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Abstract

The widespread use of photo-ID’s for personal identification and security work
indicates that there is a significant demand for an automated face recognition
system. While there are many researchers working on the problem of face recog-
nition, little work has been done so far on the automatic detection of facial features
that is essential to the eventual recognition goal. This research is meant to be
the initial phase of a completely automated face recognition system. Specifically,
it will deal with the problem of automatic facial feature detection from a loosely
posed head and shoulder picture of a clean shaven subject with no glasses. By
loosely posed, we mean that the facial image is assumed to be a front-view id-type
picture of the subject, but the face location, head size, lighting, and background
may vary.

Research in psychology has shown that humans tend to recognize objects as
a whole, rather than recognizing individual features. Our approach attempts to
imitate this process by initially searching an image for shapes that reughly fit the
template of a face. The facial features are then inspected to confirm or reject the
template selected. This is different from the conventional sequential approach.
The elimination of dependancy among feature modules yields a more robust and
efficient system, since errors will not be accumulated and the system can be easily
implemented in parallel.

The system can be roughly divided into two distinct levels of processing: specu-
lation and confirmation. The speculation stage consists of a single context module
that generates hypothesized face locations (ie. face contexts). The empbasis is
on locating regions of interest roughly and quickly. The context module employs
low level grey scale image processing techniques, such as morphological filtering
and blob coloring to do rough analysis on a low resolution version of the input
image. The detailed analysis is left for the confirmation stage modules. Currently,
there are two confirmation stage modules: the eyes and the mouth. The purpose
of both modules is to confirm as well as refine the lecation and shape of their
respective features of interest. Therefore, in addition to low level processing as in
edge detection, they must utilize higher level modelling approaches, namely the
Hough transform and def:::mable template techniques.
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Chapter 1

Introduction

As society progresses and interactions among people increase, the potential of
encountering an unfamiliar indivicual becomes a constant facet of modern day
life. A passport grants us entry into another country. A bank card or account
book allows one to withdraw money from an account. An entry access code lets
an individual enter an otherwise prohibited, secured area. There is an obvious
and widespread need of being able to identify and to be identified.

There is a multitude of media presently used for identification or security
purposes. They range from possession of 2 simple artifact (eg. a key or a card),
to special knowledge (eg. a password or memorized number sequence), or even
to personal characteristics, either learned or innate (eg. signature, or voiceprint).
None is more secure than a physiological trait, such as fingerprints, or facial
images. Facial images are, however, by far the more popular and natural choice.
It was no accident that the first postage stamp introduced in 1840’s was a picture
of Queen Victoria. As well, paper currency in many countries bear portraits of
some important historical figures. Faces are used in these cases because they
are permanent and unique to individuals. Their complexity also makes them
extremely difficult to forge. One only needs to flip through his wallet to observe
the widespread use of photo ID’s. Identification by photo ID’s is popular because
everyone is considered an expert in recognizing faces and does it instantly.

However, psychology research has shown that recollection is a continuous pro-
cess easily influenced by events after acquisition. In the case of eyewitness identi-



fication, the ability to recognize a certain individual from a group is significantly
hampered by how many pictures are observed before the target [Wel88]. Fur-
thermore, recognition, like other tasks requiring human attention, if performed
repeatedly over time, is subject to degradation and occasional error. A security
team of 2 guards for a company employing 200 employees may have to recognize
over 400 faces on a typical work day. With today’s mobile work force, change of
staff is a frequent event. It would be impossible for the security guard to memorize
every employee’s face. Failure at times is to be expected.

Therefore, a completely automated face recognition system is obviously needed.
The objective is not so much to completely alleviate the burden of recognition from
humans, as we have yet to come up with an artificial intelligence approach that
compares with the complexity, capability and speed of a human brain. Rather,
the automated system should aid man by pre-screening all unlikely cases to ensure
the integrity and enhance the speed of recognition.

Automatic recognition of faces by computer has been approached in two ways:
constitutent-based and face-based. Much of the effort among the constitutent-
based approaches has been concentrated on the examination of individual struc-
tural constituents of the face. These constituents includes objects such as eyes,
mouth, nose, ears, etc. The feature vector used in comparison is extracted from
measurements taken with and among these structural constituents. The primary
advantage of this approach is its preservation of structural concept. It does not
only help ease computational burden, but also carries an intuitive appeal because
the measurements used are often physical quantities that one can in fact observe
and appreciate. However, the relevance of these features in face recognition is yet
to be proven objectively.

On the other hand, the face-based approach attempts to capture and define
the face as a whole. A face is often treated as a 2-D pattern of intensity variation.
The objective is then to discover its underlying statistical regularities. Much
of the work in the area has been accomplished through the application of neural
networks [KLO81] [Sto86}. There are also others which utilize standard statistical
analysis techniques [Bar89] [TP89] [SK87]. The primary appeal of this approach
is that the developer s spared the task of having to explicitly specify the features



to be used in the recognition process. The description will be automatically and
objectively derived from the initial training set. Yet, because the facial image is
pctceived merely as a set of 2-D data, often the structural concept is lost and can
no longer be taker. advantage of.

However, before a face can be recognized, it must first be extracted from an
image. This detection task is necessary regardless of whether one intends to use
the face-based or constituent-based recognition approach. For the constituent-
based approach, since the feature vectors will be based on actual measurements
taken from and between facial constituents, it should be obvious that a reliable
means of detection is fundamental to the success of the overall system. For the
face-based approach, though the knowledge of the locations of facial constituents
is not necessary for the actual recognition process, it is often desirable so that in-
put can be normalized to a standard size, location, light exposure and orientation.
Of course, this could be done manually during the image capture phase. It would
take meticulows adjustment that is difficult to guarantee for more than a handful
of images. The alternative is to normalize based on some important landmark
from the image itself. A typical choice is a measurement taken from some facial
features, such as distance between nose and mouth, intensity from cheek patch,
angular distance between eyes, etc. This will necessitate the detection of some fa-
cial components, just as that required by the constituent-based approach. While
there are many researchers working on the problem of face recognition, little work
has been done so far on the automatic detection of facial features that is essential
to the eventual recognition goal.

The reader should note that there has been much research done using profile
rather than frontal images [Har76). While profile images convey better infor-
mation regarding the degree of protrusion of various facial components, frontal
images provide a better view of the facial structure as a whole and are better
related to by a human observer. Furthermore, it is by far the most popular view
used in personal identification pictures.

This research is meant to be the initial phase of a completely automated face
recognition system. Specifically, it will deal with the problem of automatic facial
feature detection from a loosely posed head and shoulder picture. By loosely posed,



we mean that the facial image is assumed to be a front-view id-type picture of
the subject, but the face location, head size, lighting, and background may vary.
In specific, we will attempt to extract the locations and shapes of eyes and mouth
for each input image using low level grey scale image processing techniques such
as morphological filtering, and edge detection, as well as higher level modelling
paradigms, namely Hough transform and deformable template. Our proposed
system will allow features to be extracted in parallel rather than sequentially so
as to minimize the potential of error accumulation, but yet maximize the system
efficiency.

In order to simplify the problem, the subject is assumed to be clean shaven
and without glasses, though images to the contrary are occasionally used to test
the robustness of the system. In addition, while facial expression is an iraportant
element that will influence the shapes of many facial components, it is such an
intangible concept that little research has been pursued in the field as yet. Since
the primary motive of our research is for applications in personal identification
where relatively little facial expression is expected to be present, the analysis of
facial expression is deemed beyond the scope of this study.

The remainder of this thesis will be devoted to document the justification,
methodology, and results of oiir proposed approach. Chapter 2 is a review of
the techniques used by past researchers in the detection of facial features from
frontal images. Chapter 3 contains an overview of our proposed strategy, as well
as discussion of some general techniques used throughout the system. Chapters 4
to 6 detail the development and experimental results of the various modules in the
system. Finally, chapter 7 summarizes the research presented and future research
directions.



Chapter 2

Automatic Facial Feature

Extraction Literature Survey

In most literature in automatic facial recognition, relatively little effort has been
spent on the facial feature extraction problem. For many [GHL71] [CICMS86],
it was because extraction was done manually, on the assumption that the prob-
lem would be resolved somehow. For others [WLT89] [Con86], their aim was
to recognize, and therefore even though attempts of automatic extraction were
made, little was reported on the success of it alone. In the following sections, we
shall review some of these methodologies and evaluate them qualitatively. The
approaches used reflect closely the development of object recognition techniques
in computer vision over the past 20 years. Facial feature extraction is after all
just an instance of the general object recognition problem. Therefore, we have
organized the review into categories by technique, in addition to an overall review
summary as follows.

2.1 Signature

The signature-based technique aims at encoding shape by projection. Projection
here refers to the act of summing along a particular direction. The quantity to be
projected could be the actual intensity, or edge strength, or some other meaningful
image parameters. The maxima and minima in the projection can be used as an



indication of the presence or absence of certain landmarks in the image.

In the work by Sakai et al. [SNKT72}, the basic assumption was that each fea-
ture exhibited a unique, easily identifiable distribution profile of edge pixels. By
recognizing certain patterns of distribution, Sakai et al. were able to detect facial
features in sequential order. The resulting technique was called integral projec-
tion. Under this technique, edge pixels within a slit of proper width and length
were summed column-wise to obtain a distribution profile. This slit was slid
around the image until the desired pattern was detected. For example, the top of
the head was simply described as the first significant output within a horizontal
slit sliding down from the top. The sides of the face were identified similarly
through another horizontal slit. However, this time it would exhibit a sequence
of patterns rather than a single one. The sequence would correspond to when the
slit crossed over the eyes, the eyes and the nose simultaneously, and finally just
the nose. Throughout this sequence, the sides of the face could be identified as
the two edge maxima bounding the eyes and nose. Once the top and sides had
been identified, searching for internal features could be limited to a smaller area.
The same fechnique was used to locate nose, mouth, chin contour, and eyes by
varying the shape, size, and orientation of the slit.

Based on a similar idea, Lambert developed the signature search technique to
locate facial features [Lam87]. A signature here was defined to be the vertical
intensity profile, obtained by summing the intensity in each column. The first to
be located were the eyes whose signature consisted of three brightness maxima
(bordering the eyes) and two brightness minima (at the eyes). Once the eyes
were located, searches for the mouth and nose could proceed in limited area.
This approach was very much similar to the work of Sakai et al. [SNK72], the
only difference was that grey level intensity rather than edge pixels was used.

Cannon’s approach [CJCM86] was based on a combined principal of the previ-
ous two [SNK72] [Lam87]. The top of the head was first located by searching for
a significant intensity gradient from the top downward. The sides of the face were
found by searching inward at a predicted range of height, based on the top of the
head, for a significant positive gradient. Subsequently, the two cheek patches were
located by searching for intensity maxima within the predicted locations based on



the previous two steps. The eyes were found similarly by searching for intensity
minima above the cheeks.

The primary advantage of this approach is its simplicity, not accuracy. It is
easy to implement and quick to execute, making it very attractive as a prelim-
inary filtering step to reduce subsequent search effort. Nevertheless, projection
is not an information-preserving transformation. There may exist many distinct
pre-transformed images for any one unique pattern of projection. Therefore, the
presence of a certain projection pattern by itself is not an absolute indication
of an object instance. With a uniform background and plain clothing, there are
only a few objects in the image, and the shape and image characteristics of these
few objects will be known a priori. Success can be moderately assured. Yet,
with a cluttered background and arbitrary clothing such as that found in most
photographic sessions, it will be difficult to guarantee that a certain projection
pattern is unique for one and only one object or set of objects. Therefore, the
signature-based technique, though useful as a preliminary step, must be aug-
mented with other techniques or multiple-projections to reliably extract objects
in a more general case.

2.2 Contour Following

In attempting to overcome the uniform background restriction, Craw and El-
lis used a multi-resolution template-guided contour following scheme to separate
the foreground (ie. the head outline) from the potentially cluttered background
[CEL87]. At its lowest resolution, a predefined template of a head and shoulder
outline was used as a guide for the contour follower to extract a gentle curvature
outline. The contour found at one level was then used as the template in the next
higher resolution level. The shape was therefore gradually refined through suc-
cessively higher levels of resolution, until the maximum resolution was achieved.

Once the head had been identified, locations of the other components would be
roughly known. Thus, they could be modelled using relatively simple signatures.
The lips and eyebrows, for example, were approximated as horizontal lines. Here,
the lips were searched for first along the vertical line down the center of the image.



Once the lips were located, the eyebrows should intersect the vertical line passing
through either corner of the mouth. The &yes, on the other hand, were simply a
pair of local minima under the eyebrows.

Contour following, a pixel-by-pixel operation, is extremely susceptible to noises
and gaps in the image. The addition of a template model was dasigned to add
global constraint to an otkerwise local operation. Unfortunately, the assumption
of slow curvature change was often found to be violated in a real image at small
scale. Since it was the initial step, there was little other reliable information
available to correct or sidestep any inconsistency encountered during the process.
Because of the sequential nature of processing, any errors incurred early on would
be accumulated and possibly amplified further down. Therefore, the overall rate
of extraction was rather poor. Only 12 out of 20 of the head outlines were suc-
cessfully extracted. For those which failed, many were unable to continue because
of a lack of reliable reference.

In summary, because of its susceptibility to noise, the contour following tech-
nique is better reserved as a detail shape extraction operation at a latter stage
after a reliable reference has been established through some other means.

2.3 Template Matching

The basic idea of template matching is to find an area of high correlation between
a template (ie. a fixed 2-D pixel pattern) and a sub-region of the same scale in
the image. The correlation is done on a point-by-point level and is measured by
the number of matched pixels.

Baron used this technique to locate the eyes [Bar89]. A number of eye tem-
plates were abstracted from real images and used in the matching process. The
eye was located by finding an area of sufficiently high level of correlation with any
one of these templates. The objective was to use the distance between eyes to
normalize the input image for further statistical pattern-recognition processing.
Though the rate of recognition was reported to be very impressive, there was no
comment on how accurate and robust the eye extraction module was. He did
report that large changes in image scale could not be accommodated adequately



despite the scale standardization procedure.

This result is to be expected since conventional template matching requires
the shape and proportion of the object of interest to be precisely known. The
rate of correlation is directly proportional to how closely the object in the input
image resembles the template, both in scale and orientation. Therefore, even if
the object and the template are identical in shape, if one is larger than or rotated
slightly from the other, the correlation will be poor. Furthermore, few objects in
nature have a rigid shape. Instances of the same object class may possess similar
overall shape, but the aspect ratios among components could vary considerably.
It is difficult to determine how many fixed templates are needed in order to fully
represent all shapes within the class. Consequently, given an object instance
which is inadequately represented in terms of scale, orientation, and slight shape
variation, it will be difficult to place the existing template precisely, as is the case
found here by Baron [Bar89).

The alternative is to increase the number of eye templates used, hoping to
cover most situations. Correlation, by itself, is O(n®m?) process where n? and
m? are the sizes of the input image and template respectively. If the number
of eye templates is large, the computational expense will be considerable. In
short, template matching is a useful extraction technique if the size, shape and
orientation of the object can be limited, but it is largely impractical for general
application. :

2.4 'Ibinplate and Spring Model

A fixed template can be made more flexible by adding the spring concept. The
underlying idea is to model an object as a collection of distinct components, each
of which can be viewed as a rigid template. The relations among these components
are expressed as spring tension functions. An ideal instance of the object will have
a total tension of zero. As the relations among components deviate from the ideal,
the total tension increases quadratically. It thereby provides a means of measuring
the quality of fit of the template to the image.

Govindaraju et al. used this template and spring model to extract head out-



lines from newspaper photographs [GSSS89]. The head outline was modelled
as three separate curve segments: top, left, and right. The extraction of these
curves was done by edge detection, skeletonization and relaxation linking. Then
the curves were grouped by spatial constraints to form potential head outlines.
Each potential head outline was evaluated by a combination of object component
cost, and relation spring cost. There were three terms in the overall cost function:

1. C(temp) measured the dissimilarity between the template and the combined
outline from the three curve segments.

2. C(miss) was the penalty of any missing curves.
3. C(spring) measured the connectivity between any two adjacent curves.

The system was tested only on 10 images, many with more than one instance of
head outline. In all cases, it succeeded in finding all faces present which indicates
the system is relatively robust. However, false alarms were often generated. As
with the signature-based technique, this approach has the problem of having
a many-to-one mapping between the actual object and model. Here, basically
any elliptical object, regardless of internal components, will be identified as a
potential head. Because of better shape representation, this is more robust than
the signature-based approach. This improved performance does have to come
with considerable computational effort since the extraction phase is much more
complicated. Nevertheless, as with the signature-based approach, this technique
must be augmented with other detailed component analysis in order to be used
with high confidence.

2.5 Hough Transform

The Hough transform is an edge-based segmentation techniqu: for detecting edges
whose shapes can be described by parametric curves (eg. stzuight line and conic).
The basic idea is selection by counts. If there exists an #dge of the desired an-
alytically defined shape, the points along this edge will all have the same set
of parameters. Therefore, if we maintain a count </ sorresponding edge points

10



for each possible set of parameters, the truly existed curves can be extracted by
identifying those with a high accumulation count. This array of accumulators is
collectively known as the parameter space. The number of dimensions within the
parametef space is simply the number of parameters needed to express the curve
analytically. Given the inverse analytic equation of a parametric curve, F, in
order to transform edge points from the spatial domain to that in the parameter
domain, we shall assume each significant edge pixel forms part of the boundary
of the desired curve. Knowing the coordinates of this point (z,y) and the in-
verse function F', we can solve the parametric equation backward to obtain the
corresponding parameters and increment its accumulated count in the parameter
space. Since there are usually far fewer image points than the number of cells in
the parametric space, the number of function evaluations is drastically reduced.
This is essentially an efficient implementation of the generalized template match-
ing and is very robust even in the presence of noise.

Nixon [Nix85] examinez ihe effectiveness of Hough transform for extracting
eye spaciag measuremen(s in three different models:

1. a circle approximating the shape of the iris.

2. an exponential function tailored ellipse approximating the boundary of the
eye.

3. the same tailored ellipse approximating the combined area of the eye and
the region below the eyebrows.

In all three cases, matching was done over only a very small area around the
eye to limit the search and avoid accidental matches with objects other than the
eyes. However, he did not address how this rough location could be derived.
The detection performance reported was extremely promising. He found that
measurement by detection of the position of the iris was the most accurate, with
less than half a pixel difference between the detected distance and the manually
derived distance. Detection of the eye boundary, on the other hand, was the most
sensitive to noise, but did offer a similar degree of accuracy under good conditions.

Govindaraju ef al. also used a modified Hough transform approach in his sec-
ond attempt at extracting head outlines from newspaper photographs [GSS90].

11



They divided the head outline into four pieces composing of 2 arcs for the top
and bottom, and 2 lines for the sides of the face. The extraction of these was
done through first level Hough transform units designed for detecting lines and
elliptical arcs. Then, a second level transform based on the Hough transform idea
was performed on the extracted lines and arcs. Here, an ellipse was defined for ev-
ery potential top-of-the-head elliptical arc, and a collection of such ellipses would
form the parameter space. Every line or arc contributed only to the ellipse which
it intersecteéd the most. Therefore, potential head outlines could be extracted by
tallying the votes for each ellipse and selecting only those with high counts. It
was also suggested a face-verification stage would be needed in order to confi-
dently confirm that the selected candidates were indeed heads. Unfortunately,
this verification stage was still under development and there were no performance
statistics quoted for the head candidate generation stage.

In general the major drawback of using Hough transform is, of course, its
computational demand. The computational requirement typically grows expo-
nentially with the number of parameters in the analytic equation. Though Nixon
had mentioned using the 8-symmetry propert;  in generating circles, there was
no remark of similar strategy for easing the computational burden in generating
the tailored ellipse. The same was true for Govindaraju’s elliptical arc extraction
unit. Therefore, it is difficult to conclude whether these methods are practical
means for extracting facial features.

2.6 Deformable Template

In contrast to previous techniques, the deformable template approach uses an
active model in the sense that its shape is not fixed and it evolves over time to
best explain the existing image conditions. A deformable template is basicaily an
arrangement of simple parameterized geometric primitives such as straight lines,
circles, and parabolas, to delineate the general shape. Altering the template
parameters corresponds to changing the position, orientation, size, and feature
proportion of the object. Therefore, a family of similarly shaped and sized tem-
plates can be compactly represented by one deformable template. The task of
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determining the ideal set of parameters to be used is accomplished through nu-
merical optimization. The function to be optimized is an energy function designed
te measure how well a parameterized template corresponds to the input image,
and how closely it conforms to an average preferred shape. Image correspondence
is often measured in terms of typical image forces such as edge, valley, peak and
intensity. Because different image forces influence the energy function in different
manners, optimization is often done over a number of epoches (ie. stages). For
exaniple, valley and peak are usually emphasized in early epoches to pull the
template in from a distance away providing there is no major distraction on the
way. On the other hand, edge and intensity forces are better at fine tuning the
template in the latter epoches.

The primary attractiveness of this approach is its strong representational
power. An object can be thought of as a number of well-structured geometric
primitives, controlled by only a handful of parameters rather than a series of
points which can be very loosely connected with little coherence from endpoint
to endpoint. Of course, one may argue that a pointwise model is a more precise
representation on a local level. Yet, with the parameterized model, global non-
accidental properties such as symmetry, parallelism, and junctions are much more
readily available. Psychology research has shown that they are more reliable cues
for visual input interpretation [Bie87]. The parameters have global rather than
local effect, and hence the model will be less susceptible to incidental noise and
gaps, which are prevalent in real images. Furthermore, since there are now only
a handful of parameters to manipulate as opposed to a series of individual point
coordinates, the combinatorial search space is drastically reduced.

These advantages, of course, are equally true for the Hough transform tech-
nique. Nevertheless, unlike the Hough technique, deformable template technique
does not require the entire parameter space to be generated. This translates
into tremendous saving in terms of storage and computations. It is feasible to
represent 2 much more complex structure than that allowed in practicality by
Hough transform. The actual efficiency will depend upon how the parameterized
template is evaluated, and how its corresponding energy function is optimized.

On the other hand, the Hough transform, with its high cost, will always gen-
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erate the optimal solution. As for the deformable template approach, because a
global optimization technique is yet to be discovered, the solution found by using
existing optimization techniques may be satisfactory, but not necessarily the best.
The choice of the modelling technique used therefore requires a tradeoff between
accuracy and practicality.

This technique was first purposed by Yuille et ol. [YCHSS8] for extracting eyes
and mouths. The eye was modelled with a circle (iris), a pair of bounding parabo-
las (eye contour), and two points (centers of whites of the eyes). The correspond-
ing energy function was composed of five terms: edge, valley, peak, intensity,
shape. The optimization was done over six epoches varying different image forces
in this order: the overall valley; the intensity and then the edge over the circle;
the peak and then the intensity over the whites of the eye; and finally the edge
force over the bounding parabola.

Two different templates were used for the mouth, one for the mouth-closed
case, and the other for the mouth-open case. The mouth-closed template was
defined with four parabolas: two on the bottom for the lower lip and center
-~paration line, and two symn.etrically placed on the top to mark notched upper
Ly. The mouth-open template was similar but with one additional parabola in
the middle so that the upper and lower lips no longer had to share the same
center separation line. The energy function had only three terms: edge, valley,
and shape. The optimization was done over two epochs: first over the valley for
pulling the template in; then over the edge for fine tuning.

Yuille’s paper [YCH88] was primarily an introduction and feasibility study.
There were no precise statistics on the extraction performance. However, it was
reported that some tuning was required to et up the energy term coefficients,
and providing the eye template was started below the eye, it would lock on to the
eye. In both, run times were reported to be between five to ten minutes. This
timing result was measured after calculation of all related image forces (eg. edge,
valley, peak, etc.) were completed.

Shackleton et al. used the same eye template to extract eyes from facial images
[SW91]). The energy function, however, was slightly different. An enhanced whites
term was added to replace the intensity over original whites term. They also found
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that the shape energy term and the minimization epoches had to be modified.
In terms of extraction performance, Shackleton et al. miported that 53 out of 60
eye images were fitted to some degree. Forty-one of these were very good to
moderate fit. Once the parameters to the eye template were found, they were
used to geometrically normalize the eye image. A set of eye eigenvectors was
extracted from a training set of transformed images via Principal Component
Analysis. All eye images were encoded in terms of these eye eigenvectors for
recognition purpose. Out of a set of 24 test images, 16 were correctly identified
and of the remaining 8 images, 5 included the correct identification within the
best 5 matches. The result was expected to improve if other components of the
face were recognized as well.

Craw et al. also used the deformable template technique in his mug shot re-
trieval system [CTB92]. Their eye module employed an eye template similar to
that used by Yuille et al. and Shackleton et al. , but with a slightly varied energy
function and minimization technique. In addition, the head outline was extracted
using similar deformable template technique. A polygonal template was used to
approximate the head outline based on edge information only. Optimization was
done over two epoches. In the first epoch, the template was allowed to deform
- only in terms of position and aspect ratio. This rapidly drew the template to
the rough head location. This location was further refined in the second epoch
where a higher degree of variation was allowed. Here, individual vectors that
made up the template were allowed to deform in terms of scale and orientation.
" Deformations between adjacent vectors were coordinated to ensure that a closed
and head-like polygon was achieved. The process was rather complex and time
consuming, but it was capable of producing reliable results given an unrestricted
search area.

Both of these are just parts of a more complete system. There were two
unique concepts in this system. Fitst, Craw et al. used a hypothesis and veri-
fication scheme akin to that proposed by Govindaraju [GSS90]. Modules could
be classified into two groups where one’s aim was to hypothesize some point of
reference, and the other was meant to verify the validity of the hypothesis. For
example, the head outline module was used to establish the reference, and the
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eye module was used to verify it. Second, they employed a redundancy concept
throughout the system. Often, there were more than one module accomplishing
the same task so that if one failed, the other might step in. For instance, a default
template extracted statistically from a training set could be used to establish an
initial reference in place of the complex head outline module. As well, the head
outline can be roughly extracted by a module which returns all viable combina-
tions of blobs configured as two eyes and mouth. Unfortunately, in their paper,
Craw et al. only discussed the eye and head outline modules in detail, and many
of the other modules were mentioned only in brief.

2.7 Difficulties in Facial Feature Extraction

As we can see the problem of facial feature extraction is far from being satis-
factorily resolved. One may ask what makes it so difficult. Here, we shall first
examine the inherent problems of computer vision and then see how they apply
to our problem in particular.

The sources of difficulties of many vision problems are perhaps best sum-
marized by Rosenfeld et al. who spoke of the three natures of vision problems:
ill-posedness, ill-definedness, and intractability [RC92]). The goal of vision is to
hopefully correctly interpret the available visual input. It is essentially an inverse
mapping problem, which if not properly constrained, may have multiple solutions.
ll-posedness is referring to this underconstrained situation. In order to force it
into a well-posed problem, external constraints can be added. Examples of this
are a priori knowledge or assumptions about geometric structure and specific im-
age characteristics of the objects and its surrounding. When these constraints
do not reflect reality, we have an ill-defined problem. In general, any problem
which is not adequately expressed in precise terms is considered ill-defined. Even
if it is well-defined, it is often impossible to solve it analytically. The alternative
then is to solve it through empirical means (ie. enumerating all possible solutions
and evaluating it one by one to extract the best). Depending on the size of the
solution space, finding a solution could be an extremely expensive and intractable
process.
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The varying degree of success and failure of the techniques reviewed in the last
section is a reflection of how well they handle these three problems. Foremost, a
face is a very complex object. It is difficult to describe in words, let alone define
it in precise mathematical terms. As we have shown, few techniques reviewed
have addressed the face extraction problem as a whole. Rather many treat it as
a number of sub-problems of identifving individual components. Others simply
concentrate on the extraction of a single component. We should examine how
these components are represented in order to determine whether the ill-posedness
clause applies. In general, we have observed that the simpler the model, the
more likely that there are alternative interpretations. This explains why the
signature-based approach is the most ill-posed, and it improves as one moves
from fixed template modelling to template and spring model, Hough transform,
and finally deformable template. Yet, an unconstrained search of an instance
of a complex model is computationally expensive and potentially intractable.
Therefore, the extraction module must be localized. For some researchers, this
localization problem is left unaddressed {Bar89] [Nix85] [SW91] [YCHS88]. For
others, they choose to use the sequential approach, so that one feature serves
to limit the search for the other features [SNK72] [Lam87] [CJCM86] [CELS8T7].
Unfortunately, this places unrealistic demand on the robustness of the initial
component extraction. In order to make it reliable, one must use a more complex
model. Yet, that makes the proolem intractable and we have come around a full
circle without a satisfactory solution. Of course, some [GSS90] [CTB92] had gone
ahead and used such complex model to establish their initial reference. We are not
sure just how much was paid computationally to obtain the necessary reliability.
Nonetheless, they both realized that there should be a verification stage by other
means to ensure overall system integrity.

The alternative is to start with a simple model, and resolve the ambiguity
through other more complex modules later. The advantage is that by then the
search area can be limited for the more complex modules. Craw et al. mentioned
the use of such a simple approach in [CTB92]. It is however unclear how this was
implemented and whether it was successful.
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Chapter 3
System Overview

Research in psychology has shown that humans tend to recognize objects as a
whole, rather than recognizing individual features. Our approach attempts to
imitate this process by initially searching an image for shapes that roughly fit the
template of a face. The facial features are then inspected to confirm or reject the
template selected. This is similar to the approach used by Craw et al. [CTB92}.
However, we will attempt to keep the initial hypothesis generation module simple,
and only use complex modules later for verification purpose. Hence the system can
conceptually be divided into two separate stages: speculation and confirmation.

In the speculation stage, we establish a facial contezt. A facial contezt is
a collection of distinct regions whose spatial arrangement resembles that of the
eyes, eyebrows and mouth. In essence, we want a rough guess of where the face
is located in the image.

Then in the confirmation stage, we attempt to verify whether the proposed
context is accurate. This is accomplished by passing different regions to their
corresponding extraction modules to be analyzed in detail. Currently there are
only two feature modules: the eyes and mouth. The general strategy in both is
identical. First, we model the desired feature using simple geometric elements
such as straight line, circle, and parabola. Then, we use Hough transform and
deformable template techniques t¢ extract features within the given region that
best match the model. ‘

Figure 3.1 is a system flowchart illustrating this idea. The solid boxes are the
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modules which are actually implemented in this system, while the dashed boxes
are potential modules which could be added. The arrows on the right side indicate
the data flow between the two levels. The speculation module passes processing
region information to each confirmation module. In return, each confirmation
module will provide a verification, as well as shape and location information back
to the speculation module. The important design objective here is to eliminate
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Figure 3.1: System Flowchart

dependency among confirmation modules, so that if one fails, the rest can still
continue. This is in sharp contrast to most previous work in facial feature location.
They primarily employ a sequential approach, so that the successful location of
one feature will serve to limit the search for the subsequent features. While it
is gomputationally attractive, the inter-dependency among modules leaves the
§ydtem far too unreliable. Another advantage of our design over a sequential
approach is the potential gain in speed. While speed is an issue seldom discussed
in most face recognition research, it is an important consideration in any practical
system. In our design, since the confirmation modules are completely independent
from one another, it will be relatively easy to port such a system into a large grain
parallel processing paradigm to achieve performance speedup. This is a goal that
will be extremely difficult to achieve with the conventional sequential approach.
In the remainder of the current chapter, we shall discuss the conventions and
general techniques that are used throughout the system, so as to prepare the
reader for detailed description of individual modules in the later chapters.
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3.1 Testing and Programming Environments

All the modules described m thifis thesis were implemented in “C” language. Most
routines were designed as general purpose procedural elements, collectively form-
" ing an image processing “C” library. Appendix D provides a summary of this
library. All timing results were reported from tests run on a Sun 25MHz CMOS
Sparc IPC with a benchmark performance of 13.4 SPECmarks89. ! The test
images consisted of frontal head and shoulder shots of students in the Computing
Science Department at the University of Alberta. These images were captured us-
ing a Panasonic TV camera, and digitized with a VideoPix frame grabber board.
All images were grey scale images of size 256 x 256, and stored in Sun raster
format. Two sets of images were taken over a period of one year. The majority
was from the first set taken early on in the year, with a dark uniformly colored
cloth a¢ backdrop. Because of the low quality sensor and inexperienced operator
(namely the author), many of these images were characterized with uneven light-
ing and poor contrast. A smaller set was taken later on. They were generally of
better picture quality, and this time a non-uniform background was introduced
to add realism. Figures 3.2 illustrates an example for each set.

3.2 Image Conventions

In general, an image is considered to be a two dimensional sequence of real num-
bers, I(z,y). The indices z and y are limited to some fixed intervals by their
respective dimensions, X and Y as follows:

0< z <X
0< ¥y <Y

The Cartesian coordinates will assume the usual display device conventions, namely
starting from the upper left corner, and proceeding to the right and down. All
angles are expressed in terms of the usual polar coordinates conventions. They
are measured in reference to a directed half-line pointing to the right, and are

1This is in reference to a DEC VAX 11/780 which has a performance of 1 SPECmarks89.
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(a) Example from Initial Set | (b) Example from Latter Set
Figure 3.2: Example Images

positive rotated counter-clockwise, and negative for the opposite direction. In ad-
dition to these.conventions, all input and output grey scale images are assumed
to have integer grey level values between 0 and 255, with 0 representing black and
255 representing white. These conventions are summarized in Figure 3.3.

3.3 Preprocessing

The objective of preprocessing is to enhance or filier an image so that better
results can be obtained in subsequent steps. To enhance edges, one may choose
to amplify the high frequency components. At the same time, noise is often
assumed to be from the high frequency spectrum. In order to remove it, one
may have to depress the high frequency response. By removing high frequency
noise, one may inadvertently delete a certain amount of detailed information (ie.
the high frequency component) from the original image. These are conflicting
objectives and are difficult to resolve satisfactorily.

As well, our proposed system will involve a number of different techniques
operating on different levels of image detail. Some will work on a sampled version
of the original, while others will operate on a sub-region of the original. Trying to
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design a preprocessing operation that is beneficial at all levels is not cnly di”icult
but is also computationally wasteful. Therefore, no overall preprocessing i: done,
and each individual module shall assume the responsibility of prepariag the im.ge
for its own purpose.

3.4 Edge Detection

Edge detection is done by convolving the image with two Sobel kernels in the
spatial domain to detect grey-level discontinuities. The two Sobel kernels are
3 x 3 masks as shown in Figure 3.4

alo]1 1 221_
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(a) X kernel (b) Y kernel

Figure 3.4: Sobel Kernels

Convolution with the Sobel kernels shall yield the z and y components of
the gradient vector. The overall magnitude of the gradient vector can then be
computed as:

Glf(z,y)]= \/Gz(zv ¥+ Gy(z,y)? (3.1)

where G is the magnitude of the gradient vector,
G. is the result of convolution with the Sobel x-kernel,
G, is the result of convolution with the Sobel y-kernel.

As well, the direction of the gradient vector, a, can be obtained by:
ofz,y) = tan~H(3) (32)
®

where G; and G, are the same as before.
Equations 3.1 and 3.2 will compute a gradient vector at every pixel location,
regardless of whether an edge in fact exists. Though the magnitude will serve to
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confirm edge validity in most cases, the precise edge location can be estimated by
detecting zero crossings of the second derivatives of the 2-D intensity function.
The second derivative can be approximated by convolving the image with the 3x 3
Laplacian kernel as shown in Figure 3.5. Zero crossings can then be identified by
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Figure 3.5; Laplacian Kernel

locating all positive to negative transitions.?

3.5 Morphological Filters

Morphological filtering is a set theoretic approach to image processing. It trans-
forms the pixel value of an image through set operations on points within its
neighborhood. The extent of this neighborhood is defined by a structural el-
ement. A structural element is a small mask of simple shape, such as circle,
square, thombus etc.. In our case, it is implemented as a M x N rectangular
mask of binary values. The binary values are used to encode shape infcrmation:
1 indicating the interior, and 0 the exterior. Figure 3.6 is a star mask that may
be employed for morphological filtering purposes.
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Figure 3.6: Star Mask

2Theoretically, both posiﬁve-to-ne@ﬁm éﬁ\d negative-to-positive transitions may denote
valid zero crossings. However, in ordex to avalil double lined edges, only one is used here.



The concept of morphological filtering is similar to spatial convolution. We
define an M x N mask and overlay it on the image so that the center of the mask
moves from pixel to pixel. At each location, we replace its value with the result of
a function, f, evaluated over all the points under the mask. In the case of spatial
convolution, f is a weighted sum function, whereas in morphological filtering, this
function is limited to some logical set operations.

In general, morphological filtering can be operated on either binary or grey
scale images. A general treatment of both can be found in [Ser82], [Vog89}, and
[Mar87]. For our purposes, we shall limit the discussion to that on grey scale
images only. There are four fundamental operations in morphological filtering:
dilation, erosion, opening, and closing. If we have a grey scale image X, and a M x
N structural element S, the morphological erosion © and dilation @ operations
can be expressed as:

X®S(z,y) = {f““‘-‘fﬁmuﬁo‘x(z—m+%{,y-n+§) ffS(m,n).-_l
‘gnare if S(m,n) =0
X©S(z,y) = {f"i"x;m‘“vwx(z-m+%,y-n+%) f S(m,n) =1
ignore if S(m,n) =0

where max and min are the local maxjmum and minimum operators respectively.
In other words, the erosion of a pixel is the minimum pixel value of all points
under the structural element centered at that pixel; and vise versa for the dilation
operation.

The opening o and closing e operations are defined as combinations of erosion
and dilation as follows:

Opening : XoS =(X09)8S
Closing : XeS =(X®S)OS

Opening reduces the intensity peaks by flattening it to the limit of the structural
element. Closing raises the intensity valleys. If one then compares these:results
with the original, he will be able to identify locations of intensity peaks and
valleys. This is the so-called residue operation and can be expressed formally as



follows: .
OpeningRestidue : X-S =X-(X0S9)
ClosingResidue : X1 =(Xe8)-X
where — refers to simple image subtraction. The primary advantages of the
residue operation is that it gives one a relative measure of intensity. Our percep-
tion of a grey scale image is often in terms of areas of brightness (ie. peak) and

darkness (ie. valley). The residue operations thereby provides a means to identify
these peaks and valleys.

3.6 Thresholding

Thresholding is used in various stages during processing. Instead of using a fixed
threshold, the threshold value in each case is derived from only the relevant part
of the image using strength percentile. Strength can either be the result of an
edge detection operation or a morphological filtering step. Percentile in each case
is defined in reference to some minimum strength so that only pixels with at
least minimum strength are considered. Our definition of percentile is different
from the conventional. A percentile of z for strength y will indicate that 2% of
all relevant pixels have strength y and above. For example, in a well contrasted
image, an edge with strength 20 may have a percentile of 45. That is 45% of all
relevant edge pixels have a strength of 20 or higher. On the other hand, given the
same strength in a poorly contrasted image where most edge pixels have very low
strength, it may have a percentile of 15. Therefore, a strong (relatively speaking)
pixel will have a very low percentile value, and vise versa. This shall provide us
with a relative rather than an absolute measure which will automatically adapt
to the quality of the image section in question.

3.7 Geometric Primitive Generation

In computer vision, it is often necessary to generate geometric primitive, such
as lines, circles, ellipses, and parabolas. This is not only for display purposes,
but also for parameterized model matching. The frequency with which this is
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performed motivates a more eflicient implementation rather than the straight
forward analytic equation evaluation. The approach used here is adopted from a
well-known technique, knowii as the Midpoint technique from computer graphics.
[FvFH90] [Pit67] [Ake84].

The Midpoint technique is so-called because pixel coordinates are generated
by examining the sign of the analytic equation evaluated at the midpoint between
two neighboring pixels. A general analytic curve expressed as:

F(z,y)=0 (3.3)

describes a set of points along a curve which will satisfy the equation exactly. Yet,
points which lie on either side of ihis curve will have opposite signs. Therefore,
the sign at the midpoint will serve to indicate op which side of the midpoint the
curve in fact passes through, and therefore the neighboring pixel on that side
should be included in the digitized curve.

However, this still requires the function evaluation at the midpoint, which
will not be much of a saving. The saving comes from the fact that the function
evaluation can be done incrementally, ie. the function value at midpoint;, can
be calculated by adding a suitable amount to that at midpointy. The amount
to be added shall vary depending on whether a square or diagonal move is per-
formed. The square and diagonal move corresponds to whether only one or both
coordinates are changed during the move. If the degree of the analytic equation
is higher than one (ie. not a line), these update amounts will not be constant,
but they can be calculated again incrementally just like the function itself by
keeping track of their changes depending on whether a square or diagonal move
is performed. Therwfore, the bulk of the calculations can be reduced to additions
rather than multipli<ations. Furthermore, providing that all the coefficients in
the analytic equation are integers, all these calculations can be done via integer
rather than floating point arithmetic. These two improvements translate into
tremendous saving in terms of execution time requirements.

Therefore, all we need is to determine the initial function value at the midpoint,
d, the update term for a square move, u, the update term for a diagonal move, v,
and perhaps the changes of the update terms themselves upon a square or diagonal
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MOVe, Usquare;s GUdicgonals SVsquares OVdiagonat. The detailed development of these
terms for line, circle, and general conic can be found in [FvFH90]. Although lines
and circles can both be represented as special cases of conics, they are developed
separately to take advantage of the lower degree of complexity and symmetry.
Based on these, modified algorithms are developed for generating even and odd
diameter circles, circle arcs and parabolic curves. Their derivations are detailed
in appendices A, B and C.

3.8 Function Optimization

Deformable template modelling is employed by twa modules in this system. One
of the key components of this technique is fun<tion optimization. The task of
finding the best set of parameters for a part; cwar template is equivalent to locating
the optimal point within the parameter space as defined by the template energy
equation®.

Yuille e¢ al. used a modified version of the Gradient Descent method [YCHss).
The idea is to evaluate not only the function at each step but also the partial
derivatives as well to determine the instantaneous g. lient. The update direction
and step size are determined by the angle and magnitude of this instantaneous
gradient. There are two problems associated with this method. Firstly, the gra-
dient is only an indication of the direction of greatest change. Its magnitude is
by no means an indication of how far the minimum shall Jie. Therefore, more
strictly speaking, a one dimension optimization should be performed along the
gradient direction, rather than simply taking the gradient magnitude as the up-
date step size. Secondly, and perhaps more importantly, the calculation of partial
derivatives at every point is an expensive task. The difficulties lie in the fact
that the analytic curve involved may be oriented in any direction, therefore the
image coordinates (z,y) at every point along the curve must be compensated by
an extra rotational transform before being used in the derivative calculation. Un-
less careful bookkeeping is done, this can amount to a very expensive task whose
computational effort can easily surpass that of several simple function evaluations.

3See section 2.6 for a description of deformable template modelling.



In order to avoid the problems mentioned above, Craw et al. adopted the Sim-
ulated Annealing technique instead [CTB92]. This technique is so-called because
it attempts to imitate the annealing process in metal processing. Unfortunately,
since not all of us are material science engineers, the analogy though correct, of-
ten serves to mystify rather than clarify the concept. Therefore, disregarding the
analogy, simulated annealing is probably better termed as probablistic optimiza-
tion. The optimization process is divided into stages of decreasing probability
of accepting a non-optimal point*. During any one stage, the currently accepted
point is modified slightly to generate a new point which will be evaluated. De-
pending on the current probability of acceptance associated with that particular
function value, and the outcome of a random dice roll, this point can be either
accepted or rejected. Once enough points are accepted or a fixed number of func-
tion evaluations have been performed, it advances with the best point so far to
the next stage which will have a lower overall probability of acceptance. The
whole process is repeated until the last stage is done. Because of the random
element involved, this method should be better at finding a global rather than
local optimal. Furthermore, since there is no gradient involved, the step at each
point is merely a function evaluation and should be fast. However, because it
is based upon probability, a relatively large sample size is needed to ensure the
probablistic trend does indeed hold. Hence, this method is often reserved for
combinatorial problems with large parameter space.

In our case, care has been taken to limit the search space as much as possible
through the context module. Therefore, it’s hoped that a less elaborate technique
can be used. The multidimensional optimization technique we chose to use is the
Downhill Simplex method by Nelder and Mead [NR65]. A simplex is the simplest
geometric object beyond that of a hyperplane. With an n-dimensional space, a
simplex is composed of n +1 vertices and all the lines and planar surfaces formed
among them. Each vertex has its corresponding function value. The idea is to
optimize their collective value by modifying one or more of the vertices of the
current configuration. The four possible modification steps are as follows, listed

4A point in the n-dimensional parameter space simply refers o a particular set of parameter
values.
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in the order in which they are executed:

1. Modify the point with the worst value by reflection. The point is projected
across onto the opposite side of the hyperplane formed by the other vertices.
The amount of projection is such that the distance between the point and
the hyperplane is preserved.

2. If the above step achieves a new best point, attempt further improvement
by expanding it even further along the same direction.

3. If step 1 fails to improve the configuration, re-modify the low point by
contraction so that the point is pulled closer to the hyperplane.

4. If all fails, modify all vertices except the point with the best value by con-
tracting them all toward the best point.

In the continuous case, the configuration is continuously modified, until the
fractional difference® is smaller than some prescribed value. However, for practical
purposes, we have taken the multidimensional space to be discrete rather than
continuous. Therefore, the process will terminate when the same configuration is
repeated in the multidimensional contraction step 4 listed above.

In order to use this method, we also need an initial simplex of n + 1 vertices.

These vertices can be taken simply as the origin, Po, and n other points, P;’s as
follows:

Pj=Po+Aej

where e; is the unit vector along the jt* dimension and ) is usually a constant
factor. Since Downhill Simplex is a greedy algorithm and is not guaranteed to find
global optimum, some modifications are needed to improve the probability that
a good solution is obtained. In our implementation, we require the algorithm to
repeat the whole optimization process with the optimal point so-far being one of
the n+1 vertices until the same optimum is reached twice in a row. Furthermore,

5Fractional difference is the sum of differences of function value between the best point and
the others divided by the average value
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to ensure more points are examined in consecutive runs, we use a random A to
generate initial simplex vertices. In addition, we also modify the vertex generation
equation to include directions other than those of the unit vectors. In general, P;
of the k* run can be generated as:
itk
Pi=PR+3 e

i=j

where | = (i — 1) mod n + 1.

In the case of a single parabola, there are five parameters: the z and y co-
ordinates of the center, the height a, the half-width b, and tilt angle 6. Our
problem domain is therefore a 5-dimensional space centered within the allowable
ranges of these parameters. The only remaining requirement is a function by
which each point can be evaluated. This is simply the energy function associated
with each deformable template. It could be as simple as evaluating the average
edge strength along the curve, or as complicated as calculating the average peak
value of the area bounded by a number of different curves.

Since this optimization method involves only a fixed number of modification
steps and function evaluations, but not derivative evaluations, it should be rela-
tively easy to implement and quick to execute.

3.9 Elastic Spring Functions

In addition to function optimization, the application of deformable template mod-
elling requires a means to formulate and quantitatively evaluate geometric rela-
tionships such as relative positions and proportional sizes among components in
the template. Elastic spring functions are frequently employed for such a purpose
[YCHSS) [SW91] [CTB92]. Often it is desirable to have a rapidly increasing cost
function so as to discourage deviation from the ideal state. This can be expressed
as a quadratic spring function and is what we term a SimpleSpring function:

SimpleSpring(k, lo, 1) = k(I - lo)? (34)
6See appendix C for precise definitions of these terms
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where ! and Iy are respectively the springs actual and ideal undeformed lengths.
Therefore, the (I — lp) is the amount of compression or stretch, ie. deviation from
the ideal state. This deviation is weighted by the spring constant, k, so that a
high k represents a very stiff spring encurring a high cost per unit of (deviation)?.

A more complex relationship can be modelled by treating compression and
stretch differently. In addition, we expand the ideal state from a single point
lo to a range [l;...l;). One can imagine it as two springs anchored together
back to back. We call this a DoubleSpring cost function and it is formulated
mathematically as follows:

kl(ll - 1)2 if (l < 11)
DoubleSpring(kl, kz, 11, lz, l) = 0 if (11 S l S 12) (3.5)
kg(l - 12)2 if (12 < l)

where I; and [, define the lower and upper bounds of the ideal range, and
ky and k, are the spring constants on either end. We shall use the notation
SimpleSpring(k,lo,1) and DoubleSpring(ki, k2, l1,12,1), to refer to the Simple
and Double Spring functions as in equations 3.4 and 3.5. Figure 3.7 illustrates an
example function of each.
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Spring Function Examples
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Figure 3.7: Spring Function Examples
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Chapter 4
Context Module

The design of the facial context module is based upon the observation that though
the sizes and distance among facial features may vary, their overall spatial arrange-
ment remains the same. Consequently, any collection of objects with the proper
spatial arrangement is potentially a face. A facial context is therefore simply a
collection of distinct regions whose spatial arrangement resembles that of the eyes,
eyebrows and mouth. The approach here is to first identify all distinct regions
and then attempt to group these regious into plausible contexts. Depending on
how closely they resemble the desired arrangement, they are ranked in terms of
the likelihood of being the target face. The eventual objective is to obtain a list of
potential face contexts ordered by face likelihood. Their validity will be checked
in the confirmation step in order of decreasing likelihood until one is confirmed
as the real face.

4.1 Image Segmentation

Image segmentation is the process of segmenting or dividing an image into distinct
regions of similar characteristics. Since there is a separate confirmation step for
verification and refinement, the emphasis here will not be in precision. Rather, we
just want to locate regions of interest roughly and quickly. Figure 4.1 illustrates
the segmentation flowchart and each process block is detailed in the following
subsections.



Figure 4.1: Segmentation Step Flow Chart

4.1.1 Resolution Reduction

Objects can often be more easily recognized in images that have a very low reso-
lution. This is because the reduction in resolution typically reduces the amount of
confusing details that may otherwise be present in its higher resolution counter-
part. Experiments have shown that human subjects can identify a face from an
image with a spatial resolution as small as 32 x 32 [Sam91]. An additional advan-
tage of using a low resolution image is the reduction in computational requirement
since it is often achieved by subsampling the original image and thereby reducing
the dimensionality of the problem domain. Here, a small low resolution image is
extracted from the input image by taking the average value among pixels within
a 4 x 4 pixel region. Given an original image of 256 x 256, the extracted image
will be of 64 x 64 and all subsequent segmentation processing is performed upon
this low resolution image.

4.1.2 Valley Detection

The primary regions we wish to extract are those of the eyes, eyebrows, and
mouth. Since they should appear as relatively darker objects than their respective
surroundings, the morphological opening residue operation described in section
3.5 can be employed. The task on hand then is to extract all intensity valleys in
the sampled image using the following 5 x 5 circle mask as shown in Figure 4.2.
The choice of using a 5 X 5 circle mask is resolution dependent. If the input
image to this stage is of a different size, a smaller or larger mask might have to
be employed.
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Figure 4.2: 5 X 5 Circle Mask

4.1.3 Blob Coloring

The valley detection technique discussed in the previous section detects intensity
discontinuities. It must be followed with a linking procedure to assemble the
detected pixels into a meaningful set of objects. Blob coloring is employed here
for this linking task.

Blob coloring assigns a color to each distinct region in the picture. A distinct
region is a set of valid pixels which are 8-connected neighbors. By valid pixels,
we mean that these pixels have very high morphological opening residue values.
In specific, a 15 percentile threshold is used to determine whether a pixel has a
high enough value!.

In practice, this process is done in two passes through the image, and is a
modified version of that described in [BB82]. In the first pass, each point only
has to examine half of its neighbors, which are on top or to the left (see Figure 4.3).
If the center pixel X, is connected te one of the four neighboring pixels, X, as

Xe | Xn | Xn
X | X

Figure 4.3: 8-connected Blob Coloring Mask

shown, it will be assigned the same color. If it is connected to more than one with
different colors, then these colors will be marked equivalent, and the current pixel

Igee section 3.6 for a detail explanation of percentile thresholding
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is assigned one of these colors. Intuitively, this serves to identify regions which
are initially divided but later joined together.

After the first pass is completed, the list of assigned colors can be compressed
into a shorter list by merging colors which are marked equivalent, yielding a
compressed color table. Then in the second pass, the original assigned colors
in the image will be replaced by their true color in this compressed color table.
Figure 4.4 illustrates the images generated during this segmentation step.

3

() Low Resolution Image (b) Valley Image (c) Segmented Image
Figure 4.4: Images Generated during Segmentation

In order to facilitate reasoning in the following facial context evaluation step,
the segmented image is further reduced into a list of distinct regions with the
following attributes:

o size
o length and width of the bounding rectangle
e average, maximum and minimum grey level

e centroid location

4.2 Context Constraint Model

It is hypothesized that eyes, being a pair of dark regions on a light surface (ie.
skin), are the most striking features observed in a Jow resolution valley image.
Therefore, each potential context should at minimum possess one such horizontal
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pair. Based on their positions, locations of other valley regions corresponding to
the eyebrows and mouth can be estimated. Finally potential contexts can be eval-
uated and ranked according to the results of the pairing and context completion
processes.

4.2.1 Pair Analysis

The horizontal pairness of two regions is accessed in terms of their shape resem-
blance and position correspondence. Shape resemblance is measured by overlap-
ping the bounding rectangle of the two and taking the proportion between their
symmetric difference and intersection as shown in Figure 4.5:

bounding rectangle A

oo T 5

\ ADB | shape esemblance = FELANET ¢ ara (AT B )
ANB i\nnt wn(AQB)

Figure 4.5: Shape Resemblance Measure

Positional correspondence is derived by forming a vector between the centroid
of the two regions and measuring the amount of deviation of this vector from the
horizon (see Figure 4.6). Therefore, position is measured in radian and is 0 when
the pair is exactly horizontal.

In order to obtain a valid pair, both of these measures must pass their respec-
tive thresholds. The shape threshold is 3.0 (ie. shape resemblance < 3.0) and the
position threshold is 15° (ie. position correspondence < 3%). Contexts are formed
from region pairs which satisfy these two threshold conditions.
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Positional Correspondence = tan 1( )

Figure 4.6: Position Correspondence Measure

Since it is very likely that the head may have a slight tilt, the emphasis of
the overall ranking of all valid pairs is placed on shape rather than position. The
following Leuristic is found to yield satisfactory results.
posttion

PI/i8 (41)
Note that the position measure is normalized with a 10° angle, the shape measure
is squared to emphasize its importance, and the coefficient 10 is added to increase
the resolution of the integer COSTp,;r measure.

COSTygir = 10 * shape® *

4.2.2 Context Completion

Once the eye regions are identified, the module then attempts to complete the
context by locating plausible regions positioned at the estimated locations. Figure
4.7 illustrates the search regions for the eyebrows and mouth. All measurements
are expressed in reference to the distance between the two eye regions’ centroids
(ie. ref). The template component is marked found if any pixels within its
corresponding search region is found to belong to a wide region defined as follows:

wide = 1 if (k> 0.5) (42)
0 otherwnse
The total cost of missing components is simply the sum of all the missing parts:
BROW = 0 if eyeb::ow exists as wide region
20 otherwise
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0.3 ref

0.3 ref

Figure 4.7: Context Component Search Regions

MOUTH = 0 if mout.h region exists as wide region
] 10 otherwise
COSTmissing = BROW;5s + BROW i + MOUTH (4.3)

Notice that the brows are assigned a higher weight, since the search area for them
is much more limited. Therefore, if a wide region is found, it tends to be a more
reliable measure,

4.2.3 Context Evaluation

The sesults of the two previous cost measures are combined to form an overall
context evaluation measure:

where COSTpair and COSTonissing are as defined in equations 4.1 and 4.3.
The above cost measure is a heuristic derived through conservative experi-
ments. It can not guarantee that the correct context will be ranked first in the



list, but it will certainly include it in the list for further confirmation. The tuning
and improvement of this cost measure will reduce the time requirement.

4.3 Experimental Results and Discussion

The context module described has been implemented and tested with a set of 67
images, all of which are without spectacles. In order to assess whether a context
is correct, bounding boxes are put around regions which are to be processed fur-
thered by the confirmation modules. These are namely the eye and the mouth
regions. The eye regions are defined by the bounding rectangles arourd the ini-
tial region pair which form the basis of each context. The mouth region, on the
other hand, is more difficult since it is often missing or fragmented after segmen-
tation. Therefore, we opt for a simple estimate approach based on the distance of
separation between centroids of the two eye regions. Figure 4.8 illustrates how
this mouth region is formed. The correctness of each context is simply judged

0.5 yef 05ref

.-

1.3ref

Figure 4.8: Module Region Extraction

by whether the eyes and mouth are included in their corresponding estimated
position. Figure 4.9 illustrates such example contexts. Although the estimate
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(@) Correct Context (b) Wrong Context

Figure 4.9: Example Contexts

may seem %o be over-generous, it is kept conservative in order to account for the
potential error in locating the centroids of the eye regions.

The actual run time ranged from a low of 0.010 sec to a high of 2.117 sec.
The average run time was 0.863 sec with a 0.604 sec standard deviation. Of the
67 test images, the context module correctly identified the real face as being one
of the potential contexts in 64 images. Fifty-seven of these ranked it as being
the first in the list, while the remaining 7 ranked it within the top 3 potential
contexts. Of the 3 that failed, lighting was generally insufficient (see example in
Figure 4.10). As a result, the segmentation step was unable to pick up one or
both of the eye regions. It was expected that if pictures were of better quality,
better perf>rmance could be achieved with no modification to the module. The
resul? is wexy promising since it places the module at a 96% hit rate with minimal
executinz iime.

In addition, a second set of 10 images of bespectacled individuals were tested.
The system failed on all but two. It failed because the segmentation step was
unable to cope with the presence of spectacle. Either one or both eyes were often
included in the same region as that of the eyeglasses. For the two that succeeded,
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(a) Low Resolution Image (b) Valley Image (c) Segmented Image
Figure 4.10: Failed Context

due to reflectance off the glass plane, the resolution on the eye region was minimal.
It is doubtful that the eye module would be able to pick up the eye shape reliably.
The result is disappointing though not unexpected since be-spectacled cases are
really beyond the scope of the current design. However, given the large number
of be-spectacled individuals among today’s population, it indicates that there is
a need for an alternative context module before this system can be applied in real
practice. This alternative context module must either take glasses into account
(ie. a bespectacled face context) or adopt a completely different strategy which
is not influenced by the presence of glasses. One possible approach is the use of
gradient angle direction to find noses as described in [RS92]. Robertson reported
a success rate of 95% for a test set of 16 images. It would be interesting to see
how successful it was among only bespectacled cases in order to decide whether
it would complement our current context module.
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Chapter 5

Eye Module

The objective of the eye module is to confirm and refine the eye location in the
given region. The most widely used approach in the past had been approximat-
ing the eyes with intensity minima [CEL87] [CJCM86] [Lam87]. This was often
accompanied with other constraints, such as location of other previously detected
features. The problem of using this simple approach is two-fold. Figst, image cha-
rasteristics, such as deep valley or high intensity changes, could be results of many
objects other than the eyes, especially if the background is non-uniform. They
may be used to establish possible locations of eyes, as we had in the context mod-
ule. However, it is far from being adequate as a confirmation guideline. Therefore,
a more confident shape measure based on a high level modelling paradigm, such
as the Hough transform [Nix85] or deformable template modelling [YCHS88], has
to be employed.

Instead of using the deformable template technique for the entire model, we
opt for a two-step approach based on the use of Hough transform and deformable
template. In the first step, we shall attempt to locate the iris modelled as a
circle using classical Hough transform technique, as in [Nix85]. This is essentiaily
equivalent to the first three epoches in [YCH88] where the energy function is
tuned for attracting the template to the iris. After the irises have been located, a
template of only the bounding parabolas is used to correctly orient and complete
the description of the eye.

The hope is that the first step will guarantee a more exhaustive and glelial



search with the least expensive template element over the entire given region to
locate the most likely location for the eye. Therefore, it should overstep any pos-
sible local minima and reduce the parameter space, both of which are important
factors that may influence the correct placement of the final template during the
later minimization process.

The detailed descriptions of these two steps are covered in the remainder of
this chapter, followed by their experimental results and -discussion.

5.1 Circle Hough Transform

In this section, we shall examine how the Hough transform technique can be
employed to-éxtract the irises. A general discussion of Hough transform can be
found in section 2.5. The discussion here is limited to that of finding dark circles
in the subregion derived from the current context (as described in section 4.2 of
the context module).

The parametric equation for circle used is the standard form as shown:

(e- o)+ (-t =1
It has three parameters: the center of the circle (@, b) and the radius r. Therefore,
the parametric space is a three dimensional array with axis a, b, and r. Classical
Hough transform technique prescribes that for every edge point found, calculate
its corresponding circle center for every possible radius value.

Unfortunately, there are two problems in applying this algorithm in practice.
First, the parametric equation of a circle is an equation with two second degree
parameters. The inverse solution, requiring bwth square and square root evalua-
tion, is inherently expensive. This is especially true since it has to be performed
for each edge point in the image over the zange of all allowable radii. Second,
since real images are used as input, the edge information input to the Hough circle
module is going to have a certain amount of error. Consequently, the parameter
space will have regions of slightly higher accumulated count rather than a sharp
spike. This creates a difficulty in distinguishing good circles from the rest.

In order to solve these problems, the classical circle Hough transform has to
be amended by the following means:
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o Incorporating gradient direction information
o Applying pair constraint to circles found

The first item is aimed at reducing the number of points generated by the Hough
circle module, whereas the last one is aimed at resolving the circle selection prob-
lem. The application of these two amendments are described in the following
subsections.

5.1.1 Parameter Space Generation

If gradient direction is not known, the edge point can lie anywhere on a circle
even if the radius R is fixed. Therefore, the center of the circle can be anywhere
a distance of R away as shown:

If we know the gradient direction, there can only be precisely two possible
circles for each fixed radius. One of these can be further eliminated depending on
whether a dark or light circle is to be located.
center of
dark circle

irection detected
edge point
center of
bright circle
However, the gradient direction is not precise. Therefore, instead of having
only one circle, we will have a number of them for each radius, R. Their centers
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will lie on an arc of R distance away from the edge point. The angular length
of this arc depends upon the accuracy of the edge detector. We use two 3 x 3
Sobel masks to calculate the horizontal and vertical edge components, and a 3x 3
Laplacian mask to determine the edge locations. Edges are detected as described
in section 3.4 using the Sobel and Laplacian kernels. The edge pixels are further
thresholded with a 60-percentile magnitude requirement. Since there are only 8
distinct directions, the minimum error will be at least +22.5 degree. In practice,
we allow for a small safety margin and use a +30 degree arc to generate the
centers of candidate circles for each radius. As well, A modified midpoint circle
algorithm is used to generate the arcs, and they are explained in appendices A
and B.

Through detailed inspection of all test images, it was decided that the iris
diameter ranges from 7 to 14 pixels. That is to say that an iris of diameter less
than 7 pixels is too small for robust detail analysis, while an iris of diameter greater
than 14 pixels will mean that the face is too large to be accommodated entirely
in the image. This of course is image size dependent and is valid for the case of
a 256 x 256 image only. This range is used in the circle Hough transform step
to limit the search to a reasonable range. Although this still involves a certain
amount of computation in calculating the circle parameter, it is a substantial
saving over that without use of gradient angle.

To further this saving, we formulate our calculation in a systematic and hierar-
chical manner, so that some of the intermediate results can be saved and reused.
In general, the error in gradient direction is 430 degree. Since, the gradient di-
rection for each edge point is known at the onset, the starting and ending angles
of the arc span will remain fixed regardless of the radius. Therefore, the extreme
endpoints of the arc can be calculated incrementally using additions only. Multi-
plication and trigonometric functions, both of which are expensive operations, are
only evaluated once at the beginning of the loop to reduce computational burden.
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5.1.2 Optimal Circle Selection

Local Averaging

In addition to error in gradient angle, often edge location is subjected to error.
Consequently, the computed center can be slightly off from the true center. Ide-
ally, we shoiuld compute the center from all possible locations within the margin
of error, but in practice, this could easily quadruple the amount of computations
or worse. Therefore, insiead of moving the edge pixel around, we perturb the
computed center location slightly to achieve the same effect. This is equivalent of
performing a local averaging operation over the a — b plane within the parameter
space. This step will be executed before actual selection is contemplated.

Preliminary Screening

In general, because the parameter space may be arbitrarily huge, exhaustive ex-
amination can be computationally prohibited. Therefore, it is advantageous to
perform some preliminary screening to weed out very poor cases. It was expected
that the parameter space is a very sparse matrix with the majority of the cells
having a very low accumulated count. A rough screening can be applied using
statistical measures. For each diameter R, we calculate the standard deviation
o and mean g of accumulated counts. The cutoff is taken to be the sum of the
two. Therefore, only cells with accumulated count greater than o <+ p are screened
through to be examined in detail.

Circle Evaluation

Theoretically, caxtparison among circles can be based solely upon the accumulated
count. However, a circle with a larger diameter has a longer contour, and thus
will inherently have a higher count than that with a smaller diameter. On the
other hand, if we normalize the count by dividing it with the diameter, it will be
equivalent to measuring the percentage of circumference covered. Yet, in this case,
circles with very small diameter can easily achieve a high percentage just from
a few accidentally aligned edge points. Through experimentation, the following
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equation seems to achieve the proper balance between the two extremes:

count
SCORE_ ;e = count * Tamsier (5.1)

The first term rates the circle by the accumulated count of edge p#énts. The
second term evaluates it by coverage percentage.

Circle Pair Constraint

However, the combination of edge inaccuracy and accidental alignment of edge
points produces a blurred parameter space. The distinction between good and bad
circles can no longer be identified by a clear sharp spike as predicted by theory.
To overcome this problem, we apply an additional constraint in circle selection,
namely a pair of identically sized circles, one in each eye region, must be located.
The circle pair is evaluated using the following equation:

SCORE i, = SCOREcipeier + SCORE ieate — tilt? (5.2)

where SCORE;cie1 and SCORE i, ez are the score computed from equation 5.1
for the two circles, and tilt is the angular measure in radians between the centers
of the two circles. Equation 5.2 is used in a ranking step to obtain an ordered
list of potential iris pairs. In the absence of a better measure for the time being,
only the first pair is used in the deformable template step. This can be refined to
an iterative search down the potential iris list, once a reliable measure has been
established to distinguish a good fit from a bad.

The processing region to be used by the deformable template step is estimated
using the iris position and size as shown in Figure 5.1. The revision of bounding
box size and location is necessary because the initial one provided by the context
module is only an extremely crude estimate. Not only that it may contain unre-
lated and potentially distracting objects, it may also not have included the entire
eye to begin with.

5.2 Deformable Template for Eye Boundary

The eye boundary template is composed of only two parabolic curves as illustrated
in Figure 5.2. The energy function used is based only on edges and internal con-
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Figure 5.2: Eye Boundary Template
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straint force. This is because by the time this template is applied, the rough loca-
tion has already been extracted and therefore there is no need for the valley and
peak constraints as required in the original formulation by Yuille et al. [YCHss].

Ideally, one should be able te locate each eye boundary separately. However, a
solution achieved through nus::sical optimization is not guaranteed to be globally
optimal. Coupling this with a noisy iraage, th parameterized t¢:: ;plate found may
fluctuate a great deal. Razher thas imposiig & pos-yv'essing measure to amend
any discrepancy betwtizn the shape found for the two «jes, it wilt be far easier
to optimize the two together. The final template used is hence coray:«zd of two
instances of that shown in Figure 5.2. The energy function of our combined
template can be divided into five separate pieces: the upper and lower parabolas
for the two eyes, and the combined shape funciion.

The upper parabola edge functions are defizzd to be the average edge strength
over the boundary of the upper parabola for each eye:

1

Elejtupper - LeftUpperLength LeftUpperParabola Qe(i’)ds (53)
1

Eﬁgh‘um = Qe(f)ds (5-4)

RightU pperLength RightUpper Parabola
The lower parabola edge functions are defined similarly:

1 -
Eictiower = 72 ft Lower Length JLeftLowerParabola 0e(2)ds (5.5)
1
En'yhﬂower = Q,(:i')ds (5.6)

RightLowerLengt h JRightLowerParabola

The shape function, however, is more complex:

Eahope = Xle]t + Ylejt + Blcﬂ + Alle!t + A2!¢ft + (5.7)
Xright + Yright + Bright + Alright + A2rigne +
Bpair + Alpcir + Azpcir + 011011‘
The first and second five terms of the above equation control the shape of each of
the eyes, and the last five terms shall encourage symmetry between the two. All of

these are to be expressed using either SimpleSpring or DoubleSpring functions
as described in section 3.9. The spring constants and ideal states, as well as

51
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Variable | Spring Tdeal State Range
Constants
Term { H | k2 T 153 from to
Xiege X(left) 110} - X(leftiris) - X(leftivis)— eftiris)+
DIA(iris)»0.5 | DIA(iris) «0.5
Viese || Y(left) | 40| 0.5 | Y(eftiria}t | Y(leStiria)¥ Y(tejt.,..)- Y(eltiria)+
DIA(ms 20.1 | DIA(sris) = 0.2 | DIA(iris)=0.1 | DIA(iris)=0.5
40 | 0.5 | DIA(iris) 1.2 | DIA(iris) »1.5 | DIA(iris) =08 | DIA(iris) «3.0
10 | 2.0 eft)%0.2 _g#;%.s DIA(iris) » 0.6 | DIA(iris) »1.0 |
10| 20 eft)s0.05 | B(left)=0.3 | DIA(iris)»0.2 | DIA(iris)=0.5
10| - | X(rightiris) - X(rightiris)~ | X(rightiri,)+
DIA(iris) «0.5 | DIA(iris)»0.5
40 | 05 | Y(rightiris)+ | Y(rightisis)+ | Y(rightiris)— | Y(righticis)+
DIA(iris) =01 | DI A(tm 0.2 | DIA(iris)»0.1 | DIA(iris) «0.5
rig 40 | 0.5 [ DIA(ris) 1.2 | DYA(iris)» 1.5 | DIA(iris)«0.8 | DIAGiria) 3.0 |
Algighe || Al(right) | 1.0 | 2.0 | B(right) Eimm;.o.s DIA(iris)» 0.6 | DIA(iris)»1.0
A2igne || A2(rsght) § 10| 2.0 right)=0.3 | DIA(iris)=0.2 | DIA(iris)«0.5
Bogir right) | 4.0 | - - s -
Algair || Al(right) | 201 - Al(left - - .
iv || A2(right) | 4.0 | - A2(left < N -
épair i8(right) | 0.5 - ~§(left - - -

where N(left) is the N parameter of the left eye boundary;
N(right) is the N parameter of the right eye boundary;
N(leftiris) is the N coordinate of the left iris;

N(rightiri,s) is the N coordinate of the right iris;

DI A(iris) is the diameter of the iris pair;

Table 5.1: Eye Boundary Shape Function Coefficients

the allowable range for each, are derived mostly through experimentations and
are summarized in Table 5.1. To conserve space, the SimpleSpring function is

presented as a subset of the DoubleSpring function with k; and /; substituted in
as k and [p.

The evaluation and optimization of eye template are done using the Midpoint
technique and Downhill Simplex respectively. Their descriptions can be found in
Chapter 3.

5.3 Experimental Results and Discussion

We recall that the objective of a feature inspector is two-fold. First, given the
correct subregion, it must be able to refine the feature location and describe
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[ Rating | Number | Percentage | Description
Good '

19 29 well fitted
Adequate 35 55 Tesaonable fit with center at
__| the correct position.
6 10 _| some error in fit.
4 6 failed completely to lock
onto one or both eyes. ll

Table 5.2: Eye Module Results

its shape in terms of the geometric model used. Second, it should be able to
determine whether the best case found does indeed constitute a plausible instance
of the feature in question. Hence, test runs were set up to investigate these two
issues.

~ The first investigation was aimed at testing the detection capability of the
eye module. The test was performed on proper eye regions, selected from the
64 images that were correctly identified by the context module. The objective
was to decide whether given the proper region, the eye module could correctly
extract the eyes. The final template fit was overlaid on the original image and
subjectively rated for goodness-of-fit. The results are classified into four rating
categories similar to that used by Shackleton et al. [SW91]. The results of this
run are summarized in Table 5.2. An example of each is shown in Figure 5.3

In general, it was found that an exact fit is difficult to achieve since the

parabolic approximation is after all just an approximation, and it is difficult
to conceive that most human eyes would in fact confirm to the parabolic shape
as dictated. However, a relatively Good fit can be attained if the image is well
contrasted and of a bigger size. Yet, many images which were taken early on in
this investigation have tended to have lower picture quality and less effective use
of available image area (ie. the head size is relatively small). This contributed to
the high percentage in the Adequate category. In those cases, the edge informa-
t#on was less defined, therefore the fitted template might be slightly off at some
Pplaces, though the overall fit remained fairly close.
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(cy Marginal (d) NoFit

Figure 5.3: Eye Template Fit



Among the Marginal and No Fit cases, the major source of error came from
the iris size, an important reference measure for the deformable template step.
This was partly due to the image quality and resolution problems mentioned
earlier. A more important problem inherent to our module lies on the use of the
circle Hough transform to locate the iris. In doing so we assume that the iris will
appear as a circular region. However, for many individuals with small eyes (or
more precisely, narrow eye openings), it is difficult to observe the circular iris since
most of it is occluded. An obvious modification is to be rid of the Hough transform
step and apply the deformable template technique using the complete template
including the circular iris. This is essentially what was employed in [YCHS8S]
[SW91] [CTB92]. As we mentioned in section 2.6, the success of this technique
depends very much on how localized they can limit the area of processing. Yet,
without the Hough transform step to place the template relatively close to the eyes
and restrict the search space, we anticipate potential problems with local minima
duringz the optimization step. The compromiseis perhaps to retain the use of circle
Hough transform as an initial estimate of where the eye is, and use the complete
template rather than just the bounding parabolas in the deformable template
step to fine-tune the shape and location of both the iris and eye boundary. This
is however left for future investigation.

In the second investigation, we want to derive a quantitative measure to dis-
tinguish Good to Adeguate fits from those that are Marginal to No Fit. In
addition to the previous 64 eye regions, 46 additional were selected randomly
from incorrectly identified contexts. These incorrect eye regions were examined
in order to observe the behavior of our eye module under non-ideal conditions.
The test samples were divided into two groups. One group was comprised of
those which were ranked Good to Adequate from the initial set. The second
group tonsisted of those which were ranked Marginal to No Fit from the initial
set, and all of the additional incorrect eye regions. The total energy cost of the
resultan?, template was examined in each and a histogram was made with discrete
bins of 10 units apart. The results are as shown in Figure 5.4:

From Figure 5.4, we can observe that the template energy cost for the Good
eyes is generally lower than that of the Bed instances. Unfortunately the distribu-
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Figure 5.4: Eye Template Energy Cost Distribution

tion pattern between the two is not as distinct as we had hoped for. Upon careful
examination of the handful of bad instances which managed to achieve relatively
low template energy cost, we noticed that in most cases eyes were found on the
eyebrows (see Figure 5.5). These eyebrows in fact provided fairly good fit for our
Eye Boundary template which was defined using only bounding parabolas. One
obvious improvement is of course to include the circular iris as we had suggested
earlier. A second improvement would be to examine not just the total cost, but
also the individual piece cost. The principle idea behind this is that with an
incorrect instance, at least one of the eyelids or irises will be poorly fitted. How-
ever, the determination of the cutoff values for each piece is a difficult task. The
validity of this idea still remains to be proven through further testing.

The runtime for all test images ranged between 7.580 sec and 20.650 sec. The
average was 11.545 sec with a 3.003 sec standard deviation. This would seem to
be a significant improvement over the reported runtime by Yuille et al. of 5 to 10
minutes. Both ours and Yuille’s were tested on a Sun4 Unix machine. Our Sun4
is 1.5 times as fast as the low end Sun4. Hence, even if their experiment was done
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Figure 5.5: Failed Eyes

on a low end Sun4, our algorithm is still at least 16 times as fast. This clearly
indicates that our effort in reducing computational expense through efficient ge-
ometric primitive generation and numerical optimization is well worthwhile. As
long as careful bookkeeping is maintained, the addition of the circular iris in this
step should not impact the performance by too much.
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Chapter 6

Mouth Module

The objective of the mouth module is to confirm and lecate precisely where the
mouth is within the given region. In the past, many researchers used simple
models such as long thin valley, or simple horizontal edge. As we pointed out
in the eye module, although a simple model can be used as an initial estimate,
it is most likely insufficient as a reliable confirmation guideline. This indicates
the need of a considerable more elaborate design than what has been done in the
past.

The conceptual design of the mouth module paraliels that of the eye module
and is divided into two stages. The first stage uses the classical Hough transform
technique to identify long horizontal edge segments within the subregion supplied
by the context module. Based on this refined estimate, the second stage will
employ the deformable template technique as proposed by Yuille to identify the
precise location and shape of the mouth. The description and experimental results
of each of these two stages are detailed in the remainder of this chapter.

6.1 Line Hough Transform

Extraction of line is by far the most well-established and well-used application of
hough transform for two reasons. Firstly, line has a low dimensionality, making
it computationally easy to manage in practice. Secondly, it is the original appli-
cation for which Hough transform was designed for, hence it is well studied. The
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formulation of our routine is primarily based on the approach established in past
research. It uses the normal representation of line :

ysin(f) — zcos(d) = p (6.1)

where z,y are the Cartesian coordinates of a point aluug the line, and 4 and p
describe the orientation and length of its normal vector anchored at the origin.
Figure 6.1 illustrates this relationship. This is a convenient representation because

“\ (]

ASA

y=mx+b

Y

Figure 6.1: Normal Representation of Line

a gradient angle by definition is normal to the edge and therefore can be used
directly to index into the appropriate parameter space elements.

6.1.1 Parameter Space Generation

The parameter space is a two dimensional one with axes 6 and p. The gradient
direction, 0, ranges from 85 to 95 since it only has to account for relatively
horizontal lines. By translating the origin to the center of the image, p has to
cover from —pmax t0 +Pmax, Where pmay is half the length of the longest possible
line in the given area, namely 0.5 * \/height? + width?. Since we are interested
in obtaining finite lines, each parameter space cell must keep track of the two
extreme endpoints in addition to the accumulated count. Because of error in edge
detection, a 30° error must be incorporated. That is to say that for each valid

1This representation is slightly different from the conventional because of the inverted Y axis
used in our coordinates system.
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edge point, a p is calculated for each angle between 6—30° and 6+-30°. Therefore, a
handful of parameter space cells rather than a single one will be updated for each
edge point. The valid edge points are extracted by edge detection techniques
described in section 3.4 and then thresholded with a 60-percentile magnitude
requirement.

6.1.2 Horizontal Line Selection

The selection process for the optimal horizontal line is roughly the same as that
used in circle selection. First we perform local averaging within the parameter
space cell. Then we apply the same preliminary screening criteria as described in
section 5.1.2 to extract a list of reasonably good horizontal lines. These lines are
then ranked using the following heuristic:

SCOREjin. = length — 0.5 * (endpoint,.y + endpoint;.y) (6.2)

The result of ranking by equation 6.2 is an ordered list of potential mouth
lines. Ideally, they would be checked one at a time until a2 mouth is confirmed at
that location. However, for now only the first horizontal line in the list is used
for testing in the subsequent deformable template step. In addition, the region of
processing is localized to only the immediate neighborhood surrounding this line
as shown in Figure 6.2.

i
w Was L

Figure 6.2: Bounding Box for the Mouth Deformable Template Step
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6.2 Deformable Template for Mouth

For a detailed analysis of mouth shape and location, we employ the deformable
template technique. The template we use to model the mouth consists of three
parabolic curves as shown in Figure 6.3. It is essentially a simplified version of

Legend :
© . ihetilangle
(X,y)- the coordinates of the parabola center
b - the parabola halfwidth

4 . the upper parabola height
% . the middle parabola height
% . the lower parabola height
Figure 6.3: Mouth Template

that used in [YCH88]. The mgtivation is primarily computational: the simpler
the template, the less computational effort is needed to evaluate it. Nevertheless,
there is still enough structural constraint that it shoiild be able to lock on the
mouth just as well as that of the more complicated one in [YCHS8S].

Again, similar to the eye template, the mouth template is edge based only.
Valley and peak forces are presumed unnecessary since the region within which
this is to be located should be relatively localized. Therefore, the external energy
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function is composed of only three separate terms corresponding to the edges of
the three parabolas in the template:

1
Eu”" - U pperLength UpperParabola Qe(i‘)ds (6.3)
1 pog
Emidine = MiddleLength JMiddieParabola ®e(2)ds (6.4)
Eger = +——— 8.(2)ds (6.5)

Lower Length JLowerParabola

where ®.(Z) is the edge strength of the point Z on the curve; Eypper, Emidiines Etower
are the energy functions for the upper, middle, and lower parabolas respectively.

The shape function controls only the size proportion among parameters to
attain an average mouth shape,

E:Impe = mouth + Ymouth + Bmouth + Almoulh + A2mouth

6.6
+ Asmouth + 0mouth ( )

Terms in Equation 6.6 are expressed using SimpleSpring and DoubleSpring func-
tions. Using the samie notation as in section 5.2, the experimentally derived spring
coefficients and range of operations are tabulated in Table 6.1.

One will notice that there is more tolerance placed upon the lower range of
the Al and A3 terms so as to allow them to degenerate into straight lines. This
is designed primarily for accommodating people with very thin lips.

The generation of these geometric primitives are based upon the Midpoint
technique. The optimization is done again via Downhill Simplex. Both are de-
scribed in detail in Chapter 3.

6.3 Experimental Results and Discussion

The experimentation for this module is set up in the same format as that of the
eye module. There are two separate issues being investigated. The first aims at
testing the detection capability of the mouth module given the proper context.
The second intends to establish a quantitative measure by which a properly fitted
mouth template can be distinguished from the incorrectly fitted ones.
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Term l L3 K2 |1 I2 from to
- width 0.3 width = 0.7
ycenter — 2 yeenter + 4 yeenter — 2— | ycenter + 4+
height = 0.3 height =0.3
mouth . widths03 | width=04 width#0.2_| width 0.5
Alpmousn || Al(mouth 1.0 | 2.0 | B(mouth)»0.25 | B(mouth)=03 1 width « 0.2
A2mouth " A2(mouth) | 400 | 400 | -2 _ 2 —width=0.1 | width«0.1
| A3moutn || A3(mouth) | 1.0 | 2.0 B(mouth) 0.3 | B(mouth)=04 | 1 wid‘th =0.25
Omoutn || 6(mouth) | 0251 - 8(line) - 8(line) - 5 O(line) + 5

where N(mouth) is the N parameter of the mouth template;
zeenter is the x coordinate of the center of the processing region;
yeenter is the y coordinate of the center of the processing region;
width is the width ofthepmce-mgupon.
height is the height of the processing region
8(line) is the tilt ngleoftherdmhnesnpphedby the Hough transform step.

Table 6.1: Mouth Shape Function Coefficients

Rating | Number Percentage_“

Good 15 36
Adequate 19 45 |
Marginal | 5 12 I

No Fit 3 T Il

Table 6.2: Mouth Module Results

In order to examine the first issue, we tested the mouth module with 42 images.
This is a subset of the images we used in a similar experiment for the eye module.
The reason is that our mouth template is designed to handle closed mouths and
clean shaven individuals only, and therefore some of the images were excluded.
The results are again evaluated subjectively using the same rating categories as
that of the eye module. An example of each is shown in Figure 6.4. The results
are summarized in Table 6.2.

Generally, the findings here are similar to that in the eye module. There
were very few exactly fitted cases because actual mouths seldom conform to a
perfect parabolic shape. However, a relatively Good to Adequate fit is certainly
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(b) Adequate

(c) Marginal " (d) NoFit

Figure 6.4: Mouth Template Fit



achievable providing there is good image quality and resolution. Because only the
first horizontal line is used from the list generated by the Hough transform step,
there is no guarantee that it is in fact part of the mouth. Most No Fit cases were
generated by those with the incorrectly selected mouth line. This finding again
is the same as that in the eye module where the performance of the deformable
template siep suffers as a result of failing to select the proper iris pair in the
earlier step. As we pointed out in section 5.3, this can be rectified once a robust
qualitative measure is derived for distinguishing valid mouths from the invalid
ones.

Although the percentages presented here are fairly similar to those from the
eyes module, on the few occasions that the module failed, it did so because of
a different reason - the lack of reliable edge information. Unlike the eyes, lips
do not always appear as a clearly outlined object in an intensity image. This is
particularly true for subjects with very thin and/or light colored lips, such as that
in Figure 6.4 (c) and (d). Our model template is an edge based one, and in order
for it to lock on successfully, it requires a certain amount of edge information
present,

There are several ways of rectifying this problem. One, we could change our
model from an edge based one to that of a different representation. The idea
of intensity gradient direction map in [RS92] could be one such model. With
this technique, segmentation is achieved by identifying regions of similar gradient
directions, rather than magnitudes. An object will be defined in terms of distinct
gradient direction patches. Hence, it is most suited for describing objects with
little or no distinct edge. This is a considerable modification to the current model
and until it is implemented and thoroughly tested, it will be difficult to predict
whether any improvement can be achieved.

The second is to retain our current mode], but improve the inputs. Currently,
we derive our edge information from a single intensity image. Because of the lack
of intensity contrast between the lips and skin tone, the edge information is often
scant. The problem can become extremely ill-posed, especially if it is compounded
with the presence of a beard or moustache whose strong edge presence is expected
to distract the proper template placement. The easiest method to enrich an
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intensity image is by adding color inputs. Konrad demonstrated a successful
example of how color can be used to reduce the ill-posedness inherent in a two
dimensional motion estimation problem [Kon92]. Since most lips appear as some
shade of red, color could be extremely useful in extracting a reliable outline of
the mouth. Nevertheless, more work has to be done in order to integrate color
information into existiny «dge detection techniques.

Alternatively, we could add an extra color energy term in the template model.
The idea is to maximize the redness within the area between the upper and lower
parabolas. This is potentially useful not only for extracting red lips, but also
for rectifying our second major source of problems: cases of thin lips. Currently,
we impose only a low penalty cost for deformation 2 in the shape function in
order to allow the lips to deform into a thin line in the absence of a better fit.
Ideally, the tendency for the template to deform will be counteracted by existence
of strong edge further out. However, this is not the case in practice, and the
middle line often appears the strongest edge out of the three. Consequently if
the deformation penalty is set too low, most lips will deform. Yet, if it is set
too high, the template could not accommodate cases of thin lips. Therefore, the
combination of insufficient edge information and large variation in lip thickness
makes the deformation penalty one cf the most extremely difficult measure to
tune. The addition of a maximal redness requirement will serve as a counter
measure to pull the lips back out if possible. Hence, it is not as important to tune
the deformation penalty as precisely.

The reader should note that all of the above problems are not unique to our
particular approach. In fact, we expect any edge based methods to experience
similar difficulties. Therefore, all the suggested enhancements will be valid for any
primarily edge based approach to mouth detection, such as the original deformable
template method proposed by Yauille et al. .

In addition to being able to extract a mouth shape description from a valid
region, we want to derive a quantitative means to distinguish Good to Ade-
quate fits from those that are Marginal and No Fit. However, because of the

2The deformation penalty is controlled by the k; coefficient to the Almouth A2mouts terms
as listed in Table 6.1.
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insufficient edge information issue pointed out in the previous paragraph, it will
be difficult to expect the correctly fitted cases to exhibit a significantly lower
template energy cost than the invalid ones. Nevertheless, the possibility should
still be investigated. The experiment was set up so that in addition to the pre-
vious 42 mouth regions, 20 more were added. Some of the additional ones were
taken from incorrectly identified contexts. The others were taken frcm correctly
identified contexts of individuals with a beard or moustache. This ims:reased the
total number of Marginal to No Fit cases to approximeately the sam:: as that of
the Good to Adequate cases. The distribution of the tumplate enc 7 cost for
both is plotted and shown in Figure 6.5:

Mouth Total Cost
40 I [ I i 1 { 1 1] I i

35 Good to Adequate Cases — _|
Marginal to No Fit Cases - - - -
30 F -

25 -
count 20 -
15 |
10

0 40 80 120 160 200 240 280 320 360 400
total cost

Figure 6.5: Mouth Template Energy Cost Distribution

One can see that there is no clear division between the two distribution. This
again, reinforces our suspicion of inadequate contrast based only on intensity
image. Though the correctly fitted cases have a much narrower distribution on
the low end of the energy spectrum, it is not low enough to cleatly distinguish
itself from the invalid cases. In fact, the distribution of the incorrectly fitted cases
is so wide that it overlaps the entire range of the valid cases. This module as is, is
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clearly not robust enough. Perhaps the addition of color distinction will enhance
the edge information and make this module more robust.

In addition to the detection performance, we measured the execution time
performance of this module. The average run time was found to be 3.23 sec with
a 0.570 sec standard deviation, a minimum of 2.270 sec and a maximum of 4.720
sec. This is again significantly faster than that reported by Yuille et al. . Some
of it is of course due to the fact that we are using a slightly simpler template.
However, we feel that much of it is due to the fact that care had been taken
to code the geometric primitive generation and function optimization routines as
efficiently as possible.

In summary, though enhancements must be added before this module can be
used reliably as a confirmation module, it has demonstrated good potential in
extracting mouth shape and location from well contrasted lips. As well, since the
module can be executed in a very short time under a general purposed computing

environment, it is potentially possible to be sped up even further with dedicated
hardware.
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Chapter 7

Conclusion

The problem of automatic facial feature extraction is a crucial, yet under-developed
domain within the field of computerized face recognition. The difficulty is the lack
of formalism in defining what a face is. Indeed, a face is a complex object com-
prised of components which although regular in general appearances, possess high
degree of variation under detail examination.

The problems we are faced with in automatic facial feature extraction there-
fore exist on two levels. On the low level, we need to derive a model for individual
features that is descriptive enough to embody the common shape, but yet flexible
enough to handle some degree of variation. As well for practicality, the technique
employingl such a model must be executable within a reasonably short time. On
the high level, we are concerned with the overall system integrity. Visual recogni-
tion is an ill-posed task. Since there is seldom a unique solution, we compromise
by choosing the most plausible interpretation. Yet this choice could have been
wrong. If this error is allowed to propagate and accumulate throughout a system,
such as the case in a sequential design that is frequently employed by researchers
in this area, the integrity of the overall system is highly questionable. Therefore,
we wish to establish a system that will combine the results of individual feature
extraction modules with minimum compounded error.

The research described in this thesis attempts to be the first step of con-
structing a system that would solve these two problems. The current system is
comprised of three modules. These are the context module which generates hy-
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potheses and provides the overall system control, and the eyes and mouth modules
which confirm the existence and extract the precise shape and location of their
respective features of interest.

The eyes and mouth modules employ a combined Hough transform and de-
formable template technique. Both of these techniques are high level modelling
approaches which aim at identifying objects which can be decomposed into simple
geome :ic elements. For the extraction purpose, the results were very favorable.
The rate of extraction for Adequate or better is 84% for the eyes module, and
81% for the mouth module. For the context confirmation purpose, more work is
clearly needed before the feature modules can be used reliably. The future work
involved here would be primarily the investigation of additional energy terms for
the deformable template model that will serve to better distinguish between valid
and invalid cases.

The context module, on the other hand, relies on simple heuristics and rough
segmentation by morphological filtering and blob coloring. It was capable of
capturing the correct location in 96% of the test images with an average run time
of less than 1 second, a very promisirs result. The test cases here are limited to
only individuals without spectacic.. "™ -re7are, a potential improvement in this
module would include an alternative ay:: " =ch to handle bespectacled cases. As
well, we have to investigate how .- ¢i,.u:xt module should integrate the results
from the various feature modules aad the possibility of refining these results in
an iterative process. The important contribution of this module is the fact that it
provides a proper control structure under which feature extraction modules can
operate economically and reliably. It is econamical because rough location has
already been established and futile search can be limited. It is reliable because
interdependency among feature extraction modules are completely eliminated,
and thereby preventing errors from being accumulated.

Indeed, this is far from being a complete system, however it does provide a
good framework to further future research in automatic face features extraction.
With the current system design, new modules for features, such as eyebrows,
noses, or even moustaches, can easily be added. As well, existing feature modules
can be completely redesigned if better techniques are derived. Both of these
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can be accomplished without imposing drastic impact on the rest of the system.
Hopefully, this will eventually lead to a completely automated facial recognition

system.
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Appendix A

Modified Midpoint Circle
Algorithm

Since the Midpoint circle algorithm is integer-based, it naturally expects all its
parameters (ie. center coordinates, and radius) to be integer as well. This means
that only a full circle with integer coordinates and even diameter can be generated.
Yet, a circle in an image may have either an odd or even diameter. With an odd
diameter circle, the center will be located half way in between two pixels rather
than on the pixel. Therefore, though the circle boundary poiuts (ie. the edge
pixel) may have integer coordinates, the coi.esponding parameter cell could have
real number coordinates center. We could of course use a less efficient floating-
point version of the Midpoint circle algorithm where pixel coordinates must be
generated using floating point arithmetic even though they will eventually be
rounded off as integers.

Therefore, instead of one general circle generating algorithm, we decide to
classify circles into even or odd and have two separate routines bandling them.
We recall that the octants can be generated from symmetry. This is to say that
for every point within an octant there exist 7 corresponding points, one in each
octant as shown in Figure A.1.

Although the overall symmetry is slightly different between the two, the loca-
tions of points within each octant are very similar as shown in Figure A.2. In fact,
the octants of an cdd diameter circle can be generated from those of a slightly
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Figure A.1: Eight Symmesrical Points on a Circle
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Figure A.2: Even and Odd Circles
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Even-Diameter | Odd-Diameter
Octant Circle Circle
Az Ay Az Ay
0 [-z] v | y |-z-1]

= z z |-y-1
2 ||~y ~T —z-1]|-y-1
3 -z -y —y-1]—-z-1
4 z -y -y=—-1 z
5 y - -z -1 Y
6 [y T z y |
T | = y y z

Notes: Az and Ay are the amount to add to the truncated x and y coordinates of the circle center.

Table A.1: Generation of Symmetrical Points on a Circle

smaller even diameter circle just by shiftying each octant out by half a pixel from
the center. Yet, since the odd diameter circle is larger, the total number of points
lie on its circumference should be more than that of the smaller even diameter
circle. This difference can be accounted for by adding additional symmetrical
points for pixels lying at exactly 0, %, 7, and 3 radians.

Hence, the overall strategies for both are effectively the same as the original
Midpoint circle algorithm. The only difference lies in how symmetric points are
calculated. Table A.1 summarizes the rules used to generate these symmetrical
points for the two.
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Appendix B

Circle Arc Generation

Often, one would want to generate only a partial rather than a complete circle,
such as in the case of circle Hough transform with gradient information. Here,
the midpoint circle algorithm can still be used, except a decision has to be made
whether a pixel falls between the starting and ending points. Considering the
potentially large number of circles one might have to generate, the time required
may amount to a considerable sum.

However, with careful examination of the relations between a circle and its
arc, we observe the followings:

1. An octant can be classified into four different types: starting, ending, inte-
rior, and exterior.

2. Interior octant is completely inside, therefore any point falling within it will
be included without exception.

3. Exterior octant is completely outside, therefore any point falling outside it
will be excluded without exception.

4. Stariing octant is only partsal covered, a comparison with starting point i3
necessary to determine v/hether it should be included.

{ Ending octant is only partial covered, a comparison with ending point is
necessary to determine whether it should be included.
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Therefore, an octant table can be used to classify each octant into one of the
three categories: the beginning, ending and interior octants. Since we are using
symmetry to generate points, we already know which octant they originate from.
From the octant table we can then decide whether further comparison is needed.
In effect, the modified algorithm drastically reduces the amount of comparisons,
yet preserves the elegance and efficiency of the original midpoint circle generation

technique.
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Appendix C

Parabola Generation

The midpoint conic generation routine in [FvFH90] expresses a general conic in
the form of:

Az’ + Bzy+Cy*+ Dz +Ey+ F=0 (C.1)

Equation C.1 assumes that the coefficients have been adjusted so that the starting
point is at the origin. This is needed for handling partial conics (je. an elliptical
arc, or finite parabola). In order to use the Midpoint conic routine for generating
parabolas, we must derive an expression for each coefficient in equation C.1 in
terms of the parabola parameters as shown in Figure C.1:

The analytic equation for this parabola can be expressed as:

y' = —;-;z" +a (C.2)

with Ep = (—b,0) and E; = (b,0).
If the parabola is now rotated by an angle of 6 as shown in Figure C.2: The re-

lations between the parabola coordinates (z',y') and the image plane coordinates
(z,y) are as follows:

z' = cosfz —sinfy (C.3)
y' = sinfz + cosfy (C4)
z = cosfz’ + sin By’ (C.5)
y = cos Oy’ — sin 6z’ (C.6)
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Legend :
a - the height of the parabola
b - the half-width of the parabola

Figure C.1: Upright Parabola

Legend :
a - the height of the parabola
b - the half-width of the parabola
©- the tilt angle

Figure C.2: Rotated Parabola
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Therefore the rotated endpoints are now:
Eo = (—bcos 8, bsin 6)
E, = (bcos 8, —bsinb)
Substituting equations C.3 and C.4 into equation C.2, we obtain:

sin 0z + cos 8y = 32(cos 0z — sinfy)? + a
b?sin 0z + b*cos 0y = —a(cos® §z% — 2cos fsin Ozy + sin? y?) +ab?  (C.7)
acos® 822 ~ 2acos fsin fzy + asin® Oy + b%sin Oz + bPcos Oy —ab®* =0

In terms of C.1, we have:

A = acos’d (C.8)
B = —2acosfsind (C.9)
C = asin’d (C.10)
D = b%iné (C.11)
E = b¥osh (C.12)
F = —ab’ (C.13)

Now, translating E; to the origin, we obtain the following transformation of
coordinates:

z = z + bcosd (C.14)
y=>y—bsind (C.15)
Substituting equations C.14 and C.15 into equation C.1, we have:

A(z + beos 8)? + B(z + bcos0)(y — bsin4)
+C(y — bsin8)? + D(z + bcos6) + E(y — bsin@) + F = 0

A(z? + 2bcos Oz + b2cos? )
+B(zy — bsin 8z + bcos 8y — b*sin Hcos 6)
+C(y? — 2bsin By + b?sin? ) + D(z + bcos6) (C.16)
+E(y — bsin6) + F =0

Az? + Bzy + Cy? + (2bcos A — bsin B + D)z + (beos 6B
~2bsin 0C + E)y + (b?cos? .4 — b?cos Osin 6B
+b%in? 0C + beos 6D — bsin 0E + F)

i
o
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Therefore, the new coefficients are:

A
B
'
D

El

Fl

i

A = acos®0
B = —2acos9sin b
C = asin®4

2bcos A — bsin6B + D

2bcos O(acos? 8) — bsin 6(—2acos bsin §) + (b%sin 0)
2ab cos® 8 + 2abcos fsin’ § + b’sin

2abcos f(cos? § + sin? 4) + H*sin 8

2abcos§ + b’sin 8

bcos0B —2bsin6C + E

beos §(—2acos fsin 8) — 2bsin 8(asin® §) + (b*cos 6)
—2abcos? fsin § ~ 2absin® 0 + bcos 0

—2absin 6(cos? @ + sin? 8) + bPcos §

—2absin 6 + b*cosd

(C.17)
(C.18)
(C.19)

(C.20)

(C.21)

b2cos? A — b2cos Osin B + b%sin® 0C + beos 0D — bsinbE + F

b*cos? O(acos? §) — b*cos fsin §(—2acos fsin 6) + b%sin? 6(asin® §)

+bcos 8(b%sin 8) — bsin O(b*cos §) + (—ab?)
ab? cos* 0 + 2ab*cos? Osin® 0 + ab®sin* @
+b%cos fsin 6 — b3cos fsin 6 — ab?

ab*(cos? 0 + sin’ §)? — ab?

= ab® - ab®

0

(C.22)

Given the height a, half-width b, and tilt angle 8 of a parabola, equations C.17
- C.22 can be used to compute the necessary coefficients for the midpoint conic
generation algorithm. Note that, though the center of the parabola is assumed to
lie on the origin here, a simple offset can be added to all points to accommodate
the general cases.
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Appendix D

Image Processing Library

During the course of this study, many routines were developed for various tasks,
such as image processing, graphics, Gata structure management etc.. Most were
designed with general purpose in mind and form a collection of useful routines
callable from any “C” programs. Here, we shall give an overview of what func-
tionalities these routines provide.

Image Structure Management

IvitByteImage initializes a ByteImage structure to the specified dimension.
EFreeBytelmage frees the memory allocated for the specified ByteImage.
IzitReallmage initializes a Reallmage structure to the specified dimension.
FreeReallmage frees the memory allocated for the specified Reallmage.
CopyReallmage copies a block of pixels values from one Reallmage to another.

InitCompImage initializes a CompImage (ie. frequency domain image) struc-
ture to the specified dimension.

FreeCompImage frees the memory allocated for the specified CompImage.

CopyComplImage copies a block of complex values from one ComplImage to
another.

Byte2Real converts from a ByteImage to a Reallmage.



Real2Comp converts from a Reallmage to a Complmage by filling the imaginary
components with 0’s.

Comp2Real converts from a CompImage to a Reallmage by truncating the imag-
inary components.

Image structure and raster file I/0

Real2RaswCTBL outputs a Reallmage into a sun raster file with the specified
color table.

Ras2Real inputs a Reallmage from a sun raster file assuming 256 grey scales.
Real2Ras writes a 256 grey scale Reallmage as a sun raster file.

Mult2Ras overlays a grey scale image with a number of binary mask images
with the specified colors and outputs it as a sun raster.

Spatial Domain Image Manipulation

ScaleImage modifies the pixels value of a Reallmage so that it is within the
specified range of grey scales.

ScaleByteImage modifies the pixels value of a ByteImage so that it is within
the specified range of grey scales.

ZeroCrossing locates the zero crossing points in a Laplacian filtered image.
SobelEdges calculates the edge image using Sobel filtering.

GaussEdgeLoc calculates the edge image using 2nd Derivative Gaussian filter-
ing.

- LapEdgeLoc determines the location of edges by Laplacian filtering.

Sample converts the input image into a smaller version by sampling every N
pixels column and row wise as specified.

Threshold performs range thresholding for a Reallmage.
SubRealImages subtracts two Reallmage.
MaskReallmage masks a Reallmage with a binary Reallmage

SpatialFilter performs spatial filtering with the supplied filter function on a
Reallmage.
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Dilate a morphological dilation filter function (to be used with SpatialFilter).
Erode a morphological erosion filter function (to be used with SpatialFilter).
Med a median filter function (to be used with SpatialFilter).

Convolve a spatial convolution filter function (to be used with SpatialFilter).

Frequency Domain Image Manipulation

ComAbs returns the absolute value of a complex number.
ComMult multiplies two complex numbers.

ComDiv divides one complex number by another.
ComAdd adds two complex numbers.

ComSub subtracts two complex numbers.

fit2d performs a 2-D Fast Fourier Transform on the input Reallmage and returns
its CompImage counterpart.

ZeroPhaseFilter performs frequency filtering with the supplied zero phase filter
function on a CompImage.

BLPF a Butterworth low pass filter function (to be used with ZeroPhaseFilter).
ILPF an ideal low pass filter function (to be used with ZeroPhaseFilter).
GaussLPF a Gaussian low pass filter function (to be used with ZeroPhaseFilter).

Gauss2nd a second derivative Gaussian filter function (to be used with Ze-
roPhaseFilter).

PhSh90Filter performs frequency filtering with the supplied 90° phase shifted
filter function on a CompImage.

Gausslst a first derivative Gaussian filter function (to be used with PhSh90Filter).

Gausslx a first derivative (with respect to x) Gaussian filter function (to be
USED with PhSh90Filter). |

Gaussly a first derivative (with respect to y) Gaussian filter function (to be
used with PhSh90Filter).
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Region Segmentation

Bloblnit initializes storages for region management.

BlobNew creates an id for a new region.

BlobAdd adds a pixel to the specified region.

BlobGetID returns the id of the region to which the specified pixel be' angs.
BlobConnect connects two regions and marks their id’s as equivalent.

BlobClose compresses all connected region and returns a condensed list of re-
gions and the corresponding segmented image colored by regions.

Blob2Ras outputs the segmented image to a sun raster file.

GetBlobs performs blob coloring with the given image and returns the seg-
mented image and a condensed list of regions.

Geometric Primitive Generation

ScanArc generates a circular arc.

ScanCircle generates a complete circle.
ScanConic generates a conic.

ScanEllipse generates an ellipse.
ScanParabola generates a symmetric parabola.

ScanLine generates a line.

Drawing Routines

PutCross draws a cross.

PutBox draws a box.

DrawArc draws a circular arc.

DrawCircle draws a complete circle.
DrawEllipse draws an ellipse.
DrawParabola draws a symmetric parabola.

DrawLine draws a line.
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Miscellaneous Utilities

StartClock starts timing for the current nesting level and increments the level
hereafter.

StopCiock stops the current nesting level timing and decrements the level here-
after.

PrintClock reports the timing so far for the current nesting level.
InitStat initializes for beginning statistic bookkeeping.
AddStatItem adds item to the statistics.

EndStat returns the mean, variance, maximum and minimum among all items
added.

Get2DArray allocates the storage for a 2-D array.

Free2DArray frees the allocated memory for a 2-D array.
Get3DArray allocates the storage for a 3-D array.

Free3DArray frees the allocated memory for a 3-D array.
SetPercentile calculates the percentile for the given image region.

Per2Edge returns the corresponding pixel magnitude for the given percentile
(called after SetPercentile has been executed).

Edge2Per returns the corresponding percentile for the given pixel magnitude
(called after SetPercentile has been executed).

PercentReallmage converts all pixels in an image to their respective percentiles.
SimplexMinimize performs downhill simplex optimization.
HoughCircles performs circle Hough transform.

HoughLines performs line Hough transform.
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