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Abstract

The game of Hex is of interest to the mathematics, algorittand artificial intelligence communi-
ties. It is a classical PSPACE-complete problem, and iteritien is intrinsically tied to the Four
Colour Theorem and the well-known strategy-stealing agpuimNash, Shannon, Tarjan, and Berge
are among the mathematicians who have researched andhaabéibout this game.

In this thesis we expand on previous research, further dpired the mathematical theory and
algorithmic techniques relating to Hex. In particular, wentify new classes of moves that can be
pruned from consideration, and devise new algorithms totifjeconnection strategies efficiently.

As a result of these theoretical improvements, we produautomated solver capable of solv-
ing all 8 x 8 Hex openings and most:® 9 Hex openings; this marks the first time that computers
have solved all Hex openings solved by humans. We also pedithectwo strongest automated Hex
players in the world — Wolve and MoHex — and obtain both thelgoid silver medals in the 2008

and 2009 International Computer Olympiads.
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independent captured- 3.3
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maintain 29.2

maintenance assump-A.2
tion

maximum winning car- 5.3.2
rier

miai 4.3

miai list 43.1

Relationship between two completions of a region
that possess all the same interboundary connection
properties.

Relationship between two captured-revirsidells
when one’s reverser is in the other’s carrier.

A chain that does not contain a borded anly
neighbours a region’s uncoloured components.

A board whose sides are not all equatheng
The first move of a virtual semi connection.
A move that renders a vulnerable cell dead.

The process of computing all inferior cell analysis and
connection strategy information for a Hex state.

Parameter in Monte Carlo treeceedJsed to de-
termine when a node warrants time-costly knowledge
computations.

Border template using a series of threatscallpi
forming chains parallel to the border.

An uncoloured cell for which there exists sbaom-
pletion in which the cell’s colour determines the win-
ner.

A child node in a proof number tree whose thsf
number is not infinity.

A cell or a border.

A combinatorial game where a series of legakesio
can result in a repeat position.

The process of following a connection styate

The assumption that a player will maintain a particu-
lar connection strategy.

A set of uncoloured cells that corresponds to a win-
ning carrier if a particular player wins.

Pair of uncoloured cells that serve the same purpose
if opponent plays one, then player immediately re-
sponds with the other.

List of miai connection substrategies tiethy each
connection strategy in an augmented version of H-
search.



midpoint

misere game

monotonicity

most proving node

mustplay

neighbour domination

no-draw property

normal game

OR-all

OR-% rule

OR rule

outcome classes

partition chain

pass move

path

PC algorithm

permanently inferior

planarity

292

2.5
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2.9.2

29.2
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41.1
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player.

In combinatorial game theory, a game thabrshy
the last player to have a legal move available.

Applying the OR rule to all known first player eon
nection strategies, to determine if any OR rule deduc-
tions are possible.

Restriction of the OR rule to consider at mo§irst
player connection strategies.

A deduction rule in the H-search algorithm tiwah-
bines connection strategies in parallel.

Combinatorial game theory synonynogitipn val-
ues.

A chain that can be used to partitionoanection
strategy into two independent connection strategies.

A move where the position is unaltered; only the
player to move changes.

A sequence of locations, where consecutive pairs of
locations are adjacent.

Algorithm to compute partition chainparallel with
H-search deductions.

Type of fillin where the strategyesds beyond the
set of coloured cells.

The property that at most one player can fornina w
ning chain on a Hex board.



position 2.2
position value 2.2
primary cells B.1
probe 29.2
proof set 5.2
prune 2.5

random game simula- 6.3.1
tion

reduced position 3.1
regular board 2.2
reverser 2.5
reversible 2.5
Shannon vertex- 2.3

switching game

split decomposition 3.7.2
star decomposition 3.7.4
star game 2.5
state 2.2
state value 2.2
strategy carrier 5.3.1

Defined by the board dimension and each cell's
colour.

Either a Black win, White win, or first péaywin, de-
pending on the value of its two corresponding states.

The first row cells adjacent to handicapscel

An opponent move within a player’'s connecticatst
egy carrier.

A set of leaves in a proof number tree that arfe suf
cient to prove that the player to move wins the root
position.

Eliminating a move from the set of legal moves being
considered.

The phase of Monte Carlo tree search used to evaluate
a leaf node’s position.

A Hex position derived from another pesition via
fillin.

A board whose sides are all equal length.
The negating response to a reversible move.

A move whose benefit can be negated by an oppone
response.

Synonym for Generalized Hex.
Chain decomposition whose bagnd composed of
three borders and one other coloured chain.

Chain decomposition where batyeps have a move
available that captures the entire region.

The simplest combinatorial game that is a fagep
win; both players only have moves to the zero game.

Defined by its position and the player to move.

Either a Black win or a White win; the minimalue
of a Hex state.

Carrier of a winning connectiontstyg on a fillin-
reduced state.



strategy-stealing argu- 2.1

ment

surreal numbers

swap rule

touch

tree traversal

tree update

uncoloured component

uncoloured region

union-connection

unigue probe deduction

vertex implosion

vertex simplicialization

virtual connection
virtual semi connection

vulnerable

vulnerable-by-capture

winning carrier

2.5

1.1

3.8.4

6.3.1

6.3.1

3.7.1

3.7.1

29.2

5.4.5

2.9.2

29.2

29.1

29.1

53

winning carrier trans- 5.4.1

position

A proof by contradiction argument where one player
adopts the winning strategy of their opponent, thereby
resulting in both players having winning strategies.

The number system developed by cornliaiatame
theory.

Rule that can be added to Hex, where the firséplay
selects Black’s first move and then the second player
chooses to play as Black or White.

The relationship between two opposite-colbure
chains that are neighbours or form an opposite-
coloured bridge.

The phase of Monte Carlo tree searthrthwerses
from the tree’s root to the next leaf to evaluate.

The phase of Monte Carlo tree search tliztesp
tree node data using the results of a random simulated
game.

Set of uncoloured cells cooratipg to a component
in the chain deleted Hex graph.

The union of one or more uncolouoedponents.

Connection strategy with one fixadpeint, and a
choice for the other endpoint.

Deducing a state value fromheedstate using a
pairing strategy on a dead-reversible cell and its killer.

The compound process of vertex singiation fol-
lowed by vertex deletion.

Adding edges between a véstegighbours such that
its neighbourhood becomes a clique.

A second player connection siate
A first player connection tstggt.

A move that can be rendered dead by an oppone
move.

A move that can be renderedi lojethe combination
of a killer move and its captured set.

Carrier of a winning connection strgteg

State whose value is deduced using the winning car-
rier of a solved state.



winning chain 2.2

winning  connection 2.9.2
strategy

winning path 2.2

zero game 2.5

A chain that contains two opposing borders

A connection strategy whose endpoints are opposing
borders.

A path whose endpoints are opposing borders
whose locations are each uncoloured or the same
colour as the endpoints.

A combinatorial game that is a second player win
neither player has a legal move available.



Chapter 1

Introduction

The game of Hex is of interest to the mathematics, algorittand artificial intelligence communi-
ties.

The invention of this game is intrinsically tied to the Fouwl@r Theorem [85] and the well-
known strategy-stealing argument [128]. Hex, and its rhtgeneralization the Shannon vertex-
switching game, are classical PSPACE-complete problef$Sf, 145]. Proving the no-draw prop-
erty of Hex is equivalent to proving the Brouwer Fixed Poihedrem in two-dimensions [59], and
Hex is also one of the first games for which an artificial ingelhce player was created [158]. Nash,
Shannon, Tarjan, and Berge are among the mathematiciansavbeaesearched and published about
this game [21, 22, 52, 128, 158].

Despite its simple rules, Hex presents a significant chgdleo artificial intelligence. Due to its
large branching factor, humans have consistently outpedd computers both in terms of playing
and solving Hex on all but the smallest board sizes [114,.18though a reasonably strong eval-
uation function exists [9, 121, 158], humans’ ability touitively decompose strategies and prune
irrelevant regions have helped them maintain their adggmnta

In this thesis we expand on previous research, further dpired the mathematical theory, algo-

rithms, and artificial intelligence techniques relatinghis fascinating game.

1.1 Rules of Hex

Hex is a two-player perfect information game played omann array of hexagonal cells. The two
players are Black and White, and each player is assignediaafipair of opposing borders. With
Black moving first, players alternate turns. On their turpjayer colours an uncoloured cell with
their colour. The winner is the player who completes a patthefr colour connecting their two
opposing borders. See Figure 1.1.

In practice the first player advantage is significant, so ldeypically played with thewap rule
which states that the first player selects the placementadl®& first move, and the second player

then chooses whether to play as Black or White. Whoever ig&\thakes the next move, and the



Figure 1.1: 5x 5 Hex boards: empty and a completed game won by White.

players alternate turns thereafter.

1.2 Objectives

Solving and playing games via computers has been of interés artificial intelligence community
since its earliest beginnings. The game of Hex is a clasBIERACE-complete problem, so it is
unlikely that a polynomial-time algorithm exists to solvebigrary Hex positions. Given this, it
seems more beneficial to develop and improve techniquegpithia¢ the search space.

In particular, Hex positions possess important graph#tten properties, and combinatorial
game theory is applicable in terms of pruning inferior moard analyzing combinatorial decom-
positions. Hex algorithms exist to identify connectioratgies, resulting in early termination of
the search space.

In summary, the objectives of this doctoral research are to:
e expand on the mathematical and algorithmic knowledge ®igtme of Hex, and

e apply and adapt artificial intelligence techniques to maeaf such knowledge.

1.3 Overview

This thesis is structured as follows:

e In Chapter 2 we review all previous work related to Hex, iddahg the basic properties, con-

cepts, and notation that will be used throughout this thesis

e In Chapter 3 we apply combinatorial game theory to reformeuytaevious inferior move anal-
ysis in the game of Hex. We then identify several new typesifgfrior cell. Graph-theoretic
properties of board decompositions are explored, andefiielgorithms applying this knowl-

edge are produced.

e In Chapter 4 we discuss enhanced algorithms for identifilieyy connection strategies, and

compare several variations in terms of efficiency and cotapéss.

e In Chapter 5 we discuss the automated solving of Hex stateyding improvements to
previous search algorithms and the application of our netwtigjues. We review our solver’s

performance, including the surpassing of all previous herarks.



e In Chapter 6 we examine the performance of three artifici@lligence Hex players, each
with a different foundational search algorithm and evatramethodology. We also analyze

the benefits of applying our new theory to heuristic players.

e In Appendix A we discuss the application of our new inferietl @analysis to probes of a

common connection strategy.

e In Appendix B we discuss the application of our new inferietl @nalysis to produce an

efficient and explicit handicap strategy for Hex.

e In Appendix C we analyze all of the Hex games from the 2008 &t 2nternational Com-

puter Olympiads.
e In Appendix D we list open questions relating to the game of.He

1.4 Contributions

The main results of this thesis can be summarized as follows:

e Further developing Hex inferior cell analysis, including:

Identifying captured-reversible moves.

Identifying neighbourhood domination and induced path ishaition.

Identifying permanently inferior cells.

Identifying decompositions using opposite-colour brilge

Identifying cyclic decompositions, and their relation ptured sets.

Identifying star decompositions, and their relation to mdemination.

— Applying the above to prune connection strategy probes addak further domination

implications.
— Applying the above to construct an efficient and explicitdiaap strategy for Hex.

e Developing several efficient modifications of the H-seargiodthm that identify more con-

nection strategies, including:
— Producing a new orthogonal deduction rule for identifyireynconnection strategies
from existing ones.

— Applying inferior cell analysis to allow for partial intexstion of connection strategies

in deduction rules.

— Applying common substrategies to allow for partial intetgan of connection strategies

in deduction rules.



e Developing an extremely strong automated Hex solver, dioty

— Applying inferior cell analysis to deduce many state valinesm each solved state.
— Using strategy-stealing arguments to prune states dueiaks.
— More than a 100-fold speedup over other state-of-the-dresn

— Being the first to produce an automated solver capable ofrgplny and all 8x 8

openings.

— Being the only ones to produce an automated solver capaklgwhg any 9x 9 open-
ings. This marks the first time automated solvers have ssegalsumans in terms of

solved Hex openings.
e Developing strong automated Hex players, including:
— Using alpha-beta search, Monte Carlo tree search, and ptwober search to produce

three distinct Hex players.

— Applying our inferior cell analysis and Hex solver to sigo#ntly improve our auto-

mated players.

— Winning both the gold and silver medals for Hex in the 2008 20a9 International
Computer Olympiads.

1.5 Publications

The research described in this thesis includes resultsaaippgen the following publications (listed

in chronological order by submission date):

¢ Philip Henderson and Ryan B. Hayward. Probing the 4-3-2 ¢gigglate in Hex. In van den
Herik et al. [164], pages 229-240.

e Broderick Arneson, Ryan B. Hayward, and Philip Hendersonlw/2008 wins Hex tourna-
ment.ICGA Journa) 32(1):49-53, March 2009.

¢ Philip Henderson, Broderick Arneson, and Ryan B. HaywanlviSg 8x8 Hex. In Boutilier
[26], pages 505-510.

e Philip Henderson, Broderick Arneson, and Ryan Hayward., Hexids, the crossing rule, and

XH-search. In van den Herik and Spronck [165], pages 88-98.

e Broderick Arneson, Ryan B. Hayward, and Philip HendersonHegx wins Hex tournament.
ICGA Journal 32(2):114-116, June 2009.

¢ Philip Henderson and Ryan B. Hayward. A handicap strategyéx. In Richard J. Nowa-
kowski, editor, Games of No Chance IV. Cambridge UniverBitgss, 2010 (in press).



e Broderick Arneson, Ryan B. Hayward, and Philip HendersaiviSg Hex: Beyond humans.
Accepted to Computers and Games, 2010.

e Broderick Arneson, Ryan B. Hayward, and Philip Hendersorontd Carlo Tree Search in
Hex. Accepted to Transactions on Computational Intelligesind Al in Games, Special Issue

on Monte Carlo Techniques and Computer Go, 2010.

e Philip Henderson and Ryan B. Hayward. Captured-reversitiiges and star decomposition

domination in Hex. Submitted to Integers, 2010.



Chapter 2

Related Work

In this chapter we summarize previous research on Hex aatételopics. We also introduce much

of the notation and terminology that will be used throughbig thesis.

2.1 Fundamental Hex Properties

Hex was invented independently by Piet Hein in 1942 and Nigloebate John Nash in 1948, and in
both cases its invention was closely related to mathenlgtiogerties. Hein was contemplating the
(then unsolved) Four Colour Conjecture, attempting tordigp it [85, 115]. He noted that with a
tesselation of hexagons, unlike a tesselation of triangieguares, any two-colouring would always
avoid deadlock and hence guarantee a monochromatic patméoof the colours. By contrast,
Nash was looking for a game whose value (assuming optimg) ptauld be deduced, yet where
the method for attaining this outcome was completely unknoNash came to realize that if no
draw was possible, and if having an extra move was never vhsdalgeous, then the existence of
a first player winning strategy was guaranteed. This wasrthpiration for the now well-known
strategy-stealing argument [128].

The key properties of Hex are:
1. If all cells are coloured, then at most one player has awinpath. This is due tplanarity.

2. If all cells are coloured, then at least one player has aniwinpath. This is theno-draw

property.

3. Colouring additional cells for one player can never behwrtdisadvantage. That is, Hex is

monotonic
4. The two players havisomorphicroles on the empty. x n board position.
5. The first player must have a winning strategy bystrategy-stealing argument

Of these properties, the second is the most difficult to prolefact, proving the no-draw

property of Hex is equivalent to proving the Brouwer Fixedr?@heorem in two dimensions [59];



proofs (and sketches of proofs) of this property abound 1¥3].

As mentioned in Chapter 1, Hex is often played with sivgap rule Since every Hex state is
either a Black win or a White win by the no-draw property, aimts the second player can select
whether to play as Black or White following the first playes&ection of a Hex state, it follows that

the swap-rule variant of Hex must be a second player win.

Figure 2.1: A winning pairing strategy on the<64 board.

Another proposed handicap method is to play Hex on rhombailson m x n boards where
m # n). However, Claude Shannon observed that this game is altvism for the player whose
opposing borders are closer together, regardless of wlys filat, using a simple pairing strategy
[60]. See Figure 2.1.

2.2 Basic Terminology and Notation

Thesizeof a Hex board is its number of cells. Unless stated otherwiseughout this thesis we
will be assuming play oregularn x n Hex boards, noirregular m x n, m # n Hex boards. The
dimensionof a (regular) Hex board is the length of one board side. Thaamnn x n board has
dimensionn and sizen?.

Cellsare the hexagonal locations in which either player can Baydersare the four coloured
sides of the Hex board; these can be referred to by direchlmmth, South, East, Weskocations
includes both cells and borders. Tbelour of a location!, denotedy(!), is one ofBlack White
or Uncoloured and we use the notational shorthaBdiV, U respectively.Coloured cells/locations
refers to cells/locations whose colour is Black or Whitejleancoloured cells/locationgefers to
cells/locations whose colour is not Black nor White. Fotamge, the colour of the North and South
borders is always Black, and borders are always coloured.

Unless stated otherwise, throughout this thesis we willdseiming that Hex is played without
the swap rule. Thus a Hgdayer P is either Black or White, and® denotes the opponent &. A
Hex positionis defined by the board dimension and each cell’s colouHeX stateis defined by a
Hex position and the player to move.

Hex is a perfect information game with no draws, so a Hex $taseone of two values: Black
win or aWhite win Hex is monotonic, so no position issecond player winso a Hex position has
one of three values: Black winregardless of who moves firstVehite winregardless of who moves
first, or afirst player win See Figure 2.2. In this thesis (in)equality among statelsparsitions

relates only with respect to these values.



Figure 2.2: Black win, White win, and first player win Hex ptisns.

For Hex statess;, S, we write S; >p S5 if the value of states; is at least as good for player
P as stateS,, namely if P has a winning strategy ifi; wheneverP has a winning strategy ifi,.
Clearly S >p S, if and only if Sy >% S;. Given a Hex positiont, HP represents the state
whose position isH with player P to move. For Hex position#l, Hy, we write H; >p H if
HY >p HY andHlﬁ >p Hf. That is,H, >p H, implies that playerP prefers positionH; to
position H, regardless of who moves next. We write= Y if two states/positions have the same
value, namelyX >p Y andX >3 Y. We write X = Y if two states/positions are identical.

A P move is a move by playeP, and aP(c) move is a move by playeP to uncoloured celt.
For a positionH, a playerP, an uncoloured cell, a set of uncoloured cellS, and a set of coloured

cellsD:
e H + P(c) is the position obtained frorf{ by P-colouringc,
e H + P(C) is the position obtained frory by P-colouring all cells inC', and
e H — D is the position obtained frory by uncolouring all cells inD.

For a Hex position and a colour or set of colours, we denote by — C the set of locations
in H whose colour ig” or in C. If we wish to restrict our attention to a set of locatiahn H, we
uselLy, or simply L if the position is implicit.

For positionsH; and H,, we say thatH is acontinuationof H; if (H; — B) C (Hy — B)
and(H, — W) C (Hy — W). A continuation with no uncoloured cells is called@mpletion

Given a cell, itsneighboursare the locations directly adjacent to it. The neighboura bérder
are all cells in the adjacent row/column. We uS¢l) to denote the neighbour set of locatibn
For instance, a cell has at most six neighbours (it has fewaer $ix if it is adjacent to one or more
borders), and the cardinality of each border’s neighbotissjual to the board’s dimension.

A pathis a sequence of locations Io, . . . , [, such thaf; andl; . ; are neighbours for < i < k.
Such a path is afiy, [ )-path, and, [, are called theendpointsof the path. Awinning pathis a
path whose endpoints are opposing borders, and whosedosatire each uncoloured or the same
colour as the endpoints.

Two coloured locations;, y areconnectedf there exists a monochromatie, y)-path. Achain
is a maximal set of connected locations. winhning chainis a chain that includes two opposing
borders. Note that theolour of a chainis equal to the colour of every location in the chain. Given a

chain, its neighbours are those locations that neighbolaaat one of its elements, but that are not



contained within the chain. That is, for chaih= {l1,...,lt}, x(C) = x(l1) = --- = x(Ix) and
N(C) = U?:lN(li) \C.

2.3 Hex Graphs

We assume the reader is familiar with basic graph theorjudiveg paths, connected components,
cliques, independent sets, cutsets, and list colourings fhlesis uses the notation and terminology
of [27].

The game of Hex can be thought of as a game on a graph, wheadlyréiach uncoloured cell
and Black border is represented by a distinct vertex, withescconnecting neighbouring locations
[173]. A Black move to a cell makes all pairs of neighboursaadjt and then deletes the vertex;
we call these two stagegertex simplicializatiorandvertex deletiorrespectively, or simplyertex
implosionfor the combined process. A White move to a cell deletes thesponding vertex. Black
wins if the two vertices corresponding to Black borders Ineedalirect neighbours, while White wins

if they disconnect the graph such that these two verticematdferent connected components.

Figure 2.3: A Hex position and its Black and White graphs.sTigure is taken directly from van
Rijswijck’s thesis [173].

The graph of a Hex position obtained by this process is cate@lack graph and in this
formulation we call Black th&hortplayer, and White th€ut player. TheWhite graphof a Hex
position is defined similarly, with the roles of Black and \i¢hinterchanged. See Figure 2.3.

This concept can also be generalized to any graph: two esrtice marked.€., the borders to
be connected), and Short and Cut alternate turns perforagrtgx implosion and vertex deletion
respectively (on unmarked vertices only), until eithertiie marked vertices are direct neighbours
or in different components. This generalized version iswkm@s theShannon vertex-switching

game or simplyGeneralized Hexl6, 52, 95].

2.4 Computational Complexity

We assume the reader is familiar with the basics of commutakicomplexity, including O-notation
and the complexity classes P, NP, and PSPACE. Please r¢##,169] for details.

Determining the winner of a Hex (or Generalized Hex) posiiba PSPACE-complete problem
[52, 145]. Thus, developing aefficient(i.e., polynomial-time) algorithm to solve arbitrary Hex
positions is equivalent to proving that P equals PSPACE asda consequence, proving that P

equals NP.



A logical characterization of the class of PSPACE-comptetédlems can be constructed using
first-order logic, a built-in successor relation, and anrafme corresponding to Generalized Hex
[16].

2.5 Combinatorial Game Theory

Combinatorial game theory (CGT) is the study of two-playerf@ct information games, and thus
is directly applicable to Hex; see [23] for details. Howewese will not use CGT notation nor
CGT values ice., the surreal numbersto describe Hex positions, but rather our own simpler value
definitions from§2.2, which correspond toutcome classds CGT.

In the CGT framework:

e Hex is ahotgame, since both players always prefer to have the next move.
e Hex is notloopy, since a valid move sequence can never result in a repedoposi

e Hex isnormal not misere since the winner is the last player to make a legal maeg, the

game terminates when a winning chain is formed).

Only two surreal numbers are of interest in this thesis. Tiseifi thezero game) = {

}, which

is a second player win since neither player has a legal maitable. The second is trstar game

+x = {0]|0}, which is a first player win since both players only have legales to a zero game, a
second player win. The star game is the simplest first plajrersince only one legal move remains
in the game, regardless of who moves first.

We will be applying CGT's theory regarding inferior movesnmely dominated and reversible
moves. When determining the value of a position, dominatedes can be pruned and reversible
moves can be bypassed without altering the position’s value

Let H be a Hex position with legaP movesm;, ms such thatd + P(mq) >p H + P(ms).
Then we say thatn; P dominatesm, in H. In the CGT framework, it has been proven tifat
dominated moves can Ipeunedfrom consideration by playdP, so long as” considers at least one
dominating move.

Let H be a Hex position with a legad? movem,, and suppose thdf + P(m;) has a legalP
movem, such thatd >p H + P(m1) + P(mz). Then we say that, is a P reversible movevith
P reverserms in H. Intuitively, the opponent response negates any benefiedady the previous
move, reversing the latter’s effect on the position’s valaghe CGT framework, it has been proven
that reversible moves can Iypassedmeaning that it can be assumed tffamovem, in H will
automatically be replied to witf® movem,. Thus,P movem, in H can be deleted and replaced
by all legal P moves inH + P(my) + P(ms3).

We note that players need not alternate turns in a subgamepametimes we will want to allow

this in Hex: apass movés a move in which a player does not colour any cell. By moniattyn the
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pass move is always dominated by all other legal moves, argdtiding the pass move as an option

does not change the value of any Hex states or positions.

2.6 Other Game Theory

Besides CGT, there are several other types of game thedrarhapplicable to Hex. We will not
be applying any of these in this thesis, but we summarize togitributions to Hex below.

Van Rijswijck introduced set colouring and binary combar&tl games as an attempt to integrate
combinatorial decompositions in Hex with combinatorialues and CGT results [172, 173]. In
order to satisfy CGT's winning conditions €., determined when a player no longer has any legal
moves), van Rijswijck introduced atomic values True and&alvhich add a fixed number of moves
to the corresponding player. Conjunctions and disjunstiame modelled by adding the appropriate
number of atomic values, thereby emulating the decisiomfa to determine the winner while
ensuring that CGT will agree on the outcome.

The research by van Rijswijck is related to Game-SAT [185] -game where players alternate
turns assigning values to boolean variables, in an atteonpeke a formula evaluate to true or false
— when restricted to two colours. The monotonicity of Hexuras that a player would never want
to use their opponent’s colour, so the minor rule differsroetween these two theoretical games do
not affect the optimal play or outcome when applied to Hex.

Yamasaki studied the theory of division games [180], of WuHitex is a particular example. A
division game is a two-player game played on a set, wheremagkr claims any single unclaimed
element from the set on their turn. Unlike in Hex, turns do metessarily alternate in division
games. A division game is played until all elements are dainand a specified function maps any
final partition to the winning player (no draws are allowdg)r instance, in Hex the elements of the
set are all uncoloured cells, and the function expresseshadiayer has a winning chain in a given
partition. Most of Yamasaki’s results demonstrate valage@ualities given some modification of a
division game, such as adding new elements to the set oingltitle move ordering in some fashion.
Yamasaki also focused on games where the sets are regalanéver disadvantageous), rare
(i.e., never advantageous), or negligiblee(, never affect the outcome). In this manner, Yamasaki
was able to re-derive many previously-known Hex propertidse difference between Yamasaki's
framework and that of van Rijswijck is that the former doesemforce alternating turns, while the
latter allows for more general €., not necessarily binary) partitioning.

Jensen and Toft studied Hex in relation to positional ganmelsypergraphs [95]. Players alter-
nate turns colouring vertices in a hypergraph, and a playes ifithey manage to claim all elements
of any hyperedge. They note that the no-draw property of Hexlie modelled as a complete bi-
partite graph, where each vertex in one half of the bipartiiorresponds to a distinct winning path
for that player: list-colouring such a graph, where the adavailable to a vertex are the Hex cells

in its corresponding winning path, must be impossible sitig would correspond to a draw in
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Hex. Some results for positional hypergraph games are knbutrunfortunately these statements

are trivial when restricted to Hex, or else simply inappiea

2.7 Hex Variants

As mentioned earlier, the swap rule and irregular boardssize attempts to balance the game of
Hex; Beck’s Hex is another attempt to balance the game of HeBeck’s Hex, the White player
chooses Black’s first move; play then proceeds as normals,Black wins Beck’s Hex if and only

if every first move for Black is winning. However, as Beck pedyan acute corner cell is guaranteed
to be a losing opening move in Hex for all boards of dimensioleast two [18]; this proof uses a
strategy-stealing argument and properties of winninggaghsimilar proof by Beck shows that a
cell neighbouring an acute corner cell and a Black bordds®alosing opening move on all boards
of dimension at least three [19].

Another natural variation of Hex is midse Hex, where a player wins if their opponent forms a
winning chain. Using a strategy-stealing argument, it cashiown that the losing player can delay
their loss until the last uncoloured cell is played, imptythat the parity of the board size determines
the winner [109]. In other words, nése Hex is a win for Black if and only if the board size is even.
When the board size is even, the acute corner cell is a wiropeging move [50, 180].

Alpern and Beck studied Hex played on the annulus, with oaggpltrying to connect the inside
to the outsidei(e., forming a path connecting ends of a cylinder) and the othandrto form a
closed ring [5]. They proved that this game retains the raavdsroperty, and that if the cylinder has
an even rotational dimension, then a simple pairing styate@rantees that the player connecting
the ends of the cylinder will always win, even as the secolaggrl and regardless of the board’s
dimensions. The question of who wins on the annulus with otational dimension is still open.

Kriegspiel Hex — Hex where neither player can see the board afirst player win on boards
of dimension at most three. Furthermore, no guaranteedimgrstrategy can exist for boards of
dimension four or greater [120]. Many other Hex variantsehbgen defined, such as random-turn
Hex (a coin toss determines who gets the next move), Vex @uiimy an obtuse corner cell to either
of the two opposing borders), Vertical Vex (connecting &toeh border), Tex (played on an infinite
Hex board, where one player tries to enclose their opponepening move, while the other tries
to perpetually escape), their g variants, and so on [51, 137]. However, with the excaptio

random-turn Hex, very few results exist for these games][115

2.8 Related Games

Aside from direct variants of Hex, there are also many cotimegames that are closely related.
One example is Y, a game played on a triangular grid of hexalgmils in which players try to form

a chain connecting all three borders [156]. Y is a generitinaf Hex in that any Hex paosition can
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be modelled on a Y board. Y also possesses the propertiesdrbms and monotonicity, and so is
also a first player win.

Another example is Havannah, a game played on a hexagodabfgnexagonal cells in which
players try to form either a chain connecting two cornersgellchain connecting three border cells,
or a closed ring. Havannah is monotonic, but draws are plessib

There are also two important variants of Generalized Hexe flti-Shannon game is played
on general graphs, but the Connect player is trying to cdmmece than two marked vertices [24].
The Shannon edge-switching game is similar to Generalized ékcept that players Cut and Short
delete and contract edges respectively. The game of Bridgvented by Gale, is the Shannon
edge-switching game played on a rectangular grid. Unlilke Shannon vertex-switching game,
the edge-switching game has been efficiently solved usirtgoida, both in its normal and nése
forms [76, 110]. The proof was later simplified to a graphetietic argument, demonstrating that
the invariant necessary for Connect to win is the maintemafidwo edge-disjoint spanning trees
[38].

2.9 Hex-Specific Research
2.9.1 Inferior Cell Analysis

By analyzing the graphs of a given Hex position, it is possita efficiently prune many moves
from consideration. Previously known pruning techniqueslved dead, vulnerable, captured, and
capture-dominated cells, which we summarize here.

Following observations by Becét al. [18] and Schensted and Titus [156], Hayward and van
Rijswijck defined a class of provably useless Hex cellsgchdlead cells: with respect to a particular
Hex position, an uncoloured cellis live if there exists some completion of the position in which
changing:’s colour changes the winner [84]; an uncoloured calldadif it is not live. By definition,

a cell is live/dead for Black if and only if it is live/dead fovhite.

Equivalently, a cell is live if and only if it is contained imsie minimal set of uncoloured cells
that can yield a winning chain. Thus determining whetherlgigdive reduces to determining in
a graph whether a given vertex is on a minimal path joining otveer given vertices; this problem
is NP-complete for general graphs [24]. If a vertex is seearrom the two endpoints by a clique

cutset, then it cannot be on a minimal connecting path, ambtbre must be dead.

o O
% “
e° &b *F B
Figure 2.4: Dead patterns. In each case colouring the englitlaick or White does not alter a

position’s value.

13



Some dead cells can be recognized by matching patternsgifbmiring cells. For example, for
each pattern in Figure 2.4 the uncoloured cell is dead [8BceSthere is no completion in which a

dead cell’s colour matters, it follows that:
e adead cell in a position remains dead in all continuationd, a
e adead cell can be arbitrarily coloured without changing sitfam’s value.

If a player has a winning strategy in a Hex state, then theg havinning strategy with no move
to a dead cell [84].

Ooo
$o 18 5 w

Figure 2.5: Black vulnerable patterns. In each case a Whiteerto the dotted cell kills the empty
cell.

An uncoloured celkt is P vulnerableif P has a move that makesdead; thisP move isc’s P
killer. See Figure 2.5. If a playd? has a winning strategy in a Hex state, then they have a winning
strategy with no move to a dead Brvulnerable cell [84].

While dead cells remain dead in all continuatioftsyulnerable cells need not remafhvulner-
able. For instance, if is P vulnerable withP killer k, and laterP plays at cellk, then P may no
longer have a move that makedead. However, for a positioH; with a P vulnerable celk, and a
continuationH, of H,; wherec is still uncoloured and only’-coloured cells have been added, then

cis dead orP vulnerable inH,.

o oo o
eee oo oo %ed eed

Figure 2.6: Black captured patterns. In each case colothi@gmpty cells Black does not alter a
position’s value.

A setC of uncoloured cells in positio&/ is P capturedif P has a second player strategy ©n
such that for each terminal positidnproduced by the strategy€., L is a continuation off where
only cells inC have been coloured, and no cellGhremains uncoloured), each cell@y, — P is
dead in position. — (C, — P). Since a dead cell can be assigned any colour without ajterin

position’s value, it follows that for each such terminal iios L,
LEL—(CL —>P) = (L—(CL —)?))—&-P(CL —)ﬁ),

and soL = L — C + P(C). In other words, ifP ever plays in aP captured set, the® has a

replying strategy that guarantees no net benefl t&ee Figure 2.6.
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For a Hex positiond and pairwise non-intersecting uncoloured cell s€tsY’, 7, if X is P
captured inf, thenX is P captured in the continuatiod + P(Y) + P(Z), as the cells irY and
Z neither affect the capturing strategy nor revive any celt th dead in a terminal position. Thus
if H is a Hex position with aP captured sef{, thenH = H + P(X). Moreover, combining a
captured set strategy with a winning strategy on the redboadd yields a winning strategy fd®

in the original position [79].

0a8 00 9-0
Ceg0® ©o 0%  ©%e®

Figure 2.7: A cell that is White vulnerable-by-capture. a8k plays the shaded cell, Black captures
cells which in turn kill the dotted cell.

The definition of vulnerable cells can be expanded usingucagtcells: an uncoloured cellis
P vulnerable-by-capturén position H if P has a mové: such thatd + P(k) hasP captured seX
andc is dead inH + P(X U {k}). See Figure 2.7. As beforg,is the P killer of the P vulnerable

cell.

S e e
eee oo o &

Figure 2.8: Black domination patterns. In each case a Blaokento the dotted cell capture-
dominates a Black move to any of the empty cells.

If position H + P(c) has aP captured sek, then by monotonicity it follows that in positiod

the cellc P dominates all cells iX [77]. That is, for all cellsz in X,
H+P(c)=H+ P(c)+P(X)>p H+ P(x).

See Figure 2.8. To distinguish this type of domination frowamore general CGT meaning, we call
this capture-domination

Fillin refers to colouring a set of cells in a given position withaltiéring its value. For instance,
colouring dead cells aP-colouring aP captured set are examples of fillin.

Van Rijswijck used the five local dead patterns to identifynesable, captured, and capture-

dominated patterns [173]. See Figure 2.9.

2.9.2 Identifying Connection Strategies

In Hex, a common tactical question is whether a player hasigegly to create a chain that connects
two locations, an obvious example being a chain connectimgapposing borders. We may also

want to connect locations that are not already coloured esdefine aonnection strategfor player

15



@
OO‘O
w“w

O
%
@
$o

o
‘%

(]
@

@
()

%
©®
®
O“O
«®
®
o0 | o
oD | @O
2
do
®
oXe! ®
a0 b | o
0 0| O
e ®
oe! @R |
s s e
oS g2 | o
06 O ® o0 % @%
e s g ¢ 'S '
=0 a0 G WO O o

16

O
-5
O
-5

o
&5

~l L7

o

Figure 2.9: Deducing inferior cell patterns. This figureaken directly from van Rijswijck’s thesis

[173].



P in a given Hex position to be an (alternating-turn) stratéggt guarantees the construction of a
P chain that either neighbours or contains each of the twoifspgdocations. A second player
connection strategy (respectively first player connecttmategy) is avirtual connectionor VC
(respectivelyirtual semi connectionr SC). For a VC/SC, the two locations being connected are its
endpoints and the set of uncoloured cells used in the connectioreglyas itscarrier. The initial

move of an SC strategy is ikey See Figure 2.10.

Figure 2.10: Diagrams of a Black VC and a Black SC. Carrieesséiaded, endpoints are dotted,
and the SC key is-.

With respect to a player’s connection strategprabeis a move by their opponent to a carrier
cell; all other opponent moves aggternal A playermaintainsa virtual connection if they always
respond to opponent probes with the corresponding commestrategy response. A connection
strategy iswinning if its endpoints are opposing borders. A VC isarder templatef one of
its endpoints is a border and it is commonly occuriegy(,it matches on positions with very few
coloured cells). Informally, éadderis a border template that uses a series of forced threats) oft
resulting in both players producing parallel coloured rmokimns. David King has produced a
thorough list of border templates [100]. Two common VCs drelridge and the4-3-2 See
Figure 2.11. Since & border is equivalent to a row dP-coloured cells, then thborder bridge

matches the leftmost captured pattern in Figure 2.6.

S S

Figure 2.11: A bridge, a border bridge, and a border 4-3-2.

Anshelevich developeHl-search[7, 10, 11], a hierarchical VC/SC composition algorithm. H-
search uses one base case and two deduction rules, itevatihgo further connections can be
deduced:

1. Base caseA player has an empty set carrier VC between each pair ohbeigring locations

such that neither is opponent-coloured.

2. AND rule If a player has VCs;, a2 With respective endpoint®,, p2 }, {p=2, p3 } and carriers
C4,C5 such thatCy U {p;} andC> U {ps} do not intersect, then
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e if py is uncoloured, then combining;, « forms an SC with endpoints;, p3}, carrier
C1 U Ca U {p2}, and keyp,,

e if po is a coloured cell for the player, then combining, ., forms a VC with endpoints

{p1,ps} and carrierC; U Cs.
In each case the locatign is called thanidpointof the AND rule.

3. ORrrule If a player has SCa, . .., a) each with endpoint$p;, p» } but with respective car-
riersC1,...,Cy suchthatC; N...NCy is the empty seti > 2), then combiningyy, ..., ax
forms a VC with endpoint$p,, p»} and carrietC; U ... U Cy.

There are several ways in which H-search can be altered:

e The base case can be enlarged to any list of precomputedatammstrategiesd.g.,border

templates).

e Each chain selects a single element location as its repgegsen and the representative’s
neighbours are all uncoloured cells in the chain’s neighihood; recall the graphs represent-
ing Hex positions. All elements of a chain have empty seti@ak’Cs to one another, so

H-search will perform many redundant computations withtbig alteration.

e Superset carrier connection strategies can be deletegl [32ite all deductions are restricted
by carrier intersection, it is wasteful to compute deduddiaising a VC/SC with the same
endpoints but a carrier that is a strict superset of ancthisralteration reduces such redundant

work.

e Allowing borders to be midpoints of the AND rule. This variaf H-search typically finds

far more connections [121, 122].

¢ If ORing all known SCs does not produce a VC, then ORing a dudighem cannot produce

a VC. This initial OR-all check improves H-search’s efficiency.

e In arecursive implementation of the OR rule, backtrack irdiaely if the most recent SC did
not shrink the cumulative carrier intersection. This im@®the algorithm efficiency without

changing its output, due to the redundancy of supersetcamwnnection strategies [140].

e The OR rule can be restricted to a bounded number of SCs, dtkxception of the OR-all
check; with a bound ok we call this theOR+ rule. However, this alteration can reduce the

number of connections identified by H-search.

e Heuristic limits can be used to restrict the VCs/SCs for gaaih of endpoints that are con-
sidered by H-search’s deduction rules. The use of suchdlimiaccompanied by an ordered

sort of VCs/SCs by carrier size, as smaller carrier conaestare more likely to be helpful in
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H-search deductions [121]. This alteration can decreasaudmber of connections identified

by H-search.

Figure 2.12: An SC not found by H-search. The SC has endpgints and keyx (or keyy).

As Anshelevich observed, H-search does not identify alhection strategies [7, 10], includ-
ing the SC shown in Figure 2.12. Anshelevich developggreralized H-searchlgorithm which
is complete, and allows arbitrary size carrier intersetin its deductions [8]. This algorithm
essentially computek-connectiondor arbitrary k: connection strategies where one player dets
unanswered moves before players alternate tugrs, & VC is a0-connection and a SC is &
connection). However, generalized H-search is far too $fopractice as it uses deduction rules
whose computational complexity grows exponentiallyjiand thus exponentially in terms of board
size. This computational complexity is to be expected sideatifying all connection strategies
necessarily implies identifying any connection stratedietween opposing borders, and thus deter-
mining the value of the Hex position (a PSPACE-complete lgmmbsee;2.4).

Van Rijswijck noted that during depth-first search, a VC dmaliby H-search in one state im-
plies the existence of a SC in its predecessor.bBgking upsuch connections, one partially alle-
viates H-search’s incompleteness. Rasmussai. expanded on this work by storing discovered
connections in a generalized form, so that they can be aptdia wider class of Hex positions.

In yet another attempt to address H-search’s incompleteriRasmussest al. use an inde-
pendent VC search whenever the OR rule finds a set of SCs wilh satrier intersection [142].
Naturally this finds more connections, but unfortunately skearch time can be exponential in the
number of uncoloured cells.

This focus on identifying connection strategies is due &rthbility to prune the search space:
e If P has awinning VC, the® wins the current state regardless of who moves next.
e If P has awinning SC an#® moves next, the® wins the current state.

e If P has a winning SC an® moves next, then an move external to this SC is provably

losing.

Themustplayfor the player to move is the intersection of their opporentihning SC carriers.
It follows that all moves outside of the mustplay are losiBge Figure 2.13.
Despite the benefits of H-search — pruning losing moves aadyging perfect endgame play

— it is time-costly; efficient implementations can compuie tonnection strategies for about 25
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Figure 2.13: Two White winning SC carriers and the corresjgmnmustplay for Black.

positions per second on tournament-sizex111 boards [121]. Furthermore, this performance is
worse if borders can be midpoints of the AND rule.

Aside from VCs/SCs, other types of connection strategie® leeen defined. For instance,
Noshita definedinion-connectionswvhich are connections of the form “locatiarconnects to loca-

tion y or locationz" [131].

2.9.3 Solving Small Boards

Using Allis’ terminology [3], the empty: x n Hex board is ultra-weakly solved€., we know the
value of the initial board state). One goal of current Hexeegsh is to achieve the following on

successively larger board sizes:
e To weakly solve the initial board stateq, to find a winning first player strategy),

e To ultra-weakly solve all opening movese(,to determine the second player’s correct choice

of colour when playing with the swap rule),

e To weakly solve all opening movesd., to find a winning strategy for the second player when

playing Hex with the swap rule), and

e To strongly solve the board sizeq_,to develop an algorithm capable of solving any position

on the given board size in a reasonable amount of time).

Strongly solving Hex positions on board sizes up t& 5 is easy, so few comments have been
made about such positions [60, 85]. In 1995 Enderton deedl@m algorithm capable of weakly
solving all 6 x 6 openings [48]. In 2000 van Rijswijck’s automated solveuldcstrongly solve the
6 x 6 board [169].

In 2001 Yang weakly solved ¥ 7 by hand, and in 2002 Yareg al. weakly solved 17 of the 49
opening moves on % 7 [182, 184]. Yang's main tool is the decomposition methodidblarger
connection strategies from basic ones, so that a commotratggy can be used to respond to large
sets of moves, thus dampening the combinatorial explodang’s solution uses over 40 templates,
and its correctness proof has 12 pages of case analysisOdnNafshita weakly solved ¥ 7 with a
similar but simpler proof; this was attained by applyingamiconnections [131].

In 2003 Haywardet al. weakly solved all 7x 7 openings [83]; this was the first automated

7 x 7 solution. Two tools were fundamental to their succeseriaf cells and H-search. Move
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ordering was also of key importance, since the solver uspthef@st search: when H-search could
not find any opponent winning SCs, moves were ordered usiagréin’s electric circuit resistance
evaluation function (se€2.9.4); otherwise moves were ordered by mustplay sizekingaies with
the circuit evaluation function. In 2007 Rasmusserl. produced a faster automated solution by
having their algorithm keep track of connections that catedound by H-search [144].

However, before these automated results, in 2002 and 260¥ang had already weakly solved
the centre openings for 8 8 and 9x 9 by hand [181]. In 2005 and 2006 Noshita and Mishima
et al. presented further manual>8 8 opening solutions [125, 132]. Figure 2.14 summarizesethes

results, with the omission of the single opening solved on®

Figure 2.14: Previously solved opening moves. Colour dfindicates winner if Black opens there.
8 x 8 openings were only solved by hand.

2.9.4 Automated Players

Another goal of Hex research is to develop strong automal@yers. Claude Shannon and E.F.
Moore developed the first automated Hex player in the 1950g]ectronic circuit network which
set positive charges for one player’s coloured cells, megyaharges for the other player’s coloured
cells, and then played at a certain saddle point. The complaged strong opening moves but
sometimes erred in tactical situations [158]. Shannon@dseloped a computer to play Bird Cage,
now known as Bridg-it (se§2.8). This circuit network set the resistance of one playeoloured
cells to zero, the resistance of the other player’s coloaedid to infinity, and then played at a cell
with greatest voltage drop [64].

In 2000 Anshelevich’s Hexy won the first Computer Olympiadkiempetition [9]. Hexy's
evaluation function uses an augmentation of Shannon’s ®agle circuit, in which extra wires are
added which correspond to VCs found by H-search [7]. Hexy tBis evaluation function in a
straightforward alpha-beta search.

Hexy’s strongest competitor was van Rijswijck’s Queenb@eeenbee uses alpha-beta search
with selective extensions to search deeper on importaes,lias well as some basic inferior cell

analysis. Its evaluation function is based on two-distaaneapproximation of the shortest winning
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path after opponent resistance [169, 171].

Melis’ Six won the next three Computer Olympiad Hex comjpeatis in 2003, 2004, and 2006
[80, 122, 177]. Six significantly refined Hexy’s framework imgproving H-search efficiency via
heuristic limits, using borders as AND rule midpoints, riesing the alpha-beta branching factor,
tuning the evaluation function, and pruning some dead ¢El1&]. Although Six only uses a trun-
cated 2-ply alpha-beta search, it is generally considerédx ta strong player on boards up tot1
11 [114].

Six’s strongest competitor was Haywagtlal's Mongoose. Mongoose is another refinement of
the Hexy alpha-beta framework, and is superior to Six in seofinferior cell analysis. However,
Mongoose’s H-search is not as strong as Six’s, and Mongazselses to odd-ply depths, resulting
in worse performance than shallower even-ply depths [122jother competitor was Rasmussen
et al’'s HexKriger, a learning program whose performance impdoa® the tournament progressed
[80].
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Chapter 3

Inferior Cell Analysis

When playing or solving the game of Hex, many cells can begutdrom consideration. As stated in
§2.9, this pruning can be performed by checking for localgratt and is quite effective. For instance,
simply colouring the captured cells of border bridge vileennections resulted in a tenfold speedup
when solving all openings on thex? 7 Hex board [83].

In this chapter we begin by generalizing previous inferielt classes, and reformulating them
in terms of CGT. We then develop several new classes of orfedll, including captured-reversible,
neighbourhood domination, induced path domination, paantly inferior, and investigate combi-

natorial decompositions. Lastly, we end with some noteswnmplementation.

3.1 Generalized Definitions

We begin with two minor generalizations of existing infergell analysis.

Recall the definitions of vulnerable andP vulnerable-by-capture fror§2.9. To unify these
two definitions, we define th® carrier of a P vulnerable celk to be the set ofP captured cells
that help killerk renderc dead. If noP captured set is required to kill the vulnerable celli(e., the
original definition of P vulnerable), then th& carrier is simply the empty set.

Secondly, in all previous implementations of Hex inferietl @analysis, the fillin cells were only
computed once on the original position. However, by coluyifillin and repeatedly applying the
inferior cell patterns to theeduced positionmuch more fillin can be identified.

That is, for a positionH, a cell setF’ is fillin if F' partitions into cell set¢, ..., F; such that
eachF; is dead orP; captured in positiodd + P (F1) + ...+ P;j_1(F;_1), where eaclP; is either
P or P; this follows by simple induction. We defing fillin to be fillin where onlyP’s colour is
used to reduce the position.

In addition to iteration finding more fillin, it also allows us generalize capture-domination
to fillin-domination: If positionH + P(c) hasP fillin F, then by monotonicity it follows that in

position H the cellc P fillin-dominatesall cells in F'. See Figure 3.1.
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Figure 3.1: Iteratively-computed fillin. Black-colourir@jack captured sets can lead to new Black
captured sets being identified.

3.2 CGT Reformulation

We now examine previous Hex inferior cell results through lns of combinatorial game theory.
This will both motivate and simplify the formulation of soneé our new classes of inferior cells.

Ouir first result is that & vulnerable cell isP reversible:

Lemma 1 Let H be a Hex position with a cedl that is P vulnerable toP killer & with (possibly

empty)P carrier X. Thenc is P reversible inH, with P reverserk.

Proof: H >p H+ P({k}UX) by monotonicity. AlsoH + P(c)+ P(k) = H + P(c) + P({k}U
X) = H+P({k}UX), sinceX is P captured and is dead. Thus we havé >p H+ P(c)+P(k),

satisfying the definition of’ reversible. ]

From now on we refer to vulnerable cells dsad-reversible Note that the pruning of dead-
reversible moves in Hex is stronger than the bypassing efsésle moves guaranteed by combina-
torial game theory.

Our second result shows that playing in one’s own captured ®sjuivalent to playing a pass

move:

Lemma 2 Let H” be a Hex state where play&t has a winning move to a cellthat is P captured.

Then positionH is a P win.

Proof: Let F' be a set ofP captured cells inH, with ¢ in . ThenH = H + P(F), and
H >3 H + P(c) > H + P(F') by monotonicity, sodd = H + P(c). Butcis a winningP move
in H, so(H + P(c))F isaP win, andH + P(c) = H is aP win. a

3.3 Captured-Reversible Moves

Just as knowledge of dead cells allows us to define deadsiblecells, so knowledge of captured
cells allows us to define captured-reversible cells. Therabncept is somewhat counter-intuitive

since it is the opponent’s move that yields the player’s wagat set.

Definition 1 A cell ¢ in position H is P captured-reversiblé there is a cellr such thatH + P(r)

has P captured sef" containingc.
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Lemma 3 Let cellc be P captured-reversible in Hex positial. Then cellc is P reversible inH.

Proof: By Definition 1, there is @ mover in H that yieldsP captured sef’ containingc. By
monotonicity,H + P(r) > H+ P(c)+ P(r) > H+ P(F)+P(r). By the definition of captured,
H+ P(r)=H+ P(F)+ P(r),soH + P(r) = H+ P(c) + P(r). ThusH >p H + P(r) =

H + P(c) + P(r), satisfying the definition of> reversible. O

Captured-reversible cells are reversible, so they can padsed. However, we would like to
prune them from consideration completely, as is done witidereversible cells. Whether pruning
all captured-reversible cells always preserves positanevis still an open question; however, we
now show sufficient conditions which allow some pruning.

For a P captured-reversible move with P reversern- and resultingP captured sef’, we calll
F a P captured-reversible carrieof m. With respect to such selected reversers:s and carriers
Fy, F; of P captured-reversible moves, , ms, we say thatn, andms interfereif r; is in F; and/or

ro isin Fy. Thecaptured-reversible grapty', ;7 py of position H for player P is defined as follows:
e select a set of captured-reversible moves; in H,
e for eachm;, select aP reverserr; and corresponding carrigf;,
e vertices ofG, g, py correspond to the moves;,
e vertices are adjacent if and only if their corresponding esowmterfere.

An independent vertex set @, 7, p) is called arindependent captured-reversible atplayer

P in positionH.

Lemma 4 Let H; be a Hex position with an uncoloured celland an independenP captured-
reversible sef; = {m,...,m,}, where each captured-reversible cell; has selected reverser
r; and carrier F;. Then in positiond, = H; 4+ P(c) the setly = {m; € I : ¢ € {r;} U F;}is an

independenf’ captured-reversible set.

Proof: Eachmj; in I, is P captured-reversible i, sincer; remains a legal move faP, and F}
remains captured for any continuation &% + P(r;) in which all cells inF}; are uncoloured. In
defining the captured-reversible gragh y, p), we can select the same reversers and carriers for

all cells in I to guarantee independence. ad

Theorem 1 Let H be a Hex position with a set of dead cells a set ofP dead-reversible cell§,
and an independenP captured-reversible set. If H” is a P win, then eitherP has a winning

move not inD or V or I, or HP is a P win.

Proof: Proof by contradiction. Let positioil be a counterexample with the smallest number of

uncoloured cells. Thus? has some winning move iif”, but each such move is ik or V or I,
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andH? is aP win. For H?, let W = {my,...,m,} be the set of winning® moves that are not
in D or V. Pruning dead and dead-reversible moves cannot elimitiaténaing moves, sdV is a
nonempty subset df.

For somem; € W, letT; = H + P(r;), wherer; is the P reverser ofmn;. By the definition
of captured-reversible, it follows thd; = H + P(m;) + P(r;); see the proof of Lemma 3. Since
(H + P(m]-))F is a P win, then(H + P(m;) + P(r;))” = T/ is a P win. By monotonicity
T, >5 H, soTjF is aP win.

T} has fewer uncoloured cells thdh, soT) is not a counterexample to this Theorem. Thus in
positionT};, for any dead cell seD;, P dead-reversible cell séf;, and independen® captured-
reversible sef;, P has a winning move not i); or V; or I;.

Recall that dead cells are dead in all continuations, Brdkad-reversible cells are dead.®r
dead-reversible in all continuations where omtycoloured cells are added. Thus we can select
D;,V;suchthatD; UV; O (DUV)\ {r;}. Also, we can seledt; to be the set of cells ifi whose
P reverser is not;. I; is an independen® captured-reversible set ifi; by Lemma 4. Thus there
exists a winning? movem in T that is not inD; or V; or I;.

SinceT; = H + P(r;), P movem is also winning inH*. Thus by our assumptiom is in
(DUVUI)\ (D;UV;UI; U{r;}) CI\1I;. Thusm is P captured-reversible witf reverser;

in H, meaning that it is” captured ifll’;. By Lemma 2, positioff; is a P win, a contradiction.O

If state H” is a P win, then any legal move in stafé” is winning for P by monotonicity. Thus
we can apply Theorem 1 as follows: given a Hex position andageplP for whom we are trying
to find a winning move, we can identify dead cell3,dead-reversible cells and an independEnt
captured-reversible set, and prune all these inferios ¢aim consideration with the caveat that we

consider at least one legal move.

) @ ) O0)
we G oo O

Figure 3.2: Black captured-reversible patterns. In eask eaWhite move at the dotted cell results
in the empty cells being Black captured.

Using known captured patterns, we can identify capturedrsible patterns. See Figure 3.2.

Note that all of the above captured-reversible results @gdmeralized to fillin-reversible re-
sults, by replacing” captured sets witl® fillin. Indeed, by definition fillin-reversible contains tot
dead-reversible and captured-reversible. However, sigcenow of no local patterns that are fillin-

reversible but neither dead-reversible nor capturedrsévle, we will only use these two subclasses.
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3.4 Neighbourhood Domination

We define theclosed neighbourhoodf a locationi to be the union of its neighbourhood g&t!)
with itself, and this is denoted hy[l].

We define théBlack graph neighbourhoodf an uncoloured celt in a Hex positionH to be the
set of uncoloured cells i/ whose corresponding vertices are adjacentdwertex in the Black
graph ofH; recall Figure 2.3. We define thi&glack graph closed neighbourhoad ¢ in H to be the
union of its Black graph neighbourhood afet. We denote these @65 (c) and Np|[c] respectively.
Similarly, we define th&Vhite graph neighbourhoodndWhite graph closed neighbourhoedth
respect to the White graph of a position, and denote theiiyaéc) and Ny [¢] respectively.

Definition 2 Let ¢y, co be uncoloured cells in Hex positiaH. Then we say that; P neighbour
dominates:, in positionH if (N[c1] — {U, P}) 2 (N[co] = {U, P}).

Definition 3 Letcy, c2 be uncoloured cells in Hex positiaif. Then we say that; P graph neigh-

bour dominates; if Np[ci] 2 Np|ea].
We begin by observing that neighbour domination impliephnaeighbour domination:

Lemma 5 Letey, co be uncoloured cells in Hex positidi such thate; P neighbour dominates,.

Thenc; P graph neighbour dominates.
Proof: Follows from the definition of thé> Hex graph. |
Next, we prove that graph neighbour domination is a form ahuhation:

Theorem 2 Letcy, co be uncoloured cells in Hex positidit such thate; P graph neighbour dom-

inatescy. Thenc; P dominates:,.

Proof: In the P graphG for position H + P(c;), the verticeS Np(c1)) i form a clique. Thus:,
must be dead i@/, as its neighbours form a clique. Thés+ P(c;) = H + P(c1) + P(e2) >p
H + P(ca). |

Corollary 1 Letey, co be uncoloured cells in Hex positiaid such thatc; P neighbour dominates
¢o. Thene; P dominateses.
Proof: Follows from Lemma 5 and Theorem 2. O

By the proof of Theorem 2, neighbour domination and graplgm@our domination are really
just forms of fillin-domination. However, a benefit of thesfiditions is that, in addition to local
pattern matching, simple graph-theoretic algorithms @uaded to identify domination, whereas no

such algorithm is known for capture-domination.
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Figure 3.3: Labelling of the 4-3-2 virtual connection carri

We also note that domination can be used not only to pruné tegees from consideration, but
also to deduce equivalences and inequalities among statean example, we assume we have a
Hex position with a 4-3-2 as labelled in Figure 3.3, and cd@sdomination among various probe-

maintenance exchanges.

Corollary 2 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3BhenH +
W(4)+ B(2) >w H+W(3) + B(2).

Proof: In positionH + B(2), {5, 6} is Black captured, and so cellWhite neighbour dominates

cell 3. O

Corollary 3 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3Bhen H +
W (2)+ B(4) >w H+ W(6) + B(4).

Proof: In positionH + B(4), {7,8} is Black captured, and so c&lWhite neighbour dominates

cell 6. O

3.5 Induced Path Domination

Definition 4 Let H be a Hex position with uncoloured cellg, co. Then we say that; P induced
path dominates; if, for each minimal set” of uncoloured cells if{ that contains:, and creates

a winning chain ifP-coloured, theriV also contains:;.

We wish to show that induced path domination implies donmmatTo do so we will useom-
pletion Hex which is identical to Hex except that the game terminatesnwtinere are no more
uncoloured cells. Due to the planarity of Hex, the winnerahpletion Hex is unique, and is iden-
tical to the winner of normal Hex. A benefit of considering qaation Hex is that we can easily

modify strategy trees:

Definition 5 Let H be a Hex position with uncoloured cellg, co, and suppos#} is a strategy tree
for completion Hex whose root position#t + P(c1). Then the(cy, co) exchange treef T is the
tree obtained by exchanging and ¢, throughoutT} (i.e., the root position becoméds + P(c»),

and every move to, in 77 becomes a move tq).
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Lemma 6 Let H be a Hex position with uncoloured celtg, c5, and supposé? is a strategy tree
for completion Hex whose root positionfis+ P(c1). Then thgcq, cz) exchange tre;, of T} is a

valid completion Hex strategy tree for positidh+ P(cs).

Proof: By definition of a strategy tree, if, each node with the losing player to move considers all
legal moves, and each node with the winning player to movsiders a single move. Then the
board will again be played until completion, as the rolesaifse: , co have simply been exchanged
everywhere in the tree. Likewise, 1} each node with the losing player to move considers all legal

moves, and each node with the winning player to move corsialemgle move. m]
Now we have the tools necessary to discuss induced path dtarin

Theorem 3 Let H be a Hex position with uncoloured cellg, ¢o, and suppose that; P induced

path dominates,. Thenc; P dominates: in H.

Proof: We wish to prove thatl + P(c1) >p H + P(c2). Assume for contradiction th&f + P(c2)
isaP win andH + P(c;) is a P win. The same must be true in completion Hex, sdllebe the
P-winning strategy tree for positiofd + P(c2), and letT; be the(cq, ¢1) exchange tree ofs.
Select aP-winning leaf nodd; in T}, and letl, be the corresponding leaf if,. Sincel, must be
P-winning, and sincé,, [; can only differ on the colouring of; andcs, then it must be the case
thatly's P winning path(s) require cell,. However, in all continuations dff, all P winning paths
that usezo must require:;. This implies that botl; andc, are P-coloured inly, and so botle; and

¢y are P-coloured inl;. Thusl; andl, are identical, a contradiction. O

Unfortunately induced path domination does not produce preming, because of the following

observation:

Lemma 7 Let H be a Hex position with uncoloured cells, c,. If ¢; P induced path dominates,

thenc, is P dead-reversible wittP Killer ¢;.

Proof: By the definition of induced path domination, is dead in positiorff + P(c;) since it can

no longer be on any minimal winning paths. |

Note that the converse of Lemma 7 holds for dead-reverstile with empty set carriers, but
does not necessarily hold for dead-reversible cells with-empty carriers. Despite its pruning
redundancy, induced path domination is useful for dedupsjtion equivalences and inequalities.
As with neighbourhood domination, we illustrate this fasing probe-maintenance exchanges of a
4-3-2VC:

Corollary 4 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3Bhen H +
W(2) + B(3) = H+ W (5) + B(3).
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Proof: In position H + B(3), {6, 7} is Black captured, and so cellsand5 White induced path

dominate each other. O

Corollary 5 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3BhenH +
W(l)+ B(4) >w H +W(3) + B(4).

Proof: In positionH + B(4), {7,8} is Black captured, and so célWhite induced path dominates

cell 3. O

Appendix A applies these neighbourhood domination anddadyath domination 4-3-2 results

to prune 4-3-2 probes.

3.6 Permanently Inferior Cells

We now introduce a new kind of fillin: permanently inferiorllse Unlike with captured sets, the

strategy for maintaining permanently inferior cells exteteyond the set of cells that are coloured.

Definition 6 Let H be a Hex position with a sef’ O {¢;, ¢y} of uncoloured cells such that
is P dead-reversible te,, and each cell inC' \ {co} is P dead-reversible to a killer and carrier
both contained withirC'. Then we say that; is P permanently inferigrand thatC \ {c;} is its

correspondingarrier.

B 0 e 00200 09208 o050,
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Figure 3.4: A Black permanently inferior pattern. The ddttell is Black dead-reversible to the
shaded cell. The three unshaded cells are each White deaditde to the shaded cell, with the
other two unshaded cells being the killer's carrier. ThuBridgon 6 is satisfied, and so by Theorem 4
the dotted cell can be Black-coloured without changing t&itjpn’s value.

Figure 3.4 illustrates a Black permanently inferior patt@nd its maintenance strategy against all

possible White probes. Figure 3.5 shows the other two knolankBpoermanently inferior patterns.
Theorem 4 Let H be a Hex position with & permanently inferior celt;. ThenH = H + P(cy).

Proof. By monotonicity, H >+ H + P(c1), SO we need only prove th&f + P(c;) >5 H. So
suppose thaP has a winning strategy off. ThenP has a winning strategy faF in which P
never plays a dead dp dead-reversible cell. Let, andC be as in Definition 6. Notice that the
uncoloured cells of> \ {c2} remain P inferior in any continuation fron# in which P has not
coloured any cell of> \ {c.}; that is, they will each remai# dead-reversible or become dead. It

follows that if P ever plays inC, then their first such move is tg, at which pointc; is dead. Thus
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P’s winning strategy forH never requires them to play af, and so their winning strategy also

applies to positiorf/ + P(cy). ]

O 0P
Qo ®e®

Figure 3.5: Two more Black permanently inferior patternseach case, colouring the dotted cell
Black does not alter a position’s value.

Thus permanently inferior cells are a new type of fillin, andre can generalize the definitions
of fillin, P fillin, fillin-domination, and so on in the expected manneheTpermanently inferior
pattern shown in Figure 3.4 is quite common, as colouringrddydoridge’s captured carrier often

creates this pattern.

Figure 3.6: Fillin strategy conflict. Black has a border ggdvith captured carrier. From this, Black
deduces permanently inferior fillin, and then two more Blaaktured cells. White can play a cell
intersecting both the permanently inferior carrier and@waed set. Since the permanently inferior
cell was deduced first, its corresponding strategy must b@afed (.e., the dotted cell should be
played).

Because the strategy for permanently inferior cells exgdr@yond the coloured cell, the winning
strategy on the original board cannot be a straightforwaed, {lisjoint) combination of the fillin-
reduced board strategy with the permanently inferior atpatindeed, even among the fillin patterns
themselves there could be a conflict regarding the stratagyedain cells. Such conflicts can be
resolved so long as the fillin deduction order is recalled| #e strategy of the earliest applicable

fillin is applied. See Figure 3.6.

Theorem 5 Let H be a Hex position witl® fillin £ that partitions into cell set#?, . . ., F; such that
eachFj is dead,P captured, orP permanently inferior in positiolf + Py (Fy)+. ..+ P;_1(Fj_1).
Then P can maintainF' on its carrier (i.e., the union of thé; carriers) by responding to each
P probe of F’s carrier with the move recommended by the earliest-dediucethat demands a

response.

Proof: Any P fillin F; — dead, captured, or permanently inferior — that demandsporese,
always produces a move that kills the probiRgcoloured cell in positiond + Py(Fy) + ... +
Pj_1(F;_1). Thus the result of any such exchange is equivalent to radolyp the P-coloured cell

with P’s colour, assuming all previously deducé&dfillin is maintained. Further, extr&-coloured
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cells can never obstruct/ strategy, so any fillin successor off’; must still have a valid strategy.
a

In Appendix B we apply this new fillin to produce an efficientaexplicit handicap strategy for
Hex. Permanently inferior patterns can also help prove thévalence of two moves in the acute

corner:

Corollary 6 Let H be a Hex position with an acute corner as in Figure 3.7. THeR- B(a) =
H + B(b).

Proof: In position H + B(a), cell b is dead, sad + B(a) = H + B({a,b}) >p H + B(b).
In position H + B(b), cell a is Black permanently inferior, s&f + B(b) = H + B({a,b}) >p
H + B(a). ]
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Figure 3.7: Acute corner cell equivalence. If Black claired a, then cellb is dead. If Black claims
cell b, then cella is Black permanently inferior.

3.7 Combinatorial Decompositions
3.7.1 Chain Decompositions

Thus far we have discussed inferior cells that can be pruded.we examine combinatorial decom-
positions of Hex positions. In particular, we focus our atitn on combinatorial decompositions

created by chains partitioning the uncoloured regions ebibard:

Definition 7 Let H be a Hex position, and lef be the (Black or White) Hex graph of the initial
Hex board. Delete all vertices i& corresponding to elements of chainsih Then the resulting

graph is called thechain deleted Hex grapdf H.

Note that the set of deleted vertices includes all borded tlaus the resulting graph is identical
regardless of whetheaf is the Black or White Hex graph. Thus the chain deleted Heyplyia

well-defined.

Definition 8 Let H be a Hex position and |&€¥ be its chain deleted Hex graph. Suppéskas com-
ponentdJy, ..., Uy (k > 0). Then these components correspond to a partitioning ofitte®loured

cells in H, and so we call eacl/; an uncoloured componerf H.

Given a Hex positiort/, we define itxhain component grapéas follows:
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e The chain component graph is bipartite, with vertices in pae corresponding to chains of

H, and vertices in the other part corresponding to uncoloaoedponents of{.

e The vertex corresponding to chair} is adjacent to the vertex corresponding to uncoloured

component; if and only if N(C;) intersectdJ;.

Definition 9 Let H be a Hex position. We call a set of uncoloured cellsianoloured regiof H

if it is the union of one or more dff’s uncoloured components.

Definition 10 Let H be a Hex position with chaid' and regionR. We say thatC and R are
adjacenin H if C is adjacent to one or more dt’'s uncoloured components in the chain component

graph ofH.

Definition 11 Let H be a Hex position with chaif’ and regionR. ChainC is internalto R if it

does not contain a border, and it is adjacent only to uncaéoucomponents contained withit

Definition 12 Let H be a Hex position with regiofk. Then thechain boundaryf R is the set of

chains inH that are adjacent ta? and not internal taR.

These concepts are illustrated in Figure 3.8. For instaheaggion defined by uncoloured com-
ponent 6 has one internal chain and seven boundary chaiiis, thva region defined by uncoloured

components 5—7 has eight internal chains and eight bourntiaiys.

Figure 3.8: A Hex position with seven uncoloured componeifiise label of an uncoloured cell
indicates its membership among the uncoloured componéhéslabel of a coloured chain indicates
that it is an internal chain of the region defined by the cquoesling uncoloured component.

Informally, the chain boundary of a region is the set of chahrough which the region’s un-
coloured cells can interact with the rest of the board. Ireptords, the rest of the board only
perceives what occurs in this region by how it affects cotines between its boundary chains. We

now express this formally:

Lemma 8 Let H be a Hex position with regio®, and letW = {I4,...,1;} be a winning path in
H such thatl, € R for somel < z < j. Letl, be the first successor &f in W that is neither
uncoloured, nor an element of an internal chainfaf Thenl,, is an element of a boundary chain of
R.
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Proof:  First we note that, is well-defined sinc€; is a boundary, and sp < j sincel, is
uncoloured, and alsg is not uncoloured nor an internal chain of any region by D&fini11. Thus
z < y < j, and the subpath’, = (I,,...,l,—1) can only be composed of uncoloured cells and
elements of internal chains &.

By the definition of uncoloured components, consective lmwed cells ofii/, must remain
in the same uncoloured component. By the definition of chany consecutive same-coloured
cells must be part of the same chain. Sifteis a winning path, transitions between opposite-
coloured cells are impossible. Finally, since all interctains ofR are only adjacent to uncoloured
components ik, then any transitions from uncoloured cells to colouretsa®l vice-versa remain
confined to elements d® and internal chains a®. ThusWV,, is restricted to elements of uncoloured
components and internal chainsf

If I,_1 is coloured, therd, must be the same colour, sinBé is a winning path. This is impos-
sible, asl,, would then be an element of the same chair,as, contradicting the selection &f.
Thusl,_; is uncoloured and an element&f while ,, is coloured, and not an element of an internal

chain of R. So by definition the chain containirig is a boundary chain aR. O

By symmetry, the same argument holds for the last predece$dp in W that is neither un-

coloured, nor an element of an internal chainfof

Definition 13 Let H be a Hex position with regiorR and let C,, C, be distinct same-colour
chains inR’s chain boundary. Then amterboundary connectiom R with endpointsC;, C,, is
a monochromatic path connectirdg,, C,, whose non-endpoint locations are each contained within

R or internal chains ofR.

Definition 14 Let H be a Hex position with regio®. We say that completion?,, R, of R are in-
terboundary equivaleritt for all pairs of same-colour? bounding chaing”,, Cy, an interboundary

connection ink with endpointC,, C,, exists inR; if and only if it exists inks.

Figure 3.9: A region and two interboundary equivalent cagtiphs.

Lemma 9 Let H; be a Hex position with regiof®, and letH, and H3 be completions off; that
are identical on(H — U) \ R and interboundary equivalent aR. Then the winner off; is the

winner of Hs.
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Proof: Assume for contradiction that this is not the case. So thestsea P winning pathiV that
exists inH,, but no P winning path exists inH3. Since H, is identical toH3 on all cells outside

of R, it must be the case thdlt’ intersectsk. By Lemma 8 we know that any element 8fin W/

is bounded by two elements of boundary chain®ofSince Hs is interboundary equivalent t>,

we can substitute its own interboundary connections foh edichese bounded segments, thereby

producing aP winning path onH3. Contradiction. |

In other words, such regions allow us to combinatoriallyaiepose strategies. Thus we define
a chain decompositiom a Hex position to be a two-tuple of a region and its corresiitg chain

boundary.

3.7.2 Generalized Chain Decompositions

We now show that we can further decompose some uncolouregaiants while still maintaining

the desired decomposition properties.

Definition 15 Letcy, co be uncoloured neighbours in Hex positiéh If cells ¢y, ¢, are also neigh-
bours of some Black chaifiz and some White chai@'y, then we say that they agouble chain

adjacent

Q
e

Figure 3.10: An opposite-colour bridge.

For instance, the carrier cells of an opposite-colour laridg that is, a bridge VC whose end-

points are opposite-coloured cells — are double chain adja&ee Figure 3.10.

Lemma 10 Let H; be a Hex position with double chain adjacent cellsc,, and let H, be a
completion ofi/; with a P winning path. Then there existsrawinning path inH, wherec; andcs

are not consecutive locations.

Proof: If a P winning path inH, hascy, co as consecutive locations, then a nBwvinning path
can be constructed by rerouting the path through the elenoéatP-coloured chain that neighbours

bothc; andc; in H;. O

Theorem 6 Let us redefine the chain deleted Hex graph of a posifibiso that edges between

double chain adjacent cells are also deleted. Then Lemmid Baits.

Proof: All definitions except Definition 7 remain the same. LemmagB8of is no longer valid,

since there can exist winning paths that avoid boundarynshiay containing consecutive double
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chain adjacent cells. However, we can apply Lemma 10 to medwvinning path without consecu-
tive double chain adjacent cells, and Lemma 9's interbonndannection replacement proof is still

valid on this new winning path. |

The new chain deleted Hex graph has the same vertex set asigh®lp but a subset of the
edges. Thus the number of uncoloured components can omeise, and thus the number of chain
decompositions can only increase. We generalize the defirif chain decompositions accord-
ingly.

The simplest chain decomposition is one where the regiohdsset of all uncoloured cells.
In this case the chain boundary is the set of four chains oontpborders; all other chains are
internal by definition. This particular chain decompositimannot help us decompose our strategy,
but it does imply the PSPACE-completeness of determiniageitistence of a first player or second

player interboundary connection strategy.

Figure 3.11: A Black split decomposition and two correspogaegions.

Another simple chain decomposition is the split decompmsitin which three boundary chains

contain borders and one boundary chain does not contairdator

Definition 16 A P split decompositiolis a chain decomposition whose chain boundary is composed
of two P chains, each containing a distin& border, and twaoP chains, exactly one containing a

single P border.

See Figure 3.11. Note that in this example, the split decaitipo uses the generalized results
obtained via double chain adjacent cells. Since only therlimiundary connections of this region
matter, then eitheP has a strategy to form a winning chain in this region, or étsgan simply let

P claim all of its uncoloured cells. We formalize and geneelihis concept in the next section.

3.7.3 Dead and Captured Regions

Lemma 11 Let H be a Hex position with regio®, such thatR’s chain boundary contains at most

one Black chain and at most one White chain. Then all cel® are dead.

Proof: Since interboundary connections require two distinctreleadpoints, then no interboundary
connections are possible i. Hence, all completions aR are interboundary equivalent, and thus
by Lemma 9, changing the colour of any cell ihdoes not change the winner of a completion of
H. Thus all cells inR are dead. |
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Figure 3.12: Two dead chain decomposition regions.

See Figure 3.12. Lemma 11 is subsumed by the previous kngevtbeat cells isolated by clique
cutsets are dead, since the uncoloured neighbours of a fdraina cligue. However, this result

leads naturally to the concept of captured chain decormriposiggions:

Theorem 7 Let H be a Hex position with regio?, and assume playeP has a second player

strategy onR that preventsP from making any interboundary connections. THis P captured.

Proof: If P follows this second player strategy &) then anyP-coloured cells inR are not on any
interboundary connection, and thus cannot be onfamynning path. It follows that any’-coloured

cells must be dead in the leaf of this strategy tredipwhich satisfies the definition of & captured

set. O

Figure 3.13: A Black captured chain decomposition region.

See Figure 3.13. Sincefacaptured set can b-coloured, then it follows that a second player
strategy on regiork to prevent anyP interboundary connections is equivalent to a second player
strategy on regiomR to maximize theP interboundary connections. Also, afymove that creates

a P captured regioriz capture-dominates all uncoloured cellsin

3.7.4 Star Decomposition Domination

Of course, not all chain decomposition regions are setiWéelconsider the simplest unsettled case,
where both players have a first player strategy to capturedhen. The first move of such a
strategy captures the region, and so capture-dominatethall moves in the region. It follows that
each player need consider only one move in the region, anéirttéo play their corresponding
move captures the entire region. Due to the strategic res@edto the surreal number= {0|0},

we call such a chain decompositiorstar decomposition
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Definition 17 A chain decompositiofiR, C') is a star decompositioif each player has a move in

R that captures the region for themself.

Unlike with captured regions, the move that creates a stzordposition need not dominate all
cells inside the region. However, some domination can beakiby determining when additional

coloured cells in the region do not affect either playen'ateqgy.

Theorem 8 Let H be a Hex position such that/2 movem yields a star decomposition with corre-
sponding regiorR. Let@ C R be a set of cells on whicR has a first player strategy to prevent all

P interboundary connections iR. Then inH, m P dominates every cell iR \ Q.

Proof: If we can prove thatH + P(m) = H + P(m) + P(R \ Q), then the result follows
by monotonicity. Since the cells iR \ @ are within the star decomposition, they can only affect
interboundary connection strategies wittin

If P is the firstto play inside the star decomposition regionntRebecomesP captured, so the
P-colouring of cellsR \ @ did not alter the position’s value as they would be assigoddin either
case.

If P is the first to play insideR, then becomesP captured sinceé”’s additional cells do not
obstructP’s strategy, and this strategy still prevents Rlinterboundary connections by definition.
Thus theP-coloured sefR \ Q is dead, or equivalently, by Lemma 9 the resulting comptetibR
is interboundary equivalent tB-colouring all of R. Thus once again thB-colouring of R \ Q did

not alter the position’s value. ]
In other words P’s star decomposition strategy is not adversely affecteémyplouringR \ Q.

Corollary 7 Let H be a Hex position such that 2 movem creates a star decomposition with
regionR. LetI C R be the set of cells intersecting all &fs first player strategies to prevent aft

interboundary connections aR. Then inH, m P dominates every cell iR \ 1.

Proof: By repeated application of Theorem 8 to every such first plagrategy forP. |

Figure 3.14: Star decomposition domination. In each caskekBnove to the shaded cell forms a
star decomposition and dominates a Black move to any of tttedloells.

Star decompositions arise frequently, allowing us to pregeral moves that cannot otherwise
be pruned. See Figure 3.14.
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3.8 Algorithms

Thus far we have established the theory for several new tgpésferior cell, as well as chain
decomposition properties. We now discuss how these ideabeafficiently incorporated into our

Hex program.

3.8.1 Local Patterns

By far the simplest extension is simply adding new localiiafiecell patterns to the existing library.
This method was adopted for captured-reversible and pemntigrinferior cells, as well as for the
common 4-3-2 VC star decomposition domination shown in Fii14.

Since the acute corner often leads to much fillin and otheud@hs — see for instance Fig-
ures 3.1 and 3.7, as well as Appendix A — several such patteens added as well.

Some inferior cell patterns in the original set generatedamyRijswijck are not minimal, in that
they specify the colour of a cell that is irrelevant to theaasion of inferiority. The pattern library
was revised (by hand) to reduce such inefficiencies.

In an attempt to fix these deficiencies, an automated algorniths developed with Laurie Char-
pentier and Broderick Arneson to compute all minimal deatepas of a bounded size. The current
implementation is somewhat slow: it requires roughly onentihdo identify all dead patterns of
radius at most two. However, new minimal dead cell patterasevdentified, so further work in this

area could be beneficial.

3.8.2 Graph-Theoretic Inferior Cell Analysis

As mentioned earlier, neighbourhood domination and indyzath domination are subsumed by
existing inferior cell analysis, but they provide the bentfat they can be identified using simple
graph-theoretic properties. Likewise, dead and deadsibdle cells can be identified via graph-
theoretic algorithms, and we added such algorithms to supght the local patterns.

For instance, any cell isolated by a clique cutset is dead,tla@ uncoloured neighbours of a
chain form a clique in the same-coloured Hex graph. Thus & lohgck for dead cells is whether
some subset of the neighbours of a chain forms a cutset. Asiiinpar-time search on the graph
can check this for each chain, and since there are at mogtat limumber of chains in the size of the
board, then in quadratic time we can find all such dead cells.

Likewise, if all but one of the neighbours of a cell are neights of someP chain, then it
follows that the cell isP dead-reversible, since A move to the exception neighbour results in a
clique cutset separating that cell. Such reasoning needlenestricted to the board neighbourhood,
but can also be applied to the cell's neighbourhood in thelBind White Hex graphs.

Since the dead, dead-reversible, and neighbourhood dbtarirelgorithms all rely on knowl-
edge of chains’ uncoloured neighbours, this informatiosdhenly be computed once. For instance,

a cell is dead-reversible if the set subtraction of a chaiaighbourhood and a cell's neighbourhood
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has size one, and one cell dominates another if the set stibtraf their neighbourhoods is the
empty set.

Lastly, two dead-reversible cells that are each othersnsar form a captured set so long as their
respective carriers do not conflict. Thus combining the kydgeoretically identified dead-reversible
cells with existing dead-reversible local patterns rasinitmore captured cells being identified as

well.

3.8.3 Backing Up Domination

As stated earlier, we generalize capture-domination tm-ilbmination, recursively identify and
colour fillin, and obtain captured regions from chain decosifions. To identify all these different
types of fillin-domination, we simply compute the fillin fongcessor states, and return the resulting
domination deductions to the immediate predecessor. Stpsaiticularly natural in various forms
of search, such as depth-first search, alpha-beta seamtisoaon; it can be more costly in other
settings.

We use any returned domination information to produce aticedomination graph, and select
a set of dominating representatives, pruning all othes¢edim consideration. The set of dominating

representatives is currently selected heuristically, smdot necessarily a minimum set.

3.8.4 Decomposition Algorithms

The identification of dead regions is already performed leyaforementioned chain clique cutset
algorithm, so we are predominantly concerned with captuegtbns and star decomposition domi-
nation. However, both of these require knowledge of stiagetipat prevent opponent interboundary
connections, for which there is no known methodology. Femtiore, identifying such strategies is
PSPACE-complete.

However, blocking all opponent interboundary connectiizngquivalent to maximizing one’s
own interboundary connections, and connection stratéfgyrimation is available via H-search. Thus

we restrict our identification of decomposition regions @ofvs:

Definition 18 We say that two opposite-coloured chains in a Hex posiiachif they are neigh-

bours, or if they contain the endpoints of an opposite-colwidge.

Definition 19 A four-sided decompositiois an uncoloured region whose chain boundary i¢-a

cycle of touching chains.

In a four-sided decomposition with regid?y a VC to connect two of the same-coloured bound-
ing chains is a second player strategy to prevent the oppdren producing any interboundary
connections inR. In other words, the existence of a VC for play@mwhose carrier is a subset of

R and whose endpoints are the boundidghains implies thaR is P captured. Likewise, if both
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players have interboundary connection SCs in a four-sigedmposition, then it is a star decom-
position.

Touching chains can be identified using chain neighbourba@od a simple linear-time scan for
opposite-colour bridges. Given this bipartite graph ofdRland White chains, with edges connect-
ing touching chains4-cycles can be found efficiently, especially when confinegauws of chains
with connecting VCs/SCs. Since the carrier of the VC/SC wvkm we need only check that it is a
subset of the region defined by theycle.

Figure 3.15: Captured non-chain decomposition: White ta@ing the shaded VC (and the border
bridge) creates a clique cutset in the White Hex graph, arcéptures the shaded and dotted cells.

More generally, if twaP-coloured chains are VC-connected, and if the union of theighbours
forms a cutset that isolates the VC carrier, then the VCeaisiP captured. This follows since any
probes of the VC must be dead once the connection is completkein fact this simple algorithm
can also identify captured combinatorial decompositidreg tire not chain decompositions. See
Figure 3.15.

Star decomposition domination is identified similarly, et SCs internal to the region must be
identified for both chain boundary pairs. The identificatafrsuch SC carriers allows for fillin by
the proof of Theorem 8, and the corresponding dominatioorinétion can be passed back to the
predecessor state.

H-search is costly, but if it is being performed anyhow, theutting connection strategies might
as well be used to identify more captured sets and dominate@sn This marks the first time that

VC/SC information is used for inferior cell analysis.
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Chapter 4

Connection Strategy Algorithms

As mentioned ir§2.9.2, H-search provides many benefits to Hex programs,asictustplay pruning
and early search termination. Recall that H-search is ipdet®, while generalized H-search is far
too slow. Thus a natural question is whether there exisinsidas of H-search that identify more
connections without increasing the time cost by too great#of.

Analyzing the performance of H-search is rather difficilice the number of iterations depends
on the number of deduced connections, and thus varies gesatbrding to both position connec-
tivity and algorithm completeness. Thus we focus our atiaerdn the computational complexity of

each deduction rule, rather than the algorithmic framevesri whole.

Deduction rule | Computational complexity
AND rule o(n’3)
OR-3 rule O(n2l3)
OR-4 rule O(n%l%)

Table 4.1: Computational complexity of H-search deductides.

In our analysis we assume that H-search is implemented as (iM8lis’ automated Hex player;
see§2.9.4), with heuristic limits on the number of VCs/SCs bedwesach pair of locations that
are used by the deduction rules, and with the VCs/SCs soxtedtier size so that preference is
given to connection strategies with smaller carriers. Ve alssume that the OR rule has a limit
on the number of SCs it may consider at one time (exceptingdOReall rule). We denote the
number of locations by:, and the heuristic limits for VCs and SCs hy andis respectively. The
computational complexity of existing deduction rules iswh in Table 4.1. We note that for Six,

the parameterg, andis are ten and twenty-five respectively [121].

4.1 Partition Chains and the Crossing Rule

Anshelevich proved the incompleteness of H-search usiadsth shown in Figure 2.12. We call

SCs of this formbraids as the substrategies are intertwined together; that isid s an SC that
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decomposes into VCs between each{afz}, {b,y}, and SCs between each of,y}, {z,b},
{a,y}. Thus a naive algorithm for identifying braids is the foliog:

1. Select four non-opponent coloured locations, denoted @sc, andy.
2. For each such, b, z, y, find the following connection strategies, ensuring theiriers are
pairwise disjoint:
e A VC with endpoints{a, =} and carrierC;.
e A VC with endpoints{b, y} and carrierCs.
e A SC with endpointq z, y} and carrieiCs.
e A SC with endpoint]z, b} and carrieiCy.

e A SC with endpoint]a, y} and carrieiCs.

3. Whenever five such connection strategies are found, edadhat there exists an SC with

endpoints{a, b}, carrierC; U - -- U C5 U {z, y}, and keyz (or keyy).

This naive braid deduction rule 8(n*i%.1%), and thus far slower than all previous deduction
rules. In the remainder of this section we develop the cngssile, a deduction rule to identify some

braids far more efficiently.

4.1.1 Partition Chains

To describe the crossing rule, we first need to describetipartthains of connection strategies.

Definition 20 LetV be a connection strategy with endpoifts, p-} and carrier C. Then apar-
tition chainof V' is a chainZ for which there exists a partitiot';, Co of carrier C' such that the

following holds, with possible relabelling &f's endpoints:
e (' is the carrier of a VC fron¥ to p;.
e If Vis a VC, then’; is the carrier of a VC fron¥ to p-.

e If Vis a SC, ther(’; is the carrier of a SC fron¥ to p-.

Figure 4.1: A VC and SC with partition chains and a VC with none

Thus a partition chain decomposes a connection strategyvirt disjoint connection strategies.
See Figure 4.1. We now describe tRE€ algorithm which computes partition chains for each

connection strateg¢', denoted a$*C(C), and works in parallel with H-search:
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1. LetV be a base case connection strategy. TREH{V) = 0.
2. LetV be a VC computed via the OR rule from S€s ..., S;. ThenPC (V') = (.

3. Let S be an SC with keyt computed via the AND rule from VC¥7, V, with uncoloured
midpointk. ThenPC(S) = PC(V1) U PC (V).

4. LetV be a VC computed via the AND rule from VG4, V5 with chain midpointZ. Then
PC(V)=PC(V;)UPC(Va)U{Z}.

We now prove the correctness of the PC algorithm:

Lemma 12 LetV be a connection strategy with endpoifiis , p»} and carrierC. Then any chain
Zin PC(V) is a partition chain ofl/.

Proof: Proof by induction: The statement holds vacuously for ampneation strategy” for which
PC(V) is the empty set. Thus by the definition of the PC algorithra,statement holds for all base
case connection strategies and VCs computed via the ORTles letl” be a connection strategy
deduced via the AND rule from VCg,, 1.

If V is a VC, then its midpoint in the AND rule deduction is a chain and soPC(V) =
PC (V1)U PC (V) U{Y}. For partition chairZ = Y, the statement clearly holds for a partition of
C'into the carriers of/; and V5.

If Z e PC(V;), thenV; must be computed via the AND rule since it is a VC with a non-smp
partition chain set. By the induction hypothesis, the earoif V; can be partitioned by into VCs
A and B, where A is a VC with endpointgp;, Z} and B is a VC with endpoint{ Z,Y'}. By the
AND rule, combiningB with V, over midpointY” forms a VCV; with endpoints{ Z, p, }, and thus
the statement holds fdf with a partition into the carrier ot and the carrier of’;. By symmetry,
the statement holds for ary € PC(V%). The proof is similar ift” is an SC deduced by the AND

rule, so the result follows from mathematical induction. O

Figure 4.2: lllustrating Lemma 12. The carrier of a conrmtttrategy can be partitioned into two
connection strategies using a partition chain as an intgiateeendpoint.

It is an open question whether the PC algorithm can be gérnedalo identify more partition

chains. We now apply Lemma 12 to produce the crossing rule.

44



4.1.2 The Crossing Rule

Observe in Figure 4.3 that if the endpoifits b} of a braid are same-coloured chains, then the braid
‘untangles’ into three pairwise carrier-disjoint SCs withcoloured endpointéz, y} such that two
of these SCs have at least one distinct partition chain. We foomally prove that finding two
uncoloured cells with three such SCs is sufficient to corelié existence of an SC between pairs

of distinct SC partition chains.

Figure 4.3: Crossing Rule SCs. Fgr= 1,2,3, cells labelledj form carrierC; of SC.S; with
endpoints{z, y}, whereS; andS, have distinct partition chains. By Theorem 9 we conclude the
existence of an SC with endpoinfs, b}.

Theorem 9 Consider a Hex position with SG5, S», S5 with pairwise disjoint carrierg’;, Cs, C3
each with uncoloured endpoin{s;, y}. Further, assume that botd; = PC(S;) \ PC(S2) and
Zy = PC(S3) \ PC(S;) are nonempty. Then for any chainsg, z; in Z;, Z,, there exists an SC
with endpoints{ z1, 2o } whose carrier is{z, y} U C; U C2 U C5 and with keyr or keyy.

Proof: By Lemma 12, we can partitiofi;'s carrier using partition chaig, into VC V; and SCWV/;.
Likewise, we can partitiorby's carrier using partition chais, into VC V, and SCIWs.

If VCs V1, V5, have a common endpoint, without loss of generality sathen by the AND rule
there exists an SC with endpoinfs,, 22}, key z, and whose carrier is the union éf} with the
carriers ofl/, V5. This SC satisfies the claim with a smaller carrier, so cjetlrd statement holds
for any larger carrier.

If VCs V1, V> have no common endpoint, then without loss of generality areassume that;
connectsy; to z andV; connects:s to y. It follows that1; connectsz; to y and W, connectszy
to z. By construction the carriers éf,, W1, V5, W5 and S5 are all pairwise carrier-disjoint, so the

stated SC strategy is as follows:
1. Play keyx as the first move.
2. Thereafter maintain VCEB;, V5 against all probes.
3. Consider the opponent’s first probe of this SC that is ezleon 1, andV5:

¢ If the probe is also external 1>, then playing the key ofi’; completes the connection

from z; to x t0 2z via V; andWs.
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e Otherwise, respond to the probeld% with iy. Note thaty has two disjoint SCs to; —
Wy, and the AND rule deduction overof S3; andV; — and thusy has a VC toz;. y
also has a disjoint VC te, via V5, so by the AND rule this maintenance results in a VC

betweerz; andz,.

Thus in both cases there exists an SC with endpdintsz, }, keyz or keyy, and carrie{z, y}U
Cl U 02 U 03. O

Note that in the first case of Theorem 9's proof, an SC with allemearrier is deduced via
the AND rule. Since it is common for H-search implementadiom discard duplicate connection
strategies with superset carriers, this case is not relévamactice as the crossing rule’s output SC
will be discarded.

Note that in the second case of Theorem 9's proof, the partis symmetric with respect to
uncoloured cells: andy (simply interchange the,, 25 labels), and thus eitheror y can be the key
in this case.

Note also that Theorem 9 applies to any suchz,, and the deduced SC'’s carrier and key are
identical for all such chain endpoint pairs. Thus only onegieaand key need to be computed, and
the ‘'same’ SC can be added to various endpoints.

Lastly, note that the crossing rule is a unique deductiomiruthat its input connection strategies
share no endpoints with the output deduced connectioregtraT hus in some sense the AND rule
and OR rule make parallel deductions, while the crossing mikes orthogonal deductions. This
is an interesting property of partition chains, and it remdb be seen whether additional deduction

rules can be produced using this information.

4.1.3 Incorporating the Crossing Rule into H-search

In order to incorporate the crossing rule into H-search, wednto incorporate the PC algorithm
into H-search. Thus we need to consider both the time andesgféects of incorporating the PC
algorithm, as well as the computational complexity of thessing deduction rule.

Firstly, each connection strategy currently needs to ti@andpoints, carrier, and possibly key.
When adding partition chains, we can choose either to trihaf them, or to track only a bounded
number. The former requires storage of a set of locatiomsilési to how the carrier is stored)
despite the fact that most connection strategies will havgartition chains. The latter requires only
a modest increase in our memory requirements, but forcesiaecbf which partition chain(s) to
retain. Since memory is not a bottleneck for our Hex prognamppted for the (simpler and more
complete) first solution.

Secondly, the PC algorithm will not worsen the computatiammnplexity of H-search’s base

case or deduction rules:

Lemma 13 H-search’s computational complexity is not altered by impawating the PC algorithm.
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Proof: For each base case connection stratégy’C(C) = (), which is no more computationally
complex than carrier initialization. For each OR rule dextliconnection strategy, PC(C) = 0,

which is no more computationally complex than its carrieionrand intersection operations. For
each AND rule deduced connection strat&gyPC(C') is the union of input partition chain lists,

which is no more computationally complex than its carrieibarand intersection operations. O

By Theorem 9 the crossing rule requires the identificatiomwaf uncoloured cells with three
pairwise carrier-disjoint SCs connecting them, two witktidict partition chains. In terms of board
size and the heuristic limits for SCs and VCs, it follows ttia crossing rule computational com-
plexity is O(n?1%). Recall from Table 4.1 that this is comparable to existingedrch deduction
rules, and roughly the square root of the naive braid deductile discussed if4.1.

We also need to extend the PC algorithm to connection stesteigduced via the crossing rule;

we do so in the simplest way possible:
e Let .S be a SC computed via the crossing rule from SEsSs, Ss. ThenPC(S) = (.

Note that Lemma 12 and Theorem 9 can easily be extended tatdkswith the crossing rule,
as the former holds vacuously for any connection stratedgly mo partition chains.

Lastly, since the crossing rule applies only when conneditoategies have partition chains, in
practice almost all crossing rule deductions involve a bordror this reason, the crossing rule is

only really useful when H-search uses border chains as rimtipof the AND rule.

4.2 Carrier Intersection on Captured Sets

Note that the connection strategy deduction rules discutaes far — AND rule, OR rule, and
crossing rule — all require the carriers of input connectitrategies to be disjoint, either pairwise or
collection-wise. If this restriction is relaxed and someisections are allowed, this could increase
the number of connection strategies deduced by these rukeag this idea, we now improve H-

search by using inferior cell analysis, namely by considgdaptured sets.

4.2.1 Key Captured Sets

As mentioned ir3.1, fillin is computed iteratively, so all (identifiable)tared cells are already
coloured. Since the carriers of connection strategiesedsso$ uncoloured cells, carrier intersection
cannot involve cells that are currently captured.

However, for SCs the player with the connection strategyp&imed to move first, and thus we
can consider the captured set of its key. If this key captarest that eliminates carrier intersection,

then the connection strategy is valid:

Theorem 10 LetV;, V; be VCs for playeP with carriersC, C> and endpointg!;, I} and{ls, I3}

respectively. Further, assume thiatis uncoloured and thaP-colouringls P captures seC DO
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Cy N Cy. Then there exists an SC for playBrwith endpointsl1, I3}, keyls, and carrierCy U Cy U
cu {ZQ}

Proof: Let P play at uncoloured cell,, P-capturing seCC. Then aP VC with endpoints{i;, 1>}
exists on carrie€; \ C, since theP-colouring ofC' U {l»} cannot hindelP’s V; strategy. Likewise,
P has a VC with endpoint§ls, I3} on carrierC; \ C. Thus by the AND rule, a VC exists following
P’'s move atlz, and the carrier of this VC is at mo&t; U Cs) \ (C U {i2}). O

Since the smallest possible carrier is desirable, we partwo checks when computing the
AND rule:

1. If the two VC carriers do not intersect, compute the rasglSC as before.

2. Ifthe two VC carriers intersect, check if their intersestis a subset of the key’s captured set.

If so, apply Theorem 10 to produce an SC.

Note that Theorem 10 can easily be extended tofu§iélin instead of P captured sets.

4.2.2 Endpoint Captured Sets

This observation regarding captured sets of keys can alsodoe regarding captured sets of un-
coloured endpoints, since a connection strategy is onlgemred with forming a chain that neigh-
bours such endpoints. In other words, assuming the endpanet coloured does not affect the
connection strategy, and may create sets of cells that attoagh they are captured within the

connection strategy’s carrier:

Lemma 14 Let V be a VC for playerP with carrier C' and endpointgi;,l>}. Assumé; is un-
coloured, thatP-colouring!; P captures sef, and thatC NS # @. ThenP hasaVConC U S

with endpoints{i,, >} whereP plays the corresponding capturing strategy $n

Proof: First assume thdy is P-coloured instead of uncoloured. Then sets P captured, and
V’s connection strategy is not hindered by tRecolouring of .S, so in this fillin-reduced position
player P has a VC with endpoint§l;, /> } on carrierC' \ S. Thus if onlyl; is P-coloured, therP
has a VC o' U S whereP plays the corresponding capturing strategysorBut by the definition

of a connection strategy, the colour of its endpoints idakant, and thus the same strategy is valid

when!; is uncoloured. O

Lemma 15 Let V be a SC for player with carrier C and endpoint§l;,ls}. Assumé; is un-
coloured, thatP-colouringl; P captures sef, and thatC NS # (. ThenP hasa SCorC U S
with endpoints{l;, l>} whereP plays the corresponding capturing strategy.&n

Proof: Similar to the proof of Lemma 14. |
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Although Lemmas 14 and 15 may increase the carrier size, ¢beypensate by ensuring a
certain strategy on the captured set, which allows conmedirategies to intersect on these sets

without conflict:

Theorem 11 LetV4, ..., V; be a set of° connection strategies with a common uncoloured endpoint
I, and that P-colouring ! results in aP captured setS. Furthermore, assume that a connection
strategy deduction rule (AND/OR/crossing) applie¥1o. . ., V}, except that (some of) their carriers
intersect on subsets 6f. Then the corresponding connection strategy can be dedsceldng as

the carrier is enlarged to include all &f.

Proof: Applying lemmas 14 and 15 to each ©f, . . ., V}, that intersects produces a set of new
connection strategie)g", . . ., V;* whose carriers either contathor are disjoint fromS, and whose
strategies play thé capturing strategy on sé&t in the former case. Then any carrier intersection
on S is not problematic, as all the intersecting connectiontagias agree on the corresponding

strategy. O

As with Theorem 10, Theorem 11 can easily be extended taPui#lén instead of P captured
sets. Likewise, since smaller carriers are preferabldyagpTheorem 11 requires checking whether
the normal deduction rule applies and, if not, checking Whethe intersecting carriers can be

resolved via the captured sets of one or both uncolouredamidp

4.2.3 Incorporating Captured Set Carrier Intersection into H-search

In order to efficiently incorporate captured set carrieeliséction into H-search, we first perform a
preprocessing step where we identify the Black and Whitéuceg sets for each uncoloured cell.
This simply requires checking the captured-dominatioeriof cell patterns, and so is linear in the
size of the board since the number and size of the pattermmtant.

Note that if Theorems 10 and 11 are extended to allow fillientthis preprocessing step requires
more time since fillin is computed iteratively. Thus for simjy and efficiency, in practice we
restrict ourselves to the captured set versions of theséises

Note that the added checks do not alter the computationapleity of the deduction rules,
since carrier intersections and unions are already beingpuated; this adjustment simply increases
the number of checks by a constant factor, since the intéosas now checked against the captured
sets of the key and uncoloured endpoints.

Note that multiple captured sets can be applied simultasigde.g.,for instance, those of both
endpoints, or an endpoint and a key) so long as the captutede®@ot intersect one another, since
the capturing strategies must remain disjoint and indegetnd

Lastly, captured set carrier intersection can be used wittithout the crossing rule. Neither of
these augmentations dominates the other with respect teection strategies identified, and their

combination can find even more connection strategies. Btarige, an SC found by combining the
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Figure 4.4: An SC found by the crossing rule combined withwagal set carrier intersection. For
Jj =1,2,3, cells labelledj form carrierC; of SCS; betweenr, y. Cells B = C, N C; are captured
if Black playsy. PC(C1) containse and noth, and PC(C3) containsh and notz. Combining these
SCs yields an SC with endpoins, b}, keyy, and carrie{z,y} U BU C; U Cy U Cs.

crossing rule with captured set carrier intersection issshim Figure 4.4. Recall that SCs deduced
from the crossing rule have two potential keys, so beforéditeg on a key both of their captured
sets can be checked with respect to the carrier intersecliwa more SCs (and the resulting VCs)

that are found via this algorithmic combination are showRigure 4.5.

Figure 4.5: Border VCs found by combining captured set eaimtersection with the crossing rule.
The newly identified SCs avoid the marked cell, and so allavréisulting VCs to be deduced via
the OR rule.

4.3 Common Miai Substrategy

In the previous section we observed that connection sirategiers can intersect on captured sets
without problem, as a common strategy on the captured sebedollowed. Likewise, if knowl-
edge of the intersection set strategy were known and id#riticall of the intersecting connection
strategies, then once again there would be no problem with istiersection.

Although this knowledge would relax the restriction of irstecting on captured sets, the chal-
lenge of this goal is to be able to track the substrategieaci eeduced connection strategy. This
could be done by storing the tree of substrategy deductionedch connection strategy, but this
method would require far more storage space and time. Fqalisitg, we restrict our attention to
simple substrategies, known in Gomgi or twin points (.e., two moves that serve the same pur-
pose). Common instances of miai in Hex are the uncolourdd iced bridge VC's carrier, and the

uncoloured cells of a captured set of size two.

50



4.3.1 Incorporating Common Miai Substrategy into H-search

In order to incorporate common miai substrategies into &tedg each connection strategy will keep
track of its own list of miai. Theniai list of a connection strategy is a list of pairs of cells in its warr
such that, when one cell in a pair is probed, the connectiatesty always demands an immediate
response at the other cell in the pair. In order to store niimiently, every possible pair of cells
is assigned a unique number, and we store a list of the cemegm numbers. For algorithmic
efficiency, miai lists store these numbers in increasingiord

Assuming this change in the VC/SC data structure, we canusethe algorithm in Figure 4.6 to
compute the intersection of connection strategy carrieng algorithm begins with two connection
strategiesV;,, andV,,..,, with I, initialized toV;,,.carrier(). The output two-tupl€l,..;, Vou:) can
then be passed as input,,, Vi,,) in the next iterationd.g.,in the OR rule, where the intersection is
computed collection-wise, not pairwise). The outpyt; is a valid connection strategy If,..; is a

subset of the miai o¥,,,,;.

Al gorithm Connection Strategy Carrier Intersection
I nput : (I_{in}, V_{in}), V_{new}
Qut put : (I _{out}, V {out})
Preconditions: V_{in} and V_{new} are connection strategies with
I _{in} equal to V_ {in}.carrier(), or
V_{new} is a connection strategy and
(I_{in}, V_{in}) is the output of a previous iteration
Postconditions: if | _{out} is a subset of V {out}'s mai,
then V_{out} is a valid connection strategy

I {out} =1_{in} intersect V_{new}.carrier();
V {out}.carrier() =V {in}.carrier() union V_{new.carrier();

m ai CheckSet = V_ {in}.carrier() intersect V_{new}.carrier();
iterating through V {in}.mai() and V_{new}.mai() lists in order
if V{inf.mai().current() = V_{new}.mai().current()
V {out}.mai().add(V_{in}.mai().current());
V_{in}.mai().next();
V_{new}. mai (). next();
elseif V_{in}.mai().current() < V_{new}.mai().current()
if V.{in}.mai().current() does not intersect m ai CheckSet
V {out}.mai().add(V_{in}.mai().current());
V {in}.mai().next();
el se
if V {new}.nmiai().current() does not intersect niaiCheckSet
V {out}.mai().add(V_{new}.mai().current());
V_{new}. mai (). next();
end if
end iteration
end Al gorithm

Figure 4.6: Connection strategy carrier intersection wwithi lists.

We now outline the basic invariants of this algorithm, eattvioich is easily verified by induc-

tion:
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1. I, is the intersection of all connection strategy carriers tauw.
2. V,z.carrier() is the union of all connection strategy carribuss far.
3. V,u:.miai() is an ordered subset of the miai from the input cotinacstrategies.

4. V,,:.miai() contains exactly the subset of miai from the inputroection strategies that are

common to all of its intersecting connection strategies.

5. If Iyt C V,ye.miai().union(), then there is no strategy conflict betweeg pairwise inter-

secting connection strategid@se(, any intersection is on common miai).

Thus we replace connection strategy carrier intersectitim thve above algorithm, obtaining a
two-tuple where the output may be a valid connection styatlegpending on the relationship of the
cumulative carrier intersection to the cumulative midi lis

In order to not worsen the computational complexity of caniom strategy deduction rules, as
well as to guarantee a fixed size for the connection stratetgy structure, we limit each VC/SC
to a constant number of distinct miai pairs. Given this lignit miai list length, the algorithm in
Figure 4.6 performs a constant number of operations that@neore computationally complex than
computing carrier intersection. Thus we maintain the ca@apanal complexity of the connection
strategy deduction rules.

Note that the above algorithm only retains a subset of exgjsthiai, and never identifies new
miai. The base case rule for adding miai is when the OR rulebdmes two SCs to create a VC, and
each of the SCs has a disjoint carrier of size one. This basear#omatically identifies all bridges
and captured sets of size two. For this reason, we believaltbesing common miai substrategies to
intersect will strictly dominate the captured set carn¢eisection technique. However, the common

miai substrategy has not been implemented at this time fargdts potential remains to be explored.

4.4 Implementation Details

After much experimentation by Broderick Arneson, our Hrskamplementation came to strongly
resemble that of Six. However, we also incorporated someratfinor augmentations, such as
Rasmussen’s OR rule carrier intersection optimizatior §2e9.2).

Another addition, implemented with the help of BrodericknAson, Andrea Buchfink, and Teri
Drummond, was to incorporate David King's border and laddeplates. This algorithm computes
all possible combinations and translations of such terapl&dr the given board size, and uses this
information as an extended base case for H-search.

The pseudocode in Figure 4.7 sketches the overall frameofaskr H-search implementation.
This algorithm performs a static computation of connectitrategies, but H-search can also be im-
plemented in an incremental fashion, where the connectiategies of a previous state are known

and only connections affected by the most recent move neleel tecomputed and/or updated. This
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Al gorithm Augnented H search
initialize VO SC carrier lists:
for each pair E of endpoints
E. VCLi st . makeEnpty();
E. SCLi st . makeEnpt y();
end for

initialize queue Q with base VCs:

Q makeEnpty();

for each pair E of adjacent endpoints
E. VCLi st . add(baseVC(E));
Q add(E);

end for

for each pair E of tenplate-connected endpoints
E. VCLi st . add(tenpl ateVC(E) ) ;
Q add(E);

end for

while (not QisEnpty())
E <- QrenoveFront();
conpute crossing rule on E's SCs:
for each new SC Z with endpoint pair F found,
Q add(F);
F. SCLi st. add(2);
end for
conpute OR rule on E's SCs:
for each new VC Z found
E. VCLi st. add(2);
end for
conpute AND rule on E's VCs with both of E s endpoints:
for each new VO SC Z with endpoint pair G found,
Q add(Q);
G (VC SO Li st. add(2);
end for
end while
end Al gorithm

Figure 4.7: Augmented H-search.
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incremental version is most useful within search algorgtwmere neighbouring positions are often
investigated, such as depth-first search and alpha-betzhsea

The incremental version of H-search begins by deleting aistirg connection strategies that
intersect opponent-coloured cells, and shrinking thei@aand/or promoting (from SC to VC) any
connection strategies that intersect only player-coldwedls. The remaining connection strategies
form the base case, and the processing queue is initialzedritain all pairs of endpoints for
which one or more of the previous connection strategies Waed or destroyed. Because our Hex
engine deduces and colours iterated fillin for every mowve nilimber of newly-coloured cells can
be significant, destroying many of the previously-valid mection strategies. On average we find
the incremental version of H-search to be roughly twice asda the static version of H-search.

Regarding time, using borders as AND rule midpoints is algogttion, slowing down H-search
by a factor of about seven on average, although this is higapendant on the position’s border
connectivity and can easily exceed a factor of ten. Addinth ltlee crossing rule and carrier set
intersection when using this option results in only a 15%gtintrease, which suggests that few new
connection strategies are found via these methods.

If borders are excluded from being AND rule midpoints, thka trossing rule is essentially
useless, as partition chains are practically non-existelowever, carrier set intersection on cap-
tured sets finds many important connections, and in praatieghly doubles the computation time.
Likewise, an enlarged base case roughly doubles the cotigrutame, as suggested by Table 5.4.

Finally, we note that using all of our augmentations doesmaite H-search complete; there are

many connections that it cannot find.
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Chapter 5

Solving Hex

Thus far we have described new inferior cell analysis an@#&teh augmentations. We now describe
how these tools can be applied when solving a Hex state.
Given a non-terminal Hex state, compute its inferior cetl annnection strategy knowledge as

follows:

1. Compute all fillin {.e., dead, captured, permanently inferior) for both playersuing the

corresponding cells and iterating until no more fillin candeeluced.

2. Perform all inferior cell analysis pruningd., dead-reversible, captured-reversible, and vari-

ous forms of domination) for the player to move.

3. Run (augmented) H-search on the fillin-reduced posittomputing connection strategies for

both players.

4. Apply deduced connection strategies to identify cagtalecomposition regions and star de-
composition domination. If this produces new fillin, coldbie corresponding cells and return

to step 1. with this fillin-reduced board.

Once thisknowledge computatioprocess has terminated, then the state’s value can be deter-

mined if any of the following conditions hold:
e One player has a winning chaing(,, due to fillin).
e The player to move has a winning SC.
e The player to move has an empty mustplay.
Otherwise, constrain the moves to consider as follows:
e All coloured cells — including fillin — are excluded from cddsration.
e All cells outside of the mustplay are excluded from consatien.

o All dead-reversible cells are excluded from consideration
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e Captured-reversible and dominated cells are excludedrtinel@reviously-defined constraints

(e.g.,independent set and consideration of some dominating move)

This algorithmic framework is analagous to the frameworkdisy Haywardet al. when solving
7 x 7 [83], except that decomposition computations have bedadydvhich can cause iteration of
the entire knowledge computation process. The other m#ferehces are the iteratively-computed
fillin, stronger inferior cell analysis tools, and H-seaetlgmentations.

In the remainder of this chapter we discuss solver's undeglgearch algorithm, as well as
additional solver-specific deduction tools that can betlfitoim our theory. Lastly, we review our

solver’s performance on major benchmarks.

5.1 Depth-First Search

Haywardet al. solved 7 x 7 using a depth-first search (DFS) algorithm. Their move rinde
algorithm orders cells primarily by mustplay size (when gmponent has any winning SCs) and
breaks ties using an evaluation function based on Shanatattrical circuit model€.g.,similar to
Hexy, Six, and Mongoose).

Although this move ordering works well on boards up to77, its performance worsens on
larger board sizes. Rasmussen noted that this mustplay ordeeing is vital to the algorithm’s

success [140]. There are two main reasons for this:
e moves that confine the opponent to a small mustplay tend trdreger moves, and

e whenever such moves are losing, they can usually be dispiquiekly since the mustplay is

more constrained in the subtree.

The former suggests that proof number search (PNS) is a goutidate for Hex, as PNS natu-
rally prefers moves with smaller branching factors, andrimaps on depth-first search in that it can
more easily correct previous erroneous decisiars g$ince it does not commit itself based on initial

impressions). We now discuss PNS, and the obstacles toiagjiyo Hex.

5.2 Proof Number Search

Allis et al.introduced proof number search, an algorithm for solving-player perfect information
games in which exploration is guided by the search tree’'sdtriag factor rather than domain-
specific knowledge [3, 4]. The principal idea is to use thenbhing factor to guide the search so
that it produces a proof tree of smallest size.

Given noden in search tred’, the proof numbe(n) of n is the minimum number of leaves in

T that must be solved in order to prove that nedis a win for the player to move Similarly, the

1This definition differs from Allis’ original work in that (di)proof numbers are not for a particular player. Howevés, th
negamax formulation produces an equivalent search andi@rphe transition to depth-first proof number search.
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disproof numbep(n) of n is the minimum number of leaves i that must be solved in order to

prove that node: is a loss for the player to move. The (dis)proof number of aenodepends only

on the (dis)proof numbers of its children, , . .., n., , and so can be computed recursively:
¢(n) = min 3(n,),d(n) = MZ Hne) (5.1)

By definition, a terminal node has¢(n) = 0 andd(n) = oo (respectivelyp(n) = oo and
d(n) = 0) ifitis a win (respectively loss) for the player to move. Bgnvention a leaf node has

o(n) =4(n) =1,

Figure 5.1: A search tree with (negamax) proof and disproofilmers. Dark lines show a path to a
most proving leaf node.

For a noden with player P to move, a set of leaves in tr@eéis aproof set(respectivelydisproof
se) for n if determining them to be wins (respectively losses)#is sufficient to prove that is a
win (respectively loss) foP. A leaf node is anost proving nodé it intersects a minimum proof set
and a minimum disproof set; intuitively, this is a leaf notattcontributes most towards resolving
the value of a state. Allis proved that a most proving nodebmfound by repeatedly selecting a
child with minimum disproof number among its siblings. Ségure 5.1.

PNS has been applied with success to a variety of gamesginglgonnect four, go-moku, and
checkers [3, 151]. However, PNS stores the entire searehinirsmemory, which prevents it from
solving games of high complexity. Several PN variants haenkintroduced to address this issue,
most notably depth-first proof number (DFPN) search by Nf26] and two-level proof number
search (PR) by Breuker [31].

PNS does not require domain-specific knowledge, but sucWlkedge can be applied to provide
heuristic initialization of leaf node proof and disproofmbers, indicating which leaf nodes are
deemed more likely to be wins/losses, as well as their réispesolving difficulty. Kishimoto used
this technique to halve the time required to solve certgmesyof Go problems [101]. We are not

aware of any other successful technique for applying héaiiformation to PNS and its variants.

5.2.1 Applying PNS to Hex

There are three impediments to applying PNS to Hex: incréaheé#search, weak moves that

produce fillin, and initially-uniform branching factors.
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The first impediment is that our incremental version of Hrskeawhich is faster than the static
version of H-search, does not integrate easily with PNS.I8\DIS repeatedly transitions between
states that differ by one move, the most proving nodes exggabgl PNS can be in different parts
of the search tree, and so multiple incremental updates sarelly required between successive
knowledge computations. As mentionedit4, H-search is costly, and the static version is roughly
twice as slow as the incremental version. At this time we mavsolution to this problem other than
to use static H-search (and other knowledge) computatitirfellows that PNS can only surpass
DFS if the former explores fewer than half as many Hex pasdtiim its search tree. Also, because
we do not want to recompute this costly static informatioeath node along the search tree path
from one most proving node to the next, each node must skadwledge-based list of children.

The second impediment is that many weak moves, particuthdge near the borders and
acute corners, typically produce significant fillin. The Df8stplay move ordering only considers
branching factor relating to mustplay, but PNS always abersi branching factor, and thus initially
shows preference to these weak fillin-generating moves.

The third impediment is that Hex begins with near-unifornarimhing factors when neither
player has a (detectable) winning SC, so that initially PN®fgrms an inefficient breadth-first
search. Since the initial branching factor is roughly 5®-id¥ the larger boards we wish to solve,
this initial combinatorial explosion creates an excedgilarge search tree.

To alleviate the second and third problems, we designedwnvariant of PNS that temporarily

constrains the branching factor using a move ordering bgciri

5.2.2 DFPN Search

Since we are concerned with memory usage in addition to lseéeee size, our PNS variant builds
on Nagai's DFPN search algorithm rather than the originabRigjorithm.

The Multiple Iterative Deepening (MID) function is the drig method of DFPN search; it
performs iterative deepening with local thresholds fos)plioof numbers. Rather than store the
entire search tree, DFPN search uses a transposition fEb)etl{at stores the nodes in the tree,
the key distinction being that nodes may be overwritten tgefeeing revisited. Thus the tradeoff is
the loss of some previously-computed information — poggibYuiring repeat work — versus the
ability to solve larger search spaces.

The helper methods of DFPN search update the (dis)proof atsntsing the recursive formulas
in (5.1), and select the most proving child as the next nodexmand. If a node’s child¢ has
d(c) # oo (i.e., it is not known to be a losing move), then it is said tollbve. The SelectChild
method also tracks the second smallest disproof value (gueerthere is more than one live child),

as this value is required to update the iterative deepeuiisypfoof number bounds. See Figure 5.2.
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I/ Setup for the root node
bool DFPN(oder) {
r.¢p <= 00; 1.0 < 00;
MID(r);
if (r.0 = o)
return true ;
else
return false;

Il Iterative deepening at each node
void MID(noden) {
TTlookup(, ¢, 9);
/I Exceed thresholds
if (n.¢ < ¢ || n.6 <3) {
n.¢ < ¢; n.6 < 0;
return;
}
/I Terminal node
if (IsTerminal@)) {
Evaluatef);
/I Store (dis)proven node
TTstoreq, n.¢, n.d);
return;

}

GenerateMoves);

/I lterative deepening

while (n.¢ > AMin(n) &&

n.0 > ®Sumn)) {

n. = SelectChildg, ¢., i, 2);
/' Update thresholds
Ne.¢ +— n.0 + ¢ — PSumMe);
ne.d — mMin(n.¢, 62 + 1);
MID(n.);

}

/I Store search results

n.¢ < AMin(n);

n.0 < dSump);

TTstoreq, n.¢, n.o);

/I Select the most promising child

node SelectChildgoden,

int &, int &J., int &d2) {

nodenpest;
de & ¢ < 00;
for (each childncniia) {
TTlookup(uchiid, ¢, 0);
/I Store the smallest and second
/I smallest) in §. anddo
if (6 <de){
Nbest < Mchilds

02 <= d¢; P < ¢ 6c 6,

else if(§ < d2)
02 + 0,
if (¢ = o0)

return npest;

return npest;

}

/l Compute smallest of n's children
int AMin(noden) {
int min < oo;
for (each childncria) {
TTlookup(chiid, ¢, 0);
min < min(min, 6);
}

return man,;

}

/I Compute sum o of n’s children
int ®Sumfioden) {
int sum <« 0;
for (each childncpiza) {
TTlookup(reniia, ¢, 6);
sum <— sum + @;

}

return sum;

}

Figure 5.2: DFPN pseudocode.



5.2.3 Focused DFPN Search

We now introduce our variant of the DFPN search algorithieddrocused DFPN (FDFPN).

In order to identify one winning move with certain (dis)pfammber bounds, PNS and its
variants must first show that all sibling moves — includingalenoves — cannot be solved with
smaller (dis)proof number bounds. Our goal is to modify DFeiNthat it focuses its effort on the
strongest moves, thereby eliminating work on the weakesiesiand dampening the breadth-first
search behaviour in the opening.

To accomplish this, FDFPN requires a domain-specific moderang function. For each node,
the children are heuristically ordered according to thigcfion, and initially only a fixed proportion
— the child limit — are put in the search tree. As losing moves are identified,dhildren later
in the ordering are added into the search tree. For gameawifirm branching factor, a breadth-
first search still occurs, but with a smaller branching fa@ad so an exponentially smaller tree size.
Similarly, search tree nodes that are winning for the playenove can be solved without expending
any effort on children beyond the limit, thereby elimingtiwasted work on weaker moves.

The differences between the FDFPN and DFPN search alga@igrsmsmall, as shown in Fig-
ure 5.3. In FDFPN, the MID method generates the ordered mfovesden (according to some
domain-specific function), and computes a child limi¥Vhenever a recursive MID call identifies a
losing child, it prunes the corresponding move and recoeptite child limit. MID also passes the
child limit [ to the helper functions SelectChildMin, and®Sum, which iterate over the firstive
children instead of all children.

As mentioned ir§5.2.2, SelectChild stores the two smalléstalues among/’s children, so the
child limit [ must be at least two for any nodewith more than one live child. Also, it is desirable
that the child limit for a node reflects its branching facsince otherwise the (dis)proof number
foundation of PNS would be misguided,; for instance, a congthild limit [ would prevent FDFPN
search from distinguishing among branching factors greatequal tol. Keeping these desired

properties in mind, our child limit formula is as follows, ete1 < base and < fraction < 1:
child limit = base+ [fraction x live children| (5.2)

Each time a child of node is solved, this formula either maintains the current chifdit]
thereby introducing a new child into the search tree, or eldeces the child limit by one, thereby
maintaining the current set of search tree children for nadim each case the (dis)proof numbers
for n decrease, indicating that the node has become easier & aol¥ ensuring further exploration

in the immediate future. Figure 5.4 illustrates this praces

5.2.4 FDFPN Algorithm Analysis

Solving a losing node requires solving all of its childremdFPN search guarantees that each child

will eventually be considered: losing children are prunexhf the ordered list, and the child limit
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()

*)
()
)

(+)
()
(+)
(+)
*)

Figure 5.3: FDFPN pseudocode. (*) indicates modified DFP#iéand (+) indicates new code.

/I Setup for the root node
bool DFPN(oder) {
7. 4 00; 1.0  00;
MID(7);
if (r.0 = o)
return true ;
else
return false;

/I lterative deepening at each node
void MID(noden) {
TTlookup(, ¢, 9);
/I Exceed thresholds
if (.6 <o || n.6<0) {
n.¢ < ¢; n.d < 9;
return;
}
/I Terminal node
if (IsTerminal@)) {
Evaluatef);
// Store (dis)proven node
TTstore, n.¢, n.d);
return;;

}

GenerateOrderedMoves);
ComputeChildLimit));
/[ lterative deepening
while (n.¢ > AMin(n,l) &&
n.d > dSumn, 1)) {
n. = SelectChildg, I, ¢, dc, d2);
/I Update thresholds
Ne.¢ — n.6 + po — PSUME);
ne.d < min(n.g, 62 + 1);
MID(n.);
/I ldentified a move as losing
if (ne.¢p = 00) {
PruneLosingMovet.);
ComputeChildLimit{);

}
}

/I Store search results
n.¢ < AMin(n);

n.d < dSumf);
TTstoreq, n.¢, n.d);
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/I Select the most promising child
(*) nodeSelectChildfoden, int I,

int &g, int &4, int &4d2) {

node npest;
dc & ¢ < 00;
* for (each childn.piiq, among first) {
TTlookup@ichita, @, 9);
/I Store the smallest and second
/I smalles® in §. andds
if (0 <de){
Mbest < Nchilds
62<*5m¢c<*¢16('<*61

elseif(d < d2)
02 < 0;
if (¢ = o0)

return npest;

return npest;

}

/l Compute smallest of n’s children
(*) int AMin(noden, int 1) {
int min < oo;
*) for (each childncniq, among first) {
TTlOOkup(nchild7 ¢, 6)1
min < min(min, 6);
}

return man;

}

/I Compute sum o0& of n’s children
(*) int ®Sumfioden, int 1) {
int sum < 0;
* for (each childncpiiq, among first) {
TTlookupichiia, ¢, 9);
sum <— sum + ¢;

}

return sum;

}



Initial node expansion. Consider only the fibst [6f] = 4 of 6 live children:

e

Discover 3rd move loses. Explore new child, as now considetrtfit- [5f] = 4 of 5 live children:

o
AAAAT

Discover 5th move loses. No new child, as now consider#iss{4f] = 3 of 4 live children:

i
AAAAR

Discover 2nd move wins. Node is solved without exloring ttter@ove:

W

ANAAA

Figure 5.4: FDFPN child limit updates with bake- 1 and fractionf = 0.5.
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[ always retains access to some live children. Thus the offgreince between DFPN and FDFPN
at losing nodes is that the dis(proof) number bounds arerdift when some children are revealed
and/or solved. Experimental results suggest that this doesause any significant inefficiencies.
Solving a winning node requires solving only one child, althh several children may be ex-
plored before a winner is found. For winning nodes, it is @ede that at least one winning child —
preferably the easiest to solve — should appear within titi@lichild limit. In this preferable case,
then FDFPN search cannot exceed the (dis)proof number Bahatl DFPN search would attain;

furthermore, it examines a subset of the children examiyddFPN search:

Observation 1 Consider a nodéV with child nodec in an FDFPN search tree whose child limit is
computed via Equation (5.2), and assume thigtwithin N'’s child limit at time¢. Then for all times

T > t, cis either withinN's child limit or elsec is no longer live.

Observation 2 Consider a nodéV with n children in an FDFPN search tree whose child limit is
computed via Equation (5.2) with baseand fraction f, and assume that < n children of N are
proven losing prior to finding a winning child. Then méyx¢ — = — b — [ f(n — x)]) children of

nodeN never became accessible in the search tree.

Observation 2 is of course the intended strength of FDFPKBe&iowever, the dual observa-
tion is what happens when the move ordering is poor, and naimgnmoves are within the initial
child limit:

Observation 3 Consider a nodeV with n children in an FDFPN search tree whose child limit is
computed via Equation (5.2) with baseand fraction f, and assume that the firstchildren of N
are losing, wheré + [fn] < x < n. Then at Ieasf%’ff" + €] children of N must be proven

losing beforeN can be solved.

Thus, a child limit that is too restrictive for the quality tfe move ordering can force the
solving of nodes that would normally remain unsolved in DF§&drch, potentially imposing large

inefficiencies in the search tree.

5.2.5 FDFPN Experimental Results

We tested DFPN search against both FDFPN search and DFPéth seiin heuristic leaf initializa-
tion.

Using a set of puzzles on boards of dimension 8-10, FDFPNh (@ase 1, fraction 0.2) takes
less than 60% of the time required by DFPN (fraction 1.0). Sgare 5.5. Further exploration of
the parameter space improves this marginally to 55.6% of\Dé-ftme (with base 1, fraction 0.21).
By comparison, our attempts at heuristic leaf (dis)proahbar initialization never attains less than
80% of DFPN's time.
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Figure 5.5: FDFPN search parameters vs. solving times.

The data suggests a base of one is best, and smaller base gahexally dominate larger ones.
As expected in light of Observation 3, excessive prunings&ped solving times, even beyond the
time required by DFPN search with no pruning. One phenoméramhich we have no explanation
is that the optimal fraction parameter for a given base sdeniscrease as the base parameter
increases. This seems counter-intuitive, as one mightoéxpe optimal fraction to decrease in
order to counteract the base’s forced increase in childoeapbn.

We also tested FDFPN'’s dependence on good move orderirgregipect to the base and frac-
tion parameters of the child limit formula. This was done bgning FDFPN search with a random
move ordering on the set of allx 7 Hex openings. See Figure 5.6.

As expected (given Observation 3), the data shows that a gane ordering is vital to the
effectiveness of FDFPN search, as greater pruning onlyemsrthe performance here. Although
two data points show FDFPN search with slightly improvedetindespite random ordering, these
cases have minimal pruning and might simply reflect the ststhnature of this experiment and/or

the improbability of all strongest winning moves being ext#d by such minimal pruning.

5.2.6 FDFPN Future Improvements

Although FDFPN improves on the performance of DFPN searoth wvith and without heuristic
leaf initialization, its fragility with respect to the hastic move ordering is a concern. It would be
preferable if a child’s inclusion/exclusion could be redsduring search, or if there was a grad-

ual scaling of effort rather than a hard limit. Likewise, tlefiance on an external heuristic move
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Figure 5.6: FDFPN search times with random move ordering.

ordering makes FDFPN less applicable than regular PNS andiiants.
Modifications of the child limit function could also be halipf For instance, perhaps the child
limit should depend not only on the number of live childreut, &lso on the magnitude of differences

in their heuristic evaluation.

5.3 Winning Carriers

A solver search algorithm essentially identifies winningnmection strategies that cannot be de-
duced by H-search. Just as the carrier of a winning VC/SC eanskd to identify losing moves
(e.g.,moves outside of the mustplay), van Rijswijck noted that &e ase the carrier of solver-
found connection strategies to identify more losing mowaasdiscussed i§2.9.2. Van Rijswick’s
algorithm for computing theswinning carriers is recursive, and follows immediately from the

definition of a winning connection strategy:

1. Base case: H-search finds a winning VC/SC, the winningezasrthe carrier of this winning
VC/SC.

2. Inductive case when the player to move wins: the winnin@)(&rrier is the union of the

winning move’s cell and the winning (VC) carrier of the wingichild.

2Van Rijswijck calls these proof sets. We rename them to asoidusion with the (dis)proof sets of PNS.
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3. Inductive case when the player to move loses: the winr@) (carrier is the union of all

children’s winning (SC) carriers.

Case 3. includes the SC carriers that define the mustplag Hiese carrier cells are required to
refute moves outside of the mustplay. Likewise, for any pdidead-reversible moves, their killers
and carriers must be included in the winning carrier, siheddtter are required to refute the former.
Note that this recursive algorithm can be easily incorpamtanto the recursive DFS framework.

In order to apply this idea to our new solver algorithm, we trtake into account two new

factors:
e connection strategies are computed on (iteratively) filiduced boards, and
e our solver’s underlying search engine has changed from DIPNS.

We present our adjustments for these factors below.

5.3.1 Fillin and Winning Carriers

Since we iteratively compute and colour fillin cells, there awo factors relevant to computing a

winning carrier for the original position:
1. Thefillin carrier: the set of cells required to maintain the fillin reduction.

2. Thestrategy carrier the set of cells required for the winning strategy on thénfileduced
board.

The strategy carrier for the reduced board can be computéiteisame way as the winning
carrier for non-reduced boards. Thus the new complicatf@uoalgorithm is the computation of a
fillin carrier. In order to maintain the validity of the wirmg player’s fillin, the set of cells required
to maintain this fillin must be included in the fillin carrieEor a dead cell the carrier is simply
the dead cell, and for a captured set the carrier is simplgdptured set. However, in the case of
permanently inferior cells the carrier extends beyond fleslfin cell, and thus cells in permanently
inferior carriers may be any colour — including the oppofsclour — in the fillin-reduced board.
The validity of this fillin carrier follows from the discussi in §3.6. The winning carrier of the
original board is the union of the fillin carrier and the st@t carrier on the fillin-reduced board,

and so can still be computed in DFS for fillin-reduced boards.
5.3.2 PNS and Winning Carriers
Computing winning carriers in PNS is more complicated thmabBFS for the following reasons:

1. Hex states are not encountered in a simple recursive,sdéhe data required to compute
winning carriers needs to be stored within the TT so thatritlba used if and when the state

is finally solved.
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2. In (F)DFPN, TT entries may be overwritten, causing thaursively-computed winning car-
rier information to be lost. Note that unlike lost H-searctd énferior cell analysis informa-

tion, this data cannot be recomputed statically.

3. Since inferior cell analysis is computed statically facke Hex state, then unlike DFS the
fillin of reduced states need not agree with the fillin of thmiedecessors. In other words,

fillin-reduced states may not be continuations of theirfileduced predecessors.

Given these obstacles, we adopted a restricted form of mgncarrier computation in PNS and
its variants. The following algorithm computes timaximum winning carriefor the player to move,

assuming they have a winning strategy:
1. Given Hex statdf{” and its fillin-reduced statél’,

e compute the fillin carrier off” for P as described if5.3.1, and

e set the strategy carrier to be all uncoloured cell&ifi.
2. ReturnP’s maximum winning carrier: the union of this fillin carrien@ strategy carrier.

Since any strategy carrier must be a subset of the uncolaeksiof the reduced board, and
since the fillin carrier is computed as before, then it foBaat eitherP has a winning strategy in
HYT on the maximum winning carrier, or el$&/” is a P win.

The advantage of this method is that it eliminates the réaiportion of the definition, allowing
this carrier to be computed solely from static informatidine disadvantage is the assumption of a
strategy carrier that requires all uncoloured cells, whiely result in a larger winning carrier than
could otherwise be computed, and hence less pruning.

We also apply this winning carrier differently in PNS. Givahild that is being expandeid,
all its static knowledge is currently available), we can pome the maximum winning carrier for
the player to move. Upon returning to the parent of this ¢hild give it the computed maximum
winning carrier and prune all other children that are exdéta this carrier. We now prove that this

child pruning does not alter the parent state’s value:

Theorem 12 Letn be a node in a search tree, and et be one of its children. Furthermore, I€t
be the maximum winning carrier af, for its player to moveP. Then allP moves at node that

are notinC \ {n.} are dominated by th& move ton...

Proof: If n. is a P winning move, then the result holds by definition. So assumis a losingP
move, implying thatP winsn., and thusP has a winning strategy fot. confined to the maximum
winning carrierC'. It follows that P has a winning (first player) strategy éhin any continuation
of noden’s Hex position whereP has only played cells outside of the §&t Thus allP moves atr

that are not irC are losing. |
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Note that this pruning is distinct from previous winningrdar pruning in that we prune siblings
before determining who wins the child state(, the maximum winning carrier may not correspond
to a winning strategy for the player to move).

5.3.3 Winning Carrier Reduction

Since smaller winning carriers yield more pruning, we alsgaioped an efficient algorithm that,

given a winning carrier, tries to deduce the existence of allemwinning carrier:

1. LetS; be a Hex state with winning carrigr;, for player P. Assign all uncoloured cells

outside ofC to P, and call this new stat§,.

2. ComputeP fillin on S,, iterating until no more cells can b@-coloured. Call the resulting

stateSs.

3. DefineCy C (4 to be the set of cells that are uncolouredsin ThenCs is a winning carrier

for P in stateS;.

This process is illustrated in Figure 5.7.

Figure 5.7: A White winning carrier for stai®. Assigning all cells outside of the carrier to Black
results in stateS;. Computing Black fillin onS; results in state&s, whose uncoloured cells define a
reduced winning carrier.

Theorem 13 Given a valid winning carrierC for player P in Hex stateS, the outputCy of the

winning carrier reduction algorithm is a valid winning caer for player P in Hex states.

Proof: By the definition of a winning carrier, assigning all uncaled cells outside o} to P
cannot affect”’s winning strategy. Thué’; is a winning strategy in stats,. By the definition ofP
fillin, the value of state5; is equal to the value of stat#. ThusP has a winning strategy o, and
of course this winning strategy must be confined to the uneetbcells ofS3, namelyCs. SinceSs
is a continuation of; (andS;) where onlyP-coloured cells have been adddtls winning strategy

onCs in S3 is also valid inS; (andSs). a

We note that because of the way in which PNS winning carrissscamputed — that is, on
fillin-reduced boards rather than recursively — winningieareduction can never shrink the carrier
found by a PNS-based solver. Thus winning carrier redudsamly useful for a DFS-based Hex

solver.

68



5.4 Deducing Solved State Values

Winning carrier pruning is a method of applying one winnitigiegy to multiple sibling Hex posi-
tions in the search tree. We now show that given the value efttex state, we can apply inferior
cell analysis and other properties of Hex to deduce the \@flungany other Hex states.

Each of the value deduction methods we illustrate can ofseobe applied to other deduced
states, and so there is the natural concept of the closuhesé tsolved state deductions; that is, the
set of all states whose value can be deduced via the appticatithese operations. We have not
implemented this complete version; rather, we simply agalgh deduction independently to the
original solved state.

These value deductions can be applied to the original statfrits fillin-reduced state. We

restrict ourselves to value deductions on the originaédtatthe following reasons:

1. Computing fillin requires significant time, especiallyevhusing captured decomposition re-

gions which require connection strategy information.

2. Fillin can result in an imbalanced number of colouredsc@lg.,more White-coloured cells
than Black-coloured cells). Deduced states of this form hkély be unreachable during

search, making such output useless.

5.4.1 Winning Carrier Deductions

We now generalize the application of winning carriers to Bliex state where the winning player’s

cells and carrier are unaffected, and the player to moveamgsd.

Theorem 14 Let S be a Hex state where playd? wins on carrierC. LetS’ be a state where
(S — P)C (S — P),C C (S — {U,P}), and the player to move if’ is either P or identical

to the player to move i§. Then state5” is a P win.

Proof: By definition, P’s winning strategy depends only on uncoloured caréieand the P-
coloured cells in stat&. Thus in the continuation a$ where all uncoloured cells external €6
are P-coloured, P still has a winning strategy off (with the same player to move); let us call this
continuation statéd.

By definition, S’ has allP-coloured cells that are i, and.S’ has no moreP-coloured than are
in T. If S’ andT have the same player to move, then by monotoni6ity>» T, and so it follows
that stateS’ is a P win. If S’ andT have different players to move, théti has P to move andl’
hasP to move. This cannot be disadvantageous for pld@eand so again it follows that staf is

a P win. O

We call the states deduced via Theoremwlidning carrier transpositions Theorem 14 can

result in many state deductionise(, all possible subsets external@and theP-coloured cells can
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be assigned td). In practice we are only interested in states that can beheshduring search.
In other words, we restrict the deduced sta$égo those states that have the same numbe?-of
coloured cells a$, or possibly one moré&-coloured cell if the player to move is altered fraPnto
P. Even with this restriction, a single solved state can peedihhousands of winning carrier trans-
positions, so we typically restrict this method to statefiroited search depth. Note that winning
carrier reduction increases the number of winning carrargpositions.

To apply this technique to (F)DFPN, we store the deduceditedrstates in the TT. For DFS,
we keep a database of shallow solved states for verificatiopgses and a playable version of the
search tree strategy. Thus to apply this technique to DFStave the (shallow) deduced states in

the database.

5.4.2 Strategy-Stealing Argument Deductions

The strategy-stealing argument applies not only to the gidpk board, but also to any Hex position
where the roles of Black and White are equivalent. For ircstaany Hex position where a mirroring
of the board defines a bijection from Black-coloured cell$\tbite-coloured cells is a first player
win. Thus any move to such a position is a losing move, and egrimed from consideration. Note

that there are two distinct diagonals in which to mirror tHadR and White cells. See Figure 5.8.

Figure 5.8: Strategy-stealing deductions: White can paash dotted cell from consideration, since
each resulting state is a first player win.

Application of this techniqgue means that the solver onlyaltveakly solves the root state, since
the explicit strategy is not known for these pruned stateswéVer, the proof tree our algorithm
finds can be extended to a complete strategy tree by laterwtorgpexplicit winning strategies for

all states pruned by the strategy-stealing argument.

5.4.3 Player Exchange Deductions

Player exchange deductions involve transforming a statxblianging the roles of playefsand

P. We do this as follows:
1. Mirror the position’s coloured cells with respect to eitldiagonal.

2. Make all P-coloured cellsP-coloured and vice-versa.
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3. Switch the player to move.

If the original positionH is a P win with playerQ € {P, P} to move, then the deduced position
H, is a P win with playerQ to move; this follows immediately since we simply exchantieziroles
of the two players.

However, the deduction method as currently described ikesseit makes deductions about
unreachable states, as the total number of coloured cefiging the same, but the player to move
is altered. In order to produce transposition deductionsdachable states, the number of coloured
cells must change parity. In order to change coloured ceitypaithout altering the outcome, we

apply the following properties:

1. By monotonicity, winner-coloured cells can be added autichanging a state’s value.

2. By monotonicity, loser-coloured cells can be removeal,(uncoloured) without changing a

state’s value.

3. By Theorem 14’s proof, loser-coloured cells can be addedide of the winning player’s

carrier without changing a state’s value (note that thei@anad to be mirrored as well).

Original state properties | Adjustment of unreachable player exchange state
Black to move, Black wins Colour Black one cell outside carrier
Black to move, White wins Colour Black one cell, or

uncolour one White cell
White to move, Black wins Colour Black one cell outside carrier
White to move, White wins Colour Black one cell, or

uncolour one White cell

Table 5.1: Player exchange deductions. Given a state wétbphcified winner and player to move,
compute the player exchange state, and then use the ligteati@mins to attain reachable states whose
value can be deduced.

Assuming alternating turns, the number of Black-colourgltkds always equal to or one greater
than the number of White-coloured cells, so these thredlessdjustments are constrained by the
combination of the winning player and the player to move.l§&hl summarizes the possibilities.

See Figure 5.9 for a sample player exchange deduction.

5.4.4 Domination Deductions

Domination can be applied to deduce solved states in thewip manner, assuming playéris

the winner:

1. Any P-coloured celle; can be uncoloured, and a cell that P-dominates:; is P-coloured

instead.

2. Any P-coloured celle; can be uncoloured, and a cell thatc,; P-dominates isP-coloured

instead.
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Figure 5.9: The original state is a White win with White to naouf we mirror the coloured cells
and switch their colour, we obtain a state that is a Black with Black to move. This state is
unreachable, but we can uncolour a White-coloured cell thude a reachable state that is a Black
win with Black to move.

The correctness of these domination deductions followsgdiately from the definition of dom-
ination (.e.,consider the state witty uncoloured).

Although all states reached via domination deductions eaehable in the game, they may not
be reachable by our solver’s search since it prunes dondimateves. However, a move that is not
currently dominated (and hence can be played during seles@rch) may become dominated in
some continuation (and hence can be shifted by dominatidodaiens). Furthermore, all forms
of domination — fillin, neighbourhood, induced path, and stecomposition — can exhibit this
temporary behaviour. We know of no efficient algorithm toedetine whether a state found via
domination deduction can be reached by the solver algoyifinwe simply compute and store all

domination deductions.

5.4.5 Unique Probe Deductions

Our final solved state deduction method is based on deadsibleecells whose carrier is the empty

set.

Theorem 15 Let H? be a Hex state) € {P, P}, such thatP has a dead-reversible cetlwith
killer k and an empty set carrier. [fH + P(k) + P(c))? is a P win, thenH < is a P win.

Proof: Let S; denoteP’s winning strategy for H + P(k) + P(c))? in completion Hex, and
defineS; to be the combination of; with a pairing strategy ofic, k}. We shall prove thas; is a
P-winning strategy forZ < in completion Hex.

If P does not play at nor k, then both these cells will b&-coloured, and by monotonicity
this outcome is at least as good fBras the corresponding terminal statedp implying that P
wins. If P ever plays:, thenP responds withi: and by definitiorc is dead. Thus again it is as#
claimed both of these cells, and so this state is at least@ds fgo P as the corresponding state in
S1, and hence & win. Lastly, if P ever playsk, thenP responds withe and the state is identical to

a P-winning state inS;. 0

Intuitively, one player obtained their best possible loeathange and still lost. Thus we can

uncolour the two cells involved in the exchange, and corelticat they would lose again. We
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Figure 5.10: By Theorem 15, if the left state is a Black wirerttit follows that the right state is a
Black win.

call thesaunique probe deductionsince the pruning of dead-reversible cells ensures tiedbging
player has a unique line of local play available. Such dedanstare identified using patterns derived

from dead-reversible patterns with an empty carrier set.FSgure 5.10.

5.5 Experimental Verification

Given the complexity of our solver’s toolg.g.,inferior cell analysis, connection strategy deduc-
tions, deduced state values), the question of how to verifysolver’s correctness is an important

one. Our experimental verification consists of the follogvin

e For all opening moves (and some principal variations) sblg others, we verify that our

algorithm obtains the same result.

e For irregular Hex boards, we verify that our algorithm obsathe proven outcome for all

opening moves.

e We use a library of over 100 problems — including those gdedrand solved by others, but

predominantly our own — to test our algorithm.

e We apply our solver during tournaments and for post-gamlysisgas discussed in Chapter 6

and Appendix C), and verify that we get consistent results.

Algorithms such as winning carrier reduction and solvetestizductions are extremely useful
for finding any errors, since they magnify any existing peoh$. Also, we include many assertions

in the code to verify the maintenance of theoretical propert

5.6 Experimental Results

In this section we provide experimental results indicatimg contributions of our many new algo-
rithmic tools, both solver-specific as well as the more galnieferior cell analysis and H-search
augmentations. Not all of the above ideas have been implethesind in several cases an algorithm
is implemented for our DFS-based solver but not our FDFP8&btaolver, or vice-versa. We show

how our current solver is far superior to all of its predecessand competitors, solving all 8 8
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openings and more than half of thex99 openings. All tests were run on an Intel Core 2 Quad
Q9559 LGA775 (2.66GHz/1333FSB/12MB) desktop with 2GB RAM.

5.6.1 Feature Contributions

Initially our solver was DFS-based, so we provide the featamtribution data for this version first.
See Table 5.2.

Feature f off % time | % nodes
Mustplay move ordering| 656 2550
Decompositions 129 151
Transposition table 128 140
Acute 4-3-2 pruning 115 112
H-search border templates 111 126
Solved state deductions| 108 111
Winning carrier reduction| 98 101

Table 5.2: DFS solver feature contributions fox 77 Hex.

This version of the DFS solver took roughly 10 minutes to sa¥l 7 x 7 openings, with a
search tree containing 8.3e4 internal nodes. At that timleed state deductions only encompassed
winning carrier deductions and player exchange dedugctemmg decompositions only included split
decompositions and four-sided captured decompositiohs.tfBnsposition table (with?® entries)
stores recently solved states to avoid resolving tranSposi Computing H-search using borders
as AND rule midpoints is too slow for solvers; the improvenearpruning does not compensate for
the increase in computing time. As a result, solvers nevethss crossing rule.

As Rasmussen observed, mustplay move ordering is a major fadhe solver’s performance.
Disappointingly, winning carrier reduction only resultsminimal search space reduction, and actu-
ally worsens time performance. Note the significant gap betwtime and search space factors for
both decompositions and border templates; although thaigans are worthwhile, their algorith-
mic cost per node is significant.

Now our solver is FDFPN-based. The TT size is fixed and ent@&sbe overwritten, so we
approximate the size of the search tree using two metriesntimber of MID calls and the number
of static knowledge computations. For the FDFPN child ljmie use a default base of one and
factor of 0.25, rather than optimizing the parameter chfuicdifferent board sizes and openings; see
Figure 5.5. Star decomposition domination is not yet futhplemented, and so currently involves
only one hard-coded inferior cell pattern at this time, sh@s the leftmost diagram in Figure 3.14.

Also, the following features have not yet been implementedHe FDFPN solver:

1. split decompositions,
2. common miai substrategy,

3. winning carrier deductions,
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4. player exchange deductions,
5. domination deductions, and

6. unique probe deductions.

Feature f off % time | % MID | % knowledge
Focused DFPN 141.1 128.2 133.3
Permanently inferior cells 100.5 100.2 100.1
Captured-reversible cells 95.7 99.8 100.1
Acute 4-3-2 pruning 99.2 102.2 102.2
Star decomposition domination 103.0 102.3 102.5
Captured decompositions 110.8 117.7 115.5
H-search border templates | 156.1 215.9 209.8
H-search captured intersection 104.3 218.7 212.6
Winning carrier pruning 103.3 103.9 104.2
Strategy-stealing deduction| 99.2 102.8 103.1

Table 5.3: FDFPN solver feature contributions fox 7 Hex.

This FDFPN-based solver solves allx77 openings in roughly 6.5 minutes, with 88,236 MID
calls and 53,954 knowledge computations. Its feature imriton data is summarized in Table 5.3.
Disappointingly, the only features that seem to contrilzig@ificantly are focused DFPN, captured
decompositions, and H-search base case enhancement d& bemplates. All other features have
a negligible, or even negative, effect on time. Search s{gatet a major concern as memory use is

essentially fixed.

Feature f off % time | % MID | % knowledge
Focused DFPN 214.4 165.2 217.2
Permanently inferior cells 117.0 1155 115.0
Captured-reversible cells 106.7 105.9 105.8
Acute 4-3-2 pruning 105.3 103.4 103.6
Star decomposition domination 89.8 94.1 94.6
Captured decompositions | 209.3 237.1 229.3
H-search border templates | 186.1 444.2 458.1
H-search captured intersection 141.8 302.7 315.0
Winning carrier pruning 107.2 106.0 106.2
Strategy-stealing deduction| 93.9 96.6 94.9

Table 5.4: FDFPN solver feature contributions for one 9 Hex opening.

The data thus far suggests that most of our theoretical eeh@ents are not of much practical
use when solving & 7. We decided to see if this was also true for more difficulbpems, and so
remeasured the feature contributions with respect torsglisingle 9x 9 Hex opening. The results
appear in Table 5.4.

In almost all cases, we see that feature contributions ivgaravith board size. We believe this is

partly because the computational complexity of most of tgwrhmic improvements is polynomial
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in the board size, while the corresponding increase in begpace pruning grows exponentially.
Furthermore, as the average game length increases, mokemeas are no longer immediately
losing nor easily detectable via previous methods, andesetfeatures become more likely to save
significant search time.

It is somewhat surprising that pruning moves via the stsattgaling argument or via star de-
composition domination is a net loss. The computing coshe$¢ checks is quite small, although
the change in branching factor that they induce could canlsersto pursue weaker moves. In the
future we will try modifications of these features, such adrieting the strategy-stealing argument

to shallower search depths, and implementing the full garsi star decomposition domination.

5.6.2 Benchmarks

Ultimately the main test of Hex solvers has been solving fienang positions of successively larger
Hex boards. As of 2007, the best known automated solver (lsynRaseret al.) could solve all 7
x 7 openings in roughly 61 hours [140]. By contrast, our curssiver performs the task in about

6.5 minutes.

Figure 5.11: Solved & 8 opening moves.

We are the first to solve any, and all 88 openings via an automated solver. Our DFS-based
solver first accomplished this task in 301 hours in 2008. QDIFIEN-based solver currently takes
31 hours. See Figure 5.11.

Another person/group has since independently solved all@8openings, although they have
only published this informally, announcing their resulssthey were produced on Little Golem’s
Hex forum [114]. We have requested details of their algamittomputing resources, and search
space statistics, but have received no reply. However, ftain postings it is known that it took
them over one month of computation time, and that they weirggu'about 10 computers” [114].
Thus a conservative estimate is that our solver outperftingiss by a factor of 100.

Our solver is also the first and only automated algorithm teetsolved any 9 9 Hex open-
ings. Thus far we have solved 55 of the 81 openings, each ogéaking between 1 and 25 days,
with the hardest openings requiring roughly 120 million MtBlls and 70 million static knowledge
computations. This marks the first time that automated selkave solved all human-solved Hex

openings. See Figure 5.12.

76



Figure 5.12: Solved & 9 opening moves.

Despite the number of solved:9 9 openings, the work to date likely represents only a small
fraction of the time needed to solve all>@ 9 openings. On smallet x n boards, solving the
openings adjacent to a White border takes more than halfeofdtal time. Based on the pattern
of previous board sizes, we estimate that most of the ren@iopenings will take on the order of
100 days each, with the exception of a6, a8, a9, which we attimill take on the order of 1000
days each. Thus a rough estimate is that solving atl 9 openings will take our current solver

approximately 10 years.

Board size | Fastest opening| All openings
7x7 0.5s 384s
8x8 155s 112,121s
9x9 96,168s unknown

Table 5.5: Current solving opening times by board size.

Given the data presented in Table 5.5, it appears that gpalim x n openings requires about
the same time as solving the easigst- 1) x (n + 1) opening. Thus with current hardware and
software we expect that a single X010 opening can also be solved in a decade, but that solving all

10 x 10 openings would take more than 1,000 years.
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Chapter 6

Automated Hex Players

Like Go, Hex has a large branching factor that limits aut@datlayers to shallow and/or selective
search. Unlike Go, Hex has a reasonably strong evaluatioetifin, and so straightforward alpha-
beta techniques have been successful [9, 121]. Thus, dial &im was to improve on the existing
alpha-beta framework, and produce a stronger Hex Al via avgn inferior cell analysis, stronger
connection strategy deduction algorithms, and adjustenefithe evaluation function; the resulting
player is called Wolve. However, recently Monte Carlo Treai$h (MCTS) has been attaining great
success in a variety of games, most notably Go [46, 49, 5610%), As a result, we also pursued
a MCTS-based Hex player called MoHex (in honour of SylvaitiyGet al’'s Go program, MoGo).
Lastly, our success with PNS and its variants in solving Hesitfipns suggested that perhaps a
PNS-based Hex player was possible. This recent experiingateer is called PNS-Hex.

In this chapter we describe the common tools used by thesenated players, and then de-
scribe each of their distinct aspects. Experimental resgtinst the open source 2003-2006 gold-
medallist Six are also provided, and Appendix C providesoaaiigh analysis of all 2008 and 2009
olympiad games.

Unless otherwise stated, all experiments are on boardswdrdiion 11, the board dimension
used in Hex olympiads. Since olympiad games are played wéhstvap rule, an automated Hex
player needs to respond competently to every opening mavegpponent might select. Thus, in
our testing one round iterates over all openings with thepsmge off, with each program playing
each opening once as Black and once as White. To reduce thdastaerror, we typically run
experiments for several rounds.

While this testing format is helpful in identifying weakrses €.g.,0penings where we perform
poorly as both Black and White), it significantly dampens atgngth differences, as polarized
openings are played twice, which essentially guaranteme suins for the weaker player. Thus the
strength gains reported in our experiments underestirhatexpected tournament performance; in
practice we have found that a 75% win rate in our tournameartesponds to a nearly insurmount-
able difference in olympiad play. For instance, the 2006 W¥/girogram wins 30% of its games

against Six in iterated opening tournaments, but lost all & its games against Six in the olympiad
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[80].
Lastly, in addition to percentage wins, we also refer to Effetences. The Elo rating system

uses the following formula to convert between Elo diffeehand expected win percentage:

1
EP = 1+ lo(RF—RP)/4OO

(6.1)

For instance, surpassing an opponent’s Elo rating by 100, 200, and 400 points corresponds to
expected win rates of approximately 64, 76, 85, and 91 péerespectively.

6.1 Tools

All previously-described inferior cell analysis and cootien strategy deduction algorithms are ac-
cessible to both players. In addition, players can run theesi a parallel thread, so that positions
solvable within tournament time settings are played p#yfdry the solver: in winning positions,
any known winning move is played, and in losing positiong lilsing move requiring the most
MID calls to solve is playedife., the move that provides the most resistance). Aside frormeperf
endgame play, the solver also results in faster endgameallaying the allocation of more com-
puting time to earlier stages of the game. At this time thalpersolver only informs the automated
player if it solves the root position. In the future we hopé&ve the solver inform the player of any
solved positions within its search tree.

Another common tool for the players that we developed is @nio book. This opening book
is automatically constructed using the player’s evaluefimction, and is based on the algorithm
developed by Lincke [113], which makes a tradeoff betweearktiepth and evaluation score; that
is, the opponent must sacrifice more of their evaluationestoorder to exit the book at a shallower

depth. However, we made a few modifications to Lincke’s atgor to improve performance:

1. Rather than using a tree structure, positions explorgddéoglgorithm are stored in a database,

thereby avoiding repeat work for transpositions.

2. Rather than considering all legal moves in the openingkbadranching factor limit is en-

forced. When a position is explored often enough, the briagdactor limit is increased.

3. After the book expansion process, we iterate over all lpmshitions with a polarized evalua-
tion, and try to solve these positions. Any solved positiaresstored, and the book values are
updated accordingly.

Because different automated players prefer differentsyggositions, in practice we found that
such opening books only improve performance when built leyplayer using it. For instance, a

book built using Wolve’s evaluation function does not imgrdloHex’s performance.
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6.2 Wolve

Wolve is the successor to the University of Alberta’s 2008 @006 silver-medallist alpha-beta
based programs, Mongoose and Wolve; see previous olympfaatts [80, 122, 177]. Although
Wolve is the common name of the 2006 and current alpha-bateepby the University of Alberta
Hex research group, the Hex code base was entirely rewhit&roderick Arneson in 2007, so the
only commonality of these two automated players is their éjamus, from now on we refer to the
older program as Wolve2006.

As with Hexy, Six, Mongoose, and Wolve2006, Wolve is basedanputing connection strate-
gies with H-search, and using the resulting VCs to augmean&bn’s circuit-based evaluation

function. However, Wolve benefits from the following impeents:

1. connection strategies are computed on fillin-reduceddsoaesulting in improved connection

strategy knowledge and possibly smaller mustplay, and

2. fillin and inferior cell pruning reduces the set of movebéoconsidered.

Wolve is also improved via iterative deepening, searchind-ply, 2-ply, and then 4-ply if
enough time remains. Wolve uses a narrower 1-ply alphafiretaching factor than Six (15-15-
15-15 versus 20-15) to make this deeper search viable inaougnt time conditions, but since Six
often considers (and plays) inferior moves, especiallyderesersible moves, this difference is less
significant in terms of the non-inferior moves considered.

To increase the chance of alpha-beta cutoffs, the best mowethe previous iteration is moved
to the front of the ordered move list for the next iterationerdtive deepening allows Wolve to
identify more fillin-domination from previous iterationand it uses this information to prune more
moves from consideration.

The circuit evaluation function is somewhat pathologicghwespect to fillin-domination, as it
often prefers fillin-dominated positions due to their geeajuantity of connection strategieise(,
fillin can exponentially decrease the number of connectioategyies if their carriers only differ
within the captured sets). The circuit evaluation functadso exhibits a pronounced odd/even-ply
behaviour, and so 3-ply Wolve is actually slightly weakerd@f course slower) than 2-ply Wolve.
As a result, we skip 3-ply during iterative deepening, altifio 1-ply is retained for the purposes of
move ordering adjustments and fillin-domination pruning.

Since Wolve’s evaluation function is based on a VC-augntermegsion of Shannon’s electric
circuit evaluation function, Wolve’s playing strength gtilg depends on the connection strategies
that are deduced. Recall that using borders as AND rule rimtpgreatly slows down H-search
computations. For this reason, whenever H-search usesgrsoad midpoints, the H-search VC/SC
heuristic limits(ly, ls) are decreased from (25, 50) to (10, 25) to help manage theitnease.

Table 6.1 summarizes the relative strengths and compntétites of several Wolve variants

against Six. Since both programs are nearly deterministity, one round was played. Wolve did
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Wolve variant Win % Time per game (avg, max)
2-ply 20-15 border midpoints 65.7+ 3.1 167.0,519.4
2-ply 20-15 border midpoints, augmented | 61.6+ 3.1 169.7,551.2
2-ply 20-15 border midpoints, augmented, crossjng3.6+ 3.1 194.5, 608.5
4-ply 15-15-15-15 52.1+ 3.2 183.6, 624.4
4-ply 15-15-15-15 augmented 81.8+ 25 397.9, 1183.8
4-ply 15-15-15-15 border midpoints 82.2+ 25 2238.5, 6900.8

Table 6.1: Wolve variants: performance against Six.

not use a parallel solver nor an opening book. Since Six ugepla 20-15 alpha-beta search, the
top Wolve entry is essentially identical to Six except for owch stronger inferior cell analysis,
including iterative deepening fillin-domination prunirtbat is, inferior cell analysis alone accounts
for a 113 Elo gain. However, application of our H-search aegtations does not improve the
performance of 2-ply Wolve.

4-ply Wolve with borders as midpoints is 153 Elo strongemtRaply Wolve with borders as
midpoints. However, even with decreased VC/SC heuristigtdi, this 4-ply variant requires 37
minutes per game on average and, due to high variance in tdhseamputation time, can require
nearly 2 hours for one game. Since olympiad time constrairgs80 minutes per player, this Wolve
variant will often be constrained to a weaker 2-ply seartérlan the game, even when using an
opening book and parallel solver. By contrast, the 4-plywWalariant that uses regular H-search is
far too weak, and is actually outperformed by all of the ab2nmy variants. However, by augment-
ing H-search with border templates and captured set cantienrsection, we obtain a 4-ply Wolve
that matches the strength of our previous best 4-ply Wolviang and is also five to six times faster.

Wolve has been successful in the International Hex Olyngiadnning the gold and silver
medals in 2008 and 2009 respectively. Wolve has also doedrfitx, winning 5 of their 6 olympiad
games. In the future we hope to improve Wolve via the paiadigbn of its alpha-beta search

engine, and the incorporation of killer/history heuristj2, 179].

6.3 MoHex

Although historically the best automated Hex players haentbased on an alpha-beta framework,
the success of Monte Carlo Go encouraged us to apply Monte Teee Search to Hex. Below we
describe MoHex, our MCTS Hex player that won silver and galthie 2008 and 2009 olympiads

respectively.

6.3.1 MoHex Framework

Monte Carlo Tree Search

Monte Carlo Tree Search is a best-first search algorithmishgided by the outcome of random

game simulations. One iteration of the algorithm is compdadehree basic phases:
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1. tree traversafrom the root to some leaf node,
2. random game simulatiofiom the leaf node’s corresponding game position, and
3. tree updateusing information from the simulated game.

The algorithm is anytime, in that it repeats these step$ nmtinore time remains. After the tree
traversal phase, the search tree is expanded by addingiteentof the selected leaf node. When
MCTS terminates, the child with the largest subtiie (the child whose subtree produced the most
simulations) is selected as the best move.

MoHex's MCTS is built on the codebase of Fuego, the Go progtaxeloped by Niller et al.
at the University of Alberta [49].

Tree Traversal and Update

MoHex uses the upper confidence bounds applied to trees (frf@mework combined with the
all-moves-as-first (AMAF) heuristic to select the bestdhilring tree traversal [71, 105].

The UCT framework tracks a value for each node, based on tmedduts average win/loss
performance (based on all random simulated games thagdtarits subtree) plus an exploration
term (that increases the value for less explored nodes)tr@aéraversal starts at the root, recursively
proceeding to the child of highest value until it reachesa fode. This formula is designed
to balance the complementary concerns of exploitatian, @pplying the best performing move)
versus explorationi €., trying moves that have largely been ignored).

The AMAF heuristic uses each random simulated game to updatkss statistics for all moves
in the simulated game, rather than for only the first move éndimulated game. Each move played
by the winner is assigned a win, and each move played by tlee iesssigned a loss. Thus the
AMAF heuristic accelerates the rate at which MCTS accureslaata, although the resulting data
may be less accurate. Tree updates occur at each node a®pgtthfrom the leaf to the root,
thereby influencing leaf node selection in future tree treais.

Like Fuego, MoHex plays strongest when it uses an exploratmnstant of zero, effectively
turning off UCT exploration and relying solely on the AMAF unéstic to find strong candidate

moves.

Random Game Simulation

Recall that completion Hex (s€8.5) has the same outcome as Hex, so a random game simula-
tion can be played until the board is completely filled, ratte@n checking for game termination
after each random move. Hence Hex game simulations can loeeffy implemented: add all
uncoloured cells to an array, shuffle them randomly, and thlayemaining moves in order. A con-
sequence of this implementation is that each legal move'#ARMtatistics are updated after each

game simulation.
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As with Go, we have found that a MCTS player is improved by agdiome knowledge to the
game simulations, rather than playing completely randorMpHex uses a single pattern during
random game simulation: if a player probes an opponentigbrithen the opponent always replies
S0 as to maintain the connection. If multiple bridges aréedsimultaneously, then one such bridge
is randomly selected and then maintained.

Yopt, a competing MCTS Hex program produced by Cazenave afiidliae, uses an additional
game simulation pattern based on the 4-3-2 VC [146]. How&azenave and Saffidine report that
this pattern only seems to be beneficial in self-play, andiintests MoHex shows no strength gain

from this pattern.

6.3.2 Applying Hex Knowledge

Like many other MCTS players, MoHex uses knowledge-intensilgorithms in important parts
of the tree, as well as flags to indicate solved states [178indJa fixedknowledge threshold
parameter, if any node is visited often enough during traeetsal, then both inferior cell analysis

and the H-search algorithm are run on that position. Therévew possible outcomes:
1. fillin or H-search solves the position, or
2. the position value is still unknown.

In the first case, all child subtrees are deleted, and thenwde is marked such that any tree
traversal that encounters this node omits the random gameéation, and simply updates its ances-
tor nodes using the correct outcome.

In the second case, subtrees corresponding to moves thiaeqanned via inferior cell analysis
or mustplay results are deleted from the tree. Furtherntbeefillin of this position is stored per-
manently at the tree node, and applied to every tree trdve®gzce fillin is computed statically at
each such tree node, there can be disagreement betweelfirtaf &lnode and the fillin of its child
(i.e., a child’s fillin-reduced position is not necessarily a coaétion of the parent’s fillin-reduced
position), so the descendant node’s fillin takes precedemzkany prior fillin knowledge is ignored.

Fillin produces two benefits. Firstly, the random game satiahs are shorter (since the number
of uncoloured cells has decreased), which allows more gamelagions per second. Secondly,
the accuracy of the game simulations improves, since byitefirfillin computes the correct local
outcome.

Although each child node corresponding to a fillin move isstkd, a fillin move might still be
available in some child’s subtree, possibly yielding aegll game sequence in which a fillin move
is played. To avoid this problem, when fillin is computed,feaopruned child’s subtree is deleted
excepting their roots and relevant statistiegg(,UCT and AMAF data). Note that any subsequent
tree expansions below the parent node will not conflict watfillin. This process is illustrated in

Figure 6.1.
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1) Node reaches knowledge threshold; perform inferioramdilysis and H-search computations.

g 6 s

3) Remove subtrees of all remaining children.

Figure 6.1: Applying Hex knowledge to the Monte Carlo tree.

The knowledge threshold is typically fairly sma#.g.,the 2009 olympiad version of MoHex
had a knowledge threshold of 50 node visits), so the size ptramcated subtree is small and, as
we shall show, the subsequent loss of information is in praehore than compensated by the gain

in performance.

Lock-Free Parallelization

MoHex uses the Fuego codebase, and so benefits from Fuegk-fée parallel MCTS [49]. Mo-
Hex’s knowledge computations are handled within this [&rele framework. It is possible for dif-
ferent threads to perform duplicate knowledge computat@mcurrently, but this is extremely rare

in practice, and causes no theoretical probleinas, nly a marginal waste of computing resources).

Time Management

Unlike Wolve, MoHex is an anytime algorithm, so a more refitiete management system is pos-
sible. In olympiad conditions, each player has 30 minutegetoerate all of their moves. Since
MoHex uses the parallel solver in these conditions, then Blohteds to generate on average about
20 moves. Thus MoHex can easily allot one minute per move.

As noted earlier, MoHex selects the move whose subtree gisethe most simulations. It is
possible to abort search early if the gap in number of siraratbetween the top two candidates

cannot be overcome in the time remaining; this greatly redwomputation time without affecting
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performance. Because of this, in the 2009 olympiad MoHettelll 96 seconds per move, and never

experienced any time difficulties.

6.3.3 Experimental Results

We now discuss how MoHex’s playing strength is affected legéhvarious factors.

Scaling

MCTS is a parallelizable anytime algorithm, so the scalihgsoperformance with respect to time
and number of threads is important. As with many other MCT&@ms, MoHex’s strength seems
to scale logarithmically versus time, with each doublinghef game simulations producing roughly
an additional 36 Elo of strength: 8s/move MoHex defeats dggnMoHex 65.1% of the time. See
Figure 6.2.
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Figure 6.2: Performance of locked, lock-free, and timdestaingle threaded MoHex against single
threaded 1s/move MoHex.

As with Fuego, the lock-free version of multithreaded MoHexsles far better than the locked
alternative. Indeed, the effect here is even more dramiaic that in Go — scaling of the locked
version is worse with two threads, and performance actwdglyrades with only four threads —
presumably because the game simulations in Hex are so mster than in Go, and the threads

spend most of their time in the tree.
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Heuristic Techniques

Both the bridge pattern and AMAF heuristic give major sttbngains for MoHex. The bridge

pattern produces a 105 Elo strength gain against a naive glEmentation; this improved version
is surpassed by another 181 Elo by adding the AMAF heuri&ased on the scaling information
above, this total strength gain is roughly equivalent to @-##id increase in computing time. See

Table 6.2.

Incrementally Added Feature Win % Elo gain
Bridge pattern 64.7%=+ 1.4% 105
AMAF heuristic 73.9%+ 1.3% 181

Table 6.2: The bridge pattern and AMAF heuristic improveyplg strength by 286 Elo.

We tested many inferior cell analysis patterns as game ationl patterns. In all cases these
patterns gave MoHex no strength gain, or even worsenedrpeafae. This provides evidence that

provably correct information in game simulations can weaMlCTS players.

Tree Knowledge
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Figure 6.3: Threaded 8s/move MoHex with knowledge agaifmy 2Volve. A knowledge threshold
of zero means that no knowledge is computed.

Adding connection strategy and inferior cell knowledgehivitMoHex’s Monte Carlo tree is

roughly equivalent to doubling the number of game simutkegiol he optimal knowledge threshold
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seems to be about 400 for the single threaded version, aretteatse proportionally with the num-
ber of threads. We note that a low knowledge threshold casemgperformance, as not enough time

is spent on random game simulations. See Figure 6.3.
Opening Book

The opening play of MoHex can be inconsistent (see Appendixp€rhaps because there is so
little existing structure to guide the random game simalai Our initial opening book results are
promising: an opening book for @ 9 Hex that was constructed in one day produces gains of 85
Elo, which is worth more than a doubling of simulations ort th@ard size. As book size increases,
playing strength gains grow logarithmically. We have fotimat it is important for the opening book

to be computed using a MoHex evaluation that is at least aagis the MoHex player using the

book; otherwise the book’s strength gains are diminisheg. Sgure 6.4.
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Figure 6.4: MoHex with books of increasing size against 10flove MoHex with no book.

H-search Augmentations

MoHex uses connection strategies only to determine captdeeomposition fillin, to define the

mustplay, and to identify solved node positions. In geneeshave found more complete versions of
H-search to be not as useful in MoHex, as the slight improvengoruning does not compensate for
H-search’s time increase (which decreases the number of ganulations that can be performed).

Thus our best version of MoHex does not use borders as ANDmid@oints, even though this
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variant of H-search is preferred by Wolve. However, MoHexeslose border template base case
augmentations.

We have tried to incorporate connection strategies intdeangame simulations. Two such
attempts were to heuristically select connections to raairduring the simulation, and to add con-
nection strategy maintenance choices as moves in the Maale €ee. Unfortunately, all such
techniques greatly worsened performance, with the begtti@ar to date using common responses
in the Monte Carlo tree to guide responses in the simulateskegdf connection strategies can be

used more effectively by MoHex, it is possible that H-seanahmentations could prove worthwhile.

Tournament Strength

As stated earlier, MoHex won the silver and gold medals ir2th@8 and 2009 Hex Olympiads. In
these two tournaments, MoHex won 4 of its 6 games againsti®hbaof its 6 games against the
competing MCTS Hex player Yopt. Furthermore, all of MoHdr'sses were in 2008, prior to many
algorithmic improvements. We summarize MoHex’s playirrgisgith (without the use of an opening
book or parallel solver) against Six and Wolve in Table 6.&8siBally, MoHex dominates Six and is

evenly matched with Wolve.

Opponent MoHex Win %
Six 76.6+ 3.6
Wolve 4-ply 20-20-20-20 augmented 49.2+ 3.2

Table 6.3: MoHex: performance against Six and Wolve.

6.4 PNS-Hex

While applying our FDFPN-based Hex solver to olympiad posg and puzzles, we observed that
the solver typically focused its efforts on the best moveglbefore it proved the position’s value.
Thus, the solver’s early efforts served as a good predidtahat would end up being the best move
(i.e.,either winning, or losing but giving the greatest resisgnc

This is not surprising, since an effective solver must spaide of its time exploring stronger
moves. Based on this observation we speculated that thersobuld work as an anytime Hex
player, running within the given time constraints untilither solved the position, or else selected
a move heuristically using its relative efforts on eachahisubtree thus far. Two possible metrics

were considered, the latter suggested by Broderick Arneson
1. select the child with the most MID calls, or
2. select the child whosgis largest.

Only the first metric has been implemented so far. We testistbtisic player against MoHex
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on both 9x 9 and 11x 11 boards, with MoHex generating 10,000 random game siiakper

move. The results are shown in Figure 6.5.
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Figure 6.5: PNS-Hex: performance against MoHex-10k.

On a per-second basis, this basic automated player is peghlal with MoHex on the & 9
board: MoHex-10k’s total time per game (10s) is about hajflvatween the total time required by
1s and 2s PNS-Hex (7.7s and 14s respectively). However,eplyimpiad-sized 1k 11 board,
PNS-Hex requires 3.5 times as much computation time as Madlgsoduce equal playing strength
(42s total time for MoHex versus total times of 94s and 191 8foand 16s PNS-Hex respectively).
This is largely due to PNS-Hex’s very weak opening play, @&slétk of any mustplay for early
positions results in nearly-uniform branching factorsewehPNS-Hex is essentially unguided in its
search.

Given the initial success of this basic player, we plan te#tigate the following adjustments of
PNS-Hex:

1. Test thep metric (versus MID call metric) for move selection.
2. Test various focused child limit parameters for FDFPN.

3. Test the use of a database that accumulates (dis)prodferwalues for opening positions

over time (.e.,as PNS-Hex plays many games).

4. Test the benefits of using an opening book.
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If this concept proves useful, it can easily be generalipastiier games, as well as general game

playing.
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Chapter 7

Conclusion

The research presented in this thesis represents a sighificatribution to the mathematical and
algorithmic knowledge of Hex. Inferior cell pruning, fillirand decomposition analysis have all
been improved, and several efficient augmentations of atiomestrategy deduction algorithms
have been developed.

Applying this new theory has resulted in the world’s best Keker, an algorithm that has
surpassed all previous benchmarks, provides the firstriostaf an automated solver dominating
humans, and outperforms all competing automated solveas lepst two orders of magnitude.

Applying this new theory has also helped produce the wotlgis strongest automated Hex
players — Wolve and MoHex — who have dominated the Internatitiex Computer Olympiads
since their introduction, and far surpass the previous gadallist Six.

Many important open questions and challenges remain, asdetbearch raises many new ques-
tions and challenges (see Appendix D).

Hex is a game that has interested mathematicians and congmigatists since its invention.
The graph-theoretic, combinatorial game theoretic, atificil intelligence aspects of this game

ensure that it will continue to do so in the forseeable future
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Appendix A

Probing the 4-3-2 Virtual Connection

Border bridge carrier fillin resulted in roughly a tenfoldegplup when Haywarelt al. first solved
the 7 x 7 Hex openings [83]. Given these benefits and the fact thattike VC appears fre-
quently, Hayward posed the question: “When are probes ohekB1-3-2 inferior?”. This appendix

summarizes what is known thus far.

A.1 Winning Probes

Probes of an opponent’s border bridge are dead-reversiesnso such probes cannot be unique
winning moves in any Hex position. However, probes of an ognd's 4-3-2 are not in general
inferior, since probes 1, 2, 4 of an opponent’s 4-3-2 can bgugnwinning moves. See Figure A.1,

and recall the 4-3-2 carrier labelling from Figure 3.3.

Figure A.1: Probes 1, 2, 4 of a Black 4-3-2 VC can each be a enigjaning move for White.

It follows that one cannot unconditionally prune theseghpeobes. It might be speculated that
these three probes dominate all other 4-3-2 probes, hovl&gealso turns out to be false as probes

3 and 5 can be winning moves when probes 1, 2, 4 are all losingsn&ee Figure A.2.

Figure A.2: White’s only winning moves are the dotted celll @i3-2 probes 3 and 5.

In this last example, probes 3 and 5 are not the only winningesdor White, as an external
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winning move exists. Furthermore, probes 3 and 5 merelydeieventual external winning move,
and are not necessary for White’s win. More formally, proBesd 5 are not part of any shortest
White winning strategy.

We know of no Hex state in which one of the 4-3-2 probes 3, 5, 8,iF a unique winning move,
nor of a Hex state in which one of the 4-3-2 probes 6, 7, 8 winnphabes 1, 2, 4 all lose. Probes 1,

2, 4 seem to be stronger than the others, so we conjecturgthBllowing:

Conjecture 1 Let H be a Hex position, and l&f be the carrier of a Black 4-3-2 i/ . If White has

a winning move inf", then White has a winning move that is not probe 3, 5, 6, 7, dr@®.0

This conjecture is still open. In the rest of this appendixfind supporting evidence and condi-

tions under which it holds.

A.2 Maintained 4-3-2 Virtual Connections

The first set of conditions under which Conjecture 1 hold#hésassumption that the 4-3-2 VVC will
be maintained against all opponent probes; we call thisrthimtenance assumptioihis is often
the case in practice, although admittedly it is rare to knbis with absolute certainty. Given the
maintenance assumption, our result is actually slightiyrgter in that we prove the domination of
probes{3,5,6,7,8} by probes{1,4}.

Theorem 16 Let H be a Hex position, and |&t' be the carrier of a Black 4-3-2 i/ for which the
maintenance assumption holds. Then the White probes 3,75860fC are each dominated by at
least one of the White probes 1, 4(@f

To prove Theorem 16, we must consider Black’s possible reaartce responses to these probes.

We start by considering the dominating probes 1 and 4.

Lemma 16 Let H be a Hex position, and let’ be the carrier of a Black 4-3-2 i/ for which the
maintenance assumption holds. If White probes at cell@,ahen Black will respond at cell 2 or
cell 4 of C.

Proof: First note that cells 2 and 4 do indeed maintain the Black2&@rainst White probe 1.
In H + W (1) + B(2), set{3,5,6,7% is Black captured. IrH + W (1) + B(4), set{7,8} is Black

captured. By capture-domination the result follows. m|

Lemma 17 Let H be a Hex position, and let’ be the carrier of a Black 4-3-2 i/ for which the
maintenance assumption holds. If White probes at cell@,ahen Black will respond at cell 2 of
C.
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Proof: First note that cells 2, 3, 5, 6, 7 are the only moves that ragirthe Black 4-3-2 against
White probe 4. InH + W (4) + B(2), set{3, 5, 6, % is Black captured. By capture-domination the

result follows. O

We shall prove domination by showing that if White probes d 4rare losing, then probes 3, 5,
6, 7, 8 are also losing. If White probes 1 and 4 are losing, themaintenance assumption implies

the following by Lemmas 16 and 17:
e Atleast one off + W (1) + B(2) andH + W (1) + B(4) is a Black win.
o H+W(4)+ B(2) is a Black win.
We can relate these three positions to those obtained by mtbiees, as in the following lemma:

Lemma 18 Let H be a Hex position with a Black 4-3-2. Théh+ W (1) + B(2) >w H+W(6) +
B(4).

Proof: In positionH + W (6) + B(4), set{7, 8} is Black captured, and Black can adopt a pairing
strategy or{1, 3} and{2, 5} that maintains the 4-3-2. Thus we need only show that thisnggi
strategy always results in a completion that is White dotethdy H + W (1) + B(2).

Since cell 3 is White dead-reversible to cell 1 and they amegdathen without loss of generality
we can assume White probes at 1 and Black maintains at 3. @atreells 3 and 7 are Black,
then the White cell 6 is actually dead, and so can be recadoBtack. But then cells 2 and 5
are Black captured, and so Black’s pairing strategy thelleewsure that any White move to 2 or 5
becomes dead. Thus any completion of the 4-3-H inW (6) + B(4) with Black adopting the given
pairing strategy is equivalent & + W (1) + B({2,3,4,5,6,7,8}). SinceH + W(1) + B(2) >w
H+W(1)+ B({2,3,4,5,6,7,8}), this concludes the proof. O

Applying Lemma 18 to the assumed conditions of our Theoremcan conclude that either
White probe 6 is losing (to Black maintaining at 4) or Whitelpe 1 wins against Black maintaining
at 2, the latter implying that White probe 1 loses againstBlaaintaining at 4.

Many 4-3-2 probe-maintenance position domination restdts be deduced using neighbour-
hood domination and induced path domination, as illustrat€¢3.4 ands3.5; some of these results
are summarized in Figure A.3. We now have all the tools reglio prove Theorem 16:

Proof: Assume White probes 1, 4 ¢f lose to Black maintaining the 4-3-2. Then we need only
show that White probes 3, 5, 6, 7, 8 all lose to Black maintejrihe 4-3-2.

By neighbourhood dominatiodf + W (4) + B(2) >w H + W (3) + B(2) since se{ 5,6} is
Black captured. SimilarlyH + W (4) + B(2) >w H + W(7) + B(2) since se{ 5, 6 } is Black
captured. By induced path dominatiald,+ W (4) + B(2) >w H + W (8) + B(2) since se{ 3,

5, 6, 7} is Black captured. Since by assumption White probe 4 is ¢pgirBlack maintaining the
4-3-2, then by Lemma 17 White probes 3, 7, 8 all lose to Blacktaming at cell 2.
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Figure A.3: Some White domination relations among 4-3-2 t&/probe, Black maintenance po-
sitions. Each unidirectional arc points from a position t¢/kite dominating position, while bidi-
rectional arcs indicate equivalent positions. X indicatesmpossible position. Arcs which can be
deduced by domination transitivity are omitted for clarity

By Lemma 18,H + W (1) + B(2) >w H + W(6) + B(4). By induced path domination,
H+W(1)+B(4) >w H+W(6)+ B(4) since sef 7, 8} is Black captured. Since by assumption
White probe 1 is losing to Black maintaining the 4-3-2, thgrLlbmma 16 White probe 6 loses to
Black maintaining at cell 4.

If White probesC at 5, then consider a Black response at cell 2. In the postieiV (5)+B(2),
cell 5 cannot be on any minimal White winning paths withouttiar moves irC. If White follows
up with a probe at 1, Black can respond at cell 4. Hn+ W ({1,5}) + B({2,4}), set{3,6,7,8}
is Black captured and cell 5 is dead, so this position Blaagkidates both/ + W (1) + B(2) and
H+ W(1) + B(4), and thus must be a Black win by our assumption.

If White follows up with probe 6, then Black can respond at 4eln positionH + W ({5,6}) +
B({2,4}), set{7,8} is Black captured, and so cell 6 is White induced path dorathaty cell 1.
Thus this position Black dominaté$ + W ({1,5}) + B({2,4}), which as we have just shown is a
Black win.

If White instead follows up with one of the probes 3, 4, 7, oh&n Black can respond at cell 6.
In H+W({z,5}) + B({2,6}) with z € {3,4,7,8}, cell 5 is dead, so each of these four positions
is equivalent to or Black (neighbourhood or induced patmhatesH + W (4) + B(2). Thus these
four positions are all Black wins by our assumption.

Thus White has no winning follow up probes @ and thus positiorH + W (5) + B(2) is a

Black win. O

A.3 Acute Corner 4-3-2 Virtual Connections

Next we consider restrictions of Conjecture 1 where the 2\3c carrier is in an acute corner.
The 4-3-2 can be oriented in two ways, depending on the lacati the non-border endpoint. See

Figure A.4. Due to the coordinate system commonly used in iWexcall them the a3 4-3-2 and b3
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4-3-2 respectively.

Figure A.4: Acute corner a3 4-3-2 and b3 4-3-2 virtual cotioes.

When probing such 4-3-2s, the nearby White border makesigagteasier, yielding the fol-

lowing probe results:

Lemma 19 Let H be a Hex position, and &t be the carrier of a Black a3 4-3-2 if. Then White
probes{ 2, 3, 5, 7} of C are inferior.

Proof: White probe 4 creates a star decomposition in the acute cwoé! + W(4) = H +
W({2,4,5}) = H+ W ({3,4,7}), and thus probe 4 capture-dominates probes 2, 3,5,7. O

Note that White probe 6 also capture-dominates probes 2 dnd t the border bridge it creates.
Thus probes 1, 4, 6, 8 dominate probes 2, 3, 5, 7 for the a3 ,4a®i2h is both stronger and weaker
than our original conjecture: stronger because it prunépmale 2, weaker because probes 6 and 8

remain.

Lemma 20 Let H be a Hex position, and &t be the carrier of a Black b3 4-3-2 iff. Then White
probes{ 1, 3, 4, 5, 6, 7, 8 of C are inferior.

Proof: All White probesin{ 1, 3, 4, 5, 6, 7, § are dead-reversible with Black reverser cell 2.

Aside from pruning acute 4-3-2 probes from consideratio®, can also prune moves when the

acute corner is still uncoloured:

Figure A.5: The two dotted cells Black dominate all otherdsthcells in the uncoloured acute
corner.

Theorem 17 Let H be a Hex position, and assume the nine cells forming a 4-3fesin an acute
corner are all uncoloured, labelled as in Figure A.5. TheadX can prune cell§ 2, 4,5,6,7,8,9

} from consideration.
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Proof: Asshown in Figure 3.1, cell 3 capture-dominates cels5, 6, 7, 8, 3, thus all that remains
is to prune cell 2 from consideration. We shall do so by prottmetH + B(1) > H + B(2).

If Black is the first to play in the acute corner, we note that- B({1,3}) captures all other
cells in the acute corner. Thus by monotonichly+ B({1,3}) >p H + B({2,z}) forall z €
{1,3,4,5,6,7,8,9}.

If White is the first to play in the acute corner, then by Lemra/2hite must probe? + B(1)
at cell 3. This creates a star decompositionfse- B(1) + W(3) = H + B(1) + W({3,5,9}).
By neighbourhood dominatiordf + B(1) + W ({3,5,9}) >p H + B(2) + W({3,5,9}). Once
again, due to a star decompositiéh+ B(2) + W ({3,5,9}) = H + B(2) + W(3). Combining
these results, we conclude tHdt+ B(1) + W (3) > H + B(2) + W(3).

Since Black preferéf + B(1) to H + B(2) regardless of who moves first, then by definition it
follows thatH + B(1) >p H + B(2). a

Since in practice the acute corner is often uncoloured dr oty one coloured cell, these results

are often applicable when solving or playing positions.
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Appendix B

Handicap Strategy

We give an explicif ”7“1 handicap strategy for Hex on the<n board: the first player is guaranteed
victory if they are allowed to colou[r%] cells on their first move.

Our handicap strategy colours handicap cells in the second—+ so that all cells in the first
row are Black fillin via dead, captured, and permanentlyriofecells — and applies Shannon’s
pairing strategy for irregular boards to the fillin-redudmshrd. The resulting handicap strategy is

both explicit and efficient.

B.1 Handicap Locations and Fillin

We begin by describing the location of Black’s initi&%ﬂ cell colourings on the: x n Hex
board. Since trivial first player strategies are knowmfor n boards withn at most five, we focus

exclusively omn x n boards withn at least six.

Figure B.1: Handicap cell colouring: handicap cells arecBlaoloured and primary cells are dotted.

The handicap cellsare always in the second row from the Black border, and ldcateolumn
4 and in columnsy — 1 — 65 for eachj in {0,...,[§| — 1}. Theprimary cellsare the first row
cells adjacent to a handicap cell; that is, the cells in tmgaraof a handicap cell border bridge. See

Figure B.1.
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Lemma 21 For anyn x n Hex board withn > 6, the above handicap initialization specifies the

colouring of[2£1] handicap cells.

Proof: Sincej < [%| — 1, it follows thatn — 1 — 65 > 5, so the handicap cell in column four is
distinct. Sincej iterates from zero to g | — 1 inclusive, there are exactly; | 4 1 handicap cells

including the one in column four. FinallyZ | 4+ 1 = [2+L]. O
We now show that colouring the handicap cells results in thieeefirst row being Black fillin.

®0, @02
Qo Qo Qo

Figure B.2: Gaps between consecutive handicap cells.

Lemma 22 Let H; be the Hex position obtained from the handicap cell colagidhan x n Hex
board, and letH, be the position obtained frotl; by Black-colouring the entire first row. Then
Hl = HQ.

Proof: All handicap cells are on the second row, so all primary caksin border bridge carriers,
and so are Black captured. See the two leftmost cases ineFRyadr

The handicap cells are never separated by more than fiveaured cells in the second row,
so their respective primary cells are never separated by than four uncoloured cells in the first
row. If a primary cell gap is of size one, the uncoloured celtléad, and can be coloured Black
without changing the value off;. If a primary cell gap is of size two, the uncoloured cells are
Black captured. See the next two cases in Figure B.2.

If the primary cell gap is of size three or four, then the fitruncoloured cells neighbouring
primary cells are Black permanently inferior. See the mgbgt case in Figure B.2. Colouring all
such permanently inferior cells and iterating on this realiboard, any remaining first row gap is
of size one or two, so once again the uncoloured first row eefislead or Black captured.

For the gap between the column four handicap cell and thed/Mbitder, the first row uncoloured
cell neighbouring a primary cell is permanently inferiandathe fillin-reduced first row gap of size
two is Black captured.

Since H, has been transformed fd, via Black fillin, it follows that these two positions have

the same value. O

B.2 Existence Proof and Explicit Strategy

Theorem 18 On a Hex board of dimensiom > 6, Black has a Winnind%] handicap strategy.
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Proof: By Lemma 21,[2] handicap cells are coloured on a Hex board of dimension6. By
Lemma 22, this initial handicap position produces Blacknfithat colours the entire first row, and
so is equivalent to afn — 1) x n Hex board in Black’s favour ., with Black traversing the shorter
distance) with[”T“] Black-coloured cells on the first row of this irregular boaBy monotonicity
this position Black dominates an initiéh — 1) x n Hex board in Black’s favour, and the latter is a

Black win by Shannon’s pairing strategy. ]

Theorem 18 claims the existence of a handicap strategy. toawey the proofs of Lemma 22
and Theorem 18, simply maintaining the fillin with the copesding inferior cell strategies (in the
order deduced, when there are conflicts; see Theorem 5) amgiriog this with Shannon’s pairing

strategy yields an explicit handicap strategy:
e Colour the[ 1] handicap cells, as specified above.
e In response to each White move, follow the earliest ruleithboth applicable and legal:
1. If White colours a primary cell, then colour a neighbogrgrimary cell (.e., its Killer

in the primary cell captured set).

2. If White colours a dead-reversible cell in the carrier dirst row permanently inferior

cell, then colour its killer within the permanently infericarrier.

3. If White colours a dead-reversible cell in a first row Bla@ptured set, then colour its

killer.
4. If White colours a first row dead cell, then colour any uocoéd cell.

5. If White colours a cell outside of the first row, then col@srpartner in thén — 1) x n

Shannon pairing strategy.

6. Colour any uncoloured cell.

This is the most efficient handicap strategy known for Hex bruasolved board sized.¢.,
boards of dimension at least ten). In particular, we not¢ tiha late Claude Berge, who was a
Hex enthusiast [21, 22], would often give beginners thresdieap cells on 11 11 Hex boards,
suggesting that he did not expect them to find a winning gfyatequiring fewer than four handicap
cells. We would like to think that our two-cell handicap sdgy for 11 x 11 Hex would have

surprised him.
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Appendix C

Olympiad Games

This chapter summarizes the performance of Wolve and Mohiéxd 2008 and 2009 International
Computer Olympiads. In both of these tournaments the fyzeatits were Wolve, MoHex, Six, and
Yopt.

For each game we display the entire game sequence, the firseaand player (with the winner
in bold), any endgame states our solver can identify as Bbadkhite winning, and any additional
observations. Similar commentary appears in our tournamegorts [12, 13]. However, because
our solver has improved significantly since these tournasi@ok place, the commentary below is

more thorough.

C.1 2008 Olympiad

Wolve | MoHex | Six | Yopt | total | result
Wolve 1-3 4-0| 4-0 | 9-3 gold
MoHex | 3-1 2-2| 3-1 | 8-4 | silver
Six 0-4 2-2 2-2 | 4-8 | bronze
Yopt 0-4 1-3 2-2 3-9 4th

Table C.1: 2008 Hex Computer Olympiad results.

As mentioned in Chapter 6, MoHex and Wolve share many fesitsteeh as their algorithms for
computing connection strategies and identifying infedells. However, sometimes features which
aided one program were detrimental to the other. For thisorgaduring this competition MoHex
had stronger inferior cell and connection strategy contpmrts, and only Wolve used an opening
book.

Gabor Melis did not attend this tournament, so Six’s openirgyes were selected by Nathan
Sturtevant. The tournament had two rounds, played on distiays. In each round, each player

opened once against each opponent.
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Game 1: Six- MoHex
Black winning:  17-19
White winning: 20+
Commentary: 20.BJ[f8] is a blunder as 20.BJ[f3] is winning.

Game 2: MoHex - Six
Black winning: 20+
White winning:
Commentary: Throughout the game MoHex seems to have thentady as Six is
constantly defending and is never given the chance to formasonable
counterattack.

P osfesecede:
poefeesed 8 SecuN
P o0es Secese- 29
Va0 200008 e e !
G0 007 00 )
Re a8t 0Nc 00 o aas!
Qe Bet@-0% 45
050056 08y
& 6% |

Game 3: Wolve - Yopt
Black winning:
White winning: 16+
Commentary: The opening move of f3 seems imbalanced, givapg an initial ad-
vantage. However, Wolve plays an interesting opening, sing the
situation well €.g.,move 9.W[e6]). 18.B[b7] by Yopt seems a bit weak,
and is far easier for our solver to refute than 18.B[c7].
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Game 4:  Yopt Wolve
Black winning:
White winning: 13+
Commentary: Wolve's first four moves were generated by o book. The open-
ing is fairly standard and seems reasonably even until 8]B[¥opt
played outside of the mustplay with 15.B[d6], resulting measy win
for Wolve (15.B[c6] offered much stronger resistance).

Game 5: Wolve - Six
Black winning: 27-39
White winning: 40+
Six blunders with 40.B[e9], as 40.B[e8] is aidue) winning move.

Commentary:
Six’s play seems strong until then.

e 8000 |
@Co--H6-0g0g g8
SRR < 1

Game 6:  Six Wolve
Black winning: 33-39, 41+
White winning: 32, 40
Commentary:  Six blunders with 33.W[i8] as 33.W[i7] is wingi Later Wolve blun-
ders with 40.B[c7] as 40.B[e3] is winning. Six immediatelturns
the favour, making a major blunder with 41.W[d4] when 41.9][is a

simple win for White.
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Game 7: MoHex - Yopt
Black winning:
White winning: 20+
Commentary: Yopt's 22.B[c5] is outside of the mustplaysthieak move could have
been avoided with a basic implementation of H-search. X2Bjro-
vides much more resistance according to our solver. Mov8[f4]).by
Yopt is captured-reversible, and MoHex responds with ienser.

Game 8: Yopt - MoHex
Black winning:
White winning: 16+
Commentary: Move 6.B[j2] by MoHex seems very weak, givingtra free move to
strengthen the centre and/or create important border ctions. Un-
surprisingly, Yopt is winning in all solved continuations.

Game 9: Six - Yopt
Black winning:
White winning: 24+
Commentary: Opening play seems reasonable for both playdove 26.B[b4] by
Yopt is both dead-reversible and outside of the mustplagatly sim-
plifying Six’s advantage.
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Game 10: Yopt - Six

Black winning:  25-35
White winning:  22-24, 36+
25.W[d2] is a dead-reversible move by Yopt,abtlinder as 25.W[e2]

Commentary:
is winning. 36.BJ[i7] is a major blunder by Six, as 36.B[h8]adrivial

win.

Game 11: MoHex - Wolve

Black winning: 20+
White winning:
Commentary: Wolve's 22.W[c3] is a dead-reversible move] ans killed by Mo-
Hex’s response at 23.B[b4]. Such poorly-conceived proloesirofre-
guently with the circuit evaluation function used by Six affdlve.
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Game 12: Wolve MoHex

Black winning: 27+
White winning: 26
Commentary: Wolve's 27.W[e9] is a blunder as 27.W[h9] is miry. 21.W[b3] is
also a bit weak since it is star decomposition dominated bwgd2].
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C.1.1 Round1l1

In the first round of the tournament, all games either hadréyfaiased openingif., game states
within the first 20 moves can be solved in a reasonable amduime) or else there were blunders
in the endgame stages. Games 2—4, 7-8, 11 are in the firsboatggmes 5-6, 9-10, 12 are in the
second category, and game 1 is in both.

Given this fact, stronger endgame play would have helpadfgigntly (i.e.,whenever the open-
ing was not overly biased), and so for the second round wedaaldanple endgame solver to Wolve
and MoHex. This solver ran for 15 seconds prior to the playeormal search, but only after move
15 due to tournament time conditions. The success of thisiasaite addition eventually led to our

parallel solver.

C.1.2 Round?2

Game 13: Six MoHex
Black winning: 21+
White winning:
Commentary: Six’s play along the 9th row is quite weak, asviegMoHex a strong
wall of influence. Move 25.W[il11] by Six is dead-reversibéed Mo-
Hex Kkills it with 26.B[k10].

Game 14: MoHex Six
Black winning: 27+
White winning: 20
Commentary: 21.W[b10] is likely a blunder by MoHex, as 21b&][is winning and
MoHex is losing shortly thereafter; our solver is not strargugh to
solve the intermediate positions.
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Game 15: Wolve - Yopt
Black winning:
White winning: 14+
Commentary: Wolve dominates this game throughout. MovB[2B] by Yopt is par-
ticularly weak, being both dead-reversible and outsiddefrhustplay.

Game 16: Yopt Wolve
Black winning:
White winning: 25+
Commentary: Again Wolve seems to have a strong advantageghout. Move
33.B[f8] by Yopt is dead-reversible.

Game 17: Wolve - Six
Black winning: 28+
White winning:
Commentary: After 16.W[b2] it seems as though Wolve hagffaiihto a bad opening
trap, with Six gaining all the influence. However, Wolve'sopes of
Six’s VCs give ample compensation and allow Wolve to win.
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Game 18: Six Wolve
Black winning:  45-47, 49+
White winning: 48
Commentary: This close game between Six and Wolve is thehtsido solve in the
entire olympiad (in the number of moves played before it Gaadived).
48.B[e8] is a blunder by Wolve, as 48.B[d8] is winning. 49d8]is a
blunder by Six, as 49.W[h6] and 49.W([f8] are both winning.

Game 19: MoHex - Yopt
Black winning:

White winning: 30+
Commentary: 30.B[h7] by Yopt seems weak, as 30.B[h6] gieegfeater resistance
to our solver.

Game 20: Yopt MoHex
Black winning: 19+

White winning:
Commentary: 17.W[d3] by Yopt is dead-reversible, and Mokesponds by killing it.
Yopt's mustplay remains small from move 20 onwards.
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Game 21. Six Yopt
Black winning: 17+
White winning:
Commentary:  Yopt is winning this game very early on, presbignaecause of Six’s
imbalanced opening move. 15.W[g2] by Six also looks weak.

Game 22: Yopt Six
Black winning: 41, 55+
White winning:  42-54
Commentary: 42.B[b6] is a blunder by Six as 42.B[b5] is wigjiand 55.W[c6] is a
blunder by Yopt as 55.W[b7] is winning. The latter blundedétectable
both by inferior cell analysis (it is dead-reversible) andrbustplay.
This game ensures that Six gets the bronze medal and thafiivispies

in fourth place.

Game 23: MoHex Wolve
Black winning: 19+

White winning:
Commentary: MoHex’s opening play seems quite weak, eslhe8iaVv[j2]. A com-
mon flaw of MoHex is to favour b10 and j2, even when these mokes a
seemingly irrelevant to the current threats. This gameshks the gold

medal for Wolve.
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Game 24: Wolve MoHex
Black winning: 43+
White winning:  34-42
Commentary: Even with the 15-second solver, Wolve playeghailgame blunder with
43.W[i10] as 43.W[h9] is a winning move. Our current solvequires
20 minutes to identify the winning move, but Wolve’s moveasiid to
be losing in well under 1 minute.

Unlike in the first round, some games in the second round wadtker overly biased in the open-
ing, nor marred by endgame blunders. Examples include gaéek/, and 19. It is unclear what
contribution the solver made, as the number of (detectarldyame mistakes by Wolve and Mo-
Hex was unchanged; the game positions were not rerun witwwer to determine this difference.

However, given situations like game 24, partial resultsfitbe solver could prove more useful.

C.1.3 Summary

Given that Six easily won the gold medal in the 2003-2006 celitipns, its relative performance in
the 2008 competition suggests that the level of automatedplégers improved greatly.

Overall Yopt played reasonably well in the opening and midgabut its lack of mustplay prun-
ing and inferior cell analysis resulted in several obviolinters. MoHex's greatest weakness
seemed to be inconsistent opening play. For instance, g8naesl 23 illustrate its capacity for
catastrophic openings. On the other hand, MoHex was the molgram to defeat gold medallist
Wolve. Six and Wolve usually play well, but make a surprismgnber of endgame blunders as

illustrated by games 5, 6, 10, 12, 18, 22 and 24.

C.2 2009 Olympiad

MoHex | Wolve | Six | Yopt | total | result
MoHex 2-0 | 20| 2-0 | 6-0 gold
Wolve 0-2 1-1| 2-0 | 3-3 | silver
Six 0-2 1-1 1-1 | 2-4 | bronze
Yopt 0-2 02 |11 15 | 4th

Table C.2: 2009 Hex Computer Olympiad results.
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A fifth program, Bit2, registered but withdrew before the gmtition. Due to time constraints,
the four remaining programs only opened once against egobnemt. The tournament was played
entirely in one day, with no program alterations betweengmm

Gabor Melis did not attend the tournament, so Six’s openingaaavere selected by Yngvi
Bjornsson and Jakub Pawlewicz. Wolve used three threads:ammafallelized board evaluation
and one for a parallel solver. MoHex used eight threads: rsmeparallelized Monte Carlo tree

search, and one for a parallel solver. At this time our solas still based on depth-first search.

C.21 Round1

Game 1: Wolve MoHex
Black winning:
White winning: 29+
Commentary: Neither program made an obvious error, and Mstégaluation scores
suggest that this was a close game throughout.
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Game 2: MoHex - Wolve
Black winning:
White winning: 28+
Commentary: B[c4] provides far greater resistance to olwesthen Wolve’s moves
27, 29, 31, etc. By 17.W[e4] MoHex likes its position.

120



Game 3: Wolve Six
Black winning:
White winning: 21+
Commentary: The opening seems balanced, but Wolve's isitus¢ems to deteriorate
badly around 17.B[d7]. Six’s 24.W[g2] is a strong move.

Game 4: Six Wolve
Black winning: 27+
White winning:
Commentary: Six plays dead-reversible moves 17.W[e2] dn#&/B1]. The former
is killed by Wolve with 18.B[f2], but for the latter Wolve igmes killer
j2 since it evaluates 32.BJ[j7] to be more important.

Game 5: MoHex - Six
Black winning: 14+
White winning:
Commentary: MoHex thinks 14.W[h2] is weak, as its evaluagoore jumps to 0.75
when generating 15.BJi5].
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Game 6:  Six MoHex
Black winning:  33-36, 38
White winning: 37, 39+
Commentary: MoHex's opening play is weak, with Six havingrarsg wall of influ-
ence by move 19. MoHex manages to make the game close, and both
players repeatedly blunder near the end until the paradleks takes
over for MoHex. Some winning alternatives are 37.B[c10],V8B5],

and 39.B[d4].

Game 7:  Six Yopt
Black winning: 33+

White winning:
Commentary: 37.WIJi7] is a dead-reversible move by Six, ypt¥thooses not to kill
it; our solver suggests that killer 38.B[k2] would have dé=stiin a sim-
pler win. Nevertheless, Yopt seems to have the advantageghout.
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Game 8: Yopt Six
Black winning: 37+
White winning:
Commentary: This is a close game, with Six pulling ahead. t¥gpgay along the
first row only helps Six, 36.B[f2] kills White’s f3 chain, arisb.B[e6]
is an elegant move by Six. Our solver suggests that Yopt'sjame

resistance was a little weak.
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Game 9:  Yopt Wolve

Black winning:

White winning: 21+
Commentary: The opening of this game is rather unusualicp&atly moves 9.B[j4]

and 20.WI[j1]. Wolve realizes it is winning by 28.W[b7], and glays
seemingly unusual moves from here on. Yopt has no endganaersol
and does not see the win; during this endgame its evaluatiores

climbs above 0.9 before eventually identifying its loss.

Game 10: Wolve - Yopt
Black winning: 22+
White winning:
Commentary: Solver finds the winning 25.B[b10] for Wolve idgrthe game. This
result ensures gold for MoHex.

Game 11: Yopt MoHex
Black winning: 20-30

White winning: 31+
Commentary: The game’s opening is somewhat unusual, witlilpebridges forming

and MoHex letting Yopt connect to one border easily. Yopypladead-
reversible move with 25.BJ[i5], but MoHex does not Kill it. pbblun-
ders with 31.B[d4], as both 31.BJ[j2] and 31.B[c4] are winninThis

result ensures silver for Wolve.
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Game 12: MoHex - Yopt
Black winning: 35
White winning: 36+
Commentary: This game is complicated, and very close uatl the end. 36.B[b2]

is a blunder by Yopt, as 36.B[b3] is winning. ldentifyingghvinning
move requires roughly two weeks of solving time, but Yopteva is
proven to be losing within ten seconds. This result ensuresze for
Six.

C.2.2 Summary

The quality of play in the 2009 tournament seems to have isgardomewhat on the 2008 tour-
nament performance. For instance, the number of solvectiile blunders decreased from an
average of 0.583 to 0.416 per game. Similarly, the averagabeu of coloured cells in a game’s
shallowest solvable position increased from 22.79 to 26@§gesting that the 2009 opening posi-
tions are less polarized.

MoHex performed exceptionally well, not losing a single getbespite its occasional weak open-
ing play €.9.,game 6). Wolve unfortunately did quite poorly compared sonbrmal measured
performance, losing all of its games against MoHex and gingly even one against Six. Six was
unchanged from the previous year and Yopt, while showingavgment from its previous version,

again suffered from a lack of connection strategy dedudlgorithms and inferior cell pruning.
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Appendix D

Open Questions

Many important questions about Hex remain unsolved. WeHetn here in the hope that they will

inspire and guide future research in this area. Questianerganized by category, and within each

category are ordered by perceived difficulty level.

D.1

D.2

Winning Opening Moves and Strategies

Solve all remaining % 9 openings.
Solve one or more 1& 10 openings.

Determine whether every first player win Hex position camga cell that is a winning move

for both players (posed by Ryan Hayward).

Identify a winning opening move for atl x n Hex boards.

Determine whether the centre is a winning opening move fot &l »n boards.

Determine whether all cells on the main diagonal are winipgning moves for ath x n

Hex boards.

Graph Theory and Computational Complexity

Identify graph classes where Generalized Hex is solvall@airing strategies.

Identify graph classes where Generalized Hex is solvalpelynomial-time. Paths, trees, and
cycles are trivial, but investigate interval graphs, clabmgraphs, bounded degree, bounded

treewidth, etc.
Determine mathematical properties and invariants of xeéntglosion.
Determine mathematical properties of graphs derived friamgy graphs via vertex implosion.

Determine the computational complexity of identifyingdidead cells on Hex graphs.
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e Determine whether knowing the sequence of vertex implasard vertex deletions from a
given planar graph can reduce the computational complefigyroblems on the resulting

graph.

Determine whether P equals PSPACE.

e Determine whether P equals NP.

D.3 Combinatorial Game Theory

Find sufficient properties for reversible moves to be prumather than bypassed, from com-

binatorial games.

Find other combinatorial games where decomposition datioimaxists.

Resolve van Rijswijck’s open problems regarding the exqioesof Hex positions using com-

binatorial game theory and surreal numbers.

D.4 Hex Variants

Develop results for the Hex variant Vex.
e Develop results for the Hex variant Tex.
e Determine the computational complexity of random-turn Hex

e Find an explicit handicap strategy that requires fewer lﬁ%ﬂ handicap cells on the x n

Hex board.

e Find an existence proof for a handicap strategy that regju{re) handicap cells on the x n

Hex board.

e Solve Hex on the annulus when the ring dimension is odd.

D.5 Inferior Cell Analysis

Find all dead cell patterns of radius at most two.

Find all captured set patterns of radius at most two.

Find all dead-reversible, capture-dominated, and cagiteeersible patterns of radius at most

two.

Find an efficient algorithm that computes all possible dedwstate values from a solved Hex

state.
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D.6

D.7

Improve efficiency and generality of algorithms identifyiohain combinatorial decomposi-

tions.

Find an algorithm to recognize permanently inferior cettgans, and find all such patterns of

radius at most two.
Determine whether captured-reversible cells can be untonally pruned.

Develop an algorithm to automate domination deductiongisiisting base case domination

techniques, and use this algorithm to produce more doroimattterns.

Resolve the 4-3-2 probe conjecture.

Connection Strategies

Parallelize the H-search algorithm.

Implement Anshelevich’s generalized H-search with a baambandicap set size, and test its

performance.

Determine if the partition chain algorithm can be geneealito compute larger sets of parti-

tion chains.

Develop a deduction framework for incorporating union{oections into H-search.
Generalize the common miai substrategy algorithm to allmwarger common substrategies.
Determine how to efficiently recognize and store importaathed connections during search.

Determine whether there is a seventh row border templatecinthiat requires no coloured

cells.
Determine whether there is a bound on border template distamHex when there are no

coloured cells.

Solver

Improve FDFPN’s performance.
Eliminate FDFPN'’s reliance on an (external) heuristic moxaering.

Resolve the problem of PNS and its variants preferring melas produce fillin when no

mustplay exists.
Parallelize PNS and its variants.

Improve PNS and its variants for games with initially unifobranching factors.
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D.8 Players

Improve alpha-beta framework for Wolve, including padéktion and use of the killer or

history heuristics.

Build a strong 11x 11 opening book.

Further develop the PNS-based Hex player, attaining stotagon 11x 11 boards.
Beat top humans on 1 11.

Find an evaluation function that outperforms the electiricuit model.

Incorporate connection strategies into Monte Carlo sitiarig.

Dynamically identify strategy decompositions in MCTS, arsk this to improve its perfor-

mance.

Beat top humans on 14 14.
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