# University of Alberta Department of Civil Engineering

Structural Engineering Report No. 89

# Deflection of Composite Beams at Service Load

by

THESITY OF

ALBERI

L. Samantaraya

and

J. Longworth

June, 1980

## DEFLECTION OF COMPOSITE BEAMS AT SERVICE LOAD

by

L. Samantaraya<sup>1</sup> and J. Longworth<sup>2</sup>

Former Graduate Student, Dept. of Civil Engineering, University of Alberta, Edmonton, Canada

. 1

2

Professor of Civil Engineering, University of Alberta, Edmonton, Canada, T6G 2G7

> Department of Civil Engineering The University of Alberta Edmonton, Alberta

> > June 1980

#### ABSTRACT

The deflection behavior of composite beams under service load conditions is investigated. The effects of load-slip behavior of stud shear connectors, shear deformation, and degree of shear connectors are considered.

Basic equilibrium equations in terms of displacement and slip are formulated for composite beams with partial shear connection and the classical solutions are obtained for simply supported beams subjected to concentrated and uniformly distributed load. A numerical technique, based on numerical integration of slip strain, is developed for continuous or simply supported beams with a linear or nonlinear load-slip relationship. This technique involves a corrective iterative procedure for slip applied to an assumed initial slip, with the numerical integration being carried out using a fourth order Runge-Kutta method.

Solutions obtained from the numerical analysis are compared with theoretical and experimental results of other investigators. The numerical technique satisfactorily predicts the deflection and slip up to service load conditions. The effects of partial and full shear connection, linear and nonlinear load-slip characteristics of the shear connectors, cracking of concrete, and the type of construction method are significant in the evaluation of deflection of composite beams.

iv

#### ACKNOWLEDGEMENTS

The author expresses sincere thanks to everyone involved in the preparation of this thesis. The author is particularly indebted to Dr. D. W. Murray and Professor J. Longworth, his supervisor, without whose guidance and encouragement this work would not have been completed. The time and advice given by other members of the Department of Civil Engineering are sincerely appreciated. Sincere acknowledgement is also made to fellow graduate students, in particular Mr. T. Sexton. Special acknowledgement is due to his family for their moral support and patience, and to his wife for typing the manuscript.

This investigation was made possible through financial assistance provided by the National Science and Engineering Research Council of Canada.

v

TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                         | PAGE       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| RELEASE FORM                                                                                                                                                                                                                                                                                                                            | i          |
| TITLE PAGE                                                                                                                                                                                                                                                                                                                              | ii         |
| APPROVAL SHEET                                                                                                                                                                                                                                                                                                                          | iii        |
| ABSTRACT                                                                                                                                                                                                                                                                                                                                | iv         |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                        |            |
|                                                                                                                                                                                                                                                                                                                                         | v          |
| TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | vi         |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                          | xi         |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                         | xii        |
| LIST OF SYMBOLS                                                                                                                                                                                                                                                                                                                         | <b>vii</b> |
| CHAPTER I INTRODUCTION                                                                                                                                                                                                                                                                                                                  | 1          |
| 1.1 Introductory Remarks                                                                                                                                                                                                                                                                                                                | 1          |
| 1.2 Composite Action                                                                                                                                                                                                                                                                                                                    | 1          |
| 1.2.1 Full Interaction                                                                                                                                                                                                                                                                                                                  | 2          |
| 1.2.2 Partial Interaction                                                                                                                                                                                                                                                                                                               | 3          |
| 1.3 Deformation of Composite Beams                                                                                                                                                                                                                                                                                                      | 3          |
| 1.4 Scope                                                                                                                                                                                                                                                                                                                               | 4          |
| CHAPTER II REVIEW OF PREVIOUS RESEARCH                                                                                                                                                                                                                                                                                                  | . 8        |
| 2.1 Load-Slip Relationship for Shear Connectors                                                                                                                                                                                                                                                                                         | 8          |
| 2.1.1 Push-Out Test                                                                                                                                                                                                                                                                                                                     | . 8        |
| 2.1.2 Linear Load-Slip Behavior                                                                                                                                                                                                                                                                                                         | 9          |
| 2.1.3 Non-Linear Load-Slip Behavior                                                                                                                                                                                                                                                                                                     | 9          |
| 2.2 Section Properties                                                                                                                                                                                                                                                                                                                  | 11         |
| 2.2.1 Positive Moment Region                                                                                                                                                                                                                                                                                                            | 11         |
| 2.2.2 Negative Moment Region                                                                                                                                                                                                                                                                                                            | 12         |
| 2.3 Analytical Studies of Simply Supported                                                                                                                                                                                                                                                                                              | . – –      |
| Composite Beams                                                                                                                                                                                                                                                                                                                         | 15         |
| 2.3.1 Elastic Analysis                                                                                                                                                                                                                                                                                                                  | 15         |
| 2.3.2 Inelastic Analysis                                                                                                                                                                                                                                                                                                                | 17         |

vi

| CHAPTE | R II (Cont'd.)                               |      |
|--------|----------------------------------------------|------|
|        |                                              | PAGE |
| 2.4    | Analytical Studies of Continuous             |      |
|        | Composite Beams                              | 18   |
| 2.4.1  | Elastic Analysis                             | 18   |
| 2.4.2  | Inelastic Analysis                           | 19   |
| 2.5    | Effect of Slip                               | 20   |
| CHAPTE | R III FORMULATION AND CLASSICAL SOLUTION OF  |      |
|        | BASIC EQUATIONS FOR COMPOSITE BEAMS .        | . 29 |
| 3.1    | Formulation of Basic Equations               | 29   |
| 3.1.1  | Assumptions for Displacements and Stresses   | 29   |
| 3.1.2  | Equilibrium Equations in Terms of            |      |
|        | Displacements                                | 32   |
| 3.1.3  | Governing Equation for Slip                  | 35   |
| 3.1.4  | Governing Equation for Deflection            | 36   |
| 3.2    | Slip Strain at Inflection Point              | 38   |
| 3.3    | Boundary Conditions                          | 40   |
| 3.4    | Linear Closed Form Solutions                 | 41   |
| 3.5    | Formulation for Nonlinear Load-Slip          |      |
|        | Relationships                                | 44   |
| CHAPTE | R IV A NUMERICAL SOLUTION TECHNIQUE FOR      |      |
|        | COMPOSITE BEAMS                              | 52   |
| 4.1    | Introduction                                 | 52   |
| 4.2    | Numerical Integration of Slip Equation       | 53   |
| 4.3    | Correction and Iteration for Slip            | 56   |
| 4.4    | Evaluation of Slip Strain                    | 58   |
| 4.5    | Evaluation of Deflection                     | 60   |
| 4.6    | Solution Procedure for Continuous Beams      | 62   |
| 4.7    | Special Problems in Solving Continuous Beams | 66   |
| 4.8    | Computer Program                             | 67   |

vii

|        |                                                | PAGE |
|--------|------------------------------------------------|------|
| CHAPTE | R V VERIFICATION OF NUMERICAL TECHNIQUE        | . 74 |
| 5.1    | Introduction                                   | 74   |
| 5.2    | Program Verification for Linear Behavior       | 75   |
| 5.2.1  | Simply Supported Beams                         | 75   |
| 5.2.2  | Continuous Beams                               | 76   |
| 5.3    | Program Verification for Nonlinear Behavior    | 78   |
| 5.4    | Comparisons with Test Results                  | 80   |
| 5.4.1  | Comparison with Hamada and Longworth           | 80   |
| 5.4.2  | Comparison with Chapman and Balakrishnan       | 81   |
| 5.5    | Conclusion                                     | 82   |
| CHAPTE | R VI APPLICATIONS                              | 99   |
| 6.1    | Introduction                                   | 99   |
| 6.2    | Deflection of a Linear Elastic Simply          |      |
|        | Supported Composite Beam Subjected to          |      |
|        | Uniform Load                                   | 100  |
| 6.3    | Evaluation of Shear Deflection for a Simply    |      |
|        | Supported Composite Beam Subjected to          |      |
|        | Uniform Load                                   | 102  |
| 6.4    | Influence of Type of Loading, Shear Connection |      |
|        | and Load-Slip Characteristics of the Shear     |      |
|        | Connectors and Shear Deformation on            |      |
|        | Deflection                                     | 104  |
| 6.4.1  | Simply Supported Beam Subjected to Uniformly   |      |
|        | Distributed Load and a Concentrated Load       | 104  |
| 6.5    | Deflection of a Continuous Beam Subjected to   |      |
|        | Uniform Load                                   | 106  |
| 6.6    | Deflection of a Two-Span Continuous Beam       |      |
|        | Subjected to Concentrated Loads                | 108  |
| 6.7    | Influence of Negative Moment Cracking in       |      |
|        | Continuous Beams                               | 108  |
| 6.8    | Analyses of a Three-Span Beam for Shored and   |      |
|        | Unshored Construction                          | 109  |
| 6.9    | Conclusions                                    | 110  |

viii

|                                              | PAGE      |
|----------------------------------------------|-----------|
| CHAPTER VII SUMMARY AND CONCLUSIONS          | 136       |
| 7.1 Summary                                  | 136       |
| 7.2 Conclusions                              | 138       |
| BIBLIOGRAPHY                                 | . 142     |
| APPENDICES                                   |           |
| APPENDIX A CLOSED FORM SOLUTION (TWO-SPAN    |           |
| CONTINUOUS BEAM)                             | 146       |
| A.1 Classical Solution                       | 146       |
| A.2 Summary of Equations                     | 151       |
| A.3 Equations Used in Solution of Constants  |           |
| of Integration and Redundant Moment          | 155       |
| A.4 Constants Used in Closed Form Solution   | 158       |
| APPENDIX B LINEAR CLOSED FORM SOLUTION FOR A | · · · · · |
| SIMPLY SUPPORTED BEAM WITH                   | ų *.      |
| CONCENTRATED LOAD AT CENTER                  | 160       |
| B.1 Classical Solution                       | 160       |
| B.2 Evaluation of Shear Deflections for a    |           |
| Simply Supported Composite Beam              |           |
| Subjected to a Concentrated Load             |           |
| at the Center                                | 164       |
| APPENDIX C EVALUATION OF SERVICE LOADS OF    |           |
| COMPOSITE BEAMS FOR TEST PROBLEMS .          | 169       |
| C.1 Introduction                             | 169       |
| C.2 Simply Supported Beam with Concentrated  |           |
| Load at Center (Chapman and Bala-            |           |
| krishnan)                                    | 170       |
| C.3 Two-Span Continuous Composite Beam       |           |
| Subjected to Equal Concentrated Load         |           |
| at the Center of Each Span (Hamada           |           |
| and Longworth)                               | 174       |
| APPENDIX D EVALUATION OF SHEAR CONNECTOR     |           |
| STIFFNESS FOR VARIOUS TYPES OF               |           |
| SHEAR CONNECTOR                              | 186       |
| D.1 Evaluation of Shear Connector Stiffness  | 186       |

ix

| APPENDIX | E SHEAR STRESS DISTRIBUTION IN COMPOSIT | E   |
|----------|-----------------------------------------|-----|
|          | BEAM SECTIONS                           | 197 |
| E.1      | Evaluation of Shear Stress              | 197 |
| APPENDIX | F COMPUTER PROGRAM                      | 206 |
| F.1      | Introduction                            | 206 |
| F.2      | Description of Program                  | 208 |
| F.3      | List of Computer Programs               | 213 |
| F.4      | List of Data and Outputs                | 234 |

1

PAGE

# LIST OF TABLES

|           | PAGE                                      |
|-----------|-------------------------------------------|
| TABLE 5.1 | PROPERTIES OF COMPOSITE BEAMS FOR         |
| · · ·     | TEST PROBLEMS 83                          |
| TABLE 5.2 | TEST PROBLEMS COMPUTED VALUES             |
| TABLE 6.1 | SHEAR FORM FACTORS (K <sub>sh</sub> ) FOR |
|           | COMPOSITE BEAMS                           |
| TABLE 6.2 | DEFLECTION COMPARISON OF SIMPLY           |
| •         | SUPPORTED BEAMS AT SERVICE LOAD 112       |
| TABLE 6.3 | SLIP COMPARISON OF SIMPLY SUPPORTED       |
|           | BEAMS AT SERVICE LOAD 113                 |
| TABLE 6.4 | DEFLECTION COMPARISON OF CONTINUOUS       |
|           | COMPOSITE BEAM AT SERVICE LOAD 114        |
| TABLE 6.5 | PROPERTIES OF COMPOSITE BEAMS USED        |
|           | FOR APPLICATION                           |
| TABLE D.1 | STIFFNESS OF HEADED SHEAR STUD            |
|           | CONNECTORS  .  .  .  .  .  .  .  .  .     |
|           |                                           |

## LIST OF FIGURES

|                         |                                                | PAGE |
|-------------------------|------------------------------------------------|------|
| 1.1                     | COMPOSITE BEAM WITH SHEAR CONNECTORS           | 6    |
| 1.2                     | STRAIN DISTRIBUTION FOR DIFFERENT DEGREES      |      |
|                         | OF INTERACTION                                 | 7    |
| 2.1                     | PUSH-OUT TEST SPECIMEN                         | 22   |
| 2.2                     |                                                |      |
|                         | (CHAPMAN AND BALAKRISHNAN)                     | 23   |
| 2.3                     |                                                | 24   |
| 2.4                     |                                                | 25   |
| 2.5                     | SECTION THROUGH A COMPOSITE BEAM               | 26   |
| 2.6                     |                                                |      |
|                         | COMPOSITE BEAM                                 | 27   |
| 2.7                     |                                                | 28   |
| 3.1                     | COMPOSITE SYSTEM                               | -    |
| 3.2                     |                                                |      |
|                         | BEAM                                           | 47   |
| 3.3                     | STEP FUNCTION                                  |      |
| 3.4                     | STRAIN DISTRIBUTION IN COMPOSITE BEAM SECTION. |      |
| 3.5                     | CONDITIONS AT INFLECTION POINT                 |      |
| 3.6                     | BOUNDARY CONDITIONS                            |      |
| 4.1                     |                                                |      |
| 4.2                     |                                                |      |
| 4.3                     |                                                |      |
|                         | OF INFLECTION                                  | 71   |
| <b>4.4</b> <sup>•</sup> |                                                |      |
| 4.5                     |                                                | 73   |
| 5.1                     | COMPARISON OF CLASSICAL AND NUMERICAL VALUES   |      |
|                         | FOR SLIP                                       | 85   |
| 5.2                     | COMPARISON OF CLASSICAL AND NUMERICAL VALUES   |      |
|                         | FOR SLIP STRAIN                                | 86   |
| 5.3 <sup>°</sup>        | COMPARISON OF CLASSICAL AND NUMERICAL VALUES   | - •  |
|                         | FOR DEFLECTION                                 | 87   |

|      | The second se | PAGE |
|------|-----------------------------------------------------------------------------------------------------------------|------|
| 5.4  |                                                                                                                 | 88   |
| 5.5  |                                                                                                                 |      |
| · ·  | AND NUMERICAL SOLUTION)                                                                                         | 89   |
| 5.6  | COMPARISON OF SLIPSTRAIN VALUES (PLUM AND HORNE                                                                 |      |
|      | AND NUMERICAL SOLUTION)                                                                                         | 90   |
| 5.7  | COMPARISON OF AXIAL FORCE VALUES (PLUM AND HORNE                                                                | C    |
|      | AND NUMERICAL SOLUTION)                                                                                         | 91   |
| 5.8  | COMPARISON OF DEFLECTION VALUES (PLUM AND HORNE                                                                 |      |
|      | AND NUMERICAL SOLUTION)                                                                                         | 92   |
| 5.9  | YAM AND CHAPMAN'S TEST BEAM                                                                                     | 93   |
| 5.10 | COMPARISON OF SLIP VALUES (YAM AND CHAPMAN                                                                      |      |
|      | AND NUMERICAL SOLUTION)                                                                                         | 94   |
| 5.11 | COMPARISON OF DEFLECTION VALUES (YAM AND                                                                        |      |
|      | CHAPMAN AND NUMERICAL SOLUTION)                                                                                 | 95   |
| 5.12 | SHEAR FLOW AND SLIP RELATIONSHIP (YAM AND                                                                       |      |
|      | CHAPMAN)                                                                                                        | 96   |
| 5.13 | COMPARISON OF DEFLECTION VALUES (HAMADA AND                                                                     |      |
|      | LONGWORTH AND NUMERICAL SOLUTION)                                                                               | 97   |
| 5.14 | COMPARISON OF DEFLECTION VALUES (CHAPMAN AND                                                                    |      |
|      | BALAKRISHNAN AND NUMERICAL SOLUTION)                                                                            | 98   |
| 6.1  | DEFLECTION RATIO $(\delta_f / \delta_0)$ VS $\xi$ FOR A SIMPLY                                                  |      |
|      | SUPPORTED BEAM WITH UNIFORMLY DISTRIBUTED                                                                       |      |
|      | LOAD  .  .  .  .  .  .  .  .  .                                                                                 | 116  |
| 6.2  | SHEAR FORM FACTOR (K <sub>sh</sub> ) VS SLAB WIDTH (bc) FOR                                                     |      |
|      |                                                                                                                 | 117  |
| 6.3  | LOAD-DEFLECTION RELATIONSHIP (SIMPLY SUPPORTED                                                                  |      |
|      | BEAM, FULL AND PARTIAL SHEAR CONNECTION,                                                                        |      |
|      | UNIFORMLY DISTRIBUTED LOAD)                                                                                     | 118  |
| 6.4  | LOAD SLIP RELATIONSHIP (SIMPLY SUPPORTED BEAM,                                                                  | 110  |
|      |                                                                                                                 | 119  |
| 6.5  | LOAD DEFLECTION RELATIONSHIP (SIMPLY SUPPORTED                                                                  |      |
|      | BEAM, FULL AND PARTIAL SHEAR CONNECTION,                                                                        | 100  |
|      | CONCENTRATED LOAD AT CENTER)                                                                                    | 120  |

PAGE

|   | 6.6     | LOAD SLIP RELATIONSHIP (SIMPLY SUPPORTED BEAM,                                          |     |
|---|---------|-----------------------------------------------------------------------------------------|-----|
|   |         | CONCENTRATED LOAD AT CENTER)                                                            | 121 |
|   | 6.7     | DEFLECTION RATIO $(\delta_f/\delta_0)$ VS $\xi$ FOR A TWO-SPAN                          |     |
|   |         | CONTINUOUS BEAM WITH UNIFORMLY DISTRIBUTED                                              |     |
|   |         | LOAD                                                                                    | 122 |
|   | 6.8     | DEFLECTION RATIO $(\delta_{\pm}^{\prime}/\delta_{\Omega})$ VS $\xi$ FOR A TWO-SPAN      |     |
|   | · · · · | CONTINUOUS BEAM WITH UNIFORMLY DISTRIBUTED                                              |     |
|   |         | LOAD                                                                                    | 123 |
| , | 6.9     | LOAD DEFLECTION RELATIONSHIP (CONTINUOUS BEAM,                                          |     |
|   |         | CONSTANT 'I', FULL AND PARTIAL SHEAR                                                    |     |
|   |         | CONNECTION                                                                              | 124 |
|   | 6.10    | LOAD SLIP RELATIONSHIP (CONTINUOUS BEAM,                                                |     |
|   |         | CONSTANT 'I', FULL AND PARTIAL SHEAR                                                    |     |
|   |         | CONNECTION)                                                                             | 125 |
|   | 6.11    | LOAD DEFLECTION RELATIONSHIP (CONTINUOUS BEAM,                                          |     |
|   |         | VARIABLE 'I', FULL AND PARTIAL SHEAR                                                    |     |
|   |         | CONNECTION)                                                                             | 126 |
|   | 6.12    | LOAD SLIP RELATIONSHIP (CONTINUOUS BEAM,                                                |     |
|   |         | VARIABLE 'I', FULL AND PARTIAL SHEAR                                                    |     |
|   |         | $CONNECTION)  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  $ | 127 |
|   | 6.13    | COMPARISON OF DEFLECTION VALUES (CONSTANT                                               |     |
|   |         | AND VARIABLE 'I')                                                                       | 128 |
|   | 6.14    | COMPARISON OF SLIP VALUES (CONSTANT AND                                                 |     |
|   |         | VARIABLE 'I')                                                                           | 129 |
|   | 6.15    | COMPARISON OF SLIP STRAIN VALUES (CONSTANT                                              |     |
|   | · · ·   | AND VARIABLE 'I')                                                                       | 130 |
|   | 6.16    | COMPARISON OF FORCE VALUES (CONSTANT AND                                                |     |
|   |         | VARIABLE 'I')                                                                           | 131 |
|   | 6.17    | COMPARISON OF DEFLECTION VALUES (SHORED AND                                             |     |
|   |         | UNSHORED CONSTRUCTION)                                                                  | 132 |
| , | 6.18    | COMPARISON OF SLIP VALUES (SHORED AND UNSHORED                                          |     |
|   | -<br>-  | CONSTRUCTION)                                                                           | 133 |
|   | 6.19    | COMPARISON OF SLIP STRAIN VALUES (SHORED AND                                            |     |
|   |         | UNSHORED CONSTRUCTION)                                                                  | 134 |
|   | 6.20    | COMPARISON OF FORCE VALUES (SHORED AND                                                  |     |
|   | •       | UNSHORED CONSTRUCTION)                                                                  | 135 |
|   |         |                                                                                         |     |

|     | PA                                                                                                                         | GE |
|-----|----------------------------------------------------------------------------------------------------------------------------|----|
| A.1 | TWO-SPAN CONTINUOUS COMPOSITE BEAM 1                                                                                       | 47 |
| A.2 | BOUNDARY CONDITIONS FOR CONTINUOUS                                                                                         |    |
|     | COMPOSITE BEAM 1                                                                                                           | 50 |
| B.1 | BEAM GEOMETRY AND BOUNDARY CONDITION 1                                                                                     | 66 |
| B.2 | DEFLECTION RATIO $(\delta_f / \delta_0)$ VS $\xi$ FOR A SIMPLY                                                             |    |
|     | SUPPORTED BEAM WITH A CONCENTRATED LOAD                                                                                    |    |
|     | AT CENTER                                                                                                                  | 67 |
| C.1 | SIMPLY SUPPORTED COMPOSITE BEAM SUBJECTED TO                                                                               |    |
|     | CONCENTRATED LOAD AT MIDSPAN (CHAPMAN AND                                                                                  |    |
|     | BALAKRISHNAN) 1                                                                                                            | 79 |
| C.2 | DETAILS OF TEST SPECIMEN (HAMADA AND                                                                                       |    |
|     | LONGWORTH) 1                                                                                                               | 80 |
| C.3 | SECTION THROUGH TEST BEAM (HAMADA AND                                                                                      |    |
|     | LONGWORTH) 1                                                                                                               | 81 |
| C.4 | IDEALIZED STRESS CONDITIONS AT ULTIMATE MOMENT                                                                             |    |
|     | IN POSITIVE BENDING 1                                                                                                      | 82 |
| C.5 | STRESS DISTRIBUTION IN A NEGATIVE MOMENT                                                                                   |    |
| •   | $REGION \dots \dots$ | 83 |
| C.6 | IDEALIZED STRESS DISTRIBUTION AT ULTIMATE MOMENT                                                                           |    |
|     | IN NEGATIVE BENDING 1                                                                                                      | 84 |
| D.1 | LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN . 1                                                                           | 91 |
| D.2 | LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN . 1                                                                           | 92 |
| D.3 | LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN . 1                                                                           | 93 |
| D.4 | LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN . 1                                                                           | 94 |
| D.5 | LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN . $1$                                                                         | 95 |
| E.1 | STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION                                                                              |    |
|     | IN COMPOSITE SECTION (NEUTRAL AXIS IN SLAB). 1                                                                             | 99 |
| E.2 | STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION                                                                              |    |
|     | IN COMPOSITE SECTION (NEUTRAL AXIS IN WEB) . 2                                                                             | 00 |
| E.3 | STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION                                                                              |    |
|     | IN COMPOSITE SECTION (NEUTRAL AXIS IN TOP                                                                                  |    |
| ·   | FLANGE)                                                                                                                    | 01 |
| E.4 | SHEAR FORM FACTOR (K <sub>sh</sub> ) VS SLAB WIDTH FOR                                                                     |    |
|     | <b>N</b>                                                                                                                   | 02 |

xv

|     |                                                        | PAGE |
|-----|--------------------------------------------------------|------|
| E.5 | SHEAR FORM FACTOR (K sh) VS SLAB WIDTH FOR             |      |
|     | COMPOSITE BEAMS                                        | 203  |
| E.6 | SHEAR FORM FACTOR (K <sub>sh</sub> ) VS SLAB WIDTH FOR |      |
|     | COMPOSITE BEAMS                                        | 204  |
| F.1 | FLOW CHART FOR COMPUTER PROGRAM                        | 211  |
|     | INPUT DATA                                             |      |

#### LIST OF SYMBOLS

a = Depth of stress block in concrete slab a = Constant defined in Eq. 2.5 A<sub>c</sub> = Transformed area of concrete slab  $A_{c}$  = Area of steel beam  $A_{+}$  = Transferred area of composite section  $A_{sf}$  = Area of flange of steel beam  $A_{cr}$  = Area of reinforcing steel  $A_{sw}$  = Area of web of steel beam b = Constant defined in Eq. 2.5 bc = Width of concrete slab  $b_{f}$  = Width of flange of steel beam C = Compressive force in concrete slab d = Diameter of shear connectors in Eq. 2.3 d = Depth of steel beamd<sub>s</sub> = Depth of steel beam  $d_{w}$  = Depth of web of steel beam  $E_c$  = Modulus of elasticity of concrete  $E_s$  = Modulus of elasticity of steel  $f_1, f_2, f_3$  = Values of function at points 1, 2, and 3  $f_{c}' = 28$  days concrete cylinder strength f<sub>v</sub> = Yield stress of steel  $f_{yf}$  = Yield stress of flange of steel section

xvii

f<sub>vr</sub> = Yield stress of reinforcement  $f_{vw}$  = Yield stress of web of steel section F = Compressive force in concrete slab F = Flexibility matrix F.S.C. = Full shear connectionG = Shear or rigidity modulus of steel h = Step size $I_c$  = Moment of inertia of transformed area of concrete slab  $I_{+}$  = Moment of inertia of transformed cross-section k = Constant in Eq. A1K = Shear connector modulus or stiffness l = Spacing of shear connectors L = Length of the beam M = Bending moment  $M_{p}$  = Plastic moment  $M_{ii}$  = Ultimate moment capacity n = Inverse of modular ratio  $n_a = Number of shear connectors between zero and maximum$ 

moment

 $n_b = Number of shear connectors between maximum moment$ and inflection point

N = Number of shear connectors

P = Concentrated load

 $P_{11} = Ultimate load$ 

 $P_{w}$  = Service load

xviii

P.S.C. = Partial shear connection

q =Shear flow

Q = Statical moment

 $Q_1$  = Load per connector

 $Q_u$  = Ultimate load capacity for connectors in Appendix C  $Q^u$  = Ultimate capacity per connector

R = Foundation modulus of concrete in Eq. 2.4

R = Redundants

s = Slip

s' = Slip strain

 $\mathbf{s}_L^\prime,\ \mathbf{s}_R^\prime$  = Strain at the centroid of steel section, at the

left and right of inflection point

t = Thickness of concrete slab  $t_c$  = Thickness of concrete slab  $t_f$  = Thickness of flange of steel beam T = Ultimate strength of steel section  $T_r$  = Ultimate strength of reinforcement u = Horizontal displacement in steel beam  $u_0$  = Horizontal displacement at origin  $U_{cyl}$  = 28 days concrete cylinder strength v = Deflection

v" = Curvature

V = Shear

w = Uniform load

 $w_w = Width of web of steel beam$ 

W = Concentrated load

- x = Distance along the length of the beam
- X = Any quantity (moment, shear, deflection)
- y = Distance from centroid of transformed concrete

slab and steel beam

- $Y_{c}$  = Distance between centroid of composite section and centroid of concrete slab
- $Y_s$  = Distance between centroid of composite section and centroid of steel section

z = Distance between the centroids of concrete slab

and steel beam

- $\alpha^2$  = Constant defined in Eq. 3.21
- $\beta$  = Constant defined in Eq. 3.22
- $\gamma = Slip$

 $\gamma$  = Shear strain in Eq. 6.6 and B30

 $\delta_0$  = Midspan deflection due to bending only assuming full interaction

 $\delta_{f}$  = Midspan deflection due to bending and slip  $\delta_{s}$  = Shear deflection

 $\delta_t$  = Midspan deflection due to bending, slip and shear  $\delta_{BB}$  = Deformation at B due to unit load at B  $\delta_{BC}$  = Deformation at B due to unit load at C  $\delta_{CC}$  = Deformation at C due to unit load at C  $\delta_{CB}$  = Deformation at C due to unit load at B  $\Delta_i$  = Deformation at support i  $\Delta_B$ ,  $\Delta_C$  = Deformations due to external loading at

хx

redundants B and C

 $\varepsilon_{\mathbf{h}}$  = Strain in steel beam at interface

 $\varepsilon_d$  = Strain difference at interface

 $\boldsymbol{\varepsilon}_{_{\mathbf{S}}}$  = Strain in concrete slab at interface

 $\varepsilon_{\mathbf{x}}$  = Strain in horizontal direction

 $\varepsilon_0$  = Strain in horizontal direction at origin

 $\xi$  = Constant defined in Eq. 6.4

 $\eta$  = Constant defined in Eq. 6.5

 $\theta$  = Angle

 $\lambda$  = Constant defined Eq. 4.24

 $\rho$  = Constant defined in Eq. 3.49

 $\sigma$  = Stress

 $\psi$  = Constant defined in Eq. 3.29

 $\chi_{I}$  = Constant defined in Eq. 3.34

 $\chi_{\rm R}$  = Constant defined in EQ. 3.35

 $\phi$  = Curvature

 $\mu$  = Shear connector modulus

#### CHAPTER I

#### INTRODUCTION

#### 1.1 Introductory Remarks

One significant advantage of composite construction is that beam deflections are considerably reduced as a result of increased stiffness. Composite behavior is dependent on the shear connection between the component parts.

#### 1.2 Composite Action

Shear connectors attached to the steel section and embedded in the concrete slab resist shear at the interface of the slab and steel section, thus creating an interaction between two components. The degree of interaction may be complete or partial. A typical composite beam is illustrated in Fig. 1.1. If there is no shear connection or friction at the interface between the concrete and steel, the compatibility requirement reduces to equal vertical deflection of two components. Therefore the applied load is divided between two components in proportion to their stiffnesses and each component acts as if it were an isolated member. Assuming the materials can resist tensile stress, equal and opposite strains develop

- 1 -

at the top and bottom fibers of each component, as illustrated in Fig. 1.2(a). However, tensile cracks may occur in the concrete slab as concrete is relatively weak in tension. The difference in strain between the adjacent fibers of concrete and steel at the interface is known as slip strain, since it results from a horizontal slip that occurs between the two components.

#### 1.2.1 Full Interaction

If the concrete slab and steel section are joined together by infinitely stiff shear connectors, the two members behave as a unit with no slip occurring at the interface. The vertical deflections of the components are equal at any point along the length of the beam. Slip and slip strains are zero everywhere along the interface and it can be assumed that plane sections remain plane during bending. This condition is known as full interaction, and is illustrated in Fig. 1.2(c). Bending stresses and deflections due to service loads for the condition of complete interaction are usually determined by employing simple elastic beam theory using section properties associated with the transformed cross section.

In practice the majority of design methods for composite beams are based on the assumption of full interaction. However, CSA S16.1-1974, "Steel Structures for Buildings - Limit State Design", (3) also specifies

methods for composite design based on partial interaction.

#### 1.2.2 Partial Interaction

The assumption of full interaction is only valid if there is no relative movement or slip at the steel-concrete interface. It is generally assumed that the horizontal shear force at the interface is transmitted only by shear connectors and not by bond. Due to the compressibility of the concrete slab and the flexibility of the connectors, the shear force cannot be transmitted without some slip occurring, and therefore the interaction must be partial, or incomplete. The strain distribution relating to this type of behavior is shown in Fig. 1.2(b). In every composite structure, interaction is less than complete, irrespective of the relative strength of the component parts. It is therefore important to understand how the behavior of a composite beam is modified by the presence of slip.

#### 1.3 Deformation of Composite Beams

Beam deformation is caused by bending and shear. Composite beam deformation is also influenced by the slip along the interface of the two components. Stiffness rather than strength is the governing criteria for deflection at service loads. Stiffness is influenced by the geometry of the cross section and the material properties of the components involved.

Bending deflections are dependent on the moment-curvature relationship. Shear deformation can be evaluated independently of bending deformation by applying the principle of virtual work. Deflection due to slip depends on the stiffness of the shear connection which is defined by load-slip relationship for the type of shear connector.

In continuous beams, the flexural stiffness in the negative moment region is different from that in the positive moment region. In the negative moment region, due to tensile cracking of concrete, the moment of inertia of the cross-section is reduced considerably resulting in a reduction in stiffness which influences the deflection. Improper distribution of shear connectors or faulty connection may increase slip at the interface. Premature yielding of shear connectors produces a non-linear loadslip relationship at working loads which influences the magnitude of slip and hence the deflection.

#### 1.4 Scope

The present study investigates the deflection behavior of composite beams under service load conditions. The effect of the load-slip behavior of stud shear connectors on deflection is considered. The effects of partial and full shear connection and shear deformation are examined. A

numerical analysis technique is developed for the analysis of single span and continuous composite beams. A further objective is to compare deflections produced in shored and unshored construction.



(a) SIDE VIEW



(b) SECTION

FIGURE 1.1 COMPOSITE BEAM WITH SHEAR CONNECTORS



#### CHAPTER II

#### REVIEW OF PREVIOUS RESEARCH

# 2.1 Load-Slip Relationship for Shear Connectors

#### 2.1.1 Push-Out Test

The push-out test has been used at least since 1930 (26) as a means of evaluating the load carrying capacity of shear connectors and the load-slip relationship for shear connectors is normally determined from such a test. Fig. 2.1 shows a typical push-out test specimen and Fig. 2.2 illustrates typical results obtained from such a test.

In push-out tests, one approach considers that the function of shear connectors is to control the magnitude of slip between the concrete slab and the steel section. The load carried by the connectors at some limiting slip is defined as the "useful load capacity" (25). A second approach considers that the function of shear connectors between sections of zero and maximum moment is to transfer across the concrete-steel interface the maximum compressive force that can be developed in the concrete slab, or the maximum tension force in the steel section without consideration of the magnitude of slip which has occurred.

- 8 -

#### 2.1.2 Linear Load-Slip Behavior

Newmark et al (17), in interpreting their push-out test results, concluded that the amount of slip is directly proportional to the applied load. They observed that slip depends upon the stiffness and spacing of the shear connectors and defined the shear connector modulus, K, as

$$K = \frac{Q}{\gamma}$$
(2.1)  
$$K = \frac{ql}{\gamma}$$
(2.2)

where Q is load per connector, q is horizontal shear force transmitted per unit length of beam at the interface of steel and concrete (shear flow),  $\gamma$  is the slip in inches and  $\ell$  is the spacing of connectors in inches.

### 2.1.3 Non-Linear Load-Slip Behavior

On the basis of a study of numerous push-out tests, Slutter and Driscoll (22) defined the ultimate load capacity of a stud connector as

$$Q_u = 930d^2 \sqrt{U_{cy1}}$$
 (2.3)

where  $Q_u$  is the ultimate load capacity of a shear connector, d is the diameter of the connector in inches, and  $U_{cvl}$  is the 28-day concrete cylinder strength in psi. Van Dalen (24) proposed the following relationship between slip, applied shear force and foundation modulus:

$$\gamma = 3.7 \times 10^{-2} \text{ QR}^{-0.75} \tag{2.4}$$

where Q is the applied shear force in pounds, and R is foundation modulus in psi. The foundation modulus was defined as the modulus of elasticity of concrete. Fig. 2.3 illustrates the relationship proposed by Van Dalen. From his tests he concluded that:

> The ultimate load carrying capacity of a stud connector embedded in a concrete slab is primarily dependent upon the tension in the connector resulting from a separation of concrete and steel at the interface.
>  The ultimate load of a connector in a push-out test should not be adopted as the ultimate load for a connector in a beam unless the expected separation at the concrete-steel interface in the beam is less than that at failure in a push-out test.

Yam and Chapman (30) proposed an exponential relationship between load and slip for a stud shear connector:

$$Q_{\rm u} = a(1 - e^{-b\gamma})$$
 (2.5)

where a and b are constants. The exponential relationship was obtained by establishing the best fit curve for experimental results. By selecting two slip values in an experimental load-slip plot such that one slip value is two times the other, the constants a and b can be evaluated as

$$a = \frac{Q_1^2}{2Q_1 - Q_2}$$
(2.6)

$$b = \frac{1}{\gamma_1} \ \ln \frac{Q_1}{Q_2 - Q_1}$$
 (2.7)

Fig. 2.4 illustrates this exponential load-slip relationship and defines values of  $\gamma_1$ ,  $\gamma_2$ ,  $Q_1$  and  $Q_2$ . The ultimate capacity of a shear connector was defined by Yam and Chapman as the load at which the slip attains a limiting value of 0.055 inches.

#### 2.2 Section Properties

#### 2.2.1 Positive Moment Region

Properties of composite beams are different in positive and negative moment regions. In a positive moment region as shown in Fig. 2.5(a), the concrete slab, or a portion thereof, depending upon the location of neutral axis, is in compression and contributes significantly to moment resistance. In evaluating the elastic stiffness of a composite section, it is customary to transform the concrete slab area into an equivalent area of steel by applying the modular ratio (Ec/Es), as a multiplier of the effective slab width.

Slutter and Driscoll (22) proposed that the load capacity of a connector in a positive moment region should be the ultimate load as obtained in a push-out test, whereas Chapman and Balkrishnan (5) propose 80% of ultimate capacity.

## 2.2.2 <u>Negative Moment Region</u>

In the vicinity of an interior support, a continuous composite beam is subjected to negative bending moment which produces tension in the slab. If the concrete cracks, the composite section consists of the longitudinal slab reinforcement and the steel section as shown in The cracked concrete acts as a medium for Fig. 2.5(b). transferring horizontal shear forces required to develop tension stress in the longitudinal steel. Thus the stiffness is significantly lower than that in a positive moment region. This decreased stiffness may result in an increase of as much as 25% in the value of the positive moment based on uniform stiffness. The elastic stress and strain distribution for composite beams in positive and negative moment region assuming zero slip is illustrated in Fig. 2.6.

Siess (21) reported results of tests on two-span continuous bridge beams, one with shear connectors provided along the total length of the beam, and the other with shear connectors only in the region of positive moment. Longitudinal slab reinforcement was provided in the negative moment region of both beams. Siess concluded that, at ultimate moment, complete interaction existed in the positive moment region of the beam with shear connectors throughout the length, whereas partial interaction was present in the other beam. The tests thus showed that shear connectors are effective in the negative moment region and they are necessary to achieve effective composite action.

Van Dalen (24) concluded that stud shear connectors form a satisfactory shear connection in a negative bending moment region. However, he concluded, their capacity is somewhat less than that attained in a positive moment region.

Wastlund and Ostlund (29) tested composite beams loaded so that the concrete slab was on the tension side. One beam had only two bow-shaped shear connectors, while a second beam contained no shear connectors but contained slab reinforcement bent down and welded to the steel beam at the ends. The third beam had a prestressed concrete slab with three bow-shaped connectors at each end. The authors concluded that:

In a composite beam subjected to negative bending moment, the concrete cannot be assumed to act compositely with the steel section, as the concrete cracks at very small tensile stresses.

1.

2.

3.

If the connection between the steel section and slab is sufficient (there is no indication of what might be a sufficient connection) the longitudinal reinforcement acts jointly with the steel section.

The ultimate load capacity of shear connectors in a negative moment region is considerably smaller than that found for similar shear connectors in positive moment regions.

The amount of longitudinal reinforcement affects the behavior of composite beams in the negative moment region. Piepgrass (20) observed that the ratio of experimental to theoretical ultimate moment decreases with an increase of amount of longitudinal reinforcement in negative moment regions. Davison (6) concluded that the amount of longitudinal reinforcement increases the negative moment capacity but reduces the rotation capacity of plastic hinges in the negative moment region. In his study the amount of longitudinal reinforcement was 0.111 to 0.232 times the area of the steel section.

# 2.3 <u>Analytical Studies of Simply Supported Composite</u> Beams

#### 2.3.1 Elastic Analysis

Newmark <u>et al</u> (17) developed a closed form solution for a simply supported composite beam. They assumed a linear stress-strain relationship for steel and concrete and a linear load-slip relationship for shear connectors. Their analysis is based on the following assumptions:

- The shear connection between slab and the beam is assumed to be continuous along the length of the beam.
- 2. The amount of slip occurring in the shear connector is assumed to be directly proportional to the load transmitted.
- 3. The distribution of strain throughout the depth of slab and steel section is assumed linear.
- 4. The steel section and the concrete slab are assumed to deflect equal amounts at all points along the span length.

They defined slip, or the relative movement between the concrete slab and steel section interface, as

$$\gamma = \frac{Q}{K} = \frac{q \ell}{K} = \frac{\ell}{K} \cdot \frac{dF}{dx}$$
(2.8)

where F is the compressive force in the concrete slab. The rate of change of slip is equal to the difference between strain in the concrete slab and the steel section at the interface.

$$\frac{dY}{dx} = \varepsilon_{b} - \varepsilon_{s}$$
(2.9)

where  $\varepsilon_{b}$  is the strain in the steel and  $\varepsilon_{s}$  is the strain in the concrete.

Using a linear stress relationship they developed the following second order differential equation for force in terms of moment, shear connector modulus and section properties:

$$F'' + \frac{K}{\ell} (f_1 M - f_2 F) = 0$$
 (2.10)

where M is bending moment, and

$$f_1 = \frac{y}{E_s I_s + E_b I_b}$$
 (2.11a)

$$f_2 = \frac{1}{E_s A_s} + \frac{1}{E_b A_b} + f_1 y$$
 (2.11b)

 $E_s$ ,  $E_b$  are the values of modulus of elasticity of concrete and steel, respectively,  $I_s$  and  $I_b$  are moment of intertia of slab and beam, respectively, and y is the distance between centroid of the concrete slab and the centroid of the steel section.

Newmark <u>et al</u> (17) also presented a solution for Equation 2.10 for a simply supported beam subjected to a single concentrated load only. They found close
agreement between theoretical results and experimental results obtained from a series of tests.

#### 2.3.2 Inelastic Analysis

Yam and Chapman (30) studied ultimate load behavior of simply supported composite beam using a non-linear stress-strain relationship and inelastic load-slip behavior for the shear connectors. Based on the equilibrium of a segment of the slab, the shear flow, q, at the interface of the concrete slab and steel section may be defined as

$$q = \frac{dC}{dx}$$
 (2.12)

where C is the compressive force as shown in Fig. 2.7. The strain difference at the interface due to the relative horizontal movement of two components may be expressed as

$$\varepsilon_{\rm d} = -\frac{\rm d\gamma}{\rm dx} \tag{2.13}$$

Using an exponential load-slip relationship as described in Section 2.13, they derived the following two first order simultaneous equations with the dependent variables C and Y as

$$C' = \frac{dC}{dx} = \frac{a}{s} (1 - e^{-b\gamma})$$
 (2.14)

$$\gamma' = \frac{d\gamma}{dx} = f(M,C) \qquad (2.15)$$

where f(M,C) is an implicity function of moment and compressive force.

By eliminating  $\gamma$ , the following second order differential equation, with C as a dependent variable, results:

$$C'' + C' \left[ \frac{1}{\ell} \frac{d\ell}{dx} - bf(M,C) \right] + \frac{ab}{\ell} f(M,C) = 0 \quad (2.16)$$

This equation may be solved by the predictor-corrector method of numerical integration. For a simply supported beam a value of slip is assumed at one end and force is computed at the other end. If the computed force is zero, then the assumed slip value is correct, otherwise successive corrections are applied. Yam and Chapman found good correlation between theoretical and experimental results up to 98% of the failure load, but there was significant difference at connector failure.

# 2.4 <u>Analytical Studies of Continuous Composite Beams</u> 2.4.1 Elastic Analysis

Plum and Horne (19) developed a closed form solution for a continuous composite beam of two unequal spans with equal concentrated loads on each span. They used a linear load-slip relationship for the shear connectors, elastic properties for the concrete slab and steel section, and partial interaction between the concrete slab and steel section. They derived the following governing fourth order differential equation, in terms of deflection as the dependent variable:

$$v^{1V} - kv'' = -\frac{w}{(\Sigma E I)} - \frac{\mu M}{\overline{EA}(\Sigma E I)}$$
(2.17)  
$$k = \frac{\mu(\Sigma E I + \overline{EAz}^2)}{\overline{EA}(\Sigma E I)}$$
(2.18)

where  $\mu$  is the interface stiffness (shear connector modulus), v is the deflection, M is the bending moment, w is the uniformly distributed load, (SEI) and  $\overline{EA}$  are composite section properties, and z is the distance between the centroids of the concrete slab and steel section.

Beams with constant and variable flexural stiffness were studied. For constant flexural stiffness, the cracking of the concrete slab in the negative bending moment region was ignored and the composite beam was assumed to be of uniform cross section over the entire length. Variable stiffness was treated by means of an equivalent haunched beam in which depth of the beam along the length varied in accordance with the moment of inertia of the actual beam section. In other words, the variable stiffness did not arise from cracking of concrete in the negative moment region. A comparison of theoretical and experimental deflection values indicated good agreement.

#### 2.4.2 Inelastic Analysis

Yam and Chapman (31) extended their analysis of a simply supported beam to a two-span symmetric continuous beam which could be modeled as a single span

propped cantilever. Equal concentrated loads were applied to each span and the same composite section was used as for the simple span case. The effect of shear connector spacing and types of loading on deflection and slip were studied. They used the governing equation 2.16 and the same integration procedure as for the simply supported beam. In the solution for a continuous beam, values of both slip at the exterior support and bending moment at the interior support must be initially assumed. Therefore, more iterations requiring considerable computational time must be performed to obtain correct values.

Hamada and Longworth (9) suggested the computational time required in Yam and Chapman's procedure can be significantly reduced by assuming that the slip strain is constant along the shear span. This assumption is based on linear slip distribution and is satisfactory for a simply supported beam but is not valid for a continuous beam.

#### 2.5 Effect of Slip

The slip at the interface of the slab and the steel section affects stress, strain and deflection at all sections along the beam. According to Siess (21) the effect of slip on strain is a maximum at the interface and minimum at the bottom of the steel section where the strain is maximum. His tests indicated that the effect of slip on the distribution of strain was a relatively localized effect confined to the region of the applied concentrated load.

Johnson (11) reported that within the elastic range, slip may change the stress distribution by as much as 5% and may increase deflection by as much as 13%. Newmark <u>et al</u> (17) obtained similar results in full scale beam tests.

Plum and Horne (19) stated that incomplete interaction may increase the deflection as much as 40%. Their test results indicate that slip may increase deflection as much as 50% and decrease the compressive force in the slab up to 20%.

Hamada and Longworth (9) proposed an analysis for computing deflections of continuous composite beams which included the effect of shear and slip. They found that shear deformations were significant and their analytical results were in close agreement with actual deflections determined in tests.



H. 10 60. .08 .07 SLIP IN INCHES . 06 . 05 .04 . 03 .02 .01 + დ იე/ბ - 6, .2-8 e, ٢. 4 -0

LOAD-SLIP RELATIONSHIP FROM PUSH-OUT TEST (CHAPMAN AND BALAKRISHNAN) FIGURE 2.2





LOAD-SLIP RELATIONSHIP (YAM AND CHAPMAN) FIGURE 2.4





(a) POSITIVE MOMENT REGION



(b) NEGATIVE MOMENT REGION

FIGURE 2.6 ELASTIC STRAIN AND STRESS DISTRIBUTION FOR COMPOSITE BEAM



(a) STRESS & STRAIN ACROSS A SECTION



(b) ELEMENT OF SLAB (c) ELEMENT OF COMPOSITE BEAM

FIGURE 2.7 CONDITIONS IN AN ELEMENT OF A COMPOSITE BEAM

#### CHAPTER III

## FORMULATION AND CLASSICAL SOLUTION OF BASIC EQUATIONS FOR COMPOSITE BEAMS

#### 3.1 Formulation of Basic Equations

3.1.1 Assumptions for Displacements and Stresses

In the analysis, the following assumptions are made:

- The distribution of strain is linear over the depth of slab and the depth of steel beam, respectively.
- The shear connection between the slab and steel beam acts as a continuous medium along the length of the beam.
- 3. Concrete has no tensile strength.
- 4. It is assumed that the reinforcement bars are placed at one depth in the concrete slab.
- 5. The stress/strain curves for steel are the same in tension and in compression.
- 6. Within service load range the stress/strain for concrete and steel are linear.
- 7. The concrete slab and steel beam deflect equally at all points along the beam so that at any

cross section they have equal curvature and that uplift forces are resisted by the shear connectors without separation and do not affect the behavior of composite beams.

Fig. 3.1 shows a portion of a composite system with the slab spanning over several equally spaced beams. In the transverse direction the slab is considered to act as a continuous one-way slab supported by the beams. A portion of the slab, of width  $b_c$ , acts compositely with each steel section. The coordinate system and reference dimensions for a typical composite beam are shown in Fig. 3.2(a) and the assumed deformation and displacements are shown in Fig. 3.2(b).

As a result of partial interaction, cross section ABCD which is plane before deformation will not remain plane after deformation. The slip, s, creates a discontinuity at the interface of the concrete and steel as shown in Fig. 3.2(b).

The strains at any point in the beam may be determined directly from the horizontal displacement u and the vertical displacement v through the use of standard beam assumptions and strain displacement equations.

Assuming plane sections remain plane, the horizontal displacements in the steel may be expressed as

$$u = u_0 + v'y \qquad 0 < y < d$$
 (3.1)

and the horizontal displacements in the concrete may be expressed as

$$u = u_0 + v'y + s$$
  $d < y < (d + t)$  (3.2)

Combining Equations 3.1 and 3.2, and using a step function (7) so that the last term of Equation 3.2 is zero in the range 0 < y < d, the displacement across the entire section can be expressed as

$$u = u_0 + v'y + \langle y - d \rangle^0 s$$
  $0 \langle y \langle (d + t) \rangle$  (3.3)

where  $\langle y - d \rangle^0$  has a value of 0 for a negative argument and 1 for a positive argument. The strain in the horizontal direction can now be determined from the strain displacement equation as

$$\varepsilon_x = u'$$
 (3.4)

Differentiating Equation 3.3, yields

$$e_{x} = u'_{0} + v''y + \langle y - d \rangle^{0}s'$$
 (3.5)

Defining the reference axis strain,

$$u'_{0} = \varepsilon_{0} \tag{3.5a}$$

the curvature as

$$\mathbf{v}^{\prime\prime} = -\phi \qquad (\mathbf{3}, \mathbf{5b})$$

and slip strain as

$$\frac{ds}{dx} \stackrel{\leftrightarrow}{=} s' \qquad (3.5c)$$

Equation 3.5 may be written as

$$\varepsilon_{x} = \varepsilon_{0} - \phi y + \langle y - d \rangle^{0} s' \qquad (3.6)$$

For a linear elastic stress-strain relationship, stress is expressed as

$$\sigma = E\varepsilon_{x}$$
(3.7)

Substituting Equation 3.6 into Equation 3.7 gives stress in the terms of displacement derivatives as

$$\sigma = E(\varepsilon_0 - \phi y + \langle y - d \rangle^0 s')$$
 (3.8)

## 3.1.2 Equilibrium Equations in Terms of Displacements

Three basic equilibrium equations may be written for the composite beam shown in Fig. 3.4. These are

$$\int_{\mathbf{A}} \sigma d\mathbf{A} = 0 \tag{3.9}$$

$$\int_{A} \sigma y dA = -M \qquad (3.10)$$

$$\frac{d}{dx} \left[ \int_{0}^{d} \sigma dA \right] = \frac{dP}{dx} = -Ks = -q \qquad (3.11)$$

where q is the shear flow on the interface between steel and concrete. Equation 3.11 is valid only if there is a linear relationship between shear flow and slip. Substituting Equation 3.8 into Equations 3.9 to 3.11, and carrying out the integration, we obtain

$$E(A_{s} + A_{c}) = \varepsilon_{0} - E(A_{c}Y_{c} + A_{s}Y_{s})\phi + EA_{c}s' = 0 \quad (3.12)$$

$$E(A_{c}Y_{c} + A_{s}Y_{s}) = \varepsilon_{0} - E(I_{c} + A_{c}Y_{c}^{2} + I_{s} + A_{s}Y_{s}^{2})\phi$$

$$+ EA_{c}Y_{c}s' = -M \quad (3.13)$$

$$EA_{s} \varepsilon'_{0} - EA_{s}Y_{s}\phi' = -Ks \qquad (3.14)$$

in which  $Y_s$  and  $Y_c$  indicate the distances from the reference axis of the composite section to the centroids of the area of steel,  $A_s$ , and the transformed area of concrete,  $A_c$  (neglecting concrete area in tension), respectively, E is the modulus of elasticity of the steel, and n (=  $E_c/E_s$ ) is the inverse modular ratio. Equations 3.12 to 3.14 may be simplified by shifting the x-axis to the centroid of the transformed section, in which case the following definitions apply:

$$(A_{s}Y_{s} + A_{c}Y_{c}) = 0$$
 (3.14a)

$$(I_{c} + A_{c}Y_{c}^{2} + I_{s} + A_{s}Y_{s}^{2}) = I_{t}$$
 (3.14b)

where  $I_s$  is the moment of inertia of the steel about the steel section centroidal axis,  $I_c$  is the moment of

and

inertia of the transformed area of the concrete slab about its centroidal axis in compression and  $I_t$  is the moment of inertia of the transformed composite section about the centroidal axis of the composite section. Thus  $\varepsilon_0$  becomes the strain at the composite section centroid level, and

$$A_s + A_c = A_t$$
 (3.14c)

is the total area of transformed section. The simplified forms of Equations 3.12 to 3.14 are

$$EA_{t}\varepsilon_{0} + EA_{c}s' = 0 \qquad (3.15)$$

$$- EI_t \phi + EA_c Y_c s' = - M$$
 (3.16)

$$EA_{s}\varepsilon'_{0} - EA_{s}Y_{s}\phi' = -Ks \qquad (3.17)$$

Equations 3.15 to 3.17 express the basic equilibrium conditions, i.e., Equations 3.9 to 3.11, in terms of the three displacement gradients  $\varepsilon_0 = \frac{du_0}{dx}$ ,  $\phi = -\frac{d^2v}{dx^2}$ , and  $s' = \frac{ds}{dx}$ ; the section properties of the transformed area and the stiffness of the shear connectors, K. However, in order to obtain a solution, it is desirable to eliminate all but one of the displacements from the equations and derive governing equations to enable the solution of one displacement independently from the others.

## 3.1.3 Governing Equation for Slip

# By differentiating Equations 3.15 and 3.16,

 $\epsilon'_0$  and  $\phi'$  may be expressed in terms of derivatives of s. Thus,  $$\hfill \Lambda$$ 

$$\varepsilon_0 = -\frac{A_c}{A_t} s' \qquad (3.18a)$$

$$\varepsilon'_0 = -\frac{A_c}{A_t} s'' \qquad (3.18b)$$

$$\phi = \frac{A_c Y_c s'}{I_t} + \frac{M}{EI_t}$$
(3.19a)

$$\phi' = \frac{A_{c}Y_{c}S''}{I_{t}} + \frac{V_{EI_{t}}}{EI_{t}}$$
(3.19b)

Substituting these expressions for  $\varepsilon'_0$  and  $\phi'$  into Equation 3.17 and grouping the terms with a common order of derivative of slip, s, yields

$$s'' - \left[\frac{K}{EA_{c} \frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}}}\right]s = -\frac{V}{E} \frac{A_{s}Y_{s}}{I_{t}A_{c}} \left[\frac{1}{\frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}}}\right] (3.20)$$
Letting
$$\left[\frac{K}{EA_{c} \frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}}}\right] = \alpha^{2} \qquad (3.21)$$
and
$$\left[\frac{A_{s}Y_{s}}{EI_{t}A_{c}} \frac{1}{\frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}}}\right] = \beta \qquad (3.22)$$

Equation 3.20 becomes

$$s'' - \alpha^2 s = -\beta V \qquad (3.23)$$

This is a second order differential equation and is the governing equation for slip. When the beam is statically determinate, V is a known function of x, and s can be determined by solving the differential equation. With the slip known, the curvature can be obtained directly from Equation 3.15. Integrating Equation 3.16 twice yields the value of transverse deflection v, and integrating Equation 3.15 once yields the value of  $u_0$ . Thus the complete solution may be obtained from Equations 3.23, 3.15, and 3.16.

## 3.1.4 Governing Equation for Deflection

An alternative solution technique consists of deriving a governing fourth order equation in terms of the transverse displacement v. Differentiating Equation 3.17 and expressing terms as displacement gradients yields

$$EA_{s}u'''_{0} + EA_{s}Y_{s}v^{iv} + Ks' = 0$$
 (3.24)

From Equation 3.16,

$$s' = \frac{-M}{EA_{c}Y_{c}} - \frac{I_{t}}{A_{c}Y_{c}}v''$$
 (3.25)

By substituting Equation 3.25 in Equation 3.18a and differentiating twice,  $u_0'''$  may be obtained in terms of v. Thus

$$u'_{0} = \frac{A_{c}}{A_{t}} \left( \frac{M}{EA_{c}Y_{c}} + \frac{I_{t}v''}{A_{c}Y_{c}} \right)$$
 (3.26)

$$u'''_{0} = \frac{-w}{EY_{c}A_{t}} + \frac{I_{t}v^{iv}}{A_{t}Y_{c}}$$
(3.27)

Substituting Equations 3.25 and 3.27 into Equation 3.24 results in

$$-v^{iv} E A_{s} A_{c} \left( \frac{I_{t} + A_{t} Y_{s} Y_{c}}{A_{t}} \right) + K I_{t} v'' = \frac{KM}{E} + \frac{A_{c} A_{s}}{A_{t}} w \quad (3.28)$$

Letting

$$EA_{s}A_{c} \left(\frac{I_{t} + A_{t}Y_{s}Y_{c}}{A_{t}}\right) = \psi \qquad (3.29)$$

Equation 3.28 becomes

$$v^{iv} - \frac{KI}{\psi} v^{\prime\prime} = \frac{-KM}{E\psi} - \frac{A_s A_c}{A_t \psi} w \qquad (3.30)$$

This is a fourth order differential equation in terms of deflection. If the beam is statically determinate, M is a known function of x and w (the uniform loading) and v can be determined as the solution to the differential equation. With deflection known, the curvature may be determined by differentiation and the slip strain determined from Equation 3.25 by substitution. The slip may be evaluated by integrating Equation 3.25 and  $u_0$  is determined from Equation 3.26. The complete solution is therefore available from Equations 3.30, 3.25, and 3.26.

#### 3.2 Slip Strain at Inflection Point

Figure 3.5 illustrates the neutral axis positions in a continuous composite section under positive and negative bending for uniform and discontinuous section properties. In the negative bending moment region, assuming the concrete has no tension strength, the concrete slab is not effective. Theoretically there is an abrupt change in the position of neutral axis at the point of inflection as shown in Fig. 3.4(b). The slip strain is affected by this abrupt change in the neutral axis position and the abrupt change in effective area of concrete slab.

In order to maintain continuity of the force F between positive and negative moment regions, the strain at the centroid of steel section must be equal on both sides of the point of inflection.

$$\varepsilon_{\rm sL} = \varepsilon_{\rm sR}$$
 (3.31)

where subscripts L and R refer to locations to the left and right of inflection point. In the positive moment region, the strain at the centroid of the steel section can be expressed in terms of the curvature and the strain at the neutral axis of the transformed section. From Equation 3.6,

$$\varepsilon_{sL} = \varepsilon_{0L} - \phi_L Y_{s1}$$
 (3.32a)

Similarly for the negative moment region,

$$\varepsilon_{sR} = \varepsilon_{0R} - \phi_{R} Y_{sR} \qquad (3.32b)$$

Now substituting values of  $\varepsilon_{OL}$ ,  $\varepsilon_{OR}$ ,  $\phi_L$  and  $\phi_R$  from Equations 3.18(a), and 3.19(a) into Equations 3.32(a) and 3.32(b), and equating the results as indicated by Equation 3.31, the following relationship is obtained:

$$-\left(\frac{A_{cL}}{A_{tL}} + \frac{Y_{sL}A_{cL}Y_{cL}}{I_{tL}}\right)s'_{L} + \frac{MY_{sL}}{EI_{tL}}$$
$$= -\left(\frac{A_{cR}}{A_{tR}} + \frac{Y_{sL}A_{cR}Y_{cR}}{I_{tR}}\right)s'_{R} + \frac{MY_{sR}}{EI_{tR}}$$
(3.33)

If uniform or constant section properties are assumed over the entire length of beam, there will be no change in the concrete area at the inflection point and the neutral axis will not shift its position. Hence the section properties to the left of the inflection point will be the same as section properties to the right. From Equation 3.33 it is evident that with uniform section properties the slip strain to the left of the inflection point is equal to that to the right. Thus it can be proved that continuity of slip strain exists with constant section properties.

If there is a change in section properties the slip strain to the right of the inflection point will be related to slip strain to the left but there will be discontinuity at the inflection point. Let

$$-\frac{A_{cL}}{A_{tL}} + \frac{Y_{sL}A_{cL}Y_{cL}}{I_{tL}} = \chi_{L}$$
(3.34)

$$-\frac{A_{cR}}{A_{tR}} + \frac{Y_{sR}A_{cR}Y_{cR}}{I_{tR}} = \chi_{R}$$
(3.35)

and

By substituting Equations 3.34 and 3.35 into Equation 3.33 and eliminating moment terms (moment is zero at the inflection point), the slip strain to the right of the inflection point may be written as

$$\mathbf{s'}_{R} = \frac{\chi_{L}}{\chi_{R}} \mathbf{s'}_{L}$$
(3.36)

#### 3.3 Boundary Conditions

In order to evaluate the constants of integration involved in the solution, boundary conditions must be established for any particular problem. For example, for a simple span beam the bending moment, stresses and strains are zero, (i.e., M = 0,  $\sigma = 0$ ,  $\varepsilon_0 = 0$ ) at x = 0 and at x = L. Hence, from Equation 3.15, s' must be zero and, from Equation 3.16, it may be concluded that  $\phi$  is also zero at x = 0 and at x = L.

From compatibility requirements, it is obvious that slip is continuous. Also, as explained in Section 3.2, the strain at the centroid of the steel section is continuous since the force P in the slab must be continuous and therefore s' is continuous wherever section properties are continuous. For equilibrium, the summation of the axial force over the entire section must be zero. The boundary conditions for a simply supported beam and a continuous beam are shown in Fig. 3.6.

#### 3.4 Linear Closed Form Solutions

The governing equation for slip, Equation 3.23, is

$$s'' - \alpha^2 s = -\beta V \qquad (3.37)$$

The particular solution of this equation for a uniformly distributed load, w, is

$$s = \frac{\beta}{\alpha^2} \left( \frac{wL}{2} - wx \right)$$
 (3.38)

The homogeneous solution is

$$s = A \sinh \alpha x + B \alpha \cosh x$$
 (3.39)

Hence the general solution is

s = A sin
$$\alpha x$$
 + B cosh $\alpha x$  +  $\frac{\beta}{\alpha 2}$  ( $\frac{wL}{2}$  - wx) (3.40)

The boundary conditions relating to slip strain

are

at 
$$x = 0$$
,  $\frac{ds}{dx} = 0$  (3.41a)

at x = L, 
$$\frac{ds}{dx} = 0$$
 (3.41b)

Differentiating Equation 3.40 results in a slip strain equal to

$$\frac{ds}{dx} = A\alpha \cosh \alpha x + B\alpha \sinh \alpha x + \frac{\beta}{\alpha^2} (-w)$$
(3.42)

By introducing the boundary condition, Equation 3.41a, Equation 3.42 becomes

$$0 = A\alpha - \frac{\beta}{\alpha^2} w \qquad (3.43a)$$

from which

$$A = \frac{\beta}{\alpha^3} w \qquad (3.43b)$$

Substituting the second boundary condition, Equation 3.41b, into Equation 3.42 gives

$$0 = \frac{\beta w}{\alpha^2} \cosh \alpha L + B \alpha \sinh \alpha L - \frac{\beta}{\alpha^2} w \qquad (3.44a)$$

from which

$$B = \frac{w\beta}{\alpha^3} \left[ \frac{1 - \cosh \alpha L}{\sinh \alpha L} \right]$$
 (3.44b)

Substituting Equations 3.43b and 3.44b into Equations 3.40 and 3.42 yields

$$s = \frac{w\beta}{\alpha^3} \left[ \sinh \alpha x + (1 - \cosh \alpha L) \frac{\cosh \alpha x}{\sinh \alpha L} \right] + \frac{\beta}{\alpha^2} \left( \frac{wL}{2} - wx \right)$$
(3.45)

and  

$$s' = -\frac{w\beta}{\alpha^2} \left[ \cosh \alpha x + (1 - \cosh \alpha L) \frac{\sinh \alpha x}{\sinh \alpha L} \right] - \frac{w\beta}{\alpha^2} (3.46)$$

The deflection may now be determined by integration of Equation 3.46 using Equation 3.19(a).

Combining these two equations yields

$$- v'' = \frac{w}{2EI_{t}} (Lx - x^{2}) + \frac{A_{c}Y_{c}}{I_{t}} \frac{w\beta}{\alpha^{2}} \left[ \cosh\alpha x + (1 - \cosh\alpha L) \frac{\sinh\alpha x}{\sinh\alpha L} - 1 \right]$$
(3.47)

Integrating twice yields

$$-v = \frac{w}{2EI_{t}} \left( \frac{Lx^{3}}{6} - \frac{x^{4}}{12} \right) + \frac{A_{c}Y_{c}\beta w}{I_{t}\alpha^{4}} \left[ \cosh x + \rho \sinh \alpha x - \frac{\alpha^{2}x^{2}}{2} + D + Cx \right]$$
(3.48)

in which  $\rho = (1 -$ 

= 
$$(1 - \cosh \alpha L)/\sinh \alpha L$$
 (3.49)

Subjecting Equation 3.48 to the boundary condition, v(0) = 0, yields D = -1. Imposing the boundary condition v(L) = 0 yields

$$0 = \frac{wL^{4}}{24EI_{t}} + \frac{A_{c}Y_{c}\beta w}{I_{+}\alpha^{4}} \left( - \frac{\alpha^{2}L^{2}}{2} + CL \right)$$
(3.50a)

from which  

$$C = -\frac{\alpha^4 L^3}{24 E A_c Y_c \beta} + \frac{\alpha^2 L}{2} \qquad (3.50b)$$

Substituting into Equation 3.48 and rearranging yields

$$- v = \frac{w}{2EI_{t}} \left( \frac{Lx^{3}}{6} - \frac{x^{4}}{12} \right) - \frac{wL^{3}x}{24EI_{t}} + \frac{A_{c}Y_{c}\beta w}{I_{t}\alpha^{4}} \left[ \cosh\alpha x + \rho \sinh\alpha x + \frac{\alpha^{2}}{2} (Lx - x^{2}) - 1 \right] (3.51)$$

Equations 3.45, 3.46 and 3.51 give the solution for slip, slip-strain and deflection of a simply supported uniformly loaded beam. A solution of the

differential equations for a continuous beam with two unequal spans subjected to two equal midspan concentrated loads is derived in Appendix A. The evaluation of the constants of integration for this case is so complex that they can only be obtained by solving a matrix equation in the computer. Therefore solutions can only be obtained once numerical values are assigned to all variables.

## 3.5 Formulation for Nonlinear Load-Slip Relationships

The solutions in Section 3.4 and Appendix A assume a linear relationship between shear flow and slip. This assumption was introduced in Equation 3.11, where it was assumed that

$$q = Ks \tag{3.52}$$

When the slip is nonlinear, Equation 3.52 may be replaced by the general expression

$$q = f(s)$$
 (3.53)

in which f(s) is any nonlinear function of s.

Yam and Chapman (31) introduced an exponential relationship in the form

$$Q = a (1 - e^{-bS})$$
 (3.54)

to represent a nonlinear load-slip relationship between the total shear connector force, Q, and the slip, s. This may be reduced to a shear flow relationship by dividing by the connector spacing, l. Then Equation 3.52 becomes

$$q = \frac{Q}{l} = \frac{a}{l} (1 - e^{-bs})$$
 (3.55)

which is a particular form of the more general relationship represented by Equation 3.57.

If the relationship of Equation 3.53 is used in place of Equation 3.52, Equation 3.11 becomes

$$\frac{dP}{dx} = -f(s) = -q$$
 (3.56)

Equation 3.17 becomes

$$EA_{s}\varepsilon_{0}' - EA_{s}Y_{s}\phi' = -f(s) \qquad (3.57)$$

and the governing equation for slip, Equation 3.23, becomes

$$s'' - \alpha^2 f(s) = -\beta V$$
 (3.58)

in which, from Equation 3.21,

| α <sup>2</sup> = | $\begin{bmatrix} 1 \\ \frac{A_{s}}{EA_{c}} \frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}} \end{bmatrix}$                                         | (3.59) |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| β =              | $\begin{bmatrix} A_{s}Y_{s} & 1\\ \overline{EI_{t}}A_{c} & \frac{A_{s}Y_{s}Y_{c}}{\frac{A_{s}}{A_{t}} + \frac{A_{s}Y_{s}Y_{c}}{I_{t}}} \end{bmatrix}$ | (3.60) |

and

Since Equation 3.58 is nonlinear, there are no closed form solutions. Therefore, numerical solution techniques must be applied as discussed in Chapter IV.



## FIGURE 3.1 COMPOSITE SYSTEM













(a) UNIFORM STIFFNESS



(b) VARIABLE STIFFNESS

FIGURE 3.5 CONDITIONS AT INFLECTION POINT



## Boundary

| Conditions                            |        |                       | <b></b>                               | · · · · · · · · · · · · · · · · · · · |   |    |
|---------------------------------------|--------|-----------------------|---------------------------------------|---------------------------------------|---|----|
| a)Slip<br>Strain                      | s' = 0 |                       |                                       | s'                                    | = | 0  |
| b)Curvature                           | 1      |                       |                                       | φ                                     | = | 0  |
| · · · · · · · · · · · · · · · · · · · | P = 0  |                       | · · · · · · · · · · · · · · · · · · · | Р                                     | = | 0  |
| c)Force                               | P = 0  | T                     |                                       |                                       |   | -1 |
| d) E Force                            |        | $\int_{0}^{L} ksdx =$ | 0                                     |                                       |   |    |
|                                       |        |                       |                                       |                                       |   |    |

# (a) SIMPLY SUPPORTED BEAM



#### Boundary Conditions

| Conditions       |                      |                             |                |                             |                     |                                     |                     |                                 |  |
|------------------|----------------------|-----------------------------|----------------|-----------------------------|---------------------|-------------------------------------|---------------------|---------------------------------|--|
| a)Slip           |                      | <sup>s</sup> 1 <sup>=</sup> | <sup>s</sup> 2 | <sup>s</sup> 2 <sup>=</sup> | <sup>s</sup> 3      | <sup>`S</sup> 3 <sup>=</sup>        | <sup>s</sup> 4      |                                 |  |
| b)Slip<br>Strain | s'=0                 | s'=                         | <sup>s</sup> 2 | s'=                         | s'3                 | s'3=                                | s'4                 | s'=0                            |  |
| c) Curvature     | φ <sub>1</sub> =0    | ¢1 <sup>=</sup>             | ¢2             | ¢2 <sup>=</sup>             | <sup>ф</sup> з      | ¢3=                                 | ¢4                  | ¢4 <sup>=0</sup>                |  |
| d)Force          | P <sub>1</sub> =0    | P <sub>1</sub> =            | P2             | <sup>p</sup> 2 <sup>=</sup> | <sup>р</sup> з      | P <sub>3</sub> =                    | P4                  | P <sub>4</sub> =0               |  |
| e)Σ Force        | $\int_{0}^{L_{1/2}}$ | s1dx                        | JJT .          | ks <sub>2</sub> dx<br>/2    | $+\int_{L_1}^{L_1}$ | <sup>+L</sup> 2/2 <sub>ds3</sub> dx | $+\int_{L_1}^{L_1}$ | $s_4 dx = 0$<br>$\frac{L^2}{2}$ |  |
|                  |                      |                             |                |                             |                     |                                     |                     |                                 |  |

(b) CONTINUOUS BEAM

FIGURE 3.6 BOUNDARY CONDITIONS

#### CHAPTER IV

# A NUMERICAL SOLUTION TECHNIQUE FOR COMPOSITE BEAMS

#### 4.1 <u>Introduction</u>

Classical solutions for deflections of composite beams are limited to simple sections with no material nonlinearities. Furthermore, as may be seen in Appendix A, the evaluation of constants of integration becomes tedious for continuous beams. Numerical techniques offer an alternative in these cases.

A technique for obtaining numerical solutions for continuous composite beams with a nonlinear loadslip relationship is developed in this Chapter. The governing equation for slip, Equation 3.23, is the basis of the numerical solution technique. Beginning with an initial assumed slip, the numerical technique involves a process of iteration which is continued until the slip has an acceptable degree of accuracy.

- 52 -
#### 4.2 Numerical Integration of Slip Equation

A three-span continuous composite beam, shown in Fig. 4.1, is divided into a number of segments of length h. Each end of a segment length is defined by a nodal point, as illustrated in Fig. 4.1(b). The continuous beam is changed into a simple beam primary structure subjected to two sets of loadings. The first loading consists of the external loading while the second consists of the redundant reactions. This scheme is illustrated in Figs. 4.1(c) and 4.1(d), respectively.

As derived in Section 3.5, the governing second order equation for slip is

$$s'' - \alpha^2 f(s) = -\beta V$$
 (4.1)

Setting s' = v (which is not to be confused with v of Chapter III), the second order Equation 4.1 may be expressed as the following two first order simultaneous equations:

$$\mathbf{s'} = \mathbf{v} \tag{4.2}$$

$$v' = \alpha^2 f(s) - \beta V \qquad (4.3)$$

Equations 4.2 and 4.3 may be solved by using a Runge-Kutta method of integration, and iterating each equation in turn. In applying the Runge-Kutta method (7)

Equations 4.2 and 4.3 are expressed as

$$s' = H(s, x, v)$$
 (4.4)

$$v' = G(s, x, v)$$
 (4.5)

in which H and G represent the functional forms in Equations 4.2 and 4.3. The recursive equations for the fourth order Runge-Kutta solution of Equations 4.4 and 4.5 are

$$s_{i+1} = s_i + \frac{h}{6} (k_{1s} + 2k_{2s} + 2k_{3s} + k_{4s})$$
 (4.6)

$$v_{i+1} = v_i + \frac{h}{6} (k_{1v} + 2k_{2v} + 2k_{3v} + k_{4v})$$
 (4.7)

Equations 4.6 and 4.7 are used alternately and the  $k_{is}$  and  $k_{iv}$  values are determined as follows:

$$k_{1s} = H(x_i, s_i, v_i)$$
 (4.8)

$$k_{1v} = G(x_{i}, s_{i}, v_{i})$$
 (4.9)

$$k_{2s} = H(x_i + \frac{h}{2}, s_i + \frac{hk_{1s}}{2}, v_i + \frac{hk_{1v}}{2})$$
 (4.10)

$$k_{2v} = G(x_i + \frac{h}{2}, s_i + \frac{hk_{1s}}{2}, v_i + \frac{hk_{1v}}{2})$$
 (4.11)

$$k_{3s} = H(x_1 + \frac{h}{2}, s_1 + \frac{hk_{2s}}{2}, v_1 + \frac{hk_{2v}}{2})$$
 (4.12)

$$k_{3v} = G(x_i + \frac{h}{2}, s_i + \frac{hk_{2s}}{2}, v_i + \frac{hk_{2v}}{2})$$
 (4.13)

$$k_{4v} = H(x_i + h, s_i + hk_{3s}, v_i + hk_{3v})$$
 (4.14)

$$k_{4v} = G(x_i + h, s_i + hk_{3s}, v_i + hk_{3v})$$
 (4.15)

The initial values of  $x_i$ ,  $s_i$ ,  $v_i$  determine  $k_{1s}$  and  $k_{1v}$ from Equations 4.8 and 4.9 respectively. The remaining values,  $k_{js}$  and  $k_{jv}$ , where j = 2, 3, 4, are determined from Equations 4.10 through 4.15 successively.

Equations 4.6 and 4.7 determine values of slip and slip strain, respectively. The computation of slip starts from the left end of the beam at  $x_i = 0$  and progresses through all nodal points to the right end of the beam as shown in Fig. 4.1(b). The shear flow at any nodal point in the beam may be computed by using either a linear or a nonlinear relation for slip in which, from Equation 3.52,

$$q = Ks$$
 (4.16a)

or, from Equation 3.55,

$$q = -\frac{a}{\ell} (1 - e^{-bs})$$
 (4.16b)

The axial force in the concrete at the right end of the beam is computed by using the relationship

$$F = \int_{0}^{L} q dx \qquad (4.17)$$

If the axial force computed at the right end is zero, the assumed initial slip value is correct and hence the total solution is correct. If the axial force is not zero at the right end, a correction is applied to satisfy the boundary condition

$$F(L) = 0$$
 (4.18)

# 4.3 <u>Correction and Iteration for Slip</u>

An unbalanced axial force in the slab at the right end of the beam, as shown in Fig. 4.2a, creates an unbalanced moment. An equal and opposite balancing moment produces a correction to the initial assumed slip value. The general solution to Equation 3.37 for this loading case is

$$s = A \sinh \alpha x + B \cosh \alpha x + \frac{\beta}{\alpha^2} \frac{F(Y_c - Y_s)}{L}$$
 (4.19)

Evaluating s', and equating it to zero for x = 0requires that A is zero. Fig. 4.2(b) illustrates the moment correction to remove the unbalanced force. Using Equation 3.6, the strains at the centroids of the slab and steel section at the end of the span are

$$\varepsilon_{c} = \varepsilon_{0} - \phi Y_{c} + s_{L}' = \frac{-F}{EA_{c}}$$
 (4.20)

$$\varepsilon_{s} = \varepsilon_{0} - \phi Y_{s} = \frac{F}{EA_{s}}$$
 (4.21)

Eliminating  $\varepsilon_0$  from Equations 4.20 and 4.21, the slip strain, in terms of unbalanced force and curvature, is

$$s'_{L} = \frac{-F}{E} \left( \frac{1}{A_{s}} + \frac{1}{A_{c}} \right) + \phi(Y_{c} - Y_{s})$$
(4.22)

From Equation 3.16 the slip strain can also be expressed in terms of curvature and the applied forces required to balance the unbalanced moment as

$$s'_{L} A_{c} Y_{c} = \frac{F}{E} (Y_{c} - Y_{s}) + \phi I_{t}$$
 (4.23)

by eliminating curvature from Equations 4.22 and 4.23

$$s'_{L} = -\frac{F}{E} \left[ \frac{A_{t}I_{t} + A_{s}A_{c}(Y_{c} - Y_{s})^{2}}{A_{s}A_{c} \left\{ I_{t} - A_{c}Y_{c}(Y_{c} - Y_{s}) \right\}} \right] = \lambda \quad (4.24)$$

Equation 4.24 defines the slip strain boundary condition at the right end of the beam for the balancing moment. By differentiating Equation 4.19 the slip strain at the right end of the beam, where x = L, is

$$s'_{B} = \alpha B \sinh \alpha L$$
 (4.25)

By equating Equations 4.24 and 4.25, the constant B is evaluated as

$$B = \frac{\lambda}{\alpha \sinh \alpha L}$$
(4.26)

As the A and B values are now known, the slip at the left end, from Equation 4.17, is

$$s = B + \frac{\beta}{\alpha^2} F (Y_c - Y_s)$$
 (4.27)

Equation 4.27 represents the correction to be applied to the initial assumed slip at the left end of the beam. The procedure is repeated with the corrected slip value until the force boundary condition at the right end, Equation 4.20, is satisfied. Values of slip and slip strain are then directly available from Equations 4.6 and 4.7; shear flow may be computed from Equations 4.16a or 4.16b, and axial force may be computed from a numerical integration of Equation 4.17.

# 4.4 Evaluation of Slip Strain

Although the slip strain may be obtained from the Runge-Kutta solution as the variable  $v_i$ , evaluated in Equation 4.7, the slip strain used to determine the shear flow in the program developed herein was obtained as the derivative of a quadratic polynomial passing through three consecutive points on the slip curve. For equally spaced points this reduces to the standard second order finite difference approximation.

The Lagrangian interpolating polynomial f(x), passing through the values  $f_1$ ,  $f_2$  and  $f_3$  at three unequally spaced points as illustrated in Fig. 4.3(a), may be expressed in terms of the local x coordinate, measured from point 1, as

$$f(x) = \frac{(x-\ell_1)(x-\ell)}{\ell_1 \ell} f_1 + \frac{x(\ell-x)}{\ell_1 \ell_2} f_2 + \frac{x(x-\ell_1)}{\ell_2 \ell_2} f_3 (4.28)$$

Differentiating this expression yields

$$\frac{df}{dx} = \frac{2(x-\ell_1) - \ell_2}{\ell_1 \ell} f_1 + \frac{\ell-2x}{\ell_1 \ell_2} f_2 + \frac{2x-\ell_1}{\ell_2 \ell_2} f_3 \qquad (4.29)$$

Evaluating this derivative at the three nodal points gives

$$\frac{df}{dx} = \frac{-(2\ell_1 + \ell_2)}{\ell_1(\ell_1 + \ell_2)} f_1 + \frac{\ell_1 + \ell_2}{\ell_1 \ell_2} f_2 - \frac{\ell_1}{2(\ell_1 + \ell_2)} f_3 \quad (4.30a)$$

$$x=0$$

$$\frac{df}{dx} = \frac{-\ell_2}{\ell_1(\ell_1 + \ell_2)} f_1 - \frac{(\ell_2 - \ell_1)}{\ell_1 \ell_2} f_2 + \frac{\ell_1}{\ell_2(\ell_1 + \ell_2)} f_3 \quad (4.30b)$$

$$x = \ell_1$$

$$\frac{df}{dx} = \frac{\ell_2}{\ell_1(\ell_1 + \ell_1)} f_1 - \frac{(\ell_1 + \ell_2)}{\ell_1\ell_2} f_2 + \frac{\ell_1 + 2\ell_2}{\ell_2(\ell_1 + \ell_2)} f_3 \quad (4.30c)$$

$$x = \ell$$

These equations are used to evaluate  $s'_i$ . In evaluating  $s'_i$  at node i, and letting  $\ell_1 = \ell_2 = h$ , Equation 4.30 becomes

 $s'_{i} = \frac{\ell}{2h} (s_{i+1} - s_{i-1})$  (4.31)

which is the finite difference form.

At an inflection point the section properties may be considered to be discontinuous, as discussed in Section 3.2. Let us consider that the bending moment diagram is as shown in Figure 4.3b and the discontinuity in section properties occurs at point 0 which is located at a distance 'a' from a node j and at a distance 'b' from node i. In terms of the slip values at nodes j-1, j and j+1 shown in Figure 4.3c, the slip strain at points j and j+1 may be computed by evaluating Equations 4.30b and 4.30c, which become

$$s'_{j} = \frac{-a}{h(a+h)} s_{j-1} + \frac{a-h}{ah} s_{j} + \frac{h}{a(a+h)} s_{j+1}$$
 (4.32)

and

$$s'_{j+1} = \frac{a}{h(a+h)} s_{j-1} - \frac{(a+h)}{ah} s_k + \frac{h+2a}{a(a+h)} s_{j+1}$$
 (4.33)

Based on the value of  $s'_{j+1}$ , the value of  $s'_{i-1}$  (Figure 4.3c) may be evaluated from Equation 3.36. The standard Runge-Kutta formulae, Equations 4.6 and 4.7, may then be used to evaluate  $s_i$  and  $s_{i+1}$ . The particular values of

s'  $_{i-1}$  and s'  $_{i}$  , obtained from Equations 4.30a and 4.30b, are

$$s'_{i-1} = \frac{-(2b+h)}{b(b+h)} s_{i-1} + \frac{b+h}{bh} s_i - \frac{b}{h(b+h)} s_{i+1}$$
(4.34)

and

$$s'_{i} = \frac{-h}{b(b+h)} s_{i-1} + \frac{h-b}{h b} s_{i} + \frac{b}{h(b+h)} s_{i+1}.$$
 (4.35)

Therefore, the slip strain can be obtained at nodes adjacent to an inflection point by interpolating through the values of slip at these points.

## 4.5 Evaluation of Deflections

Once the slip has been determined, the curvature at any point along the length of the beam may be determined by using Equation 3.16, since all the terms are known. The curvature is expressed by Equation 3.16 as

$$v'' = \frac{M}{EI_t} + \frac{A_c Y_c}{I_t} s'$$
 (4.36)

Defining v' = z the above second order equation may be expressed as two first order simultaneous equations. Note that v is the displacement defined in Chapter III.

v' = z (4.37)

$$z' = \frac{M}{EI_{t}} + \frac{A_{c}Y_{c}}{I_{t}} s'$$
 (4.38)

By employing a second order Runge-Kutta method of integration to each equation in turn, Equations 4.37

and 4.38 may be written symbolically as

$$v' = G(z, v)$$
 (4.39)

$$z' = H(z, v)$$
 (4.40)

from which

$$v_{i+1} = \frac{h}{2} (k_{1v} + k_{2v}) + v_i$$
 (4.41)

$$z_{i+1} = \frac{h}{2} (k_{1z} + k_{2z}) + z_1$$
 (4.42)

Values of  $\textbf{k}_{1v}^{}\text{, }\textbf{k}_{2v}^{}\text{ and }\textbf{k}_{2z}^{}$  are evaluated as

$$k_{1v} = z_{i}$$

$$k_{1z} = \frac{M_{i}}{EI_{t}} + \frac{A_{c}Y_{c}}{I_{t}} s'_{i} \qquad (4.43)$$

$$k_{2v} = z_i + k_{1z} x h$$
 (4.45)

$$k_{2z} = \frac{M_{i+1}}{EI_{t}} + \frac{A_{c}Y_{c}}{I_{t}} s'_{i+1}$$
(4.46)

By substituting values from Equation 4.43 through 4.46 in Equations 4.41 and 4.42, the deflection at every nodal point is computed. Since the value of v'(0) is unknown 'a priori', a value of zero is first assumed before the integration is carried out. The deflections so obtained are shown in Figure 4.4. To obtain the true deflection at every nodal point, a linear correction must be applied.

As illustrated in Figure 4.4 the slope of the line joining A and N is

$$\theta = \frac{\delta_{\rm N} - \delta_{\rm A}}{\rm L} \tag{4.47}$$

Therefore, the corrected deflection at any point is

$$\Delta_{i} = \theta x_{i} - \delta_{i} \qquad (4.48)$$

Thus a complete set of deflections is obtained.

The procedure described above is valid for a simply supported or continuous beam. However, to obtain values for a continuous beam, it is necessary to solve for the indeterminate reactions, as described in Section 4.6.

## 4.6 <u>Solution Procedure for Continuous Beams</u>

The redundancy of a continuous beam may be solved by using the flexibility method. A three span continuous beam with a uniform load w, shown in Figure 4.5a, is statically indeterminate to the second degree. The primary system has been selected as a simple beam which deflects under applied loads as shown in Figs. 4.5c, d and e. With the redundants and deformations as defined in these figures, the continuity equations can be expressed as

$$\delta_{BB}R_{B} + \delta_{BC}R_{C} = \Delta_{B}$$
 (4.49)

$$\delta_{CB}R_{B} + \delta_{CC}R_{C} = \Delta_{C} \qquad (4.50)$$

where  $\Delta_{\rm B}$  and  $\Delta_{\rm C}$  are deformations due to external loading;  $\delta_{\rm BB}$ ,  $\delta_{\rm CB}$  are deformations due to unit load at B and  $\delta_{\rm CB}$ ,  $\delta_{\rm CC}$  are deformations due to unit load at C. R<sub>B</sub> and R<sub>C</sub> are the reactions. Equations 4.49 and 4.50 are expressed in the matrix form as

$$\begin{bmatrix} \delta_{BE} & \delta_{EC} \\ \delta_{BC} & \delta_{CC} \end{bmatrix} \begin{Bmatrix} R_B \\ R_C \end{Bmatrix} = \begin{Bmatrix} \Delta_B \\ \Delta_C \end{Bmatrix}$$
(4.51)

or

$$\begin{bmatrix} F \end{bmatrix} \{R\} = \{\Delta\}$$
(4.52)

where F is the flexibility matrix,  $\{R\}$  is the redundant vector and  $\{\Delta\}$  deformation vector. The reactions, determined by inversion of the flexibility matrix, are

$$\{\mathbf{R}\} = \left[\mathbf{F}\right]^{-1} \{\Delta\} \qquad (4.53)$$

The total stress resultants are obtained by superimposing the stress resultants due to external loading and those due to interior support reactions.

The continuous beam of Fig. 4.5 may now be solved by the following procedure. Assuming constant section properties, the deflections { $\Delta$ } for the uniform load acting on the primary structure are computed by the procedure described in Sections 4.2, 4.3 and 4.5. Similarly the deflections  $\delta_{BB}$  and  $\delta_{CB}$  are computed for a unit redundant applied at B, and the deflections  $\delta_{BC}$  and  $\delta_{CC}$  are computed for a unit redundant applied at C. The matrix {F} of Equation 4.52 is then formed, and the redundants determined from equation 4.53.

If the problem were linear a superposition obtained from

$$X = X_0 + X_B R_B + X_C R_C$$
 (4.54)

in which X represents any quantity (moment, shear, deflection, slip, slip strain, shear flow, etc.), and  $X_0$ ,  $X_B$  and  $X_C$  represent the values obtained for that quantity from the three basic solutions described in the preceding paragraphs. The solution is then complete for classical solutions, such as that of Plum and Horne (19), described in Appendix A.

Two types of nonlinearity have, however, been included herein. The first is that arising from the cracking of the concrete in the negative moment region, and the second is a nonlinear slip/shear flow relationship. In the following paragraphs, the continuous beam technique will be considered, for the example problem of Fig. 4.5, treating the cracking effects separately and then combining them with the nonlinear load-slip relationship.

For the nonlinearities arising from the cracking of the slab, the following technique may be used. Superposition of moment according to Equation 4.54 will produce regions of negative moment. The locations of the points of inflection can be determined from a linear interpolation of the superimposed moments between nodal points, resulting in a number of points along the beam (for the present example, four points) at which a condition similar to that in Fig. 4.3 arises. For the negative moment regions the centroid and section properties of the transformed section are those of the steel section and reinforcing bars only. Hence the discontinuities indicated in Fig. 3.4 arise,

The deflections { $\Delta$ }<sub>1</sub> required to set up Equation 4.52 are now computed with these nonuniform section properties and by considering the stress resultants obtained from Equation 4.54 with the current values of R<sub>B</sub> and R<sub>C</sub>. The lack of compatibility in deflection at the redundants are now obtained as

$$\{\delta\Delta\}_{1} = \{\Delta\}_{1} - \{\Delta\}$$
(4.55)

Now the change in redundants to eliminate this lack of compatibility is computed as

$$\begin{bmatrix} F \end{bmatrix} \{\Delta R\}_2 = \{\delta \Delta\}_1 \qquad (4.56a)$$

The improved estimate of reaction is then

$$\{R\}_{2} = \{R\}_{1} + \{\Delta R\}_{2}$$
(4.56b)

The total superposition, expressed by Equation 4.54, is now repeated for the new reactions until, for the ith iteration

$$[\Delta R] = \{0\}$$
 (4.57a)

or

$$\{\delta\Delta\}_{i} = \{0\}$$
 (4.57b)

When conditions 4.57a or 4.57b are satisfied the process is considered to have converged and the 'correct' solution has been obtained.

Since the above iterative process depends only on the consistency of the final beam displacements with the interior support conditions, it may be applied to beams with a nonlinear load-slip relationship. The primary difference is that the iteration required to determine the proper shear flow, described in Sect. 4.3, which must be carried out for each of the separate loading conditions, may take longer to converge because the estimated slip correction described by Equation 4.27 is not as good an estimate as for the linear case.

# 4.7 Special Problems in Solving Continuous Beams

The general technique developed herein for the solution of continuous beams has been described in Sect. 4.6. In that section it was pointed out that at an inflection point, there is an abrupt change in section properties, if it is assumed that concrete cannot resist This gives rise to the discontinuities tension. illustrated in Fig. 3.4. There is, therefore, a discontinuity in slip strain as derived in Sect. 3.2 and expressed by Equation 3.36. It is necessary to consider this discontinuity in the integration of Equations 4.4 and 4.5, described in Sect. 4.2, when solving continuous beam problems. This results in the following modification of the procedure for the computation of all of the deflections required for Equation 4.55.

The inflection points are located as described in Sect. 4.6. Equation 4.1 is integrated by the application of Equations 4.2 to 4.15 up to node point j of Fig. 4.3.

The values of s and v are then determined for node point j+1 by Equation 4.2,  $s'_L$  of Equation 3.36 is known and hence  $s'_R$  is computed from Equation 3.36. Since slip is continuous, the values of s and s' at node i-1 of Fig. 4.3 are now known, and the values at node i are determined by using 'b' of Fig. 4.3 in place of h in Equations 4.6 to 4.15. The integration procedure now proceeds normally to the next inflection point, when the same procedure is used. Thus the discontinuity in slip strain is accounted for in the integration procedure for continuous beams.

#### 4.8 Computer Program

A number of computer programs were developed during this investigation. The main program, developed on the basis of the numerical solution technique, is included in Appendix F. This appendix includes the flow chart, description and listing for the program, and a test problem.

The program is designed to analyse composite beams of up to six spans and can handle any combination of concentrated loads combined with a uniformly distributed loading. Calculations may be performed on the basis of:

(a) Constant flexural stiffness (EI<sub>t</sub>), or

(b) Variable flexural stiffness  $(EI_v)$ , i.e., different stiffnesses in positive and negative moment

regions, or

(c) Average flexural stiffness  $(EI_{av})$ , i.e., the average of positive and negative moment region flexural stiffnesses.

Computations for slip, slip strain, shear flow, force and deflections are based on the procedures described in this Chapter.



FIGURE 4.1 BASIS FOR NUMERICAL PROCEDURE



(a) UNBALANCED FORCE F



(b) APPLIED BALANCE FORCE F

FIGURE 4.2 AXIAL FORCE AT THE END OF THE BEAM



(a) QUADRATIC LAGRANGIAN INTERPOLATION FUNCTION



FIGURE 4.3 DISTRIBUTION OF SLIP STRAIN ACROSS THE POINT OF INFLECTION



FIGURE 4.4 DEFLECTION AND ITS CORRECTION



FIGURE 4.5 ILLUSTRATION OF FLEXIBILITY METHOD

#### CHAPTER V

#### VERIFICATION OF NUMERICAL TECHNIQUE

### 5.1 Introduction

In Chapter IV a numerical technique was established for the solution of continuous composite beam problems under the conditions of: (a) linear response, and (b) nonlinear response in which the nonlinearity is confined to cracking of the concrete in the negative moment region and/or a nonlinear shear connector load-slip relationship. The basis for a computer program to solve such problems was described.

It is the purpose of this chapter (a) to verify the numerical technique developed in Chapter IV for the problems itemized above and (b) to establish the adequacy of the model for the computation of service load deflections in simply supported and continuous composite beams.

Since the program does not include the effects of steel yielding or concrete crushing, it cannot be used to compute deflection of composite beams at ultimate load. It also does not include the effect of creep in the concrete. This latter effect, however, may be simulated by using a lower modulus of elasticity for concrete.

- 74 -

#### 5.2 Program Verification for Linear Behavior

#### 5.2.1 Simply Supported Beams

The classical solution for a simply supported uniformly loaded beam with a flexible, but linear elastic, shear connection is derived in Sect. 3.4. A comparison of the numerical results obtained from the program described in Chapter IV with this classical solution is contained in Figs. 5.1 to 5.3. The properties of the chosen crosssection are contained in Column (1) of Table 5.1. The classical solution for a simply supported beam subjected to a concentrated load is included in Appendix B.

It can be seen from Figs. 5.1 to 5.3 that, based on linear load-slip behavior of shear connector, the results of the numerical solution for slip, slip strain and deflection (at a load of 30 kips) are indistinguishable from the values obtained in the classical solution. Nonlinear load-slip behavior for the shear connectors increases the magnitude of slip and deflection throughout the length of the beam.

In addition to the solution for the linear elastic problem, solutions for complete interaction, obtained by setting the shear connector stiffness to a very high value, and for nonlinear load-slip behavior are also shown on the figures. In Fig. 5.3 deflection,

including the effect of shearing deformation, is also shown for comparison purposes.

This example verifies that the results obtained by the numerical technique for simply supported beams are consistent with the linear elastic classical solution.

#### 5.2.2 Continuous Beams

The ability of the computer program (based on numerical technique) to properly analyze a continuous beam with flexible shear connectors but linear elastic response is verified in this section by solving the problem which was the subject of investigation by Plum and Horne (19). The problem is illustrated in Fig. 5.4. Plum and Horne solved this problem by determining the general solution to the governing equations, derived in Chapter III, and imposing the proper boundary conditions in order to evaluate the constants of integration. For this solution constant section properties are assumed throughout the length of the beam, that is, concrete cracking is ignored in the negative moment region.

Since Plum and Horne did not provide details of their solution, the classical solution for a two-span continuous composite beam has been derived in Appendix A. A computer program to evaluate slip, slip strain and

deflection consistent with the classical solution derived in Appendix A was written, and the problem of Fig. 5.4 was solved in this manner. The properties of the beam are tabulated in Column (2) of Table 5.1. The solution for slip, slip strain, slab force, and deflection obtained by the numerical technique of Chapter IV are compared with the classical solution in Figs. 5.5 to 5.8, respectively.

The only significant discrepancy between the classical solution and the numerical solution is that for slip strain in the region of the concentrated loads and the reactions. This discrepancy appears to arise because the numerical solution technique computes slip strain by averaging values obtained from the two element lengths on each side of the nodal points. This technique does not permit the accurate evaluation of slip strain at the point of application of a concentrated load. Nevertheless, the correspondence between slip curves indicates that the distribution of shear flow (directly proportional to slip in a linear problem) predicts an accurate determination of the distribution of internal forces. The deflections are also reliable.

It is concluded from this problem that the numerical techniques incorporated into the computer program are suitable for the solution of composite beam problems involving linear load-slip response of shear connectors and concentrated loads.

#### 5.3 Program Verification for Nonlinear Behavior

Any solution which includes nonlinearities for composite beams must be based on a numerical technique. Few of these solutions are available. However, Yam and Chapman (31) have published numerical solutions based on a predictor corrector technique for continuous composite beams which include the effects of steel yielding, concrete tensile cracking, concrete crushing and a nonlinear exponential relationship between force and slip in the shear connectors.

The primary objective of this thesis is to investigate deflections of composite beams under service loads. Nonlinearities due to yielding of the steel and crushing of the concrete have no effect at this level of load. Therefore, the simpler technique developed herein is appropriate for the present study. In order to demonstrate this, the solution obtained from the present numerical technique is compared, at service load, with the full nonlinear solution of Yam and Chapman.

Yam and Chapman's test beam is shown in Fig. 5.9 and its properties are shown in Column (3) of Table 5.1. Their solution for slip and deflection, at a service load of 7.4 tons, is shown in Figs. 5.10 and 5.11, respectively, where they are compared with the present numerical solution.

The comparison of slip in Fig. 5.10 indicates that, although there are some differences in the vicinity of the concentrated loads, the characteristics of the curves are very similar. In particular, the maximum slip values are essentially the same and occur at approximately the same locations. The comparison of the service load deflections for these two solutions is shown in Fig. 5.7 where the values are seen to be identical for all practical purposes. The increase in deflection produced by the flexible shear connectors and concrete cracking may be seen by comparing values with the complete interaction deflections, shown also in Fig. 5.11 and which are taken from the paper by Yam and Chapman. From Fig. 5.11 it is evident that shear deformation has not been included in Yam and Chapman's analysis. The degree of nonlinearity developed in the load-slip relationship for this problem may be seen by determining the position at which the maximum slip of Fig. 5.6 is located on a load-slip or shear-flow-slip curve. This is shown in Fig. 5.12, from which it may be concluded that there is some nonlinearity associated with the load-slip relationship at service load for this problem.

Figs. 5.10 to 5.12 appear to support the argument that an analysis in which the nonlinearities are confined to cracking of the concrete and the load-slip relationship is capable of producing an adequate simulation of the behavior of composite beams at service loads.

Furthermore, this establishes that the program developed herein has incorporated these nonlinearities in such a way that the results are consistent with a more sophisticated treatment of the problem. Thus, it is considered that the reliability of the computational technique is adequate to draw conclusions relative to the effects on service load deflections arising from variations on stiffness parameters.

## 5.4 Comparisons with Test Results

#### 5.4.1 <u>Comparison with Hamada and Longworth (9)</u>

Hamada and Longworth (9), in an experimental and analytical investigation into the behavior of continuous composite beams, concluded that shear deformation may contribute significantly to the deflection of composite beams. Load deflection computations for one of their beams (CBI) are shown in Fig. 5.13. The properties used in the analysis of this beam are summarized in Column (4) of Table 5.1. The computation of service load for this beam is given in Appendix C and the results are summarized in Column (2) of Table 5.2. Very good agreement is obtained with Hamada and Longworth's results up to 70 kips using nonlinear load-slip behavior of shear connectors and including the shear deformations. It is apparent that, for the shear connector stiffness used in this analysis, it is necessary to include shear deformations to obtain

reasonable agreement with their experimental results. Therefore, shear deflection will be included in many of the parameter studies of Chapter VI.

#### 5.4.2 Comparison with Chapman and Balakrishnan (5)

Chapman and Balakrishnan (5) carried out an extensive testing program of simply supported composite beams with various types of shear connectors. A comparison with one of their tests (Beam A6) is shown in Fig. 5.14. The beam properties are summarized in Column (5) of Table 5.1. The service load is computed in accordance with the procedure of Appendix C and the computation is summarized in Column (3) of Table 5.2.

In contrast to Hamada and Longworth's beam it should be noted that better agreement is obtained with these results when linear load-slip behavior is assumed. This appears to contradict the conclusion obtained from the comparison in Sect. 5.4.1. However, there are uncertainties involved in evaluating shear connector stiffness for Hamada and Longworth's beam. Hence solutions with, and without, shear deformations will be presented in Chapter VI.

# 5.5 <u>Conclusion</u>

The numerical technique developed in Chapter IV predicts the behavior of composite beams with very good accuracy up to service loads, and hence the validity of the model is established.

|                                   | Simply<br>Supported<br>Beam | Plum and<br>Horne's<br>Beam | Yam and<br>Chapman's<br>Beam | Chapman and<br>Balakrishnan's<br>Beam          | Hamada and<br>Longworth's<br>Beam |
|-----------------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------------------------|-----------------------------------|
| Beam Designation                  | BSS12 x 6L                  | W12 x 31                    | BSB 108                      | BSS12 x 6L                                     | W12 x 31                          |
| Total Depth=d in.                 | 18.000                      | 16.090                      | 8.375                        | 18.000                                         | 16.090                            |
| Concrete Slab                     |                             |                             |                              |                                                | 48,000                            |
| bc (in.)                          | 48.000                      | 48.000                      | 19,000                       | 48.000                                         | 48.000                            |
| tc (in.)                          | 6.000                       | 4,000                       | 2.375                        | 6.000                                          | 4.000                             |
| Ec (ksi)                          | 3.550x10 <sup>3</sup>       | 3.750x10 <sup>3</sup>       | $4.002 \times 10^{3}$        | 3.550x10 <sup>3</sup>                          | 4.527x10 <sup>3</sup>             |
| f'c (psi)                         | 3440.0                      | 4000.0                      | 6900.0                       | 3440.0                                         | 5577.0                            |
| Reinforcement                     |                             |                             |                              |                                                | 1.600                             |
| A <sub>sr</sub> (sq.in.)          | -                           | 1.571                       | 0,690                        | -                                              |                                   |
| d <sub>sr</sub> (in.)             | <b>-</b> '                  | 3.000                       | 1.750                        | -                                              | 2.000                             |
| f <sub>yr</sub> (ks1)             | -                           | 50.000                      | 46.600                       | -                                              | 59.300                            |
| E <sub>sr</sub> (ksi)             | -                           | 30.000×10 <sup>3</sup>      | 30.000×10 <sup>3</sup>       | -                                              | 30.000×10 <sup>3</sup>            |
| Steel Section                     |                             |                             |                              |                                                | 10,000                            |
| ds (in.)                          | 12.000                      | 12.090                      | 6.000                        | 12.000                                         | 12.090                            |
| A <sub>s</sub> (sq.in.)           | 13.000                      | 9.130                       | 3.530                        | 13,000                                         | 9.130                             |
| $b_{f}$ (in.)                     | 6.000                       | 6.530                       | 3.000                        | 6.000                                          | 6.530                             |
| $t_f$ (in.)                       | 0.717                       | 0.465                       | 0.377                        | 0.717                                          | 0.465                             |
| $t_w$ (in.)                       | 0,400                       | 0.265                       | 0.230                        | 0.400                                          | 0.265                             |
| (kei)                             | 34,832                      | -                           | -                            | 34.832                                         | 40.500                            |
| fyf (ksi)                         | 38.820                      | 44.000                      | 46.600                       | 38.820                                         | 46.500                            |
| f <sub>yw</sub> (ksi)<br>Es (ksi) | 31.140×10 <sup>3</sup>      | 30.000x10 <sup>3</sup>      | 30.016x10 <sup>3</sup>       | 31.140x10 <sup>3</sup>                         | 30.200×10 <sup>3</sup>            |
|                                   |                             |                             |                              |                                                |                                   |
| Shear Connector<br>Type           |                             |                             |                              |                                                |                                   |
| Headed Type                       |                             |                             | 0 (0)                        | 3/4"×4"                                        | 3/4"x3"                           |
| Size                              | 3/4"×4"                     | 3/4"x3"                     | 3/8"x2!                      |                                                | 19.250×10 <sup>4</sup>            |
| K (psi)                           | 150.000×10 <sup>4</sup>     | 150,000×10 <sup>4</sup>     | 30.440x10 <sup>4</sup>       | $14,400 \times 10^{2}$<br>18,200 \times 10^{2} | 21,290×10 <sup>2</sup>            |
| a (psi)                           | $18.200 \times 10^2$        | -                           | $25,360 \times 10^2$         |                                                | 90,418                            |
| b                                 | 79.160                      | -                           | 120.000                      | 79.000                                         | 28,716                            |
| Q <sub>u</sub> (kips)             | 28,000                      | 28.760                      | 7.280                        | 28.716                                         | 20,110                            |

# TABLE 5.1 PROPERTIES OF COMPOSITE BEAMS FOR TEST PROBLEMS

|                          | Hamada and<br>Longworth's<br>Beam | Chapman and<br>Balakrishnan's<br>Beam |  |
|--------------------------|-----------------------------------|---------------------------------------|--|
| Beam Designation         | W12 x 31                          | BSS12 x 6L                            |  |
| Shear Connectors         |                                   |                                       |  |
| Туре                     | Headed Stud<br>(Paired)           | Headed Stud<br>(Paired)               |  |
| Size                     | 3/4''x3''                         | 3/4''4''                              |  |
| na                       | 16                                | 16                                    |  |
| nb                       | 16                                |                                       |  |
| nc                       | 8                                 | _                                     |  |
| Q <sub>u</sub> (kips)    | 28.716                            | 28.000                                |  |
| C = .85f'bctc<br>(kips)  | 910.170                           | 842.112                               |  |
| $T = A_{sy} (kips)$      | 387.456                           | 469.670                               |  |
| na Q <sub>u</sub> (kips) | 459.456                           | 448.000                               |  |
| nb Q <sub>u</sub> (kips) | 459.456                           | -                                     |  |
| nc Q <sub>u</sub> (kips) | 229.728                           | -                                     |  |
| M <sub>Bu</sub> (ftkips) | 291.775                           | 393.000                               |  |
| M <sub>Du</sub> (ftkips) | 203.147                           | _                                     |  |
| P <sub>u</sub> (kips)    | 129.384                           | 83.463                                |  |
| P <sub>w</sub> (kips)    | 86.250                            | 55.650                                |  |

TABLE 5.2 TEST PROBLEM COMPUTED VALUES





COMPARISON OF CLASSICAL AND NUMERICAL VALUES FOR SLIP FIGURE 5.1







# FIGURE 5.4 PLUM AND HORNE'S TEST BEAM






TALLOUN UP AALAIN



FIGURE 5.9 YAM AND CHAPMAN'S TEST BEAM

(c)METHODS OF SHEAR CONNECTION DESIGN











COMPARISON OF DEFLECTION VALUES (HAMADA AND LONGWORTH AND NUMERICAL SOLUTION) FIGURE 5.13



#### CHAPTER VI

#### APPLICATIONS

#### 6.1 Introduction

In Chapter V the capabilities of the numerical solution developed in Chapter IV were compared with closed form solutions and published results. It was concluded that the program developed herein is adequate to reliably predict deflections of simply supported and continuous composite beams for a variety of loading conditions, and that the nonlinearities included in the program capture the essential aspects of behavior at service loads. It is necessary to attempt to draw some general conclusions with respect to the effect of shear connector flexibility and nonlinear behavior on service load deflections.

In this chapter an evaluation of the effect of various parameters on service load deflections is attempted. For simply supported beams which respond in the linear elastic range at service loads, nondimensional parameters are derived from the closed form solution. This permits a quantitative evaluation of increments in deflections relative to those which would occur in a beam with complete interaction. Assuming the same nondimensional parameters

- 99 -

control the behavior of continuous beams, the numerical technique developed herein is used for the evaluation of deflection in continuous beams. However, for nonlinear response no valid method of nondimensionalizing the results has been found. Therefore, it has only been possible to examine the effects of the parameters on particular example problems, with the inference that the same qualitative type of result occurs in other beams of similar type.

### 6.2 <u>Deflections of a Linear Elastic Simply Supported</u> Composite Beam Subjected to Uniform Load

The solution of the differential equation for a simply supported beam subjected to uniform load was determined in Sect. 3.4. Evaluating Equation 3.51 at x = L/2 yields the maximum deflection in the span as

Considering downward deflection as positive, and recognizing that the first term is the deflection of a beam with complete interaction, Equation 6.1 may be written as

$$\frac{\delta_{f}}{\delta_{0}} = 1 + \frac{384}{5} \frac{EA_{c}Y_{c}^{\beta}}{\alpha^{4}L^{4}} \left(1 - \frac{\alpha^{2}L^{2}}{8} - \frac{(1 - \cosh\alpha L)}{\sinh\alpha L}\right)$$

$$\sinh \frac{\alpha L}{2} - \cosh \frac{\alpha L}{2} \left(6.2\right)$$

in which  $\delta_{f}$  is the midspan deflection (excluding shear deformation) of the composite beam and  $\delta_{0}$  is the midspan deflection of the same beam (due to bending only) assuming full interaction.

Recalling the definitions of  $\alpha$  and  $\beta$  from Equations 3.21 and 3.22, Equation 6.2 may be written in terms of two nondimensional ratios as

$$\frac{\delta}{\delta_0} = 1 + \frac{384}{5\xi\eta^2} \left( 1 - \frac{\xi\eta}{8} - \cosh\frac{\sqrt{\xi\eta}}{2} - \frac{(1 - \cosh\sqrt{\xi\eta})}{\sinh\sqrt{\xi\eta}} \sinh\frac{\sqrt{\xi\eta}}{2} \right)$$
(6.3)

in which the following definitions apply.

$$\xi = - \frac{A_{t}Y_{s}Y_{c}}{I_{t} + A_{t}Y_{s}Y_{c}}$$
(6.4)

and

$$\eta = -\frac{KI_{t}L^{2}}{EA_{s}A_{c}Y_{s}Y_{c}}$$
(6.5)

Note that  $\xi$  and  $\eta$  are always positive. It can be seen that the ratio  $\xi$  is dependent only on the geometry of the cross-section, whereas the ratio  $\eta$  depends on the geometry of the cross-section, the span, the shear connector stiffness factor (K), and the elastic moduli of steel and concrete.

The right hand side of Equation 6.3 represents a factor by which  $\delta_0$  can be multiplied in order to determine the maximum delfection of a composite beams with any shear connector. It is universally applicable to the type of span considered and can form the basis for a simple design aid. To determine the range of the nondimensional parameters within which most composite beams would fall,  $\xi$  and  $\eta$ were computed for a number of typical sections. Bv arbitrarily varying these factors over this range, the plot of Fig. 6.1 was produced. This figure indicates that shear connector flexibility may have a considerable effect on composite beam deflection. With reduction in shear connector stiffnes, that is, with partial shear connection, the shear connector modulus K is reduced. Due to this reduction in Equation 6.5, n decreases and hence the deflection due to slip increases. (See Fig. 6.1.) Depending on the properties of the cross section, the geometry of the beam and the shear connector modulus, this deflection due to slip can be as high as 45% of the deflection due to flexure.

## 6.3 <u>Evaluation of Shear Deflection for a Simply</u> Supported Composite Beam Subjected to Uniform Load

The shear strain in a beam may be expressed as (23)  $Y = V'_{S(X)} = \frac{K_{Sh}V}{GA_{+}}$ (6.6)

in which  $v_{s}$  is the shear deflection and

$$K_{sh} = \frac{A_t}{I_t^2} = \int_A \frac{Q^2}{b^2} dA$$
 (6.7)

in a property of the cross-section. For a simply

supported beam, symmetrically loaded,

$$\delta_{s} = \int_{0}^{L/2} v'_{s(x)} dx = \frac{K_{sh}}{GA_{t}} \int_{0}^{L/2} V dx$$
 (6.8)

Shear deflection is therefore simple to evaluate provided  $K_{sh}$  is known.

Recognizing that the integral on the right hand side of Equation 6.8 is the moment at midspan, the ratio of shear deflection to  $\delta_0$  can be written for uniform

$$\frac{S}{S_0} = \frac{K_{\rm sh}}{GA_{\rm t}} \frac{wL^2}{8} \frac{384EI_{\rm t}}{5wL^4}$$
(6.9a)

or

load as

$$\frac{\delta_{S}}{\delta_{0}} = \frac{48}{5} \frac{\mathrm{EK_{sh}^{I} t}}{\mathrm{GA_{t} L}^{2}}$$
(6.9b)

Unfortunately this ratio cannot be expressed directly in terms of  $\xi$  and  $\eta$  and, therefore, it is probably best to compute  $\frac{\delta_s}{\delta_0}$  separately and add it to  $\frac{\delta_f}{\delta_0}$  if shear deflections are to be combined with flexural deflections.

However, since the evaluation of  $K_{sh}$  by Equation 6.7 is not simple, its value has been computed for a number of cross-sections and is plotted against the width of the concrete slab in Fig. 6.2.  $K_{sh}$  for various wide flange steel sections with different concrete slab widths and for thickness t = 6" and 4" are tabulated in Table 6.1. It is observed that  $K_{sh}$  values for the beams lie between 3.317 and 10.229.  $K_{sh}$  for the beams not included in the table may be derived from the upper and

lower bound values of the beam of the same designated rolled section using the linear variation in depth. Using these shear form factors, shear deflection for simply supported beams can be computed with ease for practical design purposes.

The magnitude of shear deflection for a specific simply supported uniformly loaded beam has been shown in Fig. 5.3 which indicates that it is not negligible.

# 6.4 <u>Influence of Type of Loading, Shear Connection and</u> <u>Load-Slip Characteristics of the Shear Connectors</u> and Shear Deformation on Deflections

### 6.4.1 <u>Simply Supported Beam Subjected to Uniformly</u> Distributed Load and a Concentrated Load

Beam U-6 tested by Chapman and Balakrishnan (5) was modeled with the same parameters, and the loaddeflection curve up to 80 kips (service load) was obtained using the numerical technique discussed in Chapter IV. Fig. 6.3 shows the comparison of deflections for full shear connection and partial shear connection (50% of full shear connection) considering

(a) the linear and nonlinear load-slip characteristics for the shear connector

(b) the effect of shear deformations.

It can be seen that each effect, namely slip, nonlinear load-slip characteristics and the effect of shear deformation progressively increase deflection and slip and that deflection and slip for beams with partial shear connection are somewhat larger than for those with full shear con-The total deflection of the composite beam nection. considering the effects of nonlinear load-slip characteristics, shear and partial shear connection is approximately twice that of the bending deflection of the beam neglecting the above effects. A similar trend is observed in the case of beams subjected to concentrated load and the deflections are significantly greater than those for uniform load. The percentage increase in deflection as well as end slip from full shear connection to partial shear connection is given in Table 6.2 and Table 6.3 respectively. Refering to Table 6.2, it can be seen that the maximum percentage increase in deflection is found when both nonlinear loadslip characteristics for the connectors as well as shear deformations are included. The properties of the beams are given in Columns 1 and 2 of Table 6.5.

Fig. 6.4 shows the comparison of load deflection, load-slip curves for full and partial shear connection considering a) linear and nonlinear load-slip characteristics of the shear connectors and b) the effect of shear deformation for simply supported beam subjected to uniformly distributed load. Similar load deflection and load slip curves are

drawn in Fig. 6.5 and 6.6, when the beam is subjected to concentrated load. From the above figures, it can be observed that the deflections and slip of the beam are increased due to nonlinear load-slip characteristic of the shear connectors and the shear deformations. The effect of partial shear connection on deflection and slip is larger than that of full shear connection.

### 6.5 <u>Deflection of a Continuous Beam Subjected to</u> <u>Uniform Load</u>

Since a closed form solution for the deflection of a continuous beam considering nonlinear load-slip characteristics of shear connector is not available, it is not possible to derive an expression of the form of Equation 6.3 to determine the effect of flexible shear connectors on continuous beam deflections. However, it is reasonable to assume that the same nondimensional factors which control the deflection of simply supported beams also control the deflection of continuous beams. A universally applicable plot similar to that of Fig. 6.1 can then be constructed from the results of numerical solutions.

Fig. 6.7 is such a plot for a continuous beam with two equal spans subjected to uniform load. Two sets of results are shown, namely, those with zero stiffness of the concrete in the negative moment region (variable I), and those with constant moment of inertia.

Fig. 6.8 is identical to Fig. 6.7 except that it includes the effect of shear deformation. Recalling the discussion from Sect. 6.3, it was pointed out that shear deflection is not directly a function of  $\xi$  and  $\eta$ . Nevertheless, the smooth variation of the curves indicates that, in the absence of better information, Fig. 6.8 could give a reasonable indication of the deflection of continuous beams including the shear effect. For a more accurate computation, shear deflections can be superimposed on the results from Fig. 6.7, as indicated in Sect. 6.3.

A comparison between Fig. 6.8 and 6.7 indicates the very significant increase in deflection due to the effect of shear deformations in continuous beams. This fact has previously been pointed out by Hamada and Longworth (9). Since the shear deflection of a continuous beam subjected to a concentrated load is approximately the same as that of a simple beam, the increase in deflection ratio results primarily from the fact that the flexural deflection in a continuous beam is approximately onequarter of that for a simple beam and, hence, the shear deflection is a higher fraction of the flexural deflection.

### 6.6 <u>Deflection of a Two-Span Continuous Beam</u> Subjected to Concentrated Load

The properties of the beam are given in Column 3 of Table 6.5. Figs. 6.9 and 6.10 show the comparison of load-deflection and load-slip curves for full and partial shear connection considering a) linear and nonlinear load-slip characteristics for the shear connector and b) the effect of shear deformations. The figures are based on constant moment of inertia. Similar curves are drawn in Figs. 6.11 and 6.12 for a beam with variable moment of inertia. In continuous beams it may also be observed that each effect, namely slip, nonlinear loadslip behavior of the shear connectors and the effect of shear deformation increases deflection and slip. Partial shear connection causes larger deflection than that obtained for full shear connection. The deflection comparison of continuous beams at service load for partial and full shear connection is given in Table 6.4.

## 6.7 <u>Influence of Negative Moment Cracking in</u> <u>Continuous Beams</u>

While the figures in Sect. 6.5 give the influence of negative moment cracking on deflections, they give no insight into the effect of this cracking on the distribution of slip and slip-strain along the length of the beam.

The effect of cracking on these distributions is examined for a typical beam in this Section.

The example beam has the properties listed in Column 4 of Table 6.5. The distribution of deflection, slip, slip-strain and force in the slab are shown in Figs. 6.13 to 6.16, respectively, for the beam with and without cracking. It can be seen that the effect of cracking is to increase the deflections (Fig. 6.13), increase slip in the positive moment region (Fig. 6.14), introduce discontinuities in the slip-strain relationship (Fig. 6.15), and increase the slab force in the positive moment region (Fig. 6.16).

#### 6.8 <u>Analyses of a Three-Span Beam for Shored and</u> Unshored Construction

The example problem is a beam with three equal spans subjected to uniform load with properties listed in Column 5 of Tablt 6.5. The live load to dead load ratio is 2.25. In the analysis of unshored construction all the dead load is assumed to be carried by the steel beam and the live load by the composite action. Full shear connection and linear load-slip behavior is assumed. Deflection, slip, slip strain and force distribution are shown in Fig. 6.17 to 6.20. The effect of unshored construction is to increase the deflection, decrease slip in both positive and negative moment regions and decrease slip strain as well as introduce discontinuities in the slipstrain relationship and decrease the slab force in both positive and negative moment regions.

#### 6.9 Conclusions

In this Chapter an evaluation of the effect of various parameters such as

- (a) partial and full shear connection
- (b) linear and nonlinear load slip behavior
- (c) shear deformation
- (d) constant and variable moment of inertia, and
- (e) shored and unshored construction

on service load deflections have been studied. The computer program reliably predicts deflection and slip for simply supported and continuous beams under service loads. The shear form factors for various sections with different widths and thicknesses of concrete slab are tabulated for practical design. Shear, slip and partial shear connection significantly affect deflection values and should therefore be considered for an accurate evaluation of deflection. FOR COMPOSITE BEAMS SHEAR FORM FACTORS (K<sub>Sh</sub>) 6.1 TABLE

877 7.178 5.2094.665 5.0626.978 6.658 4.670 6.475 6.765 6.598 6.860 7.171 96.00 5.909 6.691 6.581 . م .0.9 4.433 815 6.4196.8314.509 6.816 6.175 6.668 6.316 5.0545.590 6.040 6.575 6.104 6.277 84.00 5.4624 II (in. ц С 4.773 4.198 6.4605.7854.552 6.338 4.342 5.8546.047 72.00 5.507 5.473 5.9526.4385.951 5.0146.161 II Slab width bc Slab Thickness 5.6405.550 3.970 6.060 4.434 4.956 4.182 5.376 6.029 5.509 5.983 4.269 60.00 5.4674.564 4.897 4.901 3.753 5.6234.0144.599 3.962 48.00 4.716 4.312 4.756 4.716 5.042 5.2065.599 5.120 4.097 4.287 5.5814.204625 5.139 3.805 4.298 3.770 3.667 3.723 4.030 4.043 4.713 3.557 4.785 4.8544.640 36.00 3.671 ŝ 7.806 8.294 8.239 4.712 9.122 5.688 6.353 7.081 5.736 8.315 7.283 8.161 5.793 6.584 96.00 6.577 5.184ō 6.099 .7347.735 7.809 7.421 84.00 5.325 6.006 6.025 7.553 6.654 7.604 4.507 8.671 5.355 4.835 5.2544 11 ဖ Slab Width bc (in. tc 7.010 5.645365 7.349 8.188 6.780 6.018 7.277 6.904 4.307 5.024 72.00 4.488 4.771 4.855 5.4245.46811 . 0 Slab Thickness 6.565 5.185 6.194 6.850 4.384 4.839 5.996 5.3744.114 7.666 4.697 5.966 4.286 4.909 60.00 6.781 4.141 4.379 6.079 6.300 3.933 7.092 4.721 3.913 4.723 5.875 5.475 5.531 4.250 4.346 5.202 48.00 3.798 3.801 4.7524.263 4.079 5.535 048 6.029 4.398 4.070 5.3883.460 3.317 3.445 3.661 3.784 4.863 3.771 36.00 ທີ 73 55 40 26 53 22 27 21 67 17 68 60 50 W12x190 W10x112 W24x120 Section Beam **Steel** W14x W10x W12x W 8x W24x W21x W18x W18x W16x W16x W14x 8X W21x 3

DEFLECTION COMPARISON OF SIMPLY SUPPORTED COMPOSITE BEAM AT SERVICE LOAD TABLE 6.2

|                                                                                                        | Unifo                                | rmly Dist<br>= 80 k               | formly Distributed Load<br>= 80 kips | oad                               | Ū                                    | Concentrated Load<br>= 55 kips    | ted Load<br>ips                      |                                   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
|                                                                                                        | Load                                 | -Slip Cha                         | ad-Slip Characteristics              | cics                              | Load                                 | -Slip Cha                         | Load-Slip Characteristics            | ics                               |
|                                                                                                        | Linear                               | ar                                | Nonl                                 | Nonlinear                         | Linear                               | ear                               | Nonlinear                            | near                              |
|                                                                                                        | Without<br>Shear<br>Defor-<br>mation | With<br>Shear<br>Defor-<br>mation | Without<br>Shear<br>Defor-<br>mation | With<br>Shear<br>Defor-<br>mation | Without<br>Shear<br>Defor-<br>mation | With<br>Shear<br>Defor-<br>mation | Without<br>Shear<br>Defor-<br>mation | With<br>Shear<br>Defor-<br>mation |
| Percentage Increase<br>in Deflection From<br>Full Shear Connec-<br>tion to Partial<br>Shear Connection | 15.13%                               | 20.00%                            | 19.62%                               | 22.67%                            | 15.90%                               | 18.30%                            | 20.78%                               | 21/83%                            |
|                                                                                                        |                                      |                                   |                                      |                                   |                                      |                                   |                                      |                                   |

SLIP COMPARISON OF SIMPLY SUPPORTED COMPOSITE BEAMS AT SERVICE LOAD TABLE 6.3

| Load-Slip Behavior<br>and Degrees of Shear<br>Connection              | Uniformly Distributed Load<br>= 80 kips | Concentrated Load<br>= 55 kips |
|-----------------------------------------------------------------------|-----------------------------------------|--------------------------------|
| Linear vs. Nonlinear<br>at Full Shear<br>Connection                   | 26.00%                                  | 27.27%                         |
| Linear vs. Nonlinear<br>at Partial Shear<br>Connection                | 44.45%                                  | 52.42%                         |
| Full Shear Connection<br>vs. Partial Shear<br>Connection at Linear    | 75.60%                                  | 84.62%                         |
| Full Shear Connection<br>vs. partial Shear<br>Connection at Nonlinear | 100.00%                                 | 121.10%                        |

DEFLECTION COMPARISON OF CONTINUOUS COMPOSITE BEAM AT SERVICE LOAD TABLE 6.4

|                                                                 |         |           | Concentrated Load = 80 kips | ated Loa  | td = 80 k                   | ips     |                             |           |
|-----------------------------------------------------------------|---------|-----------|-----------------------------|-----------|-----------------------------|---------|-----------------------------|-----------|
| •                                                               | Uni     | form Mome | Uniform Moment of Inertia   | ertia     | Variab                      | le Mome | Variable Moment of Inertia  | ertia     |
|                                                                 | Load    | -Slip Cha | Load-Slip Characteristics   | tics      | Load-                       | Slip Ch | Load-Slip Characteristics   | stics     |
|                                                                 | Linear  | ar        | Nonl                        | Nonlinear | Linear                      | r       | Non                         | Nonlinear |
|                                                                 | Without | With      | Without                     | With      | With Without<br>Shoor Shoor | With    | With Without<br>Shoor Shoor | With      |
|                                                                 | Defor-  | Defor-    | Defor-                      | Defor-    | - Defor-                    | Defor-  | - Defor-                    | Defor-    |
|                                                                 | mation  | mation    | mation                      | mation    | mation mation               | mation  | mation mation               | mation    |
| Percentage Increase<br>in Deflection From<br>Full Shear Connec- | 68.07%  | 64.20%    | 58.03%                      | 52.009    | 52.00% 68.33%               | 65.95%  | 65.95% 60.78%               | 56.36%    |
| tion to Partial<br>Shear Connection                             |         |           |                             |           |                             |         |                             |           |

PROPERTIES OF COMPOSITE BEAMS USED FOR APPLICATION TABLE 6.5

|                                                                       | , ·              | 1                 |                                                                        |                                                                    |                                  |                                                            |                                                                                                        |
|-----------------------------------------------------------------------|------------------|-------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Beam for Com-<br>parison of<br>Shored and<br>Unshored<br>Construction | W12 x 31         | 16.090            | 48.000<br>4.000<br>3.830×103<br>4000.0                                 | 1.960<br>2.500                                                     | 50.000<br>30.100x10              | 44.000<br>30.000x10 <sup>3</sup><br>12.660x10 <sup>3</sup> | 3/4"x4"<br>20.000x10 <sup>4</sup><br>20.000x10 <sup>2</sup><br>100.000<br>28.000                       |
| Beam for Com-<br>parison of<br>Constant and<br>Variable 'I'           | W12 X 31         | 18,090            | 60.000<br>6.000<br>3.830x10<br>4000.0                                  | 1.960<br>3.000                                                     | 50.000<br>30.000x10 <sup>3</sup> | 44.000<br>30.000×10 <sup>3</sup><br>12.660×10 <sup>3</sup> | 3/4"x4"<br>20.000x10 <sup>4</sup><br>20.000x10 <sup>2</sup><br>100.000<br>28.000                       |
| 2 Equal Span<br>Cont. Beam<br>with Conc.<br>Load at<br>Center Span    | W12 x 31         | 16.090            | $\begin{array}{c} 48.000\\ 4.000\\ 4.100\times10\\ 4500.0 \end{array}$ | 1.570<br>2.000                                                     | 50.000<br>30.000×10 <sup>3</sup> | 44.000<br>30.000x10 <sup>3</sup><br>12.660x10 <sup>3</sup> | 3/4"x4"<br>20.200x10 <sup>4</sup><br>20.200x10 <sup>2</sup><br>100.000<br>28.000                       |
| Simply Sup-<br>ported Beaun<br>with Conc.<br>Load at Center<br>Span   | BSS12 x 6L       | 18.000            | 48.000<br>6.000<br>3.600x10 <sup>3</sup><br>3500.0                     | 1 1                                                                | <b>F I</b>                       | 36.400<br>30.200×10 <sup>3</sup><br>11.880×10 <sup>3</sup> | 3/4"x4"<br>15.500x10 <sup>4</sup><br>19.620x10 <sup>2</sup><br>79.000<br>28.000                        |
| Simply<br>Supported<br>Beam with<br>U.D.L.                            | BSS12 x 6L       | 18.000            | 48.000<br>6.000<br>3.500x10<br>3500.0                                  | 1                                                                  | I I.                             | 36.400<br>30.200x10 <sup>3</sup><br>11.880x10 <sup>3</sup> | 3/4"x4"<br>15.500x10 <sup>4</sup><br>19.620x10 <sup>2</sup><br>79.000<br>28.000                        |
|                                                                       | Beam Designation | Total Depth=d in. | Concrete Slab<br>bc (in.)<br>te (in.)<br>Ec (ksi)<br>f'c (psi)         | Reinforcement<br>A <sub>Sr</sub> (sq.in.)<br>d <sub>sr</sub> (in.) | Fyr (ksi)<br>Esr (ksi)           | Steel Section<br>fy (ksi)<br>Es (ksi)<br>G (ksi)           | Shear Connector Type<br>Paired Headed Stud<br>Size<br>K (psi)<br>a (psi)<br>b<br>Q <sub>u</sub> (kips) |







FULL AND PARTIAL SHEAR CONNECTION, UNIFORMLY DISTRIBUTED LOAD)













CONSTANT 'I', FULL AND PARTIAL SHEAR CONNECTION)

LOAD DEFLECTION RELATIONSHIP (CONTINUOUS BEAM, 0 0 FIGURE








COMPARISON OF DEFLECTION VALUES (CONSTANT AND VARIABLE 'I')









DEFLECTION IN INCHES

132



SLIP IN INCHES





#### CHAPTER VII

### SUMMARY AND CONCLUSIONS

#### 7.1 Summary

This study has examined the formulation of governing equations for composite beams. Solutions of these equations have emphasized the effects of such factors as partial and full shear connection, shear deformation and linear or nonlinear load-slip characteristics of the shear connectors.

- 1. Classical solution techniques were examined in order to provide a standard comparison against which numerical solutions can be measured.
- 2. Programs were written for the evaluation of classical solutions for a simply supported beam and a continuous beam of two unequal spans, subjected to concentrated loads.
- 3. Results obtained from numerical technique developed herein were compared with published numerical results of Yam and Chapman (31), test results of Chapman and Balakrishnan (5) and Hamada and Longworth (9).

- 4. The solution for the deflection of a simply supported composite beam with uniform load was recast in terms of two dimensionless parameters,  $\xi$  and  $\eta$ . This permitted a plot to be developed to determine the effect of slip which is applicable to sections of any simply supported composite beam.
- 5. Shear form factors were computed for various rolled steel shapes with different concrete slab widths and thicknesses. These factors can be used to compute shear deflection.
- 6. The effects of parameters such as partial and full shear connection, shear deformation, linear and nonlinear load-slip characteristics on deflection and slip for a simply supported beam have been examined for two loading cases, viz. uniformly distributed load and concentrated load.
- 7. A numerical solution technique which permits the solution for slip and deflection of continuous beams under arbitrary loading was developed and programmed This program is capable of treating the effects of slab cracking in negative moment regions and nonlinearities in the shear connector load-slip relationship. The numerical solution technique was checked against closed form solutions and other

numerical solutions and results were compared with selected experimental results. The program was used to prepare a simple design chart to determine deflections of two-span uniformly loaded continuous beams.

- 8. The solution for deflection due to shear and slip of a two span continuous composite beam with uniform load was recast in terms of the same two dimensionless parameters  $\xi$  and  $\eta$ . Plots were developed for beams with uniform and variable moment of inertia.
- 9. The effects of various design parameters on deflections were examined for particular example problems.
- 10. The effect of shored and unshored construction on the behavior of three span continuous beams was examined.

#### 7.2 Conclusions

On the basis of this investigation, the following conclusions are drawn:

1. There is good agreement between the results of the numerical solution and the classical solution for deflection and slip for simply supported and continuous composite beams. However, there is a significant difference in the slip strain at the concentrated load locations in the case of continuous beams.

- 2. The results for deflection and maximum slip using the technique developed herein are in good agreement with Yam and Chapman's results, except for the distribution of slip along the length of the beam, which may be due to the error in the assumed data.
- The results of the numerical solution are in good З. agreement with the test results of Chapman and Balakrishnan in the study of linear load-slip However, the numerical solution results behavior. in higher deflection values than test results for nonlinear load-slip behavior. On the basis of the end slip characteristics, the load-slip behavior is linear. The results obtained with the conditions of full shear connection and non-linear load slip behavior underestimates the deflection, whereas the condition of partial shear connection overestimates the deflections obtained by Hamada and Longworth (9) at maximum service load, even though Hamada and Longworth's beam was designed for full shear connection. The discrepancy in the deflection may be due to the assumed connector stiffness.
- 4. Deflection due to slip, in the case of simply supported beams subjected to uniformly distributed load, may be as high as 45% of the bending deflection, depending on the stiffness of the connector and geometry of the beam. Deflections due to shear and

slip can be computed for practical design purposes using the table of shear form factors as well as the plot developed in terms of dimensionless parameters  $\xi$  and  $\eta$ . Partial shear connection increases the slip and reduces the effective stiffness of the beam, thus increasing the deflection. Therefore the effect of shear, slip, and partial shear connection on deflections should not be neglected in design.

- 5. Using the plot in Fig. 6.8, the total deflection due to shear and slip can be computed for a two span continuous beam with uniform load. Total deflection can be as high as three times the bending deflection, depending on stiffness of shear connector and beam geometry. The effects of the various parameters on deflection and slip of continuous beams are similar to those for simply supported beams. However, increases in deflection and slip tend to be much higher.
- 6. Concrete cracking in negative moment regions produces increased deflection and slip in positive moment regions. The increase in deflection may be as high as 15% of the deflection of composite beams with uniform moment of inertia. Cracking also creates discontinuities in the slip-strain relationship.

7. Unshored construction results in increase in deflection, decrease in slip in both positive and negative moment regions, decrease in slip strain as well as in introducing discontinuities in the slip-strain relationship and decrease of slab force in both positive and negative moment region.

### BIBLIOGRAPHY

- (1) British Standard Institution, "CP117: Part 1: British Standard Code of Practice, Composite Construction in Structural Steel and Concrete Part 1: Simply Supported Beams in Buildings", London, 1965.
- (2) Canadian Standard Association, "CSA Standard S16-1969 Steel Structures for Buildings:, Ontario, Canada, 1969.
- (3) Canadian Standard Association, "CSA Standard S16.1 1974 Steel Structures for Buildings - Limit State Design:, Ontario, Canada, 1974.
- (4) Chapman, J. C., "Composite Construction in Steel and Concrete - The Behaviour of Composite Beams", The Structural Engineer, Vol. 42, No. 4, April, 1964.
- (5) Chapman, J. C., and Balakrishnan, S., "Experiment on Composite Beams:, The Structural Engineer, Vol. 42, No. 11, November, 1964.
- (6) Davison, J. H., "Ultimate Strength in Negative Bending", Masters Thesis, Department of Civil Engineering, University of Alberta, Edmonton, February, 1970.
- (7) Gerald, C. F., "Applied Numerical Analysis", Addison Wesley Publishing Company, 1978.
- (8) Ghali, A., and Neville, A. M., "Structural Analysis
   A Unified Classical and Matrix Approach", Second Edition, Chapman and Hall, London, 1978.
- (9) Hamada, S., and Longworth, J., "Ultimate Strength of Continuous Composite Beams", Structural Engineering Report No. 45, Department of Civil Engineering, University of Alberta, Edmonton, August, 1973.
- (10) Hawkins, N. M., "Strength of Shear Connectors", Proceedings of Institution of Civil Engineers, Vol. 15, No. 1-2, August, 1973.

- (11) Johnson, R. P., and May, I.M., "Partial Interaction Design of Composite Beams", The Structural Engineer, Vol. 53, No. 8, August, 1975.
- (12) Johnson, R. P., Van Dalen, K., and Kemp, A. R., "Ultimate Strength of Continuous Composite Beams", Technical Report No. 3/7, Cambridge University Engineering Department, May, 1966.
- (13) Ketter, R. L., and Prawel, S. P., "Modern Methods of Engineering Computation", McGraw-Hill Book Company, Inc., New York, 1969.
- (14) Lever, G. V., "Ultimate Strength of Composite Beams in Negative Bending", Masters Thesis, Department of Civil Engineering, University of Alberta, Edmonton, February, 1970.
- (15) Mainstone, R. J., and Menzies, J. B., "Shear Connectors in Composite Beams for Bridges", Concrete, September, 1967.
- (16) Mallick, S. K., and Chattopadhyay, S. K., "Behavior of Continuous Steel - Concrete Composite Beams". Indian Concrete Journal, Vol. 49, No. 6, June, 1975.
- (17) Newmark, N. M., Siess, C.P., and Viest, I.M., "Test and Analysis of Composite Beams with Incomplete Interaction," Proceedings of Society of Experimental Stress Analysis, Vol. 9, No. 1, 1951.
- (18) Park, R., and Pauley, T., "Reinforced Concrete Structures", John Wiley & Sons, Toronto, 1975.
- (19) Plum, D. R., and Horne, M. R., "The Analysis of Continuous Composite Beams with Partial Interaction", Proceedings of the Institution of Civil Engineers, London, Vol. 59, Part 2, December 1975.
- (20) Piepgrass, E. G., "Behaviour of Composite Beams in Negative Bending", Masters Thesis, Department of Civil Engineering, University of Alberta, June, 1968.
- (21) Siess, C. P., "Composite Construction for I Beam Bridges", Transaction of American Society of Civil Engineers, Vol. 114, 1949.

- (22) Slutter, R. G., and Driscoll, G. J. Jr., "Flexural Strength of Steel Concrete Composite Beams", Journal of the Structural Division, ASCE, Vol. 81, ST2, April, 1965.
- (23) Timoshenko, S., and Gere, J. M. "Mechanics of Materials", Van Nostarand Reinhold, Toronto, 1972.
- (24) Van Dalen, K., "Composite Action at the Support of Continuous Beams", Ph. D. Thesis, University of Cambridge, June, 1967.
- Viest, I. M., "Review of Research on Composite Steel - Concrete Beams", Proceedings of American Society of Civil Engineers, Structural Division, Vol. 86, ST6, June, 1960.
- (26) Viest, I. M., "Investigation of Stud Shear Connectors for Composite Concrete and Steel Beams", Proceedings of American Concrete Institute, Vol. 52, 1956.
- (27) Viest, I.M., Fountain, R. S., and Singleton, R. C., "Composite Construction in Steel and Concrete for Bridges and Buildings", McGraw-Hill Book Company, Inc., Toronto, 1958
- (28) Wang, Chu-Kia, and Salmon, C. G., "Reinforced Concrete Design", 2nd Edition, Intex Educational Publisher, New York, 1973.
- (29) Wastlund, G. and Ostlund, L., "Studies of Composite Beams", International Association for Bridge and Structural Engineering, 1950.
- (30) Yam, L.C.P., and Chapman, J. C., 'The Inelastic Behavior of Simply Supported Composite Beams of Steel and Concrete'', Proceedings of Institution of Civil Engineers, London, Vol. 42, December, 1968.
- (31) Yam, L.C.P. and Chapman, J. C., "The Inelastic Behavior of Continuous Composite Beams of Steel and Concrete", Proceedings of Institution of Civil Engineers, London, Vol. 53, December, 1972.

# APPENDIX A

#### CLOSED FORM SOLUTION (TWO-SPAN CONTINUOUS BEAM)

### A.1 Classical Solution

Figure A1 illustrates a continuous beam with two unequal spans and with equal concentrated loads at the center of each span. The deflection equation may be expressed as

$$\frac{d^{4}u}{dx^{4}} - k \frac{d^{2}u}{dx^{2}} = - \frac{w}{\Sigma E I} - \frac{M}{\overline{EA}\Sigma E I}$$
(A1)

where u = deflection  $k = \frac{(\Sigma EI + \overline{EAz}^2)}{\overline{EA}\Sigma EI}$ 

 $\mu$  = K = shear connector modulus

M = bending moment

w = uniform load

W = concentrated load

$$\frac{\Sigma EI}{EA} = \frac{E_1 I_1 + E_2 I_2}{\frac{1}{EA}} = \frac{\frac{E_1 A_1 + E_1 A_1}{E_1 A_1 E_2 A_2}}{\frac{E_1 A_1 E_2 A_2}{E_1 A_1 E_2 A_2}}$$

where  $E_1$  and  $E_2$  are moduli of elasticity of concrete and steel, respectively;  $A_1$  and  $A_2$  are areas of concrete slab and steel section, respectively; and  $I_1$  and  $I_2$  are moments of inertia of concrete slab and steel section, respectively.

The geometry of the beam is as shown in Fig. A1. The equations for moment for the four segments of the beam are as follows:

$$M_{1}(X) = \left(\frac{W}{2} - \frac{Mo}{L_{1}}\right) \times \qquad o < x < \frac{L_{1}}{2} \qquad (A2)$$

$$M_{2}(x) = \frac{WL_{1}}{2} - \left(\frac{W}{2} + \frac{Mo}{L_{1}}\right)x \qquad \frac{L_{1}}{2} < x < L_{1}$$
(A3)  
$$M_{3}(y) = \frac{WL_{2}}{2} - \left(\frac{W}{2} - \frac{Mo}{L_{2}}\right)y \qquad o < y < \frac{L_{2}}{2}$$
(A4)  
$$M_{4}(y) = \frac{WL_{2}}{2} - \left(\frac{W}{2} + \frac{Mo}{L_{2}}\right)y \qquad \frac{L_{2}}{2} < y < L_{2}$$
(A5)

where Mo is the redundant moment at the interior support.



FIGURE A1. TWO-SPAN CONTINUOUS COMPOSITE BEAM

Equation A1 may be solved in each of the four segments of the beam as follows:

$$\underline{\text{SEGMENT 1}} \qquad \text{o} < x < \frac{L_1}{2}$$

Homogeneous Solution:

$$u_{h} = C_{2} + C_{2}x + C_{3} \sinh \sqrt{kx} + C_{4} \cosh \sqrt{kx}$$
 (A6)

Particular Solution:

$$u_{p} = \frac{x^{3}}{6\overline{EI}} \frac{W}{2} - \frac{MO}{L_{1}}$$
(A7)

Complete Solution:

$$u(x) = C_{1} + C_{2}x + C_{3} \sinh \sqrt{kx} + C_{4} \cosh \sqrt{kx} + \frac{x^{3}}{6EI} \frac{W}{2} - \frac{MO}{L_{1}}$$
(A8)

SEGMENT 2

 $\frac{L_1}{2} < x < L_1$ 

Homogeneous Solution:

$$u_h = C_5 + C_6 x + C_7 \sinh \sqrt{kx} + C_8 \cosh \sqrt{kx}$$
 (A9)

Particular Solution:

$$u_{p} = \frac{WL_{1}x^{2}}{4\overline{E}\overline{I}} - \frac{x^{3}}{6\overline{E}\overline{I}}\left(\frac{W}{2} - \frac{MO}{L_{1}}\right)$$
(A10)

Complete Solution:

$$u(x) = C_5 + C_6 x + C_7 \sinh \sqrt{kx} + C_8 \cosh \sqrt{kx} + \frac{WL_1 x^2}{4\overline{EI}} - \frac{x^3}{6\overline{EI}} \left(\frac{W}{2} + \frac{MO}{L_1}\right)$$
(A11)

Similarly by symmetry:

$$\underline{\text{SEGMENT 3}} \qquad \text{o} < y < \frac{L_2}{2}$$

$$u(y) = C_{9} + C_{10}y + C_{11} \sinh \sqrt{ky} + C_{12} \cosh \sqrt{ky} + \frac{y^{3}}{6\overline{k_{1}}} \left( \frac{W}{2} - \frac{M_{0}}{L_{2}} \right)$$
(A12)

#### SEGMENT 4

$$u(y) = C_{13} + C_{14}y + C_{15} \sinh \sqrt{ky} + C_{16} \cosh \sqrt{ky} + \frac{WL_2 y^2}{4\overline{EI}} - \frac{y^3}{6\overline{EI}} \left(\frac{W}{2} + \frac{MO}{L_2}\right)$$
(A13)

where  $C_i$  i = 1, 2, ...., 16 are constants of integration for a particular beam, loading condition and geometry.

For any segment of the beam, the equations for force, slip, and slip strain are given by:

Force: 
$$p = \frac{\Sigma EI}{Z} \frac{d^2 u}{dx^2} - \frac{M}{Z}$$
 (A14)

Slip: 
$$s = \frac{1}{\mu} \frac{dP}{dx}$$
 (A15)

Slip strain: 
$$s' = \frac{ds}{dx}$$
 (A16)

The slope at any point is defined as

$$\theta = \frac{\mathrm{d}u}{\mathrm{d}x} \tag{A17}$$

In order to solve for the 17 unknowns (16 constants of integration and 1 redundant moment), it is necessary to utilize 17 boundary conditions: six related to deflection, five related to force, three related to slip and three related to rotation. These boundary conditions are illustrated in Figure A2. A 17 x 17 matrix was formulated using the above conditions applied to the equations for deflection, force, slip, and rotation. The matrix was coded in Fortran and solved using the subroutine LINV3F in the subroutine library IMSL.

After the constants of integration and redundant moment were solved, values for moment, deflection, force, slip, and slip strain were computed at 3-inch intervals along the length of the beam.

|        | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | W                 |                   |                              |                | W               |                   | ,        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------------------|------------------------------|----------------|-----------------|-------------------|----------|
|        | ана<br>1990 - Сана<br>1990 - Сана<br>1 |                | В                 |                   | C                            |                | D               |                   | E        |
| 4      | ETT SEGM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENT 4          | SEGM              | IENT 3            | SEGM                         | IENT 2         | SEGM            | IENT 1            | n<br>Inn |
|        | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | L <sub>2</sub> /2 |                   | L <sub>1</sub> /2            |                | xL_1/2          |                   |          |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L.2            | 2                 |                   |                              | L              | 1               |                   |          |
| BOUNDA | Y CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DITIC          | ONS               |                   | · .                          |                |                 |                   |          |
| DEF    | u <sub>4</sub> =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>u</sup> 4 | <sup>=u</sup> 3   | u <sub>3</sub> =0 | <sup>u</sup> 2 <sup>=0</sup> | <sup>u</sup> 2 | <sup>=u</sup> 1 | u <sub>1</sub> =0 |          |
| FORCE  | P <sub>4</sub> =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4             | =P <sub>3</sub>   | P <sub>3</sub>    | =p <sub>2</sub>              | <sup>P</sup> 2 | =P <sub>1</sub> | P <sub>1</sub> =0 | -        |
| SLIP   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>s</sup> 4 | =s <sub>3</sub>   | s <sub>3</sub>    | =s <sub>2</sub>              | $s_2$          | <sup>=s</sup> 1 |                   | -        |
| SLOPE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\theta_4$     | =θ <sub>3</sub>   | θ <b>3</b>        | =- <sup>θ</sup> 2            | <sup>θ</sup> 2 | <sup>=θ</sup> 1 |                   |          |

# FIGURE A2. BOUNDARY CONDITIONS FOR CONTINUOUS COMPOSITE BEAM

#### A.2 Summary of Equations

## Deflection

In segment 1  $u_1 = C_1 + C_2 x + C_3 \sinh \sqrt{kx} + C_4 \cosh \sqrt{kx} + \frac{x^3}{6\overline{E1}} \left(\frac{W}{2} - \frac{MO}{L_1}\right)$  $u_{2} = C_{5} + C_{6}x + C^{7} \sinh \sqrt{kx} + C_{8} \cosh \sqrt{kx} + \frac{WL_{1}x^{2}}{4\overline{EI}}$ (A18) In segment 2

$$-\frac{x^{3}}{6\overline{EI}}\left(\frac{W}{2} + \frac{MO}{L_{1}}\right)$$
(A19)

In segment 3

$$u_{3} = C_{9} + C_{10}y + C_{11}\sinh\sqrt{ky} + C_{16}\cosh\sqrt{ky} + \frac{y^{3}}{6\overline{EI}}\left(\frac{W}{2} - \frac{Mo}{L_{2}}\right)$$
(A20)

In segment 4

$$u_{4} = C_{13} + C_{14}y + C_{15} \sinh \sqrt{ky} + C_{16} \cosh \sqrt{ky} + \frac{WL_{2}y^{2}}{4\overline{EI}} - \frac{y^{3}}{6\overline{EI}} \left(\frac{W}{2} + \frac{MO}{L_{2}}\right)$$
(A21)

Slope

In segment 1

$$\theta = C^{2} + \sqrt{k}C_{3}\cosh\sqrt{kx} + \sqrt{k}C^{4}\sinh\sqrt{kx} + \frac{x^{2}}{2\overline{EI}}\left(\frac{W}{2} - \frac{Mo}{L_{1}}\right)$$
(A22)

151

)

In segment 2

$$\theta_{2} = C_{6} + \sqrt{k}C_{7} \cosh \sqrt{kx} + \sqrt{k}C_{8} \sinh \sqrt{kx} + \frac{WL_{1}x}{2\overline{EI}} - \frac{x^{2}}{2\overline{EI}} \left(\frac{W}{2} + \frac{Mo}{L_{1}}\right)$$
(A23)

In segment 3

$$\theta_3 = C_{10} + \sqrt{k}C_{11}\cosh\sqrt{ky} + \sqrt{k}C_{12}\sinh\sqrt{ky} + \frac{y^2}{2\overline{E1}}\frac{W}{2} + \frac{Mo}{L_2}$$
segment 4 (A24)

$$\theta_{4} = C_{14} + \sqrt{kC_{15}} \cosh \sqrt{ky} + \sqrt{kC_{16}} \sinh \sqrt{ky} + \frac{WL_{2}y}{2\overline{EI}} - \frac{y^{2}}{2\overline{EI}} \left(\frac{W}{2} + \frac{Mo}{L_{2}}\right)$$
(A25)

Force

In

In segment 1

$$P_{1} = \frac{\Sigma EI}{Z} \left\{ kC_{3} \sinh \sqrt{kx} + \frac{x}{2EI} \left( \frac{W}{2} - \frac{MO}{L_{1}} \right) \right\} - \frac{x}{Z} \left( \frac{W}{2} - \frac{MO}{L_{1}} \right)$$
(A26)

In segment 2

$$P_{2} = \frac{\Sigma EI}{z} \left\{ kC_{7} \sinh \sqrt{kx} + kC_{8} \cosh \sqrt{kx} + \frac{WL_{1}}{2\overline{EI}} - \frac{x}{\overline{EI}} \left( \frac{W}{2} + \frac{Mo}{L_{1}} \right) \right\} - \frac{1}{z} \left( \frac{WL_{1}}{2} - \left( \frac{W}{2} + \frac{Mo}{L_{1}} \right) x \right)$$
(A27)

In segment 3

$$P_{3} + \frac{\Sigma EI}{z} \left\{ kC_{11} \sinh \sqrt{ky} + \frac{y}{EI} \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right) \right\} - \frac{y}{z} \left( \frac{W}{2} - \frac{Mo}{L_{2}} \right)$$
(A28)

In segment 4

$$P_{4} = \frac{\Sigma EI}{Z} \left\{ kC_{15} \sinh \sqrt{ky} + kC_{16} \cosh \sqrt{ky} + \frac{WL_{2}}{2\overline{EI}} - \frac{y}{\overline{EI}} \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right) \right\} - \frac{1}{Z} \left\{ \frac{WL_{2}}{2} - \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right) y \right\}$$
(A29)

In segment 1

Slip

$$s_{1} = \frac{\Sigma EI}{z} k^{3/2} C_{7} \cosh \sqrt{ky} + k^{3/2} C_{4} \sinh \sqrt{kx} + \frac{1}{\overline{EI}} \frac{W}{2} - \frac{Mo}{L_{1}} - \frac{1}{\mu z} \left( \frac{W}{2} - \frac{Mo}{L_{1}} \right)$$
(A30)

In segment 2

$$s_{2} = \frac{\Sigma EI}{Z} \left\{ k^{3/2} C_{7} \cosh \sqrt{ky} + k^{3/2} C_{8} \sinh \sqrt{kx} - \frac{1}{EI} \frac{W}{2} + \frac{Mo}{L_{1}} + \frac{1}{\mu z} \left( \frac{W}{2} + \frac{Mo}{L_{1}} \right) \right\}$$
(A31)

In segment 3

$$s_{3} = \frac{\Sigma EI}{\mu z} \left\{ k^{3/2} C_{11} \cosh \sqrt{ky} + \frac{1}{EI} \frac{W}{2} - \frac{Mo}{L_{2}} + k^{3/2} C_{12} \sinh \sqrt{ky} \right\} - \frac{1}{z} \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right)$$
(A32)

In segment 4

$$s_{4} = \frac{\Sigma EI}{\mu z} \left\{ k^{3/2} \cosh \sqrt{ky} + k^{3/2} C_{16} \sinh \sqrt{ky} - \frac{1}{\overline{EI}} \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right) \right\} + \frac{1}{z} \left( \frac{W}{2} + \frac{Mo}{L_{2}} \right)$$
(A33)

# <u>Slip Strain</u>

In segment 1

$$s'_{1} = \frac{\Sigma EI}{\mu z} \left\{ k^{2}C_{3} \sinh \sqrt{kx} + k^{2}C_{4} \cosh \sqrt{kx} \right\}$$
(A34)

In segment 2

$$s'_{2} = \frac{\Sigma EI}{\mu z} \left\{ k^{2}C_{7} \sinh \sqrt{kx} + k^{2}C_{8} \cosh \sqrt{kx} \right\}$$
(A35)

In segment 3

$$s'_{3} = \frac{\Sigma EI}{\mu z} \left\{ k^{2}C_{11} \sinh \sqrt{ky} + k^{2}C_{12} \cosh \sqrt{ky} \right\}$$
(A36)

In segment 4

 $s'_{4} = \frac{\Sigma EI}{\mu z} \left\{ k^{2}C_{15} \sinh \sqrt{ky} + k^{2}C_{16} \cosh \sqrt{ky} \right\}$ (A37)

(1) 
$$C_1 + C_4 = 0$$

$$(2) \quad C_9 + C_{12} = 0$$

(3) 
$$C_1 + \frac{L_1}{2} C_2 + \sinh \frac{\sqrt{kL_1}}{2} C_3 + \cosh \frac{\sqrt{kL_1}}{2} C_4$$
  
-  $L_{1/2}C_6 - \sinh \frac{\sqrt{kL_1}}{2} C_7 - \cosh \frac{\sqrt{kL_1}}{2} C_8$   
=  $\frac{WL_1^3}{24 \overline{EI}}$ 

4) 
$$C_9 + \frac{L_2}{2} C_{10} + \sinh \frac{\sqrt{kL_2}}{2} C_{11} + \cosh \frac{\sqrt{kL_2}}{2} C_{12}$$
  
-  $C_{13} - \sinh \frac{\sqrt{kL_2}}{2} C_{15} - \cosh \frac{\sqrt{kL_2}}{2} C_{16}$   
=  $\frac{WL_1^3}{6\overline{E1}}$ 

(5) 
$$C_5 + L_1C_6 + \sinh\sqrt{kL_1C_7} + \cosh\sqrt{kL_1C_8} - \frac{L_1^2Mo}{6\overline{EI}}$$
  
=  $-\frac{WL_1^3}{6\overline{EI}}$ 

(6) 
$$\Sigma EIK \sinh \frac{\sqrt{kL_1}}{2}C_3 + \cosh \frac{\sqrt{kL_1}}{2}C_4 - \sinh \frac{\sqrt{kL_1}}{2}C_7$$
  
-  $\cosh \frac{\sqrt{kL_2}}{2}C_8 = 0$ 

$$(7) \quad \sum EIk \sinh \frac{\sqrt{kL_2}}{2} C_{11} + \cosh \frac{\sqrt{kL_2}}{2} C_{12} - \sinh \frac{\sqrt{kL_2}}{2} C_{15} \\ -\cosh \frac{\sqrt{kL_2}}{2} C_{16} = 0 \\ (8) \quad kC_4 = 0 \\ (9) \quad kC_{12} = 0 \\ (10) \quad \sum EIk (\sinh \sqrt{kL_1}C_7 + \cosh \sqrt{kL_1}C_8 - \sinh \sqrt{kL_2}C_{15} \\ -\cosh \sqrt{kL_2}C_{16}) = 0 \\ (11) \quad C_2 + \sqrt{k\cosh \frac{\sqrt{kL_1}}{2}} C_3 + \sqrt{k\sinh \frac{\sqrt{kL_1}}{2}} c_4 \\ -\sqrt{k\cosh \frac{\sqrt{kL_1}}{2}} C_7 - \sqrt{kC_8}\sinh \frac{\sqrt{kL_1}}{2} = \frac{WL_1^2}{8ET} \\ (12) \quad C_{10} + \sqrt{kC_{11}\cosh \frac{\sqrt{kL_2}}{2}} + \sqrt{kC_{12}\sinh \frac{\sqrt{kL_2}}{2}} - C_{14} \\ -\sqrt{kC_{15}\cosh \frac{\sqrt{kL_2}}{2}} - \sqrt{kc_{16}\sinh \frac{\sqrt{kL_2}}{2}} = \frac{WL_2^2}{8ET} \\ (13) \quad C_6 + \sqrt{kC_7}\cosh \sqrt{kL_1} + \sqrt{kC_8}\sinh \sqrt{kL_2} - \frac{M_0}{2ET} (L_2 + L_1) \\ = \frac{E}{4ET} (L_2^2 + L_1^2) \\ (14) \quad \sum EIk^{3/2} (C_3\cosh \frac{\sqrt{kL_1}}{2} + C_4\sinh \frac{\sqrt{kL_1}}{2} - C_7\cosh \frac{\sqrt{kL_1}}{2} \\ - C_8\sinh \frac{\sqrt{kL_1}}{2}) = (1 - \frac{EI}{EI}) W$$

÷

(

(

8

(15) 
$$\Sigma EIk^{3/2} \left( C_{11} \cosh \frac{\sqrt{kL_2}}{2} + C_{12} \sinh \frac{\sqrt{kL_2}}{2} - C_{15} \cosh \frac{\sqrt{kL_2}}{2} - C_{15} \cosh \frac{\sqrt{kL_2}}{2} \right)$$
  
 $- C_{16} \sinh \frac{\sqrt{kL_2}}{2} = W \left( 1 - \frac{EI}{EI} \right)$   
(16)  $\Sigma EIk^{3/2} \left( C_7 \cosh \sqrt{kL_1} + C_8 \sinh \sqrt{kL_1} + C_{15} \cosh \sqrt{kL_2} + C_{16} \sinh \sqrt{kL_2} \right) + Mo \frac{1}{L_1} + \frac{1}{L_2} \left( 1 - \frac{EI}{EI} \right) = W \left( \frac{EI}{EI} - 1 \right)$   
(17)  $C_{13} + C_{14}L_2 + C_{15} \sinh \sqrt{kL_2} + C_{16} \cosh \sqrt{kL_2}$   
 $- Mo \frac{L^2z}{6EI} = -\frac{WL_2^3}{6EI}$ 

Loading: 
$$W = 22.5$$
 kips  
 $w = 0.0$  kips/in.  
Lengths:  $L_1 = 180$  in.  
 $L_2 = 120$  in.

A.4

Shear Connector Modulus:  $\mu = K = 150 \text{ kips/in.}^2$ Beam Section Properties:

$$E_{1} = 3000.0 \text{ ksi (transformed)}$$

$$E_{2} = 30,000.0 \text{ ksi}$$

$$I_{1} = 32.0 \text{ in.}^{4}$$

$$I_{2} = 278.28 \text{ in.}^{4}$$

$$A_{1} = 24.0 \text{ in.}^{2}$$

$$A_{2} = 10.499 \text{ in.}^{2}$$

$$z = 8.12 \text{ in.}$$
Therefore  $\Sigma EI = 9312870.0 \text{ kips-in.}^{2}$ 

$$\overline{EI} = 23760159.0 \text{ kips-in.}^{2}$$

$$\overline{EA} = 219115.9 \text{ kips}$$

$$k = 0.0017465$$

# Appendix B

# LINEAR CLOSED FORM SOLUTION FOR A SIMPLY SUPPORTED BEAM WITH CONCENTRATED LOAD AT CENTER

### B.1 Classical Solution

Figure B1 illustrates beam geometry, loading pattern and boundary conditions. The governing equation for slip is Equation 3.23,

$$s'' - \alpha^2 s = -\beta V \tag{Ba}$$

The homogeneous solution for this equation is

$$S_{h} = A \sinh \alpha x + B \cosh \alpha x$$
 (B2)

and the particular solution for the concentrated load at the center  $\beta$ 

$$S_{p} = \frac{\beta}{\alpha^{2}} V(x)$$
(B3)

As the load is at the center of the span

$$V(x) = \frac{P}{2}$$
(B4)

Therefore the general equation for slip can be expressed as

$$s = A \sinh \alpha x + B \cosh \alpha x + \frac{\beta P}{2\alpha^2}$$
 (B5)

The boundary conditions relating to slip and slip strain are

at 
$$x = 0$$
  $\frac{ds}{dx} = 0$  (B6)

at 
$$x = L/2$$
  $s = 0$  (B7)
Differentiating Equation B5 results in slip strain as

$$\frac{ds}{dx} = A_{\alpha} \cosh \alpha x + B_{\alpha} \sinh \alpha x \qquad (B8)$$

By substituting boundary condition Equation B6 into Equation B8,

$$A = 0 \tag{B9}$$

Substituting boundary condition Equation B7 into Equation B5 gives

$$s_{L/2} = 0 = 0 + B \cosh \alpha L/2 + \frac{\beta P}{2\alpha^2}$$
 (B10)

Therefore

$$B = -\frac{\beta P}{2\alpha^2} \operatorname{sech} \alpha \frac{L}{2}$$
(B11)

By substituting constants into Equation B5

$$s = -\frac{\beta P}{2\alpha^2} \operatorname{sech} \alpha \frac{L}{2} \cosh \alpha x + \frac{\beta P}{2\alpha^2}$$
 (B12)

 $\mathbf{or}$ 

$$s = \frac{\beta P}{2\alpha^2} (1 - \operatorname{sech}\alpha \frac{L}{2} \cosh\alpha x)$$
(B13)

and

s' = 
$$\frac{\beta P}{2\alpha^2}$$
 (-  $\alpha \operatorname{sech}\alpha \frac{L}{2} \operatorname{sinh}\alpha x$ ) (B14)

The deflection may now be determined by integration of Equation B14 and using Eqaution 3.19(a). Combining these two equations yields

$$-\mathbf{v}'' = \frac{\mathbf{A}_{\mathbf{c}}\mathbf{Y}_{\mathbf{c}}\mathbf{s}'}{\mathbf{I}_{\mathbf{t}}} + \frac{\mathbf{M}}{\mathbf{E}\mathbf{I}_{\mathbf{t}}}$$
(B15)

$$-\mathbf{v}'' = \frac{\mathbf{A}_{\mathbf{C}}^{\mathbf{Y}}\mathbf{c}}{\mathbf{I}_{\mathbf{t}}} \frac{\mathbf{P}_{\beta}}{2\alpha^{2}} \left(-\operatorname{sech}\alpha \ \frac{\mathbf{L}}{2} \ \operatorname{sinh}\alpha \mathbf{x}\right) + \frac{\mathbf{P}\mathbf{x}}{2\mathbf{E}\mathbf{I}_{\mathbf{t}}}$$
(B16)

Integrating Equation B16 yields

$$-\mathbf{v}' = -\frac{\frac{P\beta A_{c}Y_{c}}{2I_{t}\alpha^{2}} \alpha \frac{\operatorname{sech}\alpha L/2 \cosh\alpha x}{\alpha} + \frac{Px^{2}}{4EI_{t}} + C_{1} \quad (B17)$$

$$-\mathbf{v} = -\frac{\mathbf{P}\beta A_{c}Y_{c}}{2I_{t}\alpha^{2}}\frac{\operatorname{sech}\alpha L/2 \operatorname{sinh}\alpha x}{\alpha} + \frac{\mathbf{P}x^{3}}{12EI_{t}} + C_{1}x + C_{2} \quad (B18)$$

The boundary conditions relating the deflection and slope are

$$x = 0 v = 0$$
 (B19)

at 
$$x = L/2$$
  $v' = 0$  (B20)

By substituting Equation B20 into Equation B17 yields

$$0 = -\frac{P\beta A_{C}Y_{C}}{2I_{t}\alpha^{2}}\operatorname{sech}\alpha \frac{L}{2}\operatorname{cosh}\alpha \frac{L}{2} + \frac{PL^{2}}{16EI_{t}} + C_{1} \qquad (B21)$$

Therefore

$$C_{1} = \frac{P \beta A_{c} Y_{c}}{2I_{t} \alpha^{2}} - \frac{PL^{2}}{16EI_{t}}$$
(B22)

Substituting Equation B19 into Equation B18 yields

$$C_{0} = 0$$
 (B23)

Substituting Equation B18 yields

$$-v = -\frac{P\beta A_{c}Y_{c}}{2I_{t}\alpha^{3}} (\operatorname{sech}\alpha \frac{L}{2} \operatorname{sinh}\alpha x) + \frac{Px^{3}}{12EI_{t}} + \frac{P\beta A_{c}Y_{c}}{2I_{t}\alpha^{2}} - \frac{PL^{2}}{16EI_{t}} x$$
(B24)

Equations B13, B14 and B24 give the solution for slip, slip strain and deflection of a simply supported beam subjected to a concentrated load at midspan. At x = L/2 Equation B24

yields the maximum deflection in the span as

$$v_{L/2} = \frac{PL^3}{48EI_t} + \frac{P^{\beta}A_cY_c}{2I_t^{\alpha}} \tanh^{\alpha}\frac{L}{2} - \frac{P^{\beta}A_cY_c}{4I_t^{\alpha}}$$
(B25)

 $\mathbf{or}$ 

 $v_{L/2} = \frac{PL^3}{48EI_t} + \frac{P\beta A_c Y_c}{2 I_t \alpha^3} (tanh\alpha \frac{L}{2} - \alpha \frac{L}{2})$ (B26)

Recognizing that the first term is the deflection of a beam with complete interaction Equation B26 may be written

as

$$\frac{\delta_{f}}{\delta_{o}} = 1 + \frac{24\beta EA_{c}Y_{c}}{L^{3}\alpha^{3}} (\tanh\alpha\frac{L}{2} - \frac{\alpha L}{2})$$
(B27)

Recalling the definition of  $\alpha$  and  $\beta$  from Equations 3.21 and 3.22, Equation B27 may be written in terms of two nondimensional ratios as

$$\frac{\delta_{f}}{\delta_{0}} = 1 + \frac{24\xi}{(\xi n)^{3/2}} (\tanh \frac{\sqrt{\xi n}}{2} - \frac{\sqrt{\xi n}}{2})$$
(B28)

 $\mathbf{or}$ 

$$\frac{\delta_{f}}{\delta_{0}} = 1 + \frac{24}{\xi^{1/2} \eta^{3/2}} (\tanh \frac{\sqrt{\xi n}}{2} - \frac{\sqrt{\xi n}}{2})$$
(B29)

The definition of  $\xi$  and  $\eta$  are given in Equations 6.4 and 6.5, respectively.

#### B.2 <u>Evaluation of Shear Deflections for a Simply</u> <u>Supported Composite Beam Subjected to a Concentrated</u> Load at the Center

The shear strain in a beam may be

expressed as

$$\gamma = v'_{s(x)} = \frac{K_{sh}V}{GA_t}$$
(B30)

in which  $v_s$  is the shear deflection and

$$K_{sh} = \frac{A_t}{I_t^2} \int_A \frac{Q^2}{b^2} dA \qquad (B31)$$

is a property of the cross section. For a simply supported beam subjected to concentrated load at midspan,

$$\delta_{\mathbf{s}} = \int_{0}^{L/2} \mathbf{v}'_{\mathbf{s}(\mathbf{X})} d\mathbf{x} = \frac{K_{\mathbf{sh}}}{GA_{\mathbf{t}}} - \int_{0}^{L/2} V d\mathbf{x} \quad (B32)$$

Shear deflection can therefore be evaluated provided  $K_{sh}$  is known.

The integral on the right hand side of the equation is the moment at midspan. The ratio of shear deflection to bending deflection can be expressed as

$$\frac{\delta_{s}}{\delta_{o}} = \frac{K_{sh}}{GA_{t}} \frac{PL}{4} \times \frac{48EI_{t}}{PL^{3}}$$
(B33)

or

$$\frac{\delta s}{\delta_0} = 12 K_{sh} \frac{E}{G} \frac{I_t}{A_t L^2}$$
(B34)

By adding Equations B29 and B34,

$$\frac{\delta_{\mathbf{f}}}{\delta_{\mathbf{o}}} + \frac{\delta_{\mathbf{s}}}{\delta_{\mathbf{o}}} = \frac{\delta_{\mathbf{o}} + \delta_{\mathbf{s}1} + \delta_{\mathbf{s}}}{\delta_{\mathbf{o}}}$$
(B35)

Equation B35 is the ratio of total deflection to bending deflection of a simply supported composite beam subjected to concentrated load at midspan.



BOUNDARY CONDITIONS (a)



(b) SECTION

FIGURE B.1 BEAM GEOMETRY AND BOUNDARY CONDITIONS



APPENDIX C

# EVALUATION OF SERVICE LOADS OF COMPOSITE BEAMS FOR TEST PROBLEMS

#### C.1 Introduction

Most experimental research in the behavior of composite beams is concerned with ultimate loading conditions. However, this present study is concerned with behavior under service load conditions. The following procedure is followed to evaluate service loads for experimental beams so that results from this analysis can be compared with test results reported by other researchers.

Under service load conditions the behavior of composite beams is governed by the geometry of the composite section and stiffness. Under ultimate load, however, the behavior is a function of geometry of composite section and material strength, that is, yield strength of steel and ultimate strength of concrete and shear connectors.

In Chapter V the experimental results obtained by Chapman and Balakrishnan, and Hamada and Longworth are compared with analytical results obtained from this study under service load. The properties of these beams used in the numerical analysis are computed in this Appendix.

#### C.2 <u>Simply Supported Beam with Concentrated Load</u> at Center (Chapman & Balakrishnan)

Figure C1 illustrates the beam and its cross section.

Beam Geometry:

Length = L = 18.0 ft. Width of slab = bc = 48.0 in. Thickness of slab = tc = 6.00 in. Steel section BSB12 x 6 x 44# Depth of steel beam = ds = 12.0 in. Area of steel beam =  $A_s = 13.0$  sq. in. Area of web =  $A_w = 4226$  sq. in. Thickness of flange =  $t_f = 0.717$  in.

Shear Connectors:

Size of shear connector  $3/4'' \ge 4''$ Spacing of shear connector = 14.88 in. Total number of shear connectors = N = 32

Material Properties:

Yield strength of flange =  $f_{yr}$  = 34.832 ksi Yield strength of web =  $f_{yw}$  = 38.8192 ksi Elastic modulus of steel =  $E_c$  = 31.6 x 10<sup>3</sup> ksi Concrete strength (28 day cylinder) =  $f'_c$  = 3440 psi Ultimate load capacity of connector = qr = 28 kips Ultimate capacity of concrete slab = C = 0.85  $f'_c$  bctc = 0.85 x 3.44 x 48.0 x 6.0 = 842.11 kips Total capacity of shear connector =  $Q_u$  = Nqr/2 = 28.0 x 16.0 = 448.0 kips Ultimate capacity of steel section = T =  $A_s f_y$ =  $A_s f x f_y f + A_s w x f_y w = 469.67$  kips

Therefore  $T > Q_u$ 

 $C > Q_u$ 

T < C

As the connector capacity is less than ultimate force that can be developed by the steel section or the concrete slab, and concrete slab strength is greater than the force that can be developed by steel section, the governing criteria in determining the location of the neutral axis at load is  $Q_u$ . Therefore it can be concluded that there is partial shear connection in this case. To achieve full shear connection the connectors must be designed to transfer the ultimate force that can be developed by the steel section. The degree of shear connection for this beam is

> Partial shear connection (P.S.C.) -  $\frac{Q_u}{T}$ =  $\frac{448.00}{469.67} \times 100 = 95.38$

Due to this partial shear connection, the force  $Q_u$  can be developed in the steel section and tensile force must be equal to compressive force.

Force that can be developed by bottom flange

$$F_1 = A_f \times f_{yf} = 4.34832 \times 34.832 = 151.46$$
 kips

Force that can be developed by web

$$F_2 = A_w \times f_{vw} = 4.2264 \times 38.8192 = 164.06$$
 kips

The amount of force that should be developed in top flange to utilize the capacity of shear connection

 $F_3 = Q_u - F_1 - F_2 = 448.0 - 151.46 - 164.06 = 132.48$  kips

Depth of top flange below ultimate strength neutral axis

 $d_1 = 132.48/6.1183 \times 34.832 = 0.62164$  in.

Depth of top flange above ultimate strength neutral axis under compression

 $d_2 = 0.717 - 0.62164 = 0.9536$  in.

Compressive force that can be developed in this portion of top flange

 $f_4 = 0.09536 \times 6.1183 \times 34.832 = 20.322 \text{ kips}$ 

The magnitude of compressive force that must be developed in the concrete slab for equilibrium

$$F_5 = Q_{11} - F_4 = 448.0 - 20.322 = 427.678$$
 kips

The depth of stress block in the concrete slab under compression

 $a = 427.678/0.85 f_c^{+}bc = 3.0472 in.$ 

Therefore location of ultimate strength neutral axis  $CG = (t_f + d_w + d_1) = 11.905$  in.

The moment (neglecting strain hardening) that can be developed in the composite section before the failure of the shear connection

$$M_{p} = F_{1}(CG - t_{f}/2) + F_{2}(CG - t_{f} - d_{w}/2) + F_{3}d_{1}/2$$
$$+ F_{4}d_{2}/3 + F_{5}(t + d_{2} - a/2)$$
$$= 4715'in. kips = 393 \text{ ft. kips}$$

 $M_p$  = Moment due to self wt + Moment due to applied load Self wt = 44 +  $\frac{6 \times 48 \times 150}{144}$  = 344 lbs.

Load factor for dead load = 1.25

Load factor for applied load = 1.5  $M_{p} = \frac{1.25 \times 0.344 \times (118)^{2}}{8} + \frac{1.5P \times 18}{4}$   $P_{u} = (393.0 - 17.415) \times \frac{4}{18} = 83.463 \text{ kips}$   $P_{(\text{service})} = \frac{83.463}{1.5} = 55.65 \text{ kips}$ 

The ultimate load given by Chapman and Balakrishnan  $P_u = 96.95$  kips and the load factor = 1.75  $P_{(service)} = \frac{96.95}{1.75} = 55.4$  kips

Therefore it is evident that service load obtained by the above procedure is accurate to the degree required. Figures E1 to E3 illustrate the beam geometry and the loading condition.

#### C.3 <u>Two-Span Continuous Composite Beam Subjected to</u> Equal Concentrated Loads at the Center of Each Span (Hamada & Longworth)

Figures C2 and C3 illustrate the section and beam geometry of the test specimen and Figure C4 illustrates the idealized stress condition at ultimate moment in positive moment region. Figures C5 and C8 illustrate the stress condition in the negative moment region.

Beam Geometry:

Length = L = 12.0 ft. Width of slab = bc = 48.0 in. Thickness of slab = tc = 4.00 in. Steel section = W12 x 31 Depth of steel section = ds = 12.09 in. Depth of web =  $d_w$  = 11.16 in. Width of web =  $w_w$  = 0.265 in. Area of web =  $A_w$  = 2.9574 sq. in. Area of flange =  $A_f$  = 3.0863 sq. in. Thickness of flange =  $t_f$  = 0.465 in. Width of flange =  $b_f$  = 6.6372 in. Total area of steel section =  $A_s$  = 9.13 sq. in. Area of reinforcement in negative moment region

 $= A_{sr} = 1.6 sq. in.$ 

174

Shear Connectors:

Size of connector 3/4" x 3"

Number of connectors between zero and maximum

moment = N = 16

Capacity of a connector = qr = 28.716 kips

Material Property:

Yield strength of flange =  $F_{yt}$  = 40.5 ksi Yield strength of web =  $F_{yf}$  = 46.9 ksi Elastic modulus of steel = Es = 30.550 x 10<sup>3</sup> ksi Ultimate strength of concrete =  $f'_c$  = 5577 psi Elastic modulus of concrete =  $E_c$  = 4.527 x 10<sup>3</sup> ksi Yield strength of reinforcing steel =  $F_{ys}$  = 50.3 ksi

In positive moment region:

Ultimate strength of slab is

 $C = 0.85 f'_{c} bctc = 910.1664 kips$ 

The ultimate strength of steel section is

 $T = A_s f_y = A_{sf} f_{yf} + A_{sw} f_{yw} = 387.51 \text{ kips}$ 

The ultimate capacity of shear connectors

 $Q_u = N.qr = 16 \times 28.716 = 459.456 \text{ kips}$ Therefore  $Q_u > T$ 

> T < C $C > Q_{11}$

As  $Q_u \ge T$  and  $C \ge T$  full shear connection can be achieved. As the concrete slab ultimate strength is greater than ultimate capacity of the steel section, the ultimate strength neutral axis will be in the concrete slab. The depth of the stress block in the concrete slab under compression is

$$a = \frac{T}{0.85 f'_c bc} = 2.0192 in.$$

Therefore

 $CG = ds + t_c - a = 14.0708$  in. from the bottom flange

The ultimate moment that can be developed by the composite section in the positive moment region is  $M_{u1} = T (CG - ds/2 + a/2) = 3501.3078$  in. kips

= 291.775 ft. kips

In negative moment region:

In the negative moment region as illustrated in Figure C4, the concrete slab is not effective as it is subjected to tension, therefore the moment has to be resisted by the steel section and the reinforcement. From Figure C6 the equilibrium equation can be expressed as

$$CS + T_r = TS$$

but

$$CS + TS = A_{s}f_{y}$$
  
 $T_{r} = 1.6 \times 50.3 = 80.48 \text{ kips}$   
 $CS + TS = 387.51 \text{ kips}$ 

Therefore CS = (387.51 - 80.48)/2 = 153.26 kips

$$TS = 387.51 - 153.26 = 234.25$$
 kips

The bottom flange can develop

$$F_1 = A_f \times f_{vf} = 3.0863 \times 40.5 = 125 \text{ kips}$$

The web below the ultimate strength neutral axis must resist

$$F_2 = 234.25 - 125.0 - 109.25$$
 kips

The depth of web below ultimate strength neutral axis is

 $d_{w1} = 109.25/46.9 \text{ x} .265 = 8.7902 \text{ in}.$ 

Therefore

CG = 8.7902 + .465 = 9.2552 in.

The depth of web above the ultimate strength neutral axis is

 $d_{w2} = (11.16 - 8.7902 = 2.3698 \text{ in}.$ 

Area of web above neutral axis =  $2.3698 \times .265$ 

= 0.628 sq. in.

The force that can develop in web is

$$F_3 = 0.628 \times 46.9 = 29.453$$
 kips

Force that will develop in top flange

$$F_{A} = 3.0863 \times 40.5 = 125 \text{ kips}$$

The center of reinforcement is 3 in. from the bottom of the slab, and the force in the reinforcement is

$$F_5 = 80.48$$
 kips

Therefore the moment that can be resisted by the section in the negative moment region is

$$M_{u2} = F_1 (CG - tf/2) + F_2 (CG - tf - d_w^{1/2}) + F_3 (D_{w2}/2) + F_4 (d_{w2} + tf/2) + F_5 (ds + tc - CG - 1.0) = 2437.773 in. kips = 203.147 ft. kips$$

$$Total M_p = M_{u1} + \frac{M_{u2}}{2} = 291.766 + \frac{203.147}{2} = 393.35 ft. kips$$
Moment due to self wt =  $\frac{WL^2}{8} = 5.1975 ft. kips$ 

$$M_p = M(due self wt) + M (due to applied load) = \frac{WL^2}{8} + \frac{P_uL}{4}$$

$$\frac{P_uL}{4} = 393.35 - 5.1975 = 388.1525 ft. kips$$

$$P_u = 129.384 kips$$

$$Load factor = 1.5$$

$$Service load P (service) = \frac{129.384}{1.5} = 86.256 kips$$



L,



FIGURE C2. DETAILS OF TEST SPECIMEN (HAMADA & LONGWORTH)













#### APPENDIX D

### EVALUATION OF SHEAR CONNECTOR STIFFNESS FOR VARIOUS TYPES OF SHEAR CONNECTORS

## D.1 Evaluation of Shear Connector Stiffness

In Chapter III the shear connector stiffness K used in analysis has been defined as load per connector per unit slip. In the numerical solution shear connection stiffness has been divided by the connector spacing as the computer program is based on the numerical technique,

For linear load slip behavior

$$Q = Ks$$
 (D1)

$$\frac{\mathrm{dQ}}{\mathrm{ds}} = K \tag{D2}$$

For nonlinear load slip behavior

$$Q = a(1 - d^{-bs})$$
 (D3)

$$\frac{dQ}{ds} = ab e^{-bs} = K e^{-bs}$$
(D4)

Figures D1 to D5 illustrate load slip characteristics for various types of shear connectors (Chapman and Balakrishnan, 5). For linear behavior the shear connector stiffness has been evaluated as the slope of the load-slip curve. For nonlinear behavior the value of a and b has been evaluated using the procedure as described in Section 2.1.3 (Yam and Chapman, 31).

In most of the examples used for verification of the numerical analysis, difficulty was encountered in obtaining a shear connector stiffness. The example problems, which are compared with the closed form solution, are designed for full shear connection and 3/4" x 4" stud shear connectors are used to achieve this. The load-slip relationship for this connector is available from push-out test results (Chapman & Balakrishnan, 5).

In the example based on Chapman & Balakrishnan's beam, the shear connector stiffness was obtained from their load-slip data. As the ultimate strength of the concrete in the push-out test and the test beam are different, a linear interpolation was used to obtain the shear connector stiffness. The difference in results may be attributed to this interpolation.

In the case of Hamada and Longworth's beam (9), CBI, no push-out test results were available. To obtain a shear connector stiffness for this example, several examples were selected with various shear connector stiffnesses. After analysing these examples, the end slip from analysis was plotted against shear connector stiffness. With the end slip for Hamada and Longworth's beam, a shear connector stiffness was interpolated from this plot,

Push-out test results for various stud shear connectors are illustrated in Fig. D1 to D5. The ultimate load for these connectors are also obtained from test results. Two slip values are selected as  $\gamma_1 = 0.01$  and  $\gamma_2 = 0.02$ . Expressing them in terms of ratio of  $Q/Q_{11}$  ( )

$$a = \frac{Q_u \left(\frac{Q_1}{Q_u}\right)^2}{\frac{2Q_1}{Q_u} \frac{Q_2}{Q_u}}$$

$$p = \frac{1}{\gamma_1} \ln \frac{\frac{Q_1}{Q_u}}{\frac{Q_2}{Q_u} - \frac{Q_1}{Q_u}}$$

For 3/4" x 4" stud connector

$$p_{11} = 12.5$$
 tons

- For  $\gamma_1$ ,  $\frac{Q_1}{Q_1} = 0.35555$
- For  $\gamma_2$ ,  $\frac{Q_2}{Q_1} = 0.51666$

Therefore a = 8.126 tons/in. or 18.20 kips/in.

- b = 79.1578
- K = 1440.67 kips/in.

For other stud shear connectors, the values of a, b, and K are computed as per the above procedure and are tabulated in Table D1.

(D6)

(D5)

In the analysis the shear connector stiffness was divided by the connector spacing in a particular beam to obtain the shear connector stiffness per unit length of beam.

| CONNECTORS          |  |
|---------------------|--|
| SHEAR (             |  |
| STUD                |  |
| HEADED              |  |
| OF                  |  |
| STIFFNESS OF HEADED |  |
| D1.                 |  |
| TABLE D1            |  |

|                  |          | 1 ·      | 1        | 1        | Í        | 1 |
|------------------|----------|----------|----------|----------|----------|---|
| K<br>Kips/Inch   | 1440.676 | 1732.663 | 1618.670 | 1370.640 | 1091.583 |   |
| ٩                | 79.1578  | 81.3610  | 84.5167  | 114.0600 | 100.8670 |   |
| a<br>Kips/Inch   | 18.200   | 21.296   | 19.152   | 12.017   | 10.822   |   |
| Qu kips          | 28.000   | 23.072   | 24.864   | 13.440   | 14.560   |   |
| LENGTH<br>Inches | 4        | e<br>S   | 3        | 4        | 2        |   |
| DIA<br>Inches    | 3/4      | 3/4      | 3/4      | 1/2      | 1/2      |   |
| . SI. No.        | F        | 3        | 3        | 4        | 2        |   |



LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN FIGURE D1.











LOAD-SLIP RELATIONSHIP FOR PUSH-OUT SPECIMEN FIGURE D5.

#### APPENDIX E
# SHEAR STRESS DISTRIBUTION IN COMPOSITE BEAM SECTIONS

### E.1 Evaluation of Shear Stress

In a composite beam the neutral axis may be either in the concrete slab, in the top flange of steel section, or in the web of steel section. For these three locations, the variation in statical moment of area and the shear stress distribution are illustrated in Figs. E1 to E3. The shear deflection factor for three common steel sections used in composite beams for different slab widths and slab thicknesses are shown in Fig. E4 to E6.

The shear stress distribution is based on the following assumptions:

 There is linear stress-strain behavior under service load conditions.

(2) Concrete in tension is neglected.

It can be observed from Fig. E2 that the maximum shear stress occurs at the neutral axis when the neutral axis is in the web, whereas in the other two cases (Fig. E1 and Fig. E3), where the neutral axis is in the slab or in the top flange, the maximum shear stress occurs at the junction of top flange and web. Therefore it may be concluded that the major portion of the shear force in composite beam is resisted by the web of steel section.

Shear form factors for composite beams with steel sections (W16 x 50, W16 x 26, W14 x 53, W14 x 22, W12 x 190, W12 x 14) for various slab widths are illustrated in Fig. E4, E5, E6, respectively, for concrete slab thickness 6" and 4".





(a) SECTION OF COMPOSITE BEAM



(b) STATICAL MOMENT VARIATION (c) SHEAR STRESS DISTRIBUTION

FIGURE E1. STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION IN COMPOSITE SECTION (NEUTRAL AXIS IN SLAB)





# (b) STATICAL MOMENT VARIATION

## (c) SHEAR STRESS DISTRIBUTION

## FIGURE E2. STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION IN COMPOSITE SECTION (NEUTRAL AXIS IN WEB)







(b) STATICAL MOMENT VARIATION

(c) SHEAR STRESS DISTRIBUTION

FIGURE E3. STATICAL MOMENT AND SHEAR STRESS DISTRIBUTION IN COMPOSITE SECTION (NEUTRAL AXIS IN TOP FLANGE)



(Rah FORM FACTOR (Kah)





APPENDIX F

### COMPUTER PROGRAM

### F.1 Introduction

5.

The following assumptions are made in the computation of slip, shear flow, force, slip strain and deflection:

- The composite beam is divided into a number of elements of constant length, thus establishing a number of equally spaced nodal points.
- 2. Discontinuity of strain is assumed at the interface of the elements due to the presence of slip strain.
- 3. Concrete resists no tension in the negative moment regions.
- 4. Reinforcement exists at only one level in the slab.
  - In the analysis, which accounts for different section properties in positive and negative moment regions, properties are constant throughout each region and equal to those associated with the transformed section (determined for full interaction) in the respective regions.

6. Due to the abrupt change in section properties at the junction between the positive and negative regions, the slip strain is discontinuous at the inflection points.

The following steps are required in the computations for slip, slip strain and deformation of a continuous beam for a given load:

- 1. Initialization
  - a. Determine the neutral axis and section properties.
  - b. Compute the stress resultants for unit reactions at the interior supports.
  - c. Compute the stress resultant for the external load.

2.

Determine the flexibility influence coefficients and lack of compatibility displacements.

For each of the unit reactions in 1(b), and for each of the stress resultants obtained by combining the reactions and the external loads:

- Compute the slip at each nodal point using the Runge-Kutta method of numerical integration.
- b. Iterate the slip computation until the correct slip has been determined.

207

- c. Compute slip strain, curvature and deflection.
- d. Enter the appropriate deflections in the equations of consistent deformation.

3. Solve for corrections to reactions.

- a. Determine corrections to redundant reactions at the interior supports.
- b. Determine the location of the inflection points and alter the length of beam with negative section properties.
- c. Check the deflection at the supports. computed in step 2(d).

The computer program was written in Fortran IV and computations were carried out on the AMDHAL 470/v at the University of Alberta computing services. The flow chart in Fig. B1 outlines the sequence of computation required for the analysis of a continuous beam. The program consists of eight subroutines and one function.

# F.2 <u>Description of Program</u>

MAIN PROGRAM: The main program reads and writes the beam dimensions, material properties and loading conditions. It calls the following subroutines in sequence to compute stress resultants, slip and deflection.

- PROP.: This subroutine computes the position of the neutral axis and the section properties. When necessary this subroutine calls subroutine "REGULA" to compute an average width so that average section properties are computed on this basis.
- REGULA: This subroutine computes average width of concrete slab by using the section properties of the positive and negative moment regions by using the REGULA-FALSI method.
- CONC.: This subroutine computes stress resultants due to all concentrated loads. The shears computed for each element are stored in two vectors, identified as the left shear and right shear of the element, and bending moment at the nodal point.
- BMSU: Computes stress resultants due to uniform load and adds the stress resultants to those computed by "CONC" for external concentrated loads.
- MASTER: This subroutine calls two subroutines and one function. First it calls "RUNGA" to compute slip, shear flow and axial force. A correction for slip is used if the axial force computed at the last nodal point is not zero. For variation in section properties, this subroutine selects the section properties depending upon the sign of the bending moment at the nodal point. The subroutine also computes slip strain and curvature. At the inflection points the

discontinuous slip strains are computed at the left and right side of the point. The subroutine calls "DEFLEX" to compute deflection at each nodal point assuming an initial slope of zero and then applies a linear correction to the deflections to arrive at the correct deflection at each nodal point.

RUNGA: This subroutine is based on a fourth order Runge-Kutta method of integration for a second order differential equation. The subroutine calls function "QF" to compute shear flow. The change in axial force is computed between every pair of nodal points by integrating the shear flow.

QF: This function defines the load-slip relationship for the shear connector.

DEFLEX: This subroutine computes deflection at every nodal point by using a second order Runge-Kutta method of integration for a second order differential equation. SYMSOL: This subroutine is an equation solver. It solves

the flexibility matrix to compute changes in reactions at the interior supports.

All notations for main vectors, geometric properties and indices are defined in the listing.



FIGURE F.1 FLOW CHART FOR COMPUTER PROGRAM

| XL, BC, TC, DS, AS, SSI, DX, WF, TF, WW, NNP  | 10F10.0, I4       |
|-----------------------------------------------|-------------------|
| EC, ES, GS, SLIPK, TOLLER, MAXIT              | 5E14.4, I2        |
| DIA, NO, DRTS                                 | F10.4, I4, F10.4  |
| ZZ, XCORDB, XCORDE, SOT, SETDS                | 5F20.10, E15.6    |
| NSUP, NECL, IPRINT                            | 314               |
| CA, CB                                        | 2F15.5            |
| NODES(I), DSL(I), SUP(I), SOS(I), I = 1, NSUP | I4, 2F10.0, E15.6 |
| NODECL(I), DCL(I), ECL(I), I = 1 NECL         | I4, 2F15.0        |
|                                               |                   |

FIGURE F.2 INPUT DATA

# F.3 List of Computer Programs

SLIPK=SHEAR CONNECTOR STIFFNESS IN PSI, SLIPK=K/SPACING OF SHEAR CONNECTORS DRTS=CENTER DISTANCE OF REINFORCING STEEL FROM TOP OF TOP FLANGE SETDS=MULTIPLIER FOR PREDTICTION OF FORCE FOR NEXT ITERATION 0.1 TOLER=TOLERANCE LIMIT ON FORCE IN POUNDS FOR CONVERGENCE DSL(I)=DISTANCE OF SUPPORT FROM LEFT END IN INCHES ZZ=UNIFORMLY DISTRIBUTED LOAD IN POUNDS PER FOOT CA=SHEAR CONNECTOR STIFFNESS CDEEFICIENT IN PSI NECL=NUMBER OF EXTERNAL CONCENTRATED LOADS XCORDB=BEGINING CORDINATE OF UNIFORM LOAD NODES(I)=NODAL NUMBER AT SUPPORT LOCATION XCORDE=ENDING CORDINATE OF UNIFORM LOAD SOT=INTIAL SLIP ASSUMPTION IN INCHES EC=ELASTIC MODULUS OF CONCRETE PSI ES=ELASTIC MODULUS OF STEEL IN PSI MAXIT=MAXIMUM NUMBER OF ITERATION DIA=DIAMETER OF REINFORCING STEEL NNP=TOTAL NUMBER OF NODAL POINTS GS=SHEAR MODULUS OF STEEL IN PSI NSUP=NUMBER OF INTERIOR SUPPORT DX=LENGTH OF ELEMENT IN INCHES CB=SHEAR CONNECTOR COEFFICIENT WF=WIDTH OF FLANGE IN INCHES NO=NUMBER OF REINFORCING BAR WW=WIDTH OF WEB IN INCHES IPRINT=FLAG

University of Alberta

| 000              | SUP(I)=INTIAL SUPPORT REACTION IN POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 500              | SOS(I)=INTIAL SLIP ASSUMPTION FOR SUPPORT REACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 500              | NODECL(I)=NODAL NUMBER AT CONCENTRATED LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ບບ               | DCL(I)=DISTANCE FROM LEFT END TO CONCENTRATED LOAD IN INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                  | ECL(I)=MAGNITUDE OF CONCENTRATED LOAD IN POUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 500              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| υυυ              | ****** MAIN POGRAM *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | IMPLICIT REAL*8(A-H,O-Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                  | ULMENSION NUDES(5), USC(50), VLS(500,5), VRS(500,5), BMS(500,5), +VLC(500), VRC(500), VLS(500,5), VRS(500,5), BMS(500,5), VLS(500,5), VLS( |  |
|                  | *VL1(500),VR1(500),SEC(11,2),FLEX(5,6),XLENG(500),<br>*BMSC(500),CMC(500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| )                | COMMON /BLOCK/ S(500),FDRCE(500),Q(500),SP(500),PHI(500),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                  | *UEF(500),AI(10),SI(10),SPIL(10),SPIK(10),PHIL(10),PHIK(10),<br>*DEFI(5).SOS(5).SOT.S1.S1.SOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                  | COMMON /PROPT/ ES.GS.AS.DS.SSI.XN,BC.TC.AVEI.WF.TF.WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  | COMMON /STUD/ CA,CB<br>COMMON /NODE/ NNP NNP1 RNNP1 IPRINT KSUM MAXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  | /1510/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | CUMMUN /SLIP/ SLIPK, IULEK, SEIUS<br>COMMON /MIDI/ BMT(500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| с                | DATA PI/3 1415926536/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| υ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| C READ           | AD ALL INPUT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| , <del>1</del> 9 | CONTINUE<br>WRITF(6.990)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                  | READ(5,1000)XL,BC,TC,DS,AS,SSI,DX,WF,TF,WW,NNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                  | WKITET6,1200/XL,BC,TC,US,AS,SSL,UX,WF,TF,WW,NNP<br>READ(5,1010)EC,ES,GS,SLIPK,TOLER,MAXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                  | WRITE(6,1210)EC.ES.GS.SLIPK,TOLER,MAXIT<br>DEAD(E 1000)DIA NO DDIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                  | WRITE(6,1220)DIA,NO,DRTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                  | 1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  | WRITE(6,1300)ZZ,XCORDB,XCORDE,SOT,SETDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

1280 FORMAT(3X/,'NODE ND.=',14.3X,'LENGTH FROM LEFT END=',F15.4, (/XE°、\*\*\*\*\*\*\* 1 FORMAT(3X/, 'NODE NO.='.14.3X,'LENGTH FROM LEFT END='
\*F10.4.3X,'LOAD=',F15.5.3X,'INTIAL SLIP=',E15.6)
0 FORMAT(3X/,'UNIFORM LOAD LBS PER FOOT=',F15.4/ 1290 FORMAT(3X/,'NODE ND.=',I4,3X,'LENGTH FROM LEFT END=' WRITE(6,1242)CA.CB FORMAT(3X/,'\*\*\* CA=',E15.5,5X,'\*\*\* CB=',E15.5) READ(5,1161)(NODES(I),DSL(I),SUP(I),SOS(I))
WRITE(6,1291)(NODES(I),DSL(I),SUP(I),SOS(I)) \*'CENTRID OF REBARS FROM TOP FLANGE=',F10.4/) 1240 FORMAT(3X/,'NO.OF CONCENTRATED LOAD=',I2/ \*'NO.OF INTERIROR SUPPORT=',I2/ READ(5,1060)(NODECL(1),DCL(1),ECL(1))
WRITE(6,1280)(NODECL(1),DCL(1),ECL(1)) FORMAT(3X/,'CONCRETE MODULUS='E14.4/ 'STEEL MODULUS='E14.4/ 'SHEAR MODULUS='E14.4/ 'SHEAR CONNECTOR MODULUS='E14.4/ 1220 FORMAT(3X/,'DIA OF REBARS=',F10 4/ +'NUMBER OF REBARS=',I2/ CORDINATE= ' , F 10.4, 3X WRITE(6, 1240)NECL, NSUP, IPRINT READ(5,1040)NSUP,NECL,IPRINT ORMAT(14, F15.0, F15.0) ORMAT(14, F10.0, F10.0, E15.6) \* 'STARTING CORDINATE=' , F10.4/ \*F10.4,3X,'LDAD=',F10.4) ORMAT(F10.4, I4, F10.4) WRITE(6,1550) IF(NSUP.EQ.0) GOTO 33 IF(NECL.EQ.O)GCTD 134 WRITE(6,1560) 'TOLERANCE =' E14.4/ ORMAT( 10F 10.4, I4) READ(5,1241)CA,CB FORMAT(2F15.5) ORMAT(5E14.4,12) \*'IPRINT=',12,3X/) \*3X, 'LOAD=', F15.4) MAXIT= ', I5, 3X//) ORMAT(5F20,10) DO 20 I=1, NSUP DO 35 I=1, NECL ORMAT(314) 1291 FORMAT(3X/ 1300 FORMAT(3X/ CONTINUE CONTINUE \* 'ENDING 1010 1020 1040 1160 1161 1242 1241 35 990 1550 1560 1000 20 ee

CALL CDNC(VLC,VRC,BMC,NODECL(I),ECL(I),DCL(I))
IF(ZZ.EQ.0.0) GOT0 36
CALL BMSU(Z,VLC,VRC,BMC)
CONTINUE
CONTINUE SLIP=', F12 6.3X, 'SETDS=', E14 6.3X//) \*\* WIDTH OF CON.SLABE\*, F10.4/ \*\* DEPTH OF CON.SLABE\*, F10.4/ \*\* DEPTH OF ST.BEAME\*, F10.4/ \* AREA OF ST.BEAME\*, F10.4/ \*\* MOMENT OF INERTIA OF ST. BEAME\*, F10.4/ \*\* MOMENT OF INERTIA OF ST. BEAME\*, F10.4/ \*\* THICKNESS OF FLANGE=, F10.4/ \*\* WIDTH OF WEB=\*, F10.4/ \*\* WIDTH OF WEB=\*, F10.4/ \*\* WIDTH OF WEB=\*, F10.4/ 'LENGTH OF BEAM=', F10.4/ C C COMPUTE INTIAL STRESS RESULTANT C IFLAG=0 D0 93 J=1,NNP XLENG(J)=DFLQAT(J-1)\*DX IF(NSUP.GT.5) CALL EXIT IF(ZZ:E0.0.0) GOTO 37 Z=ZZ/12.0 IF(NECL.EQ.0) G0T0 39 D0 5 1=1,NECL X=X0 NSEG= 1 NNP 1 = NNP - 1 RNNP 1 = DF LOAT ( NNP 1 ) VLC(J)=0.0D0 VRC(J)=0.0D0 BMC(J)=0.0D0 BMC(J)=0.0D0 D0 89 I=1.NSUP VLS(J,I)=0.0D0 VRS(J,I)=0.0D0 BMS(J,I)=0.0D0 WRITE(6,7000) WRITE(6,4000) DO 1 J=1,NNP 1200 FORMAT(3X/. C C INTIALIZATION C CONTINUE CONTINUE CONTINUE \* 'INTIAL 36 37 **8**0 е 6 с 134 စ္တဗ္တပ္ပ υ ഗ

### CALL CDNC(VLS(1,I),VRS(1,I),BMS(1,I),NDDES(I),-1.,DSL(I)) WRITE(6,7002)I WRITE(6,4000) WRITE(6,4100)(J,VLS(J,I),VRS(J,I),BMS(J,I),J=1,NNP1) WRITE(6,1580) FORMAT('1','\*\*\*\* NEW SECTION PROPERTIES \*\*\*',5X//) FORMAT(5X// '\*\*\* OUT-PUT OF SECTION PROPERTIES \*\*\*') WRITE(6,5000)((SEC(I,J),J=1,2),I=1,11) C MAIN LOOP FOR DIFFERENT SECTION PROPERTIES BEGINS HERE C WRITE(6,4100)(I.VLC(I),VRC(I),BMC(I),I=1,NNP1) DO 2 I=1,NSUP X=XO C C LOOP FOR ITERATION OF REACTION BEGINS HERE CALL PROP(CMI, AREAC, TCC, SEC(1,1)) CALL PROP(RM, AR, DR, SEC(1,2)) IF(NSUP.EQ.O) GOTO 73 IF(IND\_NE.3) GDTO 73 AVEI=(SEC(3,1)+SEC(3,2))/2 CALL REGULA(1.0,BC,1.0E-03,50,B) CMI=XN\*BC\*TC\*\*3/12. WRITE(6,110)INT,IND FORMAT(3X/15,5X,15) IF(IND.GT 1) GOTO 42 AREAR=N0\*PI\*DIA\*\*2/4 RM1=N0\*P1\*D1A\*\*4/64. AREAC=XN\*BC\*TC WRITE(6,1570) TCC=0.5\*TC I +ON I = ON J NC=INC+1 CONTINUE XN=EC/ES AR=AREAR AR=AREAC DR=DRTS G0T0 41 R=TCC IND=0 RM=RMI RM=CMI INT=1 I ND = I M T = 1 BC=B 4 3 1580 1570 3 10 73 57 4 42 υ 000 υ

O

FORMAT(3X//,'FLEXIBILITY MATRIX FOR SUPPORT REACTION',3X/)
D0 52 J=1,NSUP
WRITE(6.672)(FLEX(J,1),1=1,NSUP)
WRITE(6.672)(FLEX(J,1),1=1,NSUP)
FORMAT(6X,E15.6,6X,E15.6,4X)
IF(NSUP.NE.1) G0T0 14 c
c CALLS MASTER SUBROUTINE FOR UNIT REACTIONS
c CALLS MASTER(VLS(1,1),VRS(1,1),BMS(1,1),SEC(1,1))
cos(1)=S1
sos(1)=S1 C C COMPUTE DEFLECTION,SLIP,SLIPSTRAIN,CURVATURE FOR C TOTAL LOAD STRESS RESULTANT C C STORE UNIT REDUDANT DEFLECTION IN FLEX CALL MASTER(VLT,VRT,BMT,SEC(1,1)) C C COMPUTE TOTAL STRESS RESULTANTS 339 DD 25 J=1,NNP1 TBM=0.0D0 DO 47 KK=1,NSUP FLEX(KK,6)=-DEF(NODES(KK)) DO 51 II=1,NSUP FLEX(II,I)=DEF(NODES(II)) CONTINUE IF(SUM.LE.1.0E-06)GDT0 7 IF(IMT.EQ.10) GDT0 7 D0 51 I=1,NSUP S1=SOS(I) SUM=SUM+DABS(FLEX(KK,6)) DO 30 I=1,NSUP TEM=TEM+SUP(I)\*EMS(J,I) TVL=TVL+SUP(I)\*VLS(J,I) TVR=TVR+SUP(I)\*VRS(J,I) C STORE SUPPORT DEFLECTION SOT=S1 IF(NSUP.EQ.O) GDTO SUM=0.0D0 BMT(J)=TBM+BMC(J) VLT(J)=TVL+VLC(J) VRT(J)=TVR+VRC(J) BMT ( NNP ) = 0.0D0 WRITE(6,671) TVL=0.0D0 TVR=0.0D0 CONT INUE CONTINUE CONTINUE S1=S0T C 671 C 671 C C2 C 672 25 ő 47 51

```
4900 FORMAT(3X,14,3X,F10.4.3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,E13.5,3X,EFT STRAIN',5X,
5300 FORMAT(3X/,'INFLECTION POINT OUT-PUT',5X/)
5400 FORMAT(//,'IN.NO.',5X,'LENGTH',3X,'SLIP',5X,'DEFLECTION')
5500 FORMAT(//,'IN.NO.',5X,'LEFT.CURV',5X,'RIGHT.CURV',5X,'DEFLECTION')
5500 FORMAT(3X/,'FINAL OUT-PUT FOR SLIP'SLIP STRAIN,CURV',5X,'DEFLECTION')
5500 FORMAT(3X/,'FINAL OUT-PUT FOR SLIP'SLIP STRAIN,CURV',5X,'DEFLECTION')
4800 FORMAT(3X/,'NDAL.NO',2X,'NODE.LENGTH',GX,'SLIP',8X/)
*'SLIP STRAIN',8X,'CURVATURE',5X,'DEFLECTION',8X/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   WRITE(6.4900)(K,XI(K),SI(K),SPIL(K),SPIR(K),PHIL(K),PHIR(K),
                                                                                                                                                                                                                                                                            FORMAT(3X//,'INCREMENT IN REACTION IS', E13 5,5X,E13.5,5X//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4710 FDRMAT(3X/,4X,'INPT',5X,'LENGTH',5X,'SLIP',5X,'LEFT STRAIN'
*6X,'RIGHT STRAIN',6X,'LEFT CURVE',5X,'RIGHT CURVE',5X,'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WRITE(6,4700)(J,XLENG(J),S(J),SP(J),PHI(J),DEF(J),J=1,NNP)
                                                                                                                                                                                                                                                                                                                                                                                                   WRITE(6,196)(SUP(I),I=1,NSUP)
FORMAT(3X//,'SUPPORT REACTION=',5X,E14.6,5X,E14.6,4X//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7400 FORMAT(3X,14,5X,E13.5,5X,E13.5,7X,E13.5,7X,E13.5,3X)
7300 FORMAT(3X/,'NODE ND.',5X,'SHEAR FLOW',9X,'FORCE',14X,
*'SLIP',15X,'SLIP STRAIN',7X/)
IF(KSUM.EQ.0) GDTO 17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(6,7400)(J,Q(J),FORCE(J),S(J),SP(J),J=1,NNP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMAT(3X/, 'NUMBER OF INFLECTION POINT=',14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(BMT(J).LT.0.0.AND.INT.E0.2) CM=0.0D0
BMSC(J)=(SSI+CM)*ES+PHI(J)
DELTAR=FLEX(NSUP, 6)/DEF(NODES(NSUP))
                                                                                                                                                                               C SOLVE FOR CORRECTION TO SUPPORT REACTION
                                                                                                                                                                                                                 CALL SYMSOL(FLEX,FLEX(1,6),5,NSUP)
WRITE(6,7001)(FLEX(1,6),I=1,NSUP)
                                                           SUP(NSUP)=SUP(NSUP)+DELTAR
                                                                                                                                                                                                                                                                                                                                     SUP(I)=SUP(I)+FLEX(I,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF(NSUP.EQ.O) GOTO 38
WRITE(6,7300)
                                                                                     WRITE(6,196)SUP(NSUP)
                         WRITE(6,7001)DELTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CMC(U)=CM+ES*PHI(U)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE(6.4750)KSUM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DEFI(K),K=1,KSUM)
WRITE(6,5500)
                                                                                                                                                                                                                                                                                                              DO 49 I=1, NSUP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 165 J=1,NNP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WRITE(6,4710)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          * 'DEFLECTION')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE(6,4800)
                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IMT = IMT + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GOTO 339
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                    GOTO 21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CM=CM]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         38
38
                                                                                                                                                                                                                                                                          C7001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           165
                                                                                                                                                                                                                                                                                                                                                                            49
                                                                                                                                                                                                                                                                                                                                                                                                                                     196
                                                                                                                                                                                                                    4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 17
                                                                                                                                                     υ
                         υ
```

\*\* (E15.5, 10X, E15.5)
\*\* (E15.5, 10X, E15.5) 4700 FDRMAT(3X,14,3X,F10.4,3X,E13.5,3X, \*E13.5,3X,E13.5,3X,E13.5,3X) 7000 FDRMAT(10X//,\*\*\*\* STRESS RESULTANT FDR EXT LDAD=',3X//) = ' , E 15 . 5 , 10X , E 15 . 5 / 4100 FORMAT(14,5%,D13.4,11%,D13.4,13%,D13.4) 4000 FORMAT(/// STRESS RESULTANTS'/3%,'1',8%,'LEFT SHEAR' \*14X,'RIGHT SHEAR',13X,'BENDING MOMENT') 7002 FORMAT(3X/,'STRESS RESULTANT FOR SUP.LOAD=',12,3X/) 5000 FORMAT(3X/,'ALPHA',13X,' IF(INC.GT 1) GDT0 31 WRITE(3,1000)XL.BC.TC.DS.AS.SSI.DX.WF.TF.WW.NNP WRITE(3,1010)EC.ES.GS.SLIPK.TOLER.MAXIT WRITE(3,1020)DIA.N0.DRTS WRITE(3,1161)(NODES(I),DSL(I),SUP(I),SOS(I)) WRITE(3,1100)2Z,XCORDB,XCORDE,SOT,SETDS WRITE(3,1040)NSUP,NECL,IPRINT WRITE(3,1241)CA,CB IF(NSUP\_EQ.O) GOTO 29 DD 6020 I=1,NSUP WRITE(3,1060)(NODECL(I),DCL(I).ECL(I)) SUBROUTINE MASTER(VL,VR,BM,SEC) IMPLICIT REAL\*8(A-H,O-Z) DIMENSION VL(1),VR(1),BM(1),SEC(11,2) 'AREA OF SLAB 'CENTROIDAL DISTANCE OF CONCRETE CENTROIDAL DISTANCE OF STEEL PRODUCT OF ES AND CONC AREA AREA OF STEEL SECTION \*3X/.'TOTAL MOMENT OF INERTIA SHEAR DEFLECTION FACTOR THIS SUBROUTINE CALLED MASTER TF (NSUP.EQ.0) G0T0 19 G0T0 57 IF(NECL.EQ.O) GOTD 31 IF(INT.GT.3) GOTO 19 DO 6035 I=1,NECL TOTAL AREA ALPHAK \*3X/,'BETA 1 + 1 N I = 1 N I CONTINUE CONTINUE , XC STOP 3X/ XE: XE: XC/ END. Xe 3X/ Xe 6035 \_ 31 29 6020 5000 <u>ө</u> 00000000

COMMON /BLOCK/ S(500),FORCE(500),Q(500),SP(500),PH1(500), \*DEF(500),X1(10),S1(10),SP1L(10),SP1R(10),PH1L(10),PH1R(10), \*DEF1(5),SOS(5),SOT,S1,SOC IF((J.EQ.1) DR.(J.EQ.NNP1))GDTD 131 IF(BMT(J)\*BMT(J+1).LT.-1.0D-06) GDTD 200 CALL RUNGA(S(J).VL(J).VR(J).V1.SS.SFORCE.SQ.SEC(1,11).DX) IF(J.EQ.1) GDTD 800 CALL RUNGA(S(J),VL(J),VRT,V1,SS,SFORCE,SQ,SEC(1,I1),DX1) / ES.GS.AS.DS.SSI.XN.BC.TC.AVEI.WF.TF.WW NNP.NNP1.RNNP1.IPRINT.KSUM.MAXIT FRACT=DABS(BMT(J))/(DABS(BMT(J))+DABS(BMT(J+1))) VLT=VL(J)+(VR(J)-VL(J))\*FRACT COMMON /SLIP/ SLIPK, TOLER, SETDS COMMON /MTOT/ BMT(500) IF(DABS(B).LT.1.0D-03) G0T0 999 IF(IFLAG.NE.0) GOTD 800 SP(J)=(S(J)+SS-S(J-1))/(2.\*DX) XL, XO, X, DX XI(K)=DFLOAT(J-1)\*DX+DX1 SI(K)=S(J)+SS DO 1CO J=1, NNP1 WRITE(6,4200) FORCE(1)=0.0D0 COMMON /PROPT/ COMMON /DIST/ Q(1)=-QF(S(1) COMMON /NODE/ SP ( NNP ) =0.000 DX1=DX\*FRACT SP(1)=0.000 SL 1=0.0D0 SL 2=0.0D0 FL 1=0.0D0 FL 2=0.0D0 DDS=0.0D0 [TT=ITT+1 DF =0.0D0 V1=0.0D0 GOTO 800 FLAG=0 1 + 1 I = 1 S(1)=S1 VRT=VLT KSUM=0 0=111 X=X+-B=DX1 IT=0 A=DX 2=2 N H O H O 46 200

131

υ

SP(J)=-B\*S(J-1)/(A\*(A+B))-(A-E)\*S(J)/(A\*B)+A\*ST/(B\*(A+B)) SPIR(K)=-(2 \*A+B)\*ST/(A\*(A+B))+(A+B)\*S(J)/(A\*B)-A\*S(J+1)/ SP( 1) = - B \* ST / ( A \* ( A + B ) ) - ( A - B ) \* S( 1) / ( A \* B ) + A \* S( 1 + 1 ) / ( B \* ( A + B ) ) SPIL(K)=B\*S(J-1)/(A\*(A+B))-(A+B)\*S(J)/(A\*B)+(2.\*B+A)\*ST/ CALL RUNGA(ST.VLT.VR(J),V1.SS.SFORCE,SQ.SEC(1,12),DX2) CNUM=SEC(3,1)\*SEC(6,1)+(PROD\*SEC(9,1)\*SEC(4,1))
DENO=SEC(3,1)-(SEC(5,1)-SEC(7,1))\*SEC(4,1)\*SEC(5,1)
CDENO=SEC(8,1)\*SEC(9,1)\*SEC(10,1)\*DSINH(SEC(10,1)\*XL) F(DABS(FORCE(NNP)).LT.TOLER.OR.ITT.GT.MAXIT)GOTO 53 E0=-SEC(4,11)\*SPIL(K)/SEC(6,11) CONST=1./(SEC(4,12)/SEC(6,12)+SEC(4,12)\*SEC(5,12)\* PROD=(SEC(5,1)-SEC(7,1))\*(SEC(5,1)-SEC(7,1)) PHIN=SEC(4,11)\*SEC(5,11)\*SPIL(K)/SEC(3,11) DSR=FORCE(NNP)\*CNUM/(DEND\*CDENO)
IF(S(1).EQ.0.0D0) G0T0 39
DSR=SETDS\*DABS(S(1))\*FL1/DABS(FL1)
S(1)=S(1)-DSR
G0T0 45 [F(DABS(A).LT.1.0D-03) GOTO 999 V1=(PHIN\*SEC(7,I1)-E0)\*CONST C KSUM=NUMBER OF INFECTION POINTS FORCE (J+1) = SFORCE+FORCE (J) FORCE ( J+ 1 ) = T FORCE + S FORCE Q( J+ 1 ) = SQ [F(IFLAG.EQ.0) GDTD 100 TFORCE=FORCE(J)+SFORCE SEC(7,12)/SEC(3,12)) (F(IT.NE.1) GDTD 40 GDTD 100 S(J+1)=SS+S(J) FL 1=FDRCE (NNP) S( J+ 1 )=ST+SS DX2=DX-DX1 ST=S(J)+SS 0(1+1)=SQ \*(B\*(A+B)) ((B\*(A+B)) CONTINUE SL1=S(1) [FLAG=0 IFLAG=1 KSUM=K 11=TU 1=12  $A = D \times 2$ 2=JT 8=DX 00 800 ნ

ΰ υ Ο

53 WRITE(6,323)ITT,S(1),FORCE(NNP) 3 FORMAT('O','ITT=',I4,10X,'S(1)=',E15.6,10X,'FORCE(NNP)=',E15.6) S1=S(1) IF(DABS(FORCE(NNP)-FL1).GT.DABS(FORCE(NNP)-FL2)) KL=1
G0T0(47,48).KL
FL2=FORCE(NNP) ', E20.6) 0(1)=-OF(S(1)) WRITE(6.124)IT,SL1,FL1,SL2.FL2,DDS,DF,S(1) FORMAT(/5X,I4.7E15.6.3X//) GO TO 46 IF(DABS(SRATID-1.0D0).GT.1.0D-12) GOTO 45 WRITE(6,1232) SRATIO FORMAT(' CONVERGENCE OF SRATIO ',E20.6 IF(DABS(DF).LT.1.0D-06)G0T0 999 DDS=SL2-SL1 FOR1=FORCE(NNF) +FL1 FOR2=FORCE(NNP) +FL2 IF(FOR1+FOR2.LT.O.ODO) GOTO 44 IF(FL1\*FL2.LT.0.0D0) G0T0 42 IF(FOR1.LT.0.0) GDT0 41 FL1=FORCE(NNP) S(1)=SL2-FL2\*(DDS/DF) SRATIO=S(1)/1EMP IF(IT.NE.2) GDTO 43 FL2=FORCE (NNP) GOTO 42 FL 1=FORCE (NNP) S(1)=S(1)-DSR DF=FL2-FL1 TEMP=S(1-) SL2=S(1) SL1=S(1) SL2=S(1) SL1=S(1) IT=IT-1 SL1=SL2 FL 1=FL2 GOTO 45 GOTO 53 G0T0 45 G0T0 42 G0T0 42 KL=2 C1232 4 <del>4</del> 42 43 48 C124 47 44 45 323

υ

υ o

o

υ

υ

υ υ

IF((J.EQ.1).DR.(J.EQ.NNP1)) GDTD 132 IF(BMT(J)\*BMT(J+1).LT.-1.0D-06) GDTD 150 PHI(J)=BM(J)/(ES\*SEC(3,11))+SEC(4,11)\*SEC(5,11)\*SP(J)/ SEC(3,11) PHI(J)=BM(J)/(ES\*SEC(3.I1))+SEC(4.I1)\*SEC(5.I1)\*SP(J)/ SDEFL=VT\*SEC(11,I2)
SDEFR=VR(J)\*SEC(11,I2)
CALL DEFLEX(V1,PHIR(K),PHI(J+1),DX2,DW2,SDEFL,SDEFR) CALL DEFLEX(V1,PHI(J),PHIL(K),DX1,DW1,SDEFL,SDEFR)
DEFI(K)=DEF(J)+DW1 SDEFL=VL(J)\*SEC(11.I1)
SDEFR=VR(J)\*SEC(11.I1)
CALL DEFLEX(V1,PHI(J),PHI(J+1),DX,DW,SDEFL,SDEFR)
DEF(J+1)=DEF(J)+DW PHIL(K)=SEC(4,11)\*SEC(5,11)\*SPIL(K)/SEC(3,11) PHIR(K)=SEC(4,12)\*SEC(5,12)\*SPIR(K)/SEC(3,12) 170 CONTINUE C THIS PART OF MAIN POGRAM COMPUTES DEFLECTION C THIS PART ALSO HANDLES TRANSITION ELEMENTS C DD 900 J=1.NNP1 IF((J.EQ.1).DR.(J.EQ.NNP1))GDTD 133 IF(BMT(J)\*BMT(J+1).LT.-1.OD-OG) GDTD 600 SDEFL=VL(J)\*SEC(11,11) VT=(VL(J)+(VR(J)-VL(J))\*DX1/DX) SDEFR=VT\*SEC(11,11) DX1=XI(K)-DFLOAT(J~1)\*DX DO 170 J=1, NNP1 PHI ( NNP ) =0. 0D0 DEF(1)=0.0D0 DX2=DX-DX1SEC(3,11) G010 170 RV=0.0D0 GOTO 900 I = I I + 1X=X+ -I 1=12 I2=JT V1=RV X = X + 4 JT=11 1=1 I T = 0 [2=2 = [2=2 K=0 0=X 175 133 600 132 150

WRITE(6,1001)A,B Format('0','\*\*\*\* STOP For UNACCEPTED VALUES OF A OR B'/'A = \*E12.5,'STOP FOR UNACCEPTED VALUE OF A OR B'/'A =',E12.5) TX=-AS/BBC+DSQRT((AS/BBC)\*\*2-(2.0+AS\*(DS/2.-(DS+TC))/BBC)) COMMON /PROPT/ ES.GS.AS.DS.SSI.XN.BC.TC.AVEI.WF.TF.WW COMMON /SLIP/ SLIPK.TOLER.SETDS DEF(J)=DEF(J)-(COR\*DFLOAT(J-1)+DX) DEFI(KK)=DEFI(KK)-(COR\*XI(KK)) WRITE(6,113)EAC, YS, YC, AT, CG FORMAT(3X/, 'VALUES ARE', E13.5) IF(CG,GT.DS) GDTO 50 SUBROUTINE PROP(C,A,T,SEC) IMPLICIT REAL\*8(A-H,O-2) DIMENSION SEC(1) DEF( J+1)=DEF( J)+DW1+DW2 C THIS SUBROTINE CALLED PROP C IF(IT.GE.2) GOTO 735 RV=(DEF(2)-DEF(1))/DX GOTO 175 CG=(A\*YC+AS\*YS)/AT DO 733 KK=1, KSUM COR=DEF(NNP)/XL DO 732 J=2,NNP C=BBC\*TX+\*3/12 CG=DS+TC-TX BBC=BC\*XN YS=0.5\*DS AC=BBC+TX EAC=ES+AC CONTINUE CONTINUE EAC=ES\*A YS=YS-CG AT=AS+AC YC=TX/2. AT=A+AS G0T0 60 YC=DS+T RETURN J1=11 I 1=12 I2=JT STOP A = AC END 735 999 1001 732 733 006 с С113 ß υυ

SUBROUTINE QS(SEC.BBC.A.T.CG) IMPLICIT REAL\*8(A-H,O-Z) DIMENSION NSUB(4),WIDTH(4),ZR(4),UEPTH(4).SEC(1) COMMON /PROPT/ ES.GS.AS.DS.SSI.XN.BC.TC.AVEI.WF.TF.WW DATA NSUB/10.5,10.5/ WIDTH(1)=BBC WIDTH(2)=WF CALL QS(SEC.BBC,A,TT,CG) SEC(11)=SEC(11)/GS WRITE(6,101)CG FORMAT(3X/,'CENTROID OF COMPOSITE SECTION =',E15.5) ZR(1)=DS+(T+DEPTH(1)/2)-CG ZR(2)=DS-CG ZR(3)=ZR(2)-TF FACT=1./(AS/AT+AS\*YS\*YC/TI) ALPHAK=DSQRT(SLIPK\*ALPHA2) BETA=AS\*YS\*FACT/(EAC\*TI) 'I=SSI+C+A\*YC\*\*2+AS\*YS\*\*2 C THIS SUBROUTINE IS CALLED QS C C C DEPTH(1)=A/BBC DEPTH(2)=TF DEPTH(3)=DS-2.\*TF ALPHA2=FACT/EAC AW=WW\*DEPTH(3) SEC(1)=ALPHA2 SEC(2)=BETA SEC(2)=BETA SEC(3)=TI SEC(3)=TI SEC(4)=A SEC(5)=YC SEC(6)=AT SEC(7)=YS SEC(10)=ALPHAK WIDTH(3)=WM WIDTH(4)=WF DEPTH(4)=TF SEC(8)=EAC SEC(9)=AS TT=TC-TX/2 YS=YS-CG C=YC-CG G0T0 70 RETURN T=1 END 101 70 60 υυ

SUBROUTINE RUNGA(S1, VL, VR, V1, SS, SFORCE, SQ, SEC, DX) IMPLICIT REAL\*8(A-H, O-Z) THIS SUB ROUTINE USES FOURTH ORDER DIFFERENTIAL EQ. C1V=SEC(1)\*0F(S1)-SEC(2)\*VL C2S=V1+C1V\*DXX C2V=SEC(1)\*0F(S1+C1S\*DXX)-SEC(2)\*VC C3S=V1+C2V\*DXX FORM A SUBROUTINE FOR SLIP COMPUTATION C3V=SEC(1)\*QF(S1+C2S\*DXX)-SEC(2)\*VC C4S=V1+C3V\*DX C4V=SEC(1)\*0F(S1+C3S\*DX)-SEC(2)\*VR SS=(C1S+2.\*(C2S+C3S)+C4S)\*DX/6 V1=V1+(C1V+2.\*(C2V+C3V)+C4V)\*DX/6 SQ=-OF(S1+SS) THIS SUBROUTINE IS CALLED RUNGA DY=DEPTH(J)/DFLOAT(NSUB(J)) SOLUTION IS RUNGA-KUTTA METHOD Q2=Q1+W\*(YT+YB)\*(YT-YB)/2. FAC=FAC+(Q1+\*2+Q2\*\*2)\*DY/W CONTINUE SEC(11)=FAC/((SEC(3))++2) RETURN SFORCE = 0.5 \* ( QF ( S1 ) - SQ ) \*DX ZR(4)=ZR(3)-DEPTH(3) DO 532 I=1,N YT=Z-DY\*DFLOAT(I-1) DIMENSION SEC(1) /C=(VR-VL)/2.+VL FAC=0.0 D0 531 J=1,4 ()HTOIW=W N=NSUB( J) DXX=DX/2. /B=YT-DY Z = ZR(J)01=0.0 RETURN C1S=V1 01=02 UN UN 532

.............

υ

THIS SUBROUTINE IS BASED ON A SECOND ORDER DIFFERENTIAL EQUATION C THIS IS A SUBROUTINE TO COMPUTE DEFLECTION FOR NODAL POINTS RUNGA-KUTTA METHOD SUBROUTINE DEFLEX(V1, PHIL, PHIR, DX, DW, SDEFL, SDEFR) IMPLICIT REAL\*8(A-H, O-Z) DV=O.5\*(PHIL+PHIR)\*DX VR=V1+DV DW=O.5\*(V1-SDEFL-SDEFR+VR)\*DX V1=VR FORM ASUBROUTINE FOR B.M. & SHEAR FOR UNIFORM LOAD SUBROUTINE BMSU(Z.VL.VR.BM) IMPLICIT REAL\*8(A-H.O-Z) COMMON /NODE/ NNP.NNP1.IPRINT.KSUM.MAXIT COMMON /DIST/ XL.XO.X.DX DIMENSION VL(1).VR(1).BM(1) IMPLICIT REAL\*8(A-H,D-Z) COMMON /NODE/ NNP1,RNNP1,IPRINT,KSUM,MAXIT COMMON /DIST/ XL,XO,X,DX DIMENSION VL(500),VR(500),BML(500) NI=NODE-1 C THIS SUBROUTINE IS CALLED \*\*\*\* DEFLEX \*\*\*\* SUBROUTINE CONC(VL,VR,BML,NODE,P,DP) BM(J) = (Z \* XL \* X/2 - Z \* X \* X/2 ) + BM(J)SOLUTION THIS EQUATION IS BASED ON VL(J)=(Z\*XL/2.-Z\*X)+VL(J) VR(J)=(Z\*XL/2:-Z\*(X+DX))+VR(J) DD 150 J=1, NNP1 BM( NNP )=0.0D0 CONTINUE X=0.0D0 RETURN XQ+X=XRETURN END **DN** END 150 υu 0000 Ċ Ο  $\circ \circ$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ECTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEFLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u de la companya de la compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>- -</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIMULTANEDUS<br>N. NEQ)<br>549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ۲ <b>۰</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 549 N N SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THE S<br>.8.NN<br>8(NN)<br>10 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | то<br>* А(I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NE SDLVES THE S<br>E SYMSOL(A, B, NN<br>REAL+8(A-H, O-Z)<br>A(NN, NN), B(NN)<br>, NL<br>, NEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SUBROUTINE SOLVES<br>SUBROUTINE SOLVES<br>SUBROUTINE SYMSOL(A<br>IMPLICIT REAL+8(A-H<br>DIMENSION A(NN,NN),<br>NL=NEQ-1<br>NL=N+1<br>DO 67 N=1,NL<br>DO 68 J=N1,NEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )=A(N, J)/A(N,<br>I=N1,NEQ<br>V,I) EQ.O.) G<br>J=I,NEQ<br>J=I,NEQ<br>=A(I,J)-A(I,<br>)=A(I,J)<br>=A(I,J)<br>=A(I,J)<br>=A(I,J)<br>S(N)/A(N,N)<br>S(N)/A(N,N)<br>SUBSTITUTION<br>SUBSTITUTION<br>N=1.NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P/XL<br>J=1,NNP1<br>J=1,NNP1<br>.NI) GOTO<br>L+VL(J)<br>)=RL*X+BM<br>0<br>R+VL(J)<br>R+VR(J)<br>)=-RR*(XL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IE SOL<br>SYMS<br>A(NN,<br>NC<br>NEO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P+DP/XL<br>+RR<br>00 J=1,NI<br>)=RL+VL<br>)=RL+VL<br>)=RL+VL<br>)=RL+VL<br>)=RL+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VL<br>)=RR+VLC | SUBROUTINE<br>SUBROUTINE S<br>SUBROUTINE S<br>IMPLICIT REA<br>DIMENSION A(1<br>NL=Net 1<br>N1=N1, NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A(N.J)=A(N.J)<br>D0 73 I=N1,NE<br>IF(A(N,I).E0<br>D0 74 J=I,NE<br>D0 74 J=I,U<br>A(I,J)=A(I,J)<br>A(I,J)=A(I,J)<br>A(I,J)=A(I,J)<br>B(N)=B(I)/A(N<br>BCK SUBSTITU<br>BCK SUBSTITU<br>BCM =B(M)/A(M<br>M=NE<br>D0 91 N=1,NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RR=-P*DP,<br>RL=P+RP<br>BML(1)=0.<br>DO 200 J=<br>VVL(J)=RL+<br>VVL(J)=RL+<br>VVL(J)=RL+<br>CONTOUE<br>BML(J)=RR+<br>VR(J)=RR+<br>VR(J)=RR+<br>VR(J)=RR+<br>VR(J)=RR+<br>CONTINUE<br>CONTINUE<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SUBROUTINE<br>SUBROUTINE<br>SUBROUTINE<br>IMPLICIT RE<br>DIMENSION A<br>NL = NGO-1, N<br>N1 = N+1,<br>N1 = N+1,<br>D0 68 J=N1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N. J) = A(f)<br>73 I=N(f)<br>73 I=N(I)<br>74 J=1<br>1. J) = A(I)<br>1. J) = A(I)<br>J(I) = A(I)<br>J(I) = A(I)<br>J(I) = A(I)<br>J(I) = A(I)<br>J(I) = B(I)<br>N) = B(M)/<br>N) = B(M)/<br>N = B(M)/N = B(M)/<br>N = B(M)/<br>N = B(M)/N = B(M)/<br>N = B(M)/N = B(M)/<br>N = B(M)/N = B(M)/<br>N = B(M)/N = B(M) |
| RL=P+R<br>RL=P+R<br>BBML(1)<br>D0 2000<br>IF(J)=0<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUBROUT<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>DI MENSIO<br>NI = N N<br>N = N N<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBROUTI<br>SUBR | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RRL<br>BRL<br>BRL<br>CONC<br>CONC<br>CONC<br>CONC<br>CONC<br>CONC<br>CONC<br>CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S SL<br>DO INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A(N.U)=A(N<br>DO 73 I=N<br>IF(A(N,I)<br>DO 74 U=I<br>A(I,U)=A(I)<br>A(I,U)=A(I)<br>B(U)=B(U)/<br>B(N)=B(N)/<br>BACK SUBSI<br>M=NEQ<br>B(M)=B(M)/<br>DO 91 N=1.<br>M1=M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - <del>1</del> 6<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68<br>C 7 4<br>C 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

C 2001 FORMAT('0','A RODT HAS BEEN LUCATED BETWEEN',F13.5,'AND', DO 91 J=M1,NEQ B(M)=B(J)\*A(M,J) GOTO 97 9 WRITE(G,1001) CALL EXIT CALL EXIT FORMAT('ZERD OR NEGATIVE ELEMENT ON MAIN DAIGONAL OF \*TRINGULARIZED STIFFNESS MATRIX' ) RETURN END SUBROUTINE TO COMPUTE THE ROOT OF AN EQUATION BY THE REGULA-FALSI METHOD SUBROUTINE REGULA(XLOW,XHIGH,EPS,MAX,X3) IMPLICIT REAL\*8(A-H,O-Z) WRITE(6,2001)X1,X2 IF(DABS(Y1-Y2).LT.1.0E-06) GDTD 300 X3=(Y1+X2-Y2+X1)/(Y1-Y2) TEST=DABS(X3-P) IF(TEST.LT.EPS) GDTD 300 IF(Y1\*Y3.GT.0.0) G0T0 150 IF(Y1\*Y2.GT.O.O) RETURN STOP WRITE(6.2202)X3.TEST.M RETURN IF(M.LE.MAX) GDT0 100 WRITE(6,2201)M P=-1000.0 200 X2=XHIGH Y1=F(X1) Y2=F(X2) Y3=F(X3) X1=XLOW X2=X3 M=M-1 X = + X Y2=Y3 ¥1=Υ3 M=M+1 GOTO P=X3 0=W 549 1001 200 300 150 97 100 100 6 ပ 00000000 U

University of Alberta

```
C THIS FILE IS BASED ON NON-LINEAR LOAD-SLIP BEHAVIOUR OF SHEAR CONNECTORS
C
C
                                                                                                                                                                                                                                                                                                                                                                       THIS IS BASED ON LINEAR LOAD-SLIP BEHAVIOUR OF SHEAR CONNECTORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(DUMMY.EQ.O.ODO.DR.SLIPK.EQ.O.ODO) GD TD 125
IF(DLOG(DABS(DUMMY))+DLOG(DABS(SLIPK)).GE 74DO) GD TD 150
                                                                                                                    IMPLICIT REAL*8(A-H,O-Z)
COMMON /PROPT/ ES.GS.AS.DS.SSI,XN.BC.TC.AVEI.WF.TF.WW
CAG=Z*TC*XN*(DS/2.+TC/2.)/(Z*TC*XN+AS)
               2201 FORMAT('*** POGRAM HAS EXCEEDED',I3,'ITERATE')
2202 FORMAT(' THE RODT IS ',F13.5,'WITHIN AN INTERVAL OF'
*,F12.5,' IT TOOK',I3,'ITERATE')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               QF=DSIGN(1.0D74,SLIPK)+DSIGN(1.0D0,DUMMY)
                                                                                                                                                                                                                                                                                                                                                                                                                                   DOUBLE PRECISION FUNCTION QF(DUMMY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DOUBLE PRECISION FUNCTION OF(DUMMY)
                                                                                                                                                                                                                                                                                                          FORM A FUNCTION FOR COMPUTATION OF QF
THIS FILE IS CALLED **** QFL *****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  9
                                                                                                                                                                                                                                              F = CMAI+TCI+SSI-(TTA*CAG**2)-AVEI
                                                                                               DOUBLE PRECISION FUNCTION F(Z)
                                                                                                                                                                                                      TCI=Z*XN*TC*((DS/2 +TC/2))**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C FORM A FUNCTION FOR COMPUTATION OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(DABS(D).LT.1.0D-10)G0T0 100
DD=DUMMY/DABS(DUMMY)
0F=DD+CA*(1.-DEXP(-CB*D))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    THIS FILE IS CALLED *** QF ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                      IMPLICIT REAL*8(A-H,0-Z)
COMMON /STUD/ CA,CB
COMMON /SLIP/ SLIPK,TOLER
GOT0 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COMMON /SLIP/ SLIPK, TOLER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IMPLICIT REAL+8(A-H, 0-Z)
                                                                                                                                                                                  CMAI=Z*XN*TC**3/12.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COMMON /STUD/ CA CB
                                                                                                                                                                                                                             [TA=AS+(Z*XN*TC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      OF = SL I PK * DUMMY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D=DABS(DUMMY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                  RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RETURN
*F13.5)
                                                                              END
                                                                                                                                                                                                                                                                                          END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8
                                                                                                                                                                                                                                                                                                             000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                υ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C
```
RETURN QF = SLIPK + DUMMY RETURN END 100

## F.4 List of Data and Outputs

C THIS DATA FILE IS FOR LINEAR LOAD-SLI₽ BEHAVIOOUR C

C 288.48.4.12.09.9.13.239.3.6.53.465.265.97. 3834250.0.29600000.0.1.0D30.350000.0.001.30. 5.4.3.0. 2000.0.0.0.288.0.-.000719.1. 1.0.0. 350.0.100.0. 49.144.0.29773.0.10E-06. C THIS OUT-PUT IS BASED ON LINEAR LOAD-SLIP BEHAVIOUR OF SHEAR CONNECTORS

LENGTH OF BEAM= 288.0000 WIDTH OF CON.SLAB= 48.0000 DEPTH OF CON.SLAB= 48.0000 DEPTH OF ST.BEAM= 12.0900 AREA OF ST.BEAM= 12.0900 AREA OF ST.BEAM= 9.1300 MOMENT OF INERTIA OF ST.BEAM= 239.0000 MOMENT OF INERTIA OF ST.BEAM= 239.0000 MOMENT OF INERTIA OF ST.BEAM= 239.0000 MUTH OF NODO WIDTH OF FLANGE= 6.5300 THICKNESS OF FLANGE= 0.4650 WIDTH OF WEB= 0.2650 NUMBER OF NODAL POINTS= 97

CONCRETE MODULUS= 0.3834E+07 STEEL MODULUS= 0.2960E+08 SHEAR MODULUS= 0.1000E+31 SHEAR CONNECTOR MODULUS= 0.3500E+06 TOLERANCE = 0.1000E-02 MAXIT= 30

0000 ° E DIA OF REBARS= 0.5000 NUMBER OF REBARS= 4 CENTRID OF REBARS FROM TOP FLANGE=

0.100000E+00 SETDS= -0.000719 INTIAL SLIP= 2000.0000 UNIFORM LOAD LBS PER FOOT= STARTING CORDINATE= 0.0 ENDING CORDINATE= 288.0000

NO.OF CONCENTRATED LOAD= 0 NO.OF INTERIROR SUPPORT= 1 IPRINT= 0 0.10000E+03 \*\*\* CB= 0.35000E+03 \*\*\* CA=

\*\*\* SUPPORT CONDITION \*\*\*

0.100000E-06 INTIAL SLIP= 29773.00000 LOAD= LENGTH FROM LEFT END= 144 0000 49 NODE NO. \*

0.11930E+02 CENTROID OF COMPOSITE SECTION =

0.11930E+02 CENTROID OF COMPOSITE SECTION = 1\*\*\*\* NEW SECTION PROPERTIES \*\*\*

\*\*\* OUT-PUT OF SECTION PROPERTIES \*\*\*

0.24871E+02 0.13093E-07 -0.99864E-09 0.70440E+03 0.21603E+01 II n 11 н CENTROIDAL DISTANCE OF CONCRETE TOTAL MOMENT OF INERTIA AREA OF SLAB ALPHA BETA

0.70440E+03 0.24871E+02

0.21603E+01

-0.99864E-09

0.13093E-07

|   |             | · ·          |                | •           | •<br>•      |                                              | •                                           |                               | STRAIN   | •            | .64663E-05   | 11947E-04 | 16418E-04              | 200665-04<br>230425-04 | 25468E-04    | 27445E-04    | 29054E-04              | 31425E-04    | 32284E - 04 | 32977E-04    | 33531E-04              | 34310E-04        | 34568E-04    | 34754E-04 | 34875E-04<br>24036E-04 | 349335 -04 | 34885E-04     | 34772E-04 | 34594E-04   |
|---|-------------|--------------|----------------|-------------|-------------|----------------------------------------------|---------------------------------------------|-------------------------------|----------|--------------|--------------|-----------|------------------------|------------------------|--------------|--------------|------------------------|--------------|-------------|--------------|------------------------|------------------|--------------|-----------|------------------------|------------|---------------|-----------|-------------|
|   | 0.34001E+02 | -0.58847E+01 | 0.73618E+09    | 0.91300E+01 | 0.67694E-01 | 0.39295E-30<br>0.347839E-04<br>-0.907666E-09 | -0.116396E-04<br>-0.436151E-08              | -0.317949E-04                 | SLIP ST  | 0.0          | 0.646        |           | 0.164                  | 0.200                  |              |              |                        | 0.314        |             | •            | 3990<br>0.3390         |                  |              | •         | 0.348                  | •          |               | 0.347     | 0.345       |
| • | o           | °.           | o              | 0           | 0           | 000                                          | °, °                                        | °.                            |          | 02           | 02           | 83        | 2 2                    | 200                    | 18           | 05           | 88                     | 30           | -03         | 80           | 20                     | 20               | 03           | <b>8</b>  | - 04<br>- 04           | 5 8        | 28            | EC.       | <b>EO</b> - |
|   |             |              |                |             |             | FORCE ( NNP ) =<br>FORCE ( NNP ) =           | FORCE(NNP)=<br>FORCE(NNP)=                  | FORCE(NNP)=                   | SLIP     | -0.14431E-02 | Ξ.           |           | -0.13611E-02           |                        | · •          | -0.10879E-02 | -0.10029E-02           | -0.82069E-03 | -0.72499E-( | -0.62699E-03 | -0.52/13E-03           | -0.32332E-03     | -0.21994E-03 |           | -0.11419E-04           | 1010000.   |               | .40750E   | 0.51160E-(  |
|   | 1E+02       | 7E+01        | 3E +09         | DE +01      | 1E - 01     | 5E - 3C                                      |                                             |                               |          |              |              |           |                        |                        |              |              |                        |              |             |              |                        |                  |              |           |                        |            |               |           |             |
|   | 0.34001E+02 | -0.58847E+01 | 0.73618E+09    | 0.91300E+01 | 0.67694E-01 | 0.39295E-30<br>-02<br>-06                    | -0 <b>6</b>                                 | -02                           |          |              | -0.15098E+04 | 29993E+04 | 44511E+04              | 7 188 1E+04            | -0.84524E+04 | 96365E+04    | 10734E+05              | 2651E+05     | 3462E+05    | 14172E+05    | 14 / /8E+05            | 5671E+05         | 5957E+05     | 6133E+05  | 16200E+05              | 16004E+05  | 15741E+05     | 15368E+05 | 14885E+05   |
|   | n           |              | H              | 11          | n           | = 0<br>-0.144990E-02<br>0.108951E-06         | 298366E+05<br>-0.144297E-02<br>0.108951E-06 | 0.298355E+05<br>-0.144310E-02 | FORCE    | 0.0          | -0.150       | -0.29     | -0.44                  |                        | -0.845       |              | -<br>-<br>-            |              | -0.13       |              |                        | . <sup>.</sup> . | Ξ.           | Ξ.        | -0.162                 |            |               |           | -0.148      |
|   |             | STEEL        | EA             |             |             | 0 0                                          | 2                                           | 298<br>-0.                    |          |              |              |           |                        |                        |              |              |                        |              |             |              |                        |                  |              |           |                        |            |               |           |             |
|   | •           | Ы            | AND CONC. AREA | NOI         |             | FACTOR<br>S(1)=<br>S(1)=                     | 0.<br>S(1)=<br>S(1)=                        | 0<br>S(1)=                    | FLOW     | . 50508E+03  | 0.50146E+03  | 49150E+03 | 4/638E+03<br>4E703E+03 | 43/03E103<br>43424E+03 | 40864E+03    | 38075E+03    | 35100E+03<br>31971E+03 | 28724E+03    | 25375E+03   | 21945E+03    | 18450E+03<br>14903E+03 | 11316E+03        | 76980E+02    | 40568E+02 | 39966E+01<br>37669E+07 | 59368F+02  | -0. 10604E+03 | 14263E+03 | 17906E+03   |
|   |             | DISTANCE     |                | SECTION     |             |                                              | REACTION=<br>3<br>3                         | REACTION=<br>3                | SHEAR    | 0.50         | 0.50         |           |                        |                        | •            | 0.35         | 0.9                    |              | •           |              |                        |                  | ÷.,          |           |                        |            | -0.<br>-0.    |           | -0<br>-1    |
|   | EA          |              | OF ES          | STEEL       |             | DEFLECTION<br>13<br>3                        | REAC1<br>3<br>3                             | REAC<br>3                     |          |              |              |           |                        |                        |              |              |                        |              |             |              |                        |                  |              |           |                        |            |               |           |             |
|   | TOTAL AREA  | CENTROIDAL   | PRODUCT (      | AREA OF     | ALPHAK      | SHEAR DE                                     | SUPPORT  <br>OITT=<br>OITT=                 | SUPPORT I                     | NODE NO. | -            | 01           | <b>.</b>  | 4 U                    | פט ה                   | 7            | ω (          | ה <u>כ</u>             | 2,∓          | 12          | e -          | <br>- 1                | 16               | 17           | 18        | 6                      | 0.0        | 22            | 23        | 24          |

| •                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    | 238                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
| ,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                  |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                 |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 352E-0<br>354E-0                                                                                                                                                                                   |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEFLECTION<br>5 -0.11                                                                                                                                                                              |                                                                    |
| •                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 E E                                                                                                                                                                                              |                                                                    |
| . ·                                | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o o                                                                                                                                                                                                |                                                                    |
|                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CURVE<br>0.12175E<br>0.12128E                                                                                                                                                                      |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 22222<br>- 222222<br>- 222222                                                                                                                                                                    |                                                                    |
|                                    | ппппппппппп<br>00000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
| . <sup>19</sup>                    | 346055 - 04<br>347816 - 04<br>349476 - 04<br>349476 - 04<br>349446 - 04<br>349446 - 04<br>349646 - 04<br>347646 - 04<br>3475806 - 04<br>3435806 - 04<br>3435806 - 04<br>3395846 - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32333985<br>3233985<br>314576<br>304016<br>2291016<br>2255386<br>2255386<br>221286<br>231286<br>165487<br>165487<br>165487<br>165487<br>1656036<br>066637<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CURVE<br>0.12037E-<br>0.12085E-<br>0.12085E-<br>0.12085E-<br>0.038588E-<br>0.1332588E-<br>0.338588E-<br>0.338588E-<br>0.11118E-                                                                    | 2768E<br>4334E<br>5806E<br>7178E<br>8443E<br>9596E<br>9596E        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\circ$ ititit                                                                                                                                                                                     | ~ <del>~ ~ ~ ~ ~ ~ ~ ~ ~</del>                                     |
| • •                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAIN<br>15962E-04<br>15960E-04<br>15900E-04<br>15900E-04<br>0<br>17640E-05<br>13889E-05<br>61822E-05<br>61822E-05<br>84883E-05                                                                     |                                                                    |
|                                    | $\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}$ | 66666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RAIN<br>15962E-C<br>15900E-C<br>15900E-C<br>CURVATURE<br>CURVATURE<br>0<br>33809E-0<br>48489E-0<br>61822E-0<br>61822E-0<br>84883E-0<br>84883E-0                                                    | 94782E<br>10368E<br>11163E<br>11868E<br>12485E<br>13017E           |
|                                    | 51169E-03<br>30300E-03<br>30300E-03<br>19820E-03<br>11467E-04<br>11598E-03<br>11598E-03<br>223055E-03<br>223055E-03<br>223055E-03<br>223055-03<br>223055-03<br>223055-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62728E -03<br>82114E -03<br>82114E -03<br>91410E -03<br>10036E -02<br>10887E -02<br>116887E -02<br>12419E -02<br>13073E -02<br>13073E -02<br>13073E -02<br>13066E -02<br>14066E -02<br>14466E -02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STRAIN<br>0.159<br>0.159<br>0.159<br>0.159<br>0.133<br>0.333<br>0.484<br>0.739<br>0.518                                                                                                            |                                                                    |
|                                    | 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 004<br>004<br>005<br>004<br>004<br>004<br>004<br>004<br>004<br>004                                                                                                                                 |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    | 0                                                                  |
| angan di kangan<br>Angan di kangan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5781E-04<br>5781E-04<br>5845E-04<br>5845E-04<br>5845E-04<br>4663E-05<br>1947E-04<br>1947E-04<br>3042E-04<br>3042E-04                                                                               | 14456<br>90546<br>103636<br>114256<br>122846                       |
|                                    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                    |
|                                    | 14902E+05<br>15758E+05<br>15758E+05<br>15758E+05<br>1621E+05<br>16174E+05<br>16174E+05<br>16170E+05<br>1620E+05<br>15295E+05<br>15295E+05<br>15295E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14188E+05<br>13478E+05<br>12666E+05<br>11755E+05<br>10749E+05<br>84652E+04<br>71996E+04<br>71996E+04<br>71996E+04<br>71996E+04<br>15131E+04<br>44593E+04<br>15131E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STF<br>SL                                                                                                                                                                                          |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000-040-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>6750E-02<br>6768E-02<br>57RAIN, CURV<br>LIP<br>LIP<br>4431E-02<br>3611E-02<br>3611E-02<br>3658E-02<br>3658E-02<br>3658E-02<br>3658E-02<br>3658E-02                                            | 0330300                                                            |
|                                    | <b>?????????????</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NT= 2<br>SLIP LEF<br>0.16750E-02<br>-0.16768E-02<br>LIP STRAIN, CI<br>SLIP<br>SLIP<br>-0.14431E-02<br>-0.14328E-02<br>-0.13058E-02<br>-0.13058E-02<br>-0.13058E-02<br>-0.13058E-02<br>-0.11675E-02 | . 108/9E<br>10029E<br>. 91354E<br>. 82069E<br>. 72499E<br>. 62699E |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
|                                    | 17909E+03<br>14265E+03<br>16605E+03<br>69369E+02<br>69369E+02<br>40134E+01<br>40594E+02<br>11321E+03<br>18458E+03<br>18458E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 219555403<br>253885403<br>253885403<br>319935403<br>351245403<br>351245403<br>3690055403<br>434685403<br>437695403<br>457575403<br>477045403<br>477045403<br>477045403<br>502305403<br>506305403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I S                                                                                                                                                                                                |                                                                    |
|                                    | 17905<br>14265<br>14265<br>14265<br>14265<br>14265<br>14265<br>12661<br>13458<br>1321<br>1321<br>1321<br>1321<br>1321<br>1321<br>1321<br>132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.21955E+0<br>-0.25388E+0<br>-0.25388E+0<br>-0.31993E+0<br>-0.35124E+0<br>-0.409005+0<br>-0.45757E+0<br>-0.45757E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.50246E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-0.5026E+0<br>-00 | INFLECTION P<br>LENGTH<br>108.9691<br>179.0309<br>PUT FDR. SLIP<br>NDDE. LENGTH<br>0.0<br>3.0000<br>6.0000<br>9.0000<br>12.0000<br>12.0000<br>12.0000                                              |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IFLECTION<br>LENGTH<br>108.9691<br>179.0309<br>17 FDR. SLI<br>DE. LENGTH<br>DE. LENGTH<br>DE. LENGTH<br>12.0000<br>9.0000<br>9.0000<br>12.00000<br>12.00000<br>12.00000<br>9.00000<br>12.00000     |                                                                    |
| •                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                    |
|                                    | 8888<br>8880<br>8831<br>8832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8888844<br>9999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ER 0F<br>1 NP1<br>C C 2<br>2 4 3<br>2 4 0U1-                                                                                                                                                       | 9 9 <del>-</del> 9 9                                               |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMBER DF INFLECTI<br>INPT LENGT<br>1 108.96<br>2 179.03<br>6 179.03<br>7 2 300<br>3 000<br>5 12.00<br>5 15.00<br>5 15.00<br>5 15.00<br>5 15.00<br>5 15.00<br>5 15.00<br>5 15.00<br>5 15.00        |                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N I N                                                                                                                                                                                              |                                                                    |

....

ŗ

1

ļ

ļ

ł

|             | .21548E- | - 223395- | -0.23002E-01 | 23942E- | .24217E - | ů.       | ц<br>Ш      | .24262E-    | .24022E-    | .23660E | .23179E- | .22583E- | .21877E  | .21067E- | .201595    | .19162E-   | -0.18081E-01 | 102501    | - 31 1 / 61 - | + + + + + + | 117905         | . 10433E | .90775E     | 77377E    | -0.64315E-02 | -0.51783E-02 | -0.39994E-02 | .29184E      | . 19611E  | .11565E | -0.53698E-03 | 400015                       | 13922E     | .53713E   | -0.11567E-02 | -0.19614E-02 |          | .40000E      | -0.51790E-02 | -0.64324E-02 | -0.77388E-02 | -0.90789E-02 | . 10435E- | Ŧ.        | -0.13132E-01 |
|-------------|----------|-----------|--------------|---------|-----------|----------|-------------|-------------|-------------|---------|----------|----------|----------|----------|------------|------------|--------------|-----------|---------------|-------------|----------------|----------|-------------|-----------|--------------|--------------|--------------|--------------|-----------|---------|--------------|------------------------------|------------|-----------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|--------------|
| 0.13467E-04 | .138366- | .14125E-  | 0.14337E-04  | 14528F  | 508E -    | . 144 12 | 0.14240E-04 | 0.13992E-04 | .13666E     | .13263E | .12782E  | .12222E  | .11581E  | •        | . 10051E-0 | •          | 0.81/16E-05  | 0-3236-0. | 33 140E -0    | .46302E-0   | 17010F-0       | 71153E-0 |             | 36939E-0  |              | .81973E-0    |              | . 13671E-    | . 16872E- | 20456E- | -0.24492E-04 | 20570F                       | . 29066E   | .24493E   | -0.20457E-04 | . 16874E     | .13673E  | . 10797E     | . 82007E-0   | •            | •            | •            | i -       | .17304E   | 0.32406E-05  |
| . 33531E    | .339695  | .34310E-  | 0.34568E-04  | 348755  | .34935E   | . 34939E | •           | •           |             | ÷.      | •        | . 33589E | . 33050E | . 32376E | .31538E    | . 30502E - | . 29226E     | 3000/7.   | 0.23/2/2/6-04 | 0.23360E-04 | 10002.         | 10000L   | .72445E     | .69587E-0 |              | -0.17156E-04 |              | -0.43952E-04 | 62028E-0  |         | -0.11131E-03 | -0.144336-03<br>-0.162856-03 |            | .11131E-0 | -0.841885-04 | .62048E      | .43979E  | .29233E      | -0.17200E-04 | -0.73816E-05 | 0.62821E-06  | ٢.           | .12538E   | . 17 101E | 0.20549E-04  |
| .52713E-0   | •        | . 323325  | -0.21994E-03 | 11419F  | . 93339E  | 19819E   | 0.30297E-03 | •           | 0.51160E-03 | •       | .71768E  | ø.       | .91921E  | .10175E  | .11135E    | .12067E    | 0.12965E-02  |           | 14201         | 193094      | 00405<br>65045 | 170415   | 0.17346E-02 | .17475E   | .17388E      | . 17036E     | . 16359E     | ٠            | 13722E    | .11562E | .86712E      | 0.466366-03<br>-0 163505-06  | . 48872F   | .86747E   | -0.11566E-02 | . 13726E     | . 15289E | -0.16365E-02 | -0.17043E-02 | -0.17397E-02 | -0.17486E-02 | .17359E      |           | . 16608E  | -0.16039E-02 |
| ດ່          |          | · •       | 48.0000      | - च     | ~         |          | 63.0000     | 66.0000     | თ           |         | ເວ       | ,<br>a   |          |          |            | o' i       |              |           |               |             |                |          | . 4         | -         |              | 123.0000     | 126.0000     | 129.0000     | N         | م       |              |                              | r r        | 0         | 153.0000     |              |          | 162.0000     | 165.0000     | 168.0000     | 171.0000     | 174.0000     | ÷.        | ò         | 183.0000     |
| 14          | 15       | 9         | 1 1          | οđ      | 50        | 21       | 22          | 23          | 24          | 25      | 26       | 27       | 28       | 29       | 30         |            | 220          |           | 9 U           | ດ ເ<br>ກ    | 00             | 200      | 000         | 04        | 41           | 42           | 43           | 44           | 45        | 46      | 47           | 5 C                          | n C<br>r L | 51        | 52           | 53           | 54       | 55           | 56           | 57           | 58           | 59           | 60        | 61        | 62           |

ų

ALPHA

\*\*\* \*\*\* OUT-PUT OF SECTION PROPERTIES

0.67615E+01 CENTROID OF COMPOSITE SECTION = 1\*\*\*\* NEW SECTION PROPERTIES \*\*\*

0.11930E+02 1I

CENTROID

CENTROID OF COMPOSITE SECTION

2

2

93938E-02 76007E-02 . 5752 1E - 02 -0.38601E-02 . 19379E-02 -0.23006F-0 22342E-0 18447E-0 17181E-0 15809E-0 14337E-0 11121E-0 -0.23946E-0 -0.23541E-0 21551E-0 20636E-0 19600E-0 12771E-0 0 ò. ò ò ò ò ò ò ò ò ę ò ę 00

0.46360E-05 0.59187E-05 0.70963E-05 0.81747E-05 0.91590E-05 0.100535-04 0.108605-04 0.115835-04 0.122235-04 0.122235-04 0.136675-04 0.136675-04 0.136675-04 0.144135-04 0.144135-04 0.144135-04 0.144135-04 0.144135-04 0.144135-04 0.1442415-04 0.1442415-04 0.1442415-04 0.1442415-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.134685-04 0.136655-04 0.136655-04 0.136655-04 0.136655-04 0.136655-04 0.11665-04 0.94826E-05 0.84937E-05 0.73987E-05 0 61902E-05 0.48588E-05 . 33930E-05 O.

-0.14444E-0

-0.18085E-01

ò

20163E-0 -0.21071E-0 -0.21881E-0

ò

-0.16931E-0 19165E-0

13828E-02

ó ò

192.0000 195.0000 198.0000 201.0000

Ģ

ò

204.0000 207.0000 210.0000 219.0000 216.0000 219.0000 225.0000 225.0000 225.0000 2231.0000 231.0000 231.0000

ò

15375E-02 14633E-02 12971E-02

Ģ ò ę ò ò

0000 0000

186. 189.

27706E-04 0.29267E-04 0.30536E-04 31566E-04 32399E-04 34029E-04 23436E-04 25789E-04 0.-33069E-04 33605E-04 34357E-04 34605E-04 34781E-04 34894E-04 34947E-04 0.34944E-04 34884E-04 0.34764E-04 0.34580E-04 34323E-04 0.32310E-04 31457E-04 0.30401E-04 23128E-04 0.25538E-04 20172E-04 16548E-04 . 12105E-04 66603E-05 0 o ö ö ö ö ö ö ö ō ö ō ö ō Ó ö Ó 00

> 237.0000 243.0000 246.0000

234.0000

0.33549E-04 0.32998E-04 0.33984E-04 0.29101E-04 0.27502E-04 ö ō ō 0. 12072E-02 0. 11139E-02 . 10178E-02 .91946E-03 -0.71783E-03 81936E-03 61519E-03 14356E-02

0.11467E-03 0.11598E-03 0.22005E-03 0.32346E-03 0.32599E-03 0.42599E-03 0.42599E-03 0.52737E-03 0.52737E-03 0.72538E-03 0.72538E-03 0.82114E-03 0.91410E-03 -0.19820E-03 -0.93318E-04 51169E-03 .40756E-03 -0.30300E-03 10036E-02 11686E-02 12419E-02 10887E-02 13073E-02 13630E-02 14066E-02 öö ö ę ò ö ö 00

0000

255. 252

85 86 87

258.0000 261.0000 267.0000

0000

264.

88 90 91 91

0000

249

University of Alberta

0.17788E-05 0.0

54210E-19

14466E-02

00

0000.

95 96 97

0000 0000 0000

279 285 288 282

276.0000 270.0000 273.0000

92 94 94

.24026E-0 -0.24379E-0 24365E-0 24221E-0 22587E-0 23183E-0 23664E-0 -0.24266E -0 ò ò ò ò ò ò

| ВЕТА                                                                                  | 0,<br>H                                     | -0.99864E-09                | ·                                  | -0.12785E-08                                 |
|---------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------------------|----------------------------------------------|
| TOTAL MOMENT OF INERTIA                                                               | 0                                           | 0.70440E+03                 |                                    | 0.29818E+03                                  |
| AREA OF SLAB                                                                          | 0<br>II                                     | 0.24871E+02                 |                                    | 0.78540E+00                                  |
| CENTROIDAL DISTANCE OF CONCRETE                                                       | 0                                           | 0.21603E+01                 |                                    | 0.83285E+01                                  |
| TOTAL AREA                                                                            | 0                                           | 0.34001E+02                 |                                    | 0.99154E+01                                  |
| CENTROIDAL DISTANCE OF STEEL                                                          | 0                                           | -0.58847E+01                | -                                  | -0.71645E+00                                 |
| PRODUCT OF ES AND CONC.AREA                                                           | 0                                           | 0.73618E+09                 |                                    | 0.23248E+08                                  |
| AREA OF STEEL SECTION                                                                 | 0                                           | 0.91300E+01                 |                                    | 0.91300E+01                                  |
| АГРНАК                                                                                | 0                                           | 0.67694E-01                 |                                    | 0.14282E+00                                  |
| SHEAR DEFLECTION FACTOR       OITT= 31     S(1)= -0.144       OITT= 3     S(1)= 0.108 | = 0<br>0.144372E-02<br>0.108932E-06         | 0.39295E-30<br>2 FC<br>6 FC | FORCE ( NNP ) =<br>FORCE ( NNP ) = | 0.53367E-30<br>0.413799E-02<br>-0.321175E-05 |
| SUPPORT REACTION= 0.286861E+05   OITT= 31 S(1)= -0.156861E   OITT= 3 S(1)= 0.108943E  | 286861E+05<br>-0.156861E-02<br>0.108943E-06 | F C                         | FORCE ( NNP ) =<br>FORCE ( NNP ) = | 0.103718E-02<br>-0.764985E-06                |
| SUPPORT REACTION= 0.286858E+05<br>01T1= 3 S(1)= -0.156865E                            | 286858E+O5<br>-0.156865E-02                 | J<br>L                      | FORCE ( NNP ) =                    | 0.552407E-03                                 |
| NODE NO SHEAR FLOW                                                                    | FORCE                                       |                             | SLIP                               | SLIP STRAIN                                  |
| 54903E+03                                                                             | 0.0                                         |                             | -0.15686E-02                       | 0.0                                          |
| 0.54541E+03                                                                           | -0.16417E+04                                | +04                         | -0.15583E-02                       | 0.64625E                                     |
| 0.535466+03                                                                           | -0.32629E+04                                | +04                         | -0.15299E-02                       | 0.119395                                     |
| 4 0.52034E+03                                                                         | -0.48466E+04                                | +04                         | -0.14867E-02                       | 0.16406E                                     |
| 0 47833E+03                                                                           | -0.784756+04                                | +0+1                        | -0.14514E-02<br>-0.13664E-03       |                                              |
| 0.45266E+03                                                                           | -0.92438E+04                                | +04                         | -0.12933E-02                       | 0.254395                                     |
| 0.42481E+03                                                                           | -0.10560E+05                                | :+05                        | -0.12137E-02                       | 0                                            |
| 0.39511E+03                                                                           |                                             | :+05                        | -0.11289E-02                       | °                                            |
| 0.36389E+03                                                                           |                                             | +05                         | -0.10397E-02                       | 0                                            |
| 0.33146E+03                                                                           |                                             | 105                         | -0.94704E-03                       | Ö                                            |
| 0.29805E+03                                                                           |                                             | :+05                        | -0.85157E-03                       | 0                                            |
| 0.263855403                                                                           |                                             | 105                         | -0.75385E-03                       | 0 (                                          |
| 14 0.22902E+03<br>15 0.10371E+03                                                      | -0.16498E+05<br>-0.17122E+05                | 50+1<br>101                 | -0.65435E-03                       | 0.33400E                                     |
| . 133/ 15103                                                                          |                                             | cO+                         |                                    |                                              |

|       |                 |              |              |              | •   |              |       |    |     |                              |              |                              |              |             |      |              | -            |             |             |              | •            |              |                              |              |              |              |              |              |              |                              |              |              |             |                              |              |              |                 |              |              |     |     |                              |                              |    |  |
|-------|-----------------|--------------|--------------|--------------|-----|--------------|-------|----|-----|------------------------------|--------------|------------------------------|--------------|-------------|------|--------------|--------------|-------------|-------------|--------------|--------------|--------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------|--------------|--------------|-------------|------------------------------|--------------|--------------|-----------------|--------------|--------------|-----|-----|------------------------------|------------------------------|----|--|
|       | <br>0.34113E-04 | 0.343265-04  |              |              | •   |              |       | •  |     |                              | •            |                              | 0.30/88E-04  | 0.25007C 04 |      | 0.24128E-04  | 0.21410E-04  | 0.18075E-C4 | 0.13985E-04 | 0.89708E-05  | 0.28247E-05  | -0.47077E-05 | -0.13804E-04<br>-0.75713E-04 |              | -0.32330E-04 | -0.23334E-04 | -0.20631E-04 | -0.23717E-04 | -0.33167E-04 | -0.50/44E-04<br>-0.70722E-04 | -0.97574E-04 | -0.79726E-04 | 50774E      | -0.33225E-04<br>-0.23811E-04 | -0.20778E-04 | 23561E       | -0.32681E-04    | -0.49836E-04 | -0.76521E-04 |     |     | 0.30866E-05<br>0.01918E-0E   | 0.316465-05<br>0 141605-04   |    |  |
|       | -0.45150E-03    | -0.34878E-03 | -0.24554E-03 | -0.14203E-03 | · • | Ξ.           |       | •  |     |                              |              | 0. 666/9E-03<br>0. 76074E-03 | •            | •           |      | 0.10964E-02  | 0.11651E-02  | 0.12249E-02 | Ξ.          | Τ.           | <b>-</b> . · | . 13257E     | 0.12992E-02<br>0 11752E-02   | -σ           |              |              | •            |              |              | 0.4/822E-03                  | ÷            | -0.29282E-03 | •           | -0.53/46E-03<br>-0.67781E-03 | -0.74033E-03 | -0.80248E-03 | 0. 88 169E - 03 | •            |              |     |     | -0.133126-02                 | -0.13113E-02<br>-0.12761E-02 |    |  |
| <br>• | -0.17660E+05    | •            | · •          | -0.18595E+05 | ٠.  |              | · • . |    |     | -0.17544E+05                 | -0.1033/E+03 | -0.153485+03<br>-0.155985+05 | •            | •           |      | -0.11672E+05 | -0.10485E+05 |             | •           | •            | •            | •            | -0.24080E+04<br>-0 10850E+04 | • ``         |              |              | •            |              |              | 0.41066E+04<br>0.51113E+04   |              | · •          | •           | 0.414135104<br>0.347185404   |              | •            |                 | ٠.           |              | •   |     | -0.52085E+04<br>-0.65961E+04 | •                            | •  |  |
|       | 0.15803E+03     | 0.12207E+03  | 0.85940E+02  |              |     | -0.22717E+02 |       |    |     | -0.16511E+03<br>-0.10060E102 | c            |                              | -0.29803F+03 |             |      | -0.38374E+03 | -0.40780E+03 |             |             | -0.45807E+03 |              |              | -0.434/1E+03<br>-0.41131E+03 | -0.34825F+03 |              |              | •            | -0.23703E+03 | -0.20898E+03 |                              | • •          |              | 0.16746E+03 | •                            | •            | 0.28087E+03  |                 |              | 0.41325E+03  |     |     | 0.465936+03                  |                              |    |  |
|       | 16              | 17           | 18           | 19           | 50  | 21           | 22    | 23 | 4 1 | 57                           | 500          | 80                           | 50           | 30          | e FE | 32           | 33           | 34          | 35          | 98           | 16           | 000          | 5 Q<br>0 Q                   | 4            | 42           | 43           | 44           | 45           | 4 0<br>7 7   | 48                           | 49           | 50           | 51          | 23                           | 54           | 55           | 56              | 57           | 80           | 500 | 0.0 | 61                           | 63                           | 64 |  |

|               |                             |                                                              |                                                  |                                                  | •                                                   | •                |
|---------------|-----------------------------|--------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|------------------|
| 65            | •                           | Ŷ                                                            |                                                  | 0.11668E-02                                      | 0.21527E-C4                                         |                  |
| 66            | 0.38422E+03                 | ο<br>Υ                                                       | 11715E+05 -C                                     | -0.109785-02                                     | 0.24224E-64                                         |                  |
|               | 20                          |                                                              |                                                  |                                                  | 0.264206-04                                         |                  |
| 800           | •                           |                                                              |                                                  | -0.949266-03<br>-0.667346-03                     | 0.2820/E-04                                         |                  |
| 60<br>0 L     | 0.29626C-03                 | ç                                                            |                                                  | -0.76132F-03                                     | 0 30832F-04                                         |                  |
| 71            |                             | <br>-                                                        |                                                  | ).66724E-03                                      |                                                     |                  |
| 72            |                             | •<br>•                                                       |                                                  | -0.57064E-03                                     | •                                                   |                  |
| 73            | 0.16520E+03                 | •<br>•                                                       |                                                  | ).47201E-03                                      | 0.331435-04                                         | · · ·            |
| 74            |                             | -0.1                                                         |                                                  | -0.37178E-03                                     | •                                                   |                  |
| 75            |                             | -<br>-                                                       |                                                  | -0.27032E-03                                     |                                                     |                  |
| 76            | 0.58775E+02                 | ç<br>ç                                                       |                                                  | -0.16793E-03                                     |                                                     |                  |
| 11            | 0.22/11E+02<br>-0 13/05E+03 |                                                              | 8/24E+05 -(                                      | -0.64890E-04<br>0 385555-04                      | 0.34414E-04<br>0.34617E-04                          |                  |
| 64            |                             |                                                              |                                                  |                                                  |                                                     |                  |
| 80            | -0.86017E+02                | ,<br>o<br>o                                                  |                                                  | ).24576E-03                                      | 0.34483E-04                                         |                  |
| 81            | -0.12218E+                  | -0.1                                                         |                                                  | 0.34908E-03                                      | 0.34356E-04                                         |                  |
| 82            |                             | - o<br>-                                                     |                                                  | 0.45190E-03                                      | 0.341485-04                                         |                  |
| 83            | -0.19389E+03                | 9                                                            |                                                  | 0.55397E-03                                      |                                                     |                  |
| 84            | -0.22925E+03                | 9                                                            |                                                  | ).65500E-03                                      |                                                     |                  |
| 85            | -0.26413E+03                | 1                                                            |                                                  | 0.75466E-03                                      | 0.32929£-04                                         |                  |
| 86            |                             | o                                                            |                                                  | 0.852576-03                                      | 0.32269E-04                                         |                  |
| 18            |                             | ο̈́ (                                                        |                                                  | 0.948276-03                                      | 0.31441E-04                                         |                  |
|               | -0.36442E+03                | o<br>o                                                       | 1                                                |                                                  |                                                     |                  |
| n C<br>O<br>O |                             |                                                              | 11830E+05                                        | 0.1130/E-02<br>0.12160E-02                       | 0.2913/E-04                                         |                  |
| ) <b>-</b>    |                             |                                                              |                                                  |                                                  |                                                     |                  |
| 60            |                             | ç                                                            |                                                  |                                                  |                                                     |                  |
| 00            |                             | ,                                                            |                                                  |                                                  | 0.20338E-04                                         |                  |
| 94            |                             | I                                                            |                                                  |                                                  | 0.16759F-04                                         |                  |
| 95            |                             | 00-<br>0-                                                    |                                                  |                                                  | 0.12371E-04                                         |                  |
| 96            |                             | 0-<br>E                                                      |                                                  |                                                  | 0.699235-05                                         |                  |
| 6             | .55236E                     | 3.0.                                                         | -03                                              |                                                  | 0.0                                                 |                  |
| NUMBER OF     | INFLECTION                  | POINT= 2                                                     |                                                  |                                                  |                                                     |                  |
| INPT          | LENGTH                      | SLIP LEFT                                                    | STRAIN RIGHT                                     | HT STRAIN LEFT                                   | T CURVE RIGHT                                       | CURVE DEFLECTION |
| - 9           | 115.8670<br>172.1330        | 2676I                                                        | 9964E-<br>8459E-                                 | -0.87539E-04<br>-0.19524E-04                     | -0.15227E-0<br>-0.19406E-0                          | -0.19204E-0      |
| FINAL OUT     | OUT-PUT FOR SLIP,           | SLIP STRAIN, CUF                                             | IN, CURV, DEF                                    |                                                  |                                                     |                  |
|               |                             |                                                              |                                                  |                                                  |                                                     |                  |
| NODAL .NO     | NODE . LENGTH               | SLIP                                                         | SLIP STRAIN                                      | CURVATURE                                        | DEFLECTION                                          |                  |
| -004          | 0.0<br>9.0000<br>9.0000     | -0.15686E-02<br>-0.15583E-02<br>-0.15299E-02<br>-0.14867E-02 | 0.0<br>0.64625E-05<br>0.11939E-04<br>0.16406E-04 | 0.0<br>0.18464E-05<br>0.35457E-05<br>0.50961E-05 | 0.0<br>-0.21571E-02<br>-0.42979E-02<br>-0.64071E-02 | :                |

| 0.65117E-05 -0.84707E-0<br>0.78040E-05 -0.10476E-0<br>0.89824E-05 -0.10476E-0<br>0.10054E-04 -0.14266E-0<br>0.11026E-04 -0.14266E-0<br>0.11026E-04 -0.16031E-0<br>0.1388E-04 -0.17696E-0<br>0.1388E-04 -0.17595E-0<br>0.1388E-04 -0.20699E-0 | . 140016 - 04 - 0.<br>. 145326 - 04 - 0.<br>. 153516 - 04 - 0.<br>. 156426 - 04 - 0.<br>. 159896 - 04 - 0.<br>. 160466 - 04 - 0. | 16025E-04     -0.27777E       15926E-04     -0.27857E       15749E-04     -0.2789E       157492E-04     -0.27789E       15492E-04     -0.27589E       15492E-04     -0.27589E       15432E-04     -0.27245E       14735E-04     -0.26765E |                                                                                                          | -6/2/3E<br>52524E<br>36191E<br>18082E                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 0.20049E-04<br>0.23019E-04<br>0.25439E-04<br>0.27408E-04<br>0.30306E-04<br>0.31354E-04<br>0.32197E-04<br>0.32197E-04                                                                                                                         | 33400E<br>33400E<br>34113E<br>3413E<br>34326E<br>3457E<br>3457E<br>3457E<br>3457E                                                | .34393E<br>.34216E<br>.33952E<br>.33590E<br>.33115E<br>.33115E<br>.331742E                                                                                                                                                                | 0.3076555045<br>0.296045<br>0.281425<br>0.263415<br>0.241285<br>0.214105<br>0.139755<br>0.139855<br>0.44 | . 139656<br>. 897086<br>. 282476<br>. 470776<br>. 138046                                |
| -0.14314E-02<br>-0.13644E-02<br>-0.12137E-02<br>-0.12137E-02<br>-0.12897E-02<br>-0.94704E-03<br>-0.85157E-03<br>-0.75385E-03                                                                                                                 | 65435E<br>65435E<br>45150E<br>34878E<br>34878E<br>14203E<br>14203E                                                               |                                                                                                                                                                                                                                           | 0.85152E-03<br>0.88152E-03<br>0.93836E-03<br>0.10204E-02<br>0.10564E-02<br>0.11551E-02<br>0.12736E-02    | 0.127526-02<br>0.1327886-02<br>0.132776-02<br>0.123576-02<br>0.129926-02<br>0.117526-02 |
| 0 0 0 4 <del>4</del> - 8 2 4                                                                                                                                                                                                                 |                                                                                                                                  | 0000000                                                                                                                                                                                                                                   | 8 7 .0000<br>9 7 .0000<br>9 3 .0000<br>9 9 .0000<br>9 9 .0000<br>9 .0000<br>9 .0000                      |                                                                                         |
| იიიფი <u>ე</u> - 5 - 5 - 5 - 5 - 5 - 5                                                                                                                                                                                                       |                                                                                                                                  | 222222                                                                                                                                                                                                                                    | 8 8 8 8 4 9 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                        | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                 |

| -0.356895-02 | -0.48874E-02 | -0.63196E-02 | .78334E-0 | -0.93998E-02 | . 10994E | -0.12589E-01 | .14168E  | -0.15715E-01 | .17214E      | . 18653E    | . 20020E     | .21304E  | - 22495E -  | -0.23584E-01 | -0.24563E-01 | -0.25426E-01 | -0.26167E-01 | -0.26779E-01 | -0.27259E-01 | -0.27603E-01 | -0.27808E-01 | -0.27871E-01 | •       | -0.27566E-01 | -0.271985-01 | -0.26685E-01 | -0.26031E-01 | -0.25235E-01 | -0.24302E-01 |             | -0.22035E-01 | -0.20710E-01 | Τ.      | . 17706E- | . 16040     | -0.14275E-01 | -0.12420E-01 | -0.10484E-01 | .84773      | -0.64124E-02 | .43017E     | .21591E     | .54210E     |   |
|--------------|--------------|--------------|-----------|--------------|----------|--------------|----------|--------------|--------------|-------------|--------------|----------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|---------|-----------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|-------------|---|
|              | . 12550E     | .89795E      | .575536   | -0.29101E-05 | . 16405E | .18327E      | . 3639   |              | •            |             |              | Ξ.       | 0.11326E-04 | 0.12195E-04  | Τ.           | 0.13645E-04  | Τ.           | ÷            | ÷            | ٣.           | 0.15750E-04  | ٦.           | Τ.      | ۰.           | Τ.           | . 15         | . 15644      | ÷.           | 44           | 0.14536E-04 | . 14006E     | 393E         | .12     | . 11911E  | 0.11036E-04 | . 10066E     | σ            | .78220E      | 0.65337E-05 | 0.51231E-05  | 5787E       | 0.18869E-05 | o.          |   |
| 3            | ġ            | e.           | 4         | ٢.           | ۳.       | .43870E      | . 30866E | 0.91848E-05  | 0.14160E-04  | 0.18218E-04 | n,           | •        | 0.26420E-04 | . 282        |              | ٠            | 0.31780E-04  | . 32540E     | . 33143E     |              | 0.33975E-04  | .34238E      | .34414E | .34          |              | .34483       | ш            | .34148E      | LLL          | . 33448E    | . 32929E     | ш            | .31441E | . 30411E  | 7 E         | .27565E      | . 25631E     | Ň            | 0.20338E-04 | 0.16759E-04  | 0.12371E~04 | 0.69923E-05 | 0.0         |   |
| -0.74033E-03 | -0.80248E-03 | .88169E      | .99857E   | .11807E      | Ξ.       | Ξ.           | ٣.       | Τ.           | -0.12761E-02 | Ξ.          | -0.11668E-02 | . 10978E | . 102 15E   | -0.93926E-03 |              | . 76132E     | .66724E      | .57064E      | .47201E      |              | .27032E      | . 16793E     | .64890E | . 38556E     | Τ.           | .24576E      | . 34908E     | . 45190E     | 0.55397E-03  | .65500E     | .75466E      | .85257E      | .94827E | 412E      | .11307E     | . 12160E     | 0.12961E-02  | .13698E      | .14357E     | ۲.           | 0.15362E-02 | Τ.          | 0.15782E-02 |   |
| ດີ           |              | ທ            | 8         | •            | 4        |              | 180.0000 |              |              | •           | 192.0000     | •        | •           | •            | •            |              |              |              | 16.          | 219.0000     | 222.0000     | 225.0000     |         | 231.0000     | 234.0000     | 237.0000     | 240.0000     |              | 246.0000     | 249.0000    | · •          | 255.0000     |         |           | 64.         | ÷.           | o.           | ຕ            | 76.         | 79.          | 282.0000    | م           | 288.0000    | ю |
| 54           | 22           | 56           | 57        | 58           | 50       | 60           | 61       | 62           | 63           | 64          | 65           | 66       | 67          | 68           | 69           | 70           | 71           | 72           | 13           | 74           | 75           | 76           | 77      | 78           | 19           | 80           | 8            | 82           | 83           | 84          | 85           | 9 I<br>80 0  | / 8     | 880       | 80          | 90           | 6            | 92           | 0<br>0      | 94           | 95          | 96          | 97          | ო |

0.11930E+02 CENTROID OF COMPOSITE SECTION =

University of Alberta

245

CENTROID OF COMPOSITE SECTION = 0.67615E+01 OA ROOT HAS BEEN LOCATED BETWEEN 1.00000AND THE ROOT IS 13.20813WITHIN AN INTERVAL OF

ო

0:94918E+01 0.94918E+01

CENTROID OF COMPOSITE SECTION = 1\*\*\*\* NEW SECTION PROPERTIES \*\*\*

CENTROID OF COMPOSITE SECTION =

48.00000 0.00050 IT TODK 11ITERATE

•

r \*\* :

|                                       | 0.17449E-07 | -0.10954E-08 | 0.50129E+03                 | 0.68437E+01  | 0.45982E+01                         | 0.15974E+02    | -0.34468E+01                      | 0.20257E+09                     | 0.91300E+01               | 0.78149E-01 | 0.45312E-30<br>2 FORCE (NNP) =<br>7 FORCE (NNP) =                                                                                                  | FORCE ( NNP ) =<br>FORCE ( NNP ) =                                                          | FORCE(NNP)=<br>FORCE(NNP)=                                                                                                        |
|---------------------------------------|-------------|--------------|-----------------------------|--------------|-------------------------------------|----------------|-----------------------------------|---------------------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| *** OUT-PUT OF SECTION PROPERTIES *** | ALPHA = (   | BETA = -(    | TOTAL MOMENT OF INERTIA = ( | AREA DF SLAB | CENTROIDAL DISTANCE OF CONCRETE = C | TOTAL AREA = C | CENTROIDAL DISTANCE OF STEEL = -C | PRODUCT OF ES AND CONC.AREA = C | AREA OF STEEL SECTION = 0 | агрнак = 0  | SHEAR     DEFLECTION     FACTOR     =     0       0ITT=     4     S(1)=     -0.134964E-02     0       0ITT=     4     S(1)=     0.896770E-07     0 | SUPPORT REACTION= 0.299361E+05<br>01TT= 3 S(1)= -0.123751E-02<br>01TT= 3 S(1)= 0.896771E-07 | SUPPORT     REACTION=     0.299109E+05       0ITT=     3     S(1)=     -0.123978E-02       0ITT=     3     S(1)=     0.896771E-02 |

0.45312E-30 0.928647E-03 -0.244821E-06

0.105841E-03 -0.562287E-07

0.373346E-03 0.693258E-07

-0.10954E-08 0.50129E+03

0.68437E+01

0.15974E+02

0.45982E+01

0.20257E+09

0.91300E+01 0.78149E-01

-0.34468E+01

0.17449E-07

0.299113E+05 S(1)= -0.123974E-02 SUPPORT REACTION= OITT= 3

0.460790E-04 FORCE (NNP) =

|                |              | I            |              |              |
|----------------|--------------|--------------|--------------|--------------|
| NODE NO.       | SHEAR FLOW   | FORCE        | SLIP         | SLIP STRAIN  |
| -              | 0.43391E+03  | 0.0          | -0.12397E-02 | 0.0          |
| 8              | •            | -0.12966E+04 | -0.12300E~02 | 0.60294E-05  |
| n              |              | -0.25742E+04 | -0.12036E-02 | 0.11015E-04  |
| 4              | 0.40737E+03  | -0.38171E+04 | -0.11639E-02 | 0.14958E-04  |
| ខ              | •            | -0.50130E+04 | -0.11138E-02 | 0.18077E04   |
| G              |              | ٠.           | -0.10554E-02 | 0.20543E-04  |
| 7              | •            | ٠            |              | 0.22493E-04  |
| 8              | •            | ٠            |              | 0.24034E-04  |
| J<br>J         |              | -;           | .84635E      | 0.25252E-04  |
| <b>ç</b>       |              |              | . 76898E     | 0.26213E-04  |
|                | •            | ÷            |              | 0.26972E-04  |
| 12             | ň            | Τ.           | -0.60715E-03 | 0.27569E-04  |
| 13             | Τ.           | *            | .52366E      | •            |
| 14             | ٠.           | -            | -0.43893E-03 | 0.28403E-04  |
| 15             | •            | Τ.           | . 35324E     | 0.28687E-04  |
| 16             | •            | Ξ.           |              |              |
| 17             | •            | Τ.           |              | 0.29068E-04  |
| 18             | •            | ٦.           | -0.92398E-04 | 0.29185E-04  |
| <del>1</del> 9 |              | Τ.           | -0.46995E-05 | 0.29263E-04  |
| 50             |              | Ξ.           |              | 0.29306E-04  |
| 21             |              | τ.           | . 17114E     | . 29317E     |
| 22             | ÷.           | ۳.           | •            | 0.29296E-04  |
| 23             | Ξ.           | Ξ.           |              | 0.29242E-04  |
| 24             | Ξ.           | ٣.           | .43454E      | 0.29153E-04  |
| 25             |              | Ξ.           | .52.183E     | 0.29022E-04  |
| 26             | •            |              |              | 0.28843E-04  |
| 27             | -0.24321E+03 |              |              | 0.28607E-04  |
| 28             |              |              | 0.78031E-03  | 0.28299E-04  |
| 29             |              |              |              | 0.27903E-04  |
| 90             |              |              | 0.94773E-03  | 0.27397E-04  |
| 31             | •            | -0.71833E+04 |              | 0.26754E-04  |
| 32             |              | _            | ٠.           | 0.25937E-04  |
| <b>8</b> 8     |              |              | Τ.           | 0.24902E-04  |
| 34             | •            |              | 0.12577E-02  | 0.23591E-04  |
| 35             | •            | ÷.,          | .13262E      | 0.21933E-04  |
| 36             |              | -0.79296E+03 | O. 13893E-O2 | 0.19834E-04  |
| 37             | -0.50584E+03 | ٠.           | 0.14452E-02  | 0.17277E-04  |
| 38             | •            | · •          | Τ.           | 0.13872E-04  |
| 39             | •            | •            | ٣.           | 0.96074E-05  |
| 40             | •            |              | . 15500E     | .42463E      |
| 41             |              | •            | 538E         | -0.25309E-05 |
| 42             | -0.53720E+03 | 0.86909E+04  | 0.15349E-02  | -0.11098E-04 |
|                |              |              |              |              |

|   |              | . 21929E     | . 35621E | . 52931E- | .74813E  | ٣.      | ۳.      | -0.15698E-03 |            | -0.10248E-03 | -0.74824E-04 | .52947E      |              | 219585       | .11136E      | 257865      | 41855E       | 95302F       | 13775F       | 17391F       | 1 14         | 22004F       | 23648F-      | 24947F-   | .25973F      | .26782F    | 27420E       | 27921F       | 283135       | . 28618E     | .28853E        | 0.29030E-04 | •            | •       | . 29301E - | . 29322E | . 29311E | 292685 | . 29191E | . 29074E | . 28913    | 0.28697E-04 | 0.28415E-04 | 0.28052E-04 | 0.27587E-04 | 0.26995E-04 | .26242E     | .252885     | 0.24080E-04 |              |
|---|--------------|--------------|----------|-----------|----------|---------|---------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|------------|--------------|--------------|--------------|--------------|----------------|-------------|--------------|---------|------------|----------|----------|--------|----------|----------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
| • | 1010         | 140/24       | 140335   | .127355   | . 10857E | .82461E | .47084E | .944586      | .47103E    | .82481E      | Τ.           | -0.12738E-02 | -0.14036E-02 | -0.14876E-02 | -0.15354E-02 | Ξ.          | -0.15508E-02 | -0.15293E-02 | -0.14936E-02 | -0.14467E-02 | -0.13904E-02 | -0.13271E-02 | -0.12584E-02 | 11853E    | -0.11087E-02 | 10294E     | -0.94801E-03 | -0.86490E-03 | -0.78048E-03 | -0.69502E-03 | •              | . 52 19 1E  | .43459E      | .34695E | . 259 10E  | . 17114E | -11/158- |        | - 32438F | .1/98/E  | . 26688E-0 | . 35334E-0  | . 43906E-0  | . 52383E-0  | . 60738E    |             | 0.76934E-03 | 0.84681E-03 | 0.92107E-03 | 00100100     |
|   | 0 102775405  | 0 117056405  |          |           | 0+30044  | 7       | 101221  | 100701.      | 161225     |              | .14438E      | 0.131995+05  |              | . 10276E     |              | •           | . 54364      | •            | •            |              | .80128E      |              | . 35854E     |           |              | •          | •            | ÷.           | •            | . 10824E+0   | <del>.</del> . |             | -0.12604E+05 |         |            |          |          | 7      | . *      | . •      |            |             |             | <b>-</b> '  | .11463E     | . 10783E    | . 10017E    | .91683E     | .82401      |              |
|   | -0.52053E+03 | -0.49115E+03 |          |           | 28861E   | 164705  | •       | 164065       | <u>,</u> c | •            | •            | • ;          | 0.49126E+03  | : 52066E     | -537385      | 0.54405E+03 | •            |              | •            | . 50635E     |              | .46450E+0    |              | .41484E+0 | .38804E+0    | . 36030E+0 | . 33180E+0   | •            | •            | Ņ            |                | 0.1826/E+03 |              | · •     | •          | . 29110F |          | 323536 | 629535   | 93409F   | 103675     |             |             | . 1         | •           | .2412/E+0   | 0.26927E+0  | . 29638E+O  | .32238E     | -0.346955+03 |
|   | 43           | 44           | 45       | 46        | 47       | 48      | 64      | с<br>С       |            |              | 9 C<br>D U   |              | 1 U          | 0 1          | 0 F<br>0 4   | ~ 0<br>0    |              | D ()         | 200          | - 00         | N (          | 50           | 4 L          | 60<br>60  | 0 t<br>0 t   | 6          | 20 C         | 50           | 2;           |              | 7 6            | 24          | 75           | 76      | 11         | 78       | 79       | 80     | 81       | 82       | 83         | 70          |             |             |             | 0           |             |             | 5           | 5            |

University of Alberta

|                                                                                                                                  | CURVE DEFLE<br>0.10677E-05<br>0.10618E-05  |                      |               |            |                                |           |           |                                |           |              |              |              |                                |           |           |              |                            |              |             |           |             |           |             |           |             |           |                              |           |             |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|---------------|------------|--------------------------------|-----------|-----------|--------------------------------|-----------|--------------|--------------|--------------|--------------------------------|-----------|-----------|--------------|----------------------------|--------------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|------------------------------|-----------|-------------|
| 0.20616E-04<br>0.18169E-04<br>0.15075E-04<br>0.11163E-04<br>0.011163E-04<br>0.62160E-05<br>0.0                                   | RIGHT<br>44E-05<br>04E-05                  |                      | DEFLECTION    |            | .24134E-02<br>48077E-02        | 71651E-02 | 94691E-02 | 11705E-01<br>13858E-01         | 15917E-01 | 17869E-01    | 19705E -01   | 21415E-01    | 22991E-01<br>24425E-01         | 25712E-01 | 26846E-01 | 27823E-01    | 28640E-01<br>29293E-01     | 29782E-01    | 30105E-01   | 30264E-01 | 30259E-01   | 30093E-01 | 29769E-01   | 292916-01 | 28663E-01   | 2/892E-01 | -0.253355-01<br>-0.253505-01 | 4795F -01 | 3530E-01    |
| 000000                                                                                                                           | LEFT CL<br>-04 0.                          |                      | -             | 0          | γ̈́                            | ο<br>Υ    | Ŷ         | ο̈́ς                           | ġ         | 9            | ο̈́ (        | ο<br>ο       | 5/236-04 -0.2<br>6425E-04 -0.2 | Ŷ         | ٩         | ο o          | 8143E-04 -0.2              | γ<br>γ       | P           | Ŷ         | o<br>P      | 9         | -04         | ρ<br>ο    |             |           | 4301E-04 -0.2                |           | -04 -0.2    |
| 0.10564E-02<br>0.11150E-02<br>0.11654E-02<br>0.12054E-02<br>0.12324E-02<br>0.12324E-02<br>0.12427E-02                            | RIGHT STRAIN<br>04 0.17009E<br>04 0.16915E |                      | CURVATURE     | 0.0        | 5 0.21565E-05<br>4 0.41465E-05 | 00        | o'        | 4 0.91689E-05<br>4 0.10564E-04 | òò        | ò            | o o          | 00           | 00                             | 0.0       | - ·       | 00           |                            | 0            | 0.          | 0.1       | 0           | 0.0       | 0.0         | 50        |             |           |                              | Ċ         |             |
| 6 16 11E +04<br>502 11E +04<br>38240E +04<br>25793E +04<br>12994E +04<br>46073E -04                                              | STRAIN RI<br>0.16797E-04<br>0.16892E-04    | V,DEF.               | SLIP STRAIN   | 0.0        | 0.60294E-05                    |           | •         | 0.20543E-04<br>0.22493E-04     |           |              | · · .        | 0.269/2E-04  |                                | .28403E   | . 28687E  | . 28905E     | 0.230685-04<br>0.29185F-04 | .29263E      | 0.29306E-04 | . 29317E  | 0.29296E-04 | .29242E   | 0.29153E-04 |           | 0.288435-04 | •         | 0.27903F-04                  | •         | 0.26754E-04 |
| လုပ္ငံပုပ္ငံ<br>က<br>။                                                                                                           | SLIP LEFT<br>0.14541E-02<br>-0.14556E-02   | IP STRAIN, CURV, DEF | SLIP          | <b>-</b> . | -0.12300E-02<br>-0.12036E-02   | .11639E   |           | -0.10554E-02<br>-0.99055F-03   |           | -0.84635E-03 | -0.76898E-03 | -0.6890/E-03 | -0.52366E-03                   | .43893E   | . 35324E  | -0.26680E-03 |                            | -0.46995E-05 |             | •         | 0.25908E-03 |           | 0.43454E-03 | •         | 0.6006/6-03 | •         | 0.86469E-03                  |           | 0.10291E-02 |
| -0.36973E+03<br>-0.39024E+03<br>-0.40789E+03<br>-0.42190E+03<br>-0.43133E+03<br>-0.43133E+03<br>-0.43495E+03<br>INFLECTION PDINT | LENGTH S<br>108.5203<br>179.4797 -         | -PUT FOR SLIP,SLIP   | NODE . LENGTH |            |                                | .0000     | 2.0000    | 15.0000<br>18.0000             | 0000      | . 0000       | 0000         |              | 800                            | 0000      | 0000      |              |                            | 0000         | 0000        | 0000      | 0000        | 0000      |             |           |             |           | 0000                         | 0000      | 0000        |
| 92<br>93<br>94<br>95<br>96<br>97<br>NUMBER OF                                                                                    | INPT<br>1<br>2                             | FINAL OUT-F          | NODAL . NO    | <b>-</b>   | N 0                            | 4         | ព         | 6                              | · 00      | თ            | ₽:           |              | 13                             | 14        | 15<br>5   | 9 -          | 18                         | 19           | 20          | 21        | 22          | 57        | 4 U         | 57        | 52          | a c       | 29                           | 30        | 16          |

1 . . .

\_ECTION -0.14016E-01 -0.14017E-01

| 32        | 93.0000         | 0.110835-02      | 0 259375-04  | 0 074076-05  | 100700                  |
|-----------|-----------------|------------------|--------------|--------------|-------------------------|
| EE        | 96.0000         |                  | 24902F-      |              | -0.22106E-01            |
| 34        | <b>99</b> .0000 | . 12577E-0       | .23591E      | 67808F-0     | - 20/ 14C -<br>101005 - |
| 35        | •               | 0.13262E-02      | 21933E-0     | .51187E      | 176015                  |
| 90<br>90  |                 | 0.13893E-02      | . 19834E     | 33280E-0     | 159685-                 |
| 37        | •               | 111              | . 17277E     | . 14074E-0   | . 14306E-               |
| 80        | ÷.              | .14924E          | .13872E      | -0.66757E-06 | .126316-                |
| 6 C T     | 4.1             | 0.15283E-02      | .96074E      | . 28976E     | . 10962E-               |
|           | •               | . 15500E         | .42463E      | .529756-0    | -0.93204E-02            |
|           | 120.0000        | .15538E          | . 25309E     | .78874E      | •                       |
| 7 V       |                 | 10349E           | 11098E       | . 10691E     | .62041E                 |
|           | ο σ             | 148/25           | . 21929E     |              | .47785E                 |
|           | ה כ             | 140335           | 0.35621E     | . 17065E-0   | .34772E                 |
|           | ,<br>v u        | 7. *             | . 52931E     | . 20720E     | . 23302E                |
|           | ,α              | 310001.          | цι           | .24764E      | . 13705E                |
|           | ; <del>.</del>  | 47084E           | 10248        |              | .63474E                 |
|           | 4               | 94458F           | 104/01.      | . 343396 -   | . 16369E                |
|           | 1               | 47103F           | - 100001 - 0 | 38338E-C     | . 26788E                |
|           | o               | .82481F          |              | 1000000      | . 163/2E                |
| 52        | 6               | 108595           | - 10240E-0   |              | •                       |
| 23        |                 |                  | 140741       | . 24/64E     | 0.13706E                |
| 54        | •               |                  | 3/98/6.      | . 20721E     | 0.23303E                |
|           |                 | 300041.          | 104000.0     | . 17066E -   | 0.34774E                |
| 20        | vir             |                  | - 219585     | . 13739E     | .47788E                 |
| 57        | λα              |                  | 105111.      | .10693E      | .62045E                 |
| 20        |                 |                  | .25/866      | . 78904E     | .77270E                 |
| ס<br>מי   |                 |                  | .41855E      | 53014        | . 932 10E -             |
| 209<br>09 |                 | -0.13293E-02     | . 95302E     | . 29025E     | . 10963E                |
|           | : c             | 1000071.         | 36//81.      | Ξ.           | .12632E                 |
| 62        |                 | -<br>-<br>-<br>- | 0.1/391E-04  | . 14 145E    | . 14307E                |
| 63        | c               | 0.122716         |              |              | . 15970E -              |
| 64        |                 | 125845           | •            | 0.51232E-05  | . 17603E                |
| 65        |                 | .11853E          | 24947F       | 83007E       |                         |
| 66        | 195.0000        | .11087E          | 25973E       | .97429E      | 201105                  |
| 67        |                 | . 10294E-0       | •            | . 11048E-0   | .23532E                 |
| 68        | •               | .94801E-0        | •            |              | .24797E                 |
| 200       | •               | .86490E-0        | . 27921E     | ٦.           | 3                       |
| 2:        | · .             | .78048E-0        | .28313E      | Τ.           |                         |
|           |                 | .69502E-0        | . 28618E     | 171E         | •                       |
| 4 C<br>   | 213.0000        | - PU8 / /E       | .28853E      | . 15935E     | •                       |
| 2 4       |                 | . 52191E-0       | 0.29030E-04  | . 16595E     | •                       |
| 1 U       |                 | 1004040          | .29159E      | .17150E      |                         |
|           |                 | 105010           | .292485      | 17601E       | •                       |
| 0 1       | 0000 677        | . 25910E         | . 29301E     | .17949E      | •                       |
|           | •               | .1/114E          | .29322E      | .18194E      | -0.30266E-01            |
| 0 0       | 5 c             | .83171E          | : 29311E-    | . 18336E -   | -0.30107E-01            |
|           | 234.0000        | . 47225E         | . 29268E-    | 375E-        | ġ                       |
| 2         |                 | 0.92438E-04      | 0.29191E-04  | 0.18311E-04  | -0.29295E-01            |
|           |                 |                  |              |              |                         |

| -0 286425-01 | -0.27826F-01 | -0 26849E-01 | -0.257145-01 | -0. 24427E-01 | -0 229936-01 | -0.21417F-01 | -0.19707F-01 | -0.17871E-01 | -0.159195-01 | -0 13860E-01 | -0.11706F-01 | -0 94706F-02 | -0 71663F-02 | -0 480865-02 |             |             | 0.44101                        |   |
|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------------------------|---|
| 0.18143F-04  | 0.17871E-04  | 0.17495F-04  | 0.170135-04  | 0.16426E-04   | 0.15730E-04  | 0.14926E-04  | 0.14011E-04  | 0.12981E-04  | 0.11835E-04  | 0.10568E-04  | 0.91735E-05  | 0.764625-05  | 0.597726-05  | 0.415576-05  | 0 216836-05 |             |                                |   |
| 0.29074E-04  | 0.28913E-04  | 0.28697E-04  | 0.28415E-04  | 0.28052E-04   | 0.27587E-04  | 0.26995E-04  | 0.26242E-04  | 0.25288E-04  | 0.24080E-04  | 0.22551E-04  | 0.20616E-04  | 0.18169E-04  | 0.15075E-04  | 0.11163E-04  | 0.62160F-05 | 0.0         | SLIP BEHAVIOUR                 |   |
| 0.17987E-03  | 0.26688E-03  | 0.35334E-03  | 0.43906E-03  | 0.52383E-03   | 0.60738E-03  | 0. 68935E-03 | 0.76934E-03  | 0.84681E-03  | 0.92107E-03  | 0.99129E-03  | 0.10564E-02  | 0.11150E-02  | 0.11654E-02  | 0.12054E-02  | 0.12324E-02 | 0.12427E-02 | NON-LINEAR LOAD-SLIP BEHAVIOUR |   |
| 240.0000     | 243.0000     | 246.0000     | 249.0000     | 252.0000      | 255.0000     | 258.0000     | 261.0000     | 264.0000     | 267.0000     | 270.0000     | 273.0000     | 276.0000     | 279.0000     | 282.0000     | 285.0000    | 288.0000    | TAFILE IS FOR                  |   |
| 81           | 82           | 83           | 84           | 85            | 86           | 87           | 88           | 68           | 06           | 91           | 92           | 69           | 94           | 95           | 96          | 97          | C THIS DATAFILE<br>C           | 0 |

000

| 97                                                                                     |                       |           |    |
|----------------------------------------------------------------------------------------|-----------------------|-----------|----|
| 0.2650                                                                                 | 0.100000000           |           |    |
| 6.5300 0.4650 0.2650 97                                                                | 0.10                  |           |    |
| 00 6.5300<br>0230                                                                      | -0,0014430970         |           |    |
| 3.000<br>0.1000E-0                                                                     |                       |           |    |
| 9.1300 239.0000 3.0000<br>0.3500E+06 0.1000E-0230                                      | 288.00000000          |           |    |
| 288.0000 48.0000 4.0000 12.0900<br>0.3834E+07 0.2960E+08 0.1000E+31<br>0.5000 4 3.0000 |                       |           |    |
| 4.0000<br>60E+08<br>00                                                                 | 0.0                   | 100.00000 |    |
| 8.0000<br>0.2960<br>3.0000                                                             | 000000                |           |    |
| 3.0000 48<br>3.3834E+07<br>5000 4                                                      | 2000.000000000<br>0 0 | 350.00000 |    |
| 285                                                                                    | +                     |           | 20 |

0. 108951E-06 29835. 144. 49

C IHIS OU-PUT IS BASED ON NON-LINEAR LOAD-SLIP BEHAVIOUR OF SHEAR CONNECTORS C

\*\*\*\*\*\* ECHD CHECK \*\*\*\*\*\*\*

239.0000 WIDTH OF CON.SLAB= 48.0000 DEPTH OF CON.SLAB= 48.0000 DEPTH OF ST.BEAM= 12.0900 AREA OF ST.BEAM= 9.1300 MOMENT OF INERTIA OF ST.BEAM= 2 ELEMENT LENGTH= 3.0000 WIDTH OF FLANGE= 6.5300 0.4650 WIDTH OF FLANGE 6.5300 THICKNESS OF FLANGE 6.5300 WIDTH OF WEB 0.2650 NUMBER OF NODAL POINTS 97 288.0000 BEAM= LENGTH OF

0.3834E+07 0.2960E+08 0.1000E+31 CONCRETE MODULUS= STEEL MODULUS= SHEAR MODULUS=

SHEAR CONNECTOR MODULUS= 0.3500E+06 TOLERANCE = 0.1000E-02 MAXIT= 30

DIA OF REBARS= 0.5000 NUMBER OF REBARS= 4 CENTRID OF REBARS FROM TOP FLANGE=

3.0000

UNIFORM LOAD LBS PER FODT= 2000.00C0 STARTING CORDINATE= 0.0 ENDING CORDINATE= 288.0000 INIIAL SLIP= -0.001443 SETDS=

0.100000E+00

ND.OF CONCENTRATED LOAD= 0 ND.OF INTERIROR SUPPORT= 1 IPRINT= 0 \*\*\* CA= 0.35000E+03 \*\*\* CB= 0.10000E+03

\*\*\* SUPPORT CONDITION \*\*\*

0.108951E-06 INTIAL SLIP= 29835.00000 LOAD= LENGTH FROM LEFT END= 144.0000 0.11930E+02 0.11930E+02 CENTROID OF COMPOSITE SECTION = 1\*\*\*\* NEW SECTION PROPERTIES \*\*\* CENTROID OF COMPOSITE SECTION = 49 NODE NO.=

ALPHA = 0.13093E-07 BETA = -0.99865E-09 TOTAL MOMENT DF INERTIA = 0.70439E+03

0.13093E-07 -0.99865E-09 0.70439E+03

252

| AREA OF                        | SLAB                                    | · .                          | li                                          | 0.24869E+02                 | +02                               | 0.24869E+02                                  |
|--------------------------------|-----------------------------------------|------------------------------|---------------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------|
| CENTROIDAL                     | DAL DISTANCE                            | ΟF                           | CONCRETE =                                  | 0.21604E+0                  | 101                               | 0.21604E+01                                  |
| TOTAL AF                       | AREA                                    |                              | 1)                                          | 0.339999E+02                | +02                               | 0.33999E+02                                  |
| CENTROIDAL                     | DAL DISTANCE                            | E OF STEEL                   | ۳<br>ن_                                     | -0.58846E+01                | +01                               | -0.58846E+01                                 |
| PRODUCT                        | OF ES AND (                             | AND CONC.AREA                | 11                                          | 0.73613E+09                 | 60+                               | 0.73613E+09                                  |
| AREA OF                        | STEEL SECTION                           | NOI                          | 11                                          | 0.91300E+01                 | +01                               | 0.91300E+01                                  |
| ALPHAK                         |                                         |                              | N<br>N                                      | 0.67694E-01                 | -01                               | 0.67694E-01                                  |
| SHEAR DE<br>OITT= 3<br>OITT= 3 | DEFLECTION FACTOR<br>31 S(1)<br>31 S(1) |                              | -0.577239E-02<br>0.435804E-06               | 0 39295E-30<br>E-02<br>E-06 | -30<br>FORCE(NNP)=<br>FORCE(NNP)= | 0.39295E-30<br>0.399512E+05<br>-0.214585E+03 |
| SUPPORT<br>OITT=<br>OITT=      | REACTION=<br>7<br>15                    | S(1)=                        | 302048E+05<br>-0.595070E-02<br>0.989944E-06 | 5<br>Е-02<br>Е-06           | FORCE (NNP)=<br>FORCE (NNP)=      | 0.748781E-03<br>-0.981741E-03                |
| SUPPORT<br>OITT=<br>OITT=      | REACTION=<br>8<br>3                     | S(1)= 0.2                    | 296435E+05<br>-0.671906E-02<br>0.989939E-06 | 5<br>E - 06<br>E - 06       | FORCE ( NNP )=<br>FORCE ( NNP )=  | 0.148803E-03<br>0.246029E-03                 |
| SUPPORT<br>OITT= 1<br>OITT=    | REACTION=<br>10<br>3                    | S(1)=                        | 296958E+05<br>-0.664613E-02<br>0.989945E-06 | 5<br>E - 02<br>E - 06       | FORCE(NNP)=<br>FORCE(NNP)=        | 0. 228661E-03<br>0. 117494E-05               |
| SUPPORT<br>0111=<br>0111=      | REACT ION=<br>6<br>1                    | 0.2<br>S(1)= -6<br>S(1)= 0.2 | 296906E+05<br>-0.665342E-02<br>0.989945E-06 | 5<br>E - 02<br>E - 06       | FORCE (NNP) =<br>FORCE (NNP) =    | 0.148781E-03<br>-0.148259E-04                |
| SUPPORT<br>OITT=<br>OITT=      | REACTION=<br>5<br>1                     | 0.25<br>S(1)= -0<br>S(1)= 0  | 296911E+05<br>-0.665270E-02<br>0.989945E-06 | 5<br>- 06<br>- 06           | FORCE (NNP) =<br>FORCE (NNP) =    | 0.516570E-04<br>0.211173E-03                 |
| SUPPORT<br>01TT=               | REACTION=<br>4                          | 0.29<br>S(1)= -(             | 296911E+05<br>-0.665277E-02                 | 5<br>E - 02                 | FORCE(NNP)=                       | 0.465523E-03                                 |
| NODE NO.                       | SHEAR                                   | FLOW                         | FORCE                                       | Ц<br>Ц                      | SLIP                              | SLIP SI                                      |

STRAIN

-0. 66528E -02 -0. 65342E -02 -0. 65342E -02 -0. 53342E -02 -0. 53925E -02 -0. 55014E -02 -0. 55034E -02 -0. 553726E -02 -0. 46451E -02 -0. 48431E -02 -0. 19346E -02 -0. 19562E -02 -0. 19567E -02 0. 41494E -02 0. 41494E -02 0. 41494E -02 0. 41494E -02 0. 48131E -02 0. 555160E -02 0. 49604E -02 0. 55160E -02 0. 57693E -02 0. 57695E -02 0. 49604E -02 0. 577777 -02 0. 19667E -02 0. 43769E -02 0. 49667E -02 0. 43769E -02 0. 49667E -02 0. 43769E -02 0. 49667E -02 0. 43769E -02 0. 40612E -02 0. 40612E -02 0. 40612E -02 0. 40667E -02 0. 406 0.0 -0.151555404 -0.151555404 -0.293486404 -0.294805404 -0.294805404 -0.294805404 -0.2393935404 -0.339395404 -0.339395404 -0.339395404 -0.554455404 -0.5593465404 -0.55934556404 -0.53934295404 -0.53934295404 -0.53934295404 -0.53934295404 -0.53934295404 -0.53934555404 -0.53934556404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.5393656404 -0.25055556404 -0.25055556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.25055556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.25055556404 -0.25055556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.2505556404 -0.250556404 -0.250556404 -0.250556404 -0.250556404 -0.250556404 -0. 0. 17005E +03 0. 16951E +03 0. 16531E +03 0. 16531E +03 0. 15725E +03 0. 15725E +03 0. 15725E +03 0. 13822E +03 0. 1092E +03 0. 15548E +02 0. 31210E +02 0. 4750E +02 0. 4752E +03 0. 10996E +03 0. 13371E +03 0. 13371E +03 0. 13371E +03 0. 13371E +03 0. 15535E +03 0. 15535E +03 0. 14535E +03 0. 15535E +03 0. 15555E +03 0. 155555E +03 0. 15555555555555555555555555555 34685E+02 15326E+00 ò 0 <u>ه ه ٥ ۲</u> 104501 112 13 17 42 45 9 47 800

|                                                                                                                                  | 423076<br>1933985<br>1933985<br>215095<br>337765<br>337765<br>337765<br>337765<br>3337765<br>3337765<br>3337765<br>3337765<br>3337765<br>3337765<br>110855<br>110855<br>110855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           | 16768E<br>16651E<br>16443E<br>16141E<br>15742E<br>15742E<br>15241E<br>13922E<br>13922E<br>13096E                                | 0.11093E-03<br>0.99083E-04<br>0.8973E-04<br>0.71559E-04<br>0.55807E-04<br>0.38678E-04<br>0.20134E-04<br>0.0                  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 10524E<br>19755E<br>19755E<br>19755E<br>34776E<br>40703E<br>40703E<br>149699E<br>52882E                                          | 568815<br>577988<br>577988<br>576926<br>576926<br>557626<br>553637<br>553637<br>553637<br>553637<br>553637<br>553637<br>553755<br>41855<br>415355<br>415355<br>415355<br>415355<br>5337355<br>533637<br>5337355<br>533637<br>5337355<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>5336375<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>533655<br>535655<br>535655<br>535655<br>535655<br>535655<br>535655<br>535655<br>535655<br>535655<br>535655<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>5356555<br>53575555<br>5357555<br>5357555<br>53575555<br>53775555<br>53775555<br>5377555555<br>5377555555<br>537755555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 233700E -0<br>.23424E -0<br>.234354E -0<br>.20315E -0<br>.15547E -0<br>.15547E -0<br>.10670E -0<br>.57134E -0<br>.57134E -0<br>.70362E -0 | 93759E<br>93759E<br>143956E<br>19366E<br>24261E<br>23051E<br>33706E<br>33706E<br>33196E<br>42488E<br>42488E<br>42488E<br>50346E | 0.53842E-02<br>0.57001E-02<br>0.59787E-02<br>0.64080E-02<br>0.65508E-02<br>0.65508E-02<br>0.66401E-02<br>0.66716E-02         |
| 28304E+0<br>26838E+0<br>24622E+0<br>21805E+0<br>18508E+0<br>14828E+0<br>14828E+0<br>16847E+0<br>56348E+0<br>56348E+0<br>23566E+0 | 225656<br>683866<br>683866<br>114578<br>14578<br>145576<br>2205466<br>2205466<br>145575<br>238196<br>445522<br>238196<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>455226<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45526<br>45566<br>45566<br>45566<br>45566<br>45566<br>45566<br>45566<br>455666<br>455666<br>455666<br>45566666666 |                                                                                                                                           |                                                                                                                                 | -0.33998E+04<br>-0.29532E+04<br>-0.24888E+04<br>-0.24888E+04<br>-0.15181E+04<br>-0.15103E+04<br>-0.51033E+03<br>0.46552E-03  |
| 34962E<br>62742E<br>84988E<br>10281E<br>11703E<br>12829E<br>143707E<br>14374E<br>14374E                                          | 0.15183E+03<br>0.15364E+03<br>0.15364E+03<br>0.15344E+03<br>0.15345E+03<br>0.15159E+03<br>0.14474E+03<br>0.13978E+03<br>0.13383E+03<br>0.13383E+03<br>0.11896E+03<br>0.11896E+03<br>0.11896E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000000000                                                                                                                                 | 31324E+0<br>46925E+0<br>16623E+0<br>75398E+0<br>88241E+0<br>10015E+0<br>11112E+0<br>113845E+0<br>13845E+0<br>13845E+0           | -0.14571E+03<br>-0.15207E+03<br>-0.15207E+03<br>-0.16202E+03<br>-0.16560E+03<br>-0.16821E+03<br>-0.16983E+03<br>-0.17039E+03 |
| 0 8 4 9 3 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           | ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0<br>0 ← 0 ∩ 1 ↔ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        |

University of Alberta

NUMBER OF INFLECTION POINT=

<sup>N</sup>

LEFT CURVE RIGHT CURVE DEFLECTION 4 -0.82205E-06 -0.81145E-06 -0.17289E-01 4 -0.81908E-06 -0.80034E-06 -0.17314E-01 
 SLIP
 LEFT
 STRAIN
 RIGHT
 STRAIN
 L

 0.57867E-02
 -0.10778E-04
 -0.10639E-04
 -0.10639E-04
 -0.10739E-04
 -0.10493E-04
 LENGTH 109.8342 178.1658 1 NPT 2

FINAL OUT-PUT FOR SLIP, SLIP STRAIN, CURV, DEF.

| NUUE . LENGIH | 3617         | SLIP SIKAIN  |              | DEFLECTION                   |
|---------------|--------------|--------------|--------------|------------------------------|
| 0.0           |              | 0.0          | 0.0          | 0.0                          |
| 0000 s        | -0.65342F-02 | 0.19/62E-04  | 0.27886E-05  | -0.32326E-02<br>-0.64404E-02 |
| 00000.6       | -0.63925E-02 | 0.55459E-04  | •            | -0.95999F-02                 |
| •             | -0.62014E-02 | 0.71222E-04  | •            | -0.12689E-01                 |
| •             | -0.59651E-02 | 0.85646E-04  | ٠.           | -0.15688E-01                 |
|               |              | 0.98766E-04  | 0.14142E-04  | -0.18576E-01                 |
| •             | -0.53726E-02 | 0.11062E-03  |              | -0.21338E-01                 |
| •             | -0.50238E-02 | 0.12124E-03  | 0.17483E-04  | -0.23958E-01                 |
| 27.0000       | -0.46451E-02 | 0.13067E-03  | •            | -0.26420E-01                 |
|               | -0.42398E-02 | •            | 0.20172E-04  | -0.28713E-01                 |
| 33.0000       | -0.38115E-02 | Ξ.           | 0.21279E-04  | -0.30824E-01                 |
| 36.0000       | -0.33633E-02 | 0.15215E-03  | 0.22231E-04  | -0.32744E-01                 |
| 39.0000       | -0.28986E-02 | 0.15716E-03  | 0.23032E-04  | -0.34464E-01                 |
|               | -0.24203E-02 | Τ.           | 0.23683E-04  | -0.35978E-01                 |
|               |              | Τ.           | 0.24187E-04  | -0.37279E-01                 |
|               | -0.14352E-02 | 0.16627E-03  | 0.24548E-04  | -0.38362E-01                 |
|               |              | Ξ.           | •            | -0.39225E-01                 |
|               | -0.43056E-03 | <del>.</del> | •            | -0.39865E-01                 |
|               | 0.72548E-04  | 0.16723E-03  | •            | -0.40281E-01                 |
|               | 0.57284E-03  | -            |              | -0.40475E-01                 |
|               | 0.10678E-02  | <b>-</b>     |              | -0.40448E-01                 |
| 0             | 0.15549E-02  | ÷.           | 0.23816E-04  | -0.40202E-01                 |
|               | 0.20313E-02  | 0.15655E-03  | 0.23207E-04  | -0.39743E-01                 |
| 72.0000       | 0.24942E-02  | Υ.           | 0.22452E-04  | -0.39075E-01                 |
|               | •            | ۲.           | 0.21549E-04  | -0.38205E-01                 |
| 78.0000       | 0.33674E-02  | Τ.           | 0.20493E-04  | -0.37141E-01                 |
| ٠             | •            | 0.13033E-03  | 0.19282E-04  | -0.35894E-01                 |
| 84.0000       | 0.41494E-02  | 0.12106E-03  | 0.17913E-04  | -0.34473E-01                 |
| 87,0000       | 0.44978E-02  | 0.11061E-03  | 0.16384E-04  | -0.32892E-01                 |
| 90.0000       |              | 0.98960E-04  | 0.14690E-04  | -0.31163E-01                 |
| 93.0000       | 0.50916E-02  | 0.86064E-04  | 0.12829E-04  | -0.29302E-01                 |
| 96 . 0000     | 0.53295E-02  | 0.71883E-04  |              | -0.27327E-01                 |
| 0000.66       |              | 0.56379E-04  | 0.85948E-05  | -0.25255E-01                 |
| 102.0000      | 0.56677E-02  | 0.39510E04   | 0.62153E-05  | -0.23105E-01                 |
| •             | •            | 0.21237E-04  | 0.36567E-05  | -0.20900E-01                 |
|               | ٠            | 0.16112E-05  | 0.92302E-06  | -0.18663E-01                 |
| 111.0000      | 0.57693E-02  | -0.19301E-04 | -0.19807E-05 | -0.16416E-01                 |

| -0.14189E-01<br>-0.12008E-01<br>-0.99039E-02 |                                                             | -0.29079E-02<br>-0.16959E-02<br>-0.77850F-03 | . 19918E<br>. 16394E         | -0.20123E-03<br>-0.78261E-03 | . 1702 1E                    | -0.23162E-02<br>-0.43834E-02 | .60644E                      | -0. /3220E -02<br>-0. 99209E -02 | . 1202BE     | -0.14211E-01                 | -0.18690E-01 | . 20929E -           | -0.23136E-01               | . 27361E - | .29338E              | . 31200E -                 | -0.34513E-01 | .35934E   | . 37182E                     | -0.38246E-01               | . 39785E | .40245E      | .40490E     | -0.40323E-01 | . 39906E    | . 39265  | . 38401E    | . 37317E                   | -0.36015E-01 | . 32778E | H           | -0.28743E-01 |
|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|--------------|------------------------------|--------------|----------------------|----------------------------|------------|----------------------|----------------------------|--------------|-----------|------------------------------|----------------------------|----------|--------------|-------------|--------------|-------------|----------|-------------|----------------------------|--------------|----------|-------------|--------------|
| . 5 1094E<br>. 84 199E<br>. 11929E           |                                                             | -0.28064E-04<br>-0.32661E-04<br>-0.37505E-04 | -0.42610E-04<br>-0.46298E-04 | -0.42611E-04<br>-0.37506E-04 | 326635                       | -0.23705E-04                 | -0.19567E-04                 |                                  |              | -0.51162E-05                 | . •:         | . 36775E             | 0.62356E-05<br>0.86146E-05 | . 108 18E  | 0.12848E-04          | 0.14708E-04                | . 17931E     |           | . 205 10E                    | 0.21566E-04<br>0.22470F-04 | . 23224E | •            | 0.24299E-04 | 2481         | 0.24868E-04 | .24787E  | .24567E     | 0.24206E-04                | •            |          | 0.21300E-04 | 0.20194E-04  |
| 42218E<br>66577E<br>92592E                   | -0.12033E-03<br>-0.14988E-03<br>-0.18131E-03<br>-0.447EE-03 | -0.214755-03<br>-0.250325-03<br>-0.288175-03 | . 32852E<br>. 34934E         | -0.32853E-03<br>-0.28820E-03 | 25035E                       | .18136E                      | -0.14993E-03                 | <u>ອ</u>                         | -0.66658E-04 | -0.42307E-04<br>-0.19398E-04 | 0.18911E-05  | .21509E              | 0.39//6E-04<br>0.56638E-04 | .72136E    | .86312E              | 0.33204E-04<br>0 11085E-03 |              | 13057     | 0.13871E-03                  | . 15177                    | . 15677E | 0.16080E-03  |             | . 16746E     | . 16799E    | . 16768E | . 16651E    | 0.16443E-03<br>0.16443E-03 | . 157425     | . 15241E | .14636E     | 0.13922E-03  |
| .56780E<br>.55160E<br>.52785E                | 0.49604E-02<br>0.45565E-02<br>0.40612E-02<br>0.34686E-02    | .27727E<br>.19667E                           | . 10436<br>. 43799           | -0.10524E-02<br>-0.19755E-02 | -0.27816E-02<br>-0.34776E-02 | .40703E                      | -0.45658E-02<br>-0.49699E-02 | .52882E                          | -0.55259E-02 |                              | . 58052E     | -0.57692E-02         |                            |            | -0.50977E-02         |                            |              | .37747E-0 | -0.33700E-02<br>-0.29424E-02 | .24954E-0                  | . 20318E | -0.15547E-02 | . 57134E    | .70362E      |             | .93759   | 0.143935-02 | . 24261F                   | . 29051      | . 33706  | 8196E       | U.42488E-U2  |
| 4100                                         | 126.0000<br>129.0000<br>132.0000                            | ່ມີເວັດ                                      | • •                          |                              | 153.0000<br>156.0000         | •                            | 162.0000<br>165.0000         | 168.0000                         | 171.0000     |                              | 0            | 183.0000<br>186.0000 |                            | 192.0000   | 195.0000<br>198.0000 |                            |              |           | 2 13 0000                    |                            | מ        | 222.0000     | <br>m       |              | 4 E         | 0000.152 |             | 46.                        |              | · •      | 255.0000    | 238.0000     |
| 0010                                         | 1444<br>1040                                                | 46                                           | 4 4 6<br>8 0 (               | 5<br>-<br>-                  | 5<br>2<br>2<br>2<br>2<br>2   | 54                           | 20<br>20                     | 57                               | 8 0<br>0 4   | 00                           | 61           | 62                   | 64                         | 65         | 66<br>67             | 68                         | 63           | 07        | 72                           | 73                         | 74       | ر ہ<br>76    | 77          | 78           | 5.0         |          | - 6         | 83                         |              |          | 9.6<br>9.7  | 5            |

| SHEAR DEFLECTION FACTOR = 0 393955-30 |
|---------------------------------------|
|---------------------------------------|

| .0000 0.46549E-02 0.13096E-03 0. |    | .0000 0.57001E-02 0.99083E-04 0.<br>.0000 0.59787E-02 0.85973E-04 0. | 0000 0.62160E-02 0.71559E-04 0. | .0000 0.64080E-02 0.55807E-04 0. | 0.66401F-02 0.38678E-04 0.54407<br>0.66401F-02 0.20134E-04 0.52407 | 0.66716E-02 0.0 | • |
|----------------------------------|----|----------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------------------------------------------------|-----------------|---|
| 261.0000<br>264.0000             |    | 270.0000<br>273.0000                                                 | •                               | 2/9.0000                         | • •                                                                | 288.0000        | 2 |
| 88<br>80<br>80                   | 06 | 91<br>92 ·                                                           | 66                              | 4 U<br>1                         | 96                                                                 | 97              | 8 |

| =1110<br>=1110            | t 4                  | S(1)=<br>S(1)=         | -0.703054E-02<br>0.103169E-05                   | FORCE(NNP)=<br>FORCE(NNP)=     | 0.546381E-03<br>-0.157498E-05 |
|---------------------------|----------------------|------------------------|-------------------------------------------------|--------------------------------|-------------------------------|
| SUPPORT<br>01TT=<br>01TT= | REACTION=<br>11<br>3 | 0<br>S(t)=<br>S(t)=    | 293953E+05<br>-0.700227E-02<br>0.103161E-05     | FORCE (NNP) =<br>FORCE (NNP) = | 0.593442E-03<br>-0.700219E-03 |
| SUPPORT<br>01TT=<br>01TT= | REACTION=<br>8<br>3  | 0<br>S(1)=<br>S(1)=    | . 293931E+05<br>-0. 700482E-02<br>0. 103162E-05 | FORCE(NNP)=<br>FORCE(NNP)=     | 0.265213E-03<br>0.628305E-04  |
| SUPPORT<br>01TT=          | REACTION=<br>5       | 0.<br>S(1)=            | 0.293933E+05<br>-0.700459E-02                   | FORCE(NNP)=                    | 0.471124E-03                  |
| NODE NO                   | SHEAR                | ELOW                   | FORCE                                           | SLIP                           | SLIP STRAIN                   |
| -                         | 0.17                 | 17627E+03              | 0.0                                             | -0.70046E-02                   | 0 0                           |
| 20                        | 0.17                 | 17574E+03              | -0.52802E+03                                    | -0.69739E-02                   |                               |
| 04                        | •                    | 171655+03              | -0.10529E+04<br>-0.15716E+04                    | -0.68848E-02                   | 0.387205                      |
| ີ<br>ເມ                   | · ·                  | 6817E+03               | -0.20814E+04                                    | -0.65485E-02                   | 2 0.36039E=04                 |
| 9                         | Τ.                   | 6377E+03               | -0.25793E+04                                    | -0.63095E-02                   |                               |
| ~ '                       | 0.15                 | 5847E+03               | -0.30626E+04                                    | -0.60287E-02                   | -                             |
| 00 (                      | <del>.</del> .       | 5226E+03               | -0.35287E+04                                    |                                | o                             |
| νÇ                        | 0.14                 | 14516E+03<br>12714E+03 | -0.39748E+04                                    | -0.53568E-02                   | 0                             |
| 2 =                       |                      | 37 14E+03<br>2822E+03  | -0.433835+04<br>-0 479635+04                    | -0.49732E-02                   | o o                           |
| 1                         |                      | 11838E+03              | -0.51662E+04                                    | -0.41283E-02                   | 2 0.14081E-03<br>0 14811E-03  |
| 13                        |                      | 10761E+03              | -0.55052E+04                                    | -0.36739E-02                   |                               |
| 44                        | •                    | 95909E+02              | -0.58105E+04                                    | -0.32024E-02                   | 0                             |
| ត្ រំ                     |                      | 83272E+02              | -0.60793E+04                                    | -0.27170E-02                   | °                             |
| 91                        | 69.0<br>0            | 69/01E+02<br>EE704E+02 | -0.63087E+04                                    | -0.22208E-02                   | 0.1                           |
| - 4                       | •                    | 39795F+02              | -0.64961E+04<br>-0.66386E+04                    | -0.17165E-02                   | 0.0                           |
|                           |                      | 23498E+02              | -0.67335F+04                                    | -0.12010E-02<br>-0.69496E-03   | 2 0.1/026E-03                 |
| 20                        |                      | 63453E+01              | -0.67783E+04                                    | -0.18296E-03                   | ċċ                            |
| 21                        |                      | 11244E+02              | -0.67710E+04                                    | 0.32654E-03                    |                               |
| 22                        | -0.27                | .27912E+02             | -0.67122E+04                                    | •                              | 0                             |
| 23                        | -0.43                | .43531E+02             | -0.66051E+04                                    | 0.13282E-02                    | 0.1                           |
| 24                        |                      | 58096E+02              | -0.64526E+04                                    | 0.18151E-02                    | 0.1                           |
| 25                        |                      | 71611E+02              | -0.62581E+04                                    | 0.22891E-02                    | 0.                            |
| 26                        | -0.84(               | .84079E+02             | -0.60245E+04                                    | 0.27474E-02                    | 0.1                           |
| 27                        | ÷.,                  | .95511E+02             | -0.57551E+04                                    | 0.31867E-02                    | 0                             |
| 28                        |                      | 10591E+03              |                                                 |                                | 0                             |
| 50                        |                      | 11530E+03              |                                                 | . 39963E                       | 0                             |
| OF<br>F                   | -0.12                | 368E+03                | -0.47627E+04                                    | 0.43598E-02                    | 2 0.11582E-03                 |
|                           |                      |                        |                                                 |                                |                               |

| <br>0 104505-03 | 919545       |              | . 63021E  | 0.46553E-04 | 0.28698E-04 | 0.94110E-05 | •            | •        | Ξ.           | . 10506E    | . 12337E                  | . 14501E    | -0.1/031E-03<br>-0.40060E-03 | 733695       | 27280F       | 31809E      | .34240E      | -0.31811E-03 | -0.27284E-03 |          |           | ₹.            | . 14512E-   | .12349E | . 10520E | -0.90004E-04                 |                  | -U. 109885-04<br>0.956935-05 | .28852E  | •            |          | .78284E                    | 0.92094E-04 | .115956 | . 12608E     | 0. 13506E-03 | 0.14293E-03 | 0.14973E-03 | 0.15550E-03 | 0.16029E-03 | 0.16413E-03 | 0.16706E-03 | Τ.        | 0.17038E-03 | 0.17080E-03  |
|-----------------|--------------|--------------|-----------|-------------|-------------|-------------|--------------|----------|--------------|-------------|---------------------------|-------------|------------------------------|--------------|--------------|-------------|--------------|--------------|--------------|----------|-----------|---------------|-------------|---------|----------|------------------------------|------------------|------------------------------|----------|--------------|----------|----------------------------|-------------|---------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|--------------|
| 0.46912E-02     | 868          | .52430E      | .54557E   | . 56211E    | .57350E     | .57933E     | 57915E       | . 560985 | . 53609E     | .507076     | 100014.                   | 0.433056-02 | 330865                       | . 26623F     | . 19069E     | . 10255E-0  | -0.16527E-05 | τ.           | . 19103E     | . 26659E | . 33124E  | .38644E       | 43348E      | .47351E | .50757E  | -0.53663E-02<br>-0.561575-02 | 201010<br>570705 | .57991E                      | 57403E   | . 56259E     | . 54601E | -0.52469E-02               |             | .43626E | -0.39987E-02 | -0.36061E-02 | .31883E     | .27485E     | .22899E     | . 18 155E   |             | .83077E     | .32584E-0 | . 18403E-   | 0.69642E-03  |
| -0.43806E+04    | -0.39779E+04 | -0.355756+04 |           |             | · ·         |             | . 12995E     | •        | . 39912E     | 0.2/552E+02 | 1474747<br>14747<br>14747 | •           | - ÷-                         | Ξ.           | •            | 0.21121E+04 | ŝ            | • :          | . 19691E     |          | . 1484 1E | •             | .81485E     | •       |          | -0.401836+03<br>-0.845446+03 | •                |                              |          |              | ٠        | -0.35624E+04               |             | •       | •            | •            | •           | •           | ,           |             |             |             | .67772E   | .67845E     | ~0.67396E+04 |
| -0. 13 106E+03  | . 13743E     | 142          | . 147 17E | 15050E      | . 15276E    | ດ<br>ເ      | -0.15387E+03 |          | -0.14524E+03 | ÷÷          |                           | . –         | ົ                            | -0.81809E+02 | -0.60764E+02 | •           | .578395      | •            | •            | •        |           | <b>.</b> .    | 0.12311E+03 | 7.7     |          | . –                          | 153996+0         | . 15402E                     | . 15286E | <b>-</b> . · | . 14726E | 0.14289EF03<br>0_13754E+03 | . –         | .12374E |              |              | •           |             | •           |             | •           | •           | - (       | .638225     | -0.23545E+02 |
| 31              | 32           | E E          | 34        | 0 0<br>0 0  | 95          | ) n         |              |          | 2 -          | - 64        | 43                        | 44          | 45                           | 46           | 47           | 48          | 40           | 20           | 5            |          | יי<br>ה ע | 4 U<br>U<br>U | ה<br>שנים   | 57      | ŝ        | 20                           | 60               | 61                           | 62       | 63           | 4 U      | 66                         | 67          | 68      | 69           | 202          |             |             |             | 4           | 75          | 9/10        | 10        | 2 0         | 2            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>6</u> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEFLECTION -<br>5 -0.17063E-01<br>5 -0.17077E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CURVE<br>-0.150555-0<br>-0.117445-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0. 17039E -03<br>0. 16910E -03<br>0. 16910E -03<br>0. 165915E -03<br>0. 15962E -03<br>0. 15962E -03<br>0. 14826E -03<br>0. 14826E -03<br>0. 14826E -03<br>0. 14826E -03<br>0. 112144E -03<br>0. 102144E -03<br>0. 102144E -03<br>0. 102144E -03<br>0. 102145E -04<br>0. 20165E -04<br>0. 20165E -04<br>0. 20165E -04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEFT CURVE RIGHT<br>-0. 11869E -05<br>-0. 11869E -05<br>-0. 15098E -05<br>DEFLECTION<br>0. 0<br>0. 0<br>-0. 33347E -02<br>-0. 33347E -02<br>-0. 13094E -01<br>-0. 13094E -01<br>-0. 13094E -01<br>-0. 13094E -01<br>-0. 13094E -01<br>-0. 29680E -01<br>-0. 29680E -01<br>-0. 23875E -01<br>-0. 33876E -01<br>-0. 34776E -01<br>-0. 34776E -01<br>-0. 41391E -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120886 - 02<br>171876 - 02<br>171876 - 02<br>272016 - 02<br>367786 - 02<br>367786 - 02<br>413276 - 02<br>413276 - 02<br>536566 - 02<br>631686                                                                                                                                                                                                                                                                                                                                                | STRAIN<br>-0.15398E-04<br>-0.15398E-04<br>CURVATURE<br>0.0<br>54867E-05<br>0.19679E-05<br>0.19679E-04<br>0.17714E-04<br>0.16466E-04<br>0.17714E-04<br>0.17714E-04<br>0.19231E-04<br>0.25654E-04<br>0.25654E-04<br>0.22654E-04<br>0.256347E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 66445E+04<br>65018E+04<br>65018E+04<br>63142E+04<br>60845E+04<br>58155E+04<br>55100E+04<br>48005E+04<br>48005E+04<br>44021E+04<br>35318E+04<br>35318E+04<br>35318E+04<br>35318E+04<br>3653E+04<br>35318E+04<br>00.<br>25816E+04<br>15731E+04<br>15731E+04<br>00.<br>25816E+04<br>35316+04<br>3653E+04<br>3653E+04<br>3653E+04<br>3653E+04<br>3653E+04<br>3653E+04<br>3653E+04<br>360<br>3712E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00.<br>37112E-03<br>00. | LEFT STRAIN<br>-02 -0.15561E-04<br>-02 -0.68822E-04<br>N,CURV,DEF.<br>SLIP STRAIN<br>SLIP STRAIN<br>-02 0.0<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.38720E-04<br>-02 0.38720E-04<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.19964E-04<br>-02 0.15617E-04<br>-02 0.15617E-03<br>-02 0.15472E-03<br>-02 0.15617E-03<br>-02 0.1566E-03<br>-02 0.17026E-03<br>-02 0.17026E-03<br>-02 0.17026E-03<br>-02 0.17026E-03<br>-03 0.17026E-03<br>-04 03<br>-04 03<br>-05 0.17026E-03<br>-05 0.17026E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 578315<br>578315<br>578315<br>578315<br>578315<br>578315<br>597395<br>597395<br>5376385<br>5376385<br>5376385<br>5376385<br>5376387<br>5376387<br>5376387<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>53703875<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>537075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>507075<br>5 |
| -0. 33652E+02<br>-0. 55270E+02<br>-0. 55270E+02<br>-0. 833575E+02<br>-0. 10771E+03<br>-0. 10771E+03<br>-0. 11848E+03<br>-0. 11848E+03<br>-0. 11848E+03<br>-0. 117326E+03<br>-0. 15232E+03<br>-0. 15232E+03<br>-0. 15332E+03<br>-0. 17434E+03<br>-0. 17442E+03<br>-0. 17442E+03                                                                                                                                                                                                                                                                                                                                                                                                                            | IPT   LENGTH   SLIF     1   111.6268   0.0     1   176.3732   0.0     1   176.3732   0.0     ND   NDE. LENGTH   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.0000   0.0     3   0.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NUM<br>BR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INPT<br>FINAL DUT<br>2<br>2<br>2<br>2<br>4<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| -0.41856E-01 | -0.42092E-01 | .42101E     | . 41886E    | -0.41450E-01 | -0.40799E-01 | .399385                    | . 38876E    | -0.3/623E-01       | 345835  | . 32821E    |             | . 28891E    |              |          | . 22244E    | . 19910E | . 17555E    | . 15207E | 12898E       | . 10660E | -0.85297E-02 | -0.65426E-02 | -0.47384E-02 | -0.31588E-02 | •           | . 85099E                   | .21813E  | 0.79634E-06  |          |              | •        |              | .65500E      | -0.85384E-02 | •        |          |          | •         | -0.19925E-01 | -0.22260E-01 | -0.24551E-01 | -0.26775E-01 | -0.28911E-01 | -0.30939E-01 | -0.32843E-01 | .34605E-     |  |
|--------------|--------------|-------------|-------------|--------------|--------------|----------------------------|-------------|--------------------|---------|-------------|-------------|-------------|--------------|----------|-------------|----------|-------------|----------|--------------|----------|--------------|--------------|--------------|--------------|-------------|----------------------------|----------|--------------|----------|--------------|----------|--------------|--------------|--------------|----------|----------|----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| 0.25434E-04  | 0.25275E-04  | 0.24980E-04 | •           |              | . 23258E     | .223945                    | 0.213/96-04 | . 202115<br>18886F | 17402F  | 0.157556-04 | . 13942E    | •           | .98083E-0    | •        |             |          |             | . 42385E | . 78920E     | .11777E  | . 15899E     | . 20265E     | .24880E      | . 29755E     | .34900E     | . 40330E                   | . 46065E | -0.51508E-04 | 103345   | . 4033 IE    | .29757E  |              | •            | -0.15902E-04 | . 11780E |          | .42424E  | .55413E-0 | . 23012E-0   | .49873E      |              | 0.98195E~05  | 0.11972E-04  | 0.13953E-04  | 0.15765E~04  | Τ.           |  |
| 0.17025E-03  | 0.16901E-03  | . 16694E    | . 16400E    | . 16016E     | . 15538E     | 0.14960E-03                | 134035      | .125955            | .11582E | 0.10450E-03 | 0.91954E-04 | 0.78141E-04 | . 63021E     | . 46553E | . 28698E    | 94110E   | .11151E     | 11442F   | -0.89846E-04 |          |              | -0.14501E-03 | -0.17031E-03 | -0.19968E-03 |             | -0.27280E-03               |          | -0.34240E-03 |          | -0.23367E-03 | . 19975E | -0.17040E-03 | . 14512E     | .12349E      | . 10520E | . 90004E | .77600E  | . 10988E  | .95693E      | . 28852E     | .46703E      | •            | ٠            | 0.92094E-04  |              | 0.11595E-03  |  |
| -0.18296E-03 | .32654E      | . 83108E    | 0.13282E-02 | . 18.151E    |              | 0.2/4/4E-02<br>0.31867E-03 | •           |                    | •       | •           | .49868E     | •           | .54557E      | . 56211E | 0.5/350E-02 |          | 0.560005-02 |          | 120000C .    | •        | 0.4/305E-02  | •            | 0.38604E-02  | 0.33086E-02  | 0 100001 00 | 0.19069E-02<br>0.10955E-02 | 166336   | 102895       | . 19103E | .26659E      | . 33124E | . 38644E     | 43348E       | . 47351E     | 50757E   |          | 56157E   |           | . 57991E     | .57403E      | . 56259      | . 54601E     | .52469E      | .49904E      | .46944E      | -0.43626E-02 |  |
| 57.0000      | •            | •           |             |              | 75 0000      |                            |             | •                  | 87.0000 |             | •           |             | 0000 68      |          |             |          | - च         |          | ۰c           |          | טכ           |              | •            | 135.0000     | •           | •                          | . 4      |              | •        |              | ف        | •            | <u>м</u> і і | •            |          |          | 1/4.0000 |           | •            | · •          | · •          | · ·          |              | ٠.           | •            | 201.0000     |  |
| 20           | 21           | 22          |             | 4 U          |              | 27                         | 28          | 29                 | õ       | e<br>1      | 32          | <b>E</b> E  | לי ע<br>יי ר | 20       | 50          | à c      | 500         | 40       | 4            |          | 7 7<br>7 7   | 04           | t 1<br>7 t   | 46.4         | 47          | 48                         | 49       | 50           | 51       | 52           | 53       | 54           | 5<br>2<br>2  | 9 I<br>0 I   | 20       |          | 5 C      |           | 50           |              |              |              | 65           | 9 <u>9</u>   |              | 68           |  |

\*\*\* OUT-PUT OF SECTION PROPERTIES \*\*\*

1000

i

0.94917E+01

CENTROID OF COMPOSITE SECTION = 1\*\*\*\* NEW SECTION PROPERTIES \*\*\*

| -0.352106-01<br>-0.375466-01<br>-0.389006-01<br>-0.399526-01<br>-0.419106-01<br>-0.419106-01<br>-0.419106-01<br>-0.419106-01<br>-0.419106-01<br>-0.41146-01<br>-0.372816-01<br>-0.372816-01<br>-0.37586-01<br>-0.37586-01<br>-0.37586-01<br>-0.37586-01<br>-0.376646-01<br>-0.296976-01<br>-0.296976-01<br>-0.296976-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.1918966-01<br>-0.000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOOK 111TERATE                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 0. 18896E -04<br>0. 213895E -04<br>0. 213895E -04<br>0. 213895E -04<br>0. 239855E -04<br>0. 24558E -04<br>0. 24558E -04<br>0. 24558E -04<br>0. 24558E -04<br>0. 245995E -04<br>0. 245995E -04<br>0. 25107E -04<br>0. 25143E -04<br>0. 25143E -04<br>0. 251475E -04<br>0. 251475E -04<br>0. 11784E -04<br>0. 122655E -04<br>0. 122655E -04<br>0. 122655E -04<br>0. 122815E -04<br>0. 122815E -04<br>0. 102865E -04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.00000<br>0.00050 IT TODK 1                                                    |
| 0.12608E-03<br>0.13506E-03<br>0.14293E-03<br>0.15550E-03<br>0.15550E-03<br>0.16413E-03<br>0.16706E-03<br>0.16706E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17038E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.17048E-03<br>0.1704 | 0.11930E+02<br>0.67615E+01<br>1.00000AND<br>AN INTERVAL DF<br>0.94917E+01        |
| -0.39987E-02<br>-0.36061E-02<br>-0.31885E-02<br>-0.21485E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18155E-02<br>-0.18165E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.17187E-02<br>-0.65636E-02<br>-0.65563E-02<br>-0.65838E-02<br>-0.68938E-02<br>-0.68938E-02<br>-0.68938E-02<br>-0.68938E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.69835E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70148E-02<br>-0.70                                        | SECTION =<br>SECTION =<br>ED BETWEEN<br>20857WITHIN A<br>SECTION =               |
| 204.0000<br>207.0000<br>210.0000<br>215.0000<br>215.0000<br>225.0000<br>225.0000<br>225.0000<br>227.0000<br>2261.0000<br>2261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>261.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>260.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>270.0000<br>200000<br>270.0000<br>270.00000<br>270.00000<br>270.00000<br>270.00000<br>270.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| <b>9 ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 </b> ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>CENTROID OF<br>CENTROID OF<br>OA ROOT HAS<br>THE ROOT J<br>3<br>CENTROID OF |

University of Alberta

.

|                                                          |                                           |                                               |                                     |                       |                                              |                                              | •                  |
|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------|--------------------|
| ALPHA                                                    |                                           | "                                             | 0                                   | 0.17449E-07           |                                              | 0.17449E-07                                  |                    |
| BETA                                                     |                                           | H                                             | -0.10                               | -0.10954E-08          |                                              | -0.10954E-08                                 |                    |
| TOTAL MOMENT OF IN                                       | OF INERTIA                                | . 0                                           | 0.5(                                | 0.50129E+03           |                                              | 0.50129E+03                                  |                    |
| AREA OF SLAB                                             | - 1.<br>                                  | H                                             | 0.68                                | 0.68435E+0†           |                                              | 0.68435E+01                                  |                    |
| CENTROIDAL DISTANCE                                      | CE OF CONCRETE                            | ICRETE =                                      | 0.45                                | 0.45983E+01           |                                              | 0.45983E+01                                  |                    |
| TOTAL AREA                                               | ·                                         | H                                             | 0.15                                | 0.15973E+02           |                                              | 0.15973E+02                                  |                    |
| CENTROIDAL DISTANCE OF                                   | E OF STEEL                                | EL =                                          | -0.34                               | -0.34467E+01          |                                              | -0.34467E+01                                 |                    |
| PRODUCT OF ES AND                                        | AND CONC. AREA                            | H A                                           | 0.20                                | 0.20257E+09           |                                              | 0.20257E+09                                  |                    |
| AREA OF STEEL SECTION                                    | NOI                                       |                                               | 0.91                                | 0.91300E+01           |                                              | 0.91300E+01                                  |                    |
| ALPHAK                                                   |                                           | Ħ                                             | 0.78                                | 0.78149E-01           |                                              | 0.78149E-01                                  |                    |
| SHEAR DEFLECTION FACTOR<br>OITT= 11 S(1)<br>OITT= 5 S(1) | ACTOR<br>S(1)=<br>S(1)=                   | = 0<br>-0.691985E-02<br>0.845771E-06          | 0.45<br>-02<br>-06                  | 0.45312E-30<br>2<br>6 | FORCE ( NNP ) =<br>FORCE ( NNP ) =           | 0.45312E-30<br>0.376809E-03<br>-0.599000E-05 |                    |
| SUPPORT REACTION=<br>01TT= 12<br>01TT= 3                 | 0.0<br>S(1)=<br>S(1)=                     | .297914E+05<br>-0.643425E-02<br>0.845766E-06  | -06                                 |                       | FORCE(NNP)=<br>FORCE(NNP)=                   | 0.425074E-03<br>-0.158278E-03                |                    |
| SUPPORT REACTION=<br>OITT= 11<br>OITT= 3                 | 0.)=<br>S(1)=<br>S(1)=                    | 0.297644E+05<br>-0.646692E-02<br>0.845765E-06 | -06                                 | u. u.                 | FORCE(NNP)=<br>FORCE(NNP)=                   | 0.188308E-03<br>0.141403E-03                 |                    |
| SUPPORT REACTION=<br>OITT= 6<br>OITT= 1                  | S(1)=<br>S(1)=<br>S(1)=                   | 0.297663E+05<br>-0.646469E-02<br>0.845765E-06 | -06                                 | <b>μ</b> μ            | FORCE(NNP)=<br>FORCE(NNP)=                   | 0.247487E-03<br>0.243416E-04                 |                    |
| SUPPORT REACTION=<br>01TT= 5                             | s(1)=                                     | 0.297662E+05<br>-0.646484E-02                 | -02                                 | ١ <u>ٽ</u>            | FORCE(NNP)=                                  | 0.184343E-04                                 |                    |
| NODE NO. SHEAR                                           | SHEAR FLOW                                | FORCE                                         | w                                   |                       | SLIP                                         | SLIP STRAIN                                  | NIN                |
| 3 2 40<br>0 16<br>0 16                                   | 0.16664E+03<br>0.16607E+03<br>0.16441E+03 | 0.0<br>-0.49<br>-0.99                         | 0.0<br>-0.49907E+03<br>-0.99479E+03 |                       | -0.64648E-02<br>-0.64338E-02<br>-0.63439E-02 | 0.0<br>0.20161E-04<br>2010E-04               | 1E - 04<br>0E - 04 |

ļ

| តំ ប ដ                            | 171E+03<br>803E+03<br>338E+03 | . 14840E+0<br>. 19636E+0<br>. 24207E+0 | . 61997E<br>. 60059E<br>. 50059E | .56330E<br>.72174E           |
|-----------------------------------|-------------------------------|----------------------------------------|----------------------------------|------------------------------|
| 338E                              |                               | . 24307<br>. 28825                     | -0.57667E-02<br>-0.54863E-02     | 0.86593E-04<br>0.99637E-04   |
| 0.14127E+03<br>0.13382E+03        |                               | -0.33161E+04<br>-0.37287E+04           | -0.51689E-02<br>-0.48182E-02     | 0.11135E-03<br>0.12180F-03   |
| .12544E+03                        | 1                             | 41176                                  | 44381                            | . 13101E                     |
| 0.10591E+03 -0                    | Ϋ́Υ                           | 0.44800E+04<br>0.48130E+04             | -0.40322E-02<br>-0.36039E-02     | 0.13904E-03                  |
| .94741E+02                        | Ŷ                             | 51140                                  | . 31565E                         | . 15175E                     |
| 0.82639E+02 -0<br>0.69605E+02 -0  | ο ς<br>'                      | ).53801E+04<br>).56084F+04             | -0.26934E-02<br>-0.22173E-02     | 0.15654E-U3                  |
| .55642E+02                        | ې<br>ې                        | 57963                                  | 1571.                            | . 163 19E                    |
| '                                 | Ŷ                             |                                        | . 12382                          | . 16517E                     |
| 0.24976E+02 -0<br>0.83125E+01 -0  | ρç                            |                                        | -0.74035E-03                     | . 166305                     |
| . 89648E+01 -0                    |                               | . 60885E+04                            | . 25947E                         | 0.16664E-03<br>0.16622E-03   |
| . 25515E+02                       | °<br>P                        | 60368E+04                              | .75693E                          | . 16503E                     |
| .41116E+02                        | o'                            | Ŷ                                      | .12497E-0                        | . 16305E                     |
| -0.55/56E+02 -0.                  | ο<br>Υ                        | 57915E+04                              | .17352E                          | . 16022E                     |
| .82125E+02                        | ,<br>,<br>,                   | 53764E+04                              | 0.22110E-02                      | 0.15648E-03                  |
| - 93850E+02                       | ,<br>P                        | 51124E+04                              | .31217E                          | . 14609E                     |
| - 10461E+03                       | ۰<br>٩                        | 48148E+04                              | . 35507E                         | . 13935E                     |
| 440E+03 -0                        | 0                             | .44863E+04                             | . 39578E                         | . 13149E                     |
| 131096+03 -0                      | ς<br>Υ                        | 41298E+04<br>37484E+04                 | 0.43396E-02<br>0.45817E-03       | 0.12248E-03                  |
| 137996+03 -0.                     |                               | 33447E+04                              |                                  | . 10079E                     |
| . 14394E+03 -0.                   |                               | 29218E+04                              | .52974E                          | .880156                      |
| -0.14890E+03 -0.                  | γ̈́                           | 24826E+04<br>20200E+04                 | 0.55413E-02                      | .738785                      |
| . 155826+03                       | ρ                             | . 15669                                | 0.58913E-02                      | 0.58332E-04<br>0.41373E-04   |
|                                   | Ŷ                             | 0966                                   | 59886E                           | ιm                           |
| . 15845E+03                       | ο̈́ ό                         | 62240E+03                              | . 60281E                         |                              |
| -0.15801E+03 -0<br>-0.45627E+03 0 | ဝုင                           | .14747E+03<br>27306E±03                | . 60051E                         | . 18723E                     |
| 15308E+03                         | òò                            | 323395703<br>787995403                 | 0.575146-02                      | -0.42289E-04<br>-0 67497E-04 |
| 14826E+O3                         | ō                             | 12400E+04                              | 55097                            | -0.94559E-04                 |
| 14 159E+03                        | o<br>O                        | 16748E+04                              | .51840E                          | Τ.                           |
| . 13274E+03 0.                    | •                             | 20863E+04                              | .47683E                          | -0.15462E-03                 |
| . 12132E+03 0.                    | •                             | 24674E+04                              | .42563E                          |                              |
| 2E+03                             | o o                           | 28096E+04                              | .36412E                          | . 22342E                     |
| . 665225402                       | 50                            | . 31026E+04                            | .291586                          | .26148E                      |
| -0.63303E+02 0                    | 00                            | 555                                    | .20723E                          | . 30227E                     |
| 143475400                         |                               | ).3486/E+04<br>/ 364435+04             | .11022E                          | . 34607E                     |
| .36784                            | o c                           | •                                      | -0.4038/E-05<br>-0.41104E-05     | -0.36877E-03                 |
| .65745E+02                        | 0                             | . 33321E+0                             | . 20806E                         | . 348036-0                   |
| .88741E+02                        | 0                             | . 31003E+0                             | . 29242E                         | . 26152E-0                   |
|                                   |                               |                                        |                                  |                              |

University of Alberta

|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIGHT CURVE  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| -0.22347E-03<br>-0.15469E-03<br>-0.15469E-03<br>-0.15365E-03<br>-0.12365E-03<br>-0.42365E-04<br>-0.67598E-04<br>-0.42399E-04                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEFT CURVE R |
| -0.36497E-02<br>-0.42650E-02<br>-0.47772E-02<br>-0.5191E-02<br>-0.57611E-02<br>-0.57611E-02<br>-0.57611E-02<br>-0.60154E-02                                                  | -0.60382E-02<br>-0.559879E-02<br>-0.55188E-02<br>-0.55484E-02<br>-0.55484E-02<br>-0.55482E-02<br>-0.55482E-02<br>-0.459186E-02<br>-0.45946E-02<br>-0.35544E-02<br>-0.173536E-02<br>-0.173536E-02<br>-0.173536E-02<br>-0.173536E-02<br>-0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.173556E-03<br>0.54566E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.549846E-02<br>0.643136E-02<br>0.643136E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RIGHT STRAIN |
| 0. 28067F+04<br>0. 24639E+04<br>0. 24639E+04<br>0. 16701E+04<br>0. 15748E+04<br>0. 12348E+04<br>0. 12348E+04<br>0. 12348E+04<br>0. 15441E+03<br>0. 31761E+03<br>0. 31761E+03 | -0. 62394£+03<br>-0. 11047£+04<br>-0. 15755£+04<br>-0. 203306£+04<br>-0. 233556£+04<br>-0. 233556£+04<br>-0. 33550£+04<br>-0. 33550£+04<br>-0. 33550£+04<br>-0. 31407£+04<br>-0. 31407£+04<br>-0. 51240£+04<br>-0. 51246£+04<br>-0. 512365£+04<br>-0. 512365£+04<br>-0. 512365£+04<br>-0. 41248£+04<br>-0. 512365£+04<br>-0. 41248£+04<br>-0. 512365£+04<br>-0. 19672£+04<br>-0. 19672£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+04<br>-0. 19672£+03<br>0. 18434£+04<br>-0. 19672£+04<br>-0. 1868£+04<br>-0. 19672£+04<br>-0. 1868£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 1868£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18434£+04<br>-0. 18685+04<br>-0. 184345+04<br>-0. 18685+04<br>-0. 184345+04<br>-0. 184345+04<br>-0. 184345+04<br>-0. 184345+04<br>-0. 184345+04<br>-0. 184345+04<br>-0. 18445+04<br>-0. 1845+04<br>-0. 1845+04 | LEFT STRAIN  |
|                                                                                                                                                                              | 0. 15865E+03<br>0. 15788E+03<br>0. 15598E+03<br>0. 15598E+03<br>0. 15496E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 13811E+03<br>0. 1447E+03<br>0. 13816E+02<br>0. 83902E+02<br>0. 8397E+02<br>0. 8397E+02<br>0. 8397E+02<br>0. 94916E+02<br>0. 83974E+01<br>-0. 16375E+02<br>0. 148156E+03<br>-0. 1565E+03<br>-0. 1565E+03<br>-0. 1565E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 15662E+03<br>-0. 16698E+03<br>-0.                                                                                                                                                                                      | LENGTH SLIP  |
| 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                      | 061<br>062<br>063<br>065<br>066<br>066<br>066<br>066<br>066<br>066<br>066<br>07<br>07<br>07<br>07<br>06<br>066<br>06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INPT         |

DEFLECTION

| -0. 19355E-01<br>-0. 19374E-01 |                   |               |              |              |              |                |                              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |                            |              |              |              |              |              |                    |              |              |              |              |             |               |             |              |              |              |              |
|--------------------------------|-------------------|---------------|--------------|--------------|--------------|----------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------------|--------------|--------------|--------------|--------------|-------------|---------------|-------------|--------------|--------------|--------------|--------------|
| -0.40277E-06<br>-0.39922E-06   |                   |               |              |              |              |                |                              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |                            |              |              |              |              |              |                    |              |              |              |              |             |               |             |              |              |              |              |
| -0.41751E-06<br>-0.41072E-06   |                   | DEFLECTION    | 0.0          | -0.35457E-02 | -0.70643E-02 | -0.10530E-01   | -0.13918E-01                 | -0.20377F-01 | -0.23407E-01 | -0.26280E-01 | -0.28982E-01 | -0.31498E-01 | -0.33815E-01 | -0.35922E-01 | -0.37811E-01 | -0.39472E-01 | -0.40901E-01 | -0.42091E-01 | -0.43039E-01 | -0.43743E-01 | -0.44202E-01 | -0.44416E-01 | -0.443886-01               | -0 43617F-01 | -0.42885E-01 | -0.41932E-01 | -0.40766E-01 | -0.39398E-01 | -0.37840E-01       | -0.36105E-01 | -0.34208E-01 | -0.32167E-01 | -0.30000E-01 | -0.257120C  | -0 2200010-01 | -0.20495-01 | -0 18036E-01 | -0 15581E-01 | -0.13188F-01 | -0.10878E-01 |
| -0.64161E-05<br>-0.63595E-05   |                   | CURVATURE     | 0.0          | •            |              | 0.86111E-05    | 0.11093E-04                  |              |              | 0.19157E-04  | •            |              | 0.23321E-04  | •            | •            | •            | •            |              | 0.27168E-04  | 0.27263E04   | 0.27210E-04  |              | 0.266346-04<br>0.261466-04 | 0.25480F-04  | •            | 0.23662E-04  | 0.22504E-04  | 0.21175E-04  | 0.19673E-04        | 0.17994E-04  | 0.16135E-04  | 0.14093E-04  | 0.11004E-04  |             | 0 40276F-05   | 0.10297F-05 | -0 31709E-05 | -0.55978F-05 | -0.92290E-05 | -0.13078E-04 |
| -0.66509E-05<br>-0.65427E-05   | V,DEF.            | SLIP STRAIN   | 0.0          | •            | 0.39010E-04  | 0.56330E-04    | 0. 72174E-04<br>0. 86593F-04 | 0.99637E-04  | 0.11135E-03  | 0.12180E-03  | Τ.           | Τ.           | 0.14594E-03  | •            | •            | ٠            |              |              |              |              | 0.16622E-03  | . *          |                            |              | 0.15179E-03  | •            |              |              |                    |              | 0.100/9E-03  | 0. 738785-04 | 0 58333F-04  | 0.41333F-04 | 0.22798F-04   | 0.28460E-05 | -0.18723E-04 | -0.42289E-04 | -0.67497E-04 | -0.94559E-04 |
| 0.60255E-02<br>-0.60360E-02    | ,SLIP STRAIN,CURV | SLIP          | -0.64648E-02 | .64338E      |              | -0.6199/E-02   | .57667E                      | .54863E-     | .51689E-     | .48182E-     | .44381E-     | .40322E-     | . 36039E -   | . 31565E-    | . 26934E-    | .22173E-     | .17314E-     | . 12382E-    |              | . 240376-    | 0.2534/E-03  | 0 12497E-02  | 0.17352E-02                | 0.22110E-02  | 0.26741E-02  | 0.31217E-02  | 0.35507E-02  |              | 0.43396E-02        | 0.4632/E-02  | 0.30132E-02  | ĩĩ           | 0.574075-02  | 0.589135-02 |               | 0.60281E-02 |              | .59147E-C    | .57514E-C    | . 55097E-0   |
| 109.3826<br>178.6174           | OUT-PUT FOR SLIP  | NODE . LENGTH | 0.0          | 3.0000       | •            | a.0000         | • •                          | •            | 21.0000      | •            | 27.0000      | 30.0000      | 0000 EE      | •            |              | 42.0000      |              |              | 0000.16      | 54.0000      |              |              |                            | 69.0000      | 72.0000      | 75.0000      | 78.0000      |              | 84.0000<br>57.0000 | •            |              | •            | • •          |             | 105.0000      | 108.0000    | 111.0000     | 114.0000     | 117.0000     | 120.0000     |
| - 0                            | FINAL OUT         | NODAL . NO    | -            | 0 0          | <b>ب</b> (1  | ע <del>ו</del> | 0 0                          | 7            | 80           | თ            | 9:           |              | 2            |              | 4 1          | <u>n</u> (   | 91           | 2            | 8 0          | n (          | 0 F C        |              | 23                         | 24           | 25           | 26           | 27           | 87           | n C                | ) •<br>•     |              | 33           | 946          | 35          | 36            | 37          | 38           | 66           | 40           | 41           |

1.4

|              |    | .66490E                     | -0.48056E-02 | •            | . 100000<br>. 857 17E | .21977E | -0.33165E-06 | -0.22133E-03 | -0.86029E-03 | -0.18702E-02 | . 32031E | . 48136E     | . 66586E     | .86972E            | . 10891E                                | .132035 |              |         |          |          |         |             |           | .34238E     | 361356      | 37871E      | -0.39430E-01 |             | .41965E  | 42918E                       | 43651E      | .44153E     | -0.444215-01<br>-0.444505-04 | A4036F       | .43776E     |             | 42122E | -0.40932E-01 | -0.39502E-01 | -0.37839E-01 | -0.35950E-01 | -0.33841E-01 | -0.31522E-01 | -0.29005E-01 | -0.26302E-01 | -0.23426E-01 |
|--------------|----|-----------------------------|--------------|--------------|-----------------------|---------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------------|-----------------------------------------|---------|--------------|---------|----------|----------|---------|-------------|-----------|-------------|-------------|-------------|--------------|-------------|----------|------------------------------|-------------|-------------|------------------------------|--------------|-------------|-------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|              | •  | -0.21451E-04                | 202222       | . 35821F     | 411396                | · ·     | -0.51129E-04 | -0.46747E-04 |              |              |          | •            | Ч.           | 3661/1.            | -0.13083E-04                            |         | -0.36048E-03 | 360/17. | 404505   | 68517F-0 | .94622E | . 11880E-0  | . 14 108E | Τ.          |             | 0.19687E-04 | 0.21189E-04  | 2           | N.       | .24666E                      | .254936     | 0.26159E-04 | 27021F                       | 27223F       | .27277E     | 0.27182E-04 | •      | 0.26536E-04  | 0.25979E-04  | 0.25263E-04  | 0.24384E-04  | 0.23338E-04  |              | S.           | <u>6</u>     | 0.17436E-04  |
| -0 123676-03 | •  | -0.13462-03<br>-0.187865-03 | -0.2342F-03  | -0.26148E-03 | •                     |         |              | . 34609E     | 30230E       | . 26152E     | .22347E  | . 18792E     | . 15469E     | -0.12363E-03       | 24020E                                  |         |              | •       | •        | 41592F   |         | 0.74130E-04 | •         | 0.10103E-03 | 0.11250E-03 | . 12271E    | .13172E      | 0.13957E-03 | . 14631E | 0.15200E-03                  | 0.15669E-03 |             | . 16525E                     | 0.16643E-03  | 0.16686E-03 | 0.16652E-03 | Ξ.     | Ξ.           | Ť.           | ٣.           | Τ,           | ÷.           | ÷.           | . 13130E     | . 122 10E    | 0.11167E-03  |
| 0 51840F-03  | •  | •                           |              | •            | .20723E               | .11022E | .40987E      | . 11104E     | . 20806E     |              | . 36497E | -0.42650E-02 | -0.4///2E-02 | 170010.<br>1101010 | 111111111111111111111111111111111111111 | 50017E  | 60154F       | 60382E  | 59979E   | 58998E   | 57484E  |             |           | . 50186E    |             |             | •            |             |          | -0.26/55E-02<br>-0.22447E-00 |             |             |                              | -0.25765E-03 | •           | ٢.          | ٠      | •            | •            | .26994E      | . 31633E     | .36115E      | 4            | •            | 4            | 0.51800E-02  |
| 123.0000     |    | 129.0000                    | •            | •            | 80                    | ÷.,     | ٠            | ٠            | ວ່           |              | 156.0000 | •            | 165,0000     | •                  | • •                                     | •       | -            | •       | 183.0000 | 186.0000 |         |             | •         |             |             |             |              | 210.0000    | 213.0000 |                              | 222 0000    |             |                              | 231.0000     |             |             |        |              |              |              |              |              | •            |              |              | 267.0000     |
| 42           | 43 | 44                          | 45           | 46           | 47                    | 48      | 5            |              | - c          | 7 C<br>D U   | 5 W      | ר גר<br>ה גר |              | 57                 | 8                                       | 59      | 60           | 61      | 62       | 63       | 64      | 65          | 99        | 67          | 68          | 500         | 2;           |             | 7 6      | 74                           | 75          | 76          | 77                           | 78           | 19          | 80          | 8 0    |              |              | 80 G         |              | 910          | 200          | 8 0          | 500          | 06           |

| -0.20394E-01<br>-0.17222E-01 | -0.13931E-01<br>-0.10539E-01 | -0.70708E-02 | -0.35490E-02 | 0.54210E-19 |
|------------------------------|------------------------------|--------------|--------------|-------------|
| 0.15515E-04<br>0.13410E-04   | 0.11117E-04<br>0.86343E-05   | 0.59574E-05  | 0.30835E-05  | 0.0         |
| 0.99965E-04<br>0.86934E-04   | 0.72529E-04<br>0.56700E-04   | 0.39395E-04  | 0.20562E-04  | 0.0         |
| 0.54984E-02<br>0.57798E-02   | 0.60200E-02<br>0.62149E-02   | 0.63602E-02  | 0.64513E-02  | 0.64836E-02 |
| 270.0000<br>273.0000         | 279.0000                     | 282.0000     | 0000.682     | 288.0000    |
| 91<br>92                     | 94<br>97                     | 95<br>00     | 0            | 97          |