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Abstract

The success in sequential resonance assignment is fundamental to protein three di-
mensional structure determination via NMR spectroscopy. In general, the sequential
resonance assignment consists of four components, namely, peak grouping, connec-
tivity determination, string assignment and scoring scheme. The objective of peak
grouping is to classify the detected resonance peaks from multiple NMR spectra
into spin systems. Connectivity determination aims to find the true connectivity
among the grouped spin systems in order to chain them into some strings. The
goal of string assignment is to map the strings of spin systems to non-overlapping
consecutive amino acid residues in the target protein. The task of scoring scheme is
to measure the correlations between the amino acid types and the grouped spin sys-
tems. This thesis thoroughly addresses the computational issues that remain to be
resolved in each component in the sequential resonance assignment process. Several
novel computational models are developed to tackle those issues. We organize this
thesis according to the issues we tackle in the development. First, we discuss the
difficulties in scoring scheme learning, evaluate the existing learning methods with
the string assignment algorithms, and identify the best one. Second, we provide our
solutions to resolve the connectivity determination problem, which supplies valu-
able constraints for computing the reliable resonance assignment. A vital heuristic
is disigned and applied to our solutions. Third, we reveal that the peak grouping,
which is often assumed to be less important and neglected by most researchers, is the
bottleneck in automated sequential resonance assignment. We present our graph-

based solutions based on the improved automated assignment framework to resolve
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the peak grouping and sequential resonance assignment simultaneously. The value
of our approaches to solving the different issues is explored by conducting compari-
son experiments with many recently published similar methods. The experimental
results show that this study has made a significant contribution to the field of NMR
protein structure determination. The performance comparisons demonstrate the
fact that our models would be more promising for practical use. We conclude this
thesis with a discussion of the limitations in our models as well as related future

work.
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Chapter 1

Introduction
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This thesis investigates the computational issues that remain to be resolved in
NMR sequential resonance assignment (e.g., peak grouping and connectivity de-
termination), and provides a number of corresponding solutions. Based upon the
improved automated assignment protocol proposed in this thesis, we design a graph-
based approach to automate the sequential resonance assignment process. This
chapter starts with a brief introduction to our motivations, and then outlines the
basic concepts and issues in the sequential resonance assignment process. Our re-
search to date has made a significant contribution on NMR sequential resonance

assignment and identified several issues for needed follow-up research.

1.1 Motivation

It is well known that proteins act as the most basic working units in life and under-
standing the functions of proteins requires the knowledge of their three dimensional
structure. Protein structure determination is one of the most challenging topics
in the area of structural biology. A variety of methods and techniques have been
developed over the last several decades. Aside from the computer aided structure
prediction through homology modeling and threading, Nuclear Magnetic Resonance
(NMR) spectroscopy and X-Ray crystallography are still the dominant experimen-
tal techniques for protein structure determination. Researchers have now identified
NMR as a superior approach to characterize the dynamics of proteins in solution
because of its efficiency and low cost. Though NMR has not been able to achieve
the same accuracy as X-Ray crystallography, enormous technological advances have
brought NMR to the forefront of structural biology [28] since the publication of
the first complete solution structure of a protein (bull seminal trypsin inhibitor)
determined by NMR in 1985 [70].

The classical approach to protein structure determination involves three stages;
namely, peak picking, sequential resonance assignment and structure determination.
The objective of peak picking is to filter and identify the true resonance peaks from
NMR spectral data. The task of sequential resonance assignment is to map the
picked resonance peaks to the amino acid residues in the protein sequence. Such a
sequential assignment labels the atoms in the target protein with their chemical shift

values. This step provides the guidance for the structural constraint extraction from
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NOESY, scalar coupling, and dipolar coupling spectra. Structure determination cal-
culates the protein structure by using molecular dynamics and energy minimization
under the identified structural constraints, which are extracted from the results of
sequential resonance assignment. Manually conducting each of the three tasks is
difficult and often takes a long time because of the problems frequently confronted
by an NMR spectroscopist within the whole process. These problems involve dif-
ficulties in resolving correlations in crowded spectral regions, complications arising
from dynamics, such as weak and missing peaks, or the fact that some atoms exhibit
more than one peak [62]. Many efforts have been made to automate the whole pro-
cess or at least part of it. In particular, peak picking and structure determination
have been well studied over the past a few years. There are many software packages
currently used in NMR labs, e.g., NMRView [43] for peak picking and X-Plor [17]
for structure generation. Though the sequential resonance assignment problem is
relatively easy for small proteins, it becomes more complicated and time-consuming
for large ones. Since high-throughput NMR protein structure determination directly
relies on high-throughput sequential resonance assignment, considerable research ef-
forts have been dedicated to automate the sequential resonance assignment in the
last two decades. To date, several programs have been developed. However, surpris-
ingly, none of them has been widely used in NMR labs because of the unsatisfactory

assignment accuracy in practice. Several observations can be made.

(1) The use of some tools are limited to small proteins with well resolved spectra.
These tools often fail to produce assignments for datasets with a general degree
of chemical shift degeneracy because of limitations with their exhaustive search

and binary decision strategies.

(2) Some programs require a large number of NMR experiments for cross valida-

tion to resolve resonance or chemical shift ambiguities.

(3) Some programs require too much expertise to understand their internal designs
and methods. Parameter setting are generally very hard to tune, and it seems

that only designers can successfully apply it on real datasets.

(4) Some programs have been tested only on the experimental data generated in

the designer’s lab but do not generalize to the experimental data from other
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labs. This may be due to differences in the experimental environment or

differences in the signal-to-noise ratio in the spectra.

Given the above limitations, most NMR sequential resonance assignments are still
done manually with the aid of some semi-automated software tools. It might even
take months of manual work to produce a nearly complete assignment (i.e. all
identified true peaks are assigned) because the tedious “undo — redo” process oc-
curs fairly often if the data quality is poor. Therefore, designing a robust and
user-friendly automated NMR sequential resonance assignment system can make an

important contribution to the NMR protein structure determination.

1.2 Protein NMR Sequential Resonance Assignment

Scoring Scheme

v , v

Connectivity
Determination

Peak Lists—»  Peak Grouping

» String Assignment [—>Assignments

‘ Spin Systems

[ Yo
- 900
L 16] )

©
@ -

Sequence

Figure 1.1: The framework in NMR sequential resonance assignment

Sequential resonance assignment is an essential step of data analysis before struc-
ture determination and structure refinement being conducted. This process consists
of four components, namely, peak grouping, connectivity determination, string as-
signment and scoring scheme. Figure 1.1 illustrates the framework of a typical

assignment program and the relationships between the different components.

Peak Grouping
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The input to NMR sequential resonance assignment includes multiple peak
lists from multi-dimensional NMR spectra. The goal is to map the intra-
residue chemical shifts to their corresponding amino acid residues in the tar-
get protein. If each peak list is processed separately, the resonance assignment
process would become very complicated because the chemical shifts contained
in one peak list can not provide enough signature information to match to
their host residues. Therefore, the first stage in sequential resonance assign-
ment, peak grouping, will group together the resonance peaks produced by the
same amino acid residue in the different peak lists to form a list of spin sys-
tems. The grouped spin systems, which contain collective signature informa-
tion about their host residues, become the basis for completing the subsequent

assignment steps.

Connectivity Determination

Resonance peaks from multi-dimensional NMR spectra record the nuclear cor-
relations for atoms from a common residue and for atoms from the adjacent
amino acid residues. Therefore, within a spin system, there are chemical shifts
for the nuclei residing in the same amino acid residue and chemical shifts for
the nuclei residing in the preceding residue. The inter-residue chemical shifts
contained in most spin systems can be used as the evidences to determine
whether some spin systems should be chained together and assigned to the
adjacent residues in the protein sequence. This information is referred to as
“connectivity information”. The objective of connectivity determination is
to identify the true connections among different spin systems, and to chain
the spin systems into strings. These strings of spin systems will be assigned
to non-overlapping polypeptide segments in the protein sequence during the

string assignment process (see below).

String Assignment

The task of string assignment is to find the non-overlapping mapping between
strings of spin systems and polypeptide segments in the protein sequence. This
problem can be modeled as a constrained weighted bipartite matching problem

on two disjoint groups, one group containing strings of spin systems and the
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other containing a sequence of amino acids. The spin systems contained in one
string must be matched only with the consecutive amino acids. The weight for
each edge represents the probability of a corresponding mapping between the
matched spin system and the amino acid, which could be computed through

a defined scoring scheme.

The Scoring Scheme

A scoring scheme is used to estimate the likelihood of the mapping between
a spin system and an amino acid type. Accurately quantifying the signature
information of chemical shifts contained in the spin system provides a solid
foundation for an accurate sequential resonance assignment. The performance

of the string assignment directly relies on the discerning power of the scoring

scheme.
H c H c H
N B N 8 N
c H c c H c c
A s A A s A A
c Q N c Q N c
B c H B c H 8
772 133 | if7as (7340 |[7341 |{7340
120329 || (1120456 | 11117499 || 117.553 | | 117,650 |1 117.649
64.701
39838 | 159 58258 || 58253
» 31.407
33,513 37.404 :
v
Protein GLN > CYS > TYR >

Sequence

Figure 1.2: An example in NMR sequential resonance assignment. Three spin sys-
tems are constructed by grouping the peaks from three NMR experiments, which
are HSQC, CBCA(CO)NH and HNCACB. The grouped peaks essentially share the
same H and N chemical shifts. The C$ and C? chemical shifts in one spin system
are compared with C{ ; and Cf_l chemical shifts in other spin systems to build the
possible directed connections.

To illustrate the sequential resonance assignment, Figure 1.2 provides an example of
several peaks from the three NMR spectra: HSQC, CBCA(CO)NH, and HNCACB.
The HSQC spectrum provides pairs of intra-residue chemical shifts (H;, N;), where
i indexes the host residue to which the nuclei H and N belong. The CBCA(CO)NH
spectrum provides triples of chemical shifts (H;, C{ ;,N;) and (H;, Ciﬁ_l, N;); and the
HNCACB spectrum provides triples of chemical shifts (H;, C¢ ;, N,), (H;, C?_l, N,
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(H;,C¥,N;), and (H;, Cf ,N;). Two special cases to be mentioned are (1) prolines do
not have an H nucleus and (2) glycines do not have a C# nucleus. The goal of the
sequential resonance assignment is to assign each chemical shift to its host nucleus
in the target protein. In the theoretically ideal case, the chemical shifts (and thus
peaks) for any given nucleus (a set of nuclei) are identical across all three spectra
and the number of spectral peaks read out of one spectrum exactly matches the
number that should be observed. In other words, one peak in the HSQC spectrum
matches exactly two peaks in the CBCA(CO)NH spectrum and four peaks in the
HNCACB spectrum, through comparing the shared H and N chemical shifts. These
seven peaks are grouped together to form a spin system, which is a multidimensional
vector of the form (H;,N;,CZ, Cf , Gy, C?_l), where chemical shifts indexed i are
intra-residue chemical shifts and those indexed ¢ — 1 are inter-residue ones.

In the connectivity determination step, the inter-residue chemical shifts will be
used as evidences to infer that two spin systems should be mapped to adjacent
residues in the target protein, since they would appear as intra-residue chemical
shifts in the other spin system. Assuming no ambiguity occurs, all spin systems
could be connected in this way to form a string, which is required to be mapped
to a segment of amino acid residues in the target protein by the string assignment
algorithm. For the mapping to be done, the chemical shifts in a spin system are
used either to determine the residue type or to provide a quantified score computed

during the scoring process.

1.3 Issues

In the example shown in Figure 1.2, one can see that the sequential resonance
assignment can be done straightforwardly. In practice, however, due to the problem
of spectral noise and NMR data degeneracy, the chemical shifts observed for a
nucleus are often not identical across the different spectra, some of them might
not be observed, and many noise peaks will be present. Nevertheless, we still need
the ability to compute the highly confident assignment because any minor error
in the sequential resonance assignment would potentially feed erroneous structure
constraints to the structure calculator and thus result in an erroneous structure.

In peak grouping, most existing methods use resonance peaks from the HSQC
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spectra as anchors and map resonance peaks from other spectra to HSQC peaks by
using a binary decision strategy with setting the tolerance thresholds on H and N
chemical shift (the H and N differences between the anchor peak and the mapped
peaks must fall within the given tolerance thresholds). However, the binary decision
strategy is often not effective enough to resolve the ambiguities in the grouping. A
typical issue is that the grouped spin systems might contain extra peaks. As a
result, the judgement work has to be done manually, which might take a long time
for the proteins having more than 100 amino acid residues.

The classic method for determining the connectivity information between spin
systems in most existing methods is to compare the differences between chemical
shifts for common nuclei and use the given tolerance thresholds to decide the correct
connections, which again involves a binary decision strategy. However, due to noise
and data degeneracy, connectivity determination is no longer a binary decision but
probabilistic. Subsequently, one spin system could start more than one connectivity
pair and could end more than one connectivity pair. Better computational models
are needed to efficiently and effectively resolve this issue.

The string assignment problem can be modeled as a constrained weighted bipar-
tite matching problem on two disjoint groups with one group containing strings of
spin systems and the other containing a sequence of amino acids. Unfortunately,
the constrained bipartite matching problem is NP-hard, even if the edges are un-
weighted [76]. Hence the efficient and effective algorithms are needed to solve this
problem.

The ideal scoring scheme, if it existed, could directly identify the correct as-
signment. But it is almost impossible to find such a scoring scheme because the
chemical shifts generated from some types of amino acids are close to each other,
and the variances of the measured chemical shifts depend on the experimental envi-
ronment and many other factors. The same types of chemical shifts generated from
the same residues might vary among different NMR. labs or sometimes in different
experiments conducted in the same lab. Therefore, an effective learning process is
necessary to score the preferences as accurately as possible. Most published meth-
ods for automated sequential resonance assignment make an assumption that for

one residue type, the chemical shift values of a nucleus follow a normal (Gaussian)
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distribution. In the BioMagResBank (BMRB, http://www.bmrb.wisc.edu/), which
is the central repository for known protein NMR data, the means and standard
deviations for H, N, C*, C8, C, and H* (and more) chemical shifts in all 20 amino
acid residues are collected. With these parameters at hand, a typical procedure is
to use the density functions of the corresponding normal distributions to estimate
a probability for mapping a spin system to a residue. Although the scoring scheme
that assumes the Gaussian distribution is frequently adopted, we suspect that such
an assumption is correct. We believe more work is needed to tackle this problem by

using advanced learning techniques.

1.4 Structure of the Document

Chapter 2 highlights some basic concepts in NMR spectroscopy. It also briefly
describes the NMR protein structure determination procedure, and introduces the
NMR experiments used in the thesis. It serves to help the descriptions of the
computational models in the succeeding chapters.

Chapter 3 reviews the previous works on the protein NMR sequential resonance
assignment. In particular, a variety of approaches are examined and their strengths
and weaknesses discussed.

Chapter 4 deals with the scoring scheme and string assignment algorithms. The
existing scoring methods, as well as our histogram-based scoring scheme, are evalu-
ated with the string assignment algorithms and the best one is identified.

Chapter 5 presents an algorithm, CISA, for connectivity determination by com-
bining chemical shift signature information. The performance of this algorithm is
evaluated by comparing it with another assignment program, PACES [22].

Chapter 6 discusses the issues in peak grouping, and describes a novel computa-
tion model, GASA, for resolving the peak grouping and conducting the sequential
resonance assignment simultaneously. This model separates the assignment proce-
dure not into physical steps but only virtual steps, and uses their output to cross
validate each other. Our approach is compared with several recently developed tools,
RANDOM [47], MARS [45], and RIBRA [73].

Chapter 7 concludes this thesis with a discussion of the limitations of our models

as well as a discussion of future work.
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Background
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Nuclear magnetic resonance (NMR) spectroscopy is a biophysical method that
can provide high resolution structures of biological molecules such as proteins and
nucleic acids at atomic resolution [11]. In this chapter, we will introduce some
basic concepts in the NMR area, and briefly describe the NMR protein structure

determination procedure and the NMR experiments used in the thesis.

2.1 Nuclear Magnetic Resonance Phenomenon

Atoms are basic building blocks of matter, and cannot be chemically subdivided by
ordinary means. Atoms are composed of three types of particles: protons, neutrons,
and electrons. Each proton has a positive charge and each electron has a negative
charge, while neutrons have no charge. The number of protons in an atom is the
atomic number, which determines the type of the atom. Both protons and neutrons
reside in the nucleus. The same type of atoms or elements may contain different
numbers of neutrons, and they are called isotopes.

A nucleus often acts as if it is a single entity with intrinsic total angular mo-
mentum I, the nuclear spin, which is the overall effect of the imaginary spinning
protons and neutrons. Despite many spin-pairing rules, one characteristic is that
a nucleus of odd mass number (which is the sum of the numbers of protons and
neutrons) will have a half-integer spin and a nucleus of even mass number but odd
numbers of protons and neutrons will have an integer spin. For a nucleus of spin
I, there are 21 + 1 spin states (or orientations) ranging from —I to +/. In NMR
spectroscopy for protein structure determination, the most important nuclei with
spin I = 1/2 are 'H (Hydrogen), 13C (Carbon), °N (Nitrogen), 1°F (Fluorine), and
31P (Phosphorus), each of which has two spin states. An example of a nucleus with
spin I = 1 is deuterium ?H (Hydrogen); Examples of isotopes with no spin (i.e.,
I =0) are 12C, N, and %0 (Oxygen).

Nuclear Magnetic Resonance (NMR) is a phenomenon which occurs when nuclei
with non-zero spins are immersed in a static magnetic field and then exposed to a
second oscillating magnetic field (which is created by radio frequency (r.f.) pulse).
In the absence of an external magnetic field, for nuclei of spin I, those 21 + 1 states
are of equal energy. When an external magnetic field is applied, the energy levels

split. In an external magnetic field of strength By, the spinning rotation axis of a
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nucleus will precess about the magnetic field with angular frequency wg = vBp. wo
is called Larmor Frequency, where the gyromagnetic ratio + is different for distinct
types of nuclei. For nuclei of spin I = 1/2, there will be two possible spinning
orientations/states in the external magnetic field, i.e., parallel to the external field
(low energy state) and opposite to the external field (high energy state). At the time
the external magnetic field is applied, the initial populations of nuclei in the energy
levels are determined by thermodynamics, described by the Boltzmann distribution.
This means that the lower energy level will contain slightly more nuclei than the
higher energy level. It is possible to incite the low energy level nuclei into the
high energy level with electromagnetic radiation. In fact, if these aligned nuclei are
irradiated with an r.f. pulse of a proper frequency, the nuclei will spin-flip from
the low energy state to the high energy state or from the high energy state to the
low energy state by absorbing or emitting a quantum of energy, respectively. The
frequency of radiation needed is determined by the difference in energy between the
two energy levels and when such a spin transition occurs the nuclei are said to be
in resonance with this radiation. The electromagnetic radiation supplied by the
second oscillating magnetic field must be equal to the frequency of the oscillating
electric field generated by nucleus precession, which is ;‘)—;. This is because only
under that circumstance, the energy needed in resonance can be transferred from
electromagnetic radiation to precession nucleus. It is possible that by absorbing
energy, the nuclei will reach a state with equal populations in both states. In such
a case, the system is saturated. If the electromagnetic radiation supplied by the
second oscillating magnetic field is then switched off, some of the nuclei at the
high energy state will fall back to the low energy state and the system will return to
thermal equilibrium. Such a process is the relazation process. The relaxation process
produces a measurable amount of r.f. signal at the resonant frequency associated
with the spin-flip. This frequency is received and amplified to display the NMR

signal.

2.1.1 Chemical Shift

The resonance frequencies of individual nuclei are not only relevant to the strength

of the applied external magnetic field By, but also are dependent on their local
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chemical environments. The magnetic field generated by a nucleus itself tends to
contradict the effect of the external magnetic field. This contradiction effect is
defined as shielding. The strength of this shielding effect increases with the local
electron density. This effect is called the Chemical Shift phenomenon. The actual
field present at the nucleus is not By but Bjocs) = Bo(l — o), where 0By is the
shielding effect (o is the shielding factor, which is small — typically 1075 for protons
and 1073 for other nuclei [11]). Chemical shift in parts per million (ppm) is defined

as
(WO - wreference) X 106

Wreference

6= ~ (Ureference - U) X 106, (21)

where wWreference 15 the reference frequency and Oreference is the reference shielding
factor. For both protons and carbons, the reference material is often perdeuterated
3—(trimethylsilyl) propionate sodium salt (TSP) or 2, 2-Dimethyl—2—silapentane—5
sulfonate sodium salt (DSS). The chemical shift effect is small but it is a very sen-
sitive probe of the chemical environment of the resonating nucleus. Using chemical
shift values, it is possible to distinguish among nuclei in different chemical environ-
ments. Once the chemical shifts of all the atoms of amino acids are collected from an
NMR spectrum, the sequential resonance assignment can be conducted to map the
chemical shifts back to their host amino acid residues in the protein sequence. After
the sequential resonance assignment is finished, experimental parameters that define
the three-dimensional structure are measured. The most important structural in-
formation derived from the NMR spectra is based on the Nuclear Overhauser Effect
(NOE).

2.1.2 Nuclear Overhauser Effect (NOE)

The Nuclear Overhauser Effect (NOE) is the result of cross-relaxation between dipo-
lar coupled spins as a result of spin/spin interactions through space. The NOE allows
the nuclear magnetization to transfer from one spin to another through space and
scales with the distance between two spins. The NOE-derived distance is one of
the most important sources of structural information for protein structure determi-
nation. In an NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum, NOE
interactions between pairs of nuclei are shown as NOE peaks. Each dimension of

the spectrum is the chemical shift of one type of nucleus. For example, a peak at
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(4.5ppm, 4.6ppm) in an 'H-'H NOESY spectrum records an interaction between
a proton with chemical shift of 4.5ppm and another proton with chemical shift of
4.6ppm. The intensity of the NOE is related to the distance r between these two

protons by an equation of the general form which is defined in [74] as
NOF « Lﬁf(Tc), (2.2)
(r)

where the second term f(-) is a correlation function that accounts for the modulation
of the spin-spin coupling by stochastic rate processes with an effective correlation
time 7.

NOEs are generally only observed between protons that are separated within
5A. J-Coupling constants, which are mediated through chemical bonds, provide
information about dihedral angles, and thereby can define the peptide backbone

and side chain conformations.

2.1.3 J-Coupling

J-coupling (or spin-spin coupling) is the interaction between nuclear spins trans-
ferred through the electrons of the chemical bonds. The energy levels of each spin
are slightly altered depending on the spin state of a scalar coupled spin. This gives
rise to a splitting of the resonance lines. There are a few factors in a J-coupling,
which affect the coupling constant. These factors are the nuclei involved, the dis-
tance between the two nuclei, the angle of interaction between the two nuclei, and
the nuclear spins of the nuclei.

Both homonuclear and heteronuclear J-couplings can provide information about
internuclear distance (the smaller the number of chemical bonds between a pair
of nuclei, the stronger the coupling constant is) and the covalent chemical bonds
angle (the smaller the angle, the bigger the coupling constant). Among them, one
of the most commonly employed coupling constant is Vicinal (or three-bond, or 3J)

coupling that is dependent upon the dihedral angle 6 between the nuclei.

2.1.4 NMR Spectroscopy

NMR spectroscopy is the use of the NMR phenomenon to study physical, chemical,
and biological properties of matter. As a consequence, NMR spectroscopy finds ap-

plications in several areas of science. For example, NMR spectroscopy is routinely
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applied by chemists to study the chemical structure of small organic molecules us-
ing simple one-dimensional techniques. Two and higher dimensional techniques are
used to determine the structure of more complicated molecules. These techniques
are continually improved and are replacing X-ray crystallography for the determi-
nation of protein structure. The protein structural information obtained from NMR
spectroscopy includes a network of distance restraints between spatially close (i.e.,
< 5A) hydrogen atoms extracted from the NOEs, dihedral-angle restraints calcu-
lated from scalar coupling constants and chemical shifts, and other various geometric

restraints including orientation information from the residual dipolar coupling.

2.1.5 NMR Experiments

In general, all contemporary NMR studies on protein structure determination are
done with two-dimensional (2D) or three-dimensional (3D) NMR experiments. The
H-N coupling in the peptide bond is typically the starting point for the heteronuclear
NMR analysis of proteins. This bond is present in every amino acid residue in
a protein except the N-terminal and the proline residues. The HSQC spectrum
measures the correlation between N and the directly attached H (See Figure 2.1(a})).
It provides pairs of intra-residue chemical shifts (H;, N;), where ¢ indexes the residue
to which the nuclei H and N belong. The three dimensional NMR spectrum can
be used to identify couplings between the three nuclei in amino acid residues. In
the previous resonance assignment strategy using homonuclear 2D NMR, the inter-
residue connections were established from NOESY data. Recently, heteronuclear 3D
NMR has been shown to provide inter-residue connectivity through a series of triple
resonance experiments that overcome the peak overlap problem in homonuclear 2D
NMR by introducing the third dimension and separating overlapped peaks into a
number of 2D planes.

The CBCA(CO)NH experiment especially measures the heteronuclear coupling
between H and N in one residue and the coupling across C to the C, and Cg in
the preceding residue (See Figure 2.1(b)). It provides triples of chemical shifts
(H;, C;,N;) and (Hi,Ci’B_l,Ni). The HNCACB spectrum records two different
heteronuclear correlation spectra. One records couplings between H, N and C, and

Cg in the same residue, and the other between H and N in one residue and the
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Figure 2.1: Schematic illustration of the correlations in NMR experiments.

coupling across C to the C, and Cg in the preceding residue (See Figure 2.1(c)).
It provides triples of chemical shifts (H;, C ;,N;), (H, Cf_l,Ni), (H;, C2,N;), and
(H;, Cf ,N;). In a combined analysis of these two types of three dimensional NMR
spectra, it is possible for each individual H-N pair in an HSQC spectrum, to be used
to identify the C, and Cg chemical shifts in the same residue and the preceding

residue.

2.1.6 Spectral Data Acquisition and Processing

A wide variety of NMR instrumentation is available for NMR experiments to pro-
duce the data for protein structure determination. The common components of
NMR spectrometers (see Figure 2.2) include (a) superconducting magnet for sup-
plying an external magnetic field, (b) a pulse programmer and r.f. transmitter to
generate and control r.f. pulses, (c) a probe for holding the sample in the magnet,
(d) receiver for receiving the resulting NMR signals, and (e) computers for data

acquisition and processing. Superconducting magnets can provide a wide range of
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frequencies from 60 to 800 MHz. A higher frequency implies the higher sensitivity
and stability of the NMR spectrometer because the differences between the chemical
shifts are amplified with the increase of magnetic field strength, which produces a

better separation between different nuclei.

Radio frequency
transmitter

Radio frequency
receiver & amplifier

spinning
sample tube

Sweep Generator

Figure 2.2: The structure of NMR spectrometer [63].

In NMR spectrometers, the superconducting magnet provides the external static
magnetic field. The transverse magnetic field is generated by a series of r.f. pulses
coming from the probe. During the relaxation process of the nuclei in the probe,
the time-varying current is amplified and digitized by preamplifier and analog-to-
digital converter (ADC), respectively, and then is recorded by the spectrometer.
This time domain signal is sent to computer for further processing that transforms
the time domain signals into the frequency domain signals. The main step of such a
processing is the Fourier transformation, ahead of which multiple processing meth-
ods including zero filling, apodization, and linear prediction are applied to prevent
information loss. After Fourier transformation, a post-processing method phase cor-
relation is applied to optimize the appearance of the frequency domain spectrum.
The frequency domain signals are the chemical shift values that will be analyzed

next.
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2.2 NMR Protein Structure Determination

The classical approach to protein structure determination via NMR can be summa-

rized in three steps, peak picking, resonance assignment and structure determination.

2.2.1 Peak Picking

The objective of peak picking is to filter and identify the resonance peaks from the
NMR spectral data. Each resonance peak indicates a particular magnetic interaction
within a group of atoms (could be intra- or inter-residue) in the target protein. The
measured values of resonance peaks are the resonance frequencies, or chemical shifts,
of the interacting atoms. The peak intensities provide geometric relationships (e.g.
distances and angles) among the interacting atoms. Figure 2.3 shows a sample one
dimensional chemical shift spectrum which is a sketch of a proton NMR spectrum
for the diacetone alcohol molecule [11]. In this spectrum, the z-axis is the chemical

shift in ppm and the y-axis is the intensity. In the spectrum, the peak at 0 ppm is

.

5 4 3 2 1 0
Chemical Shift (ppm)

Figure 2.3: One dimensional NMR proton spectrum for diacetone alcohol molecule.

the reference peak and there are some other low intensity peaks which are considered
as noise peaks.

For protein structure determination, two and higher dimensional NMR spectra
are used, where each axis is the chemical shift in ppm for a certain type of nuclei.

Because of strongly overlapped peaks and spectral distortions due to noise peaks,

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the robust recognition methods are needed to identify true resonance peaks. There
are a number of existing methods available for peak picking, such as neural networks

[24, 19], statistical approaches [61, 3], and numerical analysis [48, 29].

2.2.2 Sequential Resonance Assignment

NMR spectra contain sufficient information to determine biomolecular structures in
solution. However, none of the embedded information can be used without having
the peaks assigned. In other words, it must be first determined which peaks come
from which nuclear spins. Then the distance information in the NOESY spectrum
can be analyzed. Therefore, the sequential resonance assignment process plays a
vital role in the structure determination process. Resonance peaks from multi-
dimensional NMR spectra contain the chemical shifts for atoms from a common
residue and for atoms from its adjacent residues. In a sequential assignment step,
the resonance peaks extracted from peak picking are mapped to host residues in
the protein sequence. The method first groups the chemical shifts for atoms from
a common residue into a spin system and then uses the identified inter-residue
chemical shifts to determine the connectivity among the grouped spin systems. This
helps constrain which pairs of spin systems should map to adjacent residues in the
protein sequence. The mapping between spin systems and residues in the protein
sequence is evaluated by using both the signature information of the spin system
and the connectivity information. The signature information of a spin system in
our work is defined as the likelihood that a particular amino acid type residing
in some type of secondary structure could produce the spin system. There are
four components involved in the sequential resonance assignment, which are peak
grouping, connectivity determination, string assignment, and scoring scheme. The

details about these four components have been discussed in Chapter 1.

2.2.3 Structure Determination

Based on the results of sequential resonance assignment, we could fully interpret
the NOESY spectrum to provide many distance constraints between the hydrogen
atoms in a protein. The inter-proton distance can be calculated from the intensity of

the NOE cross peaks. In general, an NOE peak with strong intensity may indicate
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that two protons are within 2.5 A of each other while a weak NOE peak corresponds
to an upper limit of 5 A.

Many other geometrical constraints can be inferred using various methods. As

0

Figure 2.4: The torsion angles of an amino acid residue

shown in Figure 2.4, two dihedral angles are associated with each peptide bond.
The ¢ angle is the torsion angle between the N — HY bond and C* — H* bond and
the ¢ angle is another torsion angle between the C* — H* bond and C — O bond.
The dihedral angle ¢ can be calculated from the spin-spin couplings Jy,_ni using

the Karplus equation which is defined as
Ja_ng = 6.4cos?0 — 1.4cosf + 1.9, (2.3)

where 6 = |¢ — 60| [46]. With the use of the above equation, measurement of Jya_n
provides complementary information to the NOE distance constraints for calculating
the initial structure of a protein.

The next step is to determine an initial protein structure that is consistent with
the thousands of NOE constraints and any other conformational constraints. Dis-
tance geometry is the most commonly used mathematical procedure in which the
NOE distance constraints are converted into a three dimensional structure {39, 40].
The distance geometry procedure is essentially a projection from a high-dimensional
space into ordinary three-dimensional space. The initial structure calculated from

distance geometry may violate a number of experimental constraints. The subse-
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quent structure refinement is required to obtain a high resolution protein structure

with no constraint violations.
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Chapter 3

Related Work
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The sequential resonance assignment is one of the key tasks in NMR protein
structure determination. Many researchers have perceived for a long while that
the laboriously manual work has to be substituted by computer programs to better
exploit the power of NMR in protein structure determination. Considerable efforts
have been devoted to the automated assignment programs and several software
tools have been developed. Nonetheless, most methods essentially use the same
procedure, although different programs might have different focuses and start from

different positions.

v,
" | Grouping+Connectivity
Multiple N o Y 11
Peak " | Grouping " | Connectivity " | Assignment
Lists
Vv .
"| Connectivity+Assignment
Vi,

Grouping+Connectivity+Assignment

Figure 3.1: The flow chart of the resonance assignment process: different works
assume different starting positions. Phase I includes AutoAssign [78], RIBRA [73],
PASTA [50]; Phase II includes AutoAssign [78], RIBRA [73], PASTA [50], RAN-
DOM [47], CISA [67], MARS [45]; Phase III includes AutoAssign [78], RIBRA [73]
MAPPER [38], CBM [76]; Phase IV includes SmartNoteBook [62]; Phase V includes
PACES [22], MARS [45], CISA [67]; Phase VI includes GARANT [9, 10].

In Figure 3.1, we classify most of the assignment methods in the literature. To
name a few, GARANT [9, 10] uses a genetic algorithm, PASTA [50] uses threshold
accepting algorithms, AutoAssign [78] uses heuristic best-first algorithms, MAP-
PER [38] and PACES [22] use exhaustive search algorithms, RANDOM [47] applies

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a randomized algorithm, and RIBRA [73] applies a weighted maximum independent
set algorithm for the sequential resonance assignment, MARS [45] first applies an
exhaustive search for all the legal paths with length 5 and then conducts a bidirec-

tional validation.

3.1 GARANT

GARANT [9, 10] is an automated resonance assignment program that combines a
genetic algorithm with a local optimization routine. GARANT counsists of three
main components. The first one is the representation of a resonance assignment,
which considers the resonance assignment as an optimal matching of two graphs.
One graph represents the correlation between the atoms of the protein and expected
cross peaks and the other the correlation between the chemical shifts and observed
cross peaks. The second one is a scoring scheme that evaluates the matching between
two constructed graphs. The last one is a genetic algorithm with a local optimization
strategy that computes an optimal matching between two graphs, which corresponds
to the optimal assignment.

A. Expected peaks

atoms of the protein (ay)

n=2

expected cross peaks (sy) LCOSY J ( Cosy ) (NOESY J

=

Observed peaks

chemical shifts (wg, }

n=2

obscrved cross peaks (sp)

O

. Assignment of the measured peaks

chemical shifts

atoms of the protein
n=2

abserved cross peaks

expected cross peaks

Figure 3.2: A schematic representation of expected (A) and observed cross peaks
(B), and the mapping used to describe possible resonance assignments (C) .
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Figure 3.2 [9] gives an example on how to represent the resonance assignment
as a graph matching problem. In this figure, peaks, atoms and chemical shifts are
represented by vertices, and the relations between them are represented by edges.
The goal is to find an optimal matching between two graphs.

The matching between two graphs is evaluated by the matching scores between
expected and observed peaks, which is referred to as “mutual information”. Let
Ir(D; M) denote the mutual information between the observed graph D and the
expected graph M, which is calculated by

In(D; M) = ZI (afy; als)

_ p(a), ()
= D log (k) 0]

% p(aD ) - play)
(k))

(k)
_ o plap’la
; THON (

a%c))
= Zl og

( (k) |a(k))
where ap represents the observed peaks in NMR experiments, aps represents the

> pla >|a"“>> afy)

expected peaks, k runs over all types of atoms, [ runs over all possible observed values

that could be assigned to atom k, p(a(Dk)|a§\]fI))

that, for atom type k, the value ag)

denotes the conditional probability
is observed when its expected value is known

to be a(k) pla (k)) denotes the prior probability that the value ag)

is observed for
atom k, and p(agw)l) denotes the probability that the expected peak ajs is assigned
to value [.

A general genetic algorithm is used in conjunction with a specific local opti-
mization procedure to find an optimal matching between two graphs. However, a
limitation of genetic algorithms is their slow convergence. For large proteins, the
solution space grows exponentially with the number of residues and, in practical

time scales, searching this huge space is intractable unless some heuristics are used

to prune the search space.
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3.2 PASTA

PASTA [50], Protein ASsignment by Threshold Accepting, uses threshold accept-
ing that is a combinatorial optimization strategy and is superior to the genetic al-
gorithm used in GARANT in terms of convergence time. In Figure 3.3, the steps of

the PASTA assignment process is shown with a flow chart.

Initial pseudo-residue lists
derived from HSQC or
HNCO data

4
Refine pseudo
residue list

Check erroneous
assignments with
spectra

A

Refine pseudo
residue list

Y N

\ 4

Use solutions with
lowest energy to
continue
A

Y

Assign by
threshold accepting

Y

Final
assignment

Figure 3.3: The assignment cycle of PASTA. An initial pseudo-residue list is created
from the peak list of the HSQC or HNCO spectra. Additional information is added
by searching the peak lists of the appropriate 3D experiments. The refinement of
the list is done iteratively with the use of the assignment routine.

To start, an initial pseudo-residue list is created from the peak list of either
the HSQC or HNCO spectra. The additional inter-residue chemical shifts and other
intra-residue chemical shifts contained in the triple-resonance spectra are then added
by finding the matched triplets for every H and N pair in HSQC or HNCO spectra.
The matching between the peaks is determined by comparing their H and N chemical
shifts under the tolerance thresholds. For the ambiguous pseudo-residues, such

as some containing too many chemical shifts or too few chemical shifts, manual
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work has to be conducted to refine the pseudo-residue list. The amino acid type
identification for each pseudo-residue is based on the published random coil chemical
shifts in [74] and [71]. For the connectivity determination and string assignment,
a combinatorial minimization strategy, threshold accepting, is applied instead of
the deterministic approach. The algorithm of threshold accepting consists of four

basic steps outlined below.
(1) Start at a random solution z;.
(2) Generate a new solution ;41 via a random local change of the solution z;.

(3) Compare the quality of both solutions with a penalty function f. If the value
of the penalty function for solution ;1 is not larger than the penalty function
for the solution z; plus a user-defined threshold T', proceed to solution z;yy;

else discard solution ;1.

(4) Repeat steps (2) and (3). If for a user-given number of steps, there is no
improvement of the current minimum, the threshold T is reduced stepwise to
zero. The solution with minimum value of penalty function during the whole

run is the final result.

The penalty function to be minimized in the algorithm is defined as

Eror = Emarcu+EsEq, (3.1)

where Eparcp describes the fit between two adjacent residues. The optional term
Egspg is an additional feature resulted from the initially obtained assignment. To

obtain a new solution z;y; from z;, two strategies are chosen:
(1) An interchange of two randomly chosen residues.

(2) A ‘cut and paste’ of a larger fragment. The starting point, length and new

position of the fragment are determined by a random number generator.

3.3 AutoAssign

AutoAssign [78] is a constraint-based expert system for determining resonance as-

signments from many NMR spectra. The spin systems are firstly identified by
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matching the peaks in various spectra to the peaks in the HSQC spectrum. The C*
and CP chemical shifts contained in the spin systems are used to obtain the proba-
bilities, which are used to determine the set of residue types consistent with the spin
systems. The probability score is defined as the Bayesian posterior probability and
the likelihoods are calculated using the expected C* and C# chemical shift values
and standard deviations. Given an observed pair of C* and C? chemical shifts, the

probability score with respect to amino acid residue type R is computed as

p(R|C*,CP) = p(C*,CP|R)P(R)/ > p(C*,C?|R)P(R) (3:2)
R

where p(C®, CP|R) is the probability of observing chemical shift values C* and
C#, given the residue type R, and P(R) is the frequency of occurrence of residue
type R in the protein sequence. The C* and C# chemical shifts are assumed to be
independent and to follow Gaussian distributions. For each residue in the protein
sequence, AutoAssign defines a list of spin systems that the nuclei in the residue
may generate with high scores.

In the next stage, the pairwise relationships between spin systems are built
by using the Euclidean distance. Specifically, for each spin system, a vector of
normalized values is computed.

Cl—u(C") C&—u(C*) CF — wC”) Hp — u(H),
s(C 7 s(C*) 7 s(CP) 7 s(H®)

(3.3)

’Ui=<

where the means g and standard deviations s for each chemical shift dimension are
collected over all available assigned chemical shifts. The Euclidean distance between
the associated vectors is computed as the distance between two spin systems. For
each pair of spin systems, AutoAssign checks if they reside in the two lists of spin
systems for two adjacent residues or not. If they do, then the pair is considered to
be a valid adjacent pair. At the same time, its mapping location can be confirmed if
the pair of adjacent residues in the protein sequence is unique. AutoAssign extends
the assignment of two spin systems to more spin systems by using an exhaustive
search to find all valid combinations.

AutoAssign combines the connectivity determination and the string assignment
to validate each other, which reduces the total number of possible connections.

However, the number of combinations increases exponentially as the length of strings
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increases. Even worse, the ambiguities of the connections among the spin systems
also increase the complexity of this approach, even if the list for a residue only
contains 2 spin systems on average. Autoassign’s exhaustive search strategy with
its constraint propagation might fail because of a search tree explosion if the data
quality is poor and thereby a big number of possible connections are created. As
a matter of fact, AutoAssign requires the redundant information from extra NMR
spectra in order to reduce the complexity. In general, AutoAssign needs seven to

eight three-dimensional NMR spectra in order to produce meaningful assignments.

3.4 MAPPER

MAPPER [38] is a semi-automatic sequence-specific NMR assignment program.
Basically, MAPPER only performs the string assignment. The input of MAPPER
contains the primary protein sequence and the strings of sequentially connected spin
systems with information on the C, and Cg chemical shifts and/or identification of
amino acid types for the spin systems. MAPPER first treats each string separately
to find its legal locations in the protein sequence. To determine the possible mapping
positions for a given string ¢ with the length n(7), the sum of the squared deviations
of all chemical shift values contained in the string is computed by using the reference

values at the mapping positions k, which is

X2 (5 k) = % > [—w?(i)‘;; Q%(Hj)r (3.4)
7=0acA;(i) R{k+j)

where A;(i) denotes the set of atoms at position j in the fragment i, w$ () denotes
the experimental chemical shift for the atom a € A;(i) at the residue position
J, @ and AL$ are the reference chemical shift value and its standard deviation
for the atom a of the amino acid type R. The chemical shifts are assumed to
follow a Gaussian distribution. For the correct mapping, the probability that the
magnitude of the sum of the squared relative chemical shift deviation exceeds the
value computed in Equation 3.4 is given by the x? probability function Q(x2(i; k)|v;)
where v; = Z?gg [A;(4)] is the number of known chemical shifts in the fragment F;.
Acceptable individual mappings have a value of Q(x2(i; k)|v;) above a user-defined
threshold Q.
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In the second step, MAPPER applies an exhaustive search to enumerate all
consistent global mappings. The global mappings found by MAPPER are ranked
with x2(global) that is the sum of the individual x? values of all fragments. The
Q(global) is defined in the same way and a value of Q(global) close to 100% indicates
that a global mapping is confident in the sense that the chemical shift deviations

are within the range expected statistically on the basis of their standard deviations.

3.5 PACES

PACES [22] is an interactive program for sequential resonance assignment. It uses
an exhaustive search algorithm to establish the sequential connectivity and then
perform the string assignment. The input data for PACES could be peak lists or
a list of assembled spin systems. If the input is peak lists, PACES will first group
them into the spin systems in a semi automatic manner, in which the users have
to specify the tolerance thresholds and manually conduct the adjustment to resolve
the ambiguities. The method for grouping in PACES is essentially the same as what
most programs do, which anchors the peaks in other NMR spectra to the HSQC
peaks by using the tolerance thresholds.

After the spin systems are correctly compiled, PACES starts by building a di-
rected network to represent the connectivity relationship among the spin systems.

For two spin systems j and k,

j=C¢,C0 CLHY,Co OO Chy HE

VA L B S J
k=Cg,CPl Cy HE, C2 ., CP_ Cry, HY 4,
a directed connection from spin system j to spin system k& will be established if

€7 = Cal < bca,

IC]ﬂ - le—-l| < dcs,
|C; - CI::-1| < 6C’7
|Hj' — H{ 4| < Ope,

where 8ca, 06,00 and Sy« are the user-specified threshold tolerances for C%,C?,

carbonyl and H, chemical shifts respectively.
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The exhaustive search is first applied to enumerate all possible paths in the
directed network, and each path represents a possible string of involved spin sys-
tems, which has to be assigned to a polypeptide in the protein sequence. During
the process of the path enumeration, the encountered cycles will be broken at the
last visited vertices, and the back edges between the last visited vertices and the
upstream vertices are considered to be false connections. In the next step, a map-
ping process is invoked to validate each path by aligning it to every valid location
in the target protein. The possible residue type for each spin system in the path
is determined by using the chemical shift ranges of each amino acid type, which is
derived from BioMagResBank [13]. PACES does not weigh the different mappings
but equally treats all possible residue types for each spin system. In the ideal case,
each path only contains the correct connections, and it should match some portion
of protein sequence completely at the correct position. However, due to chemical
shift degeneracy, some wrong connections might be chained in the path and thus
create an illegal assignment. PACES cuts off the longest contiguous matching por-
tions in the path and the non-matching portions are recycled to be validated in the
succeeding iterations.

Without the manual finalization, PACES claims from its simulation study to pro-
vide the unambiguous mappings for 80% residues of any target protein. However, we
remark that this approach is only suitable for the simple networks constructed with
the high resolution experimental data because it is almost impossible to enumerate
all paths in a graph with an average out-degree above 2. In fact, most directed
networks tested in PACES have the average out-degrees below 2. For the low reso-
lution datasets, PACES either runs out of memory or fails to compute a meaningful
assignment. Another drawback in PACES is that the last visited connections in its
cycles are always considered to be false connections. Therefore, the order of vertex
visiting decides which edges represent the wrong connections. From our point of
view, this is not a good strategy to identify the false connections in complex cases.
It is highly possible that more correct connections are mistakenly considered to be

wrong ones and thus removed from the directed network.
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3.6 Random Graph Approach

Random graph approach [47] provides a novel method to find the connectivity infor-
mation by using a randomized algorithm. It again models the relationship among
the spin systems as a directed graph, where the vertices represent the spin systems
and the weighted edges between the spin systems represent their connections with
probabilities. The weight of each connection between two spin systems is derived
from a function of distance on their chemical shifts. The connectivity determination
problem is reduced to the path cover problem that is a classic NP-hard problem.
A natural randomized algorithm is designed to find the optimum path cover that
contains the minimum number of paths to cover all vertices in the directed graph.
The randomized algorithm consists of two phases, of which the first phase performs
the initialization and the second phase explores the connection choices.

In the first phase, a path cover is initiated with all unambiguous edges that
start from the vertices with out-degree 1 to the vertices with in-degree 1. Those
unambiguous edges are assumed to represent the correct connections in the random
graph approach. In the second phase, the unambiguous edges in the path cover
are extended by randomly choosing edges from the remaining graph with probabil-
ities proportional to their weights. The extending process in the second phase is
iteratively run until the path cover contains all vertices. The basic two-phase pro-
cedure is presented in Figure 3.4. To resolve the errors produced in the randomized
algorithm, the random graph approach runs its algorithm for 20,000 iterations to
produce an ensemble set of path covers and the paths agreed on by most path covers
are collected. The randomized strategy in this approach guarantees that this algo-
rithm will terminate in a reasonable time period. For a graph with n vertices and
average out-degree d, the algorithm will stop with a high probability in expected
O(nt+ios(d=1))

However, it is doubtful that the above approach would output the correct con-
nectivity information in real applications because the noise and chemical shift de-
generacy might cause some unambiguous edges to represent the wrong connections,
and these wrong connections would lead to the wrong assignments in the output.

Furthermore, an edge with a high probability does not always indicate a good con-
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nection. Since the random graph approach only performs connectivity determina-
tion, it has to use other programs to finish the assignment. The results reported
in the random graph approach is based on its combination with MAPPER. In gen-
eral, 50% of residues in a protein are correctly mapped without manual work, which

thwarts its use in real applications.

Given G = (V, E)

Let initial cover C =V

Let vertices with successors W = 0
Choose vertex u from V

Phase — 1
Let visited vertices U =0
While U # V do
Add uto U
If u has single out-edge e = (u,v) and v has a single in-edge
then
Add eto C
Add uto W
Set u to v
Else Choose u from V — U
Endwhile

Phase—2:
While C is not a Hamiltonian path or cycle do
Choose u from V — W
Choose an edge (u,v) with probability proportional to its
weight
If pred(v, C) is null then
Join the two fragments in C
Add u to W
Else
Create two fragments in C': (---u,v--+),
and (-, pred(v,C))
Add u to W
Remove pred(v, C) from W
Endwhile

Figure 3.4: The randomized algorithm in Random Graph Approach.
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3.7 MARS

MARS [45] is an automatic backbone assignment program that only performs the
connectivity determination and string assignment. The input spin systems should
be generated using other programs, such as NMRView [43], and they must be in-
spected manually to guarantee the high quality of input. The key features of MARS
include, (1) exhaustive search for all strings with 5 spin systems, (2) bidirectional
validation of each possible string, (3) best-first strategy for both linking and map-
ping, (4) combination of secondary structure, and (5) evaluation and assessment by
performing multiple assignment. MARS applies a Z-score to compute the score of
mapping ;5 spin system to jy, residue, which is defined as

Nes ~exp NN 2

() 3% {07280

k=1
where 6(i); " is the measured chemical shift of type k of i, spin system, 6(j) is
the predicted (expected) chemical shift of type k of ji; residue, N is the number
of chemical shift types and 82 is the variance of the statistical chemical shift distri-
bution that is used for calculating 8(j)x. If type k is missing, 6(¢);"7 — 6(5) is set
to 0.

To reduce the impact of chemical shift deviation, the score S(%,j) is converted
into a pseudoenergy U(i, ) by ranking all residues j with respect to the spin system
i. The score that one string belongs to a specific position in the protein sequence is
computed according to ‘

itn

Ur) = ) Uk, ji),

k=i
where ¢ is the index of the first spin system in the string and n is the length (in
general, n = 5), m is the index of the string starting from spin system ¢, and j; are
the residue numbers to which spin systems ¢ to ¢ + n are tentatively assigned. All
U™(j) are ranked and the string with the best value is the target string for spin
system 7 to i + n.

A major factor influencing the performance of MARS is the quality of spin
systems and the quality of the chemical shifts contained in the spin systems because
MARS limits the length of the longest string in order to make the exhaustive search
feasible but may not be robust for lower quality NMR spectral.
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3.8 RIBRA

RIBRA [73], Relaxation and Iterative Backbone Resonance Assignment, is a re-
cently developed work, published in 2005, on fully automated sequential resonance
assignment. In RIBRA, the sequential resonance assignment problem is reduced to
the weighted maximum independent set problem in a graph and a relaxation ap-
proach is designed to solve this graph problem in an iterated fashion. The peaks
with top-level quality are first identified to produce a partial assignment with high
confidence, and then the peaks with middle-level and low-level quality are used to
generate more assignments. There are two main operations in RIBRA, which are
called RGT and LM. RGT performs the grouping and spin system identification

while LM involves the connectivity determination and string assignment.

RGT:

The input of RIBRA is HSQC, CBCA{CO)NH and HNCACB spectral data.
RGT first maps all peaks in CBCA(CO)NH and HNCACB to the peaks in
HSQC to form a set of spin systems by comparing their shared H and N
chemical shifts. Then it uses an extended version of the classification result
(see Table 3.1) in TATAPRO [5] to attach each spin system with a list of

amino acid types.

Carbon chemical shift Amino acid
Absence of C? Gly
14<CP <24 Ala
56 < C8 < 67 Ser

24 < CP < 36 and C* < 64 | Lys, Arg, Gln, Glu, His, Trp, Cys™¢ , Val and Met
24 < CP < 36 and C* > 64 | Val

36 < CP < 52 and C® < 64 | Asp, Asn, Phe, Tyr, Cys®9, Ile and Leu

36 < CP < 52 and C* > 64 | Ile

- Pro

Ch > 67 Thr

Table 3.1: TATAPRO II residue typing scheme.
LM:

LM starts with all possible pairs of the grouped spin systems and tries to

link them to form longer segments. During the expansion, LM validates each
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segment by mapping it to the protein sequence. All possible segments will be
generated in the LM operation. To resolve the conflicts of mapping among
the generated segments, an undirected graph G(V, F) is defined to create a
graph optimization instance. Each node in V represents a possible mapping
for one segment. If a segment has n possible mappings, there will be n nodes
in the graph G. Each edge between two nodes represents a conflict between
two possible mapping if 1) they share the same spin systems. 2) they overlap
in the target protein. To favor the longer segment, each node v is given a

weight defined as
|’U‘ + Ea:ev mlm_)
fre(v)

where |v| is the length of v, z is a spin system in v, N(z) is the number of

w(v) = (3.5)

spin systems having the same H and N chemical shifts as x, and fre(v) is the
number of v’s possible mapping positions. The modified heuristic algorithm
proposed in [14] is applied to find several independent sets from G, which

represents some possible assignments.

The difference between the grouping model applied in RIBRA and the previous
works is that the ambiguities appearing in the grouping could be automatically
resolved to some extent by trying all possible scenarios. Nonetheless, we argue
that the grouping model in RIBRA is still susceptible to the change of pre-selected
tolerance thresholds because high tolerance thresholds will make RIBRA produce
a huge number of legal spin systems while low tolerance thresholds will lead to
too few spin systems to complete the assignment. Furthermore, the spin system
identification is not considered using probability but derived with the fixed list in

Table 3.1, which is constrained by the quality of input spectral data.
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Chapter 4

Scoring Schemes
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A scoring scheme is required in NMR resonance assignment to assess the likeli-
hood of the mapping between an identified spin system and an amino acid residue in
the protein sequence. Accurately quantifying the signature information contained
in chemical shifts provides a foundation for the precise and complete sequential res-
onance assignment in protein NMR spectroscopy. In this chapter, we describe our

histogram-based learning method, and evaluate several different scoring schemes.

4.1 Overview

A spin system in NMR contains an array of intra-residue chemical shifts and inter-
residue chemical shifts that are generated by a specific amino acid and its preceding
amino acid in NMR experiments. It can be represented by a vector of chemical
shifts, such as (H;, N;, C2, Ciﬁ; Ce Cf_l), where H;, N;, C and Cf are intra-
residue chemical shifts generated by their host amino acid and C$* ; and Cf_l are
inter-residue chemical shifts generated by the preceding amino acid. To measure
the correlation between a given spin system and a given amino acid type, we need
to quantify the signature information of each type of chemical shift contained in
the spin system. Many published methods assume that for one residue type, the
chemical shift value of a nucleus follows a normal (Gaussian) distribution. In the
BioMagResBank (BMRB, http://www.bmrb.wisc.edu/), which is a repository for
the known protein NMR data, the means and standard deviations have been col-
lected for H, N, C%, C?  C, and H* (and more) chemical shifts in all 20 types of
amino acid residues. With these parameters available, a typical procedure to esti-
mate the probability for mapping a spin system to a residue is to use the density
functions of the corresponding normal distributions for the intra-residue chemical
shifts in the spin system. Mathematically, for every intra-residue chemical shift (cs)
in a spin system, the density function of the corresponding normal distribution is
used to estimate a probability p(cs | aa) that the host nucleus is in residue aa, where

oVv2m

ples | aa) =

?

¢ = pfaa) is the mean, and o = o(aa) is the standard deviation. Subsequently,
the product of the probabilities for all the intra-residue chemical shifts in the spin

system is taken as the probability that aa is the host residue of the spin system.
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The scoring scheme assuming a normal distribution is adopted by many groups
working on automated NMR resonance assignment. However, we believe that this
scoring scheme is biased on very simple statistics, and we also conjecture that other
chemical environmental factors might affect the chemical shift values. In our inves-
tigations, we found that a minor improvement in the scoring scheme might have a
significant effect on the accuracy of assignment. Therefore, we sought to design a

better scoring scheme by combining more domain knowledge.

4.2 Histogram-Based Scoring Scheme

To avoid the bias arising from any specific assumption, we have designed a histogram-
based scoring scheme. One of the most important elements in our scoring scheme is

the chemical shift classification based on Protein Secondary Structure.

4.2.1 Protein Secondary Structure Prediction

Protein secondary structure refers to certain common repeating structures found in
proteins. There are three types of secondary structures, which are a-helix, 3-sheet
and loops. It is well accepted in NMR work that for the same atom inside the same
type of amino acid, the measured chemical shifts depend on the types of secondary
structures where the amino acids lie. Statistics tells us that most amino acids display
this dependency to some extent. For example, for alanines, the dot plots of chemical
shifts of C,’s in a-helices, 3-sheets, and loop regions show a marked difference.
Figure 4.1(a) is the sum of these 3 dot plots as shown in Figures 4.1(b), 4.1(c),
and 4.1(d). Our scoring scheme accounts for this structural information by incor-
porating secondary structure information. The chemical shifts of each amino acid
type in our training set is further divided into three categories according to the
secondary structure type. Therefore, our training set has 60 classes in total. Each
class is denoted by a couple (aa, ss), where aa represents one amino acid type and ss
represents one secondary structure type. The secondary structure information is ob-
tained in two ways. Given a protein sequence, we first check the Protein Data Bank
(PDB) [12] to extract its secondary structure. If there is no entry for this sequence
in PDB, then we predict its secondary structure by running the PsiPred program

[44]. Psipred is one of the best known secondary structure prediction programs
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Figure 4.1: Distribution of C, chemical shifts from alanines in the training data set.

with approximately 80 percent of accuracy for assigning a residue to an o-helix, a

(B-strand, or a loop.

4.2.2 'Training Datasets

We built two training datasets using known protein NMR data deposited in the
BMRB and corrected by the RefDB [77], and the secondary structures extracted
from the PDB [12].

The initial set of protein NMR data was obtained from the BioMagResBank
and included all protein entries present in the databank as of May 30, 2005. We
applied several filtering steps to remove potential noise and bias from the dataset
so as to make it as clean as possible. Firstly, proteins containing less than 50 amino
acids or containing amino acids not part of the standard twenty were eliminated.
Secondly, corrected NMR protein entries were obtained from the RefDB and these
proteins overwrote any BMRB proteins present in the dataset. In the resultant
dataset, every protein entry (a single file) was parsed in order to obtain the primary

amino acid sequence, the chemical shift value for each nucleus, as well as the PDB
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accession number(s). In the third filtering step, the PDB number was used to
retrieve the sequence and secondary structure information related to that protein.
The final dataset only contains those proteins that contain PDB accession numbers
where the corresponding PDB protein sequence is a subsequence of the BMRB
protein sequence or the BMRB protein sequence is a subsequence of the PDB protein
sequence. The secondary structure information from the PDB protein entry were
obtained for that protein. The PDB secondary structure notation has eight different
letters; we translated this into a notation system of three letters to match up with
the PsiPred secondary structure format (namely, G, H, and I from PDB became H
in PsiPred, E from PDB remained as E, and S, T, B, and non-annotated positions
in PDB became C in PsiPred). Such a translation is necessary since we would use
PsiPred as the secondary structure predictor in our testing. Nonetheless, a suitable
adjustment can always be made if other secondary structure predictors are applied.
A total of 1,493 protein entries and 165,122 amino acid residues were obtained in
the final dataset, denoted as ALL (cf. Figure 4.2 for more detailed statistics); 456 of
these proteins and 45, 964 amino acid residues were from the RefDB corrected data.
A total of 6 files were created with each corresponding to a nucleus from H, N, C%,
C8, C, and H. For those protein entries in the final dataset, chemical shifts were
placed into these 6 files. Each chemical shift is represented as a triplet of amino
acid type, secondary structure type, and the chemical shift value.

We observed that a tiny number of chemical shift values should be treated as
outliers because they diverge far from the main stream significantly. Since the
abnormal behavior of a single outlier could disrupt the scoring scheme, an efficient
statistical method, namely “boxplot” [27] with parameter set at 1.5, was applied
to remove the outliers — the fourth chemical shift filtering step.

In order to reduce the bias that could be caused by multiple homologous se-
quences, a second dataset was generated. “BLAST 2 sequences (bl2seq)” [64] was
run between every pair of sequences. Any protein having greater than 50% identity
against another protein already included was removed from this dataset (though
order dependent). The resulting dataset, denoted as HOMO, contains 822 proteins
and 91, 382 residues, among which 336 proteins and 34, 225 residues were from the

RefDB. The boxplot was also applied on HOMO to get rid of chemical shift outliers.
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Figure 4.2: A detailed amino acid composition of the two training datasets ALL and
HOMO: the height of each bar corresponds to the number of amino acid residues in
that amino acid and secondary structure couple in dataset ALL. The height of the
shaded region records the number in the reduced dataset HOMO.

4.2.3 Histogram-Based Scoring Scheme

For every amino acid (aa) and secondary structure (ss) combination, we do not as-
sume there is any specific pattern that the distribution follows, but use the chemical
shift values directly. For every type of chemical shift, we associate with it an error
bound (¢€), which is different for different types of chemical shifts and is learned from
our training set. To estimate a probability for mapping a chemical shift (cs) to an

amino acid residue (aa) and a secondary structure (ss) couple,

o let N denote the total number of the same type of chemical shifts in the

training dataset;

e let N(aa, ss) denote the number of (aa, ss) couples (which is typically in thou-

sands) within NV;

o let N(cs) denote the number of chemical shifts in IV that fall in the chemical

shift window (cs — €5, ¢8 + €c5);

e let N(ecs | aa, ss) denote the number of chemical shifts in N(aa, ss) that fall

in the same chemical shift window.
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Then, we employed the Naive Bayes method (see Figure 4.3) to derive the score for
mapping the spin system (H;, N;, C%, Cf ; CF 4, Cf_l) to an amino acid type aa
residing in secondary structure ss:
1
1 Z log (p(cs | aa,ss)), (4.1)
ese{H;,N;,C2,0%}

where
N(cs|aa,ss) N{cs)
N(cs) N N(CS | aa,ss)

p(cs | aa, ss) =

N_(%LS) "~ N(aa, ss)

A I, I/\ Vaa W

Figure 4.3: The naive bayes scoring scheme learning

4.2.4 Scoring Scheme Enhancement

Most methods in automated NMR resonance assignment only take the intra-residue
chemical shifts in the spin system into account in the scoring scheme. We propose
to add the signature information of inter-residue chemical shifts, since in practice
the spin systems from peak grouping process do contain the inter-residue chemi-
cal shifts and these inter-residue chemical shifts also contain signature information
for the preceding residue. A subsequent simulation experiment demonstrated that
using inter-residue chemical shifts can significantly improve the scoring scheme per-
formance, which is measured by the quality of the resultant assignment. Qur scoring
scheme took advantage of a few special features of chemical shifts. To name a few,
since there is no C? nucleus in glycine, no CP chemical shift can be observed for
the glycine spin system. Consequently, when a spin system does contain a non-zero
CP chemical shift value, then it should not be mapped to glycine. In this case, we

associated with the mapping a score maximum, which was set at 9999.99 and it tells
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the assignment algorithm that such a mapping is illegal. Similarly, since proline
does not have a HN nucleus, a spin system containing a non-zero HN chemical shift

value gets a score maximum when mapping to proline.

4.3 Assignment Algorithm

The general weighted bipartite matching problem is to find a one-to-one match-
ing between elements of two groups that maximizes the total weight, where each
matched pair of elements has a pre-specified weight. The NMR sequential reso-
nance assignment process can be naturally modeled as a weighted bipartite matching
problem, where each weighted edge has a confidence value representing a possible
mapping of a spin system to an amino acid in the protein sequence. Nevertheless,
the quality of assignment from such a weighted bipartite matching is poor because
frequently there are multiple amino acid residues of the same type in a protein
sequence. To differentiate the mapping between spin systems and the same type
residues, we have to explore more constraints. The most important one is the con-
nectivity information. In practice, a string of connected spin systems typically have
a much better score at the “correct” assignment position (i.e. the matching be-
tween a spin system of NMR peaks and the residue that generates the peaks) than
almost all other (incorrect) assignment positions, especially as the size of the string

increases.

Spin Systems

\

Residues in the target sequence

Figure 4.4: The problem of constrained bipartite matching

To incorporate the connectivity information, the general matching problem is
extended to a constrained weighted bipartite matching problem [76] on two disjoint
groups, one group containing strings of spin systems and the other containing a
sequence of amino acids. The spin systems in one string must be matched only

with neighbors of the other group (an example is shown in Figure 4.4). Unfortu-
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nately, the constrained bipartite matching problem is NP-hard, even if the edges
are unweighted [76]. Many heuristics have been proposed very recently, including
some approximation algorithms [20], our fast greedy and filtering algorithm and our
integer programming solver.

Our fast greedy filtering assignment algorithm can be described as a two-phase
procedure: in the first phase, a greedy filtering is conducted to select some number
of best possible mappings for the identified strings; in the second phase, for every
combination of string mappings, an efficient maximum weighted bipartite matching
algorithm is used to complete the assignment by mapping isolated spin systems to
the rest of the residues. The algorithm reports the best assignment from all com-
binations in terms of the assignment confidence (the total weights of all individual
mappings). The heuristics applied in a greedy filtering algorithm is fairly intuitive,
and is very close to what is currently manually done in an NMR laboratory. The
main difference between the algorithm and manual work is that we employ efficient
computational methods to automate the assignment process at a global view, which
produce an assignment within seconds on a Pentium IV PC. The global view also
helps avoid the tedious “undo-redo” operations which occurs very often through
manual efforts.

However, the greedy filtering algorithm can not guarantee an optimal solution
though it runs very fast. To make a fair comparison between different scoring
schemes, we adopted Cplex, one of the best integer programming solvers, to compute
the exact solutions for CBM instances. The formulation of CBM instance in integer

programming is defined as follows:

e let {a1,as,...,a,} denote a protein sequence of length n,
{(s182---8i—1),(8iSix1 " Si+k)s- -+ (8jSj41 - Sn)} denote a set of chained spin
systems, W denote a score matrix in which each entry w;; measures the like-
lihood that the i-th spin system is mapped to j-th amino acid residue, and X
denote an assignment matrix in which the entry z;; with 1 value means that

the ¢-th spin system is assigned to j-th amino acid.

o For each string s;si11---siyk,k > 0, if 255 = 1, then z;4; ;41 = 1 for every

1=1,2,...,k
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¢ The goal is to minimize
n n
E E WigTij
i=1j=1

under the constraints,

n
Zmij=1, fori=1,2,...,n;
i=1

n
injzl, for j=1,2,...,n;
j=1

Tl jl = Tij, for string ¢ + 1 - - - s;4k;
1=1,2,...,k;
1=12,...,n—k;

z;; €0,1, fori,j=1,2,...,m

4.4 Evaluation

4.4.1 Test Dataset Simulation

An instance of CBM consists of an edge-weighted bipartite graph G = (A, S, E),
where A consists of the amino acid residues linearly ordered as they show up in
the target protein, S consists of the spin systems, and every edge (a;, s;) indicates
a mapping between residue a; and spin system s; with its weight recording the
mapping score. Without any extra information for spin systems, the above CBM
instance expects a minimum-weight perfect matching, which can be computed effi-
ciently. The number of correctly assigned spin systems divided by the total number
of assigned spin systems is defined as the assignment accuracy. If the scoring scheme
were ideal, then the assignment accuracy would reach 100%. Therefore, we can use
the assignment accuracy to measure the quality of the scoring scheme.

We chose a total of 470 sets of protein NMR data for our simulation study,
each of which contains all H, N, C®, and CP chemical shifts. For every protein, the
primary sequence was retrieved, and the secondary structures were predicted using
PsiPred. For every amino acid residue, the chemical shifts for H, N, C*, and C? were
retrieved from the BMRB entry, which formed an initial spin system. Subsequently,
the chemical shifts for C* and CP in the preceding residue were appended to form

the second spin system.
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For every chemical shift in a second spin system, we perturbed it by adding
to it a value that follows a zero-mean normal distribution, for which the standard
deviation was set to the standard deviation we collected out of the training dataset.
This gave a third spin system, which was finalized by randomly throwing away some
C% and C? chemical shifts. The probability of throwing away chemical shifts was
set to 5%.

In our simulation study, since we have all connectivity information for every
protein, we randomly added some portion back to generate a few instances for every
protein. The different instances have different levels of connectivity abundance.
More precisely, an instance of k% connectivity contains k% connectivity that was
randomly added. We have set k in tens and are interested in reasonable amounts of

connectivity, namely, & = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90.

4.4.2 Score Generation

For the purposes of comparison, we also designed the scoring scheme based on
the assumption of normal distributions, using the means and standard deviations
collected in our two training datasets ALL and HOMO. More specifically, in our
implementation, we took the absolute logarithm of a probability divided by the
number of intra-residue chemical shifts in the spin system, and multiplied by 100, to
be the score for mapping the spin system. The factor 100 is solely for computational
precision purpose and taking the average is for score normalization purpose. Clearly,
the smaller the score, the higher confidence we have for the mapping. For ease of
presentation, the scoring schemes assuming normal distributions for chemical shifts
are denoted as Normal. Furthermore, if it uses only intra-residue chemical shifts for
score evaluation, then it is denoted as Normal-Intra; if it uses both intra-residue and
inter-residue chemical shifts for score evaluations, then it is denoted as Normal-Both.

The histogram-based naive Bayes scoring schemes using the chemical shift statis-
tics in the training datasets directly (as described in the last section), are denoted
as Bayes. In these scoring schemes, the chemical shift thresholds have to be learned,
and they were set as follows. For triplet (aa, ss,nu), let (€,,) denote the window-size
associated with this triplet such that exactly 20 intervals of length (en,) cover the

whole range of the chemical shifts. The value 20 was set so that these window-sizes
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map closely to the standard deviations, collected as described. For every observed
chemical shift value (cs) for each nucleus (nu), using (cs) as the midpoint, the num-
ber of chemical shifts in the training dataset that fall into the window of size ()
is N(es | aa, ss). Similarly as in the last paragraph, Bayes scoring schemes using
only intra-residue chemical shifts are denoted as Bayes-Intra and those using both
intra-residue and inter-residue chemical shifts are denoted as Bayes- Both.

To obtain the secondary structures for the protein sequence, we adopted PsiPred
to predict the secondary structures. The PsiPred secondary structure format con-
sists three notations, H for alpha helix, E for beta sheet, and C for coil. In addition
to each predicted secondary structure for an amino acid, PsiPred also provides a
confidence score, which is a single digit in the range of 0 to 9. We find that such a
confidence value is a post-treatment of the neural network output, which are three
values associated with three output units (helix, sheet, and coil). All three values for
every amino acid residue in the target protein are stored in an intermediate PsiPred
output file with suffix “ss2”. These values can be regarded as the “prediction prob-
abilities” for an individual secondary structure, and our second idea is to take in
the predicted secondary structures together with their probabilities into the scoring
schemes. Such scoring schemes are classified to have index 2. More specifically,
when one amino acid residue aa is predicted to be in a helix with probability 0.55,
to be in a sheet with probability 0.25, and to be in a coil with probability 0.40,

then 0_.55_+8%m of the final score comes from mapping the spin system to (aa, H),

0.25
0.554-0.25+0.40

ping the spin system to (aa,C). In this way, the scoring scheme Normal-Both-2

from mapping the spin system to (aa, E), and m from map-

denotes the normal scoring scheme using both intra-residue and inter-residue chem-
ical shifts in the spin system and using the prediction probabilities from PsiPred
output for the score evaluation. To summarize, we have two training datasets ALL

and HOMO and a total of eight scoring schemes Normal/Bayes-Intra/Both-1/2.

4.4.3 Results

Table 4.1 summarizes the average assignment accuracies of the eight different scoring
schemes that are based on the training dataset ALL. Table 4.2 summarizes the

average assignment accuracies of the eight different scoring schemes that are based
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on the training dataset HOMO.

Scoring Scheme Connectivity Percentage

0% [10% [20% |[30% |[40%
Normal-Intra-1 || 0.103 | 0.177 | 0.263 | 0.365 | 0.489
Normal-Both-1 || 0.509 | 0.575 | 0.650 | 0.718 [ 0.783
Normal-Intra-2 | 0.130 | 0.209 | 0.301 | 0.412 | 0.541
Normal-Both-2 || 0.540 | 0.609 | 0.684 | 0.751 | 0.816
Bayes-Intra-1 0.140 | 0.232 | 0.342 | 0.465 | 0.591
Bayes-Both-1 0.553 | 0.621 | 0.696 | 0.760 | 0.823
Bayes-Intra-2 0.172 | 0.264 | 0.375 | 0.494 | 0.624
Bayes-Both-2 0.583 | 0.650 | 0.721 { 0.787 | 0.844

Scoring Scheme Connectivity Percentage
0% | 10% [ 20% | 30% | 40%

Normal-Intra-1 || 0.619 | 0.753 | 0.875 | 0.958 | 0.992
Normal-Both-1 || 0.844 | 0.900 | 0.946 | 0.976 | 0.993
Normal-Intra-2 || 0.676 | 0.798 | 0.903 | 0.967 | 0.991
Normal-Both-2 || 0.872 | 0.917 | 0.955 | 0.979 | 0.992
Bayes-Intra-1 0.724 1 0.832 | 0.922 | 0.972 | 0.993
Bayes-Both-1 0.879 | 0.922 | 0.958 | 0.982 | 0.993
Bayes-Intra-2 0.749 | 0.8563 | 0.930 | 0.975 | 0.993
Bayes-Both-2 0.895 | 0.932 | 0.963 | 0.983 | 0.995

Table 4.1: Assignment accuracies of scoring schemes based on the dataset ALL.

From these results, we see that the Bayes scoring schemes performed uniformly
significantly better than the Normal scoring schemes. Their average performances
are plotted in Figure 4.5, where each average is taken over 470 proteins. The average
difference between the two is about 4% and it is as much as 6% in the instances
with 70% connectivity information. We consider this as no surprise for two reasons:
one reason is that the assumption of normal distributions for chemical shifts is
very rough and there might be other structural factors that affect the chemical shift
values; the other reason is even if the assumption makes sense, the estimate of means
and standard deviations could differ from the true values.

Along with the boosting concept, for spin systems that do contain inter-residue
chemical shifts, using them into the scoring schemes must be beneficial. We im-
plemented this idea and we found that inter-residue chemical shifts indeed help

distinguishing the residues. The above results demonstrate that using them can im-
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Scoring Scheme Connectivity Percentage

0% [10% |20% |30% |40%
Normal-Intra-1 || 0.103 | 0.177 | 0.263 | 0.365 | 0.489
Normal-Both-1 || 0.495 | 0.562 | 0.637 | 0.706 | 0.775
Normal-Intra-2 || 0.128 | 0.205 | 0.300 | 0.407 | 0.529
Normal-Both-2 || 0.531 | 0.599 | 0.675 | 0.744 | 0.810
Bayes-Intra-1 0.140 [ 0.232 | 0.341 | 0.464 | 0.590
Bayes-Both-1 0.551 | 0.617 | 0.692 | 0.757 | 0.822
Bayes-Intra-2 0.172 [ 0.264 | 0.373 | 0.494 | 0.622
Bayes-Both-2 0.580 | 0.649 | 0.720 | 0.783 | 0.843
Scoring Scheme Connectivity Percentage

0% |10% |20% [30% | 40%
Normal-Intra-1 || 0.619 | 0.753 | 0.875 | 0.958 | 0.992
Normal-Both-1 | 0.837 | 0.894 | 0.945 | 0.977 | 0.993
Normal-Intra-2 || 0.671 | 0.791 | 0.902 | 0.966 | 0.992
Normal-Both-2 || 0.868 | 0.915 | 0.955 | 0.980 | 0.994
Bayes-Intra-1 0.721 | 0.829 }0.921 | 0.972 | 0.992
Bayes-Both-1 0.880 | 0.922 1 0.958 | 0.982 | 0.992
Bayes-Intra-2 0.747 | 0.850 | 0.929 | 0.976 | 0.993
Bayes-Both-2 0.895 | 0.931 | 0.962 | 0.984 | 0.994

Table 4.2: Assignment accuracies of scoring schemes based on HOMO.
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Figure 4.5: A comparison between the Bayesian scoring schemes and the scoring
schemes based on normal assumptions: each assignment accuracy is taken as the
average of 4 scoring schemes, namely, Intra/Both-1/2, on two training datasets ALL
and HOMO.
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Connectivity Percentage

0% 10% | 20% [30% | 40% |50% |60% |70% |80% [ 90%

Normal || 0.318 | 0.389 | 0.472 | 0.560 | 0.655 | 0.753 | 0.841 | 0.920 | 0.970 | 0.993
Bayes 0.361 | 0.441 | 0.533 | 0.626 | 0.720 | 0.811 | 0.884 | 0.943 | 0.978 | 0.993
HOMO | 0.337 | 0.413 | 0.500 | 0.590 | 0.685 | 0.780 | 0.861 | 0.931 | 0.974 | 0.993
ALL 0.342 | 0.417 | 0.505 | 0.595 | 0.690 | 0.784 | 0.864 | 0.932 | 0.974 | 0.993
Intra 0.136 | 0.220 | 0.321 | 0.434 | 0.560 | 0.693 | 0.808 | 0.908 | 0.968 | 0.992
Both 0.543 | 0.610 | 0.684 | 0.751 | 0.814 | 0.871 | 0.917 | 0.955 | 0.980 | 0.993
1 0.325 | 0.399 | 0.486 | 0.576 | 0.671 | 0.767 | 0.852 | 0.926 | 0.972 | 0.993
2 0.354 | 0.431 | 0.519 | 0.609 | 0.704 | 0.797 | 0.873 | 0.937 | 0.976 | 0.993

Table 4.3: The comparison of assignment accuracies of different types of scoring
schemes.

prove the performance on average significantly, for example by 12% and 10% in the
instances with 50% and 60% connectivity information respectively. Moreover, when
no connectivity is used, using inter-residue chemical shifts can improve the assign-

ment accuracy by as much as 35%. Figure 4.6 shows their average performances.
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Figure 4.6: A comparison between using both chemical shifts and using only intra-
residue chemical shifts: each assignment accuracy is taken as the average of 4 scoring
schemes, namely, Normal/Bayes-1/2, on two training datasets ALL and HOMO.

Theoretically, training datasets for scoring scheme development should not be
biased on any typical portion and hence NMR data for homologous proteins should

be removed. Though our two training datasets ALL and HOMO vary quite a bit
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in the numbers of all types of chemical shifts, their composition percentages are
close to each other. This might explain the fact that we did not see much difference
in the assignment accuracies by using different training datasets. By examining,
in detail, the proteins that were removed from ALL to obtain HOMO, we found
that the numbers of homologous proteins for different proteins are not large, but
usually only a few. Figure 4.7 shows the average performances over the eight scoring

schemes, where one could not really see the difference.
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Figure 4.7: A comparison between the two datasets HOMO and ALL: each assign-
ment accuracy is taken as the average of 8 scoring schemes, namely, Normal/Bayes-
Intra/Both-1/2, on the two training datasets.

Since we know ahead of time that the secondary structures predicted by PsiPred
come from a neural network where the secondary structures with the largest prob-
ability are reported, using them naively might introduce errors to the sequential
assignment. We conjectured that using the accompanied probabilities of PsiPred
might be helpful in reducing the prediction errors. We have tested a scheme to take
advantage of the probabilities and the experimental results demonstrated that us-
ing them does improve the performance significantly. Figure 4.8 shows the average
performances of scoring schemes using and not using the prediction probabilities,
where we can see that using the accompanied probabilities is always a better choice,

and it could improve the assignment accuracy as much as 5% (in the instances with
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50% connectivity information).
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Figure 4.8: A comparison between using the prediction confidences by PsiPred
and without using them: each assignment accuracy is taken as the average of 4
scoring schemes, namely, Normal/Bayes-Intra/Both, on two training datasets ALL
and HOMO.

To summarize, we are able to claim that, according to our simulation study,
the scoring schemes Bayes-Both-2 learned using both training datasets ALL and
HOMO perform the best among all 16 scoring schemes. The scoring scheme trained
using HOMO is provided freely as a web server [53] that is accessible through
http://www.cs.ualberta.ca/ ghlin/src/WebTools/score.php, where the training dataset
HOMO is also available. The web server contains two main functions, one is “sin-
gle testing” that returns a score for mapping an input spin system to an amino
acid residue and a secondary structure couple, and the other is “batch function”
that accepts a protein sequence together with its secondary structures in PsiPred
format and a file containing the spin systems, and returns an edge-weighted bipar-
tite graph file, which can be readily fed to an integer programming solver, or any
other algorithms for the CBM problem, together with some (or empty) connectivity
information. Figure 4.9 shows a snapshot of the web server.

Our current work on developing the better scoring scheme focuses mainly on

the scoring scheme training for backbone resonance assignment. This is a crucial
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http://www.cs.ualberta.ca/~ghlin/src/WebTools/score.php
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Score: A Web Server for Scoring Spin Systems in Protein NI
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Figure 4.9: A snapshot of the Score web server using “batch function”. Top left:
two windows expecting a file of protein sequence together with secondary structures
in Psi-Pred format and a file of spin systems. Bottom left: a window showing the
score matrix (the complete bipartite graph). Top right: a bipartite graph with one
side containing the spin systems and the other containing the linearly ordered amino
acid residues in the target protein, where an edge indicates the best mappings for
the residues. Bottom right: a graphical view of the score matrix, where the heights
of the colored bars are proportional to the inverse of scores.
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step towards our objective to develop a fully automated tool for protein NMR. back-
bone resonance assignment that would be both robust and efficient. The scoring
schemes we have developed here can be adopted in any existing assignment frame-
works besides the CBM model, such as AutoAssign [78], Mapper [38], and MARS
[45]. We expect the automated assignment tool to considerably speed up the pro-
tein structure determination process via NMR spectroscopy, and to transform the
resonance assignment from a time-consuming task to a high-throughput process.
For the scoring scheme itself, it can be extended into a more general one oriented
towards full protein structure determination to include side-chain nuclei into the
backbone assignment, as well as J-coupling constants and residual dipolar coupling
constants. Such an integration not only fulfills the assignment of other structural
factors, but also improves the assignment accuracy altogether as they can be used

to cross validate each other.
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Chapter 5

CISA: Combined NMR
Resonance Connectivity
Information Determination and
Sequential Assignment
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Many researchers realize that the determination of spin system connectivity plays
a vital role in NMR sequential resonance assignment. The accuracy of connectivity
information has a direct impact on the performance of automated sequential assign-
ment process. In this chapter, we describe our solution to this issue, which is a

heuristic algorithm called “CISA”.

5.1 Overview

Resonance peaks from multi-dimensional NMR spectra contain chemical shifts for
atoms from a common residue and for atoms from adjacent residues. For example,
the CBCA(CO)NH spectrum records the heteronuclear coupling between H and N
in one residue and the C® and CP in the preceding residue (see Figure 2.1(b)),
which provides triples of chemical shifts (H;, C_;,N;) and(Hi,Ciﬂ_l,Ni). There-
fore, the inter-residue chemical shifts contained in the grouped spin systems can
be used as evidence to determine whether some spin systems should assigned to
adjacent residues in the protein sequence. This is what we refer to as “connectivity
information”. The objective of connectivity determination is to identify the true
connections among the spin systems, and to chain the spin systems into strings.
Then in the string assignment process, these strings of spin systems can be assigned
to the non-overlapping polypeptides in the protein sequence. The quality and quan-
tity of the connectivity information (or the identified connections among the spin
systems) directly impact the success of any sequential resonance assignment. Once
the connectivity determination is done with a certain high level of confidence, the
string assignment problem could become trivial. Our simulation study in Chapter 4
supports the conclusion that if 80% correct connectivity information is available, the
sequential resonance assignment problem can be solved efficiently and accurately.
Among the sequential assignment programs that use connectivity information,
some of them [10, 18, 78, 38, 52| assume the availability of connectivity information
and only focus on the string assignment problem. In the other models proposed
for the sequential assignment [7, 22, 42, 62, 6], the connectivity information is de-
termined along the way to assignment. These programs first use the differences
between chemical shift values for the same nuclei in any pair of spin systems to

find the connectivity information and then use these connectivities as constraints
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to compute a sequential assignment. At various levels of success, these algorithms
typically generate a large number of potential connectivity constraints, which grow
exponentially as the spectral data quality decreases.

One big issue in connectivity determination is how to identify the true con-
nections from multiple choices. Mostly due to the noise and data degeneracy, the
connectivity determination is no longer a binary decision but a probabilistic one.
As a result, one spin system could start more than one connectivity pair (many in
general) and could end with more than one connectivity pair. A desirable way to
describe the relationship among the spin systermns is to use the graph, which we call
“connectivity graph”, where the vertices represent the spin systems, the directed
edges represent the possible connections, and edge weights represent the probabil-
ities associated with the connections. A path cover of the connectivity graph G,
which is a set of disjoint paths that contain all vertices of G, indicates one set of
potential connectivity constraints. The cost of a path cover is the sum of all edge
weights in it. A minimum path cover contains the least paths among all path covers.
The goal of connectivity determination is to find the minimum path cover with the
minimum cost (or maximum cost depending on the definition of edge weight) in the
connectivity graph. This problem is NP-hard because it is at least as hard as the
NP-complete problem of finding a path cover of size 1 in an unit-weighted directed
graph, which is referred to as a Hamiltonian path [23].

After the connectivity graph is constructed, PACES [22], a recently proposed
sequential resonance assignment program, enumerates all the paths in the graph. A
final set of non-conflicting paths are picked as identified connectivities. These iden-
tified connectivities are then used as constraints to finish the sequential assignment.
One disadvantage in PACES is that it enumerates all paths in the connectivity
graph without using the edge probability values and the enumeration might not be
feasible if the graph is not sparse enough (see Experimental Results section for more
information).

We proposed to perform the Connectivity Determination and Sequential Assign-
ment simultaneously (acronym CISA, pronounced as ‘kiss-a’) by incorporating the
chemical shift (or spin system) signature information into the connectivity determi-

nation. A key idea used in our sequential assignment program is that the chemical
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shift signature information can be used to validate the connectivity constraint de-
termination, and thus to dramatically decrease the number of constraints. In our
development, we found that a string of connected spin systems typically has a much
better score at the correct mapping position in the protein sequence than almost all
the other (incorrect) mapping positions. This appears quite obviously when the size
of the string increases. Such an observation leads to our conclusion that a string
of spin systems having an outstanding mapping score has a high probability of be-
ing correctly chained. In other words, the connectivity determination and string
assignment support each other.

Our algorithm starts with an Open List of strings and seeks to expand the
string with the best mapping score. The subsequently generated descendant (longer)
strings are appended to the Open List only if their mapping scores are better than
their ancestor’s. Another list, Complete List, kept in the algorithm, saves strings
not further expandable. At the time Open List becomes empty, the high confident
strings with their mapping positions are filtered out from Complete List; meanwhile,
the conflicts among them are resolved in a greedy fashion.

The main distinction between CISA and PACES is the use of spin system sig-
nature information to progressively grow and validate the paths (the strings of spin
systems) in the connectivity graph. In this way, a large number of connectivity
edges could be filtered out according to the low quality of their resultant assign-
ments. Therefore, the paths found in our output assignment might not necessarily
be maximal paths in the connectivity graph, but they all have the outstanding map-
ping positions in the protein sequence. The extensive simulation studies on various
test datasets demonstrated that our proposal of combining chemical shift signature
information into connectivity determination is effective, and the combining improves

the assignment accuracy significantly in comparison to PACES.

5.2 Connectivity Graph

The relationships between spin systems are formulated into an edge-weighted di-
rected graph referred to as a connectivity graph. For every spin system, there is
a vertex in the graph (in the rest of the chapter, vertex and spin system are used

interchangeably). In this section, we describe the use of C* and C? chemical shift
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differences to determine the connectivities between spin systems. In our exper-
iments, we used another combination that contains C®, C?, and C chemical shift

differences. Other combinations of chemical shifts are possible and their connectivity

(o4

graphs can be built similarly. For two spin systems v; = (H;, N;, C, C? ,C& 1, Cl{l)
and v; = (H;,N;,C%,C7, 02,07 _,), if both [CF—C%_,| < 6, and [C] —CF_ [ < 65
hold, then there is an edge from v; to v; with its weight calculated as

1flce -Gl 167 - O]
2 Sa s

; (5.1)

Similarly, if both |C¢ — Cf ;| < 84 and |Cf - Ciﬁ_1| < 65 hold, then there is an edge
from v; to v; with its weight calculated as

1 |C? - C | v |C§3 - Ciﬂ—ll
2 3 35 '

Here both 6, and g are pre-determined tolerance thresholds, which are typically set
to 0.2 ppm and 0.4 ppm [22, 47], though minor adjustments are sometimes necessary
to ensure a sufficient amount of connectivity. If neither case occurs, then there is
no edge between v; and v;. Equation (5.1) is not the only weighting function, and
some other functions as suggested in [47] on the chemical shift differences could be
adopted to weigh the edges.

In the other combination that contains C*, C?, and C chemical shift differences,
it is required that at least 2 out of the following 3 conditions hold: |C¥~C$_ ;| < dq,
|Ciﬁ - C?_1| < dg, and |C; — Cj_1]| < 4, and the weight of edge from v; to v; is
evaluated analogously as in Equation (5.1).

After every pair of vertices (spin systems) has been examined to have an edge
or not, we finish the construction of the connectivity graph. However, some true
connectivities might not be present in the connectivity graph while some wrong ones

might be present.

5.3 String Growing

With the connectivity graph constructed, PACES proceeds to enumerate all the
(simple, directed) paths in the graph without using the detailed edge weights. We
choose another approach to grow a path using the edge weights. The growth is
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guided by the quality of the path mapping to the protein sequence. Given a path,
its quality is measured by the mapping score of the path at the best mapping position
on the target protein. All the edges, coming out of the ending spin system in the
current path to be expanded, are sorted in a non-increasing order of their weights.
For the edge at the head of the order, the temporary extended path (called child
path) is formed and its best mapping position on the target protein can be found via
a linear search. The mapping score of this child path is calculated and compared
with the mapping scores of its parent path to decide whether to accept it or not.
It has been observed that a sufficiently long path is able to detect the succeeding
spin system by taking advantage of the discerning power of the scoring scheme
[68]. Therefore, it is expected that using mapping scores to filter the extended
paths would give rise to much fewer potential paths for further consideration and
eventually avoid exhaustive search as done in PACES.

In each iteration, CISA starts with an Open List (OL) of paths and seeks to
expand the one with the best mapping score. The OL has a fixed size S (in our
experiments, S = 60) and the detailed value set for S depends on computer memory
size. In our case, the experiments were done on a typical desktop with a 1Gb
RAM. We found that S can be chosen from a value in the range between 40 and
80 without affecting the performance significantly. We used the median value of 60.
The subsequently generated child paths are appended to OL if their mapping scores
are high and there is room in OL, or if their mapping scores are higher than that of
some existing path in OL. Another list, Complete List (CL), is kept in CISA to save
those paths that can not be expanded further. At the time OL becomes empty, the
high quality paths with their mapping positions are extracted out of CL where the
conflicts are resolved in a greedy fashion. CISA chooses the most reliable string out
of the remaining connectivity graph in each iteration and the corresponding path
is removed from the graph. Our algorithm terminates when the connectivity graph
becomes empty and returns the constructed strings with their mapping positions on

the target protein.
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5.4 Experiments

We have designed two experiments to test our algorithm, CISA, and to compare its
performance with that of PACES.

The first experiment used 22 proteins that were tested by PACES and one real
dataset Zdom that we obtained from AutoAssign [78]. However, we did not obtain for
each protein the exact instance as tested by PACES in [22]. Therefore, we simulated
them from the corresponding protein entries in BioMagResBank according to the
simulation procedure described in [22]. Note that there are some more proteins that
were tested by PACES and did not require simulations. These proteins subsequently
were excluded from our datasets. This experiment was designed to compare the
performance between CISA and PACES.

The second experiment was designed to show the computational speed of CISA
and its overall assignment accuracy, for which all eligible protein entries deposited in
BioMagResBank were simulated and tested. The performance of CISA on individual
proteins and the average assignment accuracy were collected. Since it was possible
to run PACES on all these proteins within a reasonable amount of time, we chose
to run CISA only.

In the first experiment, PACES was run on every dataset for 1 iteration only
because we did not manually analyze the assignment to prepare for the second
iteration. In this sense, all three programs are automated without any manual
adjustment. As a result, the performance of PACES reported in the following might
be a little worse than that reported in [22], where PACES was usually run a few
iterations on a dataset with manual adjustments in order to improve the assignment

accuracy.

5.4.1 Experiment 1

In the first experiment, we used the datasets tested in [22] and followed the same
simulation procedure, which used three inter-residue chemical shifts, C*, C?, and
carbonyl C, for connectivity graph construction (tolerance thresholds were 6, =
0.2ppm, dg = 0.4ppm, and § = 0.15ppm). The reason we did our own simulation in
this experiment is the unavailability of the original datasets from [22]. Our simulated

datasets were very close to the corresponding datasets in [22] in terms of the number
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of missing spin systems (and the performance of PACES). Overall, in these datasets,
the percentage of missing spin systems ranged from 3% to 39%. We find that the
existence of missing spin systems challenged the robustness of our CISA in many
ways, especially in its assignment accuracy. A real instance Zdom was also included
in this experiment, which we indirectly obtained from AutoAssign [78] and did not
need simulation. The performances of PACES and CISA on these 23 instances are
collected in Table 5.1. Their assignment accuracies are also plotted in Figure 5.1.
In summary, CISA outperformed PACES in all instances except bmr4402 where
PACES performed a little bit better than CISA (assignment accuracies 0.873 vs
0.860). The tendency of the assignment accuracies shows that their performance

gap becomes larger as the instances become harder.
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Figure 5.1: Plots of assignment accuracies for PACES and CISA on the simulated
datasets for proteins from [22], using the exact dataset generation method as de-
scribed, and a real dataset Zdom indirectly obtained from AutoAssign [78].

5.4.2 Experiment 2

The second experiment was designed to show the computational speed of CISA and
its overall assignment accuracy. To this purpose, we simulated all eligible protein en-

tries deposited in BioMagResBank using the default tolerance thresholds. We chose
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[ Length ” InstancelD | #SpinSystems " PACES CISAJ

731 || bmrb471 654 0.791 | 0.887

370 || bmr4354 330 0.788 | 0.979

288 || bmr5316 265 0.770 | 0.940

266 || bmr5468 240 0.788 | 0.938

262 || bmr4384 221 0.715 | 0.950

260 || bmr4022 242 0.897 | 0.959

232 || bmr4102 212 0.873 | 0.991

221 || bmr4844 198 0.697 | 0.939

217 || bmr4836 206 0.874 | 0.961

189 || bmr4834 166 0.837 | 0.934

133 || bmr4094 129 1.000 | 1.000

130 || bmr5142 127 0.819 | 0.992

128 || bmrd4444 106 0.679 | 0.991

124 || bmr4032 119 0.980 | 0.990

Group 1 Avg. 0.822 | 0.961
214 || bmr4152 197 0.610 | 0.772

105 || bmr4402 (126-230) 93 0.873 | 0.860

139 || bmr4082 132 0.674 | 0.924

81 || bmr4721 74 0.760 | 0.933

68 || bmrd769 67 0.838 | 0.956

Group 2 Avg. 0.751 | 0.889
227 || bmr4457 162 0.310* | 0.575

192 || bmr4341 117 0.598 | 0.872

110 || bmr4136 105 0419 | 0.724

71 || Zdom* 65 0.338 | 0.738

Group 3 Avg. 0.416 | 0.727

| Overall Avg. ” l " 0.736 | 0.905 [

Table 5.1: Assignment accuracies of PACES and CISA on simulated datasets for
proteins from [22], using the exact dataset generation method as described, and a
real dataset Zdom indirectly obtained from AutoAssign [78]. Tolerance thresholds
are 0, = 0.2ppm, 63 = 0.4ppm, and 6 = 0.15ppm. #SpinSystems records the
number of available spin systems for one instance. The datasets are partitioned into
three groups. In the first group, datasets all have carbon alpha C%, carbon beta
CP, and carbonyl C chemical shifts of high quality; In the second group, datasets
all have carbon alpha C%, carbon beta C?, and carbonyl C chemical shifts, but of
low quality; In the third group, datasets have only carbon alpha C® and carbon
beta CP chemical shifts of various quality. *PACES performance on this dataset
was obtained by reducing tolerance thresholds to é, = 0.15ppm and ég = 0.3ppm
to ensure an assignment in 8 hours.
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to use the chemical shift combination (H, N, C*, C#), and consequently the eligible
proteins are those that contain all these four types of chemical shifts (though they
might be obtained from different spectra). The default tolerance thresholds for C*
and CP are 0.2ppm and 0.4ppm, respectively. To screen out some highly degenerate
protein entries, we set up a 5-minute time limit for CISA on each protein. That
is, if CISA could not terminate the assignment for one protein in 5 minutes, then
the protein entry was discarded. We remark that 5 minutes was long enough since
for most of the proteins on which CISA terminated, it terminated within seconds.
One interesting discovery is that we found some proteins have significant resolution
differences within their spectral profiles, for example, bmr4402 (cf. Experiment 3)
has one half of high resolution but the other half of very low resolution. Through
setting up the time limit, CISA was able to detect the low resolution proteins about
20kDa in size.

In summary, CISA was able to finish the assignments for 360 proteins in total.
The length of these proteins ranges from 58 to 198, and the assignment accuracy
from 0.62 to 1.00. The average assignment accuracy is 0.903, which is consistent
with the results in Experiment 1. The assignment accuracy versus the length of the
protein is plotted in Figure 5.2, where each cross represents an instance. From the

plot, we see that CISA appears insensitive to the size of proteins.
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Figure 5.2: Plots of assignment accuracies for CISA on the simulated datasets for
360 proteins from BioMagResBank, where each cross represents one instance using
its length.
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5.5 Discussions and Conclusions

On a normal desktop with a 1.6GHz AMD-2000 processor and a 1Gb RAM, for the
instances in the first two experiments, the overall running time of CISA ranged from
a few seconds to 4 hours (and most of them were done in less than 20 minutes).
For the instances in the third experiment, the overall running time of CISA never
exceeded 30 minutes. PACES failed to finish the assignments in 8 hours for a
number of instances because their connectivity graphs were too complicated and
the enumeration of paths became infeasible (1Gb memory ran out). For this reason,
we manually adjusted the tolerance thresholds to reduce the graph complexity in
order for PACES to output some assignments. However, we admit that doing this
might bring down the assignment accuracy a bit since true edges could be removed
from the connectivity graph.

Through CISA, we have successfully combined the spin system signature infor-
mation into the path growing in the connectivity graph, which prunes the search
space more effectively compared to PACES (which failed on a number of complex
instances in the first two experiments). However, in the current version of CISA
the weights of edges are used only to order the child paths. We believe that some
better usage of edge weights in the mapping score evaluation for a growing path
would help more effectively quantifying the quality of the growing path. We have
tried some simple linear functions on the edge weights and the mapping scores of
paths, which turned out not to serve satisfactorily. We are currently investigating
more combinations. Across all the experiments, we found that CISA spent a large
portion (about 50%) of time in finding the first string. We also observed that for
all instances, after 3 to 4 iterations, CISA found the best string in a straightforward
way. In other words, CISA running time was mostly consumed in its first 3—4 itera-
tions. One possible way to speed up CISA in the first string finding could be to use
only high probability edges in the connectivity graph. This method is still under

investigation.
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Chapter 6

GASA: A Graph-Based
Automated NMR Backbone
Resonance Sequential
Assignment
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The traditional automated assignment procedure involves three steps, namely
peak grouping, connectivity determination and string assignment. This procedure
is widely used by most automated assignment systems. In this chapter, we describe
a novel assignment procedure to separate the assignment procedure not into physical
steps, but only into virtual steps and use their outputs to cross validate each other.
The novelty lies in the places where the ambiguities in the peak grouping step
could be resolved by the connectivity determination and the ambiguities in the
connectivity determination could be resolved by the string assignment. In such a
way, all ambiguities in the whole assignment procedure would be resolved globally

and optimally.

6.1 Overview

The traditional automated assignment procedure involves three separate steps, which
respectively group resonance peaks from multiple spectra into spin systems, predict
the connectivity among the resultant spin systems to assemble them into strings, and
then to map strings to non-overlapping consecutive amino acid residues in the target
protein. This is illustrated in Figure 6.1, where the scoring scheme quantifies the

chemical shift signature information for each steps if necessary. Several assignment

Scoring

A Y Y

Assignment—-candidates

4

Chaining

4

peak lists —| Grouping

Figure 6.1: The flow chart of the peak assignment process.

methods have adopted the traditional procedure to automate the resonance assign-
ment process. Among them, AutoAssign [78] and RIBRA [73] are two programs
that fully automate the whole assignment process while most of other programs
assume that the perfect spin systems are given as input, and focus on the design of
computational models for connectivity determination and string assignment. Within
these two programs, the peak grouping is especially addressed with a binary-decision

model, which considers the HSQC peaks as base peaks and subsequently maps the
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peaks from other spectra to these base peaks. The H and N chemical shift values of
the mapped peaks must fall within the pre-specified H and N chemical shift toler-
ance thresholds of the base peaks. However, the binary-decision model in the peak
grouping inevitably suffers from its sensitivity to the tolerance thresholds. From one
protein dataset to another, the chemical shift tolerance thresholds vary because of
the experimental condition and the structure complexity. Large tolerance thresholds
could create too many ambiguities in both spin system identification and connec-
tivity determination, which lead to a dramatic decrease of assignment accuracy. On
the other hand, small tolerance thresholds would produce too few spin systems that
would hardly lead to a useful assignment when the resolution of spectral data is low.

While there are a considerable number of assignment programs, the assignment
accuracy remains unsatisfactory in practice. Even worse, if the given spectral data
is of low resolution, most programs often fail to output a meaningful assignment.
Through a thorough investigation, we first identified that the bottleneck in most
automated assignment programs is the performance of the peak grouping task. Our
previous work {68, 69] showed that the quality and quantity of spin systems pro-
duced in the peak grouping could have the most significant effect on the assignment.
Nevertheless, the widely used binary-decision model is inefficient in producing the
spin systems of high quality for spectra with typical resolution.

Second, we found that in the traditional procedure, which is the basis of most
automated assignment program, each task is conducted individually . The input of
each task is assumed to contain enough information to produce some meaningful
output. However, for low resolution spectral data, the ambiguities that appear in
one task seem very hard to be internally resolved. Though it is sometimes possi-
ble to output multiple candidates, the uncertainties might cause more ambiguities
in the succeeding tasks. Consequently, the whole process would fail to produce a
meaningful resonance assignment. In the previous chapter, we have shown that by
incorporating the assignment verification into the connectivity determination, we
can provide a better approach for resolving the ambiguities in connectivity deter-
mination. We believe that by combining the peak grouping with the connectivity
determination and string assignment, we could effectively resolve the ambiguities ap-

pearing in the peak grouping stage and present a better solution to the automated
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resonance assignment.

6.2 GASA Algorithm

The input data to our program consists of the protein sequence and a set of NMR
peak lists. Except for the HSQC spectrum, our approach does not require any other
specific NMR spectra as long as they are sufficient for the assignment purpose. For
ease of exposition and fair comparison with RIBRA [73], we assume the availability
of spectral peaks containing chemical shifts for carbon alpha and carbon beta, as
well as the HSQC peak list. Thus the peak lists we use to conduct the experiments
and comparison include HSQC, CBCA(CO)NH and HNCACB, although our ap-
proach can accept many other combinations. Given these three peak lists, RIBRA
tried to find the two closest CBCA(CO)HN peaks and the four closest HNCACB
peaks for each peak in the HSQC spectrum under the constraint that the H and N
differences between these peaks are within the given tolerance thresholds. If more
than 6 peaks are found, RIBRA generates all possible combinations to represent all
legal spin systems. The true spin systems are filtered out in the later process in
RIBRA. The difference between the peak grouping model applied in RIBRA and
the general binary-decision approach used in AutoAssign is that the ambiguities
appearing in the peak grouping could be automatically resolved to some extent in
RIBRA, while in AutoAssign, additional manual work has to be conducted or more
peak lists are required to provide the redundant information for resolving the am-
biguities. Nonetheless, we argue that the peak grouping model in RIBRA is still
susceptible to the change of pre-chosen tolerance thresholds because large toler-
ance thresholds could make RIBRA produce a huge number of legal spin systems
while small tolerance thresholds would lead to too few spin systems to perform the
assignment process.

To eliminate the sensitivity to the given tolerance thresholds in peak grouping
and provide a computational model for automatically resolving ambiguities and con-
ducting the sequential assignment, we designed a two-stage Graph-based Approach
for Sequential Assignment (acronym GASA) that not only addresses the hard is-
sues in the peak grouping but also presents a new model to automate the sequential

assignment process. In the first stage, we propose a two-way nearest neighbor search
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approach that eliminates the requirement of user-specified H and N chemical shift
tolerance thresholds. The output of the first stage is two lists of spin systems. One
list contains the perfect spin systems and the other the imperfect spin systems.
In the second stage, connectivity determination is performed to resolve the ambi-
guities contained in the imperfect spin systems, and the string assignment would
be included as a subroutine to determine the confident connectivity information.
In our approach, once the ambiguities in the imperfect spin systems are resolved,
connectivity determination and string assignment would be completed at the same

time.

6.2.1 Filtering

The task of filtering is to find all perfect spin systems without asking for the tolerance
thresholds. In all peak grouping models we have seen, the tolerance thresholds are
required as the cut-offs that decide if two peaks should reside in the same spin system
or not. As aresult, different tolerance thresholds would clearly produce different sets
of possible spin systems, and for the spectral data with the low resolution, a minor
change of tolerance thresholds would lead to the a difference in the final assignment.
Thus the question of how to choose the tolerance thresholds is a very challenging
issue in automated resonance assignment. An intuitive solution to this issue is to
use an exhaustive search that automatically tests all possible tolerance thresholds.
Obviously, this solution is very time-consuming and not applicable especially for
the large protein. During our investigation, we noticed that the peaks residing
in the same spin system usually have closer H and N chemical shifts than those
in different spin systems. Hence we could use the nearest neighbour method to
differentiate peaks in different spin systems. The peaks in the HSQC spectrum
would be considered as centers, and each peak in CBCA(CO)NH and HNCACB
would be distributed to the closest center. Given a center C = (Hg, N¢) and a peak
P = (Hp, Np, C;/ A ), the distance between them is defined as

o (B ().

where oy and oy are the standard deviations of H and N chemical shifts that are

collected from BioMagResBank (http://www.bmrb.wisc.edu). In the ideal case,
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(a) (b)

Figure 6.2: Problems in the peak grouping.(a) There are 3 HSQC peaks as 3 centers
C1,Cs,Cy. Each peak is associated with the closest center. Only C3 forms a perfect
spin system with 6 associated peaks. (b) Cj finds the top 6 closest peaks to form
a perfect spin system and meanwhile Cy forms a perfect spin system with rest of
peaks

each center should have 6 peaks distributed to it in total. However, due to the
chemical shift degeneracy, some centers may have less than 6 or even 0 peaks because
the peaks belonging to them might be closer to other centers, which makes those
other centers have more than 6 peaks. Figure 6.2 illustrates a simple example with 3
HSQC peaks as centers for this situation. In the ideal case, each center should have
6 peaks in total. However, only one perfect spin system with center Cs is formed
because the two peaks belonging to center C are closer to center Co, which creates
ambiguities in both spin systems. Nevertheless, if we place the focus on center Cf,
we may find that its two peaks residing in the wrong spin system are still in its top
6 closest peaks. If the spin system with center C; is formed by adding these two
peaks (see Figure 6.2(b)), the spin system with center C5 also becomes a perfect
spin system. We designed a bidirectional nearest neighbour model in Filtering, which
consists of two steps: Residing and Inviting. In the Residing step, we associated each
peak in the CBCA(CO)NH and HNCACB spectrum with the closest HSQC peak.
If the HSQC peak with its associated peaks in the CBCA(CO)NH and HNCACB
spectrum form a perfect spin system, the resultant spin system is inserted into the
list of perfect spin systems and the contained peaks are removed from the nearest

neighbour model. In the Inviting step, each peak in the HSQC spectrum looks
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for the top k closest peaks in the CBCA(CO)NH and HNCACB spectrum, and
if a perfect spin system can be formed within these k peaks, the similar procedure
would be conducted for the formed perfect spin system and its contained peaks. The
parameter k is related to the number of peaks contained in a perfect spin system.
It is usually specified as 1.5 times the number of peaks in a perfect spin system. It
can be automatically computed in the program with respect to the input peak lists.
The aforementioned two steps would be continually executed until no perfect spin
system can be found and two lists of spin systems are produced. One list contains
the perfect spin system and the other list saves the imperfect spin systems. The user
could specify the maximal H and N tolerance thresholds to speed up the process,
but a minor differences in the maximal tolerance thresholds would not affect the

performance of this model. The pseudocode of Filtering is in the following;

Phase 1: Filtering
Input: HSQC, CBCA(CO)NH, HNCACB peak lists.

Residing: For each peak in CBCA(CO)NH and HNCACB, find the
closest peak in HSQC. Remove those peaks that form perfect spin sys-
tems.

Inviting: For each peak in HSQC, find top k& peaks in CBCA(CO)NH
and HNCACB. Remove those peaks that form perfect spin systems.

Stop if no perfect spin system is found.

6.2.2 Resolving

The goal of the Resolving step is to identify the true peaks contained in the imperfect
spin system and then to conduct the connectivity determination and string assign-
ment. Nevertheless, it is very hard to distinguish between true peaks and false peaks
when each imperfect spin system is individually checked. During our development,
we found that in most cases the spin systems containing true peaks could produce
more confident connectivity information than those containing false peaks. Hence

we believed that we could extract the true peaks from the imperfect spin systems
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through the search of high confident connectivity information contained among the
perfect spin systems and imperfect spin systems, and those peaks used in building
confident connections would have a high probability of being true peaks.

The relationships between spin systems are formulated into the connectivity

graph similar to CISA as we discussed in the previous chapter. Given two per-

B P - - R . - - - e -
fefect spin systems v; = (Hi, N, Cg, Ciﬂ, Ceq, C?_l) and v; = (H;, Nj, CF, Cf, G5y,
C“C?_l) if both [C — C%_| < 6q and |Cfi - Cf_ll < 43 hold, then there is an edge
from v; to v; with its weight calculated as

1 |G — C%4| n |C?_C§—1I
5 5 5

H

Here both 4, and dg are pre-determined tolerance thresholds, which are typically set
to 0.2ppm and 0.4ppm, though minor adjustments are sometimes necessary to ensure
a sufficient amount of connectivities. Given one perfect spin system v; = (H;, N;,
Cg, C?, Cy Cf_l) and one imperfect spin system v; = (H;, N, Cs Chasr - Ch,
Cfl, 052" : ~,Cfn), we check each legal combination v;. = (H;, Ny, Csis C?k, C?‘p,C?q)
where [,k € [1,m] and p,q € [1,n]. The carbon chemical shifts with subscripts /, k
represent the intra chemical shift and those with subscripts p, ¢ representing the

inter chemical shifts. If both |C# — C%| < 6, and |Cf — Cf | < 85 hold, then there

is an edge from v; to v'; with its weight calculated as

Ce _ Qo cB_ P
l<| 1 ap +| 1 ]q|>; (62)

2 3 35

If both |C% — C| < 8, and |C5, — CF| < d5 hold, then there is an edge from v'; to
v; with its weight calculated as

1(Iog-cel | 105 -9
2 Oa 33 ’

It is possible that there are multiple connections between one perfect spin system
and one imperfect spin system but at most one connection could be true. Given two
imperfect spin systems, no connection is allowed.

With the connectivity graph constructed, we use essentially the same heuristic
search algorithm in CISA [67], in which the search is guided by the quality of the
generated path mapping to the target protein. Given a path, its quality or mapping
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score is measured by the average likelihood of the best mapping position for the path
on the target protein. The edge weights are used to order the edges coming out of
the ending spin system in the current path to provide the candidate spin systems for
the current path to grow to. It has been observed that a sufficiently long path itself
is able to detect the succeeding spin system by taking advantage of the discerning
power of the scoring scheme ([68]). In each iteration, GASA starts with an Open
List (OL) of paths and seeks to expand the one with the best mapping score.
Another list, Complete List(CL), is used in the algorithm to save those completed
paths. In the following, we briefly describe the algorithm for finding connectivity

determination and resolving the ambiguities in imperfect spin systems.
Phase 2: GASA

OL Initialization: Let G denote the constructed connectivity graph. We
first search for all unambiguous edges in G. We expand those edges into
simple paths with a pre-defined length L by both tracing their head vertices
backward and their tail vertices forward. The tracing would stop if either of
the following conditions is satisfied. (1) The new traced vertices are sitting in
the paths. (2) The length of the path is L. The paths stored in OL are sorted
in the non-increasing order of their mapping scores. The size of OL is shrunk
to a fixed size S and only the first S paths in OL are kept for the trade-off

between computing time and accuracy.

Path Growing: In this step, the algorithm tries to bidirectionally expand
the top ranked path stored in OL. Denote this path as P, the first vertex in P
as h and the last vertex in P as t. All directed edges incident to A and incident
from ¢ are considered to generate potential child paths. For every potential
child path, the algorithm finds its best mapping position in the target protein
and calculates the best mapping score. If its mapping score is higher than
that of some path already stored in OL, then the child path is added into OL
(and the path with least mapping score is removed from OL). If none of the
potential child paths of P is added into OL or P is not expandable in either
direction, path P is added into CL. The algorithm proceeds to consider the
top ranked path in OL iteratively and the growing process is done when OL
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becomes empty.

CL Finalizing: Let P denote the path of the highest mapping score (tie
is broken to the longest path) in CL. Other paths in CL with both length
and score less than 90% of the length and score of path P are discarded from
further consideration. The remaining paths are considered to contain reliable

connectivities and would be examined further.

Connectivity Filtering: Only those edges occurring in at least 90% of the
paths in CL are chosen as reliable connectivities and the other edges are re-
moved from further consideration. Subsequently, paths with edges removed

are broken down into shorter pieces.

Ambiguities Resolving: At this stage, the paths in CL are considered to
contain only reliable connectivities. The longest one of them is the target in
this iteration. Denote this path as PP. The spin systems on P are removed
from the connectivity graph G, as well as the edges incident to/from them.
For the imperfect spin systems in P, the peaks used to build the connections
in P could be considered as true peaks. If the remaining connectivity graph
is still non-empty, the algorithm proceeds to the next iteration. Otherwise,
it terminates and reports the assignment, i.e., the strings it found and their

mapping positions on the target protein.

6.3 Experiments

Four experiments are designed to evaluate the value of our work by comparing the
performance of GASA with recently developed methods.

In the previous chapter, we compared CISA, which is a subcomponent of GASA,
with PACES [22] on the PACES datasets. In the first two experiments, we use
our simulated dataset to make a full comparison with more published methods on
connectivity determination. The test results further demonstrate the performance of
combining connectivity determination with string assignment by comparing GASA
with RANDOM [47], PACES, and MARS [45]. Our simulated dataset contains 12
proteins from [76], which do not have solved structures and thus would not bias the

chemical shift signature information.
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The purpose of the third and the fourth experiments is to to demonstrate the
advantage of merging all peak grouping, connectivity determination, and string
assignment together into a single iterated process by comparing GASA with RIBRA.
In the third experiment, we re-examine the 5 released datasets by RIBRA, which are
simulated from the real protein NMR data deposited in BioMagResBank. In this
experiment, GASA performed basically as good as RIBRA. In the fourth experiment,
we sought out another simulation which we thought was much closer to the reality
to determine whether the results for RIBRA data are representative.

All three programs in the first two experiments, RANDOM, PACES, and MARS,
reported the same statistic (they may use different terms), which we denoted as

accuracy. The definition of accuracy is

number of correctly assigned spin systems
accuracy = .
Y number of available spin systems

To make fair comparison, we also provide the same statistic in the first two experi-
ments. This also helps us justify our simulation and tests by comparing our results
with those reported in the original publications of these three programs.

RIBRA, however, defines two different criteria, namely precision and recall, to
measure the performance. In particular,

number of correctly assigned amino acids
number of assigned amino acids

preciston =

b

number of correctly assigned amino acids

recall = - - - .
number of amino acids with known answers

We use the same criteria in the third and fourth experiments to facilitate the com-

parison.

6.3.1 Dataset Generation

In the literature, the simulation procedure of peak lists or spin systems from data
entries deposited in BioMagResBank is basically the same in all simulations. The
difference is what type of errors should be simulated and how to simulate them.
In {76], 14 proteins were carefully chosen to form datasets for simulation studies
on the proposed constrained bipartite matching model for sequential assignments.
These proteins do not have solved atomic structures and were not used to derive

the scoring scheme adopted in our experiments. Among these proteins, bmr4309
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and bmr4393 data entries in BioMagResBank do not contain carbon beta chemical
shifts and thus cannot be used for our simulation purposes. As a result, only 12 of
them were included in our datasets, whose lengths range from 66 to 215.

We first introduce how we simulate the spin systems for the first two experiments.
The following is the simulation procedure for generating the spin system containing
H, N, C*, and CP chemical shifts. Other types of chemical shifts can be added
in the same way. For each of these 12 proteins, we extracted its data entry from
BioMagResBank to obtain all the chemical shift values for the amide proton H, the
directly attached nitrogen N, the carbon alpha C%, and the carbon beta C8. For
each amino acid residue, except proline and glycine, the four chemical shifts together
with carbon alpha C* and carbon beta C? chemical shifts from the preceding residue
formed the initial spin system. In the case of proline residues, we excluded them
from the simulation because in the real NMR data, there would not be spin systems
for prolines since there would not be HSQC peaks for them. Next, for each initial
spin system, chemical shifts for intra-residue C* and C? were perturbed by adding to
them randomized errors that follow independent normal distributions with 0 mean
and constant standard deviations.

Next, we describe how we simulate the peak lists for the third and fourth
experiments. The following is the simulation procedure for the Perfect HSQC,
CBCA(CO)NH and HNCACB peak lists, which is also applied for generating other
spectral peak lists. Given one data entry in BioMagResBank, we extracted all the
chemical shift values for the amide proton H, the directly attached nitrogen N, the
carbon alpha C®, and the carbon beta CP. For each amino acid residue, except
proline, its H and N chemical shifts form a peak in HSQC peak list, its H and N
chemical shifts with C* and CP chemical shifts from the preceding residue form
two inter peaks respectively in CBCA(CO)NH peak list, and its H and N chemical
shifts with its own C® and CP chemical shifts and with C* and C? chemical shifts
from the preceding residue form two intra-residue peaks and two inter-residue peaks
respectively in HNCACB peak list. For glycine, it has at most two inter-residue
peaks and one intra-residue peak in the HNCACB spectrum since it does not have
the CP chemical shift. If the preceding residue is glycine, then only one inter-residue

peak in the CBCA(CO)NH spectrum and at most two intra-residue peaks and one
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inter-residue peak in the HNCACB spectrum are simulated. Many types of errors
can be added into the perfect peak lists to make the simulated data closer to the
reality. For example, we can simulate missing peaks by removing some peaks from
peak lists, generate some false peaks in the peak lists as noise and simulate chemical

shift divergence by including some measuring errors into each peak.

6.3.2 Experiment 1

In the first experiment, we applied the aforementioned procedure for spin system
generation with the widely accepted tolerance thresholds for C® and C? chemical
shifts, which were 6, = 0.2ppm and dz = 0.4ppm, respectively [78, 22, 6, 45]. Sub-
sequently, the standard deviations of the normal distributions were set to 0.2/2.5 =
0.08ppm and 0.4/2.5 = 0.16ppm, respectively. These 12 instances, with suffix 1,
are summarized in Table 6.1. In order to test the robustness of all three programs,
we generated another set of 12 instances through doubling the tolerance thresholds
(that is, 6, = 0.4ppm and d3 = 0.8ppm). They, having suffix 2, are also summarized
in Table 6.1. We use #CE to denote the number of correct edges (i.e. true edges)
in the connectivity graph and #WE to denote the number of wrong edges. Both
these two quantities tell to some extent how good the tolerance thresholds are. For
every vertex in the graph, the number of edges coming out is called its out-degree.
The average out-degree of the graph is defined to be the sum of the out-degrees
over all the vertices (or equivalently, the number of edges in the graph) divided by
the number of vertices. Such a notion of average out-degree (denoted as Avg.OD)
captures the complexity (or the density) of the connectivity graph. Obviously, Table
6.1 tells that instances in the second set are much harder than the corresponding
ones in the first set, where the complexity of an instance could be measured by the
average out-degree of the vertices in the connectivity graph.

All four programs — RANDOM, PACES, MARS, and GASA — were called
to run on both sets of instances. The performance results of RANDOM, PACES,
MARS, and GASA on both sets of instances are collected in Table 6.2. Their
assignment accuracies on two sets are also plotted in Figure 6.3.

In summary, RANDOM achieved on average 50% assignment accuracy (We fol-

lowed the exact way of determining accuracy as described in [6], where 1000 itera-
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Length 0o = 0.2ppm, d3 = 0.4ppm 0o = 0.4ppm, d5 = 0.8ppm

InstanceID | #CE | #WE | Avg.OD | InstanceID | #CE | #WE | Avg.OD

66 || bmr4391.1 63 20 1.30 || bmr4391.2 63 46 1.72
68 || bmr4752.1 65 43 1.64 || bmr4752.2 65 120 2.80
78 || bmr4144.1 71 20 1.26 || bmr4144.2 71 77 2.06
86 || bmr4579.1 82 81 1.96 || bmrd579.2 82 219 3.58
89 || bmr4316.1 84 118 2.61 || bmr4316.2 84 309 4.62
105 || bmr4288.1 93 25 1.26 || bmr4288.2 93 89 1.94
112 || bmr4670.1 101 24 1.12 || bmr4670.2 101 100 1.79
114 || bmr4929.1 109 34 1.30 || bmr4929.2 109 117 2.05
115 || bmr4302.1 107 18 1.16 || bmr4302.2 107 87 1.80
116 | bmr4353.1 97 30 1.30 || bmr4353.2 97 106 2.07
158 [ bmr4027.1 147 71 1.48 i} bmr4027.2 147 252 2.70
215 || bmr4318.1 190 157 1.82 || bmr4318.2 190 553 3.90

Table 6.1: 24 instances for the first experiment: ‘Length’ denotes the length of a
protein, measured by the number of amino acid residues therein; ‘#CE’ records
the number of Correct Edges in the connectivity graph, which ideally should be
equal to the number of available spin systems minus 1, and ‘#WE’ records the
number of Wrong Edges, respectively; ‘Avg.OD’ records the average Out-Degree of
the connectivity graph.

tions for each instance have been run), which is roughly the same as that claimed
in the original paper [6]. PACES performed better than RANDOM, but it failed on
seven instances where the connectivity graphs were too complex (computer memory
ran out, see Discussion for more information). The collected results for PACES
on these seven instances were obtained through manually reducing the tolerance
thresholds to remove a significant portion of edges from the connectivity graph. We
implemented a scheme that if PACES did not finish an instance in 8 hours, then the
tolerance thresholds would be reduced by 25%, for example, from §, = 0.2ppm to
0o = 0.15ppm. Both GASA and MARS outperformed PACES and RANDOM in all
instances, and even more significantly on the second set of more difficult instances,

while GASA performs slightly better than MARS on two datasets.
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Length 0o = 0.2ppm, 63 = 0.4ppm

InstanceID | RANDOM [ PACES | MARS | GASA

66 || bmrd391.1 0.63 0.72 0.87 0.97

68 || bmrd752.1 0.35 0.79 0.97 0.94

78 || bmrd144.1 0.33 0.53 0.97 0.99

86 || bmr4579.1 0.51 0.62* 0.91 0.98

89 || bmr4316.1 0.36 0.40* 0.96 0.99

105 || bmr4288.1 0.55 0.71 0.95 0.98
112 |[ bmr4670.1 0.62 0.77 0.88 0.95
114 || bmr4929.1 0.63 0.86 0.97 0.91
115 || bmr4302.1 0.64 0.73 0.92 0.95
116 || bmr4353.1 0.43 0.79 0.85 0.95
158 || bmr4027.1 0.32 0.82 0.93 0.99
215 || bmr4318.1 0.38 0.54* 0.81 0.84

| Avg ] [ 048] 069 090] 0.95]
Length 0o = 0.4ppm, d5 = 0.8ppm

InstanceID | RANDOM | PACES | MARS | GASA

66 || bmr4391.2 0.55 0.69 0.85 0.91

68 || bmr4752.2 0.30 0.74} 0.90 0.88

78 || bmrd144.2 0.31 0.38 0.97 0.99

86 || bmrd579.2 0.32 0.43% 0.75 0.80

89 || bmr4316.2 0.30 0.187 0.92 0.83

105 || bmr4288.2 0.38 0.53 0.93 0.91
112 || bmr4670.2 0.39 0.57 0.81 0.87
114 || bmr4929.2 0.43 0.77 0.97 0.94
115 || bmr4302.2 0.45 0.49 0.80 0.91
116 || bmr4353.2 0.43 0.61 0.80 0.90
158 || bmr4027.2 0.30 0.32 0.81 0.85
215 || bmr4318.2 0.22 0.45% 0.75 0.70
Avg. | 037] 051 0.85] 0.87

Table 6.2: Assignment accuracies of RANDOM, PACES, MARS, and GASA in
the first experiment. *PACES performance on these 3 datasets were obtained by
reducing tolerance thresholds to d, = 0.15ppm and dg = 0.3ppm (75%). TPACES
performance on this dataset was obtained by reducing tolerance thresholds to d, =
0.3ppm and 65 = 0.6ppm (75%). *PACES performance on these 3 datasets were
obtained by reducing tolerance thresholds to d, = 0.2ppm and §3 = 0.4ppm (50%).
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Figure 6.3: Plots of assignment accuracies for RANDOM, PACES, MARS, and
GASA on two sets of instances with different tolerance thresholds, using C* and C?
chemical shifts for connectivity inference.
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6.3.3 Experiment 2

The instances used in the second experiment are for the same set of proteins used
in the first experiment, excluding bmr4391 and bmr4316 because their data entries
do not have carbonyl C chemical shifts. The experiment was designed to compare
the performance among PACES, MARS, and GASA. Five chemical shifts, H, N, C®,
CP, and carbonyl C, were included. The RANDOM is excluded in this experiment
because it only processes C* and C? chemical shifts. As with the dataset generation
in the first experiment, a spin system here included additionally the chemical shifts
for the intra-residue carbonyl C and for the carbonyl C in the preceding residue.
C?, C#, and carbonyl C chemical shift values were used to infer the connections.
The tolerance threshold for carbonyl C chemical shift was set at § = 0.15ppm, and
subsequently the standard deviation in the error distribution was set at 0.15/2.5 =
0.06ppm. For the same reason as in the first experiment, we also generated another
set of more difficult instances to test the robustness of both programs through

doubling the tolerance thresholds. These two sets of 20 instances are summarized

in Table 6.3.
Length || 45 = 0.2ppm, d3 = 0.4ppm, § = 0.15ppm || §, = 0.4ppm, dg = 0.8ppm, § = 0.30ppm
InstancelD | #CE | #WE Avg.OD || InstancelD | #CE | #WE Avg.OD
68 | bmr4752.1 65 15 1.21 || bmrd752.2 65 95 2.60
78 || bmr4144.1 71 3 1.03 || bmrd144.2 71 45 1.61
86 || bmr4579.1 82 53 1.63 || bmrd579.2 82 188 3.25
105 || bmr4288.1 93 1 1.01 || bmr4288.2 93 32 1.33
112 )| bmr4670.1 101 7 1.06 || bmrd670.2 101 39 1.37
114 || bmr4929.1 109 8 1.06 || bmr4929.2 109 60 1.54
115 || bmrd302.1 107 4 1.03 || bmr4302.2 107 46 1.54
116 || bmr4353.1 97 10 1.09 || bmr4353.2 97 37 1.38
158 || bmrd4027.1 157 11 1.06 || bmr4027.2 157 91 1.57
215 || bmr4318.1 190 25 1.13 || bmr4318.2 190 214 2.12

Table 6.3: 20 instances for the second experiment. For the meanings of the notations,
refer to the caption for Table 6.1.

The performances of PACES, MARS, and GASA on both sets of instances are
collected in Table 6.4. Their assignment accuracies on two sets are also plotted in
Figure 6.4. In summary, GASA and MARS outperformed PACES significantly on
both test sets.
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Figure 6.4: Plots of assignment accuracies for PACES, MARS and GASA on two
sets of instances with different tolerance thresholds, using C*, C#, and carbonyl C
chemical shifts for connectivity inference.
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Length || 8, = 0.2ppm, d3 = 0.4ppm, § = 0.15ppm || J, = 0.4ppm, é3 = 0.8ppm, § = 0.30ppm
InstancelD | PACES | MARS | GASA || InstanceID | PACES [ MARS [ GASA

68 || bmrd752.1 0.78 0.98 0.97 || bmr4752.2 0.88 0.88 0.85

78 || bmrd144.1 0.60 0.96 0.99 || bmr4144.2 0.64 0.96 0.96

89 || bmrd579.1 0.78 0.92 0.98 || bmr4579.2 0.66* 0.90 0.80

105 || bmr4288.1 0.79 0.93 0.97 || bmr4288.2 0.79 0.92 0.97
112 || bmr4670.1 0.60 0.92 0.98 || bmr4670.2 0.61 0.91 0.94
114 || bmr4929.1 0.86 0.99 0.99 || bmrd4929.2 0.86 0.94 0.96
115 || bmr4302.1 0.68 0.96 0.97 || bmr4302.2 0.68 0.96 0.99
116 || bmr4353.1 0.71 0.93 0.95 || bmr4353.2 0.75 0.88 0.94
158 || bmr4027.1 0.71 0.94 0.99 || bmr4027.2 0.69 0.93 0.96
215 || bmr4318.1 0.60 0.96 0.95 || bmr4318.2 0.41* 0.89 0.87

[ Avg | 071] 095] 008 0.70] 092] 003

Table 6.4: Assignment accuracies of PACES, MARS and GASA in the second ex-
periment. *PACES performance on these 2 datasets were obtained by reducing
tolerance thresholds to d, = 0.3ppm, dg = 0.6ppm, and J = 0.225ppm (75%).

6.3.4 Experiment 3

In RIBRA, 5 datasets were simulated from the data entries deposited in BioMa-
gResBank. Among them, one is a Perfect dataset generated by using almost the
same aforementioned simulation procedure, and the other four datasets reflect four
different types of errors respectively. The first dataset, called False positive, is
generated by respectively adding 5% fake carbon peaks into perfect CBCA(CO)NH
and HNCACB peak lists. The second one, called False negative, is generated
by randomly removing a small portion of inter-residue carbon peaks from perfect
CBCA(CO)NH and HNCACRB peak lists. The third one, called Grouping error,
is generated by adding H, N, C* and CP measuring errors into inter-residue peaks
in the perfect CBCA(CO)NH peak list. The fourth one, called Linking error, is
generated by adding C* and C? measuring errors into inter-residue peaks in the
perfect HNCACB peak list.

Table 6.5 presents the performances of RIBRA and GASA on these 5 datasets.
As shown, there is no significant difference among the performances on the Perfect,
False positive and Link error datasets. GASA shows more robustness on the
False negative dataset with missing data while RIBRA performs better on the
Grouping error dataset. Through a detailed investigation, we found that these

5 datasets contain the C? inter-residue and intra-residue peaks with 0 C? chemical
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Dataset RIBRA GASA
Precision | Recall || Precision | Recall
Perfect 0.98 0.92 0.98 0.93
False positive 0.98 0.92 0.97 0.92
False negative 0.96 0.77 0.96 0.89
Grouping error 0.98 0.89 0.91 0.81
Linking error 0.96 0.89 0.96 0.90
Average 0.97 0.88 0.96 0.89

Table 6.5: Comparison results for RIBRA and GASA in experiment 2.

shifts for glycine, indicating that in the RIBRA simulation, glycine would have two
inter-residue peaks and two intra-residue peaks in the HNCACB spectrum and the
amino acid residues with the preceding glycine would have two inter-residue peaks
in the CBCA(CO)NH spectrum. However, this is not true in real NMR spectral
data. In fact, a large number of ambiguities in the sequential assignment result
from glycine because it produces various legal combinations in the peak grouping
thus making the identification of perfect spin systems even harder. For example,
the spin systems containing 3,4 and 5 peaks have the same chance to be perfect
spin systems as those containing 6 peaks and meanwhile they could be considered
as the spin systems with missing peaks. Thus the peak grouping is much easier on
the dataset with the simulated C? peaks for glycine. Since the GASA algorithm is
designed to deal with the real spectral data, we deleted the peaks with O carbon
chemical shifts. This is why our performance on the Grouping error dataset is not
as good as RIBRA. To verify our hypothesis, we randomly selected 14 proteins with
length ranging from 69 to 186 in the Grouping error dataset, and removed all
the peaks with 0 CP chemical shift. Both RIBRA and GASA were tested on them.
RIBRA achieved 0.88 precision and 0.73 recall, and GASA achieved 0.89 precision
and 0.79 recall (See Table 6.6). One could argue that the C? peaks with 0 chemical
shifts for glycine can be artificially simulated in real NMR. spectral data by using
glycine’s expected H and N chemical shifts, since the primary protein sequence is
known. However, the large ranges of H and N chemical shifts for glycine would make
the simulated CP peaks be processed as fake peaks in many cases. Therefore, we
think the CP peak for glycine should not be generated in these simulations. Another

weakness in the RIBRA simulation is that in the construction of Grouping error
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BMRB | Len | Missing RIBRA GASA
Entry Precision | Recall || Precision | recall
4579 86 4 0.83 0.65 0.90 | 0.82
4688 | 111 9 0.71 0.45 0.89 | 0.77
4790 | 118 28 0.78 0.63 096 | 0.74
4898 86 4 0.86 0.68 0.92 | 0.82
4938 | 132 4 0.87 0.71 0.85 | 0.77
4954 97 3 0.97 0.82 0.86 | 0.82
4984 | 151 7 0.85 0.65 0.85| 0.75
5003 | 112 7 0.96 0.66 0.88 | 0.79
5107 | 101 6 0.86 0.83 0.81 | 0.72
5130 | 130 3 0.98 0.88 091 | 0.85
5148 98 22 0.92 0.91 096 | 0.85
5168 69 3 0.93 0.82 091 | 0.89
5272 | 186 39 0.81 0.64 085 | 0.74
5337 | 111 21 0.95 0.84 091 0.80
Avg 0.88 0.73 089 | 0.79

Table 6.6: Comparison results for RIBRA and GASA on 14 proteins without C?
peaks for glycine.

datasets, RIBRA kept the perfect HSQC and HNCACB peak lists untouched and
only added some measuring errors into the inter-residue peaks in the CBCA(CO)NH
peak list. This simulation looks a bit far from the reality because the chemical shifts
deposited in BioMagResBank have been manually adjusted. Even though the HSQC
spectrum is a very reliable experiment, the deposited H and N chemical shifts in
BioMagResBank are still slightly different from the measured values in a real HSQC
spectrum. We believe that to simulate a real NMR spectral dataset, perturbing
chemical shifts in all perfect peak lists is necessary. In Experiment 4, we present

our simulation and the corresponding comparison results with RIBRA.

6.3.5 Experiment 4

The purpose of Experiment 4 is to provide more convincing results based on a better
simulation. Again, we still used the same dataset in the first two experiments to
conduct the simulation. To make fair comparison with RIBRA, we simulated only

three peak lists, HSQC, CBCA(CO)NH and HNCACB from each protein in the

dataset, although our program can deal with many other combinations. For each of
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these 12 proteins, we first build the perfect HSQC, CBCA(CO)NH and HNCACB
by using the general simulation procedure mentioned above. There is no C? peak
for glycine in the CBCA(CO)NH and HNCACB spectrum. For each peak in the
HSQC, CBCA(CO)NH and HNCACB spectrums, the contained H, N, C* or C?
chemical shifts were perturbed by adding to them randomized errors that follow
independent normal distributions with 0 means and constant standard deviations.
We chose the same tolerance thresholds as those used in RIBRA, which were 6y =
0.06ppm for H, én = 0.8ppm for N, 6, = 0.2ppm for C* and ég = 0.4ppm for
CB, respectively. Subsequently, the standard deviations of the normal distributions
were set to 0.06/2.5 = 0.0024ppm, 0.8/2.5 = 0.32ppm 0.2/2.5 = 0.08ppm and
0.4/2.5 = 0.16ppm, respectively.

The comparison results of the second experiment on these 12 proteins are sum-
marized in Table 6.7. The precision and recall are also plotted in Figure 6.5. In
summary, GASA outperformed RIBRA in all instances while RIBRA failed to solve
three instances, which are bmr4316, bmr4288 and bmr4929. As shown in Table 6.7,
RIBRA only achieved 0.65 precision and 0.42 recall on average, which are notice-
ably worse than what it claimed in [73], while GASA achieved 0.87 precision and
0.74 recall. The possible explanations could be (1) the simulation procedure in this
experiment did not generate the C? peaks with 0 carbon chemical shift for glycines,
which causes more ambiguities in the peak grouping. (2) In our simulated dataset
of Experiment 4, the chemical shifts in all perfect peak lists were perturbed with
random measuring errors, which generated more uncertainties in all operations in

the sequential assignment.

6.4 Summary

Peak grouping is one of the three stages in the automated procedure of the NMR
sequential assignment. Though the quality and quantity of spin systems produced
in the peak grouping have the most significant effect on the assignment, there has
been surprisingly little work done to improve the precision of peak grouping. This
chapter addresses the hard issues in the peak grouping, such as how to eliminate the
sensitivity to the pre-specified tolerance thresholds. We developed a novel two-stage

graph-based algorithm, called GASA and evaluated its performance in four ex-
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Figure 6.5: Plots of precision (a) and recall (b) for RIBRA and GASA in Experiment
4.
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BMRB | Len | Missing RIBRA GASA

Entry Grouped | Precision | Recall || Grouped | Precision | recall
4391 66 7 44 0.65 0.49 52 092 0381
4752 68 2 44 0.63 0.42 54 091 0.74
4144 78 10 42 0.64 0.40 63 0.84 | 0.78
4579 86 3 54 0.66 0.43 70 0.83 | 0.70
4316 89 4 N/A N/A| N/A 67 0.79 | 0.62
4288 | 105 9 N/A N/A| N/A 84 0.83 | 0.72
4670 | 112 10 47 0.76 0.35 83 090 | 0.74
4929 | 114 4 N/A N/A | N/A 89 096 | 0.77
4302 | 115 8 70 0.71 0.47 97 085 | 0.77
4353 | 116 18 72 0.55 0.41 89 097 | 0.87
4027 158 10 96 0.65 0.42 123 0.83 0.69
4318 | 215 24 127 0.60 0.40 165 0.79 | 0.68
Avg 0.65 0.42 087 | 0.74

Table 6.7: Comparison results for RIBRA and GASA in Experiment 4.

periments. In the first two experiments, GASA outperformed RANDOM, PACES,
and MARS, which indicates that combining the chaining and assignment together
would efficiently resolve the ambiguities and then make a better assignment. The
third experiment was conducted on the datasets released by RIBRA. Our program
performed as well as RIBRA on the Perfect, False positive and Link error datasets.
GASA showed more robustness on the False negative dataset with missing data,
while RIBRA was good at handling the Grouping error dataset. To provide more
convincing results, we provided a better simulation in the fourth experiment, which
was much closer to the reality. We found strong improvements in all instances com-
pared to RIBRA. The performance comparisons with RANDOM, PACES, MARS,
and RIBRA demonstrated the fact that GASA might be more promising for prac-

tical use.
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Chapter 7

Conclusions and Future Work
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This thesis describes our research on automated sequential resonance assignment
for NMR protein structure determination. We believe several possible improvements

could be possible and may form the basis for future research.

7.1 Conclusions

It is well known that NMR sequential resonance assignment is a critical process in
protein NMR structure determination. The precision of resonance assignment has
a significant effect on the accuracy of protein structure calculation. In this thesis,
we have reviewed the literature in NMR resonance assignment and conducted a
thorough analysis on computational issues not fully resolved in NMR sequential
resonance assignment. We have also developed some generic models to tackle these

issues respectively, which are listed below.

Peak Grouping

Peak grouping takes as input the peak lists extracted from multi-dimensional
NMR spectra, and outputs the spin systems that contain the chemical shifts
for atoms from the common residues. Many existing methods neglected this
process in which the only available computational model is based on a binary-
decision process. However, in reality, the quality of the peak lists is not suffi-
cient to make the peak grouping a trivial task, and the simple binary-decision
model is ineffective in producing the spin systems of high quality for most
cases except for high resolution NMR spectra. We reported that the quality
and quantity of spin systems produced in the peak grouping have the most
significant effect on the sequential assignment, and the peak grouping is the
most important stage throughout the whole process that is worthy of more
attention. We have developed a novel two-stage graph-based algorithm, called
GASA, which outperformed the latest work RIBRA. The performance com-
parisons with RIBRA demonstrated that GASA could be more promising for

practical use.

Connectivity Determination
Given a set of spin systems, the task of connectivity determination is to extract

the pair-wise relationships between spin systems, which constrain that some
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pairs of spin systems should be assigned to consecutive residues in the target
protein. We have designed a best-first search algorithm, called CISA, based on
the novel heuristics to perform the connectivity determination. This algorithm
improves the assignment accuracy significantly compared to two most recently

proposed sequential resonance assignment programs, RANDOM and PACES.

String Assignment

The assignment process of identified spin systems with connectivity informa-
tion has been formulated as a constrained weighted bipartite matching problem
between strings of spin systems and a sequence of amino acids with predicted
secondary structures. This problem is NP-hard. We have developed an in-
teger programming solver without the sacrifice of time efficiency, which can

compute the highly confident assignment within seconds.

Scoring Scheme

Accurately quantifying the signature information of chemical shifts provides
a foundation for accurate and complete sequential resonance assignment in
protein NMR spectroscopy. Most studies assume that the chemical shift fol-
lows a normal distribution and use the normal density functions to derive the
likelihood that weighs the mapping of a spin system to an amino acid, which
is not necessarily true based on our experimental results. We have designed
a statistics based scoring scheme by using Bayesian learning. Extensive simu-
lation studies have been conducted to validate the different scoring schemes,
and the one with the best performance has been implemented on a public web

server.

The experimental results revealed that our models outperform existing methods on
a number of simulated datasets and have the potential to automate NMR sequential

resonance assignment.

7.2 Future Work

We believe our research to date has made a significant contribution to the field of
NMR protein structure determination. The models and algorithms that we devel-

oped have been proved to outperform most recent methods, although it has not
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fully satisfied the expectation of NMR researchers. I foresee a greater improvement
will be made if we extract more knowledge from NMR data. Future attempts are

outlined below.

Many uncertainties should be taken into account in the scoring scheme, such as
the accuracy of predicted secondary structure. Combining evidence from other
approaches properly will provide a more accurate estimation. Using advanced
learning models, such as Bayesian networks, may improve our current scoring

scheme.

For connectivity determination, our heuristic algorithm CISA has successfully
combined the spin system signature information into the path growing process
in the connectivity graph, which prunes the search space more effectively than
PACES [22]. However, in the current version of CISA the weights of edges are
used only to order the child paths. Taking the idea from RANDOM [47] that
uses edge weights as edge selection probabilities, we believe that some better
usage of edge weights into the mapping score evaluation for a growing path
would help to quantify the quality of the growing path more effectively. We
have tried some simple linear functions on the edge weights and the mapping
scores of paths that turned out not to serve satisfactorily. We are currently

investigating more combinations.

A possible disadvantage of the current version of GASA is that wrong edges
included during the OL initialization might continue to stay in and thus would
lead to erroneous final assignments. Although this is very unlikely to happen
according to our extensive simulation studies, we feel that some mechanism
might need to be set up to shuffle low mapping score paths that would be

considered once every a few iterations during the path growing step.

The last but not the least, we will extend our work by including structure
calculation, since the protein structure is the final target of NMR sequential
resonance assignment. We have realized the importance of the inseparability
of NMR sequential resonance assignment in this dissertation. We believe that

incorporating the structure calculation into NMR sequential resonance assign-
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ment could be a worthwhile approach to protein structure determination via
NMR.
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