imperfect spin systems, and those peaks used in building 

confident connections would have a high probability  of being tru e  peaks.

The relationships between spin systems are form ulated into the connectivity 

graph sim ilar to  CISA as we discussed in the  previous chapter. Given two per-

Here b o th  5a  and Sg are pre-determ ined tolerance thresholds, which are typically set 

to  0.2ppm  and 0.4ppm, though m inor adjustm ents are sometimes necessary to  ensure 

a sufficient am ount of connectivities. Given one perfect spin system  i>* =  (Ht , N,,

where l ,k  €  [1 . m] and p, q 6  [1, n]. The carbon chemical shifts w ith  subscripts l ,k  

represent the in tra  chemical shift and those w ith  subscripts p, q representing the 

inter chemical shifts. If bo th  |C“ — C", <  Sa and |C^ — C jq\ < Sg hold, then  there 

is an edge from u; to  v'j  w ith  its weight calculated as

If bo th  |C“j — C“ | < Sa  and | C^, — C f | < Sg hold, then  there is an edge from v'j  to 

Vi w ith its weight calculated as

It is possible th a t there are m ultiple connections between one perfect spin system  

and one im perfect spin system  bu t a t m ost one connection could be true. Given two 

imperfect spin systems, no connection is allowed.

W ith  the connectivity graph constructed, we use essentially the same heuristic

generated p a th  m apping to  the targe t protein. Given a path , its quality  or m apping

feet spin system s vt =  (Hi, Nj, C“ , C[ , C f_1; Cf_x) and v3 — (H f, Nj,  C“ , C j,

C j- l )  ^  bo th  C“ — C“_ 1| <  Sa and |C f — C^_1| <  Sg hold, th en  there is an edge 

from Vi to  Vj w ith  its weight calculated as

C f ,  C f , C f_1, Cf_1) and one imperfect spin system  vj — (H,-, N j, C ^ ,  C?2,- • -,C“m, 

Cii> r  ' we check eac]l leSal com bination u'. =  (H j, Nj,  C°j, C?k, Cfp,C?g)

(6 .2 )

search algorithm  in CISA [67], in which the search is guided by the quality of the
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score is m easured by the  average likelihood of the best m apping position for the pa th  

on the targe t protein. T he edge weights are used to  order the edges coming out of 

the ending spin system  in the current p a th  to provide the candidate spin system s for 

the current p a th  to  grow to. It has been observed th a t a sufficiently long p a th  itself 

is able to  detect the succeeding spin system  by taking advantage of the discerning 

power of the scoring scheme ([6 8 ]). In each iteration, GASA s ta rts  w ith an O p e n  

L is t (OL) of pa ths and seeks to  expand the one w ith the best m apping score. 

A nother list, C o m p le te  L ist(C L ), is used in the algorithm  to save those com pleted 

paths. In the following, we briefly describe the algorithm  for finding connectivity 

determ ination and resolving the ambiguities in im perfect spin systems.

Phase 2: G A S A

O L  In i t ia l iz a t io n :  Let G  denote the constructed connectivity graph. We 

first search for all unam biguous edges in G. We expand those edges into 

simple pa ths w ith  a pre-defined length L  by b o th  tracing their head vertices 

backward and their ta il vertices forward. T he tracing would stop if either of 

the following conditions is satisfied. (1) The new traced vertices are sitting  in 

the  paths. (2) The length of the  p a th  is L. T he paths stored in OL are sorted 

in the  non-increasing order of their m apping scores. The size of OL is shrunk 

to  a fixed size S  and only the first S  paths in OL are kept for the trade-off 

between com puting tim e and accuracy.

P a t h  G ro w in g : In th is step, the algorithm  tries to  bidirectionally expand 

the top ranked p a th  stored in OL. Denote this p a th  as P , the first vertex in P  

as h  and the last vertex in P  as t. All directed edges incident to  h and incident 

from t  are considered to  generate potential child paths. For every potential 

child path , the algorithm  finds its best m apping position in the  ta rg e t protein 

and calculates the  best m apping score. If its m apping score is higher th an  

th a t of some p a th  already stored in OL, then  the child p a th  is added into OL 

(and the p a th  w ith  least m apping score is removed from OL). If none of the 

po ten tial child paths of P  is added into OL or P  is not expandable in either 

direction, p a th  P  is added into CL. T he algorithm  proceeds to  consider the 

top ranked p a th  in OL iteratively and the growing process is done when OL
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becomes empty.

C L  F in a liz in g : Let P  denote the p a th  of the highest m apping score (tie 

is broken to  the longest path ) in CL. O ther pa ths in CL w ith  b o th  length 

and score less th an  90% of the length and score of p a th  P  are discarded from 

further consideration. T he rem aining paths are considered to  contain reliable 

connectivities and would be examined further.

C o n n e c t iv i ty  F i l te r in g :  Only those edges occurring in a t least 90% of the 

p aths in CL are chosen as reliable connectivities and the o ther edges are re­

moved from further consideration. Subsequently, paths w ith  edges removed 

are broken down into shorter pieces.

A m b ig u itie s  R eso lv in g : At this stage, the pa ths in CL are considered to 

contain only reliable connectivities. T he longest one of them  is the  target in 

this iteration. Denote this p a th  as P . The spin system s on P  are removed 

from the connectivity graph G, as well as the edges incident to /from  them. 

For the im perfect spin systems in P , the  peaks used to  build the  connections 

in P  could be considered as tru e  peaks. If the  rem aining connectivity graph 

is still non-empty, the algorithm  proceeds to  the next iteration. Otherwise, 

it term inates and reports the assignment, i.e., the  strings it found and their 

m apping positions on the targe t protein.

6.3 Experim ents

Four experim ents are designed to  evaluate the  value of our work by com paring the 

perform ance of GASA w ith  recently developed m ethods.

In the previous chapter, we com pared CISA, which is a subcom ponent of GASA, 

w ith  PACES [22] on the  PACES datasets. In  th e  first two experim ents, we use 

our sim ulated dataset to  make a full com parison w ith  more published m ethods on 

connectivity determ ination. T he test results further dem onstrate the perform ance of 

combining connectivity determ ination w ith string assignm ent by com paring GASA 

w ith RANDOM  [47], PACES, and MARS [45]. O ur sim ulated datase t contains 12 

proteins from [76], which do not have solved structures and thus would no t bias the 

chemical shift signature information.
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T he purpose of the th ird  and the fourth experim ents is to  to  dem onstrate the

advantage of merging all peak grouping, connectivity determ ination, and string

assignment together into a single itera ted  process by com paring GASA w ith  RIBRA.

In the th ird  experim ent, we re-examine the 5 released datasets by RIBRA, which are

sim ulated from the  real protein NM R d a ta  deposited in BioM agResBank. In this

experim ent, GASA perform ed basically as good as RIBRA. In the  fourth  experim ent,

we sought out another sim ulation which we thought was much closer to  the  reality

to determ ine w hether the results for RIBRA  d a ta  are representative.

All three program s in the first two experim ents, RANDOM , PACES, and MARS,

reported  the sam e sta tistic  (they m ay use different term s), which we denoted as

accuracy. T he definition of accuracy is

num ber o f  correctly assiqned  sp in  sy s tem s
accuracy = --------------  -------— — ---- :----------------   .

num ber o f  available sp in  sy s tem s

To make fair comparison, we also provide the same sta tistic  in the first two experi­

m ents. This also helps us justify  our sim ulation and tests by com paring our results 

w ith those reported  in the original publications of these three program s.

RIBRA, however, defines two different criteria, nam ely precision  and recall, to 

m easure the perform ance. In particular,

num ber o f  correctly assigned  am ino  acids
precision  — ---------------------------------------         ,

num ber o f  assigned  a m m o  acids

num ber o f  correctly assigned  am ino  acids 
num ber o f  am ino  acids w ith  know n  answ ers  

We use the same criteria in the th ird  and fourth experim ents to  facilitate the com­

parison.

6 .3 .1  D a ta s e t  G en er a tio n

In the literature, the sim ulation procedure of peak lists or spin system s from d a ta  

entries deposited in BioM agResBank is basically the  same in all simulations. The 

difference is w hat type of errors should be sim ulated and how to  sim ulate them . 

In [76], 14 proteins were carefully chosen to  form datasets for sim ulation studies 

on the proposed constrained b ipartite  m atching m odel for sequential assignments. 

These proteins do not have solved atom ic structures and were not used to  derive 

the  scoring scheme adopted in our experim ents. Among these proteins, bmr4309
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and bmr4393 d a ta  entries in BioM agResBank do not contain carbon b e ta  chemical 

shifts and thus cannot be used for our sim ulation purposes. As a result, only 12 of 

them  were included in our datasets, whose lengths range from 6 6  to  215.

We first introduce how we sim ulate the spin systems for the first two experim ents. 

The following is the sim ulation procedure for generating the  spin system  containing 

H, N, C“ , and C ;3 chemical shifts. O ther types of chemical shifts can be added 

in the same way. For each of these 12 proteins, we ex tracted  its d a ta  entry from 

BioM agResBank to  obtain  all the chemical shift values for the am ide pro ton  H, the 

directly a ttached  nitrogen N, the carbon alpha Ca , and the carbon b e ta  O'5. For 

each amino acid residue, except proline and glycine, the four chemical shifts together 

w ith carbon alpha C“ and carbon b e ta  O '9  chemical shifts from the preceding residue 

formed the initial spin system. In the case of proline residues, we excluded them  

from the  sim ulation because in the real NM R data , there would not be spin systems 

for prolines since there would not be HSQC peaks for them . N ext, for each initial 

spin system, chemical shifts for intra-residue Ca and C '3  were pertu rbed  by adding to 

them  random ized errors th a t follow independent norm al distributions w ith  0  mean 

and constant s tandard  deviations.

Next, we describe how we sim ulate the peak lists for the  th ird  and fourth 

experim ents. T he following is the sim ulation procedure for the Perfect HSQC, 

CBCA(CO)NH and HNCACB peak lists, which is also applied for generating o ther 

spectral peak lists. Given one d a ta  entry in BioM agResBank, we ex tracted  all the 

chemical shift values for the  amide proton H, the directly attached  nitrogen N, the 

carbon alpha Ca , and the carbon b e ta  C'3. For each amino acid residue, except 

proline, its H and N chemical shifts form a peak in HSQC peak list, its H and N 

chemical shifts w ith Ca and Cl3 chemical shifts from the preceding residue form 

two inter peaks respectively in CBCA(CO)NH peak list, and its H and N chemical 

shifts w ith its own C“ and C '3  chemical shifts and w ith C“ and C33 chemical shifts 

from the preceding residue form two intra-residue peaks and two inter-residue peaks 

respectively in HNCACB peak list. For glycine, it has a t m ost two inter-residue 

peaks and one intra-residue peak in the HNCACB spectrum  since it does not have 

the C13 chemical shift. If the preceding residue is glycine, then  only one inter-residue 

peak in the CBCA (CO )N H spectrum  and a t most two intra-residue peaks and one
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inter-residue peak in the HNCACB spectrum  are sim ulated. M any types of errors 

can be added into the perfect peak lists to  make the  sim ulated d a ta  closer to  the 

reality. For example, we can sim ulate missing peaks by removing some peaks from 

peak lists, generate some false peaks in the peak lists as noise and sim ulate chemical 

shift divergence by including some m easuring errors into each peak.

6 .3 .2  E x p er im e n t 1

In the first experim ent, we applied the aforem entioned procedure for spin system 

generation w ith the  widely accepted tolerance thresholds for C“ and C ;3 chemical 

shifts, which were 5a =  0.2ppm and <5g =  0.4ppm, respectively [78, 22, 6 , 45]. Sub­

sequently, the s tandard  deviations of the norm al distributions were set to  0 .2 / 2 .5 =  

0.08ppm and 0.4/2.5 =  0.16ppm, respectively. These 12 instances, w ith  suffix 1, 

are sum m arized in Table 6.1. In order to  test the  robustness of all th ree program s, 

we generated another set of 1 2  instances through doubling the tolerance thresholds 

(th a t is, Sa =  0.4ppm  and Sg =  0.8ppm). They, having suffix 2, are also sum m arized 

in Table 6.1. We use # C E  to denote the num ber of correct edges (i.e. true  edges) 

in the connectivity graph and # W E  to denote the num ber of wrong edges. B oth 

these two quantities tell to  some extent how good the  tolerance thresholds are. For 

every vertex in the  graph, the num ber of edges coming out is called its out-degree. 

The average out-degree of the  graph is defined to  be the  sum of the  out-degrees 

over all the  vertices (or equivalently, the num ber of edges in the graph) divided by 

the num ber of vertices. Such a notion of average out-degree (denoted as Avg.OD) 

captures the complexity (or the density) of the connectivity graph. Obviously, Table 

6 . 1  tells th a t instances in the second set are much harder th an  the corresponding 

ones in the first set, where the  complexity of an  instance could be m easured by the 

average out-degree of the vertices in the connectivity graph.

All four program s —  RANDOM , PACES, MARS, and GASA —  were called 

to  run on bo th  sets of instances. The perform ance results of RANDOM , PACES, 

MARS, and GASA on bo th  sets of instances are collected in Table 6.2. Their 

assignment accuracies on two sets are also p lo tted  in F igure 6.3.

In summary, RANDOM  achieved on average 50% assignm ent accuracy (We fol­

lowed the  exact way of determ ining accuracy as described in [6 ], where 1 0 0 0  itera-
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Length 6a =  0.2ppm, 5fj =  0.4ppm 5a =  0.4ppm, 6/3 =  0.8ppm
InstancelD # C E # W E Avg.OD InstancelD # C E # W E Avg.OD

6 6 bmr4391.1 63 2 0 1.30 bmr4391.2 63 46 1.72
6 8 bmr4752.1 65 43 1.64 bmr4752.2 65 1 2 0 2.80
78 bm r4144.1 71 2 0 1.26 bmr4144.2 71 77 2.06
8 6 bmr4579.1 82 81 1.96 bmr4579.2 82 219 3.58
89 bmr4316.1 84 118 2.61 bmr4316.2 84 309 4.62

105 bmr4288.1 93 25 1.26 bmr4288.2 93 89 1.94
1 1 2 bmr4670.1 1 0 1 24 1 . 1 2 bmr4670.2 1 0 1 1 0 0 1.79
114 bmr4929.1 109 34 1.30 bmr4929.2 109 117 2.05
115 bmr4302.1 107 18 1.16 bmr4302.2 107 87 1.80
116 bmr4353.1 97 30 1.30 bmr4353.2 97 106 2.07
158 bmr4027.1 147 71 1.48 bmr4027.2 147 252 2.70
215 bmr4318.1 190 157 1.82 bmr4318.2 190 553 3.90

Table 6.1: 24 instances for the first experiment: ‘L ength’ denotes the  length of a 
protein, m easured by the num ber of amino acid residues therein; ‘# C E ’ records 
the num ber of Correct Edges in the connectivity graph, which ideally should be 
equal to  the num ber of available spin systems minus 1 , and ‘# W E ’ records the 
num ber of W rong Edges, respectively; ‘A vg.O D’ records the  average Out-Degree of 
the connectivity graph.

tions for each instance have been run), which is roughly the  same as th a t claimed 

in the original paper [6 ]. PACES perform ed be tte r th an  RANDOM , b u t it failed on 

seven instances where the  connectivity graphs were too complex (com puter m em ory 

ran  out, see Discussion for more inform ation). T he collected results for PACES 

on these seven instances were obtained through m anually reducing the  tolerance 

thresholds to  remove a significant portion  of edges from the connectivity graph. We 

im plem ented a scheme th a t if PACES did not finish an  instance in 8  hours, th en  the 

tolerance thresholds would be reduced by 25%, for example, from 5a =  0.2ppm to 

5a = 0.15ppm. B oth  GASA and MARS outperform ed PACES and RANDOM  in all 

instances, and even more significantly on the second set of more difficult instances, 

while GASA perform s slightly be tte r th an  MARS on two datasets.
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Length Sa =  0.2ppm, 5p — 0.4ppm
InstancelD RANDOM PACES MARS GASA

6 6 bmr4391.1 0.63 0.72 0.87 0.97
6 8 bmr4752.1 0.35 0.79 0.97 0.94
78 bm r4144.1 0.33 0.53 0.97 0.99
8 6 bmr4579.1 0.51 0.62* 0.91 0.98
89 bmr4316.1 0.36 0.40* 0.96 0.99

105 bmr4288.1 0.55 0.71 0.95 0.98
1 1 2 bmr4670.1 0.62 0.77 0 . 8 8 0.95
114 bmr4929.1 0.63 0 . 8 6 0.97 0.91
115 bm r4302.1 0.64 0.73 0.92 0.95
116 bmr4353.1 0.43 0.79 0.85 0.95
158 bmr4027.1 0.32 0.82 0.93 0.99
215 bmr4318.1 0.38 0.54* 0.81 0.84

Avg. 0.48 0.69 0.90 0.95
Length Sa — 0.4ppm, 5/3 =  0.8ppm

InstancelD RANDOM PACES MARS GASA
6 6 bmr4391.2 0.55 0.69 0.85 0.91
6 8 bmr4752.2 0.30 0.74* 0.90 0 . 8 8

78 bmr4144.2 0.31 0.38 0.97 0.99
8 6 bmr4579.2 0.32 0.43* 0.75 0.80
89 bmr4316.2 0.30 0.18* 0.92 0.83

105 bmr4288.2 0.38 0.53 0.93 0.91
1 1 2 bm r4670.2 0.39 0.57 0.81 0.87
114 bm r4929.2 0.43 0.77 0.97 0.94
115 bmr4302.2 0.45 0.49 0.80 0.91
116 bmr4353.2 0.43 0.61 0.80 0.90
158 bmr4027.2 0.30 0.32 0.81 0.85
215 bmr4318.2 0 . 2 2 0.45* 0.75 0.70

Avg. 0.37 0.51 0.85 0.87

Table 6.2: Assignment accuracies of RANDOM , PACES, MARS, and GASA in 
the first experim ent. * PACES perform ance on these 3 datasets were obtained by 
reducing tolerance thresholds to  Sa =  0.15ppm and 6p =  0.3ppm  (75%). 1 PACES 
perform ance on this dataset was obtained by reducing tolerance thresholds to  6a =  
0.3ppm and Sp — 0.6ppm (75%). * PACES perform ance on these 3 datasets were 
obtained by reducing tolerance thresholds to  8a — 0.2ppm and Sg =  0.4ppm (50%).
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Figure 6.3: P lo ts of assignment accuracies for RANDOM , PACES, MARS, and 
GASA on two sets of instances with, different tolerance thresholds, using C“ and 
chemical shifts for connectivity inference.
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6 .3 .3  E x p e r i m e n t  2

The instances used in the second experim ent are for the same set of proteins used 

in the first experim ent, excluding bmr4391 and bmr4316 because their d a ta  entries 

do not have carbonyl C chemical shifts. The experim ent was designed to  com pare 

the perform ance among PACES, MARS, and GASA. Five chemical shifts, H, N, CQ, 

C@, and carbonyl C, were included. T he RANDOM  is excluded in th is experim ent 

because it only processes C" and O '3 chemical shifts. As w ith the datase t generation 

in the first experim ent, a spin system  here included additionally the chemical shifts 

for the intra-residue carbonyl C and for the carbonyl C in the preceding residue. 

C“ , C3 , and carbonyl C chemical shift values were used to  infer the  connections. 

The tolerance threshold for carbonyl C chemical shift was set a t 5 =  0.15ppm, and 

subsequently the  standard  deviation in the error d istribu tion  was set a t 0.15/2.5 =  

0.06ppm. For the same reason as in the first experim ent, we also generated another 

set of more difficult instances to  test the robustness of bo th  program s through 

doubling the tolerance thresholds. These two sets of 2 0  instances are sum m arized 

in Table 6.3.

Length Sa =  0.2ppm, 5fj =  0.4ppm, 6 =  0.15ppm <Sa =  0.4ppm, Sp =  0.8ppm, <5 =  0.30ppm
InstancelD # C E #W E Avg.OD InstancelD #C E # W E Avg.OD

6 8 bmr4752.1 65 15 1 . 2 1 bmr4752.2 65 95 2.60
78 bmr4144.1 71 3 1.03 bmr4144.2 71 45 1.61
8 6 bmr4579.1 82 53 1.63 bmr4579.2 82 188 3.25

105 bmr4288.1 93 1 1 . 0 1 bmr4288.2 93 32 1.33
1 1 2 bmr4670.1 1 0 1 7 1.06 bmr4670.2 1 0 1 39 1.37
114 bmr4929.1 109 8 1.06 bmr4929.2 109 60 1.54
115 bmr4302.1 107 4 1.03 bmr4302.2 107 46 1.54
116 bmr4353.1 97 1 0 1.09 bmr4353.2 97 37 1.38
158 bmr4027.1 157 1 1 1.06 bmr4027.2 157 91 1.57
215 bmr4318.1 190 25 1.13 bmr4318.2 190 214 2 . 1 2

Table 6.3: 2 0  instances for the  second experim ent. For the  meanings of the  notations, 
refer to  the  caption for Table 6.1.

The perform ances of PACES, MARS, and GASA on bo th  sets of instances are 

collected in Table 6.4. T heir assignment accuracies on two sets are also p lo tted  in 

Figure 6.4. In summary, GASA and MARS outperform ed PACES significantly on 

both  test sets.
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Figure 6.4: P lots of assignm ent accuracies for PACES, MARS and GASA on two 
sets of instances w ith different tolerance thresholds, using C“ , C'3, and carbonyl C 
chemical shifts for connectivity inference.
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Length 8a =  0.2ppm, S/3 =  0.4ppm, 5 =  0.15ppm 5a =  0.4ppm, 5/3 =  0.8ppm, 5 =  0.30ppm
InstancelD PACES MARS GASA InstancelD PACES MARS GASA

6 8 bmr4752.1 0.78 0.98 0.97 bmr4752.2 0 . 8 8 0 . 8 8 0.85
78 bmr4144.1 0.60 0.96 0.99 bmr4144.2 0.64 0.96 0.96
89 bmr4579.1 0.78 0.92 0.98 bmr4579.2 0 .6 6 * 0.90 0.80

105 bmr4288.1 0.79 0.93 0.97 bmr4288.2 0.79 0.92 0.97
1 1 2 bmr4670.1 0.60 0.92 0.98 bmr4670.2 0.61 0.91 0.94
114 bmr4929.1 0 . 8 6 0.99 0.99 bmr4929.2 0 . 8 6 0.94 0.96
115 bmr4302.1 0 . 6 8 0.96 0.97 bmr4302.2 0 . 6 8 0.96 0.99
116 bmr4353.1 0.71 0.93 0.95 bmr4353.2 0.75 0 . 8 8 0.94
158 bmr4027.1 0.71 0.94 0.99 bmr4027.2 0.69 0.93 0.96
215 bmr4318.1 0.60 0.96 0.95 bmr4318.2 0.41* 0.89 0.87

Avg. 0.71 0.95 0.98 0.70 0.92 0.93

Table 6.4: Assignment accuracies of PACES, MARS and GASA in the second ex­
perim ent. *PACES perform ance on these 2 datasets were obtained by reducing 
tolerance thresholds to  5a =  0.3ppm, 5p =  0.6ppm, and 6 =  0.225ppm (75%).

6 .3 .4  E x p e r im e n t 3

In RIBRA, 5 datasets were sim ulated from the d a ta  entries deposited in BioMa­

gResBank. Among them , one is a P erfect datase t generated by using alm ost the 

same aforem entioned sim ulation procedure, and the o ther four datase ts reflect four 

different types of errors respectively. T he first dataset, called False positive, is 

generated by respectively adding 5% fake carbon peaks into perfect CBCA(CO )NH 

and HNCACB peak lists. T he second one, called False negative, is generated 

by random ly removing a small portion of inter-residue carbon peaks from perfect 

CBCA(CO)NH and HNCACB peak lists. The th ird  one, called G rouping error, 

is generated by adding H, N, C“ and C^ m easuring errors into inter-residue peaks 

in the perfect CBCA(CO)NH peak list. T he fourth one, called Linking error, is 

generated by adding Ca and O '3  m easuring errors into inter-residue peaks in the 

perfect HNCACB peak list.

Table 6.5 presents the perform ances of RIBRA and GASA on these 5 datasets. 

As shown, there is no significant difference among the perform ances on the Perfect, 

False positive and Link error datasets. GASA shows more robustness on the 

False negative datase t w ith  missing d a ta  while RIBRA  perform s b e tte r  on the 

G rouping error dataset. T hrough a detailed investigation, we found th a t these 

5 datasets contain the C '3 inter-residue and intra-residue peaks w ith  0 C /3 chemical
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D ataset RIBRA GASA
Precision Recall Precision Recall

Perfect 0.98 0.92 0.98 0.93
False positive 0.98 0.92 0.97 0.92

False negative 0.96 0.77 0.96 0.89
G rouping error 0.98 0.89 0.91 0.81

Linking error 0.96 0.89 0.96 0.90
Average 0.97 0 . 8 8 0.96 0.89

Table 6.5: Com parison results for RIBRA  and GASA in experim ent 2.

shifts for glycine, indicating th a t in the RIBRA sim ulation, glycine would have two 

inter-residue peaks and two intra-residue peaks in the HNCACB spectrum  and the 

amino acid residues w ith the preceding glycine would have two inter-residue peaks 

in the CBCA (CO )N H spectrum . However, this is not tru e  in real NM R spectral 

data. In fact, a large num ber of am biguities in the sequential assignm ent result 

from glycine because it produces various legal com binations in the  peak grouping 

thus m aking the identification of perfect spin system s even harder. For example, 

the spin system s containing 3,4 and 5 peaks have the same chance to  be perfect 

spin systems as those containing 6  peaks and meanwhile they could be considered 

as the spin systems w ith missing peaks. Thus the  peak grouping is much easier on 

the datase t w ith the sim ulated C'6 peaks for glycine. Since the GASA algorithm  is 

designed to  deal w ith  the real spectral data , we deleted the peaks w ith  0  carbon 

chemical shifts. This is why our perform ance on the G rouping error datase t is not 

as good as RIBRA. To verify our hypothesis, we random ly selected 14 proteins w ith 

length ranging from 69 to  186 in the G rouping error dataset, and removed all 

the peaks w ith  0  O 3 chemical shift. B oth  RIBRA  and GASA were tested  on them . 

RIBRA achieved 0.88 precision and 0.73 recall, and GASA achieved 0.89 precision 

and 0.79 recall (See Table 6 .6 ). One could argue th a t the  O '3  peaks w ith  0 chemical 

shifts for glycine can be artificially sim ulated in real NM R spectral d a ta  by using 

glycine’s expected H and N chemical shifts, since the prim ary protein  sequence is 

known. However, the large ranges of H and N chemical shifts for glycine would make 

the sim ulated C’3 peaks be processed as fake peaks in m any cases. Therefore, we 

th ink  the  O'3 peak for glycine should not be generated in these sim ulations. A nother 

weakness in the RIBRA  sim ulation is th a t  in the construction of G rouping error
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BMRB
Entry

Len Missing RIBRA GASA
Precision Recall Precision recall

4579 86 4 0.83 0.65 0.90 0.82
4688 111 9 0.71 0.45 0.89 0.77
4790 118 28 0.78 0.63 0.96 0.74
4898 86 4 0.86 0.68 0.92 0.82
4938 132 4 0.87 0.71 0.85 0.77
4954 97 3 0.97 0.82 0.86 0.82
4984 151 7 0.85 0.65 0.85 0.75
5003 112 7 0.96 0.66 0.88 0.79
5107 101 6 0.86 0.83 0.81 0.72
5130 130 3 0.98 0.88 0.91 0.85
5148 98 22 0.92 0.91 0.96 0.85
5168 69 3 0.93 0.82 0.91 0.89
5272 186 39 0.81 0.64 0.85 0.74
5337 111 21 0.95 0.84 0.91 0.80
Avg 0.88 0.73 0.89 0.79

Table 6.6: Com parison results for RIBRA  and GASA on 14 proteins w ithout C@ 
peaks for glycine.

datasets, R IBRA  kept the perfect HSQC and HNCACB peak lists untouched and 

only added some m easuring errors into the inter-residue peaks in the  CBCA(CO)NH 

peak list. This sim ulation looks a b it far from the reality  because the chemical shifts 

deposited in BioM agResBank have been m anually adjusted. Even though the HSQC 

spectrum  is a very reliable experim ent, the deposited H and N chemical shifts in 

BioM agResBank are still slightly different from the m easured values in a real HSQC 

spectrum . We believe th a t to  sim ulate a real NM R spectral datase t, perturb ing  

chemical shifts in all perfect peak lists is necessary. In Experim ent 4, we present 

our sim ulation and the corresponding com parison results w ith RIBRA.

6.3.5 Experim ent 4

The purpose of Experim ent 4 is to  provide more convincing results based on a be tte r 

simulation. Again, we still used the same dataset in the first two experim ents to 

conduct the simulation. To make fair com parison w ith  RIBRA, we sim ulated only 

three peak lists, HSQC, CBCA(CO)NH and HNCACB from each protein  in the 

dataset, although our program  can deal w ith m any other combinations. For each of

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



these 12 proteins, we first build the  perfect HSQC, CBCA (CO )N H and HNCACB 

by using the general sim ulation procedure m entioned above. There is no G6 peak 

for glycine in the  CBCA(CO)NH and HNCACB spectrum . For each peak in the 

HSQC, CBCA(CO )NH and HNCACB spectrum s, the contained H, N, Ca or Ĉ 3 

chemical shifts were pertu rbed  by adding to  them  random ized errors th a t follow 

independent norm al distributions w ith 0 means and constant s tandard  deviations. 

We chose the same tolerance thresholds as those used in RIBRA, which were <5h =  

0.06ppm for H, <5n =  0.8ppm for N, Sa — 0.2ppm for Ca and dp =  0.4ppm for 

C^, respectively. Subsequently, the standard  deviations of the norm al distributions 

were set to  0.06/2.5 =  0.0024ppm, 0.8/2.5 =  0.32ppm 0.2/2.5 =  0.08ppm  and 

0.4/2.5 =  0.16ppm, respectively.

T he com parison results of the  second experim ent on these 12 proteins are sum­

m arized in Table 6.7. T he precision and recall are also p lo tted  in Figure 6.5. In 

summary, GASA outperform ed RIBRA in all instances while R IBRA  failed to  solve 

three instances, which are bmr4316, bmr4288 and bmr4929. As shown in Table 6.7, 

RIBRA only achieved 0.65 precision and 0.42 recall on average, which are notice­

ably worse th an  w hat it claimed in [73], while GASA achieved 0.87 precision and 

0.74 recall. The possible explanations could be (1) the sim ulation procedure in this 

experim ent did not generate the C'3 peaks w ith  0 carbon chemical shift for glycines, 

which causes more am biguities in the  peak grouping. (2) In our sim ulated dataset 

of Experim ent 4, the  chemical shifts in all perfect peak lists were pertu rbed  w ith 

random  m easuring errors, which generated more uncertainties in all operations in 

the  sequential assignment.

6.4 Sum m ary

Peak grouping is one of the three stages in the  au tom ated  procedure of the NMR 

sequential assignment. T hough the quality and quan tity  of spin system s produced 

in the peak grouping have the m ost significant effect on the  assignm ent, there has 

been surprisingly little  work done to  improve the precision of peak grouping. This 

chapter addresses the hard  issues in the  peak grouping, such as how to  elim inate the 

sensitivity to  the pre-specified tolerance thresholds. We developed a novel two-stage 

graph-based algorithm , called G A S A  and evaluated its perform ance in four ex-
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Figure 6.5: P lots of precision (a) and recall (b) for RIBRA and GASA in Experim ent 
4.

■ RIBRA □ GASA

4391 4752 4144 4579 4316 4288 4670  4929 4302 4353 4027  4318

(a)

I  RIBRA n G A S A

m l
4391 4752 4144 4579 4316 4288 4670 4929 4302 4353 4027  4318

(b)
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BMRB
Entry

Len Missing RIBRA GASA
G rouped Precision Recall G rouped Precision recall

4391 6 6 7 44 0.65 0.49 52 0.92 0.81
4752 6 8 2 44 0.63 0.42 54 0.91 0.74
4144 78 1 0 42 0.64 0.40 63 0.84 0.78
4579 8 6 3 54 0 . 6 6 0.43 70 0.83 0.70
4316 89 4 N /A N /A N /A 67 0.79 0.62
4288 105 9 N /A N /A N /A 84 0.83 0.72
4670 1 1 2 1 0 47 0.76 0.35 83 0.90 0.74
4929 114 4 N /A N /A N /A 89 0.96 0.77
4302 115 8 70 0.71 0.47 97 0.85 0.77
4353 116 18 72 0.55 0.41 89 0.97 0.87
4027 158 1 0 96 0.65 0.42 123 0.83 0.69
4318 215 24 127 0.60 0.40 165 0.79 0 . 6 8

Avg 0.65 0.42 0.87 0.74

Table 6.7: Com parison results for RIBRA and GASA in Experim ent 4.

perim ents. In the first two experim ents, GASA outperform ed RANDOM , PACES, 

and MARS, which indicates th a t  combining the chaining and assignm ent together 

would efficiently resolve the am biguities and then  make a b e tte r assignment. The 

th ird  experim ent was conducted on the datasets released by RIBRA. O ur program  

perform ed as well as RIBRA on the Perfect, False positive and Link error datasets. 

GASA showed more robustness on the False negative datase t w ith  missing data, 

while RIBRA  was good a t handling the Grouping error dataset. To provide more 

convincing results, we provided a b e tte r sim ulation in the fourth experim ent, which 

was much closer to  the reality. We found strong improvements in all instances com­

pared to  RIBRA. T he perform ance comparisons w ith RANDOM , PACES, MARS, 

and RIBRA dem onstrated  the fact th a t  GASA m ight be more prom ising for prac­

tical use.
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Chapter 7

Conclusions and Future Work
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This thesis describes our research on au tom ated  sequential resonance assignment 

for NM R protein structu re  determ ination. We believe several possible improvements 

could be possible and m ay form the  basis for fu ture research.

7.1 Conclusions

It is well known th a t NM R sequential resonance assignm ent is a critical process in 

protein NM R structu re  determ ination. T he precision of resonance assignm ent has 

a significant effect on the accuracy of protein s tructu re  calculation. In this thesis, 

we have reviewed the literature in NM R resonance assignm ent and conducted a 

thorough analysis on com putational issues not fully resolved in N M R sequential 

resonance assignment. We have also developed some generic models to  tackle these 

issues respectively, which are listed below.

Peak G rouping

Peak grouping takes as input the peak lists extracted  from m ulti-dim ensional 

NM R spectra, and ou tpu ts the  spin systems th a t contain the  chemical shifts 

for atom s from the common residues. M any existing m ethods neglected this 

process in which the only available com putational model is based on a binary- 

decision process. However, in reality, the quality of the peak lists is not suffi­

cient to  make the peak grouping a triv ial task , and the simple binary-decision 

model is ineffective in producing the spin systems of high quality  for most 

cases except for high resolution NM R spectra. We reported  th a t  the  quality 

and quan tity  of spin systems produced in the peak grouping have the most 

significant effect on the sequential assignm ent, and the peak grouping is the 

m ost im portan t stage throughout the whole process th a t is w orthy of more 

atten tion . We have developed a novel two-stage graph-based algorithm , called 

GASA, which outperform ed the  latest work RIBRA. T he perform ance com­

parisons w ith RIBRA  dem onstrated th a t GASA could be more prom ising for 

practical use.

C on nectiv ity  D eterm ination

Given a set of spin systems, the  task  of connectivity determ ination is to  ex tract 

the pair-wise relationships between spin systems, which constrain th a t  some
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pairs of spin systems should be assigned to  consecutive residues in the  target 

protein. We have designed a best-first search algorithm , called CISA, based on 

the  novel heuristics to  perform  the connectivity determ ination. This algorithm  

improves the assignm ent accuracy significantly com pared to  two m ost recently 

proposed sequential resonance assignm ent program s, RANDOM  and PACES.

String A ssignm ent

T he assignm ent process of identified spin system s w ith  connectivity informa­

tion has been form ulated as a constrained weighted b ipartite  m atching problem  

between strings of spin system s and a sequence of amino acids w ith  predicted 

secondary structures. This problem  is N P-hard. We have developed an in­

teger program m ing solver w ithout the sacrifice of tim e efficiency, which can 

com pute the highly confident assignment w ithin seconds.

Scoring Schem e

A ccurately quantifying the signature inform ation of chemical shifts provides 

a foundation for accurate and com plete sequential resonance assignm ent in 

protein NM R spectroscopy. Most studies assume th a t the chemical shift fol­

lows a norm al d istribu tion  and use the norm al density functions to  derive the 

likelihood th a t weighs the m apping of a spin system  to an  am ino acid, which 

is not necessarily true  based on our experim ental results. We have designed 

a statistics based scoring scheme by using Bayesian learning. Extensive simu­

lation studies have been conducted to  validate the different scoring schemes, 

and the one w ith  the  best perform ance has been im plem ented on a public web 

server.

T he experim ental results revealed th a t our models outperform  existing m ethods on 

a num ber of sim ulated datasets and have the poten tial to  au tom ate NM R sequential 

resonance assignment.

7.2 Future Work

We believe our research to  date  has m ade a significant contribution to  the  field of 

NM R protein structu re  determ ination. The models and algorithm s th a t we devel­

oped have been proved to  outperform  m ost recent m ethods, although it has not
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fully satisfied the expectation of NM R researchers. I foresee a greater improvement 

will be m ade if we ex tract more knowledge from NM R data. F u ture a ttem pts are 

outlined below.

M any uncertainties should be taken into account in the scoring scheme, such as 

the accuracy of predicted secondary structure . Combining evidence from other 

approaches properly will provide a more accurate estim ation. Using advanced 

learning models, such as Bayesian networks, m ay improve our current scoring 

scheme.

For connectivity determ ination, our heuristic algorithm  CISA has successfully 

combined the spin system  signature inform ation into the p a th  growing process 

in the connectivity graph, which prunes the search space more effectively th an  

PACES [22], However, in the current version of CISA the weights of edges are 

used only to  order the  child paths. Taking the  idea from RANDOM  [47] th a t 

uses edge weights as edge selection probabilities, we believe th a t some b etter 

usage of edge weights into the m apping score evaluation for a growing p a th  

would help to  quantify the  quality of the growing p a th  more effectively. We 

have tried  some simple linear functions on the edge weights and the  m apping 

scores of paths th a t tu rned  out not to  serve satisfactorily. We are currently 

investigating m ore combinations.

A possible disadvantage of the current version of GASA is th a t wrong edges 

included during the OL initialization m ight continue to  stay in and thus would 

lead to  erroneous final assignments. A lthough this is very unlikely to  happen 

according to  our extensive sim ulation studies, we feel th a t some mechanism 

m ight need to  be set up to  shuffle low m apping score paths th a t  would be 

considered once every a few iterations during the p a th  growing step.

The last bu t not the least, we will extend our work by including structu re 

calculation, since the protein structu re is the final targe t of NM R sequential 

resonance assignment. We have realized the  im portance of the inseparability 

of NM R sequential resonance assignment in this dissertation. We believe th a t 

incorporating the structu re  calculation into NM R sequential resonance assign-
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m ent could be a worthwhile approach to  protein structu re  determ ination 

NMR.
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